WorldWideScience

Sample records for ag cu ti

  1. Ag- and Cu-doped multifunctional bioactive nanostructured TiCaPCON films

    Energy Technology Data Exchange (ETDEWEB)

    Shtansky, D.V., E-mail: shtansky@shs.misis.ru [National University of Science and Technology “MISIS”, Leninsky prospekt 4, Moscow 119049 (Russian Federation); Batenina, I.V.; Kiryukhantsev-Korneev, Ph.V.; Sheveyko, A.N.; Kuptsov, K.A. [National University of Science and Technology “MISIS”, Leninsky prospekt 4, Moscow 119049 (Russian Federation); Zhitnyak, I.Y.; Anisimova, N.Yu.; Gloushankova, N.A. [N.N. Blokhin Russian Cancer Research Center of RAMS, Kashirskoe shosse 24, Moscow 115478 (Russian Federation)

    2013-11-15

    A key property of multicomponent bioactive nanostructured Ti(C,N)-based films doped with Ca, P, and O (TiCaPCON) that can be improved further is their antibacterial effect that should be achieved without compromising the implant bioactivity and biocompatibility. The present work is focused on the study of structure, chemical, mechanical, tribological, and biological properties of Ag- and Cu-doped TiCaPCON films. The films with Ag (0.4–4 at.%) and Cu (13 at.%) contents were obtained by simultaneous sputtering of a TiC{sub 0.5}–Ca{sub 3}(PO{sub 4}){sub 2} target and either an Ag or a Cu target. The film structure was studied using X-ray diffraction, transmission and scanning electron microscopy, energy dispersive X-ray spectroscopy, glow discharge optical emission spectroscopy, and Raman-shift and IR spectroscopy. The films were characterized in terms of their hardness, elastic modulus, dynamic impact resistance, friction coefficient and wear rate (both in air and normal saline), surface wettability, electrochemical behavior and Ag or Cu ion release in normal saline. Particular attention was paid to the influence of inorganic bactericides (Ag and Cu ions) on the bactericidal activity against unicellular yeast fungus Saccharomyces cerevisiae and gram-positive bacteria Lactobacillus acidophilus, as well as on the attachment, spreading, actin cytoskeleton organization, focal adhesions, and early stages of osteoblastic cell differentiation. The obtained results show that the Ag-doped films are more suitable for the protection of metallic surfaces against bacterial infection compared with their Cu-doped counterpart. In particular, an excellent combination of mechanical, tribological, and biological properties makes Ag-doped TiCaPCON film with 1.2 at.% of Ag very attractive material for bioengineering and modification of load-bearing metal implant surfaces.

  2. Active Brazing of C/C Composite to Copper by AgCuTi Filler Metal

    Science.gov (United States)

    Zhang, Kexiang; Xia, Lihong; Zhang, Fuqin; He, Lianlong

    2016-05-01

    Brazing between the carbon-fiber-reinforced carbon composite (C/C composite) and copper has gained increasing interest because of its important application in thermal management systems in nuclear fusion reactors and in the aerospace industry. In order to examine the "interfacial shape effect" on the mechanical properties of the joint, straight and conical interfacial configurations were designed and machined on the surface of C/C composites before joining to copper using an Ag-68.8Cu-4.5Ti (wt pct) alloy. The microstructure and interfacial microchemistry of C/C composite/AgCuTi/Cu brazed joints were comprehensively investigated by using high-resolution transmission electron microscopy. The results indicate that the joint region of both straight and conical joints can be described as a bilayer. Reaction products of Cu3Ti3O and γ-TiO were formed near the copper side in a conical interface joint, while no reaction products were found in the straight case. The effect of Ag on the interfacial reaction was discussed, and the formation mechanism of the joints during brazing was proposed. On the basis of the detailed microstructure presented, the mechanical performance of the brazed joints was discussed in terms of reaction and morphology across the joint.

  3. Electrical Properties of Al, Ag, Cu, Ti and SS Thin Film for Electrode of Solar Cell

    International Nuclear Information System (INIS)

    The Al, Ag, Cu, Ti and SS materials were deposited on the surface of glass substrate using plasma DC sputtering technique. The deposition process was done with the following plasma parameters : deposition time, gas pressure and substrate temperature with the aim to obtain a good conductance of thin films. Variation of substrate deposition time was 1 - 15 minutes, gas pressure was 5x10-2 - 7x10-2 torr and of temperature was 100 - 300 oC. The resistance measurement has been done by four points probes and the conductivity was calculated using mathematic formulation. It was obtained that the minimum resistance in the order of R = 0.07 Ω, was found at Ag materials and this was obtained at the following plasma parameters : deposition time 15 minutes, gas pressure 6x10-2 torr and temperature 300 oC, while, the resistance of : Cu, Al, Ti and SS materials were R = 0.13 Ω, R = 450 Ω, R = 633 Ω, R = 911 Ω respectively, It could be concluded that the Ag thin film has a minimum resistance, high conductivity compared to the other materials Al, Cu, Ti and SS. Ag is therefore the suitable material for applying as electrode of solar cell. (author)

  4. Joining of CBN abrasive grains to medium carbon steel with Ag-Cu/Ti powder mixture as active brazing alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ding, W.F. [College of Mechanical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China)]. E-mail: dingwf2000@vip.163.com; Xu, J.H. [College of Mechanical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Shen, M. [College of Mechanical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Su, H.H. [College of Mechanical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Fu, Y.C. [College of Mechanical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Xiao, B. [College of Mechanical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China)

    2006-08-25

    In order to develop new generation brazed CBN grinding wheels, the joining experiments of CBN abrasive grains and medium carbon steel using the powder mixture of Ag-Cu alloy and pure Ti as active brazing alloy are carried out at elevated temperature under high vacuum condition. The relevant characteristics of the special powder mixture, the microstructure of the interfacial region, which are both the key factors for determining the joining behavior among the CBN grains, the filler layer and the steel substrate, are investigated extensively by means of differential thermal analysis (DTA), scanning electron microscope (SEM) and energy dispersion spectrometer (EDS), as well X-ray diffraction (XRD) analysis. The results show that, similar to Ag-Cu-Ti filler alloy, Ag-Cu/Ti powder mixture exhibits good soakage capability to CBN grains during brazing. Moreover, Ti in the powder mixture concentrates preferentially on the surface of the grains to form a layer of needlelike Ti-N and Ti-B compounds by chemical metallurgic interaction between Ti, N and B at high temperature. Additionally, based on the experimental results, the brazing and joining mechanism is deeply discussed in a view of thermodynamic criterion and phase diagram of Ti-B-N ternary system.

  5. A bamboo-inspired hierarchical nanoarchitecture of Ag/CuO/TiO2 nanotube array for highly photocatalytic degradation of 2,4-dinitrophenol.

    Science.gov (United States)

    Zhang, Xuhong; Wang, Longlu; Liu, Chengbin; Ding, Yangbin; Zhang, Shuqu; Zeng, Yunxiong; Liu, Yutang; Luo, Shenglian

    2016-08-01

    The optimized geometrical configuration of muitiple active materials into hierarchical nanoarchitecture is essential for the creation of photocatalytic degradation system that can mimic natural photosynthesis. A bamboo-like architecture, CuO nanosheets and Ag nanoparticles co-decorated TiO2 nanotube arrays (Ag/CuO/TiO2), was fabricated by using simple solution-immersion and electrodeposition process. Under simulated solar light irradiation, the 2,4-dinitrophenol (2,4-DNP) photocatalytic degradation rate over Ag/CuO/TiO2 was about 2.0, 1.5 and 1.2 times that over TiO2 nanotubes, CuO/TiO2 and Ag/TiO2, respectively. The enhanced photocatalytic activity of ternary Ag/CuO/TiO2 photocatalyst was ascribed to improved light absorption, reduced carrier recombination and more exposed active sites. Moreover, the excellent stability and reliability of the Ag/CuO/TiO2 photocatalyst demonstrated a promising application for organic pollutant removal from water. PMID:27107324

  6. Enhanced photocatalytic, electrochemical and photoelectrochemical properties of TiO2 nanotubes arrays modified with Cu, AgCu and Bi nanoparticles obtained via radiolytic reduction

    Science.gov (United States)

    Nischk, Michał; Mazierski, Paweł; Wei, Zhishun; Siuzdak, Katarzyna; Kouame, Natalie Amoin; Kowalska, Ewa; Remita, Hynd; Zaleska-Medynska, Adriana

    2016-11-01

    TiO2 nanotubes arrays (NTs), obtained via electrochemical anodization of Ti foil, were modified with monometallic (Cu, Bi) and bimetallic (AgCu) nanoparticles. Different amounts of metals' precursors were deposited on the surface of NTs by the spin-coating technique, and the reduction of metals was performed via gamma radiolysis. Surface modification of titania was studied by EDS and XPS analysis. The results show that AgCu nanoparticles exist in a Agcore-Cushell form. Photocatalytic activity was examined under UV irradiation and phenol was used as a model pollutant of water. Over 95% of phenol degradation was achieved after 60 min of irradiation for almost all examined samples, but only slight difference in degradation efficiency (about 3%) between modified and bare NTs was observed. However, the initial phenol degradation rate and TOC removal efficiency was significantly enhanced for the samples modified with 0.31 and 0.63 mol% of Bi as well as for all the samples modified with Cu and AgCu nanoparticles in comparison with bare titania nanotubes. The saturated photocurrent, under the influence of simulated solar light irradiation, for the most active Bi- and AgCu-modified samples, was over two times higher than for pristine NTs. All the examined materials were resistant towards photocorrosion processes that enables their application for long term processes induced by light.

  7. Interfacial microstructure and mechanical property of SiO{sub 2}-BN ceramics and Invar joint brazed with Ag-Cu-Ti active filler metal

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Z.W. [State Key Lab of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Zhang, L.X., E-mail: hitzhanglixia@163.com [State Key Lab of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Xue, Q.; He, P.; Feng, J.C. [State Key Lab of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China)

    2012-02-01

    Highlights: Black-Right-Pointing-Pointer The diffusion of Fe and Ni from Invar has great influence on joint microstructure. Black-Right-Pointing-Pointer Shear strength depends heavily on Ni{sub 3}Ti and Fe{sub 2}Ti brittle compounds. Black-Right-Pointing-Pointer Formation mechanism of the composite TiN-TiB{sub 2} fine-grain layer was discussed. Black-Right-Pointing-Pointer TiN-TiB{sub 2} fine-grain layer was the key factor in achieving a good bonding. - Abstract: SiO{sub 2}-BN ceramics and Invar alloy were jointed by active brazing using Ag-21Cu-4.5Ti (wt.%) filler at 1113-1173 K for 5-30 min. Scanning and transmission electron microscopy studies revealed that the amorphous SiO{sub 2} was not reacted during brazing while h-BN had strong tendency to react with Ti to formation a fine-grain layer adjacent to SiO{sub 2}-BN ceramic. The composite TiN-TiB{sub 2} fine-grain layer with the thickness of 100-150 nm was the key factor in achieving a good bond between SiO{sub 2}-BN ceramic and Invar. Invar alloy dissolved into the molten filler and reacted with Ti to form Fe{sub 2}Ti and Ni{sub 3}Ti, which dispersed in Ag- and Cu-based solid solution. The shear strength of the joint decreases with the increase of Fe{sub 2}Ti and Ni{sub 3}Ti brittle compounds. The maximum shear strength reached 32 MPa when the joint brazed at 1153 K for 10 min. Cracks primarily propagated in the SiO{sub 2}-BN ceramic and partially along the reaction layer.

  8. Saltwater ecotoxicology of Ag, Au, CuO, TiO2, ZnO and C60 engineered nanoparticles: An overview.

    Science.gov (United States)

    Minetto, D; Volpi Ghirardini, A; Libralato, G

    2016-01-01

    This review paper examined 529 papers reporting experimental nanoecotoxicological original data. Only 126 papers referred to saltwater environments (water column and sediment) including a huge variety of species (n=51), their relative endpoints and engineered nanoparticles (ENPs) (n=38). We tried to provide a synthetic overview of the ecotoxicological effects of ENPs from existing data, refining papers on the basis of cross-cutting selection criteria and supporting a "mind the gap" approach stressing on missing data for hazard and risk assessment. After a codified selection procedure, attention was paid to Ag, Au, CuO, TiO2, ZnO and C60 ENPs, evidencing and comparing the observed nanoecotoxicity range of effect. Several criticisms were evidenced: i) some model organisms are overexploited like microalgae and molluscs compared to annelids, echinoderms and fish; ii) underexploited model organisms: mainly bacteria and fish; iii) exposure scenario variability: high species-specific and ENP scenarios including organism life stage and way of administration/spiking of toxicants; iv) scarce comparability between results due to exposure scenario variability; v) micro- and mesocosms substantially unexplored; vi) mixture effects: few examples are available only for ENPs and traditional pollutants; mixtures of ENPs have not been investigated yet; vii) effects of ions and ENPs: nAg, nCuO and nZnO toxicity aetiology is still a matter of discussion; viii) size and morphology effects of ENPs: scarcely investigated, justified and understood. Toxicity results evidenced that: nAu>nZnO>nAg>nCuO>nTiO2>C60. PMID:27107224

  9. Crystallization behavior and consolidation of ball milled Zr60Ti5Ag5Cu12.5Ni10Al7.5 glassy powders

    International Nuclear Information System (INIS)

    Devitrification and consolidation of Zr60Ti5Ag5Cu12.5Ni10Al7.5 glassy powders produced by ball milling of intermetallic compounds have been investigated. The crystallization behavior is characterized by the formation of a nanoscale quasicrystalline phase along with a minor amount of tetragonal Zr2Cu phase during the first stage of the crystallization process. In the second crystallization event the metastable QC transform into the tetragonal Zr2Cu phase. The viscous flow of the supercooled liquid was studied by parallel plate rheometry, showing a distinct viscosity drop related to the glass transition, corroborating the results from DSC measurements. Consolidation of the glassy powders was performed by uniaxial hot pressing. The consolidation parameters were properly selected in order to obtain partially crystallized bulk samples with a composite microstructure characterized by the contemporary presence of glassy, quasicrystalline and tetragonal Zr2Cu phases. Hardness measurements reveal a Vickers hardness of 4.61 GPa and an estimated yield strength of 1.53 GPa. These results show that powder metallurgy methods are suitable for the production of Zr-based alloys characterized by a composite microstructure consisting of glassy, quasicrystalline and crystalline phases with mechanical properties similar to materials prepared by other techniques

  10. Al2O3/Al2O3 Joint Brazed with Al2O3-particulate-contained Composite Ag-Cu-Ti Filler Material

    Institute of Scientific and Technical Information of China (English)

    Jianguo YANG; Hongyuan FANG; Xin WAN

    2005-01-01

    Microstructure and interfacial reactions of Al2O3 joints brazed with Al2O3-particulate-contained composite Ag-Cu-Ti filler material were researched by scanning electron microscopy (SEM), electron probe microscopy analysis (EPMA),energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The interfacial reaction layer thickness of joints brazed with conventional active filler metal and active composite filler materials with different volume fraction of Al2O3 particulate was also studied. The experimental results indicated although there were Al2O3 particulates added into active filler metals, the time dependence of interfacial layer growth of joints brazed with active composite filler material is t1/2 as described by Fickian law as the joints brazed with conventional active filler metal.

  11. Estimation of Ba, Ag, Sn, Ti, Cu, Zn, Y and Zr in carbonaceous rocks using energy dispersive X-ray fluorescence spectrometer

    International Nuclear Information System (INIS)

    Carbonaceous rocks include carbon phyllites, carbonaceous shale, coal, variants of coaly sandstone, carbonaceous sandstone and graphite schist. Estimation of trace elements in these rocks by X-ray Fluorescence (XRF) method is generally done using coal ash samples. However, one advantage of analyzing whole coal is that volatile elements which are normally lost in ashing, can also be determined. XRF analysis is a rapid, nondestructive comparative method for which a number of matching geostandards/certified reference materials (CRM) is required. Estimation of Ag, Sn, Cu, Ba, Ti, Y and Zr in bromo heavies separated from whole coal samples has been attempted using EDXRFS by formulating procedures with pressed pellets of CRMs comprising of soil (SO-1, SO-2, SO-3, SO-4), shale (SCO-1, SGR-1, SDC-1, GXR-2, GXR-4, GXR-6) and schist rock (ASK-2)

  12. Photocatalytic performance of the SiO2 sphere/ n-type TiO2/ p-type CuBiS2 composite catalysts coated with different contents of Ag nanoparticles under ultraviolet and visible light irradiations

    Science.gov (United States)

    Abdullah, Hairus; Kuo, Dong-Hau

    2016-08-01

    Photocatalytic performance of the SiO2 sphere/ n-type TiO2/ p-type CuBiS2 composite catalysts with different contents of silver nanoparticles (abbreviated as SiO2/ n-TiO2/ p-CuBiS2/Ag) toward the photodegradation of Acid Black 1 ( AB 1) dye under ultraviolet (UV) and visible light was investigated. The composite catalyst spheres were analyzed their crystal structure, microstructure, optical absorbance capabilities, and photodegradation capabilities of AB 1 dye. The best photodegradation performances of the 20 mg composite powder with only ~5 mg photoactive catalysts showed the degradation of AB 1 dye in 5 min under UV and 60 min under visible light irradiations. The concept of composite catalyst with numerous nano p- n diodes and its photodegradation mechanism were proposed.

  13. Temperature stability of AgCu nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Sopoušek, Jiří, E-mail: sopousek@mail.muni.cz; Zobač, Ondřej; Vykoukal, Vít [Masaryk University, Department of Chemistry, Faculty of Science (Czech Republic); Buršík, Jiří; Roupcová, Pavla [Institute of Physics of Materials ASCR (Czech Republic); Brož, Pavel; Pinkas, Jiří [Masaryk University, Department of Chemistry, Faculty of Science (Czech Republic); Vřešťál, Jan [Masaryk University, Central European Institute of Technology, CEITEC (Czech Republic)

    2015-12-15

    The colloidal solutions of the Ag–Cu nanoparticles (NPs, 10–32 nm) were prepared by solvothermal reactions. The samples of dried AgCu NPs and the resulting microstructures after heat treatment in air were investigated by various methods including electron microscopy (TEM, SEM) and high-temperature X-ray powder diffraction (HTXRD). The AgCu randomly mixed, Cu-rich, and Ag-rich face centred cubic crystal lattices were detected during the experiments. The temperature induced sintering was observed experimentally by HTXRD at 250 °C. The phase transformations at high temperatures were monitored by differential scanning calorimetry. The formation of the Ag-rich grains during heating in air and evolution of copper oxide microstructure were detected.Graphical abstract.

  14. Advances of Ag, Cu, and Ag-Cu alloy nanoparticles synthesized via chemical reduction route

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Kim Seah; Cheong, Kuan Yew, E-mail: cheong@eng.usm.my [Universiti Sains Malaysia, Electronic Materials Research Group, School of Materials and Mineral Resources Engineering (Malaysia)

    2013-04-15

    Silver (Ag) and copper (Cu) nanoparticles have shown great potential in variety applications due to their excellent electrical and thermal properties resulting high demand in the market. Decreasing in size to nanometer scale has shown distinct improvement in these inherent properties due to larger surface-to-volume ratio. Ag and Cu nanoparticles are also shown higher surface reactivity, and therefore being used to improve interfacial and catalytic process. Their melting points have also dramatically decreased compared with bulk and thus can be processed at relatively low temperature. Besides, regularly alloying Ag into Cu to create Ag-Cu alloy nanoparticles could be used to improve fast oxidizing property of Cu nanoparticles. There are varieties methods have been reported on the synthesis of Ag, Cu, and Ag-Cu alloy nanoparticles. This review aims to cover chemical reduction means for synthesis of those nanoparticles. Advances of this technique utilizing different reagents namely metal salt precursors, reducing agents, and stabilizers, as well as their effects on respective nanoparticles have been systematically reviewed. Other parameters such as pH and temperature that have been considered as an important factor influencing the quality of those nanoparticles have also been reviewed thoroughly.

  15. Evolution process of the synthesis of TiC in the Cu-Ti-C system

    International Nuclear Information System (INIS)

    The evolution process of TiC formation in the 20 wt.% Cu-Ti-C powder mixtures was studied by using differential thermal analysis (DTA), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The TixCuy compounds (Ti2Cu, TiCu, Ti3Cu4 and TiCu4) formed initially via solid-state diffusion reactions between Cu and Ti particles; and then Ti2Cu and TiCu can form a Cu-Ti eutectic liquids at about 1233 K. The unreacted Ti and C particles dissolved into the Cu-Ti liquids and led to the formation of Cu-Ti-C ternary liquids; subsequently, TiC particulates precipitated out of the saturated liquids. At the same time, also the formation of Ti2Cu occurred at the interface between the Cu-Ti liquids and the unreacted Ti particles. As the temperature increased further, the Ti2Cu melted and more Cu-Ti liquids formed; and then C particles continuously dissolved into the Cu-Ti-C liquids and TiC particulates gradually precipitated out of the saturated liquids

  16. Phase-dependent corrosion of titanium-to-stainless steel joints brazed by Ag–Cu eutectic alloy filler and Ag interlayer

    International Nuclear Information System (INIS)

    The electrochemical corrosion properties of Ti–STS dissimilar joints brazed by a 72Ag–28Cu alloy filler and an Ag interlayer were studied in a 3.5% NaCl solution using potentiodynamic polarization and ac impedance spectroscopy. For a joint with a layered structure of Ti(base)/TiAg/Ag solid solution/Ag–Cu eutectic/STS(base), galvanic corrosion mostly occurred in the TiAg phase with a severe material loss, indicating that the TiAg layer acted as an anode in the galvanic couple in the layered joint. The Ag-rich solid solution layer was also corroded to a certain extent, but the corrosion in this layer was dominated by the selective pitting corrosion of the eutectic Cu-rich phase. With an increase in the brazing temperature, the Cu-rich phases disappeared owing to the enhanced isothermal solidification effect, leading to an improvement of the corrosion resistance

  17. Phase-dependent corrosion of titanium-to-stainless steel joints brazed by Ag–Cu eutectic alloy filler and Ag interlayer

    Energy Technology Data Exchange (ETDEWEB)

    Lee, M.K.; Park, J.J.; Lee, J.G., E-mail: jglee88@kaeri.re.kr; Rhee, C.K.

    2013-08-15

    The electrochemical corrosion properties of Ti–STS dissimilar joints brazed by a 72Ag–28Cu alloy filler and an Ag interlayer were studied in a 3.5% NaCl solution using potentiodynamic polarization and ac impedance spectroscopy. For a joint with a layered structure of Ti(base)/TiAg/Ag solid solution/Ag–Cu eutectic/STS(base), galvanic corrosion mostly occurred in the TiAg phase with a severe material loss, indicating that the TiAg layer acted as an anode in the galvanic couple in the layered joint. The Ag-rich solid solution layer was also corroded to a certain extent, but the corrosion in this layer was dominated by the selective pitting corrosion of the eutectic Cu-rich phase. With an increase in the brazing temperature, the Cu-rich phases disappeared owing to the enhanced isothermal solidification effect, leading to an improvement of the corrosion resistance.

  18. Modification of field emission resonances by Cu and Cu/Ag islands on Ag(100)

    Energy Technology Data Exchange (ETDEWEB)

    Zaum, Christopher; Morgenstern, Karina [Institut fuer Festkoerperphysik, Abteilung ATMOS, Gottfried Wilhelm Leibniz Universitaet, Appelstr. 2, D-30167 Hannover (Germany)

    2011-07-01

    We deposited Cu islands containing 10 to 500 atoms on a clean Ag(100) surface at room temperature and investigated their electronic structure by STS spectroscopy with a low temperature scanning tunneling microscope. Islands containing less than 50 atoms per islands are pure Cu islands, while islands at sizes above 80 atoms per island are Cu/Ag alloy islands. STS measurements reveal that these two island types have a different impact on the field emission resonances (FERs) of the Ag(100) surface. While the observed modifications for large islands are marginal, noticeable shifts of the FERs occur for small islands. These different results in STS spectroscopy are discussed with respect to the different work functions of pure and alloyed islands. Such STS measurements could therefore be used to determine the composition of surface alloys with high spatial resolution.

  19. Effect of Ag Addition on the Electrochemical Performance of Cu10Al in Artificial Saliva

    Science.gov (United States)

    Salgado-Salgado, R. J.; Sotelo-Mazon, O.; Rodriguez-Diaz, R. A.; Salinas-Solano, G.

    2016-01-01

    In this work we proposed to evaluate the corrosion resistance of four different alloys by electrochemical techniques, a binary alloy Cu10Al, and three ternary alloys Cu10Al-xAg (x = 5, 10, and 15 wt.%) to be used like biomaterials in dental application. Biomaterials proposed were tested in artificial saliva at 37°C for 48 h. In addition, pure metals Cu, Al, Ag, and Ti as reference materials were evaluated. In general the short time tests indicated that the Ag addition increases the corrosion resistance and reduces the extent of localized attack of the binary alloy. Moreover, tests for 48 hours showed that the Ag addition increases the stability of the passive layer, thereby reducing the corrosion rate of the binary alloy. SEM analysis showed that Cu10Al alloy was preferably corroded by grain boundaries, and the Ag addition modified the form of attack of the binary alloy. Cu-rich phases reacted with SCN− anions forming a film of CuSCN, and the Ag-rich phase is prone to react with SCN− anions forming AgSCN. Thus, binary and ternary alloys are susceptible to tarnish in the presence of thiocyanate ions. PMID:27660601

  20. Bonding of Cf/SiC composite to Invar alloy using an active cement, Ag-Cu eutectic and Cu interlayer

    Science.gov (United States)

    Lei, Zhao; Xiaohong, Li; Jinbao, Hou; Qiang, Sun; Fuli, Zhang

    2012-10-01

    The interfacial microstructures and mechanical properties of the joints formed by active cement added brazing in vacuum of Cf/SiC composite to Invar alloy, using Ag-Cu eutectic alloy and pure copper foil as braze alloy and interlayer respectively, were investigated. CuTi, Cu4Ti3, Fe2Ti and the reaction layer of TiC and Si were the predominant components at the joint interface. The maximum shear strength of the joint was 77 MPa for brazing at 850 °C for 15 min. The results show that active cement added brazing in vacuum using Ag-Cu eutectic alloy and Cu interlayer can be used successfully for joining Cf/SiC composites to Invar alloy.

  1. Mechanical properties and microstructures of dental cast Ti-6Nb-4Cu, Ti-18Nb-2Cu, and Ti-24Nb-1Cu alloys.

    Science.gov (United States)

    Takahashi, Masatoshi; Kikuchi, Masafumi; Takada, Yukyo

    2016-01-01

    The mechanical properties -tensile strength, yield strength, elongation after fracture, and Vickers hardness- and alloy phases of the dental cast alloys Ti-6%Nb-4%Cu, Ti-18%Nb-2%Cu, and Ti-24%Nb-1%Cu were investigated. Ti-6%Nb-4%Cu consisted of a single α-phase, while Ti-18%Nb-2%Cu and Ti-24%Nb-1%Cu consisted of α- and β-phases. The tensile strengths, yield strengths, and hardnesses of these alloys were higher than those of Ti-5%Cu and Ti-30%Nb; however, their breaking elongations were smaller. These differences in the mechanical properties are attributable to solid-solution strengthening or to precipitation strengthening by the dual-phase (α+β) structure. Thus, Ti-Nb-Cu alloys are suitable for use in high-strength dental prostheses, such as implantretained superstructures and narrow-diameter implants. PMID:27477221

  2. Properties and Microstructures of Sn-Ag-Cu-X Lead-Free Solder Joints in Electronic Packaging

    Directory of Open Access Journals (Sweden)

    Lei Sun

    2015-01-01

    Full Text Available SnAgCu solder alloys were considered as one of the most popular lead-free solders because of its good reliability and mechanical properties. However, there are also many problems that need to be solved for the SnAgCu solders, such as high melting point and poor wettability. In order to overcome these shortcomings, and further enhance the properties of SnAgCu solders, many researchers choose to add a series of alloying elements (In, Ti, Fe, Zn, Bi, Ni, Sb, Ga, Al, and rare earth and nanoparticles to the SnAgCu solders. In this paper, the work of SnAgCu lead-free solders containing alloying elements and nanoparticles was reviewed, and the effects of alloying elements and nanoparticles on the melting temperature, wettability, mechanical properties, hardness properties, microstructures, intermetallic compounds, and whiskers were discussed.

  3. Infiltrated TiC/Cu composites

    International Nuclear Information System (INIS)

    One approach for the fabrication of ceramic-metal composites is based on the pressureless impregnation of a porous ceramic preform by a molten metal. Molten Cu does not react with TiC and the wetting angle is close to 90o. Nonetheless, molten Cu readily impregnates partially sintered TiC preforms. A model that describes the dependence of the critical contact angle for spontaneous impregnation by molten metals in partially sintered preforms on the level of densification and on the morphology of the particles was developed. For high aspect ratios of the particles forming the preform, wetting angles close to 90o still allow impregnation by the molten metal. The results of the model were confirmed by infiltration of partially sintered TiC preforms with molten Cu and by fabrication of the TiC/Cu composites with various ceramic-to metal ratios. Decreasing of the metal content in the composite from 50 vol.% to 10 vol.% leads to a hardness increase from 250 to 1800 HV, and to the decrease of the bending strength from 960 to 280 MPa. The resistivity of these TiC/Cu composites decreases from 142 ohm cm to 25 ohm cm. (author)

  4. Ag/AgBr/TiO2 visible light photocatalyst for destruction of azodyes and bacteria.

    Science.gov (United States)

    Hu, Chun; Lan, Yongqing; Qu, Jiuhui; Hu, Xuexiang; Wang, Aimin

    2006-03-01

    Ag/AgBr/TiO2 was prepared by the deposition-precipitation method and was found to be a novel visible light driven photocatalyst. The catalyst showed high efficiency for the degradation of nonbiodegradable azodyes and the killing of Escherichia coli under visible light irradiation (lambda>420 nm). The catalyst activity was maintained effectively after successive cyclic experiments under UV or visible light irradiation without the destruction of AgBr. On the basis of the characterization of X-ray diffraction, X-ray photoelectron spectroscopy, and Auger electron spectroscopy, the surface Ag species mainly exist as Ag0 in the structure of all samples before and after reaction, and Ag0 species scavenged hVB+ and then trapped eCB- in the process of photocatalytic reaction, inhibiting the decomposition of AgBr. The studies of ESR and H2O2 formation revealed that *OH and O2*- were formed in visible light irradiated aqueous Ag/AgBr/TiO2 suspension, while there was no reactive oxygen species in the visible light irradiated Ag0/TiO2 system. The results indicate that AgBr is the main photoactive species for the destruction of azodyes and bacteria under visible light. In addition, the bactericidal efficiency and killing mechanism of Ag/AgBr/TiO2 under visible light irradiation are illustrated and discussed. PMID:16509698

  5. Evidence for improvement of critical current by Ag in YBaCuO-Ag thick films

    Science.gov (United States)

    Dwir, B.; Kellett, B.; Mieville, L.; Pavuna, D.

    1991-04-01

    The evidence is reported for enhancement of critical current density J(c) in YBa2Cu3O(7-delta) thick films with the addition of Ag, which is correlated with improvements in structural properties. An improvement of 50 percent in J(c) (up to about 500 A/sq cm at T = 4.2 K) was obtained in films made from YBCO + 60 wt pct Ag powder, fabricated by the spin-on technique on (100) SrTiO3, which is correlated with improvements in structure. The resulting films are 10 microns thick, uniform, partially textured, and show good adherence. The critical temperature Tc is improved by the addition of Ag, and a reduction in the density of microcracks and in the amount of secondary phases in the sintered films was observed. Normal-state resistivity is reduced by almost three orders of magnitude, making these films potentially useful for electronic applications in interconnects and novel hybrid circuits.

  6. Evidence for improvement of critical current by Ag in YBaCuO-Ag thick films

    Energy Technology Data Exchange (ETDEWEB)

    Dwir, B.; Kellett, B.; Mieville, L.; Pavuna, D. (Institute of Micro- and Opto-electronics, Department of Physics, Swiss Federal Institute of Technology, CH-1015 Lausanne, Switzerland (CH))

    1991-04-15

    The evidence is reported for enhancement of critical current density {ital J}{sub {ital c}} in YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} thick films with the addition of Ag, which is correlated with improvements in structural properties. An improvement of 50% in {ital J}{sub {ital c}} (up to {similar to}500 A/cm{sup 2} at {ital T}=4.2 K) was obtained in films made from YBCO+60wt % Ag powder, fabricated by the spin-on technique on (100) SrTiO{sub 3}, which is correlated with improvements in structure. The resulting films are 10 {mu}m thick, uniform, partially textured, and show good adherence. The critical temperature {ital T}{sub {ital c}} is improved by the addition of Ag, and a reduction in the density of microcracks and in the amount of secondary phases in the sintered films was observed. Normal-state resistivity is reduced by almost three orders of magnitude, making these films potentially useful for electronic applications in interconnects and novel hybrid circuits.

  7. Nucleation and growth mechanism of Ag precipitates in a CuAgZr alloy

    Energy Technology Data Exchange (ETDEWEB)

    Piyawit, W.; Xu, W.Z. [Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Mathaudhu, S.N. [Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Materials Science Division, US Army Research Office, Research Triangle Park, NC 27709 (United States); Freudenberger, J. [IFW Dresden, Institute for Metallic Materials, P.O. 270116, D-01171 Dresden (Germany); Technische Universität Bergakademie Freiberg, Institute of Materials Science, Gustav-Zeuner-Str. 5, 09959 Freiberg (Germany); Rigsbee, J.M. [Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Zhu, Y.T., E-mail: ytzhu@ncsu.edu [Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695 (United States)

    2014-07-29

    CuAgZr alloy is a variant of the CuAg alloy that is developed for high strength and high conductivity applications. Its strengthening is accomplished mainly by the precipitation of Ag precipitates, which tend to align on {111} planes in the Cu matrix. This alignment has been reported to be caused by stacking faults on {111} planes. Contrary to these reports, this research presents evidence for Ag precipitates formation on {111} planes due to the minimization of elastic energy. The Ag precipitates were formed by clustering of Ag atoms while maintaining the fcc crystal structure of the matrix. They have faceted {111} interfaces with the matrix. The thickening of precipitates appears to be by the ledge growth mechanism, which is resulted in by misfit dislocation networks on the interface.

  8. Antibacterial activity and cytocompatibility of Cu-Ti-O nanotubes.

    Science.gov (United States)

    Hang, Ruiqiang; Gao, Ang; Huang, Xiaobo; Wang, Xiaoguang; Zhang, Xiangyu; Qin, Lin; Tang, Bin

    2014-06-01

    TiO2 nanotubes (NTs) have favorable biological properties, but the poor antibacterial activity limits their application especially in orthopedics fields. In this article, Cu-Ti-O nanotubes with different Cu contents are fabricated on sputtered TiCu films. Scanning electron microscopy reveals the NTs can be formed on sputtered TiCu films when the Cu content is less than 14.6 at %. X-ray photoelectron spectroscopy results indicate the NTs are consist of CuO mixed with TiO2 and the Cu content in NTs decreases dramatically compared with that in TiCu films. Biological experiments show that although these NTs have poor release antibacterial activity, their contact antibacterial activity has proven to be excellent, indicating the NT surface can effectively inhibit biomaterial-associated infections. The cytocompatibility of the NTs is closely related to the Cu content and when its content is relatively low (1.01 at %), there is no appreciable cytotoxicity. So Cu-Ti-O NTs with 1 at % Cu may be suitable to achieve proper antibacterial activity and desired cytocompatibility. The Cu-Ti-O NTs integrate the favorable antibacterial activity of Cu and excellent biological properties of TiO2 NTs therefore have potential applications in orthopedics, dentistry, and other biomedical fields.

  9. Zr-(Cu,Ag)-Al bulk metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Q.K.; Wang, X.D.; Nie, X.P. [International Center for New-Structured Materials (ICNSM), Zhejiang University and Laboratory of New-Structured Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Zhang, G.Q. [Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Ma, H. [Department of Materials, Faculty of Engineering, University of Ulm, Albert-Einstein Allee 47, D-89081 Ulm (Germany); Fecht, H.-J. [Department of Materials, Faculty of Engineering, University of Ulm, Albert-Einstein Allee 47, D-89081 Ulm (Germany); Forschungszentrum Karlsruhe, Institut fuer Nanotechnologie, Karlsruhe (Germany); Bendnarcik, J.; Franz, H. [HASYLAB am DESY, Notkestrasse 85, D-22603 Hamburg (Germany); Liu, Y.G. [Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002 (China); Cao, Q.P. [International Center for New-Structured Materials (ICNSM), Zhejiang University and Laboratory of New-Structured Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Jiang, J.Z. [International Center for New-Structured Materials (ICNSM), Zhejiang University and Laboratory of New-Structured Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China)], E-mail: jiangjz@zju.edu.cn

    2008-05-15

    In this paper, we report the formation of a series Zr-(Cu,Ag)-Al bulk metallic glasses (BMGs) with diameters at least 20 mm and demonstrate the formation of about 25 g amorphous metallic ingots in a wide Zr-(Cu,Ag)-Al composition range using a conventional arc-melting machine. The origin of high glass-forming ability (GFA) of the Zr-(Cu,Ag)-Al alloy system has been investigated from the structural, thermodynamic and kinetic points of view. The high GFA of the Zr-(Cu,Ag)-Al system is attributed to denser local atomic packing and the smaller difference in Gibbs free energy between amorphous and crystalline phases. The thermal, mechanical and corrosion properties, as well as elastic constants for the newly developed Zr-(Cu,Ag)-Al BMGs, are also presented. These newly developed Ni-free Zr-(Cu,Ag)-Al BMGs exhibit excellent combined properties: strong GFA, high strength, high compressive plasticity, cheap and non-toxic raw materials and biocompatible property, as compared with other BMGs, leading to their potential industrial applications.

  10. Kinetics of Ag-rich precipitates formation in Cu-Al-Ag alloys

    Energy Technology Data Exchange (ETDEWEB)

    Adorno, A.T.; Guerreiro, M.R.; Silva, R.A.G

    2004-06-15

    The kinetics of Ag-rich precipitates formation in the Cu-2 wt.% Al alloy with additions of 2, 4, 6, 8, 10 and 12 wt.% Ag was studied using microhardness changes with temperature and time, differential scanning calorimetry (DSC), differential thermal analysis (DTA), scanning electron microscopy (SEM), optical microscopy (OM), energy dispersive X-ray analysis (EDX) and X-ray diffractometry (XRD). The results indicated that an increase in the Ag content decreases the activation energy for Ag-rich precipitates formation, and that it is possible to estimate the values of the diffusion and nucleation activation energies for the Ag precipitates.

  11. Cu-Ti Formation in Nb-Ti/Cu Superconducting Strand Monitored by in situ Techniques

    CERN Document Server

    Pong, I; Pong, Ian; Gerardin, Alexandre; Scheuerlein, Christian; Bottura, Luca

    2010-01-01

    In order to investigate the high temperature exposure effect on Nb-Ti/Cu superconducting strands, as might be encountered in joining by soldering and in cabling annealing, X-ray diffraction and resistometry measurements were performed in situ during heat treatment, and complemented by conventional metallography, mechanical tests and superconducting properties measurements. Changes of the Nb-Ti nanostructure at temperatures above 300 degrees C are manifested in the degradation of critical current in an applied external magnetic field, although degradation at self field was insignificant up to 400 degrees C for several minutes. Above 500 degrees C, the formation of various Cu-Ti intermetallic compounds, due to Ti diffusion from Nb-Ti into Cu, is detected by in situ XRD albeit not resolvable by SEM-EDS. There is a ductile to brittle transition near 600 degrees C, and liquid formation is observed below 900 degrees C. The formation of Cu-Ti causes a delayed reduction of the residual resistivity ratio (RRR) and adv...

  12. Evidence for enhancement of critical current by intergrain Ag in YBaCuO-Ag ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Dwir, B.; Affronte, M.; Pavuna, D.

    1989-07-24

    We report the evidence for enhancement of critical current density /ital J//sub /ital c// by /similar to/50%, which occurs when /similar to/10 wt. % Ag is added to Y/sub 1/Ba/sub 2/Cu/sub 3/O/sub 7/minus//delta// ceramics. The maximal /ital J//sub /ital c// (/similar to/700 A/cm/sup 2/ at /ital T/=77 K) appears simultaneously with maximum YBaCuO compactness in the samples. The silver fills the intergranular space (holes) without Cu substitution, and the critical temperature /ital T//sub /ital c// is not reduced from the bulk value (/similar to/91 K). Normal-state resistivity of Ag-YBaCuO samples is decreased by an order of magnitude, and samples exhibit improved contact resistance and resistance to water. While the critical density is improved by adding /similar to/10 wt. % Ag, it decreases at higher Ag concentrations.

  13. Ultra-Fast Synthesis for Ag2Se and CuAgSe Thermoelectric Materials

    Science.gov (United States)

    DUAN, H. Z.; LI, Y. L.; ZHAO, K. P.; QIU, P. F.; SHI, X.; CHEN, L. D.

    2016-10-01

    Ag2Se and CuAgSe have been recently reported as promising thermoelectric materials at room temperature. The traditional melting-annealing-sintering processes are used to grow Ag2Se and CuAgSe materials with the disadvantages of high costs of energy and time. In this work, phase-pure polycrystalline Ag2Se and CuAgSe compounds were synthesized from raw elemental powders directly by manual mixing followed by spark plasma sintering (MM-SPS) in a few minutes. The influence of SPS heating rate on the phase composition, microstructure, and thermoelectric properties, including Seebeck coefficient, electrical conductivity, and thermal conductivity, were investigated. The zTs of 0.8 at 390 K and 0.6 at 450 K are obtained for Ag2Se and CuAgSe, respectively, which is comparable with the values in the materials prepared by the traditional method. Furthermore, this ultrafast sample synthesis can significantly save material synthesis time and thus has the obvious advantage for large-scale production.

  14. Hollow spheric Ag–Ag{sub 2}S/TiO{sub 2} composite and its application for photocatalytic reduction of Cr(VI)

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Dandan; Xu, Gangqiang; Chen, Feng, E-mail: fengchen@ecust.edu.cn

    2015-10-01

    Graphical abstract: - Highlights: • Hollow spheric Ag–Ag{sub 2}S/TiO{sub 2} composites were prepared. • Ag–Ag{sub 2}S/TiO{sub 2} composite shows prior UV and visible photocatalytic activities. • Schottky barrier between Ag and Ag{sub 2}S (TiO{sub 2}) promotes the photocatalytic activity. • Low bandgap of Ag{sub 2}S gives Ag–Ag{sub 2}S/TiO{sub 2} a good visible photocatalytic activity. • The photocatalytic activity of Ag–Ag{sub 2}S/TiO{sub 2} is maintained well after recycled. - Abstract: Hollow spheric Ag–Ag{sub 2}S was prepared by in-situ chemical transforming of sacrificial Cu{sub 2}S templates with AgNO{sub 3} solution. Hollow spheric Ag–Ag{sub 2}S/TiO{sub 2} composites were then prepared by assembling TiO{sub 2} grains around the Ag–Ag{sub 2}S spheres with hydrothermal treatment of Ag–Ag{sub 2}S with Ti precursor at 180 °C. X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), Inductively coupled plasma-atomic emission spectroscopy (ICP-AES) were adopted to characterize the as-prepared composite. Ag–Ag{sub 2}S/TiO{sub 2} composite has obvious absorption at both UV and visible regions, and shows prior photocatalytic activity for the reduction of Cr(VI) under both UV and visible irradiation. Particularly, the Ag–Ag{sub 2}S/TiO{sub 2}-5 and Ag–Ag{sub 2}S/TiO{sub 2}-10 show the highest activity for the photocatalytic reduction of Cr(VI) under UV and visible irradiation, respectively. The Schottky barrier between Ag and Ag{sub 2}S (and TiO{sub 2} as well) and the heterojunction between the Ag{sub 2}S and TiO{sub 2} are suggested as the main reasons that enhance the photocatalytic reduction of Cr(VI). The photocatalytic activity of Ag–Ag{sub 2}S/TiO{sub 2} composite is maintained well after being recycled several times.

  15. Anomalous scaling of Cu-island dynamics on Ag(100)

    Energy Technology Data Exchange (ETDEWEB)

    Zaum, Christopher; Morgenstern, Karina [Institut fuer Festkoerperphysik, Gottfried Wilhelm Leibniz Universitaet, Appelstr. 2, D-30167 Hannover (Germany)

    2008-07-01

    We deposited Cu-islands containing 10 to 500 atoms on a clean Ag(100) surface at room temperature and investigated diffusion and decay of these islands with a fast scanning tunneling microscope. Islands at sizes above 80 atoms per island are adsorbed in hollow-sites. Islands at sizes below 80 atoms per island are adsorbed in bridge-sites. Diffusion and decay behavior of the hollow-site islands is similar to the behavior of both Ag-islands on Ag(100) and Cu-islands on Cu(100). In contrast, the diffusivity and the decay time of the bridge-site islands are significantly higher than any previously measured values. This indicates a novel mechanism of diffusion.

  16. Pb-free Sn-Ag-Cu ternary eutectic solder

    Science.gov (United States)

    Anderson, Iver E.; Yost, Frederick G.; Smith, John F.; Miller, Chad M.; Terpstra, Robert L.

    1996-06-18

    A Pb-free solder includes a ternary eutectic composition consisting essentially of about 93.6 weight % Sn-about 4.7 weight % Ag-about 1.7 weight % Cu having a eutectic melting temperature of about 217.degree. C. and variants of the ternary composition wherein the relative concentrations of Sn, Ag, and Cu deviate from the ternary eutectic composition to provide a controlled melting temperature range (liquid-solid "mushy" zone) relative to the eutectic melting temperature (e.g. up to 15.degree. C. above the eutectic melting temperature).

  17. Microstructure, mechanical properties, bio-corrosion properties and antibacterial properties of Ti-Ag sintered alloys.

    Science.gov (United States)

    Chen, Mian; Zhang, Erlin; Zhang, Lan

    2016-05-01

    In this research, Ag element was selected as an antibacterial agent to develop an antibacterial Ti-Ag alloy by a powder metallurgy. The microstructure, phase constitution, mechanical properties, corrosion resistance and antibacterial properties of the Ti-Ag sintered alloys have been systematically studied by X-ray diffraction (XRD), scanning electron microscope (SEM), compressive test, electrochemical measurements and antibacterial test. The effects of the Ag powder size and the Ag content on the antibacterial property and mechanical property as well as the anticorrosion property have been investigated. The microstructure results have shown that Ti-Ag phase, residual pure Ag and Ti were the mainly phases in Ti-Ag(S75) sintered alloy while Ti2Ag was synthesized in Ti-Ag(S10) sintered alloy. The mechanical test indicated that Ti-Ag sintered alloy showed a much higher hardness and the compressive yield strength than cp-Ti but the mechanical properties were slightly reduced with the increase of Ag content. Electrochemical results showed that Ag powder size had a significant effect on the corrosion resistance of Ti-Ag sintered alloy. Ag content increased the corrosion resistance in a dose dependent way under a homogeneous microstructure. Antibacterial tests have demonstrated that antibacterial Ti-Ag alloy was successfully prepared. It was also shown that the Ag powder particle size and the Ag content influenced the antibacterial activity seriously. The reduction in the Ag powder size was benefit to the improvement in the antibacterial property and the Ag content has to be at least 3wt.% in order to obtain a strong and stable antibacterial activity against Staphylococcus aureus bacteria. The bacterial mechanism was thought to be related to the Ti2Ag and its distribution.

  18. Microstructure, mechanical properties, bio-corrosion properties and antibacterial properties of Ti-Ag sintered alloys.

    Science.gov (United States)

    Chen, Mian; Zhang, Erlin; Zhang, Lan

    2016-05-01

    In this research, Ag element was selected as an antibacterial agent to develop an antibacterial Ti-Ag alloy by a powder metallurgy. The microstructure, phase constitution, mechanical properties, corrosion resistance and antibacterial properties of the Ti-Ag sintered alloys have been systematically studied by X-ray diffraction (XRD), scanning electron microscope (SEM), compressive test, electrochemical measurements and antibacterial test. The effects of the Ag powder size and the Ag content on the antibacterial property and mechanical property as well as the anticorrosion property have been investigated. The microstructure results have shown that Ti-Ag phase, residual pure Ag and Ti were the mainly phases in Ti-Ag(S75) sintered alloy while Ti2Ag was synthesized in Ti-Ag(S10) sintered alloy. The mechanical test indicated that Ti-Ag sintered alloy showed a much higher hardness and the compressive yield strength than cp-Ti but the mechanical properties were slightly reduced with the increase of Ag content. Electrochemical results showed that Ag powder size had a significant effect on the corrosion resistance of Ti-Ag sintered alloy. Ag content increased the corrosion resistance in a dose dependent way under a homogeneous microstructure. Antibacterial tests have demonstrated that antibacterial Ti-Ag alloy was successfully prepared. It was also shown that the Ag powder particle size and the Ag content influenced the antibacterial activity seriously. The reduction in the Ag powder size was benefit to the improvement in the antibacterial property and the Ag content has to be at least 3wt.% in order to obtain a strong and stable antibacterial activity against Staphylococcus aureus bacteria. The bacterial mechanism was thought to be related to the Ti2Ag and its distribution. PMID:26952433

  19. Ag-Cu-Si合金的熔化特性%Melting Characterization of Ag-Cu-Si Alloys

    Institute of Scientific and Technical Information of China (English)

    罗锡明

    1999-01-01

    用DTA法测定Ag-Cu-Si合金中(CuAgx)100-y-Siy(x=10,20,30,40,50,72)及(CuSi5)-Ag 7个特定成份伪二元系的固相线、液相线.结果表明,Si含量对Ag-Cu合金液相线温度及熔化间隔Δt的影响是显著的.在研究的Si名誉含量0~10wt%,其液相线呈"V"型变化.Δt值小对于钎料合金选择和降低Ag含量是有利的.

  20. The effect of intermetallic compound morphology on Cu diffusion in Sn-Ag and Sn-Pb solder bump on the Ni/Cu Under-bump metallization

    Science.gov (United States)

    Jang, Guh-Yaw; Duh, Jenq-Gong

    2005-01-01

    The eutectic Sn-Ag solder alloy is one of the candidates for the Pb-free solder, and Sn-Pb solder alloys are still widely used in today’s electronic packages. In this tudy, the interfacial reaction in the eutectic Sn-Ag and Sn-Pb solder joints was investigated with an assembly of a solder/Ni/Cu/Ti/Si3N4/Si multilayer structures. In the Sn-3.5Ag solder joints reflowed at 260°C, only the (Ni1-x,Cux)3Sn4 intermetallic compound (IMC) formed at the solder/Ni interface. For the Sn-37Pb solder reflowed at 225°C for one to ten cycles, only the (Ni1-x,Cux)3Sn4 IMC formed between the solder and the Ni/Cu under-bump metallization (UBM). Nevertheless, the (Cu1-y,Niy)6Sn5 IMC was observed in joints reflowed at 245°C after five cycles and at 265°C after three cycles. With the aid of microstructure evolution, quantitative analysis, and elemental distribution between the solder and Ni/Cu UBM, it was revealed that Cu content in the solder near the solder/IMC interface played an important role in the formation of the (Cu1-y,Niy)6Sn5 IMC. In addition, the diffusion behavior of Cu in eutectic Sn-Ag and Sn-Pb solders with the Ni/Cu UBM were probed and discussed. The atomic flux of Cu diffused through Ni was evaluated by detailed quantitative analysis in an electron probe microanalyzer (EPMA). During reflow, the atomic flux of Cu was on the order of 1016-1017 atoms/cm2sec in both the eutectic Sn-Ag and Sn-Pb systems.

  1. Electrochemical synthesis of fractal bimetallic Cu/Ag nanodendrites for efficient surface enhanced Raman spectroscopy.

    Science.gov (United States)

    Li, Da; Liu, Jingquan; Wang, Hongbin; Barrow, Colin J; Yang, Wenrong

    2016-09-21

    Here, we for the first time synthesized bimetallic Cu/Ag dendrites on graphene paper (Cu/Ag@G) using a facile electrodeposition method to achieve efficient SERS enhancement. Cu/Ag@G combined the electromagnetic enhancement of Cu/Ag dendrites and the chemical enhancement of graphene. SERS was ascribed to the rough metal surface, the synergistic effect of copper and silver nanostructures and the charge transfer between graphene and the molecules. PMID:27522964

  2. Microstructure of electroplated Cu(Ag) alloy thin films

    International Nuclear Information System (INIS)

    Electroplated Cu(Ag) alloy thin films are potential candidates for future electronic devices in terms of lifetime and reliability compared to copper as the state of the art interconnect material. In the present paper we focus on the microstructure of Cu(Ag) alloy films considering the grain evolution as well as silver incorporation and segregation. We show that Ag alloying addition prevents room temperature recrystallization. Thermally induced grain growth occurs mainly between 180 oC and 330 oC. Silver can be incorporated as solid solution into the Cu matrix by up to 0.8 at.% after annealing and even in higher concentrations in the as-deposited state, which is significantly above the equilibrium solubility limit. Precipitations are formed by the continuous mode and can be mainly found at the film surface but also inside the Cu(Ag) grains as ball-shaped particles. Based on our results a reliability improvement is expected by mechanical strengthening due to alloying effects while maintaining a low electrical resistivity and a {111} fiber texture.

  3. Properties of Cu film and Ti/Cu film on polyimide prepared by ion beam techniques

    International Nuclear Information System (INIS)

    Cu film and Ti/Cu film on polyimide substrate were prepared by ion implantation and ion beam assisted deposition (IBAD) techniques. Three-dimension white-light interfering profilometer was used to measure thickness of each film. The thickness of the Cu film and Ti/Cu film ranged between 490 nm and 640 nm. The depth profile, surface morphology, roughness, adhesion, nanohardness, and modulus of the Cu and Ti/Cu films were measured by scanning Auger nanoprobe (SAN), atomic force microscopy (AFM), and nanoindenter, respectively. The polyimide substrates irradiated with argon ions were analyzed by scanning electron microscopy (SEM) and AFM. The results suggested that both the Cu film and Ti/Cu film were of good adhesion with polyimide substrate, and ion beam techniques were suitable to prepare thin metal film on polyimide.

  4. Diffusion of Cu adatoms and dimers on Cu(111) and Ag(111) surfaces

    Science.gov (United States)

    Mińkowski, Marcin; Załuska-Kotur, Magdalena A.

    2015-12-01

    Diffusion of Cu adatoms and dimers on Cu(111) and Ag(111) surfaces is analyzed based on ab initio surface potentials. Single adatom diffusion is compared with dimer diffusion on both surfaces. Surface geometry makes the adatoms jump alternately between two states in the same way in both systems, whereas dimers undergo more complex diffusion process that combines translational and rotational motion. Small difference in the surface lattice constant between Cu and Ag crystals results in a completely different energy landscape for dimer jumps. As an effect the character of diffusion process changes. Homogeneous Cu dimer diffusion is more difficult and dimers rather rotate within single surface cell, whereas diffusion over Ag surface is faster and happens more smoothly. The temperature dependence of diffusion coefficient and its parameters: energy barrier and prefactor is calculated and compared for both surfaces.

  5. Multilevel resistance switching of Ag/Nb-doped SrTiO{sub 3}/Ti structure

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y. [Zhejiang Sci-Tech University, Department of Physics, Center for Optoelectronics Materials and Devices, Hangzhou (China); Zhejiang Sci-Tech University, Nanometer Measurement Lab, Hangzhou (China); Shen, J.X.; Wang, S.L.; Cui, C.; Li, P.G. [Zhejiang Sci-Tech University, Department of Physics, Center for Optoelectronics Materials and Devices, Hangzhou (China); Shen, W. [University of Sheffield, Department of Materials Science and Engineering, Sheffield (United Kingdom); Chen, B.Y. [Zhejiang Sci-Tech University, Nanometer Measurement Lab, Hangzhou (China); Tang, W.H. [Beijing University Posts and Telecommunications, State Key Laboratory of Information Photonics and Optical Communication, Beijing (China); Beijing University Posts and Telecommunications, School of Science, Beijing (China)

    2012-10-15

    Ag/0.7 wt% Nb-doped SrTiO{sub 3} (Nb:STO)/Ti structure was prepared by sputtering Ag and Ti electrodes on a Nb:STO single crystal substrate and the resistance switching (RS) properties were investigated. Reversible multilevel resistance switching behavior was obtained by applying different voltages. The resistance switching (RS) effect comes from the Schottky barrier existed between Ag and Nb:STO interface. The multilevel switching mechanism may be related to the different number of electrons trapped or detrapped by oxygen vacancies (V{sub o} {sup 2+}) at the Ag/Nb:STO interface, which can change the width of depletion layer. The temperature dependence on resistance of Ag/Nb:STO/Ti suggests that both high resistance state (HRS) and low resistance state (LRS) are of semiconductor behavior. Substrate annealing in vacuum degrades the RS properties of Ag/Nb:STO/Ti structure due to the increase of V{sub o} {sup 2+} in Nb:STO. (orig.)

  6. Interface evolution of TiAl/Ti6242 transient liquid phase joint using Ti, Cu foils as insert metals

    Institute of Scientific and Technical Information of China (English)

    DUAN Hui-ping; K. H. Bohm; V. Ventzke; M. Kocak

    2005-01-01

    The interface evolution of TiAl/Ti6242 joint produced by transient liquid phase(TLP) bonding with Ti,Cu foils as insert metals was investigated. The results show that the surface oxide layer on TiAl plays a very imporer on the surface of TiAl. The diffusion behavior of Cu atoms in TiAl is strongly controlled by the vacancies beneath the surface of TiAl. Based on the interface diffusion and interface wettability, a mechanism for the effect of bonding pressure, bonding temperature, holding time and stacking sequence of the insert foils on the joint formation process were proposed.

  7. The role of Ag in (Ag,Cu)2ZnSnS4 thin film for solar cell application

    International Nuclear Information System (INIS)

    Highlights: • (Ag,Cu)2ZnSnS4 thin film was synthesized through metallic stacking layers. • Ag incorporation reduces the size and amount of voids at back contact. • Less planar defects and Cu vacancy are formed in the (Ag,Cu)2ZnSnS4. • Solar cell performance was improved with Ag incorporation. - Abstract: Recently, Ag incorporation into Cu(In,Ga)Se2 structure was found to benefit the solar cell performance. However, (Ag,Cu)2ZnSnS4 used as the solar cell absorber is not widely reported even though Ag2ZnSnS4 has shown much better photocatalysts activity for H2 evolution than Cu2ZnSnS4. In this paper, (Ag,Cu)2ZnSnS4 thin film solar cell was synthesized through sulfurization of Ag/Zn/Cu/Sn metallic stacked layers. In order to understand the actual role of Ag in the Cu2ZnSnS4 structure, the changing chemical environment, microstructure and intragrain defect due to the Ag incorporation, were studied by X-ray photoelectron spectroscopy and transmission electron microscopy. After sulfurization, Ag is uniformly distributed in the absorber and is incorporated into Cu2ZnSnS4 crystal structure but no obvious change of the Cu2ZnSnS4 chemical environment is detected. A large density of voids is formed at the Cu2ZnSnS4/Mo interface and some of these voids are found to be coated with CdS which is believed to be detrimental to Cu2ZnSnS4 device performance. In contrast, Ag incorporation reduces the size and amount of voids and thus effectively eliminates CdS deposited at back contact region. Moreover, fewer planar defects and Cu vacancies are formed in the (Ag,Cu)2ZnSnS4 sample than Cu2ZnSnS4 sample as suggested by electron diffraction patterns. Therefore, improved solar cell performance should result from the formation of (Ag,Cu)2ZnSnS4 structure

  8. Synthesis and Bactericidal Ability of TiO2 and Ag-TiO2 Prepared by Coprecipitation Method

    Directory of Open Access Journals (Sweden)

    Robert Liu

    2012-01-01

    Full Text Available Preparation of photocatalysts of TiO2 and Ag-TiO2 was carried out by coprecipitation method. The prepared photocatalysts were characterized by X-ray diffraction (XRD, SEM, EDX, and XRF analysis. The disinfection of E. coli, a model indicator organism for the safe water supply, was investigated by using TiO2 and Ag-TiO2 under different light sources. The treatment efficacy for the inactivation of E. coli would be UV/Ag-TiO2; visible/Ag-TiO2; dark/Ag-TiO2; UV (all 100% > UV/TiO2 (99% > visible/TiO2 (96% > dark/TiO2 (87% > visible (23% > dark (19%. The order of disinfection efficiency by their corresponding kinetic initial apparent rate constants, app, (min−1 would be UV/Ag-TiO2; visible/Ag-TiO2 (both 6.67 > UV (6.6 > dark/Ag-TiO2 (6.56 > UV/TiO2 (1.62 > visible/TiO2 (1.08 > dark/TiO2 (0.7 > visible (0.28 > dark (0.03. The application of TiO2 doped with silver strongly improved the ability of disinfection treatment. The study of mineralization of E. coli by measurement of TOC (total organic carbon removal percentage showed that the visible light may effectively be applied for the disinfection unit of water and wastewater treatment system by using photocatalysts of Ag-TiO2.

  9. Cu-Ag sulfides as indicators of pre-porphyritic epithermal Au-Ag deposits in Northeastern Russia

    Science.gov (United States)

    Savva, N. E.; Sidorov, A. A.; Volkov, A. V.

    2016-08-01

    Au-Ag mineralization of the Olcha and Teploe epithermal deposits underwent thermal metamorphism due to porphyritic intrusions. The presence of Bi-bearing galena and matildite in the ores (Teploe), Cu-Te-bearing naumannite (Olcha), the occurrence of middle- and high-temperature facies of metasomatic rocks (epidote and actinolite), and temperature formation conditions are related, firstly, to the influence of granitoids on the ore process, which supplied not only Cu and Mo, but also Bi, Te, and, secondly, to the heating of host rocks containing pre-porphyritic epithermal Au-Ag mineralization. The abundance of Cu-Ag sulfides and Cu-acanthite resulted from the enrichment of later mineral phases in Cu and Ag under the substance redistribution with the formation of Ag-acanthite ores. The data considered in the paper are of practical importance for regional forecasting of metallogenic constructions, exploration, and evaluation of the epithermal Au-Ag deposits.

  10. Coating stainless steel plates with Ag/TiO2 for chlorpyrifos decontamination

    Science.gov (United States)

    Abdel Fattah, Wafa I.; Gobara, Mohammed M.; El-Hotaby, Walid; Mostafa, Sherif F. M.; Ali, Ghareib W.

    2016-05-01

    Spray coatings of either nanosilver (Ag), titanium (TiO2) or nanosilver titanium (Ag/TiO2) on stainless steel substrates prepared by sol–gel process were successfully achieved. The efficiency of the Ag/TiO2 coat onto 316 stainless steel surface towards cloropyrifos degradation as a chemical warfare agent (CWA) was proved. The crystalline structure and morphological characterization, as well as surface roughness measurements, were assessed. X-ray diffraction results proved the crystalline TiO2 anatase phase. The uniform distribution of Ag along with TiO2 nanoparticles was evidenced through transmission electron microscopy and scanning electron microscopy mapping. The hydrophilic nature of individual Ag, TiO2 and Ag/TiO2 coats was proved by contact angle measurements. The loading of Ag nanoparticles influenced positively the Ag/TiO2 coats surface roughness. The photocatalytic cloropyrifos degradation achieved about 50% within one-hour post UV treatment proving, therefore, the promising Ag/TiO2 continued decontamination efficiency. In conclusion, tuning the physical and morphological properties of TiO2 coated on stainless steel surface could be significantly enhanced by Ag nanoparticles incorporation. The developed Ag/TiO2 coat could be conveniently applied as CWA decontaminant.

  11. Electrochemical behavior of Ag-Cu alloy in alkaline media

    Directory of Open Access Journals (Sweden)

    Grekulović Vesna J.

    2010-01-01

    Full Text Available Results of the investigation of electrochemical behaviour of Ag-Cu alloy containing 50 mass% Ag and 50 mass% Cu are presented in this paper. Pure silver and copper were investigated, too. Working electrodes were prepared by metallurgical process. 1 mol dm-3 and 0.5 mol dm-3 solutions of NaOH are chosen as the electrolyte. On the cyclic voltammograms, some current waves corresponding to number and quantity of phases present in the investigated electrodes appeared and they can be used for characterization of investigated alloy. On the voltammogram recorded for pure silver, two anodic and two cathodic peaks appeared. First peak consisted of two joined current waves which can be ascribed to the formation of the two different types of silver(I oxide, Ag2O. Second peak should correspond to the formation of silver(II oxide, AgO. Voltammogram obtained for pure copper exhibits one broad current wave corresponding to the formation of copper oxides, followed by a wide potential area in which copper is completely passive. At 0.4 V vs. SCE, current starts to increase again due to oxygen evolution and probably due to simultaneous dissolution of copper with formation of CuO22- as a product. In alkaline solutions copper has no significant influence on the shape and current values of the voltammograms recorded for Ag-Cu alloy; however, it has an influence only on the anodic and cathodic peak potentials, which are shifted to more negative values in comparison to Ag. It could mean an easier formation of oxides and their harder reduction. Comparing voltammograms recorded for Ag-Cu alloy in 0.5 moldm-3 NaOH and in 1 moldm-3 NaOH solutions, one can see that current waves appear at more positive potentials on the voltammograms obtained in the solution of lower concentration and with much higher current densities than those on the voltammograms obtained in the solution of higher concentration.

  12. Electron channeling in TiO2 coated Cu layers

    Science.gov (United States)

    Zheng, Pengyuan; Zhou, Tianji; Gall, Daniel

    2016-05-01

    Electron transport in metal conductors with ∼5–30 nm width is dominated by surface scattering. In situ transport measurements as a function of surface chemistry demonstrate that the primary parameter determining the surface scattering specularity is the localized surface density of states at the Fermi level N(E f ). In particular, the measured sheet resistance of epitaxial Cu(001) layers with thickness d Cu = 9–25 nm increases when coated with d Ti = 0.1–4.0 monolayers (MLs) of Ti, but decreases again during exposure to 37 Pa of O2. These resistivity changes are a function of d Cu and d Ti and are due to a transition from partially specular electron scattering at the Cu surface to completely diffuse scattering at the Cu–Ti interface, and the recovery of surface specularity as the Ti is oxidized. X-ray reflectivity and photoelectron spectroscopy indicate the formation of a 0.47 ± 0.03 nm thick Cu2O surface layer on top of the TiO2–Cu2O during air exposure, while density functional calculations of TiO x cap layers as a function of x = 0–2 and d Ti = 0.25–1.0 ML show a reduction of N(E f ) by up to a factor of four. This reduction is proposed to be the key cause for the recovery of surface specularity and results in electron confinement and channeling in the Cu layer upon Ti oxidation. Transport measurements at 293 and 77 K confirm the channeling and demonstrate the potential for high-conductivity metal nanowires by quantifying the surface specularity parameter p = 0.67 ± 0.05, 0.00 ± 0.05, and 0.35 ± 0.05 at the Cu–vacuum, Cu–Ti, and Cu–TiO2 interfaces.

  13. Surface Characterization and Cell Response of Binary Ti-Ag Alloys with CP Ti as Material Control

    Institute of Scientific and Technical Information of China (English)

    B.B. Zhang; K.J. Qiu; B.L. Wang; L. Li; Y.F. Zheng

    2012-01-01

    In this study, the surface passive films, dissolution behavior and biocompatibility of Ti-Ag alloys (with 5%, 10% and 20% Ag) were evaluated by X-ray diffraction (XRD) tests, electrochemical corrosion tests, X-ray photoelectron spectroscopy (XPS) tests, dissolution tests and in-vitro cytotoxicity tests. The surface films on the Ti-20Ag alloy are rich in Ti and much deficient in Ag with respect to alloy composition, as identified by XPS. Compared to CP Ti, Ti-SAg and Ti-20Ag alloys show larger impedances and lower capacitances, which can be associated with an increase of the passive layer thickness. Moreover, all Ti-Ag alloys exhibit negligible or low metal release in the test solutions. The in-vitro cytotoxicity results show Ti-Ag alloys seem to be as cytocompatible as CP Ti. From the viewpoint of surface passive film and cytotoxicity, Ti-SAg and Ti-20Ag are considered to be more suitable for dental applications.

  14. Au-Ag-Cu nano-alloys: tailoring of permittivity

    Science.gov (United States)

    Hashimoto, Yoshikazu; Seniutinas, Gediminas; Balčytis, Armandas; Juodkazis, Saulius; Nishijima, Yoshiaki

    2016-04-01

    Precious metal alloys enables new possibilities to tailor materials for specific optical functions. Here we present a systematic study of the effects of a nanoscale alloying on the permittivity of Au-Ag-Cu metals at 38 different atomic mixing ratios. The permittivity was measured and analyzed numerically by applying the Drude model. X-ray diffraction (XRD) revealed the face centered cubic lattice of the alloys. Both, optical spectra and XRD results point towards an equivalent composition-dependent electron scattering behavior. Correlation between the fundamental structural parameters of alloys and the resulting optical properties is elucidated. Plasmonic properties of the Au-Ag-Cu alloy nanoparticles were investigated by numerical simulations. Guidelines for designing plasmonic response of nano- structures and their patterns are presented from the material science perspective.

  15. SYNTESIST AND CHARACTERISATION TiO2-Cu PHOTOCATALYST

    Directory of Open Access Journals (Sweden)

    Kapti Riyani

    2015-11-01

    Full Text Available This study begins with the manufacture of TiO2 -Cu photocatalyst by means of wet impregnation and fotodeposisi, the mole ratio of TiO2: Cu2+ is 100: 0; 99: 1; 98: 2; 97: 3 and 96: 4. Photocatalysts were characterized using SEM, UV-Vis DRS, FTIR and XRD. The results showed has been successfully carried out the synthesis of TiO2-Cu. From SEM characterization shows that the addition of Cu metal will alter the morphology of TiO2 photocatalysts. Based on analysis of UV-Vis DRS, the addition of Cu metal dopant to decrease the energy band gap of TiO2. From XRD analysis appears 2θ value at 29.607 and 48.401 which indicates the formation of monoclinic crystal H2Ti3O7. FTIR analysis results indicate a change in the specific uptake of TiO2 indicating a change in the structure of TiO2

  16. (RE)BaCuO/Ag Composites: The Role of Silver in Bulk Materials and Joints

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    We have investigated the phase equilibria in (RE)BaCuO/Ag systems, the influence of Ag on the processing of (RE)BaCuO/Ag composites and the resulting properties. YBaCuO/Ag composites have been grown by the modified melt crystallization process with YBa2Cu3O7, Y2O3, Pt and Ag2O in the precursor. The improved strength of the YBaCuO/Ag composites compared with the conventional YBaCuO bulk material permitted us to magnetize these materials to achieve trapped fields up to 16 T (at 24 K) in the gap of a mini-magnet. The investigation of the microstructure revealed a remarkable increase of the spacing between micro-cracks especially of those perpendicular to a/b-planes when 12 wt% Ag was added. In the case of SmBaCuO/Ag composites, Ag has a strong influence on processing and causes interactions between RE123 seeds and the sample. We show the growth of single-grain SmBaCuO/Ag composites in air and discuss the influence of post-annealing on increasing Tc and Jc. Furthermore, YBaCuO/Ag composites have been shown to be appropriate materials used as a solder to join large single grains to large arrays or to "repair" grain boundaries in arrays grown by a multiseeding technique.

  17. Vancomycin-functionalised Ag-TiO{sub 2} phototoxicity for bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Wan Yi [Chinese Academy of Sciences, Key Lab of Corrosion Science, Shandong Province, Institute of Oceanology, 7 Nanhai Road, Qingdao 266071 (China); Zhang Dun, E-mail: zhangdun@ms.qdio.ac.cn [Chinese Academy of Sciences, Key Lab of Corrosion Science, Shandong Province, Institute of Oceanology, 7 Nanhai Road, Qingdao 266071 (China); Wang Yi; Qi Peng; Wu Jiajia; Hou Baorong [Chinese Academy of Sciences, Key Lab of Corrosion Science, Shandong Province, Institute of Oceanology, 7 Nanhai Road, Qingdao 266071 (China)

    2011-02-15

    Research highlights: {yields} A multivalent interaction between Van-Ag-TiO{sub 2} and SRB. {yields} Van-Ag-TiO{sub 2} allow for selective photokilling of pathogen. {yields} Van-Ag-TiO{sub 2} show certain bactericidal property in dark. - Abstract: This study reports on the synthesis of vancomycin (Van)-functionalised Ag-TiO{sub 2} nanoparticles and their enhanced bactericidal activities. Van-Ag-TiO{sub 2} nanoparticles were prepared by nanoparticle deposition and chemical cross-linking reactions. The catalysts showed high efficiency for the degradation of methylene blue under ultraviolet (UV) illumination. The photocatalytic inactivation of the sulphate-reducing bacteria, Desulfotomaculum, was also studied under UV light irradiation and in the dark using aqueous mixtures of Ag, Ag-SiO{sub 2}, Ag-TiO{sub 2}, and Van-Ag-TiO{sub 2}. The Van-Ag-TiO{sub 2} nanoparticles showed a capacity to target Van-sensitive bacteria. They also effectively prevented bacterial cell growth through the functionalised nanoparticles under UV irradiation for 1 h. To investigate the specificity of the catalyst phototoxicity, a Van-resistant bacteria, Vibrio anguillarum, was used as the negative control. The results indicated that Van-Ag-TiO{sub 2} nanoparticles had a higher selective phototoxicity for Van-sensitive bacteria. Therefore, the antibiotic molecule-functionalised core-shell nanoparticles allow for selective photokilling of pathogenic bacteria.

  18. Resistive switching in Ag-TiO{sub 2} contacts

    Energy Technology Data Exchange (ETDEWEB)

    Ghenzi, N., E-mail: ghenzi@cnea.gov.ar [Gerencia de Investigacion y Aplicaciones, CAC, CNEA, (1650) San Martin, Pcia. de Buenos Aires (Argentina); Stoliar, P. [Gerencia de Investigacion y Aplicaciones, CAC, CNEA, (1650) San Martin, Pcia. de Buenos Aires (Argentina); Escuela de Ciencia y Tecnologia, Campus Migueletes, UNSAM, Pcia. de Buenos Aires (Argentina); Fuertes, M.C. [Gerencia Quimica, CAC, CNEA, (1650) San Martin, Pcia. de Buenos Aires (Argentina); Marlasca, F.G.; Levy, P. [Gerencia de Investigacion y Aplicaciones, CAC, CNEA, (1650) San Martin, Pcia. de Buenos Aires (Argentina)

    2012-08-15

    We study the electric pulse induced resistance switching of TiO{sub 2}-Ag contacts at room temperature, exploring both unipolar and bipolar switching modes. Initially we observed unipolar response. After hundred pulsing cycles the unipolar switching response vanishes but the device can still be operated in bipolar switching regime. The underlying mechanism for resistance switching is modeled in terms of formation and rupture of filament, and movement of oxygen vacancies.

  19. Combustion Synthesis of Ti-2B-Cu/Ni and 3Ti-2BN-Cu/Ni Bilayered Cermets

    Institute of Scientific and Technical Information of China (English)

    Weiping SHEN; Wenbin CAO; Changchun GE; E.H.Grigoryan; A.E.Sytschev; A.S.Rogachev

    2003-01-01

    The effects of Cu and Ni (x=0, 10, 20 and 40 wt pct) and compaction pressures (12, 24, 84 and 108 MPa)on combustion wave velocity and wave front shape for Ti-2B-Cu/Ni and 3Ti-2BN-Cu/Ni bilayered cermets were investigated by a video camera. Since the boiling point of Cu is lower, the wave velocities of specimens are slower.Due to the higher specific heat of Ni than that of Cu, the wave velocities of specimens was slowed down a lot with increasing the Ni diluent. The wave velocity differences of the specimens containing Ni are more than that of the bilayered specimens containing Cu. Wave velocities of the specimens containing Ni increased more than that of the specimens containing Cu when higher pressure was employed for green mixture. The more the wave velocity difference of the bilayer, the more curved the specimen.

  20. Highly efficient and stable Ag-AgBr/TiO2 composites for destruction of Escherichia coli under visible light irradiation.

    Science.gov (United States)

    Wang, Xiaoping; Lim, Teik-Thye

    2013-08-01

    A series of Ag-AgBr/TiO2 composites were prepared by a sol-gel method followed by photoreduction. Effect of Ag-AgBr content on the physicochemical properties and antibacterial activities of the Ag-AgBr/TiO2 composites was investigated. These composites showed intrinsic antibacterial activities against Escherichia coli (E. coli) in the dark attributed to the Ag nanoparticles dispersed in the composites. Under visible light irradiation, inactivation of E. coli over these Ag-AgBr/TiO2 composites was attributed to both their photocatalytic disinfection activities and intrinsic antibacterial properties. The Ag-AgBr/TiO2 with an optimum Ti/Ag atomic ratio of 10 exhibited superior visible-light photocatalytic activities for ibuprofen degradation and mineralization as compared to the other Ag-AgBr/TiO2 composites and also Ag-AgBr/P25, Ag/TiO2 and TiO2. It is probably because of the coexistence of two visible-light active components (AgBr and Ag nanoparticles) and the most effective separation of photogenerated electrons and holes in this photocatalyst. Correspondingly, the photocatalyst achieved a much higher efficiency of E. coli destruction than Ag-AgBr/P25 and TiO2. E. coli was almost completely inactivated (7-log reduction) within 60 min by the photocatalyst with a rather low dosage of 0.05 g L(-1) under white LED irradiation. Furthermore, the Ag-AgBr/TiO2 showed high stability for photocatalytic destruction of E. coli and the dark repair and photoreactivation did not occur after the photocatalytic process. Finally, the action spectrum of this photocatalyst for E. coli inactivation and the influence of several inorganic ions present in surface water were also investigated.

  1. New Ti-based Ti–Cu–Zr–Fe–Sn–Si–Ag bulk metallic glass for biomedical applications

    International Nuclear Information System (INIS)

    Highlights: • Novel Ti47Cu38Zr7.5Fe2.5Sn2Si1Ag2 (at.%) bulk metallic glass (BMG) with a critical diameter of 7 mm was discovered. • The present BMG is the largest Ni- and Be-free Ti-based BMG containing low content of noble metal reported to date. • The glassy alloy possesses high specific strength, low Young’s modulus, and good corrosion resistance and bio-compatibility. • Combination of high glass-forming ability and good mechano- and bio-compatibility for the Ti-based BMG demonstrates the potential for use in biomedical applications. - Abstract: A novel Ni-free Ti47Cu38Zr7.5Fe2.5Sn2Si1Ag2 (at.%) bulk metallic glass (BMG) with superior glass-forming ability, good mechanical properties and excellent biocompatibility was discovered. The Ti-based BMG with a diameter of 7 mm can be prepared by copper mold casting and the supercooled liquid region was 52 K. Compressive strength, specific strength, Young’s modulus and microhardness of the Ti-based BMG were about 2.08 GPa, 3.2 × 105 N m/kg, 100 GPa and 588 Hv, respectively. Electrochemical measurements indicated that the Ti-based glassy alloy possesses higher corrosion resistance than Ti–6Al–4V alloy in a simulated body fluid environment. Attachment, spreading out and proliferation of MC3T3-E1 cells on the Ti-based BMG surface demonstrated the excellent biocompatibility. Mechanisms of the formation and properties for the Ti-based glassy alloy are also discussed. The combination of high glass-forming ability, excellent mechanical properties, high corrosion resistance and good biocompatibility demonstrates the potential of the Ni-free Ti-based BMG for use in biomedical applications

  2. Electrochemical sensing and photocatalysis using Ag-TiO2 microwires

    Indian Academy of Sciences (India)

    Soumit S Mandal; Aninda J Bhattacharyya

    2012-09-01

    Anatase Ag-TiO2 microwires with high sensitivity and photocatalytic activity were synthesized via polyol synthesis route followed by a simple surface modification and chemical reduction approach for attachment of silver. The superior performance of the Ag-TiO2 composite microwires is attributed to improved surface reactivity, mass transport and catalytic property as a result of wiring the TiO2 surface with Ag nanoparticles. Compared to the TiO2 microwires, Ag-TiO2 microwires exhibited three times higher sensitivity in the detection of cationic dye such as methylene blue. Photocatalytic degradation efficiency was also found to be significantly enhanced at constant illumination protocols and observation times. The improved performance is attributed to the formation of a Schottky barrier between TiO2 and Ag nanoparticles leading to a fast transport of photogenerated electrons to the Ag nanoparticles.

  3. Accumulation of Ag and Cu in Amanita strobiliformis and characterization of its Cu and Ag uptake transporter genes AsCTR2 and AsCTR3.

    Science.gov (United States)

    Beneš, Vojtěch; Hložková, Kateřina; Matěnová, Michaela; Borovička, Jan; Kotrba, Pavel

    2016-04-01

    Macrofungi can accumulate in their sporocarps remarkably high concentrations of Cu and Ag. We have previously demonstrated that the non-essential Ag is in the ectomycorrhizal, Ag-hyperaccumulating Amanita strobiliformis sequestered by 3.4-kDa metallothioneins (MTs) produced as AsMT1a, 1b and 1c isoforms. Here, we describe two populations of wild-grown A. strobiliformis sporocarps, which showed certain correlation between the concentrations of accumulated Ag (284 ± 64 and 67 ± 15 mg kg(-1)) and Cu (76 ± 13 and 30 ± 12 mg kg(-1)), suggesting that an overlap may exist in the cell biology of Ag and Cu in this species. Metal speciation analysis revealed that the intracellular Cu in the sporocarps of both populations was, like Ag, associated with the 3.4-kDa MTs. A search of A. strobiliformis transcriptome for sequences encoding proteins of the Cu transporter (CTR) family identified four AsCTR cDNAs, which were, like AsMT1s, confirmed in both populations. The predicted AsCTR proteins showed homology to vacuolar (AsCTR1 and AsCTR4) and plasma membrane (AsCTR2 and AsCTR3) CTRs. Heterologous expression of AsCTR2, AsCTR3 and their translational fusions with green fluorescent protein (GFP) in Cu uptake-deficient S. cerevisiae indicated that both AsCTRs are functional Cu and Ag uptake transporters: recombinant genes complemented growth defects and increased Cu and Ag uptake rates in yeasts and the GFP-tagged protein localized to the cell periphery. Site directed mutagenesis revealed the importance of the conserved-among-CTRs M-X3-M motif for the AsCTR2- and AsCTR3-mediated transport of both Cu and Ag. These results provide the first evidence that fungal CTRs can recognize Ag for transport. PMID:26862109

  4. Magnetron sputtered Cu{sub 3}N/NiTiCu shape memory thin film heterostructures for MEMS applications

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Navjot; Choudhary, Nitin [Indian Institute of Technology Roorkee, Roorkee, Functional Nanomaterials Research Lab, Department of Physics and Centre of Nanotechnology (India); Goyal, Rajendra N. [Indian Institute of Technology, Roorkee, Department of Chemistry (India); Viladkar, S. [Indian Institute of Technology Roorkee, Roorkee, Functional Nanomaterials Research Lab, Department of Physics and Centre of Nanotechnology (India); Matai, I.; Gopinath, P. [Indian Institute of Technology, Roorkee, Centre for Nanotechnology (India); Chockalingam, S. [Indian Institute of Technology, Guwahati, Department of Biotechnology (India); Kaur, Davinder, E-mail: dkaurfph@iitr.ernet.in [Indian Institute of Technology Roorkee, Roorkee, Functional Nanomaterials Research Lab, Department of Physics and Centre of Nanotechnology (India)

    2013-03-15

    In the present study, for the first time, Cu{sub 3}N/NiTiCu/Si heterostructures were successfully grown using magnetron sputtering technique. Nanocrystalline copper nitride (Cu{sub 3}N with thickness {approx}200 nm) thin films and copper nanodots were subsequently deposited on the surface of 2-{mu}m-thick NiTiCu shape memory thin films in order to improve the surface corrosion and nickel release properties of NiTiCu thin films. Interestingly, the phase transformation from martensite phase to austenite phase has been observed in Cu{sub 3}N/NiTiCu heterostructures with corresponding change in texture and surface morphology of top Cu{sub 3}N films. Field emission scanning electron microscopy and atomic force microscope images of the heterostructures reveals the formation of 20-nm-sized copper nanodots on NiTiCu surface at higher deposition temperature (450 Degree-Sign C) of Cu{sub 3}N. Cu{sub 3}N passivated NiTiCu films possess low corrosion current density with higher corrosion potential and, therefore, better corrosion resistance as compared to pure NiTiCu films. The concentration of Ni released from the Cu{sub 3}N/NiTiCu samples was observed to be much less than that of pure NiTiCu film. It can be reduced to the factor of about one-ninth after the surface passivation resulting in smooth, homogeneous and highly corrosion resistant surface. The antibacterial and cytotoxicity of pure and Cu{sub 3}N coated NiTiCu thin films were investigated through green fluorescent protein expressing E. coli bacteria and human embryonic kidney cells. The results show the strong antibacterial property and non cytotoxicity of Cu{sub 3}N/NiTiCu heterostructure. This work is of immense technological importance due to variety of BioMEMS applications.

  5. Optical Limiting Properties of Ag-Cu Metal Alloy Nanoparticles Analysis by using MATLAB

    International Nuclear Information System (INIS)

    Ag-Cu alloy nanoparticles were formed by sequential ion implantation (Ag and Cu) in silica using a metal vapor vacuum arc (MEVVA) ion source. Third-order nonlinear optical properties of the nanoparticles were measured at 1064 nm excitations using the Z-scan technique. Curve fitting analysis, based on the MATLAB features for Ag-Cu alloy nanoparticle optical limiting experiments, is used. The results show that Ag-Cu alloy nanoparticles display a refractive optical limiting effect at 1064nm. (condensed matter: structure, mechanical and thermal properties)

  6. Surface alloying of Cu with Ti by double glow discharge process

    Institute of Scientific and Technical Information of China (English)

    袁庆龙; 池成忠; 苏永安; 徐重; 唐宾

    2004-01-01

    The surface of pure copper alloyed with Ti using double glow discharge process was investigated. The morphology, structure and forming mechanism of the Cu-Ti alloying layer were analyzed. The microhardness and wear resistance of the Cu-Ti alloying layer were measured, and compared with those of pure copper. The results indicate that the surface of copper activated by Ar and Ti ions bombardment is favorable to absorption and diffusion of Ti element. In current experimental temperature, as the Ti content increases, the liquid phase occurs between the deposited layer and diffused layer, which makes the Ti ions and atoms easy to dissolve and the thickness of Cu-Ti alloying layer increase rapidly. After cooling, the structure of the alloying layer is composed of CuTi, Cu4 Ti and Cu(Ti) solid solution. The solid solution strengthening and precipitation strengthening effects of Ti result in high surface hardness and wear resistance.

  7. Electrical conductivity of Cu-Ag in situ filamentary composites

    Institute of Scientific and Technical Information of China (English)

    NING Yuan-tao; ZHANG Xiao-hui; WU Yue-jun

    2007-01-01

    The electrical conductivity of Cu-10Ag in situ filamentary composite was studied during the deformation and annealing processes. The dependence of electrical resistivity of the deformed composites on the true strain presents a two-stage change with increase of the true strain. The intermediate heat treatment and the stabilized annealing treatment to the deformed composite promote the separation of Ag precipitate, and increase the electrical conductivity. The maximum conductivity of the composite experienced the stabilizing heat treatment can reach about 97% IACS with σb≥400 MPa at 550 ℃ annealing, and reach about 70% IACS with σb≥1 250 MPa at 300 ℃ annealing. The corresponded strength of the composite was reported. The microstructure reason for the changes of the conductivity was discussed.

  8. Alleviation of process-induced cracking of the antireflection TiN coating (ARC-TiN) in Al-Cu and Al-Cu-Si films

    CERN Document Server

    Peng, Y C; Yang, Y R; Hsieh, W Y; Hsieh, Y F

    1999-01-01

    The alleviation of cracking of the TiN-ARC layer on Al-Cu and Al-Cu-Si films after the development process has been achieved. For the TiN-ARC/Al-Cu system, the stress-induced defects decreased with increasing TiN-ARC layer thickness. In contrast, for the TiN-ARC/Al-Cu-Si system, Si nodules formed during cooling, thereby inducing poor coverage with high aspect-ratio holes. As a result, the photoresist developer penetrated through the films. Chemical vapor deposition of TiN-ARC or predeposition of a Ti Interposing layer was used to eliminate the formation of Si nodules.

  9. Alleviation of process-induced cracking of the antireflection TiN coating (ARC-TiN) in Al-Cu and Al-Cu-Si films

    International Nuclear Information System (INIS)

    The alleviation of cracking of the TiN-ARC layer on Al-Cu and Al-Cu-Si films after the development process has been achieved. For the TiN-ARC/Al-Cu system, the stress-induced defects decreased with increasing TiN-ARC layer thickness. In contrast, for the TiN-ARC/Al-Cu-Si system, Si nodules formed during cooling, thereby inducing poor coverage with high aspect-ratio holes. As a result, the photoresist developer penetrated through the films. Chemical vapor deposition of TiN-ARC or predeposition of a Ti Interposing layer was used to eliminate the formation of Si nodules

  10. Low temperature properties of organicinorganic Ag/p-CuPc/n-GaAs/Ag photoelectric sensor

    Institute of Scientific and Technical Information of China (English)

    Kh.; S.; KARIMOV; I.; QAZI; T.; A.; KHAN; M.; I.; FEDOROV

    2008-01-01

    A thin organic film of p-type semiconducting copper phthalocynanine (CuPc) was deposited by vacuum evaporation on an n-type GaAs single-crystal semiconductor substrate. The fabricated Ag/p-CuPc/n-GaAs/Ag sensor was carried through an ageing process to stabilize the parameters. Voltage-current characteristics and photoelectrical response of the sensor were investigated at a wide temperature range of 82 to 350 K. Photoelectric characteristics were measured under non-modulated filament-lamp illumination. It was observed that such sensor parameters as rectification ratio,threshold voltage,junction,shunt and series resistances,open-circuit voltage and short circuit current are temperature-dependent. It was found that wide-range voltage-current characteristics of the sensor may be de-scribed similarly to that of a Schottky barrier diode. Using the experimental data on voltage-current characteristics and absorbance of the CuPc films,the energy-band diagram of the p-CuPc/n-GaAs heterojunction was developed. It was shown that data obtained from simulation of an equivalent circuit of photoelectric sensor agreed with experimental results.

  11. Optical and magnetic properties of Cu-doped 13-atom Ag nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Yi [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xian 710072 (China); Lei, Yimin [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xian 710072 (China); Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, New South Wales 2006 (Australia); Cui, Xiangyuan [Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, New South Wales 2006 (Australia); School of Aerospace Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, New South Wales 2006 (Australia); Liu, Zongwen, E-mail: fuyichen@nwpu.edu.cn [Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, New South Wales 2006 (Australia); Chen, Fuyi, E-mail: zongwen.liu@sydney.edu.au [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xian 710072 (China)

    2013-07-15

    Highlights: •Cu atom tends to occupy the core position in the Ag–Cu nanoclusters. •Global minimum of Ag{sub 12}Cu{sub 1} cluster is predicted to be cuboctahedral shape. •High symmetry clusters have high magnetic moment. •Icosahedral core–shell Ag{sub 12}Cu{sub 1} cluster has ferromagnetic properties. -- Abstract: The structural, optical and magnetic properties of Ag{sub 13}, Ag{sub 12}Cu{sub 1} and Cu{sub 13} clusters have been investigated using density functional theory calculations. The global minimum of the Ag{sub 12}Cu{sub 1} cluster is predicted to be cuboctahedral (COh) core–shell structure with O{sub h} point group symmetry while the icosahedral (Ih) core–shell isomer has a higher HOMO–LUMO gap and higher magnetic moment. The optical absorption spectrum of the Ih Ag{sub 12}Cu{sub 1} has three absorption peaks at 2.17, 2.41 and 2.65 eV, compared with that the COh Ag{sub 12}Cu{sub 1} has one main absorption peak at 2.51 eV. The characteristics in electronic density of states (DOSs) show that Ih core–shell Ag{sub 12}Cu{sub 1} has ferromagnetic properties like pure Au{sub 13}, Ag{sub 13} nanoclusters. The sizable split between spin up and spin down DOS of d states in the inner Cu atom and sp states in the outer Ag atoms bring in large magnetic moment to Ih Ag{sub 12}Cu{sub 1} cluster.

  12. Electron channeling in TiO2 coated Cu layers

    International Nuclear Information System (INIS)

    Electron transport in metal conductors with ∼5–30 nm width is dominated by surface scattering. In situ transport measurements as a function of surface chemistry demonstrate that the primary parameter determining the surface scattering specularity is the localized surface density of states at the Fermi level N(E f). In particular, the measured sheet resistance of epitaxial Cu(001) layers with thickness d Cu = 9–25 nm increases when coated with d Ti = 0.1–4.0 monolayers (MLs) of Ti, but decreases again during exposure to 37 Pa of O2. These resistivity changes are a function of d Cu and d Ti and are due to a transition from partially specular electron scattering at the Cu surface to completely diffuse scattering at the Cu–Ti interface, and the recovery of surface specularity as the Ti is oxidized. X-ray reflectivity and photoelectron spectroscopy indicate the formation of a 0.47 ± 0.03 nm thick Cu2O surface layer on top of the TiO2–Cu2O during air exposure, while density functional calculations of TiOx cap layers as a function of x = 0–2 and d Ti = 0.25–1.0 ML show a reduction of N(E f) by up to a factor of four. This reduction is proposed to be the key cause for the recovery of surface specularity and results in electron confinement and channeling in the Cu layer upon Ti oxidation. Transport measurements at 293 and 77 K confirm the channeling and demonstrate the potential for high-conductivity metal nanowires by quantifying the surface specularity parameter p = 0.67 ± 0.05, 0.00 ± 0.05, and 0.35 ± 0.05 at the Cu–vacuum, Cu–Ti, and Cu–TiO2 interfaces. (paper)

  13. Electronic conductivity of mechanochemically synthesized nanocrystalline Ag1-CuI system using DC polarization technique

    Indian Academy of Sciences (India)

    D Bharathi Mohan; C S Sunandana

    2006-08-01

    A study of electronic conductivity using the DC polarization technique has been carried out for AgI and Ag1-CuI (where = 0.05, 0.15, 0.25) solid solutions over a range of temperatures from 300 K to 473 K. A diode-like current-voltage characteristics arises from microscopic p-n junctions and an enhanced electronic conductivity of the order of 10-3A is observed for undoped AgI and Cu-doped AgI. Activation energies (a) for electronic conductivity obtained from log (-1 cm-1) vs. 1000/(K-1) were 0.48, 0.6, 0.74 and 1.01 eV for AgI, Ag0.95Cu0.05I, Ag0.85Cu0.15I and Ag0.75Cu0.25I solid solutions respectively. The near-twofold increase in activation energy (1.01 eV) observed upon 25% Cu doping is due to the substantial concentration of current carriers/holes injected by Cu while replacing Ag+ in AgI.

  14. Synthesis and properties of a Cu-Ti-TiB{sub 2} composite hardened by multiple mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Bozic, D., E-mail: dbozic@vinca.rs [Materials Department, Institute of Nuclear Sciences ' Vinca' , University of Belgrade, Mike Petrovica Alasa 12-14, 11001 Belgrade (Serbia); Stasic, J., E-mail: jelsta@vinca.rs [Materials Department, Institute of Nuclear Sciences ' Vinca' , University of Belgrade, Mike Petrovica Alasa 12-14, 11001 Belgrade (Serbia); Ruzic, J., E-mail: jruzic@vinca.rs [Materials Department, Institute of Nuclear Sciences ' Vinca' , University of Belgrade, Mike Petrovica Alasa 12-14, 11001 Belgrade (Serbia); Vilotijevic, M., E-mail: mige@vinca.rs [Materials Department, Institute of Nuclear Sciences ' Vinca' , University of Belgrade, Mike Petrovica Alasa 12-14, 11001 Belgrade (Serbia); Rajkovic, V., E-mail: visnja@vinca.rs [Materials Department, Institute of Nuclear Sciences ' Vinca' , University of Belgrade, Mike Petrovica Alasa 12-14, 11001 Belgrade (Serbia)

    2011-10-25

    Highlights: {yields} In situ formed TiB{sub 2} nanoparticles in copper matrix via argon atomization. {yields} Preparation of Cu-Ti-TiB{sub 2} composite by gas atomization and hot isostatic pressing. {yields} High hardening of the Cu-Ti-TiB{sub 2} composite due to development of modular structure, precipitation of Cu{sub 4}Ti{sub (m)} and the presence of TiB{sub 2}. - Abstract: Multiple hardening mechanisms of a copper matrix have been presented and discussed. The gas atomized Cu-0.6 wt.%Ti-2.5 wt.%TiB{sub 2} (Cu-Ti-TiB{sub 2}) powders were used as starting materials. Dispersoid particles TiB{sub 2} were formed in situ in the copper matrix during gas atomization. The powders have been consolidated by hot isostatic pressing (HIP). Optical microscopy, transmission electron microscopy (TEM), and X-ray diffraction (XRD) analysis were performed for microstructural characterization of powders and composite compacts. High hardening of the Cu-Ti-TiB{sub 2} composite achieved by aging is a consequence of the simultaneous influence of the following factors: the development of modulated structure with metastable Cu{sub 4}Ti{sub (m)} particles and in situ formed TiB{sub 2} dispersoid particles.

  15. Evaluation of Ti-Cr-Cu alloys for dental applications

    Science.gov (United States)

    Koike, Marie; Okabe, Toru; Itoh, Masayuki; Okuno, Osamu; Kimura, Kohei; Takeda, Osamu; Okabe, Toru H.

    2005-12-01

    This study examined the characteristics of as-cast Ti-Cr(7 19%)-Cu(3 7%) (all percentages in this article are mass%) alloys to evaluate their suitability for dental applications; studies on the alloy structures and mechanical properties, grindability, and corrosion behavior were included in the investigation. The alloys were centrifugally cast and bench-cooled in investment molds. The x-ray diffractometry of the as-cast alloys bench-cooled in the molds indicated the following phases: α+β+ω in the 7% Cr and 7% Cr+3% Cu; β+ω in the 13%Cr; and β in the 13%Cr+3% Cu through the 19%Cr+3% Cu alloys. The strengths of the binary β Ti-Cr and ternary β Ti-Cr-Cu alloys with 13 and 19% Cr were approximately two times higher than those of CP Ti. The alloy ductility was dependent on the chemical composition and thus, the microstructure. The 7% Cr alloys were extremely brittle and hard due to the ω phase, but the ductility was restored in the 13 and 19% Cr alloys. The hardness (HV) of the cast 13 and 19% Cr alloys was approximately 300 350 compared with a value of 200 for CP Ti. The grindability of the cast alloys was examined using a rotating SiC wheel at speeds (circumferential) of 500 and 1250 m/min. At the higher speed, the grindability of the 13 and 19% Cr alloys increased with the Cu content. The grindability of the 13% Cr alloy with 7% Cu was similar to that of CP Ti. Evaluation of the corrosion behavior in an artificial saliva revealed that the alloys are like many other titanium alloys within the normal intraoral oxidation potential. The wear resistance testing of these alloys also showed favorable results.

  16. Corrosion behaviour of amorphous Ti48Cu52, Ti50Cu50 and Ti60Ni40 alloys investigated by potentiodynamic polarization method

    Indian Academy of Sciences (India)

    A Dhawan; S Roychowdhury; P K De; S K Sharma

    2003-10-01

    Potentiodynamic polarization studies were carried out on virgin specimens of amorphous alloys Ti48Cu52, Ti50Cu50 and Ti60Ni40 in 0.5 M HNO3, 0.5 M H2SO4 and 0.5 M NaOH aqueous media at room temperature. The value of the corrosion current density (corr) was maximum for Ti48Cu52 alloy in all the three aqueous media as compared to the remaining two alloys. The value of corr for the alloy Ti48Cu52 was maximum (corr = 2.6 × 10-5 A/cm2) in 0.5 M H2SO4 and minimum (corr = 3.5 × 10-6 A/cm2) in 0.5 M NaOH aqueous solutions. In contrast, the alloy Ti60Ni40 exhibited the least corrosion current density in 0.5 M HNO3 (corr = 4.0 × 10-7 A/cm2) and in 0.5 M NaOH (corr = 5.5 × 10-7 A/cm2) aqueous media as compared to those for Ti–Cu alloys, while its value in 0.5 M H2SO4 was comparable to that for Ti50Cu50. It is suggested that the alloy Ti60Ni40 is more corrosion resistant than the alloys Ti48Cu52 and Ti50Cu50 in all the three aqueous media.

  17. Untersuchung und Charakterisierung des Phasengebietes M-Q-X (M = Ag, Cu; Q = Chalkogen; X = Halogen)

    OpenAIRE

    Giller, Malte

    2015-01-01

    Diese Dissertation beschreibt die Synthese und Charakterisierung von neuen Verbindungen, im Phasengebiet Cu-Te-Br und Cu-Te-S, sowie der festen Lösung von Cu10Te4Cl3 und Ag10Te4Br3. Hierbei wurden drei neue Phasen, Cu4.8(1)Te3Br, Cu5.4(1)Te3Br und Cu6Te3S isoliert und als kupfergefüllte Varianten des Cr3Si-Strukturtyps charakterisiert.

  18. Facile preparation of Ag-Cu bifunctional electrocatalysts for zinc-air batteries

    International Nuclear Information System (INIS)

    Highlights: • Ag-Cu dendrites are observed for the first time to exhibit high catalytic activity for oxygen reduction reaction. • Ag-Cu dendrites are directly synthesized through galvanic displacement on the current collector layer made of Ni foams. • A bifunctional air cathode is fabricated using Ag-Cu dendrites as a carbon-free, binder-free catalyst layer. • Both the primary and rechargeable zinc–air batteries fabricated by Ag-Cu catalysts exhibit excellent performance. - ABSTRACT: An inexpensive, facile galvanic displacement reaction for the direct growth of silver–copper (Ag-Cu) catalysts on nickel foams is developed for the first time. The resulting Ag-Cu catalysts exhibit dendritic morphologies. Ag and Cu atoms are in their metallic state while the presence of CuO and Cu2O are limited on the surface of catalyst. The catalysts demonstrate high catalytic activity for oxygen reduction reaction (ORR) in alkaline solution, as evaluated by both linear scanning voltammetry and rotating disk electrode polarization measurements. The ORR catalysed by Ag-Cu catalyst in alkaline solution proceeds through a four-electron pathway. An air cathode is fabricated using Ag-Cu catalyst as a carbon-free, binder-free catalyst layer. Using this Ag-Cu catalyst based air cathode, both the primary and rechargeable zinc-air batteries show excellent battery performance. The specific capacity of the primary zinc-air battery is 572 mAh g−1. Especially, the rechargeable zinc-air battery shows high round-trip efficiency, appealing stability at a long charge-discharge cycle period

  19. Fabrication, characterization and photocatalytic properties of Ag nanoparticles modified TiO2 NTs

    International Nuclear Information System (INIS)

    Graphical abstract: The TiO2 NTs were first treated with bi-functional mercaptoacetic acid linkers (HOOC–R–S). The –OH group on the surface of TiO2 NT provides a strong affinity with the carboxylate group in the linker molecules. The thiol functional group in the linker molecules facilitates the binding with Ag from AgNO3 solution. After Ag+ ions were reduced by NaBH4, Ag nanoparticles formed by nucleation and growth. Highlights: ► Ag nanoparticles with an average diameter of 9.2 nm were filled in the TiO2 nanotubes by a successive ionic layer adsorption and reaction (SILAR) technique. ► Bi-functional mercaptoacetic acid linkers were used to bind TiO2 nanotubes with Ag nanoparticles. ► Ag nanoparticles modification of TiO2 NTs largely enhanced the photocatalytic degradation of methyl orange under ultraviolet light irradiation. - Abstract: Ordered anatase TiO2 nanotubes (TiO2 NTs) on Ti substrate were synthesized by electrochemical anodization and subsequently vapor-thermal treatment. Ag nanoparticles were decorated on TiO2 NTs by successive ionic layer adsorption and reaction (SILAR) technique. Raman spectroscopy, X-ray absorption near edge spectroscopy (XANES), X-ray diffraction (XRD), UV–vis diffuse reflectance spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used for the characterization of surface morphology, phase composition, and microstructure of the original TiO2 NTs, the vapor-thermally treated TiO2 NTs and the Ag nanoparticles decorated TiO2 NTs. The results indicate that vapor-thermal treatment favors to the transformation of amorphous TiO2 into anatase phase. Increasing the SILAR cycle times favors to increase the loaded amounts of Ag nanoparticles in TiO2 NTs. Ag nanoparticles are uniformly distributed in the TiO2 NTs, and the SILAR process does not damage the ordered tubular structure. A possible formation mechanism of Ag/TiO2 NTs has also been proposed. The photocatalytic results showed

  20. Direct in situ activation of Ag0 nanoparticles in synthesis of Ag/TiO2 and its photoactivity

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Ag0 loaded on TiO2 was prepared by a direct in situ electrochemical method. • 5 wt% Ag–TiO2 demonstrated the best photocatalytic degradation of 2-CP. • Isomorphous substitution of Ag with Ti occurred to form Ti−O−Ag bonds. • Ag0 and oxygen vacancies trapped electrons to enhance e–H+ separation. • Substitution of Ag in the TiO2 structure decreased the number of oxygen vacancies. - Abstract: Metallic Ag nanoparticles (Ag0) were successfully activated using a direct in situ electrochemical method before being supported on TiO2. Catalytic testing showed that 5 wt% Ag–TiO2 gave the highest photodegradation (94%) of 50 mg L−1 2-chlorophenol (2-CP) at pH 5 using 0.375 g L−1 catalyst within 6 h, while under similar conditions, 1 wt% and 10 wt% Ag–TiO2 only gave 75% and 78% degradation, respectively. Characterization results illustrated that the photoactivity was affected by the amount of Ag0 and oxygen vacancies which act as an electrons trap to enhance the electron–hole separation. While, the Ag−O−Ti bonds formation reduced the photoactivity. The degradation followed a pseudo-first order Langmuir–Hinshelwood model where adsorption was the controlling step. Study on the effect of scavengers showed that the hole (H+) and hydroxyl radical (OH·) play important roles in the photodegradation. The regenerated photocatalyst was still stable after five cycling runs

  1. Biological properties of nanostructured Ti incorporated with Ca, P and Ag by electrochemical method

    Energy Technology Data Exchange (ETDEWEB)

    Li, Baoe; Hao, Jingzu; Min, Yang [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China); Xin, Shigang [Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Guo, Litong [School of Materials Science and Engineering, China University of Mining and Technology, Xuzhou 221116 (China); He, Fei [National Key Laboratory of C1 Chemical Industry, Tianjin University, Tianjin 300072 (China); Liang, Chunyong; Wang, Hongshui [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China); Li, Haipeng, E-mail: lhpcx@163.com [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China)

    2015-06-01

    TiO{sub 2} nanotube arrays were synthesized on Ti surface by anodic oxidation. The elements of Ca and P were simultaneously incorporated during nanotubes growth in SBF electrolyte, and then Ag was introduced to nanotube arrays by cathodic deposition, which endowed the good osseointegration and antibacterial property of Ti. The bioactivity of the Ti surface was evaluated by simulated body fluid soaking test. The biocompatibility was investigated by in vitro cell culture test. And the antibacterial effect against Staphylococcus aureus was examined by the bacterial counting method. The results showed that the incorporation of Ca, P and Ag elements had no significant influence on the formation of nanotube arrays on Ti surface during electrochemical treatment. Compared to the polished or nanotubular Ti surface, TiO{sub 2} nanotube arrays incorporated with Ca, P and Ag increased the formation of bone-like apatite in simulated body fluid, enhanced cell adhesion and proliferation, and inhibited the bacterial growth. Based on these results, it can be concluded that the nanostructured Ti incorporated with Ca, P and Ag by electrochemical method has promising applications as implant material. - Highlights: • Nanotube arrays were prepared on Ti surface by anodic oxidation. • Ca, P and Ag were incorporated to nanotube arrays by electrochemical method. • Ca, P and Ag endowed Ti with good osseointegration and antibacterial property. • The beneficial effect of electrochemical treatment on Ti implant was demonstrated.

  2. High-pressure x-ray diffraction of icosahedral Zr-Al-Ni-Cu-Ag quasicrystals

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Saksl, Karel; Rasmussen, Helge Kildahl;

    2001-01-01

    The effect of pressure on the structural stability of icosahedral Zr-Al-Ni-Cu-Ag quasicrystals forming from a Zr65Al7.5Ni10Cu7.5Ag10 metallic glass with a supercooled liquid region of 44 K has been investigated by in situ high-pressure angle-dispersive x-ray powder diffraction at ambient...

  3. Recyclable and visible light sensitive Ag-AgBr/TiO2: Surface adsorption and photodegradation of MO

    Science.gov (United States)

    Liu, Xinxin; Zhang, Dong; Guo, Biao; Qu, Yue; Tian, Ge; Yue, Huijuan; Feng, Shouhua

    2015-10-01

    A range of highly efficient nanoheterojunction structured Ag-AgBr/TiO2 photocatalysts have been synthesized by CTAB-assisted method and characterized by X-ray diffraction (XRD), focused ion beam scanning electron microscopy (FIB-SEM), energy-dispersive spectroscopy (EDS), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (DRS) and photoluminescence (PL). The results demonstrated that Ag-AgBr nanoparticles were successfully deposited on the surface of anatase TiO2 hierarchical spheres. The remarkable adsorptive removal of methyl orange (MO) by the uncalcined samples was investigated before evaluating its photocatalytic ability. All the calcined three-component catalysts possessed excellent photocatalytic activities for degrading MO under visible light, in which, 162.4% Ag-AgBr/TiO2 exhibited highest efficiency. The greatly enhanced activity can be attributed to the well combination of surface plasmons photocatalyst Ag-AgBr and TiO2, which can simultaneously inhibit the photo-generated electrons and holes recombination. The nanoheterojunctions architecture catalyst also showed high stability even after five consecutive cycles. Meanwhile, the possible mechanism and interpretation of the photocatalytic process were also proposed.

  4. Temperature Induced Degradation of Nb Ti/Cu Composite Superconductors

    CERN Document Server

    Scheuerlein, C; Senatore, C; Di Michiel, M; Thilly, L; Gerardin, A; Reluner, B; Oberli, L; Willering, G; Bottura, L

    2009-01-01

    The degradation mechanisms of state-of-the-art Nb-Ti/Cu superconductors are described, based on in-situ synchrotron X-ray diffraction measurements during heat treatment. A quantitative description of the Nb-Ti/Cu degradation in terms of critical current density, Cu stabiliser resistivity and mechanical composite strength is presented. In an applied magnetic field a significant critical current degradation is already observed after a 5-minute 400 °C heat treatment, due to variations of a-Ti precipitate size and distribution within the Nb-Ti alloy filaments. A strong degradation of the strand mechanical properties is observed after several minutes heating above 550 °C, which is also the temperature at which the formation of Cu Ti intermetallic phases is detected. Several minutes heating at 250 °C are sufficient to increase the RRR of the strongly cold work strands inside a Rutherford type cable from about 80 to about 240. Heating for several minutes at 400 °C does not cause a significant conductor degradati...

  5. The Brittleness Of Zn-Cu-Ti Sheet Alloys

    Directory of Open Access Journals (Sweden)

    Boczkal G.

    2015-09-01

    Full Text Available At temperatures below 5°C, the ductility of ZnCuTi alloy sheets is observed to suffer a drastic drop in direction transverse to the rolling direction. Studies have shown that the critical temperature at which this phenomenon occurs is strongly dependent on the alloy structure and parameters of the sheet metal production process. Quite important is also the role of micro-inhomogeneity arising in the chemical composition of the alloy matrix, directly related with the structure of intermetallic precipitates containing Cu and Ti.

  6. Slow positron studies on single crystals of Ag(100), Ag(111) and Cu(111)

    International Nuclear Information System (INIS)

    Monoenergetic positrons were employed to examine positronium formation as a function of sample temperature (300 to 1200 K) and incident energy (0 to 5 keV) on Ag(100), Ag(111) and Cu(111) surfaces with submonolayer contamination. In these metals at the higher temperatures, positronium formation becomes the dominant process. A one-dimensional diffusion model is fit to the data as a function of incident energy. Th positronium fraction is found to be an activated process and is identified as detrapping from a surface state and an estimate of the depth of this trap is extracted. The diffusion length is found to be temperature independent before the onset of vacancy trapping. At the higher temperatures vacancy trapping is observed by the decrease in the positron diffusion length at the higher incident voltages. A vacancy formation energy is extracted from the data and is generally lower than the accepted bulk values. 18 references

  7. Microstructure and strength of brazed joints of TiB2 cermet to TiAl-based alloys

    Institute of Scientific and Technical Information of China (English)

    李卓然; 冯吉才; 曹健

    2003-01-01

    In this study, TiB2 cermet and TiAl-based alloy are vacuum brazed successfully by using Ag-Cu-Ti filler metal. The microstructural analyses indicate that two reaction products, Ti(Cu, Al)2 and Ag based solid solution (Ag(s.s)), are present in the brazing seam, and the interface structure of the brazed joint is TiB2/TiB2+ Ag(s.s) /Ag(s.s)+Ti(Cu, Al)2/Ti(Cu, Al)2/TiAl. The experimental results show that the shear strength of the brazed TiB2/TiAl joints decreases as the brazing time increases at a definite brazing temperature. When the joint is brazed at 1 223 K for 5 min, a joint strength up to 173 MPa is achieved.

  8. Enhancement of stability of N-doped TiO{sub 2} photocatalysts with Ag loading

    Energy Technology Data Exchange (ETDEWEB)

    Gao Yuanpeng [Department of Physics and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072 (China); Fang Pengfei, E-mail: fangpf@whu.edu.cn [Department of Physics and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072 (China); Chen Feitai; Liu Yang; Liu Zhi; Wang Dahai [Department of Physics and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072 (China); Dai Yiqun, E-mail: dai@whu.edu.cn [Department of Physics and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072 (China)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer An effective and alternative approach is proposed to stabilize the N dopants for TiO{sub 2}. Black-Right-Pointing-Pointer Introduction of Ag restrains the escape of N dopants during the hydrothermal process. Black-Right-Pointing-Pointer The escape rate of N dopants decreased with the increase of Ag loading amount. Black-Right-Pointing-Pointer Ag nanoparticles with appropriate dosage acted as electron traps. Black-Right-Pointing-Pointer The photocatalytic activity can be adjusted by altering the Ag content. - Abstract: Various contents of Ag nanoparticles were successfully introduced into the N-doped TiO{sub 2} photocatalysts via a hydrothermal procedure in the silver-ammonia solutions with different Ag concentrations. Effects of Ag loading on the structure and properties of N-doped TiO{sub 2} photocatalysts were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy, fluorescence spectroscopy (FL), UV-vis spectroscopy, X-ray photoelectron spectroscopy (XPS), and N{sub 2} physical adsorption analysis. The relationship between the stability of N dopants in TiO{sub 2} lattice and the Ag loading content was investigated for the first time. The results confirm that Ag nanoparticles loading on TiO{sub 2} surfaces significantly restrain the escape of the N dopants from the oxide during the hydrothermal process, and the escape rate of N dopants decreased gradually with the increase of Ag loading amount. The dependence of photocatalytic activity on Ag content was also investigated through degradation of rhodamine B (RhB) under visible light irradiation. It was found that the photocatalytic activity increases gradually with increasing Ag content first, and then decreases after exceeding the optimal Ag content. Therefore, the photocatalytic activity of Ag/N co-modified TiO{sub 2} photocatalysts can be adjusted by the Ag content.

  9. Single-molecule conductance with nitrile and amino contacts with Ag or Cu electrodes

    International Nuclear Information System (INIS)

    The single-molecule conductance of 1,4-dicyanobenzene (DCB), 1,4-benzenediamine (BDA) and 4,4'-biphenyldicarbonitrile (BPDC) with Ag and/or Cu electrodes is measured by electrochemical jump-to-contact STM-break junction. All single-molecule junctions present three sets of conductance values revealing different contact geometries. We observe that the single-molecule conductance of Ag-BDA-Ag junction is larger that of Ag-DCB-Ag junction, and DCB with Ag contacts are more conductive than that with Cu ones. This is related to a different electronic coupling between the molecules and the electrodes. Tunneling decay constants of 1.70 and 1.68 per phenyl group were found for Ag and Cu electrodes, respectively. The present study therefore shows that nitrile and amino groups can also be used as effective anchors for other metals than gold

  10. Study on synthesis of ultrafine Cu-Ag core-shell powders with high electrical conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Peng Yuhsien [Department of Environmental Engineering, Dayeh University, 168 University Rd., Dacun, Changhua 515, Taiwan (China); Department of Research and Development, Oriental Happy Enterprise Co., No. 27, Xin' ai Rd., South Dist., Tainan 702, Taiwan (China); Center for General Education, Kun Shan University, No. 949, Dawan Rd., Yongkang Dist., Tainan 710, Taiwan (China); Yang Chihhao [Department of Research and Development, Oriental Happy Enterprise Co., No. 27, Xin' ai Rd., South Dist., Tainan 702, Taiwan (China); Chen Kuanting, E-mail: pengyuhsien@hotmail.com [Department of Resources Engineering, National Cheng Kung University, No.1, Da-Hsueh Road, Tainan 701, Taiwan (China); Popuri, Srinivasa R. [Department of Biological and Chemical Sciences, The University of the West Indies, Cave Hill Campus 11000 (Barbados); Lee, Ching-Hwa [Department of Environmental Engineering, Dayeh University, 168 University Rd., Dacun, Changhua 515, Taiwan (China); Tang, Bo-Shin [Department of Research and Development, Oriental Happy Enterprise Co., No. 27, Xin' ai Rd., South Dist., Tainan 702, Taiwan (China)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer This synthesis method is relatively facile, novel and eco-friendly. Black-Right-Pointing-Pointer Toxic agents were not used for chelating agent, reductant or dispersant in our method. Black-Right-Pointing-Pointer The reaction can under room temperature for energy saving purpose. Black-Right-Pointing-Pointer Cu-Ag core-shell powders with homogeneous cover-silver layer. Black-Right-Pointing-Pointer The resistivity of Cu-Ag core-shell powders has the same value as the pure silver. - Abstract: Cu-Ag composite powders with high electrical conductivity were synthesized by electroless plating of silver sulfate, copper powders with eco-friendly sodium citrate as reducing agent, dispersant and chelating agent in an aqueous system. The influences of sodium citrate/Ag ratio on Ag coatings of Cu powders were investigated. Ag was formed a dense coating on the surface of Cu powders at a molar ratio of sodium citrate/Ag = 0.07/1. SEM showed an uniformity of Ag coatings on Cu powders. SEM-EDX also revealed that Cu cores were covered by Ag shells on the whole. The surface composition analysis by XPS indicated that without Cu or Ag atoms in the surface were oxidized. The resistivity measurements of Cu-Ag paste shows that they have closer resistivity as the pure silver paste's after 250 Degree-Sign C for 30 min heat-treatment (2.55 Multiplication-Sign 10{sup -4} {Omega} cm) and 350 Degree-Sign C for 30 min heat-treatment (1.425 Multiplication-Sign 10{sup -4} {Omega} cm).

  11. Experimental study on the phase equilibria of the Ag-Ti system

    Energy Technology Data Exchange (ETDEWEB)

    Fu Xiaoliang [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Li Changrong [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China)]. E-mail: crli@mater.ustb.edu.cn; Wang Fuming [School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Li Mei [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Zhang Weijing [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China)

    2005-11-05

    The Ag-Ti diffusion couples were prepared by small pure silver plates closely packed in pure titanium powder, sealed in quartz tube, and annealed at 750 deg. C, 980 deg. C, 1100 deg. C and 1200 deg. C, respectively. The phase equilibrium relationship and the conjugate phase compositions in the Ag-Ti system were determined by means of the metallographic microscope and the electron probe microanalysis. Partial liquidus and solidus for the two-phase equilibrium, liquid + ({beta}Ti), were obtained. The narrow solution range for the intermediate phase (TiAg) was determined.

  12. Electrochemical Corrosion Behavior of TiN-Coated Biomedical Ti-Cu Alloy Foam in Fluoride Containing Artificial Saliva

    Science.gov (United States)

    Mutlu, Ilven

    2014-07-01

    Highly porous Ti-Cu alloy foams were produced by powder metallurgy method for implant applications. Ti-Cu alloys were prepared with 3, 5, 7, and 10 wt pct Cu contents in order to determine optimum Cu addition. Cu addition enhances sinterability, and the Ti-Cu compacts were sintered at lower temperatures and times than pure Ti. Specimens were coated with a TiN film to enhance wear and corrosion resistance. Sintered specimens were precipitation hardened (aged) in order to increase mechanical properties. Corrosion properties of foams were examined by electrochemical techniques, such as potentiodynamic polarization, cyclic polarization, Tafel extrapolation, linear polarization resistance, and open-circuit potential measurement. Effect of Cu content, TiN coating, pH, and fluoride content of artificial saliva on electrochemical corrosion behavior of specimens was investigated.

  13. Characterization and mechanical properties investigation of TiN-Ag films onto Ti-6Al-4V

    Science.gov (United States)

    Du, Dongxing; Liu, Daoxin; Zhang, Xiaohua; Tang, Jingang; Xiang, Dinggen

    2016-03-01

    To investigate their effect on fretting fatigue (FF) resistance of a Ti-6Al-4V alloy, hard solid lubricating composite films of TiN with varying silver contents (TiN-Ag) were deposited on a Ti-6Al-4V alloy using ion-assisted magnetron sputtering. The surface morphology and structure were analyzed by atomic force microscopy, X-ray diffractometry, X-ray photoelectron spectroscopy, and transmission electron microscopy. The hardness, bonding strength, and toughness of films were tested using a micro-hardness tester, scratch tester, and a repeated press-press test system that was manufactured in-house, respectively. The FF resistance of TiN-Ag composite films was studied using self-developed devices. The results show that the FF resistance of a titanium alloy can be improved by TiN-Ag composite films, which were fabricated using hard TiN coating doped with soft Ag. The FF life of Ag0.5, Ag2, Ag5, Ag10 and Ag20 composite films is 2.41, 3.18, 3.20, 2.94 and 2.87 times as great as that of the titanium alloy, respectively. This is because the composite films have the better toughness, friction lubrication, and high bonding strength. When the atomic fraction of Ag changes from 2% to 5%, the FF resistance of the composite films shows the best performance. This is attributed to the surface integrity of the composite film is sufficiently fine to prevent the initiation and early propagation of FF cracks.

  14. HRTEM studies of amorphous ZrNiTiCu nanocrystalline composites.

    Science.gov (United States)

    Dutkiewicz, J; Lityńska-Dobrzyńska, L; Kovacova, A; Molnarova, M; Rogal, L; Maziarz, W

    2010-03-01

    Ball milling of easy glass forming Ti(25)Zr(17)Ni(29)Cu(29) alloys lead to the formation of an amorphous structure accompanied by a substantial increase of powder microhardness. The powders show clear glass transition effect and a few stage crystallization starting above 500 degrees C. High-resolution transmission electron microscope technique allowed identifying nanocrystalline inclusions as Cu(12)NiTi(7) within the amorphous powder. The amorphous powders mixed with nanocrystalline iron or silver powders were hot pressed to form composites. A narrow 200 nm broad intermediate single-phase layer at the amorphous-phase/iron interface containing all elements present in the composite was identified using transmission electron microscope and high-angle annular dark field detector techniques. scanning transmission electron microscopy energy dispersive spectroscopy line profile showed gradual change of composition within the intermediate zone. Amorphous phase contains small nanocrystals of size close to 10 nm identified using High-resolution transmission electron microscope as Cu(12)NiTi(7.) Compression tests have shown better plasticity of composites than in the case of pure hot-pressed amorphous powder; furthermore, high elastic limit of composites and the ultimate compression stress of about 1800 MPa for composites containing 20% Fe and near 700 MPa for those with 20% Ag. PMID:20500372

  15. Fabrication and photoelectrochemical study of vertically oriented TiO2/Ag/SiNWs arrays

    International Nuclear Information System (INIS)

    Highlights: • TiO2/Ag/SiNWs with porous structure and high surface area were synthesized. • The successful incorporating of Ag significantly enhanced the photocatalyst activity. • The novel structure improves the separation of photo-induced charge carriers in the structures. • This research provides a meaning way in light-harvesting devices. - Abstract: Ordered channeled and porous TiO2 and Ag modified silicon nanowires (TiO2/Ag/SiNWs) heterostructured nanocrystals arrays are synthesized by a two-step method based on an electrochemical etching procedure and a sol–gel process. The morphology and photoelectrochemical properties of the TiO2/Ag/SiNWs are studied. The TiO2/Ag/SiNWs photocatalysts possess ordered channels and a porous structure with large specific surface area. UV–visible diffuse reflectance spectroscopy and ultraviolet Raman scattering demonstrate that the incorporated Ag significantly enhances light absorption by the TiO2/SiNWs in the visible spectral range and improves the separation of photo-induced charge carriers in the TiO2/SiNWs. The photoelectrochemical properties of the TiO2/Ag/SiNWs are investigated by monitoring the degradation of pnitrophenol (PNP) and Ag enhances PNP photodegradation under UV–vis irradiation due to the Ag–TiO2 heterojunctions and surface texture. The photoelectrochemical properties of TiO2/Ag/SiNWs have promising applications in photoelectrochemical solar cells and other light-harvesting devices

  16. Cellular Energy Allocation to Assess the Impact of Nanomaterials on Soil Invertebrates (Enchytraeids: The Effect of Cu and Ag

    Directory of Open Access Journals (Sweden)

    Susana I. L. Gomes

    2015-06-01

    Full Text Available The effects of several copper (Cu and silver (Ag nanomaterials were assessed using the cellular energy allocation (CEA, a methodology used to evaluate the energetic status and which relates with organisms’ overall condition and response to toxic stress. Enchytraeus crypticus (Oligochatea, was exposed to the reproduction effect concentrations EC20/50 of several Cu and Ag materials (CuNO3, Cu-Field, Cu-Nwires and Cu-NPs; AgNO3, Ag NM300K, Ag-NPs Non-coated and Ag-NPs PVP-coated for 7 days (0-3-7d. The parameters measured were the total energy reserves available (protein, carbohydrate and lipid budgets and the energy consumption (Ec integrated to obtain the CEA. Results showed that these parameters allowed a clear discrimination between Cu and Ag, but less clearly within each of the various materials. For Cu there was an increase in Ec and protein budget, while for Ag a decrease was observed. The results corroborate known mechanisms, e.g., with Cu causing an increase in metabolic rate whereas Ag induces mitochondrial damage. The various Cu forms seem to activate different mechanisms with size and shape (e.g., Cu-NPs versus Cu-Nwires, causing clearly different effects. For Ag, results are in line with a slower oxidation rate of Ag-NMs in comparison with Ag-salt and hence delayed effects.

  17. The study on interfacial bonding strength of Ag-Ni, Ag-Cu in cold pressure welding

    Institute of Scientific and Technical Information of China (English)

    李云涛; 杜则裕; 陈丽萍

    2003-01-01

    The area of combination actually is a kind of interfacial phenomena that exist on the surface or thin film. The properties of interface have important effect on the whole welded joint, even decide directly the interfacial bonding strength. The bonding strength of metals in cold pressure welding such as Ag-Ni (they are hardly mutual soluble) and Ag-Cu(they are limited soluble) are discussed in this paper. The results of the tensile test suggest that two kinds of welded joints have enough strength to satisfy with the demand for being used. Moreover, thermodynamics, crystal logy, physics and metal electronic microscopic analysis etc are adopted to further calculate the bonding strength. The results of test and theoretical analyses prove that Ag-Ni, Ag-Cu, especially, for Ag-Ni can form strong welded joint which is higher than that of the relative soft base metals in cold pressure welding.

  18. Diffusion and interface controlled reactions in {alpha}-(Cu-Al-Ag) alloys

    Energy Technology Data Exchange (ETDEWEB)

    Adorno, A.T. [Instituto de Quimica, Unesp, Departamento de Fisico-Quimica, Caixa Postal 355, 14801-970 Araraquara, SP (Brazil)]. E-mail: atadorno@iq.unesp.br; Silva, R.A.G. [Instituto de Quimica, Unesp, Departamento de Fisico-Quimica, Caixa Postal 355, 14801-970 Araraquara, SP (Brazil); Magdalena, A.G. [Instituto de Quimica, Unesp, Departamento de Fisico-Quimica, Caixa Postal 355, 14801-970 Araraquara, SP (Brazil)

    2007-08-30

    The isothermal kinetics of Ag precipitation was studied in Cu-Al-Ag alloys with concentrations ranging from 2 to 8 wt.%Al and 2 to 12 wt.%Ag, using scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy (EDX) and microhardness measurements. The results indicated a change in the precipitates growing mechanism from diffusion to interface controlled process, probably due to a change in the nature of the interface with the Ag and Al enrichment of the precipitates.

  19. Highly Efficient Photocatalytic Hydrogen Evolution in Ternary Hybrid TiO2/CuO/Cu Thoroughly Mesoporous Nanofibers.

    Science.gov (United States)

    Hou, Huilin; Shang, Minghui; Gao, Fengmei; Wang, Lin; Liu, Qiao; Zheng, Jinju; Yang, Zuobao; Yang, Weiyou

    2016-08-10

    Development of novel hybrid photocatalysts with high efficiency and durability for photocatalytic hydrogen generation is highly desired but still remains a grand challenge currently. In the present work, we reported the exploration of ternary hybrid TiO2/CuO/Cu thoroughly mesoporous nanofibers via a foaming-assisted electrospinning technique. It is found that by adjusting the Cu contents in the solutions, the unitary (TiO2), binary (TiO2/CuO, TiO2/Cu), and ternary (TiO2/CuO/Cu) mesoporous products can be obtained, enabling the growth of TiO2/CuO/Cu ternary hybrids in a tailored manner. The photocatalytic behavior of the as-synthesized products as well as P25 was evaluated in terms of their hydrogen evolution efficiency for the photodecomposition water under Xe lamp irradiation. The results showed that the ternary TiO2/CuO/Cu thoroughly mesoporous nanofibers exhibit a robust stability and the most efficient photocatalytic H2 evolution with the highest release rate of ∼851.3 μmol g(-1) h(-1), which was profoundly enhanced for more than 3.5 times with respect to those of the pristine TiO2 counterparts and commercial P25, suggesting their promising applications in clean energy production. PMID:27430307

  20. The molecular dynamic study of anharmonic effects at Cu(111) and Ag(111) surfaces in the presence of Cu- and Ag-trimer island

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Zulfiqar Ali [Department of Physics, Hazara University, Mansehra 21300 (Pakistan); Hayat, Sardar Sikandar, E-mail: sikandariub@yahoo.com [Department of Physics, Hazara University, Mansehra 21300 (Pakistan); Department of Physics, The Islamia University of Bahawalpur, Bahawalpur 63120 (Pakistan); Rehman, Z. [Department of Physics, Hazara University, Mansehra 21300 (Pakistan); Bouafia, Farida [LMPM, Mechanical Engineering Department, University of Sidi Bel Abbes, Sidi Bel Abbes 22000 (Algeria)

    2014-05-01

    The molecular dynamics (MD) technique based on semi-empirical potentials, is used to carry out the diffusion of Cu- and Ag-trimer on Cu- and Ag(111) surface at 300, 500 and 700 K temperatures. The constant energy MD simulation elaborates the anharmonic effects at the surface such as fissures, dislocations and vacancy creation, in the presence of island. The fissures and dislocations formed are in the range of 1.5–4 Å and 1–7 Å, respectively, from the island's position. The Cu and Ag islands both diffuse easily on Cu(111) surface, manipulate that the trend of diffusion is faster on Cu surface as compared to Ag surface. The process of breaking and opening of the island has also been observed. Moreover, a surface atom popped-up at 700 K by creating a vacancy near the Cu island on Ag surface. The rate of diffusion increases with the increase in temperature, both for homo- and hetero-cases.

  1. Low-firing Li2ZnTi3O8 microwave dielectric ceramics with BaCu(B2O5) additive

    Indian Academy of Sciences (India)

    Guo-Hua Chen; Jin Liu; Xu-Qiong Li; Hua-Rui Xu; Min-Hong Jiang; Chang-Rong Zhou

    2011-10-01

    Phase purity, microstructure, sinterability and microwave dielectric properties of BaCu(B2O5)-added Li2ZnTi3O8 ceramics and their cofireability with Ag electrode were investigated. A small amount of BaCu (B2O5) can effectively reduce the sintering temperature from 1075°C to 925°C, and it does not induce much degradation of the microwave dielectric properties. Microwave dielectric properties of r = 23.1, × = 22,732 GHz and = −17.6 ppm/°C were obtained for Li2ZnTi3O8 ceramic with 1.5 wt% BaCu(B2O5) sintered at 925°C for 4 h. The Li2ZnTi3O8 +BCB ceramics can be compatible with Ag electrode, which makes it a promising microwave dielectric material for low-temperature co-fired ceramic technology application.

  2. Lattice sites of implanted Cu and Ag in ZnO

    CERN Document Server

    Wahl, Ulrich; Correia, J G; Agne, Thomas; Alves, E; Carvalho-Soares, João

    2006-01-01

    The group $\\textrm{I}$b impurities Cu and Ag on substitutional Zn sites are among possible candidates for p-type doping of ZnO. In order to explore possible lattice sites of Cu and Ag in ZnO the radioactive impurities $^{67}\\!$Cu and $^{111}\\!$Ag were implanted at doses of $4\\!\\times\\!10^{12}$cm$^{-2}\\to1\\!\\times\\!10^{14}$cm$^{-2}$ at 60 keV into ZnO single crystals. The emission channeling effects of $\\beta\\!^{-}$ -particles from the decay were studied by means of position-sensitive electron detectors, giving direct evidence that in the as-implanted state large fractions of Cu and Ag atoms (60--70% for Cu and 30% for Ag) occupy almost ideal substitutional Zn sites with root mean square (rms) displacements of 0.014--0.017 nm. However, following vacuum annealing at 600 °C and above both Cu and Ag were found to be located increasingly on sites that are characterized by large rms displacements (0.03--0.05 nm) from Zn sites. We conclude that in high-temperature treated ZnO Cu and Ag are most likely not simply re...

  3. Synthesis and study of plasmon-induced carrier behavior at Ag/TiO2 nanowires.

    Science.gov (United States)

    Li, Haiyan; Lu, Wenbo; Tian, Jingqi; Luo, Yonglan; Asiri, Abdullah M; Al-Youbi, Abdulrahman O; Sun, Xuping

    2012-07-01

    Nanocomposites of Ag/TiO(2) nanowires with enhanced photoelectrochemical performance have been prepared by a facile solvothermal synthesis of TiO(2) nanowires and subsequent photoreduction of Ag(+) ions to Ag nanoparticles (AgNPs) on the TiO(2) nanowires. The as-prepared nanocomposites exhibited significantly improved cathodic photocurrent responses under visible-light illumination, which is attributed to the local electric field enhancement of plasmon resonance effect near the TiO(2) surface rather than by the direct transfer of charge between the two materials. The visible-light-driven photocatalytic performance of these nanocomposites in the degradation of methylene blue dye was also studied, and the observed improvement in photocatalytic activity is associated with the extended light absorption range and efficient charge separation due to surface plasmon resonance effect of AgNPs. PMID:22639235

  4. Comparative study of LiF:Mg,Cu,Na,Si and Li2B4O7:Cu,Ag,P TL detectors

    International Nuclear Information System (INIS)

    Recently, two new types of 'tissue equivalent' thermoluminescent detectors (TLDs) have aroused attention: LiF:Mg,Cu,Na,Si and Li2B4O7:Cu,Ag,P. In this work the characteristics of both detectors were compared with the characteristics of the well-known type LiF:Mg,Ti detector, TLD-100. The following properties were investigated: The glow curve structures, relative sensitivity, batch homogeneity and uniformity, detection threshold, reproducibility of the response, linearity in the wide dose range and fading. Also, the energy dependence for medium and low energy X-rays was determined in the range of mean energies between 33 and 116 keV. The results confirmed 'tissue equivalency' of both new types in the investigated range of photon energies. LiF:Mg,Cu,Na,Si detector has very high sensitivity (∼75 times higher than that of TLD-100) and is convenient for use in a very low range of doses. Li2B4O7:Cu,Ag,P detector shows some improvements in comparison with the previously prepared types of lithium borate. The most important is the five times higher sensitivity than that of TLD-100. This detector is also very promising, especially in medical dosimetry. (authors)

  5. Synthesis and Characterization of Monometallic (Ag, Cu and Bimetallic Ag-Cu Particles for Antibacterial and Antifungal Applications

    Directory of Open Access Journals (Sweden)

    Marta Paszkiewicz

    2016-01-01

    Full Text Available In this paper, the experimental studies are concerned with the effect of the synthesis parameters on the formation of monometallic Ag and Cu nanoparticles (NPs. We consider the synthesis strategies verification for the bimetallic core-shell and alloy particles preparation. It was successfully obtained by chemical reduction method. The obtained colloidal solution is characterized by the transmission electron microscopy (TEM with energy-dispersive X-ray spectroscopy (EDX data, UV-Vis spectra, particle size distribution, and zeta potential. This work presents a comprehensive overview of experimental studies of the most stable colloidal solutions to impregnate fabrics that will exhibit a bactericidal and fungicidal activity against Candida albicans, Escherichia coli, and Staphylococcus aureus.

  6. Durability of Ag-TiO2 Photocatalysts Assessed for the Degradation of Dichloroacetic Acid

    Directory of Open Access Journals (Sweden)

    Víctor M. Menéndez-Flores

    2008-01-01

    Full Text Available The stability of Ag-TiO2 photocatalysts was examined for the photocatalytic degradation of dichloroacetic acid (DCA as a function of the recycling times. The photocatalytic activity was investigated by measuring the rate of H+ ions released during the photodegradation of DCA and confirmed by measuring the total organic carbon removal. The photodegradation reactions were studied at pH 3 and pH 10 for a series of Ag-TiO2 photocatalysts as different with Ag loadings . All the Ag-TiO2 and bare TiO2 photocatalysts showed a decrease in photocatalytic activity on recycling for the DCA photodegradation reaction. The decrease in activity can be attributed to poisoning of active sites by Cl− anions formed during the photocatalytic DCA degradation. The photocatalytic activity was, however, easily recovered by a simple washing technique. The reversibility of the poisoning is taken as evidence to support the idea that the recycling of Ag-P25 TiO2 photocatalysts does not have a permanent negative effect on their photocatalytic performance for the degradation of DCA. The choice of the preparation procedure for the Ag-TiO2 photocatalysts is shown to be of significant importance for the observed changes in the photocatalytic activity of the Ag-TiO2 particles.

  7. Characterization of Cu3P phase in Sn3.0Ag0.5Cu0.5P/Cu solder joints

    Institute of Scientific and Technical Information of China (English)

    Jian-xun Chen; Xing-ke Zhao; Xu-chen Zou; Ji-hua Huang; Hai-chun Hu; Hai-lian Luo

    2014-01-01

    This article reports the effects of phosphorus addition on the melting behavior, microstructure, and mechanical properties of Sn3.0Ag0.5Cu solder. The melting behavior of the solder alloys was determined by differential scanning calorimetry. The interfacial micro-structure and phase composition of solder/Cu joints were studied by scanning electron microscopy and energy dispersive spectrometry. Thermodynamics of Cu-P phase formation at the interface between Sn3.0Ag0.5Cu0.5P solder and the Cu substrate was characterized. The results indicate that P addition into Sn3.0Ag0.5Cu solder can change the microstructure and cause the appearance of rod-like Cu3P phase which is distributed randomly in the solder bulk. The Sn3.0Ag0.5Cu0.5P joint shows a mixture of ductile and brittle fracture after shear test-ing. Meanwhile, the solidus temperature of Sn3.0Ag0.5Cu solder is slightly enhanced with P addition.

  8. Microemulsion mediated synthesis of BaTiO3 – Ag nanocomposites

    Directory of Open Access Journals (Sweden)

    Songhak Yoon

    2009-06-01

    Full Text Available BaTiO3 – Ag composite nanopowders were synthesized via microemulsion mediated synthesis through the hydrolytic decomposition of mixed metal alkoxide solutions as precursor for the BaTiO3 and the reduction of silver nitrate in the presence of polyvinylpyrrolidone (PVP as source for the Ag nanoparticles. The X-ray diffraction (XRD patterns indicate that BaTiO3 and Ag phases were successfully synthesized in the composite powders. Scanning electron microscopy (SEM and transmission electron microscopy (TEM show that the synthesized BaTiO3 nanoparticles were aggregates of nanosized primary particles as small as 10 nm in diameter and the average particle size of nanocrystalline Ag was about 100 nm. Calcination and sintering studies reveal that there exists a difference in the sintering behaviour of BaTiO3 and Ag in the composite nanopowders. Thermogravimetric analysis (TGA shows weight losses due to the burnout of organic residues arising from the synthesis, the release of water from the surface and separation of hydroxyl ions from the lattice of BaTiO3 nanoparticles. A dilatometric study of BaTiO3-Ag composite confi rmed a strong difference in the shrinkage behaviour compared to that of the pure BaTiO3 obtained by microemulsion mediated synthesis.

  9. Isothermal decomposition kinetics in the Cu-9%Al-4%Ag alloy

    Energy Technology Data Exchange (ETDEWEB)

    Adorno, A.T.; Silva, R.A.G

    2004-07-28

    The influence of 4 wt.%Ag addition on the isothermal decomposition kinetics of the {beta}' phase in the Cu-9 wt.%Al alloy was studied by microhardness measurements, optical and scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analysis, and X-ray diffractometry. The results showed that the presence of Ag decreases the {beta}'{yields}({alpha}+{gamma}{sub 1}) decomposition reaction rate in the Cu-9%Al-4%Ag alloy, an effect that may be associated to the {gamma}{sub 1} phase which catalyses the Ag precipitation, making it faster than the decomposition reaction, and thus, stabilizing the martensitic phase.

  10. Effects of Excess Cu Addition on Photochromic Properties of AgCl-Urethane Resin Composite Films

    Directory of Open Access Journals (Sweden)

    Hidetoshi Miyazaki

    2013-01-01

    Full Text Available AgCl-resin photochromic composite films were prepared using AgNO3, HCl-EtOH, CuCl2 ethanol solutions, and a urethane resin as starting materials. The AgCl particle size in the composite films, which was confirmed via TEM observations, was 23–43 nm. The AgCl composite films showed photochromic properties: coloring induced by UV-vis irradiation and bleaching induced by cessation of UV-vis irradiation. The coloring and bleaching speed of the composite film increases with increasing CuCl2 mixing ratio.

  11. Synthesis, characterization and multifunctional properties of plasmonic Ag-TiO2 nanocomposites.

    Science.gov (United States)

    Prakash, Jai; Kumar, Promod; Harris, R A; Swart, Chantel; Neethling, J H; van Vuuren, A Janse; Swart, H C

    2016-09-01

    We report on the synthesis of multifunctional Ag-TiO2 nanocomposites and their optical, physio-chemical, surface enhanced Raman scattering (SERS) and antibacterial properties. A series of Ag-TiO2 nanocomposites were synthesized by sol-gel technique and characterized by x-ray diffraction, scanning and transmission electron microscopy, energy-dispersed x-ray analysis, photoluminescence, UV-vis, x-ray photoelectron and Raman spectroscopy and Brunauer-Emmett-Teller method. The Ag nanoparticles (NPs) (7-20 nm) were found to be uniformly distributed around and strongly attached to TiO2 NPs. The novel optical responses of the nanocomposites are due to the strong electric field from the localized surface plasmon (LSP) excitation of the Ag NPs and decreased recombination of photo-induced electrons and holes at Ag-TiO2 interface providing potential materials for photocatalysis. The nanocomposites show enhancement in the SERS signals of methyl orange (MO) molecules with increasing Ag content attributed to the long-range electromagnetic enhancement from the excited LSP of the Ag NPs. To further understand the SERS activity, molecular mechanics and molecular dynamics simulations were used to study the geometries and SERS enhancement of MO adsorbed onto Ag-TiO2 respectively. Simulation results indicate that number of ligands (MO) that adsorb onto the Ag NPs as well as binding energy per ligand increases with increasing NP density and molecule-to-surface orientation is mainly flat resulting in strong bond strength between MO and Ag NP surface and enhanced SERS signals. The antimicrobial activity of the Ag-TiO2 nanocomposites was tested against the bacterium Staphylococcus aureus and enhanced antibacterial effect was observed with increasing Ag content explained by contact killing action mechanism. These results foresee promising applications of the plasmonic metal-semiconductor based nano-biocomposites for both chemical and biological samples. PMID:27456278

  12. Synthesis, characterization and multifunctional properties of plasmonic Ag-TiO2 nanocomposites

    Science.gov (United States)

    Prakash, Jai; Kumar, Promod; Harris, R. A.; Swart, Chantel; Neethling, J. H.; Janse van Vuuren, A.; Swart, H. C.

    2016-09-01

    We report on the synthesis of multifunctional Ag-TiO2 nanocomposites and their optical, physio-chemical, surface enhanced Raman scattering (SERS) and antibacterial properties. A series of Ag-TiO2 nanocomposites were synthesized by sol-gel technique and characterized by x-ray diffraction, scanning and transmission electron microscopy, energy-dispersed x-ray analysis, photoluminescence, UV-vis, x-ray photoelectron and Raman spectroscopy and Brunauer-Emmett-Teller method. The Ag nanoparticles (NPs) (7-20 nm) were found to be uniformly distributed around and strongly attached to TiO2 NPs. The novel optical responses of the nanocomposites are due to the strong electric field from the localized surface plasmon (LSP) excitation of the Ag NPs and decreased recombination of photo-induced electrons and holes at Ag-TiO2 interface providing potential materials for photocatalysis. The nanocomposites show enhancement in the SERS signals of methyl orange (MO) molecules with increasing Ag content attributed to the long-range electromagnetic enhancement from the excited LSP of the Ag NPs. To further understand the SERS activity, molecular mechanics and molecular dynamics simulations were used to study the geometries and SERS enhancement of MO adsorbed onto Ag-TiO2 respectively. Simulation results indicate that number of ligands (MO) that adsorb onto the Ag NPs as well as binding energy per ligand increases with increasing NP density and molecule-to-surface orientation is mainly flat resulting in strong bond strength between MO and Ag NP surface and enhanced SERS signals. The antimicrobial activity of the Ag-TiO2 nanocomposites was tested against the bacterium Staphylococcus aureus and enhanced antibacterial effect was observed with increasing Ag content explained by contact killing action mechanism. These results foresee promising applications of the plasmonic metal-semiconductor based nano-biocomposites for both chemical and biological samples.

  13. Ethylene glycol-based Ag plating for the wet chemical fabrication of one micrometer Cu/Ag core/shell particles

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Eun Byul; Lee, Jong-Hyun, E-mail: pljh@snut.ac.kr

    2015-09-15

    Highlights: • Cu@Ag particles less than one micrometer were fabricated through Ag polyol-plating. • Ag polyol-plating was tried without using additional reagents on Cu core particles. • Continuity, uniformity, and thickness of the Ag shell depended on plating conditions. • The sample showed an excellent oxidation initiation temperature of 280 °C. • Anti-oxidation properties of Cu@Ag powders strongly depend on the Ag shell thickness. - Abstract: With the aim of preparing an inexpensive metal filler that can be added to conductive adhesives used in fine-pitch electronic applications, a polyol solution was used to fabricate Ag-coated Cu (Cu@Ag) particles with a size on the order of one micron without the need for additional reagents. The continuity, uniformity, and thickness of the Ag shell were found to be strongly dependent on the plating conditions, particularly the reaction temperature. The Ag shell prepared at a peak temperature of 180 °C from a precursor with an initial Ag concentration of 15 wt.% was judged to be an optimum one. This same sample also showed an excellent oxidation initiation temperature of approximately 280 °C. It was inferred that the oxidation resistance of the Cu@Ag powder is largely determined by the continuity, uniformity and thickness of the Ag shell.

  14. In situ quantitative study of microstructural evolution at the interface of Sn3.0Ag0.5Cu/Cu solder joint during solid state aging

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hailong [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); An, Rong, E-mail: anr@hit.edu.cn [Key Laboratory of Micro-systems and Micro-structures Manufacturing, Harbin Institute of Technology, Ministry of Education, Harbin 150080 (China); Wang, Chunqing; Jiang, Zhi [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China)

    2015-06-15

    Highlights: • Cu dissolution during reflowing was mainly occurred under the gaps between scallops. • Though IMC growth was diffusion-controlled, consumption of Cu substrate was not. • Growth of Cu{sub 3}Sn layer in Sn3.0Ag0.5Cu/Cu solder joint was on the both sides. • Ag and Cu lead to a thinner Cu{sub 3}Sn layer due to inhibit the diffusion of Sn into Cu. - Abstract: In situ microstructural evolution at the interface of Sn3.0Ag0.5Cu/Cu solder joint during solid state aging was quantitatively studied by nanoindentation. The morphology of Cu{sub 6}Sn{sub 5} gradually altered from scallop type to layer type. Though the growth of IMCs was diffusion-controlled, the consumption of Cu substrate was not linear with the square root of aging time. At the initial stage of solid state aging, the Cu atoms essential to the growth of IMCs were mainly from the supersaturated solder matrix. When the Cu atoms from supersaturated solder matrix were exhausted, the Cu atoms for the growth of IMCs were primarily from the Cu substrate. In addition, the IMCs formed at this state were principally used to fill up the gaps between scallops. After the gaps disappeared, the consumption of Cu substrate slowed down. Furthermore, the growth of Cu{sub 3}Sn layer in Sn3.0Ag0.5Cu/Cu solder joint was on the both sides with layer type. Since the Sn atoms were inhibited to diffuse into the Cu substrate by the alloying elements of Ag and Cu, the thickness of Cu{sub 3}Sn layer in SnAgCu/Cu solder joint was much thinner than that in pure Sn/Cu solder joint.

  15. In situ quantitative study of microstructural evolution at the interface of Sn3.0Ag0.5Cu/Cu solder joint during solid state aging

    International Nuclear Information System (INIS)

    Highlights: • Cu dissolution during reflowing was mainly occurred under the gaps between scallops. • Though IMC growth was diffusion-controlled, consumption of Cu substrate was not. • Growth of Cu3Sn layer in Sn3.0Ag0.5Cu/Cu solder joint was on the both sides. • Ag and Cu lead to a thinner Cu3Sn layer due to inhibit the diffusion of Sn into Cu. - Abstract: In situ microstructural evolution at the interface of Sn3.0Ag0.5Cu/Cu solder joint during solid state aging was quantitatively studied by nanoindentation. The morphology of Cu6Sn5 gradually altered from scallop type to layer type. Though the growth of IMCs was diffusion-controlled, the consumption of Cu substrate was not linear with the square root of aging time. At the initial stage of solid state aging, the Cu atoms essential to the growth of IMCs were mainly from the supersaturated solder matrix. When the Cu atoms from supersaturated solder matrix were exhausted, the Cu atoms for the growth of IMCs were primarily from the Cu substrate. In addition, the IMCs formed at this state were principally used to fill up the gaps between scallops. After the gaps disappeared, the consumption of Cu substrate slowed down. Furthermore, the growth of Cu3Sn layer in Sn3.0Ag0.5Cu/Cu solder joint was on the both sides with layer type. Since the Sn atoms were inhibited to diffuse into the Cu substrate by the alloying elements of Ag and Cu, the thickness of Cu3Sn layer in SnAgCu/Cu solder joint was much thinner than that in pure Sn/Cu solder joint

  16. Structural, morphological, optical and photocatalytic investigation of Ag-doped TiO2

    Science.gov (United States)

    Kundu, Virender Singh; Singh, Davender; Maan, A. S.; Tanwar, Amit

    2016-05-01

    The pure and Ag-doped TiO2 nanoparticles were prepared by using Titanium isoproxide (TTIP), silver nitrate sodium hydroxide and sodium hydroxide. The calcined nanoparticles at 400°C were characterized by means of X-ray diffraction (XRD). XRD analyses reveal that the nanoparticles of various doping concentration were having anatase phase. The particle size was calculated by Scherrer formula and was found 11.08 nm for pure TiO2 and 8.86 nm for 6 mol % Ag doped TiO2. The morphology and nature of nanoparticles was analyzed by using scanning electron microscope (SEM), the optical absorption spectra of pure TiO2 and Ag-doped TiO2 nanoparticles showed that absorption edge increases towards longer wavelength from 390 nm (pure) to 450 nm (doped), also band gap energy calculated from Tauc's plot decrease from 3.20eV to 2.92eV with increase in doing. The measurement of photocatalytic properties of pure TiO2 and Ag-doped TiO2 nanoparticles showed that Ag-doped TiO2 degrades MB dye more efficiently than pure TiO2.

  17. Experiment study on Be|Ti/Cu|CuCrZr joints by hot isostatic pressing bonding

    International Nuclear Information System (INIS)

    Performances of Be/Cu joints fabricated by hot isostatic pressing (HIP) bonding were studied by means of various test Methods, such as shearing test, scanning electron microscopy(SEM) observation, energy dispersion spectrometer(EDS) and X-ray Diffraction(XRD) analysis, when Ti (PVD-coated on Be)/Cu (PVD-coated on CuCrZr) interlayers were used. This study considered several diffusion surface treatments (such as chemical etching, polishing, etc.) for minimizing or eliminating the effects of the oxide film on beryllium to promote good diffusion bond between these materials. Experiments indicated that the joints HIPed at 580 degree C/145 MPa/2 h showed high shearing strength (up to 123 MPa) at room temperature and no defect such as cracks was observed at the bonding interface dut to the role of the etching with a dilute acid solution to remove native oxide films on beryllium surface prior to titanium coating. The strength moderately decreased when the diffusion holding time increased from 2 h to 4 h. The thin titanium diffusion barrier (∼10μm) which was coated on the beryllium surface have prevented the reaction between Be and Cu, but CuTi phase was formed at Ti/Cu interface. It is considered the phase limited the bonding strength to higher level. (authors)

  18. Synthesis and Characterization of Ag-Ag2O/TiO2@polypyrrole Heterojunction for Enhanced Photocatalytic Degradation of Methylene Blue

    Directory of Open Access Journals (Sweden)

    Rajeev Kumar

    2016-05-01

    Full Text Available Hybrid multi-functional nanomaterials comprising two or more disparate materials have become a powerful approach to obtain advanced materials for environmental remediation applications. In this work, an Ag-Ag2O/TiO2@polypyrrole (Ag/TiO2@PPy heterojunction has been synthesized by assembling a self-stabilized Ag-Ag2O (p type semiconductor (denoted as Ag and polypyrrole (π-conjugated polymer on the surface of rutile TiO2 (n type. Ag/TiO2@PPy was synthesized through simultaneous oxidation of pyrrole monomers and reduction of AgNO3 in an aqueous solution containing well-dispersed TiO2 particles. Thus synthesized Ag/TiO2@PPy was characterized using X-ray diffraction (XRD, X-ray photoelectron spectroscopy (XPS, field emission scanning electron microscopy (FE-SEM, transmission electron microscopy (TEM, and UV-Vis diffuse reflectance spectroscopy (UV-vis DSR. The photocatalytic activity of synthesized heterojunction was investigated for the decomposition of methylene blue (MB dye under UV and visible light irradiation. The results revealed that π-conjugated p-n heterojunction formed in the case of Ag/TiO2@PPy significantly enhanced the photodecomposition of MB compared to the p-n type Ag/TiO2 and TiO2@PPy (n-π heterojunctions. A synergistic effect between Ag-Ag2O and PPy leads to higher photostability and a better electron/hole separation leads to an enhanced photocatalytic activity of Ag/TiO2@PPy under both UV and visible light irradiations.

  19. Interface Structure and Electrical Property of Yb0.3Co4Sb12/Mo-Cu Element Pre-pared by Welding Using Ag-Cu-Zn Solder%Yb0.3Co4Sb12/Mo-Cu热电元件的界面结构与界面电阻

    Institute of Scientific and Technical Information of China (English)

    唐云山; 柏胜强; 任都迪; 廖锦城; 张澜庭; 陈立东

    2015-01-01

    通过放电等离子烧结(SPS)实现阻挡层 Ti-Al、过渡焊接层 Ni 与热电臂 Yb0.3Co4Sb12的一体化烧结,使用Ag-Cu-Zn 共晶合金完成热电元件 Yb0.3Co4Sb12/Ti-Al/Ni 与 Mo-Cu 电极的钎焊连接。扫描电镜(SEM)显示出Yb0.3Co4Sb12/Ti-Al/Ni/Ag-Cu-Zn/Mo-Cu 接头中各界面结合良好,无裂纹,成分分析发现 Yb0.3Co4Sb12/Ti-Al 界面存在AlCo、TiCoSb及TiSb2等金属间化合物(IMC)。500℃下等温时效30 d后, Yb0.3Co4Sb12/Ti-Al界面处的金属间化合物厚度无明显变化; Ag-Cu-Zn/Ni界面处Cu、Zn扩散趋于稳定, Cu-Zn扩散层厚度达到约40μm。界面接触电阻测试结果表明,等温时效前后Yb0.3Co4Sb12/Ti-Al/Ni/Ag-Cu-Zn/Mo-Cu元件的界面接触电阻率均低于10μΩ·cm2。%The barrier layer of Ti-Al and the contact layer of Ni were joined to Yb0.3Co4Sb12 simultaneously by us-ing spark plasma sintering (SPS) technique. The Mo-Cu electrode was then welded to thermoelectric element Yb0.3Co4Sb12/Ti-Al/Ni by using Ag-Cu-Zn alloy as solder. SEM results show that there are no cracks at the inter-faces of Yb0.3Co4Sb12/Ti-Al/Ni/Ag-Cu-Zn/Mo-Cu thermoelectric joints. The EDS analysis shows that intermetallic compounds (IMCs) layer containing AlCo, TiCoSb and TiSb2 phases are formed at the interface between Yb0.3Co4Sb12 and Ti-Al. After thermal aging at 500℃ for 30 d, the inter-diffusions at both Yb0.3Co4Sb12/Ti-Al inter-face and Ag-Cu-Zn/Ni interface tend to be steady. The contact electrical resistivity of the Yb0.3Co4Sb12/ Ti-Al/Ni/Ag-Cu-Zn/Mo-Cu thermoelectric joints are about 6.1μΩ·cm2after welding, and it maintained as low as 10μΩ·cm2 even after thermal aged for 30 d.

  20. New Ti-based Ti–Cu–Zr–Fe–Sn–Si–Ag bulk metallic glass for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Shujie; Liu, Ying; Li, Haifei; Sun, Lulu [Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Li, Yan [Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Beijing Key Laboratory for Advanced Functional Materials and Thin Film Technology, Beihang University, Beijing 100191 (China); Zhang, Tao, E-mail: zhangtao@buaa.edu.cn [Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, Beijing 100191 (China)

    2015-03-15

    Highlights: • Novel Ti{sub 47}Cu{sub 38}Zr{sub 7.5}Fe{sub 2.5}Sn{sub 2}Si{sub 1}Ag{sub 2} (at.%) bulk metallic glass (BMG) with a critical diameter of 7 mm was discovered. • The present BMG is the largest Ni- and Be-free Ti-based BMG containing low content of noble metal reported to date. • The glassy alloy possesses high specific strength, low Young’s modulus, and good corrosion resistance and bio-compatibility. • Combination of high glass-forming ability and good mechano- and bio-compatibility for the Ti-based BMG demonstrates the potential for use in biomedical applications. - Abstract: A novel Ni-free Ti{sub 47}Cu{sub 38}Zr{sub 7.5}Fe{sub 2.5}Sn{sub 2}Si{sub 1}Ag{sub 2} (at.%) bulk metallic glass (BMG) with superior glass-forming ability, good mechanical properties and excellent biocompatibility was discovered. The Ti-based BMG with a diameter of 7 mm can be prepared by copper mold casting and the supercooled liquid region was 52 K. Compressive strength, specific strength, Young’s modulus and microhardness of the Ti-based BMG were about 2.08 GPa, 3.2 × 10{sup 5} N m/kg, 100 GPa and 588 Hv, respectively. Electrochemical measurements indicated that the Ti-based glassy alloy possesses higher corrosion resistance than Ti–6Al–4V alloy in a simulated body fluid environment. Attachment, spreading out and proliferation of MC3T3-E1 cells on the Ti-based BMG surface demonstrated the excellent biocompatibility. Mechanisms of the formation and properties for the Ti-based glassy alloy are also discussed. The combination of high glass-forming ability, excellent mechanical properties, high corrosion resistance and good biocompatibility demonstrates the potential of the Ni-free Ti-based BMG for use in biomedical applications.

  1. Phase composition of rapidly solidified Ag-Sn-Cu dental alloys

    International Nuclear Information System (INIS)

    The phase composition of some rapidly solidified Ag-Sn-Cu dental alloys with different copper contents (6.22 wtpct) has been studied by XRD, EMPA and optical microscopy. The samples were prepared from melt-spun ribbons. The microstructure of the as-quenched ribbons was microcrystalline and consisted of the Ag sub 3 Sn, Ag sub 4 Sn, Cu sub 3 Sn and Cu sub 3 Sn sub 8 phases. Mixing with mercury (amalgamation) led to formation of the Ag sub 2 Hg sub 3, Sn sub 7 Hg and Cu sub 6 Sn sub 5 phases. The amount of copper atoms in the alloys played an important role in phase formation in the amalgams

  2. Microstructure and properties of heavily deformed Cu-Ag-Ce in situ nano-filamentary composite

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Xiao-hui; YAN; Lin; NING; Yuan-tao

    2005-01-01

    The microstructure and properties of heavily deformed Cu-Ag-Ce in situ nano-filamentary composite were studied in this paper. As cast, copper matrixes were dendritic and Ag-rich phases, some of which present spheroidizing tendency, were embedded in Cu dentritic arms. After heavily deforming, Agrich phases develop into fibers: the thick fibers with a size of more than 50 nm and the thin ones with a size of less than 30 nm. Strengthening of Cu-Ag-Ce in situ nano-filamentary composite could be divided into two stages and the combination of different strength and conductivity could be obtained through controlling reducing area, intermediate heat treatment and stabilizing treatment. The results revealed that heavily deformed Cu-Ag-Ce in situ nano-filamentary composite had high strength ( > 1.5GPa) and high conductivity(>65 %IACS).

  3. Changes in the microbiological and chemical characteristics of white bread during storage in paper packages modified with Ag/TiO2-SiO2, Ag/N-TiO2 or Au/TiO2.

    Science.gov (United States)

    Peter, Anca; Mihaly-Cozmuta, Leonard; Mihaly-Cozmuta, Anca; Nicula, Camelia; Ziemkowska, Wanda; Basiak, Dariusz; Danciu, Virginia; Vulpoi, Adriana; Baia, Lucian; Falup, Anca; Craciun, Grigore; Ciric, Alexandru; Begea, Mihaela; Kiss, Claudia; Vatuiu, Daniela

    2016-04-15

    Microbiological and chemical characteristics of white bread during storage in paper-packages modified with Ag/TiO2-SiO2, Ag/N-TiO2 or Au/TiO2 were investigated. The whiteness and the water retention of the modified packages were slightly superior to those exhibited by the reference sample, as the color of the composite was lighter. The water retention was very good especially for the Ag/TiO2-SiO2-paper. These improvements can be associated with the high specific surface area and with the low agglomeration tendency of Ag nanoparticles in comparison with the Au ones. The preservation activity of the composites for the bread storage is positively influenced by photoactivity and presence of nano-Ag. Packages Ag/TiO2-SiO2-paper and Ag/N-TiO2-paper can find their applicability for extending the shelf life of bread by 2 days as compared with the unmodified paper-package. No influence of the Au/TiO2 on the extending the shelf life of bread was observed. PMID:26617018

  4. Changes in the microbiological and chemical characteristics of white bread during storage in paper packages modified with Ag/TiO2-SiO2, Ag/N-TiO2 or Au/TiO2.

    Science.gov (United States)

    Peter, Anca; Mihaly-Cozmuta, Leonard; Mihaly-Cozmuta, Anca; Nicula, Camelia; Ziemkowska, Wanda; Basiak, Dariusz; Danciu, Virginia; Vulpoi, Adriana; Baia, Lucian; Falup, Anca; Craciun, Grigore; Ciric, Alexandru; Begea, Mihaela; Kiss, Claudia; Vatuiu, Daniela

    2016-04-15

    Microbiological and chemical characteristics of white bread during storage in paper-packages modified with Ag/TiO2-SiO2, Ag/N-TiO2 or Au/TiO2 were investigated. The whiteness and the water retention of the modified packages were slightly superior to those exhibited by the reference sample, as the color of the composite was lighter. The water retention was very good especially for the Ag/TiO2-SiO2-paper. These improvements can be associated with the high specific surface area and with the low agglomeration tendency of Ag nanoparticles in comparison with the Au ones. The preservation activity of the composites for the bread storage is positively influenced by photoactivity and presence of nano-Ag. Packages Ag/TiO2-SiO2-paper and Ag/N-TiO2-paper can find their applicability for extending the shelf life of bread by 2 days as compared with the unmodified paper-package. No influence of the Au/TiO2 on the extending the shelf life of bread was observed.

  5. Nonlinear optical properties and optical limiting measurements of graphene oxide - Ag@TiO2 compounds

    Science.gov (United States)

    Ebrahimi, M.; Zakery, A.; Karimipour, M.; Molaei, M.

    2016-07-01

    In this work Graphene Oxide (GO), Ag@TiO2 core-shells and GO-Ag@TiO2 compounds were prepared and experimentally verified. Using a low power laser diode with 532 nm wavelength, the magnitude and the sign of the nonlinear refractive index and nonlinear absorption were determined by the Z-scan technique. It was observed that the nonlinear absorption of GO-Ag@TiO2 mixture was higher than pure GO. The optical limiting effect of these samples was also investigated using the 2nd harmonics of a pulsed Nd-YAG laser at 532 nm. Our results showed that the sole Ag@TiO2 didn't show any appreciable optical limiting effect, however after just mixing with graphene oxide the threshold of optical limiting was increased and the compound showed an enhancement of optical limiting behavior compared to GO itself. The presented results are discussed and compared with other literature reports.

  6. Self-assembly of Ag-TiO2 Nanoparticles:Synthesis, Characterization and Catalytic Application

    Institute of Scientific and Technical Information of China (English)

    WANG Xin; LIU Xiaoheng; WANG Xinyun

    2012-01-01

    The formation of Ag clusters on titanium oxide (TiO2) nanoparticles was achieved by selfassembly process and calcination.The obtained nanoparticles were characterized by X-ray diffraction (XRD),transmission electron microscopy (TEM),and ultraviolet visible spectroscopy (UV-Vis),and conventional techniques (XRD,TEM and UV-Vis) were used to identify Ag particles on the TiO2 surfaces.The results show that Ag-TiO2 particles can be applied to improve catalytic activity of the epoxidation of styrene oxides.Styrene oxide is the main product of catalytic reaction with H2O2 as the oxidant by using Ag-TiO2 nanoparticles as catalysts.High catalytic activitity of styrene oxide can be obtainable at 80 ℃.The reaction temperature,reaction time,the molar ratio of H2O2/styrene and solvent affect greatly the catalytic epoxidation of styrene.

  7. Surface-modified antibacterial TiO2/Ag+ nanoparticles: Preparation and properties

    International Nuclear Information System (INIS)

    Studies were performed on surface modification of antibacterial TiO2/Ag+ nanoparticles by grafting γ-aminopropyltriethoxysilane (APS). The interfacial structure of the modified particles was characterized by Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy and thermogravimetric analysis. The thickness of the surface layer was determined by using Auger electron spectroscopy (AES). The results show that APS is chemically bonded to the surface of antibacterial TiO2/Ag+ nanoparticles. Furthermore, the modified particles were mixed in PVC to prepare composites whose antibacterial property was investigated. The results suggest that surface modification has no negative effect on antibacterial activity of TiO2/Ag+ nanoparticles and PVC-TiO2/Ag+ composites exhibits good antibacterial property

  8. A highly sensitive non-enzymatic glucose sensor based on bimetallic Cu-Ag superstructures.

    Science.gov (United States)

    Li, Hua; Guo, Chun-Yan; Xu, Cai-Ling

    2015-01-15

    Bimetallic Cu-Ag superstructures were successfully fabricated for the first time by using the natural leaves as reducing agent through a facile one-step hydrothermal process. Morphology, structure and composition of the Cu-Ag superstructures were characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectra (XPS) and inductively coupled plasma-optical emission spectroscopy (ICP-OES), respectively. The results reveal that the Cu-Ag superstructure is bimetallic nanocomposite constructed by nanoparticles with low Ag content and shows a rough surface and porous flexural algae-like microstructure. By using a three-dimensional nickel foam as the scaffold, a novel non-enzymatic glucose sensor based on Cu-Ag nanocomposites has been fabricated and applied to non-enzymatic glucose detection. The as-prepared Cu-Ag nanocomposites based glucose sensor displays distinctly enhanced electrocatalytic activity compared to those obtained with pure Cu nanomaterials prepared with a similar procedure, revealing a synergistic effect of the matrix Cu and the doped Ag. Cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy indicate that the Cu-Ag superstructures based glucose sensor displays a fascinating sensitivity up to 7745.7 μA mM(-1) cm(-2), outstanding detection limit of 0.08 μM and fast amperometric response (glucose detection. Furthermore, the sensor also exhibits significant selectivity, excellent stability and reproducibility, as well as attractive feasibility for real sample analysis. Because of its excellent electrochemical performance, low cost and easy preparation, this novel electrode material is a promising candidate in the development of non-enzymatic glucose sensor. PMID:25113052

  9. Thermal Analysis of the Sn-Ag-Cu-In Solder Alloy

    DEFF Research Database (Denmark)

    Sopousek, J.; Palcut, Marián; Hodúlová, Erika;

    2010-01-01

    The tin-based alloy Sn-1.5Ag-0.7Cu-9.5In (composition in wt.%) is a potential candidate for lead-free soldering at temperatures close to 200°C due to the significant amount of indium. Samples of Sn-1.5Ag-0.7Cu-9.5In were prepared by controlled melting of the pure elements, followed by quenching t...

  10. Optical Limiting Properties of Ag-Cu Metal Alloy Nanoparticles Analysis by using MATLAB

    Institute of Scientific and Technical Information of China (English)

    WANG Yu-Hua; LI Hui-Qing; LU Jian-Duo; WANG Ru-Wu

    2011-01-01

    Ag-Cu alloy nanoparticles were formed by sequential ion implantation (Ag and Cu) in silica using a metal vapor vacuum arc (MEVVA) ion source.Third-order nonlinear optical properties of the nanoparticles were measured at 1064nm excitations using the Z-scan technique.Curve fitting analysis,based on the MATLAB features for Ag-Cu alloy nanoparticle optical limiting experiments,is used.The results show that Ag-Cu alloy nanoparticles display a refractive optical limiting effect at 1064 nm.Recently,increasing attention has been focused on the third-order nonlinear susceptibility and the photorefractive effect of noble-metal clusters embedded in dielectric matrices.[1-3] Third-order nonlinearities of metal/dielectric composite materials are influenced not only by the type and size of the embedded metal clusters,but also by the dielectric constant,thermal conductivity and heat capacity of the dielectric matrices.[4-6] Amongst the nanoparticles studied earlier,high nonlinear absorption and nonlinear refraction coefficients were found in copper and copper containing nanomaterials.[7,8] For silver,the nonlinear refractive index γ changes from positive to negative upon the growth of clusters.[9] Potential applications of optical limiters in the protection of sensors from intense laser pulses have motivated great efforts to design new nonlinear optical systems.[10]%Ag-Cu alloy nanoparticles were formed by sequential ion implantation (Ag and Cu) in silica using a metal vapor vacuum arc (MEVVA) ion source. Third-order nonlinear optical properties of the nanoparticles were measured at 1064 nm excitations using the Z-scan technique. Curve fitting analysis, based on the MATLAB features for Ag-Cu alloy nanoparticle optical limiting experiments, is used. The results show that Ag-Cu alloy nanoparticles display a refractive optical limiting effect at 1064 nm.

  11. STUDY OF Ag DIFFUSION INTO Cu SINGLE CRYSTALS BY RUTHERFORD BACKSCATTERING SPECTROMETRY

    Institute of Scientific and Technical Information of China (English)

    R. Wang

    2003-01-01

    4. 0Me V 7 Li++ RBS was used for investigations of thermal diffusion of Ag in Cu single crystals. The annealing of samples was carried out in vacuum in the temperature range from 498K to 613K. The element depth concentration profiles transformed fiom RBS spectra indicate that the diffusion of Ag into Cu is a typical volume diffusion. The Arrhenius parameters corresponding to the diffusion were obtained.

  12. Thermodynamic properties of the liquid Ag-Bi-Cu-Sn lead-free solder alloys

    OpenAIRE

    Garzel G.; Kopyto M.; Zabdyr L.A.

    2014-01-01

    The electromotive force measurement method was employed to determine the thermodynamic properties of liquid Ag-Bi-Cu-Sn alloys using solid electrolyte galvanic cells as shown below: Kanthal+Re, Ag-Bi-Cu-Sn, SnO2 | Yttria Stabilized Zirconia | air, Pt, Experiments were made within temperature interval: 950 - 1300K along four composition paths of constant ratios: XAg : XBi : XCu = 1, XAg : (XBi + XCu) = 3:2 for XBi = XCu, XBi : (XAg + XCu) = 3:2 for XAg = XCu...

  13. Hybrid Ag@TiO2 core-shell nanostructures with highly enhanced photocatalytic performance

    Science.gov (United States)

    Yang, X. H.; Fu, H. T.; Wong, K.; Jiang, X. C.; Yu, A. B.

    2013-10-01

    A new synthetic approach has been developed to prepare silver@titanium dioxide (Ag@TiO2) core-shell nanostructures with controllable size, shape, crystal phase and function at ambient conditions (e.g. in water, ≤100 ° C). This approach shows a few unique features, including short reaction time (a few minutes) for forming core-shell nanostructures, no requirement of high temperature calcinations for generating TiO2 (e.g. at ˜100 ° C in our case), tunable TiO2 shell thickness, high yield and good reproducibility. The experimental results show that the Ag@TiO2 core-shell nanostructures exhibit excellent photocatalytic activity compared to the commercial TiO2 (P25) and Ag-doped TiO2 nanocomposite in the degradation of organic dye molecules (e.g. methyl orange) with ultraviolet (UV) irradiation. This could be attributed to the large surface area of TiO2 nanoparticles for maximum harvesting of UV light, mixed anatase and rutile crystalline phases in the TiO2 shell and the effective charge separation between Ag and TiO2 that can reduce the possible recombination of electron-hole (e--h+) pairs within TiO2 generated under UV radiation. To further understand the charge separation situation within Ag-TiO2 composites, theoretical simulation (e.g. density functional theory, DFT) was employed in this study. The DFT simulation results indicate that for the Ag@TiO2 core-shell nanostructures, photo-generated electrons transfer readily from the external TiO2 layer to the internal Ag layer with heavy accumulation compared to those doping Ag on TiO2 surfaces, which may reduce the recombination of e--h+ pairs and thus enhance the photocatalytic efficiency. The findings may open a new strategy to synthesize TiO2-based photocatalysts with highly enhanced efficiency for environmental remediation applications.

  14. In vitro assessment of Ag and TiO2 nanoparticles cytotoxicity

    OpenAIRE

    Apoorva Priyanka Ganapathi; Ramakrishna Devaki; Naveen Reddy Thuniki; Joydeb Manna; Bhaskar Tirumuru; Chinnapu Reddy Gopu; Sadanala Bhavya Deepthi; Rajiv Trivedi; Rohit Kumar Rana; Annie Hasan

    2014-01-01

    Background: Silver (Ag) and titanium dioxide (TiO2) nanoparticles are the most eminent nanoproducts. Due to their antimicrobial and antifungal activity, they have been the well commercialized nanosubstances. The hazards associated with human exposure to Ag and TiO2 nanoparticles should be investigated, and hence both the nanoparticles were synthesized to facilitate the risk assessment process. Methods: Prior to the cytotoxic studies, Dynamic Light Scattering (DLS) and Transmission Electr...

  15. Ag-Cu Bimetallic Nanoparticles Prepared by Microemulsion Method as Catalyst for Epoxidation of Styrene

    Directory of Open Access Journals (Sweden)

    Hong-Kui Wang

    2012-01-01

    Full Text Available Ag/Cu bimetallic nanocatalysts supported on reticulate-like γ-alumina were prepared by a microemulsion method using N2H4·H2O as the reducing agent. The catalysts were activated by calcination followed with hydrogen reduction at 873K, and the properties were confirmed using various characterization techniques. Compared with metal oxides particles, Ag-Cu particles exhibited smaller sizes (<5 nm after calcination in H2 at 873K. XPS results indicated that the binding energies changed with the Ag/Cu ratios, suggesting that increasing the copper content gave both metals a greater tendency to lose electrons. Furthermore, Ag-Cu bimetallic nanoparticles supported on γ-alumina showed better catalytic activity on the epoxidation of styrene as compared with the corresponding monometallic silver or copper. The styrene oxide selectivity could reach 76.6% at Ag/Cu molar ratio of 3/1, while the maximum conversion (up to 94.6% appeared at Ag/Cu molar ratio of 1/1 because of the maximum interaction between silver and copper.

  16. Complete Composition Tunability of Cu(Ni)-Ti-Zr Alloys for Bulk Metallic Glass Formation

    Institute of Scientific and Technical Information of China (English)

    Ze-xiu Zhang; Chun-li Dai; Jian Xu

    2009-01-01

    In the Cu-Zr-Ti ternary system, a new composition zone of bulk metallic glasses (BMGs) formation was discovered, locating at the 55-57 at. Pct Cu, 30-31 at. Pct Ti and 13-14 at. Pct Zr, and near Cu-Ti binary subsystem rather than the Cu-Zr binary. For these alloys, BMG rods of 2 mm in diameter can be fabricated by using copper mould casting. It is expected that these BMG-forming alloys correlate with (L→CuTi+Cu2TiZr+Cu61Zr14) eutectic reaction that the undercooled melt undergoes during solidification. Adopting "3D pinpointing ap-proach", compositional dependence of glass-forming ability (GFA) in Cu(Ni)-Ti-Zr pseudo ternary system was revisited. Optimized BMG-forming composition is located at Cu50.4Ni5.6Ti31Zr13, with a critical diameter of 6 mm for complete BMG formation. Its GFA is significantly superior to Vit 101 (Cu47Ni8Ti34Zr11) previously developed by Caltech group. The effect that the GFA of the ternary base alloy was improved by substitution of Ni for Cu is attributed to a role of retarding the crystallization of Cu51Zr14 intermetallics.

  17. Investigation of the Phase Equilibria of Sn-Cu-Au Ternary and Ag-Sn-Cu-Au Quaternary Systems and Interfacial Reactions in Sn-Cu/Au Couples

    Science.gov (United States)

    Yen, Yee-Wen; Jao, Chien-Chung; Hsiao, Hsien-Ming; Lin, Chung-Yung; Lee, Chiapyng

    2007-02-01

    The phase equilibria of the Sn-Cu-Au ternary, Ag-Sn-Cu-Au quaternary systems and interfacial reactions between Sn-Cu alloys and Au were experimentally investigated at specific temperatures in this study. The experimental results indicated that there existed three ternary intermetallic compounds (IMCs) and a complete solid solubility between AuSn and Cu6Sn5 phases in the Sn-Cu-Au ternary system at 200°C. No quaternary IMC was found in the isoplethal section of the Ag-Sn-Cu-Au quaternary system. Three IMCs, AuSn, AuSn2, and AuSn4, were found in all couples. The same three IMCs and (Au,Cu)Sn/(Cu,Au)6Sn5 phases were found in all Sn-Cu/Au couples. The thickness of these reaction layers increased with increasing temperature and time. The mechanism of IMC growth can be described by using the parabolic law. In addition, when the reaction time was extended and the Cu content of the alloy was increased, the AuSn4 phase disappeared gradually. The (Au, Cu)Sn and (Cu,Au)6Sn5 layers played roles as diffusion barriers against Sn in Sn-Cu/Au reaction couple systems.

  18. Synthesis of Ag-TiO{sub 2} composite nano thin film for antimicrobial application

    Energy Technology Data Exchange (ETDEWEB)

    Yu Binyu; Guo Qiuquan; Yang Jun [Biomedical Engineering Graduate Program, University of Western Ontario, London, ON, N6A 5B9 (Canada); Leung, Kar Man [Department of Mechanical and Materials Engineering, University of Western Ontario, London, ON, N6A 5B9 (Canada); Lau, Woon Ming [Surface Science Western, University of Western Ontario, London, ON, N6A 5B9 (Canada)

    2011-03-18

    TiO{sub 2} photocatalysts have been found to kill cancer cells, bacteria and viruses under mild UV illumination, which offers numerous potential applications. On the other hand, Ag has long been proved as a good antibacterial material as well. The advantage of Ag-TiO{sub 2} nanocomposite is to expand the nanomaterial's antibacterial function to a broader range of working conditions. In this study neat TiO{sub 2} and Ag-TiO{sub 2} composite nanofilms were successfully prepared on silicon wafer via the sol-gel method by the spin-coating technique. The as-prepared composite Ag-TiO{sub 2} and TiO{sub 2} films with different silver content were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), x-ray diffraction (XRD) and x-ray photoelectron spectroscopy (XPS) to determine the topologies, microstructures and chemical compositions, respectively. It was found that the silver nanoparticles were uniformly distributed and strongly attached to the mesoporous TiO{sub 2} matrix. The morphology of the composite film could be controlled by simply tuning the molar ratio of the silver nitrate aqueous solution. XPS results confirmed that the Ag was in the Ag{sup 0} state. The antimicrobial effect of the synthesized nanofilms was carried out against gram-negative bacteria (Escherichia coli ATCC 29425) by using an 8 W UV lamp with a constant relative intensity of 0.6 mW cm{sup -2} and in the dark respectively. The synthesized Ag-TiO{sub 2} thin films showed enhanced bactericidal activities compared to the neat TiO{sub 2} nanofilm both in the dark and under UV illumination.

  19. Both enhanced biocompatibility and antibacterial activity in Ag-decorated TiO2 nanotubes.

    Science.gov (United States)

    Lan, Ming-Ying; Liu, Chia-Pei; Huang, Her-Hsiung; Lee, Sheng-Wei

    2013-01-01

    In this study, Ag is electron-beam evaporated to modify the topography of anodic TiO2 nanotubes of different diameters to obtain an implant with enhanced antibacterial activity and biocompatibility. We found that highly hydrophilic as-grown TiO2 nanotubes became poorly hydrophilic with Ag incorporation; however they could effectively recover their wettability to some extent under ultraviolet light irradiation. The results obtained from antibacterial tests suggested that the Ag-decorated TiO2 nanotubes could greatly inhibit the growth of Staphylococcus aureus. In vitro biocompatibility evaluation indicated that fibroblast cells exhibited an obvious diameter-dependent behavior on both as-grown and Ag-decorated TiO2 nanotubes. Most importantly, of all samples, the smallest diameter (25-nm-diameter) Ag-decorated nanotubes exhibited the most obvious biological activity in promoting adhesion and proliferation of human fibroblasts, and this activity could be attributed to the highly irregular topography on a nanometric scale of the Ag-decorated nanotube surface. These experimental results demonstrate that by properly controlling the structural parameters of Ag-decorated TiO2 nanotubes, an implant surface can be produced that enhances biocompatibility and simultaneously boosts antibacterial activity.

  20. Superhydrophobic surfaces via electroless displacement of nanometric Cu layers by Ag{sup +}

    Energy Technology Data Exchange (ETDEWEB)

    Brenier, R., E-mail: roger.brenier@lpmcn.univ-lyon1.fr [Universite de Lyon, Universite Lyon1, Laboratoire PMCN, CNRS, UMR 5586, F69622 Villeurbanne Cedex (France); Ramos, S.M.M.; Montchanin, M. [Universite de Lyon, Universite Lyon1, Laboratoire PMCN, CNRS, UMR 5586, F69622 Villeurbanne Cedex (France)

    2009-05-30

    This paper explores the possibility of making hydrophobic and superhydrophobic surfaces from electroless displacement of Cu by Ag{sup +}, in the case where Cu oxidation is limited owing to Cu layers of nanometric thicknesses. The morphology of the Ag layers is studied by scanning electron microscopy for Cu thicknesses between 10 and 80 nm. The mapping of the elemental content of the layers by electron dispersive X-ray analysis also has been used to clarify the particle growing by diffusion limited aggregation. It is shown that the average size and the shape complexity of the Ag particles increase with the Cu thickness. The addition of dimethyl sulfoxide in the Ag{sup +} aqueous solution improves the surface homogeneity, increases the particle density and decreases their sizes. The wetting behaviour of the surfaces, after grafting with octadecanethiol, has been studied from measurements of the contact angles of a drop of water. According to the thickness of the initial Cu layer and the morphology of the Ag layer, contact angles range between 110{sup o} and 154{sup o}. Superhydrophobic surfaces are obtained from 80 nm thick Cu layers.

  1. The Process of TiB2-Cu Composite Phase and Structure Formation during Combustion Synthesis

    Institute of Scientific and Technical Information of China (English)

    XU Qiang; ZHANG Xinghong; HAN Jiecai; PAN Wei

    2006-01-01

    The reaction process of combustion synthesis for TiB2- Cu was investigated in detail using combustion-wave arresting experiment, X-ray diffraction (XRD) analysis, SEM analysis and differential thermal analysis ( DTA ). The XRD analysis results for the different parts of the quenched specimen shaw that TiCux intermetallic phase firstly forms with the propagation of combustion wave, and then Ti1.87 B50 and Ti3 B4 metastable phases come forth due to the diffusion of B atoms and finally the stable TiB2 phase forms because of the continuous diffusion of B atoms. The formation of TiB2 phase is not completed by one step, but undergoes several transient processes. The process of reaction synthesis for Ti-B-Cu ternary system can be divided into three main stages: melting of Cu and Ti, and the formation of Cu- Ti melt and few TiCux , TiBx intermetallic phases; large numbers of TiCux intermetallic phases formation and some fine TiB2 particles precipitation; and the TiB2 particles coarsening and the stable TiB2 and Cu two phases formation in the final product.

  2. Atmospheric Corrosion of Ag and Cu with Ozone, UV and NaCl

    Science.gov (United States)

    Lin, Huang

    Ag and Cu are both used for electronics and are susceptible to atmospheric corrosion. They are also good corrosivity monitors used to evaluate aggressiveness of the environment. Unfortunately, laboratory exposure testing does not always represent field environments very well. Discrepancies between lab and field exposure tests are not uncommon. For example, Ag does not corrode in salt spray exposure during ASTM B117 test, while it corrodes everywhere outdoor. This suggests that new laboratory exposure test for Ag needs to be designed and studied. A full factorial experiment was carried out with three factors: ozone, UV intensity and relative humidity (RH). NaCl was loaded by fast evaporation of NaCl/ethanol solution before exposure. After exposure, corrosion products were identified by XRD and quantified by galvanostatic reduction technique. For lab exposure samples, AgCl was identified as the only corrosion product in high RH (87%) environments, while Ag2O and AgO formed as well during exposures at low RH. This result derived a qualitative prediction on corrosion behavior of Ag in field. It predicts that less stable silver compounds such as oxide and sulfate are possible corrosion products in field even silver chloride is the dominant corrosion product forming in field. This prediction was confirmed by analysis of field exposed Ag samples. By quantification of corrosion products, it is determined that UV has two contravening effects on atmospheric corrosion of Ag: photolysis of ozone to generate stronger oxidizing species such as atomic O and photodecomposition of Ag corrosion products by UV radiation. Following its success in Ag corrosion research, the environment of UV, ozone and NaCl was extended to study Cu corrosion. It is determined that UV alone can double Cu corrosion rate by generation of electron-hole pairs in n-type cuprous oxide. It is also found that ozone alone is not as aggressive on Ag as on Cu because protection of naturally formed cuprous oxide

  3. Effect of the Vibrational Modes on the Ag-Cu Phase Diagram

    Institute of Scientific and Technical Information of China (English)

    DUAN Su-Qing; ZHAO Xian-Geng; LIU Shao-Jun; MA Ben-Kun

    2000-01-01

    We calculated the vibrational free energies of the selected ordered compounds in the Ag-Cu system by using two kinds of methods: (1) calculating the phonon dispersion and density of states and the consequently vibrational free energies by using the method of ab initio inverted interatomic potentials and dynamic matrix; (2) the vibrational free energies determined by a Debye-Griineisen approximation. The Ag-Cu phase diagram is calculated by the cluster variation method. The results show that the solubility at Ag-rich end of the calculated phase diagram considering vibrational modes by using the first method is in better agreement with the experimental.

  4. Thermopower of YBa2Cu3O7-δ-Ag composites

    International Nuclear Information System (INIS)

    This paper reports on the percolation behavior of normal-state thermopower, resistivity, and superconductivity that have been studied in YBa2Cu3O7-δ-Ag (YBCO-Ag) composite systems. The normal-state resistivity and thermopower show a percolation threshold at a Ag volume fraction (VAg) of 20% to 30%, whereas the superconducting network shows a threshold at a VAg of ∼70% to 80%. The results obtained from this study show that the YBCO-Ag composite obtained from Ag2O and YBCO powders is uniformly distributed with Ag and YBCO remaining as separate phases without changing their characteristics. The measurements of thermopower indicate that the normal-state thermopower and phonon-drag thermopower are affected by the Ag addition. The stability of YBCO is increased when it is in composite form

  5. Tailoring of antibacterial Ag nanostructures on TiO2 nanotube layers by magnetron sputtering.

    Science.gov (United States)

    Uhm, Soo-Hyuk; Song, Doo-Hoon; Kwon, Jae-Sung; Lee, Sang-Bae; Han, Jeon-Geon; Kim, Kyoung-Nam

    2014-04-01

    To reduce the incidence of postsurgical bacterial infection that may cause implantation failure at the implant-bone interface, surface treatment of titanium implants with antibiotic materials such as silver (Ag) has been proposed. The purpose of this work was to create TiO2 nanotubes using plasma electrolytic oxidation (PEO), followed by formation of an antibacterial Ag nanostructure coating on the TiO2 nanotube layer using a magnetron sputtering system. PEO was performed on commercially pure Ti sheets. The Ag nanostructure was added onto the resulting TiO2 nanotube using magnetron sputtering at varying deposition rates. Field emission scanning electron microscopy and transmission electron microscopy were used to characterize the surface, and Ag content on the TiO2 nanotube layer was analyzed by X-ray diffraction and X-ray photoelectron spectroscopy. Scanning probe microscopy for surface roughness and contact angle measurement were used to indirectly confirm enhanced TiO2 nanotube hydrophilicity. Antibacterial activity of Ag ions in solution was determined by inductively coupled plasma mass spectrometry and antibacterial testing against Staphylococcus aureus (S. aureus). In vitro, TiO2 nanotubes coated with sputtered Ag resulted in significantly reduced S. aureus. Cell viability assays showed no toxicity for the lowest sputtering time group in the osteoblastic cell line MC3T3-E1. These results suggest that a multinanostructured layer with a biocompatible TiO2 nanotube and antimicrobial Ag coating is a promising biomaterial that can be tailored with magnetron sputtering for optimal performance.

  6. Fabrication of a novel visible-light-driven photocatalyst Ag-AgI-TiO{sub 2} nanoparticles supported on carbon nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Dandan; Bai, Jie, E-mail: baijie@imut.edu.cn; Liang, Haiou; Wang, Junzhong; Li, Chunping

    2015-09-15

    Graphical abstract: - Highlights: • Visible-light-induced Ag-AgI-TiO{sub 2}/CNFs nanocomposites had been successfully prepared. • Ag-AgI-TiO{sub 2}/CNFs could be easily separated and recycled from an aqueous solution. • The application of CNFs acting as supporters made the photocatalysts have high adsorption capacity. • Ag-AgI-TiO{sub 2}/CNFs could efficiently degrade different organic dyes. - Abstract: Novel visible-light-driven photocatalysts Ag-AgI-TiO{sub 2} nanoparticles embedded onto carbon nanofibers were successfully prepared. Electrospinning technology followed by high-temperature calcination was adopted for the fabrication of carbon nanofibers (CNFs) acting as a supporter. Ag-TiO{sub 2}/CNFs nanocomposites were prepared by combining in situ reduction with physical adsorption process. Ag-AgI-TiO{sub 2}/CNFs were synthesized by oxidizing some silver nanoparticles (Ag NPs) contained in Ag-TiO{sub 2}/CNFs to silver iodine (AgI) via chemical oxidation method using iodine (I{sub 2}) as oxidation agents. The as-prepared nanocomposites were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV–vis diffuse reflectance spectra (DRS), and Fourier transform infrared spectroscopy (FTIR). The as-fabricated Ag-AgI-TiO{sub 2}/CNFs showed high efficient adsorption and photocatalytic activity for decomposition of methyl orange (MO), acid red 18 (AR18), methylene blue (MB), and fluorescence sodium under visible light irradiation, which were attributed to the synergistic effects between the high adsorption capacity, good conductivity of carbon nanofibers, and the extraordinary plasma effect of Ag-AgI nanoparticles. In addition, the as-prepared composites could be easily separated from the solution phase due to the large length–diameter ratio of CNFs. The mechanism for the enhanced photocatalytic activity concerned with Ag-AgI-TiO{sub 2}/CNFs was proposed.

  7. Controlled synthesis of Ag-coated TiO2 nanofibers and their enhanced effect in photocatalytic applications

    Science.gov (United States)

    Guan, Hongyu; Wang, Xiaohong; Guo, Yihang; Shao, Changlu; Zhang, Xintong; Liu, Yichun; Louh, Rong-Fuh

    2013-09-01

    Novel nanostructured Ag/TiO2 hybrid nanofibers (NFs) have been successfully prepared via a simple electrospinning process combined with silver mirror reaction. The Ag/TiO2 NFs demonstrated a unique morphology with evenly distributed Ag nanoparticles uniformly deposited onto the surface of each individual TiO2 NFs. The loading capacity and size of Ag NPs can be easily controlled by varying the silver mirror reaction time. Compared with pristine TiO2 NFs, such heterogeneous Ag/TiO2 nanocomposites exhibited preferable photocatalytic activity during photocatalytic degradation of rhodamine-B under the simulated sunlight irradiation and this enhanced photocatalytic performance was driven by combination and interaction between TiO2 and Ag NPs.

  8. Kinetic trapping through coalescence and the formation of patterned Ag-Cu nanoparticles

    Science.gov (United States)

    Grammatikopoulos, Panagiotis; Kioseoglou, Joseph; Galea, Antony; Vernieres, Jerome; Benelmekki, Maria; Diaz, Rosa E.; Sowwan, Mukhles

    2016-05-01

    In recent years, due to its inherent flexibility, magnetron-sputtering has been widely used to synthesise bi-metallic nanoparticles (NPs) via subsequent inert-gas cooling and gas-phase condensation of the sputtered atomic vapour. Utilising two separate sputter targets allows for good control over composition. Simultaneously, it involves fast kinetics and non-equilibrium processes, which can trap the nascent NPs into metastable configurations. In this study, we observed such configurations in immiscible, bi-metallic Ag-Cu NPs by scanning transmission electron microscopy (S/TEM) and electron energy-loss spectroscopy (EELS), and noticed a marked difference in the shape of NPs belonging to Ag- and Cu-rich samples. We explained the formation of Janus or Ag@Cu core/shell metastable structures on the grounds of in-flight mixed NP coalescence. We utilised molecular dynamics (MD) and Monte Carlo (MC) computer simulations to demonstrate that such configurations cannot occur as a result of nanoalloy segregation. Instead, sintering at relatively low temperatures can give rise to metastable structures, which eventually can be stabilised by subsequent quenching. Furthermore, we compared the heteroepitaxial diffusivities along various surfaces of both Ag and Cu NPs, and emphasised the differences between the sintering mechanisms of Ag- and Cu-rich NP compositions: small Cu NPs deform as coherent objects on large Ag NPs, whereas small Ag NPs dissolve into large Cu NPs, with their atoms diffusing along specific directions. Taking advantage of this observation, we propose controlled NP coalescence as a method to engineer mixed NPs of a unique, patterned core@partial-shell structure, which we refer to as a ``glass-float'' (ukidama) structure.In recent years, due to its inherent flexibility, magnetron-sputtering has been widely used to synthesise bi-metallic nanoparticles (NPs) via subsequent inert-gas cooling and gas-phase condensation of the sputtered atomic vapour. Utilising two

  9. Nano-Nucleation Characteristic of Cu-Ag Alloy Directly Electrodeposited on W Diffusion Barrier for Microelectronic Device Interconnect.

    Science.gov (United States)

    Kim, Kang O; Kim, Sunjung

    2016-05-01

    Cu-Ag alloy interconnect is promising for ultra-large-scale integration (ULSI) microelectronic system of which device dimension keeps shrinking. In this study, seedless electrodeposition of Cu-Ag alloy directly on W diffusion barrier as interconnect technology is presented in respect of nano-nucleation control. Chemical equilibrium state of electrolyte was fundamentally investigated according to the pH of electrolyte because direct nano-nucleation of Cu-Ag alloy on W surface is challenging. Chelation behavior of Cu2+ and Ag+ ions with citrate (Cit) and ammonia ligands was dependent on the pH of electrolyte. The amount and kind of Cu- and Ag-based complexes determine the deposition rate, size, elemental composition, and surface morphology of Cu-Ag alloy nano-nuclei formed on W surface. PMID:27483895

  10. Novel PdAgCu ternary alloy: Hydrogen permeation and surface properties

    Energy Technology Data Exchange (ETDEWEB)

    Tarditi, Ana M.; Braun, Fernando [Instituto de Investigaciones en Catalisis y Petroquimica (FIQ, UNL-CONICET), Santiago del Estero 2829, 3000 Santa Fe (Argentina); Cornaglia, Laura M., E-mail: lmcornag@fiq.unl.edu.ar [Instituto de Investigaciones en Catalisis y Petroquimica (FIQ, UNL-CONICET), Santiago del Estero 2829, 3000 Santa Fe (Argentina)

    2011-05-15

    Dense PdAgCu ternary alloy composite membranes were synthesized by the sequential electroless plating of Pd, Ag and Cu on top of both disk and tubular porous stainless steel substrates. X-ray diffraction and scanning electron microscopy were employed to study the structure and morphology of the tested samples. The hydrogen permeation performance of these membranes was investigated over a 350-450 deg. C temperature range and a trans-membrane pressure up to 100 kPa. After annealing at 500 deg. C in hydrogen stream followed by permeation experiments, the alloy layer presented a FCC crystalline phase with a bulk concentration of 68% Pd, 7% Ag and 25% Cu as revealed by EDS. The PdAgCu tubular membrane was found to be stable during more than 300 h on hydrogen stream. The permeabilities of the PdAgCu ternary alloy samples were higher than the permeabilities of the PdCu alloy membranes with a FCC phase. The co-segregation of silver and copper to the membrane surface was observed after hydrogen permeation experiments at high temperature as determined by XPS.

  11. Fabrication and Characterization of Porous Sintered Ti-Ag Compacts for Biomedical Application Purpose

    Institute of Scientific and Technical Information of China (English)

    Legan Hou; Li Li; Yufeng Zheng

    2013-01-01

    Porous sintered Ti-Ag compacts with different Ag content were fabricated by powder metallurgy.The associated hydrothermal treatment and the effect on the apatite formation were studied.The results suggested that TiO was generated under the condition of low vacuum (1 × 10-2 Pa) during the process of burning out the spacer-holding particles.After hydrothermal treatment,a sub-microscale porous layer was formed at the pore wall surface of the samples.The apatite-inducing ability of hydrothermal treated porous sintered Ti-Ag compacts with different Ag content was evaluated in modified simulated body fluid (SBF).And the results proved that there is a clear correlation between the apatite-inducing ability and Ag content.The higher Ag content in porous leads to the decrease of Na+ ions and basic hydroxyl (OH)b amount,resulting in the decline of apatite-inducing ability in the first stage.However,their apatite-inducing ability was not significantly different from that of Ti after two weeks SBF immersing.Hence,the ionic activity should restore with the processing of SBF soaking,as the saturation of Ag effect.

  12. Cu Diffusion in Co/Cu/TiN Films for Cu Metallization

    Institute of Scientific and Technical Information of China (English)

    Xiuhua CHEN; Xinghui WU; Jinzhong XIANG; Zhenlai ZHOU; Heyun ZHAO; Liqiang CHEN

    2006-01-01

    Some information on how to use in-situ determined diffusion coefficient of Cu to make barrier layer of Cu metallization in ultra large scale integrations (ULSIs) was provided. Diffusion coefficients of Cu in Co at low temperature were determined to analyze Cu migration to Co surface layer. The diffusion depths were analyzed using X-ray photoelectron spectroscopy (XPS) depth profile to investigate the diffusion effect of Cu in Co at different temperatures. The possible pretreatment temperature and time of barrier layer can be predicted according to the diffusion coefficients of Cu in Co.

  13. Distribution of Ag in Cu-sulfides in Kupferschiefer deposit, SW Poland

    Science.gov (United States)

    Kozub, Gabriela A.

    2014-05-01

    The Cu-Ag Kupferschiefer deposit located at the Fore-Sudetic Monocline (SW Poland) is a world class deposit of stratabound type. The Cu-Ag mineralization in the deposit occurs in the Permian sedimentary rocks (Rotliegend and Zechstein) in three lithological types of ore: the dolomite, the black shale and the sandstone. Silver, next to copper, is the most important element in the Kupferschiefer deposit (Salamon 1979; Piestrzyński 2007; Pieczonka 2011). Although occurrence of the Ag-minerals such as native silver, silver amalgams, stromeyerite, jalpaite and mckinstryite, silver is mainly present in the deposit due to isomorphic substitutions in Cu-minerals such as chalcocite, bornite, tennantite, covellite and chalcopyrite. The aim of the study was to define distribution of silver in Cu-minerals and correlate occurrence of Ag-enriched Cu-sulfides with native silver and silver amalgams. Identification of minerals and textural observation were performed using field emission scanning electron microscope. Analyzes of chemical composition of Cu-sulfides were performed utilizing electron microprobe. Silver concentration in Cu sulfides ranges from 0.1 to 10.4 wt.% in chalcocite, 0.2-15.8 wt.% in bornite, 0.1-2.9 wt.% in tennantite, 0.05-0.3 wt.% in chalcopyrite and ca. 0.4 wt.% in covellite. In general, distribution of silver in Cu-minerals is irregular, as indicated by high variations of Ag concentration in each mineral. Content of Ag in Cu-sulphides, in samples where native silver and silver amalgams are not found, is lower than in samples, where native silver and silver amalgams are noted. The chemical analyzes of Ag-bearing Cu-minerals indicate decrease of Cu content in minerals with high Ag concentration. In such case, decrease of Fe content is also noted in bornite. Lack of micro-inclusions of the native silver or silver amalgams in the Cu-minerals indicates that presence of Ag is mainly related to the isomorphic substitutions. This is in agreement with previous

  14. Enhanced photocatalysis by coupling of anatase TiO2 film to triangular Ag nanoparticle island.

    Science.gov (United States)

    Xu, Jinxia; Xiao, Xiangheng; Ren, Feng; Wu, Wei; Dai, Zhigao; Cai, Guangxu; Zhang, Shaofeng; Zhou, Juan; Mei, Fei; Jiang, Changzhong

    2012-01-01

    In order to overcome the low utilization ratio of solar light and high electron-hole pair recombination rate of TiO2, the triangular Ag nanoparticle island is covered on the surface of the TiO2 thin film. Enhancement of the photocatalytic activity of the Ag/TiO2 nanocomposite system is observed. The increase of electron-hole pair generation is caused by the enhanced near-field amplitudes of localized surface plasmon of the Ag nanoparticles. The efficiently suppressed recombination of electron-hole pair caused by the metal-semiconductor contact can also enhance the photocatalytic activity of the TiO2 film. PMID:22548875

  15. Deep-level transient spectroscopy of TiO2/CuInS2 heterojunctions

    NARCIS (Netherlands)

    Nanu, M.; Boulch, F.; Schoonman, J.; Goossens, A.

    2005-01-01

    Deep-level transient spectroscopy (DLTS) has been used to measure the concentration and energy position of deep electronic states in CuInS2. Flat TiO2∣CuInS2 heterojunctions as well as TiO2-CuInS2 nanocomposites have been investigated. Subband-gap electronic states in CuInS2 films are mostly due to

  16. Deformation-induced martensitic transformation in Cu-Zr-Al(Ti) bulk metallic glass composites

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Ram Bachchan; Pauly, Simon; Das, Jayanta; Eckert, Juergen [Institut fuer Komplexe Materialien, IFW Dresden (Germany)

    2009-07-01

    Plastic deformation of Cu-Zr-(Al, Ti) bulk metallic glass (BMG) composites induces a martensitic phase transformation from the B2 to the B19* CuZr phase. Addition of Ti to binary Cu-Zr increases the temperature above which the B2 CuZr phase becomes stable. This affects the phase formation upon quenching in Cu-Zr-Ti BMG composites. The deformation-induced martensitic transformation is believed to cause the strong work hardening and to contribute to the large compressive deformability with plastic strains up to 15%.

  17. Ti{sub 1−x}Ag{sub x} electrodes deposited on polymer based sensors

    Energy Technology Data Exchange (ETDEWEB)

    Marques, S.M., E-mail: mariana.marques@fisica.uminho.pt [GRF-CFUM, Physics Department, University of Minho, 4800-058 Guimarães (Portugal); Manninen, N.K. [SEG-CEMUC Mechanical Engineering Department, University of Coimbra, 3030-788 Coimbra (Portugal); Ferdov, Stanislav [GRF-CFUM, Physics Department, University of Minho, 4800-058 Guimarães (Portugal); Lanceros-Mendez, S. [Physics Department, University of Minho, 4700-057 Braga (Portugal); Carvalho, S. [GRF-CFUM, Physics Department, University of Minho, 4800-058 Guimarães (Portugal); SEG-CEMUC Mechanical Engineering Department, University of Coimbra, 3030-788 Coimbra (Portugal)

    2014-10-30

    Graphical abstract: - Highlights: • Ti{sub 1−x}Ag{sub x} thin films with diverse Ag/Ti ratios were deposited by sputtering on piezoelectric PVDF. • The deposition conditions do not promote changes on the polymer structure. • The coatings do not change the piezoelectric properties of the polymer. • Sheet resistivity values show a typical behavior of a binary alloy system. • The deposited films are suitable for the development of functional electrodes. - Abstract: Piezoelectric materials are interesting for the development of sensors and actuators for biomedical applications in areas such as smart prosthesis, implantable biosensors and biomechanical signal monitoring, among others. For acquiring or applying the electrical signal from/to the piezoelectric material, suitable electrodes can be produced from Ti based coatings with tailored multifunctional properties: conductivity and antibacterial characteristics through Ag inclusions. This work reports on Ti{sub 1−x}Ag{sub x} electrodes with different Ag/Ti atomic ratios deposited by dc and pulsed magnetron sputtering at room temperature on poly(vinylidene fluoride), PVDF. The X-ray diffraction (XRD) results revealed that the deposition conditions preserve the polymer structure and suggested the presence of crystalline Tiβ phase in pure titanium coating and fcc-Ag phase in pure silver coating. According to the results obtained from scanning electron microscopy (SEM) analysis, the coatings are homogeneous and no clusters were found; since β-PVDF is anisotropic, the deposited coatings replicate the underlying substrate surface. Sheet resistivity values show a typical behavior of a binary alloy system, with low resistivity values for coatings of zone 1 (Ti rich) and zone 3 (Ag rich) and a slightly higher resistivity values in zone 2. The piezoelectricity of the different samples show similar values.

  18. Enhanced visible-light photocatalytic performances of Ag3PO4 surface-modified with small amounts of TiO2 and Ag

    Science.gov (United States)

    Wang, Desong; Li, Lei; Luo, Qingzhi; An, Jing; Li, Xueyan; Yin, Rong; Zhao, Mangmang

    2014-12-01

    A novel approach has been developed to prepare an efficient visible-light photocatalyst using Ag3PO4 and TiO2 sol as precursors. First, Ag3PO4 particles were dipped into TiO2 sol for 5 min and were filtered quickly. Second, Ag3PO4 particles adsorbing a small amount of TiO2 sol were aged for 24 h to form TiO2 gel on their surface. Finally, Ag3PO4 particles covered by TiO2 gel were calcined at 450 °C for 2 h to obtain the surface-modified Ag3PO4 sample. The surface-modified Ag3PO4 was characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, UV-vis diffuse reflection spectroscopy, X-ray photoelectron spectroscopy, and electrochemical impedance spectroscopy. The visible-light photocatalytic performances of the surface-modified Ag3PO4 were evaluated by the photodegradation of methyl orange or phenol solution. The results showed that the surface-modified Ag3PO4 exhibited much higher visible-light photocatalytic activity and stability than pure Ag3PO4. As the amount of TiO2 gel on the Ag3PO4 surface increased, the visible-light photocatalytic activity increased first and then decreased. The surface-modification of Ag3PO4 obviously decreased its solubility in water environment due to the protection of TiO2 and Ag nanocrystals on the surface. The visible-light photocatalytic mechanism of the surface-modified Ag3PO4 has been discussed.

  19. Highly active Ag clusters stabilized on TiO2 nanocrystals for catalytic reduction of p-nitrophenol

    Science.gov (United States)

    Wang, Xin; Zhao, Zhe; Ou, Dingrong; Tu, Baofeng; Cui, Daan; Wei, Xuming; Cheng, Mojie

    2016-11-01

    Ag/TiO2 nanocomposites comprising of Ag clusters on TiO2 nanocrystal surfaces are of great significance in catalysts and advanced functional materials. Herein a novel method to synthesize Ag/TiO2 nanocomposites with Ag clusters under 2 nm on TiO2 nanocrystal surfaces have been developed. The success of this method relies on a silver mirror reaction in toluene, which refers to the reduction of silver-dodecylamine complexes by acetaldehyde in the presence of mono-dispersed TiO2 nanocrystals. The prepared Ag/TiO2 nanocomposites have been characterized by FT-IR spectra, UV-vis absorption spectra, X-ray diffraction (XRD) analysis, ultra high resolution scanning electron microscope (Ultra-HRSEM), high resolution transmission electron microscope (HRTEM) and X-ray photoelectron spectra (XPS). Catalytic activity of Ag/TiO2 nanocomposites is evaluated for the reduction of p-nitrophenol (4-NP) into p-aminophenol (4-AP) by NaBH4. Results demonstrate that Ag/TiO2 nanocomposites have shown an outstanding catalytic activity as well as a good stability in successive reduction of 4-NP. Noticeably, TOF of Ag/TiO2-0.75 nanocomposites obtained in this work is the highest among Ag based catalysts previously reported.

  20. Atomic-scale investigation of interface-facilitated deformation twinning in severely deformed Ag-Cu nanolamellar composites

    International Nuclear Information System (INIS)

    We report an atomic-scale investigation of interface-facilitated deformation twinning behaviour in Ag-Cu nanolamellar composites. Profuse twinning activities in Ag supply partial dislocations to directly transmit across the Ag-Cu lamellar interface that promotes deformation twinning in the neighbouring Cu lamellae although the interface is severely deformed. The trans-interface twin bands change the local structure at the interface. Our analysis suggests that the orientation relationship and interfacial structure between neighbouring Ag-Cu lamellae play a crucial role in such special interface-facilitated twinning behaviour

  1. Atomic-scale investigation of interface-facilitated deformation twinning in severely deformed Ag-Cu nanolamellar composites

    Energy Technology Data Exchange (ETDEWEB)

    An, X. H., E-mail: anxianghai@gmail.com, E-mail: xiaozhou.liao@sydenye.edu.au; Cao, Y.; Liao, X. Z., E-mail: anxianghai@gmail.com, E-mail: xiaozhou.liao@sydenye.edu.au [School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, New South Wales 2006 (Australia); Zhu, S. M.; Nie, J. F. [Department of Materials Engineering, Monash University, Melbourne, Victoria 3800 (Australia); Kawasaki, M. [Division of Materials Science and Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Ringer, S. P. [School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, New South Wales 2006 (Australia); Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, New South Wales 2006 (Australia); Langdon, T. G. [Departments of Aerospace and Mechanical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089-1453 (United States); Materials Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ (United Kingdom); Zhu, Y. T. [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695-7919 (United States); School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing (China)

    2015-07-06

    We report an atomic-scale investigation of interface-facilitated deformation twinning behaviour in Ag-Cu nanolamellar composites. Profuse twinning activities in Ag supply partial dislocations to directly transmit across the Ag-Cu lamellar interface that promotes deformation twinning in the neighbouring Cu lamellae although the interface is severely deformed. The trans-interface twin bands change the local structure at the interface. Our analysis suggests that the orientation relationship and interfacial structure between neighbouring Ag-Cu lamellae play a crucial role in such special interface-facilitated twinning behaviour.

  2. Limites de stabilité de la phase (Ag, Cu)TlTe dans le système AgCuTlTe

    Science.gov (United States)

    Brun, Gerard; Boubali, Mahjoub; Ayral, R. M.; Tedenac, Jean-Claude

    1990-12-01

    Three isopleth sections, AgTlTe(CuTlTe), AgTlTeCu 2Te, and AgTlTeCu 2TlTe 2, of the quaternary system AgCuTlTe were investigated using thermal analysis, differential scanning calorimetry, and X-ray powder diffraction. The AgTlTe-based solid solution (Ag xCu YTl zTe) limits were determined and the composition-structure relations depicted.

  3. Microstructure and Strength of Brazed Joints of Ti3Al Base Alloy with Cu-P Filler Metal

    Institute of Scientific and Technical Information of China (English)

    Peng HE; Jicai FENG; Heng ZHOU

    2005-01-01

    Brazing of Ti3Al alloys with the filler metal Cu-P was carried out at 1173~1273 K for 60~1800 s. When products are brazed, the optimum brazing parameters are as follows: brazing temperature is 1215~1225 K; brazing time is 250~300 s. Four kinds of reaction products were observed during the brazing of Ti3Al alloys with the filler metal Cu-P, i.e., Ti3Al phase with a small quantity of Cu (Ti3Al(Cu)) formed close to the Ti3Al alloy; the TiCu intermetallic compounds layer and the Cu3P intermetallic compounds layer formed between Ti3Al(Cu) and the filler metal, and a Cu-base solid solution formed with the dispersed Cu3P in the middle of the joint. The interfacial structure of brazed Ti3Al alloys joints with the filler metal Cu-P is Ti3Al/Ti3Al(Cu)/TiCu/Cu3P/Cu solid solution (Cu3P)/Cu3P/TiCu/Ti3Al(Cu)/Ti3Al, and this structure will not change with brazing time once it forms. The thickness of TiCu+Cu3P intermetallic compounds increases with brazing time according to a parabolic law. The activation energy Q and the growth velocity K0 of reaction layer TiCu+Cu3P in the brazed joints of Ti3Al alloys with the filler metal Cu-P are 286 k J/mol and 0.0821 m2/s, respectively, and growth formula was y2=0.0821exp(-34421.59/T)t.Careful control of the growth for the reaction layer TiCu+Cu3P can influence the final joint strength. The formation of the intermetallic compounds TiCu+Cu3P results in embrittlement of the joint and poor joint properties. The Cu-P filler metal is not fit for obtaining a high-quality joint of Ti3Al brazed.

  4. SiO2/TiO2/n-Si/Ag(Cr)/TiO2 thin films with superhydrophilicity and low-emissivity

    Science.gov (United States)

    Loka, Chadrasekhar; Ryeol Park, Kyoung; Lee, Kee-Sun

    2016-01-01

    In this study, SiO2/TiO2/n-Si/Ag(Cr)/TiO2 multilayer structures have been designed and deposited by the RF and DC magnetron sputtering at room temperature. The as-deposited TiO2/glass films which are initially amorphous in nature were subjected to post annealing at 673 K for anatase phase TiO2. The anatase TiO2 films showed an optical bandgap ˜3.32 eV. The Ag(Cr)/TiO2 showed very low-emissivity (low-e) value ˜0.081 which is evaluated by using the sheet resistance (6.51 Ω/□) of the films. All the deposited films showed high visible transmittance (˜81%) and high infrared reflectance (72%) which are recorded by using the UV-vis-NIR spectrophotometer. In addition, experimentally obtained optical properties were in good agreement with the simulation data. The TiO2/n-Si heterojunction concept has been employed to enhance the superhydrophilicity of the deposited multilayer stack, TiO2/n-Si/Ag(Cr)/TiO2 films exhibited best superhydrophilicity with water contact angle ˜2°. The deposited multilayer structures SiO2/TiO2/n-Si/Ag(Cr)/TiO2 and TiO2/n-Si/Ag(Cr)/TiO2 achieved significant low-e and superhydrophilicity.

  5. Effect of TiB2 on Tribological Properties of TiAl Self-lubricating Composites Containing Ag at Elevated Temperature

    Science.gov (United States)

    Yao, Jie; Shi, Xiaoliang; Zhai, Wenzheng; Ibrahim, Ahmed Mohamed Mahmoud; Xu, Zengshi; Song, Siyuan; Chen, Long; Zhu, Qingshuai; Xiao, Yecheng; Zhang, Qiaoxin

    2015-01-01

    TiB2 was chosen to further improve the tribological properties of TiAl matrix self-lubricating composites containing Ag. The possible synergetic action of a combination of TiB2 and Ag was investigated using a pin-on-disk high temperature tribometer from room temperature to 600 °C. The tribological test results indicated that the addition of TiB2 obviously enhanced the wear resistance of the composites over a wide temperature range. Moreover, the composites containing TiB2 had a low friction coefficient at 600 °C. The subsurface analysis of cross sections of worn surfaces showed that TiB2 played the role in wear-resistant skeleton and restricted the plastic flow of Ag during dry friction process. The investigation showed that TiB2 and Ag could exhibit good synergistic effect on improving the tribological properties of composites.

  6. Photocatalytic deposition of Ag nanoparticles on TiO2: Metal precursor effect on the structural and photoactivity properties

    Directory of Open Access Journals (Sweden)

    E. Albiter

    2015-09-01

    Full Text Available A series of 1 wt.% Ag–TiO2 photocatalysts were obtained by photodeposition using different organic (acetylacetonate, Ag-A and inorganic (nitrate, Ag-N, and perchlorate, Ag-C silver precursors in order to determinate the influence of the silver precursor on final properties of the photocatalysts. The resulting photocatalytic materials were characterized by different techniques (UV–Vis DRS, TEM/HRTEM and XPS and their photocatalytic activity was evaluated in the degradation of rhodamine B (used as model pollutant in aqueous solution under simulated solar light. The photocatalytic reduction of Ag species to Ag0 on TiO2 was higher with silver nitrate as precursor compared to acetylacetonate or perchlorate. All the Ag-modified TiO2 photocatalysts exhibited a surface plasmon resonance effect in the visible region (400–530 nm indicating different metal particle sizes depending on the Ag precursor used in their synthesis. A higher photocatalytic activity was obtained with all the Ag/TiO2 samples compared with non-modified TiO2. The descending order of photocatalytic activity was as follows: Ag-A/TiO2 ≈ Ag-N/TiO2 > Ag-C/TiO2 > TiO2-P25. The enhanced photoactivity was attributed to the presence of different amounts Ag0 nanoparticles homogeneously distributed on Ag2O and TiO2, trapping the photogenerated electrons and avoiding charge recombination.

  7. p-Cu2O-shell/n-TiO2-nanowire-core heterostucture photodiodes

    Directory of Open Access Journals (Sweden)

    Hsueh Ting-Jen

    2011-01-01

    Full Text Available Abstract This study reports the deposition of cuprous oxide [Cu2O] onto titanium dioxide [TiO2] nanowires [NWs] prepared on TiO2/glass templates. The average length and average diameter of these thermally oxidized and evaporated TiO2 NWs are 0.1 to 0.4 μm and 30 to 100 nm, respectively. The deposited Cu2O fills gaps between the TiO2 NWs with good step coverage to form nanoshells surrounding the TiO2 cores. The p-Cu2O/n-TiO2 NW heterostructure exhibits a rectifying behavior with a sharp turn-on at approximately 0.9 V. Furthermore, the fabricated p-Cu2O-shell/n-TiO2-nanowire-core photodiodes exhibit reasonably large photocurrent-to-dark-current contrast ratios and fast responses.

  8. 界面耦合作用对Cu(Ni)/Sn-Ag-Cu/Cu(Ni)BGA 焊点界面IMC形成与演化的影响%EFFECT OF THE CROSS-INTERACTION ON THE FORMATION AND EVOLUTION OF INTERMETALLIC COMPOUNDS IN Cu(Ni)/Sn-Ag-Cu/Cu(Ni) BGA STRUCTURE SOLDER JOINTS

    Institute of Scientific and Technical Information of China (English)

    李勋平; 周敏波; 夏建民; 马骁; 张新平

    2011-01-01

    研究了焊盘材料界面耦合作用对Cu(Ni)/Sn-3.0Ag-0.5Cu/Cu(Ni)BGA(Ball Grid Array)结构焊点焊后态和125℃等温时效过程中界面金属间化合物(IMC)的成分、形貌和生长动力学的影响.结果表明,凸点下金属层(UBM)Ni界面IMC的成分与钎料中Cu含量有关,钎料中Cu含量较高时界面IMC为(Cu,Ni)6Sn5,而Cu含量较低时,则生成(Cu,Ni)3Sn4;Cu-Ni耦合易导致Cu/Sn-3.0Ag-0.5Cu/Ni焊点中钎料/Ni界面IMC异常生长并产生剥离而进入钎料.125℃等温时效过程中,Sn-3.0Ag-0.5Cu/Cu界面IMC的生长速率常数随钎料中Cu含量增加而提高,Cu-Cu耦合降低一次回流侧IMC生长速率常数;Cu-Ni耦合和Ni-Ni耦合均导致焊点一次回流Ni侧界面IMC的生长速率常数增大,但Ni对界面IMC生长动力学的影响大于Cu;Ni有利于抑制Cu界面Cu3Sn生长,降低界面IMC生长速率,但Cu-Ni耦合对Cu界面Cu3Sn中Kirkendall空洞率无明显影响.%The formation and evolution of interfacial intermetallic compounds (IMCs) in Cu(Ni)/Sn-3.0Ag-0.5Cu/Cu(Ni) BGA (Ball Grid Array) structure solder joints both in the asreflowed state and undergoing isothermal aging at 125 C were investigated. The results show that there exists a significant cross-interaction effect of the solder pad/under bump metal (UBM) on the composition, morphology and growth kinetics of interfacial IMCs in solder joints. The reactions of solder/Ni UBM strongly depends on the Cu content of the solder, for a high Cu content, a continuous (Cu, Ni)6Sn5 layer forms at the interface, while for a low Cu content, a continuous (Ni, Cu)3Sn4 layer appears at the interface. The cross-interaction of Cu and Ni in Cu/Sn-3.0Ag-0.5Cu(SAC)/Ni solder joints has obvious influence on the composition and morphology of the interfacial IMC; and the IMC spalling phenomenon occurs at the interface of Ni side. During isothermal aging at 125 ℃, the growth rate constant of the interfacial IMC layer in SAC/Cu and Cu/SAC/Cu joints increases with

  9. In vitro cytotoxicity of Ag-Pd-Cu-based casting alloys.

    Science.gov (United States)

    Niemi, L; Hensten-Pettersen, A

    1985-01-01

    The cytotoxicity and its correlation to alloy composition, structure, corrosion, as well as galvanic coupling was studied with 12 Ag-Pd-Cu-type alloys, one conventional type III gold alloy and pure Ag, Cu, and Pd. The agar overlay cell culture technique was used. Single phase binary CuPd alloys were only slightly cytotoxic below a Cu content of 30 wt%. The tested multiphase alloys were all toxic, but no correlation between toxicity and Cu content could be observed. Solid solution annealing increased the cytotoxicity of a multiphase alloy. Exposure of a single phase alloy to an artificial saliva for 1 week prior to the test decreased its cytotoxicity significantly. Galvanic coupling of the alloys through an outer copper wire decreased their cytotoxicity.

  10. Investigation of thermal, mechanical and magnetic behaviors of the Cu-11%Al alloy with Ag and Mn additions

    Energy Technology Data Exchange (ETDEWEB)

    Silva, R.A.G., E-mail: galdino.ricardo@gmail.com [Departamento de Ciencias Exatas e da Terra-UNIFESP, Diadema-SP (Brazil); Paganotti, A.; Gama, S. [Departamento de Ciencias Exatas e da Terra-UNIFESP, Diadema-SP (Brazil); Adorno, A.T.; Carvalho, T.M.; Santos, C.M.A. [Instituto de Quimica - UNESP, Araraquara-SP (Brazil)

    2013-01-15

    The investigation of thermal, mechanical and magnetic behaviors of the Cu-11%Al, Cu-11%Al-3%Ag, Cu-11%Al-10%Mn and Cu-11%Al-10%Mn-3%Ag alloys was made using microhardness measurements, differential scanning calorimetry, X-ray diffractometry, scanning electron microscopy, energy dispersion X-ray spectroscopy and magnetic moment change with applied field measurement. The results indicated that the Mn addition changes the phase stability range, the microhardness values and makes undetectable the eutectoid reaction in annealed Cu-11%Al and Cu-11%Al-3%Ag alloys while the presence of Ag does not modify the phase transformation sequence neither microhardness values of the annealed Cu-11%Al and Cu-11%Al-10%Mn alloys, but it increases the magnetic moment of this latter at about 2.7 times and decreases the rates of eutectoid and peritectoid reactions of the former. - Highlights: Black-Right-Pointing-Pointer The microstructure of Cu-Al alloy is modified in the Ag presence. Black-Right-Pointing-Pointer ({alpha} + {gamma}) phase is stabilized down to room temperature when Ag is added to Cu-Al alloy. Black-Right-Pointing-Pointer Ag-rich phase modifies the magnetic characteristics of Cu-Al-Mn alloy.

  11. Effects of TiO2 coating dosage and operational parameters on a TiO2/Ag photocatalysis system for decolorizing Procion red MX-5B.

    Science.gov (United States)

    Lin, Yu-Chih; Lee, Ho-Shan

    2010-07-15

    In this study, titanium dioxide (TiO(2)) powder was coated onto the surface of a dendritic silver (Ag) carrier to synthesize TiO(2)/Ag for decolorizing Procion red MX-5B (MX-5B), and related operation factors were also studied. The results showed that even without ultraviolet-A (UVA) irradiation, the Ag carrier from the TiO(2)/Ag catalyst had oxidizing ability, which could effectively degrade MX-5B color, but TiO(2) was ineffective. In addition, TiO(2) from TiO(2)/Ag demonstrated photocatalysis performance when irradiated, and the Ag carrier further showed an electron-scavenging ability to mitigate electron-hole pair recombination, which can improve the photocatalytic efficacy. With the oxidization and electron-scavenging ability of Ag and the photocatalysis ability of TiO(2), TiO(2)/Ag can decolor MX-5B more efficiently than TiO(2). The heavier Ag carrier also improves the solid-liquid separation of nano-TiO(2), making TiO(2)/Ag more suitable for application in slurry systems of photocatalytic water treatment. When the TiO(2)/Ag coating ratio was 50% by weight, there was a sufficient amount of TiO(2) on Ag's surface with a good distribution, and it exhibited a good photocatalysis decolorizing effect. In a study of how operational factors impact the decolorizing of MX-5B in the TiO(2)/Ag photocatalysis system with UVA irradiation (UVA-TiO(2)/Ag), the decolorization efficiency was optimal when the solution was maintained at pH 6.35. The addition of 0.01 M hydrogen peroxide (H(2)O(2)) aided the photocatalysis decolorization efficiency, although excessive H(2)O(2) reacted with hydroxyl free radicals and decreased the active groups in the system, thereby reducing the photocatalysis activity. An operating temperature of 40 degrees C was conducive to MX-5B decolorization, which was better than operating at room temperature.

  12. Effects of plasmon excitation on photocatalytic activity of Ag/TiO 2 and Au/TiO2 nanocomposites

    DEFF Research Database (Denmark)

    Sellappan, Raja; González-Posada, Fernando; Chakarov, Dinko;

    2013-01-01

    Model nanocomposite photocatalysts consisting of undoped TiO2 films with optically active Ag or Au nanoparticles (NPs) were designed, fabricated, and examined to address the role of plasmon excitations in their performance. Different composition configurations were tested in which the NPs were ei...

  13. Ag and CdS nanoparticles co-sensitized TiO2 nanotubes for enhancing visible photoelectrochemical performance

    International Nuclear Information System (INIS)

    Highlights: ► Ag and CdS nanoparticles co-sensitized TiO2 nanotubes were fabricated by the SILAR method. ► The co-sensitization expands the photoresponse range of TiO2 NTs to 668.7 nm. ► Visible light photocurrents and photocatalytic activities of CdS–Ag/TiO2 NTs were studied. ► The electron transfer mechanism of CdS–Ag/TiO2 NTs was proposed. - Abstract: The Ag and CdS nanoparticles co-sensitization of TiO2 nanotubes (CdS–Ag/TiO2 NTs) were prepared by successive ionic layer adsorption and reaction (SILAR) technique. The phase composition, morphology and optical property were characterized by the X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and UV–vis diffusion reflection spectroscopy (DRS). The co-modification of Ag and CdS nanoparticles expanded the photoresponse range of TiO2 NTs from ultraviolet region to 668.7 nm, and the CdS–Ag/TiO2 NTs prepared by SILAR deposition of 5 cycles exhibited higher visible photocurrent and stability against photocorrosion. The detailed electrons transfer mechanism of CdS–Ag/TiO2 NTs was proposed, and photocatalytic activity toward degradation of methyl orange (MO) under visible-light irradiation was also investigated.

  14. Anti-biofilm efficacy of low temperature processed AgCl–TiO2 nanocomposite coating

    International Nuclear Information System (INIS)

    Biofilms are a major concern in the medical settings and food industries due to their high tolerance to antibiotics, biocides and mechanical stress. Currently, the development of novel methods to control biofilm formation is being actively pursued. In the present study, sol–gel coatings of AgCl–TiO2 nanoparticles are presented as potential anti-biofilm agents, wherein TiO2 acts as a good supporting matrix to prevent aggregation of silver and facilitates its controlled release. Low-temperature processed AgCl–TiO2 nanocomposite coatings inhibit biofilm formation by Escherichia coli, Staphylococcus epidermidis and Pseudomonas aeruginosa. In vitro biofilm assay experiments demonstrated that AgCl–TiO2 nanocomposite coated surfaces, inhibited the development of biofilms over a period of 10 days as confirmed by scanning electron microscopy. The silver release kinetics exhibited an initial high release, followed by a slow and sustained release. The anti-biofilm efficacy of the coatings could be attributed to the release of silver, which prevents the initial bacterial adhesion required for biofilm formation. - Highlights: • Potential of AgCl–TiO2 nanocomposite coating to inhibit biofilm formation is exhibited. • Initial rapid release followed by later slow and sustained release of silver obtained. • TiO2 being porous and inorganic in nature acts as a good supporting matrix

  15. Preparation and photoelectrochemical performance of TiO2/Ag2Se interface composite film

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Coupling TiO2 with a narrow band gap semiconductor acting as the photosensitizer has attracted much attention in solar energy exploitation. In this work,the porous TiO2 film was first formed on the conducting glass plate (CGP) substrate by the decomposition of polyethylene glycol (PEG) mixing in titanium hydroxide sol at 450℃. Then,the TiO2/Ag2Se interface composite film was fabricated by interface reaction of AgNO3 with NaSeSO3 on the activated surface of porous TiO2 film. The results of SEM and XRD analyses indicated that the porous TiO2 layer was made up of the anatase crystal,and the Ag2Se layer was made up of congregative small particles that have low-temperature α-phase structure. Due to its efficient charge separation for the photo-induced electron-hole pairs,the TiO2/Ag2Se interface composite film as-prepared has good photovoltaic property and high photocurrent response for visible light,which have been confirmed by the photoelectrochemical measurements.

  16. Aging kinetics in the Cu-8 wt.% Al alloy with Ag additions

    Energy Technology Data Exchange (ETDEWEB)

    Adorno, A.T.; Guerreiro, M.R.; Silva, R.A.G

    2003-05-12

    The influence of additions of 2, 4, 6, 8, 10 and 12 wt.% Ag in the isothermal aging kinetics of the Cu-8 wt.% Al alloy was studied using microhardness measurements, differential scanning calorimetry, optical and scanning electron microscopy and X-ray diffractometry. The results indicate that the presence of silver is responsible for the shift of the equilibrium concentration to higher Al contents, allowing the formation of the {gamma}{sub 1} phase (Al{sub 4}Cu{sub 9}) in this alloy. For Ag additions up to 6% the dominant kinetic process is Ag precipitation and for additions from 8 to 12% Ag the nucleation of the perlitic phase dominates.

  17. Origin of nondetectable x-ray diffraction peaks in nanocomposite CuTiZr alloys

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Kato, H.; Ohsuna, T.;

    2003-01-01

    Microscopic structures of Cu60Ti10+xZr30-x (x=0 and 10) alloys have been investigated by transmission electron microscopy, x-ray diffraction (XRD) and differential scanning calorimeter (DSC). In the Cu60Ti10Zr30 samples annealed at 708 K for times ranging from 0 to 130 min, where the enthalpy of ...

  18. Phases and phase equilibria in the quaternary system Ti-Cu-Al-N at 850 C

    Energy Technology Data Exchange (ETDEWEB)

    Durlu, N. [Vienna Univ. (Austria); Gruber, U. [Vienna Univ. (Austria); Pietzka, M.A. [Vienna Univ. (Austria); Schmidt, H. [Vienna Univ. (Austria); Schuster, J.C. [Vienna Univ. (Austria)

    1997-05-01

    Phase equilibria in the quaternary system Ti-Cu-Al-N are investigated using XRD, metallography and EDX, yielding the observation of 18 four phase spaces of the 850 C isotherm. In the ternary boundary systems Ti-Cu-Al and Ti-Al-N, all previously reported phases are confirmed, but several tielines are newly determined. In the system Ti-N, the new ternary phase Ti{sub 3}CuN dominates most phase fields. Based on thermochemical data of the binary boundary systems and the newly investigated or re-investigated phase equilibria of the ternary boundary systems, a set of Gibbs energies for the solid phases occuring in the quaternary system is derived, which is used in combination with the quaternary experimental data to derive a large section of the isotherm for Ti-Cu-Al-N at 850 C. The quaternary {eta}-phase (Ti, Cu, Al){sub 6}N having the composition Ti{sub 3}Cu{sub 2}Al{sub 1}N{sub 0.8} is found to be the only stable quaternary phase of this system. Several {eta}-phases isotypic to Ti{sub 3}Cu{sub 2}Al{sub 1}N{sub 0.8} are synthesized to explore the crystal chemistry effects of substitutions on different crystallographic sites. (orig.)

  19. Aerosol deposition of (Cu,Ti) substituted bismuth vanadate films

    International Nuclear Information System (INIS)

    Bismuth vanadate, Bi4V2O11, and related compounds with various metal (Me) substitutions, Bi4(MexV1−x)2O11−δ, show some of the highest ionic conductivities among the known solid oxide electrolytes. Films of Cu and Ti substituted bismuth vanadate were prepared by an aerosol deposition method, a spray coating process also described as room temperature impact consolidation. Resultant films, several microns in thickness, were dense with good adhesion to the substrate. Scanning electron microscopy and high temperature X-ray diffraction were used to monitor the effects of temperature on the structure and microstructure of the film. The particle size remained nano-scale while microstrain decreased rapidly up to 500 °C, above which coarsening and texturing increased rapidly. Impedance measurements of films deposited on inter-digital electrodes revealed an annealing effect on the ionic conductivity, with the conductivity exceeding that of a screen printed film, and approaching that of bulk ceramic. - Highlights: • Cu and Ti doped bismuth vanadate films were prepared by aerosol deposition (AD). • Dense 3–5 μm thick films were deposited on alumina, silicon and gold electrodes. • Annealing of the AD-layer increases the conductivity by 1.5 orders of magnitude. • Effect of temperature on structure and microstructure was investigated

  20. Aerosol deposition of (Cu,Ti) substituted bismuth vanadate films

    Energy Technology Data Exchange (ETDEWEB)

    Exner, Jörg, E-mail: Functional.Materials@Uni-Bayreuth.de [University of Bayreuth, Department of Functional Materials, Universitätsstraße 30, 95440 Bayreuth (Germany); Fuierer, Paul [Materials and Metallurgical Engineering Department, New Mexico Institute of Mining and Technology, Socorro, NM 87801 (United States); Moos, Ralf [University of Bayreuth, Department of Functional Materials, Universitätsstraße 30, 95440 Bayreuth (Germany)

    2014-12-31

    Bismuth vanadate, Bi{sub 4}V{sub 2}O{sub 11}, and related compounds with various metal (Me) substitutions, Bi{sub 4}(Me{sub x}V{sub 1−x}){sub 2}O{sub 11−δ}, show some of the highest ionic conductivities among the known solid oxide electrolytes. Films of Cu and Ti substituted bismuth vanadate were prepared by an aerosol deposition method, a spray coating process also described as room temperature impact consolidation. Resultant films, several microns in thickness, were dense with good adhesion to the substrate. Scanning electron microscopy and high temperature X-ray diffraction were used to monitor the effects of temperature on the structure and microstructure of the film. The particle size remained nano-scale while microstrain decreased rapidly up to 500 °C, above which coarsening and texturing increased rapidly. Impedance measurements of films deposited on inter-digital electrodes revealed an annealing effect on the ionic conductivity, with the conductivity exceeding that of a screen printed film, and approaching that of bulk ceramic. - Highlights: • Cu and Ti doped bismuth vanadate films were prepared by aerosol deposition (AD). • Dense 3–5 μm thick films were deposited on alumina, silicon and gold electrodes. • Annealing of the AD-layer increases the conductivity by 1.5 orders of magnitude. • Effect of temperature on structure and microstructure was investigated.

  1. Electromigration Behaviors of Cu Reinforced Sn-3.5Ag Composite Solder Joints

    Science.gov (United States)

    Wang, Yan; Han, Jing; Ma, Limin; Zuo, Yong; Guo, Fu

    2016-09-01

    The composite approach, by incorporating small amounts of reinforcement particles in the solder matrix, has proven to be one of the effective ways to improve the reliability of solder joints. The effects of Cu addition on electromigration were investigated in this study by incorporating 2% volume fraction Cu particles into Sn-3.5Ag eutectic solder paste by the in situ process. The one-dimensional solder joints, designed to prevent the current crowding effect, were stressed under a constant current density of 104 A/cm2 at room temperature, and the temperature of the sample could reach 105 ± 5°C due to the Joule heating effect. Doping 2 vol.% Cu was found to retard the electromigration phenomenon effectively. After electric current stressing for 528 h, the growth rate of an interfacial intermetallic compound (IMC) layer at the anode decreased 73% in contrast to that of Sn-3.5Ag solder joints, and the IMC layer at the cathode was almost unchanged. The polarization effect of Cu reinforced composite solder joints was also apparently mitigated. In addition, the surface damage of the composite solder joints was relieved by incorporating 2 vol.% Cu particles. Compared to Sn-3.5Ag solder joints, which had protruded Cu6Sn5 and wrinkles of Sn-solder matrix on the surface, the solder joints with Cu addition had a more even surface.

  2. Structural and magnetic phase transitions in CeCu6 -xTx (T =Ag ,Pd )

    Science.gov (United States)

    Poudel, L.; de la Cruz, C.; Payzant, E. A.; May, A. F.; Koehler, M.; Garlea, V. O.; Taylor, A. E.; Parker, D. S.; Cao, H. B.; McGuire, M. A.; Tian, W.; Matsuda, M.; Jeen, H.; Lee, H. N.; Hong, T.; Calder, S.; Zhou, H. D.; Lumsden, M. D.; Keppens, V.; Mandrus, D.; Christianson, A. D.

    2015-12-01

    The structural and the magnetic properties of CeCu6 -xAgx (0 ≤x ≤0.85 ) and CeCu6 -xPdx (0 ≤x ≤0.4 ) have been studied using neutron diffraction, resonant ultrasound spectroscopy (RUS), x-ray diffraction measurements, and first principles calculations. The structural and magnetic phase diagrams of CeCu6 -xAgx and CeCu6 -xPdx as a function of Ag/Pd composition are reported. The end member, CeCu6, undergoes a structural phase transition from an orthorhombic (P n m a ) to a monoclinic (P 21/c ) phase at 240 K. In CeCu6 -xAgx , the structural phase transition temperature (Ts) decreases linearly with Ag concentration and extrapolates to zero at xS ≈0.1 . The structural transition in CeCu6 -xPdx remains unperturbed with Pd substitution within the range of our study. The lattice constant b slightly decreases with Ag/Pd doping, whereas a and c increase with an overall increase in the unit cell volume. Both systems, CeCu6 -xAgx and CeCu6 -xPdx , exhibit a magnetic quantum critical point (QCP), at x ≈0.2 and x ≈0.05 , respectively. Near the QCP, long range antiferromagnetic ordering takes place at an incommensurate wave vector (δ10 δ2), where δ1˜0.62 ,δ2˜0.25 ,x =0.125 for CeCu6 -xPdx and δ1˜0.64 ,δ2˜0.3 ,x =0.3 for CeCu6 -xAgx . The magnetic structure consists of an amplitude modulation of the Ce moments which are aligned along the c axis of the orthorhombic unit cell.

  3. Morphology and Shear Strength of Lead-Free Solder Joints with Sn3.0Ag0.5Cu Solder Paste Reinforced with Ceramic Nanoparticles

    Science.gov (United States)

    Yakymovych, A.; Plevachuk, Yu.; Švec, P.; Švec, P.; Janičkovič, D.; Šebo, P.; Beronská, N.; Roshanghias, A.; Ipser, H.

    2016-08-01

    To date, additions of different oxide nanoparticles is one of the most widespread procedures to improve the mechanical properties of metals and metal alloys. This research deals with the effect of minor ceramic nanoparticle additions (SiO2, TiO2 and ZrO2) on the microstructure and mechanical properties of Cu/solder/Cu joints. The reinforced Sn3.0Ag0.5Cu (SAC305) solder alloy with 0.5 wt.% and 1.0 wt.% of ceramic nanoparticles was prepared through mechanically stirring. The microstructure of as-solidified Cu/solder/Cu joints was studied using scanning electron microscopy. The additions of ceramic nanoparticles suppressed the growth of the intermetallic compound layer Cu6Sn5 at the interface solder/Cu and improved the microstructure of the joints. Furthermore, measurements of mechanical properties showed improved shear strength of Cu/composite solder/Cu joints compared to joints with unreinforced solder. This fact related to all investigated ceramic nanoinclusions and should be attributed to the adsorption of nanoparticles on the grain surface during solidification. However, this effect is less pronounced on increasing the nanoinclusion content from 0.5 wt.% to 1.0 wt.% due to agglomeration of nanoparticles. Moreover, a comparison analysis showed that the most beneficial influence was obtained by minor additions of SiO2 nanoparticles into the SAC305 solder alloy.

  4. Thermomechanical processing of CuTi4 alloy

    Directory of Open Access Journals (Sweden)

    Z. Rdzawski

    2010-09-01

    Full Text Available Purpose: One of the reasons behind the interest in copper titanium alloys was development of new materials to substitute copper beryllium alloys. The reason for selecting that material for studies was that in the early stages of decomposition of CuTi4 alloy a spinodal transformation takes place and ordering processes begin. Proper selection of heat treatment and plastic working conditions provides possibilities to produce very wide range of sets of properties by formation of the required alloy microstructure. Therefore the main objective of the study was to capture the changes in precipitation kinetics, especially in the relations between supersaturation and ageing or between supersaturaion, cold deformation and ageing in connection to the changes in microstructure and functional properties (mainly changes in hardness and electrical conductivity.Design/methodology/approach: Melting of the charge material was conducted in medium-frequency induction furnace, in a graphite crucible. The melted material after bath preparation was poured into a cast iron ingot mould (with graphite grease applied on the inside of dimensions 35 x 120 x 250 mm. The ingots after casting were peeled. The treated ingots were heated in resistance furnace at 900ºC for 1.5 hour and rolled down on a reversible two-high mill.Findings: Decomposition of supersaturated solid solution in that alloy is similar to the alloys produced in laboratory scale. The observed differences in microstructure after supersaturation were related to the presence of undissolved Ti particles and increased segregation of titanium distribution in copper matrix including microareas of individual grains. The mentioned factors influence the mechanism and kinetics of precipitation and subsequently the produced wide ranges of functional properties of the alloy.Research limitations/implications: Cold deformation (50% reduction of the alloy after supersaturation changes the mechanism and kinetics of

  5. Structure, phase composition and microhardness of vacuum-arc multilayered Ti/Al, Ti/Cu, Ti/Fe, Ti/Zr nano-structures with different periods

    Energy Technology Data Exchange (ETDEWEB)

    Demchishin, A.V., E-mail: ademch@meta.ua [Institute of Problems in Material Science, NASU, Kiev (Ukraine); Gnilitskyi, I., E-mail: iaroslav.gnilitskyi@unimore.it [DISMI – Department of Sciences and Methods for Engineering, University of Modena and Reggio Emilia, Reggio Emilia (Italy); Orazi, L., E-mail: leonardo.orazi@unimore.it [DISMI – Department of Sciences and Methods for Engineering, University of Modena and Reggio Emilia, Reggio Emilia (Italy); Ascari, A., E-mail: a.ascari@unibo.it [DIN – Department of Industrial Engineering, University of Bologna, Bologna (Italy)

    2015-07-01

    Highlights: • Multilayer coatings of Ti/Fe, Ti/Al, Ti/Cu and Ti/Zr are generated. • Microstructure and morphology of the different systems are investigated. • XR diffraction analysis was performed to investigate phases composition. • Effects of inter metallic phases on microhardess are investigated. • Correlations between parameters and layer thickness are outlined. - Abstract: The microstructure, phase composition and microhardness of multilayered Ti/Al, Ti/Cu, Ti/Fe and Ti/Zr condensates produced on stainless steel substrates via vacuum-arc evaporation of pure metals were studied. The sublayer periods (Λ) were regulated in the range 80–850 nm by varying the vacuum discharge current and the duration of the successive depositions of metallic plasma onto the substrates while maintaining the total deposition time constant. The regularity of the obtained nanostructures was investigated by scanning and transmission electron microscopy while phase compositions were identified with X-ray diffraction (XRD) analysis in order to evidence the presence of interdiffusion and the amount of intermetallics. Condensates cross sections were mechanically characterized by means of microhardness tests. Measurements were correlated to the periods and to the presence of intermetallics.

  6. 一种新型的Cu-P-Ag-In-Sb钎料的研究%Investigation of new Cu-P-Ag-In-Sb filler alloy

    Institute of Scientific and Technical Information of China (English)

    王晓蓉; 余丁坤; 贺艳明; 黄世盛; 陈融; 刘美玲; 杨胜凡

    2013-01-01

    A certain mass content of Ag,In and Sb were added into Cu-P filler alloy to decrease its melting temperature and brittleness. The effect of added constituents on the melting temperature,wettability,mechanical properties and brazing properties of filler alloy were analyzed by optical microscopy, scanning electron microscopy and differential scanning calorimetry. The results indicated that the added constituents are u-niformly dispersed in the filler alloy. Compared with the traditional Cu-P filler,the melting temperature of the new Cu-P-Ag-In-Sb filler alloy is 697 ~ 711 ℃. The wettability area of the Cu-P-Ag-In-Sb filler alloy is larger than that of Cu-P filler alloy at the same experimentation temperature. The tensile tests indicated that the tensile strength of the new filler alloy can research 718. 1 MPa. In addition,the new filler alloy is used to join copper and brass,and a compact bonding is obtained at the substrates/filler alloy interface. All kinds of phases are uniformly dispersed in the brazing seam,and no defects are detected. At last,the new Cu-P-Ag-In-Sb filler alloy satisfies the requirement.%为了降低Cu-P钎料的熔化温度和改善其脆性,该研究在Cu-P钎料内复合一定质量分数的Ag,In和Sb,利用金相显微镜、扫描电镜、差热分析仪等研究了添加组元对钎料显微组织、熔化温度、铺展性、力学性能和钎焊性能的影响.结果表明,各添加组元在钎料内分布均匀,实现了预期的目标;添加3种组元后钎料的熔化温度为697 ~711℃,与传统的Cu-P钎料相比已大为降低;相同的钎焊温度下,添加Ag,In和Sb的Cu-P钎料的铺展面积明显大于Cu-P钎料;拉伸试验表明,五元系钎料的抗拉强度达到了718.1 MPa.此外,采用该钎料钎焊黄铜与紫铜得到的接头内母材/钎料界面处形成了致密的连接,无缺陷存在;钎缝组织内各相分布均匀,无气孔夹渣存在,满足使用要求.

  7. Topological description of mechanical behavior of Cu, Ag and Au: A first-principle study

    Directory of Open Access Journals (Sweden)

    M Saghayezhian

    2011-12-01

    Full Text Available  Mechanical properties and stress-strain curves of Cu, Ag and Au single crystals are calculated using ab initio methods. Elastic and Plastic regions are scrutinized. Yield stress and slope of these curves can shed light on brittlenesss and ductility of these metals that prove Cu, despite its high ultimate tensile strength, is less ductile than Au and Ag. Analysis of topology of charge density along with stress-strain curves shows that the elastic-plastic transition accompanies topological transition and for these metals, both transitions occur in the same strain. Some charactristics of critical point, especially bond points, are inspected.

  8. Cluster reaction of [Ag8]-/[Cu8]- with chlorine: Evidence for the harpoon mechanism?

    Science.gov (United States)

    Luo, Zhixun; Berkdemir, Cüneyt; Smith, Jordan C.; Castleman, A. W.

    2013-09-01

    To examine the question whether the harpoon mechanism can account for the reactive behavior of microscopic charged systems, we have investigated the reactivity of coinage metal clusters in gas phase. Our studies reveal that the reactivity between [Cu8]-/[Ag8]- and chlorine gas is consistent with the harpoon mechanism. An increased reactive cross section is noted through our theoretical estimation based on two methods, ascribed to a long-range transfer of valence electrons from the [Cu8]-/[Ag8]- cluster to chlorine. Insights into this reactivity will be of interest to other researchers working on obtaining a better understanding of the reaction mechanisms of such superatomic species.

  9. A new dental powder from nanocrystalline melt-spun Ag-Sn-Cu alloy ribbons

    International Nuclear Information System (INIS)

    A new non-gamma-two dental powder has been developed from nanocrystalline melt-spun Ag-Sn-Cu alloy ribbons. The amalgam made from this powder exhibits excellent properties for dental filling. The nanocrystalline microstructure was found for the first time in as-spun and heat treated Ag(27-28)Sn(9-32) Cu alloy ribbons, using X-ray diffraction, scanning electron microscopy and energy-dispersive spectroscopy. As-spun ribbons exhibited a multi-phase microstructure with preferred existence of β (Ag4Sn) phase formed during rapid solidification (RS) due to supersaturating of copper (Cu) atoms and homogenous nanostructure with subgrain size of about (40-50) nm, which seems to be developed during RS process and can be caused by eutectic reaction of the Ag3Sn/Ag4Sn-Cu3Sn system. In heat treated ribbons the clustering of Cu atoms was always favored and stable in an ageing temperature and time interval determined by Cu content. The heat treatment led to essential changes of subgrain morphology, resulted in the appearance of large-angle boundaries with fine Cu3Sn precipitates and forming typical recrystallization twins. Such a microstructure variation in melt-spun ribbons could eventually yield enhanced technological, clinical and physical properties of the dental products, controlled by the ADA Specification N deg 1 and reported before. Thus, using the rapid solidification technique a new non-gamma-two dental material of high quality, nanocrystalline ribbon powder, can be produced. Copyright (2003) AD-TECH - International Foundation for the Advancement of Technology Ltd

  10. Properties of TiC-TiB2/Cu-Ni composites prepared by SHS%SHS工艺制备TiC-TiB2/Cu-Ni复合材料的性能

    Institute of Scientific and Technical Information of China (English)

    朱春城; 赫晓东; 曲伟

    2003-01-01

    以Ti和B4C粉末为主要原料,以金属Cu、Ni为粘结剂,利用SHS/PHIP工艺制备了TiC-TiB2/Cu-Ni系复合材料,通过实验研究了该系列复合材料的微观结构特征和力学性能.结果表明,TiC-TiB2/Cu-Ni系复合材料中只有TiC、TiB2、及Cu(Ni)相存在;随着金属含量的增加,燃烧温度下降,颗粒尺寸变小;由于Ni的加入改善了陶瓷/金属的浸润性,双掺Cu-Ni的TiC-TiB2陶瓷基复合材料力学性能最高,其相对密度为98.5%、断裂韧性最高值达到11.6 MPa*m1/2.

  11. Antibacterial activities of gel-derived Ag-TiO2-SiO2 nanomaterials under different light irradiation

    Directory of Open Access Journals (Sweden)

    Nhung Thi-Tuyet Hoang

    2016-03-01

    Full Text Available Gel-derived Ag-TiO2-SiO2 nanomaterials were prepared by sol-gel process to determine their disinfection efficiency under UV-C, UV-A, solar irradiations and in dark condition. The surface morphology and properties of gel-derived Ag-TiO2-SiO2 nanomaterials were characterized by X-ray diffraction (XRD, transmission electron microscopy (TEM and BET specific surface area. The results showed that the average particle size of Ag-TiO2-SiO2 was around 10.9–16.3 nm. SiO2 mixed with TiO2 (the weight ratio of Si to Ti = 10:90 in the synthesis of Ag-TiO2-SiO2 by sol-gel process was found to increase the specific surface area of the obtained photocatalyst (164.5 m2g−1 as compared with that of commercial TiO2(P25 (53.1 m2g−1. Meanwhile, Ag doped in TiO2 (the mole ratio of Ag to TiO2 = 1% decreased the specific surface area to 147.3 m2g−1. The antibacterial activities of gel-derived Ag-TiO2-SiO2 nanomaterials were evaluated by photocatalytic reaction against Escherichia coli bacteria (ATCC®25922. Ag-TiO2-SiO2 nanomaterials was observed to achieve higher disinfection efficiency than the catalyst without silver since both Ag nanoparticles and ions exhibit a strong antibacterial activity and promoted the e− – h+ separation of TiO2. The bactericidal activity of Ag-TiO2-SiO2 nanomaterial under light irradiation was superior to that under dark and only light. The reaction time to achieve a reduction by 6 log of bacteria of UV-C light alone and Ag-TiO2-SiO2 with UV-C light irradiation were 30 and 5 minutes, respectively. In addition, the superior synergistic effect of Ag-TiO2-SiO2 under both UV-A and solar light as compared to that under UV-C counterpart could be ascribed to the red-shift of the absorbance spectrum of the Ag doped TiO2-based catalyst.

  12. Influence of Microstructure Refinement on Strain Strengthening Effect of Cu-Ag Alloy in situ Filamentary Composites

    Institute of Scientific and Technical Information of China (English)

    Ning Yuantao; Zhang Xiaohui; Wu Yuejun

    2007-01-01

    The Cu-10Ag and Cu-1OAg-RE (RE = Ce, Y) alloys in situ filamentary composites were prepared. The relationships of the ultimate tensile strengths ( UTS) and microstructure changes of the composites were studied. With increasing of the true strain η, the sizes of the Ag filaments in the composites reduce according to a negative exponential function of η : d = d0·exp (-0. 228η) , and the UTS of the composites increase also according to a exponential function of η, σcu/Ag = σ0(cu) + [Kcu/Ag d0 -1/2 ]exp( η/3), here d0 is a coefficient related to the original size of Ag phase. The strain strengthening follows a two-stage strengthening effect. The strengthening mechanisms are related to changes of microstructure in the deformation process. At the low true strain stage, the strengthening is mainly caused by the working hardening controlled by dislocation increasing; at the high true strain stage, the strengthening is mainly caused by the super-fine Ag filaments and the large coherent interfaces between the Ag filaments and Cu matrix. The trace RE additions and the rapid solidification obviously refine scales of the Ag filament of the composites, and therefore obviously increased the strain strengthening rate. The microstructure refinement of the composites, especially the refinement of Ag filament, is the main reason of the high strain strengthening effect in Cu-Ag alloy in situ filamentary composites.

  13. Ageing behavior in the Cu-10 wt.%Al and Cu-10 wt.%Al-4 wt.%Ag alloys

    Energy Technology Data Exchange (ETDEWEB)

    Adorno, A.T. [Departamento de Fisico-Quimica, Instituto de Quimica-Unesp, Caixa Postal 355, 14801-970 Araraquara SP (Brazil)], E-mail: atadorno@iq.unesp.br; Silva, R.A.G. [Departamento de Fisico-Quimica, Instituto de Quimica-Unesp, Caixa Postal 355, 14801-970 Araraquara SP (Brazil)

    2009-04-03

    In this work the ageing behavior in the Cu-10 wt.%Al and Cu-10 wt.%Al-4 wt.%Ag alloys was studied using microhardness measurements, differential scanning calorimetry (DSC), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and in situ high temperature X-ray diffractometry (XRD). The results indicated that the presence of Ag disturbs the ({alpha} + {gamma}{sub 1}) pearlitic formation in the Cu-10%Al, stabilize the martensitic phase and causes the reaction of the consumption of {alpha} phase to be the dominant process on ageing at the temperature and time ranges considered. This is due the dissolution of Cu atoms in the martensitic matrix which decreases the Al relative fraction, thus decreasing the ordering degree of the {beta}{sup '}{yields}{beta}{sup '}{sub 1} ordered martensite and making the consumption of {alpha} phase the dominant process. This process is intensified by the presence of Ag precipitates that will interfere in the Al diffusion process.

  14. The characteristics of novel bimodal Ag-TiO2 nanoparticles generated by hybrid laser-ultrasonic technique

    Science.gov (United States)

    Hamad, Abubaker; Li, Lin; Liu, Zhu; Zhong, Xiang Li; Burke, Grace; Wang, Tao

    2016-04-01

    Silver-titania (Ag-TiO2) nanoparticles with smaller Ag nanoparticles attached to larger TiO2 nanoparticles were generated by hybrid ultrasonic vibration and picosecond laser ablation of Ag and Ti bulk targets in deionised water, for the first time. The laser has a wavelength of 1064 nm and a pulse duration of 10 ps. It was observed that without the ultrasonic vibration, Ag and TiO2 nanoparticles did not combine, thus the role of ultrasonic vibration is essential. In addition, colloidal TiO2 and Ag nanoparticles were generated separately for comparison under the same laser beam characteristics and process conditions. The absorption spectra of colloidal Ag-TiO2 cluster nanoparticles were examined by UV-Vis spectroscopy, and size distribution was characterised using transmission electron microscopy. The morphology and composition of Ag-TiO2 nanoparticles were examined using scanning transmission electron microscopy in high-angle annular dark field, and energy-dispersive X-ray spectroscopy. The crystalline structures were investigated by X-ray diffraction. The size of larger TiO2 particles was in the range 30-150 nm, and the smaller-sized Ag nanoparticles attached to the TiO2 was mainly in the range of 10-15 nm. The yield is more than 50 % with the remaining nanoparticles in the form of uncombined Ag and TiO2. The nanoparticles generated had strong antibacterial effects as tested against E. coli. A discussion is given on the role of ultrasonic vibration in the formation of Ag-TiO2 hybrid nanoparticles by picosecond laser ablation.

  15. Global optimization and oxygen dissociation on polyicosahedral Ag32Cu6 core-shell cluster for alkaline fuel cells

    Science.gov (United States)

    Zhang, N.; Chen, F. Y.; Wu, X. Q.

    2015-07-01

    The structure of 38 atoms Ag-Cu cluster is studied by using a combination of a genetic algorithm global optimization technique and density functional theory (DFT) calculations. It is demonstrated that the truncated octahedral (TO) Ag32Cu6 core-shell cluster is less stable than the polyicosahedral (pIh) Ag32Cu6 core-shell cluster from the atomistic models and the DFT calculation shows an agreeable result, so the newfound pIh Ag32Cu6 core-shell cluster is further investigated for potential application for O2 dissociation in oxygen reduction reaction (ORR). The activation energy barrier for the O2 dissociation on pIh Ag32Cu6 core-shell cluster is 0.715 eV, where the d-band center is -3.395 eV and the density of states at the Fermi energy level is maximal for the favorable absorption site, indicating that the catalytic activity is attributed to a maximal charge transfer between an oxygen molecule and the pIh Ag32Cu6 core-shell cluster. This work revises the earlier idea that Ag32Cu6 core-shell nanoparticles are not suitable as ORR catalysts and confirms that Ag-Cu nanoalloy is a potential candidate to substitute noble Pt-based catalyst in alkaline fuel cells.

  16. A study of a fast ionic conductor - Ag[sub 1-x]Cu[sub x]I

    Energy Technology Data Exchange (ETDEWEB)

    Nalini, B. (Dept. of Physics, Bharathiar Univ., Coimbatore (India) Dept. of Physics, Indian Inst. of Tech., Madras (India)); Selvasekarapandian, S. (Dept. of Physics, Bharathiar Univ., Coimbatore (India) Dept. of Physics, Indian Inst. of Tech., Madras (India)); Jayashree, J. (Dept. of Physics, Bharathiar Univ., Coimbatore (India) Dept. of Physics, Indian Inst. of Tech., Madras (India)); Hariharan, K. (Dept. of Physics, Bharathiar Univ., Coimbatore (India) Dept. of Physics, Indian Inst. of Tech., Madras (India))

    1994-01-01

    The Conductivity of AgI-CuI system has been studied. Two molar ratios of the system Ag[sub 1-x]Cu[sub x]I with x=0.05 and 0.15 have been taken. The transition temperatures are observed with conductivity measurements. (orig.)

  17. Photocatalytic degradation of dairy effluent using AgTiO2 nanostructures/polyurethane nanofiber membrane

    DEFF Research Database (Denmark)

    Kanjwal, Muzafar Ahmad; Barakat, Nasser A.M.; Chronakis, Ioannis S.

    2015-01-01

    Dairy effluent (DE) is environmentally toxic and needs special attention. Photocatalytic degradation of DE was studied using novel polyurethane (PU)-based membranes. Typically, silver-titanium dioxide nanofibers (AgTiO2 NFs) and silver-titanium dioxide nanoparticles (AgTiO2 NPs) were individually...

  18. Highly selective and sensitive reversible sensor for Cu (II) detection based on hollow TiO2 spheres modified by fluorescein hydrozine-3,6-diacetic acid

    International Nuclear Information System (INIS)

    ABSTRACT: We report a novel electrochemical sensor for the sensitive detection of Cu(II) ions based on hollow TiO2 spheres modified by fluorescein hydrozine-3,6-diacetic acid (FH). Herein, hollow TiO2 spheres were synthesized via the hydrothermal method with the carbon spheres as the template then modified by (3-aminopropyl) trimethoxysilane (APTMS) to form the amino group-modified TiO2 spheres (TiO2–APTMS). Simultaneously, FH was activated by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride/N-hydroxysuccinimide, in which the carboxyl groups were changed to active ester groups. Consequently, TiO2–APTMS spheres could be modified by FH with the activated ester groups via the bonding of amide groups to produce the composite electrode with TiO2 and FH (Au–TiO2–FH). The resulting Au–TiO2–FH was used to develop the electrochemical sensor for the highly sensitive detection of Cu2+ in aqueous solution because of the coordination between Cu2+ and FH, the whole process of which was determined via electrochemical impedance spectroscopy. The results showed that a detection limit of 4.29 pM of the developed sensor within the range from 5 pM to 1 μM was obtained. Furthermore, the interference from other metal ions, such as K+, Na+, Ag+, Ni2+, Mn2+, Zn2+, Mg2+, and Fe3+, associated with Cu2+ analysis could be effectively inhibited. Most importantly, the developed electrochemical sensor could be reproduced and degraded by UV light irradiation because of the light degradation ability of TiO2 toward FH. This novel sensor could also be used to detect other heavy metal ions when TiO2 spheres are modified by the relative FH

  19. Irradiation induced dissolution of Cu and growth of Ag nanoclusters in Cu/Ag ion-exchanged soda-lime glass

    CERN Document Server

    Manikandan, D; Magudapathy, P; Nair, K G M

    2002-01-01

    Complex metal nanoclusters of Cu/Ag are formed in a soda-lime glass matrix by sequential copper and silver ion-exchange followed by ion irradiation. Optical absorption measurements showed signature of copper clusters alone in the Cu/Ag ion-exchanged sample. Irradiation of the ion-exchanged sample with He sup + ions of energy 100 keV of different fluences resulted in the growth of the silver clusters with, the optical absorption spectrum exhibiting two peaks corresponding to the surface plasmon resonance of copper and silver in the same matrix. It was found that with increase in fluence the silver clusters begin to grow while the already formed copper clusters segregate, which can be visualized from the absorption spectra, where the copper band disappears while the silver band grows with the increase in dose. Vacuum annealing of the Cu/Ag ion-exchanged samples resulted in complete disappearance of copper clusters while the silver clusters grew till they attained saturation. The glancing incidence X-ray diffrac...

  20. Ag2S/CdS/TiO2 Nanotube Array Films with High Photocurrent Density by Spotting Sample Method

    OpenAIRE

    Sun, Hong; Zhao, Peini; Zhang, Fanjun; Liu, Yuliang; Hao, Jingcheng

    2015-01-01

    Ag2S/CdS/TiO2 hybrid nanotube array films (Ag2S/CdS/TNTs) were prepared by selectively depositing a narrow-gap semiconductor—Ag2S (0.9 eV) quantum dots (QDs)—in the local domain of the CdS/TiO2 nanotube array films by spotting sample method (SSM). The improvement of sunlight absorption ability and photocurrent density of titanium dioxide (TiO2) nanotube array films (TNTs) which were obtained by anodic oxidation method was realized because of modifying semiconductor QDs. The CdS/TNTs, Ag2S/TNT...

  1. SiO{sub 2}/TiO{sub 2}/Ag multilayered microspheres: Preparation, characterization, and enhanced infrared radiation property

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Xiaoyun, E-mail: creekye@163.com; Cai, Shuguang; Zheng, Chan; Xiao, Xueqing; Hua, Nengbin; Huang, Yanyi

    2015-08-01

    Graphical abstract: - Highlights: • Novel SiO{sub 2}/TiO{sub 2}/Ag core–shell multilayer microspheres with tunable TiO{sub 2} and Ag layers were prepared. • Complete Ag shell was fabricated by Ag-seeds growth process. • The SiO{sub 2}/TiO{sub 2}/Ag core–shell composites exhibited the good infrared emissivity value than SiO{sub 2} and SiO{sub 2}/TiO{sub 2} substrates. - Abstract: SiO{sub 2}/TiO{sub 2}/Ag core–shell multilayered microspheres were successfully synthesized by the combination of anatase of TiO{sub 2} modification on the surfaces of SiO{sub 2} spheres and subsequent Ag nanoparticles deposition and Ag shell growth with face-centered cubic (fcc) Ag. The composites were characterized by TEM, FT-IR, UV–vis, Raman spectroscopy and XRD, respectively. The infrared emissivity values during 8–14 μm wavelengths of the composites were measured. The results revealed that TiO{sub 2} thin layers with the thickness of ∼10 nm were coated onto the SiO{sub 2} spheres of ∼220 nm in diameter. The thickness of the TiO{sub 2} layers was controlled by varying the amount of TBOT precursor. Homogeneous Ag nanoparticles of ∼20 nm in size were successfully deposited by ultrasound on the surfaces of SiO{sub 2}/TiO{sub 2} composites, followed by complete covering of Ag shell. The infrared emissivity value of the SiO{sub 2}/TiO{sub 2} composites was decreased than that of pure SiO{sub 2}. Moreover, the introduction of the Ag brought the remarkably lower infrared emissivity value of the SiO{sub 2}/TiO{sub 2}/Ag multilayered microspheres with the lowest value down to 0.424. Strong chemical effects in the interface of SiO{sub 2}/TiO{sub 2} core–shell composites and high reflection performance of the metal Ag are two decisive factors for the improved infrared radiation performance of the SiO{sub 2}/TiO{sub 2}/Ag multilayered microspheres.

  2. Low temperature properties of organic-inorganic Ag/p-CuPc/n-GaAs/Ag photoelectric sensor

    Institute of Scientific and Technical Information of China (English)

    Kh.S.KARIMOV; I.QAZI; T.A.KHAN; M.I.FEDOROV

    2008-01-01

    A thin organic film of p-type semiconducting copper phthalocynanine (CuPc) was deposited by vacuum evaporation on an n-type GaAs single-crystal semiconductor substrate. The fabricated Ag/p-CuPc/n-GaAs/Ag sensor was carried through an ageing process to stabilize the parameters. Voltage-current characteristics and photoelectrical response of the sensor were investigated at a wide temperature range of 82 to 350 K. Photoelectric characteristics were measured under nonmodulated filament-lamp illumination. It was observed that such sensor parameters as rectification ratio, threshold voltage, junction, shunt and series resistances, open-circuit voltage and short circuit current are temperature-dependent. It was found that wide-range voltage-current characteristics of the sensor may be de scribed similarly to that of a Schottky barrier diode. Using the experimental data on voltage-current characteristics and absorbance of the CuPc films, the energy-band diagram of the p-CuPc/n-GaAs heterojunction was developed. It was shown that data obtained from simulation of an equivalent circuit of photoelectric sensor agreed with experimental results.

  3. Photoelectrochemical Properties of AgX(Cl, Br)-TiO2 Heterojunction Nanocomposites%AgX(Cl,Br)-TiO2复合材料光电化学研究

    Institute of Scientific and Technical Information of China (English)

    张亚萍; 张安玉; 于濂清; 董开拓; 李焰; 郝兰众

    2016-01-01

    Sunlight-driven photoelectrochemical water splitting into hydrogen and oxygen presents a great way to develop green solar energy. Titanium dioxide is believed to be one of the most stable photoanode materials. Here, ordered TiO2 nanotube arrays were prepared by anodic oxidation method. Then AgCl or AgBr were successfully de-posited on TiO2 nanotube arrays by dipping method. The morphology and crystal structures of AgX-TiO2 heterojunc-tions were tested by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). The results showed that AgCl was deposited with 50 nm thickness and 1μm length structure, while AgBr can be evenly dis-persed on surface of TiO2 nanotube arrays. AgX amount increased with extending impregnation recycling time, and formed different surface morphology of nanotube arrays. Electrochemical test indicated that suitable amount of AgBr in the TiO2nanotube arrays improved the photoelectrochemical properties, an optimum photoconversion efficiency obtained at 2.67%. Excess deposited AgX will lead to incompletely utilizing sunlight due to blocked nanotube arrays, and result in lower photoconversion efficiency.%以阳极氧化法制备的高度有序TiO2纳米管阵列作为基底,用沉积法在TiO2纳米管上复合AgCl和AgBr纳米颗粒形成AgX-TiO2异质结.采用XRD、FESEM等分析结果表征,结果表明:AgCl以厚度为50 nm、长度为1μm的片状结构堆叠分布,AgBr的沉积过程较温和,沉积速度相对更慢,均匀分散在TiO2纳米管表面;随着沉积次数增加,纳米管阵列表面形貌发生改变.光电化学研究表明:样品经过复合AgBr后,可以有效提高TiO2纳米管阵列的光电转化效率,当AgBr沉积1次时,其光电转化效率达到2.67%,而复合的AgCl对于TiO2纳米管阵列的光电效率改善效果欠佳.

  4. Dielectric properties of CaCu2.9Co0.1Ti4O12 and CaCu3Ti3.9Co0.1O12 ceramics synthesized by semi-wet route

    Indian Academy of Sciences (India)

    K D Mandal; Alok Kumar Rai; Laxman Singh; Om Parkash

    2012-06-01

    The effect of Co+2 doping on Cu+2 and Ti+4 sites in calcium copper titanate, CaCu3Ti4O12, has been examined. The doped compositions, CaCu3−CoTi4O12 and CaCu3Ti4−CoO12 ( = 0.10) ceramics, were prepared by novel semi-wet route. In this method, calcium, copper and cobalt salts were taken in solution form and TiO2 was used in solid form. XRD analysis confirmed the formation of single-phase materials. Structure of CaCu3Ti4O12 does not change on doping with cobalt either on Cu-site or Ti-site and it remains cubic. Scanning electron micrographs (SEM) show average grain size of CaCu2.9Co0.1Ti4O12 to be larger than CaCu3Ti3.9Co0.1O12 ceramic. Energy dispersive X-ray spectroscopy (EDX) studies confined the purity of parent and Co-doped CaCu3Ti4O12 ceramics. Dielectric constant (r) and dielectric loss (tan ) of CaCu2.9Co0.1Ti4O12 is comparatively higher than that of CaCu3Ti3.9Co0.1O12 ceramic at all measured frequencies and temperatures.

  5. Preparation of mesoporous Ag-containing TiO{sub 2} heterojunction film and its photocatalytic property

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Q. Y., E-mail: wangqingyao0532@163.com [Ludong University, School of Chemistry and Materials Science (China); Qiao, J. L. [Jilin Agricultural University, College of Horticulture (China); Cui, X. Y. [Mudanjiang Medical University, School of Public Health (China); Zhong, J. S. [Hangzhou Dianzi University, College of Materials and Environmental Engineering (China); Xu, Y. B.; Zhang, S. H.; Zhang, Q. H.; Chang, P.; Li, M.; Zhang, C.; Gao, S. M., E-mail: gaosm@ustc.edu [Ludong University, School of Chemistry and Materials Science (China)

    2015-03-15

    Mesoporous Ag/TiO{sub 2} heterojunction films (Ag-MTHF) with enhanced photocatalytic activity were synthesized by a three-step approach including an electrochemical anodization technique followed by successive ionic layer adsorption and reaction (SILAR) and solvothermal methods. The distribution of Ag nanoparticles on the inner structure of the mesoporous TiO{sub 2} film was confirmed by field emission scanning electron (FE-SEM) and transmission electron microscopes (TEM). The formation progress of the novel mesoporous Ag/TiO{sub 2} nanojunction film with Ag average diameter of 17 nm was illuminated. The formed nanojunction between Ag and TiO{sub 2} nanoparticles largely enhanced the photocatalytic degradation of methyl orangey (MO), and the corresponding mechanism was proposed.

  6. Low turn-on field and high field emission current density from Ag/TiO2 nanocomposite

    Science.gov (United States)

    Patil, Girish P.; Deore, Amol B.; Bagal, Vivekanand S.; Late, Dattatray J.; More, Mahendra A.; Chavan, Padmakar G.

    2016-07-01

    High current density of 1.24 mA/cm2 was drawn at an applied field of 4.4 V/μm from Ag/TiO2 nanocomposite. Also the turn-on field has been reduced from 3.9 V/μm to 2.7 V/μm for the emission current density of 10 μA/cm2. Ag/TiO2 nanocomposite was synthesized by using UV-switchable reducing agent. TiO2 nanotube wall was decorated by Ag nanoparticles with average diameter of 17 nm. To the best of our knowledge this is the first report on the field emission studies of Ag/TiO2 nanocomposite. Simple synthesis route coupled with superior field emission properties indicate the possible use of Ag/TiO2 nanocomposite for micro/nanoelectronic devices.

  7. The photo-catalytic activities of MP (M = Ba, Ca, Cu, Sr, Ag; P = PO43-, HPO42-) microparticles

    Science.gov (United States)

    Zhang, Fan; Shi, Yuanji; Zhao, Zongshan; Song, Weijie; Cheng, Yang

    2014-02-01

    For the good performance of apatite-based materials in the removal of dyes and their environment-friendly advantage, five kinds of apatite microparticles of MP (M = Ba, Ca, Cu, Sr, Ag; P = PO43-, HPO42-) were synthesized by a simple precipitation method and their photo-catalytic properties were invested. Better performance in the decolorization of methyl orange (MO) under the assistance of H2O2 than that of TiO2 were obtained for all the MPs. The photo-catalytic activity was mainly affected by surface area, energy band, impurity, crystallinity and crystal structure. The DFT calculation results demonstrated that the 2p of O and 3p of P in PO43- played the main role in the photo-catalytic process. This work would be helpful to design and synthesize low cost apatite materials with good photo-catalytic performance.

  8. Controlled synthesis and photocatalysis of sea urchin-like Fe3O4@TiO2@Ag nanocomposites

    Science.gov (United States)

    Zhao, Yilin; Tao, Chengran; Xiao, Gang; Wei, Guipeng; Li, Linghui; Liu, Changxia; Su, Haijia

    2016-02-01

    Based on the synergistic photocatalytic activities of nano-sized TiO2 and Ag, as well as the magnetic properties of Fe3O4, a sea urchin-like Fe3O4@TiO2@Ag nanocomposite (Fe3O4@TiO2@Ag NCs) is controllably synthesized with tunable cavity size, adjustable shell layer of TiO2 nanofiber, higher structural stability and larger specific surface area. Here, Fe3O4@TiO2@Ag NCs are obtained with Fe3O4 as the core and nanofiber TiO2/Fe3O4/Ag nanoheterojunctions as the shell; and Ag nanoparticles with diameter of approximately 4 nm are loaded both on TiO2 nanofibers and inside the cavities of sea urchin-like Fe3O4@TiO2 nanocomposites uniformly. Ag nanoparticles lead to the production of more photogenerated charges in the TiO2/Fe3O4/Ag heterojunction via LSPR absorption, and enhance the band-gap absorption of TiO2, while the Fe3O4 cocatalyst provides the active sites for oxygen reduction by the effective transfer of photogenerated electrons to oxygen. So the photocatalytic performance is improved due to the synergistic effect of TiO2/Fe3O4/Ag nanoheterojunctions. As photocatalysts under UV and visible irradiation, the as-synthesized nanocomposites display enhanced photocatalytic and recycling properties for the degradation of ampicillin. Moreover, they present better broad-spectrum antibiosis under visible irradiation. The enhanced photocatalytic activity and excellent chemical stability, in combination with the magnetic recyclability, makes this multifunctional nanostructure a promising candidate for antibiosis and remediation in aquatic environmental contamination in the future.Based on the synergistic photocatalytic activities of nano-sized TiO2 and Ag, as well as the magnetic properties of Fe3O4, a sea urchin-like Fe3O4@TiO2@Ag nanocomposite (Fe3O4@TiO2@Ag NCs) is controllably synthesized with tunable cavity size, adjustable shell layer of TiO2 nanofiber, higher structural stability and larger specific surface area. Here, Fe3O4@TiO2@Ag NCs are obtained with Fe3O4 as the

  9. Formation process of liquid in interface of Ti/Cu contact reaction couple

    Institute of Scientific and Technical Information of China (English)

    WU Ming-fang; YU Chun; YU Zhi-shi; LI Rui-feng

    2005-01-01

    By using the Ti/Cu contact reaction couples,the dissolution behavior of Ti and Cu in the eutectic reaction process was investigated under different conditions.The results show that the formation of eutectic liquid phase has a directional property,I.e.the eutectic liquid phase forms first at the Cu side and then spreads along the depth direction of Cu.The width of the eutectic liquid zone when Ti is placed on Cu is wider than that when Ti is placed under Cu.The shape of the upside liquid zone is wave-like.This phenomenon indicates that the formation process and spreading behavior in the upside are different from those in the underside,and there exists void effect in the Cu side of underside liquid zone,this will result in the delaying phenomenon of the contact reaction between Ti and Cu,and distinctly different shapes of the both liquid zones.The formation process of Ti/Cu eutectic liquid zone is similar to that of the traditional solid-state diffusion layer,and the relationship between the width of liquid zone and holding time obeys a square root law.

  10. Synthesis and visible light photoactivity of anatase Ag, and garlic loaded TiO2 nanocrystalline catalyst

    Science.gov (United States)

    An excellent visible light activated Ag and S doped TiO2 nanocatalyst was prepared by using AgNO3 and garlic (Allium sativum) as Ag+ and sulfur sources, respectively. The catalyst resisted the change from anatase to rutile phase even at calcination at 700 oC. The photocatalytic e...

  11. Sequential laser and ultrasonic wave generation of TiO2@Ag core-shell nanoparticles and their anti-bacterial properties.

    Science.gov (United States)

    Hamad, Abubaker Hassan; Li, Lin; Liu, Zhu; Zhong, Xiang Li; Wang, Tao

    2016-02-01

    Core-shell nanoparticles have unusual physical, chemical and biological properties. Until now, for the Ag and TiO2 combination, only Ag core and TiO2 shell nanoparticles have been practically demonstrated. In this investigation, novel TiO2@Ag core-shell (TiO2 core and Ag shell) nanoparticles were produced via ultrasonic vibration of Ag-TiO2 compound nanoparticles. A bulk Ti/Ag alloy plate was used to generate colloidal Ag-TiO2 compound nanoparticles via picosecond laser ablation in deionised water. The colloidal nanoparticles were then sonicated in an ultrasonic bath to generate TiO2@Ag core-shell nanoparticles. They were characterised using a UV-VIS spectrometer, transmission electron microscopy (TEM), high-angle annular dark-field-Scanning transmission electron microscopy (HAADF-STEM), energy-dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The Ag-TiO2 compound and the TiO2@Ag core-shell nanoparticles were examined for their antibacterial activity against Escherichia coli (E. coli) JM109 strain bacteria and compared with those of Ag and TiO2 nanoparticles. The antibacterial activity of the core-shell nanoparticles was slightly better than that of the compound nanoparticles at the same concentration under standard laboratory light conditions and both were better than the TiO2 nanoparticles but not as good as the Ag nanoparticles.

  12. A study on photocatalytic activity of micro-arc oxidation TiO{sub 2} films and Ag{sup +}/MAO-TiO{sub 2} composite films

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, N. [School of Materials Science and Engineering, Changzhou University, Changzhou 213164 (China); Jiangsu Key Laboratory of Materials Surface Science and Technology, Changzhou University, Changzhou 213164 (China); Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu (China); Song, R.G., E-mail: songrg@hotmail.com [School of Materials Science and Engineering, Changzhou University, Changzhou 213164 (China); Jiangsu Key Laboratory of Materials Surface Science and Technology, Changzhou University, Changzhou 213164 (China); Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu (China); Xiang, B.; Li, H.; Wang, Z.X.; Wang, C. [School of Materials Science and Engineering, Changzhou University, Changzhou 213164 (China); Jiangsu Key Laboratory of Materials Surface Science and Technology, Changzhou University, Changzhou 213164 (China); Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu (China)

    2015-08-30

    Highlights: • The optimum voltage and concentration of micro-arc oxidation (MAO) for photocatalytic activity have been studied. • The most superior treatment time and concentration for Ag{sup +} impregnation have been discussed under the optimum MAO condition above. • Mechanism of influence on impregnation time for Ag+MAO-TiO{sub 2} composite films have been well investigated. • MAO-TiO{sub 2} films and Ag+MAO-TiO{sub 2} composite films were compared each other on photocatalytic efficiency. - Abstract: First, micro-arc oxidation (MAO) TiO{sub 2} films have been prepared on pure titanium in a phosphate-based electrolyte, and then the Ag{sup +}/MAO-TiO{sub 2} composite films have been fabricated by Ag{sup +} impregnation in this paper. The microstructure and composition of MAO-TiO{sub 2} films and Ag{sup +}/MAO-TiO{sub 2} composite films have been studied by means of scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy-dispersive X-ray spectroscopy (EDS). The photocatalytic activity of both films was evaluated by photocatalytic decolorization of methylene blue (MB) in aqueous solution as a model pollutant under sunlight irradiation simulation with homemade ultraviolet–visible spectroscopy (UV–vis). The results showed that the photocatalytic activity of MAO-TiO{sub 2} films increased with increasing the applied voltage and concentration in a certain scope. The morphology of Ag{sup +}/MAO-TiO{sub 2} composite films were of significantly difference and superior photocatalytic activity compared to the MAO-TiO{sub 2} film. Also, Ag{sup +} impregnation was able to enhance the photocatalytic efficiency of MAO-TiO{sub 2} film.

  13. Optical properties of TiO2 thin films after Ag ion implantation

    International Nuclear Information System (INIS)

    Metal plasma ion implantation has being successfully developed for improving the electronic and optical properties of semiconductor materials. Prior to deposition, a TiO2 colloidal suspension was synthesized by microwave-induced thermal hydrolysis of the titanium tetrachloride aqueous solution. The TiO2 thin film was optimized to obtain a high-purity crystalline anatase phase by calcinations at 550 deg. C. The TiO2 coating was uniform without aggregation, which provided good photo conversion efficiency. Ag ion implantation into the as-calcined TiO2 thin films was conducted with 1 x 1015 ∼ 1 x 1016 ions/cm2 at 40 keV. The peak position and intensity of the photoluminescence and UV-Vis absorption spectra are quite sensitive to Ag doping. The optical characterization showed a shift in optical absorption wavelength towards infrared ray side, which was correlated with the structure variation of the Ag+ implanted TiO2. Due to the strong capability of forming compounds between the energetic silver ions and TiO2, the photoluminescence emission and UV-Vis absorption efficiencies were improved.

  14. TiO2 nanocrystal incorporated with CuO and its optical properties

    International Nuclear Information System (INIS)

    TiO2 nanocrystal doped with Cu has been fabricated by wet chemical processing. The obtained results of x-ray diffraction, optical absorption in the UV–Vis bands and luminescence spectra have shown that Cu has substituted Ti in the structure of TiO2 anatase phase when the Cu concentration is about 8 at%. In the case of larger Cu concentrations the copper oxide appeared and increased with increasing Cu concentration. The samples doped with Cu strongly absorb the visible light (400–900 nm) and their absorption edge shifts to the longer wavelength in dependence on the Cu concentration. The absorption in the visible light band is attributed to transitions between the impurities levels of Cu created in the energy band gap of TiO2. In addition, an absorption shoulder above 800 nm is observed and supposed to be related with the absorption of CuO. The experimental results prove that the TiO2 anatase doped with Cu is suitable for hydrogen generation by photocatalytic water splitting under sunlight. (paper)

  15. Ag@AgCl-TiO2-粉煤灰微珠复合光催化剂的制备及其可见光光催化性能%Preparation of Ag@AgCl-TiO2-Flyash Microspheres Composite Photocatalyst and Its Photocatalytic Property under Visible Light

    Institute of Scientific and Technical Information of China (English)

    郭凌坤; 吕珺; 周嵩; 汪冬梅; 徐光青; 郑治祥; 吴玉程

    2012-01-01

    Ag@AgCl nanoparticles were loaded on the surface of flyash microspheres (FMS) by ion-exchange method to prepare Ag@AgCl-FMS composite support, then nano-TiO2 thin film was coated on it by hydrolysis precipitation with TiCl4 solution as precursor. After annealing at 500℃ for 2 h, the Ag@AgCl-FMS-TiO2 composite photocatalyst was obtained. Its microstructure, crystalline structure and photocatalytic properties under visible light were characterized. The results show that the TiO2 thin film on the substrate is uniform and complete. After calcining at 500℃, the material contains of 90% anatase phase and 10% rutile. The composite modified by Ag@AgCl nanoparticles exhibits high photocatalytic activity under visible light, which is caused by the surface plasmon resonance effect of Ag@AgCl. The degradation rate of methyl orange solution can reach 99% after 80 min irradiation under 250 W metal halide lamp. The photocatalyst also shows great stability. Repeated experiments show that the degradation rate of methyl orange solution can still reach 85% after 5 times of using.%采用离子交换法在粉煤灰微珠(FMS)表面沉积Ag@AgCl纳米颗粒,制备Ag@AgCl-FMS复合基底,采用水解-沉淀工艺,以TiCl4为钛源在复合基底表面再包覆纳米TiO2薄膜,经500℃煅烧2h后得到Ag@AgCl- FMS-TiO2复合光催化剂.对材料微观形貌、晶体结构、可见光光催化性能进行了表征与测试.结果表明,复合基底表面包覆的TiO2薄膜均匀完整.500℃煅烧后的物相为90%锐钛矿型TiO2和10%金红石型TiO2.复合催化剂料在Ag@AgCl等离子共振效应的作用下,表现出明显的可见光响应,经可见光照射80 min后对甲基橙的降解率达99%,5次重复使用对甲基橙的降解率保持在85%.

  16. High surface area Ag-TiO2 nanotubes for solar/visible-light photocatalytic degradation of ceftiofur sodium

    International Nuclear Information System (INIS)

    Highlights: • Large surface area TiO2 nanotubes have been synthesized and modified with Ag NPs. • Ag-TiO2 NTs show very good charge separation due to 1D charge delocalization. • They exhibit excellent photocatalytic degradation of CFS under UV–vis light. • It photocatalytically activates HSO5− to produce ·OH and SO4·− simultaneously. • Ag-TiO2 NTs retain their photocatalytic activity at least up to 4 cycles. -- Abstract: Titanium dioxide nanotubes (TiO2 NTs) with very high surface area (469 m2/g) have been synthesized through a simple hydrothermal method and their surface has been modified using silver nanoparticles (Ag NPs). The Ag NPs deposited TiO2 NTs (Ag-TiO2 NTs) show an extended optical response from UV to visible region coupled with a surface plasmon resonance band and thus can be utilized as a plasmonic photocatalyst. The photoluminescence intensity of TiO2 NTs is lower than that of TiO2 nanoparticles due to the delocalization of photogenerated electrons along the one dimensional nanotubes which reduces the rate of charge recombination. The Langmuir adsorption constant of Ag-TiO2 NTs (for ceftiofur sodium adsorption) is twice that of P25 TiO2. The Ag-TiO2 NTs exhibit excellent photocatalytic activity toward the degradation of ceftiofur sodium (CFS) due to high surface area and mesoporosity of TiO2 NTs. The addition of peroxomonosulfate in the photocatalytic system greatly amplifies the CFS degradation owing to the simultaneous generation of both ·OH and SO4·−. The catalyst retains its photocatalytic activity at least up to four consecutive cycles

  17. Potential energy curves for the ground and low-lying excited states of CuAg

    International Nuclear Information System (INIS)

    The ground and low-lying excited states of heteronuclear diatomic CuAg are examined by multi-reference configuration interaction (MRCI) method. Relativistic effects were treated and probed in two steps. Scalar terms were considered using the spin-free DKH Hamiltonian as a priori and spin-orbit coupling was calculated perturbatively via the spin-orbit terms of the Breit-Pauli Hamiltonian based on MRCI wavefunctions. Potential energy curves of the spin-free states and their corresponding Ω components correlating with the separated atom limits 2S(Cu) + 2S(Ag) and 2D(Cu) + 2S(Ag) are obtained. The results are in fine agreement with the experimental measurements and tentative conclusions for the ion-pair B0+ state are confirmed by our theoretical calculations. Illustrative results are presented to reveal the relative importance and magnitude of the scalar and spin-orbit effects on the spectroscopic properties of this molecule. Time dependent density functional theory calculations, using the LDA, BLYP, B3LYP, and SAOP functionals have been carried out for CuAg and the accuracy of TD-DFT has been compared with ab initio results

  18. ZnO-(Cu/Ag)TCNQ heterostructure network over flexible platform for enhanced cold cathode application

    Science.gov (United States)

    Pal, Shreyasi; Maiti, Soumen; Narayan Maiti, Uday; Chattopadhyay, Kalyan Kumar

    2016-07-01

    Multistage field emitters consisting of organic/inorganic hybrid nanostructures with branched geometry are designed via a two-step protocol: a simple wet chemical method followed by a vapor-solid-phase technique. (Cu/Ag)TCNQ (copper/silver-7,7,8,8-tetracyanoquinodimethane) nanowires (NWs) were grown hierarchically on zinc oxide (ZnO) nanorods (NRs) to form ZnO-(Cu/Ag)TCNQ heterostructure assemblies. By monitoring the metallic Cu and Ag coating thickness on ZnO NRs, precise control over the morphology and orientations of the secondary organic NWs is achieved. In-depth analysis of electron field emission (FE) behavior of the ZnO-(Cu/Ag)TCNQ-based hierarchy suggests highest emission performance with low turn-on as well as threshold fields of 1.15 and 3.75 V μm‑1 respectively from the morphology-optimized hierarchy. Beneficial orientation of the branched organic NWs ensures sequential electric field enhancement in the consecutive stem and branches whereas its low work function eases electron emission; these aspects combined together render an overall enhancement in the emission behavior of the hybrid system. As compared to individual building units, the heterostructures show improved field electron emission. Additionally, successful construction of this novel hybrid over a fabric platform displays great potential in opening up new pathways in the highly-anticipated field of flexible electronics.

  19. Short-range Ferromagnetism in Alloy Ribbons of Fe-Cr-Si-Nb-(Ag, Cu)

    DEFF Research Database (Denmark)

    Thanh, P. Q.; Hoa, N. Q.; Chau, N.;

    2014-01-01

    We have studied the magnetic properties of two amorphous alloy ribbons Fe72Cr6Si4Nb5B12Ag1 (FCSNB-Ag) and Fe72Cr6Si4Nb5B12Cu1 (FCSNB-Cu), prepared by using a melt-spinning technique. Magnetization (M) measurements for various temperatures (T) and magnetic fields (H) indicate that ferromagnetic......-paramagnetic (FM-PM) phase transitions take place in FCSNB-Ag and FCSNB-Cu at Curie temperatures (TC) of about 308.3 K and 322.5 K, respectively. Analyses of M - H data at different temperatures in the vicinity of the FM-PM phase transition based on the modified Arrott plot method and scaling hypothesis yielded...... the exponent values of beta = 0.369 +/- 0.005, gamma = 1.359 +/- 0.005 and delta = 4.7 +/- 0.1 for FCSNB-Ag, and beta = 0.376 +/- 0.002, gamma = 1.315 +/- 0.006 and delta = 4.5 +/- 0.1 for FCSNB-Cu. Compared with the values from theoretical models, these values are close to those expected for the 3D...

  20. Potential energy curves for the ground and low-lying excited states of CuAg

    Energy Technology Data Exchange (ETDEWEB)

    Alizadeh, Davood; Shayesteh, Alireza, E-mail: jamshidi@ccerci.ac.ir, E-mail: ashayesteh@ut.ac.ir [School of Chemistry, College of Science, University of Tehran, 14176 Tehran (Iran, Islamic Republic of); Jamshidi, Zahra, E-mail: jamshidi@ccerci.ac.ir, E-mail: ashayesteh@ut.ac.ir [Chemistry and Chemical Engineering Research Center of Iran, 14335-186 Tehran (Iran, Islamic Republic of)

    2014-10-21

    The ground and low-lying excited states of heteronuclear diatomic CuAg are examined by multi-reference configuration interaction (MRCI) method. Relativistic effects were treated and probed in two steps. Scalar terms were considered using the spin-free DKH Hamiltonian as a priori and spin-orbit coupling was calculated perturbatively via the spin-orbit terms of the Breit-Pauli Hamiltonian based on MRCI wavefunctions. Potential energy curves of the spin-free states and their corresponding Ω components correlating with the separated atom limits {sup 2}S(Cu) + {sup 2}S(Ag) and {sup 2}D(Cu) + {sup 2}S(Ag) are obtained. The results are in fine agreement with the experimental measurements and tentative conclusions for the ion-pair B0{sup +} state are confirmed by our theoretical calculations. Illustrative results are presented to reveal the relative importance and magnitude of the scalar and spin-orbit effects on the spectroscopic properties of this molecule. Time dependent density functional theory calculations, using the LDA, BLYP, B3LYP, and SAOP functionals have been carried out for CuAg and the accuracy of TD-DFT has been compared with ab initio results.

  1. (Ag,Cu)-Ta-O ternaries as high-temperature solid-lubricant coatings.

    Science.gov (United States)

    Gao, Hongyu; Otero-de-la-Roza, Alberto; Gu, Jingjing; Stone, D'Arcy; Aouadi, Samir M; Johnson, Erin R; Martini, Ashlie

    2015-07-22

    Ternary oxides have gained increasing attention due to their potential use as solid lubricants at elevated temperatures. In this work, the tribological properties of three ternary oxides-AgTaO3, CuTaO3, and CuTa2O6-were studied using a combination of density-functional theory (DFT), molecular dynamics (MD) simulations with newly developed empirical potential parameters, and experimental measurements (AgTaO3 and CuTa2O6 only). Our results show that the MD-predicted friction force follows the trend AgTaO3 film composition after sliding, quantification of Ag or Cu cluster formation at the interface during the evolution of the film in MD, and DFT energy barriers for atom migration on the material surface. All our observations are consistent with the hypothesis that the formation of metal (or metal oxide) clusters on the surface are responsible for the friction and wear behavior of these materials. PMID:26106877

  2. Structure and properties of EuTSb (T = Cu, Pd, Ag, Pt, Au) and YbIrSb

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Trinath; Schellenberg, Inga; Eul, Matthias; Poettgen, Rainer [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie

    2011-07-01

    The equiatomic antimonides EuTSb (T = Cu, Pd, Ag, Pt, Au) and YbIrSb were synthesized from the elements in sealed tantalum tubes in an induction furnace. The samples were investigated by powder X-ray diffraction and the structures were refined on the basis of single crystal X-ray diffractometer data: ZrBeSi type, P6{sub 3}/mmc, a = 450.7(5), c = 853.2(7) pm, wR2 = 0.032, 273 F{sup 2} values, 8 variables for EuCuSb, a = 474.9(1), c = 829.4(3) pm, wR2 = 0.028, 166 F{sup 2} values, 8 variables for EuAgSb, a = 467.1(2), c = 848.8(3) pm, wR2 = 0.042, 162 F{sup 2} values, 8 variables for EuAuSb, and TiNiSi type, space group Pnma, a = 762.5(3), b = 469.1(1), c = 792.1(1) pm, wR2 = 0.046, 670 F{sup 2} values, 20 variables for EuPdSb, and a = 700.7(1), b = 444.68(8), c = 781.3(1) pm, wR2 = 0.075, 592 F{sup 2} values, 20 variables for YbIrSb. The structures are ordered superstructure variants of the aristotype AlB{sub 2}3 with planar T{sub 3}Sb{sub 3} hexagons in EuTSb (T = Cu, Ag, Au) and puckered T{sub 3}Sb{sub 3} hexagons in EuTSb (T = Pd, Pt) and YbIrSb. TiNiSi type EuPtSb was characterized via powder data: a = 759.8(3), b = 465.4(3), c = 791.4(3) pm. Temperature dependent magnetic susceptibility measurements indicate antiferromagnetic ordering for all compounds. The samples were additionally characterized by {sup 121}Sb and {sup 151}Eu Moessbauer spectra. (orig.)

  3. Direct in situ activation of Ag{sup 0} nanoparticles in synthesis of Ag/TiO{sub 2} and its photoactivity

    Energy Technology Data Exchange (ETDEWEB)

    Jaafar, N.F. [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Jalil, A.A., E-mail: aishah@cheme.utm.my [Institute of Hydrogen Economy, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Department of Chemical Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Triwahyono, S. [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Ibnu Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Efendi, J. [Department of Chemistry, Universitas Negeri Padang, Jl. Prof. Hamka, Air Tawar, Padang, West Sumatera (Indonesia); Mukti, R.R. [Division of Inorganic and Physical Chemistry, Faculty of Mathematics and Natural Science, Institut Teknologi Bandung, Jl Ganesha No. 10, Bandung 40132 (Indonesia); Jusoh, R.; Jusoh, N.W.C. [Department of Chemical Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Karim, A.H. [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Salleh, N.F.M. [Department of Chemical Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Suendo, V. [Division of Inorganic and Physical Chemistry, Faculty of Mathematics and Natural Science, Institut Teknologi Bandung, Jl Ganesha No. 10, Bandung 40132 (Indonesia)

    2015-05-30

    Graphical abstract: - Highlights: • Ag{sup 0} loaded on TiO{sub 2} was prepared by a direct in situ electrochemical method. • 5 wt% Ag–TiO{sub 2} demonstrated the best photocatalytic degradation of 2-CP. • Isomorphous substitution of Ag with Ti occurred to form Ti−O−Ag bonds. • Ag{sup 0} and oxygen vacancies trapped electrons to enhance e–H{sup +} separation. • Substitution of Ag in the TiO{sub 2} structure decreased the number of oxygen vacancies. - Abstract: Metallic Ag nanoparticles (Ag{sup 0}) were successfully activated using a direct in situ electrochemical method before being supported on TiO{sub 2}. Catalytic testing showed that 5 wt% Ag–TiO{sub 2} gave the highest photodegradation (94%) of 50 mg L{sup −1} 2-chlorophenol (2-CP) at pH 5 using 0.375 g L{sup −1} catalyst within 6 h, while under similar conditions, 1 wt% and 10 wt% Ag–TiO{sub 2} only gave 75% and 78% degradation, respectively. Characterization results illustrated that the photoactivity was affected by the amount of Ag{sup 0} and oxygen vacancies which act as an electrons trap to enhance the electron–hole separation. While, the Ag−O−Ti bonds formation reduced the photoactivity. The degradation followed a pseudo-first order Langmuir–Hinshelwood model where adsorption was the controlling step. Study on the effect of scavengers showed that the hole (H{sup +}) and hydroxyl radical (OH·) play important roles in the photodegradation. The regenerated photocatalyst was still stable after five cycling runs.

  4. Characteristic of TiNi(Cu) shape memory thin film based on micropump

    Science.gov (United States)

    Zhang, Huijun; Qiu, Chengjun

    2009-07-01

    Shape memory thin films offer a unique combination of novel properties and have the potential to become a primary actuating mechanism for micropumps. In this study, a micropump driven by TiNiCu shape memory thin film is designed and fabricated. The micropump is composed of a TiNiCu/Si bimorph driving membrane, a pump chamber and two inlet and outlet check valves. The property of TiNiCu films and driving capacity of TiNiCu/Si bimorph driving membrane are investigated. By using the recoverable force of TiNiCu thin film and biasing force of silicon membrane, the actuation diaphragm realizes reciprocating motion effectively. Experimental results show that the film surface appears a smooth and featureless morphology without any cracks, and the hysteresis width ΔT of TiNiCu film is about 2-3°C, the micropump driving by TiNiCu film has good performance, such as high pumping yield, high working frequency, stable driving capacity, and long fatigue life time.

  5. Fabrication of nanoporous silver by de-alloying Cu-Zr-Ag amorphous alloys

    Science.gov (United States)

    Wang, Hui; Xiao, Shang-gang; Zhang, Tao

    2016-07-01

    Nanoporous silver (NPS) with a ligament size ranging from 15 to 40 nm was fabricated by de-alloying (Cu50Zr50)100- x Ag x ( x = 10at%, 20at%, 30at%, and 40at%) amorphous ribbons in a mixed aqueous solution of hydrofluoric (HF) acid and nitric acid under free corrosion conditions. Nanoporous silver ligaments and pore sizes were able to be fine-tuned through tailoring the chemical composition, corrosion conditions, and de-alloying time. The ligament size increases with an increase in Ag content and de-alloying time, but decreases with an increase in HF concentration. This phenomenon may be attributed to the dissolution of Zr/Cu and the diffusion, aggregation, nucleation, and recrystallization of Ag, leading to an oriented attachment of adjacent nanocrystals as revealed by TEM analysis.

  6. Plasmon-enhanced photocatalytic hydrogen production over visible-light responsive Cu/TiO2

    International Nuclear Information System (INIS)

    Cheap and visible-light responsive Cu/TiO2 photocatalysts were fabricated by illuminating ultraviolet (UV) to a mixture of TiO2 nanoparticles (NPs) and Cu2O NPs in an evacuated reaction chamber. The Cu2O NPs were reduced by UV in an oxygen-free reaction chamber, and hence, metallic Cu NPs with size less than 5 nm were uniformly loaded on TiO2. Due to the plasmon resonance of the Cu NPs, the Cu/TiO2 exhibited a good performance of water-splitting hydrogen production under visible light in the presence of glycerol as a hole scavenger. The optimum hydrogen production rate of Cu/TiO2 was 0.24 mmol h−1 g−1. The Cu/TiO2 also showed high stability of the photocatalytic performance in the evacuated chamber; however, the visible-light responsive photocatalytic properties dramatically and rapidly decreased when exposed to air. (paper)

  7. Antibiofilm Activity of Epoxy/Ag-TiO2 Polymer Nanocomposite Coatings against Staphylococcus Aureus and Escherichia Coli

    OpenAIRE

    Santhosh S. M.; Kandasamy Natarajan

    2015-01-01

    Dispersion of functional inorganic nano-fillers like TiO2 within polymer matrix is known to impart excellent photobactericidal activity to the composite. Epoxy resin systems with Ag+ ion doped TiO2 can have combination of excellent biocidal characteristics of silver and the photocatalytic properties of TiO2. The inorganic antimicrobial incorporation into an epoxy polymeric matrix was achieved by sonicating laboratory-made nano-scale anatase TiO2 and Ag-TiO2 into the industrial grade epoxy res...

  8. p-Cu2O-shell/n-TiO2-nanowire-core heterostucture photodiodes

    OpenAIRE

    Tsai, Tsung-Ying; Chang, Shoou-Jinn; Hsueh, Ting-Jen; Hsueh, Han-Ting; Weng, Wen-Yin; Hsu, Cheng-Liang; Dai, Bau-Tong

    2011-01-01

    This study reports the deposition of cuprous oxide [Cu2O] onto titanium dioxide [TiO2] nanowires [NWs] prepared on TiO2/glass templates. The average length and average diameter of these thermally oxidized and evaporated TiO2 NWs are 0.1 to 0.4 μm and 30 to 100 nm, respectively. The deposited Cu2O fills gaps between the TiO2 NWs with good step coverage to form nanoshells surrounding the TiO2 cores. The p-Cu2O/n-TiO2 NW heterostructure exhibits a rectifying behavior with a sharp turn-on at appr...

  9. SiO2/TiO2/Ag multilayered microspheres: Preparation, characterization, and enhanced infrared radiation property

    Science.gov (United States)

    Ye, Xiaoyun; Cai, Shuguang; Zheng, Chan; Xiao, Xueqing; Hua, Nengbin; Huang, Yanyi

    2015-08-01

    SiO2/TiO2/Ag core-shell multilayered microspheres were successfully synthesized by the combination of anatase of TiO2 modification on the surfaces of SiO2 spheres and subsequent Ag nanoparticles deposition and Ag shell growth with face-centered cubic (fcc) Ag. The composites were characterized by TEM, FT-IR, UV-vis, Raman spectroscopy and XRD, respectively. The infrared emissivity values during 8-14 μm wavelengths of the composites were measured. The results revealed that TiO2 thin layers with the thickness of ∼10 nm were coated onto the SiO2 spheres of ∼220 nm in diameter. The thickness of the TiO2 layers was controlled by varying the amount of TBOT precursor. Homogeneous Ag nanoparticles of ∼20 nm in size were successfully deposited by ultrasound on the surfaces of SiO2/TiO2 composites, followed by complete covering of Ag shell. The infrared emissivity value of the SiO2/TiO2 composites was decreased than that of pure SiO2. Moreover, the introduction of the Ag brought the remarkably lower infrared emissivity value of the SiO2/TiO2/Ag multilayered microspheres with the lowest value down to 0.424. Strong chemical effects in the interface of SiO2/TiO2 core-shell composites and high reflection performance of the metal Ag are two decisive factors for the improved infrared radiation performance of the SiO2/TiO2/Ag multilayered microspheres.

  10. Antibacterial and UV protective properties of polyamide fabric impregnated with TiO2/Ag nanoparticles

    Directory of Open Access Journals (Sweden)

    Milošević Milica

    2015-01-01

    Full Text Available The possibility of in situ photoreduction of Ag+ ions using colloidal TiO2 nanoparticles deposited on the surface of polyamide fabric in the presence of amino acid alanine and methyl alcohol is discussed. The presence of TiO2/Ag nanoparticles on the polyamide fabric was confirmed by FESEM and ICP analyses. Antibacterial activity of the fabric was tested against Gram-negative bacterium Escherichia coli and Gram-positive bacterium Staphylococcus aureus. Fabricated TiO2/Ag nanoparticles on the surface of polyamide fabric provided maximum bacterial reduction and thus, excellent antibacterial activity. In spite of silver leaching from the fabric during washing, impregnated polyamide fabric preserved maximum reduction of Escherichia coli colonies. Antibacterial activity against Staphylococcus aureus slightly decreased after ten washing cycles, but still antibacterial activity can be considered as satisfactory. In addition, the presence of TiO2/Ag nanoparticles ensured better UV protection efficiency which belongs to very good UV protection category. [Projekat Ministarstva nauke Republike Srbije, br. 45020 i br. 172056

  11. Preparation of nano-Ag/TiO2 thin-film

    Institute of Scientific and Technical Information of China (English)

    PENG Bing; WANG Jia; CHAI Li-yuan; MAO Ai-li; WANG Yun-yan

    2008-01-01

    Steady TiO2 water-sol was prepared by peptization and the effects of pH value, temperature, concentration of colloid and peptizator on sol were investigated. Laser grain analyzer was used to verify nano-particles in the sol. The photocatalytic degradation ratio and antibacterial property of nano-Ag/TiO2 thin-film on ceramics were used as the main index in addition to XRD analysis. The effect of film layers, embedding Ag+, annealing temperature and time on the degradation ratio and antibacterial property was studied. The temperature 30-80 ℃, pH 1.2-2.0, concentrations of 0.05-0.3 mol/L sol and 5% HNO3 would be the optimal parameters for the TiO2 water-sol preparation. The nano-Ag/TiO2 film of three layers with 3% AgNO3 embedded and treated at 350 ℃ for 2 h exhibits good performance. The elementary research on the kinetics of degradation shows that the reactions are on the first order kinetics equation.

  12. Preparation of sensitive and recyclable porous Ag/TiO2 composite films for SERS detection

    Science.gov (United States)

    Zhang, Zhengyi; Yu, Jiajie; Yang, Jingying; Lv, Xiang; Wang, Tianhe

    2015-12-01

    Porous Ag/TiO2 composite films were prepared by spin coating of titania on normal glass slides and subsequent photochemical deposition of silver nanoparticles (AgNPs). The films were characterized by XRD and FESEM to reveal micro structural and morphological differences between films obtained under varied conditions. The SERS properties of these films were investigated using aqueous crystal violet (CV) as probe molecules. The results indicate that the content of polyethylene glycol (PEG) and photo-reduction time had significant influences on both the microstructure and SERS performance of Ag/TiO2 films. The highest SERS sensitivity that allowed as low as 10-10 M aqueous CV to be detected, was achieved with the PEG/(C4H9O)4Ti molar ratio being 0.08% and with 30 min of UV irradiation. With this film a linear relationship was established through experiment between SERS intensity and CV concentration from 10-10 to 10-5 M, which could be used as a calibration curve for CV concentration measurement. In addition, the film could be reused as a SERS substrate for up to four times without significantly losing SERS sensitivity if a simple regeneration was followed. It is visualized that the Ag/TiO2 film on glass has potentials for being developed into a practical SERS substrate with high sensitivity and good reusability.

  13. Preparation of Ag/Cu Janus nanowires: Electrodeposition in track-etched polymer templates

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, X.R. [Henan Key Laboratory of Ion Beam Bioengineering, Physical Engineering College, Zhenzhou University, Zhengzhou 450052 (China); Wang, C.M.; Fu, Q.B. [State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871 (China); Jiao, Z.; Wang, W.D.; Qin, G.Y. [Henan Key Laboratory of Ion Beam Bioengineering, Physical Engineering College, Zhenzhou University, Zhengzhou 450052 (China); Xue, J.M., E-mail: jmxue@pku.edu.cn [State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871 (China)

    2015-08-01

    Highlights: • In this paper, we introduce a simple method for preparation of Janus nanowires by electrodeposition. • Using ion-track-etched PC polymer templates and commercial PC track-etched membrane templates, Ag/Cu Janus nanowires fabricated by this method all have uniform size. No matter how the holes array in the template, regular or not, the nanowires prepared by this method have similar properties. • By controlling the etching time, the size of the nanowires could be controlled easily and special shape nanowires also can be prepared by this template. • The polymer template is very easy to dissolve thoroughly and has no damage to nanowires almost. It is suitable for the preparation of nanowires suspension. • This method also has better applicability for polymer templates and can be seen as a simple convenient method for the preparation of Ag/Cu Janus nanowires. - Abstract: Bimetal (Janus) nanowire has been widely used as a promising nanoscale motor. In this paper we present a highly controllable method to fabricate Ag/Cu Janus nanowires using track-etched polymer templates. Ag/Cu Janus nanowires with uniform size and stabilized structure have been successfully fabricated by electrodepositing Ag nanowires, and subsequently Cu nanowires in track-etched polymer templates. The pore size of nanopores prepared by this template is uniform and continuously controlled, so aperture of achieved nanowires are uniform and can be regulated. This polymer template can dissolve inorganic solvents that do not react with the nanowires, making it is easy to release the nanowires into solution. The nanopore shape in the track-etched templates is adjustable (e.g. conical), nanowires with more special shapes could be fabricated. Thus, these features make this simple and inexpensive method very suitable for the preparation of Janus nanowire.

  14. Numerical Simulation of Brazing TiC Cermet to Iron with TiZrNiCu Filler Metal

    Institute of Scientific and Technical Information of China (English)

    Lixia ZHANG; Jicai FENG

    2004-01-01

    The maximum thermal stress and stress concentration zones of iron/TiC cermet joint during cooling were studied in this paper. The results showed that the shear stress on iron/TiC cermet joint concentrates on the interface tip and the maximum shear stress appears on the left tip of iron/TiZrNiCu interlace. Positive tensile stress on TiC cermet undersurface concentrates on both sides of TiC cermet and its value decreases during cooling. Negative tensile stress on TiC cermet undersurface concentrates on the center of TiC cermet and its value increases during cooling. Brazing temperature has little effect on the development and maximum thermal stress.

  15. Effect of the existing form of Cu element on the mechanical properties, bio-corrosion and antibacterial properties of Ti-Cu alloys for biomedical application.

    Science.gov (United States)

    Zhang, Erlin; Wang, Xiaoyan; Chen, Mian; Hou, Bing

    2016-12-01

    Ti-Cu alloys have exhibited strong antibacterial ability, but Ti-Cu alloys prepared by different processes showed different antibacterial ability. In order to reveal the controlling mechanism, Ti-Cu alloys with different existing forms of Cu element were prepared in this paper. The effects of the Cu existing form on the microstructure, mechanical, corrosion and antibacterial properties of Ti-Cu alloys have been systematically investigated. Results have shown that the as-cast Ti-Cu alloys showed a higher hardness and mechanical strength as well as a higher antibacterial rate (51-64%) but a relatively lower corrosion resistance than pure titanium. Treatment at 900°C/2h (T4) significantly increased the hardness and the strength, improved the corrosion resistance but had little effect on the antibacterial property. Treatment at 900°C/2h+400°C/12h (T6) increased further the hardness and the mechanical strength, improved the corrosion resistance and but also enhanced the antibacterial rate (>90%) significantly. It was demonstrated that the Cu element in solid solution state showed high strengthening ability but low antibacterial property while Cu element in Ti2Cu phase exhibited strong strengthening ability and strong antibacterial property. Ti2Cu phase played a key role in the antibacterial mechanism. The antibacterial ability of Ti-Cu alloy was strongly proportional to the Cu content and the surface area of Ti2Cu phase. High Cu content and fine Ti2Cu phase would contribute to a high strength and a strong antibacterial ability.

  16. Localized TiSi and TiN phases in Si/Ti/Al/Cu Ohmic contacts to AlGaN/GaN heterostructures

    Science.gov (United States)

    Yoon, Seonno; Song, Yunwon; Lee, Seung Min; Lee, Hi-Deok; Oh, Jungwoo

    2016-05-01

    Microstructural changes in Si/Ti/Al/Cu (10/40/60/50 nm) Ohmic contacts to AlGaN/GaN heterostructure were investigated for complementary metal-oxide semiconductor compatible processes. Si/Ti/Al/Cu metallization exhibited a low specific contact resistance of 3.6 × 10-6 Ω-cm2 and contact resistance of 0.46 Ω-mm when a Si interfacial layer was used. Without a designated barrier metal, TiSix alloys that formed in the metallic region effectively suppressed Cu diffusion. The shallow TiN junction in AlGaN/GaN was attributed to TiSix in the metallic regions. Microstructural changes were detected by systematic physical characterization.

  17. Localized TiSi and TiN phases in Si/Ti/Al/Cu Ohmic contacts to AlGaN/GaN heterostructures

    International Nuclear Information System (INIS)

    Microstructural changes in Si/Ti/Al/Cu (10/40/60/50 nm) Ohmic contacts to AlGaN/GaN heterostructure were investigated for complementary metal-oxide semiconductor compatible processes. Si/Ti/Al/Cu metallization exhibited a low specific contact resistance of 3.6 × 10−6 Ω-cm2 and contact resistance of 0.46 Ω-mm when a Si interfacial layer was used. Without a designated barrier metal, TiSix alloys that formed in the metallic region effectively suppressed Cu diffusion. The shallow TiN junction in AlGaN/GaN was attributed to TiSix in the metallic regions. Microstructural changes were detected by systematic physical characterization. (paper)

  18. Surface and transport properties of Cu-Sn-Ti liquid alloys

    Institute of Scientific and Technical Information of China (English)

    R. Novakovic; E. Ricci; S. Amore; T. Lanata

    2006-01-01

    The lack of experimental data and / or limited experimental information concerning both surface and transport properties of liquid alloys often require the prediction of these quantities. An attempt has been made to link the thermophysical properties of a ternary Cu-Sn-Ti system and its binary Cu-Sn, Cu-Ti and Sn-Ti subsystems with the bulk through the study of the concentration dependence of various thermodynamic, structural, surface and dynamic properties in the frame of the statistical mechanical theory in conjunction with the quasi-lattce theory (QLT). This formalism provides valuable qualitative insight into mixing processes that occur in molten alloys.

  19. Buckling and Delamination of Ti/Cu/Si Thin Film During Annealing

    Science.gov (United States)

    Lin, Qijing; Yang, Shuming; Jing, Weixuan; Li, Changsheng; Wang, Chenying; Jiang, Zhuangde; Jiang, Kely

    2014-09-01

    In this paper, the formation of buckling and delamination of sandwiched stacking of Ti/Cu/Si thin film are investigated. The crystallization structures, the composition of the Cu/Ti thin films, and the surface morphology are measured during annealing. The results show that the solid-phase reaction between Cu and Ti occurs at the interface. Buckling is initiated in the thin film annealed at 600°C. The volume expansion promotes the buckling and further produces microcracks. With increasing volume expansion, there are cavities formed in the middle layer when the annealing temperature is up to 700°C. Finally, thin film is delaminated from the substrate.

  20. Structural evolution in Ti-Cu-Ni metallic glasses during heating

    Energy Technology Data Exchange (ETDEWEB)

    Gargarella, P., E-mail: piter@ufscar.br [IFW Dresden, Institut für Komplexe Materialien, Helmholtzstraße 20, D-01069 Dresden (Germany); Departamento de Engenharia de Materiais, Universidade Federal de São Carlos, Rodovia Washington Luiz, Km 235, 13565-905 São Carlos, São Paulo (Brazil); Pauly, S.; Stoica, M.; Kühn, U. [IFW Dresden, Institut für Komplexe Materialien, Helmholtzstraße 20, D-01069 Dresden (Germany); Vaughan, G. [European Synchrotron Radiation Facilities, BP 220, 38043 Grenoble (France); Afonso, C. R. M. [Departamento de Engenharia de Materiais, Universidade Federal de São Carlos, Rodovia Washington Luiz, Km 235, 13565-905 São Carlos, São Paulo (Brazil); Eckert, J. [IFW Dresden, Institut für Komplexe Materialien, Helmholtzstraße 20, D-01069 Dresden (Germany); Institut für Werkstoffwissenschaft, Technische Universität Dresden, D-01062 Dresden (Germany)

    2015-01-01

    The structural evolution of Ti{sub 50}Cu{sub 43}Ni{sub 7} and Ti{sub 55}Cu{sub 35}Ni{sub 10} metallic glasses during heating was investigated by in-situ synchrotron X-ray diffraction. The width of the most intense diffraction maximum of the glassy phase decreases slightly during relaxation below the glass transition temperature. Significant structural changes only occur above the glass transition manifesting in a change in the respective peak positions. At even higher temperatures, nanocrystals of the shape memory B2-Ti(Cu,Ni) phase precipitate, and their small size hampers the occurrence of a martensitic transformation.

  1. Structural evolution in Ti-Cu-Ni metallic glasses during heating

    Science.gov (United States)

    Gargarella, P.; Pauly, S.; Stoica, M.; Vaughan, G.; M. Afonso, C. R.; Kühn, U.; Eckert, J.

    2015-01-01

    The structural evolution of Ti50Cu43Ni7 and Ti55Cu35Ni10 metallic glasses during heating was investigated by in-situ synchrotron X-ray diffraction. The width of the most intense diffraction maximum of the glassy phase decreases slightly during relaxation below the glass transition temperature. Significant structural changes only occur above the glass transition manifesting in a change in the respective peak positions. At even higher temperatures, nanocrystals of the shape memory B2-Ti(Cu,Ni) phase precipitate, and their small size hampers the occurrence of a martensitic transformation.

  2. Structural evolution in Ti-Cu-Ni metallic glasses during heating

    Directory of Open Access Journals (Sweden)

    P. Gargarella

    2015-01-01

    Full Text Available The structural evolution of Ti50Cu43Ni7 and Ti55Cu35Ni10 metallic glasses during heating was investigated by in-situ synchrotron X-ray diffraction. The width of the most intense diffraction maximum of the glassy phase decreases slightly during relaxation below the glass transition temperature. Significant structural changes only occur above the glass transition manifesting in a change in the respective peak positions. At even higher temperatures, nanocrystals of the shape memory B2-Ti(Cu,Ni phase precipitate, and their small size hampers the occurrence of a martensitic transformation.

  3. Investigation on the interaction of nanoAg with Cu-Zn SOD.

    Science.gov (United States)

    Zhang, Bin; Yu, Lei; Zhang, Ruijing; Liu, Yang; Liu, Rutao

    2015-12-01

    Silver nanoparticles (nanoAg) are used more and more widely, particularly because of their antimicrobial properties. The effect of exposure to nanoAg on the structure of superoxide dismutase (SOD) was thoroughly investigated using fluorescence measurements, synchronous fluorescence spectroscopy, steady-state and time-resolved fluorescence quenching measurements, UV/Vis absorption spectroscopy, resonance light scattering (RLS), circular dichroism (CD), isothermal titration calorimetry (ITC) and high-resolution transmission electron microscopy (HRTEM). Through van der Waal's force, nanoAg interacted with Cu-Zn SOD and influenced the active site by inducing structural changes, which influenced the function of SOD. The fluorescence studies show that both static and dynamic quenching processes occur. This paper provides reference data for toxicological studies of nanoAg, which are important in the future development of nanotechnology. PMID:25754791

  4. Structural studies of Nd$_{1.85}$Ce$_{0.15}$CuO$_{4}$ $+$ Ag superconducting system

    Indian Academy of Sciences (India)

    N RADHIKESH RAVEENDRAN; A K SINHA; R RAJARAMAN; M PREMILA; E P AMALADASS; K VINOD; J JANAKI; S KALAVATHI; AWADHESH MANI

    2016-06-01

    We have studied for the first time the effect of Ag addition (0–15 wt%) to the superconducting system, Nd$_{1.85}$Ce$_{0.15}$CuO$_{4}$, on its crystal structure and local structural features, using synchrotron X-ray diffraction(SXRD) and Raman spectroscopy, respectively. SXRD and subsequent Rietveld refinement studies on powders of Nd$_{1.85}$Ce$_{0.15}$CuO$_4$ $+$ Ag system indicate a small but significant change in lattice parameter upon Ag addition, showing evidence for possible incorporation of Ag to the extent of $\\sim$1 wt%. Raman spectroscopic studies indicate that the parent structure of Nd$_{1.85}$Ce$_{0.15}CuO$_{4}$ remains unaffected with no major local structural changes on doping with silver. However, all Raman modes show minor phonon hardening upon Ag addition, which is consistent with the unit cell volume reduction as is observed in XRD. A systematic bleaching out of the apical oxygen defect mode was also observed with increased Ag addition. Polarized Raman measurements helped to identify the asymmetric nature of the B1g Raman mode. X-ray diffraction studies on pellets of Nd$_{1.85}$Ce$_{0.15}CuO$_4$ $+$ Ag system further indicate a randomization of preferred orientation upon Ag addition. The superconductivity of the Nd$_{1.85}$Ce$_{0.15}$CuO$_4$ $+$ Ag system has been well characterized for all the compositions studied.

  5. Characterization of Ag adsorption on TiC(001)substrate:an ab initio study

    Institute of Scientific and Technical Information of China (English)

    Ma Shang-Yi; Wang Shao-Qing

    2008-01-01

    Ag adsorptions at 0.25-3 monolayer(ML)coverage on a perfect TIC(001)surface and at 0.25 ML coverage on C vacancy are separately investigated by using the pseudopotential-based density functional theory.The preferential adsorption sites and the adsorption-induced modifications of electronic structures of both the substrate and adsorbate are analysed.Through the analyses of adsorption energy,ideal work of separation,interface distance,projected local density of states,and the difference electron density,the characteristic evolution of the adatom-surface bonding as a function of the amount of deposited silver is studied.The nature of the Ag/TiC bonding changes as the coverage increases from 0.25 to 3 MLs.Unlike physisorption in an Ag/MgO system.polar covalent component contributes to the Ag/TiC interfacial adhesion in most cases,however,for the case of 1-3 ML coverage,an additional electrostatic interaction between the absorption layer and the substrate should be taken into account.The value of ideal work of separation,1.55 J/m2,for a 3-ML-thick adlayer accords well with other calculations.The calculations predict that Ag does not wet TiC(001)surface and prefers a three-dimensional growth mode in the absence of kinetic factor.This work reports on a clear site and coverage dependence of the measurable physical parameters,which would benefit the understanding of Ag/TiC(001)interface and the analysis of experimental data.

  6. Preparation and self-sterilizing properties of Ag@TiO2–styrene–acrylic complex coatings

    International Nuclear Information System (INIS)

    In this study, we report a simple and cost-effective method for self-sterilized complex coatings obtained by Ag@TiO2 particle incorporation into styrene–acrylic latex. The Ag@TiO2 particles were prepared via a coupling agent modification process. The composite latices characterized by transmission electron microscopy (TEM) study were highly homogeneous at the nanometric scale, and the Ag@TiO2 particles were well dispersed and exhibited an intimate contact between both the organic and inorganic components. The Ag@TiO2 nanoparticles significantly enhanced the absorption in the visible region and engendered a good heat-insulating effect of the complex coatings. Moreover, the Ag@TiO2 nanoparticle incorporation into this polymer matrix renders self-sterilized nanocomposite materials upon light excitation, which are tested against Escherichia coli and Staphylococcus aureus. The complex coatings display an impressive performance in the killing of all micro-organisms with a maximum for a Ag@TiO2 loading concentration of 2–5 wt.%. The weathering endurance of the complex coating was also measured. - Highlights: ► We prepared Ag@TiO2–styrene–acrylic complex latex in one pot. ► Good antibacterial performances of complex coatings were observed. ► The complex coating was resistant to weathering after 48 h. ► The complex coating exhibits good heat-insulating effect

  7. Enhanced thermal stability under DC electrical conductivity retention and visible light activity of Ag/TiO₂@polyaniline nanocomposite film.

    Science.gov (United States)

    Ansari, Mohd Omaish; Khan, Mohammad Mansoob; Ansari, Sajid Ali; Raju, Kati; Lee, Jintae; Cho, Moo Hwan

    2014-06-11

    The development of organic-inorganic photoactive materials has resulted in significant advancements in heterogeneous visible light photocatalysis. This paper reports the synthesis of visible light-active Ag/TiO2@Pani nanocomposite film via a simple biogenic-chemical route. Electrically conducting Ag/TiO2@Pani nanocomposites were prepared by incorporating Ag/TiO2 in N-methyl-2-pyrrolidone solution of polyaniline (Pani), followed by the preparation of Ag/TiO2@Pani nanocomposite film using solution casting technique. The synthesized Ag/TiO2@Pani nanocomposite was confirmed by UV-visible spectroscopy, photoluminescence spectroscopy, scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and thermogravimetric analysis. The Ag/TiO2@Pani nanocomposite film showed superior activity towards the photodegradation of methylene blue under visible light compared to Pani film, even after repeated use. Studies on the thermoelectrical behavior by DC electrical conductivity retention under cyclic aging techniques showed that the Ag/TiO2@Pani nanocomposite film possessed a high combination of electrical conductivity and thermal stability. Because of its better thermoelectric performance and photodegradation properties, such materials might be a suitable advancement in the field of smart materials in near future. PMID:24836114

  8. Photocatalytic Bactericidal Efficiency of Ag Doped TiO2/Fe3O4 on Fish Pathogens under Visible Light

    Directory of Open Access Journals (Sweden)

    Ekkachai Kanchanatip

    2014-01-01

    Full Text Available This research evaluates photocatalytic bactericidal efficiencies of Ag-TiO2/Fe3O4 in visible light using target pollutants that include Aeromonas hydrophila, Edwardsiella tarda, and Photobacterium damselae subsp. piscicida. The investigation started with Ag-TiO2/Fe3O4 synthesis and calcination followed by a series of product tests that include the examination of crystallite phase, light absorption, element composition morphology, and magnetic properties. The results of the experiment indicate that Ag and Fe3O4 significantly enhanced the light absorption capacity of TiO2 in the entire visible light range. The Ag-TiO2/Fe3O4 prepared in this study displays significantly enhanced visible light absorption and narrowed band gap energy. The magnetic property of Ag-TiO2/Fe3O4 made it easy for retrieval using a permanent magnet bar. The photocatalytic activity of Ag-TiO2/Fe3O4 remains above 85% after three application cycles, which indicates high and favorable efficiency in bactericidal evaluation. The experiments have proved that the Ag-TiO2/Fe3O4 magnetic photocatalyst is a promising photocatalyst for antibacterial application under visible light.

  9. Fabrication of AgAu alloy-TiO2 core-shell nanoparticles and their photocatalytic properties

    Science.gov (United States)

    Zhang, Xiao-yu; Yuan, Shu-long; Yuan, Yu-zhen; Li, Xue

    2015-01-01

    In this paper, for improving the photocatalytic efficiency of titania (TiO2) nanoparticles (NPs), AgAu alloy-TiO2 core-shell NPs are fabricated via a sol-gel (SG) process in the presence of AgAu alloy NPs with block copolymer shells as templates. The photocatalytic activities of the AgAu-TiO2 NPs on the photodecomposition of methylene blue (MB) are investigated. The AgAu-TiO2 composite NPs coated with 5.0% titania related to block copolymers show higher photocatalytic activity than the other samples in which the titania contents are larger than 5.0%. The results indicate that the increase of the thickness of the TiO2 shell leads to the decrease of the photocatalytic activity.

  10. Influence of Dopant on Growth of Intermetallic Layers in Sn-Ag-Cu Solder Joints

    Science.gov (United States)

    Li, G. Y.; Bi, X. D.; Chen, Q.; Shi, X. Q.

    2011-02-01

    The interfacial interaction between Cu substrates and Sn-3.5Ag-0.7Cu- xSb ( x = 0, 0.2, 0.5, 0.8, 1.0, 1.5, and 2.0) solder alloys has been investigated under different isothermal aging temperatures of 100°C, 150°C, and 190°C. Scanning electron microscopy (SEM) was used to measure the thickness of the intermetallic compound (IMC) layer and observe the microstructural evolution of the solder joints. The IMC phases were identified by energy-dispersive x-ray spectroscopy (EDX) and x-ray diffractometry (XRD). The growth of both the Cu6Sn5 and Cu3Sn IMC layers at the interface between the Cu substrate and the solder fits a power-law relationship with the exponent ranging from 0.42 to 0.83, which suggests that the IMC growth is primarily controlled by diffusion but may also be influenced by interface reactions. The activation energies and interdiffusion coefficients of the IMC formation of seven solder alloys were determined. The addition of Sb has a strong influence on the growth of the Cu6Sn5 layer, but very little influence on the formation of the Cu3Sn IMC phase. The thickness of the Cu3Sn layer rapidly increases with aging time and temperature, whereas the thickness of the Cu6Sn5 layer increases slowly. This is probably due to the formation of Cu3Sn at the interface between two IMC phases, which occurs with consumption of Cu6Sn5. Adding antimony to Sn-3.5Ag-0.7Cu solder can evidently increase the activation energy of Cu6Sn5 IMC formation, reduce the atomic diffusion rate, and thus inhibit excessive growth of Cu6Sn5 IMCs. This study suggests that grain boundary pinning is one of the most important mechanisms for inhibiting the growth of Cu6Sn5 IMCs in such solder joints when Sb is added.

  11. Microstructure, corrosion and tribological and antibacterial properties of Ti-Cu coated stainless steel.

    Science.gov (United States)

    Jin, Xiaomin; Gao, Lizhen; Liu, Erqiang; Yu, Feifei; Shu, Xuefeng; Wang, Hefeng

    2015-10-01

    A Ti-Cu coated layer on 316L stainless steel (SS) was obtained by using the Closed Field Unbalanced Magnetron Sputtering (CFUBMS) system to improve antibacterial activity, corrosion and tribological properties. The microstructure and phase constituents of Ti-Cu coated layer were characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM) and glow discharge optical emission spectrometry (GDOES). The corrosion and tribological properties of a stainless steel substrate, SS316L, when coated with Ti-Cu were investigated in a simulated body fluid (SBF) environment. The viability of bacteria attached to the antibacterial surface was tested using the spread plate method. The results indicate that the Ti-Cu coated SS316L could achieve a higher corrosion polarization resistance and a more stable corrosion potential in an SBF environment than the uncoated SS316L substrate. The desirable corrosion protection performance of Ti-Cu may be attributable to the formation of a Ti-O passive layer on the coating surface, protecting the coating from further corrosion. The Ti-Cu coated SS316L also exhibited excellent wear resistance and chemical stability during the sliding tests against Si3N4 balls in SBF environment. Moreover, the Ti-Cu coatings exhibited excellent antibacterial abilities, where an effective reduction of 99.9% of Escherichia coli (E.coli) within 12h was achieved by contact with the modified surface, which was attributed to the release of copper ions when the Ti-Cu coatings are in contact with bacterial solution. PMID:26093948

  12. Microstructure, corrosion and tribological and antibacterial properties of Ti-Cu coated stainless steel.

    Science.gov (United States)

    Jin, Xiaomin; Gao, Lizhen; Liu, Erqiang; Yu, Feifei; Shu, Xuefeng; Wang, Hefeng

    2015-10-01

    A Ti-Cu coated layer on 316L stainless steel (SS) was obtained by using the Closed Field Unbalanced Magnetron Sputtering (CFUBMS) system to improve antibacterial activity, corrosion and tribological properties. The microstructure and phase constituents of Ti-Cu coated layer were characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM) and glow discharge optical emission spectrometry (GDOES). The corrosion and tribological properties of a stainless steel substrate, SS316L, when coated with Ti-Cu were investigated in a simulated body fluid (SBF) environment. The viability of bacteria attached to the antibacterial surface was tested using the spread plate method. The results indicate that the Ti-Cu coated SS316L could achieve a higher corrosion polarization resistance and a more stable corrosion potential in an SBF environment than the uncoated SS316L substrate. The desirable corrosion protection performance of Ti-Cu may be attributable to the formation of a Ti-O passive layer on the coating surface, protecting the coating from further corrosion. The Ti-Cu coated SS316L also exhibited excellent wear resistance and chemical stability during the sliding tests against Si3N4 balls in SBF environment. Moreover, the Ti-Cu coatings exhibited excellent antibacterial abilities, where an effective reduction of 99.9% of Escherichia coli (E.coli) within 12h was achieved by contact with the modified surface, which was attributed to the release of copper ions when the Ti-Cu coatings are in contact with bacterial solution.

  13. Hybrid matrices of TiO2 and TiO2–Ag nanofibers with silicone for high water flux photocatalytic degradation of dairy effluent

    DEFF Research Database (Denmark)

    Kanjwal, Muzafar Ahmad; Alm, Martin; Thomsen, Peter;

    2016-01-01

    TiO2 and TiO2–Ag nanofibers were produced by electrospinning technique and surface coated on silicone elastomer (diameter: 10.0 mm; thickness: 2.0 mm) by dipcoating method. These coated hybrid nanoporous matrices were characterized by various morphological and physicochemical techniques (like SEM......, TEM, XRD, FTIR, EDS and UV). These characterizations reveal that the surface morphology of electrospun nanofibers remain intact by the dipcoating technique. The produced hybrid matrices of TiO2 and TiO2–Ag silicone were utilized as photocatalysts to degrade dairy waste water with an efficient water...

  14. Synthesis of surface plasmon resonance (SPR) triggered Ag/TiO{sub 2} photocatalyst for degradation of endocrine disturbing compounds

    Energy Technology Data Exchange (ETDEWEB)

    Leong, Kah Hon; Gan, Bee Ling; Ibrahim, Shaliza [Environmental Engineering Laboratory, Department of Civil Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Saravanan, Pichiah, E-mail: saravananpichiah@um.edu.my [Environmental Engineering Laboratory, Department of Civil Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Nanotechnology and Catalysis Research Center (NANOCAT), University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2014-11-15

    Graphical abstract: - Highlights: • Ag/TiO{sub 2} was synthesized with aid of natural photon stimulated photoreduction. • Deposited Ag prompted well the LSPRs, Schottky barrier for visible light utilization. • Photocatalytic activity was evaluated by degrading EDCs under visible light. • 3.0 wt% Ag/TiO{sub 2} resulted with good photocatalytic efficiency over others. - Abstract: Surface deposition of silver nanoparticles (Ag NPs) onto the 100% anatase titania (Ag/TiO{sub 2}) for evolution of surface plasmon resonance (SPR) was achieved sustainably with the assistance of solar energy. The preparation resulted in Ag/TiO{sub 2} photocatalyst with varied Ag depositions (0.5 wt%, 1.0 wt%, 3.0 wt% and 5.0 wt%). All obtained photocatalysts were characterized for the evolution of SPR via crystalline phase analysis, morphology, lattice fringes, surface area and pore size characteristics, chemical composition with chemical and electronic state, Raman scattering, optical and photoluminescence properties. The deposition of synthesized Ag NPs exhibited high uniformity and homogeneity and laid pathway for effective utilization of the visible region of electromagnetic spectrum through SPR. The depositions also lead for suppressing recombination rates of electron–hole. The photocatalytic evaluation was carried out by adopting two different class of endocrine disturbing compound (EDC) i.e., amoxicillin (pharmaceutical) and 2,4-dichlorophenol (pesticide) excited with artificial visible light source. Ag/TiO{sub 2} with Ag > 0.5 wt% exhibited significant degradation efficiency for both amoxicillin and 2,4-dichlorophenol. Thus synthesized Ag/TiO{sub 2} revealed the implication of plasmonics on TiO{sub 2} for the enhanced visible light photocatalytic activity.

  15. Photoelectrochemical Properties of CuS-GeO2-TiO2 Composite Coating Electrode

    Science.gov (United States)

    Wen, Xinyu; Zhang, Huawei

    2016-01-01

    The ITO (indium tin oxide) conductive glass-matrix CuS-GeO2-TiO2 composite coating was generated via EPD (electrophoretic deposition) and followed by a sintering treatment at 450°C for 40 minutes. Characterizations of the CuS-GeO2-TiO2 composite coating were taken by SEM (scanning electron microscope), XRD (X-ray diffraction), EDX (energy dispersive X-ray), UV-Vis DRS (ultraviolet-visible diffuse reflection spectrum), and FT-IR (Fourier transform infrared spectroscopy). Results showed that CuS and GeO2 had dispersed in this CuS-GeO2-TiO2 composite coating (mass percentages for CuS and GeO2 were 1.23% and 2.79%, respectively). The electrochemical studies (cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and Tafel polarization) of this CuS-GeO2-TiO2 composite coating electrode were performed in pH = 9.51 Na2CO3-NaHCO3 buffer solution containing 0.50 mol/L CH3OH under the conditions of visible light, ultraviolet light (λ = 365 nm), and dark (without light irradiation as control), respectively. Electrochemical studies indicated that this CuS-GeO2-TiO2 composite coating electrode had better photoelectrocatalytic activity than the pure TiO2 electrode in the electrocatalysis of methanol under visible light. PMID:27055277

  16. Photoelectrochemical Properties of CuS-GeO2-TiO2 Composite Coating Electrode.

    Science.gov (United States)

    Wen, Xinyu; Zhang, Huawei

    2016-01-01

    The ITO (indium tin oxide) conductive glass-matrix CuS-GeO2-TiO2 composite coating was generated via EPD (electrophoretic deposition) and followed by a sintering treatment at 450°C for 40 minutes. Characterizations of the CuS-GeO2-TiO2 composite coating were taken by SEM (scanning electron microscope), XRD (X-ray diffraction), EDX (energy dispersive X-ray), UV-Vis DRS (ultraviolet-visible diffuse reflection spectrum), and FT-IR (Fourier transform infrared spectroscopy). Results showed that CuS and GeO2 had dispersed in this CuS-GeO2-TiO2 composite coating (mass percentages for CuS and GeO2 were 1.23% and 2.79%, respectively). The electrochemical studies (cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and Tafel polarization) of this CuS-GeO2-TiO2 composite coating electrode were performed in pH = 9.51 Na2CO3-NaHCO3 buffer solution containing 0.50 mol/L CH3OH under the conditions of visible light, ultraviolet light (λ = 365 nm), and dark (without light irradiation as control), respectively. Electrochemical studies indicated that this CuS-GeO2-TiO2 composite coating electrode had better photoelectrocatalytic activity than the pure TiO2 electrode in the electrocatalysis of methanol under visible light. PMID:27055277

  17. Unconstrained solidification and characterisation of near-eutectic Al-Cu-Ag alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ebzeeva, S.; Nagels, E.; Froyen, L. [Katholieke Univ. Leuven (Belgium). Dept. of Metallurgy and Materials Engineering

    2008-11-15

    This study focuses on the microstructure formation in two Al-Cu-Ag alloys with near-eutectic composition on either side of the {alpha}(Al)/{theta}-Al{sub 2}Cu groove. The alloys solidified equiaxially with two different cooling rates for each composition of alloy. The primary phases formed are {alpha}(Al) or {theta}-Al{sub 2}Cu, but univariant and invariant eutectic reactions are common. In hypoeutectic samples macrosegregation of the {alpha}(Al) phase occurred. The univariant {alpha}(Al)/{theta}-Al{sub 2}Cu eutectic in these samples is formed by coupled two-phase structures. The univariant eutectic in the samples, which exhibit primary {theta}-Al{sub 2}Cu, grew partially competitively due to the {alpha}(Al) single phase instability. It is suggested that the difference in solubility of the segregating element Ag in {alpha}(Al) and {theta}-Al{sub 2}Cu phases and processing parameters such as cooling rates determine the resulting microstructure. (orig.)

  18. Single-wall carbon nanotube (SWCNT) functionalized Sn-Ag-Cu lead-free composite solders

    International Nuclear Information System (INIS)

    Sn-3.8Ag-0.7Cu-based composite solders functionalized with single-wall carbon nanotubes (SWCNTs) with various weight proportions ranging from 0.01 to 1 wt% were successfully produced. The microstuctural, melting and mechanical properties of Sn-3.8Ag-0.7Cu-based composite solders were evaluated as a function of different wt% of SWCNT addition. The microstructures of the composite specimens were studied by means of field-emission scanning electron microscope (FE-SEM). It was observed that SWCNTs were homogeneously distributed at the edges of Ag3Sn compounds that are distributed evenly in the β-Sn solder matrix. Energy dispersion X-ray (EDX) analysis method was employed to reveal the presence of the phases existed in the solder composites. The mechanical properties of the composite solders were evaluated by Vickers-microhardness measurements and tensile tests performed at room temperature. The different wt% and addition of SWCNTs to Sn-3.8Ag-0.7Cu produced a dramatic increase in tensile strength, hardness, and better melting characteristics. A slight decrease in elongation to failure was observed. FE-SEM observations of the fracture surface, revealed the overall failure mechanism as the ductile manner of failure

  19. Phase transitions in CuS-Ag2S nanoparticle system

    Science.gov (United States)

    Sheela Christy, R.; Thanka Kumaran, J. T.; Bansal, C.; Brightson, M.

    2016-02-01

    (Ag2)xCu1-xS, x = .2, .4, .6 and .8 nanoparticles were synthesized by the solvothermal method. The as-synthesized nanoparticles were characterized by X-ray diffraction to study the crystal structure and size. The surface morphologies of the above samples were studied using scanning electron microscope. As there is continuous shift in the lower wavelength absorption edge of the UV-VIS spectrum of these samples with concentration, (Ag2)xCu1-xS nanoparticles can be tuned to different band gap energies by varying the composition. The D.C. electrical resistance was measured in the temperature range 310-485 K. As Ag2S transforms from monoclinic to bcc at around 450 K, copper sulfide nanoparticles also shows a phase transition at around 470 K, the effects of these two transitions are seen in the resistance measurements and in the UV-VIS spectra of the entire system. The electrical resistance of (Ag2)xCu1-xS nanoparticles rapidly reduces as more and more copper sulfide is added.

  20. High-temperature deformation of dispersion-strengthened Cu-Zr-Ti-C alloys

    Energy Technology Data Exchange (ETDEWEB)

    Palma, Rodrigo H. [Departamento de Ingenieria Mecanica, Universidad de Chile, Beauchef 850, 4 deg. Piso, Santiago 6511261 (Chile)]. E-mail: rhpalma@ing.uchile.ct; Sepulveda, Aquiles [Departamento de Ingenieria Mecanica, Universidad de Chile, Beauchef 850, 4 deg. Piso, Santiago 6511261 (Chile); Espinoza, Rodrigo [Departamento de Ingenieria Mecanica, Universidad de Chile, Beauchef 850, 4 deg. Piso, Santiago 6511261 (Chile); Dianez, M. Jesus [Instituto de Ciencia de Materiales de Sevilla, Americo Vespucio s/n, Isla de La Cartuja, Sevilla (Spain); Criado, Jose M. [Instituto de Ciencia de Materiales de Sevilla, Americo Vespucio s/n, Isla de La Cartuja, Sevilla (Spain); Sayagues, M. Jesus [Instituto de Ciencia de Materiales de Sevilla, Americo Vespucio s/n, Isla de La Cartuja, Sevilla (Spain)

    2005-01-25

    The hot mechanical behaviour and microstructure of Cu-5 vol.% TiC, Cu-5 vol.% ZrO{sub 2} and Cu-2.5 vol.% TiC-2.5 vol.% ZrO{sub 2} alloys prepared by reaction milling were studied. After a test of 1 h annealing at 1173 K, the Cu-5 vol.% ZrO{sub 2} alloy presented the lower softening resistance to annealing, while the other two ones kept their initial room-temperature hardness (about 2 GPa). Hot-compression tests at 773 and 1123 K, at initial true strain rates of 0.85 x 10{sup -3} and 0.85 x 10{sup -4} s{sup -1} were performed. The Cu-2.5 vol.% TiC-2.5 vol.% ZrO{sub 2} and the Cu-5 vol.% ZrO{sub 2} alloys were the strongest and softest materials, respectively. Moreover, by electron microscopy, nanometric TiC and micrometric particles were detected in the Cu-5 vol.% TiC and Cu-5 vol.% ZrO{sub 2} alloys, respectively. A possible explanation for the observed behaviour of these materials is proposed. In the compression tests, it was also found that strain rate has a low effect on flow stress, as it has been previously observed by various authors in dispersion-strengthened alloys deformed at high temperatures.

  1. Ag-bridged Ag{sub 2}O nanowire network/TiO{sub 2} nanotube array p–n heterojunction as a highly efficient and stable visible light photocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chengbin, E-mail: chem_cbliu@hnu.edu.cn [Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063 (China); State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082 (China); Cao, Chenghao [State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082 (China); Luo, Xubiao [Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063 (China); Luo, Shenglian [Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063 (China); State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082 (China)

    2015-03-21

    Graphical abstract: A unique Ag-bridged Ag{sub 2}O nanowire network/TiO{sub 2} nanotube array p–n heterojunction was fabricated by simple electrochemical method. The heterostructures exhibit high photocatalytic activity and excellent recycling performance. - Highlights: • Ag-bridged Ag{sub 2}O nanowire network self-stability structure. • Ag{sub 2}O nanowire network/TiO{sub 2} nanotube p–n heterojunction. • High visible light photocatalytic activity. • Highly stable recycling performance. - Abstract: A unique Ag-bridged Ag{sub 2}O nanowire network/TiO{sub 2} nanotube array p–n heterojunction (Ag–Ag{sub 2}O/TiO{sub 2} NT) was fabricated by simple electrochemical method. Ag nanoparticles were firstly electrochemically deposited onto the surface of TiO{sub 2} NT and then were partly oxidized to Ag{sub 2}O nanowires while the rest of Ag mother nanoparticles were located at the junctions of Ag{sub 2}O nanowire network. The Ag–Ag{sub 2}O/TiO{sub 2} NT heterostructure exhibited strong visible-light response, effective separation of photogenerated carriers, and high adsorption capacity. The integration of Ag–Ag{sub 2}O self-stability structure and p–n heterojunction permitted high and stable photocatalytic activity of Ag–Ag{sub 2}O/TiO{sub 2} NT heterostructure photocatalyst. Under 140-min visible light irradiation, the photocatalytic removal efficiency of both dye acid orange 7 (AO7) and industrial chemical p-nitrophenol (PNP) over Ag–Ag{sub 2}O/TiO{sub 2} NT reached nearly 100% much higher than 17% for AO7 or 13% for PNP over bare TiO{sub 2} NT. After 5 successive cycles under 600-min simulated solar light irradiation, Ag–Ag{sub 2}O/TiO{sub 2} NT remained highly stable photocatalytic activity.

  2. Non-UV germicidal activity of fresh TiO2 and Ag/TiO2

    Institute of Scientific and Technical Information of China (English)

    LIU Lifen; John Barford; YEUNG King Lun

    2009-01-01

    Fresh TiO2 was found to possess a strong germicidal activity even without UV irradiation. Live Yeast (Saccharomyces cerevisiae) cells in contact with fresh TiO2 were found deformed and dead after 15 min contact. The cause of germicidal activity was discussed from the observed cell deformation, lysis and increased absorption at 1680 cm-1 in FT-IR spectra of the affected cells, which proved the oxidizing effect of fresh TiO2 to cells. The deformation caused by the stretching of cell wall and pressure built-up inside the cell, led to cell burst and release of intracellular materials. The degree of cell deformation was found positively related with the wetting property of TiO2. Cells are negatively charged, for Gram-negative cell (thinner cell wall), a higher germicidal effect was observed than Gram-positive cells. The germicidal effect of TiO2 gradually decreases after exposure to air at room temperature, as the wetting property decreases. This kind of germicidal activity was more effective compared to other germicidal process such as UVA/TiO2 or Ag+. This shed light on designing new germicidal material either maintained by visible light irradiation, or by oxidation effect generated by reactive oxygen species.

  3. First-Principles Band Calculations on Electronic Structures of Ag-Doped Rutile and Anatase TiO2

    Institute of Scientific and Technical Information of China (English)

    HOU Xing-Gang; LIU An-Dong; HUANG Mei-Dong; LIAO Bin; WU Xiao-Ling

    2009-01-01

    The electronic structures of Ag-doped rutile and anatase TiO2 are studied by first-principles band calculations based on density funetionai theory with the full-potentiai linearized-augraented-plane-wave method.New occupied bands ore found between the band gaps of both Ag-doped rutile and anatase TiO2.The formation of these new bands Capri be explained mainly by their orbitals of Ag 4d states mixed with Ti 3d states and are supposed to contribute to their visible light absorption.

  4. Influence of cobalt and chromium additions on the precipitation processes in a Cu-4Ti alloys; Influencia de la adicion de cobalto y cromo en el proceso de precipitacion en una aleacion de Cu-4Ti

    Energy Technology Data Exchange (ETDEWEB)

    Donoso, E.

    2010-07-01

    The influence of 0.5% atomic cobalt and 1% atomic chromium additions on the precipitation hardening of Cu-4Ti alloy was studied by differential scanning calorimetry (DSC) and microhardness measurements. The analysis of the calorimetric curves, for binary alloy, shows the presence of two overlapping exothermic reactions (stages 1 and 2) attributed to the formation of Cu{sub 4}Ti and Cu{sub 3}Ti particles in the copper matrix, respectively. DSC curves for Cu-4Ti-0.5Co alloy shows three exothermic effects (overlapping stages 3 and 4 and stage 5) associated to the formation of phases Ti{sub 2}Co, TiCo and Cu{sub 4}Ti, respectively. DSC curves for Cu-4Ti1Cr alloy shows three exothermic reactions (stages 6, 7 and 9) and one endothermic peak (stage 8). The exothermic reactions correspond to the formation of phases Cr{sub 2}Ti, Cu{sub 4}Ti and Cu{sub 3}Ti, respectively, and the endothermic reactions are attributed to the Cr{sub 2}Ti dissolution. The activation energies calculated using the modified Kissinger method were lower than the ones corresponding to diffusion of cobalt, chromium, and titanium in copper. Kinetic parameters were obtained by a convolution method based on the Johnson-Mehl-Avrami (JMA) formalism. Microhardness measurements confirmed the formation of the mentioned phases. Also, these measurements confirmed the effect of cobalt and chromium addition on the binary alloy hardness. (Author). 31 refs.

  5. Preparation, Characterization, and Photocatalytic Property of CuO-TiO Nanocomposites

    Directory of Open Access Journals (Sweden)

    Longfeng Li

    2012-01-01

    Full Text Available The Cu2O-TiO2 nanocomposites were successfully synthesized by the homogeneous hydrolysation, followed by the solvothermal crystallization and ethylene glycol-thermal reduction process, respectively. The obtained products were characterized by means of X-ray diffraction(XRD, Uv-vis diffuse reflectance spectroscopy, laser particle size analysis, and scanning electron microscopy (SEM, respectively. The photocatalytic performance of Cu2O-TiO2 nanocomposites was evaluated by the degradation of methyl orange (MO as a model compound. The experimental results showed that the prepared Cu2O-TiO2 nanocomposite exhibited higher photocatalytic activity for the decomposition of MO than the pure Cu2O and the commercial Degussa P25 TiO2 under visible light irradiation.

  6. Partial and integral enthalpies of mixing of Cu-Fe-Ti melts at 1873 K

    Science.gov (United States)

    Abdulov, A. R.; Dreval', L. A.; Agraval, P. G.; Turchanin, M. A.

    2009-10-01

    The partial enthalpy of mixing of titanium in Cu-Fe-Ti melts are studied by high-temperature isoperibolic calorimetry at 1873 K in the composition range x Ti = 0-0.6 along three sections with a ratio x Fe / x Cu = 1/3, 1, and 3. The integral enthalpy of mixing of the ternary melts is calculated by integrating the Gibbs-Duhem equation and is described in terms of the Redlich-Kister-Muggianu model. Function Δ H demonstrates negative values over a wide concentration range. The contribution of a ternary interaction to the enthalpy of mixing of Cu-Fe-Ti melts is mainly positive. The first partial enthalpies of mixing of Al, Sn, Si, Y, Zr, Hf, and Ni with Cu-Fe-Ti melts are negative and indicate an increase of the thermodynamic stability of the liquid phase upon the dissolution of these additions.

  7. Studies on properties of Ag/Co0.05Ti0.95O2 random nanocomposite as metamaterials

    Science.gov (United States)

    Khorshidi, Zahra; Gholipur, Reza; Bahari, Ali

    2016-10-01

    In this work, random metal-dielectric nanocomposites consisting of Ag nanorods embedded in Co0.05Ti0.95O2 are studied. The aspect ratio of Ag nanorods is about 15, and different contents of Ag nanorods are investigated. The nanocomposites with Ag content exceeding its percolation threshold, show metal-like behavior with negative permittivity. Moreover, in these nanocomposites, Ag nanorods form silver networks with diamagnetic response which combine with the magnetic resonance of ferromagnetic Co0.05Ti0.95O2 particles. The permeability spectra show that CTO-Ag15 33% nanocomposite has strongest diamagnetic behavior. These results indicate that the CTO-Ag15 33% sample is a promising candidate for the double negative materials.

  8. Thermal spikes in Ag/Fe and Cu/Fe ion beam mixing

    International Nuclear Information System (INIS)

    Ion beam mixing has been studied since 1980, and since then a lot of experimental and theoretical work has been done and knowledge has been gathered. Nevertheless, there are still many fundamental aspects that need to be clarified and with that aim many experiments need to be performed. Copper and iron are miscible in the liquid state, while silver and iron are not. However, both systems are thermally immiscible in the solid state. In order to have an insight into the importance of mixing within thermal spikes during ion beam irradiation, we deposited Cu/Fe and Ag/Fe bilayers onto Si substrates and irradiated them at room temperature with 2 MeV Cu and 2.5 MeV Au ions. A combination of Rutherford backscattering spectrometry (RBS) and atomic force microscopy (AFM) was used to analyze the atomic transport at the interface and the morphology changes of the samples. From the element profiles at the interface we conclude a mixing efficiency, which is indeed larger than the prediction of the ballistic model in the Cu/Fe system and smaller in the Ag/Fe system. Since ballistic mixing is expected in any case, we argue that demixing and phase separation in the Ag/Fe system occur in the thermal spike phase of the cascade as a consequence of the positive heat of mixing. Further mixing does occur in the thermal spike in the Cu/Fe system and they remain mixed even at the solid state because of the high cooling rate. In addition, ion irradiation induces a large surface roughening of the Ag and Cu top layers as proven by AFM. This effect is important for the correct interpretation of the results. Furthermore, this recrystallization affects also the interface, producing a rough interface, that appears in the RBS spectra as an atomic 'diffusion' at the interface

  9. Substrate dependent bonding distances of PTCDA - A comparative XSW study on Cu(111) and Ag(111)

    OpenAIRE

    Gerlach, A; Sellner, S.; Schreiber, F.; Koch, N; Zegenhagen, J.

    2006-01-01

    We study the adsorption geometry of 3,4,9,10-perylene-tetracarboxylic-dianhydride (PTCDA) on Ag(111) and Cu(111) using X-ray standing waves. The element-specific analysis shows that the carbon core of the molecule adsorbs in a planar configuration, whereas the oxygen atoms experience a non-trivial and substrate dependent distortion. On copper (silver) the carbon rings resides 2.66 A (2.86 A) above the substrate. In contrast to the conformation on Ag(111), where the carboxylic oxygen atoms are...

  10. High temperature phase equilibria studies in the Bi-Sr-Ca-Cu-O-Ag system

    Energy Technology Data Exchange (ETDEWEB)

    Margulies, Lawrence

    1999-11-08

    A variety of experimental techniques were utilized to examine the high temperature phase equilibria in the Bi-Sr-Ca-Cu-O-Ag system. Quenching studies were used to determine the liquid solubility of Ag in the Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} (Bi2212) melt and the details of the peritectic decomposition pathway of Bi2212 as a function on Ag content and oxygen partial pressure (PO{sub 2}). A liquid immiscibility region between oxide and Ag liquids in the 8--98 at% range was found above 900 C. Two eutectics were found in the Bi2212-Ag pseudobinary. On the oxide rich side, a eutectic exists at approximately 4 at% Ag. On the Ag rich side, a eutectic exists at approximately 98 at% Ag at a temperature of 15 C below the melting point of pure Ag. Six distinct solid phases were found to be in equilibrium with the partial melt within the Ag content and PO{sub 2} range studied. The stability of these solid phases were found to be highly sensitive to PO{sub 2}, and to a much lesser extent Ag content. High temperature x-ray diffraction (HTXRD) studies of this system are in conflict with these results. It is suggested that these discrepancies are due to experimental artifacts caused by the significant thermal gradients and lack of full bulk sampling which is inherent in conventional HTXRD designs. In part 2, a new furnace design compatible with synchrotron radiation sources is introduced to address these problems. This design allows for full bulk sampling in a low thermal gradient environment using Debye-Scherrer transmission geometry. Sample spinning is also introduced in the design to eliminate preferred orientation and incomplete powder averaging and allow for quantitative phase analysis and structural refinement. Studies on model systems are presented to demonstrate the capabilities for high resolution structural studies (Al{sub 2}O{sub 3}) and time resolved phase transformation studies (SrCO{sub 3}). Finally, the Bi2212 system is examined to confirm the quenching results

  11. Preparation, Characterization, and Photocatalytic Property of CuO-TiO Nanocomposites

    OpenAIRE

    Longfeng Li; Maolin Zhang

    2012-01-01

    The Cu2O-TiO2 nanocomposites were successfully synthesized by the homogeneous hydrolysation, followed by the solvothermal crystallization and ethylene glycol-thermal reduction process, respectively. The obtained products were characterized by means of X-ray diffraction(XRD), Uv-vis diffuse reflectance spectroscopy, laser particle size analysis, and scanning electron microscopy (SEM), respectively. The photocatalytic performance of Cu2O-TiO2 nanocomposites was evaluated by the degrad...

  12. Interplay of dopants and defects in making Cu doped TiO{sub 2} nanoparticle a ferromagnetic semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Choudhury, Biswajit, E-mail: biswa.tezu@gmail.com [Department of Physics, Tezpur University, Napaam 784028, Assam (India); Choudhury, Amarjyoti [Department of Physics, Tezpur University, Napaam 784028, Assam (India); Borah, Debajit [Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam (India)

    2015-10-15

    Here we have studied the role of oxygen defects and Cu dopants on ferromagnetism in Cu doped TiO{sub 2} nanoparticles with nominal Cu concentration of 2%, 4% and 6 mol%. Electron paramagnetic resonance (EPR) spectra analysis reveals the presence of Cu{sup 2+} in the distorted octahedral coordination of TiO{sub 2}. Cu d-states undergo strong p-d coupling with the valence band O 2p state of TiO{sub 2} resulting the extended absorption hump in the visible region. Photoluminescence results reveal the presence of oxygen defect related emission peaks in Cu doped TiO{sub 2}. Room temperature ferromagnetism is observed in all the Cu doped TiO{sub 2} nanoparticles. Saturation magnetization is the highest at 4 mol% and then there is a decrease in magnetization at 6 mol%. Ferromagnetism completely disappears on calcinations of 4% Cu doped TiO{sub 2} in air at 450 °C for 8 h. It is speculated that both oxygen vacancies and Cu d-states are involved in the room temperature ferromagnetism. Spin polarization occurs by the formation of bound magnetic polaron between electrons in Cu{sup 2+}d-states and the unpaired spins in oxygen vacancies. Presence of Cu{sup 2+}-Cu{sup 2+}d-d exchange interaction and Cu{sup 2+}-O{sup 2−}-Cu{sup 2+} antiferromagnetic superexchange interactions might have resulted in the reduction in magnetization at 6 mol% Cu. - Graphical abstract: Ferromagnetism in Cu doped TiO{sub 2} requires presence of both Cu dopant and oxygen vacancies. - Highlights: • Cu doped TiO{sub 2} nanoparticle displays room temperature ferromagnetism. • Ferromagnetism requires presence of both Cu and oxygen vacancies. • Antiferromagnetic interaction persists at high Cu dopant concentration. • Paramagnetism appears on air annealing of the doped system for longer period.

  13. Effect of Ti seed layers on structure of self-organized epitaxial face-centered-cubic-Ag(001) oriented nanodots

    Energy Technology Data Exchange (ETDEWEB)

    Kamiko, M.; Nose, K. [Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Suenaga, R.; Kyuno, K. [Department of Material Science, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548 (Japan); Koo, J.-W.; Ha, J.-G. [Department of Electronic Materials Engineering, Kwangwoon University, 447-1 Wolgye-Dong, Nowon-Gu, Seoul 139-701 (Korea, Republic of)

    2013-12-28

    The influence of Ti seed layers on the structure of self-organized Ag nanodots, obtained with a Ti seed-layer-assisted thermal agglomeration method, has been investigated. The samples were grown on MgO(001) single crystal substrates by RF magnetron sputter deposition. The samples were deposited at room temperature and post-annealed at 350 °C for 4 h while maintaining the chamber vacuum conditions. The results of atomic force microscopy (AFM) observations indicated that the insertion of the Ti seed layer (0.6–5.0 nm) between the MgO substrate and Ag layer promotes the agglomeration process, forming the nanodot array. Comparisons between the AFM images revealed that the size of the Ag nanodots was increased with an increase in the Ti seed layer thickness. The atomic concentration of the film surface was confirmed by X-ray photoelectron spectroscopy (XPS). The XPS result suggested that the nanodot surface mainly consisted of Ag. Moreover, X-ray diffraction results proved that the initial deposition of the Ti seed layer (0.6–5.0 nm) onto MgO(001) prior to the Ag deposition yielded high-quality fcc-Ag(001) oriented epitaxial nanodots. The optical absorbance spectra of the fabricated Ag nanodots with various Ti seed layer thicknesses were obtained in the visible light range.

  14. Preparation, characterization, and antibacterial activity of NiFe2O4/PAMA/Ag-TiO2 nanocomposite

    Science.gov (United States)

    Allafchian, Alireza; Jalali, Seyed Amir Hossein; Bahramian, Hamid; Ahmadvand, Hossein

    2016-04-01

    We have described a facile fabrication of silver deposited on the TiO2, Poly Acrylonitrile Co Maleic Anhydride (PAMA) polymer and nickel ferrite composite (NiFe2O4/PAMA/Ag-TiO2) through a three-step procedure. A pre-synthesized NiFe2O4 was first coated with PAMA polymer and then Ag-TiO2 was deposited on the surface of PAMA polymer shell. After the characterization of this three-component composite by various techniques, such as FTIR, XRD, FESEM, BET, TEM and VSM, it was impregnated in standard antibiotic discs. The antibacterial activity of NiFe2O4/PAMA/Ag-TiO2 nanocomposite was investigated against some gram positive and gram negative bacteria by employing disc diffusion assay and then compared with that of naked NiFe2O4, NiFe2O4/Ag, AgNPs and NiFe2O4/PAMA. The results demonstrated that the AgNPs, when embedded in TiO2 and combined with NiFe2O4/PAMA, became an excellent antibacterial agent. The NiFe2O4/PAMA/Ag-TiO2 nanocomposite could be readily separated from water solution after the disinfection process by applying an external magnetic field.

  15. Improved electrochemical performance of Ag-modified Li4Ti5O12 anode material in a broad voltage window

    Indian Academy of Sciences (India)

    Yan-Rong Zhu; Ting-Feng Yi; Hong-Tao Ma; Yong-Quan Ma; Li-Juan Jiang; Rong-Sun Zhu

    2014-01-01

    Li4Ti5O12/Ag composites were synthesized by a solid-state method. The effect of Ag modification on the physical and electrochemical properties is discussed by the characterizations of X-ray diffraction, scanning electron microscopy, cyclic voltammetry, electrochemical impedance spectroscopy, cycling and rate tests. The lattice parameter of Li4Ti5O12 with a low Ag content is almost not changed, but the lattice parameter becomes larger due to the high content of Ag. Li4Ti5O12/Ag material has a uniform particle size which is about 1 m. Modification of appropriate Ag is beneficial to the reversible intercalation and deintercalation of Li+. Modification of Ag not only decreases the charge transfer resistance of Li4Ti5O12 material, but also improves the diffusion coefficient of lithium ion. Li4Ti5O12/Ag (3 mass%) material has the lowest charge transfer resistance, the highest diffusion coefficient of lithium ion and the best rate cycling performance.

  16. Interface interaction and wetting of Sc2O3 exposed to Cu-Al and Cu-Ti melts

    International Nuclear Information System (INIS)

    Scandia is a thermodynamically stable oxide and could be used as a structural material for a crucible in order to avoid a melt contamination. In the present study wetting experiments of Cu-Al and Cu-Ti melts on Scandia substrate were preformed at 1423 K by a sessile drop method. It was established that Al and Ti additions lead to the improved wetting and that the final contact angle decreases with increasing the additives concentration. For Al containing melts, the contact angle changes gradually with time, and a relatively thick interaction layer, which consists of Al2O3, Sc2O3, and metallic channels, was formed at the Sc2O3/Cu-Al interface. For Ti containing melts, the final contact angle is achieved already during heating, and an extremely thin layer based on a Ti-Sc-O compound was detected by AES at the Sc2O3/Cu-Ti interface. The results of a thermodynamic analysis, which takes into account the formation free energy of the oxides, involved in the systems, and the thermodynamic properties of the liquid solutions are in a good agreement with the experimental observations. (orig.)

  17. Ordering of the β phase in TiNiCu and TiNiCuMn melt spun ribbons studied with the ALCHEMI technique

    International Nuclear Information System (INIS)

    Ti-25Ni-25Cu and Ti-25Ni-23Cu-2Mn (at.%) ribbons were melt spun at 26 m s-1. Transmission electron microscopy (TEM) investigations proved that the Mn addition lowers the amount and reduces the size of the β phase crystallites present in the otherwise amorphous matrix. The observations using the (1 0 0) superlattice spot proved that each crystallite forms a single antiphase domain. The planar ALCHEMI experiments at (0 0 0, 1 0 0) orientation of thin foils from as-spun ribbons confirmed a high occupancy of the Ni-rich planes by Cu and Mn additions. However, even as practically all Mn atoms found their places on the Ni-rich planes, though a small amount of Cu atoms still occupy the planes characteristic for Ti atoms. The transfer of the remaining Cu atoms from Ti {1 0 0} to Ni {1 0 0} planes might be the reason of the rise of the temperature of the start of the martensite transformation (Ms) during further heat treatment

  18. Effect of extrusion processing on the microstructure, mechanical properties, biocorrosion properties and antibacterial properties of Ti-Cu sintered alloys.

    Science.gov (United States)

    Zhang, Erlin; Li, Shengyi; Ren, Jing; Zhang, Lan; Han, Yong

    2016-12-01

    Ti-Cu sintered alloys, Ti-Cu(S) alloy, have exhibited good anticorrosion resistance and strong antibacterial properties, but low ductility in previous study. In this paper, Ti-Cu(S) alloys were subjected to extrusion processing in order to improve the comprehensive property. The phase constitute, microstructure, mechanical property, biocorrosion property and antibacterial activity of the extruded alloys, Ti-Cu(E), were investigated in comparison with Ti-Cu(S) by X-ray diffraction (XRD), optical microscopy (OM), scanning electronic microscopy (SEM) with energy disperse spectroscopy (EDS), mechanical testing, electrochemical testing and plate-count method in order to reveal the effect of the extrusion process. XRD, OM and SEM results showed that the extrusion process did not change the phase constitute but refined the grain size and Ti2Cu particle significantly. Ti-Cu(E) alloys exhibited higher hardness and compressive yield strength than Ti-Cu(S) alloys due to the fine grain and Ti2Cu particles. With the consideration of the total compressive strain, it was suggested that the extrusion process could improve the ductility of Ti-Cu alloy(S) alloys. Electrochemical results have indicated that the extrusion process improved the corrosion resistance of Ti-Cu(S) alloys. Plate-count method displayed that both Ti-Cu(S) and Ti-Cu(E) exhibited strong antibacterial activity (>99%) against S. aureus. All these results demonstrated that hot forming processing, such as the extrusion in this study, refined the microstructure and densified the alloy, in turn improved the ductility and strength as well as anticorrosion properties without reduction in antibacterial properties.

  19. Effect of extrusion processing on the microstructure, mechanical properties, biocorrosion properties and antibacterial properties of Ti-Cu sintered alloys.

    Science.gov (United States)

    Zhang, Erlin; Li, Shengyi; Ren, Jing; Zhang, Lan; Han, Yong

    2016-12-01

    Ti-Cu sintered alloys, Ti-Cu(S) alloy, have exhibited good anticorrosion resistance and strong antibacterial properties, but low ductility in previous study. In this paper, Ti-Cu(S) alloys were subjected to extrusion processing in order to improve the comprehensive property. The phase constitute, microstructure, mechanical property, biocorrosion property and antibacterial activity of the extruded alloys, Ti-Cu(E), were investigated in comparison with Ti-Cu(S) by X-ray diffraction (XRD), optical microscopy (OM), scanning electronic microscopy (SEM) with energy disperse spectroscopy (EDS), mechanical testing, electrochemical testing and plate-count method in order to reveal the effect of the extrusion process. XRD, OM and SEM results showed that the extrusion process did not change the phase constitute but refined the grain size and Ti2Cu particle significantly. Ti-Cu(E) alloys exhibited higher hardness and compressive yield strength than Ti-Cu(S) alloys due to the fine grain and Ti2Cu particles. With the consideration of the total compressive strain, it was suggested that the extrusion process could improve the ductility of Ti-Cu alloy(S) alloys. Electrochemical results have indicated that the extrusion process improved the corrosion resistance of Ti-Cu(S) alloys. Plate-count method displayed that both Ti-Cu(S) and Ti-Cu(E) exhibited strong antibacterial activity (>99%) against S. aureus. All these results demonstrated that hot forming processing, such as the extrusion in this study, refined the microstructure and densified the alloy, in turn improved the ductility and strength as well as anticorrosion properties without reduction in antibacterial properties. PMID:27612770

  20. Sn-Ag-xCu-Bi-Ni/Cu焊点界面IMC演变%Evolution of the Interfacial IMC in Sn-Ag-xCu-Bi-Ni/Cu Solder Joints

    Institute of Scientific and Technical Information of China (English)

    孙凤莲; 汪洋; 刘洋; 王国军

    2012-01-01

    为了研究低银无铅焊点界面金属间化合物(IMC)的形成与演变,以低银无铅焊点Sn-Ag-xCu-Bi-Ni/Cu为研究对象,研究了钎料中Cu质量分数对界面IMC厚度、形貌和成分的影响.实验结果表明,随着钎料中Cu质量分数的增加,回流焊后焊点IMC层厚度变薄,IMC晶粒尺寸增大,IMC晶粒形貌由颗粒状转变为棱柱状以及鹅卵石状,同时界面IMC成分发生由(Cu,Ni)6Sn5向Cu6Sns的转变.高温时效后,界面IMC层厚度增长.当钎料中Cu质量分数超过1%时,时效后生成较厚的Cu3Sn化合物层,对焊点可靠性不利.钎料中Cu质量分数应控制在1%以下.%In order to study the formation and evolution of the intermetallic compounds (IMC) in low-Ag lead-free solder joints, the effect of Cu content on the thickness, morphology, and constituent of the interfacial IMC in Sn-Ag-xCu-Bi-Ni/Cu solder joints was investigated. Experimental results indicated that the thickness of IMC layer decreased but the grain size of which increased as the concentration of Cu increased in the solder alloys. Meanwhile , the appearance of IMC grains transformed from tiny grains to prisms and cobbles, and the constituent of IMC transformed from (Cu,Ni)6Sn5to Cu6Sn5. The thickness of IMC layer increased during high temperature storage ( HTS) aging. Thick Cu3Sn layer formed during aging when the Cu content was higher than 1% in the solder. Due to reliability concern, the content of Cu in the solder should be controlled less than 1 %.

  1. Interface Characteristics of AgNi10/Cu/Fe by Cold Roll Bonding%冷轧复合AgNi10/Cu/Fe界面结合特征研究

    Institute of Scientific and Technical Information of China (English)

    王勇; 刘安利; 徐永红; 章应; 杨贤军

    2011-01-01

    采用等辊径、等辊速冷轧复合技术制备了AgNi10/Cu/Fe三层复合材料,对其界面结合机制进行了研究.复合前对三层材料分别进行再结晶退火,获得均匀的原始组织及相近的硬度,并用钢丝刷清理复合面.利用扫描电镜和能谱仪对复合材料的剥离面进行了形貌观察和成分分析.结果发现,AgNi10/Cu/Fe的界面结合机制主要是裂口机制.各层复合面的硬化层在轧制时开裂,其中较软金属(AgNi10和Cu)从裂口中挤出,与硬金属(Cu和Fe)产生结合;其结合强度分别大于AgNi10和Cu的基体强度.%AgNi10/Cu/Fe layered composites were prepared by cold roll bonding with equal-roller-diameter and equal-rolling-speed. The interface bonding mechanism was investigated. The raw tapes of the AgNi10, Cu and Fe were singly annealed before bonding so as to obtain homogeneous recrystallized microstructures and similar hardness. The surfaces to be bonded were cleaned by a scratch brush just before entering the roll gap. After bonding, the peeled interfaces of the composites were analyzed by SEM and EDS. Results show that the bonding mechanism of the as-rolled interfaces is primarily cracking. During roll bonding, the work-hardened surface layers are fractured. Virgin metals of the softer layers (AgNi10 and Cu for AgNi10/Cu and Cu/Fe respectively) are extruded from the cracks and bonded with the harder ones (Cu and Fe). The bonding strength is greater than the fracture strength of AgNilO and Cu in AgNilO/Cu and Cu/Fe.

  2. Preparation and Microstructure of Cu/Ti3SiC2 Nanocomposite

    Institute of Scientific and Technical Information of China (English)

    GU Wan-li; SHENG Wen-bin; CHEN Zong-min

    2006-01-01

    Mixed micron-sized Cu/Ti3SiC2 (vol5%) powder was mechanically milled using agate balls and zirconia balls separately. Then followed an examination of it with the FEI-SEM. The experimental results show that, distributed homogenously in Cu matrix, the Ti3SiC2 particles have a size of about 30-50 nm after milled with agate balls for 8 h, while it remains approximately unchanged after milled with zirconia balls. The microstructure of the mixture at different ball-milling stages was also studied. Bulks of Cu/Ti3SiC2 nano-composite were fabricated by hot pressing nano-sized Cu/Ti3SiC2 powder at the temperature of 1 073 K under 100 MPa. Then came an investigation of the effects of the particle size and agglomerate state of Ti3SiC2 as well as the microstructure of Cu/Ti3SiC2 nano-composite. It was found that the nano-sized Ti3SiC2 particles distribute evenly in copper.

  3. Numerical simulation of iron/TiC ceramic tappet brazed with TiZrNiCu filler metal

    Institute of Scientific and Technical Information of China (English)

    张丽霞; 冯吉才; 李卓然

    2003-01-01

    Maximum value of thermal stress and stress concentration zones of iron/TiC ceramic tappet during cooling were studied.The results show that when the temperature is 300 K,the maximum values of shear stress and tensile stress on iron/TiC ceramic interface both appear on the tip of TiZrNiCu/iron interface,so cracks always originate from TiZrNiCu/iron interface.Positive tensile stress on iron undersurface relaxes to the inner of iron and negative tensile stress on iron undersurface concentrates on the side of iron as the temperature declines,which leads to the origination of cracks on iron undersurface because of the alternation between positive and negative tensile stress.

  4. Impacts of Pristine and Transformed Ag and Cu Engineered Nanomaterials on Surficial Sediment Microbial Communities Appear Short-Lived.

    Science.gov (United States)

    Moore, Joe D; Stegemeier, John P; Bibby, Kyle; Marinakos, Stella M; Lowry, Gregory V; Gregory, Kelvin B

    2016-03-01

    Laboratory-based studies have shown that many soluble metal and metal oxide engineered nanomaterials (ENM) exert strong toxic effects on microorganisms. However, laboratory-based studies lack the complexity of natural systems and often use "as manufactured" ENMs rather than more environmentally relevant transformed ENMs, leaving open the question of whether natural ligands and seasonal variation will mitigate ENM impacts. Because ENMs will accumulate in subaquatic sediments, we examined the effects of pristine and transformed Ag and Cu ENMs on surficial sediment microbial communities in simulated freshwater wetlands. Five identical mesocosms were dosed through the water column with either Ag(0), Ag2S, CuO or CuS ENMs (nominal sizes of 4.67 ± 1.4, 18.1 ± 3.2, 31.1 ± 12, and 12.4 ± 4.1, respectively) or Cu(2+). Microbial communities were examined at 0, 7, 30, 90, 180, and 300 d using qPCR and high-throughput 16S rRNA gene sequencing. Results suggest differential short-term impacts of Ag(0) and Ag2S, similarities between CuO and CuS, and differences between Cu ENMs and Cu(2+). PICRUSt-predicted metagenomes displayed differential effects of Ag treatments on photosynthesis and of Cu treatments on methane metabolism. By 300 d, all metrics pointed to reconvergence of ENM-dosed mesocosm microbial community structure and composition, suggesting that the long-term microbial community impacts from a pulse of Ag or Cu ENMs are limited. PMID:26841726

  5. An oil-in-water self-assembly synthesis, characterization and photocatalytic properties of nano Ag@AgCl surface-sensitized K{sub 2}Ti{sub 4}O{sub 9}

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Yinghua; Lin, Shuanglong; Liu, Li, E-mail: chemll@126.com; Hu, Jinshan; Cui, Wenquan, E-mail: wkcui@163.com

    2014-12-15

    Highlights: • The plasmatic Ag@AgCl surface-sensitized K{sub 2}Ti{sub 4}O{sub 9} composite photocatalysts. • Ag@AgCl greatly increased visible light absorption for K{sub 2}Ti{sub 4}O{sub 9}. • The photocatalysts exhibited enhanced photocatalytic dye degradation. - Abstract: Nano-sized plasmonic Ag@AgCl surface-sensitized K{sub 2}Ti{sub 4}O{sub 9} composite photocatalysts (hereafter designated as Ag@AgCl/K{sub 2}Ti{sub 4}O{sub 9}) was synthesized via a facile oil-in-water self-assembly method. The photocatalytic activity of the prepared materials for RhB (Rhodamine B) degradation was examined under visible light irradiation. The results reveal that the size of Ag@AgCl, which evenly dispersed on the surface of K{sub 2}Ti{sub 4}O{sub 9}, distributes about 20–50 nm. The UV–vis diffuse reflectance spectra indicate that Ag@AgCl/K{sub 2}Ti{sub 4}O{sub 9} samples have a significantly enhanced optical absorption in 380–700 nm. The photocatalytic activities of the Ag@AgCl/K{sub 2}Ti{sub 4}O{sub 9} samples increase first and then decrease with increasing amount of loading Ag@AgCl and the Ag@AgCl(20 wt.%)/K{sub 2}Ti{sub 4}O{sub 9} sample exhibits the best photocatalytic activity and 94.47% RhB was degraded after irradiation for 2 h. Additionally, studies performed using radical scavengers indicated that O{sub 2}·{sup −} and Cl{sup 0} acted as the main reactive species. The electronic interaction was systematically studied and confirmed by the photo-electrochemical measurements.

  6. Effect of Core-Shell Ag@TiO2 Volume Ratio on Characteristics of TiO2-Based DSSCs

    Directory of Open Access Journals (Sweden)

    Ho Chang

    2014-01-01

    Full Text Available This paper aims to develop photoanode material required by dye-sensitized solar cells. The material prepared is in the form of Ag@TiO2 core-shell-type nanocomposites. This material is used to replace the titanium oxide powder commonly used in general DSSCs. The prepared Ag@TiO2 core-shell-type nanocomposites are mixed with Degussa P25 TiO2 in different proportions. Triton X-100 is added and polyethylene glycol (PEG at 20 wt% is used as a polymer additive. This study tests the particle size and material properties of Ag@TiO2 core-shell-type nanocomposites and measures the photoelectric conversion efficiency and IPCE of DSSCs. Experimental results show that the DSSC prepared by Ag@TiO2 core-shell-type nanocomposites can achieve a photoelectric conversion efficiency of 3.67%. When Ag@TiO2 core-shell-type nanocomposites are mixed with P25 nanoparticles in specific proportions, and when the thickness of the photoelectrode thin film is 28 μm, the photoelectric conversion efficiency can reach 6.06%, with a fill factor of 0.52, open-circuit voltage of 0.64V, and short-circuit density of 18.22 mAcm−2. Compared to the DSSC prepared by P25 TiO2 only, the photoelectric conversion efficiency can be raised by 38% under the proposed approach.

  7. Efficient enhancement of hydrogen production by Ag/Cu2O/ZnO tandem triple-junction photoelectrochemical cell

    Science.gov (United States)

    Liu, Ying; Ren, Feng; Shen, Shaohua; Fu, Yanming; Chen, Chao; Liu, Chang; Xing, Zhuo; Liu, Dan; Xiao, Xiangheng; Wu, Wei; Zheng, Xudong; Liu, Yichao; Jiang, Changzhong

    2015-03-01

    Highly efficient semiconductor photoelectrodes for solar hydrogen production through photocatalytic water splitting are a promising and challenge solution to solve the energy problems. In this work, Ag/Cu2O/ZnO tandem triple-junction photoelectrode was designed and prepared. An increase of 11 times of photocurrent is achieved in the Ag/Cu2O/ZnO photoelectrode comparing to that of the Cu2O film. The high performance of the Ag/Cu2O/ZnO film is due to the optimized design of the tandem triple-junction structure, where the localized surface Plasmon resonance of Ag and the hetero-junctions efficiently absorb solar energy, produce, and separate electron-hole pairs in the photocathode.

  8. Effects of Composition and Thermal Cycle on Transformation Behaviors, Thermal Stability and Mechanical Properties of CuAlAg Alloy

    Institute of Scientific and Technical Information of China (English)

    Yunqing MA; Chengbao JIANG; Lifen DENG; Huibin XU

    2003-01-01

    The phase transformation behavior, mechanical properties, and the thermal stability of CuAlAg alloy were studied andminor rare earth (0.1 wt pct La+Ce) was added to improve the mechanical property of the studied alloy. It was foundthat Ag addition in the CuAl binary alloy can improve the stability of martensitic transformation and high Al contentleads to the disappearing of martensitic transformation. The tensile strength and strain of the Cu-10.6Al-5.8Ag (wtpct) alloy were measured to be 383.5 MPa and 0.86%, respectively. With rare earth addition, the tensile strainincreased from 0.86% to 1.47%. The CuAlAg alloy did not exhibit martensitic transformation on the second heatingprocess. Its poor thermal stability still needs to be improved.

  9. Influence of thermomechanical processing on the structure and properties of Cu-Ag alloy in situ composites

    Institute of Scientific and Technical Information of China (English)

    NING; Yuan-tao; ZHANG; Xiao-hui; ZHANG; Jie

    2005-01-01

    The influences of the thermomechanical processing, including the solidification conditions, the cold deformation and the intermediate annealing treatment, on the structure and properties of the Cu-10Ag alloy in situ composite were studied in this paper. The cast structure and the structural changes in the cold deformation and intermediate annealing process were observed. The properties including the ultimate tensile strength (UTS) and the electrical conductivity were determined. A two-stage strain strengthening effect for the Cu-10Ag alloy in situ filamentary composite was observed. The factors influencing the UTS and conductivity were discussed. The solidification conditions in the range of 10-1000 K/s cooling rates and the intermediate heat treatment showed obviously influence on the structure and properties on the Cu-10Ag alloy in situ filamentary composite. The typical properties of the Cu-Ag alloy in situ filamentary composites through thermomechanical processing were reported.

  10. Kinetics of Silver Dissolution in Nitric Acid from Ag-Au0.04-Cu0.10 and Ag-Cu0.23 Scraps

    Institute of Scientific and Technical Information of China (English)

    S.K.Sadrnezhaad; E.Ahmadi; M.Mozammel

    2006-01-01

    Kinetics of dissolution of silver present in precious metal scraps in HNO3 was studied in temperature range of 26~85℃. Dissolution rate of silver was much faster than that of copper at all temperatures. Effects of particle size, stirring speed, acid concentration and temperature on the rate of dissolving of silver were evaluated.Dissolution rate decreases with particle size and increases with temperature. Dissolving was accelerated with acid concentrations less than 10 mol/L. Concentrations greater than 10 mol/L resulted in slowing down of the dissolution rate. Shrinking core model with internal diffusion equation t/τ=1-3(1-x)2/3+2(1-x)could be used to explain the mechanism of the reaction. Silver extraction resulted in activation energies of 33.95 k J/mol for Ag-Au0.04-Cu0.10 and 68.87 k J/mol for Ag-Cu0.23 particles. Inter-diffusion of silver and nitrate ions through the porous region of the insoluble alloying layer was the main resistance to the dissolving process. Results were tangible for applications in recycling of the material from electronic silver-bearing scraps, dental alloys,jewelry, silverware and anodic slime precious metal recovery.

  11. Microstructure of Hot-Deformed Cu-3Ti Alloy

    Directory of Open Access Journals (Sweden)

    Szkliniarz A.

    2016-03-01

    Full Text Available In the paper, results of investigations regarding temperature and strain rate effects on hot-deformed Cu-3Ti alloy microstructure are presented. Evaluation of the alloy microstructure was performed with the use of a Gleeble HDS-V40 thermal-mechanical simulator on samples subjected to uniaxial hot compression within 700 to 900ºC and at the strain rate of 0.1, 1.0 or 10.0 s-1 until 70% (1.2 strain. It was found that within the analyzed temperature and strain rate ranges, the alloy deformation led to partial or complete recrystallization of its structure and to multiple refinement of the initial grains. The recrystallization level and the average diameter of recrystallized grains increase with growing temperature and strain rate. It was shown that entirely recrystallized, fine-grained alloy structure could be obtained following deformation at the strain rate of min 10.0 s-1 and the temperature of 800°C or higher.

  12. Dielectric performance of polymer-based composites containing core-shell Ag@TiO2 nanoparticle fillers

    Science.gov (United States)

    Liang, Fei; Zhang, Lu; Lu, Wen-Zhong; Wan, Qian-Xing; Fan, Gui-Fen

    2016-02-01

    This paper reports composites prepared by embedding core-shell Ag@TiO2 fillers into polytetrafluoroethylene. Ag nanoparticles were homogeneously coated with TiO2, to give a shell thickness of approximately ˜8-10 nm. The composite containing Ag@TiO2 nanoparticles with rutile shells exhibited better dielectric properties than the composite containing Ag@TiO2 nanoparticles with anatase shells. The relative permittivity (ɛr) of the composite containing 70 vol. % filler was approximately 240 at 100 Hz, which was more than 100 times higher than that of pure polytetrafluoroethylene (ɛr = 2.1). An effective medium percolation theory model is used to account for the dielectric constant of the composite.

  13. PHOTOCALYTIC EFFICIENCY OF TiO Ag/TiO MULTILAYER 2 2 FILMS GROWN BY SOL-GEL TECHNIQUE

    Directory of Open Access Journals (Sweden)

    Villa, K.

    2010-01-01

    Full Text Available Heterogeneous photocatalysis is a new oxidation advanced technology (OAT; it has become an alternative method for air and water purification as a very efficient for removing organic pollutants in the environment, such as pesticides, colors, and microorganisms, and they are completely mineralized by this process. One of the most common photocatalyst is titanium dioxide (TiO for being cheap, reusable, nontoxic, resistant to photocorrosion, 2 and with high oxidant power. However for this material, the efficient use of sunlight in photocatalysis needs a lower energy threshold for the photoexcitation. One way is by doping the TiO with transition metals and non- 2 metallic impurities. In this work, the growth of multilayer films TiO Ag/TiO through the sol-gel technique is 2 2 reported. As substrates were used conventional microscope slides, which were impregnated sequentially by immersion-extraction, with a solution containing the precursor of TiO and with one containing the precursor 2 adding AgNO to a constant concentration of 15%. The number of impregnated layers was varied and the sintering 3 temperature used was 600 °C. These films were characterized by x-ray diffraction and UV-Vis spectroscopy. The photocatalytical efficiency of the films was measured by the decolorization of a solution of methylene blue and those that showed better results were used to test on contaminated water samples, evaluating its power in the disinfection of total and fecal coliforms, and the organic load decrement (OLD after the photocatalytic process.

  14. Experimental study of the ternary Ag-Cu-In phase diagram

    Energy Technology Data Exchange (ETDEWEB)

    Bahari, Zahra [Laboratoire de chimie physique et minerale, Faculte des sciences pharmaceutiques et biologiques, Universite Paris Descartes, avenue de l' Observatoire, 75006 Paris (France); Laboratoire de chimie du solide mineral (LCSM), Faculte des sciences, Universite Mohamed 1er, Route Sidi Maafa, B.P. 524, Oujda, Maroc (Morocco); Elgadi, Mohamed [Laboratoire de chimie du solide mineral (LCSM), Faculte des sciences, Universite Mohamed 1er, Route Sidi Maafa, B.P. 524, Oujda, Maroc (Morocco); Rivet, Jacques [Laboratoire de chimie physique et minerale, Faculte des sciences pharmaceutiques et biologiques, Universite Paris Descartes, avenue de l' Observatoire, 75006 Paris (France); Dugue, Jerome [Laboratoire de chimie physique et minerale, Faculte des sciences pharmaceutiques et biologiques, Universite Paris Descartes, avenue de l' Observatoire, 75006 Paris (France)], E-mail: jerome.dugue@univ-paris5.fr

    2009-05-27

    The phase diagram of the Ag-Cu-In system was investigated using powder X-ray diffraction (XRD), differential scanning calorimetry (DSC) and electron probe microanalysis (EPMA). Two isothermal sections (at 510 and 607 deg. C) and 15 isopletic sections were studied. The results showed seven ternary peritectics, one ternary eutectic and one ternary metatectic. A complete reaction scheme was constructed, the valleys were drawn and the liquidus surfaces were derived from DSC data in the entire composition range.

  15. Thermodynamic measurements on Ag - 28% Cu nanopowders processed by mechanical alloying route

    Energy Technology Data Exchange (ETDEWEB)

    Milea, A., E-mail: milea_alexandru@icf.ro [“Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania); Gingu, O., E-mail: oanagingu@yahoo.com [University of Craiova, Romania, 13 A.I. Cuza, 200585 Craiova (Romania); Preda, S., E-mail: predas01@yahoo.co.uk [“Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania); Sima, G., E-mail: gsima2001@yahoo.com [University of Craiova, Romania, 13 A.I. Cuza, 200585 Craiova (Romania); Nicolicescu, C., E-mail: nicolicescu_claudiu@yahoo.com [University of Craiova, Romania, 13 A.I. Cuza, 200585 Craiova (Romania); Tanasescu, S., E-mail: stanasescu2004@yahoo.com [“Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania)

    2015-04-25

    Graphical abstract: Crystallite size (XRD measurements) and enthalpy increment (H{sub T} − H{sub 298}) (drop calorimetry data) of the nanozised Ag - 28% Cu powders as a function of temperature. - Highlights: • We report relevant data for thermodynamic stability of mechanical alloyed Ag - 28% Cu nanopowders. • Enthalpy increment and heat capacity data have been measured by drop calorimetry. • The effect of milling time on the particle size and energetic parameters is evidenced. • Correlation between thermodynamic and structural data of Ag - 28% Cu nanopowders is discussed. - Abstract: The paper is devoted to the investigation of the thermodynamic properties of Ag - 28% Cu powders processed by mechanical alloying route at two different milling times (20 and 80 h). Thermodynamic properties represented by the heat capacity (C{sub p}) and the enthalpy increment (H{sub T} − H{sub 298}) have been obtained in the temperature range from ambient to 1073 K by drop calorimetry using a multi-detector high temperature calorimeter SETARAM MHTC-96. A critical comparison of the isothermal enthalpy measurements with the dynamic differential scanning calorimetric (DSC) results has been made to reveal the occurrence of the micro-relaxation process, as well as of the correlative effects of decomposition and growth processes. New features related to the effect of the milling time and crystallite size on the thermal behavior and energetic parameters were evidenced. The correlation between thermal stability and microstructure of the sample obtained after 80 h processing has been investigated by the evaluation of the in situ controlled annealing powder X-ray diffraction patterns (XRD)

  16. Calculating model of mass action concentrations for Ag-Au-Cu melts

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Based on phase diagrams and measured activities, the calculating model of mass action concentrations for heterogeneous melts Ag-Au-Cu was formulated. Calculated results agree with the improved results of recent research work.showing that the model formulated can reflect the structural characteristics of these melts. In this model, without the help of any empirical parameters, only three equilibrium constants are used, hence it is simple, lear, and favorable to the simplification of calculation.

  17. Effect of Silver Content on Microstructure and Properties of Brass/steel Induction Brazing Joint Using Ag-Cu-Zn-Sn Filler Metal

    Institute of Scientific and Technical Information of China (English)

    J. Cao; L.X. Zhang; H.Q. Wang; L.Z. Wu; C. Feng

    2011-01-01

    The induction brazing of brass to steel using Ag-Cu-Zn-Sn filler metal was investigated in this study. The influence of Ag content on the microstructure and properties were analyzed by means of optical microscopy, scanning electron microscopy and electron probe microanalysis. Defect free joint was achieved using Ag-Cu-Zn-Sn filler metal. The microstructure of the joint was mainly composed of Ag-based solid solution and Cu-based solid solution. The increase of Ag content and the cooling rate both led to the increase of the needle like eutectic structure. The tensile strength decreased with the increase of Ag content. The tensile strength at room temperature using Ag25CuZnSn filler metal reached 445 MPa. All fractures using Ag-Cu-Zn-Sn filler metal presented ductile characteristic.

  18. Hot Electron Attenuation Length Measurements of Cu and Ag using BEEM

    Science.gov (United States)

    Garramone, John; Abel, Joseph; Sitnitsky, Ilona; Zhao, Lai; Appelbaum, Ian; Labella, Vincent

    2010-03-01

    33.4˜2.9 nm 1.0 eV Understanding electron transport and scattering in nanoscale Cu and Ag structures is important for modern integrated circuit technology and futuristic applications such as spintronics and hydrogen sensing footnotetextHuang et al., Rev. Lett. 99 177209 (2007)^,footnotetextNienhaus et at., Appl. Phys. Lett. 74 4046 (1999). In this study we will report on hot electron attenuation length measurements of nanometer thick films of Cu and Ag on the Si substrate utilizing ballistic electron emission microscopy (BEEM). BEEM is a three terminal scanning tunneling microcopy (STM) based technique where electrons are injected from a STM tip into a grounded metal base of a Schottky diode. The electrons that transverse the metal overlayer and surmount the Schottky barrier are measured as the BEEM current by a backside contact to the semiconductor. The attenuation length is extracted by measuring the falloff in BEEM current as a function of metal film thickness. The hot electron attenuation length for Cu of is measured at a tip bias of and a temperature of 80 K. Results for Ag will also be presented as well as models used to extract the relative contribution of elastic and inelastic electron scattering in the metal films as a function of electron energy.

  19. Ag2CuMnO4: A new silver copper oxide with delafossite structure

    International Nuclear Information System (INIS)

    The use of hydrothermal methods has allowed the synthesis of a new silver copper mixed oxide, Ag2CuMnO4, the first example of a quaternary oxide containing both elements. It crystallizes with the delafossite 3R structure, thus being the first delafossite to contain both Ag and Cu. Synthesis conditions affect the final particle size (30-500nm). Powder X-ray diffraction Rietveld refinement indicates a trigonal structure (R3-bar m) and cell parameters a=2.99991A and c=18.428A, where Cu and Mn are disordered within the octahedral B positions in the plane and linearly coordinated Ag occupies de A position between layers. X-ray absorption near edge spectroscopy (XANES) for copper and manganese, and XPS for silver evidence +2, +4, and +1 oxidation states. The microstructure consists of layered particles that may form large twins showing 5nm nanodomains. Finally, magnetic measurements reveal the existence of ferromagnetic coupling yielding in-plane moments that align antiferromagnetically at lower temperatures. The singularity of the new phase resides on the fact that is an example of a bidimensional arrangement of silver and copper in an oxide that also shows clear bidimensionality in its physical properties. That is of special relevance to the field of high Tc superconducting oxides, while the ferromagnetic coupling in a bidimensional system deserves itself special attention

  20. High coercivity and giant magnetoresistance of CoAg, CoCu granular films

    International Nuclear Information System (INIS)

    We report our study on the structure, magnetic and giant magnetoresistance properties of two systems: Co x Ag1-x (x=33, 48, 49, 52 at%) and Co y Cu1-y (y=11, 13, 15, 17 at%) granular films prepared by RF sputtering. The thermal transition measured by the SDT 2960 apparatus revealed exothermal peaks at 400 deg. C, corresponding to the crystallization of FCC-Co crystallites. The studied films were annealed in a temperature range of 300-450 deg. C for 1 h. The structure and particle size were determined from the X-ray diffraction data. Superparamagnetic state was shown in as-deposited films. After appropriate heat treatment, coercivity increased up to 1100 Oe in the Co52Ag48 film annealed at 350 deg. C, and 690 Oe in the Co13Cu87 film annealed at 400 deg. C. Maximum magnetoresistance up to 4.25% in the Co48Ag52 film, and 5.4% in the Co15Cu85 film annealed at 400 deg. C was obtained. Our values for magnetoresistance are quite high compared with recent studies

  1. Combinatorial development of antibacterial Zr-Cu-Al-Ag thin film metallic glasses

    Science.gov (United States)

    Liu, Yanhui; Padmanabhan, Jagannath; Cheung, Bettina; Liu, Jingbei; Chen, Zheng; Scanley, B. Ellen; Wesolowski, Donna; Pressley, Mariyah; Broadbridge, Christine C.; Altman, Sidney; Schwarz, Udo D.; Kyriakides, Themis R.; Schroers, Jan

    2016-05-01

    Metallic alloys are normally composed of multiple constituent elements in order to achieve integration of a plurality of properties required in technological applications. However, conventional alloy development paradigm, by sequential trial-and-error approach, requires completely unrelated strategies to optimize compositions out of a vast phase space, making alloy development time consuming and labor intensive. Here, we challenge the conventional paradigm by proposing a combinatorial strategy that enables parallel screening of a multitude of alloys. Utilizing a typical metallic glass forming alloy system Zr-Cu-Al-Ag as an example, we demonstrate how glass formation and antibacterial activity, two unrelated properties, can be simultaneously characterized and the optimal composition can be efficiently identified. We found that in the Zr-Cu-Al-Ag alloy system fully glassy phase can be obtained in a wide compositional range by co-sputtering, and antibacterial activity is strongly dependent on alloy compositions. Our results indicate that antibacterial activity is sensitive to Cu and Ag while essentially remains unchanged within a wide range of Zr and Al. The proposed strategy not only facilitates development of high-performing alloys, but also provides a tool to unveil the composition dependence of properties in a highly parallel fashion, which helps the development of new materials by design.

  2. Effect of Nb on glass forming ability and plasticity of (Ti-Cu)-based bulk metallic glasses

    International Nuclear Information System (INIS)

    A Ti33Cu47Zr9Ni6Sn2Si1Nb2 bulk metallic glass has been developed by Nb partial substitution for Zr in Ti33Cu47Zr11Ni6Sn2Si1 alloy. The glass forming ability Ti33Cu47Zr9Ni6Sn2Si1Nb2 alloy has been investigated using differential scanning calorimetry and X-ray diffractometry. Partial Nb substitutes for Zr promote the glass forming ability. Ti33Cu47Zr9Ni6Sn2Si1Nb2 BMG with diameter of 3 mm can be fabricated by Cu-mold injection casting method. The glass forming ability of Ti33Cu47Zr9Ni6Sn2Si1Nb2 alloy is enhanced by stabilizing the undercooled liquid against crystallization. The plastic strain up to 2.5% was obtained for Ti33Cu47Zr9Ni6Sn2Si1Nb2 BMG compared to 0.15% for Ti33Cu47Zr11Ni6Sn2Si1 BMG, which demonstrates that small amount of Nb addition can have a dramatic effect on plasticity enhancement in Ti-Cu-based BMG. The intersection and branching of the shear bands are observed. The plastic strain of the Ti33Cu47Zr9Ni6Sn2Si1Nb2 BMG can be improved by the generation of nanocrystalline particles, which lead to multiple shear bands.

  3. Improved photocatalytic activity of nano CuO-incorporated TiO2 granules prepared by spray drying

    Institute of Scientific and Technical Information of China (English)

    Zongjie Liu; Chungen Zhoun

    2015-01-01

    4 wt%CuO–96 wt%TiO2 granules were prepared by a spray drying process. The microstructure and optical property of CuO–TiO2 granules were studied. The results indicate that copper existed in the form of CuO. The spray dried granules possess spherical geometry and smooth surface with grain size in the range of 40–80μm. CuO–TiO2 has a relatively smaller Eg value (2.85 eV) than TiO2 (3.17 eV). The photocatalytic property of CuO–TiO2 granules was investigated by degradation of a model pollutant (the azo dye methyl orange) under the irradiation of the xenon lamp equipped with a band pass filter of 365 nm. The CuO–TiO2 spray-dried granules degrade about 10%more MO than TiO2 spray-dried granules under UV irradiation within the same time. The XPS spectra suggested that Cu2 þ and reduced copper species were coexistent in reacted CuO–TiO2 photocatalyst. The improvement of photocatalytic activity for CuO–TiO2 was mainly attributed to effective separation of photo-generated electron–hole pairs in the presence of CuO.

  4. Influence of alloying effect on X-ray fluorescence parameters of Co and Cu in CoCuAg alloy films

    Science.gov (United States)

    Aylikci, Nuray Kup; Tiraşoğlu, Engin; Apaydin, Gökhan; Cengiz, Erhan; Aylikci, Volkan; Bakkaloğlu, Ömer Faruk

    2009-06-01

    In this study, K β/K α X-ray intensity ratios, σ, σ production cross-sections and ωK fluorescence yields of Co and Cu and L β/L α X-ray intensity ratios, σ, σ production cross-sections and ϖ average fluorescence yields of Ag in pure metals and in different alloy compositions were measured. In this study, alloying effects on the σ production cross-sections of Co and Cu were investigated and changes interpreted according to the rearrangement of valance state electrons and the charge transfer process between the 3d elements (Co and Cu) and Ag.

  5. Ag-loaded TiO2/reduced graphene oxide nanocomposites for enhanced visible-light photocatalytic activity

    Science.gov (United States)

    Vasilaki, E.; Georgaki, I.; Vernardou, D.; Vamvakaki, M.; Katsarakis, N.

    2015-10-01

    In this work, Ag nanoparticles were loaded by chemical reduction onto TiO2 P25 under different loadings ranging from 1 up to 4 wt% and hydrothermally deposited on reduced graphene oxide sheets. Chemical reduction was determined to be an effective preparation approach for Ag attachment to titania, leading to the formation of small silver nanoparticles with an average diameter of 4.2 nm. The photocatalytic performance of the hybrid nanocomposite materials was evaluated via methylene blue (MB) dye removal under visible-light irradiation. The rate of dye decolorization was found to depend on the metal loading, showing an increase till a threshold value of 3 wt%, above which the rate drops. Next, the as prepared sample of TiO2/Ag of better photocatalytic response, i.e., at a 3 wt% loading value, was hydrothermally deposited on a platform of reduced graphene oxide (rGO) of tunable content (mass ratio). TiO2/Ag/rGO coupled nanocomposite presented significantly enhanced photocatalytic activity compared to the TiO2/Ag, TiO2/rGO composites and bare P25 titania semiconductor photocatalysts. In particular, after 45 min of irradiation almost complete decolorization of the dye was observed for the TiO2/Ag/rGO nanocatalyst, while the respective removal efficiency was 92% for TiO2/Ag, 93% for TiO2/rGO and only 80% for the bare TiO2 nanoparticles. This simple step by step preparation strategy allows for optimum exploitation of the advanced properties of metal plasmonic effect and reduced graphene oxide as the critical host for boosting the overall photocatalytic activity towards visible-light.

  6. Intermetallic compound formation at Sn-3.0Ag-0.5Cu-1.0Zn lead-free solder alloy/Cu interface during as-soldered and as-aged conditions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Feng-Jiang [Department of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620 (China)]. E-mail: wangfjy@yahoo.com.cn; Yu, Zhi-Shui [Department of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620 (China); Qi, Kai [Department of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620 (China)

    2007-07-12

    Intermetallic formations of Sn-3.0Ag-0.5Cu solder alloy with additional 1.0 wt% Zn were investigated for Cu-substrate during soldering and isothermal aging. During soldering condition, the Cu{sub 5}Zn{sub 8} compound with granular-type morphology is the interfacial IMC for Sn-3.0Ag-0.5Cu-1.0Zn solder, while the Cu{sub 6}Sn{sub 5} compound with scallop-type morphology is the interfacial IMC for Sn-3.0Ag-0.5Cu solder. During thermal aging, the final interfacial structure for Sn-3.0Ag-0.5Cu-1.0Zn solder is solder/Cu{sub 5}Zn{sub 8}/Cu{sub 6}Sn{sub 5}/Cu{sub 3}Sn/Cu, different from the solder/Cu{sub 6}Sn{sub 5}/Cu{sub 3}Sn/Cu for Sn-3.0Ag-0.5Cu solder. The thickness of Cu-Sn IMC layers increases, while the thickness of Cu{sub 5}Zn{sub 8} compound layer decreases with increasing aging time due to the decomposition of the Cu{sub 5}Zn{sub 8} layer by the diffusion of Cu and Zn atoms into the solder and Cu{sub 6}Sn{sub 5} at higher aging temperature. For Sn-3.0Ag-0.5Cu-1.0Zn solder, at higher aging temperature of 150 or 175 {sup o}C, with the formation of Cu{sub 3}Sn at Cu{sub 6}Sn{sub 5}/Cu, Kirkendall voids can be observed at the interface of Cu{sub 3}Sn/Cu.

  7. Effect of mesh patterning with UV pulsed-laser on optical and electrical properties of ZnO/Ag-Ti thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kao, K.S. [Department of Computer and Communication, SHU-TE University, 59, Hengshan Rd., Yanchao, Kaohsiung County, Taiwan (China); Cheng, D.L., E-mail: dlcheng@stu.edu.tw [Department of Computer and Communication, SHU-TE University, 59, Hengshan Rd., Yanchao, Kaohsiung County, Taiwan (China); Chang, S.H. [Department of Computer and Communication, SHU-TE University, 59, Hengshan Rd., Yanchao, Kaohsiung County, Taiwan (China); Hsieh, P.T. [Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan, Taiwan (China); Chin, H.S. [Opto-Electronics System Section Metal Industries Research and Development Center, Kaohsiung, Taiwan (China); Lin, H.K. [Laser Application Technology Center/Industrial Technology Research Institute South, Liujia Shiang, Taiwan (China)

    2010-10-01

    In this study, the ZnO/Ag-Ti structure for transparence conducting oxide (TCO) is investigated by optimizing the thickness of the Ag-Ti alloy and ZnO layers. The Ag-Ti thin film is deposited by DC magnetron sputtering and its thicknesses is well controlled. The ZnO thin film is prepared by sol-gel method using zinc acetate as cation source, 2-methoxiethanol as solvent and monoethanolamine as solution stabilizer. The ZnO film deposition is performed by spin-coating technique and dried at 150 deg. C on Corning 1737 glass. Due to the conductivity of ZnO/Ag-Ti is dominated by Ag-Ti, the sheet resistance of ZnO/Ag-Ti decrease dramatically as the thickness of Ag-Ti layer increases. However, the transmittances of ZnO/Ag-Ti become unacceptable for TCO application after the thickness of Ag-Ti layer beyond 6 nm. The as-deposited ZnO/Ag-Ti structure has the optical transmittance of 83% - 500 nm and the low resistivity of 1.2 x 10{sup -5} {Omega}-cm. Furthermore, for improving the optical and electrical properties of ZnO/Ag-Ti, the thermal treatment using laser is adopted. Experimental results indicate that the transmittance of ZnO/Ag-Ti is improved from 83% to 89% - 500 nm with resistivity of 1.02 x 10{sup -5} {Omega}-cm after laser drilling. The optical spectrum, the resistance, and the morphology of the ZnO/Ag-Ti will be reported in the study.

  8. In-situ synthesis of AgCu/Cu{sub 2}O nanocomposite by mechanical alloying: The effect of the processing on the thermal behavior

    Energy Technology Data Exchange (ETDEWEB)

    Gingu, Oana [University of Craiova, Department IMST, 1st Calugareni, 220037 Drobeta Turnu Severin (Romania); Rotaru, P., E-mail: protaru@central.ucv.ro [University of Craiova, Department of Physics, 13 A.I. Cuza Street, 200585 Craiova (Romania); Milea, A.; Marin, A. [Institute of Physical Chemistry “Ilie Murgulescu” of the Romanian Academy, 202 Splaiul Independentei, P.O. Box 194, 060021 Bucharest (Romania); Nicolicescu, C.; Sima, Gabriela [University of Craiova, Department IMST, 1st Calugareni, 220037 Drobeta Turnu Severin (Romania); Tanasescu, Speranta [Institute of Physical Chemistry “Ilie Murgulescu” of the Romanian Academy, 202 Splaiul Independentei, P.O. Box 194, 060021 Bucharest (Romania)

    2015-04-20

    TG heating curves for Ag–Cu samples vs. the milling time, recorded during the heating. The samples’ mass variation is strongly dependent on the powders’ specific surface, respectively the milling time. - Highlights: • AgCu bimetallic composites reinforced by Cu{sub 2}O has been studied. • The milling time influences the particle size distribution of the particles. • The thermal behavior of the mixtures has been studied by TG and DSC, in argon. • Correlation of thermal stability with thermal expansion properties was made. - Abstract: The influence of the mechanical alloying processing parameters on the elaboration of AgCu-based bimetallic matrix composites reinforced by in-situ synthesized Cu{sub 2}O has been studied. The milling time (20, 45 and 80 h) of the initial 72% mass Ag + 28% mass Cu micrometric powders mixture influences the particle size distribution of the obtained composite particles. After 80 h of mechanical alloying, AgCu/Cu{sub 2}O nanoparticles of 60–80 nm are obtained and their chemical composition at bulk/surface level has been determined by X-ray diffraction and photoelectron spectroscopy. The effect of milling time on the thermal behavior of the powders samples has been studied by thermogravimetry and differential scanning calorimetry measurements in argon atmosphere. The argon chemosorbtive reaction from the particles surface has been identified and the binding energy (0.9–1.99 eV) has been calculated. The isothermal drop calorimetry and the linear thermal expansion measurements were used to evaluate the correlation between thermal stability and thermal expansion properties of the in-situ synthesized AgCu/Cu{sub 2}O nanocomposite.

  9. Photoelectrochemical Properties of CuS-GeO2-TiO2 Composite Coating Electrode

    OpenAIRE

    Wen, Xinyu; Zhang, Huawei

    2016-01-01

    The ITO (indium tin oxide) conductive glass-matrix CuS-GeO2-TiO2 composite coating was generated via EPD (electrophoretic deposition) and followed by a sintering treatment at 450°C for 40 minutes. Characterizations of the CuS-GeO2-TiO2 composite coating were taken by SEM (scanning electron microscope), XRD (X-ray diffraction), EDX (energy dispersive X-ray), UV-Vis DRS (ultraviolet-visible diffuse reflection spectrum), and FT-IR (Fourier transform infrared spectroscopy). Results showed that Cu...

  10. Electromigration-induced cracks in Cu/Sn3.5Ag/Cu solder reaction couple at room temperature

    Institute of Scientific and Technical Information of China (English)

    He Hongwen; Xu Guangchen; Guo Fu

    2009-01-01

    Electromigration (EM) behavior of Cu/Sn3.5Ag/Cu solder reaction couple was investigated with a high current density of 5× 103 A/cm2 at room temperature. One dimensional structure, copper wire/solder ball/copper wire SRC was designed and fabricated to dissipate the Joule heating induced by the current flow. In addition, thermomigration effect was excluded due to the symmetrical structure of the SRC. The experimental results in-dicated that micro-cracks initially appeared near the cathode interface between solder matrix and copper substrate after 474 h current stressing. With current stressing time increased, the cracks propagated and extended along the cathode interface. It should be noted that the continuous Cu6Sn5 intcrmetallic compounds (LMCs) layer both at the anode and at the cathode remained their sizes. Interestingly, tiny cracks appeared at the root of some long column-type Cu6Sn5 at the cathode interface due to the thermal stress.

  11. Ag-TiO2纳米棒阵列的抗菌性和光催化性能研究%Antibacterial and Photocatalytic Properties of Ag-TiO2 Nanorod Arrays

    Institute of Scientific and Technical Information of China (English)

    李萌; 贺晓静; 王会珍; 杭瑞强; 黄晓波; 张翔宇; 唐宾

    2016-01-01

    目的:制备一种高抗菌性和高光催化活性的Ag掺杂TiO2(Ag-TiO2)纳米棒阵列。方法通过磁控溅射与水热复合处理法,在钛箔片表面制备出Ag掺杂TiO2(Ag-TiO2)纳米棒阵列,酸化处理过的试样在500℃下煅烧2 h。采用X射线衍射(XRD)进行物相分析,利用场发射扫描电子显微镜(SEM)、场发射透射电子显微镜(TEM)、能量分散谱仪(EDS)观察试样的表面、截面形貌、微观结构和组成,并探究其对大肠杆菌和金黄色葡萄球菌的杀菌性能和对亚甲基蓝的光催化降解能力。结果该工艺下制备的 Ag-TiO2纳米棒大小均匀,取向明显,主要由锐钛矿型 TiO2相组成。Ag-TiO2纳米棒对大肠杆菌和金黄色葡萄球菌具有优异的杀菌效果,杀菌率几乎达到100%。Ag-TiO2纳米棒能有效地提高亚甲基蓝的降解率。结论磁控溅射与水热复合处理法在钛箔片表面成功制备出Ag-TiO2纳米棒阵列,此阵列具有优异的杀菌能力、高抗菌和光催化降解性能。%Objective To prepare Ag-TiO2 nanorod arrays with excellent antibacterial activity and photocatalytic perfor-mance.Methods The Ag-TiO2 nanorod arrays were synthesized directly on Ti foils by magnetron sputtering and hydrothermal treatment method. The acid treated sample was calcined at 500 degrees for 2 hours. The phase composition of the synthesized samples was analyzed by X-ray diffraction (XRD), Surface cross sectional morphology microstructure and chemical elements were observed by scanning electron Microscope (SEM), transmission electron microscope (TEM) and Energy Dispersive Spec- troscopy(EDS). The photocatalytic antibacterial performance after contact with S. aureus and E. coli was assessed. And the pho-tocatalytic degradation of methylene blue was measured under visible light.ResultsThe results showed that the anatase TiO2 phase nanorods had uniform size and obvious orientation. The Ag-TiO2 nanorod arrays

  12. Kinetics of intermetallic phase formation at the interface of Sn-Ag-Cu-X (X = Bi, In) solders with Cu substrate

    Energy Technology Data Exchange (ETDEWEB)

    Hodulova, Erika [Institute of Production Technologies, Faculty of Materials Science and Technology, Slovak University of Technology, 91724 Trnava (Slovakia); Palcut, Marian, E-mail: marian.palcut@gmail.com [Institute of Materials Science, Faculty of Materials Science and Technology, Slovak University of Technology, 91724 Trnava (Slovakia); Lechovic, Emil; Simekova, Beata; Ulrich, Koloman [Institute of Production Technologies, Faculty of Materials Science and Technology, Slovak University of Technology, 91724 Trnava (Slovakia)

    2011-06-23

    Highlights: > In substitutes Sn in intermetallic compounds formed at the Cu-solder interface. > Bi and In decrease the parabolic rate constant of Cu{sub 3}Sn layer growth. > In increases the parabolic rate constant of Cu{sub 6}Sn{sub 5} layer growth. > High In concentrations should be avoided since they may lead to a pre-mature solder joint degradation. - Abstract: The effects of Bi and In additions on intermetallic phase formation in lead-free solder joints of Sn-3.7Ag-0.7Cu; Sn-1.0Ag-0.5Cu-1.0Bi and Sn-1.5Ag-0.7Cu-9.5In (composition given in weight %) with copper substrate are studied. Soldering of copper plate was conducted at 250 deg. C for 5 s. The joints were subsequently aged at temperatures of 130-170 deg. C for 2-16 days in a convection oven. The aged interfaces were analyzed by optical microscopy and energy dispersive X-ray spectroscopy (EDX) microanalysis. Two intermetallic layers are observed at the interface - Cu{sub 3}Sn and Cu{sub 6}Sn{sub 5}. Cu{sub 6}Sn{sub 5} is formed during soldering. Cu{sub 3}Sn is formed during solid state ageing. Bi and In decrease the growth rate of Cu{sub 3}Sn since they appear to inhibit tin diffusion through the grain boundaries. Furthermore, indium was found to produce a new phase - Cu{sub 6}(Sn,In){sub 5} instead of Cu{sub 6}Sn{sub 5}, with a higher rate constant. The mechanism of the Cu{sub 6}(Sn,In){sub 5} layer growth is discussed and the conclusions for the optimal solder chemical composition are presented.

  13. Defects and Electron Densities in TiAl-based Alloys Containing Mn and Cu Studied by Positron Annihilation

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The defects and electron densities in Ti50Al50, Ti50Al48Mn2 and Ti50Al48Cu2 alloys have been studied by positron lifetime measurements. The results show that the free electron density in the bulk of binary TiAl alloy is lower than that of pure Ti or Al metal. The open volume of defects on the grain boundaries of binary TiAl alloy is larger than that of a monovacancy of Al metal. The additions of Mn and Cu into Ti-rich TiAl alloy will increase the free electron densities in the bulk and the grain boundary simultaneously, since one Mn atom or Cu atom which occupies the Al atom site provides more free electrons participating metallic bonds than those provided by an Al atom. It is also found the free electron density in the grain boundary of Ti50Al48Cu2 is higher than that of Ti50Al48Mn2 alloy, while the free electron density in the bulk of Ti50Al48Cu2 is lower than that of Ti50Al48Mn2 alloy. The behaviors of Mn and Cu atoms in TiAl alloy have been discussed.

  14. In vitro study on an antibacterial Ti-5Cu alloy for medical application.

    Science.gov (United States)

    Ma, Zheng; Li, Mei; Liu, Rui; Ren, Ling; Zhang, Yu; Pan, Haobo; Zhao, Ying; Yang, Ke

    2016-05-01

    Health of human beings is subjected to severe threats from the spread of harmful bacteria and the implant-associated infection remains a serious problem in clinic. In this study, a copper-bearing antibacterial titanium alloy, Ti-5Cu, has been developed for dental and orthopedic implant applications. The microstructure, mechanical property, electrochemical corrosion behavior, in vitro antibacterial performance, cytocompatibility and hemocompatibility of the alloy are systematically investigated. The results reveal that the Ti-5Cu alloy which consists of α-phase matrix and intermetallic compound Ti2Cu not only possesses strong antibacterial activity against both E. coli and S. aureus, but also exhibits better mechanical properties than the commercial pure titanium. It is confirmed that the release of trace amount of Cu ions from the alloy plays an important role in killing bacteria. In spite of the ion release, Ti-5Cu alloy still reveals excellent corrosion resistance. Moreover, good cytocompatibility and superior hemocompatibility make Ti-5Cu alloy to be a potential solution that could prevent the peri-implant infection in dental and orthopaedic applications. PMID:26975748

  15. Conducting mechanisms of forming-free TiW/Cu{sub 2}O/Cu memristive devices

    Energy Technology Data Exchange (ETDEWEB)

    Yan, P.; Li, Y.; Hui, Y. J.; Zhong, S. J.; Zhou, Y. X.; Xu, L.; Liu, N.; Qian, H.; Sun, H. J., E-mail: shj@mail.hust.edu.cn; Miao, X. S. [Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Wuhan 430074 (China); School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2015-08-24

    P-type Cu{sub 2}O is a promising CMOS-compatible candidate to fabricate memristive devices for next-generation memory, logic and neuromorphic computing. In this letter, the microscopic switching and conducting mechanisms in TiW/Cu{sub 2}O/Cu memristive devices have been thoroughly investigated. The bipolar resistive switching behaviors without an electro-forming process are ascribed to the formation and rupture of the conducting filaments composed of copper vacancies. In the low resistive state, the transport of electrons in the filaments follows Mott's variable range hopping theory. When the devices switch back to high resistive state, the coexistence of Schottky emission at the Cu/Cu{sub 2}O interface and electron hopping between the residual filaments is found to dominate the conducting process. Our results will contribute to the further understanding and optimization of p-type memristive materials.

  16. Effect of deposition of Ag on TiO{sub 2} nanoparticles on the photodegradation of Reactive Yellow-17

    Energy Technology Data Exchange (ETDEWEB)

    Rupa, A. Valentine [Department of Chemical Engineering, A.C. College of Technology, Anna University, Chennai 600025, Tamilnadu (India); Manikandan, D. [Department of Chemical Engineering, A.C. College of Technology, Anna University, Chennai 600025, Tamilnadu (India); Divakar, D. [Department of Chemical Engineering, A.C. College of Technology, Anna University, Chennai 600025, Tamilnadu (India); Sivakumar, T. [Department of Chemical Engineering, A.C. College of Technology, Anna University, Chennai 600025, Tamilnadu (India)]. E-mail: sivakumar@annauniv.edu

    2007-08-25

    Nanoparticles of TiO{sub 2} were synthesized by sol-gel technique and the photodeposition of about 1% Ag on TiO{sub 2} particles was carried out. Ag-deposited TiO{sub 2} catalyst was characterised by XRD, TEM and UV-vis spectroscopy. The Ag-TiO{sub 2} catalyst was evaluated for their photocatalytic activity towards the degradation of Reactive Yellow-17 (RY-17) under UV and visible light irradiations. Then the results were compared with synthesized nano-TiO{sub 2} sol and P-25 Degussa and the enhanced degradation was obtained with Ag-deposited TiO{sub 2}. This enhanced activity of Ag-TiO{sub 2} may be attributed to the trapping of conduction band electrons. The effect of initial dye concentration, pH and electron acceptors such as H{sub 2}O{sub 2}, K{sub 2}S{sub 2}O{sub 8} on the photocatalytic activity were studied and the results obtained were fitted with Langmuir-Hinshelwood model to study the degradation kinetics and discussed in detail.

  17. Effect of surface treatments on the surface morphology, corrosion property, and antibacterial property of Ti-10Cu sintered alloy.

    Science.gov (United States)

    Zhang, Erlin; Liu, Cong

    2015-08-01

    Ti-10Cu sintered alloy has shown strong antibacterial properties against S. aureus and E. coli and good cell biocompatibility in vitro and in vivo, displaying potential application as an implant material. Surface treatments are always applied to implants to improve the surface biocompatibility. In this paper, several typically used surface treatments, including sandblasting (SB), sandblasted and large-grits acid etching (SLA), and alkaline heat treatment (AH) were chosen to modify the Ti-10Cu. A cp-Ti (commercially pure titanium) sample was used as control sample. The effect of surface treatments on the corrosion properties and antibacterial properties of the Ti-10Cu sintered alloy was investigated. After SB and SLA treatments, a rough surface with a TiO2 layer was formed on the surface, which reduced the corrosion resistance and enhanced the Ti and Cu ion release. After AH treatment, a smooth but microporous surface with a TiO2/titanate layer was formed, which improved slightly the corrosion resistance. However, the Cu ion and Ti ion release from the Ti-10Cu sample was promoted by AH treatment due to the fact that more Ti2Cu phases were exposed on the AH-treated Ti-10Cu sample. It was demonstrated that the Ti-10Cu samples after surface treatments still exhibited good antibacterial properties against S. aureus, which indicated that the surface treatment did not reduce the antibacterial activity. The control mechanism was thought to be related to the high Cu ion release even after surface treatments. It was expected that the surface treatments provided Ti-10Cu sintered alloy with good surface bioactivity without reduction in antibacterial activity. PMID:26201969

  18. The crystallization of (NiCu)ZrTiAlSi glass/crystalline composite

    International Nuclear Information System (INIS)

    Alloys of composition (Ni1-xCux)60Zr18Ti13A15Si4 were investigated in the form of ribbons and massive samples. The microstructure of the massive samples consists of dendritic crystals in the amorphous or nanocrystalline matrix. The amount of the amorphous phase is the lowest in the sample with the highest Cu content. The segregation in the liquid phase, leading to the local differences in density and the composition of the crystallizing dendrites in the samples crystallized in the copper mould was shown. The typical compositions of the multi-component crystals could be distinguished; one with the increased content of aluminum, the second with the high content of silicon and third, with the high content of (NiCu) and (ZrTi). The cubic phase Ni(Cu)Ti(Zr) with Cu and Zr dissolved could be identified. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  19. Rapid solidification of Al-Cu-Ag ternary alloy under the free fall condition

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The rapid solidification of Al-30%Cu-18%Ag ternary alloy is investigated by using the free fall method. Its solidified microstructure is composed of θ(Al2Cu), α(Al) and ξ(Ag2Al) phases. The liquidus temperature and solidus temperature are determined as 778 and 827 K, respectively. The alloy melt undercooled amounts up to ΔTMax=171 K (0.20TL). Its microstructural evolution is investigated based on the theoretical analysis of undercooling behavior and nucleation mechanics. It is found that the undercooling increases with the decrease of the diameter of the alloy droplet. When ΔT<78 K, the primary θ (Al2Cu) phase of the alloy grows into coarse dendrite. When 78 K≤ΔT≤171 K, its refined θ (Al2Cu) phase grows alternatively with α(Al) phase. Once ΔT≥171 K, its microstructure is characterized by the anomalous (θ+α+ξ) ternary eutectic.

  20. Rapid solidification of Al-Cu-Ag ternary alloy under the free fall condition

    Institute of Scientific and Technical Information of China (English)

    DAI FuPing; WEI BingBo

    2009-01-01

    The rapid solidification of Al-30%Cu-18%Ag ternary alloy is investigated by using the free fall method. Its solidified microstructure is composed of θ(Al2Cu), α(Al) and ξ(Ag2Al) phases. The liquidus temperature and solidus temperature are determined as 778 and 827 K, respectively. The alloy melt undercooled amounts up to △Tmax=171 K (0.20T,). Its microstructural evolution is investigated based on the theoretical analysis of undercooling behavior and nucleation mechanics. It is found that the undercooling increases with the decrease of the diameter of the alloy droplet. When △T<78 K, the primary θ(Al2Cu) phase of the alloy grows into coarse dendrite. When 78 K≤△T≤171 K, its refined θ(Al2Cu) phase grows alternatively with α(Al) phase. Once △T≥171 K, its microstructure is characterized by the anomalous (θ+αξ) ternary eutectic.

  1. Experimental determination of interfacial energies for Ag2A1 solid solution in the CuAl2-Ag2Al system

    Institute of Scientific and Technical Information of China (English)

    Ocak Y; Akbulut S; Keslio(g)lu K; Mara(s)ll N; (C)adlrll E; Kaya H

    2009-01-01

    The equilibrated grain boundary groove shapes of solid solution Ag2Al in equilibrium with an Al-Cu-Ag liquid were observed from a quenched sample with a radial heat flow apparatus. The Gibbs-Thomson coefficient,solid-liquid interfacial energy and grain boundary energy of the solid solution Ag2Al have been determined from the observed grain boundary groove shapes. The thermal conductivity of the solid phase and the thermal conductivity ratio of the liquid phase to solid phase for Ag2Al-28.3 at the %CuAl2 alloy at the melting temperature have also been measured with a radial heat flow apparatus and Bridgman type growth apparatus,separately.

  2. Oxidation behavior of Cu nanoparticles embedded into semiconductive TiO{sub 2} matrix

    Energy Technology Data Exchange (ETDEWEB)

    Stranak, Vitezslav, E-mail: stranak@prf.jcu.cz [University of South Bohemia, Faculty of Science, Branisovska 31, 37005 Ceske Budejovice (Czech Republic); Drache, Steffen; Wulff, Harm [University of Greifswald, Institute of Physics, Felix-Hausdorff-Str. 6, 17489 Greifswald (Germany); Hubicka, Zdenek [Institute of Physics, Academy of Science of the Czech Republic, Na Slovance 2, 18221 Prague (Czech Republic); Tichy, Milan [Charles University in Prague, Faculty of Mathematics and Physics, V Holesovickach 2, 18000 Prague (Czech Republic); Kruth, Angela [Leibniz Institute for Plasma Science and Technology, INP Greifswald e.V., Felix-Hausdorff-Straße 2, 17489 Greifswald (Germany); Helm, Christiane A.; Hippler, Rainer [University of Greifswald, Institute of Physics, Felix-Hausdorff-Str. 6, 17489 Greifswald (Germany)

    2015-08-31

    Metal nanoparticles embedded into a semiconductive matrix represent a promising material for widely sought advanced technological applications. We focused our interest on the preparation of TiO{sub 2} matrix with embedded Cu nanoparticles. In particular, we studied the effect of reactive discharge (Ar/O{sub 2}) exposition on copper oxidation, which can result in two stable forms: cuprous oxide (Cu{sub 2}O) and cupric oxide (CuO). Copper nanoparticles, of size in range 10–50 nm, were produced by magnetron sputtering in combination with gas aggregation. The beam of Cu nanoparticles was impinging onto a silicon substrate which was directly exposed to a reactive Ar/O{sub 2} magnetron discharge providing sputtering of Ti target at the same time. The properties of deposited nanocomposite Cu({sub x}O)–TiO{sub 2} were investigated by X-ray photoelectron spectroscopy, grazing incidence X-ray diffractometry, X-ray reflectometry and scanning electron microscopy techniques to reveal the nanocomposite properties and to understand the oxidation process of embedded Cu nanoparticles. It was found that CuO is preferentially formed if copper is exposed to active oxygen species (O{sup +}, O{sup −}, O{sup ⁎} etc.) produced in the reactive magnetron discharge. On the other hand, Cu{sub 2}O was observed in the case of copper reaction in ambient Ar/O{sub 2} atmosphere. As a result, two possible copper oxidation mechanisms are proposed, employing chemical kinetics. - Highlights: • Cu–TiO{sub 2} nanocomposite was prepared by plasma assisted methods. • Embedded Cu always occurs in oxidized phase depending on the way of oxidation. • CuO is formed if copper is exposed to active oxygen species produced in Ar/O{sub 2} discharge. • Cu{sub 2}O appears in the case of copper reaction in an ambient oxygen-based atmosphere. • Two possible copper oxidation mechanisms are proposed.

  3. Electrical characterization of the organic semiconductor Ag/CuPc/Au Schottky diode

    Institute of Scientific and Technical Information of China (English)

    Mutabar Shah; M. H. Sayyad; Kh. S. Karimov

    2011-01-01

    This paper reports on the fabrication and investigation of a surface-type organic semiconductor copper phthalocyanine (CuPc) based diode. A thin film of CuPc of thickness 100 nm was thermally sublimed onto a glass substrate with preliminary deposited metallic electrodes to form a surface-type Ag/CuPc/Au Schottky diode. The current-voltage characteristics were measured at room temperature under dark conditions. The barrier height was calculated as 1.05 eV. The values of mobility and conductivity was found to be 1.74 x l0-9 cm2/(V.s) and 5.5 x 10-6 Ω-1. cm-1, respectively. At low voltages the device showed ohmic conduction and the space charge limited current conduction mechanisms were dominated at higher voltages.

  4. Creep behavior on Ag particle reinforced SnCu based composite solder joints

    Institute of Scientific and Technical Information of China (English)

    YAN Yan-fu; ZHU Jin-hong; CHEN Fu-xiao; HE Jun-guang; YANG Di-xin

    2006-01-01

    SnCu solder is one of the most promising substitutes of SnPb solder, but its creep resistance is worse than that of the other lead-free solders. Particle-reinforcement is a way to improve the creep resistance of solder alloys and cause much more attention than before. A novel Ag particles reinforced SnCu based composite solder is formed and the influence of stress on creep behavior of the composite solder is investigated. Results indicate that the creep resistance of solder joints is superior to that of the SnCu solder joints. Creep rupture lifetime of solder joints decreases gradually with stress increasing. And the creep rupture lifetime of the composite solder joints falls down faster than that of the matrix solder joints.

  5. Novel S = 1/2 Kagome Lattice Materials: Cs2TiCu3F12 and Rb2TiCu3F12

    Directory of Open Access Journals (Sweden)

    Lewis J. Downie

    2015-05-01

    Full Text Available Two new members of the A2B′Cu3F12 family of kagome-related materials have been prepared, in order to further understand the crystal-chemical relationships, phase transitions and magnetic behaviour within this family of potentially frustrated S = ½ two-dimensional quantum magnets. Cs2TiCu3F12 adopts a crystal structure with the ideal kagome lattice topology (space group R m at ambient temperature. Diffraction studies reveal different symmetry-lowering structural phase transitions in single crystal and polycrystalline forms at sub-ambient temperatures, with the single crystal form retaining rhombohedral symmetry and the powder form being monoclinic. In both cases, long-range antiferromagnetic order occurs in the region 16–20 K. Rb2TiCu3F12 adopts a distorted triclinic structure even at ambient temperatures.

  6. Cu-TiB metal matrix composites prepared by powder metallurgy route

    Directory of Open Access Journals (Sweden)

    Guo Z.

    2015-01-01

    Full Text Available Titanium boride (TiB is characterized by good conductivity, high strength and high melting point. In this work, TiB was used to make Cu-TiB metal matrix composites (MMCs. Amounts of TiB added into Cu matrix were 2wt.%, 5wt.%, 10 wt.% and 15 wt.%. The samples were pressed at pressures of 500MPa, 600MPa, 700MPa and 800MPa and sintered at 820o and 920o, respectively. The properties of the sintered composites such as hardness and impact toughness were studied. Hardness and impact toughness of samples increased with increasing pressures and decreased with increasing contents of TiB. Composite with good mechanical properties and high conductivity was obtained from the sample containing 2wt.%TiB compacted at 800MPa and sintered at 920o. It was shown that 2wt.% TiB is a suitable content to make Cu-TiB MMCs with good mechanical properties and excellent conductivity.

  7. Direct Observation of Long-Term Durability of Superconductivity in YBa2Cu3O7-Ag2O Composites

    Science.gov (United States)

    Lin, Juhn-Jong; Lin, Yong-Han; Huang, Shiu-Ming; Lee, Tsang-Chou; Chen, Teng-Ming

    2003-10-01

    We report direct observation of long-term durability of superconductivity of several YBa2Cu3O7-Ag2O composites that were first prepared and studied almost fourteen years ago [J. J. Lin et al.: Jpn. J. Appl. Phys. 29 (1990) 497]. Remeasurements performed recently on both resistances and magnetizations indicate a sharp critical transition temperature at 91 K. We also find that such long-term environmental stability of high-temperature superconductivity can only be achieved in YBa2Cu3O7 with Ag2O addition, but not with pure Ag addition.

  8. Effect of Erbium on the Photocatalytic Activity of TiO2 /Ag Nanocomposites under Visible Light Irradiation.

    Science.gov (United States)

    Prakash, Natarajan; Karthikeyan, Rajan; Thangaraju, Dheivasigamani; Navaneethan, Mani; Arivanandhan, Mukannan; Koyama, Tadanobu; Hayakawa, Yasuhiro

    2015-10-01

    Erbium co-doped TiO2 /Ag catalysts are synthesized by using a simple, one-step solvothermal method and characterized by X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, Raman analysis, X-ray photoelectron spectroscopy, and diffuse reflectance spectroscopy. The catalysts exhibit anatase crystal structures with increased visible light absorption compared with pure TiO2 . Enhanced photocatalytic activity is observed with Er co-doped TiO2 /Ag nanocomposites for Rhodamine B degradation under visible light irradiation. The photocatalytic activity of 1 % Er co-doped TiO2 /Ag is much higher than that of TiO2 /Ag, TiO2 /Er, pure TiO2 , and commercial Degussa P25. The kinetics of the degradation process are studied and the pseudo-first-order rate constant (k) and half-life time (t1/2 ) of the reaction are calculated. The enhanced activity might be accredited to the efficient separation of electron-hole pairs by silver and higher visible light absorption of TiO2 induced by Er. PMID:26274932

  9. Synthesis and characterization of carbon nanotubes-treated Ag@TiO2 core-shell nanocomposites with highly enhanced photocatalytic performance

    Science.gov (United States)

    An, Yang; Yang, Liu; Hou, Juan; Liu, Zhiyong; Peng, Banghua

    2014-06-01

    The monodispersed, uniform Ag@TiO2 core-shell nanoparticles were successfully synthesized using Ag nanoparticles as colloid seeds and tetrabutyl titanate (TBOT) as Ti source through the simple solvothermal process. The acid vapor treated multi-walled carbon nanotubes (CNTs) were introduced into Ag@TiO2 core-shell system to obtain CNTs-loaded Ag@TiO2 nanocomposites (CNTs-Ag@TiO2) through a simple dipping method. Characterization of the composites was performed using Scanning electron microscopy (SEM), Transmission electron microscopy (TEM) and High-resolution TEM (HRTEM), Energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), UV-vis diffuse reflectance spectroscopy (DRS) and the X-ray photoelectron spectroscopy (XPS). Photocatalytic property of CNTs-Ag@TiO2 nanocomposites was investigated by photodegradation methylene blue (MB) solution under Xenon arc lamp and compared with Ag@TiO2, TiO2 and CNTs-TiO2 nanoparticles. The result showed that the photocatalysis property of CNTs-Ag@TiO2 nanocomposites was higher than other comparative particles. The presence of CNTs in the Ag@TiO2 nanocomposites could enhance the photocatalytic property owing to CNTs were good electron acceptors, can accept the excited electrons photo-initiated in the TiO2 particles and the Fermi level of the Ag is situated close to the conduction band edge of TiO2. Thus the electrons excited into the conduction band of TiO2 by UV-visible light irradiation are transferred to the surface of CNTs and Ag core easily. Therefore, recombination time of the electron-hole pair was prolonged, which was the key of enhance the photocatalytic activity.

  10. Investigation of Ag-TiO2 nanostructures photocatalytic properties prepared by modified dip coating method

    Science.gov (United States)

    AlArfaj, Esam

    2016-05-01

    In this article, titanium dioxide and silver nanostructures were deposited on glass substrates using modified sol-gel methods and dip-coating technique. The films were characterised chemically and physically using different techniques (TLC, UV-Vis and XRD) and tested for environmental applications regarding degradation of aromatic hydrocarbons. The photocatalytic activity of the TiO2 nanostructures is tested with different small concentrations of phenol in water and reaction mechanisms discussed. Considerable enhancement is observed in the photodegradation activity of Ag-modified (3 wt.%) TiO2 compared to unmodified TiO2 nanostructures for phenol concentrations within the pseudo-first-order Langmuir-Hinshelwood (LH) model for reaction kinetics. The pseudo-first-order global degradation rate constant increased from degradation process occurred at 0.00014 M and the reaction rate can be fitted with half-order LH kinetics.

  11. TiO2纳米管负载Ag、Au、Pt纳米粒子的微波合成与表征%Microwave Synthesis and Characterization of Ag, Au, Pt Nanoparticles Supported on TiO2 Nanotubes

    Institute of Scientific and Technical Information of China (English)

    包华辉; 徐铸德; 殷好勇; 郑遗凡; 陈卫祥

    2005-01-01

    TiO2 nanotubes were prepared under normal pressure at a temperature of 120℃. Ag, Au, Pt nanoparticles supported on TiO2 nanotubes were prepared by microwave assisted heating polyol process. TEM images showed that microwave prepared Ag, Au, Pt nanoparticles supported on TiO2 nanotubes were small and well dispersed on the surface of the TiO2 nanotubes. UV-Vis absorption spectra showed that the absorbance of Ag/TiO2 nanotubes and Au/TiO2 nanotubes in the visible light range increased greatly compared to the single titania nanotubes.

  12. Epitaxial TiN(001) wetting layer for growth of thin single-crystal Cu(001)

    Energy Technology Data Exchange (ETDEWEB)

    Chawla, J. S.; Zhang, X. Y.; Gall, D. [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

    2011-08-15

    Single-crystal Cu(001) layers, 4-1400 nm thick, were deposited on MgO(001) with and without a 2.5-nm-thick TiN(001) buffer layer. X-ray diffraction and reflection indicate that the TiN(001) surface suppresses Cu-dewetting, yielding a 4 x lower defect density and a 9 x smaller surface roughness than if grown on MgO(001) at 25 deg. C. In situ and low temperature electron transport measurements indicate that ultra-thin (4 nm) Cu(001) remains continuous and exhibits partial specular scattering at the Cu-vacuum boundary with a Fuchs-Sondheimer specularity parameter p = 0.6 {+-} 0.2, suggesting that the use of epitaxial wetting layers is a promising approach to create low-resistivity single-crystal Cu nanoelectronic interconnects.

  13. Slow positrons in metal single crystals. I. Positronium formation at Ag(100), Ag(111), and Cu(111) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Lynn, K.G.; Welch, D.O.

    1980-07-01

    Monoenergetic positrons, with an incident energy of 0 --5 keV, were focused onto Ag(100), Ag(111), and Cu(111) surfaces with submonolayer contamination, and positronium formation was studied as a function of sample temperature from 300 to 1200 K. The data were fitted with a simple positron diffusion model including surface and vacancy trapping, assuming that positronium is formed only at the surface. The formation of part of the positronium fraction is found to be a temperature-activated process which is identified as detrapping from a surface state, and an estimate of the binding energy in this trap is deduced. The diffusion length is found to be only slightly temperature dependent between room temperature and the onset of vacancy trapping. At the higher sample temperatures positron trapping at thermally generated vacancies is observed by the decrease in the positron diffusion length at the higher incident voltages. A vacancy formation energy is extracted from the data and is generally found to be lower than the values obtained from bulk measurements.

  14. Effects of Carrier on CuO/TiO2 and CuO/Ti0.5Zr0.5O2 Catalysts in the NO+CO Reaction

    Institute of Scientific and Technical Information of China (English)

    Guang Hui DING; Xiao Yuan JIANG; Xiao Ming ZHENG

    2005-01-01

    Using TiO2 and Ti0.5Zr0.5O2 as carriers, the CuO/TiO2 and CuO/Ti0.5Zr0.5O2 catalysts were prepared by the impregnation method with Gu(NO3)2 as active component. The catalytic activities in NO+CO reaction were investigated using a microreactor-GC system, and structure and reducibility of catalysts were characterized by means of physical adsorption, TPR, XRD, NO-TPD technologies. It was found that the activity of CuO/Ti0.5Zr0.5O2 catalyst was higher than that of CuO/TiO2, probably due to the large specific surface area of Ti0.5Zr0.5O2 that played an important role in NO+CO reaction.

  15. Phase constitution and interface structure of nano-sized Ag-Cu/AlN multilayers: Experiment and ab initio modeling

    International Nuclear Information System (INIS)

    Nano-sized Ag-Cu8nm/AlN10nm multilayers were deposited by reactive DC sputtering on α-Al2O3(0001) substrates. Investigation of the phase constitution and interface structure of the multilayers evidences a phase separation of the alloy sublayers into nanosized grains of Ag and Cu. The interfaces between the Ag grains and the quasi-single-crystalline AlN sublayers are semi-coherent, whereas the corresponding Cu/AlN interfaces are incoherent. The orientation relationship between Ag and AlN is constant throughout the entire multilayer stack. These observations are consistent with atomistic models of the interfaces as obtained by ab initio calculations.

  16. Fracture analysis of Ag nanobrazing of NiTi to Ti alloy

    Energy Technology Data Exchange (ETDEWEB)

    Quintino, L., E-mail: lquirino@ist.utl.pt [Universidade Tecnica de Lisboa (IST/UTL) (Portugal). Instituto Superior Tecnico. Dept. de Engenharia Mecanica; Liu, L., E-mail: ray.plasma@gmail.com [Tsinghua Univ., Beijing (China). Dept. of Mechanical Engineering; Hu, A.; Zhou, Y., E-mail: anming.hu@uwaterloo.ca, E-mail: nzhou@uwaterloo.ca [University of Waterloo, Ontario (Canada). Dept. of Mechanical Engineering; Miranda, R.M., E-mail: rmiranda@fct.unl.pt [Universidade Nova de Lisboa (UNIDEMI), Caparica (Portugal). Dept. de Engenharia Mecanica e Industrial

    2013-07-15

    Dissimilar joining of shape memory alloys to Ti alloys has long been attempted by several research groups due to the foreseen potential industrial applications. However, the very dissimilar thermo-physical properties of both materials place several difficulties. Brazing can be a solution since the base materials are subjected to a less sharp thermal cycle. In the present study brazed overlap joints of 1 mm thick plates of equiatomic Ni Ti and Ti6Al4V were produced using nano silver based filler materials. Surfaces were analyzed to asses the type of fracture and the capability of achieving bonding and involved mechanisms are discussed. (author)

  17. In situ synthesis of TiC reinforced Cu47Ti34Zr11Ni8 bulk metallic glass composites

    Institute of Scientific and Technical Information of China (English)

    SUN Yufeng; ZHANG Guosheng; WEI Bingchen; LI Weihuo; WANG Yuren

    2004-01-01

    In situ synthesized TiC particles and β-Ti dendrites reinforced Cu47Ti34Zr11 Ni8 bulk metallic glass (BMG)composite ingots were prepared by the suction casting method. The ingots with diameters from 1 up to 4 mm were successfully obtained. It was shown that introducing TiC micro-sized particles into the amorphous matrix did not disturb the glass forming ability (GFA) of the matrix, while the yield strength and ductility could be well improved. The phase constitution, microstructure and elements distribution in the composites were studied by OM, XRD, SEM and EDS.It was shown that the in situ synthesized TiC particles acting as heterogeneous nucleation sites promoted the precipitation of β-Ti dendrites, resulting in the formation of the TiC particles and β-Ti dendrites co-reinforced BMG composites. The compressive tests were employed to probe the yield strength and ductility of BMG composites.

  18. Hydrogen generation by photoelectrochemical effect of the Cu-doped TiO2 photoanode

    International Nuclear Information System (INIS)

    TiO2 film photoanodes with a size of 1 × 1 cm2 were fabricated by a spin coating method. Cu-doped TiO2 powder with various Cu concentrations (0.2, 0.4, 0.6 and 0.8 at%) and surfactant were used as starting materials in coating Cu-doped TiO2 thin films onto FTO/glass substrate. Crystalline structure of TiO2 material, microstructure of the photoanode films and their thickness were identified by x-ray diffraction and Raman scattering. Hydrogen generation from water by photoelectrochemical effect in the visible light was observed by recording I/V characteristics of the photoanode in dark and light regimes. The obtained results have shown that the hydrogen generation efficiency of photoanode nonlinearly depends on Cu concentration. The nonlinear dependence of the hydrogen generation efficiency may be due to a change of resistivity of the film photoanode that is related with the random distribution of the hetero-junction between interfaces of TiO2 and CuO nanoparticles. (paper)

  19. Ti-Ni-Cu shape-memory alloy thin film formed on polyimide substrate

    International Nuclear Information System (INIS)

    Ti-Ni-Cu shape-memory alloy (SMA) thin films were sputter-deposited on heated polyimide substrates. Ti-Ni-Cu films deposited at substrate temperatures of 543 and 583 K were found to be crystalline. Especially, a Ti48Ni29Cu23 film deposited at 583 K exhibited a high martensitic transformation temperature above room temperature and a narrow transformation temperature range, which enable the film to be used at room temperature. Double-beam cantilevers made of 8 μm thick Ti48Ni29Cu23 films deposited on 12.5 and 25 μm thick polyimide substrates displayed a repeatable shape-memory effect by a battery of 1.5 V and it was verified that the composite film consisting of an 8 μm thick Ti48Ni29Cu23 film and a 25 μm thick polyimide film is capable of moving 0.18 g wings of a dragonfly toy up and down. These results offer the prospect for using an SMA/polyimide actuator as a convenient small actuator, which will find wide-ranging applications

  20. Effect of intermetallic compounds on the thermal conductivity of Ti-Cu composites

    Energy Technology Data Exchange (ETDEWEB)

    Jagannadham, K., E-mail: jag-kasichainula@ncsu.edu [Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2016-03-15

    Ti films were deposited by magnetron sputtering on polycrystalline Cu substrates. The samples were annealed at different temperatures and characterized by x-ray diffraction for phase identification, scanning electron microscopy, and energy dispersive spectrometry for microstructure and composition and transient thermoreflectance for thermal conductivity and interface thermal conductance. The results showed that the diffused layer of Ti in Cu contained intermetallic compounds and solid solution of Ti in Cu. The thermal conductivity of the diffused layer is reduced, and the thickness increased for higher annealing temperature. The interface thermal conductance also decreased for higher temperature of annealing. A stable Cu{sub 4}Ti phase was formed after annealing at 725 °C with thermal conductivity of 10 W m{sup −1} K{sup −1}. The interface thermal conductance between the intermetallic compound and the solid solution of Ti in Cu also was reduced to 30 MW m{sup −2} K{sup −1}. The effective thermal resistance of the diffused layer and the interface was found to increase for higher annealing temperature.

  1. Effect of intermetallic compounds on the thermal conductivity of Ti-Cu composites

    International Nuclear Information System (INIS)

    Ti films were deposited by magnetron sputtering on polycrystalline Cu substrates. The samples were annealed at different temperatures and characterized by x-ray diffraction for phase identification, scanning electron microscopy, and energy dispersive spectrometry for microstructure and composition and transient thermoreflectance for thermal conductivity and interface thermal conductance. The results showed that the diffused layer of Ti in Cu contained intermetallic compounds and solid solution of Ti in Cu. The thermal conductivity of the diffused layer is reduced, and the thickness increased for higher annealing temperature. The interface thermal conductance also decreased for higher temperature of annealing. A stable Cu4Ti phase was formed after annealing at 725 °C with thermal conductivity of 10 W m−1 K−1. The interface thermal conductance between the intermetallic compound and the solid solution of Ti in Cu also was reduced to 30 MW m−2 K−1. The effective thermal resistance of the diffused layer and the interface was found to increase for higher annealing temperature

  2. Physical and chemical characterization of Ag-doped Ti coatings produced by magnetron sputtering of modular targets

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, Tobias [Department for Functional Materials in Medicine and Dentistry, School of Dentistry, University of Würzburg, Pleicherwall 2, 97070 Würzburg (Germany); Institute of Tissue Engineering and Regenerative Medicine, University Hospital of the Julius-Maximilians University, Röntgenring 11, 97070 Würzburg (Germany); Warmuth, Franziska [Department for Functional Materials in Medicine and Dentistry, School of Dentistry, University of Würzburg, Pleicherwall 2, 97070 Würzburg (Germany); Werner, Ewald; Hertl, Cornelia [Institute of Materials Science and Mechanics of Materials, Technical University of Munich, Boltzmannstrasse 15, 85748 Garching (Germany); Groll, Jürgen; Gbureck, Uwe [Department for Functional Materials in Medicine and Dentistry, School of Dentistry, University of Würzburg, Pleicherwall 2, 97070 Würzburg (Germany); Moseke, Claus, E-mail: claus.moseke@fmz.uni-wuerzburg.de [Department for Functional Materials in Medicine and Dentistry, School of Dentistry, University of Würzburg, Pleicherwall 2, 97070 Würzburg (Germany)

    2014-11-01

    Silver-doped Ti films were produced using a single magnetron sputtering source equipped with a titanium target containing implemented silver modules under variation of bias voltage and substrate temperature. The Ti(Ag) films were characterized regarding their morphology, contact angle, phase composition, silver content and distribution as well as the elution of Ag{sup +} ions into cell media. SEM and AFM pictures showed that substrate heating during film deposition supported the formation of even and dense surface layers with small roughness values, an effect that could even be enforced, when a substrate bias voltage was applied instead. The deposition of both Ti and Ag was confirmed by X-ray diffraction. ICP-MS and EDX showed a clear correlation between the applied sputtering parameters and the silver content of the coatings. Surface-sensitive XPS measurements revealed that higher substrate temperatures led to an accumulation of Ag in the near-surface region, while the application of a bias voltage had the opposite effect. Additional elution measurements using ICP-MS showed that the release kinetics depended on the amount of silver located at the film surface and hence could be tailored by variation of the sputter parameters. - Highlights: • Modular targets were used to deposit Ti(Ag) films. • Ag-content is adjustable by bias voltage, sputtering power and substrate temperature. • Coating parameters significantly change film morphology and roughness. • A critical parameter for Ag release is the fraction of silver on the film surface.

  3. Physical and chemical characterization of Ag-doped Ti coatings produced by magnetron sputtering of modular targets

    International Nuclear Information System (INIS)

    Silver-doped Ti films were produced using a single magnetron sputtering source equipped with a titanium target containing implemented silver modules under variation of bias voltage and substrate temperature. The Ti(Ag) films were characterized regarding their morphology, contact angle, phase composition, silver content and distribution as well as the elution of Ag+ ions into cell media. SEM and AFM pictures showed that substrate heating during film deposition supported the formation of even and dense surface layers with small roughness values, an effect that could even be enforced, when a substrate bias voltage was applied instead. The deposition of both Ti and Ag was confirmed by X-ray diffraction. ICP-MS and EDX showed a clear correlation between the applied sputtering parameters and the silver content of the coatings. Surface-sensitive XPS measurements revealed that higher substrate temperatures led to an accumulation of Ag in the near-surface region, while the application of a bias voltage had the opposite effect. Additional elution measurements using ICP-MS showed that the release kinetics depended on the amount of silver located at the film surface and hence could be tailored by variation of the sputter parameters. - Highlights: • Modular targets were used to deposit Ti(Ag) films. • Ag-content is adjustable by bias voltage, sputtering power and substrate temperature. • Coating parameters significantly change film morphology and roughness. • A critical parameter for Ag release is the fraction of silver on the film surface

  4. Electron configuration and charge state of electrically active Cu, Ag and Au ions in ZnSe

    International Nuclear Information System (INIS)

    The Hall effect, electrical conductivity and electron mobility are investigated at temperatures between 55 and 500 K in n-ZnSe crystals doped with Cu, Ag or Au. The presence of a small amount of Cu atoms leads to an inversion of the sign of the Hall coefficient at temperatures above 300 K. Anomalous temperature dependence of the electron mobility is observed in the samples with low Cu concentration (Zn+ (d10) and CuZn2+ (d9), and two acceptor levels near the valence band. Silver and gold exist in single-charged states AgZn+ and AuZn+ with d10 electron configuration forming single energy levels near the valence band. Au atoms form mainly interstitial Aui donors at low doping concentrations and substitutional AuZn and AuZn-based acceptors at high doping concentrations. Time stimulation of the amphoteric properties of Ag is discussed

  5. Transparent ITO/Ag-Pd-Cu/ITO multilayer cathode use in inverted organic solar cells

    Directory of Open Access Journals (Sweden)

    Hyo-Joong Kim

    2015-10-01

    Full Text Available The characteristics of transparent ITO/Ag-Pd-Cu (APC/ITO multilayer cathodes were investigated for use in inverted organic solar cells (IOSCs. The insertion of an APC interlayer into the ITO film effectively led to crystallization of the top ITO layer, unlike that in the Ag interlayer, and resulted in a low sheet resistance of 6.55 Ohm/square and a high optical transmittance of 84.14% without post annealing. In addition, the alloying of the Pd and Cu elements into Ag prevented agglomeration and oxidization of the metal interlayer and led to more stable ITO/APC/ITO films under ambient conditions. The microstructure and interfacial structure of the transparent ITO/APC/ITO cathode in the IOSCs were examined in detail by synchrotron X-ray scattering and high resolution transmission electron microscopy. Furthermore, we suggested a possible mechanism to explain the lower PCE of the IOSCs with an ITO/APC/ITO cathode than that of a reference IOSC with a crystalline ITO cathode using the external quantum efficiency of the IOSCs.

  6. Transparent ITO/Ag-Pd-Cu/ITO multilayer cathode use in inverted organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyo-Joong; Kim, Han-Ki, E-mail: imdlhkkim@khu.ac.kr [Department of Advanced Materials Engineering for Information and Electronics, Kyung Hee University, 1 Seocheon-dong, Yongin-si, Gyeonggi-do 446-701 (Korea, Republic of); Lee, Hyun Hwi [Pohang Accelerator Laboratory, POSTECH, Jigokro-127beon-gil, Nam-gu, Pohang 790-784 (Korea, Republic of); Kal, Jinha; Hahn, Jungseok [Future Technology Research Group, Kolon Central Research Park, 154 Mabukro, Giheung-ku, Yongin-si, Kyunggi-do, 16910 (Korea, Republic of)

    2015-10-15

    The characteristics of transparent ITO/Ag-Pd-Cu (APC)/ITO multilayer cathodes were investigated for use in inverted organic solar cells (IOSCs). The insertion of an APC interlayer into the ITO film effectively led to crystallization of the top ITO layer, unlike that in the Ag interlayer, and resulted in a low sheet resistance of 6.55 Ohm/square and a high optical transmittance of 84.14% without post annealing. In addition, the alloying of the Pd and Cu elements into Ag prevented agglomeration and oxidization of the metal interlayer and led to more stable ITO/APC/ITO films under ambient conditions. The microstructure and interfacial structure of the transparent ITO/APC/ITO cathode in the IOSCs were examined in detail by synchrotron X-ray scattering and high resolution transmission electron microscopy. Furthermore, we suggested a possible mechanism to explain the lower PCE of the IOSCs with an ITO/APC/ITO cathode than that of a reference IOSC with a crystalline ITO cathode using the external quantum efficiency of the IOSCs.

  7. Antibacterial effect of copper-bearing titanium alloy (Ti-Cu) against Streptococcus mutans and Porphyromonas gingivalis

    Science.gov (United States)

    Liu, Rui; Memarzadeh, Kaveh; Chang, Bei; Zhang, Yumei; Ma, Zheng; Allaker, Robert P.; Ren, Ling; Yang, Ke

    2016-07-01

    Formation of bacterial biofilms on dental implant material surfaces (titanium) may lead to the development of peri-implant diseases influencing the long term success of dental implants. In this study, a novel Cu-bearing titanium alloy (Ti-Cu) was designed and fabricated in order to efficiently kill bacteria and discourage formation of biofilms, and then inhibit bacterial infection and prevent implant failure, in comparison with pure Ti. Results from biofilm based gene expression studies, biofilm growth observation, bacterial viability measurements and morphological examination of bacteria, revealed antimicrobial/antibiofilm activities of Ti-Cu alloy against the oral specific bacterial species, Streptococcus mutans and Porphyromonas gingivalis. Proliferation and adhesion assays with mesenchymal stem cells, and measurement of the mean daily amount of Cu ion release demonstrated Ti-Cu alloy to be biocompatible. In conclusion, Ti-Cu alloy is a promising dental implant material with antimicrobial/antibiofilm activities and acceptable biocompatibility.

  8. Photocatalytic properties and selective antimicrobial activity of TiO2(Eu)/CuO nanocomposite

    Science.gov (United States)

    Michal, Robert; Dworniczek, Ewa; Caplovicova, Maria; Monfort, Olivier; Lianos, Panagiotis; Caplovic, Lubomir; Plesch, Gustav

    2016-05-01

    TiO2(Eu)/CuO nanocomposites were prepared by precipitation method. The anatase nanocrystallites with a size of 26 nm exhibited well crystallized and characteristical dipyramidal morphology and {1 0 1} and {0 0 1} faceting. Transmission electron microscopy photographs with atomic resolution showed that the Eu(III) dopants were bounded on surface of titania. In the composites, the CuO nanocrystals exhibiting a monoclinic tenorite structure with a size in the range from 2 to 5 nm were grafted to the surface of titania. The influence of copper(II) oxide led to distinct selectivity in the photocatalytic and antimicrobial properties of the investigated TiO2(Eu)/CuO nanocomposites. While the presence of CuO nanocrystals strongly increased the photocatalytic production of hydrogen by ethanol reforming, it decreased the activity in photoinduced total mineralization of phenol comparing with non-modified TiO2(Eu). In investigated TiO2(Eu)/CuO powders, the photoinduced antimicrobial activity against membranes of Enterococcus species was influenced by the selective binding of CuO to the surface of the microorganism leading to distinct selectivity in their action. The activity against Enterococcus faecalis was higher than against Enterococcus faecium.

  9. Structural and surface properties of semitransparent and antibacterial (Cu,Ti,Nb)Ox coating

    Science.gov (United States)

    Wojcieszak, D.; Mazur, M.; Kaczmarek, D.; Szponar, B.; Grobelny, M.; Kalisz, M.; Pelczarska, A.; Szczygiel, I.; Poniedzialek, A.; Osekowska, M.

    2016-09-01

    In this work structural and surface properties of oxide thin-film coating based on Cu, Ti and Nb prepared by reactive magnetron sputtering have been described. During the deposition process metallic Cu, Ti and Nb targets were sputtered in oxygen plasma. Structural characterization of the film microstructure has revealed that as-prepared coating was amorphous. Due to such structure and the content of Ti and Nb the hardness of the oxide film was about 3.6 GPa, which is 40% higher as compared to metallic Cu film. Moreover, the surface roughness was below 1 nm, what resulted in receiving of hydrophobic properties. The multioxide film was transparent at the level of 40%, but due to high Cu-content its optical absorption edge was about 450 nm and had bright orange color. Optical investigation has revealed that the energy band-gap of this film was 1.41 eV, which indicates on the presence of CuO form. Moreover, the studies of antimicrobial activity showed that as-prepared film had a strong bactericidal effect for Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Bacillus subtilis and Enterococcus hirae, while fungicidal effect for Candida albicans was not observed. The biological activity was related to the amount of copper ions released from the surface of (Cu,Ti Nb)Ox coating, which was equal to 0.041 ppm per day.

  10. Experimental and theoretical determination of cross sections and rate constants for charge transfer population of some excited Ag+, I+, and Cu+ levels

    Science.gov (United States)

    Temelkov, K. A.; Vuchkov, N. K.; Sabotinov, N. V.

    2007-04-01

    Cross-sections and rate constants for thermal energy charge transfer into some Ag+, I+, and Cu+ excited states are theoretically and experimentally obtained for a gas discharge in the He-CuBr, Ne-CuBr, He-AgI, and Ne-AgI mixtures. Besides the pumping process the formation of the inversion population is determined by the radiative transitions, which populate or depopulate the upper and lower laser levels.

  11. Effect of rare earth Ce on the fatigue life of SnAgCu solder joints in WLCSP device using FEM and experiments

    International Nuclear Information System (INIS)

    With the addition of 0.03 wt% rare earth Ce, in our previous works, the properties of SnAgCu solder were enhanced obviously. Based on the Garofalo–Arrhenius creep constitutive model, finite element method was used to simulate the stress–strain response during thermal cycle loading, and combined with the fatigue life prediction models, the fatigue life of SnAgCu/SnAgCuCe solder joints was calculated respectively, which can demonstrate the effect of the rare earth Ce on the fatigue life of SnAgCu solder joints. The results indicated that the maximum stress–strain can be found on the top surface of the corner solder joint, and the warpage of the PCB substrate occurred during thermal cycle loading. The trends obtained from modeling results have a good agreement with the experimental data reported in the literature for WLCSP devices. In addition, the stress–strain of SnAgCuCe solder joints is lower than that of SnAgCu solder joints. The thermal fatigue lives of solder joints calculated based on the creep model and creep strain energy density model show that the fatigue life of SnAgCuCe solder joints is higher than the SnAgCu solder joints. The fatigue life of SnAgCuCe solder joints can be enhanced significantly with the addition of Ce, is 30.2% higher than that of SnAgCu solder joints, which can be attributed to the CeSn3 particles formed resisting the motion of dislocation; moreover, the refinement of microstructure and the IMC sizes also contribute to the enhancement of fatigue life, which elucidates that SnAgCuCe solder can be utilized in electronic industry with high reliability replacing the SnAgCu solder

  12. Defect generation, d- d transition, and band gap reduction in Cu-doped TiO2 nanoparticles

    Science.gov (United States)

    Choudhury, Biswajit; Dey, Munmun; Choudhury, Amarjyoti

    2013-04-01

    TiO2 doped with Cu2+ initiates the formation of brookite phase along with anatase. Doping of Cu2+ introduces structural defects into TiO2. The direct evidence is the low intense and broad diffraction peaks. Raman peaks of doped TiO2 are also broad and are blueshifted. Pure TiO2 exhibits an absorption in the UV region, the position of which is shifted towards the visible region on incorporation of Cu into it. The visible absorption peaks arise due to the d- d transition of Cu2+ in the crystalline environment of TiO2. Incorporation of Cu2+ distorts the local structure of TiO2, resulting in the loss of octahedral symmetry surrounding Cu2+. The Jahn-Teller distortion splits the 2 E g and 2 T 2g state of Cu2+ into several d states. Interaction of light excites the electron from ground to several of the excited states and gives the visible absorption peaks in the framework of TiO2. These Cu2+ d states and oxygen defects create band states, thereby favoring electronic transition to these levels and resulting in lowering of band gap of TiO2. A direct confirmation is the increase in the magnitude of Urbach energy with the reduction in the band gap of doped TiO2.

  13. Instability of TiC and TiAl3 compounds in Al-10Mg and Al-5Cu alloys by addition of Al-Ti-C master alloy

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The performance of Al-Ti-C master alloy in refining Al-10Mg and A1-5Cu alloys was studied by using electron probe micro-analyzer (EPMA) and X-ray diffractometer (XRD) analysis.The results indicate that there are obvious fading phenomena in both Al-10Mg and Al-5Cu alloys with the addition of Al-5Ti-0.4C refiner which contains TiC and TiAl3 compounds.Mg element has no influence on the stability of TiC and TiAl3, while TiC particles in Al-10Mg alloy react with Al to form Al4C3 particles, resulting in the refinement fading.However, TiC particles are relatively stable in Al-5Cu alloy, while TiAl3 phase reacts with Al2Cu to produce a new phase Ti(Al, Cu)2, which is responsible for the refinement fading in Al-5Cu alloy.These indicate that the refinement fading will not occur only when both the TiC particles and TiAl3 compound of Al-Ti-C refiner are stable in Al alloys.

  14. Modification of trace metal accumulation in the green mussel Perna viridis by exposure to Ag, Cu, and Zn

    International Nuclear Information System (INIS)

    To examine the Cd, Hg, Ag, and Zn accumulation in the green mussel Perna viridis affected by previous exposure to Cu, Ag, or Zn, the dietary metal assimilation efficiency (AE) and the uptake rate from the dissolved phase were quantified. The mussel's filtration rate, metallothionein (MT) concentration, and metal tissue burden as well as the metal subcellular partitioning were also determined to illustrate the potential mechanisms underlying the influences caused by one metal pre-exposure on the bioaccumulation of the other metals. The green mussels were pre-exposed to Cu, Ag, or Zn for different periods (1-5 weeks) and the bioaccumulation of Cd, Hg, Ag, and Zn were concurrently determined. Pre-exposure to the three metals did not result in any significant increase in MT concentration in the green mussels. Ag concentration in the insoluble fraction increased with increasing Ag exposure period and Ag ambient concentration. Our data indicated that Cd assimilation were not influenced by the mussel's pre-exposure to the three metals (Cu, Ag, and Zn), but its dissolved uptake was depressed by Ag and Zn exposure. Although Hg assimilation from food was not affected by the metal pre-exposure, its influx rate from solution was generally inhibited by the exposure to Cu, Ag, and Zn. Ag bioaccumulation was affected the most obviously, in which its AE increased with increasing Ag tissue concentration, and its dissolved uptake decreased with increasing tissue concentrations of Ag and Cu. As an essential metal, Zn bioaccumulation remained relatively stable following the metal pre-exposure, suggesting the regulatory ability of Zn uptake in the mussels. Zn AE was not affected by metal pre-exposure, but its dissolved uptake was depressed by Ag and Zn pre-exposure. All these results indicated that the influences of one metal pre-exposure on the bioaccumulation of other metals were metal-specific due to the differential binding and toxicity of metals to the mussels. Such factors should

  15. Thermodynamic properties of the liquid Ag-Bi-Cu-Sn lead-free solder alloys

    Directory of Open Access Journals (Sweden)

    Garzel G.

    2014-01-01

    Full Text Available The electromotive force measurement method was employed to determine the thermodynamic properties of liquid Ag-Bi-Cu-Sn alloys using solid electrolyte galvanic cells as shown below: Kanthal+Re, Ag-Bi-Cu-Sn, SnO2 | Yttria Stabilized Zirconia | air, Pt, Experiments were made within temperature interval: 950 - 1300K along four composition paths of constant ratios: XAg : XBi : XCu = 1, XAg : (XBi + XCu = 3:2 for XBi = XCu, XBi : (XAg + XCu = 3:2 for XAg = XCu and XCu : (XAg + XBi = 3:2 for XAg = XBi and tin concentration changing from 0.1 to 0.9 mole fractions, every 0.1. Almost all the results were approximated by straight line equations: EMF vs T, and tin activities were then calculated in arbitrary temperature; measurement results were presented by graphs. Unusual activity plot for XBi : (XAg + XCu = 3:2 composition path was most probably caused by miscibility gap detected earlier in Bi-Cu-Sn ternary liquid alloys.

  16. Synthesis of Ag-doped TiO2 nanoparticles by combining laser decomposition of titanium isopropoxide and ablation of Ag for dye-sensitized solar cells

    Science.gov (United States)

    Al-Kamal, Ahmed Kamal

    Nanostructured powders of TiO2 and Ag-doped TiO2 are synthesized by a novel pulsed-laser process that combines laser ablation of a silver (Ag) disc with laser decomposition of a titanium tetra-isopropoxide (TTIP) solution. Nanoparticles are formed by rapid condensation of vaporized species in the plasma plume generated by the high power laser, resulting in the formation of rapidly quenched Ag-doped TiO2 nanoparticles that have far-from-equilibrium or metastable structures. The uniqueness of the new ablation process is that it is a one-step process, in contrast to the two-step process developed by previous researchers in the field. Moreover, its ability to synthesize an extended-solid solution phase of Ag in TiO 2 may also be unique. The present work implies that other oxide phases, such as Al2O3, MgO and MgAl2O4, can be doped with normally insoluble metals, such as Pt and Ir, thus opening new opportunities for catalytic applications. Again, there is the prospect of being able to synthesize nanopowders of diamond, c-BN, and mixtures thereof, which are of interest for applications in machine tools, rock-drill bits, and lightweight armor. A wet-chemistry method is also investigated, which has much in common with that adopted by previous workers in the field. However, photo-voltaic properties do not measure up to expectations based on published data. A possible explanation is that the selected Ag concentrations are too high, so that recombination of holes and electrons occurs via a quantum-tunneling mechanism reduces photo-activity. Future work, therefore, will investigate lower concentrations of Ag dopant in TiO2, while also examining the effects of metastable states, including extended solid solution, amorphous, and semi-crystalline structures.

  17. Interface characteristics and fracture behavior of brazed polycrystalline CBN grains using Cu-Sn-Ti alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Wen-Feng, E-mail: dingwf2000@vip.163.com [College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Xu, Jiu-Hua; Chen, Zhen-Zhen; Miao, Qing; Yang, Chang-Yong [College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China)

    2013-01-01

    Polycrystalline CBN grains were brazed onto AISI 1045 steel matrix using Cu-Sn-Ti brazing alloy. Brazing temperature was 880 Degree-Sign C, 900 Degree-Sign C, 920 Degree-Sign C respectively, and the holding time was 8 min. Interface characteristics, elemental distribution and fracture behavior were analyzed in detail by means of scanning electron microscopy, energy dispersive spectroscopy and testing machine for grain compressive strength. The maximum value of the mean compressive strength of brazed PCBN grains reached 879.3 MPa when the brazing temperature was 900 Degree-Sign C. The resultants layer composed of TiN, TiB{sub 2}, TiB and TiAl{sub 3} was formed at grain/alloy interface. Elemental distribution showed that Ti mainly concentrated within the interface zone. The intercrystalline fracture along the CBN/CBN particle boundary was the main fracture modes of brazed polycrystalline CBN grains.

  18. Martensitic transformation of Ti50Ni30Cu20 alloy prepared by powder metallurgy

    Energy Technology Data Exchange (ETDEWEB)

    Valeanu, M., E-mail: valeanu@infim.ro [National Institute of Materials Physics, 077125 Bucharest (Romania); Lucaci, M. [National Institute for Electrical Engineering ICPE-CA, 030138 Bucharest (Romania); Crisan, A.D.; Sofronie, M. [National Institute of Materials Physics, 077125 Bucharest (Romania); Leonat, L. [National Institute for Electrical Engineering ICPE-CA, 030138 Bucharest (Romania); Kuncser, V. [National Institute of Materials Physics, 077125 Bucharest (Romania)

    2011-03-31

    Research highlights: > Martensitic transformation sequence in Ti50Ni30Cu20 prepared high - energy milling. > Two transformations (B2-B19, B2-B19') are evidenced after 10 hours of milling. > B2-B19 transformation is not more observed after 20 hours of milling. > A longer milling process promotes the formation of the secondary Ti{sub 2}(NiCu) phase. - Abstract: Phase transformation behavior of Ti50Ni30Cu20 shape memory alloys prepared by powder metallurgy is analyzed with respect to the duration of mechanical alloying. The processed blends were studied by differential scanning calorimetry and room temperature X-ray diffraction. The martensitic transformations evidenced by thermal scans are discussed in correlation with the relative phase content obtained from the refinement of the X-ray diffraction patterns.

  19. Investigating Quantum Oscillations in the Thermal Coefficient of Resistivity of Ultra-thin Ag Capping Layers on Cu for IC Interconnect Applications

    Science.gov (United States)

    Tatem, Elroy

    As the semiconductor industry continues to scale feature sizes, scattering from phonons, surfaces, and grain boundaries result in an increase of metal interconnect resistivity in state-of-the-art integrated circuits (ICs). The interconnect chapter of the 2011 International Technology Roadmap for Semiconductors (ITRS) stated that there are currently no manufacturable solutions in the near term for suitable Cu replacements. Previous studies of thin Ag films deposited on Cu demonstrated oscillations in the electron-phonon interactions within the bilayer system. This thesis investigates oscillations in the resistive properties of the Ag/Cu bilayer system and discusses the applicability of these oscillations to the resistivity challenges facing metal-based IC interconnects. Ag/Cu bilayer films were prepared by physical vapor deposition (PVD). The films were characterized by measuring the electrical resistance of the films at various temperatures and calculating the thermal coefficient of resistance (TCR) for various Ag capping layer thicknesses. Films were further characterized by atomic force microscopy (AFM), Rutherford backscattering (RBS), and scanning electron microscopy (SEM). Patterned Ag-capped Cu lines were fabricated, which exhibited resistive behavior similar to that of the Ag/Cu films. Compared to bare Cu, the resistances of Ag-capped Cu lines and films were lower and exhibited a reduced dependence on temperature. Smaller thermal coefficients of resistivity were also observed for Ag-capped Cu films and patterned lines when compared to Cu alone.

  20. Effect of Ag micro-alloying on the microstructure and properties of Cu-14Fe in situ composite

    International Nuclear Information System (INIS)

    This paper studied Ag micro-alloying in the deformation-processed Cu-14Fe in situ composite, by a comparison of Cu-14Fe and Cu-14Fe-0.06Ag. Each alloy was prepared by casting and processed into an in situ composite by hot and cold working. The microstructures were documented using light microscopy and scanning electron microscopy (SEM). The mechanical properties were measured with a tensile-testing machine. The electrical conductivity was measured with a micro-ohmmeter. For both alloys, the as-cast microstructure consisted of a Cu matrix and Fe dendrites; after hot and cold working the microstructure consisted of a Cu matrix containing Fe fibres elongated in the working direction. The as-cast Ag-containing alloy contained finer Fe dendrites. The Ag-containing in situ composite had thinner Fe fibres, higher tensile strength, higher ductility, and higher conductivity. The cold worked Cu-14Fe-0.06Ag in situ composite with cumulative cold deformation strain η = 7.8 (where η = ln(A0/A) and A0 and A are the original and final cross-section areas, respectively), achieved a tensile strength of 930 MPa and a conductivity of 56%IACS (International Annealed Copper Standard; 17.241 nΩ m is defined as 100%IACS). The Ag micro-alloyed in situ composite had a combination of properties comparable to that of a much more expensive alloy containing much more Ag. After 1 h heat treatment at 300 deg. C, the tensile strength was increased to 950 MPa and the conductivity was increased to 56.4%IACS.

  1. Effect of Yttrium on the Fracture Strength of the Sn-1.0Ag-0.5Cu Solder Joints

    Science.gov (United States)

    Choi, Hyelim; Kaplan, Wayne D.; Choe, Heeman

    2016-07-01

    This is a preliminary investigation on the mechanical properties of Pb-free Sn-1.0Ag-0.5Cu solder joints containing 0.02 wt.% to 0.1 wt.% Y under a range of thermal aging and reflow conditions. Despite the significantly thicker intermetallic compound (IMC) formed at the solder joint, the 0.1 wt.% Y-doped joint exhibited a higher fracture strength than its baseline Sn-1.0Ag-0.5Cu counterpart under most aging and reflow conditions. This may be associated with the formation of Y-Cu IMCs formed at the interface between the solder and the Cu substrate, because the Y-Cu IMCs have recently been referred to as relatively `ductile' IMCs.

  2. Phonons, nature of bonding, and their relation to anomalous thermal expansion behavior of M2O (M = Au, Ag, Cu)

    Science.gov (United States)

    Gupta, M. K.; Mittal, R.; Chaplot, S. L.; Rols, S.

    2014-03-01

    We report a comparative study of the dynamics of Cu2O, Ag2O, and Au2O (i.e., M2O with M = Au, Ag, and Cu) using first principle calculations based on the density functional theory. Here, for the first time, we show that the nature of chemical bonding and open space in the unit cell are directly related to the magnitude of thermal expansion coefficient. A good match between the calculated phonon density of states and that derived from inelastic neutron scattering measurements is obtained for Cu2O and Ag2O. The calculated thermal expansions of Ag2O and Cu2O are negative, in agreement with available experimental data, while it is found to be positive for Au2O. We identify the low energy phonon modes responsible for this anomalous thermal expansion. We further calculate the charge density in the three compounds and find that the magnitude of the ionic character of the Ag2O, Cu2O, and Au2O crystals is in decreasing order, with an Au-O bond of covalent nature strongly rigidifying the Au4O tetrahedral units. The nature of the chemical bonding is also found to be an important ingredient to understand the large shift of the phonon frequencies of these solids with pressure and temperature. In particular, the quartic component of the anharmonic term in the crystal potential is able to account for the temperature dependence of the phonon modes.

  3. TiO2 nanowire and TiO2 nanowire doped Ag-PVP nanocomposite for antimicrobial and self-cleaning cotton textile.

    Science.gov (United States)

    Hebeish, A A; Abdelhady, M M; Youssef, A M

    2013-01-16

    The TiO(2) nanowire (TiO(2) Nw) was successfully prepared via hydrothermal method through TiO(2) nanoparticle (TiO(2) Np). TiO(2) Np doped silver and TiO(2) Nw doped silver were prepared via photo-reducing Ag(+) ions to Ag metal on the TiO(2) Np or TiO(2) Nw surfaces. The prepared nanomaterials were evaluated using X-ray (XRD) diffraction pattern, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Bleached untreated cotton fabric and PVP treated cotton fabrics were coated with the synthesized nanomaterials using pad-dry-cure method. Photocatalytic activity of untreated and coated cotton fabrics with TiO(2) nanomaterials was investigated through the fabric self cleaning of MB dye stains. Also, the PVP finished cotton fabric modified by nanomaterials demonstrated antimicrobial activity against Gram positive bacteria, Gram negative bacteria and fungi. The mechanical properties of coated cotton fabric (tear strength, surface roughness, tensile strength and elongation at break) were examined.

  4. Preparation of Cu, Ag, Fe and Al nanoparticles by the exploding wire technique

    Indian Academy of Sciences (India)

    P Sen; Joyee Ghosh; Alqudami Abdullah; Prashant Kumar; Vandana

    2003-10-01

    We describe a novel process for the production of nanoparticles of Cu, Ag, Fe and Al which involves exploding their respective wires, triggered by large current densities in the wires. The particles are characterised by X-ray diffraction (XRD) and atomic force microscopy (AFM). Particle sizes in the range 20-100nm were obtained employing this technique. The XRD results reveal that the nanoparticles continue to retain lattice periodicity at reduced particle sizes, displaying in some cases evidence of lattice strain and preferential orientation. In the case of Fe, Mossbauer spectroscopy reveals loss of ferromagnetism as a result of the reduced size of the particles.

  5. Messung von Diffusionskoeffizienten in ternären AlCuAg-Legierungen und deren Subsystemen

    OpenAIRE

    Engelhardt, Marc

    2014-01-01

    Within the scope of this thesis inter- as well as self-diffusion coefficients have been determined by experimental series of measurements on a ternary Al-Cu-Ag system at the eutectic as well as on the binary constituent systems. Through the design of a state of the art ex-situ long-capillary facility and combined with the application of new and complementary methods of measurement with strong enhanced precision this investigation offers a methodical approach to these systems and identifies re...

  6. Communication: Striking dependence of diffusion kinetics in Ag-Cu nanoalloys upon composition and quantum effects

    Science.gov (United States)

    Asgari, Mehdi; Negreiros, Fabio R.; Sementa, Luca; Barcaro, Giovanni; Behnejad, Hassan; Fortunelli, Alessandro

    2014-07-01

    The kinetics of elemental inter-diffusion in Ag-Cu nanoalloys of 32-34 atoms around 80:20 composition is theoretically investigated by combining analytic-potential and first-principles calculations. An extremely varied behavior is found, with transformation times ranging from tens of nanoseconds to weeks at room temperature in a narrow interval of size and composition, also depending on quantum effects in magic clusters. Predictions are consistent with time-of-flight experiments and suggest their interpretation in a new light.

  7. Crystal orientation and morphology in Al-Ag-Cu ternary eutectic

    OpenAIRE

    Genau, Amber L; Ratke, Lorenz

    2011-01-01

    Ternary eutectics provide a unique opportunity for studying the e�ects of complex microstructure formation, as three distinct phases must be formed simultaneously from the melt. In order to produce fully coupled three-phase growth, Al-Ag-Cu at the ternary eutectic composition was directionally solidi�ed in a constant temperature gradient of 3 K/mm at velocities between 0.2 and 5.0 �m/sec. Under these conditions, the two intermetallic phases appear to grow as closely coupled rod...

  8. Wettability in the liquid Cu-Ag alloy – fireproof material – gas phase system

    Directory of Open Access Journals (Sweden)

    G. Siwiec

    2013-07-01

    Full Text Available In the present paper, results of wettability studies on the liquid metal – fireproof material – gas phase system using copper and Cu-Ag alloys as well as typical fireproof materials, i.e. aluminium oxide, magnesium oxide and graphite, are presented. Contact angle measurements were conducted at 1 373–1 573 K by means of a high-temperature microscope coupled with a camera and a computer equipped with a program for recording and analysing images. For the measurements, the sessile drop method was used.

  9. Calorimetric studies of non-isothermal crystallization in amorphous CuTi100– alloys

    Indian Academy of Sciences (India)

    N Mehta; K Singh; N S Saxena

    2011-12-01

    The present paper reports the composition dependence of pre-exponential factor and activation energy of non-isothermal crystallization in amorphous alloys of CuTi100– system using differential scanning calorimeter (DSC) technique. The applicability of Meyer–Neldel relation between the pre-exponential factor and activation energy of non-isothermal crystallization for amorphous alloys of Cu–Ti system was verified.

  10. Development and Oxidation Behavior of Al-Cu-Fe Quasicrystalline Coating on Ti Alloy

    Institute of Scientific and Technical Information of China (English)

    Fei CAI; Chungen ZHOU; Huibin XU; Shengkai GONG

    2004-01-01

    An oxidation resistant Al-Cu-Fe quasicrystalline coating was fabricated on substrate of Ti alloy by Iow pressure plasma spraying (LPPS) method. As-sprayed Al-Cu-Fe coating has a rapidly solidified lamellar microstructure consisting of quasicrystalline phase and crystalline phase. The formation of quasicrystalline coating is related to the annealing. The results from the oxidation experiments showed that Al-Cu-Fe quasicrystalline coating improved the oxidation resistance of Ti-base alloys. During the oxidation period there is no evident spallation of the coating from the substrate. Oxide formed on the surface of Al-Cu-Fe quasicrystalline coating after oxidation consisted of Al2O3. Oxidation occurs leading to a change of concentration and phase transformation in the coating surface. Selective oxidation of Al transforms the quasicrystalline phase into the phase.

  11. Ti Kα radiography of Cu-doped plastic microshell implosions via spherically bent crystal imaging

    International Nuclear Information System (INIS)

    We show that short pulse laser generated Ti Kα radiation can be used effectively as a backlighter for radiographic imaging. This method of x-ray radiography features high temporal and spatial resolution, high signal to noise ratio, and monochromatic imaging. We present here the Ti Kα backlit images of six-beam driven spherical implosions of thin-walled 500-μm Cu-doped deuterated plastic (CD) shells and of similar implosions with an included hollow gold cone. These radiographic results were used to define conditions for the diagnosis of fast ignition relevant electron transport within imploded Cu-doped coned CD shells

  12. Recrystallization and development of cube texture in Ti and Ti+Cr added Ni-Fe-Cu alloys

    Energy Technology Data Exchange (ETDEWEB)

    Manna, I. (Dept. of Metallurgical Engineering , I.I.T., Kharagpur (India)); Ray, R.K. (Dept. of Metallurgical Engineering, I.I.T., Kanpur (India)); Gupta, K.P. (Dept. of Metallurgical Engineering, I.I.T., Kanpur (India))

    1994-06-01

    The development of a sharp cube or [l brace]100[r brace]<100> texture in two Ti and Ti+Cr added Ni-Fe-Cu alloys is presented. Texture studies in deformed as well as recrystallized conditions have been carried out by both conventional pole figure and orientation distribution function analysis. Microstructural evolution in course of recrystallization texture development has been extensively studied with both optical and electron microscopes. Heavy cold deformation (97 to 98%) followed by annealing at 1050 C for 2 h has been found to optimize the conditions for the desired texture development. (orig.)

  13. Mechanical and superconducting properties of 6-filament MgB{sub 2} wires reinforced by Cu, Cu-Nb and NbTi

    Energy Technology Data Exchange (ETDEWEB)

    Sun Yuyan [Northeastern University, Shenyang 110004 (China); Wang Qingyang; Yang Fang; Xiong Xiaomei [Northwest Institute for Nonferrous Metal Research, Xi' an 710016 (China); Qi Ming [Northeastern University, Shenyang 110004 (China); Liang Ming [Northwest Institute for Nonferrous Metal Research, Xi' an 710016 (China); Yan Guo, E-mail: gyan@c-nin.com [Western Superconducting Technologies Co., Ltd., Xi' an 710018 (China); Sulpice, Andre [Institute NEEL/CNRS-UJF, B.P. 166, Grenoble 38042 (France); Zhang Pingxiang [Northeastern University, Shenyang 110004 (China); Northwest Institute for Nonferrous Metal Research, Xi' an 710016 (China)

    2012-07-15

    The comparisons of strengthening abilities of Cu, Cu-Nb, and NbTi for 6-filamentary MgB{sub 1.92}(TiC){sub 0.08}/Nb/Cu wires and the electrical properties of the best reinforced wire are investigated. The Cu-Nb reinforcing core is more appropriate for manufacturing MgB{sub 2} wires. It is observed that the Cu-Nb reinforced wire sintered at 750 Degree-Sign C for 2 h has the highest yield strength of 101.8 MPa. With the sintering temperature increasing, the yield strength of the Cu-Nb and NbTi reinforced wires increased while the value slightly decreased in the case of Cu reinforced one in this study. According to our calculations, those mechanical properties are suitable for the application requirements of superconducting magnets in low field with the critical engineering current I{sub c} of 197 and 205 A (J{sub ce} exceeding 1.7 Multiplication-Sign 10{sup 4} and 1.8 Multiplication-Sign 10{sup 4} A/cm{sup 2}) before and after 70 MPa axial load on the wire at 20 K, 1.5 T respectively. And within the working temperature range from 10 K to 35 K, the Cu-Nb reinforced wires show the lowest resistivity as well. The Cu-Nb reinforced long MgB{sub 1.92}(TiC){sub 0.08}/Nb/Cu wires with unit length over 1 km have already been manufactured using the similar process. The Cu, Cu-Nb, and NbTi reinforced 6-filament MgB{sub 1.92}(TiC){sub 0.08}/Nb/Cu wires are fabricated by in situ PIT (Powder-in-Tube) method respectively.

  14. First principles study of the electron structures of CaCu3Mn4O12 and CaCu3Ti4O12

    International Nuclear Information System (INIS)

    The electronic structures of CaCu3Mn4O12 and CaCu3Ti4O12 are investigated from HF SCF LCAO calculation. In CaCu3Mn4O12, the band and the density of states show a spin asymmetric ferrimagnetic character with a small energy gap. The Mn spin is anti-aligned with the Cu spin, and the total spin moment is 9 μ B. Our calculation correctly reproduces the observed antiferromagnetic insulating character of CaCu3Ti4O12. The gap in the band structure, which is 2.15 eV, reasonably agrees with the experimental value 1.5 eV. The electron density populations at different planes show clearly that the electron density has symmetric character. A tilted Mn(Ti) orbital implies a typical tilted three-dimensional network of MnO6 (TiO6) octahedra due to doping of the Jahn-Teller ion Cu. There is no covalency between Ca, Cu and Mn(Ti) atoms. In contrast, there are stronger bonds and somewhat likely covalency between Cu and O atoms, and also between Mn(Ti) and O atoms

  15. Comparison study of Cu-Fe-Ti and Co-Fe-Ti oxide catalysts for selective catalytic reduction of NO with NH3 at low temperature.

    Science.gov (United States)

    Zhu, Lin; Zhong, Zhaoping; Yang, Han; Wang, Chunhua

    2016-09-15

    In this paper, a series of Cu-Fe-Ti and Co-Fe-Ti oxide catalysts were prepared by sol gel method. Cu-Fe-Ti and Co-Fe-Ti oxide catalysts showed the moderate catalytic activity for selective catalytic reduction (SCR) of NO with NH3 at low temperature. The catalysts with the molar ratio as 4:1:10 (M:Fe:Ti) were selected as the representatives for comparison of reaction properties and H2O resistance, which were denoted as Cu-Fe/TiO2 and Co-Fe/TiO2 respectively. The characterization results manifested Co-Fe/TiO2 owned more adsorption capacity of the reactants and Cu-Fe/TiO2 had better redox ability. The in situ DRIFTS experiments indicated that adsorbed NH3 species and nitrate species both exhibited reaction activity for Co-Fe/TiO2, while nitric oxide was only be reduced by adsorbed NH3 species through Eley-Rideal mechanism for Cu-Fe/TiO2 at 150°C. Co-Fe/TiO2 exhibited the better resistance to H2O and its temperature window shifted towards the higher temperature in presence of 10vol% H2O, while the SCR activity of Cu-Fe/TiO2 was inhibited significantly in the whole temperature range investigated. The suppression of adsorption and activation for NH3 and NOx might be the reasons for the reversible inactivation, which was confirmed by the inhibitation of catalytic activities for separation NH3 and NO oxidation under the wet condition. We speculated that different thermal stability of adsorbed species and redox capacity of catalysts leaded to the different SCR behavior in absence and presence of H2O. PMID:27280535

  16. Biocorrosion properties of antibacterial Ti-10Cu sintered alloy in several simulated biological solutions.

    Science.gov (United States)

    Liu, Cong; Zhang, Erlin

    2015-03-01

    Ti-10Cu sintered alloy has shown strong antibacterial properties against S. aureus and E. coli and good cell biocompatibility, which displays potential application in dental application. The corrosion behaviors of the alloy in five different simulated biological solutions have been investigated by electrochemical technology, surface observation, roughness measurement and immersion test. Five different simulated solutions were chosen to simulate oral condition, oral condition with F(-) ion, human body fluids with different pH values and blood system. It has been shown that Ti-10Cu alloy exhibits high corrosion rate in Saliva pH 3.5 solution and Saliva pH 6.8 + 0.2F solution but low corrosion rate in Hank's, Tyrode's and Saliva pH 6.8 solutions. The corrosion rate of Ti-10Cu alloy was in a order of Hank's, Tyrode's, Saliva pH 6.8, Saliva-pH 3.5 and Saliva pH 6.8 + 0.2F from slow to fast. All results indicated acid and F(-) containing conditions prompt the corrosion reaction of Ti-Cu alloy. It was suggested that the Cu ion release in the biological environments, especially in the acid and F(-) containing condition would lead to high antibacterial properties without any cell toxicity, displaying wide potential application of this alloy.

  17. Opposite effect of photocorrosion on photocatalytic performance among various AgxMyOz/TiO2 (M = C, P) photocatalysts: A novel effective method for preparing Ag/TiO2 composite

    Science.gov (United States)

    Feng, Caixia; Pang, Yuhua; Wang, Yan; Sun, Mingming; Zhang, Chenyan; Zhang, Ling; Zhou, Yanmei; Li, Deliang

    2016-07-01

    Three kinds of hybrids, Ag2CO3/TiO2, Ag2C2O4/TiO2 and Ag3PO4/TiO2 comprising of P25-TiO2 and silver-containing photocatalyst, (together coded as AgxMyOz/TiO2 (M = C, P)) were prepared via a facile precipitation method. The photocatalytic activity and stability of the as-prepared AgxMyOz/TiO2 was compared by monitoring the oxidation of propylene under visible light irradiation. Results showed that both Ag2CO3/TiO2 and Ag2C2O4/TiO2 exhibit perfect performance with a high propylene degradation removal rate of 88% and 78%, respectively, during four successive experimental runs. On the contrary, for Ag3PO4/TiO2, the photocatalytic activity gradually declines to 8% from 32% under the same conditions. In order to explore the reason for the above remarkable difference in activity and stability over AgxMyOz/TiO2, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and UV-vis diffuse reflectance spectroscopy (DRS) were used to investigate the change of AgxMyOz/TiO2 before and after irradiation. It was found that three silver-containings, Ag2CO3, Ag2C2O4 and Ag3PO4 on the surface of TiO2, all experienced photo-corrosion to various extents during irradiation process. Surprisingly, the effect of photo-corrosion on visible light activity and stability among various AgxMyOz/TiO2 is very different. For both Ag2CO3 and Ag2C2O4, they are easily decomposed into metallic Ag and CO2, and gaseous CO2 escaped from catalyst leaving silver nanoparticles on the surface of TiO2 resulted in the formation of plasmonic photocatalyst Ag/TiO2. The synergetic effect between surface plasma resonance of silver and interfacial electron transfer over the obtained Ag/TiO2 heterojunctions is in favor of the superior photocatalytic performance under visible light. While for Ag3PO4/TiO2, Ag3PO4 on the surface of TiO2 is partially photo-decomposed into Ag and phosphorus oxide and the phosphorus oxide covering on the surface of undecomposed Ag3PO4/TiO2 deactivates its photocatalytic performance

  18. Synthesis of Visible-Light-Responsive Cu and N-Codoped AC/TiO2 Photocatalyst Through Microwave Irradiation.

    Science.gov (United States)

    Tian, Fei; Wu, Zhansheng; Yan, Yujun; Ye, Bang-Ce; Liu, Dandan

    2016-12-01

    N-Cu-activated carbon (AC)/TiO2 nanoparticles were prepared by the sol-gel technique through microwave irradiation to modify the visible-light response of TiO2. Their structure, surface chemical composition, and optical absorption properties were characterized. The results showed that the codoped particles had a higher surface area and smaller particle size than pure AC/TiO2 and monodoped AC/TiO2. X-ray photoelectron spectroscopy of N-Cu-AC/TiO2 showed that Cu atoms replaced Ti atom sites, whereas N atoms occupied the O atom sites and interstitial sites in the TiO2 lattice, which changed the electric and band-gap structures of the photocatalyst. N or Cu monodoping of AC/TiO2 reduced the energy band gap of TiO2 from 2.86 eV to 2.81 or 2.61 eV, respectively. In (N, Cu)-codoped AC/TiO2, N and Cu were incorporated into the TiO2 framework and narrowed the band gap of TiO2 to 2.47 eV, causing a large red shift and enhancing visible-light utilization efficiency. Photocatalytic activities were further examined by formaldehyde degradation under visible-light irradiation. N-Cu-AC/TiO2 was found to have the highest activity (ca. 94.4 % formaldehyde degradation efficiency) and to be easily recyclable. These results show an important and innovative method of improving AC/TiO2 activity by modifying the nonmetallic and metallic species.

  19. Synthesis of Visible-Light-Responsive Cu and N-Codoped AC/TiO2 Photocatalyst Through Microwave Irradiation.

    Science.gov (United States)

    Tian, Fei; Wu, Zhansheng; Yan, Yujun; Ye, Bang-Ce; Liu, Dandan

    2016-12-01

    N-Cu-activated carbon (AC)/TiO2 nanoparticles were prepared by the sol-gel technique through microwave irradiation to modify the visible-light response of TiO2. Their structure, surface chemical composition, and optical absorption properties were characterized. The results showed that the codoped particles had a higher surface area and smaller particle size than pure AC/TiO2 and monodoped AC/TiO2. X-ray photoelectron spectroscopy of N-Cu-AC/TiO2 showed that Cu atoms replaced Ti atom sites, whereas N atoms occupied the O atom sites and interstitial sites in the TiO2 lattice, which changed the electric and band-gap structures of the photocatalyst. N or Cu monodoping of AC/TiO2 reduced the energy band gap of TiO2 from 2.86 eV to 2.81 or 2.61 eV, respectively. In (N, Cu)-codoped AC/TiO2, N and Cu were incorporated into the TiO2 framework and narrowed the band gap of TiO2 to 2.47 eV, causing a large red shift and enhancing visible-light utilization efficiency. Photocatalytic activities were further examined by formaldehyde degradation under visible-light irradiation. N-Cu-AC/TiO2 was found to have the highest activity (ca. 94.4 % formaldehyde degradation efficiency) and to be easily recyclable. These results show an important and innovative method of improving AC/TiO2 activity by modifying the nonmetallic and metallic species. PMID:27295260

  20. Synthesis of Visible-Light-Responsive Cu and N-Codoped AC/TiO2 Photocatalyst Through Microwave Irradiation

    Science.gov (United States)

    Tian, Fei; Wu, Zhansheng; Yan, Yujun; Ye, Bang-Ce; Liu, Dandan

    2016-06-01

    N-Cu-activated carbon (AC)/TiO2 nanoparticles were prepared by the sol-gel technique through microwave irradiation to modify the visible-light response of TiO2. Their structure, surface chemical composition, and optical absorption properties were characterized. The results showed that the codoped particles had a higher surface area and smaller particle size than pure AC/TiO2 and monodoped AC/TiO2. X-ray photoelectron spectroscopy of N-Cu-AC/TiO2 showed that Cu atoms replaced Ti atom sites, whereas N atoms occupied the O atom sites and interstitial sites in the TiO2 lattice, which changed the electric and band-gap structures of the photocatalyst. N or Cu monodoping of AC/TiO2 reduced the energy band gap of TiO2 from 2.86 eV to 2.81 or 2.61 eV, respectively. In (N, Cu)-codoped AC/TiO2, N and Cu were incorporated into the TiO2 framework and narrowed the band gap of TiO2 to 2.47 eV, causing a large red shift and enhancing visible-light utilization efficiency. Photocatalytic activities were further examined by formaldehyde degradation under visible-light irradiation. N-Cu-AC/TiO2 was found to have the highest activity (ca. 94.4 % formaldehyde degradation efficiency) and to be easily recyclable. These results show an important and innovative method of improving AC/TiO2 activity by modifying the nonmetallic and metallic species.

  1. Characteristics of Laser Reflow Bumping of Sn3.5Ag and Sn3.5Ag0.5Cu Lead-Free Solder Balls

    Institute of Scientific and Technical Information of China (English)

    Yanhong TIAN; Chunqing WANG; Yarong CHEN

    2008-01-01

    Lead-free Sn3.5Ag and Sn3.5Ag0.5Cu solder balls were reflowed by laser to form solder bumps. Shear test was performed on the solder bumps, and SEM/EDX (scanning electron microscopy/energy dispersive X-ray spectrometer) was used to analyze the formation of intermetallic compounds (IMCs) at interface region. A finite element modeling on the temperature gradient and distribution at the interface of solder bump during laser reflow process was conducted to elucidate the mechanism of the IMCs growth direction. The results show that the parameters window for laser reflow bumping of Sn3.5Ag0.5Cu was wider than that of Sn3.5Ag. The shear strength of Sn3.5Ag0.5Cu solder bump was comparable to that of Sn3.5Ag solder bump, and was not affected obviously by laser power and irradiation time when appropriate parameters were used. Both laser power and heating time had a significant effect on the formation of IMCs. A continuous AuSn4 interrnetallic compound layer and some needle-like AuSn4 were observed at the interface of solder and Au/Ni/Cu metallization layer when the laser power is small. The formation of needle-like AuSn4 was due to temperature gradient at the interface, and the direction of temperature gradient was the preferred growth direction of AuSn4. With increasing the laser power and heating time, the needle-like AuSn4 IMCs dissolved into the bulk solder, and precipitated out once again during solidification along the grain boundary of the solder bump.

  2. Antimicrobial activity and biocompatibility of Ag{sup +}- and Cu{sup 2+}-doped biphasic hydroxyapatite/α-tricalcium phosphate obtained from hydrothermally synthesized Ag{sup +}- and Cu{sup 2+}-doped hydroxyapatite

    Energy Technology Data Exchange (ETDEWEB)

    Radovanović, Željko, E-mail: zradovanovic@tmf.bg.ac.rs [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade (Serbia); Jokić, Bojan; Veljović, Djordje; Dimitrijević, Suzana [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade (Serbia); Kojić, Vesna [Oncology Institute of Vojvodina, Institutski put 4, 21204 Sremska Kamenica (Serbia); Petrović, Rada; Janaćković, Djordje [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade (Serbia)

    2014-07-01

    Hydroxyapatite (HAp) powders doped with Ag{sup +} or Cu{sup 2+} were synthesized by a hydrothermal method in order to obtain biomaterial with an antimicrobial effect. The synthesis was performed with two contents of dopant (Ag{sup +} or Cu{sup 2+}) by considering both the antimicrobial activities and biocompatibility of the powders. The doped HAp was annealed at 1200 °C for 2 h with the intention of investigating the influence of doping with Ag{sup +} and Cu{sup 2+} on the creation of the biphasic HAp/α-tricalcium phosphate (HAp/α-TCP) and determining the antimicrobial activity and biocompatibility of the obtained biphasic powders. Analyses of all powders, undoped and doped HAp and HAp/α-TCP, were performed by Field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), atomic absorption spectroscopy (AAS) and energy-dispersive X-ray spectroscopy (EDS). The in vitro antibacterial activities of the powders were evaluated against: Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Candida albicans. All powders showed good antimicrobial activity but generally the powders of doped HAp/α-TCP had more uniform results against all pathogenic microorganisms than the powders of doped HAp. In vitro biocompatibility tests, MTT and DET, were used to evaluate the biocompatibility of Ag{sup +}- and Cu{sup 2+}-doped HAp/α-TCP with MRC-5 human fibroblast cells. These tests confirmed that powders do not have a cytotoxic effect. The HAp/α-TCP powders doped with the lower content of Ag{sup +} and Cu{sup 2+} showed especially good biocompatibility. Antimicrobial and biocompatibility tests recommend the Ag{sup +}- and Cu{sup 2+}-doped HAp/α-TCP as promising material for use in reconstructive surgery of bone.

  3. CuO and Ag2O/CuO Catalyzed Oxidation of Aldehydes to the Corresponding Carboxylic Acids by Molecular Oxygen

    Directory of Open Access Journals (Sweden)

    Yaowu Sha

    2008-04-01

    Full Text Available Furfural was oxidized to furoic acid by molecular oxygen under catalysis by 150nm-sized Ag2O/CuO (92% or simply CuO (86.6%. When 30 nm-size catalyst was used,the main product was a furfural Diels-Alder adduct. Detailed reaction conditions andregeneration of catalysts were investigated. Under optimal conditions, a series of aromaticand aliphatic aldehydes were oxidized to the corresponding acids in good yields.

  4. Anti-biofilm efficacy of low temperature processed AgCl–TiO{sub 2} nanocomposite coating

    Energy Technology Data Exchange (ETDEWEB)

    Naik, Kshipra, E-mail: kshipra_naik21@yahoo.co.in; Kowshik, Meenal, E-mail: meenal@goa.bits-pilani.ac.in

    2014-01-01

    Biofilms are a major concern in the medical settings and food industries due to their high tolerance to antibiotics, biocides and mechanical stress. Currently, the development of novel methods to control biofilm formation is being actively pursued. In the present study, sol–gel coatings of AgCl–TiO{sub 2} nanoparticles are presented as potential anti-biofilm agents, wherein TiO{sub 2} acts as a good supporting matrix to prevent aggregation of silver and facilitates its controlled release. Low-temperature processed AgCl–TiO{sub 2} nanocomposite coatings inhibit biofilm formation by Escherichia coli, Staphylococcus epidermidis and Pseudomonas aeruginosa. In vitro biofilm assay experiments demonstrated that AgCl–TiO{sub 2} nanocomposite coated surfaces, inhibited the development of biofilms over a period of 10 days as confirmed by scanning electron microscopy. The silver release kinetics exhibited an initial high release, followed by a slow and sustained release. The anti-biofilm efficacy of the coatings could be attributed to the release of silver, which prevents the initial bacterial adhesion required for biofilm formation. - Highlights: • Potential of AgCl–TiO{sub 2} nanocomposite coating to inhibit biofilm formation is exhibited. • Initial rapid release followed by later slow and sustained release of silver obtained. • TiO{sub 2} being porous and inorganic in nature acts as a good supporting matrix.

  5. The Controlled Single-Step Synthesis of Ag/TiO2 and Au/TiO2 by Ultrasonic Spray Pyrolysis (USP)

    Science.gov (United States)

    Bogovic, J.; Rudolf, R.; Friedrich, B.

    2016-01-01

    This article reports the synthesis of Ag/TiO2 and Au/TiO2 nanoparticles by single-step ultrasonic spray pyrolysis (USP) conducted by an investigation of the process parameters and the morphological characteristics of the obtained nanostructures. The influence of the ratio in the precursor solution, physical characteristics of used components, and temperature had a large influence on the formation of different nanoparticle morphologies. The experimental investigations were performed using classic USP equipment, with variations of the process parameters. Scanning electron microscopy, transmission electron microscopy, and focused ion beam analyses were used to characterize the complex nanostructures. Based on the obtained results, the optimal process window for the formation of the different morphologies for the Ag/TiO2 and Au/TiO2 nanoparticles is determined and the possibility of synthesis of the core-shell structures in one step by USP is confirmed.

  6. Diffusion Bonding of Ti-6Al-4V to Qal 10-3-1.5 with Ni/Cu Interlayers

    Institute of Scientific and Technical Information of China (English)

    Wei GUO; Xihua ZHAO; Minxia SONG; Jicai FENG; Biao YANG

    2006-01-01

    Ti-6Al-4V and QAl 10-3-1.5 diffusion bonding has been carried out with Ni/Cu interlayers. The diffusionbonded joints are evaluated by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS)and microhardness test. Intermetallic compounds at the interface zone are detected by X-ray diffraction (XRD). Interfacial microstructure of TiNi+CuTi3+α-Ti forms at the Ni/Ti-6Al-4V transition zone and Cu (ss. Ni) solid solution forms between Ni/Cu interlayers. The thickness of reaction layer (TiNi) increases with bonding time by a parabolic law:y2=K0exp(-150000/RT)t, and K0=2.9×10-7 m2/s is figured out from the experiment data.

  7. Inhibitory effect of super-hydrophobicity on silver release and antibacterial properties of super-hydrophobic Ag/TiO2 nanotubes.

    Science.gov (United States)

    Zhang, Licheng; Zhang, Lihai; Yang, Yun; Zhang, Wei; Lv, Houchen; Yang, Fei; Lin, Changjian; Tang, Peifu

    2016-07-01

    The antibacterial properties of super-hydrophobic silver (Ag) on implant surface have not yet to be fully illuminated. In our study, we investigate the protective effects of super-hydrophobic coating of silver/titanium dioxide (Ag/TiO2 ) nanotubes against bacterial pathogens, as well as its pattern of Ag release. Ag/TiO2 nanotubes are prepared by a combination of electrochemical anodization and pulse electrodeposition. The super-hydrophobic coating is prepared by modifying the surface of Ag/TiO2 nanotubes with 1H, 1H, 2H, 2H-perfluorooctyl-triethoxysilane (PTES). Surface features and Ag release are examined by SEM, X-ray photoelectron spectroscopy, contact-angle measurement, and inductively coupled plasma-mass spectrometry (ICP-MS). The antibacterial activity of super-hydrophobic coating Ag/TiO2 nanotubes is investigated both in vitro and in vivo. Consequently, the super-hydrophobic coating on Ag/TiO2 nanotubes shows a regularly arranged structure; and nano-Ag particles (10-30 nm) are evenly distributed on the surface or inside the nanotubes. The contact angles of water on the super-hydrophobic coating Ag/TiO2 nanotubes are all above 150°. In addition, the super-hydrophobic character displays a certain conserved effect that contributes to the sustained release of Ag. The super-hydrophobic Ag/TiO2 nanotubes are also effective in inhibiting bacterial adhesion, killing the adhering bacteria and preventing postoperative infection in rabbits. Therefore, it is expected that the super-hydrophobic Ag/TiO2 nanotubes which can contain the release of Ag, leading to stable release, may show a consistent surface antibacterial capability. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1004-1012, 2016. PMID:25995046

  8. Epitaxial Cu(001) films grown on a Cr/Ag/Fe/GaAs(001) buffer system

    International Nuclear Information System (INIS)

    We present a procedure to prepare single-crystalline, high-purity Cu(001) films (templates) suitable as substrates for subsequent epitaxial thin-film growth. The template films were grown in a dedicated molecular-beam epitaxy system on a Cr/Ag/Fe/GaAs(001) buffer layer system. Low-energy electron diffraction and X-ray diffraction were applied to determine the surface orientation and the epitaxial relationship between all layers of the stack. Post-annealing at moderate temperatures enhances the quality of the film as shown by low-energy electron diffraction and atomic force microscopy. X-ray photoemission and Auger electron spectroscopy confirm that no atoms of the buffer layers diffuse into the Cu film during the initial preparation and the post-annealing treatment. The completed Cu(001) template system can be exposed to air and afterwards refurbished by Ar+-ion bombardment and annealing, enabling the transfer between vacuum systems. The procedure provides suitable conductive thin film templates for studies of epitaxial thin films, e.g. on the magnetic and magnetotransport properties of Co and Ni based films and multilayers. - Highlights: • Preparation of epitaxial Cu(001) template films on an insulating substrate • Characterization of template structure, orientation, cleanness, and roughness • Template films can be exposed to air and refurbished in different vacuum system. • Template films are suitable for further thin film growth at up to 570 K

  9. Influence of Temperature on Creep Behavior of Ag Particle Enhancement SnCu Based Composite Solder

    Institute of Scientific and Technical Information of China (English)

    YAN Yanfu; FENG Lifang; ZHANG Keke; WEN Jiuba

    2007-01-01

    The creep properties of solder alloys are an important factor affecting the reliability of soldered joints in surface mount technologies. Particle-enhancement is one way to improve the properties of solder alloys. The temperature of the solder joint is one of the primary factors affecting the solder joint creep properties. Single shear lap creep specimens with a 1 mm2 cross-sectional area were fabricated using Ag particle enhancement 99.3Sn0.7Cu based composite solder and 99.3Sn0.7Cu eutectic solder to examine the influence of temperature on the creep behavior of solder joints. The results show that the solder joint creep resistance of the composite solder joint was generally superior to that of the 99.3Sn0.7Cu solder joint. The creep rupture life of the composite solder joint was reduced by increasing temperatures at a faster rate than that of the 99.3Sn0.7Cu eutectic solder joint.

  10. Effect of Cooling Rate on the Longitudinal Modulus of Cu3Sn Phase of Ag-Sn-Cu Amalgam Alloy (Part II

    Directory of Open Access Journals (Sweden)

    R. H. Rusli

    2015-10-01

    Full Text Available Effects of cooling rate (at the time of solidification on the elastic constants of Cu3Sn phase of Ag-Sn-Cu dental amalgam alloy were studied. In this study, three types of alloys were made, with the composition Cu-38-37 wt% Sn by means of casting, where each alloy was subjected to different cooling rate, such as cooling on the air (AC, air blown (AB, and quenched in the water (WQ. X-ray diffraction, metallography, and Scanning Electron Microscopy with Energy Dispersive Spectroscopy studies of three alloys indicated the existence of Cu3Sn phase. Determination of the modulus of elasticity of Cu3Sn (ε phase was carried out by the measurement of longitudinal and transversal waves velocity using ultrasonic technique. The result shows that Cu3Sn (ε phase on AC gives higher modulus of elasticity values than those of Cu3Sn (ε on AB and WQ. The high modulus of elasticity value will produce a strong Ag-Sn-Cu dental amalagam alloy.

  11. Ag@AgCl修饰TiO2-xCx光催化剂的制备及其可见光降解污染物性能%Preparation of a Ag@AgCl-Modified TiO2-xCx Photocatalyst and Its Performance for Degradation of Pollutants under Visible Light

    Institute of Scientific and Technical Information of China (English)

    聂龙辉; 胡瑶; 张旺喜

    2012-01-01

    C-doped TiO2 was prepared from butyl titanate and glucose by a hydrothermal method. The prepared C-doped TiO2 was further modified with Ag@AgCI. The obtained samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), BET surface area analysis, and UV-Vis diffuse reflectance spectroscopy. The photocatalytic activity of the samples was evaluated by the degradation of methyl orange and phenol under the visible light irradiation (λ >420 nm). After modification with Ag@AgCI, the C-doped TiO2 samples had a larger particle size and smaller surface area with enhanced response to visible light and greatly improved visible-light photocatalytic activity. The degradation rates of methyl orange and phenol over Ag@AgCI/TiO2-xCx were 5.5 and 3.4 times as large as those over TiO2-xCx, respectively. The photocatalytic activity of Ag@AgCI/TiCv2-xC, under visible light remained almost unchanged after three cycles.%以钛酸丁酯和葡萄糖为原料用水热法制备了碳掺杂二氧化钛,再进一步对其进行Ag@AgCl表面修饰.用X射线衍射(XRD),X射线光电子能谱(XPS),透射电镜(TEM),BET比表面仪和紫外-可见(UV-Vis)漫反射光谱等手段对样品进行测试表征;在可见光辐射下(λ>420 nm),以甲基橙和苯酚溶液的光催化降解实验来评价样品的活性.结果表明:经Ag@AgCl修饰后,样品的粒径增大,比表面积减小,对可见光的响应增强;可见光光催化效率有大幅度提高,对甲基橙和苯酚的降解效率分别是修饰前的5.5和3.4倍,且光催化剂经三次循环使用后活性基本保持不变.

  12. Mechanical Behavior of Sn-3.0Ag-0.5Cu/Cu Solder Joints After Isothermal Aging

    Science.gov (United States)

    Nguyen, Van Luong; Chung, Chin-Sung; Kim, Ho-Kyung

    2016-01-01

    The tensile impact behavior of lead-free Sn-3Ag-0.5Cu/Cu solder joints aged at 413 K and 453 K for times ranging from 24 h to 1000 h has been investigated in this study. The activation energy for growth of the intermetallic compound (IMC) layer was estimated and compared with literature values. Additionally, the tensile strength of solder joints with IMC thickness of 17.6 μm was found to be more sensitive to the strain rate as compared with solder joints with thinner IMC layers. Equations representing the relationships among the effective stress, strain rate, aging time, and aging temperature as well as IMC thickness were established using matrix laboratory (MATLAB) software. These equations show that the tensile strength decreases with increase in the IMC thickness to about 8 μm, after which it becomes nearly constant when the IMC thickness is between approximately 8 μm and 14 μm, before decreasing significantly when the IMC thickness exceeds 14 μm. The main reason for these characteristics was excessive increase in the IMC thickness of solder joints, causing a change in the stress concentration of the tensile load from the protruding region to the inside of the IMC layer at the same tested strain rate.

  13. Electronic structure of new mixed Ti13MC13 nanocrystallites (M = Sc, V, ..., Cu)

    International Nuclear Information System (INIS)

    The electron structure of the series of new Ti13MC13 metal-carbon molecular nanocrystallites is studied through the ab initio self-consistent discrete variation method. The third order metals (Sc, V, ..., Cu) are considered as the M-elements. The regularities of forming the electron structure, chemical bonds, charge distributions and atomic magnetic moments in the Ti13MC13 in dependence on the M-atom type and its position in the source Ti14C13 nanocrystallite are forecasted. The obtained results are compared with the electron states calculations of the 3d-admixtures in the crystalline titanium carbide

  14. Mechanism of high dielectric performance of polymer composites induced by BaTiO3-supporting Ag hybrid fillers

    Science.gov (United States)

    Fang, Fang; Yang, Wenhu; Yu, Shuhui; Luo, Suibin; Sun, Rong

    2014-03-01

    BaTiO3-supporting Ag hybrid particles (BT-Ag) with varied fraction of Ag were synthesized by reducing silver nitrate in the glycol solution containing BaTiO3 (BT) suspensions. The Ag nano particles with a size of about 20 nm were discretely grown on the surface of the BT. The dielectric performance of the composites containing the BT-Ag as fillers in the matrix of polyvinylidene fluoride (PVDF) was investigated. The relative permittivity (ɛr) of the BT-Ag/PVDF composites increased prominently with the increase of BT-Ag loading amount, and the typical conductive path of the conductor/polymer system was not observed even with a high loading of BT-Ag. The ɛr at 100 Hz for the three BT-(0.31, 0.49, 0.61)Ag/PVDF composites at room temperature were 283, 350, and 783, respectively. The ɛr of the composites was enhanced by more than 3 times compared with that of the composite containing untreated BT nanoparticles at frequencies over 1 kHz and the loss tangent (tan δ) was less than 0.1 which should be attributed to the low conductivity of the composites. Theoretical calculations based on the effective medium percolation theory model and series-parallel model suggested that the enhanced permittivity of BT-Ag/PVDF composites should arise from the ultrahigh permittivity of BT-Ag fillers, which was over 104 and associated with the content of Ag deposited on the surface of BT.

  15. Mineralogical data on angelaite, Cu2AgPbBiS4, from the Los Manantiales District, Chubut, Argentina

    DEFF Research Database (Denmark)

    Topa, D.; Paar, W.H.; Putz, H.;

    2010-01-01

    0.97Pb1.05Bi1.00S3.91. The ideal formula (on the basis of nine atoms) is Cu2AgPbBiS4, which requires Cu 16.31, Ag 13.84, Pb 26.58, Bi 26.81, S 16.45, total 100 wt.%. Angelaite is orthorhombic, with a 12.734(5), b 4.032(1), c 14.633(5) Å, V 751.8(5) Å3, space group Pnma and Z = 4. The calculated......Angelaite, ideally Cu2AgPbBiS4, occurs as a hypogene mineral in polymetallic ores at the Ángela groups of veins in the mining district of Los Manantiales, in the province of Chubut, Argentina. The new mineral species is predominantly associated with pyrite, sphalerite, chalcopyrite, hematite...

  16. Comparative internal friction and modulus evolutions in Ni-Ti and Ni-Ti-Cu shape memory alloys

    Science.gov (United States)

    Goubaa, K.; Masse, M.; Bouquet, G.

    1992-08-01

    Internal friction and modulus measurements are performed for the purpose of a comparative study between the structural evolutions occurring, under the effect of the temperature, in two kinds of shape memory alloys: Ni-Ti and Ni-Ti-Cu. Modulus evolutions giving information about the changes in the relative percentages of martensitic and B2 high temperature phases, are useful for the determination of “start” and “finish” transformation temperatures. Internal friction measurements, specially sensitive to structural changes occurring on atomic scale, allow the detection of atomic reorganizations preceding or following the transformation: the R-phase occurrence, on cooling or on heating, the reorientation of martensitic variants on heating. The comparison between the internal friction background levels of each alloy reveals the effect of structural instabilities, specific of Ni-Ti-Cu alloys, and which can be associated with the Cu content. Des mesures de frottement intérieur et de module ont été utilisées en vue de comparer les évolutions structurales intervenant, en fonction de la température, dans deux familles d'alliages à mémoire de forme: Ni-Ti et Ni-Ti-Cu. Les variations de module, sensibles aux proportions relatives des phases martensitique et B2 de haute température, s'avèrent très adaptées à la détermination précise des températures de début et de fin de transformation. Le frottement intérieur, quant à lui, donne des renseignements sur des réorganisations se produisant, à l'échelle atomique, avant ou après la transformation martensitique: apparition de la phase-R, réorientation de variantes de martensite, par exemple,. La comparaison des niveaux du fond de frottement intérieur, relatifs à chaque alliage, montre des différences qui peuvent être associées à des instabilités structurales spécifiques de la présence de cuivre dans les allianges Ni-Ti-Cu.

  17. Microstructural evolution of Cu-1at% Ti alloy aged in a hydrogen atmosphere and its relation with the electrical conductivity

    KAUST Repository

    Semboshi, Satoshi

    2009-04-01

    Copper alloys with titanium additions between 1 and 6 at% Ti emerge currently as attractive conductive materials for electrical and electronic commercial products, since they exhibit superior mechanical and electrical properties. However, their electrical conductivity is reduced owing to the residual amount of Ti solutes in the Cu solid solution (Cu(ss)) phase. Since Cu shows only poor reactivity with hydrogen (H), while Ti exhibits high affinity to it, we were inspired by the idea that hydrogenation of Cu-Ti alloys would influence their microstructure, resulting in a significant change of their properties. In this contribution, the influence of aging under a deuterium (D(2)) atmosphere of Cu-1 at% Ti alloys on their microstructure is investigated to explore the effects on the electrical conductivity. The specimens were investigated by means of transmission electron microscopy (TEM), field ion microscopy (FIM), computer-aided field ion image tomography (cFIIT), and atom probe tomography (APT). At an early aging stage at 623 K in a D(2) atmosphere of 0.08 Wit, ellipsoidal alpha-Cu(4)Ti precipitates are formed in the alloy, and during subsequent aging, delta-TiD(2) is competitively nucleated instead of growth of alpha-Cu(4)Ti particles. The co-precipitation of alpha-Cu(4)Ti and delta-TiD(2) efficiently reduces the Ti concentration of Cuss matrix, particularly in the later aging stages in comparison to the aging in vacuum conditions. The electrical conductivity of the alloy aged in the D(2) atmosphere increases steeply up to 48% International Annealed Copper Standard (IACS) after 1030 It, while it saturates to approximately 20% IACS in the alloy aged in vacuum. The outstanding increase of electrical conductivity during aging in D2 atmosphere can be basically explained by the reduction of Ti solute concentration in Cuss matrix. Crown Copyright (C) 2009 Published by Elsevier B.V. All rights reserved.

  18. Changes in the real structure and magnetoresistance of Co90Fe10/Cu and Co90Fe10/Cu85Ag10Au5 multilayers after annealing

    International Nuclear Information System (INIS)

    Annealing of the (1.1 nm Co90Fe10/2.2 nm Cu)x20 and (1.1 nm Co90Fe10/2.2 nm Cu85Ag10Au5)x20 multilayers at 235 deg. C improved their magnetoresistance as compared to the virgin samples. Annealing at higher temperatures resulted in degradation of the magnetoresistance effect. This observation raised the motivation of a detailed structural study using small-angle X-ray scattering, wide-angle X-ray diffraction, electron diffraction and transmission electron microscopy with the aim to link the structural changes in the system to the changes in the magnetoresistance. The structure studies have shown that the maximum of the magnetoresistance observed after annealing at 235 deg. C is related to the separation of Co90Fe10 and Cu, which are partly intermixed at interfaces after the deposition process. The decay of the GMR effect at higher annealing temperatures is caused by an increase of the interface roughness, which led in the Co90Fe10/Cu multilayers to occurrence of non-continuous interfaces and to short-circuiting of magnetic layers. In the Cu85Ag10Au5 multilayers, the combination of small-angle X-ray scattering and wide-angle X-ray diffraction has shown that Cu85Ag10Au5 did not form an alloy with the nominal composition: Only a part of Au and Ag was dissolved in the copper structure; the remainder of Ag and Au formed precipitates

  19. Sliding Wear Behavior of TiC-Reinforced Cu-4 wt.% Ni Matrix Composites

    Science.gov (United States)

    Jha, Pushkar; Gautam, R. K.; Tyagi, Rajnesh; Kumar, Devendra

    2016-10-01

    The present investigation explores the effect of TiC content on the sliding wear properties of Cu-4 wt.% Ni matrix composites. Cu-4 wt.% Ni - x wt.% TiC ( x = 0, 2, 4 and 8 wt.%) metal matrix composites were developed by powder metallurgy route. Their friction and wear was studied under dry sliding at different loads of 5, 7.5 and 10 N and constant sliding speed of 2 m/s using a pin-on-disk machine. The metallographic observations showed an almost uniform distribution of TiC particles in the matrix. Hardness of the composites increased with increasing TiC content (up to 4 wt.%). Friction and wear results of TiC-reinforced composites show better wear resistance than unreinforced matrix alloy. However, the optimum wear resistance was observed for 4 wt.% TiC-reinforced composites. Worn surfaces of specimens indicated the abrasion as the primary mechanism of wear in all the materials investigated in the study. The observed behavior has been explained on the basis of (1) the hardness which results in a decrease in real area of contact in composites containing TiC particles and (2) the formation of a transfer layer of wear debris on the surface of the composites which protects underlying substrate by inhibiting metal-metal contact.

  20. Trigonal prismatic Cu(I) and Ag(I) pyrazolato nanocage hosts: encapsulation of S8 and hydrocarbon guests.

    Science.gov (United States)

    Duan, Peng-Cheng; Wang, Zhao-Yang; Chen, Jing-Huo; Yang, Guang; Raptis, Raphael G

    2013-11-14

    Two neutral hexanuclear trigonal prismatic cage molecules have been synthesized by coupling two planar triangular M3pz3-panels, M = Cu(I) and Ag(I), in eclipsed geometry. The ~230 Å(3) cage volume can be either vacant or occupied by neutral guests. The crystal structures of the M6-cyclohexane and Ag6-S8 host-guest species have been determined.

  1. Enhanced adsorption and visible-light-induced photocatalytic activity of hydroxyapatite modified Ag-TiO2 powders

    International Nuclear Information System (INIS)

    In order to get a kind of materials with enhanced adsorption and photocatalytic performance, hydroxyapatite modified Ag-TiO2 powders (Ag-TiO2-HAP) were prepared by a facile wet chemical strategy. The powders were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV-vis absorption spectroscopy, N2 adsorption-desorption measurement (BET), photoluminescence spectroscopy (PL), etc. The photocatalytic activities were evaluated by photocatalytic oxidation decomposition of acetone in air under visible-light illumination. The results showed that the coupled system indicated a highest photocatalytic activity and photochemical stability under visible-light irradiation than all the other catalysts. The intensively improved visible-light-induced photocatalytic activity of the Ag-TiO2-HAP hybrids could be attributed to its strong absorption in the visible-light region, low recombination rate of the electron-hole pair and large BET specific surface area.

  2. Tailoring the morphology and electrocatalytic properties of electrochemically formed Ag/TiO2 composite deposits on titanium surfaces

    Directory of Open Access Journals (Sweden)

    S. V. MENTUS

    2007-12-01

    Full Text Available Three different forms of Ag/TiO2 composite layers, which have whisker-, dot- and island-like distribution of silver were obtained on a mechanically polished titanium surface by adjusting the conditions of silver deposition from an aqueous AgNO3 solution. The deposit morphology was the result of both the program of electrode polarization and the template action of the simultaneously formed TiO2 layer. The catalytic activity of the composite layers toward the oxygen reduction reaction was studied in aqueous 0.1 M NaOH solutions and found to be a function of both the surface loading of silver and the type of silver distribution within the Ag/TiO2 composite layers. The reaction path of oxygen reduction on the composite layers was found to be always a 4e- one, characteristic otherwise of polycrystalline silver electrodes.

  3. Brazing of zirconia to titanium using Ag-Cu and Au-Ni filler alloys

    Directory of Open Access Journals (Sweden)

    Jean S. Pimenta

    2013-12-01

    Full Text Available Advanced ceramic is usually joined to metal by the well-known direct brazing process, where costly active filler alloys can be considered a limitation. Brazing using active-metal-free filler alloy as insert between the joint components is an attempt to overcome it. The active metal diffusion from the titanium member through the bulk of molten filler to the ceramic was responsible to produce an active filler alloy in loco and promote reduction of the zirconium oxide to improve wetting on the ceramic surface. Unalloyed titanium was joined in a high-vacuum furnace (<3x10-5 mbar to yttria-tetragonal zirconia polycristals (Y-TZP and zirconia partially stabilized with magnesia (Mg-PSZ, where commercial fillers Ag-28Cu and Au-18Ni with respective thermal cycles were evaluated. Helium gas leak detection test was performed at the ceramic/metal interface at room temperature; samples from reliable vacuum tight joints were examined by microstructural analysis techniques and energy dispersive X-ray analysis at the joint cross-section. Tight joints were produced with eutectic Ag-Cu filler, revealing an intermetallic layer and a dark reaction layer near the ceramic surface; titanium diffusion was efficient for superficial chemical interactions between individual components. Brazing joints were also tested using three-point flexure testing.

  4. Adsorption of Ag, Cu and Hg from aqueous solutions using expanded perlite

    International Nuclear Information System (INIS)

    The aim of the present work was to investigate the ability of expanded perlite (EP) to remove of silver, copper and mercury ions from aqueous solutions. Batch adsorption experiments were carried out and the effect of pH, adsorbent dosage, contact time and temperature of solution on the removal process has been investigated. The optimum pH for the adsorption was found to be 6.5. Adsorption of these metal ions reached their equilibrium concentration in 120, 240 and 180 min for Ag (I), Cu (II) and Hg (II) ions, respectively. Experimental data were also evaluated in terms of kinetic characteristics of adsorption and it was found that adsorption process for these metal ions followed well pseudo-second-order kinetics. Using Langmuir isotherm model, maximum adsorption capacity of EP was found to be 8.46, 1.95 and 0.35 mg/g for Ag (I), Cu (II) and Hg (II) ions, respectively. Finally, the thermodynamic parameters including, the change of free energy (ΔGo), enthalpy (ΔHo) and entropy (ΔSo) of adsorption were calculated for each metal ion. The results showed that the adsorption of these metal ions on EP was feasible and exothermic at 20-50 deg. C.

  5. Adsorption of Ag, Cu and Hg from aqueous solutions using expanded perlite.

    Science.gov (United States)

    Ghassabzadeh, Hamid; Mohadespour, Ahmad; Torab-Mostaedi, Meisam; Zaheri, Parisa; Maragheh, Mohammad Ghannadi; Taheri, Hossein

    2010-05-15

    The aim of the present work was to investigate the ability of expanded perlite (EP) to remove of silver, copper and mercury ions from aqueous solutions. Batch adsorption experiments were carried out and the effect of pH, adsorbent dosage, contact time and temperature of solution on the removal process has been investigated. The optimum pH for the adsorption was found to be 6.5. Adsorption of these metal ions reached their equilibrium concentration in 120, 240 and 180 min for Ag (I), Cu (II) and Hg (II) ions, respectively. Experimental data were also evaluated in terms of kinetic characteristics of adsorption and it was found that adsorption process for these metal ions followed well pseudo-second-order kinetics. Using Langmuir isotherm model, maximum adsorption capacity of EP was found to be 8.46, 1.95 and 0.35 mg/g for Ag (I), Cu (II) and Hg (II) ions, respectively. Finally, the thermodynamic parameters including, the change of free energy (DeltaG degrees ), enthalpy (DeltaH degrees ) and entropy (DeltaS degrees ) of adsorption were calculated for each metal ion. The results showed that the adsorption of these metal ions on EP was feasible and exothermic at 20-50 degrees C.

  6. Ultrasonic properties of Cu45Zr(45-x)HfxAg10 glassy alloys

    International Nuclear Information System (INIS)

    Using ultrasonics, the acoustic characteristics of Cu45Zr(45-x)HfxAg10 (x=0-25) glassy alloys were examined in terms of complex elasticity. The values of bulk modulus (K), Lame parameter (λ), Young's (E) and shear (G) moduli of Cu45Zr(45-x)HfxAg10 glassy alloys are found to have a unique order for metallic materials, except for polymers. The large Poisson ratio (∝0.421) and the lower G /K ratio (∝0.167) at 25 at% Hf indicate rubbery characteristics that readily undergo uniaxial volume-preserving deformation but resist three-dimensional nonvolume-preserving deformation. The complex dynamic viscosity shows that visco-elasticity of the glassy alloys is dominated by shear motion. The large peaks in K and λ, and small ones in E and G at 5 at% Hf, and one large peak in the shear attenuation coefficient at 2.5 at% Hf, may indicate atomic morphological change by electron-transverse phonon coupling. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. The preparation and visible- light photocatalysis of Ag3PO4/TiOxNy%Ag3PO4/TiOxNy的制备及可见光催化性能

    Institute of Scientific and Technical Information of China (English)

    郑华荣; 刘长安; 苏文悦; 王绪绪

    2011-01-01

    采用溶胶-凝胶法制备Ag3 PO4/TiOxNy催化剂,运用低温N2吸附、X射线粉末衍射、紫外可见漫反射、程序升温脱附-质谱联用和电子自旋共振谱等测试手段对催化剂的理化性质和活性物种等进行详细表征,并以苯的可见光催化降解为反应模型考察样品的光催化活性.结果表明,Ag3PO4修饰改善了TiOxNy的结构和可见光催化活性,与TiOxNy相比,Ag3PO4/TiOxNy催化剂的的BET比表面积大、光谱吸收边红移、锐钛矿向金红石的相转化被抑制,对苯的吸附显著增强,光生电子和空穴得到有效分离,具有良好的可见光催化活性.%Ag3PO4/TiOxNγ photocatalysts are prepared by a sol -gel method. The physical properties and active species of the as - prepared samples are characterized by N2 sorption analysis, X - ray dif fraction (XRD) , UV - Vis diffuse reflectance spectroscopy ( UV - Vis DRS), TPD - MS and ESR. Visible -light photocatalytic decomposition of gaseous benzene over the Ag3PO4/TiOxNr catalysts was investigated. The results showed that the catalytic and structural properties of TiO,,Nr were improved by Ag3PO4 modifying. When compared to unmodified TiO,,Nr, the Ag3PO4/TiO,Nr exhibited higher re sistance to crystal phase transformation from anatase to rutile, bigger BET specific area, the red - shif ted band edge of adsorption spectra, and higher photocatalytic activities because of the adsorption en richment of benzene and of the effective photogenerated electron - hole pair' s separation.

  8. Novel PdAgCu ternary alloy as promising materials for hydrogen separation membranes: Synthesis and characterization

    Science.gov (United States)

    Tarditi, Ana M.; Cornaglia, Laura M.

    2011-01-01

    The use of the sequential electroless plating method allowed us to obtain the PdAgCu ternary alloy on top of dense stainless steel (SS) 316 L disks. The XRD analysis indicated that initially the nucleation of the two phases of the alloy (FCC and BCC) takes place, but the FCC/BCC ratio increases with the annealing time at 500 °C in H 2 stream. After 162 h, the film contained only the FCC phase, which presents promising properties to be applied in the synthesis of hydrogen selective membranes. SEM cross-section results showed that a dense, continuous, defect-free film was deposited on top of the SS support, and the EDS data indicated that no significant gradient was present on the thickness of the film. XPS and LEIS allowed us to determine that Cu and Ag surface segregation takes place after annealing up to 500 °C/5 days. In the top-most surface layer, Ag enrichment takes place as determined by ARXPS experiments which can be the result of the lower surface tension of Ag compared to that of Cu and Pd. Increasing the annealing temperature results in an increase of the Ag surface segregation while the Cu concentration in the top-most surface layer decreases.

  9. Microstructures and fatigue fracture behavior of an Al-Cu-Mg-Ag alloy with addition of rare earth Er

    International Nuclear Information System (INIS)

    The effects of rare earth erbium (Er) on microstructures and fatigue fracture behavior of an Al-Cu-Mg-Ag alloy were investigated. Microstructural examinations first revealed that the precipitation kinetics of Ω phase was distinctly retarded by promoting the formation of θ' phase with the Er addition during the initial aging. The fatigue crack propagation resistance of Er-containing microstructure was significantly enhanced arising from the presence of the crystallographic secondary cracks, which was directly relative to the large grain size. Results also suggested that the dendritic substructure of as-cast Al-Cu-Mg-Ag alloy was refined remarkably by Er addition.

  10. Synthesis of Ag{sub 2}S–TiO{sub 2} nanocomposites and their catalytic activity towards rhodamine B photodegradation

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Sudheer Kumar; Jeevanandam, P., E-mail: jeevafcy@iitr.ac.in

    2015-11-15

    Ag{sub 2}S–TiO{sub 2} nanocomposites were prepared by a simple thermal decomposition approach. The synthesized nanocomposites were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) coupled with energy dispersive X-ray analysis (EDXA), transmission electron microscopy (TEM) and diffuse reflectance spectroscopy (DRS). XRD results indicate that the Ag{sub 2}S–TiO{sub 2} nanocomposites consist of nanocrystallites of Ag{sub 2}S and TiO{sub 2}. TEM results indicate uniform distribution of Ag{sub 2}S nanoparticles (8.8 ± 1.9 nm) in the TiO{sub 2} matrix. A blue shift of band gap of Ag{sub 2}S in the nanocomposites compared to bulk Ag{sub 2}S is observed. The Ag{sub 2}S–TiO{sub 2} nanocomposites act as good catalyst for the photodegradation of Rhodamine B in aqueous solutions in the presence of sunlight. - Highlights: • Ag{sub 2}S–TiO{sub 2} nanocomposites have been synthesized by a very simple thermal decomposition approach. • The Ag{sub 2}S–TiO{sub 2} nanocomposites show absorption in the visible region (455 nm–480 nm). • The nanocomposites act as good photocatalyst for the photodegradation of rhodamine B dye in sunlight.

  11. Effect of Cooling Rate on the Longitudinal Modulus of Cu3Sn Phase of Ag-Sn-Cu Amalgam Alloy (Part II)

    OpenAIRE

    R. H. Rusli

    2015-01-01

    Effects of cooling rate (at the time of solidification on the elastic constants of Cu3Sn phase of Ag-Sn-Cu dental amalgam alloy were studied. In this study, three types of alloys were made, with the composition Cu-38-37 wt% Sn by means of casting, where each alloy was subjected to different cooling rate, such as cooling on the air (AC), air blown (AB), and quenched in the water (WQ). X-ray diffraction, metallography, and Scanning Electron Microscopy with Energy Dispersive Spectroscopy studies...

  12. Electro-oxidation of ethylene glycol on nanoporous Ti-Cu amorphous alloy

    Energy Technology Data Exchange (ETDEWEB)

    Chen Cuijie [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Zhu Shengli, E-mail: slzhu@tju.edu.cn [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300072 (China); Yang Xianjin [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300072 (China); Pi Lele; Cui Zhenduo [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China)

    2011-11-30

    Highlights: > Nanoporous Ti-Cu amorphous alloy exhibits apparent EG electrocatalytic ability EG electro-oxidation occurs more easily in alkaline medium than in acid medium. > In acid medium, heat treatment plays an enhancing role towards EG oxidation. > In alkaline medium, heat treatment has opposite effect below and above 0.1 V. - Abstract: This work describes ethylene glycol (EG) electro-oxidation over nanoporous structure catalyst prepared by dealloying Ti-Cu amorphous alloy. Scanning electron microscopy (SEM) was used to characterize nanoporous catalysts. Electrocatalytic performances in acid and alkaline mediums were measured by cyclic voltammetry (CV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS). The results showed that nanoporous Ti-Cu amorphous alloy exhibited apparent electrocatalytic ability in terms of higher oxidation current in CV and CA curves comparing to raw Ti-Cu amorphous alloy. Electro-oxidation of EG took place more easily in alkaline medium than that in acid medium. In acid medium, heat treatment improved the electrocatalytic activity of nanoporous catalyst. In alkaline medium, heat treatment played an enhancing role below 0.1 V and a depressing role above 0.1 V. Possible electro-oxidation mechanism of EG was also discussed.

  13. Crystallization of Ti33Cu67 metallic glass under high-current density electrical pulses

    Directory of Open Access Journals (Sweden)

    Mali Vyacheslav

    2011-01-01

    Full Text Available Abstract We have studied the phase and structure evolution of the Ti33Cu67 amorphous alloy subjected to electrical pulses of high current density. By varying the pulse parameters, different stages of crystallization could be observed in the samples. Partial polymorphic nanocrystallization resulting in the formation of 5- to 8-nm crystallites of the TiCu2 intermetallic in the residual amorphous matrix occurred when the maximum current density reached 9.7·108 A m-2 and the pulse duration was 140 μs, though the calculated temperature increase due to Joule heating was not enough to reach the crystallization temperature of the alloy. Samples subjected to higher current densities and higher values of the evolved Joule heat per unit mass fully crystallized and contained the Ti2Cu3 and TiCu3 phases. A common feature of the crystallized ribbons was their non-uniform microstructure with regions that experienced local melting and rapid solidification. PACS: 81; 81.05.Bx; 81.05.Kf.

  14. Effect of adding Ce on interfacial reactions between Sn-3.0Ag-0.5Cu solder and Cu substrate

    Institute of Scientific and Technical Information of China (English)

    LU Bin; LI Hui; WANG Juan-hui; ZHU Hua-wei; JIAO Xian-he

    2008-01-01

    The formation and the growth of Cu-Sn intermetallic compound (IMC) layer at the interface between Sn-3.0Ag-0.5Cu-xCe solder and Cu substrate during soldering and aging were studied. The results show that Cu6Sn5 IMC is observed at the interface between solder and Cu substrate in all conditions. After aging for 120h, the Cu3Sn IMC is then obtained. With increasing aging time, the scalloped Cu6Sn5 structure changes to a plate structure. The Cu3Sn film always forms with a relatively planar interface. By adding a small amount of the rare earth element Ce (only 0.1%, mass fraction) into the Sn-3.0Ago0.5Cu solder alloy, the growth rate of the Cu-Sn IMC at the interface of solder alloy system is decreased. When the time exponent is approximately 0.5, the growth of the IMC layer is mainly controlled by a diffusion over the studied time range.

  15. Environmentally friendly electroless plating for Ag/TiO2-coated core-shell magnetic particles using ultrasonic treatment.

    Science.gov (United States)

    Kim, Soo-Dong; Choe, Won-Gyun; Jeong, Jong-Ryul

    2013-11-01

    In this work, high-reflectance brilliant white color magnetic microspheres comprising a Fe/TiO2/Ag core-shell structure with a continuous, uniform compact silver layer were successfully fabricated by TiO2-assisted electroless plating in a simple and eco-friendly method. The coating procedure for TiO2 and Ag involved a sol-gel reaction and electroless plating with ultrasound treatment. The electroless plating step was carried out in an eco-friendly manner in a single process without environmentally toxic additives. The TiO2 layer was used as a modification layer between the Fe microspheres and the silver layer to improve adhesion. A continuous and compact silver layer could be formed with a high degree of morphological control by introducing ultrasonication and adjusting the ammonium hydroxide concentration. PMID:23611665

  16. Surface modification of additive manufactured Ti6Al4V alloy with Ag nanoparticles: wettability and surface morphology study

    Science.gov (United States)

    Chudinova, E.; Surmeneva, M.; Koptioug, A.; Sharonova, A.; Loza, K.; Surmenev, R.

    2016-02-01

    In this work, the use of electrophoretic deposition to modify the surface of Ti6Al4V alloy fabricated via additive manufacturing technology is reported. Poly(vinylpyrrolidone) (PVP)-stabilized silver nanoparticles (AgNPs) had a spherical shape with a diameter of the metallic core of 100±20 nm and ζ -potential -15 mV. The AgNPs- coated Ti6Al4V alloy was studied in respect with its chemical composition and surface morphology, water contact angle, hysteresis, and surface free energy. The results of SEM microphotography analysis showed that the AgNPs were homogeneously distributed over the surface. Hysteresis and water contact angle measurements revealed the effect of the deposited AgNPs layer, namely an increased water contact angle and decreased contact angle hysteresis. However, the average water contact angle was 125° for PVP-stabilized-AgNPs-coated surface, whereas ethylene glycol gave the average contact angle of 17°. A higher surface energy is observed for AgNPs-coated Ti6Al4V surface (70.17 mN/m) compared with the uncoated surface (49.07 mN/m).

  17. The crystallization of (NiCu)ZrTiAlSi glass/crystalline composite

    Energy Technology Data Exchange (ETDEWEB)

    Czeppe, T.; Sypien, A. [Institute of Metallurgy and Materials Science PAS, 25 Reymonta St, 30-059 Krakow (Poland); Ochin, P. [Centre d' Etudes de Chimie Metallurgique, UPR 2801, 15, Rue G. Urbain, 94407 Vitry-sur-Seine, Cedex (France); Anastassova, S. [University of Sofia, Faculty of Chemistry, 1, J. Bourchier Blvd., Sofia 1164 (Bulgaria)

    2007-06-15

    Alloys of composition (Ni{sub 1-x}Cu{sub x}){sub 60}Zr{sub 18}Ti{sub 13}A1{sub 5}Si{sub 4} were investigated in the form of ribbons and massive samples. The microstructure of the massive samples consists of dendritic crystals in the amorphous or nanocrystalline matrix. The amount of the amorphous phase is the lowest in the sample with the highest Cu content. The segregation in the liquid phase, leading to the local differences in density and the composition of the crystallizing dendrites in the samples crystallized in the copper mould was shown. The typical compositions of the multi-component crystals could be distinguished; one with the increased content of aluminum, the second with the high content of silicon and third, with the high content of (NiCu) and (ZrTi). The cubic phase Ni(Cu)Ti(Zr) with Cu and Zr dissolved could be identified. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  18. New Cu(TiBN x ) copper alloy films for industrial applications

    Science.gov (United States)

    Lin, Chon-Hsin

    2016-06-01

    In this study, I explore a new type of copper alloy, Cu(TiBN x ), films by cosputtering Cu and TiB within an Ar/N2 gas atmosphere on Si substrates. The films are then annealed for 1 h in a vacuum environment at temperatures up to 700 °C. The annealed films exhibit not only excellent thermal stability and low resistivity but also little leakage current and strong adhesion to the substrates while no Cu/Si interfacial interactions are apparent. Within a Sn/Cu(TiBN x )/Si structure at 200 °C, the new alloy exhibits a minute dissolution rate, which is lower than that of pure Cu by at least one order of magnitude. Furthermore, the new alloy’s consumption rate is comparable to that of Ni commonly used in solder joints. The new films appear suitable for some industrial applications, such as barrierless Si metallization and new wetting and diffusion barrier layers required in flip-chip solder joints.

  19. Improvements of dielectric properties of Cu doped LaTiO3 þδ

    Institute of Scientific and Technical Information of China (English)

    Yan Chen; Jianxun Xu; Yimin Cui; Guangyi Shang; Jianqiang Qian; Jun-en Yao

    2016-01-01

    The ceramic composites of Cu-doped La1?xCuxTiO3þδ (x¼0.05, 0.15, 0.3, 0.5) were synthesized by con-ventional solid-state reaction. The complex dielectric properties of the composites were investigated as a function of temperature (77 KrTr320 K) and frequency (100 Hzrfr1 MHz) separately. In all com-posites, the dielectric constants increase monotonously and the dielectric loss undulates with tem-perature. And it is clearly observed that extraordinarily high low-frequency dielectric constant ( ? 104) appear at room temperature in La0.5Cu0.5TiO3þδ, which is ?100 times larger than that of La0.95Cu0.05TiO3 þδ. Interestingly, the dielectric constants increase remarkably with the doped Cu con-tents, meanwhile the dielectric loss for all samples is ideal lower than 1 at room temperature in the measured frequency range. By means of complex impedance analysis, the improvements of dielectric properties are attributed to both bulk contribution and grain boundary effect, in which the bulk polaronic relaxation and the Maxwell–Wagner relaxation due to grain boundary response are heightened re-markably with the high doped Cu contents.

  20. Improvements of dielectric properties of Cu doped LaTiO3+δ

    Directory of Open Access Journals (Sweden)

    Yan Chen

    2016-04-01

    Full Text Available The ceramic composites of Cu-doped La1−xCuxTiO3+δ (x=0.05, 0.15, 0.3, 0.5 were synthesized by conventional solid-state reaction. The complex dielectric properties of the composites were investigated as a function of temperature (77 K≤T≤320 K and frequency (100 Hz≤f≤1 MHz separately. In all composites, the dielectric constants increase monotonously and the dielectric loss undulates with temperature. And it is clearly observed that extraordinarily high low-frequency dielectric constant (~104 appear at room temperature in La0.5Cu0.5TiO3+δ, which is ~100 times larger than that of La0.95Cu0.05TiO3+δ. Interestingly, the dielectric constants increase remarkably with the doped Cu contents, meanwhile the dielectric loss for all samples is ideal lower than 1 at room temperature in the measured frequency range. By means of complex impedance analysis, the improvements of dielectric properties are attributed to both bulk contribution and grain boundary effect, in which the bulk polaronic relaxation and the Maxwell–Wagner relaxation due to grain boundary response are heightened remarkably with the high doped Cu contents.

  1. Prototype of a scalable core-shell Cu 2O/TiO 2 solar cell

    Science.gov (United States)

    Li, Dongdong; Chien, Chung-Jen; Deora, Suvil; Chang, Pai-Chun; Moulin, Etienne; Lu, Jia G.

    2011-01-01

    Titanium oxide (TiO2) nanotube membranes are synthesized via a two-step anodization method. The conductivity at the crystallized barrier layer is enhanced by NH4Cl treatment. This facilitates electrodeposition of Cu2O into TiO2 nanotubes, creating Cu2O/TiO2p-n heterojunctions in the radial direction. The photovoltaic performances benefit from the increased junction interface as well as the efficient pathway for separated charges to transport through the one-dimensional channel. Such heterojunction system serves as a promising candidate for solid-state solar cell due to its scalability, abundancy, low cost and environmental friendly nature. In addition, this versatile process can be conducted on various materials with the potential applications in photovoltaics, supercapacitor, battery, catalyst, etc.

  2. Nanopaper based on Ag/TiO{sub 2} nanobelts heterostructure for continuous-flow photocatalytic treatment of liquid and gas phase pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Weijia; Du, Guojun; Hu, Peiguang [State Key Laboratory of Crystal Materials, Center of Bio and Micro/Nano Functional Materials, Shandong University, 27 Shandanan Road, Jinan 250100 (China); Yin, Yongquan [The School of Environmental Science and Engineering, Shandong University, 27 Shandanan Road, Jinan 250100 (China); Li, Jianhua [State Key Laboratory of Crystal Materials, Center of Bio and Micro/Nano Functional Materials, Shandong University, 27 Shandanan Road, Jinan 250100 (China); Yu, Jiahong [The School of Environmental Science and Engineering, Shandong University, 27 Shandanan Road, Jinan 250100 (China); Wang, Guancong [State Key Laboratory of Crystal Materials, Center of Bio and Micro/Nano Functional Materials, Shandong University, 27 Shandanan Road, Jinan 250100 (China); Wang, Jinxia [School of Light Chemistry and Environment Engineering, Shandong Polytechnic University, Daxue Road, Western University Science Park, Jinan 250353 (China); Liu, Hong, E-mail: hongliu@sdu.edu.cn [State Key Laboratory of Crystal Materials, Center of Bio and Micro/Nano Functional Materials, Shandong University, 27 Shandanan Road, Jinan 250100 (China); Wang, Jiyang, E-mail: jywang@icm.sdu.edu.cn [State Key Laboratory of Crystal Materials, Center of Bio and Micro/Nano Functional Materials, Shandong University, 27 Shandanan Road, Jinan 250100 (China); Zhang, Hua [School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer The photocatalytic activity of TiO{sub 2} nanobelts is evidently enhanced by the heterostructures between Ag nanoparticles and TiO{sub 2} nanobelts. Black-Right-Pointing-Pointer The nanopapers based on Ag/TiO{sub 2} nanobelt heterostructures are fabricated via a modified paper-making process. Black-Right-Pointing-Pointer A continuous flow photocatalytic reactor is designed. Black-Right-Pointing-Pointer The TiO{sub 2} nanopapers in the microreactor show an excellent continuous photocatalytic performance for liquid and gas phase pollutants. Black-Right-Pointing-Pointer The Ag/TiO{sub 2} nanobelts nanopaper shows a good antibacterial effect. - Abstract: The Ag/TiO{sub 2} nanobelt heterostructures were prepared by the acid-assisted hydrothermal method followed by an in situ photo-reduction process. The photocatalytic activity of TiO{sub 2} nanobelts was evidently enhanced by the heterostructures between Ag nanoparticles and TiO{sub 2} nanobelts. The nanopapers based on Ag/TiO{sub 2} nanobelt heterostructures were fabricated via a modified paper-making process. A novel continuous photocatalytic reactor was designed, and MO removal rate of Ag/C-TiO{sub 2} nanopaper was achieved to 100% in 40 min for single layer and only in 6 min for three layers. The self-supported TiO{sub 2} nanopapers with porous structures also showed an excellent continuous photocatalytic performance for toluene gas under UV light irradiation, and the corresponding degradation rate was 69.5% in 184 min. Moreover, the Ag/TiO{sub 2} nanobelts nanopaper showed a good antibacterial effect. The multifunctional TiO{sub 2} nanopapers modified by the heterostuctures could have potential applications in the environmental and biomaterial fields.

  3. Nanopaper based on Ag/TiO2 nanobelts heterostructure for continuous-flow photocatalytic treatment of liquid and gas phase pollutants

    International Nuclear Information System (INIS)

    Highlights: ► The photocatalytic activity of TiO2 nanobelts is evidently enhanced by the heterostructures between Ag nanoparticles and TiO2 nanobelts. ► The nanopapers based on Ag/TiO2 nanobelt heterostructures are fabricated via a modified paper-making process. ► A continuous flow photocatalytic reactor is designed. ► The TiO2 nanopapers in the microreactor show an excellent continuous photocatalytic performance for liquid and gas phase pollutants. ► The Ag/TiO2 nanobelts nanopaper shows a good antibacterial effect. - Abstract: The Ag/TiO2 nanobelt heterostructures were prepared by the acid-assisted hydrothermal method followed by an in situ photo-reduction process. The photocatalytic activity of TiO2 nanobelts was evidently enhanced by the heterostructures between Ag nanoparticles and TiO2 nanobelts. The nanopapers based on Ag/TiO2 nanobelt heterostructures were fabricated via a modified paper-making process. A novel continuous photocatalytic reactor was designed, and MO removal rate of Ag/C–TiO2 nanopaper was achieved to 100% in 40 min for single layer and only in 6 min for three layers. The self-supported TiO2 nanopapers with porous structures also showed an excellent continuous photocatalytic performance for toluene gas under UV light irradiation, and the corresponding degradation rate was 69.5% in 184 min. Moreover, the Ag/TiO2 nanobelts nanopaper showed a good antibacterial effect. The multifunctional TiO2 nanopapers modified by the heterostuctures could have potential applications in the environmental and biomaterial fields.

  4. Synthesis and characterization of TiO₂ and TiO₂/Ag for use in photodegradation of methylviologen, with kinetic study by laser flash photolysis.

    Science.gov (United States)

    Ramos, Dayana Doffinger; Bezerra, Paula C S; Quina, Frank H; Dantas, Renato F; Casagrande, Gleison A; Oliveira, Silvio C; Oliveira, Márcio R S; Oliveira, Lincoln C S; Ferreira, Valdir S; Oliveira, Samuel L; Machulek, Amilcar

    2015-01-01

    This paper reports the synthesis, characterization, and application of TiO2 and TiO2/Ag nanoparticles for use in photocatalysis, employing the herbicide methylviologen (MV) as a substrate for photocatalytic activity testing. At suitable metal to oxide ratios, increases in silver surface coating on TiO2 enhanced the efficiency of heterogeneous photocatalysis by increasing the electron transfer constant. The sol-gel method was used for TiO2 synthesis. P25 TiO2 was the control material. Both oxides were subjected to the same silver incorporation process. The materials were characterized by conventional spectroscopy, SEM micrography, X-ray diffraction, calculation of surface area per mass of catalyst, and thermogravimetry. Also, electron transfers between TiO2 or TiO2/Ag and MV in the absence and presence of sodium formate were investigated using laser flash photolysis. Oxides synthesized with 2.0 % silver exhibited superior photocatalytic activity for MV degradation. PMID:24609723

  5. Corrosion behavior of Cu-Ni-Ag-Al alloy anodes in aluminium electrolysis

    Institute of Scientific and Technical Information of China (English)

    徐君莉; 石忠宁; 邱竹贤

    2004-01-01

    The behavior of Cu-Ni-Ag-Al alloy used as anode for aluminum electrolysis was directly visualized in a two-compartment see-through cell during electrolysis, and its performances were tested at 850℃ in acidic electrolyte molten salts consisting of 39.3 % NaF-43.7 % AlF3-8 % NaCl-5 % CAF2-4 % Al2 O3 for 40 h in a laboratory cell. The results show that nascent oxygen oxidizes the anodic surface to form oxide film at the beginning of electrolysis. X-ray diffraction analysis of alloy surface show that the oxide film on the anodic surface consists of CuO, NiO, Al2O3,CuAl2 O4 and NiAl2 O4. However, SEM image shows the oxide film is porous, loose and easy to fall into electrolyte and to contaminate aluminum. The corrosion mechanism of metal anodes was analyzed.

  6. Chemical Stability of (Ag,Cu)2Se: a Historical Overview

    Science.gov (United States)

    Brown, David R.; Day, Tristan; Caillat, Thierry; Snyder, G. JeffREY

    2013-07-01

    Recent work on Cu2- x Se has caused strong interest in this material due to its high reported peak zT (1.5) and the reduction of thermal conductivity through the mechanism of liquid-like suppression of heat capacity. In the 1960s, 3M patented Cu1.97Ag0.03Se as "TPM-217." Over the following decade it was tested and developed by the 3M Corporation, at the National Aeronautics and Space Administration (NASA) Jet Propulsion Laboratory, Teledyne Energy Systems, and the General Atomics Corporation for use as a next-generation thermoelectric material. During these tests, extreme problems with material loss through Se vaporization and chemical reactions between the material and the device contacts were found. These problems were especially severe while operating under conditions of high iL/A. As a result, the material system was abandoned. The results of these reports are discussed. A simple test of degradation of Cu2Se under conditions of applied current and thermal gradient was performed and showed results compatible with the work done by General Atomics.

  7. Sonocatalytic Methylene Blue in The Presence of Fe3O4-CuO-TiO2 Nanocomposites Heterostructure

    Science.gov (United States)

    Fauzian, Malleo; Jalaludin, Shofianina; Taufik, Ardiansyah; Saleh, Rosari

    2016-04-01

    In this work, the emphasis was mainly placed on investigating the sonocatalytic activity of Fe3O4-CuO-TiO2 nanocomposites heterostructure. The prepared samples were characterized by X-ray diffraction (XRD), Vibrating Sample Magnetometer (VSM), Brunauer-Emmett-Teller (BET) Surface Area Analysis. Methylene blue dye was selected to examine the sonocatalytic activity of Fe3O4-CuO-TiO2 nanocomposites heterostructure. The degradation reaction processes were monitored by UV-vis spectrophotometer. The influence on the activity of the Fe3O4-CuO-TiO2 nanocomposites heterostructure such as TiO2 loading was studied. The sonocatalyst Fe3O4-CuO-TiO2 with molar ratio of 1:1:5 showed the highest sonocatalytic activity. At last, the experiment also indicated that holes are the main reactive species in the photodegradation mechanism in methylene blue.

  8. 新型Ag-Cu-Ge钎料的性能及钎焊界面特征%Properties and interface microstructure of new type Ag-Cu-Ge solder

    Institute of Scientific and Technical Information of China (English)

    岳译新; 谭澄宇; 郑子樵; 李世晨; 叶建军

    2006-01-01

    根据Ag-Cu-Ge系三元相图, 制备了Ag-Cu33.4-Ge28.1, Ag-Cu43-Ge20 (质量分数, %)两种中温合金钎料. 利用金相显微镜、 DTA对钎料组织及其熔点进行分析, 并对其润湿性进行测试. 结果表明: 两种合金钎料的熔化温区为539~622 ℃, Ag-Cu33.4-Ge28.1合金对于纯Ni和Cu具有良好的漫流性和润湿性. 利用扫描电镜和能谱仪对钎焊后的界面微观组织进行观察与分析, 发现在界面处形成了固溶体和金属间化合物.

  9. Mechanism and experimental study on the photocatalytic performance of Ag/AgCl @ chiral TiO{sub 2} nanofibers photocatalyst: The impact of wastewater components

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dawei [Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University. Xi Kang Road #1, Nanjing 210098 (China); Li, Yi, E-mail: envly@hhu.edu.cn [Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University. Xi Kang Road #1, Nanjing 210098 (China); Li Puma, Gianluca [Environmental Nanocatalysis & Photoreaction Engineering, Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU (United Kingdom); Wang, Chao; Wang, Peifang; Zhang, Wenlong; Wang, Qing [Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University. Xi Kang Road #1, Nanjing 210098 (China)

    2015-03-21

    Highlights: • The effect of wastewater matrix on Ag/AgCl based nanomaterials was investigated. • DOM acted as a reactive oxygen species scavenger. • Cl{sup −} could accelerate the transformation from Ag to AgCl. • A relative rate technique was used to quantify these components impacts. - Abstract: The effect of the water matrix components of a secondary effluent of a urban wastewater treatment plant on the photocatalytic activity of Ag/AgCl @ chiral TiO{sub 2} nanofibers and the undergoing reaction mechanisms were investigated. These effects were evaluated through the water components-induced changes on the net rate of hydroxyl radical (·OH) generation and modeled using a relative rate technique. Dissolved organic matter DOM (k = −2.8 × 10{sup 8} M{sup −1} s{sup −1}) scavenged reactive oxygen species, Cl{sup −} (k = −5.3 × 10{sup 8} M{sup −1} s{sup −1}) accelerated the transformation from Ag to AgCl (which is not photocatalytically active under visible-light irradiation), while Ca{sup 2+} at concentrations higher than 50 mM (k = −1.3 × 10{sup 9} M{sup −1} s{sup −1}) induced aggregation of Ag/AgCl and thus all of them revealed inhibitory effects. In contrast, NO{sub 3}{sup −} (k = 6.9 × 10{sup 8} M{sup −1} s{sup −1}) and CO{sub 3}{sup 2−} (k = 3.7 × 10{sup 8} M{sup −1} s{sup −1}) improved the photocatalytic activity of Ag/AgCl slightly by improving the rate of HO· generation. Other ubiquitous secondary effluent components including SO{sub 4}{sup 2−} (k = 3.9 × 10{sup 5} M{sup −1} s{sup −1}), NH{sub 3}{sup +} (k = 3.5 × 10{sup 5} M{sup −1} s{sup −1}) and Na{sup +} (k = 2.6 × 10{sup 4} M{sup −1} s{sup −1}) had negligible effects. 90% of 17-α-ethynylestradiol (EE2) spiked in the secondary effluent was removed within 12 min, while the structure and size of Ag/AgCl @ chiral TiO{sub 2} nanofibers remained stable. This work may be helpful not only to uncover the photocatalytic mechanism of Ag/AgCl based

  10. Microstructure and thermal conductivity of Cu/diamond composites with Ti-coated diamond particles produced by gas pressure infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jianwei; Zhang, Hailong; Zhang, Yang; Che, Zifan; Wang, Xitao, E-mail: xtwang@ustb.edu.cn

    2015-10-25

    As an attractive thermal management material, diamond particles reinforced Cu matrix (Cu/diamond) composites generally exhibit thermal conductivities lower than expected. To exploit the potential of heat conduction, a combination of Ti coating on diamond particles and gas pressure infiltration was used to prepare Cu/diamond(Ti) composites. A high thermal conductivity of 716 W/mK and a low coefficient of thermal expansion of 5.8 ppm/K at 323 K were obtained in the composites. Auger electron spectroscopy (AES) characterization shows that a TiC layer was formed between Cu matrix and diamond reinforcement, which is responsible for the enhancement of thermal conductivity. The results suggest that Ti coating can significantly promote interface bonding between Cu and diamond and gas pressure infiltration is an effective method to produce Cu/diamond composites. - Highlights: • The Cu/diamond(Ti) composites are produced by gas pressure infiltration. • A TiC layer is formed between Cu matrix and diamond reinforcement. • A thermal conductivity of 716 W/mK is obtained for the composites. • A coefficient of thermal expansion of 5.8 ppm/K at 323 K was obtained.

  11. 新型钛铜合金的耐蚀性初探%Corrosion resistance of Ti-Cu alloy

    Institute of Scientific and Technical Information of China (English)

    宋育萱; 王世明

    2010-01-01

    Objective To investigate the corrosion behavior of Ti-Cu alloy in 0. 9% NaCl solution and in acidified 0. 9% NaCl solution. Methods The microstructure of Ti-Cu alloys were characterized by means of X-ray diffraction (XRD). The electrochemical behavior of Ti-Cu alloy in two solutions (namely 0.9% NaCl solution and acidified 0. 9% NaCl solution) was tested. Commercial pure Ti and 316L stainless steel were used as control. Results Ti-Cu alloys were composed by a-Ti and Ti2Cu intermetallic compound. After 3500 s immersion, the open circuit potential(OCP) values of pure Ti, Ti-5Cu alloy and Ti-10Cu alloy in 0.9% NaCl solution were -188, -181 and -173 mV, respectively. In 0. 9% NaCl solution with lactic acid added, the OCP values were - 143, - 158 and - 109 mV, respectively. In potentiodynamic polarization tests, the passive current densities of pure Ti and Ti-5Cu alloys were about 20 μA/cm2. However, 316L stainless steel experienced pitting corrosion . Conclusions It was possible to establish the following relation for their corrosion resistances: pure TiTi-5Cu >Ti-10Cu >316L stainless steel. The addition of lactic acid in the solution did not compromise the corrosion resistance of Ti-Cu alloys.%目的 对新型钛铜合金进行耐蚀性评价,探讨其在口腔环境中应用的可能性.方法 分别制备Cu质量分数为5%和10%的钛铜合金(Ti-5Cu和Ti-10Cu),用X射线衍射仪对钛铜合金进行物相分析,以纯钛、不锈钢(316L)作为对照,测量4种金属在0.9%NaCl溶液、添加1.0%乳酸的0.9%NaCl溶液中的开路电位和动电位极化曲线.结果 X射线衍射分析显示,两种钛铜合金主要由α相和Ti2Cu金属间化合物构成.在两种溶液中两种钛铜合金表现出类似的腐蚀行为.经3500 s浸泡,纯钛、Ti-5Cu、Ti-10Cu在0.9%NaCl溶液中的开路电位分别为-188、-181和-173 mV,在添加乳酸的0.9%NaCl溶液中的开路电位分别为-143、-158和-109 mV.动电位极化曲线显示,纯钛和Ti-5Cu在500 m

  12. Radiographic examination of influence of anion substitution on phase formation, mechanism and temperatures of phase conversion in CuAgSe

    International Nuclear Information System (INIS)

    Full text : Structural conversions in the CuAgSe0.5(S,Te)0.5 were investigated by high temperature roentgen diffractometer method and was shown that, under room temperature CuAgSe0.5S0.5 were diphase. One phase crystallized in the monoclinic structure Cu1.96S, but other one in orthorhombic structure CuAgSe: both of phases turn to the unified FCC phase. Crystals under room temperature are three-phase, one phase crystallized in the orthorhombic structure Cu2Te, but the other one in the orthorhombic structure CuAgSe, the third one their met stable cubic phase. Both orthorhombic phases fewer than 444 K turn to cubic phase

  13. Enhanced photocatalytic hydrogen evolution activity of CuInS2 loaded TiO2 under solar light irradiation

    International Nuclear Information System (INIS)

    In this paper, p–n type CuInS2/TiO2 particles were prepared in ethylenediamine by the solvothermal method. The microstructural properties of the synthesized p–n type catalysts were characterized by X-ray diffraction (XRD) in order to confirm the existence of crystalline CuInS2 on the surface of TiO2, which was also confirmed by X-ray photoelectron spectroscopy (XPS). Transmission electron microscopy (TEM) images provided the detailed morphological properties about the CuInS2/TiO2 heterostructure. UV–vis diffuse reflectance spectroscopy (UV–vis DRS) was used to investigate the optical properties of the CuInS2/TiO2 particles. The DRS results indicated that both the p–n type structure and CuInS2 acting as a sensitizer can enhance significantly the absorption of UV and visible light. The photocatalytic activities of the CuInS2/TiO2 particles were evaluated by hydrogen evolution reactions using Xe-lamp irradiation as a simulated solar light source. The greatly enhanced photocatalytic activity of hydrogen evolution under simulated solar light is about ~7 fold higher than that of pure commercial TiO2 (Degussa P25). - Graphical abstract: The heterojunction structure of CuInS2/TiO2 promoted the efficiency of photoinduced charge carrier transfer and highly inherited the recombination of activated electrons and holes. - Highlight: • CuInS2/TiO2 was prepared by a one-step solvothermal method. • 2.5% CuInS2/TiO2 has the highest activity and keeps the activity stable. • Heterojunction structure of sample promoted the separation of electrons and holes

  14. Weighting the influence of TiO{sub 2} anatase/brookite ratio in TiO{sub 2}–Ag porous nanocomposites on visible photocatalytic performances

    Energy Technology Data Exchange (ETDEWEB)

    Iancu, V. [Babes-Bolyai University, Faculty of Physics and Interdisciplinary Research Institute on Bio-Nano-Sciences, 400084 Cluj-Napoca (Romania); Baia, M., E-mail: monica.baia@phys.ubbcluj.ro [Babes-Bolyai University, Faculty of Physics and Interdisciplinary Research Institute on Bio-Nano-Sciences, 400084 Cluj-Napoca (Romania); Diamandescu, L. [National Institute of Materials Physics, P.O. Box MG-7, 77125 Bucharest-Magurele (Romania); Pap, Zs. [Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Arany Janos 11, 400028 Cluj-Napoca (Romania); Research Group of Environmental Chemistry, Institute of Chemistry, University of Szeged, Tisza Lajos krt. 103, H-6720 Szeged (Hungary); Vlaicu, A.M. [National Institute of Materials Physics, P.O. Box MG-7, 77125 Bucharest-Magurele (Romania); Danciu, V. [Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Arany Janos 11, 400028 Cluj-Napoca (Romania); Baia, L. [Babes-Bolyai University, Faculty of Physics and Interdisciplinary Research Institute on Bio-Nano-Sciences, 400084 Cluj-Napoca (Romania)

    2013-08-15

    Nanocomposites based on TiO{sub 2} aerogel and Ag nanoparticles have been successfully obtained through different synthesis methods and their specific surface areas have been determined by N{sub 2} sorption (BET method). The photocatalytic potential for salicylic acid degradation has been evaluated. It was found that under visible light irradiation, all synthesized nanocomposites exhibit higher photocatalytic activity than the commercially available Aeroxide P25. By correlating the structural parameters with the photocatalytic performances, it has been found that the Ag nanoparticles and brookite phase presence alongside the anatase play important roles on the visible photocatalysts behavior. For the Ag containing samples with mixed anatase–brookite phases, it has been observed that the visible photocatalytic performance decreases with the increase in brookite crystalline phase content. On the other hand, the addition of Ag nanoparticles results, as expected, in a clear enhancement of the visible photocatalytic activity. - Graphical abstract: Display Omitted - Highlights: • Synthesis of composites based on TiO{sub 2} aerogel and Ag nanoparticles. • Existence of mixed crystalline structure consisting of brookite and anatase phases. • Composites visible photocatalytic activity reduces as brookite phase content raises. • Ag nanoparticles addition enhances the visible photocatalytic activity.

  15. Influence of vacuum-annealing on the diffusion barrier properties of MOCVD TiN for Cu metallization

    CERN Document Server

    Lee, J G; Lee, E G; Lee, J Y; Kim, K B; Lee, J M

    1999-01-01

    We have investigated the effects of vacuum annealing of TDMAT-sourced TiN on the film qualities, as well as on the properties of the barrier against Cu diffusion. Vacuum annealing at 550 .deg. C to 1000 .deg. C achieved a significant densification of the TiN films with the interaction of Ti in the TiN prepared by metalorganic chemical-vapor deposition (MOCVD TiN) and Si at the interface. This interaction produced a stable interface between TiN and Si. In addition, annealing of the films at 1000 .deg. C transformed the amorphous TiN(C) films into crystalline TiNC solid solutions. About 10 at % silicon diffused into the TiN film from the Si substrate, and oxygen in the as-deposited TiN film was expelled to the surface after annealing at 1000 .deg. C. The barrier failure mechanism of MOCVD TiN in Cu metallization included the indiffusion of Cu and the accompanying outdiffusion of silicon through the barrier layer. The annealing of MOCVD TiN in vacuum improved the diffusion barrier properties, partly due to the d...

  16. Bi对Sn-0.3Ag-0.7Cu-xBi/Ni焊点IMC的影响%Influence of Bi on IMC of Sn-0.3Ag-0.7Cu-xBi/Ni Solder

    Institute of Scientific and Technical Information of China (English)

    权延慧; 李锋

    2011-01-01

    无铅钎料和基板间金属间化合物(1MC)的生长对元器件的可靠性有重要影响.使用Sn-0.3Ag-0.7Cu-xBi无铅钎料与Ni盘进行焊接,并对焊点进行了180℃时效试验,时效时间分别为O、24、96、216和384h.采用金相显微镜、扫描电镜和能谱仪观察分析了钎料与Ni界面IMC的生长及形貌变化,并对其焊点IMC层Ni的分布进行了分析,同时对其界面生长速率进行了拟合.结果表明:Sn-0.3Ag-0.7Cu焊料与Ni焊盘之间的IMC是棒状的(CuxNi1-x)6Sn5,Bi的加入并没有起到很好的抑制作用,而是随着Bi含量的增加IMC先增加后减少.Sn-O.3Ag-0.7Cu/Ni焊点IMC中Ni的平均含量(wN)分为15%、5%两区域.由近Ni向钎料基体方向呈下降趋势.但是Sn-O.3Ag-0.7Cu-3.0Bi/Ni焊点IMC中Ni的平均含量在7%左右.时效后IMC层的厚度会随着老化时间的延长而增加,但是Sn-0.3Ag-0.7Cu-xBi/Ni焊点由于Bi的析出IMC增长得缓慢;Sn-0.3Ag-0.7Cu/Ni焊点(CuxNi1-x)6Sn5中15%Ni的含量区域逐渐过渡到5%区域,但是Sn-0.3Ag-0.7Cu-xBi/Ni焊点IMC中Ni的平均含量维持9%较时效前有所增加.通过生长速率计算,Sn-O.3Ag-0.7Cu-xBi/Ni焊点IMC的生长速率随着Bi含量的增加而减少.%The growth of intermetallic compounds (IMC) between lead-free solder and pad has an important influence on the reliability of primary device. Ni substrate was welded by Sn-0.3Ag-0.7Cu-xBi lead-free solder, and the joints were aging-treated at 180C, aging time was 0, 24, 95, 216 and 384 h respectively, The growth and morphology characteristics of the IMCs were investigated by metallographic microscope, SEM and EDX. The content change of Ni in the IMC was also analysed, meanwhile, the IMC growth rates were fitted by experimental data. The results show that the IMC between Sn-0.3Ag-0.7Cu-xBi and Ni substrate is (CuxNi1-x)6Sn5- The effect of controlling the thickness of IMC is not very good after the addition of Bi, with the increase of Bi content, the thickness of IMC

  17. Visible-Light-Active Plasmonic Ag-SrTiO3 Nanocomposites for the Degradation of NO in Air with High Selectivity.

    Science.gov (United States)

    Zhang, Qian; Huang, Yu; Xu, Lifeng; Cao, Jun-ji; Ho, Wingkei; Lee, Shun Cheng

    2016-02-17

    Harnessing inexhaustible solar energy for photocatalytic disposal of nitrogen oxides is of great significance nowadays. In this study, Ag-SrTiO3 nanocomposites (Ag-STO) were synthesized via one-pot solvothermal method for the first time. The deposition of Ag nanoparticles incurs a broad plasmonic resonance absorption in the visible light range, resulting in enhanced visible light driven activity on NO removal in comparison with pristine SrTiO3. The Ag loading amount has a significant influence on light absorption properties of Ag-STO, which further affects the photocatalytic efficiency. It was shown that 0.5% Ag loading onto SrTiO3 (in mass ratio) could remove 30% of NO in a single reaction path under visible light irradiation, which is twice higher than that achieved on pristine SrTiO3. Most importantly, the generation of harmful intermediate (NO2) is largely inhibited over SrTiO3 and Ag-STO nanocomposites, which can be ascribed to the basic surface property of strontium sites. As identified by electron spin resonance (ESR) spectra,·O2(-) and ·OH radicals are the major reactive species for NO oxidation. Essentially speaking, the abundance of reactive oxygen radicals produced over Ag-STO nanocomposites are responsible for the improved photocatalytic activity. This work provides a facile and controllable route to fabricate plasmonic Ag-SrTiO3 nanocomposite photocatalyst featuring high visible light activity and selectivity for NO abatement. PMID:26796511

  18. Photo-electronic behavior of Cu{sub 2}O- and/or CeO{sub 2}-loaded TiO{sub 2}/carbon cluster nanocomposite materials

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, H.; Saitou, Y. [Department of Applied Chemistry, Faculty of Science and Engineering, Kinki University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502 (Japan); Karuppuchamy, S., E-mail: chamy@life.kyutech.ac.jp [Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Kitakyushu, Fukuoka 808-0196 (Japan); Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Hassan, M.A. [Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Yoshihara, M. [Department of Applied Chemistry, Faculty of Science and Engineering, Kinki University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502 (Japan)

    2012-10-15

    Graphical abstract: Nano-sized TiO{sub 2}/carbon clusters composite materials (I{sub c}'s) have been successfully prepared for the first time by the calcination of TiO(OCOCH{sub 3}CHCOCH{sub 3}){sub 2}/starch complexes (I's) in air. The visible light induced photocatalytic activity of nano-sized TiO{sub 2}/carbon clusters composite materials was observed. Highlights: Black-Right-Pointing-Pointer Nano-sized TiO{sub 2}/carbon cluster composite materials have been synthesized. Black-Right-Pointing-Pointer The surface of the composite was modified with Cu{sub 2}O, CeO{sub 2} and Pt particles. Black-Right-Pointing-Pointer The composite shows the photo-catalytic activity under visible light irradiation. - Abstract: Nano-sized TiO{sub 2}/carbon cluster composite materials have been successfully prepared for the first time by calcination of TiO(OCOCH{sub 3}CHCOCH{sub 3}){sub 2}/starch complexes in air. The surface of composite materials was modified with nano-sized Cu{sub 2}O and CeO{sub 2} particles, followed by the subsequent modification of Pt particles. The composition of the synthesized composite materials was determined using inductively coupled plasma spectroscopy, elemental analysis and surface characterization by transmission electron microscopy. The reduction reaction of methylene blue with the calcined materials under the visible light irradiation has also been examined. The composite material reduced the methylene blue under the irradiation of visible light ({lambda} > 460 nm). The metal oxide-loaded composite materials could also decompose an aqueous silver nitrate solution by visible light irradiation and give O{sub 2} and Ag.

  19. Synthesis of Ag nano/TiO2 material by gamma Co-60 irradiation method for dye-sensitized solar cell application

    International Nuclear Information System (INIS)

    Silver nano doped TiO2(Ag nano/TiO2) material with different Ag contents (0.1-0.75 %) was synthesized by Co-60 gamma irradiation method and used as photoanode of dye-sensitized solar cells. The characteristics of Ag nano/TiO2 were determined by X-ray diffraction (XRD), transmission electron microscope (TEM) and UV-visible spectroscopy (UV-Vis). Bandgap energy values of Ag nano/TiO2 materials were also determined. Ag nano/TiO2 has improved efficiency of energy conversion solar-to-electrical of solar cells. The efficiency of solar cell assembled with Ag nano (0.75%)/TiO2 was of 4.71% which increased about 25.6% compared with that of the cell based on TiO2 (3.75%). Preparation of Ag nano/TiO2 material by gamma irradiation is promising to carry on large scale application for dye-sensitized solar cells. (author)

  20. Effects of Cu content on electrochemical response in Ti-based metallic glasses under simulated body fluid.

    Science.gov (United States)

    Huang, C H; Lai, J J; Huang, J C; Lin, C H; Jang, J S C

    2016-05-01

    Systematic characterization of the corrosion response of the Cu-free Ti45Zr40Si15 and Cu-containing Ti40Zr40Si15-Cu5 and Ti45Zr20-Cu35 metallic glasses (MGs) in the Hank's solution is conducted, in terms of the open circuit potential, potentiodynamic polarization, as well as electrochemical impedance measurements. The Cu role in the Ti-based MGs, tentatively to be applied for bio-implants, is established and modeled. The presence of nobler Cu will impose two opposite effects. The minor positive effect of minor shift of Ecorr is not a major issue, but the negative effect on local pitting and ion release would cause a major drawback. The ICP-MS indicates that the release of Cu ions increases with increasing Cu content. For more promising anti-pitting ability, the Cu content in Ti-based MGs should be kept as low as possible, better to be none or less than about 5at.%. PMID:26952435

  1. Optimization of TiO2/Cu/TiO2 multilayers as a transparent composite electrode deposited by electron-beam evaporation at room temperature

    Institute of Scientific and Technical Information of China (English)

    孙洪涛; 王小平; 寇志起; 王丽军; 王金烨; 孙义清

    2015-01-01

    Highly transparent indium-free composite electrodes of TiO2/Cu/TiO2 are deposited by electron-beam evaporation at room temperature. The effects of Cu thickness and annealing temperature on the electrical and optical properties of the multilayer film are investigated. The critical thickness of Cu mid-layer to form a continuous conducting layer is found to be 11 nm. The multilayer with a mid-Cu thickness of 11 nm is optimized to obtain a resistivity of 7.4×10−5 Ω·cm and an average optical transmittance of 86%in the visible spectral range. The figure of merit of the TiO2/Cu(11 nm)/TiO2 multilayer annealed at 150 ◦C reaches a minimum resistivity of 5.9×10−5 Ω·cm and an average optical transmittance of 88%in the visible spectral range. The experimental results indicate that TiO2/Cu/TiO2 multilayers can be used as a transparent electrode for solar cell and other display applications.

  2. Microstructure and adhesion strength of Sn-9Zn-xAg lead-free solders wetted on Cu substrate

    Energy Technology Data Exchange (ETDEWEB)

    Chang, T.-C. [Department of Materials Science and Engineering, National Cheng Kung University, 1 Ta-Huseh Road, Tainan 70101, Taiwan (China); Chou, S.-M. [Department of Materials Science and Engineering, National Cheng Kung University, 1 Ta-Huseh Road, Tainan 70101, Taiwan (China); Hon, M.-H. [Department of Materials Science and Engineering, National Cheng Kung University, 1 Ta-Huseh Road, Tainan 70101, Taiwan (China); Dayeh University, 112 Shan-Jiau Road, Da-Tsuen, Changhua 515, Taiwan (China); Wang, M.-C. [Department of Materials Science and Engineering, National United University, 1 Lien-Da Road, Kung-Ching Li, Miaoli 360, Taiwan (China) and Faculty of Fragrance and Cosmetics, Kaohsiung Medical University, 100 Shi-Chuan 1st Road, Kaohsiung 807, Taiwan (China)]. E-mail: chsi@nuu.edu.tw

    2006-08-15

    The microstructure and adhesion strength of the Sn-9Zn-xAg lead-free solders wetted on Cu substrates have been investigated by differential scanning calorimetry, optical microscopy, scanning electron microscopy, energy dispersive spectrometry and pull-off testing. The liquidus temperatures of the Sn-9Zn-xAg solder alloys are 222.1, 226.7, 231.4 and 232.9 deg. C for x = 2.5, 3.5, 5.0 and 7.5 wt%, respectively. A flat interface can be obtained as wetted at 350 deg. C at a rate of 11.8 mm/s. The adhesion strength of the Sn-9Zn-xAg/Cu interfaces decreases from 23.09 {+-} 0.31 to 12.32 {+-} 1.40 MPa with increasing Ag content from 2.5 to 7.5 wt% at 400 deg. C. After heat treatment at 150 deg. C, the adhesion strength of the Sn-9Zn-xAg/Cu interface decreases with increasing aging time.

  3. Microstructure and adhesion strength of Sn-9Zn-xAg lead-free solders wetted on Cu substrate

    International Nuclear Information System (INIS)

    The microstructure and adhesion strength of the Sn-9Zn-xAg lead-free solders wetted on Cu substrates have been investigated by differential scanning calorimetry, optical microscopy, scanning electron microscopy, energy dispersive spectrometry and pull-off testing. The liquidus temperatures of the Sn-9Zn-xAg solder alloys are 222.1, 226.7, 231.4 and 232.9 deg. C for x = 2.5, 3.5, 5.0 and 7.5 wt%, respectively. A flat interface can be obtained as wetted at 350 deg. C at a rate of 11.8 mm/s. The adhesion strength of the Sn-9Zn-xAg/Cu interfaces decreases from 23.09 ± 0.31 to 12.32 ± 1.40 MPa with increasing Ag content from 2.5 to 7.5 wt% at 400 deg. C. After heat treatment at 150 deg. C, the adhesion strength of the Sn-9Zn-xAg/Cu interface decreases with increasing aging time

  4. CuO/TiO2 nanocrystals grown on graphene as visible-light responsive photocatalytic hybrid materials

    Indian Academy of Sciences (India)

    Yuan Fang; Rijing Wang; Guohua Jiang; He Jin; Yin Wang; Xinke Sun; Sheng Wang; Tao Wang

    2012-08-01

    CuO/TiO2 nanocrystals grown on graphene (CuO/TiO2–GR) were prepared by a simple hydrothermal method using Cu(CH3COO)2.H2O and (NH4)2TiF6 as precursors and graphene oxide (GO) as templates. The asprepared composites were characterizated by TEM, XRD, FT–IR to determine composition and phase purity. The photocatalytic activity of the samples was evaluated by photo-degradation of methylene blue (MB) aqueous solution under UV and visible light illumination. This work may provide new insights into preparing other inorganic graphene-based composites.

  5. Cu(II) porphyrins modified TiO{sub 2} photocatalysts: Accumulated patterns of Cu(II) porphyrin molecules on the surface of TiO{sub 2} and influence on photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Su, Xiao-qin [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an, Shaanxi 710069 (China); Shaanxi Key Laboratory of Photoelectric Functional Materials and Devices, School of Materials and Chemical Engineering, Xi’an Technological University, Xi’an, Shaanxi 710021 (China); Li, Jun, E-mail: junli@nwu.edu.cn [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an, Shaanxi 710069 (China); Zhang, Zeng-qi; Yu, Mi-mi; Yuan, Lin [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an, Shaanxi 710069 (China)

    2015-03-25

    Highlights: • Two new crystal structures of copper porphyrins containing meso-tetra(ester and carboxyl) were obtained. • The two copper porphyrins were used to modify TiO{sub 2} for the first time. • The accumulated patterns of copper porphyrin molecules on the TiO{sub 2} surface is an important factor for the photocatalytic activity. • The peripheral groups of copper porphyrins influence their stacking patterns in solid state. - Abstract: The accumulated patterns of porphyrin molecules on the surface of TiO{sub 2} have an important effect on the photoactivity of porphyrin/TiO{sub 2} photocatalysts. Herein, two copper porphyrins containing flexible peripheral functional groups (meso-tetra(ester, carboxy)), Cu(II)5,10,15,20-tetrakis[4-(carboethoxymethyleneoxy)phenyl]porphyrin (CuPp(2a)) and Cu(II)5,10,15,20-tetrakis[4-(carboxymethyleneoxy)phenyl]porphyrin (CuPp(2b)), were synthesized and characterized spectroscopically. Their crystal structures were also determined by single crystal X-ray diffraction. The Cu(II) porphyrin-TiO{sub 2} composites were also prepared and characterized. The accumulated patterns of synthesized copper porphyrins on the surface of TiO{sub 2} were proposed for the first time. The photoactivity of the composites was investigated by carrying out the degradation of 4-nitrophenol (4-NP) in aqueous solution under UV–visible light. The results indicated that the CuPp(2b)-TiO{sub 2} showed the higher photocatalytic activity than that of CuPp(2a)-TiO{sub 2}. Above all, it can be concluded that the accumulated patterns of porphyrins on the surface of TiO{sub 2} is an important factor for the photocatalytic efficiency of porphyrin/TiO{sub 2}.

  6. Cu(II) porphyrins modified TiO2 photocatalysts: Accumulated patterns of Cu(II) porphyrin molecules on the surface of TiO2 and influence on photocatalytic activity

    International Nuclear Information System (INIS)

    Highlights: • Two new crystal structures of copper porphyrins containing meso-tetra(ester and carboxyl) were obtained. • The two copper porphyrins were used to modify TiO2 for the first time. • The accumulated patterns of copper porphyrin molecules on the TiO2 surface is an important factor for the photocatalytic activity. • The peripheral groups of copper porphyrins influence their stacking patterns in solid state. - Abstract: The accumulated patterns of porphyrin molecules on the surface of TiO2 have an important effect on the photoactivity of porphyrin/TiO2 photocatalysts. Herein, two copper porphyrins containing flexible peripheral functional groups (meso-tetra(ester, carboxy)), Cu(II)5,10,15,20-tetrakis[4-(carboethoxymethyleneoxy)phenyl]porphyrin (CuPp(2a)) and Cu(II)5,10,15,20-tetrakis[4-(carboxymethyleneoxy)phenyl]porphyrin (CuPp(2b)), were synthesized and characterized spectroscopically. Their crystal structures were also determined by single crystal X-ray diffraction. The Cu(II) porphyrin-TiO2 composites were also prepared and characterized. The accumulated patterns of synthesized copper porphyrins on the surface of TiO2 were proposed for the first time. The photoactivity of the composites was investigated by carrying out the degradation of 4-nitrophenol (4-NP) in aqueous solution under UV–visible light. The results indicated that the CuPp(2b)-TiO2 showed the higher photocatalytic activity than that of CuPp(2a)-TiO2. Above all, it can be concluded that the accumulated patterns of porphyrins on the surface of TiO2 is an important factor for the photocatalytic efficiency of porphyrin/TiO2

  7. Localized surface plasmon behavior of Ag-Cu alloy nanoparticles stabilized by rice-starch and gelatin

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Manish Kumar; Mandal, R. K., E-mail: rkmandal.met@itbhu.ac.in [Department of Metallurgical Engineering, IIT (BHU), Varanasi and DST Unit on Nanoscience and Technology, BHU, Varanasi-221 005 (India); Manda, Premkumar; Singh, A. K. [DefenceMetallurgical Research Laboratory, KanchanBagh, Hyderabad-500058 (India)

    2015-10-15

    The purpose of this communication was to understand localized surface plasmon behavior of a series of Ag-Cu alloy nanoparticles capped by rice-starch and gelatin. The structures of dried powders were investigated with the help of X-ray diffraction. The analysis revealed Ag-rich and Cu-rich phases with maximum solid solubility of Cu ∼9 atom per cent; 8 atom per cent and Ag ∼ 16 atom per cent; 14 atom per cent in rice-starch and gelatin capped samples respectively. Transmission electron microscope was used for knowing the particle size as well as to supplement FCC phase formations of Ag-rich and Cu-rich solid phases arrived at based on X-ray diffraction studies. The UV-Vis spectra of sols were examined for the formation and stability of alloy nanoparticles. The temporal evolution of LSPR curves gave us to assert that the sol is stable for more than two months. Small angle X-ray scattering in the sol state was extensively utilized to understand nature of suspensions in terms of fractals. Such a study is important for having a correlation between LSPR behaviors with those of nanoparticle dispersion in aqueous media. It is believed that this work will be a contribution to the emerging field of plasmonics that include applications in the area of photophysical processes and photochemical reactions.

  8. The Effects of Adding Elements of Zinc and Magnesium on Ag-Cu Eutectic Alloy for Warming Acupuncture

    Science.gov (United States)

    Park, Il Song; Kim, Keun Sik; Lee, Min Ho

    2013-01-01

    The warming acupuncture for hyperthermia therapy is made of STS304. However, its needle point cannot be reached to a desirable temperature due to heat loss caused by low thermal conductivity, and the quantification of stimulation condition and the effective standard establishment of warming acupuncture are required as a heat source. Accordingly, in this study, after Ag-Cu alloys with different composition ratios were casted and then mixed with additives to improve their physical and mechanical properties, the thermal conductivity and biocompatibility of the alloy specimens were evaluated for selecting suitable material. Ag-Cu binary alloys and ternary alloys added 5 wt% Zn or 2 wt% Mg were casted and then cold drawn to manufacture needles for acupuncture, and their physical properties, thermal conductivity, and biocompatibility were evaluated for their potential use in warming acupuncture. The results of this study showed that the physical and mechanical properties of the Ag-Cu alloys were improved by additives and that the thermal conductivity, machinability, and biocompatibility of the Ag-Cu alloys were improved by Mg addition. PMID:24078827

  9. Evolution of microstructure and electrical resistivity of Cu-12wt.%Ag filamentary microcomposite with drawing deformation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, L. [College of Materials Science and Chemical Engineering, Zhejiang University, Hangzhou 310027 (China); Meng, L. [College of Materials Science and Chemical Engineering, Zhejiang University, Hangzhou 310027 (China)]. E-mail: mengliang@zju.edu.cn

    2005-06-15

    Cu-12wt.%Ag filamentary microcomposite was prepared by heavy cold drawing. The microstructure was observed and the electrical resistivity determined at different strain levels. The mechanism responsible for the electronic conduction was discussed according to the microstructure evolution during drawing deformation.

  10. Localized surface plasmon behavior of Ag-Cu alloy nanoparticles stabilized by rice-starch and gelatin

    Science.gov (United States)

    Singh, Manish Kumar; Manda, Premkumar; Singh, A. K.; Mandal, R. K.

    2015-10-01

    The purpose of this communication was to understand localized surface plasmon behavior of a series of Ag-Cu alloy nanoparticles capped by rice-starch and gelatin. The structures of dried powders were investigated with the help of X-ray diffraction. The analysis revealed Ag-rich and Cu-rich phases with maximum solid solubility of Cu ˜9 atom per cent; 8 atom per cent and Ag ˜ 16 atom per cent; 14 atom per cent in rice-starch and gelatin capped samples respectively. Transmission electron microscope was used for knowing the particle size as well as to supplement FCC phase formations of Ag-rich and Cu-rich solid phases arrived at based on X-ray diffraction studies. The UV-Vis spectra of sols were examined for the formation and stability of alloy nanoparticles. The temporal evolution of LSPR curves gave us to assert that the sol is stable for more than two months. Small angle X-ray scattering in the sol state was extensively utilized to understand nature of suspensions in terms of fractals. Such a study is important for having a correlation between LSPR behaviors with those of nanoparticle dispersion in aqueous media. It is believed that this work will be a contribution to the emerging field of plasmonics that include applications in the area of photophysical processes and photochemical reactions.

  11. Localized surface plasmon behavior of Ag-Cu alloy nanoparticles stabilized by rice-starch and gelatin

    Directory of Open Access Journals (Sweden)

    Manish Kumar Singh

    2015-10-01

    Full Text Available The purpose of this communication was to understand localized surface plasmon behavior of a series of Ag-Cu alloy nanoparticles capped by rice-starch and gelatin. The structures of dried powders were investigated with the help of X-ray diffraction. The analysis revealed Ag-rich and Cu-rich phases with maximum solid solubility of Cu ∼9 atom per cent; 8 atom per cent and Ag ∼ 16 atom per cent; 14 atom per cent in rice-starch and gelatin capped samples respectively. Transmission electron microscope was used for knowing the particle size as well as to supplement FCC phase formations of Ag-rich and Cu-rich solid phases arrived at based on X-ray diffraction studies. The UV-Vis spectra of sols were examined for the formation and stability of alloy nanoparticles. The temporal evolution of LSPR curves gave us to assert that the sol is stable for more than two months. Small angle X-ray scattering in the sol state was extensively utilized to understand nature of suspensions in terms of fractals. Such a study is important for having a correlation between LSPR behaviors with those of nanoparticle dispersion in aqueous media. It is believed that this work will be a contribution to the emerging field of plasmonics that include applications in the area of photophysical processes and photochemical reactions.

  12. The Effects of Adding Elements of Zinc and Magnesium on Ag-Cu Eutectic Alloy for Warming Acupuncture

    Directory of Open Access Journals (Sweden)

    Yu Kyoung Kim

    2013-01-01

    Full Text Available The warming acupuncture for hyperthermia therapy is made of STS304. However, its needle point cannot be reached to a desirable temperature due to heat loss caused by low thermal conductivity, and the quantification of stimulation condition and the effective standard establishment of warming acupuncture are required as a heat source. Accordingly, in this study, after Ag-Cu alloys with different composition ratios were casted and then mixed with additives to improve their physical and mechanical properties, the thermal conductivity and biocompatibility of the alloy specimens were evaluated for selecting suitable material. Ag-Cu binary alloys and ternary alloys added 5 wt% Zn or 2 wt% Mg were casted and then cold drawn to manufacture needles for acupuncture, and their physical properties, thermal conductivity, and biocompatibility were evaluated for their potential use in warming acupuncture. The results of this study showed that the physical and mechanical properties of the Ag-Cu alloys were improved by additives and that the thermal conductivity, machinability, and biocompatibility of the Ag-Cu alloys were improved by Mg addition.

  13. Microstructure and Mechanical Performance of Cu-Sn-Ti-Based Active Braze Alloy Containing In Situ Formed Nano-Sized TiC Particles

    Science.gov (United States)

    Leinenbach, Christian; Transchel, Robert; Gorgievski, Klea; Kuster, Friedrich; Elsener, Hans Rudolf; Wegener, Konrad

    2015-05-01

    A Cu-Sn-Ti-based active brazing filler alloy was in situ reinforced with nanosized TiC particles by adding different amounts of a cellulose nitride-based binder. The TiC particles emanate from a reaction of the Ti within the filler alloy with the carbon from the binder that does not decompose completely during heating. The correlation between the microstructure and mechanical performance was studied. In addition, the effect of different binder amounts on the shear strength and cutting performance of brazed diamond grains was studied in shear tests and single grain cutting tests. The results clearly show that the mechanical performance of the brazed diamond grains can be improved by the formation of TiC particles. This is attributed to particle strengthening of the filler alloy matrix as well as to the decreasing grain size and more homogeneous distribution of the (Cu,Sn)3Ti5 phase with increasing amount of binder.

  14. Amorphous-to-Cu/sub 51/Zr/sub 14/ phase transformation in Cu/sub 60/Ti/sub 20/Zr/sub 20/ alloy

    DEFF Research Database (Denmark)

    Cao, Q.P.; Zhou, Y.H.; Horsewell, Andy;

    2003-01-01

    The kinetics of an amorphous-to-Cu51Zr14 phase transformation in an as-cast Cu60Ti20Zr20 rod have been investigated by differential scanning calorimetry. The relative volume fractions of the transferred crystalline phase as a function of annealing time, obtained at 713, 716, 723, 728, and 733 K, ...

  15. Martensitic transformation and mechanical properties of Ti-rich Ti-Ni-Cu melt-spun ribbon

    Institute of Scientific and Technical Information of China (English)

    HE Wen-jun; MIN Guang-hui; YIN Yan-sheng; O.TOLOCHKO

    2009-01-01

    Martensitic transformation,mechanical and thermomechanical properties of a Ti-rich Ti_(52)Ni_(23)Cu_(25) melt spun ribbon annealed at a temperature below the crystallization temperature were studied by XRD,DSC and DMA.After annealing the initially amorphous ribbon at 400 ℃ for 10 h,the ribbon is fully crystallized and exhibits one-stage B2-B19 phase transformation with the temperature hysteresis of 14 ℃.The annealed ribbon is composed of B2,B19 and B11-TiCu phase with (001) preferential orientation.On the stress―strain curves,the rearrangement of the martensite variants and stress-induced martensitic transformation are observed below the M_f temperature and above the A_f temperature,respectively.The annealed ribbon exhibits up to 1.6% superelastic shape recovery with small stress hysteresis of 25 Mpa.No flat stress-plateau is associated with the superelasticity.The annealed ribbon shows a well-defined shape memory effect during thermal cycling from -60 to 100 ℃.The transformation strain and recovery strain increase with increasing the applied external stress.Under the external stress above 150 Mpa,the shape recovery strain is not sensitive to it and keeps stable at about 1.74%.

  16. Origin of colossal dielectric response of CaCu3Ti4O12 studied by using CaTiO3/CaCu3Ti4O12/CaTiO3 multilayer thin films

    Science.gov (United States)

    Mitsugi, Masakazu; Asanuma, Shutaro; Uesu, Yoshiaki; Fukunaga, Mamoru; Kobayashi, Wataru; Terasaki, Ichiro

    2007-06-01

    To elucidate the origin of the colossal dielectric response (CDR) of CaCu3Ti4O12 (CCTO), multilayer thin films of CCTO interposed in insulating CaTiO3 (CTO) were synthesized using a pulsed laser deposition technique. The capacitance C of CTO/CCTO/CTO films with different layer thicknesses is measured. After removing the capacitance of CTO by extrapolating C to zero CTO thickness, the real part of dielectric constant of CCTO is estimated to be 329-435, which is much smaller than the reported value for CCTO thin films. This fact indicates that the CDR of CCTO is extrinsic and originates from an internal barrier layer capacitor.

  17. Low temperature thermoelectric properties of Cu intercalated TiSe2: a charge density wave material

    Science.gov (United States)

    Bhatt, Ranu; Basu, Ranita; Bhattacharya, S.; Singh, A.; Aswal, D. K.; Gupta, S. K.; Okram, G. S.; Ganesan, V.; Venkateshwarlu, D.; Surgers, C.; Navaneethan, M.; Hayakawa, Y.

    2013-05-01

    In this communication, we investigate the thermoelectric properties of a charge density wave material TiSe2 upon Cu intercalation. Polycrystalline Cu x TiSe2 ( x=0-0.11) alloys were synthesized using solid state sintering process and their morphological and structural properties were investigated. The material grows in layered morphology and the c-lattice parameter increases linearly with x. The temperature dependent resistivity measured in the 300-5 K range, shows that increasing x leads to a systematic transition from charge density wave state to the metallic state. For x=0.11, the room temperature thermoelectric figure-of-merit is found to be 0.104, which is higher by seven orders in magnitude (i.e. 1.93×10-8) measured for pristine TiSe2 and comparable to the other reported thermoelectric materials. These results show that Cu x TiSe2 are a potential material for the low temperature thermoelectric applications.

  18. The Photocatalytic and Antibacterial Activity of Cu-Doped TiO2 Thin Films

    Directory of Open Access Journals (Sweden)

    Weerachai SANGCHAY

    2013-02-01

    Full Text Available Thin films of TiO2 and TiO2 doped with Cu were prepared by sol-gel method. The prepared films were calcined at the temperature of 400 °C for 2 h with the heating rate of 10 °C/min. Physical properties as well as crystal compositions of the fabricated films were characterized by XRD, EDX SEM and AFM techniques. The results show that all samples have thickness range from 0.25 to 1.0 um. The film surfaces are typically uniform and dense with TiO2 nanoparticles. The photocatalytic activities of the thin films were also tested via the degradation of methylene blue (MB solution under UV irradiation. Finally, antibacterial activity efficiency was evaluated by the inactivation of E.coli. It was observed that higher Cu concentration gives better photocatalytic activity. With the highest dopant concentration investigated in this experiment (TiO2-1.0Cu condition the films show photocatalytic of 70 % and antibacterial activity of 100 %.

  19. Exposure of W-TiC/Cu Functionally Graded Materials in the Edge Plasma of HT-7 Tokamak

    Institute of Scientific and Technical Information of China (English)

    刘洋; 朱大焕; 陈俊凌; 周张健; 鄢容

    2012-01-01

    Six-layered W-TiC/Cu functionally graded materials were fabricated by resistance sintering under ultra-high pressure and exposed in the edge plasma of HT-7 tokamak. Microstruc- ture morphologies show that the TiC particles distribute homogeneously in the W matrix, strength- ening the grain boundary, while gradient layers provide a good compositional transition from W- TiC to Cu. After about 360 shots in the HT-7 tokamak, clear surface modification can be observed after plasma exposure, and the addition of nano TiC particles is beneficial to the improvement of plasma loads resistance of W.

  20. In vitro chemical and biological effects of Ag, Cu and Cu + Zn adjunction in 46S6 bioactive glasses

    Science.gov (United States)

    Bunetel, L.; Wers, E.; Novella, A.; Bodin, A.; Pellen-Mussi, P.; Oudadesse, H.

    2015-09-01

    Three bioactive glasses belonging to the system SiO2-CaO- Na2O-P2O5 elaborated by conventional melt-quenching techniques were doped with silver, copper and copper + zinc. They were characterized using the usual physical methods. Human osteoblast cells Saos-2 and human endothelial cells EAhy926 were used for viability assays and to assess the metallic ions, self toxicity. Human monocyte cells THP-1 were used to measure interleukins IL1β and IL6 release. Glass chemical structures did not vary much on introduction of metal ions. A layer of hydroxyapatite was observed on every glass after 30 days of SBF immersion. A proliferative action was seen on Saos-2 after 24 h of incubation, EAhy926 growth was not affected. For both cell lines, a moderate cytotoxicity was found after 72 h. Dose-dependent toxic effects of Ag, Cu and Zn ions were observed on Saos-2 and EAhy926 cells. Measured CD50 of silver against these two cell lines were 8 to 20 fold lower than copper and zinc’s. Except undoped control glass, all doped glasses tested showed anti-inflammatory properties by preventing IL1β and IL6 excretion by differentiated THP-1. In conclusion, strictly monitored adjunction of metal ions to bioglasses ensures good anti-inflammatory properties without altering their biocompatibility.

  1. Solderability of Electrodeposited Fe-Ni Alloys with Eutectic SnAgCu Solder

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Solderabilities of electrodeposited Fe-Ni alloys with SnAgCu solder were examined by wetting balance measurements and compared to those of pure Ni and pure Fe platings. Excellent solderability was found on the Ni-52Fe plating as both the wetting force and kinetics approached or exceeded those on the pure Ni. However,upon further increase in Fe content to 75 at. pct, the solderability of the alloy was severely degraded even though it was still better than that of the pure Feplating. X-ray photoelectron spectroscopy showed that such a strong dependence of solderability on Fe content is related to the much thinner, incomplete oxide coverage of Ni-rich plating surface.

  2. Structure and age of the Cerro de Pasco Cu-Zn-Pb-Ag deposit, Peru

    Science.gov (United States)

    Cheney, E. S.

    1991-04-01

    The world-famous Cu-Zn-Pb-Ag deposit at Cerro de Pasco, Peru, consists of texturally massive pyrite, texturally massive sphalerite-galena-pyrite, and veins containing pyrite and enargite. Historically the deposit has been considered to be the hydrothermal product of the adjacent Miocene volcanic and intrusive complex (locally known as the “Vent”). However, both the texturally massive sulfides of the deposit and the pre-Miocene strata are cut by the Longitudinal fault, one of the largest faults in the district, but the Vent is not. Imbrication by the Longitudinal fault zone (duplex structures) has thickened the deposit so that it is amenable to open-pit mining. Dikes and pyrite-enargite veins pass from the Vent into the massive sulfides; fragments of massive pyrite occur in the Vent. Thus, no matter what their origin, the texturally massive sulfides are older and, therefore, genetically unrelated to the Vent.

  3. ANTIMICROBIAL ACTIVITY OF Ag+, Cu2+, Zn2+, Mg2+ IONS DOPED CHITOSAN NANOPARTICLES

    Directory of Open Access Journals (Sweden)

    Sukhodub LB

    2015-04-01

    Full Text Available Modification by polymers and inorganic ions of the bioactive materials for orthopedic implants with the purpose of initiating controlled reactions in tissues that surround the implant, is one of the modern approaches in medical materials. A key feature of functional polymers is their ability to form complexes with various metal ions in solution. Chitosan is natural biopolymer with pronounced affinity to transition metal ions. Some researches prove the higher antimicrobial activity of Chitosan-metal complexes compared with pure Chitosan. The purpose of this work was the study of antimicrobial activity of Chitosan nanoparticles modified by metal ions Ag+, Cu2+, Zn2+, Mg2+ against reference strains S. aureus 25923 ATSS, E. coli ATCC 25922, C. albicans ATCC 885653 for their further use as components of the composite biomaterials for medical purpose.Chitosan nanoparticles suspension was prepared by known method based on the ionotropic gelation between chitosan and sodium tripolyphosphate.To obtain Chitosan-metal nanoparticles to the Chitosan suspension were added the corresponding metal ions aqueous solutions in quantity to match the concentration of metal ions of 200 ppm . Antibacterial activities of Ag+, Cu2+, Zn2+, Mg2+ ions doped Chitosan nanoparticles, pure Chitosan nanoparticles, metal ions and 1% (v/v acetic acid solution (it was used as solvent for Chitosan against bacteria were evaluated by determination of minimum inhibitory concentration (MIC and minimum bactericidal concentration (MBC in vitro. Muller– Hinton (MH broth and MH agar (Russia were used as growth media. The bacteria suspension for further use was prepared with concentration that corresponded 0,5units by McFarland scale. The MIC was determined by a broth dilution method. The results were read after 24 hours of experimental tubes incubation at 37 oC as equivalent to the concentration of the tube without visible growth. To evaluate MBC, a sample of 0,1 ml was transferred from

  4. Modification of Sn-1.0Ag-0.5Cu solder using nickel and boron

    Institute of Scientific and Technical Information of China (English)

    Jun-Feng Qu; Jun Xu; Qiang Hu; Fu-Wen Zhang; Shao-Ming Zhang

    2015-01-01

    Effects of Ni and B additions on the microstructure and growth behavior of the intermetallic compound (IMC) of Sn-1.0Ag-0.5Cu alloys (SAC105) were investigated in this study.Results show that microadditions of Ni and B result in volume fraction of primary Sn increasing and the grain size decreasing observably.It is found that a large number of fine reinforcement particles with network-like shape are found in the solder,and the thickness of interfacial IMC layer in the solder joint is grew less than that of SAC 105 with longer aging time.Shear test results reveal that as-soldered solder joints of microalloyed SAC105 have better shear strength than that of SAC 105 solder alloy.

  5. Compound characterization of laser brazed SiC-steel joints using tungsten reinforced SnAgTi-alloys

    Science.gov (United States)

    Südmeyer, I.; Rohde, M.; Fürst, T.

    2010-02-01

    With the help of a CO2-laser (λ = 10.64 μm) Silicon carbide (Trade name: Ekasic-F, Comp: ESK Ceramics) has been brazed to commercial steel (C45E, Matnr. 1.1191) using SnAgTi-filler alloys. The braze pellets were dry pressed based on commercially available powders and polished to a thickness of 300 μm. The SnAgTi-fractions were varied with the objective of improving the compound strength. Furthermore, tungsten reinforced SnAgTi-fillers were examined with regard to the shear strength of the ceramic/steel joints. Polished microsections of SnAgTi-pellets were investigated before brazing in order to evaluate the particle distribution and to detect potential porosities using optical microscopy. The brazing temperature and the influence of the reinforcing particles on the active braze filler were determined by measurements with a differential scanning calorimeter (DSC). After brazing. the ceramic-steel joints were characterized by scanning electron micrographs and EDX-analysis. Finally the mechanical strength of the braze-joints was determined by shear tests.

  6. Phase transition study in a [Cu2HgI4 : 0.AgI] mixed composite system

    Indian Academy of Sciences (India)

    Noorussaba; Afaq Ahmad

    2010-08-01

    A novel composite superionic system, [Cu2HgI4 : 0.AgI], ( = 0.2, 0.4, 0.6 mol wt.%), was prepared. A [Cu2HgI4] system was used as the host. Electrical conductivity was measured to study the transition behaviour at frequencies of 100 Hz, 120 Hz, 1 kHz and 10 kHz in the temperature range 90–170°C using a Gen Rad 1659 RLC Digibridge. Conductivity increased sharply during the – phase transition. Upon increasing the dopant-to-host ratio, the conductivity of the superionic system exhibited Arrhenius (thermally activated)-type behaviour. DTA, DTG, TGA and X-ray powder diffraction were performed to confirm doping effect and transition in the host. The phase transition temperature increased with an increase in the dopant concentration. Activation energies in eV for pre- and post-transition phase behaviour are also reported. Due to an interaction between [Cu2HgI4] and AgI, the addition of AgI to [Cu2HgI4] shifted the phase transition of the host [Cu2HgI4].

  7. Critical interparticle distance for the remarkably enhanced dielectric constant of BaTiO3-Ag hybrids filled polyvinylidene fluoride composites

    Science.gov (United States)

    Luo, Suibin; Yu, Shuhui; Fang, Fang; Lai, Maobai; Sun, Rong; Wong, Ching-Ping

    2014-06-01

    Discrete nano Ag-deposited BaTiO3 (BT-Ag) hybrids with varied Ag content were synthesized, and the hybrids filled polyvinylidene fluoride (PVDF) composites were prepared. The effect of Ag content on the dielectric properties of the composites were analyzed based on the diffused electrical double layer theory. Results showed that with a higher Ag content in BT-Ag hybrids, the dielectric constant of BT-Ag/PVDF composites increases fast with the filler loading, while the dielectric loss and conductivity showed a suppressed and moderate increase. The dielectric constant of BT-0.61Ag/PVDF (61 wt. % of Ag in BT-Ag hybrid) composites reached 613, with the dielectric loss of 0.29 at 1 kHz. It was deduced that remarkably enhanced dielectric constant appeared when the interparticle distance decreased to a critical value of about 20 nm.

  8. Ti/Pd/Ag Contacts to n-Type GaAs for High Current Density Devices

    Science.gov (United States)

    Huo, Pengyun; Rey-Stolle, Ignacio

    2016-06-01

    The metallization stack Ti/Pd/Ag on n-type Si has been readily used in solar cells due to its low metal/semiconductor specific contact resistance, very high sheet conductance, bondability, long-term durability, and cost-effectiveness. In this study, the use of Ti/Pd/Ag metallization on n-type GaAs is examined, targeting electronic devices that need to handle high current densities and with grid-like contacts with limited surface coverage (i.e., solar cells, lasers, or light emitting diodes). Ti/Pd/Ag (50 nm/50 nm/1000 nm) metal layers were deposited on n-type GaAs by electron beam evaporation and the contact quality was assessed for different doping levels (from 1.3 × 1018 cm-3 to 1.6 × 1019 cm-3) and annealing temperatures (from 300°C to 750°C). The metal/semiconductor specific contact resistance, metal resistivity, and the morphology of the contacts were studied. The results show that samples doped in the range of 1018 cm-3 had Schottky-like I- V characteristics and only samples doped 1.6 × 1019 cm-3 exhibited ohmic behavior even before annealing. For the ohmic contacts, increasing annealing temperature causes a decrease in the specific contact resistance ( ρ c,Ti/Pd/Ag ~ 5 × 10-4 Ω cm2). In regard to the metal resistivity, Ti/Pd/Ag metallization presents a very good metal conductivity for samples treated below 500°C ( ρ M,Ti/Pd/Ag ~ 2.3 × 10-6 Ω cm); however, for samples treated at 750°C, metal resistivity is strongly degraded due to morphological degradation and contamination in the silver overlayer. As compared to the classic AuGe/Ni/Au metal system, the Ti/Pd/Ag system shows higher metal/semiconductor specific contact resistance and one order of magnitude lower metal resistivity.

  9. Microstructural and conductivity comparison of Ag films grown on amorphous TiO2 and polycrystalline ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Dannenberg, Rand; Stach, Eric; Glenn, Darin; Sieck, Peter; Hukari, Kyle

    2001-03-26

    8 nm thick Ag films were sputter deposited onto amorphous TiO{sub 2} underlayers 25 nm thick, and also amorphous TiO{sub 2} (25 nm)/ZnO (5 nm) multiunderlayers. The substrates were back-etched Si with a 50 nm thick LPCVD Si{sub 3}N{sub 4} electron transparent membrane. The ZnO, sputtered onto amorphous TiO{sub 2}, formed a continuous layer with a grain size of 5 nm in diameter, on the order of the film thickness. There are several microstructural differences in the Ag dependent on the underlayers, revealed by TEM. First a strong {l_brace}0001{r_brace} ZnO to {l_brace}111{r_brace} Ag fibre-texture relationship exists. On TiO{sub 2} the Ag microstructure shows many abnormal grains whose average diameter is about 60-80 nm, whereas the films on ZnO show few abnormal grains. The background matrix of normal grains on the TiO{sub 2} is roughly 15 nm, while the normal grain size on the ZnO is about 25 nm. Electron diffraction patterns show that the film on ZnO has a strong {l_brace}111{r_brace} orientation, and dark field images with this diffraction condition have a grain size of about 30 nm. In a region near the center of the TEM grid where there is the greatest local heating during deposition, Ag films grown on amorphous TiO{sub 2} are discontinuous, whereas on ZnO, the film is continuous. When films 8 nm films are grown on solid glass substrates, those with ZnO underlayers have sheet resistances of 5.68 {Omega}/, whereas those on TiO{sub 2} are 7.56 {Omega}/, and when 16 nm thick, the corresponding sheet resistances are 2.7 {Omega}/ and 3.3 {Omega}/. The conductivity difference is very repeatable. The improved conductivity is thought to be a combined effect of reduced grain boundary area per unit volume, the predominance of low grain boundary resistivity Coincidence Site Lattice boundaries from the Ag {l_brace}111{r_brace} orientation, and Ag planarization on ZnO resulting in less groove formation on deposition, concluded from atomic force microscopy.

  10. Improvement of yttrium on the hot tearing susceptibility of 6TiB2/Al-5Cu composite

    Institute of Scientific and Technical Information of China (English)

    张晓波; 孙靖; 汪明亮; 张亦杰; 马乃恒; 王浩伟

    2015-01-01

    To improve the severe hot tearing susceptibility of TiB2 reinforced Al-5Cu matrix composites, the present research inves-tigated the influence of Y on the hot tearing susceptibility of 6TiB2/Al-5Cu composite. For the composite added with Y, the solidifi-cation temperature range was shortened, which was caused by the novelτ1-Al8Cu4Y phase. The grain size of 6TiB2/Al-5Cu composite was 39.8 µm. The addition of Y promoted the grain refinement, and the grain sizes were 36.33, 33.42 and 26.77 µm for 6TiB2/Al-5Cu with 0.2 wt.%, 0.5 wt.% and 1 wt.% Y, respectively. The decrease of solidification temperature range and grain size was beneficial to the hot tearing susceptibility improvement. Furthermore, the hot tearing initiation force increased from 44 to 288 N, when 1 wt.% Y was added in 6TiB2/Al-5Cu. For the above significant influence, the hot tearing susceptibility values were reduced by 12.2 wt.%, 57.7 wt.% and 66.8 wt.% for 6TiB2/Al-5Cu with 0.2 wt.%, 0.5 wt.% and 1 wt.% Y, accordingly.

  11. High mobility of the strongly confined hole gas in AgTaO3/SrTiO3

    KAUST Repository

    Nazir, Safdar

    2012-05-18

    A theoretical study of the two-dimensional hole gas at the (AgO)−/(TiO2)0 p-type interface in the AgTaO3/SrTiO3 (001) heterostructure is presented. The Ag 4d states strongly hybridize with the O 2p states and contribute to the hole gas. It is demonstrated that the holes are confined to an ultra thin layer (∼4.9Å) with a considerable carrier density of ∼1014cm−2. We estimate a hole mobility of 18.6 cm2 V−1 s−1, which is high enough to enable device applications.

  12. Reduced graphene oxide and Ag wrapped TiO{sub 2} photocatalyst for enhanced visible light photocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Leong, Kah Hon; Sim, Lan Ching; Jang, Min; Ibrahim, Shaliza [Environmental Engineering Laboratory, Department of Civil Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Bahnemann, Detlef [Institut fuer Technische Chemie, Leibniz Universität Hannover, Callinstrasse 3, D-30167 Hannover (Germany); Saravanan, Pichiah, E-mail: pichiahsaravanan@gmail.com [Environmental Engineering Laboratory, Department of Civil Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Nanotechnology & Catalysis Research Center (NANOCAT), University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2015-10-01

    A well-organised reduced graphene oxide (RGO) and silver (Ag) wrapped TiO{sub 2} nano-hybrid was successfully achieved through a facile and easy route. The inherent characteristics of the synthesized RGO-Ag/TiO{sub 2} were revealed through crystalline phase, morphology, chemical composition, Raman scattering, UV-visible absorption, and photoluminescence analyses. The adopted synthesis route significantly controlled the uniform formation of silver nanoparticles and contributed for the absorption of light in the visible spectrum through localized surface plasmon resonance effects. The wrapped RGO nanosheets triggered the electron mobility and promoted visible light shift towards red spectrum. The accomplishment of synergised effect of RGO and Ag well degraded Bisphenol A under visible light irradiation with a removal efficiency of 61.9%.

  13. Photocatalytic degradation of paraquat using nano-sized Cu-TiO2/SBA-15 under UV and visible light

    Institute of Scientific and Technical Information of China (English)

    Maurice G. Sorolla II; Maria Lourdes Dalida; Pongtanawat Khemthong; Nurak Grisdanurak

    2012-01-01

    Photocatalytic degradation of paraquat using mesoporous-assembled Cu-TiO2/SBA15 under UV and visible light was investigated.The catalyst was synthesized by impregnation of Cu-TiO2 colloids onto SBA-15.The colloids of Cu-TiO2 were prepared via solgel method while the mesoporous support was prepared using hydrothermal technique.The catalyst was characterized using X-ray diffraction,nitrogen adsorption-desorption,transmission electron microscopy,UV diffuse reflectance spectroscopy,Zeta potential and X-ray adsorption spectroscopy.Results from characterizations showed that Cu doped TiO2 had a small crystalline size and was welldispersed on SBA-15.The inclusion of SBA- 15 significantly enhanced the photocatalytic activity of the catalyst.Among the three types of undoped catalyst in this study (P25,TiO2,TiO2/SBA- 1 5),TiO2/SBA-1 5 yielded the highest degradation of paraquat for all pH under UV illumination.Meanwhile 2 wt.% Cu-TiO2/SBA- 15 yielded the highest activity under visible light.

  14. Scattering of atomic and molecular ions from single crystal surfaces of Cu, Ag and Fe

    International Nuclear Information System (INIS)

    This thesis deals with analysis of crystal surfaces of Cu, Ag and Fe with Low Energy Ion scattering Spectroscopy (LEIS). Different atomic and molecular ions with fixed energies below 7 keV are scattered by a metal single crystal (with adsorbates). The energy and direction of the scattered particles are analysed for different selected charge states. In that way information can be obtained concerning the composition and atomic and electronic structure of the single crystal surface. Energy spectra contain information on the composition of the surface, while structural atomic information is obtained by direction measurements (photograms). In Ch.1 a description is given of the experimental equipment, in Ch.2 a characterization of the LEIS method. Ch.3 deals with the neutralization of keV-ions in surface scattering. Two different ways of data interpretation are presented. First a model is treated in which the observed directional dependence of neutralization action of the first atom layer of the surface is presented by a laterally varying thickness of the neutralizing layer. Secondly it is shown that the data can be reproduced by a more realistic, physical model based on atomic transition matrix elements. In Ch.4 the low energy hydrogen scattering is described. The study of the dissociation of H2+ at an Ag surface r0230ted in a model based on electronic dissociation, initialized by electron capture into a repulsive (molecular) state. In Ch.5 finally the method is applied to the investigation of the surface structure of oxidized Fe. (Auth.)

  15. Helical TiO2 Nanotube Arrays Modified by Cu-Cu2O with Ultrahigh Sensitivity for the Nonenzymatic Electro-oxidation of Glucose.

    Science.gov (United States)

    Yang, Qian; Long, Mei; Tan, Lin; Zhang, Yi; Ouyang, Jin; Liu, Ping; Tang, Aidong

    2015-06-17

    A novel Cu-Cu2O/TiO2/Ti electrode for the nonenzymatic electro-oxidation of glucose has been fabricated by secondary anodic oxidation combined with the electrodeposition method. It represents a new type of copper oxide-TiO2 complex nanostructure that demonstrates a new application. At the potential range from -1.0 to -1.6 V, Cu2+ was electrochemically reduced to Cu2O, accompanied by the simultaneous formation of Cu covering the top surface of the TiO2 nanotubes. The highest response current was obtained at the optimized fabrication conditions with a deposition charge of 1.5 C, a pH of 12, 4 mM CuSO4, and a deposition potential of -1.4 V. The results indicate that Cu2O helps to keep a broad linear range, and the incorporation of Cu nanoparticles improves the response current and sensitivity. The linearity between the response current and the glucose concentration was obtained in the range from 0.1 to 2.5 mM with a sensitivity of 4895 μA cm(-2) mM(-1). Such high sensitivity was attributed to the synergistic effect of the small Cu-Cu2O grain size and the large surface area of the helical TiO2 nanotube arrays as well as the fast electron transfer. Electrochemical impedance spectroscopy has been successfully applied to explain the differences among different electrode interfaces and the change rule of nonenzymatic electro-oxidation properties. PMID:25970570

  16. The release properties of silver ions from Ag-nHA/TiO{sub 2}/PA66 antimicrobial composite scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Wu Xia; Li Jidong; Wang Li; Huang Di; Zuo Yi; Li Yubao, E-mail: nic7504@scu.edu.c [Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064 (China)

    2010-08-01

    Implant-associated bacterial infection can jeopardize the clinical success of implants and result in loss of supporting bone. The purpose of this study was to develop a novel porous scaffold with long-term antibacterial activity for bone repair or regeneration. Porous nano-hydroxyapatite/titania/polyamide66 scaffolds containing different amounts of silver ions (Ag-nHA/TiO{sub 2}/PA66) were prepared by a phase inversion technique. The release of silver ions from the porous scaffolds in simulated body fluid (SBF) and in the F12 cell culture medium was evaluated via atomic absorption spectrometry. The results showed that the release of Ag{sup +} was time and concentration dependent, increasing with the immersion time and the silver content in the scaffolds. On the other hand, the release property of Ag{sup +} was also influenced by the immersion medium. The cumulative Ag{sup +} release in the F12 medium with time increase parabolically, different from the linear increase or the zero-order release kinetics in the SBF medium. Compared to the slight fluctuation of the Ag{sup +} release rate in SBF during the whole immersion period, the initial fast release rate and the later sustained rel