WorldWideScience

Sample records for ag au pt

  1. Electronic structures of PtCu, PtAg, and PtAu molecules: a Dirac four-component relativistic study

    International Nuclear Information System (INIS)

    Abe, Minori; Mori, Sayaka; Nakajima, Takahito; Hirao, Kimihiko

    2005-01-01

    Relativistic four-component calculations at several correlated levels have been performed for diatomic PtCu, PtAg, and PtAu molecules. The ground state spectroscopic constants of PtCu were calculated using the four-component MP2 method, and show good agreement with experiment. We also performed calculations on the experimentally unknown species, PtAg and PtAu, and the mono-cationic systems, PtCu + , PtAg + , and PtAu + . The low-lying excited states of these diatomic molecules were also investigated using the four-component multi-reference CI method

  2. Atom distribution and interactions in Ag{sub x}Pt{sub 1-x} and Au{sub x}Pt{sub 1-x} surface alloys on Pt(111)

    Energy Technology Data Exchange (ETDEWEB)

    Roetter, Ralf T.; Bergbreiter, Andreas; Hoster, Harry E.; Behm, R. Juergen [Institute of Surface Chemistry and Catalysis, Ulm University, D-89069 Ulm (Germany)

    2009-07-01

    The atom distributions in Ag{sub x}Pt{sub 1-x}/Pt(111) and Au{sub x}Pt{sub 1-x}/Pt(111) surface alloys were studied by high resolution UHV-STM. These surfaces were prepared by submonolayer Ag (Au) metal deposition on Pt(111), followed by annealing at 900 K or 1000 K, respectively, which in both cases results in surface confined 2D alloys, with equilibrated distribution of the components. Both systems show a tendency towards two-dimensional clustering, which fits well to their known bulk immiscibility. Effective cluster interactions (ECIs) will be derived by a quantitative evaluation of the 2D atom distributions in the surface alloys. By comparing the ECIs for PtAg and PtAu on Pt(111), and considering that Ag and Au have almost similar lattice constants, the results allow conclusion on the physical origin of the tendency for clustering.

  3. Highly open bowl-like PtAuAg nanocages as robust electrocatalysts towards ethylene glycol oxidation

    Science.gov (United States)

    Xu, Hui; Yan, Bo; Li, Shumin; Wang, Jin; Song, Pingping; Wang, Caiqin; Guo, Jun; Du, Yukou

    2018-04-01

    A novel combined seed mediated and galvanic replacement method has been demonstrated to synthesize a new class of trimetallic PtAuAg nanocatalysts with highly open bowl-like nanocage structure. The newly-generated PtAuAg nanocages catalysts exhibit superior electrocatalytic performances towards ethylene glycol oxidation with the mass activity of 6357.1 mA mg-1, 5.5 times higher than that of commercial Pt/C (1151.1 mA mg-1). This work demonstrates the first example of designing shape-controlled architectures of trimetallic bowl-like PtAuAg nanocages for liquid fuel electrooxidation.

  4. Toward hybrid Au nanorods @ M (Au, Ag, Pd and Pt) core-shell heterostructures for ultrasensitive SERS probes

    Science.gov (United States)

    Xie, Xiaobin; Gao, Guanhui; Kang, Shendong; Lei, Yanhua; Pan, Zhengyin; Shibayama, Tamaki; Cai, Lintao

    2017-06-01

    Being able to precisely control the morphologies of noble metallic nanostructures is of essential significance for promoting the surface-enhanced Raman scattering (SERS) effect. Herein, we demonstrate an overgrowth strategy for synthesizing Au @ M (M = Au, Ag, Pd, Pt) core-shell heterogeneous nanocrystals with an orientated structural evolution and highly improved properties by using Au nanorods as seeds. With the same reaction condition system applied, we obtain four well-designed heterostructures with diverse shapes, including Au concave nanocuboids (Au CNs), Au @ Ag crystalizing face central cube nanopeanuts, Au @ Pd porous nanocuboids and Au @ Pt nanotrepangs. Subsequently, the exact overgrowth mechanism of the above heterostructural building blocks is further analysed via the systematic optimiziation of a series of fabrications. Remarkably, the well-defined Au CNs and Au @ Ag nanopeanuts both exhibit highly promoted SERS activity. We expect to be able to supply a facile strategy for the fabrication of multimetallic heterogeneous nanostructures, exploring the high SERS effect and catalytic activities.

  5. Bimetallic Ag-Pt and Au-Pt aggregates synthesized by radiolysis

    International Nuclear Information System (INIS)

    Remita, S.; Mostafavi, M.; Delcourt, M.O.

    1996-01-01

    Irradiating aqueous solutions containing both Ag 2 So 4 and K 2 PtCl 4 leads to intermetallic aggregates of various sizes according to the stabilizing agent: polyvinylalcohol, polyacrylic acid or polyacrylate. In the last case, the particle diameter is 1.5 nm. The bimetallic character is evidenced in all cases by the spectral changes of such sols compared to pure silver sols which display a characteristic surface plasmon absorption band. This plasmon band disappears when 10 to 20 at.% or more Pr is present. Observation by TEM gives an estimation of the particle sizes. Comparable results have been obtained for Au-Pt particles. (author)

  6. Bimetallic Ag-Pt and Au-Pt aggregates synthesized by radiolysis

    Energy Technology Data Exchange (ETDEWEB)

    Remita, S; Mostafavi, M; Delcourt, M O [Paris-11 Univ., 91 - Orsay (France)

    1996-02-01

    Irradiating aqueous solutions containing both Ag{sub 2}So{sub 4} and K{sub 2}PtCl{sub 4} leads to intermetallic aggregates of various sizes according to the stabilizing agent: polyvinylalcohol, polyacrylic acid or polyacrylate. In the last case, the particle diameter is 1.5 nm. The bimetallic character is evidenced in all cases by the spectral changes of such sols compared to pure silver sols which display a characteristic surface plasmon absorption band. This plasmon band disappears when 10 to 20 at.% or more Pr is present. Observation by TEM gives an estimation of the particle sizes. Comparable results have been obtained for Au-Pt particles. (author).

  7. Hollow Au@Pd and Au@Pt core-shell nanoparticles as electrocatalysts for ethanol oxidation reactions

    KAUST Repository

    Song, Hyon Min

    2012-09-27

    Hybrid alloys among gold, palladium and platinum become a new category of catalysts primarily due to their enhanced catalytic effects. Enhancement means not only their effectiveness, but also their uniqueness as catalysts for the reactions that individual metals may not catalyze. Here, preparation of hollow Au@Pd and Au@Pt core-shell nanoparticles (NPs) and their use as electrocatalysts are reported. Galvanic displacement with Ag NPs is used to obtain hollow NPs, and higher reduction potential of Au compared to Ag, Pd, and Pt helps to produce hollow Au cores first, followed by Pd or Pt shell growth. Continuous and highly crystalline shell growth was observed in Au@Pd core-shell NPs, but the sporadic and porous-like structure was observed in Au@Pt core-shell NPs. Along with hollow core-shell NPs, hollow porous Pt and hollow Au NPs are also prepared from Ag seed NPs. Twin boundaries which are typically observed in large size (>20 nm) Au NPs were not observed in hollow Au NPs. This absence is believed to be due to the role of the hollows, which significantly reduce the strain energy of edges where the two lattice planes meet. In ethanol oxidation reactions in alkaline medium, hollow Au@Pd core-shell NPs show highest current density in forward scan. Hollow Au@Pt core-shell NPs maintain better catalytic activities than metallic Pt, which is thought to be due to the better crystallinity of Pt shells as well as the alloy effect of Au cores. © 2012 The Royal Society of Chemistry.

  8. Strong enhancement of the electrochemiluminescence of luminol by AuAg and PtAg alloy nanoclusters, and its sensitization by phenolic artificial oestrogens

    International Nuclear Information System (INIS)

    Wang, Ke; Tu, Yifeng; Wei, Xiuhua

    2014-01-01

    This paper reports on the synthesis of AuAg and PtAg alloy nanoclusters (NCs) and their enhancement effect on the electrochemiluminescence (ECL) of luminol. The conditions of synthesis were optimized, and the structure and properties of the NCs were characterized by X-ray diffraction, transmission electron microscopy, electrochemistry, and optical spectroscopy. The NCs are found to intensify (by up to 20 times) the ECL of luminol in solution of pH 8.5. This finding can largely extend the useful pH range of the ECL of luminol. The enhanced ECL is strongly affected by oxygen and hydrogen peroxide, and the mechanism of enhancement is attributed to the accelerated production of reactive oxygen species. The enhanced ECL is also affected by phenolic artificial estrogens, and this was used for their determination with detection limits as low as 700 pg L −1 (with AuAg) and 1.6 ng L −1 (with PtAg). The method was applied to the determination of such estrogens in egg samples using diethylstilbestrol as a reference substance. (author)

  9. Transition voltages of vacuum-spaced and molecular junctions with Ag and Pt electrodes

    KAUST Repository

    Wu, Kunlin

    2014-07-07

    The transition voltage of vacuum-spaced and molecular junctions constructed with Ag and Pt electrodes is investigated by non-equilibrium Green\\'s function formalism combined with density functional theory. Our calculations show that, similarly to the case of Au-vacuum-Au previously studied, the transition voltages of Ag and Pt metal-vacuum-metal junctions with atomic protrusions on the electrode surface are determined by the local density of states of the p-type atomic orbitals of the protrusion. Since the energy position of the Pt 6p atomic orbitals is higher than that of the 5p/6p of Ag and Au, the transition voltage of Pt-vacuum-Pt junctions is larger than that of both Ag-vacuum-Ag and Au-vacuum-Au junctions. When one moves to analyzing asymmetric molecular junctions constructed with biphenyl thiol as central molecule, then the transition voltage is found to depend on the specific bonding site for the sulfur atom in the thiol group. In particular agreement with experiments, where the largest transition voltage is found for Ag and the smallest for Pt, is obtained when one assumes S binding at the hollow-bridge site on the Ag/Au(111) surface and at the adatom site on the Pt(111) one. This demonstrates the critical role played by the linker-electrode binding geometry in determining the transition voltage of devices made of conjugated thiol molecules. © 2014 AIP Publishing LLC.

  10. Detection of Single Pt Nanoparticle Collisions by Open-Circuit Potential Changes at Ag Ultramicroelectrode

    International Nuclear Information System (INIS)

    Mun, Seon Kyu; Shin, Changhwan; Kwon, Seong Jung

    2016-01-01

    Single platinum (Pt) nanoparticle (NP) collisions were investigated with open-circuit potential (OCP) using a silver (Ag) ultramicroelectrode (UME). The Ag UME showed higher sensitivity to single Pt NP detection by the OCP method than gold (Au) UME. The detection of ⁓2 nm radius Pt NP collisions was carried out successfully using Ag UME. The magnitude of the potential step and collision frequency for the single Pt NP collision on Ag UME was investigated and compared with those of the previous work done on Au UME.

  11. Hollow Au@Pd and Au@Pt core-shell nanoparticles as electrocatalysts for ethanol oxidation reactions

    KAUST Repository

    Song, Hyon Min; Anjum, Dalaver H.; Sougrat, Rachid; Hedhili, Mohamed N.; Khashab, Niveen M.

    2012-01-01

    that individual metals may not catalyze. Here, preparation of hollow Au@Pd and Au@Pt core-shell nanoparticles (NPs) and their use as electrocatalysts are reported. Galvanic displacement with Ag NPs is used to obtain hollow NPs, and higher reduction potential of Au

  12. Preparation of Pt Ag alloy nanoisland/graphene hybrid composites and its high stability and catalytic activity in methanol electro-oxidation

    Directory of Open Access Journals (Sweden)

    Feng Lili

    2011-01-01

    Full Text Available Abstract In this article, PtAg alloy nanoislands/graphene hybrid composites were prepared based on the self-organization of Au@PtAg nanorods on graphene sheets. Graphite oxides (GO were prepared and separated to individual sheets using Hummer's method. Graphene nano-sheets were prepared by chemical reduction with hydrazine. The prepared PtAg alloy nanomaterial and the hybrid composites with graphene were characterized by SEM, TEM, and zeta potential measurements. It is confirmed that the prepared Au@PtAg alloy nanorods/graphene hybrid composites own good catalytic function for methanol electro-oxidation by cyclic voltammograms measurements, and exhibited higher catalytic activity and more stability than pure Au@Pt nanorods and Au@AgPt alloy nanorods. In conclusion, the prepared PtAg alloy nanoislands/graphene hybrid composites own high stability and catalytic activity in methanol electro-oxidation, so that it is one kind of high-performance catalyst, and has great potential in applications such as methanol fuel cells in near future.

  13. Stopping Power of Be, Al, Cu, Ag, Pt, and Au for 5-12-MeV Protons and Deuterons

    DEFF Research Database (Denmark)

    Andersen, H.H.; Hanke, C.; Sørensen, H.

    1967-01-01

    Recent measurements on stopping power of aluminum have been continued with the stopping materials Be, Cu, Ag, Pt, and Au. The method of measuring stopping powers utilizing a thermometric compensation technique working at liquid-helium temperature has been used. Results are obtained with a standard...... deviation of 0.3%, and agree with other published experimental results and with Bichsel's tabulated values within their stated errors....

  14. Au, Ag and Au:Ag colloidal nanoparticles synthesized by pulsed laser ablation as SERS substrates

    Directory of Open Access Journals (Sweden)

    M. Vinod

    2014-12-01

    Full Text Available Chemically pure colloidal suspensions of gold and silver nanoparticles were synthesized using pulsed laser ablation. The dependence of laser fluence on the surface plasmon characteristics of the nanoparticles was investigated. Au:Ag colloidal suspensions were prepared by mixing highly monodisperse Au and Ag nanocolloids. The plasmon band of these mixtures was found to be highly sensitive to Au:Ag concentration ratio and wavelength of the laser beam used in the ablation process. The Au:Ag mixture consists of almost spherical shaped nanostructures with a tendency to join with adjacent ones. The surface enhanced Raman scattering activity of the Au, Ag and Au:Ag colloidal suspensions was tested using crystal violet as probe molecules. Enhancement in Raman signal obtained with Au:Ag substrates was found to be promising and strongly depends on its plasmon characteristics.

  15. Electronic Absorption and MCD Spectra for Pd(AuPPh(3))(8)(2+), Pt(AuPPh(3))(8)(2+), and Related Platinum-Centered Gold Cluster Complexes.

    Science.gov (United States)

    Adrowski, Michael J.; Mason, W. Roy

    1997-03-26

    Electronic absorption and 7.0 T magnetic circular dichroism (MCD) spectra in the UV-vis region, 1.6 to approximately 4.0 &mgr;m(-)(1) (1 &mgr;m(-)(1) = 10(4) cm(-)(1)) are reported for [Pd(AuPPh(3))(8)](NO(3))(2) and [Pt(AuPPh(3))(8)](NO(3))(2) in acetonitrile solutions at room temperature. The MCD spectra are better resolved than the absorption spectra and consist of both A and B terms. The spectra are interpreted in terms of D(4)(d)() skeletal geometry and MO's that are approximated by 5s and 6s orbitals for Pd and Pt/Au atoms, respectively. The lowest energy excited configurations and states are attributed to intraframework (IF) Au(8)(2+) transitions. Evidence is also presented for Pt 5d --> Au 6s transitions in the MCD spectra for Pt(AuPPh(3))(8)(2+). Acetonitrile solution absorption and MCD spectra for the related Pt-centered cluster complexes [Pt(CO)(AuPPh(3))(8)](NO(3))(2), [Pt(AuP(p-tolyl)(3))(8)](NO(3))(2), [Pt(CuCl)(AuPPh(3))(8)](NO(3))(2), [Pt(AgNO(3))(AuPPh(3))(8)](NO(3))(2), [Pt(Hg)(2)(AuPPh(3))(8)](NO(3))(2), [Pt(HgCl)(2)(AuPPh(3))(8)](BF(4))(2), and [Pt(HgNO(3))(2)(AuPPh(3))(8)](BF(4))(2) are also reported and interpreted within the context of the model developed for the M(AuPPh(3))(8)(2+) complexes.

  16. Study of the oxidation effects on isothermal solidification based high temperature stable Pt/In/Au and Pt/In/Ag thick film interconnections on LTCC substrate

    International Nuclear Information System (INIS)

    Kumar, Duguta Suresh; Khanna, P. K.; Suri, Nikhil; Sharma, R. P.

    2016-01-01

    The objective of the presented paper is to determine the oxidized phase compositions of indium lead-free solders during solidification at 190 ° C under room environment with the help of X-ray diffraction (XRD) and Energy dispersive spectroscopy (EDX). Many lead-free solders alloys available oxidizes and have poor wetting properties. The oxidation of pure indium solder foil, Au, Pt, and Ag alloys were identified and investigated, in the process of isothermal solidification based solder joints construction at room environment and humidity. Both EDX and XRD characterization techniques were performed to trace out the amount of oxide levels and variety of oxide formations at solder interface respectively. The paper also aims to report the isothermal solidification technique to provide interconnections to pads on Low temperature co-fired ceramic (LTCC) substrate. It also elaborates advantages of isothermal solidification over the other methods of interconnection. Scanning electron microscope (SEM) used to identify the oxidized spots on the surface of Pt, Ag substrates and In solder. The identified oxides were reported.

  17. Equilibrium, kinetics and mechanism of Au3+, Pd2+ and Ag+ ions adsorption from aqueous solutions by graphene oxide functionalized persimmon tannin.

    Science.gov (United States)

    Wang, Zhongmin; Li, Xiaojuan; Liang, Haijun; Ning, Jingliang; Zhou, Zhide; Li, Guiyin

    2017-10-01

    In this study, a novel bio-adsorbent (PT-GO) was prepared by functionalization persimmon tannin (PT) with graphene oxide (GO) and the effective adsorption behaviors of Au 3+ , Pd 2+ and Ag + ions from aqueous solution was investigated. The PT-GO was characterized by Fourier transform infrared spectrometer (FTIR), scanning electronic microscope (SEM), thermogravimetric analysis (TGA) and Zeta potential. Many influence factors such as pH value, bio-adsorbent dosage, initial concentration of metal ions and contact time were optimized. The maximum adsorption capacity for Au 3+ , Pd 2+ and Ag + was 1325.09mg/g, 797.66mg/g and 421.01mg/g, respectively. The equilibrium isotherm for the adsorption of Au 3+ and Ag + on PT-GO were found to obey the Langmuir model, while the Freundlich model fitted better for Pd 2+ . The adsorption process of Au 3+ , Pd 2+ presented relatively fast adsorption kinetics with pseudo-second-order equation as the best fitting model, while the pseudo-first-order kinetic model was suitable for describing the adsorption of Ag + . Combination of ion exchange, electrostatic interaction and physical adsorption was the mechanism for adsorption of Au 3+ , Pd 2+ and Ag + onto PT-GO bio-adsorbent. Therefore, the PT-GO bio-adsorbent would be an ideal adsorbent for removal of precious metal ions and broaden the potential applications of persimmon tannin in environmental research. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Synthesis of Ag or Pt Nanoparticles by Hydrolysis of Either Ag2Na or PtNa

    Directory of Open Access Journals (Sweden)

    Huabin Wang

    2008-01-01

    Full Text Available Ag and Pt nanoparticles have successfully been synthesized by hydrolysis of either Ag2Na or PtNa at room temperature. The oxidation of sodium in the Pt-Na pellets was much faster than that in the Ag-Na pellets since Pt is a catalyst for H2O formation reaction from hydrogen and oxygen at room temperature. The hydrolysis byproduct, NaOH, has a high solubility and easily is removed. This method offers a simple method of preparing transition metal nanoparticles. The Ag and Pt nanoparticles prepared by this method were crystalline in nature, and spherical in shape with a mean size of around 10 nm.

  19. Epitaxial growth of zigzag PtAu alloy surface on Au nano-pentagrams with enhanced Pt utilization and electrocatalytic performance toward ethanol oxidation reaction

    International Nuclear Information System (INIS)

    Du, Cheng; Gao, Xiaohui; Zhuang, Zhihua; Cheng, Chunfeng; Zheng, Fuqin; Li, Xiaokun; Chen, Wei

    2017-01-01

    Highlights: • PtAu nanoalloy surface is heteroepitaxially grown on the pre-synthesized Au nano-pentagrams. • The PtAu/Au nano-pentagrams exhibit excellent electrocatalytic activity for ethanol oxidation. • The charge transfer resistance of PtAu/Au is lower than that of commercial Pt/C. • The durability and anti-poisoning ability of PtAu/Au is much better than those of commercial Pt/C - Abstract: Improving Pt utilization is of fundamental importance for many significant processes in energy conversion, which is strongly dependent on the surface structure of used catalysts. Based on the traditional Pt-on-Au system which has been proved to be an ideal nanostructure for improving the catalytic activity and stability of Pt, and the recent follow-up studies on this system, we introduce here a new strategy for fabricating Pt surface with high-index facets over the Pt-on-Au system. To achieve this goal, we elaborately designed and fabricated a unique zigzag PtAu alloy nanosurface on Au nano-pentagrams (PtAu/Au NPs) through epitaxial growth of Pt along the high-index facets on the pre-synthesized Au nano-pentagrams. Owing to the surface electronic interaction between Au and Pt and the exposed high-index facets from the unique morphology of zigzag PtAu alloy nanosurface, the as-prepared PtAu/Au NPs exhibited excellent electrocatalytic performance toward ethanol oxidation reaction (EOR) in alkaline condition. The specific activity (8.3 mA cm"−"2) and mass activity (4.4 A mg"−"1) obtained from PtAu/Au NPs are about 5.2 and 5.5 times, respectively, higher than those from commercial Pt/C for EOR.

  20. Preparation, Spectroscopic Characterization, and Frontier MO Study of the Heteronuclear Luminescent [Pt(2)Au(2)(dmb)(2)(PPh(3))(4)](PF(6))(2) Cluster (dmb = 1,8-Diisocyano-p-menthane). A Cluster with a Formal Au(0)-Au(0) Bond Encapsulated inside a "Pt(2)(dmb)(2)(2+) " Fragment.

    Science.gov (United States)

    Zhang, Tianle; Drouin, Marc; Harvey, Pierre D.

    1999-11-01

    The title compound is prepared from the direct reaction of Pt(2)(dba)(3) (dba = dibenzylideneacetone) and [Au(PPh(3))(2)](PF(6)) in the presence of 1,8-diisocyano-p-methane (dmb), with Pt(2)(dmb)(2)Cl(2), [Pt(4)(dmb)(4)(PPh(3))(2)](PF(6))(2), and (PPh(3))AuCl being formed as parallel products. X-ray crystallography reveals the presence of a quasi-linear PPh(3)Au-AuPPh(3) fragment encapsulated inside a "Pt(2)(dmb)(2)(2+)" ring which is axially coordinated with two PPh(3) ligands. The d(AuAu) is 2.5977(6) Å and is indicative of a strong Au-Au single bond. The IR nu(CN) data reveal that the Pt oxidation state is I, which places the Au oxidation state at 0. The PtAu distances are 2.8422(5) and 2.8082(5) Å. The Raman-active nu(Au(2)), nu(PtAu) (b(2g) + a(g)), nu(PtP), nu(AuP), and nu(PtC) are found at 121.2, approximately 100, 85.5, 162.1, 183.1, and 457.2, and 440.9 cm(-)(1), respectively. The PtAu (0.67 mdyn Å(-)(1)) and Au(2) (1.21 mdyn Å(-)(1)) force constants (F) confirm the presence of medium PtAu and strong Au(2) bonding interactions. The absorption spectra are characterized by strong bands at lambda(max) (epsilon, M(-1) cm(-1)) at 316 (32 300), 366 (37 800), and 418 nm (21 500) and lower intensity features at 516 (2860) and 655 nm (834). The cluster is luminescent at low temperatures (solid and frozen glasses), and in the solid state at room temperature, and exhibits an emission band at approximately 875 nm, and an emission lifetime, tau(e), of 4.4 +/- 0.4 ns (solvent = butyronitrile, T = 77 K).

  1. Visible light photoactivity of TiO{sub 2} loaded with monometallic (Au or Pt) and bimetallic (Au/Pt) nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Gołąbiewska, Anna, E-mail: annagolabiewska@o2.pl [Department of Chemical Technology, Gdansk University of Technology, 80-233 Gdańsk (Poland); Lisowski, Wojciech [Mazovia Center for Surface Analysis, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw (Poland); Jarek, Marcin; Nowaczyk, Grzegorz [NanoBioMedical Center, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland); Zielińska-Jurek, Anna; Zaleska, Adriana [Department of Chemical Technology, Gdansk University of Technology, 80-233 Gdańsk (Poland)

    2014-10-30

    Graphical abstract: - Highlights: • Au/Pt nanoparticles enhanced TiO{sub 2} photocatalytic activity under visible irradiation. • Higher photoactivity of Au/Pt-TiO{sub 2} resulted from smaller Au/Pt particles. • Intermetallic state of AuPt favors charge transfer between the metals. • TiO{sub 2} obtained by TIP hydrolysis seems to be best matrix for Au/Pt-TiO{sub 2}. - Abstract: TiO{sub 2} modified with monometallic (Au or Pt) and bimetallic (Au/Pt) nanoparticles have been prepared using a water-in-oil microemulsion system (water/AOT/cyclohexane) followed by calcination step. The effect of metal ratio, reducing agent type (NaBH{sub 4} or N{sub 2}H{sub 4}), TiO{sub 2} matrix type (P-25, ST-01, TiO-5, TiO{sub 2} nanotubes or TiO{sub 2} obtained by TIP hydrolysis) as well as calcination temperature (from 350 to 650 °C) were systematically investigated. Obtained photocatalysts were characterized by UV–vis diffuse-reflectance spectroscopy (DRS), BET surface area measurements, scanning transmission microscopy (STEM), X-ray diffraction analysis (XRD), and X-ray photoelectron spectroscopy (XPS). Photocatalytic activity under visible light (λ > 420 nm) has been estimated in phenol degradation reaction in aqueous phase. The results showed that phenol degradation rate under visible light in the presence of TiO{sub 2} loaded with Au/Pt nanoparticles differed from 0.7 to 2.2 μmol dm{sup −3} min{sup −1} for samples prepared using different reducing agent. Sodium borohydride (NaBH{sub 4}) favors formation of smaller Au/Pt nanoparticles and higher amount gold in Au/Pt is in the form of electronegative species (Au{sup δ−}) resulted in higher photoactivity. TiO{sub 2} obtained by TIP hydrolysis in microemulsion system seems to be the best support for Au/Pt nanoparticles from all among investigated matrix. It was also observed that enhancement of calcination temperature from 450 to 650 °C resulted in rapid drop of Au/Pt-TiO{sub 2} photoactivity under visible light

  2. Core/shell AgNi/PtAgNi nanoparticles as methanol-tolerant oxygen reduction electrocatalysts

    International Nuclear Information System (INIS)

    Wu, Dengfeng; Cheng, Daojian

    2015-01-01

    A core/shell AgNi/PtAgNi nanoparticle (NP) was synthesized via a new seed-mediated growth method in organic solvent medium. The as-synthesized AgNi/PtAgNiNP exhibits an AgNi core coated with PtAgNi shell, which was confirmed by transmission electron microscopy (TEM), ultraviolet–visible absorption spectroscopy and X-ray Photoelectron Spectroscopy (XPS). The AgNi/PtAgNiNPs/C catalyst possesses higher oxygen reduction reaction (ORR) activity and better durability compared with the commercial Pt/C catalyst. It is found that the ORR polarization curve of the AgNi/PtAgNiNPs/C catalyst shows an onset potential of 0.91 V vs. RHE, which is superior to the commercial Pt/C (0.88 V vs. RHE). In addition, the AgNi/PtAgNiNPs/C catalyst shows much better durability than the commercial Pt/C catalyst. More interestingly, the AgNi/PtAgNiNPs/C catalyst displays much higher methanol tolerance than the commercial Pt/C catalyst in 0.1 M KOH solution in the presence of 0.5 M methanol. Our results show that core/shell AgNi/PtAgNiNPs possess selective activity for ORR even in the presence of methanol, showing potential application as methanol-tolerant cathode catalysts in direct methanol fuel cells.

  3. Preparation of Pt Au/C and Pt Au Bi/C electrocatalysts using electron beam irradiation for ethanol electro-oxidation in alkaline medium

    International Nuclear Information System (INIS)

    Silva, Dionisio F.; Geraldes, Adriana N.; Cardoso, Elisangela S.Z.; Gomes, Thiago B.; Linardi, Marcelo; Oliveira Neto, Almir; Spinace, Estevam V.

    2011-01-01

    Pt Au/C (50:50) and PtAuBi/C electrocatalysts with Pt:Au:Bi atomic ratios of 50:40:10, 50:30:20 and 50:10:40 were prepared in water/2-propanol using electron beam irradiation. The materials were characterized by X-ray diffraction (XRD) and the electro-oxidation of ethanol was studied by chronoamperometry at room temperature. The X-ray diffraction measurements for all electrocatalysts prepared showed four peaks, which are associated with the planes of the face-centered cubic (fcc) structure characteristic of Pt and Pt alloys. For PtAuBi/C it was also observed the presence of a mixture of BiPt alloys and bismuth phases. The average crystallite sizes for Pt/C, PtAu/C, PtAuBi/C (50:40:10), PtAuBi/C (50:30:20) and PtAuBi/C (50:10:40) were in the range of 2.0 - 4.0 nm. The activity of the electrocatalysts for ethanol oxidation in alkaline medium showed that PtAuBi/C (50:40:10) had a higher performance for ethanol oxidation compared to others electrocatalysts prepared. (author)

  4. Preparation of Pt Au/C and Pt Au Bi/C electrocatalysts using electron beam irradiation for ethanol electro-oxidation in alkaline medium

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Dionisio F.; Geraldes, Adriana N.; Cardoso, Elisangela S.Z.; Gomes, Thiago B.; Linardi, Marcelo; Oliveira Neto, Almir; Spinace, Estevam V., E-mail: dfsilva@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    Pt Au/C (50:50) and PtAuBi/C electrocatalysts with Pt:Au:Bi atomic ratios of 50:40:10, 50:30:20 and 50:10:40 were prepared in water/2-propanol using electron beam irradiation. The materials were characterized by X-ray diffraction (XRD) and the electro-oxidation of ethanol was studied by chronoamperometry at room temperature. The X-ray diffraction measurements for all electrocatalysts prepared showed four peaks, which are associated with the planes of the face-centered cubic (fcc) structure characteristic of Pt and Pt alloys. For PtAuBi/C it was also observed the presence of a mixture of BiPt alloys and bismuth phases. The average crystallite sizes for Pt/C, PtAu/C, PtAuBi/C (50:40:10), PtAuBi/C (50:30:20) and PtAuBi/C (50:10:40) were in the range of 2.0 - 4.0 nm. The activity of the electrocatalysts for ethanol oxidation in alkaline medium showed that PtAuBi/C (50:40:10) had a higher performance for ethanol oxidation compared to others electrocatalysts prepared. (author)

  5. Synthesis of ultrathin face-centered-cubic Au@Pt and Au@Pd core-shell nanoplates from hexagonal-close-packed Au square sheets

    KAUST Repository

    Fan, Zhanxi

    2015-03-17

    The synthesis of ultrathin face-centered-cubic (fcc) Au@Pt rhombic nanoplates is reported through the epitaxial growth of Pt on hexagonal-close-packed (hcp) Au square sheets (AuSSs). The Pt-layer growth results in a hcp-to-fcc phase transformation of the AuSSs under ambient conditions. Interestingly, the obtained fcc Au@Pt rhombic nanoplates demonstrate a unique (101)f orientation with the same atomic arrangement extending from the Au core to the Pt shell. Importantly, this method can be extended to the epitaxial growth of Pd on hcp AuSSs, resulting in the unprecedented formation of fcc Au@Pd rhombic nanoplates with (101)f orientation. Additionally, a small amount of fcc (100)f-oriented Au@Pt and Au@Pd square nanoplates are obtained with the Au@Pt and Au@Pd rhombic nanoplates, respectively. We believe that these findings will shed new light on the synthesis of novel noble bimetallic nanostructures. Phase change: Ultrathin Au@Pt and Au@Pd core-shell nanoplates were prepared from Au square sheets. A phase transformation from hexagonal close-packed (hcp) to face-centered cubic (fcc) is observed upon coating the hcp Au square sheets with Pt or Pd under ambient conditions. The prepared fcc Au@Pt and Au@Pd rhombic nanoplates demonstrate unique (101)f orientation (picture shows a typical fcc Au@Pt rhombic nanoplate). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Evaluation of colloidal Ag and Ag-alloys as anode electrocatalysts for direct borohydride fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Atwan, Mohammed H.; Northwood, Derek O. [Mechanical, Auto, and Materials Engineering, University of Windsor, Windsor, N9B 3P4 (Canada); Gyenge, Elod L. [Chemical and Biological Engineering, The University of British Colombia, Vancouver, BC, V6T 1Z4 (Canada)

    2007-10-15

    In this study, colloidal silver and silver-alloys (Ag-Pt, Ag-Au, Ag-Ir, and Ag-Pd) prepared by the Boenneman technique were evaluated as anode catalysts for sodium borohydride oxidation using cyclic voltammetry (CV), chronoamperometry (CA), chronopotentiometry (CP) and rotating disk electrode (RDE) voltammetry. The CV results show that the colloidal Ag-alloys were electrochemically active towards borohydride oxidation with oxidation potentials ranging between -0.7 and 0.4 V vs. Hg/HgO (MOE). The most negative oxidation potential was recorded on Ag-Pt. CA results show that the steady state current density was highest on Ag-Pt, followed by Ag-Ir, Ag-Au, and Ag-Pd. The lowest overpotential was recorded on Ag-Ir for a current step change of 10mAcm{sup -2}. A significant temperature effect and a small rotation speed effect were found in the rotating disc voltammetry for all the investigated colloids. The highest peak current was recorded on Ag-Au, while the most negative peak potential was recorded on Ag-Ir. (author)

  7. Copper-based alloys, crystallographic and crystallochemical parameters of alloys in binary systems Cu-Me (Me=Co, Rh, Ir, Cu, Ag, Au, Ni, Pd, Pt)

    Energy Technology Data Exchange (ETDEWEB)

    Porobova, Svetlana, E-mail: porobova.sveta@yandex.ru; Loskutov, Oleg, E-mail: lom58@mail.ru [Tomsk State University of Architecture and Building, Russia, Tomsk, 2 Solyanaya sq, Tomsk, 634003 (Russian Federation); Markova, Tat’jana, E-mail: patriot-rf@mail.ru [Siberian State Industrial University. 42 Kirov St., Novokuznetsk, 654007 (Russian Federation); Klopotov, Vladimir, E-mail: vdklopotov@mail.ru [Research Tomsk Polytechnic University, 30 Lenin Ave., Tomsk, 634050 (Russian Federation); Klopotov, Anatoliy, E-mail: klopotovaa@tsuab.ru [Tomsk State University of Architecture and Building, Russia, Tomsk, 2 Solyanaya sq, Tomsk, 634003 (Russian Federation); National Research Tomsk State University, 36, Lenin Ave., Tomsk, 634050 (Russian Federation); Vlasov, Viktor, E-mail: vik@tsuab.ru [Tomsk State University of Architecture and Building, Russia, Tomsk, 2 Solyanaya sq, Tomsk, 634003 (Russian Federation); Research Tomsk Polytechnic University, 30 Lenin Ave., Tomsk, 634050 (Russian Federation)

    2016-01-15

    The article presents the results of the analysis of phase equilibrium of ordered phases in binary systems based on copper Cu- Me (where Me - Co, Rh, Ir, Ag, Au, Ni, Pd, Pt) to find correlations of crystallochemical and crystallographic factors. It is established that the packing index in disordered solid solutions in binary systems based on copper is close to the value of 0.74 against the background of an insignificant deviation of atomic volumes from the Zen’s law.

  8. Au(111) and Pt(111) surface phase behavior

    DEFF Research Database (Denmark)

    Sandy, A.R.; Mochrie, S.G.J.; Zehner, D.M.

    1993-01-01

    We describe our recent X-ray scattering studies of the structure and phases of the clean Au(111) and Pt(111) surfaces. Below 0.65 of their respective bulk melting temperatures, the Au(111) surface has a well-ordered chevron reconstruction and the Pt(111) surface is unreconstructed. Above these te......We describe our recent X-ray scattering studies of the structure and phases of the clean Au(111) and Pt(111) surfaces. Below 0.65 of their respective bulk melting temperatures, the Au(111) surface has a well-ordered chevron reconstruction and the Pt(111) surface is unreconstructed. Above...

  9. Durable electrocatalytic-activity of Pt-Au/C cathode in PEMFCs.

    Science.gov (United States)

    Selvaganesh, S Vinod; Selvarani, G; Sridhar, P; Pitchumani, S; Shukla, A K

    2011-07-21

    Longevity remains as one of the central issues in the successful commercialization of polymer electrolyte membrane fuel cells (PEMFCs) and primarily hinges on the durability of the cathode. Incorporation of gold (Au) to platinum (Pt) is known to ameliorate both the electrocatalytic activity and stability of cathode in relation to pristine Pt-cathodes that are currently being used in PEMFCs. In this study, an accelerated stress test (AST) is conducted to simulate prolonged fuel-cell operating conditions by potential cycling the carbon-supported Pt-Au (Pt-Au/C) cathode. The loss in performance of PEMFC with Pt-Au/C cathode is found to be ∼10% after 7000 accelerated potential-cycles as against ∼60% for Pt/C cathode under similar conditions. These data are in conformity with the electrochemical surface-area values. PEMFC with Pt-Au/C cathode can withstand >10,000 potential cycles with very little effect on its performance. X-ray diffraction and transmission electron microscopy studies on the catalyst before and after AST suggest that incorporating Au with Pt helps mitigate aggregation of Pt particles during prolonged fuel-cell operations while X-ray photoelectron spectroscopy reflects that the metallic nature of Pt is retained in the Pt-Au catalyst during AST in comparison to Pt/C that shows a major portion of Pt to be present as oxidic platinum. Field-emission scanning electron microscopy conducted on the membrane electrode assembly before and after AST suggests that incorporating Au with Pt helps mitigating deformations in the catalyst layer. This journal is © the Owner Societies 2011

  10. The extraction characteristic of Au-Ag from Au concentrate by thiourea solution

    Science.gov (United States)

    Kim, Bongju; Cho, Kanghee; On, Hyunsung; Choi, Nagchoul; Park, Cheonyoung

    2013-04-01

    The cyanidation process has been used commercially for the past 100 years, there are ores that are not amenable to treatment by cyanide. Interest in alternative lixiviants, such as thiourea, halogens, thiosulfate and malononitrile, has been revived as a result of a major increase in gold price, which has stimulated new developments in extraction technology, combined with environmental concern. The Au extraction process using the thiourea solvent has many advantages over the cyanidation process, including higher leaching rates, faster extraction time and less than toxicity. The purpose of this study was investigated to the extraction characteristic of Au-Ag from two different Au concentrate (sulfuric acid washing and roasting) under various experiment conditions (thiourea concentration, pH of solvent, temperature) by thiourea solvent. The result of extraction experiment showed that the Au-Ag extraction was a fast extraction process, reaching equilibrium (maximum extraction rate) within 30 min. The Au-Ag extraction rate was higher in the roasted concentrate than in the sulfuric acid washing. The higher the Au-Ag extraction rate (Au - 70.87%, Ag - 98.12%) from roasted concentrate was found when the more concentration of thiourea increased, pH decreased and extraction temperature increased. This study informs extraction method basic knowledge when thiourea was a possibility to eco-/economic resources of Au-Ag utilization studies including the hydrometallurgy.

  11. Study on antibacterial activity of chemically synthesized PANI-Ag-Au nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Boomi, Pandi [Department of Industrial Chemistry, School of Chemical Sciences, Alagappa University, Karaikudi 630 003, Tamil Nadu (India); Prabu, Halliah Gurumallesh, E-mail: hgprabu2010@gmail.com [Department of Industrial Chemistry, School of Chemical Sciences, Alagappa University, Karaikudi 630 003, Tamil Nadu (India); Manisankar, Paramasivam [Department of Industrial Chemistry, School of Chemical Sciences, Alagappa University, Karaikudi 630 003, Tamil Nadu (India); Ravikumar, Sundaram [Department of Oceanography and Coastal Area Studies, School of Marine Sciences, Alagappa University, Thondi Campus 623 409, Tamil Nadu (India)

    2014-05-01

    Graphical abstract: - Highlights: • New method of synthesizing PANI-Ag-Au nanocomposite. • Surface Plasmon resonance and formation of composite at nano level were analyzed. • HR-TEM study revealed uniform distribution of nanoparticles. • PANI-Ag-Au nanocomposite exhibited good antibacterial activity. - Abstract: Pristine polyaniline (PANI), PANI-Ag, PANI-Au and PANI-Ag-Au nanocomposites have been successfully synthesized by chemical oxidative polymerization method using aniline as monomer, ammonium persulphate as oxidant and metal (Ag, Au and Ag-Au) colloids. UV-Vis analysis exhibited surface Plasmon resonances of Ag, Au, Ag-Au nanoparticles. FT-IR spectra revealed the shift in peak position of N-H stretching. X-ray diffraction (XRD) results confirm the presence of Ag, Au and Au-Ag nanoparticles. HR-TEM images show nanosizes of Ag, Au, Ag-Au and the incorporation of such nanoparticles into the PANI matrix. Pristine PANI, PANI-Ag, PANI-Au and PANI-Ag-Au nanocomposites were tested for antibacterial activity by agar well diffusion method. PANI-Ag-Au nanocomposite exhibited higher antibacterial activity against both gram-positive [Streptococcus sp. (MTCC 890), Staphylococcus sp. (MTCC 96)] and gram-negative bacteria [Escherichia coli (MTCC 1671) and Klebsiella sp. (MTCC 7407)] when compared with PANI-Ag nanocomposite, PANI-Au nanocomposite and pristine PANI. The novelty of this study is the polymer-bimetal synthesis and its antibacterial potential.

  12. Simultaneous synthesis of polyaniline nanofibers and metal (Ag and Pt) nanoparticles

    International Nuclear Information System (INIS)

    Huang, Li-Ming; Liao, Wei-Hao; Ling, Han-Chern; Wen, Ten-Chin

    2009-01-01

    An approach for the synthesis of Ag/Pt nanoparticle-incorporated polyaniline (PANI) nanofibers and Ag/Pt nanoparticles was developed that considers both thermodynamic and kinetic aspects. Ag/Pt nanoparticles and PANI nanofibers are generated simultaneously by the reduction of Ag + /Pt 4+ ions to Ag/Pt nanoparticles and by the polymerization of aniline (ANI) to PANI nanofibers. The PANI nanofibers serve as anchor seeds for the formation of Ag/Pt nanoparticles. The simple and inexpensive route for the preparation of PANI-Ag/Pt nanocomposites can be extended to the polymerization of ANI derivatives and the formation of metal/metal oxides for applications such as sensors, direct methanol fuel cells, and capacitors.

  13. Controlled Synthesis of Au@AgAu Yolk-Shell Cuboctahedra with Well-Defined Facets.

    Science.gov (United States)

    Londono-Calderon, Alejandra; Bahena, Daniel; Yacaman, Miguel J

    2016-08-02

    The synthesis of Au@AgAu yolk-shell cuboctahedra nanoparticles formed by galvanic replacement in a seed-mediated method is described. Initially, single-crystal Au seeds are used for the formation of Au@Ag core-shell nanocubes, which serve as the template material for the deposition of an external Au layer. The well-controlled synthesis yields the formation of cuboctahedra nanoparticles with smooth inner and outer Au/Ag surfaces. The deposition/oxidation process is described to understand the formation of cuboctahedra and octahedra nanoparticles. The Au core maintains the initial morphology of the seed and remains static at the center of the yolk-shell because of residual Ag. Structural analysis of the shell indicates intrinsic stacking faults (SFs) near the surface. Energy dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) compositional analysis show an Au-Ag nonordered alloy forming the shell. The three-dimensional structure of the nanoparticles presented open facets on the [111] as observed by electron tomography SIRT reconstruction over a stack of high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) images. The geometrical model was validated by analyzing the direction of streaks in coherent nanobeam diffraction (NBD). The catalytic activity was evaluated using a model reaction based on the reduction of 4-nitrophenol (4-NTP) by NaBH4 in the presence of Au@AgAu yolk-shell nanoparticles.

  14. Gamma Radiolytic Formation of Alloyed Ag-Pt Nanocolloids

    Directory of Open Access Journals (Sweden)

    M. K. Temgire

    2011-01-01

    Full Text Available Colloidal dispersions of Ag-Pt composite nanoparticles were prepared by gamma radiolysis technique in the presence of nonionic surfactant Brij'97. Simultaneous as well as sequential reduction methods were employed in order to study the structural formation of Ag-Pt bimetallic clusters. Similar shape and trend was observed in optical spectra for both methods. Radiolysis yielded nearly spherical Ag-Pt bimetallic clusters by use of AgNO3 instead of AgClO4. The disappearance of the silver resonance and the simultaneous growth of the 260 nm resonance are independent of cluster structure and degree of alloying. To understand formation of Ag-Pt aggregate, the optical studies were also done as a function of amount of dose absorbed, concentration of surfactant, that is, Brij'97. The shape of the absorption spectrum did not change with increase in gamma radiation dose. TEM analysis exhibited fine dispersions of Ag-Pt clusters surrounded by a mantle when capped with Brij'97. The particle size obtained was in the range of 5–9 nm. On the basis of optical, XRD, and TEM analysis, alloy formation is discussed.

  15. Ion-irradiation induced chemical ordering of FePt and FePtAu nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Seetala, Naidu V. [Department of Physics, Grambling State University, RWE Jones Drive, Carver Hall 81, Grambling, LA 71245 (United States)]. E-mail: naidusv@gram.edu; Harrell, J.W. [MINT Center, University of Alabama, Tuscaloosa, AL 35487 (United States); Lawson, Jeremy [MINT Center, University of Alabama, Tuscaloosa, AL 35487 (United States); Nikles, David E. [MINT Center, University of Alabama, Tuscaloosa, AL 35487 (United States); Williams, John R. [Department of Physics, Auburn University, Auburn, AL 36849 (United States); Isaacs-Smith, Tamara [Department of Physics, Auburn University, Auburn, AL 36849 (United States)

    2005-12-15

    We have studied the effect of ion-beam irradiation on reducing the ordering temperature of FePt and FePtAu nanoparticles. FePt and FePt(Au14%) 4 nm particles dispersed on a Si-substrate were irradiated by 300 keV Al-ions with a dose of 1 x 10{sup 16} ions/cm{sup 2} at 43 {sup o}C using a water-cooled flange in order to minimize the vacancy migration and voids formation within the collision cascades. Partial chemical ordering has been observed in as-irradiated particles with coercivity of 60-130 Oe. Post-irradiation annealing at 220 {sup o}C enhanced chemical ordering in FePt nanoparticles with coercivity of 3500 Oe, magnetic anisotropy of 1.5 x 10{sup 7} erg/cc, and thermal stability factor of 130. A much higher 375 {sup o}C post-irradiation annealing was required in FePtAu, presumably because Au atoms were trapped at Fe/Pt lattice sites at lower temperatures. As the annealing temperature increased, anomalous features in the magnetization reversal curves were observed that disappeared at higher annealing temperatures.

  16. Exotic high activity surface patterns in PtAu nanoclusters

    KAUST Repository

    Mokkath, Junais Habeeb

    2013-05-09

    The structure and chemical ordering of PtAu nanoclusters of 79, 135, and 201 atoms are studied via a combination of a basin hopping atom-exchange technique (to locate the lowest energy homotops at fixed composition), a symmetry orbit technique (to find the high symmetry isomers), and density functional theory local reoptimization (for determining the most stable homotop). The interatomic interactions between Pt and Au are derived from the empirical Gupta potential. The lowest energy structures show a marked tendency toward PtcoreAushell chemical ordering by enrichment of the more cohesive Pt in the core region and of Au in the shell region. We observe a preferential segregation of Pt atoms to (111) facets and Au atoms to (100) facets of the truncated octahedron cluster motif. Exotic surface patterns are obtained particularly for Pt-rich compositions, where Pt atoms are being surrounded by Au atoms. These surface arrangements boost the catalytic activity by creating a large number of active sites. © 2013 American Chemical Society.

  17. Transformation of Ag nanocubes into Ag-Au hollow nanostructures with enriched Ag contents to improve SERS activity and chemical stability.

    Science.gov (United States)

    Yang, Yin; Zhang, Qiang; Fu, Zheng-Wen; Qin, Dong

    2014-03-12

    We report a strategy to complement the galvanic replacement reaction between Ag nanocubes and HAuCl4 with co-reduction by ascorbic acid (AA) for the formation of Ag-Au hollow nanostructures with greatly enhanced SERS activity. Specifically, in the early stage of synthesis, the Ag nanocubes are sharpened at corners and edges because of the selective deposition of Au and Ag atoms at these sites. In the following steps, the pure Ag in the nanocubes is constantly converted into Ag(+) ions to generate voids owing to the galvanic reaction with HAuCl4, but these released Ag(+) ions are immediately reduced back to Ag atoms and are co-deposited with Au atoms onto the nanocube templates. We observe distinctive SERS properties for the Ag-Au hollow nanostructures at visible and near-infrared excitation wavelengths. When plasmon damping is eliminated by using an excitation wavelength of 785 nm, the SERS activity of the Ag-Au hollow nanostructures is 15- and 33-fold stronger than those of the original Ag nanocubes and the Ag-Au nanocages prepared by galvanic replacement without co-reduction, respectively. Additionally, Ag-Au hollow nanostructures embrace considerably improved stability in an oxidizing environment such as aqueous H2O2 solution. Collectively, our work suggests that the Ag-Au hollow nanostructures will find applications in SERS detection and imaging.

  18. Fabricating a Homogeneously Alloyed AuAg Shell on Au Nanorods to Achieve Strong, Stable, and Tunable Surface Plasmon Resonances

    KAUST Repository

    Huang, Jianfeng

    2015-08-13

    Colloidal metal nanocrystals with strong, stable, and tunable localized surface plasmon resonances (SPRs) can be useful in a corrosive environment for many applications including field-enhanced spectroscopies, plasmon-mediated catalysis, etc. Here, a new synthetic strategy is reported that enables the epitaxial growth of a homogeneously alloyed AuAg shell on Au nanorod seeds, circumventing the phase segregation of Au and Ag encountered in conventional synthesis. The resulting core–shell structured bimetallic nanorods (AuNR@AuAg) have well-mixed Au and Ag atoms in their shell without discernible domains. This degree of mixing allows AuNR@AuAg to combine the high stability of Au with the superior plasmonic activity of Ag, thus outperforming seemingly similar nanostructures with monometallic shells (e.g., Ag-coated Au NRs (AuNR@Ag) and Au-coated Au NRs (AuNR@Au)). AuNR@AuAg is comparable to AuNR@Ag in plasmonic activity, but that it is markedly more stable toward oxidative treatment. Specifically, AuNR@AuAg and AuNR@Ag exhibit similarly strong signals in surface-enhanced Raman spectroscopy that are some 30-fold higher than that of AuNR@Au. When incubated with a H2O2 solution (0.5 m), the plasmonic activity of AuNR@Ag immediately and severely decayed, whereas AuNR@AuAg retained its activity intact. Moreover, the longitudinal SPR frequency of AuNR@AuAg can be tuned throughout the red wavelengths (≈620–690 nm) by controlling the thickness of the AuAg alloy shell. The synthetic strategy is versatile to fabricate AuAg alloyed shells on different shaped Au, with prospects for new possibilities in the synthesis and application of plasmonic nanocrystals.

  19. On new ternary equiatomic scandium transition metal aluminum compounds ScTAl with T = Cr, Ru, Ag, Re, Pt, and Au

    Energy Technology Data Exchange (ETDEWEB)

    Radzieowski, Mathis; Janka, Oliver [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Benndorf, Christopher [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Muenster Univ. (Germany). Inst. fuer Physikalische Chemie; Haverkamp, Sandra [Muenster Univ. (Germany). Inst. fuer Physikalische Chemie; Eckert, Hellmut [Muenster Univ. (Germany). Inst. fuer Physikalische Chemie; University of Sao Paulo, Sao Carlos, SP (Brazil). Inst. of Physics

    2016-08-01

    The new equiatomic scandium transition metal aluminides ScTAl for T = Cr, Ru, Ag, Re, Pt, and Au were obtained by arc-melting of the elements followed by subsequent annealing for crystal growth. The samples were studied by powder and single crystal X-ray diffraction. The structures of three compounds were refined from single crystal X-ray diffractometer data: ScCrAl, MgZn{sub 2} type, P6{sub 3}/mmc, a = 525.77(3), c = 858.68(5) pm, R{sub 1} = 0.0188, wR{sub 2} = 0.0485, 204 F{sup 2} values, 13 variables, ScPtAl, TiNiSi type, Pnma, a = 642.83(4), b = 428.96(2), c = 754.54(5) pm, R{sub 1} = 0.0326, wR{sub 2} = 0.0458, 448 F{sup 2} values, 20 variables and ScAuAl, HfRhSn type, P anti 62c, a = 722.88(4), c = 724.15(4) pm, R{sub 1} = 0.0316, wR{sub 2} = 0.0653, 512 F{sup 2} values, 18 variables. Phase pure samples of all compounds were furthermore investigated by magnetic susceptibility measurements, and Pauli-paramagnetism but no superconductivity was observed down to 2.1 K for all of them. The local structural features and disordering phenomena have been characterized by {sup 27}Al and {sup 45}Sc magic angle spinning (MAS) and static NMR spectroscopic investigations.

  20. A bimetallic nanocoral Au decorated with Pt nanoflowers (bio)sensor for H2O2 detection at low potential.

    Science.gov (United States)

    Sanzò, Gabriella; Taurino, Irene; Puppo, Francesca; Antiochia, Riccarda; Gorton, Lo; Favero, Gabriele; Mazzei, Franco; Carrara, Sandro; De Micheli, Giovanni

    2017-10-01

    In this work, we have developed for the first time a method to make novel gold and platinum hybrid bimetallic nanostructures differing in shape and size. Au-Pt nanostructures were prepared by electrodeposition in two simple steps. The first step consists of the electrodeposition of nanocoral Au onto a gold substrate using hydrogen as a dynamic template in an ammonium chloride solution. After that, the Pt nanostructures were deposited onto the nanocoral Au organized in pores. Using Pt (II) and Pt (IV), we realized nanocoral Au decorated with Pt nanospheres and nanocoral Au decorated with Pt nanoflowers, respectively. The bimetallic nanostructures showed better capability to electrochemically oxidize hydrogen peroxide compared with nanocoral Au. Moreover, Au-Pt nanostructures were able to lower the potential of detection and a higher performance was obtained at a low applied potential. Then, glucose oxidase was immobilized onto the bimetallic Au-Pt nanostructure using cross-linking with glutaraldehyde. The biosensor was characterized by chronoamperometry at +0.15V vs. Ag pseudo-reference electrode (PRE) and showed good analytical performances with a linear range from 0.01 to 2.00mM and a sensitivity of 33.66µA/mMcm 2 . The good value of K m app (2.28mM) demonstrates that the hybrid nanostructure is a favorable environment for the enzyme. Moreover, the low working potential can minimize the interference from ascorbic acid and uric acid as well as reducing power consumption to effect sensing. The simple procedure to realize this nanostructure and to immobilize enzymes, as well as the analytical performances of the resulting devices, encourage the use of this technology for the development of biosensors for clinical analysis. Copyright © 2017. Published by Elsevier Inc.

  1. Local structure of disordered Au-Cu and Au-Ag alloys

    International Nuclear Information System (INIS)

    Frenkel, A. I.; Machavariani, V. Sh.; Rubshtein, A.; Rosenberg, Yu.; Voronel, A.; Stern, E. A.

    2000-01-01

    X-ray-absorption fine structure (XAFS) and x-ray-diffraction (XRD) measurements of disordered alloys Au x Cu 1-x and Au 0.5 Ag 0.5 prepared by melt spinning were performed. In the Au 0.5 Ag 0.5 alloy, no significant local deviations of the atoms from the average fcc lattice were detected while in Au x Cu 1-x alloys, significant deviations of atoms from the average fcc lattice were found. Mean-square vibrations of the Cu-Cu distances revealed by the XAFS in Au x Cu 1-x alloys indicate the weakening of contact between Cu atoms in the dilute limit. Our computer simulation for Au x Cu 1-x clusters of 10 5 atoms reproduces the main features of both the XAFS and XRD data

  2. Pt skin coated hollow Ag-Pt bimetallic nanoparticles with high catalytic activity for oxygen reduction reaction

    Science.gov (United States)

    Fu, Tao; Huang, Jianxing; Lai, Shaobo; Zhang, Size; Fang, Jun; Zhao, Jinbao

    2017-10-01

    The catalytic activity and stability of electrocatalyst is critical for the commercialization of fuel cells, and recent reports reveal the great potential of the hollow structures with Pt skin coat for developing high-powered electrocatalysts due to their highly efficient utilization of the Pt atoms. Here, we provide a novel strategy to prepare the Pt skin coated hollow Ag-Pt structure (Ag-Pt@Pt) of ∼8 nm size at room temperature. As loaded on the graphene, the Ag-Pt@Pt exhibits a remarkable mass activity of 0.864 A/mgPt (at 0.9 V, vs. reversible hydrogen electrode (RHE)) towards oxygen reduction reaction (ORR), which is 5.30 times of the commercial Pt/C catalyst, and the Ag-Pt@Pt also shows a better stability during the ORR catalytic process. The mechanism of this significant enhancement can be attributed to the higher Pt utilization and the unique Pt on Ag-Pt surface structure, which is confirmed by the density functional theory (DFT) calculations and other characterization methods. In conclusion, this original work offers a low-cost and environment-friendly method to prepare a high active electrocatalyst with cheaper price, and this work also discloses the correlation between surface structures and ORR catalytic activity for the hollow structures with Pt skin coat, which can be instructive for designing novel advanced electrocatalysts for fuel cells.

  3. Facile synthesis of Ag nanocubes and Au nanocages.

    Science.gov (United States)

    Skrabalak, Sara E; Au, Leslie; Li, Xingde; Xia, Younan

    2007-01-01

    This protocol describes a method for the synthesis of Ag nanocubes and their subsequent conversion into Au nanocages via the galvanic replacement reaction. The Ag nanocubes are prepared by a rapid (reaction time nanocubes. With this method, Ag nanocubes can be prepared and isolated for use within approximately 3 h. The Ag nanocubes can then serve as sacrificial templates for the preparation of Au nanocages, with a method for their preparation also described herein. The procedure for Au nanocage preparation and isolation requires approximately 5 h.

  4. Investigation of Au-Pt/C electro-catalysts for oxygen reduction reaction

    International Nuclear Information System (INIS)

    Lin Rui; Zhang Haiyan; Zhao Tiantian; Cao Chunhui; Yang Daijun; Ma Jianxin

    2012-01-01

    Highlights: ► Au-Pt core shell catalyst. ► Seed-mediated growth method. ► Au-Pt (2:4)/C best activity toward ORR. ► Four-electron pathway in acid solution. ► Single cell performance. - Abstract: Carbon-supported Au-Pt core shell nano-structured catalysts were synthesized by the seed-mediated growth method. The nano-structured catalysts were characterized by UV–vis spectroscopy, X-ray photoelectron spectra (XPS) and transmission electron microscopy (TEM) techniques. The oxygen reduction reaction (ORR) activity of the Au-Pt/C was tested by means of linear sweep voltammetry (LSV) by employing rotating disk electrode (RDE). It revealed that Au-Pt (2:4)/C (atomic ratio) catalyst exhibited the best catalytic activity toward ORR. Au-Pt (2:4)/C proceeded by an approximately four-electron pathway in acid solution, through which molecular oxygen was directly reduced to water. The stability of Au-Pt (2:4)/C is tested by cyclic voltammetry for 500 cycles. The performance of the membrane electrode assembly (MEA) prepared by Au-Pt (2:4)/C as the cathode catalyst in a single proton exchange membrane fuel cell (PEMFC) generated a maximum power density of 479 mW cm −2 at 0.431 V using H 2 and O 2 at 80 °C.

  5. Tuning the chemical activity through PtAu nanoalloying: a first principles study

    KAUST Repository

    Mokkath, Junais Habeeb

    2013-06-21

    The electronic structure and adsorption properties of 1.5 nm sized Pt, Au, and PtAu nanoclusters are studied by density functional theory. We explain the recent experimental finding that 20% Au content in PtAu nanoparticles is optimal to induce a dramatically different catalytic behavior. Our results show that the d-band center together with the density of states at the Fermi energy can be used as an indicator of the chemical activity of PtAu nanoclusters. The most favorable adsorption sites on the cluster surfaces as a function of the Pt/Au ratio are identified using atomic H as a probe.

  6. Tuning the chemical activity through PtAu nanoalloying: a first principles study

    KAUST Repository

    Mokkath, Junais Habeeb; Schwingenschlö gl, Udo

    2013-01-01

    The electronic structure and adsorption properties of 1.5 nm sized Pt, Au, and PtAu nanoclusters are studied by density functional theory. We explain the recent experimental finding that 20% Au content in PtAu nanoparticles is optimal to induce a dramatically different catalytic behavior. Our results show that the d-band center together with the density of states at the Fermi energy can be used as an indicator of the chemical activity of PtAu nanoclusters. The most favorable adsorption sites on the cluster surfaces as a function of the Pt/Au ratio are identified using atomic H as a probe.

  7. A simple approach for facile synthesis of Ag, anisotropic Au and bimetallic (Ag/Au) nanoparticles using cruciferous vegetable extracts

    Energy Technology Data Exchange (ETDEWEB)

    Jacob, Jasmine; Mukherjee, Tulsi; Kapoor, Sudhir, E-mail: sudhirk@barc.gov.in

    2012-10-01

    We present a simple and straightforward approach for the synthesis and stabilization of relatively monodisperse Ag, Au and bimetallic (Ag/Au) nanoparticles by using cruciferous vegetable (green/red) extracts by simply adjusting the pH environment in the aqueous medium. The vegetable extracts act both as reducing and capping agents. The monometallic and bimetallic nanoparticles of Ag and Au so obtained were characterized by UV-visible spectroscopy, X-ray diffraction (XRD), dynamic light scattering (DLS) and transmission electron microscopy (TEM). It is shown that red cabbage extract can be used for the preparation of anisotropic Au nanoparticles. The formation of Au anisotropic nanoparticles was found to depend on a number of environmental factors, such as the pH of the reaction medium, reaction time, and initial reactant concentrations. Additionally, it is shown that these extract-stabilized Au and Ag nanoparticles can be used as a seed for preparation of bimetallic Au/Ag nanoparticles. For bimetallic alloy nanoparticles the absorption peak was observed between the two maxima of the corresponding metallic particles. The surface plasmon absorption maxima for bimetallic nanoparticles changed linearly with increasing Au mole ratio content in various alloy compositions. It has been shown that the formation of hollow Au spheres depends on the experimental conditions. - Graphical abstract: TEM image of gold nanoparticles at pH 3.27 formed by red cabbage extract. Highlights: Black-Right-Pointing-Pointer First report on the reactivity of the extracts toward metal ions using a spectrophotometric technique. Black-Right-Pointing-Pointer Red cabbage extract has better reducing properties than green cabbage extract. Black-Right-Pointing-Pointer Red cabbage extract can reduce metal ions at any pH. Black-Right-Pointing-Pointer Reduction of metal ions can have important consequences in the study of soil chemistry.

  8. A simple approach for facile synthesis of Ag, anisotropic Au and bimetallic (Ag/Au) nanoparticles using cruciferous vegetable extracts

    International Nuclear Information System (INIS)

    Jacob, Jasmine; Mukherjee, Tulsi; Kapoor, Sudhir

    2012-01-01

    We present a simple and straightforward approach for the synthesis and stabilization of relatively monodisperse Ag, Au and bimetallic (Ag/Au) nanoparticles by using cruciferous vegetable (green/red) extracts by simply adjusting the pH environment in the aqueous medium. The vegetable extracts act both as reducing and capping agents. The monometallic and bimetallic nanoparticles of Ag and Au so obtained were characterized by UV–visible spectroscopy, X-ray diffraction (XRD), dynamic light scattering (DLS) and transmission electron microscopy (TEM). It is shown that red cabbage extract can be used for the preparation of anisotropic Au nanoparticles. The formation of Au anisotropic nanoparticles was found to depend on a number of environmental factors, such as the pH of the reaction medium, reaction time, and initial reactant concentrations. Additionally, it is shown that these extract-stabilized Au and Ag nanoparticles can be used as a seed for preparation of bimetallic Au/Ag nanoparticles. For bimetallic alloy nanoparticles the absorption peak was observed between the two maxima of the corresponding metallic particles. The surface plasmon absorption maxima for bimetallic nanoparticles changed linearly with increasing Au mole ratio content in various alloy compositions. It has been shown that the formation of hollow Au spheres depends on the experimental conditions. - Graphical abstract: TEM image of gold nanoparticles at pH 3.27 formed by red cabbage extract. Highlights: ► First report on the reactivity of the extracts toward metal ions using a spectrophotometric technique. ► Red cabbage extract has better reducing properties than green cabbage extract. ► Red cabbage extract can reduce metal ions at any pH. ► Reduction of metal ions can have important consequences in the study of soil chemistry.

  9. Very high coercivities of top-layer diffusion Au/FePt thin films

    International Nuclear Information System (INIS)

    Yuan, F.T.; Chen, S.K.; Liao, W.M.; Hsu, C.W.; Hsiao, S.N.; Chang, W.C.

    2006-01-01

    The Au/FePt samples were prepared by depositing a gold cap layer at room temperature onto a fully ordered FePt layer, followed by an annealing at 800 deg. C for the purpose of interlayer diffusion. After the deposition of the gold layer and the high-temperature annealing, the gold atoms do not dissolve into the FePt Ll 0 lattice. Compared with the continuous FePt film, the TEM photos of the bilayer Au(60 nm)/FePt(60 nm) show a granular structure with FePt particles embedded in Au matrix. The coercivity of Au(60 nm)/FePt(60 nm) sample is 23.5 kOe, which is 85% larger than that of the FePt film without Au top layer. The enhancement in coercivity can be attributed to the formation of isolated structure of FePt ordered phase

  10. Architecture-dependent surface chemistry for Pt monolayers on carbon-supported Au.

    Science.gov (United States)

    Cheng, Shuang; Rettew, Robert E; Sauerbrey, Marc; Alamgir, Faisal M

    2011-10-01

    Pt monolayers were grown by surface-limited redox replacement (SLRR) on two types of Au nanostructures. The Au nanostructures were fabricated electrochemically on carbon fiber paper (CFP) by either potentiostatic deposition (PSD) or potential square wave deposition (PSWD). The morphology of the Au/CFP heterostructures, examined using scanning electron microscopy (SEM), was found to depend on the type of Au growth method employed. The properties of the Pt deposit, as studied using X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), and cyclic voltammetry (CV), were found to depend strongly on the morphology of the support. Specifically, it was found that smaller Au morphologies led to a higher degree of cationicity in the resulting Pt deposit, with Pt(4+) and Pt(2+) species being identified using XPS and XAS. For fuel-cell catalysts, the resistance of ultrathin catalyst deposits to surface area loss through dissolution, poisoning, and agglomeration is critical. This study shows that an equivalent of two monolayers (ML) is the low-loading limit of Pt on Au. At 1 ML or below, the Pt film decreases in activity and durability very rapidly due to presence of cationic Pt. © 2011 American Chemical Society

  11. Fabrication of Pt/Au concentric spheres from triblock copolymer.

    Science.gov (United States)

    Koh, Haeng-Deog; Park, Soojin; Russell, Thomas P

    2010-02-23

    Dispersion of an aqueous H(2)PtCl(6) solution into a trifluorotoluene (TFT) solution of a polystyrene-block-poly(2-vinylpyridine)-block-poly(ethylene oxide) (PS-b-P2VP-b-PEO) triblock copolymer produced an emulsion-induced hollow micelle (EIHM), comprising a water nanodroplet stabilized by PEO, H(2)PtCl(6)/P2VP, and PS, sequentially. The following addition of an aqueous LiAuCl(4) solution into the dispersion led to a coordination of LiAuCl(4) and PEO. The resulting spherical EIHM structure was transformed to a hollow cylindrical micelle by the fusion of spherical EIHM with the addition of methanol. This structural transition was reversible by the alternative addition of methanol and TFT. Oxygen plasma was used to generate Pt/Au concentric spheres and hollow cylindrical Pt/Au nano-objects.

  12. Native gold from the Inagli Pt-Au placer deposit (the Aldan Shield, Russia): geochemical characteristics and implications for possible bedrock sources

    Science.gov (United States)

    Svetlitskaya, Tatyana V.; Nevolko, Peter A.; Kolpakov, Vladislav V.; Tolstykh, Nadezhda D.

    2018-03-01

    The Inagli alluvial Pt-Au placer deposit in the Republic of Sakha (Yakutia), Russia, is linked to the Inagli massif, one of the several Uralian-Alaskan-type alkaline-ultrabasic complexes in the Aldan Shield. Gold from the placer is heterogeneous in composition and is represented by three types. Type 1 gold is the most abundant and is characterized by simple Au-Ag alloys with 4-34 wt% Ag, low Cu (up to 0.08 wt%) and negligible Hg, Pt, and Pd contents, and silver-tellurium sulfosalts (Ag-Cu-Te-S-As compounds) in the inclusion suite. Silicate inclusions are biotite, K-feldspar, Fe-Mg amphibole, chlorite, plagioclase, Fe-Mg pyroxene, zircon, and titanite. Distinctive features of this gold type are most similar to those derived from low-sulfidation systems linked to iron oxide copper-gold or iron skarn types of mineralization. The bedrock source of type 1 gold could be related with monzonite to syenite intrusions surrounding the Inagli massif. Distinctive features of type 2 gold include a wide discontinuous range of Ag content (1-18 wt%), elevated Cu (up to 0.5 wt%), and occasional Pd (up to 0.3 wt%) levels, non-detectable Pt and Hg contents, and rare inclusions of simple sulfides (digenite, pyrrhotite) and Na amphibole. Type 3 gold is distinguished by a narrow range in Ag content (5-8 wt%), elevated Hg (0.5-1 wt%) contents, negligible Cu, Pt and Pd levels, and Au-Pb compounds + K-feldspar inclusions. Microchemical characteristics of type 2 and type 3 gold are interpreted as suggestive of an alkaline-magmatic-related fluid. Based on the grain morphology and microchemical signatures, potential bedrock sources for both gold types could be related to the numerous alkaline veins and potassic alteration zones within the dunite core. A comparison of the Inagli and the Kondyor placer gold allows to generate distinctive generic signatures for gold from Uralian-Alaskan-type alkaline-ultrabasic complexes in the Aldan Shield.

  13. High magnetic coercivity of FePt-Ag/MgO granular nanolayers

    Science.gov (United States)

    Roghani, R.; Sebt, S. A.; Khajehnezhad, A.

    2018-06-01

    L10-FePt ferromagnetic nanoparticles have a hight coercivity of Tesla order. Thus, these nanoparticles, with size of 10 to 15 nm and uniform surface distribution, are suitable in magnetic data storage technology with density of more than 1GB. In order to improve structural and magnetic properties of FePt nanoparticles, some elements and combinations have been added to compound. In this research, we show that due to the presence of the Ag, the phase transition temperature of FePt from fcc to L10-fct phase decreases. The presence of Ag as an additive in FePt-Ag nanocomposite, increases the magnetic coercivity. This nanocomposite, with 10% Ag, was deposited by magnetron sputtering on the MgO heat layer. VSM results of 10 nm nanoparticles show that coercivity has increased up to 1.4 T. XRD and FESEM results confirm that the size of the L10-FePt nanoparticles are 10 nm and their surface distribution are uniform. Ag gradually form nano scale clusters with separate lattice and FePt-Ag nanocomposite appears. The result of this process is emptiness of Ag position in FePt-fcc lattice. So, the mobility of Fe and Pt atoms in this lattice increases and it can be possible for them to move in lower temperature. This mechanism explain the effect of Ag on decreasing the transition temperature to fct-L10 phase, and hight coercivity of FePt nanoparticles.

  14. Microstructure evolution during 300 °C storage of sintered Ag nanoparticles on Ag and Au substrates

    Energy Technology Data Exchange (ETDEWEB)

    Paknejad, S.A. [King’s College London, Physics Department, Strand, London WC2R 2LS (United Kingdom); Dumas, G. [Eltek Semiconductors Ltd, Nelson Road Industrial Estate, Dartmouth, Devon TQ6 9LA (United Kingdom); West, G. [Loughborough University, Materials Department, Loughborough LE11 3TU (United Kingdom); Lewis, G. [Eltek Semiconductors Ltd, Nelson Road Industrial Estate, Dartmouth, Devon TQ6 9LA (United Kingdom); Mannan, S.H., E-mail: samjid.mannan@kcl.ac.uk [King’s College London, Physics Department, Strand, London WC2R 2LS (United Kingdom)

    2014-12-25

    Highlights: • Shear strength of pressure-free sintered Ag found to increase during ageing at 300 °C on Ag substrate. • Rapid collapse of void number density after 24 h ageing in the sintered Ag layer. • Higher porosity at edge of joint compared to the middle. • Shear strength of pressure-free sintered Ag decreases during ageing at 300 °C due to high porosity layer growth. • Void free layer and high porosity layer growth explained in terms of atomic diffusion and grain boundary migration. - Abstract: A silver nanoparticle based die attach material was used in a pressure free process to bond 2.5 mm square Ag plated Si die to Ag and Au plated substrates. The assemblies were stored at 300 °C for up to 500 h and the morphology of the sintered Ag and the shear strength were monitored as a function of time. On Ag substrate it was found that die shear strength increased and that the Ag grains grew in size and porosity decreased over time. There was also a clear difference in morphology between sintered Ag at the die edge and centre. On Au substrate, it was observed that the initially high die shear strength decreased with storage time and that voids migrated away from the Ag/Au interface and into the Ag joint. This has led to the formation of a void free layer at the interface followed by a high porosity region, which weakened the joint. The microstructure reveals a high density of grain and twin boundaries which facilitate the Ag and Au atomic diffusion responsible. The grain structure of the plated Au led to diffusion of Au into the Ag via high-angle tilt grain boundaries, and grain boundary migration further dispersed the Au into the Ag layer.

  15. Direct versus ligand-exchange synthesis of [PtAg28(BDT)12(TPP)4]4− nanoclusters: effect of a single-atom dopant on the optoelectronic and chemical properties

    KAUST Repository

    Bootharaju, Megalamane Siddaramappa

    2017-06-07

    Heteroatom doping of atomically precise nanoclusters (NCs) often yields a mixture of doped and undoped products of single-atom difference, whose separation is extremely difficult. To overcome this challenge, novel synthesis methods are required to offer monodisperse doped NCs. For instance, the direct synthesis of PtAg28 NCs produces a mixture of [Ag29(BDT)12(TPP)4]3- and [PtAg28(BDT)12(TPP)4]4- NCs (TPP: triphenylphosphine; BDT: 1,3-benzenedithiolate). Here, we designed a ligand-exchange (LE) strategy to synthesize single-sized, Pt-doped, superatomic Ag NCs [PtAg28(BDT)12(TPP)4]4- by LE of [Pt2Ag23Cl7(TPP)10] NCs with BDTH2 (1,3-benzenedithiol). The doped NCs were thoroughly characterized by optical and photoelectron spectroscopy, mass spectrometry, total electron count, and time-dependent density functional theory (TDDFT). We show that the Pt dopant occupies the center of the PtAg28 cluster, modulates its electronic structure and enhances its photoluminescence intensity and excited-state lifetime, and also enables solvent interactions with the NC surface. Furthermore, doped NCs showed unique reactivity with metal ions - the central Pt atom of PtAg28 could not be replaced by Au, unlike the central Ag of Ag29 NCs. The achieved synthesis of single-sized PtAg28 clusters will facilitate further applications of the LE strategy for the exploration of novel multimetallic NCs.

  16. Magnetic properties and microstructure study of high coercivity Au/FePt/Au trilayer thin films

    International Nuclear Information System (INIS)

    Chen, S.K.; Yuan, F.T.; Liao, W.M.; Hsu, C.W.; Horng, Lance

    2006-01-01

    High-coercivity Au(60 nm)/FePt(δ nm)/Au(60 nm) trilayer samples were prepared by sputtering at room temperature, followed by post annealing at different temperatures. For the sample with δ=60 nm, L1 ordering transformation occurs at 500 deg. C. Coercivity (H c ) is increased with the annealing temperature in the studied range 400-800 deg. C. The H c value of the trilayer films is also varied with thickness of FePt intermediate layer (δ), from 27 kOe for δ=60 nm to a maximum value of 33.5 kOe for δ=20 nm. X-ray diffraction data indicate that the diffusion of Au atoms into the FePt L1 lattice is negligible even after a high-temperature (800 deg. C) annealing process. Furthermore, ordering parameter is almost unchanged as δ is reduced from 60 to 15 nm. Transmission electron microscope (TEM) photos indicate that small FePt Ll particles are dispersed amid the large-grained Au. We believe that the high coercivity of the trilayer sample is attributed to the small and uniform grain sizes of the highly ordered FePt particles which have perfect phase separation with Au matrix

  17. Site-Selective Carving and Co-Deposition: Transformation of Ag Nanocubes into Concave Nanocrystals Encased by Au-Ag Alloy Frames.

    Science.gov (United States)

    Ahn, Jaewan; Wang, Daniel; Ding, Yong; Zhang, Jiawei; Qin, Dong

    2018-01-23

    We report a facile synthesis of Ag nanocubes with concave side faces and Au-Ag alloy frames, namely Ag@Au-Ag concave nanocrystals, by titrating HAuCl 4 solution into an aqueous mixture of Ag nanocubes, ascorbic acid (H 2 Asc), NaOH, and cetyltrimethylammonium chloride (CTAC) at an initial pH of 11.6 under ambient conditions. Different from all previous studies involving poly(vinylpyrrolidine), the use of CTAC at a sufficiently high concentration plays an essential role in carving away Ag atoms from the side faces through galvanic replacement. Concurrent co-deposition of Au and Ag atoms via chemical reduction at orthogonal sites on the surface of Ag nanocubes leads to the generation of Ag@Au-Ag concave nanocrystals with well-defined and controllable structures. Specifically, in the presence of CTAC-derived Cl - ions, the titrated HAuCl 4 is maintained in the AuCl 4 - species, enabling its galvanic replacement with the Ag atoms located on the side faces of nanocubes. The released Ag + ions can be retained in the soluble form of AgCl 2 - by complexing with the Cl - ions. Both the AuCl 4 - and AgCl 2 - in the solution are then reduced by ascorbate monoanion, a product of the neutralization reaction between H 2 Asc and NaOH, to Au and Ag atoms for their preferential co-deposition onto the edges and corners of the Ag nanocubes. Compared with Ag nanocubes, the Ag@Au-Ag concave nanocrystals exhibit much stronger SERS activity at an excitation of 785 nm, making it feasible to monitor the Au-catalyzed reduction of 4-nitrothiophenol by NaBH 4 in situ. When the Ag cores are removed, the concave nanocrystals evolve into Au-Ag nanoframes with controllable ridge thicknesses.

  18. Phase diagrams of two dimensional Pd{sub x}Ag{sub 1-x}/Pd(111) and Pt{sub x}Ag{sub 1-x}/Pt(111) surface alloys

    Energy Technology Data Exchange (ETDEWEB)

    Engstfeld, Albert K.; Roetter, Ralf T.; Bergbreiter, Andreas; Hoster, Harry E.; Behm, R. Juergen [Institute of Surface Chemistry and Catalysis, Ulm University (Germany)

    2011-07-01

    The distribution of Ag and Pd or Pt in Ag{sub x}Pd{sub 1-x}/Pd(111) and Ag{sub x}Pt{sub 1-x}/Pt(111) surface alloys was studied by high resolution UHV-STM. The alloys were prepared by evaporating Ag on the respective substrate and subsequent annealing to 800 K. From quantitative 2D atom distributions we can show that AgPt tends towards two dimensional clustering and AgPd towards a 'quasi' random distribution, with small deviations for low and high coverages. From effective pair interactions, we are able to calculate the surface mixing energy and determine 2D phase diagrams. Furthermore we will elucidate whether the size mismatch or the differences in the intermetallic bonding are the dominant factor for the respective distribution in the surface alloy.

  19. Catalytically favorable surface patterns in Pt-Au nanoclusters

    KAUST Repository

    Mokkath, Junais Habeeb

    2013-01-01

    Motivated by recent experimental demonstrations of novel PtAu nanoparticles with highly enhanced catalytic properties, we present a systematic theoretical study that explores principal catalytic indicators as a function of the particle size and composition. We find that Pt electronic states in the vicinity of the Fermi level combined with a modified electron distribution in the nanoparticle due to Pt-to-Au charge transfer are the origin of the outstanding catalytic properties. From our model we deduce the catalytically favorable surface patterns that induce ensemble and ligand effects. © The Royal Society of Chemistry 2013.

  20. Equilibrium phase diagram of the Ag-Au-Pb ternary system

    International Nuclear Information System (INIS)

    Hassam, S.; Bahari, Z.

    2005-01-01

    The phase diagram of the ternary system Ag-Au-Pb has been established using differential thermal analysis and X-ray powder diffraction analysis. Four vertical sections were studied: X Pb = 0.40, X Au /X Pb = 1/3, X Ag /X Au = 4/1 and X Ag /X Au = 1/1. Two ternary transitory peritectics and one ternary eutectic were characterized. A schematic representation of the ternary equilibria is given

  1. Facile Synthesis of Quasi-One-Dimensional Au/PtAu Heterojunction Nanotubes and Their Application as Catalysts in an Oxygen-Reduction Reaction.

    Science.gov (United States)

    Cai, Kai; Liu, Jiawei; Zhang, Huan; Huang, Zhao; Lu, Zhicheng; Foda, Mohamed F; Li, Tingting; Han, Heyou

    2015-05-11

    An intermediate-template-directed method has been developed for the synthesis of quasi-one-dimensional Au/PtAu heterojunction nanotubes by the heterogeneous nucleation and growth of Au on Te/Pt core-shell nanostructures in aqueous solution. The synthesized porous Au/PtAu bimetallic nanotubes (PABNTs) consist of porous tubular framework and attached Au nanoparticles (AuNPs). The reaction intermediates played an important role in the preparation, which fabricated the framework and provided a localized reducing agent for the reduction of the Au and Pt precursors. The Pt7 Au PABNTs showed higher electrocatalytic activity and durability in the oxygen-reduction reaction (ORR) in 0.1 M HClO4 than porous Pt nanotubes (PtNTs) and commercially available Pt/C. The mass activity of PABNTs was 218 % that of commercial Pt/C after an accelerated durability test. This study demonstrates the potential of PABNTs as highly efficient electrocatalysts. In addition, this method provides a facile strategy for the synthesis of desirable hetero-nanostructures with controlled size and shape by utilizing an intermediate template. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. “Z”-Shaped Rotational Au/Pt Micro-Nanorobot

    Directory of Open Access Journals (Sweden)

    Kai Chen

    2017-06-01

    Full Text Available Drug delivery, minimally-invasive surgery, and a hospital-in-the-body are highly desirable for meeting the rapidly growing needs of nanorobot. This paper reports a Z-shaped gold/platinum (Au/Pt hybrid nanorobot which realizes the self-rotational movement without an external force field. The Z-shaped Au/Pt hybrid nanorobot was fabricated by focused ion beam (FIB and plasma sputtering. The purity of the nanorobot was tested by energy dispersive X-ray analysis (EDS. The weight percentage of Pt and Au at the tip were 94.28% and 5.72%, respectively. The weight percentage of Pt and Au at the bottom were 17.39% and 82.75%, respectively. The size of the nanorobot was 2.58 × 10−16 m2 and the mass of the nanorobot was 8.768 × 10−8 kg. The driving force of the nanorobot was 9.76 × 10−14 N at the 6.9% concentration of hydrogen peroxide solution. The rotation speed was 13 rpm, 14 rpm, and 19 rpm at 5.6%, 6.2%, and 7.8% concentrations, respectively.

  3. Au@AuPt nanoparticles embedded in B-doped graphene: A superior electrocatalyst for determination of rutin

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xianlan; Yang, Guangming; Feng, Shaoping; Shi, Ling; Huang, Zhaolong [School of Science, Honghe University (China); Key Laboratory of Natural Pharamaceutical & Chemical Biology of Yunnan Province Mengzi, Yunnan 661100 (China); Pan, Haibo [Fujian Key Lab of Medical Instrument & Pharmaceutical Technology, Yishan Campus, Fuzhou University, Fuzhou, Fujian 350002 (China); Liu, Wei, E-mail: liuwei4728@126.com [School of Science, Honghe University (China); Key Laboratory of Natural Pharamaceutical & Chemical Biology of Yunnan Province Mengzi, Yunnan 661100 (China)

    2017-04-30

    Highlights: • The formation of B-doped graphene (BG) with high content of a total B species use hydrothermal method with B{sub 2}O{sub 3} as reducing agent and boron source. • BG was exfoliated into monolayer nanosheet impregnated by Au@AuPt NPs because B atom creates a net positive charge to facilitate NPs adsorption. • The dispersed carboxyl units of BG can form hydrogen bonding with the phenolic hydroxyl groups of rutin, making more rutin participate in reaction. • Au@AuPt NPs can form charge accumulation or valence change on prominent part of the surface, improving the catalytic effect to rutin. • More electroactive sites were generated by doping B atoms into graphene structures, which act as multidimensional electron transport pathways. - Abstract: A hydrothermal approach was used to prepare B-doped graphene with B{sub 2}O{sub 3} as reductant and boron source. Results reveal that the boron atoms have been successfully embedded into graphene with a high content of a total B species (2.85 at.%). Then, B-doped graphene was exfoliated further into monolayer nanosheet by impregnating Au@AuPt core-shell nanoparticles (Au@AuPt NPs) because boron atom creates a net positive charge, which facilitates Au@AuPt NPs adsorption to form Au@AuPt NPs/B-doped graphene hybrid nanocatalysts. After that, the Au@AuPt NPs/B-doped hybrid suspension was dropped on glassy carbon electrode for sensing rutin. In this way, the dispersed carboxyl units of B-doped graphene can form hydrogen bonding with the phenolic hydroxyl groups of rutin, making rutin enrich easily on modified electrode surface to enhance the electrochemical response. At the same time, its electrochemical mechanism on the modified electrode was elucidated using cyclic voltammetry. It was found that its electrochemical behavior on modified electrode surface was a surface-controlled quasi-reversible process, and the charge transfer coefficient (α) and electron transfer number (n) were 0.296 and 2, respectively

  4. Microstructure and magnetic properties of nanocomposite FePt/MgO and FePt/Ag films

    International Nuclear Information System (INIS)

    Chen, S.C.; Kuo, P.C.; Sun, A.C.; Chou, C.Y.; Fang, Y.H.; Wu, T.H.

    2006-01-01

    An in-plane magnetic anisotropy of FePt film is obtained in the MgO 5 nm/FePt t nm/MgO 5 nm films (where t=5, 10 and 20 nm). Both the in-plane coercivity (H c- parallel ) and the perpendicular magnetic anisotropy of FePt films are increased when introducing an Ag-capped layer instead of MgO-capped layer. An in-plane coercivity is 3154 Oe for the MgO 5 nm/FePt 10 nm/MgO 5 nm film, and it can be increased to 4846 Oe as a 5 nm Ag-capped layer instead of MgO-capped layer. The transmission electron microscopy (TEM)-energy disperse spectrum (EDS) analysis shows that the Ag mainly distributed at the grain boundary of FePt, that leads the increase of the grain boundary energy, which will enhance coercivity and perpendicular magnetic anisotropy of FePt film

  5. Green synthesis and characterization of Au@Pt core-shell bimetallic nanoparticles using gallic acid

    Science.gov (United States)

    Zhang, Guojun; Zheng, Hongmei; Shen, Ming; Wang, Lei; Wang, Xiaosan

    2015-06-01

    In this study, we developed a facile and benign green synthesis approach for the successful fabrication of well-dispersed urchin-like Au@Pt core-shell nanoparticles (NPs) using gallic acid (GA) as both a reducing and protecting agent. The proposed one-step synthesis exploits the differences in the reduction potentials of AuCl4- and PtCl62-, where the AuCl4- ions are preferentially reduced to Au cores and the PtCl62- ions are then deposited continuously onto the Au core surface as a Pt shell. The as-prepared Au@Pt NPs were characterized by transmission electron microscope (TEM); high-resolution transmission electron microscope (HR-TEM); scanning electron microscope (SEM); UV-vis absorption spectra (UV-vis); X-ray diffraction (XRD); Fourier transmission infrared spectra (FT-IR). We systematically investigated the effects of some experimental parameters on the formation of the Au@Pt NPs, i.e., the reaction temperature, the molar ratios of HAuCl4/H2PtCl6, and the amount of GA. When polyvinylpyrrolidone K-30 (PVP) was used as a protecting agent, the Au@Pt core-shell NPs obtained using this green synthesis method were better dispersed and smaller in size. The as-prepared Au@Pt NPs exhibited better catalytic activity in the reaction where NaBH4 reduced p-nitrophenol to p-aminophenol. However, the results showed that the Au@Pt bimetallic NPs had a lower catalytic activity than the pure Au NPs obtained by the same method, which confirmed the formation of Au@Pt core-shell nanostructures because the active sites on the surfaces of the Au NPs were covered with a Pt shell.

  6. Comparison of Au and Ag nanoshells' metal-enhanced fluorescence

    International Nuclear Information System (INIS)

    Liaw, Jiunn-Woei; Chen, Huang-Chih; Kuo, Mao-Kuen

    2014-01-01

    The average enhancement factors of Au and Ag nanoshells (NSs) were analyzed theoretically to compare their overall performances on metal-enhanced fluorescence. We used the Mie theory and dyadic Green's functions to calculate the excitation rate and apparent quantum yield of NS interacting with a plane wave and a dipole, respectively, and then to obtain the enhancement factor. Moreover, the average enhancement factor (AEF) of NS on the fluorescence of a nearby molecule was obtained by averaging all possible orientations and locations of the molecule with a constant distance from NS. Our results show that the maximum AEF of Au NS occurs at the wavelength of the dipole mode, which is broadband. In contrast, the maximum AEF of Ag NS is at the narrowband quadrupole mode. In addition, the Stokes shift effect on AEF was studied for Au and Ag NSs. - Highlights: • The average enhancement factors of Au and Ag nanoshells were analyzed theoretically. • The maximum AEF of Au NS occurs at the wavelength of the dipole mode. • The maximum AEF of Ag NS is at the narrowband quadrupole mode. • The Stokes shift effect on AEF is discussed for Au and Ag NSs

  7. Synthesis of biocompatible AuAgS/Ag2S nanoclusters and their applications in photocatalysis and mercury detection

    International Nuclear Information System (INIS)

    Zhao, Qian; Chen, Shenna; Zhang, Lingyang; Huang, Haowen; Liu, Fengping; Liu, Xuanyong

    2014-01-01

    In this paper, a facile approach for preparation of AuAgS/Ag 2 S nanoclusters was developed. The unique AuAgS/Ag 2 S nanoclusters capped with biomolecules exhibit interesting excellent optical and catalytic properties. The fluorescent AuAgS/Ag 2 S nanoclusters show tunable luminescence depending on the nanocluster size. The apoptosis assay demonstrated that the AuAgS/Ag 2 S nanoclusters showed low cytotoxicity and good biocompatibility. Therefore, the nanoclusters can be used not only as a probe for labeling cells but also for their photocatalytic activity for photodegradation of organic dye. Moreover, a highly selective and sensitive assay for detection of mercury including Hg 2+ and undissociated mercury complexes was developed based on the quenching fluorescent AuAgS/Ag 2 S nanoclusters, which provides a promising approach for determining various forms of Hg in the mercury-based compounds in environment. These unique nanoclusters may have potential applications in biological labeling, sensing mercury, and photodegradation of various organic pollutants in waste water.Graphical Abstract

  8. Synthesis and electrocatalytic activity of Au/Pt bimetallic nanodendrites for ethanol oxidation in alkaline medium.

    Science.gov (United States)

    Han, Xinyi; Wang, Dawei; Liu, Dong; Huang, Jianshe; You, Tianyan

    2012-02-01

    Gold/Platinum (Au/Pt) bimetallic nanodendrites were successfully synthesized through seeded growth method using preformed Au nanodendrites as seeds and ascorbic acid as reductant. Cyclic voltammograms (CVs) of a series of Au/Pt nanodendrites modified electrodes in 1M KOH solution containing 1M ethanol showed that the electrocatalyst with a molar ratio (Au:Pt) of 3 exhibited the highest peak current density and the lowest onset potential. The peak current density of ethanol electro-oxidation on the Au(3)Pt(1) nanodendrites modified glassy carbon electrode (Au(3)Pt(1) electrode) is about 16, 12.5, and 4.5 times higher than those on the polycrystalline Pt electrode, polycrystalline Au electrode, and Au nanodendrites modified glassy carbon electrode (Au dendrites electrode), respectively. The oxidation peak potential of ethanol electro-oxidation on the Au(3)Pt(1) electrode is about 299 and 276 mV lower than those on the polycrystalline Au electrode and Au dendrites electrode, respectively. These results demonstrated that the Au/Pt bimetallic nanodendrites may find potential application in alkaline direct ethanol fuel cells (ADEFCs). Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Kinetic Investigation of Homogeneous H(2)-D(2) Equilibration Catalyzed by Pt-Au Cluster Compounds. Characterization of the Cluster [(H)Pt(AuPPh(3))(9)](NO(3))(2).

    Science.gov (United States)

    Rubinstein, Leon I.; Pignolet, Louis H.

    1996-11-06

    The new Pt-Au hydrido cluster compound [(H)Pt(AuPPh(3))(9)](NO(3))(2) (3) has been synthesized and characterized by NMR, FABMS, and single-crystal X-ray diffraction [triclinic, P&onemacr;, a = 17.0452(1) Å, b = 17.4045(2) Å, c = 55.2353(1) Å, alpha = 89.891(1) degrees, beta = 85.287(1) degrees, gamma = 75.173(1) degrees, V = 15784.0(2) Å(3), Z = 4 (two molecules in asymmetric unit), residual R = 0.089 for 45 929 observed reflections and 3367 variables, Mo Kalpha radiation]. The Pt(AuP)(9) core geometry is a distorted icosahedron with three vertices vacant. The Pt-Au, Au-Au, and Au-P distances are within the normal ranges observed in other Pt-Au clusters. This cluster is a catalyst for H(2)-D(2) equilibration in homogeneous solution phase and has been used in a general mechanistic study of this reaction catalyzed by Pt-Au clusters. We previously proposed that a key step in the mechanism for catalytic H(2)-D(2) equilibration is the dissociation of a PPh(3) ligand to give a cluster with an open Au site for bonding of H(2) or D(2). This was based on qualitative observations that PPh(3) inhibited the rate of HD production with [Pt(AuPPh(3))(8)](NO(3))(2) (1) as catalyst. In order to test this hypothesis, phosphine inhibition (on the rate of HD production) and phosphine ligand exchange kinetic experiments were carried out with [(H)(PPh(3))Pt(AuPPh(3))(7)](NO(3))(2) (2) and 3. In this paper we show that the rate constant for phosphine dissociation determined from the PPh(3) inhibition rate study of H(2)-D(2) equilibration with cluster 2 is nearly identical to the rate constant for dissociative phosphine ligand exchange. The slower rate for H(2)-D(2) equilibration observed with 3 compared with 2 (5.5 x 10(-3) vs 7.7 x 10(-2) turnover s(-1)) is explained by its smaller rate constant for phosphine dissociation (2.8 x 10(-5) vs 2.9 x 10(-4) s(-1)). The fact that clusters 2 and 3 show similar kinetic behaviors suggests that the PPh(3) dissociation step in the catalytic H(2

  10. Studies on electronic structure of interfaces between Ag and gelatin for stabilization of Ag nanoparticles

    International Nuclear Information System (INIS)

    Tani, Tadaaki; Uchida, Takayuki

    2015-01-01

    Extremely high stability of Ag nanoparticles in photographic materials has forced us to study the electronic structures of the interfaces between thin layers of Ag, Au, and Pt and their surface membranes in ambient atmosphere by photoelectron yield spectroscopy in air and Kelvin probe method. Owing to the Fermi level equalization between a metal layer and a membrane coming from air, the electron transfer took place from the membrane to Pt and Au layers and from an Ag layer to the membrane, giving the reason for poor stability of Ag nanoparticles in air. The control of the Fermi level of an Ag layer with respect to that of a gelatin membrane in air could be widely made according to Nernst's equation by changing the pH and pAg values of an aqueous gelatin solution used to form the membrane, and thus available to stabilize Ag nanoparticles in a gelatin matrix. (author)

  11. Photoreduction of Ag{sup +} in Ag/Ag{sub 2}S/Au memristor

    Energy Technology Data Exchange (ETDEWEB)

    Mou, N.I.; Tabib-Azar, M., E-mail: azar.m@utah.edu

    2015-06-15

    Highlights: • The effect of illumination on the operating voltages and switching speed of Ag/Ag{sub 2}S/Au memristors is studied • Illumination decreased the average switching time from high to low resistance states by ∼19% and decreased the turn-off voltages dramatically from −0.8 V to −0.25 V. • Photo-induced reduction of silver in Ag{sub 2}S may be used in three dimensional optical memories that can be electronically read and reset. • Illumination changed sulfur's valency and modified its oxidation/reduction potential. - Abstract: Silver halides and chalcogenides are excellent memristor materials that have been extensively used in the past as photosensitive layers in photography. Here we examine the effect of illumination on the operating voltages and switching speed of Ag/Ag{sub 2}S/Au memristors using a green laser (473–523 nm). Our results indicate that illumination decreases the average switching time from high to low resistance states by ∼19% and decreases the turn-off voltages dramatically from −0.8 V to −0.25 V that we attribute to the change in sulfur valency and a photo-induced change in its oxidation/reduction potential. Photo-induced reduction of silver in Ag{sub 2}S may be used in three dimensional optical memories that can be electronically read and reset.

  12. Pt/Au nanoalloy supported on alumina and chlorided alumina: DFT and experimental analysis

    Science.gov (United States)

    Sharifi, N.; Falamaki, C.; Ghorbanzadeh Ahangari, M.

    2018-04-01

    Density functional theory (DFT) was used to explore the adsorption of Pt/Au nanoalloy onto a pure and chlorided γ-Al2O3(110) surface, which has been applied in numerous catalytic reactions. First, we considered the adsorption properties of Pt clusters (n ≤ 5) onto the Al2O3(110) surface to determine the most stable Pt cluster on alumina surface in reforming processes. After full structural relaxations of Pt clusters at various configurations on alumina, our computed results expressed that the minimum binding energy (‑5.67 eV) is accrued for Pt4 cluster and the distance between the nearest Pt atom in the cluster to the alumina surface is equal to 1.13 Å. Then, we investigated the binding energies, geometries, and electronic properties of adsorbed Aun clusters (n ≤ 6) on the γ-Al2O3(110) surface. Our studied showed that Au5 was the most thermodynamically stable structure on γ-Al2O3. Finally, we inspected these properties for adsorbed Au clusters onto the Pt4-decorated alumina (Aun/Pt4-alumina) system. The binding energy of the Au4/Pt4-alumina system was ‑5.01 eV, and the distance between Au4 cluster and Pt4-alumina was 1.33 Å. The Au4/Pt4alumina system was found to be the most stable nanometer-sized catalyst design. At last, our first-principles calculations predicted that the best position of embedment Cl on the Au4/Pt4-alumina.

  13. Synthesis of Au@Pt bimetallic nanoparticles with concave Au nanocuboids as seeds and their enhanced electrocatalytic properties in the ethanol oxidation reaction

    Science.gov (United States)

    Tan, Lingyu; Li, Lidong; Peng, Yi; Guo, Lin

    2015-12-01

    Herein, a new type of uniform and well-structured Au@Pt bimetallic nanoparticles (BNPs) with highly active concave Au nanocuboids (NCs) as seeds was successfully synthesized by using the classic seed-mediated method. Electrochemical measurements were conducted to demonstrate their greatly enhanced catalytic performance in the ethanol oxidation reaction (EOR). It was found that the electrochemical performance for Au@Pt BNPs with the concave Au NCs as seeds, which were enclosed by {611} high-index facets, could be seven times higher than that of the Au@Pt bimetallic nanoparticles with regular spherical Au NPs as seeds. Furthermore, our findings show that the morphology and electrocatalytic activity of the Au@Pt BNPs can be tuned simply by changing the compositional ratios of the growth solution. The lower the amount of H2PtCl6 used in the growth solution, the thinner the Pt shell grew, and the more high-index facets of concave Au NCs seeds were exposed in Au@Pt BNPs, leading to higher electrochemical activity. These as-prepared concave Au@Pt BNPs will open up new strategies for improving catalytic efficiency and reducing the use of the expensive and scarce resource of platinum in the ethanol oxidation reaction, and are potentially applicable as electrochemical catalysts for direct ethanol fuel cells.

  14. Synthesis of Au@Pt bimetallic nanoparticles with concave Au nanocuboids as seeds and their enhanced electrocatalytic properties in the ethanol oxidation reaction

    International Nuclear Information System (INIS)

    Tan, Lingyu; Li, Lidong; Peng, Yi; Guo, Lin

    2015-01-01

    Herein, a new type of uniform and well-structured Au@Pt bimetallic nanoparticles (BNPs) with highly active concave Au nanocuboids (NCs) as seeds was successfully synthesized by using the classic seed-mediated method. Electrochemical measurements were conducted to demonstrate their greatly enhanced catalytic performance in the ethanol oxidation reaction (EOR). It was found that the electrochemical performance for Au@Pt BNPs with the concave Au NCs as seeds, which were enclosed by {611}high-index facets, could be seven times higher than that of the Au@Pt bimetallic nanoparticles with regular spherical Au NPs as seeds. Furthermore, our findings show that the morphology and electrocatalytic activity of the Au@Pt BNPs can be tuned simply by changing the compositional ratios of the growth solution. The lower the amount of H_2PtCl_6 used in the growth solution, the thinner the Pt shell grew, and the more high-index facets of concave Au NCs seeds were exposed in Au@Pt BNPs, leading to higher electrochemical activity. These as-prepared concave Au@Pt BNPs will open up new strategies for improving catalytic efficiency and reducing the use of the expensive and scarce resource of platinum in the ethanol oxidation reaction, and are potentially applicable as electrochemical catalysts for direct ethanol fuel cells. (paper)

  15. Thermoelectric properties of currently available Au/Pt thermocouples related to the valid reference function

    Directory of Open Access Journals (Sweden)

    Edler F.

    2015-01-01

    Full Text Available Au/Pt thermocouples are considered to be an alternative to High Temperature Standard Platinum Resistance Thermometers (HTSPRTs for realizing temperatures according to the International Temperature Scale of 1990 (ITS-90 in the temperature range between aluminium (660.323 °C and silver (961.78 °C. The original aim of this work was to develop and to validate a new reference function for Au/Pt thermocouples which reflects the properties of presently commercially available Au and Pt wires. The thermoelectric properties of 16 Au/Pt thermocouples constructed at different National Metrological Institutes by using wires from different suppliers and 4 commercially available Au/Pt thermocouples were investigated. Most of them exhibit significant deviations from the current reference function of Au/Pt thermocouples caused by the poor performance of the Au-wires available. Thermoelectric homogeneity was investigated by measuring immersion profiles during freezes at the freezing point of silver and in liquid baths. The thermoelectric inhomogeneities were found to be one order of magnitude larger than those of Au/Pt thermocouples of the Standard Reference Material® (SRM® 1749. The improvement of the annealing procedure of the gold wires is a key process to achieve thermoelectric homogeneities in the order of only about (2–3 mK, sufficient to replace the impracticable HTSPRTs as interpolation instruments of the ITS-90. Comparison measurements of some of the Au/Pt thermocouples against a HTSPRT and an absolutely calibrated radiation thermometer were performed and exhibit agreements within the expanded measurement uncertainties. It has been found that the current reference function of Au/Pt thermocouples reflects adequately the thermoelectric properties of currently available Au/Pt thermocouples.

  16. Crystal and electronic structure study of AgAu and AgCu bimetallic alloy thin films by X-ray techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ozkendir, O. Murat, E-mail: ozkendir@gmail.com [Mersin University, Faculty of Technology, Energy Systems Engineering, Tarsus (Turkey); Mersin University, Institute of Natural Science, Department of Nanotechnology and Advanced Materials, Mersin (Turkey); Cengiz, E. [Karadeniz Technical University, Faculty of Science, Department of Physics, Trabzon (Turkey); Yalaz, E. [Mersin University, Institute of Natural Science, Department of Nanotechnology and Advanced Materials, Mersin (Turkey); Söğüt, Ö.; Ayas, D.H. [Kahramanmaraş Sütçü İmam Üniversitesi, Faculty of Science and Letters, Department of Physics, Kahramanmaraş (Turkey); Thammajak, B. Nirawat [Synchrotron Light Research Institute (Public Organisation), 111 University Avenue, T. Suranaree, A. Muang, Nakhon Ratchasima 30000 (Thailand)

    2016-05-15

    Highlights: • Crystal and electronic properties of bimetallic AgCu and AgAu alloy thin films were studied. • Both AgCu and AgAu bimetallic samples were determined to have cubic crystal geometry. • Strong influence of Cu and Au atoms on the electronic structure of the Ag atoms were determined. - Abstract: Crystal and electronic structure properties of bimetallic AgAu and AgCu alloy thin films were investigated by X-ray spectroscopic techniques. The aim of this study is to probe the influence of Au or Cu atoms on the electronic behaviors of Ag ions in bimetallic alloy materials that yields different crystal properties. To identify the mechanisms causing crystal phase transitions, study were supported by the collected EXAFS (Extended X-ray Absorption Fine Structure) data. Crystal structures of both Cu and Au doped bimetallic Ag samples were determined mainly in cubic geometry with “Fm3m” space group. Through the Ag–Au and Ag–Cu molecular interactions during bimetallic alloy formations, highly overlapped electronic levels that supports large molecular band formations were observed with different ionization states. Besides, traces of the d–d interactions in Au rich samples were determined as the main interplay in the broad molecular bond formations. The exact atomic locations and types in the samples were determined by EXAFS studies and supported by the performed calculations with FEFF scientific code.

  17. Enhanced catalyst activity by decorating of Au on Ag@Cu2O nanoshell

    Science.gov (United States)

    Chen, Lei; Liu, Maomao; Zhao, Yue; Kou, Qiangwei; Wang, Yaxin; Liu, Yang; Zhang, Yongjun; Yang, Jinghai; Jung, Young Mee

    2018-03-01

    We successfully synthesized Au-decorated Ag@Cu2O heterostructures via a simple galvanic replacement method. As the Au precursor concentration increased, the density of the Au nanoparticles (NPs) on the Ag@Cu2O surface increased, which changed the catalytic activity of the Ag@Cu2O-Au structure. The combination of Au, Ag, and Cu2O exhibited excellent catalytic properties, which can further effect on the catalyst activity of the Ag@Cu2O-Au structure. In addition, the proposed Ag@Cu2O-Au nanocomposite was used to transform the organic, toxic pollutant, 4-nitrophenol (4-NP), into its nontoxic and medicinally important amino derivative via a catalytic reduction to optimize the material performance. The proposed Au-decorated Ag@Cu2O exhibited excellent catalytic activity, and the catalytic reduction time greatly decreased (5 min). Thus, three novel properties of Ag@Cu2O-Au, i.e., charge redistribution and transfer, adsorption, and catalytic reduction of organic pollutants, were ascertained for water remediation. The proposed catalytic properties have potential applications for photocatalysis and localized surface plasmon resonance (LSPR)- and peroxidase-like catalysis.

  18. Formation of Ag2, Au2 and AgAu particles on MgO(1 0 0): DFT study on the role of support-induced charge transfer in metal-metal interactions

    International Nuclear Information System (INIS)

    Fuente, Silvia A.; Belelli, Patricia G.; Branda, Maria M.; Ferullo, Ricardo M.; Castellani, Norberto J.

    2009-01-01

    The formation of Ag 2 , Au 2 and AgAu particles oriented perpendicularly to the MgO(1 0 0) surface was studied using the density functional theory. While the support induces a slight enhancement of the Ag-Ag bond (by 0.3-0.4 eV), the Au-Au bond is strongly enhanced (by 0.8-1.1 eV). Concerning the bimetallic particle, the Ag-Au bond stabilization depends on the relative position of each atom. Thus, in general terms, the strength of the metal-metal bond is determined by the nature of the terminal atom; the bond is stronger in Au-terminal particles. The partial electronic charge transfer to the terminal Au atom and its ability to polarize this charge are responsible for this energetic stabilization.

  19. Preparation of Ag{sub core}/Au{sub shell} bimetallic nanoparticles from physical mixtures of Au clusters and Ag ions under dark conditions and their catalytic activity for aerobic glucose oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Haijun, E-mail: zhanghaijun@wust.edu.cn [College of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan, Hubei Province 430081 (China); Toshima, Naoki; Takasaki, Kanako [Department of Applied Chemistry, Tokyo University of Science Yamaguchi, SanyoOnoda-shi, Yamaguchi 756-0884 (Japan); Okumura, Mitsutaka [Department of Chemistry, Graduate School of Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-0043 (Japan)

    2014-02-15

    Graphical abstract: The synthesis, characterization and catalytic activities for glucose oxidation of AgAu bimetallic nanoparticles (BNPs) with size of less than 2 nm are reported. The catalytic activity of Ag{sub 10}Au{sub 90} BNPs was about two times higher than that of Au NPs, even the BNPs have a larger particle size than that of Au NPs. -- Highlights: • Ag{sub core}/Au{sub shell} BNPs with size of less than 2.0 nm were prepared. • No any reducing reagents and lights were used for the preparation of the BNPs. • The catalytic activity of the BNPs is about two times higher than that of Au NPs. -- Abstract: AgAu bimetallic nanoparticles (BNPs), one of the most extensively studied bimetallic systems in the literatures, could have various structures and compositions depending on their preparation conditions. In the present work, catalytically highly active PVP-protected Ag{sub core}/Au{sub shell} BNPs of about 2.5 nm in diameter were fabricated from physical mixtures of aqueous dispersions of Au nanoparticles and Ag{sup +} ions under dark conditions without using any reducing agents. The prepared Ag{sub core}/Au{sub shell} BNP colloidal catalysts, which possessed a high activity for aerobic glucose oxidation, were characterized by Ultraviolet–visible spectrophotometry (UV–Vis), Inductive coupled plasma emission spectrometer (ICP), Transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and Energy disperse spectroscopy (EDS) in High-resolution scanning transmission electron microscopy (HR-STEM). The highest activity (11,360 mol-glucose h{sup −1} mol-metal{sup −1}) was observed for the BNPs with the Ag/Au atomic ratio of 1/9, the TOF value of which is about two times higher than that of Au nanoparticles with the particle size of 1.3 nm. The enhanced catalytic activity of the prepared Ag{sub core}/Au{sub shell} BNPs compared to Au NPs can be ascribed to the presence of negatively charged Au atoms resulted from electron donations

  20. Plasmon enhanced water splitting mediated by hybrid bimetallic Au-Ag core-shell nanostructures.

    Science.gov (United States)

    Erwin, William R; Coppola, Andrew; Zarick, Holly F; Arora, Poorva; Miller, Kevin J; Bardhan, Rizia

    2014-11-07

    In this work, we employed wet chemically synthesized bimetallic Au-Ag core-shell nanostructures (Au-AgNSs) to enhance the photocurrent density of mesoporous TiO2 for water splitting and we compared the results with monometallic Au nanoparticles (AuNPs). While Au-AgNSs incorporated photoanodes give rise to 14× enhancement in incident photon to charge carrier efficiency, AuNPs embedded photoanodes result in 6× enhancement. By varying nanoparticle concentration in the photoanodes, we observed ∼245× less Au-AgNSs are required relative to AuNPs to generate similar photocurrent enhancement for solar fuel conversion. Power-dependent measurements of Au-AgNSs and AuNPs showed a first order dependence to incident light intensity, relative to half-order dependence for TiO2 only photoanodes. This indicated that plasmonic nanostructures enhance charge carriers formed on the surface of the TiO2 which effectively participate in photochemical reactions. Our experiments and simulations suggest the enhanced near-field, far-field, and multipolar resonances of Au-AgNSs facilitating broadband absorption of solar radiation collectively gives rise to their superior performance in water splitting.

  1. Electrochemical synthesis of mesoporous Pt-Au binary alloys with tunable compositions for enhancement of electrochemical performance.

    Science.gov (United States)

    Yamauchi, Yusuke; Tonegawa, Akihisa; Komatsu, Masaki; Wang, Hongjing; Wang, Liang; Nemoto, Yoshihiro; Suzuki, Norihiro; Kuroda, Kazuyuki

    2012-03-21

    Mesoporous Pt-Au binary alloys were electrochemically synthesized from lyotropic liquid crystals (LLCs) containing corresponding metal species. Two-dimensional exagonally ordered LLC templates were prepared on conductive substrates from diluted surfactant solutions including water, a nonionic surfactant, ethanol, and metal species by drop-coating. Electrochemical synthesis using such LLC templates enabled the preparation of ordered mesoporous Pt-Au binary alloys without phase segregation. The framework composition in the mesoporous Pt-Au alloy was controlled simply by changing the compositional ratios in the precursor solution. Mesoporous Pt-Au alloys with low Au content exhibited well-ordered 2D hexagonal mesostructures, reflecting those of the original templates. With increasing Au content, however, the mesostructural order gradually decreased, thereby reducing the electrochemically active surface area. Wide-angle X-ray diffraction profiles, X-ray photoelectron spectra, and elemental mapping showed that both Pt and Au were atomically distributed in the frameworks. The electrochemical stability of mesoporous Pt-Au alloys toward methanol oxidation was highly improved relative to that of nonporous Pt and mesoporous Pt films, suggesting that mesoporous Pt-Au alloy films are potentially applicable as electrocatalysts for direct methanol fuel cells. Also, mesoporous Pt-Au alloy electrodes showed a highly sensitive amperometric response for glucose molecules, which will be useful in next-generation enzyme-free glucose sensors.

  2. Picosecond laser fabricated Ag, Au and Ag-Au nanoparticles for detecting ammonium perchlorate using a portable Raman spectrometer

    Science.gov (United States)

    Byram, Chandu; Moram, Sree Sathya Bharathi; Soma, Venugopal Rao

    2018-04-01

    In this paper, we present the results from fabrication studies of Ag, Au, and Ag-Au alloy nanoparticles (NPs) using picosecond laser ablation technique in the presence of liquid media. The alloy formation in the NPs was confirmed from UV-Visible measurements. The shape and crystallinity of NPs were investigated by using high resolution transmission electron microscopy (HRTEM), selected area diffraction pattern (SAED) and energy dispersive spectroscopy (EDS). The SERS effect of fabricated NPs was tested with methylene blue and an explosive molecule (ammonium perchlorate) using a portable Raman spectrometer and achieved EFs of ˜106.

  3. Facile synthesis of hollow dendritic Ag/Pt alloy nanoparticles for enhanced methanol oxidation efficiency.

    Science.gov (United States)

    Sui, Ning; Wang, Ke; Shan, Xinyao; Bai, Qiang; Wang, Lina; Xiao, Hailian; Liu, Manhong; Colvin, Vicki L; Yu, William W

    2017-11-14

    Hollow dendritic Ag/Pt alloy nanoparticles were synthesized by a double template method: Ag nanoparticles as the hard template to obtain hollow spheres by a galvanic replacement reaction between PtCl 6 2- and metallic Ag and surfactant micelles (Brij58) as the soft template to generate porous dendrites. The formation of a Ag/Pt alloy phase was confirmed by XRD and HRTEM. Elemental mapping and line scanning revealed the formation of the hollow architecture. We studied the effects of the Ag/Pt ratio, surfactant and reaction temperature on the morphology. In addition, we explored the formation process of hollow dendritic Ag/Pt nanoparticles by tracking the morphologies of the nanostructures formed at different stages. In order to improve the electrocatalytic property, we controlled the size of the nanoparticles and the thickness of the shell by adjusting the amount of the precursor. We found that these Ag/Pt alloy nanoparticles exhibited high activity (440 mA mg -1 ) and stability as an electrocatalyst for catalyzing methanol oxidation.

  4. Computational investigation of CO adsorbed on Aux, Agx and (AuAg)x nanoclusters (x = 1 - 5, 147) and monometallic Au and Ag low-energy surfaces*

    Science.gov (United States)

    Gould, Anna L.; Catlow, C. Richard A.; Logsdail, Andrew J.

    2018-02-01

    Density functional theory calculations have been performed to investigate the use of CO as a probe molecule for the determination of the structure and composition of Au, Ag and AuAg nanoparticles. For very small nanoclusters (x = 1 - 5), the CO vibrational frequencies can be directly correlated to CO adsorption strength, whereas larger 147-atom nanoparticles show a strong energetic preference for CO adsorption at a vertex position but the highest wavenumbers are for the bridge positions. We also studied CO adsorption on Au and Ag (100) and (111) surfaces, for a 1 monolayer coverage, which proves to be energetically favourable on atop only and bridge positions for Au (100) and atop for Ag (100); vibrational frequencies of the CO molecules red-shift to lower wavenumbers as a result of increased metal coordination. We conclude that CO vibrational frequencies cannot be solely relied upon in order to obtain accurate compositional analysis, but we do propose that elemental rearrangement in the core@shell nanoclusters, from Ag@Au (or Au@Ag) to an alloy, would result in a shift in the CO vibrational frequencies that indicate changes in the surface composition. Contribution to the Topical Issue "Shaping Nanocatalysts", edited by Francesca Baletto, Roy L. Johnston, Jochen Blumberger and Alex Shluger.Supplementary material in the form of one pdf file available from the Journal web page at http://https://doi.org/10.1140/epjb/e2017-80280-7

  5. Bimetallic Ag-Pt Sub-nanometer Supported Clusters as Highly Efficient and Robust Oxidation Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Negreiros, Fabio R. [CNR-ICCOM & IPCF, Consiglio Nazionale delle Ricerche, Pisa Italy; Halder, Avik [Materials Science Division, Argonne National Laboratory, Lemont IL USA; Yin, Chunrong [Materials Science Division, Argonne National Laboratory, Lemont IL USA; Singh, Akansha [Harish-Chandra Research Institute, HBNI, Chhatnag Road Jhunsi Allahabad 211019 India; Barcaro, Giovanni [CNR-ICCOM & IPCF, Consiglio Nazionale delle Ricerche, Pisa Italy; Sementa, Luca [CNR-ICCOM & IPCF, Consiglio Nazionale delle Ricerche, Pisa Italy; Tyo, Eric C. [Materials Science Division, Argonne National Laboratory, Lemont IL USA; Pellin, Michael J. [Materials Science Division, Argonne National Laboratory, Lemont IL USA; Bartling, Stephan [Institut für Physik, Universität Rostock, Rostock Germany; Meiwes-Broer, Karl-Heinz [Institut für Physik, Universität Rostock, Rostock Germany; Seifert, Sönke [X-ray Science Division, Argonne National Laboratory, Lemont IL USA; Sen, Prasenjit [Harish-Chandra Research Institute, HBNI, Chhatnag Road Jhunsi Allahabad 211019 India; Nigam, Sandeep [Chemistry Division, Bhabha Atomic Research Centre, Trombay Mumbai- 400 085 India; Majumder, Chiranjib [Chemistry Division, Bhabha Atomic Research Centre, Trombay Mumbai- 400 085 India; Fukui, Nobuyuki [East Tokyo Laboratory, Genesis Research Institute, Inc., Ichikawa Chiba 272-0001 Japan; Yasumatsu, Hisato [Cluster Research Laboratory, Toyota Technological Institute: in, East Tokyo Laboratory, Genesis Research Institute, Inc. Ichikawa, Chiba 272-0001 Japan; Vajda, Stefan [Materials Science Division, Argonne National Laboratory, Lemont IL USA; Nanoscience and Technology Division, Argonne National Laboratory, Lemont IL USA; Institute for Molecular Engineering, University of Chicago, Chicago IL USA; Fortunelli, Alessandro [CNR-ICCOM & IPCF, Consiglio Nazionale delle Ricerche, Pisa Italy; Materials and Process Simulation Center, California Institute of Technology, Pasadena CA USA

    2017-12-29

    A combined experimental and theoretical investigation of Ag-Pt sub-nanometer clusters as heterogeneous catalysts in the CO -> CO2 reaction (COox) is presented. Ag9Pt2 and Ag9Pt3 clusters are size-selected in the gas phase, deposited on an ultrathin amorphous alumina support, and tested as catalysts experimentally under realistic conditions and by first-principles simulations at realistic coverage. Insitu GISAXS/TPRx demonstrates that the clusters do not sinter or deactivate even after prolonged exposure to reactants at high temperature, and present comparable, extremely high COox catalytic efficiency. Such high activity and stability are ascribed to a synergic role of Ag and Pt in ultranano-aggregates, in which Pt anchors the clusters to the support and binds and activates two CO molecules, while Ag binds and activates O-2, and Ag/Pt surface proximity disfavors poisoning by CO or oxidized species.

  6. Uniform Au@Pt core-shell nanodendrites supported on molybdenum disulfide nanosheets for the methanol oxidation reaction

    Science.gov (United States)

    Su, Shao; Zhang, Chi; Yuwen, Lihui; Liu, Xingfen; Wang, Lihua; Fan, Chunhai; Wang, Lianhui

    2015-12-01

    Herein, we presented a facile seeded growth method to prepare high-quality three-dimensional (3D) Au@Pt bimetallic nanodendrite-decorated molybdenum disulfide (MoS2) nanosheets (Au@Pt/MoS2). Transmission electron microscopy (TEM) and high-resolution TEM exhibited that Au@Pt core-shell nanostructures were dispersed onto the surface of MoS2 nanosheets. More importantly, the thickness of the Pt shell of the Au@Pt bimetallic nanodendrites on the surface of the MoS2 nanosheets could be easily tuned via simply changing the synthesis parameters, such as the concentration of H2PtCl6, reaction time and temperature, which greatly influence the catalytic ability of Au@Pt/MoS2 nanohybrids. Both cyclic voltammetry (CV) and chronoamperometry (CA) demonstrated that the as-prepared Au@Pt/MoS2 nanohybrids possessed much higher electrocatalytic activity and stability than Pt/MoS2 or commercial Pt/C catalyst. The peak current mass density of the selected Au@Pt/MoS2 was 6.24 A mg-1, which was 3389 and 20.3 times those of Pt/C (0.00184 A mg-1) and Pt/MoS2 (0.307 A mg-1), respectively. The presented method may be a facile approach for the synthesis of MoS2-supported bimetallic nanocomposites, which is significant for the development of high performance MoS2-based sensors and catalysts.Herein, we presented a facile seeded growth method to prepare high-quality three-dimensional (3D) Au@Pt bimetallic nanodendrite-decorated molybdenum disulfide (MoS2) nanosheets (Au@Pt/MoS2). Transmission electron microscopy (TEM) and high-resolution TEM exhibited that Au@Pt core-shell nanostructures were dispersed onto the surface of MoS2 nanosheets. More importantly, the thickness of the Pt shell of the Au@Pt bimetallic nanodendrites on the surface of the MoS2 nanosheets could be easily tuned via simply changing the synthesis parameters, such as the concentration of H2PtCl6, reaction time and temperature, which greatly influence the catalytic ability of Au@Pt/MoS2 nanohybrids. Both cyclic voltammetry (CV

  7. Fabrication of fine spongy nanoporous Ag-Au alloys with improved catalysis properties

    Directory of Open Access Journals (Sweden)

    Cuiting Li

    2017-12-01

    Full Text Available Fine NP-AgAu (nanoporous AgAu alloys with spongy structure was fabricated by chemical dealloying from rapidly solidified amorphous precursors Ag38.75−xCu38.75Si22.5Aux (x=0, 0.5, 1 and 5. The results indicate that the addition of small content Au in precursor can refine both the ligaments and pores obviously. Among the present components of the precursors, NP-AgAu alloys dealloying from Ag37.75Cu38.75Si22.5Au1 had the finest spongy structure. The size of pores was 5–10 nm and the grain size of ligaments was 10–20 nm. It also had the highest surface area of 106.83 m2g−1 and the best catalytic activity towards electro-oxidation of formaldehyde with the peak current of 665 mA mg−1.

  8. Exotic high activity surface patterns in PtAu nanoclusters

    KAUST Repository

    Mokkath, Junais Habeeb; Schwingenschlö gl, Udo

    2013-01-01

    of the truncated octahedron cluster motif. Exotic surface patterns are obtained particularly for Pt-rich compositions, where Pt atoms are being surrounded by Au atoms. These surface arrangements boost the catalytic activity by creating a large number of active

  9. AuCu@Pt Nanoalloys for Catalytic Application in Reduction of 4-Nitrophenol

    Directory of Open Access Journals (Sweden)

    Sadia Mehmood

    2016-01-01

    Full Text Available To enhance and optimize nanocatalyst ability for nitrophenol (4-NP reduction reaction we look beyond Au-metal nanoparticles and describe a new class of Au nanoalloys with controlled composition for core of AuCu-metals and Pt-metal shell. The reduction of 4-NP was investigated in aqueous media spectroscopically on 7.8 nm Au nanospheres (AuNSs, 8.3 nm AuCuNSs, and 9.1 nm AuCu@Pt core-shell NSs in diameter. The rate constants of the catalyzed reaction at room temperature, activation energies, and entropies of activation of reactions catalyzed by the AuCu@Pt core-shell NSs are found to have different values to those of the pure metal NSs. The results strongly support the proposal that catalysis by nanoparticles is taking place efficiently on the surface of NSs. These core-shell nanocatalysts exhibited stability throughout the reduction reaction and proved that heterogonous type mechanisms are most likely to be dominant in nanoalloy based catalysis if the surface of the NSs is not defected upon shell incorporation.

  10. Carbon nanotubes-supported PtAu-alloy nanoparticles for electro-oxidation of formic acid with remarkable activity

    International Nuclear Information System (INIS)

    Bai Yancui; Zhang Weide; Chen Caihong; Zhang Jiaqi

    2011-01-01

    Research highlights: → Electro-oxidation of HCOOH over PtAu at lower potential, higher peak current. → The stability of the PtAu catalyst is high. → Au in the PtAu catalyst promotes utilization of Pt. - Abstract: PtAu-alloy nanoparticles supported on multi-walled carbon nanotubes (MWCNTs) were successfully prepared by simultaneous reduction of H 2 PtCl 6 .6H 2 O and HAuCl 4 .3H 2 O with sodium borohydride as a reducing reagent and sodium citrate as a stabilizing reagent. The morphology and composition of the composite catalyst were characterized by transmission electron microscopy, X-ray photoelectron spectroscopy and X-ray diffraction. The results show that the PtAu alloy nanoparticles with an average diameter of about 3.5 nm and narrow size distribution are supported on MWCNTs. Electrocatalytic oxidation of formic acid at the PtAu/MWCNTs nanocomposite electrode was investigated in a solution containing 0.50 M H 2 SO 4 as a supporting electrolyte and 0.50 M formic acid by cyclic voltammogram and chronoamperometry. The results demonstrate that the PtAu/MWCNTs catalyst exhibits higher activity and stability for electro-oxidation of formic acid than the commercial Pt/C catalyst, reflecting by its lower onset potential (-0.05 V), oxidation mainly occurring in low potential range of -0.05 ± 0.65 V and higher peak current density of 3.12 mA cm -2 . The result of CO stripping voltammetry discloses that gold in the PtAu/MWCNTs nanocomposite enhances the catalytic activity and stability.

  11. Electrochemical fabrication of clean dendritic Au supported Pt clusters for electrocatalytic oxidation of formic acid

    International Nuclear Information System (INIS)

    Xia Yue; Liu Jun; Huang Wei; Li Zelin

    2012-01-01

    Highlights: ► A smooth Au surface was rebuilt into clean dendrite via square wave potential pulses. ► It was performed in blank H 2 SO 4 solution without Au(III) species and other additives. ► Dendritic Au provided certain advantage for dispersing Pt due to its unique structure. ► Pt-decorated dendritic Au demonstrated high activity for the HCOOH electrooxidation. - Abstract: We report here the fabrication of clean dendritic gold (DG) directly on a smooth Au electrode via square wave potential pulses (SWPPs) in a blank H 2 SO 4 solution containing no Au(III) species and additives. The effects of potential range, frequency and duration time of SWPPs and H 2 SO 4 concentration on the construction of DG were systematically investigated. A possible mechanism was proposed to explain the growth of DG. The whole process was templateless and surfactantless, and therefore effectively avoided possible contaminations that occurred in other synthetic routes. Further, the prepared DG electrode functioned as a scaffold to support electrodeposited Pt clusters, producing Pt-decorated DG (Pt-DG) electrodes. The electrocatalytic properties of Pt-DG electrodes with various Pt loadings were examined for the oxidation of formic acid. The low Pt loading Pt-DG demonstrated different electrochemical behavior from that on Pt-decorated smooth gold (Pt-SG) and on Pt-decorated gold nanoparticles because there were more defect sites like steps and edges on the DG surface. Ensemble effect, as well as electronic effect, accounts for the improved electrocatalytic activity of low Pt loading Pt-DG.

  12. Comparative efficiencies of photothermal destruction of malignant cells using antibody-coated silica-Au nanoshells, hollow Au/Ag nanospheres and Au nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Fong-Yu; Chen, Chen-Tai; Yeh, Chen-Sheng, E-mail: csyeh@mail.ncku.edu.t [Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan (China)

    2009-10-21

    Three Au-based nanomaterials (silica-Au nanoshells, hollow Au/Ag nanospheres and Au nanorods) were evaluated for their comparative photothermal efficiencies at killing three types of malignant cells (A549 lung cancer cells, HeLa cervix cancer cells and TCC bladder cancer cells) using a CW NIR laser. Photodestructive efficiency was evaluated as a function of the number of nanoparticles required to destroy the cancer cells under 808 nm laser wavelength at fixed laser power. Of the three nanomaterials, silica/Au nanoshells needed the minimum number of particles to produce effective photodestruction, whereas Au nanorods needed the largest number of particles. Together with the calculated photothermal conversion efficiency, the photothermal efficiency rankings are silica-Au nanoshells > hollow Au/Ag nanospheres > Au nanorods. Additionally, we found that HeLa cells seem to present better heat tolerance than the other two cancer cell lines.

  13. Synthesis of ultrathin face-centered-cubic Au@Pt and Au@Pd core-shell nanoplates from hexagonal-close-packed Au square sheets

    KAUST Repository

    Fan, Zhanxi; Zhu, Yihan; Huang, Xiao; Han, Yu; Wang, Qingxiao; Liu, Qing; Huang, Ying; Gan, Chee Lip; Zhang, Hua

    2015-01-01

    @Pd rhombic nanoplates, respectively. We believe that these findings will shed new light on the synthesis of novel noble bimetallic nanostructures. Phase change: Ultrathin Au@Pt and Au@Pd core-shell nanoplates were prepared from Au square sheets. A phase

  14. Studies on L-histidine capped Ag and Au nanoparticles for dopamine detection

    Energy Technology Data Exchange (ETDEWEB)

    Nivedhini Iswarya, Chandrasekaran; Kiruba Daniel, S.C.G. [Division of Nanoscience and Technology, Anna University-BIT Campus, Tiruchirappalli 620024 (India); Sivakumar, Muthusamy, E-mail: muthusiva@gmail.com [Division of Nanoscience and Technology, Anna University-BIT Campus, Tiruchirappalli 620024 (India); Department of Chemistry, Anna University-BIT Campus, Tiruchirappalli 620024 (India)

    2017-06-01

    This work demonstrates the effective surface functionalization of Ag, Au and bimetallic Ag-Au nanoparticles using L-histidine for colorimetric detection of dopamine (DA) which plays majorly in recognizing the neurological disorder. L-Histidine (L-His) capped Ag, Au, and bimetallic Ag-Au nanoparticles are characterized using physico-chemical techniques. The optical behaviour of nanoparticles has been analysed at various time intervals using UV–Vis absorption spectroscopy. FT-IR results provide the evidence of chemical bonding between L-histidine and metal nanoparticles. Its structure with the capping of L-His was clearly shown in HR-TEM images. The average size of nanoparticles has calculated from TEM image fringes are 11 nm, 5 nm and 6.5 nm respectively, matches with crystals size calculated from X-ray diffraction pattern. Enhanced optical nature of nanoparticles provides the best platform to develop a colorimetric-based biosensor for DA detection. After addition of DA, a rapid colour change has been noted in colloids of nanoparticles. The substantial changes in absorbance and λ{sub max} in metal nanoparticles respect to DA concentration have been observed and formulated. This is one of the successive methods for trace level determination of DA and will be going to a significant material for designing biosensor to determine DA in real extracellular body fluids. - Highlights: • L-His functionalized Ag, Au and bimetallic Ag-Au nanoparticles were prepared and its properties were studied. • L-His based Ag, Au, Ag-Au nanoparticles have characterized by spectroscopy, XRD and microscopic studies. • Enhanced optical nature of nanoparticles delivers the best platform to develop a biosensor for DA detection. • For qualitative determination of dopamine, SPR of metal nanoparticles plays a major role in dopamine determination. • This basic finding can be utilized for further identification of imbalanced DA concentration in body fluids.

  15. Distinct metal-exchange pathways of doped Ag25 nanoclusters

    KAUST Repository

    Bootharaju, Megalamane Siddaramappa

    2016-09-09

    Atomically precise metal nanoclusters (NCs) containing more than one type of metal atom (i.e., doped or alloyed), due to synergistic effects, open new avenues for engineering the catalytic and optical properties of NCs in a manner that homometal NCs cannot. Unfortunately, it is still a major challenge to controllably introduce multimetallic dopants in NCs, understanding the dopants\\' positions, mechanism, and synergistic effects. To overcome these challenges, we designed a metal-exchange approach involving NCs as molecular templates and metal ions as the source of the incoming dopant. In particular, two structurally similar monodoped silver-rich NCs, [MAg24(SR)(18)](2-) (M = Pd/Pt and SR: thiolate), were synthesized as templates to study their mechanistic transformation in response to the introduction of gold atoms. The controllable incorporation of Au atoms into the MAg24 framework facilitated the elucidation of distinct doping pathways through high-resolution mass spectrometry, optical spectroscopy and elemental analysis. Interestingly, gold replaced the central Pd atom of [PdAg24(SR)(18)](2-) clusters to produce predominantly bimetallic [AuAg24(SR)(18)](-) clusters along with a minor product of an [Au2Ag23(SR)(18)](-) cluster. In contrast, the central Pt atom remained intact in [PtAg24(SR)(18)](2-) clusters, and gold replaced the noncentral Ag atoms to form trimetallic [AuxPtAg24-x(SR)(18)](2-) NCs, where x = 1-2, with a portion of the starting [PtAg24(SR)(18)](2-) NCs remaining. This study reveals some of the unusual metal-exchange pathways of doped NCs and the important role played by the initial metal dopant in directing the position of a second dopant in the final product.

  16. Experimental and Theoretical Structural Investigation of AuPt Nanoparticles Synthesized Using a Direct Electrochemical Method.

    Science.gov (United States)

    Lapp, Aliya S; Duan, Zhiyao; Marcella, Nicholas; Luo, Long; Genc, Arda; Ringnalda, Jan; Frenkel, Anatoly I; Henkelman, Graeme; Crooks, Richard M

    2018-05-11

    In this report, we examine the structure of bimetallic nanomaterials prepared by an electrochemical approach known as hydride-terminated (HT) electrodeposition. It has been shown previously that this method can lead to deposition of a single Pt monolayer on bulk-phase Au surfaces. Specifically, under appropriate electrochemical conditions and using a solution containing PtCl 4 2- , a monolayer of Pt atoms electrodeposits onto bulk-phase Au immediately followed by a monolayer of H atoms. The H atom capping layer prevents deposition of Pt multilayers. We applied this method to ∼1.6 nm Au nanoparticles (AuNPs) immobilized on an inert electrode surface. In contrast to the well-defined, segregated Au/Pt structure of the bulk-phase surface, we observe that HT electrodeposition leads to the formation of AuPt quasi-random alloy NPs rather than the core@shell structure anticipated from earlier reports relating to deposition onto bulk phases. The results provide a good example of how the phase behavior of macro materials does not always translate to the nano world. A key component of this study was the structure determination of the AuPt NPs, which required a combination of electrochemical methods, electron microscopy, X-ray absorption spectroscopy, and theory (DFT and MD).

  17. Exploring the Effect of Au/Pt Ratio on Glycerol Oxidation in Presence and Absence of a Base

    Directory of Open Access Journals (Sweden)

    Alberto Villa

    2018-01-01

    Full Text Available Bimetallic AuPt nanoparticles with different Au:Pt ratios (molar ratio: 9-1, 8-2, 6-4, 2-8, 1-9 and the corresponding Au and Pt monometallic ones were prepared by sol immobilization and immobilized on commercial TiO2 (P25. The catalytic activity was evaluated in the liquid phase glycerol oxidation in presence and absence of a base (NaOH. It was found that the Au:Pt molar ratio and reaction conditions strongly influence the catalytic performance. In the presence of NaOH, Au-rich catalysts were more active than Pt-rich ones, with the highest activity observed for Au9Pt1/TiO2 (6575 h−1. In absence of a base, a higher content of Pt is needed to produce the most active catalyst (Au6Pt4/TiO2, 301 h−1. In terms of selectivity, in presence of NaOH, Au-rich catalysts showed a high selectivity to C3 products (63–72% whereas Pt-rich catalysts promote the formation of formic and glycolic acids. The opposite trend was observed in absence of a base with Pt-rich catalysts showing higher selectivity to C3 products (83–88%.

  18. Direct measurement of time dependent diffusion for Ag and Au under ambient conditions

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Pil Sun; Jo, Han Yeol; Kim, Tae Kyeong [Hankuk University of Foreign Studies, Yongin (Korea, Republic of)

    2014-12-15

    Time-dependent diffusion for Ag and Au metal atoms was measured using the scanning tunneling microscope break-junction technique in ambient conditions. We observed that Ag contacts do not form long single-atomic chains compared to Au contacts during the elongation of each metal electrode, and Ag atoms diffuse more quickly than Au atoms after metal contact rupture. This is consistent with previous results of molecular dynamic simulations. Further, we found a correlation between diffusion length and the evolution time on an atomic scale to reveal the time-dependent diffusion for Ag and Au metal atoms.

  19. Preparation and electric and photoelectric properties of thin deposits of Fe, Co, Ni, Cu, Ag, Au and Pd

    International Nuclear Information System (INIS)

    Heras, J.M.; Albano, E.V.; Asensio, M.C.; Viscido, L.

    1984-01-01

    The physics chemical properties of desordered metallic thin films of Fe, Co, Ni, Pd, Ag, Cu and Au are of great interest for its catalitic activity and for its application in radiation absorption of solar cells and micro electronic devices. This work has the purpose of reporting the experimental results obtained by evaporated films of these metals, which present desordered characteristics, small crystal size and high surface-volume rate. (A.C.A.S.) [pt

  20. Strain Distribution of Au and Ag Nanoparticles Embedded in Al2O3 Thin Film

    Directory of Open Access Journals (Sweden)

    Honghua Huang

    2014-01-01

    Full Text Available Au and Ag nanoparticles embedded in amorphous Al2O3 matrix are fabricated by the pulsed laser deposition (PLD method and rapid thermal annealing (RTA technique, which are confirmed by the experimental high-resolution transmission electron microscope (HRTEM results, respectively. The strain distribution of Au and Ag nanoparticles embedded in the Al2O3 matrix is investigated by the finite-element (FE calculations. The simulation results clearly indicate that both the Au and Ag nanoparticles incur compressive strain by the Al2O3 matrix. However, the compressive strain existing on the Au nanoparticle is much weaker than that on the Ag nanoparticle. This phenomenon can be attributed to the reason that Young’s modulus of Au is larger than that of Ag. This different strain distribution of Au and Ag nanoparticles in the same host matrix may have a significant influence on the technological potential applications of the Au-Ag alloy nanoparticles.

  1. Pt@Ag and Pd@Ag core/shell nanoparticles for catalytic degradation of Congo red in aqueous solution

    Science.gov (United States)

    Salem, Mohamed A.; Bakr, Eman A.; El-Attar, Heba G.

    2018-01-01

    Platinum/silver (Pt@Ag) and palladium/silver (Pd@Ag) core/shell NPs have been synthesized in two steps reaction using the citrate method. The progress of nanoparticle formation was followed by the UV/Vis spectroscopy. Transmission electron microscopy revealed spherical shaped core/shell nanoparticles with average particle diameter 32.17 nm for Pt@Ag and 8.8 nm for Pd@Ag. The core/shell NPs were further characterized by FT-IR and XRD. Reductive degradation of the Congo red dye was chosen to demonstrate the excellent catalytic activity of these core/shell nanostructures. The nanocatalysts act as electron mediators for the transfer of electrons from the reducing agent (NaBH4) to the dye molecules. Effect of reaction parameters such as nanocatalyst dose, dye and NaBH4 concentrations on the dye degradation was investigated. A comparison between the catalytic activities of both nanocatalysts was made to realize which of them the best in catalytic performance. Pd@Ag was the higher in catalytic activity over Pt@Ag. Such greater activity is originated from the smaller particle size and larger surface area. Pd@Ag nanocatalyst was catalytically stable through four subsequent reaction runs under the utilized reaction conditions. These findings can thus be considered as possible economical alternative for environmental safety against water pollution by dyes.

  2. Facile Synthesis of Bimetallic Pt-Ag/Graphene Composite and Its Electro-Photo-Synergistic Catalytic Properties for Methanol Oxidation

    Directory of Open Access Journals (Sweden)

    Shuhong Xu

    2016-09-01

    Full Text Available A Pt-Ag/graphene composite (Pt-Ag/GNs was synthesized by the facile aqueous solution method, in which Ag+ was first transformed into Ag2O under UV light irradiation, and then Ag2O, Pt2+, and graphene oxide (GO were simultaneously reduced by formic acid. It was found that Pt-Ag bimetallic nanoparticles were highly dispersed on the surface of graphene, and their size distribution was narrow with an average diameter of 3.3 nm. Electrocatalytic properties of the Pt-Ag/GNs composite were investigated by cyclic voltammograms (CVs, chronoamperometry (CA, CO-stripping voltammograms, and electrochemical impedance spectrum (EIS techniques. It was shown that the Pt-Ag/GNs composite has much higher catalytic activity and stability for the methanol oxidation reaction (MOR and better tolerance toward CO poisoning when compared with Pt/GNs and the commercially available Johnson Matthey 20% Pt/C catalyst (Pt/C-JM. Furthermore, the Pt-Ag/GNs composite showed efficient electro-photo-synergistic catalysis for MOR under UV or visible light irradiation. Particularly in the presence of UV irradiation, the Pt-Ag/GNs composite exhibited an ultrahigh mass activity of 1842.4 mA·mg−1, nearly 2.0 times higher than that without light irradiation (838.3 mA·mg−1.

  3. One-step synthesis of PtPdAu ternary alloy nanoparticles on graphene with superior methanol electrooxidation activity

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yuzhen; Gu Yonge; Lin Shaoxiong; Wei Jinping; Wang Zaihua [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China); Wang Chunming, E-mail: wangcm@lzu.edu.cn [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China); Du Yongling; Ye Weichun [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China)

    2011-10-01

    Highlights: > PtPdAu nanoparticles were synthesized on graphene sheets via chemical reduction method. > The prepared PtPdAu nanoparticles were ternary alloy with fcc structure. > The catalyst exhibited superior catalytic activity and stability for MOR in alkaline. - Abstract: Well-dispersed PtPdAu ternary alloy nanoparticles were synthesized on graphene sheets via a simple one-step chemical reduction method in ethylene glycol (EG) and water system, in which EG served as both reductive and dispersing agent. The electrocatalytic activity of PtPdAu/G was tested by methanol oxidation reaction (MOR). The catalyst was further characterized by transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD), which indicated that the as-synthesized PtPdAu nanoparticles with alloy structures were successfully dispersed on the graphene sheets. Electrocatalytic properties of the catalyst for MOR in alkaline have been investigated by cyclic voltammetry (CV), chronoamperometry and Tafel curves. The electrocatalytic activity and stability of PtPdAu/G were superior to PtPd/G, PtAu/G and Pt/G. In addition, the anodic peak current on PtPdAu/G catalyst was proportional to the concentration of methanol in the range of 0.05-1.00 M. This study implies that the prepared catalyst have great potential applications in fuel cells.

  4. Size effect on L10 ordering and magnetic properties of chemically synthesized FePt and FePtAu nanoparticles

    Science.gov (United States)

    Jia, Zhiyong; Kang, Shishou; Shi, Shifan; Nikles, David E.; Harrell, J. W.

    2005-05-01

    There is growing evidence that FePt nanoparticles become increasingly difficult to chemically order as the size approaches a few nanometers. We have studied the chemical ordering of FePt and FePtAu nanoparticle arrays as a function of particle size. Monodisperse Fe49Pt51 and Fe48Pt44Au8 nanoparticles with a size about 6nm were synthesized by the simultaneous decomposition of iron pentacarbonyl and reduction of platinum acetylacetonate and gold (III) acetate in a mixture of phenyl ether and hexadecylamine (HDA), with 1-adamantanecarboxylic acid and HDA as stabilizers. The nanoparticles were dispersed in toluene, films of the particles were cast onto silicon wafers from the dispersion, and the films were annealed in a tube furnace with flowing Ar +5%H2. The magnetic anisotropy and switching volumes were determined from time- and temperature-dependent coercivity measurements. By comparing with 3-nm FePt and FePtAu nanoparticles of comparable composition, the phase transformation is easier for the larger particles. Under the same annealing conditions, the larger particles have higher anisotropy and order parameter. Additive Au is very effective in enhancing the chemical ordering in both small and large particles, with x-ray diffraction superlattice peaks appearing after annealing at 350°C. Dynamic remnant coercivity measurements and magnetic switching volumes suggest particle aggregation at the higher annealing temperatures in both small and large particles.

  5. Diffusion and aggrigation of implanted Ag and Au in a lithia-alumina-silica glass

    International Nuclear Information System (INIS)

    Arnold, G.W.; Borders, J.A.

    1976-01-01

    Optical extinction and Rutherford backscattering (RBS) techniques have been employed to obtain information on the size and spatial distribution of Au and Ag colloids in implanted (Au + ,Ag + )lithia-alumina-silica glass. The formation of metallic aggregates (colloids), necessary for preparation of a glass-ceramic surface layer, proceeds readily with annealing temperature for Au-implanted samples but not for Ag-implanted material. The optical and RBS spectra show that the particle size and spatial distribution in Ag-implanted samples are sensitive to sample temperature and ion-beam heating effects, while these parameters for Au-implanted samples are relatively insensitive to temperature and beam current. It is suggested that this behaviour is related to differences in the dissolution energies of Ag and Au aggregates. A two-peaked spatial distribution for Ag implanted at room temperature at a dose rate of approximately 1 μA cm -2 is observed which may result from the trappings of Ag in the ion displacement damage region of the glass during implantation. (author)

  6. Novel synthesis of core-shell Au-Pt dendritic nanoparticles supported on carbon black for enhanced methanol electro-oxidation

    Science.gov (United States)

    Cao, Ribing; Xia, Tiantian; Zhu, Ruizhi; Liu, Zhihua; Guo, Jinming; Chang, Gang; Zhang, Zaoli; Liu, Xiong; He, Yunbin

    2018-03-01

    Core-shell Au-Pt dendritic nanoparticles (Au-Pt NPs) has been synthesized via a facile seed-mediated growth method, in which dendritic Pt nanoparticles as shell grow on the surface of gold nanocores by using ascorbic acid (AA) as "green" reducing reagents. The morphologies and compositions of the as-prepared nanocomposites with core-shell structure are characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). Electrochemical experiments, including cyclic voltammetry (CV) and chronoamperometry (CA) are performed to investigate the electrocatalytic properties of the Au-Pt NPs loaded carbon black composites (Au-Pt NPs/V) towards methanol oxidation in an alkaline solution. It is found that the reduction time of AA could regulate the thickness and amount of Pt on the Au nanocores, which significantly affect catalytic activity of the Au-Pt NPs/V toward methanol oxidation. Au-Pt NPs/V with optimum reduction time 4 h exhibit 2.3-times higher electrocatalytic activity than that of a commercial catalyst (Pt/carbon black) and an excellent CO tolerance toward methanol oxidation. This behavior is attributed to large active electrochemical area of the bimetallic nanocomposites and the change in the electronic structure of Pt when Au surface modified with fewer Pt nanoparticles.

  7. Surface tension estimation of high temperature melts of the binary alloys Ag-Au

    Science.gov (United States)

    Dogan, Ali; Arslan, Hüseyin

    2017-11-01

    Surface tension calculation of the binary alloys Ag-Au at the temperature of 1381 K, where Ag and Au have similar electronic structures and their atomic radii are comparable, are carried out in this study using several equations over entire composition range of Au. Apparently, the deviations from ideality of the bulk solutions, such as activities of Ag and Au are small and the maximum excess Gibbs free energy of mixing of the liquid phase is for instance -4500 J/mol at XAu = 0.5. Besides, the results obtained in Ag-Au alloys that at a constant temperature the surface tension increases with increasing composition while the surface tension decreases as the temperature increases for entire composition range of Au. Although data about surface tension of the Ag-Au alloy are limited, it was possible to make a comparison for the calculated results for the surface tension in this study with the available experimental data. Taken together, the average standard error analysis that especially the improved Guggenheim model in the other models gives the best agreement along with the experimental results at temperature 1383 K although almost all models are mutually in agreement with the other one.

  8. Study of helium diffusion, implanted at a cyclotron, in face-centered cubic metals: Au, Ag and Al

    International Nuclear Information System (INIS)

    Sciani, V.

    1985-01-01

    Helium in metals is produced by nuclear reactions of energetic particles. In nuclear technology the interest on helium in metals is import, due to its production by (n, α) reaction. Because helium has extremely low solubility in metals, the precipitation in the form of filled bubbles at elevated temperatures occurs, which have detrimental effects on mechanical properties and may limit the lifetime of structural components. One typical example is the high temperature embrittlement. The nucleation and growth of the bubbles strongly depends on the mobility of the helium. This work presents the study of helium diffusion in Au, Ag and Al at temperatures above room temperature. The helium created by (n, α) reactions has been simulated by homogeneous alpha particles implantation in cyclotron, at room temperature, in specimens of thicknesses between 5 and 50 μm and helium concentration between 10 -3 to 10 ppm. After implantation, the specimens were dropped in a furnace in a UHV-chamber and the diffusion was measured by observing the He-release during linear and isothermal annealings. The occurence of free diffusion was comparing the dependence of release kinetics on helium concentration, sample thickness, time and heating rate to diffusion theory and is clearly separeted from agglomeration process. The diffusion constants of helium in Au, Ag and Al follow an Arrhenius behavior, with: Au:D o =10 -1.0 cm 2 /s ΔH=1.70eV Ag:D 0 =10 -1.2 cm 2 /s ΔH=1.51eV Al:D o =10 +0.5 cm 2 /s ΔH=1.40eV. The results are compared to self-diffusion and to the diffusion of other gases in these metals. Comparison with theoretical estimates favours the vacancy mechanism for helium diffusion in Au, Ag and Al. (author) [pt

  9. Electrochemical reduction of CO2 on compositionally variant Au-Pt bimetallic thin films

    NARCIS (Netherlands)

    Ma, M.; Hansen, H.A.; Valenti, M.; Wang, Z.; Cao, A.; Dong, M.; Smith, W.A.

    2017-01-01

    The electrocatalytic reduction of CO2 on Au-Pt bimetallic catalysts with different compositions was evaluated, offering a platform for uncovering the correlation between the catalytic activity and the surface composition of bimetallic electrocatalysts. The Au-Pt alloy films were synthesized by a

  10. SERS-active Ag, Au and Ag–Au alloy nanoparticles obtained by laser ablation in liquids for sensing methylene blue

    Energy Technology Data Exchange (ETDEWEB)

    Olea-Mejía, Oscar, E-mail: oleaoscar@yahoo.com.mx [Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Universidad Autónoma del Estado de México, km 14.5 Carretera Toluca-Atlacomulco, San Cayetano 50200, México (Mexico); Fernández-Mondragón, Mariana; Rodríguez-de la Concha, Gabriela [Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Universidad Autónoma del Estado de México, km 14.5 Carretera Toluca-Atlacomulco, San Cayetano 50200, México (Mexico); Camacho-López, Marco [Laboratorio de Investigación y Desarrollo de Materiales Avanzados, Universidad Autónoma del Estado de México, Km 14.5 Carretera Toluca-Atlacomulco, San Cayetano 50925, México (Mexico)

    2015-09-01

    Highlights: • We synthesized Ag/Au nanoparticles by laser ablation in liquids. • We characterized such particles by UV–vis, TEM and EDS/STEM. • The SERS effect was studied for the obtained nanoparticles. • Pure silver nanoparticles showed the highest SERS signals. • We can sense methylene blue at a concentration of 10{sup −10} mole/L. - Abstract: We have synthesized Ag–Au nanoparticles by laser ablation in liquids using five different targets: 100% Ag, 80%Ag/20%Au, 50%Ag/50%Au, 20%Ag/80%Au and 100% Au (weight percentages). We used ethanol and methylene blue solutions in ethanol as the liquid media. The nanoparticles were mostly spherical with diameters 15, 19, 18, 23 and 11 nm, respectively. When alloyed targets were used, the resulting nanoparticles were completely alloyed forming solid solutions as evidenced by UV–vis Spectroscopy and Scanning Transmission Electron Microscopy. The obtained nanoparticles were employed to study the SERS effect of the methylene blue molecule. All the samples showed good SERS activity, however the ones composed of pure silver showed the greatest Raman signal enhancement. Finally, pure Ag nanoparticles were used for sensing methylene blue at different concentrations. While almost no signal can be discerned from the Raman spectrum when no particles are used at a concentration of methylene blue of 1 × 10{sup −2} M (∼3000 ppm), when Ag nanoparticles are used one can observe the characteristic peak of the molecule at concentrations as low as 1 × 10{sup −10} M (∼3 × 10{sup −5} ppm)

  11. Decay of mass-separated 187Au (8.4 min) to 187Pt

    International Nuclear Information System (INIS)

    Gnade, B.E.; Fink, R.W.; Wood, J.L.

    1983-01-01

    The decay of 187 Au to 187 Pt has been studied with mass-separated sources from the UNISOR facility. Multiscaled spectra of γ-rays, X-rays, and conversion electrons, as well as γγt, Xγt, eγt, and eXt coincidences were obtained. The half-life of the 187 Au ground state was measured to be 8.4 +- 0.3 min. A decay scheme has been constructed incorporating 88% of the decay intensity assigned to 187 Au. The isub(13/2) band in 187 Pt is populated through low-spin band members. The levels at 260 and 288 keV are found to de-excite by EO transitions. From a γ-ray-gated K/β + ratio, the β-decay energy of 8.4 min 187 Au is deduced to be Qsub(EC)=3.90 +- 0.15 MeV. The positive-parity states in 187 Pt are compared with calculations made using the Nilsson model with a triaxial degree of freedom. The possibility that shape coexistence is present at low energy in 187 Pt is discussed. (orig.)

  12. Study of Ag and Au Nanoparticles Synthesized by Arc Discharge in Deionized Water

    Directory of Open Access Journals (Sweden)

    Der-Chi Tien

    2010-01-01

    Full Text Available The paper presents a study of Ag and Au nanofluids synthesized by the arc discharge method (ADM in deionized water. The metallic Ag nanoparticle (Ag0 and ionic Ag (Ag+ have played an important role in the battle against germs which are becoming more drug-resistant every year. Our study indicates that Ag nanoparticle suspension (SNPS fabricated by using ADM without added surfactants exclusively contains the metallic Ag nanoparticle and ionic Ag. Besides that, the ADM in deionized water has also been employed for the fabrication process of Au nanoparticles. The experimental results indicate that the prepared Ag nanoparticles can react with the dissolved H2CO3 in deionized water, leading to the formation of Ag2CO3. Significantly different to Ag, the prepared Au nanoparticles with their surfaces bonded by oxygen are suspended in deionized water by the formation of hydrogen bonded with the neighboring water molecules.

  13. Templated Atom-Precise Galvanic Synthesis and Structure Elucidation of a [Ag 24 Au(SR) 18 ] − Nanocluster

    KAUST Repository

    Bootharaju, Megalamane Siddaramappa

    2015-11-27

    Synthesis of atom-precise alloy nanoclusters with uniform composition is challenging when the alloying atoms are similar in size (for example, Ag and Au). A galvanic exchange strategy has been devised to produce a compositionally uniform [Ag24Au(SR)18]- cluster (SR: thiolate) using a pure [Ag25(SR)18]- cluster as a template. Conversely, the direct synthesis of Ag24Au cluster leads to a mixture of [Ag25-xAux(SR)18]-, x=1-8. Mass spectrometry and crystallography of [Ag24Au(SR)18]- reveal the presence of the Au heteroatom at the Ag25 center, forming Ag24Au. The successful exchange of the central Ag of Ag25 with Au causes perturbations in the Ag25 crystal structure, which are reflected in the absorption, luminescence, and ambient stability of the particle. These properties are compared with those of Ag25 and Ag24Pd clusters with same ligand and structural framework, providing new insights into the modulation of cluster properties with dopants at the single-atom level.

  14. Properties and electrochemical behaviors of AuPt alloys prepared by direct-current electrodeposition for lithium air batteries

    International Nuclear Information System (INIS)

    Zhang, Jinqiu; Li, Da; Zhu, Yiming; Chen, Miaomiao; An, Maozhong; Yang, Peixia; Wang, Peng

    2015-01-01

    AuPt catalyst has a prospective application in a lithium air battery because of its bi-function on catalyzing Oxygen Reduction Reaction (ORR) and Oxygen Evolution Reaction (OER). Electrodeposition is an in-situ convenient technology for catalyst preparation without chemical residue. In an acid electrolyte, AuPt alloy catalysts were electrodeposited on carbon paper. The effect of main salt concentration, electrodeposition time and current density were studied by deposit micromorphology observation, structure analyses and composition testing. Catalytic abilities of AuPt alloys were measured by cyclic voltammetry (CV) in an ionic liquid of EMI-TFSI/Li-TFSI [1- Ethyl - 3- methylimidazolium–bis (trifluoromethanesulphonyl) imide/lithium–bis (trifluoromethanesulphonyl) imide]. The electrochemical behaviors of Au, Pt and AuPt deposits were also measured. An optimized direct-current electrodeposition process of getting high active AuPt catalyst is concluded, which is an aqueous solution containing 6.7∼10 mmol · L −1 HAuCl 4 , 10∼13.3 mmol · L −1 H 2 PtCl 6 and 0.5 mol · L −1 H 2 SO 4 as the electrolyte, current density of 20mA · cm −2 and electrodeposition time of 8∼34 s. The co-deposition of AuPt alloy is an irregular co-deposition controlled by diffusion, while gold atoms enter the platinum’s crystal lattice in the structure of AuPt alloy. The increase of the concentration of H 2 PtCl 6 in the electrolyte, the extension of the electrodeposition time or the raise of the current density can improve the content of Pt in the deposit. The clusters’ diameters of AuPt catalysts decrease to 150∼250 nm by adjusting current densities during electrodeposition

  15. Precipitation hardening of a Cu-free Au-Ag-Pd-In dental alloy

    Energy Technology Data Exchange (ETDEWEB)

    Seol, Hyo-Joung [Department of Dental Materials, College of Dentistry and Research Institute for Oral Biotechnology, Pusan National University, 1-10 Ami-dong, Seo-gu, Pusan 602-739 (Korea, Republic of); Son, Kuk-Hyeon [Department of Dental Materials, College of Dentistry and Research Institute for Oral Biotechnology, Pusan National University, 1-10 Ami-dong, Seo-gu, Pusan 602-739 (Korea, Republic of); Yu, Chin-Ho [Department of Dental Materials, College of Dentistry and Research Institute for Oral Biotechnology, Pusan National University, 1-10 Ami-dong, Seo-gu, Pusan 602-739 (Korea, Republic of); Kwon, Yong Hoon [Department of Dental Materials, College of Dentistry and Research Institute for Oral Biotechnology, Pusan National University, 1-10 Ami-dong, Seo-gu, Pusan 602-739 (Korea, Republic of); Kim, Hyung-Il [Department of Dental Materials, College of Dentistry and Research Institute for Oral Biotechnology, Pusan National University, 1-10 Ami-dong, Seo-gu, Pusan 602-739 (Korea, Republic of)]. E-mail: hilkim@pusan.ac.kr

    2005-10-27

    The hardening mechanism and related microstructural changes of the Cu-free dental casting alloy composed of Au-Ag-Pd-In was examined by means of hardness test, X-ray diffraction (XRD), scanning electron microscopic (SEM) observations and electron probe microanalysis (EPMA). The Au-Ag-Pd-In alloy showed apparent age-hardenability. In the SEM photograph, three phases were observed in the solution-treated specimen, that is, the Au-Ag based phase with small amounts of In and Pd as matrix, the InPd phase as particle-like structures, and the Pd-rich phase as lamellar precipitates. By aging the specimen, the very fine Pd-rich inter-granular precipitates grew toward the grain interior as lamellar structure, and finally the coarsened Pd-rich precipitates covered a large part of the Au-Ag based matrix. The hardness increase in the early stage of the age-hardening process was assumed to be caused by the diffusion and aggregation of Pd atoms from the Au-Ag based matrix. The hardness decrease in the later stage of age-hardening process was caused by coarsening of the lamellar precipitates composed of the Pd-rich phase.

  16. Precipitation hardening of a Cu-free Au-Ag-Pd-In dental alloy

    International Nuclear Information System (INIS)

    Seol, Hyo-Joung; Son, Kuk-Hyeon; Yu, Chin-Ho; Kwon, Yong Hoon; Kim, Hyung-Il

    2005-01-01

    The hardening mechanism and related microstructural changes of the Cu-free dental casting alloy composed of Au-Ag-Pd-In was examined by means of hardness test, X-ray diffraction (XRD), scanning electron microscopic (SEM) observations and electron probe microanalysis (EPMA). The Au-Ag-Pd-In alloy showed apparent age-hardenability. In the SEM photograph, three phases were observed in the solution-treated specimen, that is, the Au-Ag based phase with small amounts of In and Pd as matrix, the InPd phase as particle-like structures, and the Pd-rich phase as lamellar precipitates. By aging the specimen, the very fine Pd-rich inter-granular precipitates grew toward the grain interior as lamellar structure, and finally the coarsened Pd-rich precipitates covered a large part of the Au-Ag based matrix. The hardness increase in the early stage of the age-hardening process was assumed to be caused by the diffusion and aggregation of Pd atoms from the Au-Ag based matrix. The hardness decrease in the later stage of age-hardening process was caused by coarsening of the lamellar precipitates composed of the Pd-rich phase

  17. Au@Pt nanoparticles as catalase mimics to attenuate tumor hypoxia and enhance immune cell-mediated cytotoxicity

    Science.gov (United States)

    Liang, Hong; Wu, Ying; Ou, Xiang-Yu; Li, Jing-Ying; Li, Juan

    2017-11-01

    Hypoxic tumor microenvironment (TME) is closely linked to tumor progression, heterogeneity and immune suppression. Therefore, the development of effective methods to overcome hypoxia and substantially enhance the immunotherapy efficacy remains a desirable goal. Herein, we engineered a biocompatible Au core/Pt shell nanoparticles (Au@Pt NPs) to reoxygenate the TME by reacting with endogenous H2O2. Treatment with Au@Pt NPs appeared to improve oxygen in intracellular environments and decrease hypoxia-inducible factor-1α expression. Furthermore, the integration of high catalytic efficiency of Au@Pt NPs with cytokine-induced killer (CIK) cell immunotherapy, could lead to significantly improve the effect of CIK cell-mediated cytotoxicity. These results suggest great potential of Au@Pt NPs for regulation of the hypoxic TME and enhance immune cell mediated anti-tumor immunity.

  18. Diffusion and aggregation of implanted Ag and Au in a lithia--alumina--silica glass

    International Nuclear Information System (INIS)

    Arnold, G.W.; Borders, J.A.

    1975-01-01

    Optical extinction and Rutherford backscattering (RBS) techniques were employed to obtain information on the size and spatial distribution of Au- and Ag-colloids in implanted (Au + , Ag + ) lithia-alumina-silica glass. The formation of metallic aggregates (colloids), necessary for preparation of a glass-ceramic surface layer, proceeds readily with annealing temperature for Au-implanted samples but not for Ag-implanted material. The optical and RBS spectra show that the particle size and spatial distribution in as-implanted samples are sensitive to sample temperature and ion-beam heating effects, while these parameters for Au-implanted samples are relatively insensitive to temperature and beam current. It is suggested that this behavior is related to differences in the dissolution energies of Ag and Au aggregates. A two-peaked spatial distribution for Ag implanted at room temperature at a dose rate of approximately 1 μA/cm 2 is observed which may result from the trapping of Ag in the compacted damage region of the glass during implantation. (auth)

  19. TUNING OF SIZE AND SHAPE OF AU-PT NANOCATALYST FOR DIRECT METHANOL FUEL CELLS

    Energy Technology Data Exchange (ETDEWEB)

    Murph, S.

    2011-04-20

    In this paper, we report the precise control of the size, shape and surface morphology of Au-Pt nanocatalysts (cubes, blocks, octahedrons and dogbones) synthesized via a seed-mediated approach. Gold 'seeds' of different aspect ratios (1 to 4.2), grown by a silver-assisted approach, were used as templates for high-yield production of novel Au-Pt nanocatalysts at a low temperature (40 C). Characterization by electron microscopy (SEM, TEM, HRTEM), energy dispersive X-ray analysis (EDX), UV-Vis spectroscopy, zeta-potential (surface charge), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma mass spectrometry (ICP-MS) were used to better understand their physico-chemical properties, preferred reactivities and underlying nanoparticle growth mechanism. A rotating disk electrode was used to evaluate the Au-Pt nanocatalysts electrochemical performance in the oxygen reduction reaction (ORR) and the methanol oxidation reaction (MOR) of direct methanol fuel cells. The results indicate the Au-Pt dogbones are partially and in some cases completely unaffected by methanol poisoning during the evaluation of the ORR. The ORR performance of the octahedron particles in the absence of MeOH is superior to that of the Au-Pt dogbones and Pt-black, however its performance is affected by the presence of MeOH.

  20. The Pt site reactivity of the molecular graphs of Au6Pt isomers

    Science.gov (United States)

    Xu, Tianlv; Jenkins, Samantha; Xiao, Chen-Xia; Maza, Julio R.; Kirk, Steven R.

    2013-12-01

    Within the framework of the theory of atoms in molecules (QTAIM), in an exploratory study we propose a new measure of site reactivity equivalent to the atomic coordination number based purely on the electronic structure. It was found that the number of ring critical points (NNRCPs) positioned on the boundary of the atomic basin of the dopant (Pt) nucleus correlated very well with the relative zero point energy (ZPE) corrected energies. A weaker condition (i.e. than the number of associated bond paths) for the association of the dopant Pt nucleus with the Au6Pt molecular graph is found for NNRCP = 0.

  1. Catalytically favorable surface patterns in Pt-Au nanoclusters

    KAUST Repository

    Mokkath, Junais Habeeb; Schwingenschlö gl, Udo

    2013-01-01

    Motivated by recent experimental demonstrations of novel PtAu nanoparticles with highly enhanced catalytic properties, we present a systematic theoretical study that explores principal catalytic indicators as a function of the particle size

  2. Monodispersed porous flowerlike PtAu nanocrystals as effective electrocatalysts for ethanol oxidation

    Science.gov (United States)

    Li, Shumin; Xu, Hui; Xiong, Zhiping; Zhang, Ke; Wang, Caiqin; Yan, Bo; Guo, Jun; Du, Yukou

    2017-11-01

    Designing and tuning the bimetallic nanoparticles with desirable morphology and structure can embody them with greatly enhanced electrocatalytic activity and stability towards liquid fuel oxidation. We herein reported a facile one-pot method for the controlled synthesis of monodispersed binary PtAu nanoflowers with abundant exposed surface area. Owing to its fantastic structure, synergistic and electronic effect, such as-prepared PtAu nanoflowers exhibited outstandingly high electrocatalytic activity with the mass activity of 6482 mA mg-1 towards ethanol oxidation, which is 28.3 times higher than that of commercial Pt/C (227 mA mg-1). More interesting, the present PtAu nanoflower catalysts are more stable for the ethanol oxidation reaction in the alkaline with lower current density decay and retained a much higher current density after successive CVs of 500 cycles than that of commercial Pt/C. This work may open a new way for maximizing the catalytic performance of electrocatalysts towards ethanol oxidation by synthesizing shape-controlled alloy nanoparticles with more surface active sites to enhance the performances of direct fuel cells reaction, chemical conversion, and beyond.

  3. First principles investigation of the activity of thin film Pt, Pd and Au surface alloys for oxygen reduction

    DEFF Research Database (Denmark)

    Tripkovic, Vladimir; Hansen, Heine Anton; Rossmeisl, Jan

    2015-01-01

    driving force for surface segregation, diffusion to defects or surface self-assembling. On the basis of stability and activity analysis we conclude that the near surface alloy of Pd in Pt and some PdAu binary and PtPdAu ternary thin films with a controlled amount of Au are the best catalysts for oxygen......Further advances in fuel cell technologies are hampered by kinetic limitations associated with the sluggish cathodic oxygen reduction reaction. We have investigated a range of different formulations of binary and ternary Pt, Pd and Au thin films as electrocatalysts for oxygen reduction. The most...... active binary thin films are near-surface alloys of Pt with subsurface Pd and certain PdAu and PtAu thin films with surface and/or subsurface Au. The most active ternary thin films are with pure metal Pt or Pd skins with some degree of Au in the surface and/or subsurface layer and the near-surface alloys...

  4. Synthesis and characteristics of Ag/Pt bimetallic nanocomposites by arc-discharge solution plasma processing.

    Science.gov (United States)

    Pootawang, Panuphong; Saito, Nagahiro; Takai, Osamu; Lee, Sang-Yul

    2012-10-05

    Arc discharge in solution, generated by applying a high voltage of unipolar pulsed dc to electrodes of Ag and Pt, was used as a method to form Ag/Pt bimetallic nanocomposites via electrode erosion by the effects of the electric arc at the cathode (Ag rod) and the sputtering at the anode (Pt rod). Ag/Pt bimetallic nanocomposites were formed as colloidal particles dispersed in solution via the reduction of hydrogen radicals generated during discharge without the addition of chemical precursor or reducing agent. At a discharge time of 30 s, the fine bimetallic nanoparticles with a mean particle size of approximately 5 nm were observed by transmission electron microscopy (TEM). With increasing discharge time, the bimetallic nanoparticle size tended to increase by forming an agglomeration. The presence of the relatively small amount of Pt dispersed in the Ag matrix could be observed by the analytical mapping mode of energy-dispersive x-ray spectroscopy and high-resolution TEM. This demonstrated that the synthesized particle was in the form of a nanocomposite. No contamination of other chemical substances was detected by x-ray photoelectron spectroscopy. Hence, solution plasma could be a clean and simple process to effectively synthesize Ag/Pt bimetallic nanocomposites and it is expected to be widely applicable in the preparation of several types of nanoparticle.

  5. Self-standing corrugated Ag and Au-nanorods for plasmonic applications

    DEFF Research Database (Denmark)

    Habouti, S.; Mátéfi-Tempfli, M.; Solterbeck, C.-H.

    2011-01-01

    We use home-made Si-supported anodized alumina thin film templates for the electrodeposition of large area self-standing Ag- and Au-nanorod (Au-NR) arrays. The deposition conditions chosen, i.e. electrolyte composition and deposition voltage, lead to a corrugated rod morphology, particularly for Au...

  6. Specific composition of native silver from the Rogovik Au-Ag deposit, Northeastern Russia

    Science.gov (United States)

    Kravtsova, R. G.; Tauson, V. L.; Palyanova, G. A.; Makshakov, A. S.; Pavlova, L. A.

    2017-09-01

    The first data on native silver from the Rogovik Au-Ag deposit in northeastern Russia are presented. The deposit is situated in central part of the Okhotsk-Chukchi Volcanic Belt (OCVB) in the territory of the Omsukchan Trough, unique in its silver resources. Native silver in the studied ore makes up finely dispersed inclusions no larger than 50 μm in size, which are hosted in quartz; fills microfractures and interstices in association with küstelite, electrum, acanthite, silver sulfosalts and selenides, argyrodite, and pyrite. It has been shown that the chemical composition of native silver, along with its typomorphic features, is a stable indication of the various stages of deposit formation and types of mineralization: gold-silver (Au-Ag), silver-base metal (Ag-Pb), and gold-silver-base metal (Au-Ag-Pb). The specificity of native silver is expressed in the amount of trace elements and their concentrations. In Au-Ag ore, the following trace elements have been established in native silver (wt %): up to 2.72 S, up to 1.86 Au, up to 1.70 Hg, up to 1.75 Sb, and up to 1.01 Se. Native silver in Ag-Pb ore is characterized by the absence of Au, high Hg concentrations (up to 12.62 wt %), and an increase in Sb, Se, and S contents; the appearance of Te, Cu, Zn, and Fe is notable. All previously established trace elements—Hg, Au, Sb, Se, Te, Cu, Zn, Fe, and S—are contained in native silver of Au-Ag-Pb ore. In addition, Pb appears, and silver and gold amalgams are widespread, as well as up to 24.61 wt % Hg and 11.02 wt % Au. Comparison of trace element concentrations in native silver at the Rogovik deposit with the literature data, based on their solubility in solid silver, shows that the content of chalcogenides (S, Se, Te) exceeds saturated concentrations. Possible mechanisms by which elevated concentrations of these elements are achieved in native silver are discussed. It is suggested that the appearance of silver amalgams, which is unusual for Au-Ag mineralization

  7. Physical Properties Of Some Pd-Au-Ag Ternary Alloys: A Md Study

    International Nuclear Information System (INIS)

    Aydin, G.

    2010-01-01

    Mechanical properties of palladium (Pd), gold (Au) and silver (Ag) and their ternary alloys in the following concentrations (Au 5 0Ag 2 5Pd 2 5, Au 4 0Ag 2 0Pd 4 0) are studied by using by using molecular dynamics with Quantum Sutton-Chen (Q-SC) potential. Cell constants, densities, enthalpies, elastic constants and heat capacities are investigated. Calculations are performed in the solid phase. Rafii-Tabar combination rules are used and it is showed that these combination rules are valid for ternary alloys also. Additionally, temperature dependence of mechanical properties of alloys are investigated.

  8. Photoinduced Glycerol Oxidation over Plasmonic Au and AuM (M = Pt, Pd and Bi) Nanoparticle-Decorated TiO2 Photocatalysts

    Science.gov (United States)

    Jedsukontorn, Trin; Saito, Nagahiro; Hunsom, Mali

    2018-01-01

    In this study, sol-immobilization was used to prepare gold nanoparticle (Au NP)-decorated titanium dioxide (TiO2) photocatalysts at different Au weight % (wt. %) loading (Aux/TiO2, where x is the Au wt. %) and Au–M NP-decorated TiO2 photocatalysts (Au3M3/TiO2), where M is bismuth (Bi), platinum (Pt) or palladium (Pd) at 3 wt. %. The Aux/TiO2 photocatalysts exhibited a stronger visible light absorption than the parent TiO2 due to the localized surface plasmon resonance effect. Increasing the Au content from 1 wt. % to 7 wt. % led to increased visible light absorption due to the increasing presence of defective structures that were capable of enhancing the photocatalytic activity of the as-prepared catalyst. The addition of Pt and Pd coupled with the Au3/TiO2 to form Au3M3/TiO2 improved the photocatalytic activity of the Au3/TiO2 photocatalyst by maximizing their light-absorption property. The Au3/TiO2, Au3Pt3/TiO2 and Au3Pd3/TiO2 photocatalysts promoted the formation of glyceraldehyde from glycerol as the principle product, while Au3Bi3/TiO2 facilitated glycolaldehyde formation as the major product. Among all the prepared photocatalysts, Au3Pd3/TiO2 exhibited the highest photocatalytic activity with a 98.75% glycerol conversion at 24 h of reaction time. PMID:29690645

  9. Production of φ mesons in Au-Au collisions at the AGS

    International Nuclear Information System (INIS)

    Back, B. B.; Betts, R. R.; Chang, J.; Gillitzer, A.; Henning, W. F.; Hofman, D. J.; Nanal, V.; Seto, R.; Wuosmaa, A. H.; Xiang, H.

    1999-01-01

    The first measurements of φ meson production in Au-Au collisions at AGS energies are presented via the decay to K + K - . A measurement of the centrality dependence of the yield shows an increase similar to that seen for the K - with a spectral shape consistent with a relativistic Breit-Wigner distribution within the statistical errors of the present data set. Future analysis using the full data set with 4 times the statistics will allow a more accurate determination of the yields, slopes and spectral shapes

  10. Electrochemical Reduction of CO2 on Compositionally Variant Au-Pt Bimetallic Thin Films

    DEFF Research Database (Denmark)

    Ma, Ming; Hansen, Heine Anton; Valenti, Marco

    2017-01-01

    The electrocatalytic reduction of CO2 on Au-Pt bimetallic catalysts with different compositions was evaluated, offering a platform for uncovering the correlation between the catalytic activity and the surface composition of bimetallic electrocatalysts. The Au-Pt alloy films were synthesized...... by a magnetron sputtering co-deposition technique with tunable composition. It was found that the syngas ratio (CO:H2) on the Au-Pt films is able to be tuned by systematically controlling the binary composition. This tunable catalytic selectivity is attributed to the variation of binding strength of COOH and CO...... intermediates, influenced by the surface electronic structure (d-band center energy) which is linked to the surface composition of the bimetallic films. Notably, a gradual shift of the d-band center away from the Fermi level was observed with increasing Au content, which correspondingly reduces the binding...

  11. Experimental modeling of Au and Pt coupled transport by chloride hydrothermal fluids at 350-450°C and 500-1000 bar

    Science.gov (United States)

    Zotov, A. V.; Tagirov, B. R.; Koroleva, L. A.; Volchenkova, V. A.

    2017-09-01

    The coupled solubility of Au(cr) and Pt(cr) has been measured in acidic chloride solutions at 350-450°C and 0.5 and 1 kb using the autoclave technique with determination of dissolved metal contents after quenching. The constants of the reaction combining the dominant species of Au and Pt in high-temperature hydrothermal fluids ( K (Au-Pt)) have been determined: 2 Au(cr) + PtCl4 2- = Pt(cr) + 2AuCl2 -; log K (Au-Pt) =-1.02 ± 0.25 (450°C, 1 kb), 0.09 ± 0.15 (450°C, 0.5 kb), and -1.31 ± 0.20 (350°C, 1 kb). It has been established that the factors affecting the Au/Pt concentration ratio in hydrothermal fluids and precipitated ores are temperature, pressure, redox potential, and sulfur fugacity. An increase in temperature results in an increase in the Au/Pt concentration ratio (up to 550°C at P = 1 kb). A decrease in pressure and redox potential leads to enrichment of fluid in Au. An increase in sulfur fugacity in the stability field of Pt sulfides results in increase in the Au/Pt concentration ratio. Native platinum is replaced by sulfide mineral in low-temperature systems enriched in Pt (relative to Au).

  12. An SFG and DFG investigation of polycrystalline Au, Au-Cu and Au-Ag-Cu electrodes in contact with aqueous solutions containing KCN

    International Nuclear Information System (INIS)

    Bozzini, Benedetto; Busson, Bertrand; De Gaudenzi, Gian Pietro; Mele, Claudio; Tadjeddine, Abderrahmane

    2007-01-01

    In this paper, the behaviour of polycrystalline Au, Au-Cu (Cu 25%) and Au-Ag-Cu (Ag 10%, Cu 15%) electrodes in contact with neutral aqueous solutions of KCN has been studied as a function of potential by means of in situ sum frequency generation (SFG) and difference frequency generation (DFG) spectroscopies. The potential-dependent spectra have been analysed quantitatively with a model for the second-order non-linear susceptibility accounting for vibrational and electronic effects. The potential-dependence of the CN - stretching band position and of the free-electron contribution to the real part of the non-resonant component of the second-order susceptibility have been accounted for. Spectroelectrochemical results were complemented by cyclic voltammetric measurements. The chief stress in this work has been placed on systematising and quantifying the interaction between the vibrational and electronic structures of the electrodic interfaces studied. The effects of adsorbates on the electronic structure of the adsorbing electrode, as a function of electrode alloy composition and applied potential are particularly critical for the understanding of Au-alloy electrochemistry in the presence of cyanide and cyanocomplexes. The systematic comparison of SFG and DFG spectra measured under the same electrochemical conditions for Au, Au-Cu and Au-Ag-Cu electrodes discloses a rich phenomenology related to the electronic structure of the interface

  13. An SFG and DFG investigation of polycrystalline Au, Au-Cu and Au-Ag-Cu electrodes in contact with aqueous solutions containing KCN

    Energy Technology Data Exchange (ETDEWEB)

    Bozzini, Benedetto [Dipartimento di Ingegneria dell' Innovazione, Universita di Lecce, v. Monteroni, I-73100 Lecce (Italy)]. E-mail: benedetto.bozzini@unile.it; Busson, Bertrand [CLIO-LCP, Universite Paris-Sud, 91405 Orsay Cedex (France); De Gaudenzi, Gian Pietro [Dipartimento di Ingegneria dell' Innovazione, Universita di Lecce, v. Monteroni, I-73100 Lecce (Italy); Mele, Claudio [Dipartimento di Ingegneria dell' Innovazione, Universita di Lecce, v. Monteroni, I-73100 Lecce (Italy); Tadjeddine, Abderrahmane [UDIL-CNRS, Bat. 201, Centre Universitaire Paris-Sud, BP 34, 91898 Orsay Cedex (France)

    2007-01-16

    In this paper, the behaviour of polycrystalline Au, Au-Cu (Cu 25%) and Au-Ag-Cu (Ag 10%, Cu 15%) electrodes in contact with neutral aqueous solutions of KCN has been studied as a function of potential by means of in situ sum frequency generation (SFG) and difference frequency generation (DFG) spectroscopies. The potential-dependent spectra have been analysed quantitatively with a model for the second-order non-linear susceptibility accounting for vibrational and electronic effects. The potential-dependence of the CN{sup -} stretching band position and of the free-electron contribution to the real part of the non-resonant component of the second-order susceptibility have been accounted for. Spectroelectrochemical results were complemented by cyclic voltammetric measurements. The chief stress in this work has been placed on systematising and quantifying the interaction between the vibrational and electronic structures of the electrodic interfaces studied. The effects of adsorbates on the electronic structure of the adsorbing electrode, as a function of electrode alloy composition and applied potential are particularly critical for the understanding of Au-alloy electrochemistry in the presence of cyanide and cyanocomplexes. The systematic comparison of SFG and DFG spectra measured under the same electrochemical conditions for Au, Au-Cu and Au-Ag-Cu electrodes discloses a rich phenomenology related to the electronic structure of the interface.

  14. Deformation of Ag clusters deposited on Au(111) - Experiment and molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Miroslawski, Natalie; Groenhagen, Niklas; Hoevel, Heinz [TU Dortmund, Experimentelle Physik I (Germany); Issendorff, Bernd von [Universitaet Freiburg, Fakultaet Physik (Germany); Jaervi, Tommi [Fraunhofer Institut fuer Werkstoffmechanik, Freiburg (Germany); Moseler, Michael [Universitaet Freiburg, Fakultaet Physik (Germany); Fraunhofer Institut fuer Werkstoffmechanik, Freiburg (Germany); Freiburger Materialforschungszentrum (Germany)

    2011-07-01

    Mass selected clusters from Ag{sup +}{sub 55} to Ag{sup +}{sub 147{+-}}{sub 2} were deposited with different deposition energies at 77 K on Au(111) and imaged with STM at 77 K. We observed a deformation of the cluster shape due to the strong metallic interaction between the cluster and the substrate. The clusters became epitaxial and developed a structure composed of several Ag monolayers. The number of these monolayers depends on the number of atoms in the cluster and the deposition energy. The larger the cluster mass the more monolayers the cluster develops on Au(111) and the larger the deposition energy the fewer monolayers occur. These results were verified by molecular dynamic simulations. Additionally the behaviour of Ag{sub N} clusters on Au(111) after different annealing steps was investigated.

  15. Anchoring of Ag-Au alloy nanoparticles on reduced graphene oxide sheets for the reduction of 4-nitrophenol

    Energy Technology Data Exchange (ETDEWEB)

    Hareesh, K., E-mail: appi.2907@gmail.com [Department of Physics, Savitribai Phule Pune University, Pune 411007 (India); Joshi, R.P. [Department of Physics, Savitribai Phule Pune University, Pune 411007 (India); Sunitha, D.V. [School of Physics, Reva University, Bangalore 560064 (India); Bhoraskar, V.N. [Department of Physics, Savitribai Phule Pune University, Pune 411007 (India); Dhole, S.D., E-mail: sanjay@physics.unipune.ac.in [Department of Physics, Savitribai Phule Pune University, Pune 411007 (India)

    2016-12-15

    Highlights: • Ag-Au-rGO nanocomposite was synthesized by gamma radiation assisted method. • Ag-Au nanoparticles of size (5–19) nm were decorated on rGO. • Ag-Au-rGO showed enhanced catalytic activity for reduction of 4-Nitrophenol. - Abstract: One-step gamma radiation assisted method has been used for the synthesis of Silver-Gold (Ag-Au) alloy nanoparticles with simultaneous reduction of graphene oxide (GO). UV–vis spectroscopic results along with X-ray diffraction analysis, X-ray Photoelectron spectroscopy and Transmission electron microscopy confirmed the decoration face centered cubic structured Ag-Au nanoparticles of size (5–19) nm on reduced graphene oxide (rGO) sheets. The increase in disorder parameter in Raman spectroscopy indicates the formation of more number of small sp{sup 2} domains. The synthesized Ag-Au-rGO nanocomposite showed enhanced catalytic activity towards the reduction of 4-Nitrophenol compared to individual Ag-Au and rGO components.

  16. Mechanism of coercivity enhancement by Ag addition in FePt-C granular films for heat assisted magnetic recording media

    Energy Technology Data Exchange (ETDEWEB)

    Varaprasad, B. S. D. Ch. S.; Takahashi, Y. K., E-mail: takahashi.yukiko@nims.go.jp; Wang, J.; Hono, K. [National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047 (Japan); Ina, T.; Nakamura, T.; Ueno, W.; Nitta, K.; Uruga, T. [Japan Synchrotron Radiation Research Institute (JASRI/SPring-8), 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan)

    2014-06-02

    We investigated the Ag distribution in a FePtAg-C granular film that is under consideration for a heat assisted magnetic recording medium by aberration-corrected scanning transmission electron microscope-energy dispersive X-ray spectroscopy and X-ray absorption fine structure. Ag is rejected from the core of FePt grains during the deposition, forming Ag-enriched shell surrounding L1{sub 0}-ordered FePt grains. Since Ag has no solubility in both Fe and Pt, the rejection of Ag induces atomic diffusions thereby enhancing the kinetics of the L1{sub 0}-order in the FePt grains.

  17. Stabilization of Pt nanoparticles by single stranded DNA and the binary assembly of Au and Pt nanoparticles without hybridization

    International Nuclear Information System (INIS)

    Yang, J.; Lee, Jim Yang; Too, Heng-Phon; Chow, Gan-Moog; Gan, Leong M.

    2006-01-01

    The non-specific interaction between single stranded DNA (ssDNA) and 12 nm Pt nanoparticles is investigated in this work. The data show a strong and non-specific interaction between the two which can be exploited for the stabilization of Pt nanoparticles in aqueous solutions. Based on the experimental findings, a non-hybridization based protocol to assemble 17 nm Au and Pt nanoparticles (12 nm cubic and 3.6 nm spherical) by single-stranded DNA was developed. Transmission electron microscopy (TEM) and UV-visible spectroscopy confirmed that Au and Pt nanoparticles could be assembled by the non-specific interaction in an orderly manner. The experimental results also caution against the potential pitfalls in using DNA melting point analysis to infer metal nanoparticle assembly by DNA hybridization

  18. J /ψ production at low pT in Au + Au and Cu + Cu collisions at √sNN =200 GeV with the STAR detector

    Science.gov (United States)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Anson, C. D.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Averichev, G. S.; Banerjee, A.; Beavis, D. R.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Borowski, W.; Bouchet, J.; Brandin, A. V.; Brovko, S. G.; Bültmann, S.; Bunzarov, I.; Burton, T. P.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Cendejas, R.; Cervantes, M. C.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, H. F.; Chen, J. H.; Chen, L.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Chwastowski, J.; Codrington, M. J. M.; Contin, G.; Cramer, J. G.; Crawford, H. J.; Cui, X.; Das, S.; Davila Leyva, A.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; Derradi de Souza, R.; di Ruzza, B.; Didenko, L.; Dilks, C.; Ding, F.; Djawotho, P.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Engle, K. S.; Eppley, G.; Eun, L.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Fedorisin, J.; Filip, P.; Fisyak, Y.; Flores, C. E.; Gagliardi, C. A.; Gangadharan, D. R.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Gliske, S.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Haag, B.; Hamed, A.; Han, L.-X.; Haque, R.; Harris, J. W.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, B.; Huang, H. Z.; Huang, X.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Kesich, A.; Khan, Z. H.; Kikola, D. P.; Kisel, I.; Kisiel, A.; Koetke, D. D.; Kollegger, T.; Konzer, J.; Koralt, I.; Kosarzewski, L. K.; Kotchenda, L.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulakov, I.; Kumar, L.; Kycia, R. A.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, C.; Li, W.; Li, X.; Li, X.; Li, Y.; Li, Z. M.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, G. L.; Ma, Y. G.; Mahapatra, D. P.; Majka, R.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; McShane, T. S.; Minaev, N. G.; Mioduszewski, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nelson, J. M.; Nigmatkulov, G.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Ohlson, A.; Okorokov, V.; Oldag, E. W.; Olvitt, D. L.; Page, B. S.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlak, T.; Pawlik, B.; Pei, H.; Perkins, C.; Pile, P.; Planinic, M.; Pluta, J.; Poljak, N.; Poniatowska, K.; Porter, J.; Poskanzer, A. M.; Powell, C. B.; Pruthi, N. K.; Przybycien, M.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Riley, C. K.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Ross, J. F.; Roy, A.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Sangaline, E.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, B.; Shen, W. Q.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Simko, M.; Skoby, M. J.; Smirnov, D.; Smirnov, N.; Solanki, D.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stevens, J. R.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Sun, X.; Sun, X. M.; Sun, Y.; Sun, Z.; Surrow, B.; Svirida, D. N.; Symons, T. J. M.; Szelezniak, M. A.; Takahashi, J.; Tang, A. H.; Tang, Z.; Tarnowsky, T.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Trzeciak, B. A.; Tsai, O. D.; Turnau, J.; Ullrich, T.; Underwood, D. G.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Vanfossen, J. A.; Varma, R.; Vasconcelos, G. M. S.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Viyogi, Y. P.; Vokal, S.; Vossen, A.; Wada, M.; Wang, F.; Wang, G.; Wang, H.; Wang, J. S.; Wang, X. L.; Wang, Y.; Wang, Y.; Webb, G.; Webb, J. C.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y. F.; Xiao, Z.; Xie, W.; Xin, K.; Xu, H.; Xu, J.; Xu, N.; Xu, Q. H.; Xu, Y.; Xu, Z.; Yan, W.; Yang, C.; Yang, Y.; Yang, Y.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, J. B.; Zhang, J. L.; Zhang, S.; Zhang, X. P.; Zhang, Y.; Zhang, Z. P.; Zhao, F.; Zhao, J.; Zhong, C.; Zhu, X.; Zhu, Y. H.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration

    2014-08-01

    The J /ψ pT spectrum and nuclear modification factor (RAA) are reported for pT<5GeV /c and |y|<1 from 0% to 60% central Au +Au and Cu +Cu collisions at √sNN =200GeV at STAR. A significant suppression of pT-integrated J /ψ production is observed in central Au +Au events. The Cu +Cu data are consistent with no suppression, although the precision is limited by the available statistics. RAA in Au +Au collisions exhibits a strong suppression at low transverse momentum and gradually increases with pT. The data are compared to high-pT STAR results and previously published BNL Relativistic Heavy Ion Collider results. Comparing with model calculations, it is found that the invariant yields at low pT are significantly above hydrodynamic flow predictions but are consistent with models that include color screening and regeneration.

  19. First principles investigation of the activity of thin film Pt, Pd and Au surface alloys for oxygen reduction

    DEFF Research Database (Denmark)

    Tripkovic, Vladimir; Hansen, Heine Anton; Rossmeisl, Jan

    2015-01-01

    Further advances in fuel cell technologies are hampered by kinetic limitations associated with the sluggish cathodic oxygen reduction reaction. We have investigated a range of different formulations of binary and ternary Pt, Pd and Au thin films as electrocatalysts for oxygen reduction. The most...... active binary thin films are near-surface alloys of Pt with subsurface Pd and certain PdAu and PtAu thin films with surface and/or subsurface Au. The most active ternary thin films are with pure metal Pt or Pd skins with some degree of Au in the surface and/or subsurface layer and the near-surface alloys...

  20. Development of Au-Ag nanowire mesh fabrication by UV-induced approach

    Energy Technology Data Exchange (ETDEWEB)

    Saggar, Siddhartha [Laboratory for Molecular Photonics and Electronics, Department of Physics, National Institute of Technology, Calicut, Kerala, India and School of Nanoscience and Technology, National Institute of Technology, Calicut, Kerala (India); Predeep, Padmanabhan, E-mail: predeep@nitc.ac.in

    2014-10-15

    In an attempt to overcome the limitations of the presently prevailing transparent conducting electrode (TCE) - indium tin oxide (ITO) - many materials have been considered for replacing ITO. Recently, a novel method has been reported for the synthesis of Au-Ag nanowire (NW) mesh, and tested successfully for organic-light-emitting-diodes (OLEDs). It employs UV-induced reduction of gold- and silver- precursors to form Au-Ag NW mesh. In this report, Au-Ag NW mesh thin films are synthesized on glass substrates with an objective for use as facing-electrode for Organic Photovoltaics. Various issues and factors affecting the fabrication-process have been improved, and are also discussed here. The electrode showed good transmitivity, of around 95% (excluding that of glass substrate). The advantage of the technique is its simple processing method and cost-effectiveness.

  1. Alloy formation during the electrochemical growth of a Ag-Cd ultrathin film on Au(1 1 1)

    International Nuclear Information System (INIS)

    Barrio, M.C. del; Garcia, S.G.; Salinas, D.R.

    2009-01-01

    The electrodeposition of a Ag/Cd ultrathin film on a Au(1 1 1) surface and the formation of a surface alloy during this process have been studied using classical electrochemical techniques and in situ Scanning Tunneling Microscopy (STM). The films were obtained from separate electrolytes containing Ag + or Cd 2+ ions and from a multicomponent solution containing both ions. First, the polarization conditions were adjusted in order to form a Ag film by overpotential deposition. Afterwards, a Cd monolayer was formed onto this Au(1 1 1)/Ag modified surface by underpotential deposition. The voltammetric behavior of the Cd UPD and the in situ STM images indicated that the ultrathin Ag films were uniformly deposited and epitaxially oriented with respect to the Au(1 1 1) surface. Long time polarization experiments showed that a significant Ag-Cd surface alloying accompanied the formation of the Cd monolayer on the Au(1 1 1)/Ag modified surface, independent of the Ag film thickness. In the case of an extremely thin Ag layer (1 Ag ML) the STM images and long time polarization experiments revealed a solid state diffusion process of Cd, Ag, and Au atoms which can be responsible for the formation of different Ag-Cd or Au-Ag-Cd alloy phases.

  2. Atomically thin Pt shells on Au nanoparticle cores: facile synthesis and efficient synergetic catalysis

    DEFF Research Database (Denmark)

    Engelbrekt, Christian; Seselj, Nedjeljko; Poreddy, Raju

    2016-01-01

    in electrooxidation of sustainable fuels (i.e. formic acid, methanol and ethanol), and selective hydrogenation of benzene derivatives. Especially high activity was achieved for formic acid oxidation, 549 mA (mgPt)−1 (at 0.6 V vs. SCE), which is 3.5 fold higher than a commercial ... properties were thoroughly characterized by ultraviolet-visible light spectrophotometry, transmission electron microscopy, nanoparticle tracking analysis and electrochemistry. The 8 ± 2 nm Au@PtNPs contained 24 ± 1 mol% Pt and 76 ± 1 mol% Au corresponding to an atomically thin Pt shell. Electrochemical data...

  3. Variations of color with alloying elements in Pd-free Au-Pt-based high noble dental alloys

    International Nuclear Information System (INIS)

    Shiraishi, Takanobu; Takuma, Yasuko; Miura, Eri; Fujita, Takeshi; Hisatsune, Kunihiro

    2007-01-01

    The effects of alloying addition of a small amount of base metals (In, Sn, Fe, Zn) on color variations in Pd-free Au-Pt-based high noble dental alloys were investigated in terms of rectilinear and polar color coordinates. The ternary Au-Pt-X (X = In, Sn, Fe, Zn) and quaternary Au-Pt-In-Y (Y = Sn, Fe, Zn) alloys were prepared from high purity component metals. The amount of alloying base metals, X and Y, were restricted up to 2 at.%. The alloying addition of a small amount of Fe, In, Sn, to a binary Au-10 at.% Pt alloy (referred to as AP10) effectively increased chroma, C *. On the other hand, the addition of Zn to the parent alloy AP10 did not change color coordinates greatly. The increase in chroma in the present Au-Pt-based high noble alloys was attributed to the increase in the slope of spectral reflectance curve at its absorption edge near 515 nm. It was found that the addition of a small amount of Fe to the parent alloy AP10 markedly increased lightness, L *, and the addition of Sn gave a very light tint of red to the parent alloy. Although red-green chromaticity index a * contributed to chroma to some extent, contribution of yellow-blue chromaticity index b * was much greater in determining chroma in this Pd-free Au-Pt-based multi-component alloys. The present results are expected to be valuable in case color is to be taken into account in designing Pd-free Au-Pt-based high noble dental alloys

  4. Variations of color with alloying elements in Pd-free Au-Pt-based high noble dental alloys

    Energy Technology Data Exchange (ETDEWEB)

    Shiraishi, Takanobu [Department of Dental and Biomedical Materials Science, Unit of Basic Medical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588 (Japan)]. E-mail: siraisi@nagasaki-u.ac.jp; Takuma, Yasuko [Department of Dental and Biomedical Materials Science, Unit of Basic Medical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588 (Japan); Miura, Eri [Department of Dental and Biomedical Materials Science, Unit of Basic Medical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588 (Japan); Fujita, Takeshi [Department of Dental and Biomedical Materials Science, Unit of Basic Medical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588 (Japan); Hisatsune, Kunihiro [Department of Dental and Biomedical Materials Science, Unit of Basic Medical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588 (Japan)

    2007-06-15

    The effects of alloying addition of a small amount of base metals (In, Sn, Fe, Zn) on color variations in Pd-free Au-Pt-based high noble dental alloys were investigated in terms of rectilinear and polar color coordinates. The ternary Au-Pt-X (X = In, Sn, Fe, Zn) and quaternary Au-Pt-In-Y (Y = Sn, Fe, Zn) alloys were prepared from high purity component metals. The amount of alloying base metals, X and Y, were restricted up to 2 at.%. The alloying addition of a small amount of Fe, In, Sn, to a binary Au-10 at.% Pt alloy (referred to as AP10) effectively increased chroma, C *. On the other hand, the addition of Zn to the parent alloy AP10 did not change color coordinates greatly. The increase in chroma in the present Au-Pt-based high noble alloys was attributed to the increase in the slope of spectral reflectance curve at its absorption edge near 515 nm. It was found that the addition of a small amount of Fe to the parent alloy AP10 markedly increased lightness, L *, and the addition of Sn gave a very light tint of red to the parent alloy. Although red-green chromaticity index a * contributed to chroma to some extent, contribution of yellow-blue chromaticity index b * was much greater in determining chroma in this Pd-free Au-Pt-based multi-component alloys. The present results are expected to be valuable in case color is to be taken into account in designing Pd-free Au-Pt-based high noble dental alloys.

  5. Microwave heated polyol synthesis of carbon supported PtAuSn/C nanoparticles for ethanol electrooxidation

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Hong; Han, Kefei [School of Science, State key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Liu, Yingli; Chang, Zhaorong [College of Chemistry and Environmental Science, Henan Normal University, Xinxiang, Henan (China); Shen, Liangbo [Beijing No.4 High School, Beijing (China); Wei, Yongsheng; Guo, Zhijun (School of Science Beijing Jiaotong University Beijing P. R. China); Wang, Haijiang [Institute for Fuel Cell Innovation, National Research Council of (Canada)

    2010-04-15

    Carbon-supported PtAuSn/C nanoparticle catalyst was synthesized by a microwave-assisted polyol process. The process is a quick process that only requires a few minutes to complete. The catalyst thus obtained was characterized by transmission electron microscopy and X-ray diffraction analysis. The electrochemical performance of the catalyst, for the ethanol oxidation reaction, was also investigated. The results indicated that the PtAuSn/C catalyst was uniformly dispersed on carbon and was in the nano-size range. The electrochemical measurements indicated that PtAuSn/C nanoparticle catalyst synthesized by the microwave-assisted polyol method demonstrated a significantly higher electrochemically active area and higher catalytic activity than Pt/C for the ethanol oxidation reaction. (author)

  6. Contribution to the study of Pt197 and Au197 excited states

    International Nuclear Information System (INIS)

    Alves, S.M.C.

    1971-01-01

    The gamma transitions of the Ir 197β- → Pt 197β- → Au 197 decay chain were investigated using three Ge(Li) detectors of high resolution and spectroscopy techniques with one, two and three via of analysis. For the Ir 197β- →Pt 197 decay, four new gamma transitions with energy of 877.6; 938.7; 1049.6 and 1341.8 Kev were observed, presupposing to be energy levels in 877.6; 938.7; 1049.6 and 1347.8 Kev in the Ir 197 population by β- decay of Ir 197 . By the first time, the 299.5 Kev transition was observed, in the Pt 197 m (80min) decay, interpreted as a direct desexcitation of the 299.5Kev level in Pt 197 . A new scheme of Ir 197 β- → Au 197 decay based on the obtained results, is proposed. (M.C.K.) [pt

  7. Au@Ag core-shell nanocubes with finely tuned and well-controlled sizes, shell thicknesses, and optical properties.

    Science.gov (United States)

    Ma, Yanyun; Li, Weiyang; Cho, Eun Chul; Li, Zhiyuan; Yu, Taekyung; Zeng, Jie; Xie, Zhaoxiong; Xia, Younan

    2010-11-23

    This paper describes a facile method for generating Au@Ag core-shell nanocubes with edge lengths controllable in the range of 13.4-50 nm. The synthesis involved the use of single-crystal, spherical Au nanocrystals of 11 nm in size as the seeds in an aqueous system, with ascorbic acid serving as the reductant and cetyltrimethylammonium chloride (CTAC) as the capping agent. The thickness of the Ag shells could be finely tuned from 1.2 to 20 nm by varying the ratio of AgNO(3) precursor to Au seeds. We also investigated the growth mechanism by examining the effects of seeds (capped by CTAC or cetyltrimethylammonium bromide(CTAB)) and capping agent (CTAC vs CTAB) on both size and shape of the resultant core-shell nanocrystals. Our results clearly indicate that CTAC worked much better than CTAB as a capping agent in both the syntheses of Au seeds and Au@Ag core-shell nanocubes. We further studied the localized surface plasmon resonance properties of the Au@Ag nanocubes as a function of the Ag shell thickness. By comparing with the extinction spectra obtained from theoretical calculations, we derived a critical value of ca. 3 nm for the shell thickness at which the plasmon excitation of the Au cores would be completely screened by the Ag shells. Moreover, these Au@Ag core-shell nanocubes could be converted into Au-based hollow nanostructures containing the original Au seeds in the interiors through a galvanic replacement reaction.

  8. A general and high-yield galvanic displacement approach to Au-M (M = Au, Pd, and Pt) core-shell nanostructures with porous shells and enhanced electrocatalytic performances.

    Science.gov (United States)

    Kuai, Long; Geng, Baoyou; Wang, Shaozhen; Sang, Yan

    2012-07-23

    In this work, we utilize the galvanic displacement synthesis and make it a general and efficient method for the preparation of Au-M (M = Au, Pd, and Pt) core-shell nanostructures with porous shells, which consist of multilayer nanoparticles. The method is generally applicable to the preparation of Au-Au, Au-Pd, and Au-Pt core-shell nanostructures with typical porous shells. Moreover, the Au-Au isomeric core-shell nanostructure is reported for the first time. The lower oxidation states of Au(I), Pd(II), and Pt(II) are supposed to contribute to the formation of porous core-shell nanostructures instead of yolk-shell nanostructures. The electrocatalytic ethanol oxidation and oxygen reduction reaction (ORR) performance of porous Au-Pd core-shell nanostructures are assessed as a typical example for the investigation of the advantages of the obtained core-shell nanostructures. As expected, the Au-Pd core-shell nanostructure indeed exhibits a significantly reduced overpotential (the peak potential is shifted in the positive direction by 44 mV and 32 mV), a much improved CO tolerance (I(f)/I(b) is 3.6 and 1.63 times higher), and an enhanced catalytic stability in comparison with Pd nanoparticles and Pt/C catalysts. Thus, porous Au-M (M = Au, Pd, and Pt) core-shell nanostructures may provide many opportunities in the fields of organic catalysis, direct alcohol fuel cells, surface-enhanced Raman scattering, and so forth. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Unusual attempt to direct the growth of bimetallic Ag@Pt nanorods on electrochemically reduced graphene oxide nanosheets by electroless exchange of Cu by Pt for an efficient alcohol oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Jeena, S. E.; Gnanaprakasam, P. [Karunya University, Department of Chemistry (India); Selvaraju, T., E-mail: veluselvaraju@gmail.com [Bharathiar University, Department of Chemistry (India)

    2017-01-15

    A simple and an efficient tool for the direct growth of bimetallic Ag@Pt nanorods (NRDs) on electrochemically reduced graphene oxide (ERGO) nanosheets was developed at glassy carbon electrode (GCE). Initially, Cu shell was grown on Ag core as Ag@Cu NRD by the seed-mediated growth method. Accordingly, Cu shell has been successfully replaced by Pt using the electroless galvanic replacement method with ease by effective functionalization of L-tryptophan on ERGO surface (L-ERGO), which eventually plays an important role in the direct growth of one-dimensional bimetallic NRDs. As a result, the synthesized Ag@Pt NRD-supported L-ERGO nanosheets (Ag@Pt NRDs/L-ERGO/GCE) were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive X-ray analysis (EDAX) and Raman spectroscopy. Anodic stripping voltammetry was used to explore its electrochemical properties. Finally, the developed bimetallic Ag@Pt NRDs/L-ERGO/GCEs were studied as a better electrocatalyst compared to the commercial catalysts such as Pt{sub 40}/C or Pt{sub 20}/C-loaded electrode for the oxidation of ethanol or methanol with a high tolerance level and an enhanced current density. In addition, the long-term stability was studied using chronoamperometry for 1000 s at the bimetallic NRD electrode for alcohol oxidation which impedes the fouling properties. The unfavourable and favourable electrooxidation of ethanol at Ag@Cu NRDs/L-ERGO/GCE (a) and Ag@Pt NRDs/L-ERGO/GCE (b) is discussed. The synergistic effect of Ag core and catalytic properties of Pt shell at Ag@Pt NRDs/L-ERGO/GCE tend to strongly minimize the CO poisoning effect and enhanced ethanol electrooxidation.

  10. Unusual attempt to direct the growth of bimetallic Ag@Pt nanorods on electrochemically reduced graphene oxide nanosheets by electroless exchange of Cu by Pt for an efficient alcohol oxidation

    Science.gov (United States)

    Jeena, S. E.; Gnanaprakasam, P.; Selvaraju, T.

    2017-01-01

    A simple and an efficient tool for the direct growth of bimetallic Ag@Pt nanorods (NRDs) on electrochemically reduced graphene oxide (ERGO) nanosheets was developed at glassy carbon electrode (GCE). Initially, Cu shell was grown on Ag core as Ag@Cu NRD by the seed-mediated growth method. Accordingly, Cu shell has been successfully replaced by Pt using the electroless galvanic replacement method with ease by effective functionalization of L-tryptophan on ERGO surface (L-ERGO), which eventually plays an important role in the direct growth of one-dimensional bimetallic NRDs. As a result, the synthesized Ag@Pt NRD-supported L-ERGO nanosheets (Ag@Pt NRDs/L-ERGO/GCE) were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive X-ray analysis (EDAX) and Raman spectroscopy. Anodic stripping voltammetry was used to explore its electrochemical properties. Finally, the developed bimetallic Ag@Pt NRDs/L-ERGO/GCEs were studied as a better electrocatalyst compared to the commercial catalysts such as Pt40/C or Pt20/C-loaded electrode for the oxidation of ethanol or methanol with a high tolerance level and an enhanced current density. In addition, the long-term stability was studied using chronoamperometry for 1000 s at the bimetallic NRD electrode for alcohol oxidation which impedes the fouling properties. The unfavourable and favourable electrooxidation of ethanol at Ag@Cu NRDs/L-ERGO/GCE (a) and Ag@Pt NRDs/L-ERGO/GCE (b) is discussed. The synergistic effect of Ag core and catalytic properties of Pt shell at Ag@Pt NRDs/L-ERGO/GCE tend to strongly minimize the CO poisoning effect and enhanced ethanol electrooxidation.

  11. Unusual attempt to direct the growth of bimetallic Ag@Pt nanorods on electrochemically reduced graphene oxide nanosheets by electroless exchange of Cu by Pt for an efficient alcohol oxidation

    International Nuclear Information System (INIS)

    Jeena, S. E.; Gnanaprakasam, P.; Selvaraju, T.

    2017-01-01

    A simple and an efficient tool for the direct growth of bimetallic Ag@Pt nanorods (NRDs) on electrochemically reduced graphene oxide (ERGO) nanosheets was developed at glassy carbon electrode (GCE). Initially, Cu shell was grown on Ag core as Ag@Cu NRD by the seed-mediated growth method. Accordingly, Cu shell has been successfully replaced by Pt using the electroless galvanic replacement method with ease by effective functionalization of L-tryptophan on ERGO surface (L-ERGO), which eventually plays an important role in the direct growth of one-dimensional bimetallic NRDs. As a result, the synthesized Ag@Pt NRD-supported L-ERGO nanosheets (Ag@Pt NRDs/L-ERGO/GCE) were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive X-ray analysis (EDAX) and Raman spectroscopy. Anodic stripping voltammetry was used to explore its electrochemical properties. Finally, the developed bimetallic Ag@Pt NRDs/L-ERGO/GCEs were studied as a better electrocatalyst compared to the commercial catalysts such as Pt_4_0/C or Pt_2_0/C-loaded electrode for the oxidation of ethanol or methanol with a high tolerance level and an enhanced current density. In addition, the long-term stability was studied using chronoamperometry for 1000 s at the bimetallic NRD electrode for alcohol oxidation which impedes the fouling properties. The unfavourable and favourable electrooxidation of ethanol at Ag@Cu NRDs/L-ERGO/GCE (a) and Ag@Pt NRDs/L-ERGO/GCE (b) is discussed. The synergistic effect of Ag core and catalytic properties of Pt shell at Ag@Pt NRDs/L-ERGO/GCE tend to strongly minimize the CO poisoning effect and enhanced ethanol electrooxidation.

  12. Characterization of self-assembled electrodes based on Au-Pt nanoparticles for PEMFC application

    Energy Technology Data Exchange (ETDEWEB)

    Valenzuela, E. [Politecnica Univ. de Chiapas, Tuxtla Gutierrez, Chiapas (Mexico). Energia y Sustentabilidad; Sebastian, P.J. [Politecnica Univ. de Chiapas, Chiapas (Mexico). Energia y Sustentabilidad; Centro de Investigacion en Energia, UNAM, Morelos (Mexico); Gamboa, S.A. [Centro de Investigacion en Energia, UNAM, Morelos (Mexico); Pal, U. [Inst. de Fisica, Universidad Autonoma de Puebla Univ., Puebla (Mexico). Inst. de Fisica; Gonzalez, I. [Autonoma Metropolitana Univ. (Mexico). Dept. de Quimica

    2008-07-01

    This paper reported on a study in which membrane electrode assemblies (MEAs) were fabricated by depositing Au, Pt and AuPt nanoparticles on Nafion 115 membrane for use in a proton exchange membrane fuel cell (PEMFC). A Rotating Disc Electrode (RDE) was used to measure the nanoparticle catalyst activity. After deposition of the nanoparticles on the membrane, the surface was studied by Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS). The membrane proton conduction process was studied by Electrochemical Impedance Spectroscopy (EIS) with the 4 probe technique. The MEAs fabricated with Nafion/Metal membranes were evaluated in a PEMFC under standard conditions. Colloidal solutions were used to prepare self-assembled electrodes with nanoparticles deposited on Nafion membrane. The particles deposited on Nafion showed good stability and had homogeneous distribution along the membrane surface. The impedance results revealed an increase in the membrane proton resistance of the self-assembled electrodes compared to unmodified Nafion. The Au-Pt nanoparticles were obtained by chemical reduction. The nanoparticle size in the three systems was about 2 nm. The self-assembled electrodes performed well in standard conditions. The optimum colloidal concentration and immersion time must be determined in order to obtain good catalytic activity and high membrane conductance. The self-assembled Nafion/AuPt had the best open circuit potential (887 mV). The Au and Pt self-assemblies showed a similar performance in terms of maximum power and maximum current density. The performance of the Nafion/Au self-assembly was influenced more by ohmic losses, particularly in the membrane. The maximum power generation was obtained at 0.35 V. The mass transport losses increased after this value, thereby affecting the efficiency of the PEMFC. 2 figs.

  13. An Atomically Precise Au10 Ag2 Nanocluster with Red-Near-IR Dual Emission.

    Science.gov (United States)

    Lei, Zhen; Guan, Zong-Jie; Pei, Xiao-Li; Yuan, Shang-Fu; Wan, Xian-Kai; Zhang, Jin-Yuan; Wang, Quan-Ming

    2016-08-01

    A red-near-IR dual-emissive nanocluster with the composition [Au10 Ag2 (2-py-C≡C)3 (dppy)6 ](BF4 )5 (1; 2-py-C≡C is 2-pyridylethynyl, dppy=2-pyridyldiphenylphosphine) has been synthesized. Single-crystal X-ray structural analysis reveals that 1 has a trigonal bipyramidal Au10 Ag2 core that contains a planar Au4 (2-py-C≡C)3 unit sandwiched by two Au3 Ag(dppy)3 motifs. Cluster 1 shows intense red-NIR dual emission in solution. The visible emission originates from metal-to-ligand charge transfer (MLCT) from silver atoms to phosphine ligands in the Au3 Ag(dppy)3 motifs, and the intense NIR emission is associated with the participation of 2-pyridylethynyl in the frontier orbitals of the cluster, which is confirmed by a time-dependent density functional theory (TD-DFT) calculation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Preventing dewetting during rapid-thermal annealing of FePt films with enhanced L10 ordering by introducing Ag cap-layers

    International Nuclear Information System (INIS)

    Hsiao, S.N.; Wu, S.C.; Liu, S.H.; Tsai, J.L.; Chen, S.K.; Chang, Y.C.; Lee, H.Y.

    2015-01-01

    High-order FePt continuous films with a strong (001) texture were fabricated on a glass substrate by introducing Ag layers and rapid thermal annealing (RTA). The dewetting of the (001)-textured FePt was suppressed during RTA with high heating rates (>80 K/s). The Ag cap layers not only increased the in-plane tensile stress, but also improved the (001) anisotropy and L1 0 ordering of the FePt layers. All continuous Ag/FePt bilayer films possessed strong perpendicular anisotropies and high-ordered states irrespective of the Ag layer thickness. - Highlights: • Dewetting of (001) FePt fims were suppressed by introducing Ag cap layers. • Ag layers enhanced in-plane tensile stress, (001) texture and L1 0 ordering. • Irrespective of Ag thickness, the Ag/FePt films exhibited strong (001) texture

  15. Nonvolatile resistive switching in metal/La-doped BiFeO3/Pt sandwiches.

    Science.gov (United States)

    Li, Mi; Zhuge, Fei; Zhu, Xiaojian; Yin, Kuibo; Wang, Jinzhi; Liu, Yiwei; He, Congli; Chen, Bin; Li, Run-Wei

    2010-10-22

    The resistive switching (RS) characteristics of a Bi(0.95)La(0.05)FeO(3) (La-BFO) film sandwiched between a Pt bottom electrode and top electrodes (TEs) made of Al, Ag, Cu, and Au have been studied. Devices with TEs made of Ag and Cu showed stable bipolar RS behaviors, whereas those with TEs made of Al and Au exhibited unstable bipolar RS. The Ag/La-BFO/Pt structure showed an on/off ratio of 10(2), a retention time > 10(5) s, and programming voltages TEs under a bias voltage. The maximum current before the reset process (on-to-off switching) was found to increase linearly with the current compliance applied during the set process (off-to-on switching).

  16. Enzyme-free hydrogen peroxide sensor based on Au@Ag@C core-double shell nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yancai, E-mail: liyancai@mnnu.edu.cn [College of Chemistry & Environment, Minnan Normal University, Zhangzhou 363000 (China); Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000 (China); Zhang, Yayun; Zhong, Yanmei [College of Chemistry & Environment, Minnan Normal University, Zhangzhou 363000 (China); Li, Shunxing [College of Chemistry & Environment, Minnan Normal University, Zhangzhou 363000 (China); Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000 (China)

    2015-08-30

    Graphical abstract: - Highlights: • A facile method was designed to synthesize Au@Ag@C core-double shell nanocomposites. • Carbon nanomaterials at the outermost layer could protect Au and Ag nanoparticles from oxidation and aggregation. • The Au@Ag@C core-double shell nanocomposites showed high sensitivity and selectivity to electrocatalytic reduction of hydrogen peroxide. • The hydrogen peroxide sensor has a wide linear range of 5.0 μM to 4.75 mM and a limit of detection as low as 0.14 μM. - Abstract: The well-designed Au@Ag@C core-double shell nanocomposites were synthesized via a facile method, and were used to fabricate an enzyme-free amperometric hydrogen peroxide (H{sub 2}O{sub 2}) sensor. The size, shape, elementary composition and structure of the nanocomposites were characterized by transmission electron microscope (TEM), energy-dispersed spectrum (EDS) and X-ray diffraction (XRD). The outermost layer of the nanocomposites was amorphous carbon, the second layer was Ag and the core was Au. The Au@Ag@C core-double shell nanocomposites exhibit attractive activity for electrocatalytic reduction of H{sub 2}O{sub 2} according to the electrochemical experiments. It also demonstrates the H{sub 2}O{sub 2} sensor possess well performance with a wide linear range of 5.0 μM to 4.75 mM and a limit of detection (LOD) as low as 0.14 μM (S/N = 3). Furthermore, the interference from the common interfering species, such as glucose, ascorbic acid, dopamine and uric acid can be effectively avoided. In a word, the Au@Ag@C nanocomposites are promising candidates for enzyme-free H{sub 2}O{sub 2} sensor.

  17. Boosting the performance of Pt electro-catalysts toward formic acid electro-oxidation by depositing sub-monolayer Au clusters

    International Nuclear Information System (INIS)

    Bi Xuanxuan; Wang Rongyue; Ding Yi

    2011-01-01

    Highlights: → Au decoration on Pt nanoparticles simultaneously increases the activity and stability. → Sub-monolayer Au decoration changes the reaction path and results in the activity improvement. → Increasing the Au coverage will increase the specific activity. → Proper Au coverage results in a maximum mass specific activity. - Abstract: CO poisoning is the main obstacle to the application of Pt nanoparticles as anode catalysts in direct formic acid fuel cells (DFAFCs). Significant types of Pt alloys have been investigated, which often demonstrate evidently improved catalytic performance governed by difference mechanisms. By using a well-known electrochemical technique of under potential deposition and in situ redox replacement, sub-monolayer Au clusters are deposited onto Pt nanoparticle surfaces in a highly controlled manner, generating a unique surface alloy structure. Under optimum conditions, the modified Pt nanoparticles can exhibit greatly enhanced specific activity (up to 23-fold increase) at potential of -0.2 V vs. MSE toward formic acid electro-oxidation (FAEO). Interestingly, the mass specific activity can also be improved by a factor of 2.3 at potential of -0.35 V vs. MSE although significant amount of surface Pt atoms are covered by the overlayer Au clusters. The much enhanced catalytic activity can be ascribed to a Pt surface ensemble effect, which induces change of the reaction path. Moreover, the sub-monolayer Au coating on the surface also contributes to the enhanced catalyst durability by inhibiting the Pt oxidation. These results show great potential to rationally design more active and stable nanocatalysts by modifying the Pt surface with otherwise inactive materials.

  18. Population genetic structure of Rhizoctonia solani AG 3-PT from potatoes in South Africa.

    Science.gov (United States)

    Muzhinji, Norman; Woodhall, James W; Truter, Mariette; van der Waals, Jacquie E

    2016-05-01

    Rhizoctonia solani AG 3-PT is an important potato pathogen causing significant yield and quality losses in potato production. However, little is known about the levels of genetic diversity and structure of this pathogen in South Africa. A total of 114 R. solani AG 3-PT isolates collected from four geographic regions were analysed for genetic diversity and structure using eight microsatellite loci. Microsatellite analysis found high intra-population genetic diversity, population differentiation and evidence of recombination. A total of 78 multilocus genotypes were identified with few shared among populations. Low levels of clonality (13-39 %) and high levels of population differentiation were observed among populations. Most of the loci were in Hardy-Weinberg equilibrium and all four populations showed evidence of a mixed reproductive mode of both clonality and recombination. The PCoA clustering method revealed genetically distinct geographic populations of R. solani AG 3-PT in South Africa. This study showed that populations of R. solani AG 3-PT in South Africa are genetically differentiated and disease management strategies should be applied accordingly. This is the first study of the population genetics of R. solani AG 3-PT in South Africa and results may help to develop knowledge-based disease management strategies. Copyright © 2016 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  19. Energy loss of 107Ag, 109Ag and 150Sm in Ni and Au

    International Nuclear Information System (INIS)

    Ribas, R.V.; Seale, W.A.; Roney, W.M.; Szanto, E.M.

    1979-01-01

    The stopping power of 107 Ag, 109 Ag and 150 Sm in nickel and gold was measured as a preliminary test of a new technique for measuring energy loss based on the γ-ray Dopppler shift. The analysis of the data was based on the theories of Lindhard, Scharff and Schiott for nuclear and electronic stopping. The results are compared with the semi-empirical predictions of Northcliffe and Schilling. (author) [pt

  20. (0 0 1) textured CoPt-Ag nanocomposite films for high-density perpendicular magnetic recording

    International Nuclear Information System (INIS)

    Xue, S.X.; Wang, H.; Wang, H.B.; Yang, F.J.; Wang, J.A.; Cao, X.; Gao, Y.; Huang, Z.B.; Li, Z.Y.; Li, Q.; Wong, S.P.

    2006-01-01

    CoPt/Ag nanocomposite films were prepared by magnetron sputtering. The dependence of texture and magnetic properties on film thickness, Ag atomic fraction and annealing conditions is investigated. Films with a thickness about 20 nm are easy to form with (0 0 1) orientation. The existence of the Ag in the film plays a dominant role in inducing the (0 0 1) texture of the film and suppressing the growth of the CoPt grains during annealing. The Co 35 Pt 38 Ag 27 film after annealing at 600 deg. C exhibits a large perpendicular coercivity of 5.6 kOe and a squareness of 0.90 with a small average grains size of 12.5 nm

  1. Effect of hydrogen and propylene on the hydrogen peroxide decomposition over Pt, PtO and Au catalysts

    NARCIS (Netherlands)

    Kertalli, E.; Schouten, J.C.; Nijhuis, T.A.

    2017-01-01

    The decomposition of hydrogen peroxide (H2O2) on Pt, PtO and Au catalysts has been investigated in the presence of nitrogen, propylene and hydrogen. H2O2 formation on the catalyst is known to be a key intermediate step for the direct synthesis of propylene oxide (PO) from hydrogen, propylene and

  2. Collagen-chitosan scaffold modified with Au and Ag nanoparticles: Synthesis and structure

    International Nuclear Information System (INIS)

    Rubina, M.S.; Kamitov, E.E.; Zubavichus, Ya. V.; Peters, G.S.; Naumkin, A.V.; Suzer, S.; Vasil’kov, A.Yu.

    2016-01-01

    Graphical abstract: - Highlights: • Biocompatible collagen-chitosan scaffolds were modified by Au and Ag nanoparticles via the metal-vapor synthesis. • Structural and morphological parameters of the nanocomposites were assessed using a set of modern instrumental techniques, including electron microscopy, X-ray diffraction, small-angle X-ray scattering, EXAFS, XPS. • Potential application of the nanocomposites are envisaged. - Abstract: Nowadays, the dermal biomimetic scaffolds are widely used in regenerative medicine. Collagen-chitosan scaffold one of these materials possesses antibacterial activity, good compatibility with living tissues and has been already used as a wound-healing material. In this article, collagen-chitosan scaffolds modified with Ag and Au nanoparticles have been synthesized using novel method - the metal-vapor synthesis. The nanocomposite materials are characterized by XPS, TEM, SEM and synchrotron radiation-based X-ray techniques. According to XRD data, the mean size of the nanoparticles (NPs) is 10.5 nm and 20.2 nm in Au-Collagen-Chitosan (Au-CollCh) and Ag-Collagen-Chitosan (Ag-CollCh) scaffolds, respectively in fair agreement with the TEM data. SAXS analysis of the composites reveals an asymmetric size distribution peaked at 10 nm for Au-CollCh and 25 nm for Ag-CollCh indicative of particle's aggregation. According to SEM data, the metal-carrying scaffolds have layered structure and the nanoparticles are rather uniformly distributed on the surface material. XPS data indicate that the metallic nanoparticles are in their unoxidized/neutral states and dominantly stabilized within the chitosan-rich domains.

  3. Collagen-chitosan scaffold modified with Au and Ag nanoparticles: Synthesis and structure

    Energy Technology Data Exchange (ETDEWEB)

    Rubina, M.S.; Kamitov, E.E. [A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, 119991 Russian Federation (Russian Federation); Zubavichus, Ya. V.; Peters, G.S. [National Research center «Kurchatov Institute», Moscow, 123182 Russian Federation (Russian Federation); Naumkin, A.V. [A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, 119991 Russian Federation (Russian Federation); Suzer, S. [Department of Chemistry, Bilkent University, Ankara, 06800 Turkey (Turkey); Vasil’kov, A.Yu., E-mail: alexandervasilkov@yandex.ru [A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, 119991 Russian Federation (Russian Federation)

    2016-03-15

    Graphical abstract: - Highlights: • Biocompatible collagen-chitosan scaffolds were modified by Au and Ag nanoparticles via the metal-vapor synthesis. • Structural and morphological parameters of the nanocomposites were assessed using a set of modern instrumental techniques, including electron microscopy, X-ray diffraction, small-angle X-ray scattering, EXAFS, XPS. • Potential application of the nanocomposites are envisaged. - Abstract: Nowadays, the dermal biomimetic scaffolds are widely used in regenerative medicine. Collagen-chitosan scaffold one of these materials possesses antibacterial activity, good compatibility with living tissues and has been already used as a wound-healing material. In this article, collagen-chitosan scaffolds modified with Ag and Au nanoparticles have been synthesized using novel method - the metal-vapor synthesis. The nanocomposite materials are characterized by XPS, TEM, SEM and synchrotron radiation-based X-ray techniques. According to XRD data, the mean size of the nanoparticles (NPs) is 10.5 nm and 20.2 nm in Au-Collagen-Chitosan (Au-CollCh) and Ag-Collagen-Chitosan (Ag-CollCh) scaffolds, respectively in fair agreement with the TEM data. SAXS analysis of the composites reveals an asymmetric size distribution peaked at 10 nm for Au-CollCh and 25 nm for Ag-CollCh indicative of particle's aggregation. According to SEM data, the metal-carrying scaffolds have layered structure and the nanoparticles are rather uniformly distributed on the surface material. XPS data indicate that the metallic nanoparticles are in their unoxidized/neutral states and dominantly stabilized within the chitosan-rich domains.

  4. Synthesis, characterization of Ag-Au core-shell bimetal nanoparticles and its application for electrocatalytic oxidation/sensing of L-methionine

    Energy Technology Data Exchange (ETDEWEB)

    Murugavelu, M.; Karthikeyan, B., E-mail: bkarthi_au@yahoo.com

    2017-01-01

    The Ag-Au core-shell bimetal nanoparticles (BNPs) was prepared using chemical reduction method. The prepared Ag-Au core-shell BNPs were characterized by UV–Visible (UV–Vis) spectroscopy, field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HR-TEM), X-ray diffraction (XRD), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) pattern. These results showed the Ag-Au BNPs exhibited core-shell shape. The Ag-Au core-shell BNPs was examined towards electrocatalytic oxidation of L-methionine (L-Met) by cyclic voltammetry (CV), linear sweep voltammetry (LSV) and chronoamperometry. According to the results, L-Met is determined with detection limit of 30 μM. Interference studies in biological buffer was also studied. - Highlights: • The Ag-Au core-shell BNPs are synthesized and characterized • Ag-Au core-shell BNPs modified (Ag-Au/GCE) has been examined for L-methionine oxidation/sensing by using electrochemical method. • The Ag-Au/GCE exhibited good performance for the detection of L-methionine.

  5. Construction of Au@Pt core—satellite nanoparticles based on in-situ reduction of polymeric ionic liquid protected gold nanoparticles

    Science.gov (United States)

    Wu, Wenlan; Li, Junbo; Zou, Sheng; Guo, Jinwu; Zhou, Huiyun

    2017-03-01

    A method of in-situ reduction to prepare Au@Pt core-satellite nanoparticles (NPs) is described by using Au NPs coating poly[1-methyl 3-(2-methacryloyloxy propylimidazolium bromine)] (PMMPImB-@-Au NPs) as the template. After electrostatic complex chloroplatinic acid with PMMPImB shell, the composite NP was directly reduced with N2H4 to produce Au@Pt core-satellite NPs. The characterization of composite and core-satellite NPs under different amounts of chloroplatinic acid were studied by DLS, UV-vis absorption spectrum and TEM. The satellite Pt NPs with a small size ( 2 nm) dotted around Au core, and the resulting Au@Pt core-satellite NPs showed a red-shift surface plasmon resonance (SPR) and a good dispersion due to effectively electrostatic repulsion providing by the polymeric ionic liquid (PIL) shell. Finally, Au@Pt core-satellite NPs exhibit an enhanced catalytic activity and cycled catalytic capability for the reduction of p-nitrophenol with NaBH4.

  6. Pt-Ag cubic nanocages with wall thickness less than 2 nm and their enhanced catalytic activity toward oxygen reduction.

    Science.gov (United States)

    Sun, Xiaojun; Yang, Xuan; Zhang, Yun; Ding, Yong; Su, Dong; Qin, Dong

    2017-10-12

    We report a facile synthesis of Pt-Ag nanocages with walls thinner than 2 nm by depositing a few atomic layers of Pt as conformal shells on Ag nanocubes and then selectively removing the Ag template via wet etching. In a typical process, we inject a specific volume of aqueous H 2 PtCl 6 into a mixture of Ag nanocubes, ascorbic acid (H 2 Asc), NaOH, and poly(vinylpyrrolidone) in water under ambient conditions. At an initial pH of 11.9, the Pt(iv) precursor is quickly reduced by an ascorbate monoanion, a strong reducing agent derived from the neutralization of H 2 Asc with NaOH. The newly formed Pt atoms are deposited onto the edges and then corners and side faces of Ag nanocubes, leading to the generation of Ag@Pt core-shell nanocubes with a conformal Pt shell of approximately three atomic layers (or, about 0.6 nm in thickness) when 0.4 mL of 0.2 mM H 2 PtCl 6 is involved. After the selective removal of Ag in the core using an etchant based on a mixture of Fe(NO 3 ) 3 and HNO 3 , we transform the core-shell nanocubes into Pt-Ag alloy nanocages with an ultrathin wall thickness of less than 2 nm. We further demonstrate that the as-obtained nanocages with a composition of Pt 42 Ag 58 exhibit an enhanced catalytic activity toward the oxygen reduction reaction, with a mass activity of 0.30 A mg -1 and a specific activity of 0.93 mA cm -2 , which are 1.6 and 2.5 times, respectively, greater than those of a commercial Pt/C catalyst.

  7. CO Sensing Performance of a Micro Thermoelectric Gas Sensor with AuPtPd/SnO₂ Catalyst and Effects of a Double Catalyst Structure with Pt/α-Al₂O₃.

    Science.gov (United States)

    Goto, Tomoyo; Itoh, Toshio; Akamatsu, Takafumi; Shin, Woosuck

    2015-12-15

    The CO sensing properties of a micro thermoelectric gas sensor (micro-TGS) with a double AuPtPd/SnO₂ and Pt/α-Al₂O₃ catalyst were investigated. While several nanometer sized Pt and Pd particles were uniformly dispersed on SnO₂, the Au particles were aggregated as particles measuring >10 nm in diameter. In situ diffuse reflectance Fourier transform Infrared spectroscopy (DRIFT) analysis of the catalyst showed a CO adsorption peak on Pt and Pd, but no clear peak corresponding to the interaction between CO and Au was detected. Up to 200 °C, CO combustion was more temperature dependent than that of H₂, while H₂ combustion was activated by repeated exposure to H₂ gas during the periodic gas test. Selective CO sensing of the micro-TGS against H₂ was attempted using a double catalyst structure with 0.3-30 wt% Pt/α-Al₂O₃ as a counterpart combustion catalyst. The sensor output of the micro-TGS decreased with increasing Pt content in the Pt/α-Al₂O₃ catalyst, by cancelling out the combustion heat from the AuPtPd/SnO₂ catalyst. In addition, the AuPtPd/SnO₂ and 0.3 wt% Pt/α-Al₂O₃ double catalyst sensor showed good and selective CO detection. We therefore demonstrated that our micro-TGS with double catalyst structure is useful for controlling the gas selectivity of CO against H₂.

  8. Au-based/electrochemically etched cavity-microelectrodes as optimal tool for quantitative analyses on finely dispersed electrode materials: Pt/C, IrO2-SnO2 and Ag catalysts

    International Nuclear Information System (INIS)

    Minguzzi, Alessandro; Locatelli, Cristina; Lugaresi, Ottavio; Vertova, Alberto; Rondinini, Sandra

    2013-01-01

    In this work, we report the preparation and properties of Au-based cavity-microelectrodes. The use of gold as cavity current collector allows obtaining a regular cylindrical recess, whose volume is easily determined with good accuracy and precision. This in turn leads to an improved and much more reliable use of the cavity microelectrode (C-ME) as a tool for the quantitative characterization of finely dispersed materials and for their quantitative rapid screening. The features of Au/C-MEs are well demonstrated by the good linear correlation between the cavity volume (determined by electrochemical methods) and the quantity of charge related to the amount of electroactive powder inserted into the cavity. To prove this point, we adopted two different test systems: Pt/C and an IrO 2 -based material. Finally, we proved the adequacy of Au/C-MEs in the case of Ag particles as electrocatalysts for the hydrodehalogenation of trichloromethane. In this last part, C-ME interestingly appears as a flexible and versatile tool that presents peculiar features: the voltammetric signal can be controlled by either the electron transfer or by mass transport and can be associated to the outer surface or to the whole amount of material inserted into the cavity. This means that C-MEs can be used either as a microdisk of a desired material (that is very useful, especially in scanning electrochemical microscopy) or for precise quantitative studies of the material inserted inside it

  9. Synthesis of triangular Au core-Ag shell nanoparticles

    International Nuclear Information System (INIS)

    Rai, Akhilesh; Chaudhary, Minakshi; Ahmad, Absar; Bhargava, Suresh; Sastry, Murali

    2007-01-01

    In this paper, we demonstrate a simple and reproducible method for the synthesis of triangular Au core-Ag shell nanoparticles. The triangular gold core is obtained by the reduction of gold ions by lemongrass extract. Utilizing the negative charge on the gold nanotriangles, silver ions are bound to their surface and thereafter reduced by ascorbic acid under alkaline conditions. The thickness of the silver shell may be modulated by varying the pH of the reaction medium. The formation of the Au core-Ag shell triangular nanostructures has been followed by UV-vis-NIR Spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy (TEM) and atomic force microscopy (AFM) measurements. The sharp vertices of the triangles coupled with the core-shell structure is expected to have potential for application in surface enhanced Raman spectroscopy and in the sensitive detection of biomolecules

  10. Photoelectrochemical Performances and Potential Applications of TiO2 Nanotube Arrays Modified with Ag and Pt Nanoparticles

    International Nuclear Information System (INIS)

    Xu, Guangqing; Liu, Haipeng; Wang, Jinwen; Lv, Jun; Zheng, Zhixiang; Wu, Yucheng

    2014-01-01

    TiO 2 nanotube arrays (NTAs) modified with Ag (Ag/TiO 2 ) and Pt (Pt/TiO 2 ) nanoparticles were fabricated by anodic oxidation combined with photoreduction and hydrothermal methods, respectively. Structures, element components and morphologies of TiO 2 , Ag/TiO 2 and Pt/TiO 2 NTAs were measured by X-ray diffraction diffractometer, X-ray photoelectron spectroscopy, scanning electron microscope and transmission electron microscope. The photoeletrochemical performances of TiO 2 , Pt/TiO 2 and Ag/TiO 2 NTAs were characterized by cyclic voltammetry and amperometry in phosphate buffer solution in absence and presence of glucose. Modifications of Ag and Pt nanoparticles play different roles in the photoelectrochemical process and have different potential applications. Ag nanoparticles decrease the photocurrent in buffer solution but increase the photocurrent response to organic compounds, which is fit for electrochemical detection of organic compounds due to the low background photocurrent and high photocurrent response. Ag/TiO 2 NTAs achieve the best detection performance with sensitivity of 0.152 μA/μM and detection limit of 0.53 μM. On the contrary, Pt nanoparticles can enhance the photocurrent of TiO 2 NTAs in buffer solution but decrease the photocurrent response to organic compounds, which are benefit for photocatalytic water splitting but not for photoelectrochemical detection

  11. Au@Ag core/shell cuboids and dumbbells: Optical properties and SERS response

    Science.gov (United States)

    Khlebtsov, Boris N.; Liu, Zhonghui; Ye, Jian; Khlebtsov, Nikolai G.

    2015-12-01

    Recent studies have conclusively shown that the plasmonic properties of Au nanorods can be finely controlled by Ag coating. Here, we investigate the effect of asymmetric silver overgrowth of Au nanorods on their extinction and surface-enhanced Raman scattering (SERS) properties for colloids and self-assembled monolayers. Au@Ag core/shell cuboids and dumbbells were fabricated through a seed-mediated anisotropic growth process, in which AgCl was reduced by use of Au nanorods with narrow size and shape distribution as seeds. Upon tailoring the reaction rate, monodisperse cuboids and dumbbells were synthesized and further transformed into water-soluble powders of PEGylated nanoparticles. The extinction spectra of AuNRs were in excellent agreement with T-matrix simulations based on size and shape distributions of randomly oriented particles. The multimodal plasmonic properties of the Au@Ag cuboids and dumbbells were investigated by comparing the experimental extinction spectra with finite-difference time-domain (FDTD) simulations. The SERS efficiencies of the Au@Ag cuboids and dumbbells were compared in two options: (1) individual SERS enhancers in colloids and (2) self-assembled monolayers formed on a silicon wafer by drop casting of nanopowder solutions mixed with a drop of Raman reporters. By using 1,4-aminothiophenol Raman reporter molecules, the analytical SERS enhancement factor (AEF) of the colloidal dumbbells was determined to be 5.1×106, which is an order of magnitude higher than the AEF=4.0×105 for the cuboids. This difference can be explained by better fitting of the dumbbell plasmon resonance to the excitation laser wavelength. In contrast to the colloidal measurements, the AEF=5×107 of self-assembled cuboid monolayers was almost twofold higher than that for dumbbell monolayers, as determined with rhodamine 6G Raman reporters. According to TEM data and electromagnetic simulations, the better SERS response of the self-assembled cuboids is due to uniform

  12. Radiation annealing in Ag and Au due to energetic displacement cascades

    International Nuclear Information System (INIS)

    Averback, R.S.; Merkle, K.L.

    1975-01-01

    Radiation annealing due to energetic displacement cascades has been studied in Ag and Au. Thin film specimens, 2500 A, were doped to various concentrations of Frenkel pair defects by irradiating with 150 keV protons at temperatures below 10 K. Subsequently, the specimens were irradiated below 10 K with energetic, approximately 540 keV, self-ions. Electrical resistivity measurements were used to monitor the concentration of defects as a function of dose. In Au, approximately 5 percent of the doped-in Frenkel pairs, annealed during the 540 keV Au irradiation. The annealing volume associated with individual cascades was found to be 2.1 x 10 -16 cm 3 . In Ag approximately 5 percent of the doped-in defects annealed during a 500 keV Ag irradiation and the annealing volume of the cascade was found to be 5 x 10 -16 cm 3 . In addition, the effects of doping concentration and specimen temperature during doping were investigated

  13. Preparation of dendritic Ag/Au bimetallic nanostructures and their application in surface-enhanced Raman scattering

    International Nuclear Information System (INIS)

    Yi Zao; Chen Shanjun; Chen Yan; Luo Jiangshan; Wu Weidong; Yi Yougen; Tang Yongjian

    2012-01-01

    Dendritic Ag/Au bimetallic nanostructures have been synthesized via a multi-stage galvanic replacement reaction of Ag dendrites in a chlorauric acid (HAuCl 4 ) solution at room temperature. After five stages of replacement reaction, one obtains structures with protruding nanocubes; these will mature into many porous structures with a few Ag atoms that are left over dendrites. The morphological and compositional changes which evolved with reaction stages were analyzed by using scanning electron microscopy, transmission electron microscopy, UV–visible spectroscopy, selected area electron diffraction and energy-dispersive X-ray spectrometry. The replacement of Ag with Au was confirmed. A formation mechanism involving the original development of Ag dendrites into porous structures with the growth of Au nanocubes on this underlying structure as the number of reaction stages is proposed. This was confirmed by surface-enhanced Raman scattering (SERS). The dendritic Ag/Au bimetallic nanostructures could be used as efficient SERS active substrates. It was found that the SERS enhancement ability was dependent on the stage of galvanic replacement reaction. - Highlights: ► Dendritic Ag/Au bimetallic nanostructures have been synthesized. ► Protruding cubic nanostructures obtained after 5 stages mature into porous structures. ► SERS results allow confirm the proposed formation mechanism. ► The nanostructures could be used as efficient SERS active substrates.

  14. Evidence for rapid epithermal mineralization and coeval bimodal volcanism, Bruner Au-Ag property, NV USA

    Science.gov (United States)

    Baldwin, Dylan

    The character of Au-Ag mineralization and volcanic/hydrothermal relationships at the underexplored Miocene-age Bruner low-sulfidation epithermal Au-Ag deposit are elucidated using field and laboratory studies. Bruner is located in central Nevada within the Great Basin extensional province, near several major volcanic trends (Western Andesite, Northern Nevada Rift) associated with world-class Miocene-age epithermal Au-Ag provinces. Despite its proximity to several >1 Moz Au deposits, and newly discovered high-grade drill intercepts (to 117 ppm Au/1.5m), there is no published research on the deposit, the style of mineralization has not been systematically characterized, and vectors to mineralization remain elusive. By investigating the nature of mineralization and time-space relationships between volcanic/hydrothermal activity, the deposit has been integrated into a regional framework, and exploration targeting improved. Mineralization occurs within narrow quartz + adularia +/- pyrite veins that manifest as sheeted/stockwork zones, vein swarms, and rare 0.3-2 m wide veins hosted by two generations of Miocene high-K, high-silica rhyolite flow dome complexes overlying an andesite flow unit. The most prominent structural controls on veining are N­striking faults and syn-mineral basalt/rhyolite dikes. Productive veins have robust boiling indicators (high adularia content, bladed quartz after calcite, recrystallized colloform quartz bands), lack rhythmic banding, and contain only 1-2 stages; these veins overprint, or occur separately from another population of barren to weakly mineralized rhythmically banded quartz-only veins. Ore minerals consist of coarse Au0.5Ag 0.5 electrum, fine Au0.7Ag0.3 electrum, acanthite, uytenbogaardtite (Ag3AuS2) and minor embolite Ag(Br,Cl). Now deeply oxidized, veins typically contain Bruner appears to belong to a small subset of mid-Miocene epithermal deposits in Nevada with low base metal contents and low to no Se, related to calc

  15. Synthesis and characterization of highly efficient and stable Pr6O11/Ag3PO4/Pt ternary hybrid structure

    International Nuclear Information System (INIS)

    Deng, Jiatao; Liu, Lin; Niu, Tongjun; Sun, Xiaosong

    2017-01-01

    Highlights: • Visible-light-driven Pr 6 O 11 /Ag 3 PO 4 /Pt photocatalysts were prepared. • Pr 6 O 11 /Ag 3 PO 4 /Pt showed highly efficient and stable photocatalystic activity. • The photocatalytic mechanism of Pr 6 O 11 /Ag 3 PO 4 /Pt composite was given. - Abstract: Ag 3 PO 4 is an excellent photocatalyst with high efficiency and quantum yield, but suffers from the fast recombination of photogenerated electron-hole pairs and photo-corrosion. Hereby, the highly efficient and stable visible-light-driven Pr 6 O 11 /Ag 3 PO 4 /Pt photocatalyst were prepared via a three-step wet chemical approach. The as-prepared Pr 6 O 11 /Ag 3 PO 4 /Pt composite was characterized by X-ray diffraction, US-vis diffuse reflectance spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, photoluminescence spectra and transient photocurrent as well. Comparing with single Pr 6 O 11 or Ag 3 PO 4 , the prepared Pr 6 O 11 /Ag 3 PO 4 /Pt composite exhibited much higher photocatalytic activity and stability for the degradation of Rhodamine B under visible light irradiation (>420 nm). The enhanced photocatalytic performance of Pr 6 O 11 /Ag 3 PO 4 /Pt composite has been attributed to the efficient separation of photo-generated electron-hole pairs through a scheme system composed of Pr 6 O 11, Ag 3 PO 4 and Pt.

  16. Ultrasensitive colorimetric immunoassay for hCG detection based on dual catalysis of Au@Pt core-shell nanoparticle functionalized by horseradish peroxidase

    Science.gov (United States)

    Wang, Weiguo; Zou, Yake; Yan, Jinwu; Liu, Jing; Chen, Huixiong; Li, Shan; Zhang, Lei

    2018-03-01

    In this paper, an ultrasensitive colorimetric biosensor for human chorionic gonadotrophin (hCG) detection was designed from bottom-up method based on the dual catalysis of the horseradish peroxidase (HRP) and Au@Pt nanoparticles (NPs) relative to H2O2-TEM system. HRP and monoclonal mouse anti-hCG antibody (β-submit, mAb1) were co-immobilized onto the Au@Pt NP surface to improve catalytic efficiency and specificity, which formed a dual functionalized Au@Pt-HRP probe with the mean size of 42.8 nm (D50). The colorimetric immunoassay was developed for the hCG detection, and the Au@Pt-HRP probe featured a higher sensitivity in the concentration range of 0.4-12.8 IU L- 1 with a low limit of detection (LOD) of 0.1 IU L- 1 compared with the LODs of 0.8 IU L- 1 for BA-ELISA and of 2.0 IU L- 1 for Au@Pt, which indicated that the Au@Pt-HRP probe possessed higher catalytic efficiency with 2.8-fold increase over Au@Pt and 33.8-fold increase over HRP. Also, the Au@Pt-HRP probe exhibited good precision and reproducibility, high specificity and acceptable accuracy with CV being less than 15%. The dual functionalized Au@Pt-HRP probe as a type of signal amplified method was firstly applied in the colorimetric immunoassay for the hCG detection.

  17. A first principles study on the electronic origins of silver segregation at the Ag-Au (111) surface

    Science.gov (United States)

    Hoppe, Sandra; Müller, Stefan

    2017-12-01

    The special electronic structure of gold gives rise to many interesting phenomena, such as its color. The surface segregation of the silver-gold system has been the subject of numerous experimental and theoretical studies, yielding conflicting results ranging from strong Ag surface enrichment to Au surface segregation. Via a combined approach of density functional theory (DFT) and statistical physics, we have analyzed the segregation at the Ag-Au (111) surface with different Ag bulk concentrations. Interestingly, we observe a moderate Au surface segregation, which is due to a charge transfer from the less electronegative Ag to Au. Canonical Monte Carlo simulations suggest that the calculated concentration profile with a Au-enriched surface layer remains stable up to higher temperatures. However, the presence of adsorbed oxygen reverses the segregation behavior and leads to strong Ag enrichment of the surface layer.

  18. Surface Plasmon Enhanced Photocatalysis of Au/Pt-decorated TiO2 Nanopillar Arrays

    Science.gov (United States)

    Shuang, Shuang; Lv, Ruitao; Xie, Zheng; Zhang, Zhengjun

    2016-05-01

    The low quantum yields and lack of visible light utilization hinder the practical application of TiO2 in high-performance photocatalysis. Herein, we present a design of TiO2 nanopillar arrays (NPAs) decorated with both Au and Pt nanoparticles (NPs) directly synthesized through successive ion layer adsorption and reaction (SILAR) at room temperature. Au/Pt NPs with sizes of ~4 nm are well-dispersed on the TiO2 NPAs as evidenced by electron microscopic analyses. The present design of Au/Pt co-decoration on the TiO2 NPAs shows much higher visible and ultraviolet (UV) light absorption response, which leads to remarkably enhanced photocatalytic activities on both the dye degradation and photoelectrochemical (PEC) performance. Its photocatalytic reaction efficiency is 21 and 13 times higher than that of pure TiO2 sample under UV-vis and visible light, respectively. This great enhancement can be attributed to the synergy of electron-sink function of Pt and surface plasmon resonance (SPR) of Au NPs, which significantly improves charge separation of photoexcited TiO2. Our studies demonstrate that through rational design of composite nanostructures one can harvest visible light through the SPR effect to enhance the photocatalytic activities initiated by UV-light, and thus realize more effectively utilization of the whole solar spectrum for energy conversion.

  19. Tailoring galvanic replacement reaction for the preparation of Pt/Ag bimetallic hollow nanostructures with controlled number of voids.

    Science.gov (United States)

    Zhang, Weiqing; Yang, Jizheng; Lu, Xianmao

    2012-08-28

    Here we report the synthesis of Pt/Ag bimetallic nanostructures with controlled number of void spaces via a tailored galvanic replacement reaction (GRR). Ag nanocubes (NCs) were employed as the template to react with Pt ions in the presence of HCl. The use of HCl in the GRR caused rapid precipitation of AgCl, which grew on the surface of Ag NCs and acted as a removable secondary template for the deposition of Pt. The number of nucleation sites for AgCl was tailored by controlling the amount of HCl added to the Ag NCs or by introducing PVP to the reaction. This strategy led to the formation of Pt/Ag hollow nanoboxes, dimers, multimers, or popcorn-shaped nanostructures consisting of one, two, or multiple hollow domains. Due to the presence of large void space and porous walls, these nanostructures exhibited high surface area and improved catalytic activity for methanol oxidation reaction.

  20. Synthesis and Characterization of Pt-Ag Alloy Nanocages with Enhanced Activity and Durability toward Oxygen Reduction.

    Science.gov (United States)

    Yang, Xuan; Roling, Luke T; Vara, Madeline; Elnabawy, Ahmed O; Zhao, Ming; Hood, Zachary D; Bao, Shixiong; Mavrikakis, Manos; Xia, Younan

    2016-10-12

    Engineering the elemental composition of metal nanocrystals offers an effective strategy for the development of catalysts or electrocatalysts with greatly enhanced activity. Herein, we report the synthesis of Pt-Ag alloy nanocages with an outer edge length of 18 nm and a wall thickness of about 3 nm. Such nanocages with a composition of Pt 19 Ag 81 could be readily prepared in one step through the galvanic replacement reaction between Ag nanocubes and a Pt(II) precursor. After 10 000 cycles of potential cycling in the range of 0.60-1.0 V as in an accelerated durability test, the composition of the nanocages changed to Pt 56 Ag 44 , together with a specific activity of 1.23 mA cm -2 toward oxygen reduction, which was 3.3 times that of a state-of-the-art commercial Pt/C catalyst (0.37 mA cm -2 ) prior to durability testing. Density functional theory calculations attributed the increased activity to the stabilization of the transition state for breaking the O-O bond in molecular oxygen. Even after 30 000 cycles of potential cycling, the mass activity of the nanocages only dropped from 0.64 to 0.33 A mg -1 Pt , which was still about two times that of the pristine Pt/C catalyst (0.19 A mg -1 Pt ).

  1. Temperature dependence of the electric field gradient in AgPd and AgPt alloys

    International Nuclear Information System (INIS)

    Krolas, K.

    1977-07-01

    The measurements of temperature dependence of the electric field gradient (EFG) on 111 Cd nuclei in AgPd and AgPt alloys were performed using the time dependent perturbed angular correlation method. The EFG caused by impurities distributed in further coordination shells decrease stronaer with increasing temperature than the EFG due to single impurity being the nearest neighbour of the probe atom. These results were explained assuming different modes of thermal vibrations of single impurity atoms and impurity complexes in silver host lattice. (author)

  2. Electrical resistivity of liquid Ag-Au alloy

    International Nuclear Information System (INIS)

    Anis Alam, M.; Tomak, M.

    1983-01-01

    Calculations of the dependence of the electrical resistivity in liquid Ag-Au binary alloy on composition are reported. The structure of the binary alloy is described as a hard-sphere system. A one-parameter local pseudopotential, which incorporates s-d hybridization effects phenomenologically, is employed in the resistivity calculation. A reasonable agreement with experimental trend is observed. (author)

  3. Fabrication of catalytically active Au/Pt/Pd trimetallic nanoparticles by rapid injection of NaBH4

    International Nuclear Information System (INIS)

    Zhang, Haijun; Lu, Lilin; Cao, Yingnan; Du, Shuang; Cheng, Zhong; Zhang, Shaowei

    2014-01-01

    Graphical abstract: The synthesis and characterization of 2.0 nm-diameter Au/Pt/Pd nanoparticles are reported. The catalytic activity for glucose oxidation of the nanoparticles is several times higher than that of Au nanoparticles with nearly same size. - Highlights: • PVP-protected Au/Pt/Pd trimetallic nanoparticles (TNPs) of 2.0 nm in diameter were prepared. • The catalytic activity of TNPs is several times higher than that of Au nanoparticles. • Negatively charged Au atoms in the TNPs were confirmed by DFT calculation. - Abstract: Au/Pt/Pd trimetallic nanoparticles (TNPs) with an alloyed structure and an average diameter of about 2.0 nm were prepared via reducing the corresponding ions with rapidly injected NaBH 4 , and characterized by UV–vis, TEM and HR-TEM. The catalytic activity of as-prepared TNPs for the aerobic glucose oxidation is several times higher than that of Au monometallic nanoparticles with about the same average size, which could be attributed to the catalytically active sites provided by the negatively charged Au atoms as a result of the electron donation from the neighboring Pd atoms. This was well supported by the electron density calculations based on the density functional theory

  4. Electrochemical reduction of O2 and NO on Ni, Pt and Au

    DEFF Research Database (Denmark)

    Kammer Hansen, Kent

    2008-01-01

    The electrochemical reduction of oxygen and nitric oxide was studied using cyclic voltammetry on point electrodes of Ni, Pt and Au in the temperature range 400-600 degrees C. All the materials were more active towards the reduction of oxygen than towards the reduction of nitric oxide, except Pt...... the reduction of oxygen. This implies that the triple-phase boundary (3PB) catalyses the reduction of oxygen but not the reduction of nitric oxide, as Au is a catalytic inactive metal. All the materials were more active towards oxidation than towards reduction that is evolution of oxygen or oxidation of nitric...

  5. Formation of Surface and Quantum-Well States in Ultra Thin Pt Films on the Au(111 Surface

    Directory of Open Access Journals (Sweden)

    Igor V. Silkin

    2017-12-01

    Full Text Available The electronic structure of the Pt/Au(111 heterostructures with a number of Pt monolayers n ranging from one to three is studied in the density-functional-theory framework. The calculations demonstrate that the deposition of the Pt atomic thin films on gold substrate results in strong modifications of the electronic structure at the surface. In particular, the Au(111 s-p-type Shockley surface state becomes completely unoccupied at deposition of any number of Pt monolayers. The Pt adlayer generates numerous quantum-well states in various energy gaps of Au(111 with strong spatial confinement at the surface. As a result, strong enhancement in the local density of state at the surface Pt atomic layer in comparison with clean Pt surface is obtained. The excess in the density of states has maximal magnitude in the case of one monolayer Pt adlayer and gradually reduces with increasing number of Pt atomic layers. The spin–orbit coupling produces strong modification of the energy dispersion of the electronic states generated by the Pt adlayer and gives rise to certain quantum states with a characteristic Dirac-cone shape.

  6. Preventing dewetting during rapid-thermal annealing of FePt films with enhanced L1{sub 0} ordering by introducing Ag cap-layers

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao, S.N., E-mail: pmami.hsiao@gmail.com [Department of Materials Science and Engineering, Feng Chia University, Taichung 40724, Taiwan (China); Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Wu, S.C. [Department of Materials Science and Engineering, National Chung Hsing University, Taichung 40227, Taiwan (China); Liu, S.H. [Department of Materials Science and Engineering, Feng Chia University, Taichung 40724, Taiwan (China); Tsai, J.L., E-mail: tsaijl@dragon.nchu.edu.tw [Department of Materials Science and Engineering, National Chung Hsing University, Taichung 40227, Taiwan (China); Chen, S.K. [Department of Materials Science and Engineering, Feng Chia University, Taichung 40724, Taiwan (China); Chang, Y.C. [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Lee, H.Y. [Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30077, Taiwan (China)

    2015-11-15

    High-order FePt continuous films with a strong (001) texture were fabricated on a glass substrate by introducing Ag layers and rapid thermal annealing (RTA). The dewetting of the (001)-textured FePt was suppressed during RTA with high heating rates (>80 K/s). The Ag cap layers not only increased the in-plane tensile stress, but also improved the (001) anisotropy and L1{sub 0} ordering of the FePt layers. All continuous Ag/FePt bilayer films possessed strong perpendicular anisotropies and high-ordered states irrespective of the Ag layer thickness. - Highlights: • Dewetting of (001) FePt fims were suppressed by introducing Ag cap layers. • Ag layers enhanced in-plane tensile stress, (001) texture and L1{sub 0} ordering. • Irrespective of Ag thickness, the Ag/FePt films exhibited strong (001) texture.

  7. 1-Hexadecylamine as both reducing agent and stabilizer to synthesize Au and Ag nanoparticles and their SERS application

    International Nuclear Information System (INIS)

    Hou Xiaomiao; Zhan, Xiaoling; Fang Yan; Chen Shutang; Li Na; Zhou Qi

    2011-01-01

    1-Hexadecylamine (HDA)-capped Au and Ag nanoparticles (NPs) have been successfully prepared by a one-pot solution growth method. The HDA is used as both reducing agent and stabilizer in the synthetic process is favorable for investigating the capping mechanism of Au and Ag NPs’ surface. The growth process and characterization of Au and Ag NPs are determined by Ultraviolet–visible (UV–vis) spectroscopy, transmission electron microscopy (TEM), and X-ray diffraction (XRD). Experimental results demonstrate that the HDA-capped Au and Ag NPs are highly crystalline and have good optical properties. Furthermore, surface-enhanced Raman scattering (SERS) spectra of 2-thionaphthol are obtained on the Au and Ag NPs modified glass surface, respectively, indicating that the as-synthesized noble metal NPs have potentially high sensitive optical detection application.

  8. 1-Hexadecylamine as both reducing agent and stabilizer to synthesize Au and Ag nanoparticles and their SERS application

    Energy Technology Data Exchange (ETDEWEB)

    Hou Xiaomiao; Zhan, Xiaoling, E-mail: zhangxl@bit.edu.cn [Beijing Institute of Technology, Department of Chemistry, School of Science (China); Fang Yan, E-mail: fangyan@mail.cnu.edu.cn [Capital Normal University, Beijing Key Lab for Nano-Photonics and Nano-Structure (NPNS), Department of Physics (China); Chen Shutang; Li Na; Zhou Qi [Beijing Institute of Technology, Department of Chemistry, School of Science (China)

    2011-05-15

    1-Hexadecylamine (HDA)-capped Au and Ag nanoparticles (NPs) have been successfully prepared by a one-pot solution growth method. The HDA is used as both reducing agent and stabilizer in the synthetic process is favorable for investigating the capping mechanism of Au and Ag NPs' surface. The growth process and characterization of Au and Ag NPs are determined by Ultraviolet-visible (UV-vis) spectroscopy, transmission electron microscopy (TEM), and X-ray diffraction (XRD). Experimental results demonstrate that the HDA-capped Au and Ag NPs are highly crystalline and have good optical properties. Furthermore, surface-enhanced Raman scattering (SERS) spectra of 2-thionaphthol are obtained on the Au and Ag NPs modified glass surface, respectively, indicating that the as-synthesized noble metal NPs have potentially high sensitive optical detection application.

  9. The nonenzyme ethanol sensor based on pt nps and fe/sub 3/O/sub 4/ mnps modified au electrode

    International Nuclear Information System (INIS)

    Wan, J.; Ma, X.; Yin, G.

    2013-01-01

    The none enzyme ethanol sensor was prepared using Pt nanoparticles (NPs) and Fe/sub 3/O/sub 4/ magnetic nanoparticles (MNPs) modified Au electrode. Pt NPs were deposited on the gold plated electrode through the method of potentiostatic deposition. Fe/sub 3/O/sub 4/ magnetic nanoparticles were added to the surface of Pt NPs modified Au electrode to obtain the Au/Pt/ Fe/sub 3/O/sub 4/ MNPs electrode. The as-prepared Au/Pt/Fe/sub 3/O/sub 4/ MNPs electrode was used for the detection of liquid ethanol without using enzyme. Cyclic voltammetry and differential pulse voltammetry were used to study the behavior of ethanol electro-catalytic oxidation on Pt/Au/Fe/sub 3/O/sub 4/ electrode. It was found that Pt NPs played strong catalytic oxidation role of ethanol with the presence of Fe/sub 3/O/sub 4/ MNPs. The linear range of Au/Pt/Fe/sub 3/O/sub 4/ MNPs electrode for the detection of ethanol was of 2 x 10 /sup -5/ 1.1 x 10/sup -4/ mol L/sup -1/ and the detection limit was of 3.2 x 10/sup -6/ mol L/sup -5/ when signal to noise ratio was 3sigma. The sensibility of the sensor is 420.4 microA mmol/sup -1/ /sup -2cm/. The simple method provided an effective means for fabricating the novel sensors. (author)

  10. Size and composition tunable Ag-Au alloy nanoparticles by replacement reactions

    International Nuclear Information System (INIS)

    Zhang Qingbo; Lee, J Y; Yang Jun; Boothroyd, Chris; Zhang Jixuan

    2007-01-01

    Ag-Au alloy nanoparticles with tunable size and composition were prepared by a replacement reaction between Ag nanoparticles and HAuCl 4 at elevated temperatures. The formation of homogeneous alloy nanoparticles was confirmed by selected-area energy-dispersive x-ray spectroscopy (SAEDX), UV-visible absorption spectroscopy, high resolution transmission electron microscopy (HRTEM) and electron diffraction. This method leverages upon the rapid interdiffusion of Ag and Au atoms in the reduced dimension of a nanoparticle, elevated temperatures and the large number of vacancy defects created in the replacement reaction. This method of preparation has several notable advantages: (1) independent tuning of the size and composition of alloy nanoparticles; (2) production of alloy nanoparticles in high concentrations; (3) general utility in the synthesis of alloy nanoparticles that cannot be obtained by the co-reduction method

  11. Some recent results in Au+Au collisions at AGS

    International Nuclear Information System (INIS)

    Chen, Z.

    1996-01-01

    Many interesting results have been obtained for Au + Au reactions at AGS. The basic information about the reaction dynamics comes from the hadronic distribution. and this article reviews the recent progress of these distributions in details. The proton rapidity distribution shows significantly increased stopping compared to lighter systems, implying the formation of a state of high baryon density. Unlike reactions at this energy induced by lighter heavy ions, at low m t - m 0 the proton invariant spectra deviate from a single exponential shape and become fear,. while pion spectra are found to rise in this region, with the π - spectra rising faster than the π + spectra. The inverse slope parameter increases faster for particles of larger mass as the number of participants in the reaction increases, an indication of increased effect of radial expansion in central collision. Anti-proton Needs have been measured recently, and unfortunately a comparison among current results from different experiments indicates discrepancy

  12. DFT calculations of strain and interface effects on electronic structures and magnetic properties of L10-FePt/Ag heterojunction of GMR applications

    Science.gov (United States)

    Pramchu, Sittichain; Jaroenjittichai, Atchara Punya; Laosiritaworn, Yongyut

    2018-03-01

    In this work, density functional theory (DFT) was employed to investigate the effect of strain and interface on electronic structures and magnetic properties of L10-FePt/Ag heterojunction. Two possible interface structures of L10-FePt(001)/Ag(001), that is, interface between Fe and Ag layers (Fe/Ag) and between Pt and Ag layers (Pt/Ag), were inspected. It was found that Pt/Ag interface is more stable than Fe/Ag interface due to its lower formation energy. Further, under the lattice mismatch induced tensile strain, the enhancement of magnetism for both Fe/Ag and Pt/Ag interface structures has been found to have progressed, though the magnetic moments of "interfacial" Fe and Pt atoms have been found to have decreased. To explain this further, the local density of states (LDOS) analysis suggests that interaction between Fe (Pt) and Ag near Fe/Ag (Pt/Ag) interface leads to spin symmetry breaking of the Ag atom and hence induces magnetism magnitude. In contrast, the magnetic moments of interfacial Fe and Pt atoms reduce because of the increase in the electronic states near the Fermi level of the minority-spin electrons. In addition, the significant enhancements of the LDOS near the Fermi levels of the minority-spin electrons signify the boosting of the transport properties of the minority-spin electrons and hence the spin-dependent electron transport at this ferromagnet/metal interface. From this work, it is expected that this clarification of the interfacial magnetism may inspire new innovation on how to improve spin-dependent electron transport for enhancing the giant magnetoresistance (GMR) ratio of potential GMR-based spintronic devices.

  13. DFT calculations of strain and interface effects on electronic structures and magnetic properties of L10-FePt/Ag heterojunction of GMR applications

    Directory of Open Access Journals (Sweden)

    Sittichain Pramchu

    2018-03-01

    Full Text Available In this work, density functional theory (DFT was employed to investigate the effect of strain and interface on electronic structures and magnetic properties of L10-FePt/Ag heterojunction. Two possible interface structures of L10-FePt(001/Ag(001, that is, interface between Fe and Ag layers (Fe/Ag and between Pt and Ag layers (Pt/Ag, were inspected. It was found that Pt/Ag interface is more stable than Fe/Ag interface due to its lower formation energy. Further, under the lattice mismatch induced tensile strain, the enhancement of magnetism for both Fe/Ag and Pt/Ag interface structures has been found to have progressed, though the magnetic moments of “interfacial” Fe and Pt atoms have been found to have decreased. To explain this further, the local density of states (LDOS analysis suggests that interaction between Fe (Pt and Ag near Fe/Ag (Pt/Ag interface leads to spin symmetry breaking of the Ag atom and hence induces magnetism magnitude. In contrast, the magnetic moments of interfacial Fe and Pt atoms reduce because of the increase in the electronic states near the Fermi level of the minority-spin electrons. In addition, the significant enhancements of the LDOS near the Fermi levels of the minority-spin electrons signify the boosting of the transport properties of the minority-spin electrons and hence the spin-dependent electron transport at this ferromagnet/metal interface. From this work, it is expected that this clarification of the interfacial magnetism may inspire new innovation on how to improve spin-dependent electron transport for enhancing the giant magnetoresistance (GMR ratio of potential GMR-based spintronic devices.

  14. Critical Factors Controlling Pd and Pt Potential in Porphyry Cu–Au Deposits: Evidence from the Balkan Peninsula

    Directory of Open Access Journals (Sweden)

    Demetrios G. Eliopoulos

    2014-03-01

    Full Text Available Porphyry Cu–Au–Pd±Pt deposits are significant Au resources, but their Pd and Pt potential is still unknown. Elevated Pd, Pt (hundreds of ppb and Au contents are associated with typical stockwork magnetite-bornite-chalcopyrite assemblages, at the central parts of certain porphyry deposits. Unexpected high grade Cu–(Pd+Pt (up to 6 ppm mineralization with high Pd/Pt ratios at the Elatsite porphyry deposit, which is found in a spatial association with the Chelopech epithermal deposit (Bulgaria and the Skouries porphyry deposit, may have formed during late stages of an evolved hydrothermal system. Estimated Pd, Pt and Au potential for porphyry deposits is consistent with literature model calculations demonstrating the capacity of aqueous vapor and brine to scavenge sufficient quantities of Pt and Pd, and could contribute to the global platinum-group element (PGE production. Critical requirements controlling potential of porphyry deposits may be from the metals contained in magma (metasomatized asthenospheric mantle wedge as indicated by significant Cr, Co, Ni and Re contents. The Cr content may be an indicator for the mantle input.

  15. Stability Studies of a New Design Au/Pt Thermocouple Without a Strain Relieving Coil

    Science.gov (United States)

    Jahan, Ferdouse; Ballico, Mark

    2007-12-01

    The performance of a simple, new design Au/Pt thermocouple developed by NMIA is assessed. This thermocouple is proposed as a more accurate replacement, over the temperature range from 0 to 1,000°C, for the commonly used Type R and S industrial transfer standards, in a robust form familiar to industrial calibration laboratories. Due to the significantly different thermal expansions of the Au and Pt thermoelements, reported designs of the Au/Pt thermocouple incorporate a strain-relieving coil or bridge at the thermocouple junction. As the strain relieving coil is mechanically delicate, these thermocouples are usually mounted in a protective quartz tube assembly, like a standard platinum resistance thermometer (SPRT). Although providing uncertainties at the mK level, they are more delicate than the commonly used Type R and S thermocouples. A new and simple design of the Au/Pt thermocouple was developed in which the differential thermal expansion between Au and Pt is accommodated in the thermocouple leads, facilitated by a special head design. The resulting thermocouple has the appearance and robustness of the traditional Type R and S thermocouples, while retaining stability better than 10 mK up to 961°C. Three thermocouples of this design were calibrated at fixed points and by comparison to SPRTs in a stirred salt bath. In order to assess possible impurity migration, strain effects, and mechanical robustness, sequences of heat treatment up to a total of 500 h together with over 50 thermal cycles from 900°C to ambient were performed. The effect of these treatments on the calibration was assessed, demonstrating the sensors to be robust and stable to better than 10 mK. The effects on the measured inhomogeneity of the thermocouple were assessed using the NMIA thermocouple scanning bath.

  16. Developing an aqueous approach for synthesizing Au and M@Au (M = Pd, CuPt) hybrid nanostars with plasmonic properties

    OpenAIRE

    Du, Jingshan; Yu, Junjie; Xiong, Yalin; Lin, Zhuoqing; Zhang, Hui; Yang, Deren

    2014-01-01

    Anisotropic Au nanoparticles show unique localized surface plasmon resonance (LSPR) properties, which make it attractive in optical, sensing, and biomedical applications. In this contribution, we report a general and facile strategy towards aqueous synthesis of Au and M@Au (M = Pd, CuPt) hybrid nanostars by reducing HAuCl4 with ethanolamine in the presence of cetyltrimethylammonium bromide (CTAB). According to electron microscopic observation and spectral monitoring, we found that the layered...

  17. Hierarchical paramecium-like hollow and solid Au/Pt bimetallic nanostructures constructed using goethite as template

    Science.gov (United States)

    Liu, Wei; Repo, Eveliina; Heikkilä, Mikko; Leskelä, Markku; Sillanpää, Mika

    2010-10-01

    Novel hollow and solid paramecium-like hierarchical Au/Pt bimetallic nanostructures were constructed using goethite as template via a seed-mediated growth method. Transmission electron microscopy (TEM), ξ-potential measurement, UV-vis spectroscopy, energy dispersive x-ray spectroscopy (EDS), ICP-AES measurement, x-ray powder diffraction (XRD) and x-ray photoelectron spectroscopy (XPS) were utilized to systematically characterize the bimetallic nanostructures. It is found that the core structure of the paramecium-like bimetallic nanomaterial is closely related to reducing agent. When ascorbic acid is used as reducing agent, goethite serves as in situ sacrificed template and hollow paramecium-like bimetallic structure is obtained. When NH2OH·HCl is used, solid nanostructure with preserved goethite core is produced. Heating the reaction solution is necessary to obtain the paramecium-like morphology with rough interconnected Pt cilia shell. The thickness of Pt cilia layer can be controlled by adjusting the molar ratio of H2PtCl6 to Au nanoseeds. The overgrowth of the rough Pt cilia is proposed to be via an autocatalytic and three-dimensional heterogeneous nucleation process first through flower-like morphology. Both the hollow and solid hierarchical paramecium-like Au/Pt bimetallic nanostructures show good catalytic activities.

  18. Hierarchical paramecium-like hollow and solid Au/Pt bimetallic nanostructures constructed using goethite as template

    International Nuclear Information System (INIS)

    Liu Wei; Repo, Eveliina; Sillanpaeae, Mika; Heikkilae, Mikko; Leskelae, Markku

    2010-01-01

    Novel hollow and solid paramecium-like hierarchical Au/Pt bimetallic nanostructures were constructed using goethite as template via a seed-mediated growth method. Transmission electron microscopy (TEM), ξ-potential measurement, UV-vis spectroscopy, energy dispersive x-ray spectroscopy (EDS), ICP-AES measurement, x-ray powder diffraction (XRD) and x-ray photoelectron spectroscopy (XPS) were utilized to systematically characterize the bimetallic nanostructures. It is found that the core structure of the paramecium-like bimetallic nanomaterial is closely related to reducing agent. When ascorbic acid is used as reducing agent, goethite serves as in situ sacrificed template and hollow paramecium-like bimetallic structure is obtained. When NH 2 OH·HCl is used, solid nanostructure with preserved goethite core is produced. Heating the reaction solution is necessary to obtain the paramecium-like morphology with rough interconnected Pt cilia shell. The thickness of Pt cilia layer can be controlled by adjusting the molar ratio of H 2 PtCl 6 to Au nanoseeds. The overgrowth of the rough Pt cilia is proposed to be via an autocatalytic and three-dimensional heterogeneous nucleation process first through flower-like morphology. Both the hollow and solid hierarchical paramecium-like Au/Pt bimetallic nanostructures show good catalytic activities.

  19. Hierarchical paramecium-like hollow and solid Au/Pt bimetallic nanostructures constructed using goethite as template

    Energy Technology Data Exchange (ETDEWEB)

    Liu Wei; Repo, Eveliina; Sillanpaeae, Mika [Laboratory of Applied Environmental Chemistry, University of Eastern Finland, Patteristonkatu 1, FI-50100 Mikkeli (Finland); Heikkilae, Mikko; Leskelae, Markku, E-mail: weiliuzk@yahoo.cn, E-mail: mika.sillanpaa@uef.fi [Laboratory of Inorganic Chemistry, Department of Chemistry, University of Helsinki, PO Box 55 (A.I. Virtasen aukio 1), FI-00014, Helsinki (Finland)

    2010-10-01

    Novel hollow and solid paramecium-like hierarchical Au/Pt bimetallic nanostructures were constructed using goethite as template via a seed-mediated growth method. Transmission electron microscopy (TEM), {xi}-potential measurement, UV-vis spectroscopy, energy dispersive x-ray spectroscopy (EDS), ICP-AES measurement, x-ray powder diffraction (XRD) and x-ray photoelectron spectroscopy (XPS) were utilized to systematically characterize the bimetallic nanostructures. It is found that the core structure of the paramecium-like bimetallic nanomaterial is closely related to reducing agent. When ascorbic acid is used as reducing agent, goethite serves as in situ sacrificed template and hollow paramecium-like bimetallic structure is obtained. When NH{sub 2}OH{center_dot}HCl is used, solid nanostructure with preserved goethite core is produced. Heating the reaction solution is necessary to obtain the paramecium-like morphology with rough interconnected Pt cilia shell. The thickness of Pt cilia layer can be controlled by adjusting the molar ratio of H{sub 2}PtCl{sub 6} to Au nanoseeds. The overgrowth of the rough Pt cilia is proposed to be via an autocatalytic and three-dimensional heterogeneous nucleation process first through flower-like morphology. Both the hollow and solid hierarchical paramecium-like Au/Pt bimetallic nanostructures show good catalytic activities.

  20. Characterization of self-assembled electrodes based on Au-Pt nanoparticles for PEMFC application

    Energy Technology Data Exchange (ETDEWEB)

    Valenzuela, E. [Univ. Politecnica de Chiapas (Mexico). Energia y Sustentabilidad; Sebastian, P.J.; Gamboa, S.A.; Joseph, S. [Univ. Nacional Autonoma de Mexico, Morelos (Mexico). Centrode Investigacion en Energia; Pal, U. [Univ. Autonoma de Puebla, Pue (Mexico). Inst. de Fisica; Gonzalez, I. [Univ. Autonoma Metropolitana, Mexico City (Mexico). Dept. de Quimica

    2010-07-01

    This paper described the synthesis and characterization of gold (Au), platinum (Pt) and Au-Pt nanoparticles impregnated on a Nafion membrane in a proton exchange membrane fuel cell (PEMFC). The aim of the study was to fabricate the membrane electrode assembly (MEA) by depositing the nanoparticles on the membrane using an immersion technique. Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) were used to study the deposition process. Electrochemical impedance spectroscopy (EIS) was used to study the membrane proton conduction process. An elemental mapping analysis was performed in order to study the location of the Au and Pt in the self-assemblies. Results of the study showed that the particles deposited on the Nafion had good stability and a homogenous distribution along the membrane surface. The particles showed a direct relation in size and location with the hydrophilic and hydrophobic distribution phases of the membrane. The main membrane resistance was located between the membrane and the electrolyte. The self-assembled electrodes demonstrated a good performance at standard conditions. 33 refs., 4 tabs., 11 figs.

  1. Ceramic Defects in Metal-Ceramic Fixed Dental Prostheses Made from Co-Cr and Au-Pt Alloys: A Retrospective Study.

    Science.gov (United States)

    Mikeli, Aikaterini; Boening, Klaus W; Lißke, Benjamin

    2015-01-01

    Ceramic defects in porcelain-fused-to-metal (PFM) restorations may depend on framework alloy type. This study assessed ceramic defects on cobalt-chromium- (Co-Cr-) and gold-platinum- (Au-Pt-) based PFM restorations. In this study, 147 Co-Cr-based and 168 Au-Pt-based PFM restorations inserted between 1998 and 2010 (139 patients) were examined for ceramic defects. Detected defects were assigned to three groups according to clinical defect relevance. Ceramic defect rates (Co-Cr-based: 12.9%; Au-Pt-based: 7.2%) revealed no significant difference but a strong statistical trend (U test, P = .082). Most defects were of little clinical relevance. Co-Cr PFM restorations may be at higher risk for ceramic defects compared to Au-Pt-based restorations.

  2. Fabrication of catalytically active Au/Pt/Pd trimetallic nanoparticles by rapid injection of NaBH{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Haijun, E-mail: zhanghaijun@wust.edu.cn [College of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan, Hubei Province 430081 (China); State Key Laboratory Breeding Base of Refractories and Ceramics, Wuhan University of Science and Technology, Wuhan 430081 (China); Lu, Lilin [College of Chemical Engineering and Technology, Wuhan University of Science and Technology, Wuhan 430081 (China); Cao, Yingnan; Du, Shuang [College of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan, Hubei Province 430081 (China); State Key Laboratory Breeding Base of Refractories and Ceramics, Wuhan University of Science and Technology, Wuhan 430081 (China); Cheng, Zhong [College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China); Zhang, Shaowei [State Key Laboratory Breeding Base of Refractories and Ceramics, Wuhan University of Science and Technology, Wuhan 430081 (China)

    2014-01-01

    Graphical abstract: The synthesis and characterization of 2.0 nm-diameter Au/Pt/Pd nanoparticles are reported. The catalytic activity for glucose oxidation of the nanoparticles is several times higher than that of Au nanoparticles with nearly same size. - Highlights: • PVP-protected Au/Pt/Pd trimetallic nanoparticles (TNPs) of 2.0 nm in diameter were prepared. • The catalytic activity of TNPs is several times higher than that of Au nanoparticles. • Negatively charged Au atoms in the TNPs were confirmed by DFT calculation. - Abstract: Au/Pt/Pd trimetallic nanoparticles (TNPs) with an alloyed structure and an average diameter of about 2.0 nm were prepared via reducing the corresponding ions with rapidly injected NaBH{sub 4}, and characterized by UV–vis, TEM and HR-TEM. The catalytic activity of as-prepared TNPs for the aerobic glucose oxidation is several times higher than that of Au monometallic nanoparticles with about the same average size, which could be attributed to the catalytically active sites provided by the negatively charged Au atoms as a result of the electron donation from the neighboring Pd atoms. This was well supported by the electron density calculations based on the density functional theory.

  3. First-principles theory of short-range order in size-mismatched metal alloys: Cu-Au, Cu-Ag, and Ni-Au

    International Nuclear Information System (INIS)

    Wolverton, C.; Ozolins, V.; Zunger, A.

    1998-01-01

    We describe a first-principles technique for calculating the short-range order (SRO) in disordered alloys, even in the presence of large anharmonic atomic relaxations. The technique is applied to several alloys possessing large size mismatch: Cu-Au, Cu-Ag, Ni-Au, and Cu-Pd. We find the following: (i) The calculated SRO in Cu-Au alloys peaks at (or near) the left-angle 100 right-angle point for all compositions studied, in agreement with diffuse scattering measurements. (ii) A fourfold splitting of the X-point SRO exists in both Cu 0.75 Au 0.25 and Cu 0.70 Pd 0.30 , although qualitative differences in the calculated energetics for these two alloys demonstrate that the splitting in Cu 0.70 Pd 0.30 may be accounted for by T=0 K energetics while T≠0 K configurational entropy is necessary to account for the splitting in Cu 0.75 Au 0.25 . Cu 0.75 Au 0.25 shows a significant temperature dependence of the splitting, in agreement with recent in situ measurements, while the splitting in Cu 0.70 Pd 0.30 is predicted to have a much smaller temperature dependence. (iii) Although no measurements exist, the SRO of Cu-Ag alloys is predicted to be of clustering type with peaks at the left-angle 000 right-angle point. Streaking of the SRO peaks in the left-angle 100 right-angle and left-angle 1 (1) /(2) 0 right-angle directions for Ag- and Cu-rich compositions, respectively, is correlated with the elastically soft directions for these compositions. (iv) Even though Ni-Au phase separates at low temperatures, the calculated SRO pattern in Ni 0.4 Au 0.6 , like the measured data, shows a peak along the left-angle ζ00 right-angle direction, away from the typical clustering-type left-angle 000 right-angle point. (v) The explicit effect of atomic relaxation on SRO is investigated and it is found that atomic relaxation can produce significant qualitative changes in the SRO pattern, changing the pattern from ordering to clustering type, as in the case of Cu-Ag. copyright 1998 The American

  4. On interface dipole layers between C60 and Ag or Au

    NARCIS (Netherlands)

    Veenstra, Sjoerd; Heeres, A.; Hadziioannou, G.; Sawatzky, G.A.; Jonkman, H.T.

    2002-01-01

    C60 layers on polycrystalline Ag and Au are studied by photoelectron spectroscopy. At these metal/C60 interfaces an electron transfer occurs from the metal to the lowest unoccupied orbital of C60. We found in the case of the polycrystalline Ag/C60 interface a dipolar layer with its associated

  5. Large-scale synthesis of ultrathin Au-Pt nanowires assembled on thionine/graphene with high conductivity and sensitivity for electrochemical immunosensor

    International Nuclear Information System (INIS)

    Lu, Wenbo; Ge, Juan; Tao, Lin; Cao, Xiaowei; Dong, Jian; Qian, Weiping

    2014-01-01

    In this article, for the first time, a novel, label-free and inherent electroactive redox biosensor based on ultrathin Au-Pt nanowire-decorated thionine/reduced graphene oxide (AuPtNWs/THI/rGO) is developed for carcinoembryonic antigen (CEA) detection. Ultrathin AuPtNWs are prepared by a one-pot synthesis method without the use of any stabilizer or template. The AuPtNWs/THI/rGO composites are obtained by the THI/rGO composites surface functionalized with -NH 2 group employed as a support for loading ultrathin AuPtNWs by coordination. The AuPtNWs/THI/rGO composites not only favor the immobilization of antibody but also facilitate the electron transfer. It is found that the resultant AuPtNWs/THI/rGO composites can be designed to act as a sensitive label-free electrochemical immunosensor for CEA determination. Under the optimized conditions, the linear range of the proposed immunosensor is estimated to be from 50 fg·mL −1 to 100 ng·mL −1 (R= 0.998) and the detection limit is estimated to be 6 fg·mL −1 at a signal-to-noise ratio of 3, respectively. The prepared immunosensor for detection of CEA shows high sensitivity, reproducibility and stability. Our study demonstrates that the proposed immunosensor has also been used to determine CEA successfully in diluted blood samples

  6. Polymeric carbon nitride/mesoporous silica composites as catalyst support for Au and Pt nanoparticles.

    Science.gov (United States)

    Xiao, Ping; Zhao, Yanxi; Wang, Tao; Zhan, Yingying; Wang, Huihu; Li, Jinlin; Thomas, Arne; Zhu, Junjiang

    2014-03-03

    Small and homogeneously dispersed Au and Pt nanoparticles (NPs) were prepared on polymeric carbon nitride (CNx )/mesoporous silica (SBA-15) composites, which were synthesized by thermal polycondensation of dicyandiamide-impregnated preformed SBA-15. By changing the condensation temperature, the degree of condensation and the loading of CNx can be controlled to give adjustable particle sizes of the Pt and Au NPs subsequently formed on the composites. In contrast to the pure SBA-15 support, coating of SBA-15 with polymeric CNx resulted in much smaller and better-dispersed metal NPs. Furthermore, under catalytic conditions the CNx coating helps to stabilize the metal NPs. However, metal NPs on CNx /SBA-15 can show very different catalytic behaviors in, for example, the CO oxidation reaction. Whereas the Pt NPs already show full CO conversion at 160 °C, the catalytic activity of Au NPs seems to be inhibited by the CNx support. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Effects of different additives on bimetallic Au-Pt nanoparticles electrodeposited onto indium tin oxide electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Ballarin, Barbara, E-mail: ballarin@ms.fci.unibo.i [Dipartimento di Chimica Fisica ed Inorganica, Universita di Bologna, V.le Risorgimento, 4, 40136-Bologna (Italy)] [INSTM, UdR Bologna (Italy); Gazzano, Massimo [ISOF-CNR, V. Selmi, 40126-Bologna (Italy); Tonelli, Domenica [Dipartimento di Chimica Fisica ed Inorganica, Universita di Bologna, V.le Risorgimento, 4, 40136-Bologna (Italy)] [INSTM, UdR Bologna (Italy)

    2010-09-01

    Bimetallic Au-Pt nanoparticles (Au-Pt{sub NPs}) have been synthesized using an electrochemical reduction approach. The effects of the addition of different additives in the electrodeposition bath namely KI, 1-nonanesulfonic acid sodium salt and Triton X-100 have been investigated. The structural characterization of the bimetallic nanoparticles has been carried out using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), UV-vis spectroscopy, X-ray diffraction (XRD) and cyclic voltammetry (CV). The Au-Pt{sub NPs} prepared in the presence of KI and Triton X-100 characterized by a relatively narrow size distribution as well as a higher particle density and surface coverage whereas no changes in the morphology were observed. These results suggest a dependence of the size and distribution of the bimetallic nanoparticles from the type and concentration of the additives employed.

  8. A DFT comparative study of single and double SO2 adsorption on Pt-doped and Au-doped single-walled carbon nanotube

    International Nuclear Information System (INIS)

    Yoosefian, Mehdi; Zahedi, Mansour; Mola, Adeleh; Naserian, Samira

    2015-01-01

    Highlights: • Investigation of the adsorption of SO 2 on Au/SWCNT and Pt/SWCNT. • SO 2 adsorbed on Au/SWCNT and Pt/SWCNT system demonstrate a strong chemisorption. • NBO analysis was done to reach more understanding about intermolecular interactions. - Abstract: Adsorption of single and double SO 2 gas molecule(s) on the surface of Pt-doped and Au-doped (5,5) single-walled carbon nanotubes (Pt/CNT-V and Au/CNT-V) were investigated by using density functional theory (DFT) at B3LYP/LANL2DZ level. The results showed the following: firstly, adsorption on Au/CNT-V is independent of special orientation, secondly, SO 2 adsorption on Pt/CNT-V in single case is stronger than Au/CNT-V, and finally, adsorption of the first molecule influences adsorption of the second one. Upon adsorption of SO 2 molecule(s), the energy gap of Pt/CNT-V were considerably reduced, resulting in enhanced electrical conductivity but in Au/CNT-V, despite of adsorption energy similar to Pt/CNT-V, E g slightly increased. In order to consider the effect of adsorption on electronic properties, DOS and PDOS calculations were performed. Moreover, NBO analysis was done to reach more understanding about intermolecular interactions. In conclusion, chemical reactivity was investigated in terms of chemical hardness, softness and work function (ϕ)

  9. The effect of nanoparticles size on photocatalytic and antimicrobial properties of Ag-Pt/TiO{sub 2} photocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Zielińska-Jurek, Anna, E-mail: annjurek@pg.gda.pl [Department of Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdansk (Poland); Wei, Zhishun [Catalysis Research Center, Hokkaido University, N21, W10, 001-0021, Sapporo (Japan); Wysocka, Izabela [Department of Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdansk (Poland); Szweda, Piotr [Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdansk (Poland); Kowalska, Ewa [Catalysis Research Center, Hokkaido University, N21, W10, 001-0021, Sapporo (Japan)

    2015-10-30

    Graphical abstract: - Highlights: • Enhanced photocatalytic activity under visible light for bimetallic Ag-Pt/TiO{sub 2} was observed. • Phenol was removed efficiently after 60 min irradiation under Vis. • Most active sample contains fine Pt (1–3 nm) on TiO{sub 2}. • Ag/TiO{sub 2}, Ag-Pt/TiO{sub 2} revealed antimicrobial activity. - Abstract: Ag-Pt-modified TiO{sub 2} nanocomposites were synthesized using the sol–gel method. Bimetallic modified TiO{sub 2} nanoparticles exhibited improved photocatalytic activity under visible-light irradiation, better than monometallic Ag/TiO{sub 2} and Pt/TiO{sub 2} nanoparticles (NPs). All modified powders showed localized surface plasmon resonance (LSPR) in visible region. The photocatalysts’ characteristics by X-ray diffractometry (XRD), scanning transmission electron microscopy (STEM), diffuse reflectance spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS), nitrogen adsorption (BET method for specific surface area) showed that sample with the highest photocatalytic activity had anatase structure, about 93 m{sup 2}/g specific surface area, maximum plasmon absorption at ca. 420 nm and contained small NPs of silver of 6 nm and very fine platinum NPs of 3 nm. The photocatalytic activity was estimated by measuring the decomposition rate of phenol in 0.2 mM aqueous solution under Vis and UV/vis light irradiation. It was found that size of platinum was decisive for the photocatalytic activity under visible light irradiation, i.e., the smaller Pt NPs were, the higher was photocatalytic activity. While, antimicrobial activities, estimated for bacteria Escherichia coli and Staphylococcus aureus, and pathogenic fungi belonging to Candida family, were only observed for photocatalysts containing silver, i.e., Ag/TiO{sub 2} and Ag-Pt/TiO{sub 2} nanocomposites.

  10. Stepwise synthesis of cubic Au-AgCdS core-shell nanostructures with tunable plasmon resonances and fluorescence.

    Science.gov (United States)

    Liu, Xiao-Li; Liang, Shan; Nan, Fan; Pan, Yue-Yue; Shi, Jun-Jun; Zhou, Li; Jia, Shuang-Feng; Wang, Jian-Bo; Yu, Xue-Feng; Wang, Qu-Quan

    2013-10-21

    Cubic Au-AgCdS core-shell nanostructures were synthesized through cation exchange method assisted by tributylphosphine (TBP) as a phase-transfer agent. Among intermediate products, Au-Ag core-shell nanocubes exhibited many high-order plasmon resonance modes related to the special cubic shape, and these plasmon bands red-shifted along with the increasing of particle size. The plasmon band of Au core first red-shifted and broadened at the step of Au-Ag₂S and then blue-shifted and narrowed at the step of Au-AgCdS. Since TBP was very crucial for the efficient conversion from Ag₂S to CdS, we found that both absorption and fluorescence of the final products could be controlled by TBP.

  11. Synthesis and characterization of Pd-on-Pt and Au-on-Pt bimetallic nanosheaths on multiwalled carbon nanotubes

    International Nuclear Information System (INIS)

    Wang Shuangyin; Jiang, San Ping; Wang Xin

    2011-01-01

    The authors have successfully synthesized Pd-on-Pt (thickness: 12 nm) and Au-on-Pt bimetallic nanosheaths on multiwalled carbon nanotubes (MWCNTs) via a seed-mediated growth approach. Pt nanoparticles as seeds were pre-deposited on MWCNTs with uniform distribution followed by the successive seed-mediated growth of metal atoms reduced by a weak reducing agent, ascorbic acid. The essential role of pre-deposited nanoseed particles on MWCNTs was demonstrated. The as-prepared materials were characterization by transition electron microscopy, energy-dispersive X-ray spectroscopy, and element mapping tools. The current strategy extends the classical seed-mediated growth method to prepare bimetallic nanosheath on MWCNT support.

  12. Particle growth mechanisms in Ag-ZrO2 and Au-ZrO2 granular films obtained by pulsed laser deposition

    International Nuclear Information System (INIS)

    Konstantinovic, Zorica; Muro, Montserrat Garcia del; Varela, Manuel; Batlle, Xavier; Labarta, AmIlcar

    2006-01-01

    Thin films consisting of Ag and Au nanoparticles embedded in amorphous ZrO 2 matrix were grown by pulsed laser deposition in a wide range of metal volume concentrations in the dielectric regime (0.08 Ag Au c (Ag)∼0.28 and x c (Au)∼0.52)

  13. Highly porous ZnS microspheres for superior photoactivity after Au and Pt deposition and thermal treatment

    Energy Technology Data Exchange (ETDEWEB)

    Singla, Shilpa; Pal, Bonamali, E-mail: bpal@thapar.edu

    2013-11-15

    Graphical abstract: Highly porous ZnS microsphere of size 2–5 μm having large surface area ca. 173.14 m{sup 2} g{sup −1} exhibits superior photocatalytic activity for the oxidation of 4-nitrophenol under UV light irradiation. The rate of photooxidation has been significantly improved by Au and Pt deposition and after sintering, respectively, due to rapid electron acceptance by metal from photoexcited ZnS and growth of crystalline ZnS phase. - Highlights: • Photoactive ZnS microsphere of size 2–5 μm was prepared by hydrothermal route. • Highly porous cubic spherical ZnS crystals possess a large surface area, 173 m{sup 2} g{sup −1}. • 1 wt% Au and Pt photodeposition highly quenched the photoluminescence at 437 nm. • Sintering and metal loading notably improve the photooxidation rate of 4-nitrophenol. • Pt co-catalyst always exhibits superior photoactivity of ZnS microsphere than Au. - Abstract: This work highlights the enhanced photocatalytic activity of porous ZnS microspheres after Au and Pt deposition and heat treatment at 500 °C for 2 h. Microporous ZnS particles of size 2–5 μm with large surface area 173.14 m{sup 2} g{sup −1} and pore volume 0.0212 cm{sup 3} g{sup −1} were prepared by refluxing under an alkaline medium. Photoluminescence of ZnS at 437 nm attributed to sulfur or zinc vacancies were quenched to 30% and 49%, respectively, after 1 wt% Au and Pt loading. SEM images revealed that each ZnS microparticle consist of several smaller ZnS spheres of size 2.13 nm as calculated by Scherrer's equation. The rate of photooxidation of 4-nitrophenol (10 μM) under UV (125 W Hg arc–10.4 mW/cm{sup 2}) irradiation has been significantly improved by Au and Pt deposition followed by sintering due to better electron capturing capacity of deposited metals and growth of crystalline ZnS phase with less surface defects.

  14. In vitro corrosion of dental Au-based casting alloys in polyvinylpyrrolidone-iodine solution.

    Science.gov (United States)

    Takasusuki, Norio; Ida, Yusuke; Hirose, Yukito; Ochi, Morio; Endo, Kazuhiko

    2013-01-01

    The corrosion and tarnish behaviors of two Au-based casting alloys (ISO type 1 and type 4 Au alloys) and their constituent pure metals, Au, Ag, Cu, Pt, and Pd in a polyvinylpyrrolidone-iodine solution were examined. The two Au alloys actively corroded, and the main anodic reaction for both was dissolution of Au as AuI₂(-). The amount of Au released from the ISO type 1 Au alloy was significantly larger than that from the ISO type 4 Au alloy (Palloy exhibited higher susceptibility to tarnishing than the type 4 alloy. The corrosion forms of the two Au alloys were found to be completely different, i.e., the type 1 alloy exhibited the corrosion attack over the entire exposed surface with a little irregularity whereas the type 4 alloy exhibited typical intergranular corrosion, which was caused by local cells produced by segregation of Pd and Pt.

  15. Thermal stability, thermal expansion and grain-growth in exchange-coupled Fe-Pt-Ag-B bulk nanocomposite magnets

    International Nuclear Information System (INIS)

    Nicula, R.; Crisan, O.; Crisan, A.D.; Mercioniu, I.; Stir, M.; Vasiliu, F.

    2015-01-01

    Highlights: • Formation of the L10 FePt hard-magnetic phase (>90%) directly in the as-cast state. • Specific alternating hard/soft nanostructure is stable to 600 °C without grain growth. • Anisotropic and non-linear thermal expansion effects. • The FePtAgB alloy behaves like a single magnetic phase (full exchange coupling). - Abstract: Rare-earth free (RE-free) exchange coupling nanocomposite magnets are intensively studied nowadays due to their potential use in applications demanding stable high-temperature operation and corrosion resistance. In this respect, the FePt alloy system is one of the most actively addressed potential permanent magnet solutions. In FePt alloys, promising magnetic features arise from the co-existence of hard magnetic L1 0 FePt and soft magnetic L1 2 Fe 3 Pt phases emerged from the same metastable precursor. The present work deals with an in-situ temperature-resolved synchrotron radiation study of the thermal stability, thermal expansion and microstructure evolution in exchange-coupled FePtAgB alloys. The as-cast microstructural state as well as the optimized magnetic behavior are given as reference and correlated to the observed microstructural evolution with temperature. The melt-spun Fe 48 Pt 28 Ag 6 B 18 alloy ribbons were examined in situ by synchrotron X-ray powder diffraction from ambient temperature up to 600 °C. The FePt-Fe 3 Pt exchange-coupled microstructure achieved by rapid solidification is not significantly altered during the high temperature exposure. The thermal expansion of the FePt L1 0 unit cell has been found to be strongly anisotropic, being essentially an in-plane expansion which may be seen as an anisotropic invar effect. For the FePt L1 0 phase, a significant deviation from linear thermal expansion is observed at the Curie temperature T C = 477 °C. This non-linear behavior above T C is tentatively linked to a diffusion/segregation mechanism of Ag. The promising hard magnetic properties as well as the

  16. Tuning the shell thickness-dependent plasmonic absorption of Ag coated Au nanocubes: The effect of synthesis temperature

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Jian, E-mail: jianzhusummer@163.com; Zhang, Fan; Chen, Bei-Bei; Li, Jian-Jun; Zhao, Jun-Wu, E-mail: nanoptzhao@163.com

    2015-09-15

    Graphical abstract: Ag coating leads to great enhancement of SPR absorbance of Au nanocubes, and the Ag coating-dependent non-monotonous SPR shift is greater at lower temperature. - Highlights: • Au nanocubes with more uniform shape can be obtained at lower growth temperature. • Ag coating leads to great enhancement of SPR absorption intensity. • The Ag coating dependent non-monotonous SPR shift is greater at lower temperature. - Abstract: The temperature dependent synthesis and plasmonic optical properties of Ag coated Au nanocubes have been investigated experimentally. It has been found that the Au nanocubes with more uniform morphology and higher yield could be obtained by decreasing the growth temperature. Because of the non-spherical symmetry of the particles shape and the plasmon coupling between Au–Ag interface and outer Ag surface, four absorption peaks at most have been observed. As the Ag coating thickness is increased, the absorbance intensity of these plasmon peaks gets intense greatly, and the absorption peak at longest wavelength blue shifts firstly and then red shifts. The non-monotonous plasmonic shift has been attributed to the competition between the increase of Ag composition and the enlargement of the particle size. What's more, the wavelength region of both blue shift and red shift could also be enhanced by decreasing the temperature.

  17. Tuning the shell thickness-dependent plasmonic absorption of Ag coated Au nanocubes: The effect of synthesis temperature

    International Nuclear Information System (INIS)

    Zhu, Jian; Zhang, Fan; Chen, Bei-Bei; Li, Jian-Jun; Zhao, Jun-Wu

    2015-01-01

    Graphical abstract: Ag coating leads to great enhancement of SPR absorbance of Au nanocubes, and the Ag coating-dependent non-monotonous SPR shift is greater at lower temperature. - Highlights: • Au nanocubes with more uniform shape can be obtained at lower growth temperature. • Ag coating leads to great enhancement of SPR absorption intensity. • The Ag coating dependent non-monotonous SPR shift is greater at lower temperature. - Abstract: The temperature dependent synthesis and plasmonic optical properties of Ag coated Au nanocubes have been investigated experimentally. It has been found that the Au nanocubes with more uniform morphology and higher yield could be obtained by decreasing the growth temperature. Because of the non-spherical symmetry of the particles shape and the plasmon coupling between Au–Ag interface and outer Ag surface, four absorption peaks at most have been observed. As the Ag coating thickness is increased, the absorbance intensity of these plasmon peaks gets intense greatly, and the absorption peak at longest wavelength blue shifts firstly and then red shifts. The non-monotonous plasmonic shift has been attributed to the competition between the increase of Ag composition and the enlargement of the particle size. What's more, the wavelength region of both blue shift and red shift could also be enhanced by decreasing the temperature

  18. The effect of Au and Ni doping on the heavy fermion state of the Kondo lattice antiferromagnet CePtZn

    Energy Technology Data Exchange (ETDEWEB)

    Dhar, S. K., E-mail: sudesh@tifr.res.in [DCMPMS, T.I.F.R., Homi Bhabha Road, Colaba, Mumbai 400005 (India); Aoki, Y.; Suemitsu, B.; Miyazaki, R. [Department of Physics, Tokyo Metropolitan University, Minami-Ohsawa 1-1, Hachioji-Shi, Tokyo (Japan); Provino, A.; Manfrinetti, P. [Departimento Physica Chemicale, Universita di Genova, Via Dodecaneso, 16146 Genova (Italy)

    2014-05-07

    We have probed the effect of doping CePtZn with Au and Ni and also investigated in detail the magnetic behavior of the iso-structural CeAuZn. A magnetic ground state is observed in both CePt{sub 0.9}Au{sub 0.1}Zn and CePt{sub 0.9}Ni{sub 0.1}Zn with T{sub N} = 2.1 and 1.1 K and the coefficient of the linear term of electronic heat capacity γ = 0.34 and 0.9 J/mol K{sup 2}, respectively. The corresponding values for CePtZn are 1.7 K and 0.6 J/mol K{sup 2}. The altered values of T{sub N} and γ show that the electronic correlations in CePtZn are affected by doping with Au and Ni. CeAuZn orders magnetically near 1.7 K and its electrical resistivity shows a normal metallic behavior. Together with a γ of 0.022 J/mol K{sup 2} the data indicate a weak 4f-conduction electron hybridization in CeAuZn characteristic of normal trivalent cerium based systems.

  19. Bidirectional threshold switching characteristics in Ag/ZrO2/Pt electrochemical metallization cells

    Directory of Open Access Journals (Sweden)

    Gang Du

    2016-08-01

    Full Text Available A bidirectional threshold switching (TS characteristic was demonstrated in Ag/ZrO2/Pt electrochemical metallization cells by using the electrochemical active Ag electrode and appropriate programming operation strategies The volatile TS was stable and reproducible and the rectify ratio could be tuned to ∼107 by engineering the compliance current. We infer that the volatile behavior is essentially due to the moisture absorption in the electron beam evaporated films, which remarkably improved the anodic oxidation as well as the migration of Ag+ ions. The resultant electromotive force would act as a driving force for the metal filaments dissolution, leading to the spontaneous volatile characteristics. Moreover, conductance quantization behaviors were also achieved owing to formation and annihilation of atomic scale metal filaments in the film matrix. Our results illustrate that the Ag/ZrO2/Pt device with superior TS performances is a promising candidate for selector applications in passive crossbar arrays.

  20. Enhancement of Au-Ag-Te contents in tellurium-bearing ore minerals via bioleaching

    Science.gov (United States)

    Choi, Nag-Choul; Cho, Kang Hee; Kim, Bong Ju; Lee, Soonjae; Park, Cheon Young

    2018-03-01

    The purpose of this study was to enhance the content of valuable metals, such as Au, Ag, and Te, in tellurium-bearing minerals via bioleaching. The ore samples composed of invisible Au and Au paragenesis minerals (such as pyrite, chalcopyrite, sphalerite and galena) in combination with tellurium-bearing minerals (hessite, sylvanite and Tellurobismuthite) were studied. Indigenous microbes from mine drainage were isolated and identified as Acidithiobacillus ferrooxidans, which were used in bioleaching after adaption to copper. The effect of the microbial adaption on the bioleaching performance was then compared with the results produced by the non-adaptive process. The microbial adaption enhanced the Au-Ag-Te contents in biological leaching of tellurium-bearing ore minerals. This suggests that bioleaching with adapted microbes can be used both as a pretreatment and in the main recovery processes of valuable metals.

  1. 197Au(d,3He)196Pt reaction and the supersymmetry scheme

    International Nuclear Information System (INIS)

    Vergnes, M.; Berrier-Ronsin, G.; Rotbard, G.; Vernotte, J.; Langevin- Joliot, H.; Gerlic, E.; Wiele, J. van de; Guillot, J.

    1981-01-01

    The 197 Au(d, 3 He) 196 Pt reaction has been studied at Esub(d) = 108 MeV. An important breakdown of the selection rules of the supersymmetry scheme is observed for the 2 2 + level. The generally strong excitation of the 2 2 + level by transfer reactions in the Pt region leads to question the validity of the supersymmetry scheme at least for this level

  2. CO Sensing Performance of a Micro Thermoelectric Gas Sensor with AuPtPd/SnO2 Catalyst and Effects of a Double Catalyst Structure with Pt/α-Al2O3

    Science.gov (United States)

    Goto, Tomoyo; Itoh, Toshio; Akamatsu, Takafumi; Shin, Woosuck

    2015-01-01

    The CO sensing properties of a micro thermoelectric gas sensor (micro-TGS) with a double AuPtPd/SnO2 and Pt/α-Al2O3 catalyst were investigated. While several nanometer sized Pt and Pd particles were uniformly dispersed on SnO2, the Au particles were aggregated as particles measuring >10 nm in diameter. In situ diffuse reflectance Fourier transform Infrared spectroscopy (DRIFT) analysis of the catalyst showed a CO adsorption peak on Pt and Pd, but no clear peak corresponding to the interaction between CO and Au was detected. Up to 200 °C, CO combustion was more temperature dependent than that of H2, while H2 combustion was activated by repeated exposure to H2 gas during the periodic gas test. Selective CO sensing of the micro-TGS against H2 was attempted using a double catalyst structure with 0.3–30 wt% Pt/α-Al2O3 as a counterpart combustion catalyst. The sensor output of the micro-TGS decreased with increasing Pt content in the Pt/α-Al2O3 catalyst, by cancelling out the combustion heat from the AuPtPd/SnO2 catalyst. In addition, the AuPtPd/SnO2 and 0.3 wt% Pt/α-Al2O3 double catalyst sensor showed good and selective CO detection. We therefore demonstrated that our micro-TGS with double catalyst structure is useful for controlling the gas selectivity of CO against H2. PMID:26694397

  3. Au@Ag Core-Shell Nanocubes with Finely Tuned and Well-Controlled Sizes, Shell Thicknesses, and Optical Properties

    OpenAIRE

    Ma, Yanyun; Li, Weiyang; Cho, Eun Chul; Li, Zhiyuan; Yu, Taekyung; Zeng, Jie; Xie, Zhaoxiong; Xia, Younan

    2010-01-01

    This paper describes a facile method for generating Au@Ag core-shell nanocubes with edge lengths controllable in the range of 13.4 to 50 nm. The synthesis involved the use of single-crystal, spherical Au nanocrystals of 11 nm in size as the seeds in an aqueous system, with ascorbic acid serving as the reductant and cetyltrimethylammonium chloride (CTAC) as the capping agent. The thickness of the Ag shells could be finely tuned from 1.2 to 20 nm by varying the ratio of AgNO3 precursor to Au se...

  4. Onset of Intense Surface Enhanced Raman Scattering and Aggregation in the Au@Ag System

    Directory of Open Access Journals (Sweden)

    Priya Bhatia

    2015-01-01

    Full Text Available Gold core/silver shell (Au@Ag nanoparticles of ~37 ± 5 nm diameter generate intense SERS (λEX=785 nm responses in solution when they interact with the SERS labels rhodamine 6G (R6G, 4-mercaptopyridine (MPY, and 4-mercaptobenzoic acid (MBA. Herein the relationship between SERS intensity, aggregation, and adsorption phenomenon isobserved by titrating Au@Ag with the above labels. As the labels adsorb to the Au@Ag, they drive aggregation as evidenced by the creation of NIR extinction peaks, and the magnitude of this NIR extinction (measured at 830 nm correlates very closely to magnitude of the intense SERS signals. The label MBA is an exception since it does not trigger aggregation nor does it result in intense SERS; rather intense SERS is recovered only after MBA coated Au@Ag is aggregated with KCl. An “inner filter” model is introduced and applied to compensate for solution extinction when the exciting laser radiation is significantly attenuated. This model permits a summary of the SERS responses in the form of plots of SERS intensity versus the aggregate absorption at 830 nm, which shows the excellent correlation between intense SERS and LSPR bands extinction.

  5. Synthesis of Au@Ag core-shell nanocubes containing varying shaped cores and their localized surface plasmon resonances.

    Science.gov (United States)

    Gong, Jianxiao; Zhou, Fei; Li, Zhiyuan; Tang, Zhiyong

    2012-06-19

    We have synthesized Au@Ag core-shell nanocubes containing Au cores with varying shapes and sizes through modified seed-mediated methods. Bromide ions are found to be crucial in the epitaxial growth of Ag atoms onto Au cores and in the formation of the shell's cubic shape. The Au@Ag core-shell nanocubes exhibit very abundant and distinct localized surface plasmon resonance (LSPR) properties, which are core-shape and size-dependent. With the help of theoretical calculation, the physical origin and the resonance mode profile of each LSPR peak are identified and studied. The core-shell nanocrystals with varying shaped cores offer a new rich category for LSPR control through the plasmonic coupling effect between core and shell materials.

  6. Application of Direct Current Atmospheric Pressure Glow Microdischarge Generated in Contact with a Flowing Liquid Solution for Synthesis of Au-Ag Core-Shell Nanoparticles.

    Science.gov (United States)

    Dzimitrowicz, Anna; Jamroz, Piotr; Nyk, Marcin; Pohl, Pawel

    2016-04-06

    A direct current atmospheric pressure glow microdischarge (dc-μAPGD) generated between an Ar nozzle microjet and a flowing liquid was applied to produce Au-Ag core-shell nanoparticles (Au@AgCSNPs) in a continuous flow system. Firstly, operating dc-μAPGD with the flowing solution of the Au(III) ions as the cathode, the Au nanoparticles (AuNPs) core was produced. Next, to produce the core-shell nanostructures, the collected AuNPs solution was immediately mixed with an AgNO₃ solution and passed through the system with the reversed polarity to fabricate the Ag nanoshell on the AuNPs core. The formation of Au@AgCSNPs was confirmed using ultraviolet-visible (UV-Vis) absorbance spectrophotometry, transmission electron microscopy (TEM), and energy-dispersive X-ray spectroscopy (EDS). Three localized surface plasmon resonance absorption bands with wavelengths centered at 372, 546, and 675 nm were observed in the UV-Vis spectrum of Au@AgCSNPs, confirming the reduction of both the Au(III) and Ag(I) ions. The right configuration of metals in Au@AgCSNPs was evidenced by TEM. The Au core diameter was 10.2 ± 2.0 nm, while the thickness of the Ag nanoshell was 5.8 ± 1.8 nm. The elemental composition of the bimetallic nanoparticles was also confirmed by EDS. It is possible to obtain 90 mL of a solution containing Au@AgCSNPs per hour using the applied microdischarge system.

  7. Characterizing the economic value of an epithermal Au-Ag ore with Laser Induced Breakdown Spectroscopy (LIBS)

    NARCIS (Netherlands)

    Dalm, M.; Buxton, M.W.N.

    2016-01-01

    LIBS was applied to 19 Au-Ag ore samples to investigate if this technique can be used to distinguish between economic and sub-economic ore either by direct detection of these elements or by using other elements as indicators. However, the Au and Ag grades of the samples are below the detection limit

  8. Leaching of Au, Ag, and Pd from waste printed circuit boards of mobile phone by iodide lixiviant after supercritical water pre-treatment

    International Nuclear Information System (INIS)

    Xiu, Fu-Rong; Qi, Yingying; Zhang, Fu-Shen

    2015-01-01

    Highlights: • We report a novel process for recovering Au, Ag, and Pd from waste PCBs. • The effect of SCWO on the leaching of Au, Ag, and Pd in waste PCBs was studied. • SCWO was highly efficient for enhancing the leaching of Au, Ag, and Pd. • The optimum leaching parameters for Au, Ag, and Pd in iodine–iodide were studied. - Abstract: Precious metals are the most attractive resources in waste printed circuit boards (PCBs) of mobile phones. In this work, an alternative process for recovering Au, Ag, and Pd from waste PCBs of mobile phones by supercritical water oxidation (SCWO) pre-treatment combined with iodine–iodide leaching process was developed. In the process, the waste PCBs of mobile phones were pre-treated in supercritical water, then a diluted hydrochloric acid leaching (HL) process was used to recovery the Cu, whose leaching efficiency was approximately 100%, finally the resulting residue was subjected to the iodine–iodide leaching process for recovering the Au, Ag, and Pd. Experimental results indicated that SCWO pre-treatment temperature, time, and pressure had significant influence on the Au, Ag, and Pd leaching from (SCWO + HL)-treated waste PCBs. The optimal SCWO pre-treatment conditions were 420 °C and 60 min for Au and Pd, and 410 °C and 30 min for Ag. The optimum dissolution parameters for Au, Pd, and Ag in (SCWO + HL)-treated PCBs with iodine–iodide system were leaching time of 120 min (90 min for Ag), iodine/iodide mole ratio of 1:5 (1:6 for Ag), solid-to-liquid ratio (S/L) of 1:10 g/mL (1:8 g/mL for Ag), and pH of 9, respectively. It is believed that the process developed in this study is environment friendly for the recovery of Au, Ag, and Pd from waste PCBs of mobile phones by SCWO pre-treatment combined with iodine–iodide leaching process

  9. Leaching of Au, Ag, and Pd from waste printed circuit boards of mobile phone by iodide lixiviant after supercritical water pre-treatment

    Energy Technology Data Exchange (ETDEWEB)

    Xiu, Fu-Rong, E-mail: xiu_chem@hotmail.com [College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350108 (China); Qi, Yingying [College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350108 (China); Zhang, Fu-Shen [Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China)

    2015-07-15

    Highlights: • We report a novel process for recovering Au, Ag, and Pd from waste PCBs. • The effect of SCWO on the leaching of Au, Ag, and Pd in waste PCBs was studied. • SCWO was highly efficient for enhancing the leaching of Au, Ag, and Pd. • The optimum leaching parameters for Au, Ag, and Pd in iodine–iodide were studied. - Abstract: Precious metals are the most attractive resources in waste printed circuit boards (PCBs) of mobile phones. In this work, an alternative process for recovering Au, Ag, and Pd from waste PCBs of mobile phones by supercritical water oxidation (SCWO) pre-treatment combined with iodine–iodide leaching process was developed. In the process, the waste PCBs of mobile phones were pre-treated in supercritical water, then a diluted hydrochloric acid leaching (HL) process was used to recovery the Cu, whose leaching efficiency was approximately 100%, finally the resulting residue was subjected to the iodine–iodide leaching process for recovering the Au, Ag, and Pd. Experimental results indicated that SCWO pre-treatment temperature, time, and pressure had significant influence on the Au, Ag, and Pd leaching from (SCWO + HL)-treated waste PCBs. The optimal SCWO pre-treatment conditions were 420 °C and 60 min for Au and Pd, and 410 °C and 30 min for Ag. The optimum dissolution parameters for Au, Pd, and Ag in (SCWO + HL)-treated PCBs with iodine–iodide system were leaching time of 120 min (90 min for Ag), iodine/iodide mole ratio of 1:5 (1:6 for Ag), solid-to-liquid ratio (S/L) of 1:10 g/mL (1:8 g/mL for Ag), and pH of 9, respectively. It is believed that the process developed in this study is environment friendly for the recovery of Au, Ag, and Pd from waste PCBs of mobile phones by SCWO pre-treatment combined with iodine–iodide leaching process.

  10. Focused-ion-beam-fabricated Au nanorods coupled with Ag nanoparticles used as surface-enhanced Raman scattering-active substrate for analyzing trace melamine constituents in solution

    International Nuclear Information System (INIS)

    Sivashanmugan, Kundan; Liao, Jiunn-Der; Liu, Bernard Haochih; Yao, Chih-Kai

    2013-01-01

    Graphical abstract: -- Highlights: •Well-ordered Au-nanorod array with a controlled tip ring diameter (Au N Rs d ) is made by focused ion beam. •Au N Rs d coupled with Ag nanoparticles (Ag NPs/Au N Rs d ) is competent to sense target molecules in a solution. •Ag NPs/Au N Rs d SERS active substrate can detect a single molecule of crystal violet. •Ag NPs/Au N Rs d as a SERS-active substrate can distinguish melamine contaminants at low concentrations (e.g., 10 −12 M). -- Abstract: A well-ordered Au-nanorod array with a controlled tip ring diameter (Au N Rs d ) was fabricated using the focused ion beam method. Au N Rs d was then coupled with Ag nanoparticles (Ag NPs) to bridge the gaps among Au nanorods. The effect of surface-enhanced Raman scattering (SERS) on Au N Rs d and Ag NPs/Au N Rs d was particularly verified using crystal violet (CV) as the molecular probe. Raman intensity obtained from a characteristic peak of CV on Au N Rs d was estimated by an enhancement factor of ≈10 7 in magnitude, which increased ≈10 12 in magnitude for that on Ag NPs/Au N Rs d . A highly SERS-active Ag NPs/Au N Rs d was furthermore applied for the detection of melamine (MEL) at very low concentrations. Raman-active peaks of MEL (10 −3 to 10 −12 M) in water or milk solution upon Au N Rs d or Ag NPs/Au N Rs d were well distinguished. The peaks at 680 and 702 cm −1 for MEL molecules were found suitable to be used as the index for sensing low-concentration MEL in a varied solution, while that at 1051 cm −1 was practical to interpret MEL molecules in water or milk solution bonded with Au (i.e., Au N Rs d ) or Ag (i.e., Ag NPs/Au N Rs d ) surface. At the interface of Ag NPs/Au N Rs d and MEL molecules in milk solution, a laser-induced electromagnetic field or hotspot effect was produced and competent to sense low-concentration MEL molecules interacting with Ag and Au surfaces. Accordingly, Ag NPs/Au N Rs d is very promising to be used as a fast and sensitive tool for

  11. Au-Pt-Au nanoraspberry structures used for mercury ion detection

    Science.gov (United States)

    Huang, Jiang-Hao; Huang, Shuai; Wen, Xiaoyan; Li, Min; Lu, Haifei

    2017-12-01

    Detection of Hg2+ with high sensitivity is of great significance in the biochemical sensing field. Quantitative of Hg2+ was realized based on the influence of Hg2+ on the UV-vis absorption performance of Au-Pt-Au core-shell nanoraspberry (APA)-rhodamine-6G (R6G) structure. First, APA sol was added into R6G indicator solution and the UV-vis absorption signal intensity of R6G was evidently promoted. The signal intensity monotonously increased as more APA sol was added. However, when HgCl2 solution was introduced, the signal intensity declined. A linear relationship between Hg2+ concentration and signal intensity at 527 nm was revealed, based on which quantitative determination of Hg2+ could be realized. Hg2+ detection sensitivity was measured to be 0.031 a.u./M with a limit of detection of 10-7 M and the response time was 20 s. A high Hg2+ detection selectivity over Cu2+, Na+, Li+, and K+ was demonstrated. Due to its simplicity and high sensitivity, the proposed method could find an extensive application prospect in the Hg2+ detection field.

  12. Flexible nonvolatile memory devices based on Au/PMMA nanocomposites deposited on PEDOT:PSS/Ag nanowire hybrid electrodes

    International Nuclear Information System (INIS)

    Sung, Sihyun; Kim, Tae Whan

    2017-01-01

    Highlights: • Flexible nonvolatile memory (NVM) devices fabricated utilizing Au nanoparticles (AuNPs) embedded in a PMMA layer were fabricated. • The insertion of the PEDOT:PSS layer enhanced the surface uniformity of the AgNW bottom electrode, resulting in improved device performances. • Current-voltage curves for the Al/PMMA:AuNP/PEDOT:PSS/AgNW/PET devices showed clockwise current hysteresis behaviors. • ON/OFF ratio of 1 × 10 3 was maintained for retention times longer than 1 × 10 4 s. • Memory characteristics of the NVM devices before and after bending were similar. - Abstract: Flexible nonvolatile memory (NVM) devices fabricated utilizing Au nanoparticles (AuNPs) embedded in a poly(methylmethacrylate) (PMMA) layer were fabricated on a silver nanowire (AgNW) or a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)/AgNW coated on poly(ethylene terephthalate) (PET) substrates. The transmittance and the sheet resistance of the PEDOT:PSS/AgNW hybrid layer were approximately 89% and 50 Ω/sq, respectively, which were comparable to the values for commercial indium-tin-oxide (ITO) electrodes. Current-voltage curves for the Al/PMMA:AuNP/PEDOT:PSS/AgNW/PET devices at 300 K showed clockwise current hysteresis behaviors due to the existence of the AuNPs. The endurance number of ON/OFF switching for the NVM devices was above 30 cycles. An ON/OFF ratio of 1 × 10 3 was maintained for retention times longer than 1 × 10 4 s. The maximum memory margins of the NVM devices before and after bending were approximately 3.4 × 10 3 and 1.4 × 10 3 , respectively. The retention times of the devices before and after bending remained same 1 × 10 4 s. The memory margin and the stability of flexible NVMs fabricated on AgNW electrodes were enhanced due to the embedded PEDOT:PSS buffer layer.

  13. Flexible nonvolatile memory devices based on Au/PMMA nanocomposites deposited on PEDOT:PSS/Ag nanowire hybrid electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Sihyun; Kim, Tae Whan, E-mail: twk@hanyang.ac.kr

    2017-07-31

    Highlights: • Flexible nonvolatile memory (NVM) devices fabricated utilizing Au nanoparticles (AuNPs) embedded in a PMMA layer were fabricated. • The insertion of the PEDOT:PSS layer enhanced the surface uniformity of the AgNW bottom electrode, resulting in improved device performances. • Current-voltage curves for the Al/PMMA:AuNP/PEDOT:PSS/AgNW/PET devices showed clockwise current hysteresis behaviors. • ON/OFF ratio of 1 × 10{sup 3} was maintained for retention times longer than 1 × 10{sup 4} s. • Memory characteristics of the NVM devices before and after bending were similar. - Abstract: Flexible nonvolatile memory (NVM) devices fabricated utilizing Au nanoparticles (AuNPs) embedded in a poly(methylmethacrylate) (PMMA) layer were fabricated on a silver nanowire (AgNW) or a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)/AgNW coated on poly(ethylene terephthalate) (PET) substrates. The transmittance and the sheet resistance of the PEDOT:PSS/AgNW hybrid layer were approximately 89% and 50 Ω/sq, respectively, which were comparable to the values for commercial indium-tin-oxide (ITO) electrodes. Current-voltage curves for the Al/PMMA:AuNP/PEDOT:PSS/AgNW/PET devices at 300 K showed clockwise current hysteresis behaviors due to the existence of the AuNPs. The endurance number of ON/OFF switching for the NVM devices was above 30 cycles. An ON/OFF ratio of 1 × 10{sup 3} was maintained for retention times longer than 1 × 10{sup 4} s. The maximum memory margins of the NVM devices before and after bending were approximately 3.4 × 10{sup 3} and 1.4 × 10{sup 3}, respectively. The retention times of the devices before and after bending remained same 1 × 10{sup 4} s. The memory margin and the stability of flexible NVMs fabricated on AgNW electrodes were enhanced due to the embedded PEDOT:PSS buffer layer.

  14. Molecular oxygen adsorption and dissociation on Au12M clusters with M = Cu, Ag or Ir

    Science.gov (United States)

    Jiménez-Díaz, Laura M.; Pérez, Luis A.

    2018-03-01

    In this work, we present a density functional theory study of the structural and electronic properties of isolated neutral clusters of the type Au12M, with M = Cu, Ag, or Ir. On the other hand, there is experimental evidence that gold-silver, gold-copper and gold-iridium nanoparticles have an enhanced catalytic activity for the CO oxidation reaction. In order to address these phenomena, we also performed density functional calculations of the adsorption and dissociation of O2 on these nanoparticles. Moreover, to understand the effects of Cu, Ag, and Ir impurity atoms on the dissociation of O2, we also analyze this reaction in the corresponding pure gold cluster. The results indicate that the substitution of one gold atom in a Au13 cluster by Ag, Cu or Ir diminishes the activation energy barrier for the O2 dissociation by nearly 1 eV. This energy barrier is similar for Au12Ag and Au12Cu, whereas for Au12Ir is even lower. These results suggest that the addition of other transition metal atoms to gold nanoclusters can enhance their catalytic activity towards the CO oxidation reaction, independently of the effect that the substrate could have on supported nanoclusters.

  15. Modification of energy band alignment and electric properties of Pt/Ba{sub 0.6}Sr{sub 0.4}TiO{sub 3}/Pt thin-film ferroelectric varactors by Ag impurities at interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Hirsch, S.; Komissinskiy, P., E-mail: komissinskiy@oxide.tu-darmstadt.de; Flege, S.; Li, S.; Rachut, K.; Klein, A.; Alff, L. [Institute of Materials Science, Technische Universität Darmstadt, 64287 Darmstadt (Germany)

    2014-06-28

    We report on the effects of Ag impurities at interfaces of parallel-plate Pt/Ba{sub 0.6}Sr{sub 0.4}TiO{sub 3}/Pt thin film ferroelectric varactors. Ag impurities occur at the interfaces due to diffusion of Ag from colloidal silver paint used to attach the varactor samples with their back side to the plate heated at 600–750 °C during deposition of Ba{sub 0.6}Sr{sub 0.4}TiO{sub 3}. X-ray photoelectron spectroscopy and secondary ion mass spectrometry suggest that amount and distribution of Ag adsorbed at the interfaces depend strongly on the adsorbent surface layer. In particular, Ag preferentially accumulates on top of the Pt bottom electrode. The presence of Ag significantly reduces the barrier height between Pt and Ba{sub 0.6}Sr{sub 0.4}TiO{sub 3} leading to an increased leakage current density and, thus, to a severe degradation of the varactor performance.

  16. Surface Pourbaix diagrams and oxygen reduction activity of Pt, Ag and Ni(111) surfaces studied by DFT

    DEFF Research Database (Denmark)

    Hansen, Heine Anton; Rossmeisl, Jan; Nørskov, Jens Kehlet

    2008-01-01

    The electrochemical most stable surface structures is investigated as function of pH and potential for Pt, Ag and Ni based on DFT calculations and constructed surface Pourbaix diagrams. It is also explained why metals such as Ag and Ni may be used successfully in alkaline fuel cells but not in ac......The electrochemical most stable surface structures is investigated as function of pH and potential for Pt, Ag and Ni based on DFT calculations and constructed surface Pourbaix diagrams. It is also explained why metals such as Ag and Ni may be used successfully in alkaline fuel cells...... but not in acidic PEM fuel cells. Based on density functional theory calculations we investigate the electrochemically most stable surface structures as a function of pH and electrostatic potential for Pt(111), Ag(111) and Ni(111), and we construct surface Pourbaix diagrams. We study the oxygen reduction reaction......, on the other hand, is constant vs. the standard hydrogen electrode (SHE). For Ag, this means that where the potential for dissolution and ORR are about the same at pH = 0, Ag becomes more stable relative to RHE as pH is increased. Hence the pH dependent stability offers an explanation for the possible use...

  17. c-T phase diagram and Landau free energies of (AgAu)55 nanoalloy via neural-network molecular dynamic simulations.

    Science.gov (United States)

    Chiriki, Siva; Jindal, Shweta; Bulusu, Satya S

    2017-10-21

    For understanding the structure, dynamics, and thermal stability of (AgAu) 55 nanoalloys, knowledge of the composition-temperature (c-T) phase diagram is essential due to the explicit dependence of properties on composition and temperature. Experimentally, generating the phase diagrams is very challenging, and therefore theoretical insight is necessary. We use an artificial neural network potential for (AgAu) 55 nanoalloys. Predicted global minimum structures for pure gold and gold rich compositions are lower in energy compared to previous reports by density functional theory. The present work based on c-T phase diagram, surface area, surface charge, probability of isomers, and Landau free energies supports the enhancement of catalytic property of Ag-Au nanoalloys by incorporation of Ag up to 24% by composition in Au nanoparticles as found experimentally. The phase diagram shows that there is a coexistence temperature range of 70 K for Ag 28 Au 27 compared to all other compositions. We propose the power spectrum coefficients derived from spherical harmonics as an order parameter to calculate Landau free energies.

  18. Bidirectional threshold switching characteristics in Ag/ZrO{sub 2}/Pt electrochemical metallization cells

    Energy Technology Data Exchange (ETDEWEB)

    Du, Gang, E-mail: dugang@hdu.edu.cn; Li, Hongxia; Mao, Qinan; Ji, Zhenguo [College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Wang, Chao [Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Ruoshui Road 398, Suzhou 215123 (China)

    2016-08-15

    A bidirectional threshold switching (TS) characteristic was demonstrated in Ag/ZrO{sub 2}/Pt electrochemical metallization cells by using the electrochemical active Ag electrode and appropriate programming operation strategies The volatile TS was stable and reproducible and the rectify ratio could be tuned to ∼10{sup 7} by engineering the compliance current. We infer that the volatile behavior is essentially due to the moisture absorption in the electron beam evaporated films, which remarkably improved the anodic oxidation as well as the migration of Ag{sup +} ions. The resultant electromotive force would act as a driving force for the metal filaments dissolution, leading to the spontaneous volatile characteristics. Moreover, conductance quantization behaviors were also achieved owing to formation and annihilation of atomic scale metal filaments in the film matrix. Our results illustrate that the Ag/ZrO{sub 2}/Pt device with superior TS performances is a promising candidate for selector applications in passive crossbar arrays.

  19. Self-assembled monolayers of bimetallic Au/Ag nanospheres with superior surface-enhanced Raman scattering activity for ultra-sensitive triphenylmethane dyes detection.

    Science.gov (United States)

    Tian, Yue; Zhang, Hua; Xu, Linlin; Chen, Ming; Chen, Feng

    2018-02-15

    The bimetallic Au/Ag self-assembled monolayers (SAMs) were constructed by using mono-dispersed Au/Ag nanospheres (Ag: 4.07%-34.53%) via evaporation-based assembly strategy. The composition-dependent surface-enhanced Raman scattering (SERS) spectroscopy revealed that the Au/Ag (Ag: 16.83%) SAMs provide maximized activity for triphenylmethane dyes detection. With the inter-metallic synergy, the optimized SAMs enable the Raman intensity of crystal violet molecules to be about 223 times higher than that of monometallic Au SAMs. Moreover, the SERS signals with excellent uniformity (<5% variation) are sensitive down to 10 -13   M concentrations because of the optimal matching between bimetallic plasmon resonance and the incident laser wavelength.

  20. Preparation of Au and Ag nanoparticles using Artemisia annua and their in vitro antibacterial and tyrosinase inhibitory activities

    Energy Technology Data Exchange (ETDEWEB)

    Basavegowda, Nagaraj; Idhayadhulla, Akber; Lee, Yong Rok, E-mail: yrlee@yu.ac.kr

    2014-10-01

    This work describes a plant-mediated approach to the preparation of metal nanoparticles using leaf extract of Artemisia annua (A. annua), an ethno-medicinal plant widely found in Asia, which was used as reducing and stabilizing agent. A. annua is used in traditional Chinese medicine to alleviate fever. Au and Ag nanoparticles were prepared using a one-step aqueous method at room temperature without any toxic chemicals. The formation of Au and Ag nanoparticles was monitored by UV–vis spectroscopy. Synthesized nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDX), Fourier transform infrared (FT-IR) spectroscopy, and thermogravimetric analysis (TGA). TEM analysis of Au nanoparticles showed that they had triangular and spherical shapes with sizes ranging from 15 to 40 nm. The silver nanoparticles were predominantly spherical and uniformly sized (30–50 nm). The Au and Ag nanoparticles produced showed significant tyrosinase inhibitory and antibacterial effects. These results suggest that the synthesized nanoparticles provide good alternatives in varied medical and industrial applications. - Highlights: • Au and Ag nanoparticles were synthesized using Artemisia annua leaf aqueous extract. • Nanoparticles were characterized by UV–vis spectroscopy, FT-IR, TEM, EDX, XRD, and TGA. • Au and Ag nanoparticles were of size 25 and 30 nm respectively, in spherical forms. • Nanoparticles showed significant tyrosinase inhibitory and antibacterial activities.

  1. Preparation of Au and Ag nanoparticles using Artemisia annua and their in vitro antibacterial and tyrosinase inhibitory activities

    International Nuclear Information System (INIS)

    Basavegowda, Nagaraj; Idhayadhulla, Akber; Lee, Yong Rok

    2014-01-01

    This work describes a plant-mediated approach to the preparation of metal nanoparticles using leaf extract of Artemisia annua (A. annua), an ethno-medicinal plant widely found in Asia, which was used as reducing and stabilizing agent. A. annua is used in traditional Chinese medicine to alleviate fever. Au and Ag nanoparticles were prepared using a one-step aqueous method at room temperature without any toxic chemicals. The formation of Au and Ag nanoparticles was monitored by UV–vis spectroscopy. Synthesized nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDX), Fourier transform infrared (FT-IR) spectroscopy, and thermogravimetric analysis (TGA). TEM analysis of Au nanoparticles showed that they had triangular and spherical shapes with sizes ranging from 15 to 40 nm. The silver nanoparticles were predominantly spherical and uniformly sized (30–50 nm). The Au and Ag nanoparticles produced showed significant tyrosinase inhibitory and antibacterial effects. These results suggest that the synthesized nanoparticles provide good alternatives in varied medical and industrial applications. - Highlights: • Au and Ag nanoparticles were synthesized using Artemisia annua leaf aqueous extract. • Nanoparticles were characterized by UV–vis spectroscopy, FT-IR, TEM, EDX, XRD, and TGA. • Au and Ag nanoparticles were of size 25 and 30 nm respectively, in spherical forms. • Nanoparticles showed significant tyrosinase inhibitory and antibacterial activities

  2. Focused-ion-beam-fabricated Au nanorods coupled with Ag nanoparticles used as surface-enhanced Raman scattering-active substrate for analyzing trace melamine constituents in solution

    Energy Technology Data Exchange (ETDEWEB)

    Sivashanmugan, Kundan [Department of Materials Science and Engineering, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Liao, Jiunn-Der, E-mail: jdliao@mail.ncku.edu.tw [Department of Materials Science and Engineering, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Center for Micro/Nano Science and Technology, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Liu, Bernard Haochih; Yao, Chih-Kai [Department of Materials Science and Engineering, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China)

    2013-10-24

    Graphical abstract: -- Highlights: •Well-ordered Au-nanorod array with a controlled tip ring diameter (Au{sub N}Rs{sub d}) is made by focused ion beam. •Au{sub N}Rs{sub d} coupled with Ag nanoparticles (Ag NPs/Au{sub N}Rs{sub d}) is competent to sense target molecules in a solution. •Ag NPs/Au{sub N}Rs{sub d} SERS active substrate can detect a single molecule of crystal violet. •Ag NPs/Au{sub N}Rs{sub d} as a SERS-active substrate can distinguish melamine contaminants at low concentrations (e.g., 10{sup −12} M). -- Abstract: A well-ordered Au-nanorod array with a controlled tip ring diameter (Au{sub N}Rs{sub d}) was fabricated using the focused ion beam method. Au{sub N}Rs{sub d} was then coupled with Ag nanoparticles (Ag NPs) to bridge the gaps among Au nanorods. The effect of surface-enhanced Raman scattering (SERS) on Au{sub N}Rs{sub d} and Ag NPs/Au{sub N}Rs{sub d} was particularly verified using crystal violet (CV) as the molecular probe. Raman intensity obtained from a characteristic peak of CV on Au{sub N}Rs{sub d} was estimated by an enhancement factor of ≈10{sup 7} in magnitude, which increased ≈10{sup 12} in magnitude for that on Ag NPs/Au{sub N}Rs{sub d}. A highly SERS-active Ag NPs/Au{sub N}Rs{sub d} was furthermore applied for the detection of melamine (MEL) at very low concentrations. Raman-active peaks of MEL (10{sup −3} to 10{sup −12} M) in water or milk solution upon Au{sub N}Rs{sub d} or Ag NPs/Au{sub N}Rs{sub d} were well distinguished. The peaks at 680 and 702 cm{sup −1} for MEL molecules were found suitable to be used as the index for sensing low-concentration MEL in a varied solution, while that at 1051 cm{sup −1} was practical to interpret MEL molecules in water or milk solution bonded with Au (i.e., Au{sub N}Rs{sub d}) or Ag (i.e., Ag NPs/Au{sub N}Rs{sub d}) surface. At the interface of Ag NPs/Au{sub N}Rs{sub d} and MEL molecules in milk solution, a laser-induced electromagnetic field or hotspot effect was produced and

  3. Synthesis of unidirectional structures of SiO2-Ag using Au nanoparticles as nucleation centers

    International Nuclear Information System (INIS)

    Villa S, G.; Mendoza A, D.; Gutierrez W, C.; Perez H, R.

    2008-01-01

    This paper reports a method to synthesize Ag unidirectional structures covered with SiO 2 by sol-gel technique using Au nanoparticles as nucleation centers of the unidirectional structures. In the first phase unidirectional structures of SiO 2 -Ag CI are obtained by sol-gel, using TEOS as a precursor of metallic structures (Ag) and the incorporation of Au nanoparticles as nucleation centers for growth of unidirectional structures. In the second stage, one-way systems are subjected to thermal treatment in H 2 atmosphere for obtain AG 0 particles through mechanisms that diffusion and coalescence of silver to form structures that have a thin cover of SiO 2 . Analysis by scanning electron microscopy, transmission and atomic force microscopy allowed to determine the chemical composition and microstructural properties of unidirectional systems SiO 2 -Ag. (Author)

  4. Controlled preparation of M(Ag, Au)/TiO2 through sulfydryl-assisted method for enhanced photocatalysis

    Science.gov (United States)

    Xia, Hongbo; Wu, Suli; Bi, Jiajie; Zhang, Shufen

    2017-11-01

    Here a simple and effective method was explored to fabricate M/TiO2 (M = Ag, Au) composites, which required neither pre-treatment of TiO2 nor any additives as reducing agent. Using amorphous TiO2 spheres functionalized with SH groups as starting materials, the noble metallic ions (Ag, Au) can be adsorbed by TiO2 due to their special affinity with SH groups, which is beneficial to the uniform dispersion of metallic ions on the surface of TiO2. Then the adsorbed ions were reduced to form noble metal nanoparticles by heating process (95 °C) directly without additive as reduction agent. Meanwhile, the amorphous TiO2 was transformed into anatase phase during the heating process. Thus, the transformation of TiO2 along with the reduction of noble metallic ions (Ag, Au) was simultaneously carried out by heating. The XRD patterns proved the formation of anatase TiO2 after heating. The characterizations of XPS and TEM proved the formation of Ag and Au nanoparticles on the surface of TiO2. The element mapping indicated that Ag nanoparticles are dispersed uniformly on the surface of TiO2. The photocatalytic activity of the composites has been investigated by the degradation of methyl orange under visible light irradiation. The results showed that when Ag/TiO2 (2.8 wt%) was used as photocatalyst, about 98% of the MO molecules were degraded in 70 min.

  5. Biogenic synthesis of Ag-Au-In decorated on rGO nanosheet and its antioxidant and biological activities

    Science.gov (United States)

    Hazarika, Moushumi; Sonowal, Shashanka; Saikia, Indranirekha; Boruah, Purna K.; Das, Manash R.; Tamuly, Chandan

    2017-09-01

    Au-Ag-In-rGO nanocomposite was synthesized using fruit extract of Zanthoxylum rhetsa which is an eco-friendly, simple and green method. It was characterized by UV-visible, FT-IR, XRD, XPS, EDX, TEM technique. The antioxidant capacity of the nanocomposite was evaluated in presence of AgNO3, HAuCl4 and InCl3 solution respectively at 25 °C. The results showed significant antioxidant activity in presence of 1  ×  10-5 mM AgNO3 solution. The antibacterial activity of Au-Ag-In-rGO nanoparticles was carried out against the gram  -ve bacteria Pseudomonas aeruginosa, Escherichia coli and gram  +ve bacteria Staphylococcus aureus and Bacillus cereus. The bacterial growth kinetics was studied. The bacterial strain E. coli and S. aureus showed complete inhibition at concentration 100 µg ml-1. The activity is more effective in case of Au-Ag-In-rGO compared to GO.

  6. The role of charge transfer in the oxidation state change of Ce atoms in the TM13-CeO2(111) systems (TM = Pd, Ag, Pt, Au): a DFT + U investigation.

    Science.gov (United States)

    Tereshchuk, Polina; Freire, Rafael L H; Ungureanu, Crina G; Seminovski, Yohanna; Kiejna, Adam; Da Silva, Juarez L F

    2015-05-28

    Despite extensive studies of transition metal (TM) clusters supported on ceria (CeO2), fundamental issues such as the role of the TM atoms in the change in the oxidation state of Ce atoms are still not well understood. In this work, we report a theoretical investigation based on static and ab initio molecular dynamics density functional theory calculations of the interaction of 13-atom TM clusters (TM = Pd, Ag, Pt, Au) with the unreduced CeO2(111) surface represented by a large surface unit cell and employing Hubbard corrections for the strong on-site Coulomb correlation in the Ce f-electrons. We found that the TM13 clusters form pyramidal-like structures on CeO2(111) in the lowest energy configurations with the following stacking sequence, TM/TM4/TM8/CeO2(111), while TM13 adopts two-dimensional structures at high energy structures. TM13 induces a change in the oxidation state of few Ce atoms (3 of 16) located in the topmost Ce layer from Ce(IV) (itinerant Ce f-states) to Ce(III) (localized Ce f-states). There is a charge flow from the TM atoms to the CeO2(111) surface, which can be explained by the electronegativity difference between the TM (Pd, Ag, Pt, Au) and O atoms, however, the charge is not uniformly distributed on the topmost O layer due to the pressure induced by the TM13 clusters on the underlying O ions, which yields a decrease in the ionic charge of the O ions located below the cluster and an increase in the remaining O ions. Due to the charge flow mainly from the TM8-layer to the topmost O-layer, the charge cannot flow from the Ce(IV) atoms to the O atoms with the same magnitude as in the clean CeO2(111) surface. Consequently, the effective cationic charge decreases mainly for the Ce atoms that have a bond with the O atoms not located below the cluster, and hence, those Ce atoms change their oxidation state from IV to III. This increases the size of the Ce(III) compared with the Ce(IV) cations, which builds-in a strain within the topmost Ce layer, and

  7. Galvanic replacement-free deposition of Au on Ag for core-shell nanocubes with enhanced chemical stability and SERS activity.

    Science.gov (United States)

    Yang, Yin; Liu, Jingyue; Fu, Zheng-Wen; Qin, Dong

    2014-06-11

    We report a robust synthesis of Ag@Au core-shell nanocubes by directly depositing Au atoms on the surfaces of Ag nanocubes as conformal, ultrathin shells. Our success relies on the introduction of a strong reducing agent to compete with and thereby block the galvanic replacement between Ag and HAuCl4. An ultrathin Au shell of 0.6 nm thick was able to protect the Ag in the core in an oxidative environment. Significantly, the core-shell nanocubes exhibited surface plasmonic properties essentially identical to those of the original Ag nanocubes, while the SERS activity showed a 5.4-fold further enhancement owing to an improvement in chemical enhancement. The combination of excellent SERS activity and chemical stability may enable a variety of new applications.

  8. Centrality and collision system dependence of antiproton production from p+A to Au+Au collisions at AGS energies

    International Nuclear Information System (INIS)

    Sako, H.; Ahle, L.; Akiba, Y.

    1997-12-01

    Antiproton production in heavy ion collisions reflects subtle interplay between initial production and absorption by nucleons. Because the AGS energies (10--20 A·GeV/c) are close to the antiproton production threshold, antiproton may be sensitive to cooperative processes such as QGP and hadronic multi-step processes. On the other hand, antiproton has been proposed as a probe of baryon density due to large N anti N annihilation cross sections. Cascade models predict the maximum baryon density reaches about 10 times the normal nucleus density in central Au+Au collisions, where the strong antiproton absorption is expected. In this paper, the authors show systematic studies of antiproton production from p+A to Au+Au collisions

  9. Synthesis and characterization of highly efficient and stable Pr{sub 6}O{sub 11}/Ag{sub 3}PO{sub 4}/Pt ternary hybrid structure

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Jiatao; Liu, Lin; Niu, Tongjun; Sun, Xiaosong, E-mail: sunxs@scu.edu.cn

    2017-05-01

    Highlights: • Visible-light-driven Pr{sub 6}O{sub 11}/Ag{sub 3}PO{sub 4}/Pt photocatalysts were prepared. • Pr{sub 6}O{sub 11}/Ag{sub 3}PO{sub 4}/Pt showed highly efficient and stable photocatalystic activity. • The photocatalytic mechanism of Pr{sub 6}O{sub 11}/Ag{sub 3}PO{sub 4}/Pt composite was given. - Abstract: Ag{sub 3}PO{sub 4} is an excellent photocatalyst with high efficiency and quantum yield, but suffers from the fast recombination of photogenerated electron-hole pairs and photo-corrosion. Hereby, the highly efficient and stable visible-light-driven Pr{sub 6}O{sub 11}/Ag{sub 3}PO{sub 4}/Pt photocatalyst were prepared via a three-step wet chemical approach. The as-prepared Pr{sub 6}O{sub 11}/Ag{sub 3}PO{sub 4}/Pt composite was characterized by X-ray diffraction, US-vis diffuse reflectance spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, photoluminescence spectra and transient photocurrent as well. Comparing with single Pr{sub 6}O{sub 11} or Ag{sub 3}PO{sub 4}, the prepared Pr{sub 6}O{sub 11}/Ag{sub 3}PO{sub 4}/Pt composite exhibited much higher photocatalytic activity and stability for the degradation of Rhodamine B under visible light irradiation (>420 nm). The enhanced photocatalytic performance of Pr{sub 6}O{sub 11}/Ag{sub 3}PO{sub 4}/Pt composite has been attributed to the efficient separation of photo-generated electron-hole pairs through a scheme system composed of Pr{sub 6}O{sub 11,} Ag{sub 3}PO{sub 4} and Pt.

  10. Synthesis of Ag and Au nanoparticles embedded in carbon film: Optical, crystalline and topography analysis

    Science.gov (United States)

    Gholamali, Hediyeh; Shafiekhani, Azizollah; Darabi, Elham; Elahi, Seyed Mohammad

    2018-03-01

    Atomic force microscopy (AFM) images give valuable information about surface roughness of thin films based on the results of power spectral density (PSD) through the fast Fourier transform (FFT) algorithms. In the present work, AFM data are studied for silver and gold nanoparticles (Ag NPs a-C: H and Au NPs a-C: H) embedded in amorphous hydrogenated carbon films and co-deposited on glass substrate via of RF-Sputtering and RF-Plasma Enhanced Chemical Vapor Deposition methods. Here, the working gas is acetylene and the targets are Ag and Au. While time and power are constant, the only variable parameter in this study is initial pressure. In addition, the crystalline structure of Ag NPs a-C: H and Au NPs a-C: H are studied using X-ray diffraction (XRD). UV-visible spectrophotometry will also investigate optical properties and localized surface plasmon resonance (LSPR) of samples.

  11. Core–shell Au/Ag nanoparticles embedded in silicate sol–gel ...

    Indian Academy of Sciences (India)

    Administrator

    Dedicated to the memory of the late Professor S K Rangarajan. *For correspondence. Core–shell Au/Ag nanoparticles embedded in silicate sol–gel network for sensor .... An immediate colour change was observed for the mixed solution, indicating the dis- persion of metal nanoparticles in the MTMOS sol– gel matrix.

  12. Simple and convenient preparation of Au-Pt core-shell nanoparticles on surface via a seed growth method

    International Nuclear Information System (INIS)

    Qian Lei; Sha Yufang; Yang Xiurong

    2006-01-01

    Au-Pt core-shell nanoparticles were prepared on glass surface by a seed growth method. Gold nanoparticles were used as seeds and ascorbic acid-H 2 PtCl 6 solutions as growth solutions to deposit Pt shell on the surface of gold nanoparticles. These core-shell nanoparticles and their growth process were examined by UV-Vis spectroscopy, X-ray photoelectron spectroscopy, atomic force microscopy and field-emission environmental scanning electron microscopy and the results indicated that the deposition speed was fast and nanoparticles with obvious core-shell structure could be obtained after 2 min. Moreover, this seed growth method for preparation of the core-shell nanoparticles is simple and convenient compared with other seed growth methods with NH 4 OH as a mild reductant. In addition, electrochemical experiments indicated that these Au-Pt core-shell nanoparticles had similar electrochemical properties to those of the bulk Pt electrode

  13. Temperature dependence of CO desorption kinetics at a novel Pt-on-Au/C PEM fuel cell anode

    DEFF Research Database (Denmark)

    Pitois, A.; Pilenga, A.; Pfrang, A.

    2010-01-01

    techniques. The temperature dependence of the CO desorption process on this system has been investigated using isotopic exchange experiments. The CO desorption kinetics have been studied as a function of temperature and flow rate. Desorption rate constants have been measured for a temperature range between...... degrees C. The dependence in temperature of the desorption rate constants for the novel Pt-on-Au/C system is however much lower than that observed for the Pt/C system. This suggests that the nature of the substrate has a significant influence on the catalyst surface properties. It shows that, in surface...... 25 and 150 degrees C. These desorption rate constants have been compared with the benchmarking desorption rate data obtained for the commercial Pt/C catalyst under similar experimental conditions. A comparable desorption rate constant for the Pt-on-Au/C and Pt/C systems has been obtained at 25...

  14. Direct inelastic scattering of oriented NO from Ag(111) and Pt(111)

    International Nuclear Information System (INIS)

    Tenner, M.G.; Kuipers, E.W.; Kleyn, A.W.; Stolte, S.

    1991-01-01

    A pulsed supersonic and cold oriented beam of NO molecules is incident upon the (111) face of clean Ag and Pt single crystal surfaces. The steric effect in the scattered density distributions is determined by a quadrupole mass spectrometer. It is found that the steric effect in the peak in the distribution of direct inelastically scattered molecules depends linearly on the reflection angle. In all circumstances O-end collisions lead to scattering angles more inclined towards the surface than N-end collisions. For the Pt(111) surface a much stronger steric effect is measured than for the Ag(111) surface. The steric effect seems to scale with the incident normal velocity. These strong steric effects can be explained by the larger trapping probability for the N-end orientation and a leverage effect due to the high trapping probability

  15. Dipole moments associated with edge atoms; a comparative study on stepped Pt, Au and W surfaces

    International Nuclear Information System (INIS)

    Besocke, K.; Krahl-Urban, B.; Wagner, H.

    1977-01-01

    Work function measurements have been performed on stepped Pt and Au surfaces with (111) terraces and on W surfaces with (110) terraces. In each case the work function decreases linearly with increasing step density and depends on the step orientation. The work function changes are attributed to dipole moments associated with the step edges. The dipole moments per unit step length are larger for open edge structures than for densely packed ones. The dipole moments for Pt are about twice as large as for Au and W. (Auth.)

  16. Fabrication of Au/graphene oxide/Ag sandwich structure thin film and its tunable energetics and tailorable optical properties

    Directory of Open Access Journals (Sweden)

    Ruijin Hong

    2017-01-01

    Full Text Available Au/graphene oxide/Ag sandwich structure thin film was fabricated. The effects of graphene oxide (GO and bimetal on the structure and optical properties of metal silver films were investigated by X-ray diffraction (XRD, optical absorption, and Raman intensity measurements, respectively. Compared to silver thin film, Au/graphene oxide/Ag sandwich structure composite thin films were observed with wider optical absorption peak and enhanced absorption intensity. The Raman signal for Rhodamine B molecules based on the Au/graphene oxide/Ag sandwich nanostructure substrate were obviously enhanced due to the bimetal layer and GO layer with tunable absorption intensity and fluorescence quenching effects.

  17. Current-voltage curves of atomic-sized transition metal contacts: An explanation of why Au is ohmic and Pt is not

    DEFF Research Database (Denmark)

    Nielsen, S.K.; Brandbyge, Mads; Hansen, K.

    2002-01-01

    We present an experimental study of current-voltage (I-V) curves on atomic-sized Au and Pt contacts formed under cryogenic vacuum (4.2 K). Whereas I-V curves for Au are almost Ohmic, the conductance G=I/V for Pt decreases with increasing voltage, resulting in distinct nonlinear I-V behavior...

  18. Transition voltages of vacuum-spaced and molecular junctions with Ag and Pt electrodes

    KAUST Repository

    Wu, Kunlin; Bai, Meilin; Sanvito, Stefano; Hou, Shimin

    2014-01-01

    The transition voltage of vacuum-spaced and molecular junctions constructed with Ag and Pt electrodes is investigated by non-equilibrium Green's function formalism combined with density functional theory. Our calculations show that, similarly

  19. Topological description of mechanical behavior of Cu, Ag and Au: A first-principle study

    Directory of Open Access Journals (Sweden)

    M Saghayezhian

    2011-12-01

    Full Text Available  Mechanical properties and stress-strain curves of Cu, Ag and Au single crystals are calculated using ab initio methods. Elastic and Plastic regions are scrutinized. Yield stress and slope of these curves can shed light on brittlenesss and ductility of these metals that prove Cu, despite its high ultimate tensile strength, is less ductile than Au and Ag. Analysis of topology of charge density along with stress-strain curves shows that the elastic-plastic transition accompanies topological transition and for these metals, both transitions occur in the same strain. Some charactristics of critical point, especially bond points, are inspected.

  20. Age-hardening and related phase transformation in an experimental Ag-Cu-Pd-Au alloy

    International Nuclear Information System (INIS)

    Seol, Hyo-Joung; Lee, Doung-Hun; Lee, Hee-Kyung; Takada, Yukyo; Okuno, Osamu; Kwon, Yong Hoon; Kim, Hyung-Il

    2006-01-01

    The age-hardening behaviour, phase transformation and related microstructural changes of an experimental Ag-Cu-Pd-Au alloy were examined by means of hardness test, X-ray diffraction (XRD), scanning electron microscopic (SEM) observations and electron probe microanalysis (EPMA). The specimen alloy showed apparent age-hardenability at the aging temperatures of 350 deg. C and 400 deg. C. By aging the solution-treated specimen at 400 deg. C, two phases of the Ag-rich α 1 phase and the Pd-containing Cu-rich α 2 phase were transformed into four phases of the Ag-rich α 1 ' phase, the Cu-rich α 2 ' phase, the CsCl-type CuPd phase and the AuCu(I) ordered phase. Microstructure of the solution-treated specimen consisted of the Ag-rich α 1 matrix, Cu-rich α 2 particle-like structures of various sizes and the lamellar structure of the α 1 and α 2 phases. When the peak hardness was obtained, the very fine lamellar structure consisting of the Ag-rich α 1 ' and Cu-rich α 2 ' phases was newly formed in the matrix. By further aging, the very fine lamellar structure grew and coarsened apparently, and the matrix was covered with the coarsened lamellar structure. The hardness increase was considered to be caused mainly by the diffusion and precipitation of Cu from the Ag-rich α 1 matrix, and the hardness decrease in the latter stage of age-hardening process was caused by the coarsening of the very fine lamellar structure. The CsCl-type CuPd phase and the AuCu(I) ordered phase did not contribute to the hardness increase

  1. Charge-state distribution in close collisions of 3 MeV C2+ ions with Ag and Au atoms

    NARCIS (Netherlands)

    Boerma, D.O; Arnoldbik, W.M.; Kabachnik, N.M.; Khodyrev, V.A.

    The charge-state distributions of 3 MeV carbon ions scattered over angles of 40 degrees and 60 degrees from sub-monolayers of Ag and Au atoms evaporated on a substrate and from thick layers of Ag and Au have been measured. A close similarity of the charge distributions in all cases is interpreted as

  2. Localized surface plasmon resonance properties of symmetry-broken Au-ITO-Ag multilayered nanoshells

    Science.gov (United States)

    Lv, Jingwei; Mu, Haiwei; Lu, Xili; Liu, Qiang; Liu, Chao; Sun, Tao; Chu, Paul K.

    2018-06-01

    The plasmonic properties of symmetry-broken Au-ITO-Ag multilayered nanoshells by shell cutting are studied by the finite element method. The influence of the polarization of incident light and geometrical parameters on the plasmon resonances of the multilayered nanoshells are investigated. The polarization-dependent multiple plasmon resonances appear from the multilayered nanoshells due to symmetry breaking. In nanostructures with a broken symmetry, the localized surface plasmon resonance modes are enhanced resulting in higher order resonances. According to the plasmon hybridization theory, these resonance modes and greater spectral tunability derive from the interactions of an admixture of both primitive and multipolar modes between the inner Au core and outer Ag shell. By changing the radius of the Au core, the extinction resonance modes of the multilayered nanoshells can be easily tuned to the near-infrared region. To elucidate the symmetry-broken effects of multilayered nanoshells, we link the geometrical asymmetry to the asymmetrical distributions of surface charges and demonstrate dipolar and higher order plasmon modes with large associated field enhancements at the edge of the Ag rim. The spectral tunability of the multiple resonance modes from visible to near-infrared is investigated and the unique properties are attractive to applications including angularly selective filtering to biosensing.

  3. Planar potentiometric sensors based on Au and Ag microelectrodes and conducting polymers for flow-cell analysis

    International Nuclear Information System (INIS)

    ToczyIowska, Renata; Pokrop, RafaI; Dybko, Artur; Wroblewski, Wojciech

    2005-01-01

    Back-side contact Au and Ag microelectrodes were used as transducers to construct planar all-solid-state electrodes suitable for flow-through analysis. The microsensors were based on plasticized PVC potassium-selective membranes containing ion-electron conducting polymer-polypyrrole doped with di(2-ethylhexyl) sulfosuccinate. The proposed technique allowed simple construction of microsensors in one step, by membrane solution casting directly on the surface of the planar metallic transducers. The performance of the microsensors based on Au and Ag transducers were determined and compared with planar sensors based on internal electrolyte immobilized in polyHEMA. The addition of the polypyrrole to the membrane composition did not influence on the selectivity, reproducibility and long-term stability of the microsensors but improved their standard potential stability in time in comparison with coated-wire type sensors. Moreover, all-solid-state microsensors based on Au transducers exhibited better signal stability than Ag based sensors

  4. Developing an aqueous approach for synthesizing Au and M@Au (M = Pd, CuPt) hybrid nanostars with plasmonic properties

    Science.gov (United States)

    Du, Jingshan; Yu, Junjie; Xiong, Yalin; Lin, Zhuoqing; Zhang, Hui; Yang, Deren

    Anisotropic Au nanoparticles show unique localized surface plasmon resonance (LSPR) properties, which make it attractive in optical, sensing, and biomedical applications. In this contribution, we report a general and facile strategy towards aqueous synthesis of Au and M@Au (M = Pd, CuPt) hybrid nanostars by reducing HAuCl4 with ethanolamine in the presence of cetyltrimethylammonium bromide (CTAB). According to electron microscopic observation and spectral monitoring, we found that the layered epitaxial growth mode (i.e., Frank-van der Merwe mechanism) contributes to the enlargement of the core, while, the random attachment of Au nanoclusters onto the cores accounts for the formation of the branches. Both of them are indispensable for the formation of the nanostars. The LSPR properties of the Au nanoparticles have been well investigated with morphology control via precursor amount and growth temperature. The Au nanostars showed improved surface-enhanced Raman spectroscopy (SERS) performance for rhodamine 6G due to their sharp edges and tips, which were therefore confirmed as good SERS substrate to detect trace amount of molecules.

  5. Diffusion of Ag, Au and Cs implants in MAX phase Ti3SiC2

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Weilin; Henager, Charles H.; Varga, Tamas; Jung, Hee Joon; Overman, Nicole R.; Zhang, Chonghong; Gou, Jie

    2015-05-16

    MAX phases (M: early transition metal; A: elements in group 13 or 14; X: C or N), such as titanium silicon carbide (Ti3SiC2), have a unique combination of both metallic and ceramic properties, which make them attractive for potential nuclear applications. Ti3SiC2 has been considered as a possible fuel cladding material. This study reports on the diffusivities of fission product surrogates (Ag and Cs) and a noble metal Au (with diffusion behavior similar to Ag) in this ternary compound at elevated temperatures, as well as in dual-phase nanocomposite of Ti3SiC2/3C-SiC and polycrystalline CVD 3C-SiC for behavior comparisons. Samples were implanted with Ag, Au or Cs ions and characterized with various methods, including x-ray diffraction, electron backscatter diffraction, energy dispersive x-ray spectroscopy, Rutherford backscattering spectrometry, helium ion microscopy, and transmission electron microscopy. The results show that in contrast to immobile Ag in 3C-SiC, there is a significant outward diffusion of Ag in Ti3SiC2 within the dual-phase nanocomposite during Ag ion implantation at 873 K. Similar behavior of Au in polycrystalline Ti3SiC2 was also observed. Cs out-diffusion and release from Ti3SiC2 occurred during post-implantation thermal annealing at 973 K. This study suggests caution and further studies in consideration of Ti3SiC2 as a fuel cladding material for advanced nuclear reactors operating at very high temperatures.

  6. Diffusion of single Au, Ag and Cu atoms inside Si(111)-(7 × 7) half unit cells: A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qin [Department of Physics, Southern University of Science and Technology, Shenzhen, Guangdong 518055 (China); Department of Physics, The Chinese University of Hong Kong, Shatin, New Territory, Hong Kong (China); Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang, Sichuan 621908 (China); Fu, Qiang [Institut für Physik and IRIS Adlershof, Humboldt-Universität zu Berlin, Zum Großen Windkanal 6, 12489 Berlin (Germany); Shao, Xiji; Ma, Xuhang; Wu, Xuefeng [Department of Physics, Southern University of Science and Technology, Shenzhen, Guangdong 518055 (China); Wang, Kedong, E-mail: wangkd@sustc.edu.cn [Department of Physics, Southern University of Science and Technology, Shenzhen, Guangdong 518055 (China); Xiao, Xudong, E-mail: xdxiao@phy.cuhk.edu.hk [Department of Physics, The Chinese University of Hong Kong, Shatin, New Territory, Hong Kong (China)

    2017-04-15

    Highlights: • Diffusions of Au, Ag and Cu atoms in the half unit cells of Si(111)-(7×7) have been studied by using a STM-based I-t method. • Despite their similar absorption sites, the diffusion dynamics show obvious differences between Ag and the other two. • Theoretical calculations suggest that different potential energy profiles are responsible for the observed differences. - Abstract: The diffusion behaviors of single Au, Ag and Cu atoms on Si(111)-(7 × 7) half unit cells have been investigated via combining scanning tunneling microscopy and first-principles calculations. Despite the similar adsorption sites between both half unit cells among these elements, the diffusion dynamics show obvious differences between Ag and the other two. Although obvious asymmetry has been found in the diffusion behaviors of Au and Cu atoms in two half unit cells of Si(111)-(7 × 7), the asymmetry behaves in a way different from that of Ag atoms and no dual-time character has been observed for the diffusions of Au and Cu in both half unit cells. Theoretical calculations suggest a different potential energy profile caused by the stronger hybridization between d states of Au (Cu) and Si states make the concept of basin useless for the diffusion of Au and Cu atoms inside the half unit cells of Si(111)-(7 × 7).

  7. Tunable thermodynamic stability of Au-CuPt core-shell trimetallic nanoparticles by controlling the alloy composition: insights from atomistic simulations.

    Science.gov (United States)

    Huang, Rao; Shao, Gui-Fang; Wen, Yu-Hua; Sun, Shi-Gang

    2014-11-07

    A microscopic understanding of the thermal stability of metallic core-shell nanoparticles is of importance for their synthesis and ultimately application in catalysis. In this article, molecular dynamics simulations have been employed to investigate the thermodynamic evolution of Au-CuPt core-shell trimetallic nanoparticles with various Cu/Pt ratios during heating processes. Our results show that the thermodynamic stability of these nanoparticles is remarkably enhanced upon rising Pt compositions in the CuPt shell. The melting of all the nanoparticles initiates at surface and gradually spreads into the core. Due to the lattice mismatch among Au, Cu and Pt, stacking faults have been observed in the shell and their numbers are associated with the Cu/Pt ratios. With the increasing temperature, they have reduced continuously for the Cu-dominated shell while more stacking faults have been produced for the Pt-dominated shell because of the significantly different thermal expansion coefficients of the three metals. Beyond the overall melting, all nanoparticles transform into a trimetallic mixing alloy coated by an Au-dominated surface. This work provides a fundamental perspective on the thermodynamic behaviors of trimetallic, even multimetallic, nanoparticles at the atomistic level, indicating that controlling the alloy composition is an effective strategy to realize tunable thermal stability of metallic nanocatalysts.

  8. Kinetically controlled synthesis of AuPt bi-metallic aerogels and their enhanced electrocatalytic performances

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Qiurong [School of Mechanical and Materials Engineering; Washington State University; Pullman; USA; Zhu, Chengzhou [School of Mechanical and Materials Engineering; Washington State University; Pullman; USA; Du, Dan [School of Mechanical and Materials Engineering; Washington State University; Pullman; USA; Key Laboratory of Pesticides and Chemical Biology; Bi, Cuixia [Institute of Crystal Materials; Shandong University; Jinan 250100; P. R. China; Xia, Haibing [Institute of Crystal Materials; Shandong University; Jinan 250100; P. R. China; Feng, Shuo [School of Mechanical and Materials Engineering; Washington State University; Pullman; USA; Engelhard, Mark H. [Environmental Molecular Sciences Laboratory; Pacific Northwest National Laboratory; Richland; USA; Lin, Yuehe [School of Mechanical and Materials Engineering; Washington State University; Pullman; USA

    2017-01-01

    Kinetically controlled synthesis of AuPtxbi-metallic hydrogels/aerogels was efficiently achieved for the first timeviatuning the reaction temperature or adding a surfactant.

  9. Oxygen reduction reaction (orr) on bimetallic AuPt and AuPd(1 0 0)-electrodes: Effects of the heteroatomic junction on the reaction paths

    Science.gov (United States)

    Schulte, E.; Belletti, G.; Arce, M.; Quaino, P.

    2018-05-01

    The seek for materials to enhance the oxygen reduction reaction (orr) rate is a highly relevant topic due to its implication in fuel cell devices. Herein, the orr on bimetallic electrocatalysts based on Au-M (M = Pt, Pd) has been studied computationally, by performing density functional theory calculations. Bimetallic (1 0 0) electrode surfaces with two different Au:M ratios were proposed, and two possible pathways, associative and dissociative, were considered for the orr. Changes in the electronic properties of these materials with respect to the pure metals were acknowledged to gain understanding in the overall reactivity trend. The effect of the bimetallic junction on the stability of the intermediates O2 and OOH was also evaluated by means of geometrical and energetic parameters; being the intermediates preferably adsorbed on Pt/Pd atoms, but presenting in some cases higher adsorption energies compared with bare metals. Finally, the kinetics of the Osbnd O bond breaking in O2∗ and OOH∗ adsorbed intermediates in the bimetallic materials and the influence of the Au-M junction were studied by means of the nudge elastic-band method. A barrierless process for the scission of O2∗ was found in Au-M for the higher M ratios. Surprisingly, for Au-M with lower M ratios, the barriers were much lower than for pure Au surfaces, suggesting a highly reactive surface towards the orr. The Osbnd O scission of the OOH∗ was found to be a barrierless process in Ausbnd Pt systems and nearly barrierless in all Ausbnd Pd systems, implying that the reduction ofO2 in these systems proceeds via the full reduction of O2 to H2O , avoiding H2O2 formation.

  10. Direct flow in 10.8 GeV/nucleon Au+Au collisions measured in experiment E917 at the AGS

    International Nuclear Information System (INIS)

    Back, B. B.; Betts, R. R.; Britt, H. C.; Chang, J.; Chang, W. C.; Gillitzer, A.; Henning, W. F.; Hofman, D. J.; Nanal, V.; Wuosmaa, A. H.

    1999-01-01

    Analysis of directed flow observable for protons and pions from Au+Au collisions at 10.8 GeV/nucleon from experiment E917 at the AGS is presented. Using a Fourier series expansion, the first Fourier component, ν 1 ,was extracted as a function of rapidity for mid-central collisions (17-24%). Clear evidence for positive directed flow is found in the proton data, and a weak, possibly negative directed flow signal is observed for π + and π -

  11. Hardening mechanism of an Ag-Pd-Cu-Au dental casting alloy

    International Nuclear Information System (INIS)

    Seol, Hyo-Joung; Kim, Gi-Chul; Son, Kuk-Hyeon; Kwon, Yong Hoon; Kim, Hyung-Il

    2005-01-01

    Age-hardening behaviour and the related microstructural changes were studied to elucidate the hardening mechanism of an Ag-Pd-Cu-Au dental casting alloy by means of hardness test, X-ray diffraction (XRD), scanning electron microscopic (SEM) observations and electron probe microanalysis (EPMA). By considering hardness test and XRD results together, it was revealed that the hardness increased during the early stage of phase transformation of α into α 1 . In the SEM photographs, two phases of matrix and particle-like structures were observed, and the precipitation of element from the matrix progressed during isothermal aging. By SEM observations and EPMA analysis, it could be supposed that the increase in hardness was caused by the diffusion and aggregation of Cu atoms from the Ag-rich α matrix containing Au and Cu in the early stage of age-hardening process, and that the decrease in hardness was caused by the progress of coarsening of Cu-rich lamellar precipitates in the later stage of the age-hardening process. The changes in the Ag-rich matrix caused both the increase and decrease in hardness, and the CuPd phase containing small amounts of Zn and Sn did not contribute to the hardness changes

  12. Age-hardening and related phase transformation in an experimental Ag-Cu-Pd-Au alloy

    Energy Technology Data Exchange (ETDEWEB)

    Seol, Hyo-Joung [Department of Dental Materials, College of Dentistry, Pusan National University, 1-10 Ami-dong, Seo-gu, Pusan 602-739 (Korea, Republic of); Lee, Doung-Hun [Department of Dental Materials, College of Dentistry, Pusan National University, 1-10 Ami-dong, Seo-gu, Pusan 602-739 (Korea, Republic of); Lee, Hee-Kyung [Department of Dental Technology, Daegu Health College, San 7 Taejeon-dong, Buk-gu, Daegu 702-722 (Korea, Republic of); Takada, Yukyo [Division of Dental Biomaterials, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575 (Japan); Okuno, Osamu [Division of Dental Biomaterials, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575 (Japan); Kwon, Yong Hoon [Department of Dental Materials, College of Dentistry, Pusan National University, 1-10 Ami-dong, Seo-gu, Pusan 602-739 (Korea, Republic of); Kim, Hyung-Il [Department of Dental Materials, College of Dentistry, Pusan National University, 1-10 Ami-dong, Seo-gu, Pusan 602-739 (Korea, Republic of)]. E-mail: hilkim@pusan.ac.kr

    2006-01-05

    The age-hardening behaviour, phase transformation and related microstructural changes of an experimental Ag-Cu-Pd-Au alloy were examined by means of hardness test, X-ray diffraction (XRD), scanning electron microscopic (SEM) observations and electron probe microanalysis (EPMA). The specimen alloy showed apparent age-hardenability at the aging temperatures of 350 deg. C and 400 deg. C. By aging the solution-treated specimen at 400 deg. C, two phases of the Ag-rich {alpha}{sub 1} phase and the Pd-containing Cu-rich {alpha}{sub 2} phase were transformed into four phases of the Ag-rich {alpha}{sub 1}{sup '} phase, the Cu-rich {alpha}{sub 2}{sup '} phase, the CsCl-type CuPd phase and the AuCu(I) ordered phase. Microstructure of the solution-treated specimen consisted of the Ag-rich {alpha}{sub 1} matrix, Cu-rich {alpha}{sub 2} particle-like structures of various sizes and the lamellar structure of the {alpha}{sub 1} and {alpha}{sub 2} phases. When the peak hardness was obtained, the very fine lamellar structure consisting of the Ag-rich {alpha}{sub 1}{sup '} and Cu-rich {alpha}{sub 2}{sup '} phases was newly formed in the matrix. By further aging, the very fine lamellar structure grew and coarsened apparently, and the matrix was covered with the coarsened lamellar structure. The hardness increase was considered to be caused mainly by the diffusion and precipitation of Cu from the Ag-rich {alpha}{sub 1} matrix, and the hardness decrease in the latter stage of age-hardening process was caused by the coarsening of the very fine lamellar structure. The CsCl-type CuPd phase and the AuCu(I) ordered phase did not contribute to the hardness increase.

  13. Novel multifunctional graphene sheets with encased Au/Ag nanoparticles for advanced electrochemical analysis of organic compounds.

    Science.gov (United States)

    Pruneanu, Stela; Biris, Alexandru R; Pogacean, Florina; Lazar, Diana Mihaela; Ardelean, Stefania; Watanabe, Fumyia; Dervishi, Enkeleda; Biris, Alexandru S

    2012-11-12

    This work is the first presentation of the synthesis of few-layer graphene decorated with gold and silver nanoparticles (Gr-Au-Ag) by chemical vapor deposition over a catalytic system formed of bimetallic Au-Ag nanoclusters supported on MgO and with methane used as the source of carbon. The sheetlike morphology of the graphene nanostructures, with mean sizes in the range of hundreds of nanometers, was observed by high-resolution electron microscopy. The distinctive feature found in all the samples was the regular rectangular or square shapes. This multi-component organic-inorganic nanomaterial was used to modify a platinum substrate and subsequently employed for the detection of carbamazepine, an anti-convulsion drug. UV/Vis spectroscopy revealed that a strong hypochromism occurred over time, after mixing solutions of graphene-Au-Ag with carbamazepine. This can be attributed to π-π stacking between the aromatic groups of the two compounds. Linear sweep voltammetry (LCV) provided evidence that the modified platinum substrate presented a significant electrocatalytic reaction toward the oxidation of carbamazepine. The intensity of the current was found to increase by up to 2.5 times, and the oxidation potential shifted from +1.5 to +1.35 V(Ag/AgCl) in comparison with the unmodified electrode. Electrochemical impedance spectroscopy (EIS) was further used to thoroughly assess the activity of the platinum electrode that was modified by the deposition of the Gr-Au-Ag composites in the presence of various concentrations of carbamazepine. The experimental EIS records were used for the generation of an equivalent electrical circuit, based on the charge-transfer resistance (R(ct)), Warburg impedance (Z(D)), solution resistance (R(s)), and a constant phase element (CPE) that characterizes the non-ideal interface capacitive responses. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Preparation of Agcore/Aushell bimetallic nanoparticles from physical mixtures of Au clusters and Ag ions under dark conditions and their catalytic activity for aerobic glucose oxidation

    International Nuclear Information System (INIS)

    Zhang, Haijun; Toshima, Naoki; Takasaki, Kanako; Okumura, Mitsutaka

    2014-01-01

    Graphical abstract: The synthesis, characterization and catalytic activities for glucose oxidation of AgAu bimetallic nanoparticles (BNPs) with size of less than 2 nm are reported. The catalytic activity of Ag 10 Au 90 BNPs was about two times higher than that of Au NPs, even the BNPs have a larger particle size than that of Au NPs. -- Highlights: • Ag core /Au shell BNPs with size of less than 2.0 nm were prepared. • No any reducing reagents and lights were used for the preparation of the BNPs. • The catalytic activity of the BNPs is about two times higher than that of Au NPs. -- Abstract: AgAu bimetallic nanoparticles (BNPs), one of the most extensively studied bimetallic systems in the literatures, could have various structures and compositions depending on their preparation conditions. In the present work, catalytically highly active PVP-protected Ag core /Au shell BNPs of about 2.5 nm in diameter were fabricated from physical mixtures of aqueous dispersions of Au nanoparticles and Ag + ions under dark conditions without using any reducing agents. The prepared Ag core /Au shell BNP colloidal catalysts, which possessed a high activity for aerobic glucose oxidation, were characterized by Ultraviolet–visible spectrophotometry (UV–Vis), Inductive coupled plasma emission spectrometer (ICP), Transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and Energy disperse spectroscopy (EDS) in High-resolution scanning transmission electron microscopy (HR-STEM). The highest activity (11,360 mol-glucose h −1 mol-metal −1 ) was observed for the BNPs with the Ag/Au atomic ratio of 1/9, the TOF value of which is about two times higher than that of Au nanoparticles with the particle size of 1.3 nm. The enhanced catalytic activity of the prepared Ag core /Au shell BNPs compared to Au NPs can be ascribed to the presence of negatively charged Au atoms resulted from electron donations from neighboring Ag atoms and PVP due to electronic charge

  15. Carbon dot-Au(i)Ag(0) assembly for the construction of an artificial light harvesting system.

    Science.gov (United States)

    Jana, Jayasmita; Aditya, Teresa; Pal, Tarasankar

    2018-03-06

    Artificial light harvesting systems (LHS) with inorganic counterparts are considered to be robust as well as mechanistically simple, where the system follows the donor-acceptor principle with an unchanged structural pattern. Plasmonic gold or silver nanoparticles are mostly chosen as inorganic counterparts to design artificial LHS. To capitalize on its electron accepting capability, Au(i) has been considered in this work for the synergistic stabilization of a system with intriguingly fluorescing silver(0) clusters produced in situ. Thus a stable fluorescent Au(i)Ag(0) assembly is generated with electron accepting capabilities. On the other hand, carbon dots have evolved as new fluorescent probes due to their unique physicochemical properties. Utilizing the simple electronic behavior of carbon dots, an electronic interaction between the fluorescent Au(i)Ag(0) and a carbon dot has been investigated for the construction of a new artificial light harvesting system. This coinage metal assembly allows surface energy transfer where it acts as an acceptor, while the carbon dot behaves as a good donor. The energy transfer efficiency has been calculated experimentally to be significant (81.3%) and the Au(i)Ag(0)-carbon dot assembly paves the way for efficient artificial LHS.

  16. Nanoparticles of Pt and Ag supported in meso porous SiO{sub 2}: characterization and catalytic applications; Nanoparticulas de Pt y Ag soportadas en SiO{sub 2} mesoporosa: caracterizacion y aplicaciones cataliticas

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa, M.E.; Perez H, R.; Perez A, M.; Mondragon G, G. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico); Arenas A, J. [IFUNAM, A.P. 20-364, 01000 Mexico D.F. (Mexico)

    2004-07-01

    The surface properties of catalysts of Pt and Ag supported in conventional SiO{sub 2} hey have been studied through reduction reactions of N{sub 2}O with H{sub 2} which is a sensitive reaction to the structure. In our case it was used a meso porous ceramic support of SiO{sub 2} of great surface area (1100 m{sup 2}/gr), where it is caused a high dispersion of the metallic nanoparticles of Pt and Ag, the total charge of the active phase in the meso porous support was of 3% in weight. The catalysts show a variation in the percentages of conversion of N{sub 2}O depending on the size and dispersion of the metallic phases. (Author)

  17. A novel surface plasmon resonance biosensor based on the PDA-AgNPs-PDA-Au film sensing platform for horse IgG detection

    Science.gov (United States)

    Wang, Ning; Zhang, Di; Deng, Xinyu; Sun, Ying; Wang, Xinghua; Ma, Pinyi; Song, Daqian

    2018-02-01

    Herein we report a novel polydopamine-silver nanoparticle-polydopamine-gold (PDA-AgNPs-PDA-Au) film based surface plasmon resonance (SPR) biosensor for horse IgG detection. The PDA-AgNPs-PDA-Au film sensing platform was built on Au-film via layer-by-layer self-assembly. Ag ion was reduced in situ to AgNPs in presence of PDA. The top PDA layer can prevent AgNPs from being oxidized and connect with antibody via Schiff alkali reaction directly. The morphology and thickness of the modified gold film were characterized using scanning electron microscope and Talystep. Experimental results show that the PDA-AgNPs-PDA-Au film sensing platform is stable, regenerative and sensitive for horse IgG detection. The detection limit of horse IgG obtained with the present biosensor is 0.625 μg mL- 1, which is 2-fold and 4-fold lower than that obtained with biosensor based on PDA modified Au film and conventional biosensor based on MPA, respectively. Furthermore, when challenged to real serum samples, our sensor exhibited excellent specificity to horse IgG, suggesting its potential for industrial application.

  18. Leaching of Au, Ag, and Pd from waste printed circuit boards of mobile phone by iodide lixiviant after supercritical water pre-treatment.

    Science.gov (United States)

    Xiu, Fu-Rong; Qi, Yingying; Zhang, Fu-Shen

    2015-07-01

    Precious metals are the most attractive resources in waste printed circuit boards (PCBs) of mobile phones. In this work, an alternative process for recovering Au, Ag, and Pd from waste PCBs of mobile phones by supercritical water oxidation (SCWO) pre-treatment combined with iodine-iodide leaching process was developed. In the process, the waste PCBs of mobile phones were pre-treated in supercritical water, then a diluted hydrochloric acid leaching (HL) process was used to recovery the Cu, whose leaching efficiency was approximately 100%, finally the resulting residue was subjected to the iodine-iodide leaching process for recovering the Au, Ag, and Pd. Experimental results indicated that SCWO pre-treatment temperature, time, and pressure had significant influence on the Au, Ag, and Pd leaching from (SCWO+HL)-treated waste PCBs. The optimal SCWO pre-treatment conditions were 420°C and 60min for Au and Pd, and 410°C and 30min for Ag. The optimum dissolution parameters for Au, Pd, and Ag in (SCWO+HL)-treated PCBs with iodine-iodide system were leaching time of 120min (90min for Ag), iodine/iodide mole ratio of 1:5 (1:6 for Ag), solid-to-liquid ratio (S/L) of 1:10g/mL (1:8g/mL for Ag), and pH of 9, respectively. It is believed that the process developed in this study is environment friendly for the recovery of Au, Ag, and Pd from waste PCBs of mobile phones by SCWO pre-treatment combined with iodine-iodide leaching process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Theophylline-assisted, eco-friendly synthesis of PtAu nanospheres at reduced graphene oxide with enhanced catalytic activity towards Cr(VI) reduction.

    Science.gov (United States)

    Hu, Ling-Ya; Chen, Li-Xian; Liu, Meng-Ting; Wang, Ai-Jun; Wu, Lan-Ju; Feng, Jiu-Ju

    2017-05-01

    Theophylline as a naturally alkaloid is commonly employed to treat asthma and chronic obstructive pulmonary disorder. Herein, a facile theophylline-assisted green approach was firstly developed for synthesis of PtAu nanospheres/reduced graphene oxide (PtAu NSs/rGO), without any surfactant, polymer, or seed involved. The obtained nanocomposites were applied for the catalytic reduction and removal of highly toxic chromium (VI) using formic acid as a model reductant at 50°C, showing the significantly enhanced catalytic activity and improved recyclability when compared with commercial Pt/C (50%) and home-made Au nanocrystals supported rGO (Au NCs/rGO). It demonstrates great potential applications of the catalyst in wastewater treatment and environmental protection. The eco-friendly route provides a new platform to fabricate other catalysts with enhanced catalytic activity. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Electronic structure, superconductivity, and spin fluctuations in the A15 compounds A3B: A = V, Nb; B = Ir,Pt,Au

    International Nuclear Information System (INIS)

    Jarlborg, T.; Junod, A.; Peter, M.

    1983-01-01

    The electronic structure of six A15 compounds V 3 Ir, V 3 Pt, V 3 Au, Nb 3 Ir, Nb 3 Pt, and Nb 3 Au has been determined by means of self-consistent semirelativistic linear muffin-tin orbital band calculations. Parameters related to superconductivity such as electron-phonon coupling, transition temperature, electronic specific heat, and magnetic exchange enhancement are derived from the electronic-structure results. Generally the results obtained agree well with experimental values, with the exception of Nb 3 Pt and V 3 Au. In the former compound the density of states (DOS) has a sharp increase at E/sub F/ making the exact DOS value uncertain. In V 3 Au the high calculated T/sub c/ and the Stoner factor indicate that spin fluctuations may be limiting the T/sub c/. .AE

  1. Probing Interactions between AuNPs/AgNPs and Giant Unilamellar Vesicles (GUVs Using Hyperspectral Dark-field Microscopy

    Directory of Open Access Journals (Sweden)

    Anupama Bhat

    2018-03-01

    Full Text Available Noble metallic nanoparticles (NPs such as gold and silver nanoparticles (AuNPs and AgNPs have been shown to exhibit anti-tumor effect in anti-angiogenesis, photothermal and radio therapeutics. On the other hand, cell membranes are critical locales for specific targeting of cancerous cells. Therefore, NP-membrane interactions need be studied at molecular level to help better understand the underlying physicochemical mechanisms for future applications in cancer nanotechnology. Herein, we report our study on the interactions between citrate stabilized colloidal AuNPs/AgNPs (10 nm in size and giant unilamellar vesicles (GUVs using hyperspectral dark-field microscopy. GUVs are large model vesicle systems well established for the study of membrane dynamics. GUVs used in this study were prepared with dimyristoyl phosphatidylcholine (DMPC and doped with cholesterol at various molar concentrations. Both imaging and spectral results support that AuNPs and AgNPs interact very differently with GUVs, i.e., AuNPs tend to integrate in between the lipid bilayer and form a uniform golden-brown crust on vesicles, whereas AgNPs are bejeweled on the vesicle surface as isolated particles or clusters with much varied configurations. The more disruptive capability of AuNPs is hypothesized to be responsible for the formation of golden brown crusts in AuNP-GUV interaction. GUVs of 20 mol% CHOL:DMPC were found to be a most economical concentration for GUVs to achieve the best integrity and the least permeability, consistent with the finding from other phase studies of lipid mixture that the liquid-ordered domains have the largest area fraction of the entire membrane at around 20 mol% of cholesterol.

  2. Highly sensitive colorimetric detection of glucose in a serum based on DNA-embeded Au@Ag core–shell nanoparticles

    International Nuclear Information System (INIS)

    Kang, Fei; Xu, Kun; Hou, Xiangshu

    2015-01-01

    Glucose is a key energy substance in diverse biology and closely related to the life activities of the organism. To develop a simple and sensitive method for glucose detection is extremely urgent but still remains a key challenge. Herein, we report a colorimetric glucose sensor in a homogeneous system based on DNA-embedded core–shell Au@Ag nanoparticles. In this assay, a glucose substrate was first catalytically oxidized by glucose oxidase to produce H 2 O 2 which would further oxidize and gradually etch the outer silver shell of Au@Ag nanoparticles. Afterwards, the solution color changed from yellow to red and the surface plasmon resonance (SPR) band of Au@Ag nanoparticles declined and red-shifted from 430 to 516 nm. Compared with previous silver-based glucose colorimetric detection strategies, the distinctive SPR band change is superior to the color variation, which is critical to the high sensitivity of this assay. Benefiting from the outstanding optical property, robust stability and well-dispersion of the core–shell Au@AgNPs hybrid, this colorimetric assay obtained a detection limit of glucose as low as 10 nM, which is at least a 10-fold improvement over other AgNPs-based procedures. Moreover, this optical biosensor was successfully employed to the determination of glucose in fetal bovine serum. (paper)

  3. Growth of coral-like PtAu-MnO2 binary nanocomposites on free-standing graphene paper for flexible nonenzymatic glucose sensors.

    Science.gov (United States)

    Xiao, Fei; Li, Yuanqing; Gao, Hongcai; Ge, Shuibing; Duan, Hongwei

    2013-03-15

    The growing demand for compact point-of-care medical devices and portable instruments for on-site environmental sampling has stimulated intense research on flexible sensors that can be miniaturized and function under considerable physical deformation. We report a new type of flexible electrochemical biosensors based on free-standing graphene paper carrying binary nanocomposites of PtAu alloy and MnO(2). The coral-like PtAu-MnO(2) nanocomposites are grown on the substrate through one-step template-free electrodeposition, leading to an intimate contact between the PtAu alloy and MnO(2) matrix. The flexible electrode exhibits a unique set of structural and electrochemical properties such as better uniformity, larger active surface areas, and faster electron transfer in comparison with the control electrode prepared by tandem growth of MnO(2) network and PtAu alloy in two steps. In nonenzymatic amperometric glucose detection, the PtAu-MnO(2) binary nanostructure-decorated graphene paper has shown greatly enhanced sensing performance such as wide liner range (0.1 mM to 30.0 mM), high sensitivity (58.54 μA cm(-2) mM(-1)), low detection limit (0.02 mM, S/N=3), satisfactory selectivity, excellent reproducibility and stability, and tolerability to mechanical stress. The strategy of co-growth of metal and metal oxides on freestanding carbon substrates opens new possibility to develop high-performance flexible electrochemical sensors. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Synthesis of Small Au-Ag Core-Shell Cubes, Cuboctahedra, and Octahedra with Size Tunability and Their Optical and Photothermal Properties.

    Science.gov (United States)

    Chiang, Chieh; Huang, Michael H

    2015-12-02

    Aqueous phase synthesis of small Au-Ag core-shell nanocubes, cuboctahedra, and octahedra is achieved through the deposition of Ag shells on small octahedral Au cores. These nanocrystals show efficient photothermal activity and can assemble into supercrystals. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. The synthesis of Au@C@Pt core-double shell nanocomposite and its application in enzyme-free hydrogen peroxide sensing

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yayun; Li, Yuhui; Jiang, Yingying [College of Chemistry & Environment, Minnan Normal University, Zhangzhou 363000 (China); Li, Yancai, E-mail: liyancai@mnnu.edu.cn [College of Chemistry & Environment, Minnan Normal University, Zhangzhou 363000 (China); Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000 (China); Li, Shunxing [College of Chemistry & Environment, Minnan Normal University, Zhangzhou 363000 (China); Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000 (China)

    2016-08-15

    Highlights: • A novel Au@C@Pt core-double shell nanocomposite was synthesized and characterized by SEM(*), TEM and EDS, etc. • The synthesized Au@C@Pt core-double shell nanocomposite showed high sensitivity and selectivity to electrocatalytic reduction of hydrogen peroxide (H{sub 2}O{sub 2}) and can be used to fabricate enzyme-free H{sub 2}O{sub 2} electrochemical sensor. • The H{sub 2}O{sub 2} sensor has two linear range of 9.0 μM–1.86 mM and 1.86 mM–7.11 mM, respectively, with a low limit of detection of 0.13 μM. • The H{sub 2}O{sub 2} sensor also displays high anti-interference ability, good stability and reproducibility. - Abstract: A novel Au@C@Pt core-double shell nanocomposite was synthesized and used to fabricate enzyme-free electrochemical sensor for rapid and sensitive detection of hydrogen peroxide (H{sub 2}O{sub 2}). The well-designed Au@C@Pt core-double shell nanocomposite was characterized by scanning electron microscopy (SEM), transmission electron microscope (TEM) and energy-dispersed spectrum (EDS). The Au@C@Pt core-double shell nanocomposite modified glassy carbon electrode (Au@C@Pt/GCE) exhibits good electrocatalytic activity towards H{sub 2}O{sub 2} reduction at 0.0 V and can be used as H{sub 2}O{sub 2} sensor. The sensor displays two wide linear ranges towards H{sub 2}O{sub 2} detection. The one is 9.0 μM–1.86 mM with high sensitivity of 144.7 μA mM{sup −1} cm{sup −2}, and the other is 1.86 mM–7.11 mM with sensitivity of 80.1 μA mM{sup −1} cm{sup −2}. When signal to noise (S/N) is 3, the calculated detection limit (LOD) is 0.13 μM. Furthermore, the interference from the common interfering species such as glucose, ascorbic acid, dopamine and uric acid can be effectively avoided to H{sub 2}O{sub 2} detection. Additionally, the H{sub 2}O{sub 2} sensor also displays good stability and reproducibility.

  6. Radiochemical separations of target-like reaction products from Au-, Pt-, and Th-targets after irradiation with GeV protons

    International Nuclear Information System (INIS)

    Szweryn, B.; Bruechle, W.; Schausten, B.; Schaedel, M.

    1988-08-01

    Chemical separation procedures for separations of reaction products after spallation reactions with 2.6 GeV protons and heavy element targets are presented. To determine independent cross sections of individual isotopes the elements Au, Pt, Ir, Os, Re, W, Ta, Hf, (Lu, Yb, Tm, Er), (Gd, Eu, Sm), were separated from gold targets, Pt, Ir, Os, W, Ta, Hf, (Lu, Yb, Tm, Er), (Gd, Eu, Sm) from a platinum target and Au, Tl from a thorium target. (orig.)

  7. Evaluation of the photophysicochemical properties and photodynamic therapy activity of nanoconjugates of zinc phthalocyanine linked to glutathione capped Au and Au3Ag1 nanoparticles

    CSIR Research Space (South Africa)

    Oluwole, DA

    2018-03-01

    Full Text Available , Charles Maphanga, Saturnin Ombinda-Lemboumba, Patience Mthunzi-Kufa, Tebello Nyokong ABSTRACT: We report on the synthesis of glutathione capped gold (AuNPs–GSH) and gold– silver (Au3Ag1NPs–GSH) nanoparticles and their covalent attachment to Zn...

  8. Determination of the compositions of the DIGM zone in nanocrystalline Ag/Au and Ag/Pd thin films by secondary neutral mass spectrometry

    Directory of Open Access Journals (Sweden)

    Gábor Y. Molnár

    2016-03-01

    Full Text Available Alloying by grain boundary diffusion-induced grain boundary migration is investigated by secondary neutral mass spectrometry depth profiling in Ag/Au and Ag/Pd nanocrystalline thin film systems. It is shown that the compositions in zones left behind the moving boundaries can be determined by this technique if the process takes place at low temperatures where solely the grain boundary transport is the contributing mechanism and the gain size is less than the half of the grain boundary migration distance. The results in Ag/Au system are in good accordance with the predictions given by the step mechanism of grain boundary migration, i.e., the saturation compositions are higher in the slower component (i.e., in Au or Pd. It is shown that the homogenization process stops after reaching the saturation values and further intermixing can take place only if fresh samples with initial compositions, according to the saturation values, are produced and heat treated at the same temperature. The reversal of the film sequence resulted in the reversal of the inequality of the compositions in the alloyed zones, which is in contrast to the above theoretical model, and explained by possible effects of the stress gradients developed by the diffusion processes itself.

  9. Fast and facile preparation of CTAB based gels and their applications in Au and Ag nanoparticles synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyay, Ravi Kant, E-mail: rkupadhyay85@gmail.com [Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Gautam Budh Nagar, 201314 Uttar Pradesh (India); Soin, Navneet, E-mail: n.soin@bolton.ac.uk [Knowledge Centre for Materials Chemistry (KCMC), Institute for Materials Research and Innovation (IMRI), University of Bolton, Deane Road, Bolton BL3 5AB (United Kingdom); Saha, Susmita, E-mail: ssaha@bose.res.in [Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700 098 (India); Barman, Anjan, E-mail: abarman@bose.res.in [Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700 098 (India); Sinha Roy, Susanta, E-mail: susanta.roy@snu.edu.in [Department of Physics, School of Natural Sciences, Shiv Nadar University, Gautam Budh Nagar, 201314 Uttar Pradesh (India)

    2015-04-15

    We have demonstrated that the gel-like mesophase of Cetyltrimethylammonium bromide (CTAB) can be synthesized by judicial adjustment of water to surfactant molar ratio (W{sub 0}), without using any additional salts, gelating agents or co-surfactants. Gel formation was found to be highly dependent on the water to surfactant molar ratio (W{sub 0}), with the lowest value of W{sub 0} (41.5) resulting in rapid gel formation. Environmental scanning electron microscope (ESEM) analysis revealed that the gel was comprised of interconnected cylindrical structures. The presence of hydrogen bonding in the gel-like mesophase was confirmed by Fourier Transform Infrared spectroscopy (FTIR) analysis. Rheology measurements revealed that all the gel samples were highly viscoelastic in nature. Furthermore, Au and Ag containing CTAB gels were explored as precursors for the preparation of spherical Gold (Au) and Silver (Ag) nanoparticles using Sodium borohydride (NaBH{sub 4}) as reducing agent. The effects of NaBH{sub 4} concentration on the particle size and morphology of the Au and Ag nanoparticles have also been studied. - Highlights: • A facile synthesis of CTAB based gel-like mesophase is reported. • CTAB gels were obtained by adjusting water to surfactant molar ratio (W{sub 0}). • FTIR analysis revealed that hydrogen bonding plays a key role in gel formation. • Au, Ag nanoparticles were synthesized by using CTAB gel and NaBH{sub 4}.

  10. Comment on ``(Au-Ag)144(SR)60 alloy nanomolecules'' by C. Kumara and A. Dass, Nanoscale, 2011, 3, 3064

    Science.gov (United States)

    Barcaro, Giovanni; Sementa, Luca; Fortunelli, Alessandro; Stener, Mauro

    2015-04-01

    A recent paper in this journal reported the synthesis and characterization via electrospray ionization mass spectroscopy and UV-vis spectroscopy of (Au-Ag)144(SR)60 alloy nanomolecules with different compositions, ranging from 1 : 0 to 1 : 0.75 Au : Ag ratios. The UV-vis spectra of such systems were found to exhibit absorption peaks at 310 nm, 425 nm and 560 nm, interpreted as reminiscent of the silver surface plasmon resonance band due to simple atomic replacement of Au by Ag atoms in a fixed structural framework. On the basis of a comparison of experimentally observed and theoretically simulated optical absorption spectra, we conclude that the experimental situation must be more complicated, and that further work is needed to achieve atomistic insight into these fascinating systems.

  11. The photovoltaic performance of Ag2S quantum dots-sensitized solar cells using plasmonic Au nanoparticles/TiO2 working electrodes

    Science.gov (United States)

    Badawi, Ali; Mostafa, Nasser Y.; Al-Hosiny, Najm M.; Merazga, Amar; Albaradi, Ateyyah M.; Abdel-Wahab, F.; Atta, A. A.

    2018-06-01

    The photovoltaic performance of silver sulfide (Ag2S) quantum dots-sensitized solar cells (QDSSCs) using different concentrations (0, 0.05, 0.1, 0.3 and 0.5 wt.%) of plasmonic Au nanoparticles (NPs)/titania (TiO2) electrodes has been investigated. Ag2S quantum dots (QDs) were adsorbed onto the Au NPs/titania electrodes using the successive ionic layer adsorption and reaction (SILAR) deposition technique. The morphological properties of the Au NPs and the prepared titania electrodes were characterized using transmission electron microscope (TEM) and scanning electron microscope (SEM), respectively. The energy-dispersive X-ray (EDX) spectra of the bare titania and Ag2S QDs-sensitized titania electrodes were recorded. The optical properties of the prepared Ag2S QDs-sensitized titania electrodes were measured using a UV-visible spectrophotometer. The estimated energy band gap of Ag2S QDs-sensitized titania electrodes is 1.96 eV. The photovoltaic performance of the assembled Ag2S QDSSCs was measured under 100 mW/cm2 solar illumination. The optimal photovoltaic parameters were obtained as follows: open circuit voltage Voc = 0.50 V, current density Jsc = 3.18 mA/cm2, fill factor (FF) = 0.35 and energy conversion efficiency η = 0.55% for 0.3 wt.% of Au NPs/titania electrode. These results are attributed to the enhancement in the absorption and decrease in the electron-hole pairs recombination rate. The open circuit voltage decay (OCVD) measurements of the assembled Ag2S QDSSCs were measured. The calculated electron lifetime (τ) in Ag2S QDSSCs with Au NPs/titania electrodes is at least one order of magnitude more than that with bare titania electrode. The cut-on-cut-off cycles of the solar illumination measurements show the rapid sensitivity and good reproducibility of the assembled Ag2S QDSSCs.

  12. Excellent selector performance in engineered Ag/ZrO2:Ag/Pt structure for high-density bipolar RRAM applications

    Science.gov (United States)

    Wang, Chao; Song, Bing; Zeng, Zhongming

    2017-12-01

    A high-performance selector with bidirectional threshold switching (TS) characteristics of Ag/ZrO2/Pt structure was prepared by incorporating metallic Ag into the ZrO2 matrix. The bidirectional TS device exhibited excellent switching uniformity, forming-free behavior, ultra-low off current of selectivity (from 102 to 107). The experiment results confirmed that metallic Ag clusters were penetrated into the ZrO2 matrix during the annealing process, which would function as an effective active source responsible for the bidirectional TS. The volatile behavior could be explained by the self-dissolution of unstable filaments caused by minimization of the interfacial energy and thermal effect. Furthermore, a bipolar-type one selector-one resistor (1S-1R) memory device was successfully fabricated and exhibited significant suppression of the undesired sneak current, indicating the great potential as selector in a cross-point array.

  13. Label-free sensitive luminescence biosensor for immunoglobulin G based on Ag6Au6 ethisterone cluster-estrogen receptor α aggregation and graphene.

    Science.gov (United States)

    Chen, Nannan; Guo, Wenjing; Lin, Zhixiang; Wei, Qiaohua; Chen, Guonan

    2018-08-01

    A specific and label-free "on-off-on" luminescence biosensor based on a novel heterometallic cluster [Ag 6 Au 6 (ethisterone) 12 ]-estrogen receptor α (Ag 6 Au 6 Eth-ERα) aggregation utilizing graphene oxide (GO) as a quencher to lead a small background signal was firstly constructed to detect immunoglobulin G (IgG) with a simple process and high selectivity. The efficient photoluminescent (PL) Ag 6 Au 6 Eth-ERα aggregation is strongly quenched by GO. In the presence of IgG, the PL of this system will be restored, and perceivable by human eyes under UV lamp excitation (365 nm). The quenching mechanism of GO on Ag 6 Au 6 Eth-ERα and enhancement mechanism of IgG on Ag 6 Au 6 Eth-ERα-GO were investigated in detail. Under the optimum conditions, the biosensor for high sensitive IgG detection expressed a wider linear range of 0.0078-10 ng/mL and a lower detection limit of 0.65 pg/mL with good stability and repeatability, which provided a new approach for label-free IgG detection. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Highly efficient and porous TiO{sub 2}-coated Ag@Fe{sub 3}O{sub 4}@C-Au microspheres for degradation of organic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Mao, E-mail: shenmao19820808@163.com; Chen, Suqing, E-mail: 465060605@qq.com; Jia, Wenping, E-mail: tzcjwp@tzc.edu.cn [Taizhou University, College of Pharmaceutical and Chemical Engineering (China); Fan, Guodong, E-mail: fangd@sust.edu.cn [Shan xi University of Science and Technology, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education (China); Jin, Yanxian, E-mail: shirleyj@tzc.edu.cn; Liang, Huading, E-mail: shanjian8208@163.com [Taizhou University, College of Pharmaceutical and Chemical Engineering (China)

    2016-12-15

    In this paper, we reported a novel hierarchical porous Ag@Fe{sub 3}O{sub 4}@C-Au@TiO{sub 2} core@shell microspheres with a highly photocatalytic activity and magnetically separable properties. The synthesis method is included of a Fe{sub 3}O{sub 4} magnetic embedded Ag core (Ag@Fe{sub 3}O{sub 4}), an interlayer of carbon modified by PEI to form sufficient amounts of amine functional groups (Ag@Fe{sub 3}O{sub 4}@C-PEI), the grafting of Au nanoparticles on the surface of Ag@Fe{sub 3}O{sub 4}@C-PEI (Ag@Fe{sub 3}O{sub 4}@C-Au), and an ordered porous TiO{sub 2} structured shell. As an example of the applications, the photocatalytic activities of the samples were investigated by the reduction of Rhodamine B (RhB) under visible-light irradiation. The results show that the porous Ag@Fe{sub 3}O{sub 4}@C-Au@TiO{sub 2} core@shell microspheres display higher adsorption and photocatalytic activities compared to the pure porous TiO{sub 2} and Ag@Fe{sub 3}O{sub 4}@C@TiO{sub 2} microspheres, which are attributed to the local surface plasmon resonance (LSPR) by the Ag and Au nanoparticles and the high specific surface area.

  15. Molecular dynamics simulation of joining process of Ag-Au nanowires and mechanical properties of the hybrid nanojoint

    Directory of Open Access Journals (Sweden)

    Su Ding

    2015-05-01

    Full Text Available The nanojoining process of Ag-Au hybrid nanowires at 800K was comprehensively studied by virtue of molecular dynamics (MD simulation. Three kinds of configurations including end-to-end, T-like and X-like were built in the simulation aiming to understand the nanojoining mechanism. The detailed dynamic evolution of atoms, crystal structure transformation and defects development during the nanojoining processes were performed. The results indicate that there are two stages in the nanojoining process of Ag-Au nanowires which are atom diffusion and new bonds formation. Temperature is a key parameter affecting both stages ascribed to the energy supply and the optimum temperature for Ag-Au nanojoint with diameter of 4.08 nm has been discussed. The mechanical properties of the nanojoint were examined with simulation of tensile test on the end-to-end joint. It was revealed that the nanojoint was strong enough to resist fracture at the joining area.

  16. Growth and morphological analysis of segmented AuAg alloy nanowires created by pulsed electrodeposition in ion-track etched membranes

    Directory of Open Access Journals (Sweden)

    Ina Schubert

    2015-06-01

    Full Text Available Background: Multicomponent heterostructure nanowires and nanogaps are of great interest for applications in sensorics. Pulsed electrodeposition in ion-track etched polymer templates is a suitable method to synthesise segmented nanowires with segments consisting of two different types of materials. For a well-controlled synthesis process, detailed analysis of the deposition parameters and the size-distribution of the segmented wires is crucial.Results: The fabrication of electrodeposited AuAg alloy nanowires and segmented Au-rich/Ag-rich/Au-rich nanowires with controlled composition and segment length in ion-track etched polymer templates was developed. Detailed analysis by cyclic voltammetry in ion-track membranes, energy-dispersive X-ray spectroscopy and scanning electron microscopy was performed to determine the dependency between the chosen potential and the segment composition. Additionally, we have dissolved the middle Ag-rich segments in order to create small nanogaps with controlled gap sizes. Annealing of the created structures allows us to influence their morphology.Conclusion: AuAg alloy nanowires, segmented wires and nanogaps with controlled composition and size can be synthesised by electrodeposition in membranes, and are ideal model systems for investigation of surface plasmons.

  17. Fabrication of Au/graphene oxide/Ag sandwich structure thin film and its tunable energetics and tailorable optical properties

    OpenAIRE

    Ruijin Hong; Jialin Ji; Chunxian Tao; Daohua Zhang; Dawei Zhang

    2017-01-01

    Au/graphene oxide/Ag sandwich structure thin film was fabricated. The effects of graphene oxide (GO) and bimetal on the structure and optical properties of metal silver films were investigated by X-ray diffraction (XRD), optical absorption, and Raman intensity measurements, respectively. Compared to silver thin film, Au/graphene oxide/Ag sandwich structure composite thin films were observed with wider optical absorption peak and enhanced absorption intensity. The Raman signal for Rhodamine B ...

  18. Electrodeposition of Au/Ag bimetallic dendrites assisted by Faradaic AC-electroosmosis flow

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Jianlong; Li, Pengwei; Sang, Shengbo, E-mail: sbsang@tyut.edu.cn; Zhang, Wendong, E-mail: wdzhang@tyut.edu.cn; Li, Gang; Hu, Jie [Micro and Nano-system Research Centre, College of Information Engineering, Taiyuan University of Technology, 030024, Taiyuan (China); Zhou, Zhaoying, E-mail: zhouzy@mail.tsinghua.edu.cn; Yang, Xing; Dong, Hualai [MEMS Laboratory, Department of Precision Instruments, Tsinghua University, 100084, Beijing (China)

    2014-03-15

    Au/Ag bimetallic dendrites were synthesized successfully from the corresponding aqueous solution via the AC electrodeposition method. Both of the morphologies and compositions could be tuned by the electrolyte concentration and AC frequency. The prepared bimetallic dendrites were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), transmission electron microscopy (TEM) and UV–vis spectroscopy. The underlying dendrite growth mechanism was then proposed in the context of the Directed Electrochemical Nanowires Assembly (DENA) models. Owing to the unscreened voltage dropping in the electrolyte bulk, electromigration dominates the species flux process, and cations tend to accumulate in areas with strong electric field intensity, such as electrode edges. Moreover, Faradaic AC-electro-osmosis (ACEO) flow could increase the effective diffusion layer thickness in these areas during the electrochemical reaction, and leads to dendrite growth. Further Micro-Raman observations illustrated that the Au/Ag bimetallic dendrites exhibited pronounced surface-enhanced Raman scattering (SERS) activity, using 4-mercaptopyridine (4-MP) as model molecules.

  19. Electrodeposition of Au/Ag bimetallic dendrites assisted by Faradaic AC-electroosmosis flow

    Directory of Open Access Journals (Sweden)

    Jianlong Ji

    2014-03-01

    Full Text Available Au/Ag bimetallic dendrites were synthesized successfully from the corresponding aqueous solution via the AC electrodeposition method. Both of the morphologies and compositions could be tuned by the electrolyte concentration and AC frequency. The prepared bimetallic dendrites were characterized by scanning electron microscopy (SEM, energy dispersive X-ray spectrometer (EDS, transmission electron microscopy (TEM and UV–vis spectroscopy. The underlying dendrite growth mechanism was then proposed in the context of the Directed Electrochemical Nanowires Assembly (DENA models. Owing to the unscreened voltage dropping in the electrolyte bulk, electromigration dominates the species flux process, and cations tend to accumulate in areas with strong electric field intensity, such as electrode edges. Moreover, Faradaic AC-electro-osmosis (ACEO flow could increase the effective diffusion layer thickness in these areas during the electrochemical reaction, and leads to dendrite growth. Further Micro-Raman observations illustrated that the Au/Ag bimetallic dendrites exhibited pronounced surface-enhanced Raman scattering (SERS activity, using 4-mercaptopyridine (4-MP as model molecules.

  20. Fluid inclusion and oxygen-isotope evidence for low-temperature Au-Pt-Pd (± U) mineralization at Corronation Hill, NT

    International Nuclear Information System (INIS)

    Mernagh, T.

    1992-01-01

    The fluid inclusion and isotope data have been used to constrain the ore genesis models for the Au-Pt-Pd-U mineralization at Coronation Hill. The fluid inclusions demonstrate that the ore fluid was strongly saline with an unusually high CaCl 2 content, and that the mineralisation was probably formed from a boiling fluid at around 140 deg C. Furthermore, the fluids were highly oxidised and the replacement of earlier chlorite by hematite is common throughout the deposit. It is concluded that both U-rich and U-poor Au-Pt-Pd mineralisation were formed by descending, low-temperature, highly oxidised, very saline, meteoric fluids. The segregation of U was controlled by fluid-rock interaction in the feldspathic or carbonate rocks. Interaction with carbonaceous or chloritic rocks resulted in a reduction in fO 2 , and consequent precipitation of U, Au, Pt and Pd. The other two types of metal associations can be explained by further reaction of the mineralizing fluids. 3 figs

  1. Doping-Induced Anisotropic Self-Assembly of Silver Icosahedra in [Pt2Ag23Cl7(PPh3)10] Nanoclusters

    KAUST Repository

    Bootharaju, Megalamane Siddaramappa; Kozlov, Sergey M.; Cao, Zhen; Harb, Moussab; Maity, Niladri; Shkurenko, Aleksander; Parida, Manas R.; Hedhili, Mohamed N.; Eddaoudi, Mohamed; Mohammed, Omar F.; Bakr, Osman; Cavallo, Luigi; Basset, Jean-Marie

    2017-01-01

    Atomically precise self-assembled architectures of noble metals with unique surface structures are necessary for prospective applications. However, the synthesis of such structures based on silver is challenging because of their instability. In this work, by developing a selective and controlled doping strategy, we synthesized and characterized a rod-shaped, charge-neutral, diplatinum-doped Ag nanocluster (NC) of [Pt2Ag23Cl7(PPh3)10]. Its crystal structure revealed the self-assembly of two Pt-centered Ag icosahedra through vertex sharing. Five bridging and two terminal chlorides and 10 PPh3 ligands were found to stabilize the cluster. Electronic structure simulations corroborated structural and optical characterization of the cluster and provided insights into the effect of the Pt dopants on the optical properties and stability of the cluster. Our study will open new avenues for designing novel self-assembled NCs using different elemental dopants.

  2. Doping-Induced Anisotropic Self-Assembly of Silver Icosahedra in [Pt2Ag23Cl7(PPh3)10] Nanoclusters

    KAUST Repository

    Bootharaju, Megalamane Siddaramappa

    2017-01-09

    Atomically precise self-assembled architectures of noble metals with unique surface structures are necessary for prospective applications. However, the synthesis of such structures based on silver is challenging because of their instability. In this work, by developing a selective and controlled doping strategy, we synthesized and characterized a rod-shaped, charge-neutral, diplatinum-doped Ag nanocluster (NC) of [Pt2Ag23Cl7(PPh3)10]. Its crystal structure revealed the self-assembly of two Pt-centered Ag icosahedra through vertex sharing. Five bridging and two terminal chlorides and 10 PPh3 ligands were found to stabilize the cluster. Electronic structure simulations corroborated structural and optical characterization of the cluster and provided insights into the effect of the Pt dopants on the optical properties and stability of the cluster. Our study will open new avenues for designing novel self-assembled NCs using different elemental dopants.

  3. Sulfonated poly(ether ether ketone)/poly(vinyl alcohol) sensitizing system for solution photogeneration of small Ag, Au, and Cu crystallites.

    Science.gov (United States)

    Korchev, A S; Shulyak, T S; Slaten, B L; Gale, W F; Mills, G

    2005-04-28

    Illumination of air-free aqueous solutions containing sulfonated poly(ether ether ketone) and poly(vinyl alcohol) with 350 nm light results in benzophenone ketyl radicals of the polyketone. The polymer radicals form with a quantum yield 0.02 and decay with a second-order rate constant 6 orders of magnitude lower than that of typical alpha-hydroxy radicals. Evidence is presented that the polymeric benzophenone ketyl radicals reduce Ag+, Cu2+, and AuCl4- to metal particles of nanometer dimensions. Decreases in the reduction rates with increasing Ag(I), Cu(II), and Au(III) concentrations are explained using a kinetic model in which the metal ions quench the excited state of the polymeric benzophenone groups, which forms the macromolecular radicals. Quenching is fastest for Ag+, whereas Cu2+ and AuCl4- exhibit similar rate constants. Particle formation becomes more complex as the number of equivalents needed to reduce the metal ions increases; the Au(III) system is an extreme case where the radical reactions operate in parallel with secondary light-initiated and thermal reduction channels. For each metal ion, the polymer-initiated photoreactions produce crystallites possessing distinct properties, such as a very strong plasmon in the Ag case or the narrow size distribution exhibited by Au particles.

  4. Binding Affinity of a Highly Sensitive Au/Ag/Au/Chitosan-Graphene Oxide Sensor Based on Direct Detection of Pb2+ and Hg2+ Ions

    Directory of Open Access Journals (Sweden)

    Nur Hasiba Kamaruddin

    2017-10-01

    Full Text Available The study of binding affinity is essential in surface plasmon resonance (SPR sensing because it allows researchers to quantify the affinity between the analyte and immobilised ligands of an SPR sensor. In this study, we demonstrate the derivation of the binding affinity constant, K, for Pb2+ and Hg2+ ions according to their SPR response using a gold/silver/gold/chitosan–graphene oxide (Au/Ag/Au/CS–GO sensor for the concentration range of 0.1–5 ppm. The higher affinity of Pb2+ to binding with the CS–GO sensor explains the outstanding sensitivity of 2.05 °ppm−1 against 1.66 °ppm−1 of Hg2+. The maximum signal-to-noise ratio (SNR upon detection of Pb2+ is 1.53, and exceeds the suggested logical criterion of an SNR. The Au/Ag/Au/CS–GO SPR sensor also exhibits excellent repeatability in Pb2+ due to the strong bond between its functional groups and this cation. The adsorption data of Pb2+ and Hg2+ on the CS–GO sensor fits well with the Langmuir isotherm model where the affinity constant, K, of Pb2+ and Hg2+ ions is computed. The affinity of Pb2+ ions to the Au/Ag/Au/CS–GO sensor is significantly higher than that of Hg2+ based on the value of K, 7 × 105 M−1 and 4 × 105 M−1, respectively. The higher shift in SPR angles due to Pb2+ and Hg2+ compared to Cr3+, Cu2+ and Zn2+ ions also reveals the greater affinity of the CS–GO SPR sensor to them, thus supporting the rationale for obtaining K for these two heavy metals. This study provides a better understanding on the sensing performance of such sensors in detecting heavy metal ions.

  5. Enzymatic biosensor of horseradish peroxidase immobilized on Au-Pt nanotube/Au-graphene for the simultaneous determination of antioxidants

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Long; Yin, Wenmin; Tang, Kun; Li, Dian; Shao, Kang; Zuo, Yunpeng; Ma, Jing; Liu, Jiawei; Han, Heyou, E-mail: hyhan@mail.hzau.edu.cn

    2016-08-24

    A new electrochemical method has been proposed for the simultaneous determination of butylated hydroxyanisole (BHA) and propyl gallate (PG) in food matrices based on enzymatic biosensors. Spiny Au-Pt nanotubes (SAP NTs) was first synthesized and demonstrated to exhibit intrinsic peroxidase and catalase-like activity. The structure of SAP NTs provides large surface area and favorable medium for electron transfer, on which HRP were immobilized and acted as enzymatic biosensor for the simultaneous detection of BHA and PG. The results revealed that BHA and PG both have well-defined oxidation waves with peak potentials of 624 and 655 mV, respectively. Under the optimal conditions, the method behaved satisfactory analytical performance towards BHA and PG with a wide linear range of 0.3–50 mg L{sup −1} and 0.1–100 mg L{sup −1}, as well as a detection limit of 0.046 mg L{sup −1} and 0.024 mg L{sup −1} (3σ/slope), respectively. Besides, the proposed method exhibits good sensitivity, stability and reproducibility, providing an alternative to fabricate electrode and construct sensitive biosensors. - Highlights: • SAP NTs was synthesized and demonstrated to exhibit intrinsic peroxidase and catalase-like activity. • The structure of SAP NTs provides larger surface area and more favorable medium for electron transfer. • Horseradish peroxidase immobilized on Au-Pt nanotube/Au-graphene acted as enzymatic biosensor. • The simultaneous detection of BHA and PG in food matrices was achieved based on enzymatic biosensors.

  6. Nanoparticles of Pt and Ag supported in meso porous SiO2: characterization and catalytic applications

    International Nuclear Information System (INIS)

    Espinosa, M.E.; Perez H, R.; Perez A, M.; Mondragon G, G.; Arenas A, J.

    2004-01-01

    The surface properties of catalysts of Pt and Ag supported in conventional SiO 2 hey have been studied through reduction reactions of N 2 O with H 2 which is a sensitive reaction to the structure. In our case it was used a meso porous ceramic support of SiO 2 of great surface area (1100 m 2 /gr), where it is caused a high dispersion of the metallic nanoparticles of Pt and Ag, the total charge of the active phase in the meso porous support was of 3% in weight. The catalysts show a variation in the percentages of conversion of N 2 O depending on the size and dispersion of the metallic phases. (Author)

  7. Excellent selector performance in engineered Ag/ZrO2:Ag/Pt structure for high-density bipolar RRAM applications

    Directory of Open Access Journals (Sweden)

    Chao Wang

    2017-12-01

    Full Text Available A high-performance selector with bidirectional threshold switching (TS characteristics of Ag/ZrO2/Pt structure was prepared by incorporating metallic Ag into the ZrO2 matrix. The bidirectional TS device exhibited excellent switching uniformity, forming-free behavior, ultra-low off current of <1 nA and adjustable selectivity (from 102 to 107. The experiment results confirmed that metallic Ag clusters were penetrated into the ZrO2 matrix during the annealing process, which would function as an effective active source responsible for the bidirectional TS. The volatile behavior could be explained by the self-dissolution of unstable filaments caused by minimization of the interfacial energy and thermal effect. Furthermore, a bipolar-type one selector-one resistor (1S-1R memory device was successfully fabricated and exhibited significant suppression of the undesired sneak current, indicating the great potential as selector in a cross-point array.

  8. Rapidity densities and their fluctuations in central 200 A GeV 32S interactions with Au and Ag, Br nuclei

    International Nuclear Information System (INIS)

    Adamovich, M.I.; Alexandrov, Y.A.; Chernyavsky, M.M.; Gerassimov, S.G.; Kharlamov, S.P.; Larionova, V.G.; Orlova, G.I.; Peresadko, N.G.; Salmanova, N.A.; Tretyakova, M.I.; Andreeva, N.P.; Anson, Z.V.; Ameeva, Z.V.; Bubnov, V.I.; Chasnicov, I.Y.; Eremenko, L.E.; Eligbaeva, G.Z.; Gaitinov, A.S.; Kalyachkina, G.S.; Kanygina, E.K.; Shakhova, T.I.; Azimov, S.A.; Chernova, L.P.; Gadzhieva, S.I.; Gulamov, K.G.; Kadyrov, F.G.; Lukicheva, N.S.; Navotny, V.S.; Svechnikova, L.N.; Bhasin, A.; Kachroo, S.; Kaul, G.L.; Mangotra, L.K.; Rao, N.K.; Burnett, T.H.; Grote, J.; Koss, T.; Lord, J.; Skelding, D.; Strausz, S.; Wilkes, R.J.; Cai, X.; Liu, L.S.; Maslennikova, N.V.; Qian, W.Y.; Wang, H.Q.; Zhou, D.C.; Zhou, J.C.; Dressel, B.; Ganssauge, E.R.; Hackel, S.; Kallies, H.; Mueller, C.; Rhee, J.T.; Schultz, W.; Garpman, S.; Otterlund, I.; Persson, S.; Soderstrom, K.; Stenlund, E.; Judek, B.; Storey, R.S.; Xu, G.F.; Zheng, P.Y.; Zhang, D.H.

    1989-01-01

    The pseudo-rapidity density distributions of shower particles (n s ) are measured in central inelastic S+Au and S+Ag, Br interactions. The extracted maximum energy densities, while being higher for Au than for Ag,Br interactions, were found to be similar to those obtained for oxygen emulsion interactions. The correlation between rapidity density and shower particle multiplicity shows a small deviation from the Lund Model Fritiof for the highest energy densities in S+Au interactions, whereas the bulk of the data yields satisfactory agreement. (orig.)

  9. Galvanic replacement mediated synthesis of hollow Pt nanocatalysts: Significance of residual Ag for the H{sub 2} evolution reaction

    Energy Technology Data Exchange (ETDEWEB)

    Bansal, Vipul; O' Mullane, Anthony P.; Bhargava, Suresh K. [School of Applied Sciences, RMIT University, GPO Box 2476V, Melbourne VIC 3001 (Australia)

    2009-08-15

    With the increasing popularity of the galvanic replacement approach towards the development of bimetallic nanocatalysts, special emphasis has been focused on minimizing the use of expensive metal (e.g. Pt), in the finally formed nanomaterials (e.g. Ag/Pt system as a possible catalyst for fuel cells). However, the complete removal of the less active sacrificial template is generally not achieved during galvanic replacement, and its residual presence may significantly impact on the electrocatalytic properties of the final material. Here, we investigate the hydrogen evolution reaction (HER) activity of Ag nanocubes replaced with different amounts of Pt, and demonstrate how the bimetallic composition significantly affects the activity of the alloyed nanomaterial. (author)

  10. Green synthesis of noble nanometals (Au, Pt, Pd) using glycerol under microwave irradiation conditions

    Science.gov (United States)

    A newer application of glycerol in the field of nanomaterials synthesis has been developed from both the economic and environmental points of view. Glycerol can act as a reducing agent for the fabrication of noble nanometals, such as Au, Pt, and Pd, under microwave irradiation. T...

  11. Dicationic ionic liquid mediated fabrication of Au@Pt nanoparticles supported on reduced graphene oxide with highly catalytic activity for oxygen reduction and hydrogen evolution

    Science.gov (United States)

    Shi, Ya-Cheng; Chen, Sai-Sai; Feng, Jiu-Ju; Lin, Xiao-Xiao; Wang, Weiping; Wang, Ai-Jun

    2018-05-01

    Ionic liquids as templates or directing agents have attracted great attention for shaping-modulated synthesis of advanced nanomaterials. In this work, reduced graphene oxide supported uniform core-shell Au@Pt nanoparticles (Au@Pt NPs/rGO) were fabricated by a simple one-pot aqueous approach, using N-methylimidazolium-based dicationic ionic liquid (1,1-bis(3-methylimadazoilum-1-yl)butylene bromide, [C4(Mim)2]2Br) as the shape-directing agent. The morphology evolution, structural information and formation mechanism of Au@Pt NPs anchored on rGO were investigated by a series of characterization techniques. The obtained nanocomposites displayed superior electrocatalytic features toward hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR) compared with commercial Pt/C catalyst. This approach provides a novel route for facile synthesis of nanocatalysts in fuel cells.

  12. Silica-covered star-shaped Au-Ag nanoparticles as new electromagnetic nanoresonators for Raman characterisation of surfaces

    Science.gov (United States)

    Krajczewski, Jan; Kołątaj, Karol; Pietrasik, Sylwia; Kudelski, Andrzej

    2018-03-01

    One of the tools used for determining the composition of surfaces of various materials is shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). SHINERS is a modification of "standard" surface-enhanced Raman spectroscopy (SERS), in which, before Raman spectra are recorded, the surfaces analysed are covered with a layer of plasmonic nanoparticles protected by a very thin layer of a transparent dielectric. The plasmonic cores of the core-shell nanoparticles used in SHINERS measurements generate a local enhancement of the electric field of the incident electromagnetic radiation, whereas the transparent coatings prevent the metal cores from coming into direct contact with the material being analysed. In this contribution, we propose a new type of SHINERS nanoresonators that contain spiky, star-shaped metal cores (produced from a gold/silver alloy). These spiky, star-shaped Au-Ag nanoparticles have been covered by a layer of silica. The small radii of the ends of the tips of the spikes of these plasmonic nanostructures make it possible to generate a very large enhancement of the electromagnetic field there, with the result that such SHINERS nanoresonators are significantly more efficient than the standard semi-spherical nanostructures. The Au-Ag alloy nanoparticles were synthesised by the reduction of a solution containing silver nitrate and chloroauric acid by ascorbic acid. The final geometry of the nanostructures thus formed was controlled by changing the ratio between the concentrations of AuCl4- and Ag+ ions. The shape of the synthesised star-shaped Au-Ag nanoparticles does not change significantly during the two standard procedures for depositing a layer of silica (by the decomposition of sodium silicate or the decomposition of tetraethyl orthosilicate).

  13. Ag/Au/Polypyrrole Core-shell Nanowire Network for Transparent, Stretchable and Flexible Supercapacitor in Wearable Energy Devices

    Science.gov (United States)

    Moon, Hyunjin; Lee, Habeom; Kwon, Jinhyeong; Suh, Young Duk; Kim, Dong Kwan; Ha, Inho; Yeo, Junyeob; Hong, Sukjoon; Ko, Seung Hwan

    2017-02-01

    Transparent and stretchable energy storage devices have attracted significant interest due to their potential to be applied to biocompatible and wearable electronics. Supercapacitors that use the reversible faradaic redox reaction of conducting polymer have a higher specific capacitance as compared with electrical double-layer capacitors. Typically, the conducting polymer electrode is fabricated through direct electropolymerization on the current collector. However, no research have been conducted on metal nanowires as current collectors for the direct electropolymerization, even though the metal nanowire network structure has proven to be superior as a transparent, flexible, and stretchable electrode platform because the conducting polymer’s redox potential for polymerization is higher than that of widely studied metal nanowires such as silver and copper. In this study, we demonstrated a highly transparent and stretchable supercapacitor by developing Ag/Au/Polypyrrole core-shell nanowire networks as electrode by coating the surface of Ag NWs with a thin layer of gold, which provide higher redox potential than the electropolymerizable monomer. The Ag/Au/Polypyrrole core-shell nanowire networks demonstrated superior mechanical stability under various mechanical bending and stretching. In addition, proposed supercapacitors showed fine optical transmittance together with fivefold improved areal capacitance compared to pristine Ag/Au core-shell nanowire mesh-based supercapacitors.

  14. Deformation properties of even-even Os, Pt, Hg nuclei and spectroscopic properties of odd Re, Os, Ir, Pt, Au, Hg nuclei from self-consistent calculations

    CERN Document Server

    Desthuilliers-Porquet, M G; Quentin, P; Sauvage-Letessier, J

    1981-01-01

    Static properties of even-even Os, Pt, Hg nuclei have been obtained from HF+BCS calculations. Single-particle wave functions which come from these self-consistent calculations have been used to calculate some spectroscopic properties of odd Re, Os, Ir, Pt, Au, and Hg nuclei, within the rotor-quasiparticle coupling model. The authors' calculations are able to give a good description of most of available experimental data. (12 refs).

  15. Autoclave mediated one-pot-one-minute synthesis of AgNPs and Au-Ag nanocomposite from Melia azedarach bark extract with antimicrobial activity against food pathogens.

    Science.gov (United States)

    Pani, Alok; Lee, Joong Hee; Yun, Soon-Ii

    2016-01-01

    The increasing use of nanoparticles and nanocomposite in pharmaceutical and processed food industry have increased the demand for nontoxic and inert metallic nanostructures. Chemical and physical method of synthesis of nanostructures is most popular in industrial production, despite the fact that these methods are labor intensive and/or generate toxic effluents. There has been an increasing demand for rapid, ecofriendly and relatively cheaper synthesis of nanostructures. Here, we propose a strategy, for one-minute green synthesis of AgNPs and a one-pot one-minute green synthesis of Au-Ag nanocomposite, using Melia azedarach bark aqueous extract as reducing agent. The hydrothermal mechanism of the autoclave technology has been successfully used in this study to accelerate the nucleation and growth of nano-crystals. The study also presents high antimicrobial potential of the synthesized nano solutions against common food and water born pathogens. The multistep characterization and analysis of the synthesized nanomaterial samples, using UV-visible spectroscopy, ICP-MS, FT-IR, EDX, XRD, HR-TEM and FE-SEM, also reveal the reaction dynamics of AgNO3, AuCl3 and plant extract in synthesis of the nanoparticles and nanocomposite. The antimicrobial effectiveness of the synthesized Au-Ag nanocomposite, with high gold to silver ratio, reduces the dependency on the AgNPs, which is considered to be environmentally more toxic than the gold counterpart. We hope that this new strategy will change the present course of green synthesis. The rapidity of synthesis will also help in industrial scale green production of nanostructures using Melia azedarach.

  16. Photoemission studies of zinc-noble metal alloys: Zn--Cu, Zn--Ag, and Zn--Au films on Ru(001)

    International Nuclear Information System (INIS)

    Rodriguez, J.A.; Hrbek, J.

    1993-01-01

    Zn and the noble metals alloy when coadsorbed on Ru(001). The properties of Zn--Cu, Zn--Ag, and Zn--Au alloys have been studied using core- and valence-level photoemission and temperature programmed desorption. Alloy formation induces only small shifts (-0.2 to -0.3 eV) in the position of the Zn 2p, 3s, and 3d levels. In contrast, the core and valence levels of the noble metals show large shifts toward higher binding energy. For small amounts of Cu, Ag, and Au dissolved in Zn multilayers, the shifts in the core levels of the nobel metals follow the sequence: Cu(2p 3/2 ), 0.8 eV∼Ag(3d 5/2 ), 0.8 eV 7/2 ), 1.4 eV. The magnitude of the shift increases as the Pauling electronegativity of the noble metal increases. However, the sign of the shifts for the Cu(2p 3/2 ), Ag(3d 5/2 ), or Au(4f 7/2 ) levels is not directly determined by the direction of charge transfer within the corresponding Zn-noble metal bond

  17. Shape coexistence near the Z-82 closed shell: a study of the excited states of 187Au and 187Pt in the β+ decay of 187Hg and 187Au

    International Nuclear Information System (INIS)

    Grimm, M.A. Jr.

    1978-11-01

    The decays of mass-separated (2.4, 2.2 min)/sup 187m,g/Hg and (8.4 min) 187 Au were studied. Both high- and low-spin states in 187 Au are fed in the (β + , EC) decay of /sup 187m,g/Hg isomers. The h/sub 11/2/, h/sub 9/2/, s/sub 1/2/, d/sub 3/2/, and d/sub 5/2/ collective bands, which are systematically observed throughout the odd-mass gold isotopes, are now extended to 187 Au. In 187 Au, the h/sub 9/2/ bandhead is below the h/sub 11/2/ bandhead, and the transition between the two is found to proceed via a hindered M1 transition due to the change in nuclear shape involved in the transition. One of the most important results of the present study is the discovery of the coupling of the odd proton in an h/sub 9/2/ particle state to the excited O + state of the 186 Pt core. Only the low spin states in 187 Pt appear to be populated in the beta decay of 187 Au. The nature of these low-spin states is not understood at present. One aspect of the levels of 187 Pt not previously reported is a delayed transition of 251 keV energy observed in the present study. 111 references

  18. Nucleation and growth of C60 overlayers on the Ag/Pt(111) dislocation network surface

    International Nuclear Information System (INIS)

    Ait-Mansour, K; Ruffieux, P; Xiao, W; Fasel, R; Groening, P; Groening, O

    2007-01-01

    We have investigated the room temperature growth of C 60 overlayers on the strainrelief dislocation network formed by two monolayers of Ag on Pt(111) by means of scanning tunneling microscopy. Extended domains of highly ordered dislocation networks with a typical superlattice parameter of 6.8 nm have been prepared, serving as templates for subsequent C 60 depositions. For low C 60 coverages, the molecules decorate the step-edges, where also the first islands nucleate. This indicates that at room temperature the C 60 molecules are sufficiently mobile to cross the dislocation lines and to diffuse to the step-edges. For C 60 coverages of 0.4 monolayer, besides the islands nucleated at the step-edges, C 60 islands also grow in the middle of terraces. The C 60 islands typically extend over several unit cells of the dislocation network and show an unusual orientation of the hexagonally close-packed C 60 lattice as compared to that found on the bare Ag(111) surface. Whereas C 60 grows preferentially in a (2 √3 x 2 √3) R30 0 structure on Ag(111), on the Ag/Pt(111) dislocation network the C 60 lattice adopts an orientation rotated by 30 0 , with the close-packed C 60 rows aligned along the dislocations which themselves are aligned along the Ag(1-10) directions. For higher coverages in the range of 1-2 monolayers, the growth of C 60 continues in a layer-by-layer fashion

  19. Electrochemical deposition of the first Cd monolayer on polycrystalline Pt and Au electrodes: an Upd study

    Directory of Open Access Journals (Sweden)

    Santos Mauro C. dos

    1998-01-01

    Full Text Available The underpotential deposition of Cd on polycrystalline Pt and Au was studied by voltammetry at stationary and rotating ring-disc electrodes. On Pt, the Cd ads dissolution peaks overlap those related to the oxidation of Hads, thus hindering the precise evaluation of desorption charges. A model proposed to calculate such charges from voltammetry at stationary electrodes revealed a value of 285 muC cm-2 for the monolayer dissolution, which corresponds to a coverage of 90% with Cd ads presenting an electrosorption valence of 0.5. Rotating ring-disc experiments fully confirmed such values. The misfit between atomic radii of Cd and Pt justifies the less-than-100% coverage. On the other hand, on Au, the absence of Hads simplifies the procedure for determination of dissolution charges for the Cd monolayer. Here, a value of only 41 muC cm-2 was calculated, which corresponds to a maximum coverage of 15%, with the electrosorption valence of 0.5. The results obtained in the collecting experiments with the rotating electrode are in complete agreement with those values.

  20. Electrochemical Glucose Oxidation Using Glassy Carbon Electrodes Modified with Au-Ag Nanoparticles: Influence of Ag Content

    Directory of Open Access Journals (Sweden)

    Nancy Gabriela García-Morales

    2015-01-01

    Full Text Available This paper describes the application of glassy carbon modified electrodes bearing Aux-Agy nanoparticles to catalyze the electrochemical oxidation of glucose. In particular, the paper shows the influence of the Ag content on this oxidation process. A simple method was applied to prepare the nanoparticles, which were characterized by transmission electron microscopy, Ultraviolet-Visible spectroscopy, X-ray diffraction spectroscopy, and cyclic voltammetry. These nanoparticles were used to modify glassy carbon electrodes. The effectiveness of these electrodes for electrochemical glucose oxidation was evaluated. The modified glassy carbon electrodes are highly sensitive to glucose oxidation in alkaline media, which could be attributed to the presence of Aux-Agy nanoparticles on the electrode surface. The voltammetric results suggest that the glucose oxidation speed is controlled by the glucose diffusion to the electrode surface. These results also show that the catalytic activity of the electrodes depends on the Ag content of the nanoparticles. Best results were obtained for the Au80-Ag20 nanoparticles modified electrode. This electrode could be used for Gluconic acid (GA production.

  1. Neutral Guest Capture via Lewis Acid/Base Molecular Square Receptors. X-ray Crystal Structure of {Cyclobis[(cis-(dppp)Pt(4-ethynylpyridyl)(2))(cis- (PEt(3))(2)Pt)]Ag(2)}(+6)(phenazine)- ((-)OSO(2)CF(3))(6).

    Science.gov (United States)

    Whiteford, Jeffery A.; Stang, Peter J.; Huang, Songping D.

    1998-10-19

    Interaction of {cyclobis[(cis-(dppp)Pt(4-ethynylpyridyl)(2))(cis-(L)M)]Ag(2)}(+6)((-)OSO(2)CF(3))(6), where M = Pt(II) or Pd(II) and L = dppp or 2PEt(3), with pyridine, pyrazine, phenazine, or 4,4'-dipyridyl ketone results in coordination Lewis acid/base host-guest assemblies via the "pi-tweezer effect" and mono or bis neutral guest coordination. All host-guest complexes are air stable microcrystalline solids with decomposition points greater than 170 degrees C. The homometallic Pt(II) receptors are more stable than the heteroaromatic Pt(II)-Pd(II) receptors toward heteratom-containing aromatic guests. The X-ray crystal structure of the host-guest complex {cyclobis[(cis-(dppp)Pt(4-ethynylpyridyl)(2))(cis-(PEt(3))(2)Pt)]Ag(2)}(+6)(phenazine)((-)OSO(2)CF(3))(6) is reported. The crystals with the empirical formula C(62)H(68)AgF(9)N(3)O(9)P(4)Pt(2)S(3) are triclinic P&onemacr; with a = 12.3919(8) Å, b = 17.160(1) Å, c = 18.932(1) Å, alpha = 90.892(1) degrees, beta = 97.127(1) degrees, gamma = 89.969(1) degrees, and Z = 2.

  2. Recording-media-related morphology and magnetic properties of crystalline CoPt{sub 3} and CoPt{sub 3}-Au core-shell nanoparticles synthesized via reverse microemulsion

    Energy Technology Data Exchange (ETDEWEB)

    Bahmanrokh, Ghazaleh, E-mail: ghazalehbahmanrokh@yahoo.com; Hashim, Mansor; Matori, Khamirul Amin; Kanagesan, Samikannu; Sabbaghizadeh, Rahim; Ezzad Shafie, Mohd Shamsul [Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Navasery, Manizheh; Soltani, Nayereh [Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor (Malaysia); Vaziri, Parisa [Department of Medical Physics and Biomedical Engineering, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2014-09-07

    A comparative experimental study of the magnetic properties of CoPt{sub 3} and CoPt{sub 3}/Au nanoparticles as well as a detailed study of the structural properties of the samples by X-ray diffraction, Transmission electron microscopy, and vibrating sample magnetometer is presented in this work. In addition, the effect of particle size on the structure and magnetic properties of nanoparticles prepared by microemulsion is studied. The correlation between particle size, crystallinity, and magnetization was studied as well. CoPt nanoparticles have been studied intensively over the last decade because of their increased magnetic anisotropy in the ordered phase that can be interesting for high density magnetic recording. A significant high coercivity for as-prepared CoPt{sub 3} and CoPt{sub 3}-Au nanoparticles was obtained at room temperature and enhanced after annealing. The focused aim of our study is to obtain high coercivity at room temperature that follows the Curie-Weiss law. This indicates an interacting system in which the nanoparticles behave like single domain ferromagnetic materials in the particle size range of 8 to 35 nm. In addition, the interaction increases by cooling the samples to low temperature around 15 K. Temperature dependence 1/M graph was obtained to investigate the behavior of nanoparticles at low temperature and shows the best fit with Curie-Weis mode.

  3. Diffusion of Ag, Au and Cs implants in MAX phase Ti{sub 3}SiC{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Weilin, E-mail: weilin.jiang@pnnl.gov [Pacific Northwest National Laboratory, Richland, WA (United States); Henager, Charles H.; Varga, Tamas; Jung, Hee Joon; Overman, Nicole R. [Pacific Northwest National Laboratory, Richland, WA (United States); Zhang, Chonghong; Gou, Jie [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou (China)

    2015-07-15

    MAX phases (M: early transition metal; A: elements in group 13 or 14; X: C or N), such as titanium silicon carbide (Ti{sub 3}SiC{sub 2}), have a unique combination of both metallic and ceramic properties, which make them attractive for potential nuclear applications. Ti{sub 3}SiC{sub 2} has been considered as a possible fuel cladding material. This study reports on the diffusivities of fission product surrogates (Ag and Cs) and a noble metal Au (with diffusion behavior similar to Ag) in this ternary compound at elevated temperatures, as well as in dual-phase nanocomposite of Ti{sub 3}SiC{sub 2}/3C-SiC and polycrystalline CVD 3C-SiC for behavior comparisons. Samples were implanted with Ag, Au or Cs ions and characterized with various methods, including X-ray diffraction, electron backscatter diffraction, energy dispersive X-ray spectroscopy, Rutherford backscattering spectrometry, helium ion microscopy, and transmission electron microscopy. The results show that in contrast to immobile Ag in 3C-SiC, there is a significant outward diffusion of Ag in Ti{sub 3}SiC{sub 2} within the dual-phase nanocomposite during Ag ion implantation at 873 K. Similar behavior of Au in polycrystalline Ti{sub 3}SiC{sub 2} was also observed. Cs out-diffusion and release from Ti{sub 3}SiC{sub 2} occurred during post-implantation thermal annealing at 973 K. This study suggests caution and further studies in consideration of Ti{sub 3}SiC{sub 2} as a fuel cladding material for advanced nuclear reactors operating at very high temperatures.

  4. MnO2/CNT supported Pt and PtRu nanocatalysts for direct methanol fuel cells.

    Science.gov (United States)

    Zhou, Chunmei; Wang, Hongjuan; Peng, Feng; Liang, Jiahua; Yu, Hao; Yang, Jian

    2009-07-07

    Pt/MnO2/carbon nanotube (CNT) and PtRu/MnO2/CNT nanocomposites were synthesized by successively loading hydrous MnO2 and Pt (or PtRu alloy) nanoparticles on CNTs and were used as anodic catalysts for direct methanol fuel cells (DMFCs). The existence of MnO2 on the surface of CNTs effectively increases the proton conductivity of the catalyst, which then could remarkably improve the performance of the catalyst in methanol electro-oxidation. As a result, Pt/MnO2/CNTs show higher electrochemical active surface area and better methanol electro-oxidation activity, compared with Pt/CNTs. As PtRu alloy nanoparticles were deposited on the surface of MnO2/CNTs instead of Pt, the PtRu/MnO2/CNT catalyst shows not only excellent electro-oxidation activity to methanol with forward anodic peak current density of 901 A/gPt but also good CO oxidation ability with lower preadsorbed CO oxidation onset potential (0.33 V vs Ag/AgCl) and peak potential (0.49 V vs Ag/AgCl) at room temperature.

  5. Silica-covered star-shaped Au-Ag nanoparticles as new electromagnetic nanoresonators for Raman characterisation of surfaces.

    Science.gov (United States)

    Krajczewski, Jan; Kołątaj, Karol; Pietrasik, Sylwia; Kudelski, Andrzej

    2018-03-15

    One of the tools used for determining the composition of surfaces of various materials is shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). SHINERS is a modification of "standard" surface-enhanced Raman spectroscopy (SERS), in which, before Raman spectra are recorded, the surfaces analysed are covered with a layer of plasmonic nanoparticles protected by a very thin layer of a transparent dielectric. The plasmonic cores of the core-shell nanoparticles used in SHINERS measurements generate a local enhancement of the electric field of the incident electromagnetic radiation, whereas the transparent coatings prevent the metal cores from coming into direct contact with the material being analysed. In this contribution, we propose a new type of SHINERS nanoresonators that contain spiky, star-shaped metal cores (produced from a gold/silver alloy). These spiky, star-shaped Au-Ag nanoparticles have been covered by a layer of silica. The small radii of the ends of the tips of the spikes of these plasmonic nanostructures make it possible to generate a very large enhancement of the electromagnetic field there, with the result that such SHINERS nanoresonators are significantly more efficient than the standard semi-spherical nanostructures. The Au-Ag alloy nanoparticles were synthesised by the reduction of a solution containing silver nitrate and chloroauric acid by ascorbic acid. The final geometry of the nanostructures thus formed was controlled by changing the ratio between the concentrations of AuCl 4 - and Ag + ions. The shape of the synthesised star-shaped Au-Ag nanoparticles does not change significantly during the two standard procedures for depositing a layer of silica (by the decomposition of sodium silicate or the decomposition of tetraethyl orthosilicate). Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Insight into the electronic structure of the supramolecular “rods-in-belt” Au{sup I}-Cu{sup I} and Au{sup I}-Ag{sup I} self-assembled complexes from X-ray photoelectron and absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Makarova, Anna A. [Department of Physics, St. Petersburg State University, St. Petersburg 198504 (Russian Federation); Institut für Festkörperphysik, Technische Universität Dresden, D-01062 Dresden (Germany); Grachova, Elena V.; Krupenya, Dmitry V. [Department of Chemistry, St. Petersburg State University, St. Petersburg 198504 (Russian Federation); Vilkov, Oleg [Department of Physics, St. Petersburg State University, St. Petersburg 198504 (Russian Federation); Institut für Festkörperphysik, Technische Universität Dresden, D-01062 Dresden (Germany); Fedorov, Alexander [Department of Physics, St. Petersburg State University, St. Petersburg 198504 (Russian Federation); Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden, Dresden (Germany); Usachov, Dmitry [Department of Physics, St. Petersburg State University, St. Petersburg 198504 (Russian Federation); Generalov, Alexander [Department of Physics, St. Petersburg State University, St. Petersburg 198504 (Russian Federation); Institut für Festkörperphysik, Technische Universität Dresden, D-01062 Dresden (Germany); Koshevoy, Igor O. [Department of Chemistry, St. Petersburg State University, St. Petersburg 198504 (Russian Federation); Department of Chemistry, University of Eastern Finland, Joensuu 80101 (Finland); Tunik, Sergey P. [Department of Chemistry, St. Petersburg State University, St. Petersburg 198504 (Russian Federation); Rühl, Eckart [Physikalische Chemie, Institut für Chemie und Biochemie Freie Universität Berlin (Germany); and others

    2014-01-01

    Highlights: • Electronic structure of rods-in-belt complexes was described via PES and NEXAFS. • With increasing size the molecule becomes more sensitive to X-ray damage effects. • The HOMO consists of a combination of the d-Cu/Ag and π-C≡C states. • HOMOs are positioned at about 2.2 eV for Au-Cu and 2.5 eV BE for Au-Ag complexes. • LUMOs are located on the C-skeleton including π*-C≡C and π*-C=C{sub aromatic} orbitals. - Abstract: The recently discovered “rods-in-belt” supramolecular complexes with Au-Cu or Au-Ag cluster cores exhibit self-assembly behavior, have a very unusual structural motif, and what is most important, show remarkable light emitting properties. The electronic and photophysical characteristics of these unique objects can be relatively easy tuned by modifying the ligand (alkynyl and phosphine) environment. Because of these properties the “rods-in-belt” supramolecules could serve as building blocks for next generation electronics, and in particular, for light-emitting devices and in bioimaging applications. Herein, we report a comprehensive characterization of the electronic structure of two families of alkynyl-diphosphine supramolecular complexes with the heterometallic Au-Cu and Au-Ag cores. Using X-ray photoemission and absorption spectroscopy we disentangled the structure of their occupied and unoccupied electronic states close to the Fermi level. The results obtained suggest that the major contribution to the highest occupied molecular orbitals is made by the triple bonded carbons hosted in the dialkynyl-gold “rods” and the copper (silver) atoms from the central cluster core of the heterometallic Au-Cu (Au-Ag) molecules. The lowest unoccupied molecular orbitals are located on the carbon skeleton of the complexes and include π*-C≡C and π*-C=C{sub aromatic} orbitals. The onset of the valence band in the Au-Ag systems starts at about 0.3 eV lower than that in the Au-Cu complexes, implying a slightly larger energy

  7. Changes in the microbiological and chemical characteristics of white bread during storage in paper packages modified with Ag/TiO2-SiO2, Ag/N-TiO2 or Au/TiO2.

    Science.gov (United States)

    Peter, Anca; Mihaly-Cozmuta, Leonard; Mihaly-Cozmuta, Anca; Nicula, Camelia; Ziemkowska, Wanda; Basiak, Dariusz; Danciu, Virginia; Vulpoi, Adriana; Baia, Lucian; Falup, Anca; Craciun, Grigore; Ciric, Alexandru; Begea, Mihaela; Kiss, Claudia; Vatuiu, Daniela

    2016-04-15

    Microbiological and chemical characteristics of white bread during storage in paper-packages modified with Ag/TiO2-SiO2, Ag/N-TiO2 or Au/TiO2 were investigated. The whiteness and the water retention of the modified packages were slightly superior to those exhibited by the reference sample, as the color of the composite was lighter. The water retention was very good especially for the Ag/TiO2-SiO2-paper. These improvements can be associated with the high specific surface area and with the low agglomeration tendency of Ag nanoparticles in comparison with the Au ones. The preservation activity of the composites for the bread storage is positively influenced by photoactivity and presence of nano-Ag. Packages Ag/TiO2-SiO2-paper and Ag/N-TiO2-paper can find their applicability for extending the shelf life of bread by 2 days as compared with the unmodified paper-package. No influence of the Au/TiO2 on the extending the shelf life of bread was observed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. The enhancing of Au-Ag-Te content in tellurium-bearing ore mineral by bio-oxidation-leaching

    Science.gov (United States)

    Kim, PyeongMan; Kim, HyunSoo; Myung, EunJi; Kim, YoonJung; Lee, YongBum; Park*, CheonYoung

    2015-04-01

    The purpose of this study is to enhance the content of valuable metals such as Au-Ag-Te in tellurium-bearing minerals by bio-oxidation-leaching. It was confirmed that pyrite, chalcopyrite, sphalerite and galena were produced together with tellurium-bearing minerals including hessite, sylvanite and tellurobismuthite from ore minerals and concentrates through microscopic observation and SEM/EDS analysis. In a bio-oxidation-leaching experiment, with regard to Au, Ag, Te, Cu and Fe, the changes in the amount of leaching and the content of leaching residues were compared and analyzed with each other depending on the adaptation of an indigenous microbe identified as Acidithiobacillus ferrooxidans. As a result of the experiment, the Au-Ag-Te content in tellurium-bearing ore mineral was enhanced in the order of physical oxidation leaching, physical/non-adaptive bio-oxidation-leaching and physical/adaptive biological leaching. It suggests that the bio-oxidation-leaching using microbes adapted in tellurium-bearing ore mineral can be used as a pre-treatment and a main process in a recovery process of valuable metals. "This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education(NRF-2013R1A1A2004898)"

  9. Phenomenological approach to the spin glass state of (Cu-Mn, Ag-Mn, Au-Mn and Au-Fe) alloys at low temperatures

    International Nuclear Information System (INIS)

    Al-Jalali, Muhammad A.; Kayali, Fawaz A.

    2000-01-01

    Full text.The spin glass of: (Cu-Mn, Ag-Mn, Au-Mn, Au-Fe) alloys has been extensively studied. The availability of published and assured experimental data on the susceptibility x(T) of this alloys has enabled the design and application of phenomenological approach to the spin glass state of these interesting alloys. The use of and advanced (S.P.S.S) computer software has resulted revealing some important features of the spin glass in these alloys, the most important of which is that the spin glass state do not represent as phase change

  10. Direct versus ligand-exchange synthesis of [PtAg28(BDT)12(TPP)4]4− nanoclusters: effect of a single-atom dopant on the optoelectronic and chemical properties

    KAUST Repository

    Bootharaju, Megalamane Siddaramappa; Kozlov, Sergey M.; Cao, Zhen; Harb, Moussab; Parida, Manas R.; Hedhili, Mohamed N.; Mohammed, Omar F.; Bakr, Osman; Cavallo, Luigi; Basset, Jean-Marie

    2017-01-01

    to offer monodisperse doped NCs. For instance, the direct synthesis of PtAg28 NCs produces a mixture of [Ag29(BDT)12(TPP)4]3- and [PtAg28(BDT)12(TPP)4]4- NCs (TPP: triphenylphosphine; BDT: 1,3-benzenedithiolate). Here, we designed a ligand-exchange (LE

  11. Electronic energy loss of low velocity H+ beams in Al, Ag, Sb, Au and Bi

    International Nuclear Information System (INIS)

    Valdes, J.E.; Martinez Tamayo, G.; Lantschner, G.H.; Eckardt, J.C.; Arista, N.R.

    1993-01-01

    The energy loss of H + ions in thin polycrystalline Al, Sb, Ag, Au and Bi films has been determined in the energy range below 10 keV. This low-energy range is of special interest to fill a lack of low-energy experimental data and test various theoretical predictions and semiempirical formulas. We find that the general theoretical prediction of a velocity-proportional dependence of energy loss does not hold for all targets studied in this work. The velocity-proportionality is better satisfied for Al, Sb and Bi, whereas a departure from such dependence is observed at lower energies for Ag and Au targets. The results obtained here are in good general agreement with nonlinear stopping power calculations based on density functional theory. Comparison with semiempirical predictions, and other experimental results are also done. (orig.)

  12. Directed flow and particle production in Au+Au collisions from experiment E877 at the AGS

    International Nuclear Information System (INIS)

    Barrette, J.

    1996-01-01

    In this article we summarize recent results on the study of Au+Au collisions at 10.8A GeV/c obtained at the AGS by the E877 Collaboration. New results on the directed sideward flow are presented. In particular, the dependence of proton and pion production on the direction of the reaction plane will be discussed. It is shown that the sideward flow is mainly due to nucleons and that pions show little flow effects. Two-pion correlation functions are studied to derive the density at freeze-out. Further, we inspect the correlations as a function of the pion direction relative to the reaction plane. A dependence of the deduced source sizes on the pair direction and momentum is observed. The measured source sizes are compared to results obtained in lighter systems. Measured m t spectra of pions and kaons are also presented. The pion spectra show an enhancement at low m t similar to that observed in Si+Pb and which was attributed to triangle resonance excitation. However, in contrast to Si+Pb now a clear difference between the π + and π - spectra is seen. The K + spectra, which showed a very steep component over a small p t range in the previously studied Si+Pb reaction exhibit for Au+Au an unexpected structure at very low p t

  13. OPTIMIZATION IN THE RECOVERY OF Au AND Ag VIA CYANIDATION OF FOUNDRY IN SLAG

    Directory of Open Access Journals (Sweden)

    Natalia Hidalgo

    2014-03-01

    Full Text Available This work aim was to recover and improvethe extraction of gold and silvercontained in the slag smelting, using the same metallurgical processes as in gold ores.The slag was concentrated in a centrifuge type Knelson, obtaining a(C1 concentrate and a (T1 tail. In order to optimize the recovery, an intensive T1 leaching was conducted. The variables used were: particle size, NaCN concentration (2000 to 4000 g/cm3 and aeration, with the residence time of 120 minutes. It is concluded that the recovery of Au, using gravity concentration (Knelson centrifuge is 83.6%, with Ag recovery of 52.5%. Au recovery is optimized to 90.4% by means of leaching tail centrifugal separation and 45.6% of Ag. The optimal conditions are: 4000 g/cm3of NaCN and artificial aeration, size [-14 # - # +35], in a lapse of 98 hours.

  14. One-step electrodeposition of Au-Pt bimetallic nanoparticles on MoS2 nanoflowers for hydrogen peroxide enzyme-free electrochemical sensor

    International Nuclear Information System (INIS)

    Zhou, Juan; Zhao, Yanan; Bao, Jing; Huo, Danqun; Fa, Huanbao; Shen, Xin; Hou, Changjun

    2017-01-01

    The rationally designed sensor architecture is very important to improve the sensitivity and selectivity for H 2 O 2 enzyme-free electrochemical sensor. In this work, a sensitive H 2 O 2 biosensor was fabricated by electrochemical deposition of Au-Pt bimetallic nanoparticles (NPs) on molybdenum disulfide nanoflowers (MoS 2 NFs). Au-Pt NPs was dispersed or stabilized by the effective support matrix of MoS 2 nanosheets, which was effectively enhance the conductivity, catalytic performance and long-term stability. The experimental results show that MoS 2 -Au/Pt nanocomposites exhibit excellent catalytic activity for specific detection of H 2 O 2, and electrochemical measurement results show that the enzyme-free electrochemical sensor has large linear range of 10 μM to 19.07 mM with high sensitivity of 142.68 μA mM −1 cm −2 . This novel sensor produced satisfactory reproducibility and stability, and exhibited superior potential for the practical quantitative analysis of H 2 O 2 in serum samples.

  15. Surface noble metal modified PdM/C (M = Ru, Pt, Au) as anode catalysts for direct ethanol fuel cells

    International Nuclear Information System (INIS)

    Mao, Han; Huang, Tao; Yu, Aishui

    2016-01-01

    In this article, we studied the surface noble metal modification on Pd nanoparticles, other than the homogeneous or core-shell structure. The surface modification will lead to the uneven constitution within the nanoparticles and thus more obvious optimization effect toward the catalyst brought by the lattice deformation. The surface of the as-prepared Pd nanoparticles was modified with Ru, Pt or Au by a moderate and green approach, respectively. XPS results confirm the interactive electron effects between Pd and the modified noble metal. Electrochemical measurements show that the surface noble metal modified catalysts not only show higher catalytic activity, but also better stability and durability. The PdM/C catalysts all exhibit good dispersion and very little agglomeration after long-term potential cycles toward ethanol oxidation. With only 10% metallic atomic ratio of Au, PdAu/C catalyst shows extraordinary catalytic activity and stability, the peak current reaches 1700 mA mg"−"1 Pd, about 2.5 times that of Pd/C. Moreover, the PdAu/C maintains 40% of the catalytic activity after 4500 potential cycles. - Highlights: • Pd-based catalysts with complicated exposed facets. • Much enhanced electrocatalytic activity and stability with about 10% noble metal M (M = Ru, Pt, Au) on Pd nanoparticles. • The outstanding electrocatalytic performance of PdAu/C towards ethanol oxidation after the Au modification.

  16. Surface noble metal modified PdM/C (M = Ru, Pt, Au) as anode catalysts for direct ethanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Han; Huang, Tao, E-mail: huangt@fudan.edu.cn; Yu, Aishui, E-mail: asyu@fudan.edu.cn

    2016-08-15

    In this article, we studied the surface noble metal modification on Pd nanoparticles, other than the homogeneous or core-shell structure. The surface modification will lead to the uneven constitution within the nanoparticles and thus more obvious optimization effect toward the catalyst brought by the lattice deformation. The surface of the as-prepared Pd nanoparticles was modified with Ru, Pt or Au by a moderate and green approach, respectively. XPS results confirm the interactive electron effects between Pd and the modified noble metal. Electrochemical measurements show that the surface noble metal modified catalysts not only show higher catalytic activity, but also better stability and durability. The PdM/C catalysts all exhibit good dispersion and very little agglomeration after long-term potential cycles toward ethanol oxidation. With only 10% metallic atomic ratio of Au, PdAu/C catalyst shows extraordinary catalytic activity and stability, the peak current reaches 1700 mA mg{sup −1} Pd, about 2.5 times that of Pd/C. Moreover, the PdAu/C maintains 40% of the catalytic activity after 4500 potential cycles. - Highlights: • Pd-based catalysts with complicated exposed facets. • Much enhanced electrocatalytic activity and stability with about 10% noble metal M (M = Ru, Pt, Au) on Pd nanoparticles. • The outstanding electrocatalytic performance of PdAu/C towards ethanol oxidation after the Au modification.

  17. Theoretical study of the triplet excited state of PtPOP and the exciplexes M-PtPOP (M = Tl, Ag) in solution and comparison with ultrafast X-ray scattering results

    DEFF Research Database (Denmark)

    Kong, Qingyu; Kjær, Kasper S.; Haldrup, Martin Kristoffer

    2012-01-01

    The [Pt2(H2P2O5)4]4− ions in the ground and excited states and the excited-state complexes M-[Pt2(H2P2O5)4]3− and M2-[Pt2(H2P2O5)4]2− (M = Ag, Tl) were studied in solution with various density functional theory (DFT) functionals from Gaussian 09 and Amsterdam Density Functional (ADF) programs. Ca...

  18. Operation of ohmic Ti/Al/Pt/Au multilayer contacts to GaN at 600 °C in air

    Science.gov (United States)

    Hou, Minmin; Senesky, Debbie G.

    2014-08-01

    The high-temperature characteristics (at 600 °C) of Ti/Al/Pt/Au multilayer contacts to gallium nitride (GaN) in air are reported. Microfabricated circular-transfer-line-method test structures were subject to 10 h of thermal storage at 600 °C. Intermittent electrical characterization during thermal storage showed minimal variation in the contact resistance after 2 h and that the specific contact resistivity remained on the order of 10-5 Ω-cm2. In addition, the thermally stored multilayer contacts to GaN showed ohmic I-V characteristics when electrically probed at 600 °C. The microstructural analysis with atomic force microscopy showed minimal changes in surface roughness after thermal storage. Observations of the thermochemical reactions after thermal storage using Auger electron spectroscopy chemical depth profiling showed diffusion of Pt and minimal additional Al oxidation. The results support the use of Ti/Al/Pt/Au multilayer metallization for GaN-based sensors and electronic devices that will operate within a high-temperature and oxidizing ambient.

  19. High-spin states and coexisting states in the Pt-Au transition region

    International Nuclear Information System (INIS)

    Riedinger, L.L.; Carpenter, M.P.; Courtney, L.H.; Janzen, V.P.; Schmitz, W.

    1986-01-01

    High-spin states in the N = 104 to 108 region have been studied by in-beam spectroscopy techniques in a number of Ir, Pt, and Au nuclei. These measurements have been performed at tandem Van de Graaff facilities at the Oak Ridge National Laboratory and at McMaster University. Through comparison of band crossings in a variety of odd-A and even-A nuclei, we are able to assign the first neutron and first proton alignment processes, which are nearly degenerate for 184 Pt. These measurements yield the trend of these crossing frequencies with N and Z in this region. Knowledge of this trend is important, since these crossing frequencies can give an estimate of how the shape parameters vary across this transitional region. 22 refs., 7 figs., 1 tab

  20. Rapid Synthesis of Highly Monodisperse Au x Ag 1− x Alloy Nanoparticles via a Half-Seeding Approach

    KAUST Repository

    Chng, Ting Ting

    2011-05-03

    Gold-silver alloy AuxAg1-x is an important class of functional materials promising new applications across a wide array of technological fields. In this paper, we report a fast and facile synthetic protocol for preparation of highly monodisperse AuxAg1-x alloy nanoparticles in the size range of 3-6 nm. The precursors employed in this work are M(I)-alkanethiolates (M = Au and Ag), which can be easily prepared by mixing common chemicals such as HAuCl4 or AgNO3 with alkanethiols at room temperature. In this half-seeding approach, one of the M(I)-alkanethiolates is first heated and reduced in oleylamine solvent, and freshly formed metal clusters will then act as premature seeds on which both the first and second metals (from M(I)-alkanethiolates, M = Au and Ag) can grow accordingly without additional nucleation and thus achieve high monodispersity for product alloy nanoparticles. Unlike in other prevailing methods, both Au and Ag elements present in these solid precursors are in the same monovalent state and have identical supramolecular structures, which may lead to a more homogeneous reduction and complete interdiffusion at elevated reaction temperatures. When the M(I)-alkanethiolates are reduced to metallic forms, the detached alkanethiolate ligands will serve as capping agent to control the growth. More importantly, composition, particle size, and optical properties of AuxAg1-x alloy nanoparticles can be conveniently tuned with this approach. The optical limiting properties of the prepared particles have also been investigated at 532 and 1064 nm using 7 ns laser pulses, which reveals that the as-prepared alloy nanoparticles exhibit outstanding broadband optical limiting properties with low thresholds. © 2011 American Chemical Society.

  1. Evolution of Ternary AuAgPd Nanoparticles by the Control of Temperature, Thickness, and Tri-Layer

    Directory of Open Access Journals (Sweden)

    Sundar Kunwar

    2017-11-01

    Full Text Available Metallic alloy nanoparticles (NPs possess great potential to enhance the optical, electronic, chemical, and magnetic properties for various applications by the control of morphology and elemental composition. This work presents the fabrication of ternary AuAgPd alloy nanostructures on sapphire (0001 via the solid-state dewetting of sputter-deposited tri-metallic layers. Based on the systematic control of temperature, thickness, and deposition order of tri-layers, the composite AuAgPd alloy nanoparticles (NPs with various shape, size, and density are demonstrated. The metallic tri-layers exhibit various stages of dewetting based on the increasing growth temperatures between 400 and 900 °C at 15 nm tri-layer film thickness. Specifically, the nucleation of tiny voids and hillocks, void coalescence, the growth and isolated nanoparticle formation, and the shape transformation with Ag sublimation are observed. With the reduced film thickness (6 nm, tiny alloy NPs with improved structural uniformity and spatial arrangement are obtained due to enhanced dewetting. The growth trend of alloy NPs is drastically altered by changing the deposition order of metallic tri-layers. The overall evolution is governed by the surface diffusion and inter-mixing of metallic atoms, Rayleigh-like instability, surface and interface energy minimization, and equilibrium state of the system. The UV-VIS-NIR reflectance spectra reveal the formation of an absorption band and reflectance maxima at specific wavelengths based on the morphology and composition of AuAgPd alloy NPs. In addition, Raman spectra analysis shows the modulation of intensity and peak position of natural vibration modes of sapphire (0001.

  2. Preparation of Ag@mSiO{sub 2} and Pt@mSiO{sub 2}nano composites using trioctylmethyl ammonium hydrogen phthalate (TOMAHP) ionic liquid as reaction medium

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Sujoy, E-mail: sujoyb@barc.gov.in [Chemical Engineering Group, Bhabha Atomic Research Centre, Mumbai 400085 (India); Dasgupta, Kinshuk [Materials Group, Bhabha Atomic Research Centre, Mumbai 400085 (India); Bahadur, Jitendra [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Tewari, Raghavendra [Materials Group, Bhabha Atomic Research Centre, Mumbai 400085 (India); Mazumder, Subhasish [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2016-09-15

    A novel one step green chemistry approach utilizing trioctylmethyl ammonium hydrogen phthalate (TOMAHP), task specific ionic liquid has been attempted for synthesis of Ag and Pt nanoparticles supported on silica (Ag@mSiO{sub 2} and Pt@mSiO{sub 2}). Structure, size distribution and morphology of these nano-composite particles were evaluated using X-ray diffraction (XRD), transmission electron microscopy (TEM), small angle neutron scattering (SANS) as well as small angle X-ray scattering (SAXS) techniques. The XRD results show that Ag/Pt metal nanoparticles deposited on to SiO{sub 2} surface are face center cubic (fcc) in nature. The TEM and SAXS/SANS results show the morphology and size distributions of Ag and Pt nanoparticles loaded on to the surface of SiO{sub 2}. It has been found that Ag nanoparticles are well dispersed on to the SiO{sub 2} surface and are quite monodisperse in size, whereas Pt nanoparticles are quite polydisperse in size and forms aggregate or chain like structure on SiO{sub 2} surface containing primary nanoparticles of typical size range 3–7 nm. The stability of nanoparticles, which controls its dispersion on SiO{sub 2} substrate, has been discussed. - Graphical abstract: Mechanism for Ag@mSiO{sub 2} and Pt@mSiO{sub 2} nano composites in TOMAHP ionic liquid medium. - Highlights: • Novel methods for preparation of Pt@SiO{sub 2} and Ag@SiO{sub 2} nano composite in functionalized ionic liquid. • Pt@SiO{sub 2} and Ag@SiO{sub 2} nano composite are characterized using XRD, TEM as well as small angle x-ray scattering techniques. • The sizes of nano composite is <10 nm in size. • The method is simple one step, green chemical reduction method to prepare SiO{sub 2} support nano catalyst.

  3. Safety aspects of using Ag-In-Cd absorber made by PT. Batan Teknologi (Persero) in the core of multi purposes reactor G.A. Siwabessy

    International Nuclear Information System (INIS)

    Anggoro Septilarso; Zulkarnain; Heryudo Kusumo

    2011-01-01

    Safety Evaluation has been carried out for the using of Ag-In-Cd Absorber made by PT. Batan Teknologi (Persero) in the core of Multi Purposes Reactor G.A. Siwabessy (RSG-GAS). PT. Batan Teknologi (Persero) only licensed by NUKEM GmbH to produce Fuel Element and Control Element U-Al, U 3 O 8 -Al dan U 3 Si 2 -Al, and not including to produce Ag-In-Cd Absorber. But, BAPETEN evaluator think that the danger would be greater if RSG-GAS use the older absorber than use Ag-In-Cd Absorber made by PT. Batan Teknologi. For this purposes, BAPETEN set some requirements and acceptance criteria to be met by the absorber, that is cold test, hot test, shutdown margin value, control rod drop test and visual test. The test show that Ag-In-Cd Absorber meets all the requirements and acceptance criteria required by BAPETEN. (author)

  4. Super-resolution by elliptical bubble formation with PtOx and AgInSbTe layers

    International Nuclear Information System (INIS)

    Kim, Jooho; Hwang, Inoh; Yoon, Duseop; Park, Insik; Shin, Dongho; Kikukawa, Takashi; Shima, Takayuki; Tominaga, Junji

    2003-01-01

    The recording and retrieval of signals below 100 nm mark length were attempted with elliptical bubble-type super-resolution technology with platinum oxide (PtO x ) and ductile AgInSbTe layers, using the same optical system as that of a digital versatile disk (a 635 nm wavelength red laser system). The carrier-to-noise ratio (CNR) of over 47 dB for 100 nm mark length signals (over 43 dB for 80 nm mark length signals) was obtained, which can be considered as a commercially acceptable level of CNR. The recording mechanism of the sample disk was shown through the transmission electron microscopy cross-section image observation to be by rigid elliptical bubble formation at the PtO x layer located between the AgInSbTe layers. The results of this report represent the potential for a much higher-density storage using the red laser system and a subterabyte optical storage using the blue laser system

  5. In situ transmission electron microscopy and scanning transmission electron microscopy studies of sintering of Ag and Pt nanoparticles

    International Nuclear Information System (INIS)

    Asoro, M.A.; Ferreira, P.J.; Kovar, D.

    2014-01-01

    Transmission electron microscopy and scanning transmission electron microscopy studies were conducted in situ on 2–5 nm Pt and 10–40 nm Ag nanoparticles to study mechanisms for sintering and to measure relevant sintering kinetics in nanoscale particles. Sintering between two separated particles was observed to initiate by either (1) diffusion of the particles on the sample support or (2) diffusion of atoms or small clusters of atoms to the neck region between the two particles. After particle contact, the rate of sintering was controlled by atomic surface diffusivity. The surface diffusivity was determined as a function of particle size and temperature from experimental measurements of the rate of neck growth of the particles. The surface diffusivities did not show a strong size effect for the range of particle sizes that were studied. The surface diffusivity for Pt nanoparticles exhibited the expected Arrhenius temperature dependence and did not appear to be sensitive to the presence of surface contaminants. In contrast, the surface diffusivity for Ag nanoparticles was affected by the presence of impurities such as carbon. The diffusivities for Ag nanoparticles were consistent with previous measurements of bulk surface diffusivities for Ag in the presence of C, but were significantly slower than those obtained from pristine Ag

  6. 120 MeV Ag ion induced effects in Au/HfO2/Si MOSCAPs

    Science.gov (United States)

    Manikanthababu, N.; Prajna, K.; Pathak, A. P.; Rao, S. V. S. Nageswara

    2018-05-01

    HfO2/Si thinfilms were deposited by RF sputtering technique. 120 MeV Ag ion irradiation has been used to study the electrical properties of Au/HfO2/Si MOSCAPs. SHI (120 MeV Ag) induced annealing, defects creation and intermixing effects on the electrical properties of these systems have been studied. Here, we have observed that the high electronic excitation can cause a significant reduction of leakage currents in these MOSCAP devices. Various quantum mechanical tunneling phenomenon has been observed from the I-V characteristics.

  7. Study on the effect of nanoparticle bimetallic coreshell Au-Ag for sensitivity enhancement of biosensor based on surface plasmon resonance

    International Nuclear Information System (INIS)

    Widayanti; Abraha, K

    2016-01-01

    Bimetallic Au-Ag core-shell, a type of composite spherical nanoparticle consisting of a spherical Au core covered by Ag shell, have been used as active material for biomolecular analyte detection based on surface plasmon resonance (SPR) spectroscopy. SPR technology evolved into a key technology for characterization of biomolecular interaction. In this paper, we want to show the influence of nanoparticle bimettalic Au-Ag coreshell for optic respon of LSPR biosensor through attenuated total reflection (ATR) spectrum. The method consist of several steps begin from make a model LSPR system with Kretschmann configuration, dielectric function determination of composite bimetallic coreshell nanoparticle using effective medium theory approximation and the last is reflectivity calculation for size variation of core and shell bimetallic nanoparticle. Our result show that, by varying the radius of core and shell thickness, the peak of the reflectivity (ATR spectrum) shifted to the different angle of incident light and the addition of coreshell in SPR biosensor leads to enhancement the sensitivity. (paper)

  8. Evidence for non-conservative current-induced forces in the breaking of Au and Pt atomic chains

    OpenAIRE

    Sabater, Carlos; Untiedt, Carlos; van Ruitenbeek, Jan M

    2015-01-01

    This experimental work aims at probing current-induced forces at the atomic scale. Specifically it addresses predictions in recent work regarding the appearance of run-away modes as a result of a combined effect of the non-conservative wind force and a ‘Berry force’. The systems we consider here are atomic chains of Au and Pt atoms, for which we investigate the distribution of break down voltage values. We observe two distinct modes of breaking for Au atomic chains. The breaking at high volta...

  9. Magnesium and cadmium in covalently-bonded Lonsdaleite networks: Synthesis, structure, and conding of AETMg{sub 2} and SrTCd{sub 2} (AE = Ca, Sr; T = Pd, Ag, Pt, Au)

    Energy Technology Data Exchange (ETDEWEB)

    Kersting, Marcel; Johnscher, Michael; Poettgen, Rainer [Institut fuer Anorganische und Analytische Chemie, Universitaet Muenster, Corrensstrasse 30, 48149 Muenster (Germany); Matar, Samir F. [Universite Bordeaux, ICMCB, UPR 9048, 33600 Pessac (France)

    2013-04-15

    The alkaline earth metal compounds AETMg{sub 2} and AETCd{sub 2} (AE = Ca, Sr; T = Pd, Ag, Pt, Au) were synthesized by induction-melting (or in muffle furnaces) of the elements in sealed niobium ampoules. The new phases were characterized by powder X-ray diffraction. The structures of SrPdMg{sub 2} and SrPdCd{sub 2} were investigated by X-ray diffraction on single crystals: MgCuAl{sub 2} type, Cmcm, a = 436.42(4), b = 1130.1(1), c = 820.54(7) pm, wR{sub 2} = 0.0115, 511 F{sup 2} values for SrPdMg{sub 2} and a = 443.5(2), b = 1063.0(2), c = 810.2(2) pm, wR{sub 2} = 0.0296, 386 F{sup 2} values for SrPdCd{sub 2} with 16 variables for each refinement. The magnesium and cadmium atoms build up [TMg{sub 2}] and [TCd{sub 2}] polyanionic networks, which leave cavities for the calcium and strontium atoms. The bonding variations within the polyanions, which are mainly influenced by the length of the b axis are discussed. Ab initio calculations of electronic structure, charge densities, and chemical bonding, characterize SrPdMg{sub 2} with a larger cohesive energy than SrPdCd{sub 2}. This is illustrated by larger bonding Pd-Mg interactions, opposite to compensating Pd-Cd between bonding and antibonding states. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Geology and mineralogy of the Au-As (Ag-Pb-Zn-Cu-Sb polymetallic deposit of Valiña-Azúmara (Lugo, NW Spain

    Directory of Open Access Journals (Sweden)

    Martínez-Abad, I.

    2015-12-01

    Full Text Available Valiña-Azúmara is a polymetallic Au-As (Ag-Pb-Zn-Cu-Sb deposit, located in the province of Lugo (NW Spain, that was mined for arsenic at the beginning of the 20th century. The mineralization is hosted in a Variscan thrust fault with a dip direction of N247-261ºE, and N-S and NE-SW Late-Variscan faults. These structures are hosted in black slates, Cambrian in age. To a lesser extent, the mineralization also occurs disseminated within narrow, weakly silicified and sericited selvages. Mineralization is divided into two hypogene stages. The first consists of quartz, calcite, rutile, sericite, arsenopyrite and pyrite. Two types of pyrite (Py-I and Py-II are defined according to their chemical and textural characteristics. Py-II occurs as overgrowth of previous Py-I crystals. Py-II is As-rich (≤1.7 wt.% and often contains traces of Te, Zn, Cu, Bi, Sb and Au. The mineralized drill core sections show a significant correlation between Au and As. This is due to Au occurring as invisible Au within the Py-II grains, with contents of up to 176 ppm. The Au/As ratios of Py-II indicate that Au was deposited as Au1+, as solid solution within the pyrite structure. The second stage of mineralization is enriched in Ag-Pb-Zn-Cu-Sb, replacing the first stage, and consists of quartz, calcite, chlorite, sphalerite, jamesonite, Ag-rich tetrahedrite, freibergite, chalcopyrite, pyrrhotite and galena. Although jamesonite shows traces of Ag, the Cu-Ag sulfosalts are the main carriers of the Ag mineralization in the deposit, with contents that vary from 13.7 to 23.9 wt.% of Ag. In the most superficial levels of the area, secondary Fe oxide and hydroxide, scorodite and anglesite developed due to the oxidation of the ore.Valiña-Azúmara es un yacimiento filoniano de Au-As (Ag-Pb-Zn-Cu-Sb situado en la provincia de Lugo (NO España, que fue explotado por arsénico a principios del siglo XX. La mineralización se encuentra encajada en un cabalgamiento Varisco de direcci

  11. High Sensitive and Selective Sensing of Hydrogen Peroxide Released from Pheochromocytoma Cells Based on Pt-Au Bimetallic Nanoparticles Electrodeposited on Reduced Graphene Sheets

    Directory of Open Access Journals (Sweden)

    Guangxia Yu

    2015-01-01

    Full Text Available In this study, a high sensitive and selective hydrogen peroxide (H2O2 sensor was successfully constructed with Pt-Au bimetallic nanoparticles (Pt-Au NPs/reduced graphene sheets (rGSs hybrid films. Various molar ratios of Au to Pt and different electrodeposition conditions were evaluated to control the morphology and electrocatalytic activity of the Pt-Au bimetallic nanoparticles. Upon optimal conditions, wide linear ranges from 1 µM to 1.78 mM and 1.78 mM to 16.8 mM were obtained, with a detection limit as low as 0.31 µM. Besides, due to the synergetic effects of the bimetallic NPs and rGSs, the amperometric H2O2 sensor could operate at a low potential of 0 V. Under this potential, not only common anodic interferences induced from ascorbic acid, uric acid and dopamine, but also the cathodic interference induced from endogenous O2 could be effectively avoided. Furthermore, with rat pheochromocytoma cells (PC 12 as model, the proposed sensor had been successfully used in the detection of H2O2 released from the cancer cells. This method with wide linear ranges and excellent selectivity can provide a promising alternative for H2O2 monitoring in vivo in the fields of physiology, pathology and diagnosis.

  12. Ti:Pt:Au:Ni thin-film CVD diamond sensor ability for charged particle detection.

    Science.gov (United States)

    Kasiwattanawut, Haruetai; Tchouaso, Modeste Tchakoua; Prelas, Mark A

    2018-05-22

    This work demonstrates the development of diamond sensors with reliable contacts using a new metallization formula, which can operate under high-pressure gas environment. The metallization was created using thin film layers of titanium, platinum, gold and nickel deposited on a single crystal electronic grade CVD diamond chip. The contacts were 2 mm in diameter with thickness of 50/5/20/150 nm of Ti:Pt:Au:Ni. The optimum operating voltage of the sensor was determined from the current-voltage measurements. The sensor was calibrated with 239 Pu and 241 Am alpha radiation sources at 300 V. The energy resolution of the Ti:Pt:Au:Ni diamond sensor was determined to be 7.6% at 5.2 MeV of 239 Pu and 2.2% at 5.48 MeV of 241 Am. The high-pressure gas loading environment under which this sensor was used is discussed. Specifically, experimental observations are described using hydrogen loading of nickel as a means of initiating low energy nuclear reactions. No neutrons, electrons, ions or other ionizing radiations were observed in these experiments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Measurements of electric quadrupole moments of neutron-deficient Au, Pt, and Ir nuclei with NMR-ON in hcp-Co

    CERN Multimedia

    Smolic, E; Hagn, E; Zech, E; Seewald, G

    2002-01-01

    The aim of the experiments is the measurement of $\\,$i) nuclear magnetic moments and electric quadrupole moments of neutron-deficient isotopes in the region Os-Ir-Pt-Au with the methods of quadrupole-interaction-resolved NMR on oriented nuclei " QI-NMR-ON " and modulated adiabatic passage on oriented nuclei " MAPON " and $\\,$ii) the magnetic hyperfine field, electric field gradient (EFG), and spin-lattice relaxation of 5d elements in ferromagnetic Fe, Ni, fcc-Co and hcp-Co.\\\\ The measurements on Au isotopes have been finished successfully. The quadrupole moments of $^{186}$Au, $^{193m}$Au, $^{195}$Au, $^{195m}$Au, $^{197m}$Au, $^{198}$Au and $^{199}$Au were determined with high precision.\\\\ For neutron-deficient Ir isotopes QI-NMR-ON measurements were performed after implantation of Hg precursors. The EFG of Ir in hcp-Co has been calibrated. Thus precise values for the spectroscopic quadrupole mo...

  14. Microstructure and magnetic properties of FePt:Ag nanocomposite films on SiO2/Si(1 0 0)

    International Nuclear Information System (INIS)

    Wang Hao; Yang, F.J.; Wang, H.B.; Cao, X.; Xue, S.X.; Wang, J.A.; Gao, Y.; Huang, Z.B.; Yang, C.P.; Chiah, M.F.; Cheung, W.Y.; Wong, S.P.; Li, Q.; Li, Z.Y.

    2006-01-01

    FePt:Ag nanocomposite films were prepared by pulsed filtered vacuum arc deposition system and subsequent rapid thermal annealing on SiO 2 /Si(1 0 0) substrates. The microstructure and magnetic properties were investigated. A strong dependence of coercivity and ordering of the face-central tetragonal structure on both Ag concentration and annealing temperature was observed. With Ag concentration of 22% in atomic ratio, the coercivity got to 6.0 kOe with a grain size of 6.7 nm when annealing temperature was 400 deg. C

  15. Centrality and pseudorapidity dependence of charged hadron production at intermediate pt in Au+Au collisions at √sNN = 130 GeV

    International Nuclear Information System (INIS)

    Adams, J.; Aggarwal, M.M.; Ahammed, Z.; Amonett, J.; Anderson, B.D.; Arkhipkin, D.; Averichev, G.S.; Bai, Y.; Balewski, J.; Barannikova, O.; Barnby, L.S.; Baudot, J.; Bekele, S.; Belaga, V.V.; Bellwied, R.; Berger, J.; Bezverkhny, B.I.; Bharadwaj, S.; Bhatia, V.S.; Bichsel, H.; Billmeier, A.; Bland, L.C.; Blyth, C.O.; Bonner, B.E.; Botje, M.; Boucham, A.; Brandin, A.; Bravar, A.; Bystersky, M.; Cadman, R.V.; Cai, X.Z.; Caines, H.; Calderon de la Barca Sanchez, M.; Carroll, J.; Castillo, J.; Cebra, D.; Chaloupka, P.; Chattopadhyay, S.; Chen, H.F.; Chen, Y.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Coffin, J.P.; Cormier, T.M.; Cramer, J.G.; Crawford, H.J.; Das, D.; Das, S.; Moura, M.M. de; Derevschikov, A.A.; Didenko, L.; Dietel, T.; Dong, W.J.; Dong, X.; Draper, J.E.; Du, F.; Dubey, A.K.; Dunin, V.B.; Dunlop, J.C.; Dutta Mazumdar, M.R.; Eckardt, V.; Edwards, W.R.; Efimov, L.G.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Fachini, P.; Faivre, J.; Fatemi, R.; Fedorisin, J.; Filimonov, K.; Filip, P.; Finch, E.; Fine, V.; Fisyak, Y.; Foley, K.J.; Fomenko, K.; Fu, J.; Gagliardi, C.A.; Gans, J.; Ganti, M.S.; Gaudichet, L.; Geurts, F.; Ghazikhanian, V.; Ghosh, P.; Gonzalez, J.E.; Grachov, O.; Grebenyuk, O.; Grosnick, D.; Guertin, S.M.; Gupta, A.; Gutierrez, T.D.; Hallman, T.J.; Hamed, A.; Hardtke, D.; Harris, J.W.; Heinz, M.; Henry, T.W.; Heppelmann, S.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffmann, G.W.; Huang, H.Z.; Huang, S.L.; Hughes, E.W.; Humanic, T.J.; Igo, G.; Ishihara, A.; Jacobs, P.; Jacobs, W.W.; Janik, M.; Jiang, H.; Jones, P.G.; Judd, E.G.; Kabana, S.; Kang, K.; Kaplan, M.; Keane, D.; Khodyrev, V.Yu; Kiryluk, J.; Kisiel, A.; Kislov, E.M.; Klay, J.; Klein, S.R.; Klyachko, A.; Koetke, D.D.; Kollegger, T.; Kopytine, M.; Kotchenda, L.; Kramer, M.; Kravtsov, P.; Kravtsov, V.I.; Krueger, K.; Kuhn, C.; Kulikov, A.I.; Kumar, A.; Kunz, C.L.; Kutuev, R.Kh.; Kuznetsov, A.A.; Lamont, M.A.C.

    2004-01-01

    We present STAR measurements of charged hadron production as a function of centrality in Au + Au collisions at √s NN = 130 GeV. The measurements cover a phase space region of 0.2 T T distributions of charged hadrons in these two pseudorapidity bins. We measured dN/dη distributions and truncated mean p T in a region of p T > P T cut , and studied the results in the framework of participant and binary scaling. No clear evidence is observed for participant scaling of charged hadron yield in the measured pT region. The relative importance of hard scattering process is investigated through binary scaling fraction of particle production

  16. A colorimetric nitrite detection system with excellent selectivity and high sensitivity based on Ag@Au nanoparticles.

    Science.gov (United States)

    Li, Tianhua; Li, Yonglong; Zhang, Yujie; Dong, Chen; Shen, Zheyu; Wu, Aiguo

    2015-02-21

    Excessive uptake of NO2(-) is detrimental to human health, but the currently available methods used to sensitively detect this ion in the environment are cumbersome and expensive. In this study, we developed an improved NO2(-) detection system based on a redox etching strategy of CTAB-stabilized Ag-Au core-shell nanoparticles (Ag@AuNPs). The detection mechanism was verified by UV-Vis spectroscopy, TEM and XPS. The detection system produces a color change from purple to colorless in response to an increase of NO2(-) concentration. The selectivity of detection of NO2(-), both with the unaided eye and by measurement of UV-Vis spectra, is excellent in relation to other ions, including Cu(2+), Co(2+), Ni(2+), Cr(3+), Al(3+), Pb(2+), Cd(2+), Ca(2+), Ba(2+), Zn(2+), Mn(2+), Mg(2+), Fe(3+), Hg(2+), Ag(+), K(+), F(-), PO4(3-), C2O4(2-), SO3(2-), CO3(2-), SO4(2-), NO3(-) and CH3-COO(-) (Ac(-)). The limit of detection (LOD) for NO2(-) is 1.0 μM by eye and 0.1 μM by UV-Vis spectroscopy. The LOD by eye is lower than the lowest previously reported value (4.0 μM). There is a good linear relationship between A/A0 and the concentration of NO2(-) from 1.0 to 20.0 μM NO2(-), which permits a quantitative assay. The applicability of our detection system was also verified by analysis of NO2(-) in tap water and lake water. The results demonstrate that our Ag@AuNP-based detection system can be used for the rapid colorimetric detection of NO2(-) in complex environmental samples, with excellent selectivity and high sensitivity.

  17. Effect of Refractive Index of Substrate on Fabrication and Optical Properties of Hybrid Au-Ag Triangular Nanoparticle Arrays

    Directory of Open Access Journals (Sweden)

    Jing Liu

    2015-05-01

    Full Text Available In this study, the nanosphere lithography (NSL method was used to fabricate hybrid Au-Ag triangular periodic nanoparticle arrays. The Au-Ag triangular periodic arrays were grown on different substrates, and the effect of the refractive index of substrates on fabrication and optical properties was systematically investigated. At first, the optical spectrum was simulated by the discrete dipole approximation (DDA numerical method as a function of refractive indexes of substrates and mediums. Simulation results showed that as the substrates had the refractive indexes of 1.43 (quartz and 1.68 (SF5 glass, the nanoparticle arrays would have better refractive index sensitivity (RIS and figure of merit (FOM. Simulation results also showed that the peak wavelength of the extinction spectra had a red shift when the medium’s refractive index n increased. The experimental results also demonstrated that when refractive indexes of substrates were 1.43 and 1.68, the nanoparticle arrays and substrate had better adhesive ability. Meanwhile, we found the nanoparticles formed a large-scale monolayer array with the hexagonally close-packed structure. Finally, the hybrid Au-Ag triangular nanoparticle arrays were fabricated on quartz and SF5 glass substrates and their experiment extinction spectra were compared with the simulated results.

  18. Growth kinetics of metastable (331) nanofacet on Au and Pt(110) surfaces

    International Nuclear Information System (INIS)

    Ndongmouo, U.T.; Houngninou, E.; Hontinfinde, F.

    2006-12-01

    A theoretical epitaxial growth model with realistic barriers for surface diffusion is investigated by means of kinetic Monte Carlo simulations to study the growth modes of metastable (331) nanofacets on Au and Pt(110) surfaces. The results show that under experimental atomic fluxes, the (331) nanofacets grow by 2D nucleation at low temperature in the submonolayer regime. A metastable growth phase diagram that can be useful to experimentalists is presented and looks similar to the one found for the stationary growth of the bcc(001) surface in the kinetic 6-vertex model. (author)

  19. Effects of gold based dimers on structural and electronic properties of MoS{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Kadioglu, Yelda [Department of Physics, Adnan Menderes University, 09100 Aydın (Turkey); Gökoğlu, Gökhan [Department of Physics, Karabük University, 78050 Karabük (Turkey); Aktürk, Olcay Üzengi, E-mail: ouzengi@adu.edu.tr [Department of Electrical & Electronics Engineering, Adnan Menderes University, 09100 Aydın (Turkey); Nanotechnology Application and Research Center, Adnan Menderes University, 09100 Aydın (Turkey)

    2017-02-28

    Highlights: • Semiconductor MoS{sub 2} shows metallic character by AuPt and AuPd adsorption. • MoS{sub 2} maintains its semiconductor characteristics with a decrease in the band gap values after AuAg, AuCu, and AuAl adsorption. • AuPt adsorbed system is the most stable structure energetically. • AuAl exhibits the weakest adsorption to MoS{sub 2} among the considered dimers. - Abstract: In view of first principles calculations, we investigate the electronic structure redecoration of monolayer MoS{sub 2} upon adsorptions of AuAg, AuPt, AuPd, AuCu, and AuAl bimetallic dimers. Geometrical structure, band structures, electronic density of states, charge density differences of dimer adsorbed MoS{sub 2} systems are presented and discussed. All the systems studied have non-magnetic ground states. Charge transfers occur from dimer to surface except for AuPt adsorption. Our results indicate that the semiconductor MoS{sub 2} maintains its semiconductor character with decreased band gaps upon AuAg, AuCu, and AuAl adsorptions. However, MoS{sub 2} shows metallic behaviour by AuPt and AuPd adsorptions, so Pt-d and Pd-d states cross Fermi level yielding metallic character. AuPt adsorbed system has the highest E{sub ads} value of 3.15 eV indicating the most stable structure energetically among the dimer adsorbed MoS{sub 2} systems considered.

  20. How a gold substrate can increase the reactivity of a Pt overlayer

    DEFF Research Database (Denmark)

    Pedersen, Morten Ø.; Helveg, Stig; Ruban, Andrei

    1999-01-01

    The growth and chemical reactivity of Pt on Au(111) have been studied using scanning tunneling microscopy (STM) and temperature programmed desorption (TPD). Deposition of Pt at coverages from 0.02 ML up to 2.5 ML on Au(111) at room temperature initially leads to the formation of a surface alloy......, in which 3% of the Au atoms are replaced by Pt. Subsequent Pt evaporation leads to island growth with a mixed Pt-Au island composition. The reactivity of the Pt/Au system is studied using CO as a probe molecule. We show that a stronger bonding of CO to the first layer of Pt on Au(111) exists compared...... with the binding of CO on clean Pt. The Au substrate therefore very surprisingly increases the Pt overlayer reactivity. The results can be understood in a simple model, in which the change in the CO binding energy is directly proportional to the shift of the d-band center of the metal overlayer. According...

  1. N-Heterocyclic carbenes on close-packed coinage metal surfaces: bis-carbene metal adatom bonding scheme of monolayer films on Au, Ag and Cu.

    Science.gov (United States)

    Jiang, Li; Zhang, Bodong; Médard, Guillaume; Seitsonen, Ari Paavo; Haag, Felix; Allegretti, Francesco; Reichert, Joachim; Kuster, Bernhard; Barth, Johannes V; Papageorgiou, Anthoula C

    2017-12-01

    By means of scanning tunnelling microscopy (STM), complementary density functional theory (DFT) and X-ray photoelectron spectroscopy (XPS) we investigate the binding and self-assembly of a saturated molecular layer of model N -heterocyclic carbene (NHC) on Cu(111), Ag(111) and Au(111) surfaces under ultra-high vacuum (UHV) conditions. XPS reveals that at room temperature, coverages up to a monolayer exist, with the molecules engaged in metal carbene bonds. On all three surfaces, we resolve similar arrangements, which can be interpreted only in terms of mononuclear M(NHC) 2 (M = Cu, Ag, Au) complexes, reminiscent of the paired bonding of thiols to surface gold adatoms. Theoretical investigations for the case of Au unravel the charge distribution of a Au(111) surface covered by Au(NHC) 2 and reveal that this is the energetically preferential adsorption configuration.

  2. Interdiffusion in epitaxial, single-crystalline Au/Ag thin films studied by Auger electron spectroscopy sputter-depth profiling and positron annihilation

    International Nuclear Information System (INIS)

    Noah, Martin A.; Flötotto, David; Wang, Zumin; Reiner, Markus; Hugenschmidt, Christoph; Mittemeijer, Eric J.

    2016-01-01

    Interdiffusion in epitaxial, single-crystalline Au/Ag bilayered thin films on Si (001) substrates was investigated by Auger electron spectroscopy (AES) sputter-depth profiling and by in-situ positron annihilation Doppler broadening spectroscopy (DBS). By the combination of these techniques identification of the role of vacancy sources and sinks on interdiffusion in the Au/Ag films was possible. It was found that with precise knowledge of the concentration-dependent self-diffusion and impurity diffusion coefficients a distinction between the Darken-Manning treatment and Nernst-Planck treatment can be made, which is not possible on the basis of the determined concentration-depth profiles alone.

  3. Novel redox species polyaniline derivative-Au/Pt as sensing platform for label-free electrochemical immunoassay of carbohydrate antigen 199

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Liyuan; Shan, Jiao; Feng, Feng; Ma, Zhanfang, E-mail: mazhanfang@cnu.edu.cn

    2016-03-10

    A novel electrochemical redox-active nanocomposite was synthesized by a one-pot method using N,N′-diphenyl-p-phenylediamine as monomer, and HAuCl{sub 4} and K{sub 2}PtCl{sub 4} as co-oxidizing agents. The as-prepared poly(N,N′-diphenyl-p-phenylediamine)-Au/Pt exhibited admirable electrochemical redox activity at 0.15 V, excellent H{sub 2}O{sub 2} electrocatalytic ability and favorable electron transfer ability. Based on these, the evaluation of the composite as sensing substrate for label-free electrochemical immunosensing to the sensitive detection of carbohydrate antigen 199 was described. This technique proved to be a prospective detection tool with a wide liner range from 0.001 U mL{sup −1} to 40 U mL{sup −1}, and a low detection limit of 2.3 × 10{sup −4} U mL{sup −1} (S/N = 3). In addition, this method was used for the analysis of human serum sample, and good agreement was obtained between the values and those of enzyme-linked immunosorbent assay, implying the potential application in clinical research. Importantly, the strategy of the present substrate could be extended to other polymer-based nanocomposites such as polypyrrole derivatives or polythiophene derivatives, and this could be of great significance for the electrochemical immunoassay. - Highlights: • A novel electrochemical redox composite PPPD-Au/Pt was synthesized by one-pot method. • PPPD-Au/Pt was used as sensing substrate for label-free electrochemical immunosensor. • The immunosensor showed wide detection range and ultralow detection limit for the detection of CA199.

  4. Study of the visible light activity of Pt and Au-TiO2 photocatalysts in organic pollutants degradation

    Directory of Open Access Journals (Sweden)

    Jairo Antonio Cubillos-Lobo

    2017-01-01

    Full Text Available Los fotocatalizadores Pt-TiO2 y Au-TiO2 se prepararon por fotodeposición del metal noble sobre el TiO2 sulfatado. Se encontró que las propiedades ópticas, el estado de oxidación y el tamaño de partícula de las especies metálicas (Pt o Au juegan un papel fundamental en la actividad fotocatalítica del TiO2 bajo luz visible. La actividad fotocatalítica del TiO2 en la degradación de fenol y naranja de metilo aumentó significativamente a través de los tratamientos de sulfatación y metalización de este óxido. La más alta velocidad de degradación bajo luz UV-Visible y visible, se alcanzó usando el fotocatalizador Pt-S-TiO2; esto se debe principalmente a la modificación de las propiedades ópticas del TiO2 inducidas por la platinización, también a la buena distribución y al pequeño tamaño de las partículas de Pt. Se encontró, además, que este catalizador presenta una buena estabilidad después de dos ciclos de reacción en la degradación de fenol bajo luz UV-Visible. El fotocatalizador Pt-S-TiO2 fue activo también bajo luz solar directa y bajo las condiciones medioambientales de la ciudad de Tunja (Boyacá, Colombia.

  5. Effect of gold subsurface layer on the surface activity and segregation in Pt/Au/Pt3M (where M = 3d transition metals) alloy catalyst from first-principles.

    Science.gov (United States)

    Kim, Chang-Eun; Lim, Dong-Hee; Jang, Jong Hyun; Kim, Hyoung Juhn; Yoon, Sung Pil; Han, Jonghee; Nam, Suk Woo; Hong, Seong-Ahn; Soon, Aloysius; Ham, Hyung Chul

    2015-01-21

    The effect of a subsurface hetero layer (thin gold) on the activity and stability of Pt skin surface in Pt3M system (M = 3d transition metals) is investigated using the spin-polarized density functional theory calculation. First, we find that the heterometallic interaction between the Pt skin surface and the gold subsurface in Pt/Au/Pt3M system can significantly modify the electronic structure of the Pt skin surface. In particular, the local density of states projected onto the d states of Pt skin surface near the Fermi level is drastically decreased compared to the Pt/Pt/Pt3M case, leading to the reduction of the oxygen binding strength of the Pt skin surface. This modification is related to the increase of surface charge polarization of outmost Pt skin atoms by the electron transfer from the gold subsurface atoms. Furthermore, a subsurface gold layer is found to cast the energetic barrier to the segregation loss of metal atoms from the bulk (inside) region, which can enhance the durability of Pt3M based catalytic system in oxygen reduction condition at fuel cell devices. This study highlights that a gold subsurface hetero layer can provide an additional mean to tune the surface activity toward oxygen species and in turn the oxygen reduction reaction, where the utilization of geometric strain already reaches its practical limit.

  6. anti p and anti Λ production in Si+Au collisions at the AGS

    International Nuclear Information System (INIS)

    Wu, Yuedong

    1996-01-01

    Anti p and anti Λ production in central Si + Au collisions has been measured by E589 at the BNL-AGS. Preliminary m perpendicular spectra are presented for anti p's and anti Λ's. The dn/dy distribution for anti p's is also presented. Based on the anti p and anti Λ measurements, anti Λ/anti p ratios are calculated in the rapidity range of 1.1-1.5

  7. Femtosecond Laser Fabricated Ag@Au and Cu@Au Alloy Nanoparticles for Surface Enhanced Raman Spectroscopy Based Trace Explosives Detection

    Directory of Open Access Journals (Sweden)

    Moram Sree Satya Bharati

    2018-03-01

    Full Text Available Herein we present results from our detailed studies on the fabrication of Ag@Au and Cu@Au alloy nanoparticles (NPs using the femtosecond laser ablation in liquid technique. The NPs were obtained by ablating the pure Ag, Cu targets (bulk in HAuCl4 (5 mM solution. The absorption properties of the obtained NPs colloids were characterized using UV-Visible absorption spectrometer and their size, shape, and crystallinity were investigated using the XRD, FESEM and TEM techniques. The fabricated NPs were utilized for sensing of explosive molecules such as 2,4,6-trinitrophenol (PA, 2,4-dinitrotoluene (DNT and a common dye methylene blue (MB using the surface enhanced Raman spectroscopy (SERS technique. The detection limit in terms of weight was as low as few nano-grams in the case of nitroaromatic explosive compounds (PA, DNT and few picograms in the case of a common dye molecule (MB. Typical enhancement factors achieved were estimated to be ~104, ~105, and ~107, respectively, for PA, DNT, and MB. The significance of the present work lies in exploring the performance of the prepared NPs being used as SERS substrates for explosives detection using a portable Raman instrument. Such capability enables one to carry the spectrometer to the point of interest in the field and evaluate any hazardous samples within a short period of time.

  8. Charged hadron transverse momentum distributions in Au+Au collisions at S=200 GeV

    Science.gov (United States)

    Roland, Christof; PHOBOS Collaboration; Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Ballintijn, M.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Steinberg, P.; Stephans, G. S. F.; Stodulski, M.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    2003-03-01

    We present transverse momentum distributions of charged hadrons produced in Au+Au collisions at sqrt(s_NN) = 200 GeV. The evolution of the spectra for transverse momenta p_T from 0.25 to 5GeV/c is studied as a function of collision centrality over a range from 65 to 344 participating nucleons. We find a significant change of the spectral shape between proton-antiproton and peripheral Au+Au collisions. Comparing peripheral to central Au+Au collisions, we find that the yields at the highest p_T exhibit approximate scaling with the number of participating nucleons, rather than scaling with the number of binary collisions.

  9. Digestive ripening facilitated atomic diffusion at nanosize regime: Case of AuIn{sub 2} and Ag{sub 3}In intermetallic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Arora, Neha [Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560 012 (India); Jagirdar, Balaji R., E-mail: jagirdar@ipc.iisc.ernet.in [Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560 012 (India); Klabunde, Kenneth J. [Department of Chemistry, Kansas State University, Manhattan, KS 66506 (United States)

    2014-10-15

    Highlights: • A digestive ripening facilitated interatomic diffusion process is presented. • Nearly monodisperse AuIn{sub 2} and Ag{sub 3}In intermetallic nanoparticles were synthesized. • Optimization of reaction temperature facilitates interatomic transfer. • Presence of excess ligand plays a crucial role in the digestive ripening process. - Abstract: Monodisperse colloidal gold–indium (AuIn{sub 2}) intermetallic nanoparticles have been synthesized from Au and In colloids using the digestive ripening process. Formation of the intermetallic proceeds via digestive ripening facilitated atomic diffusion of Au and In atoms from the Au and In nanoparticles followed simultaneously by their growth in the solution. Optimization of the reaction temperature was found to be crucial for the formation of AuIn{sub 2} intermetallic from gold and indium nanoparticles. Transmission electron microscopy revealed the presence of nearly monodisperse nanoparticles of Au and AuIn{sub 2} with particle size distribution of 3.7 ± 1.0 nm and 5.0 ± 1.6 nm, respectively. UV–visible spectral studies brought out the absence of SPR band in pure AuIn{sub 2} intermetallic nanoparticles. Optical study and electron microscopy, in combination with powder X-ray diffraction established phase pure AuIn{sub 2} intermetallic nanoparticles unambiguously. The potential of such an unprecedented approach has been further exploited in the synthesis of Ag{sub 3}In intermetallic nanoparticles with the dimension of less than 10 nm.

  10. Intriguing centrality dependence of the Au-Au source size at the AGS

    International Nuclear Information System (INIS)

    Baker, M.D.

    1996-01-01

    One of the main goals of high energy heavy ion physics is to establish the existence of a deconfined phase of nuclear matter--the quark-gluon plasma--at high temperatures or densities. One possible signature of such a phase transition, especially if it were first order, would be a larger source size or lifetime than a similar hadronic system. At current AGS energies, we attempt to form a quark- gluon plasma by achieving a high baryon density for a period of time in the center of the collision region. For a given density threshold, the size of this high density region should be a strong function of the impact parameter: the more central the event, the larger the high density region. Therefore, one possible signature of a quark-gluon plasma would be a sudden change in system lifetime or size as a function of the centrality of the collision. In this talk we present an intriguing effect which was not predicted for simple hadronic systems: a rapid increase of the HBT-measured source radius parameter for pion pairs with increasing centrality for Au-Au collisions at a beam momentum of 11.45 A GeV/c on a fixed target. Experience has shown, however, that we must be cautious in our interpretation. A complete understanding of the collision dynamics at a given energy must be built up from several measurements and new, but conventional, hadronic explanations must be considered for such unexpected effects. More study is needed, therefore, before any strong conclusions can be reached

  11. High stability of the goldalloy fullerenes: A density functional theory investigation of M12@Au20 (M = Na, Al, Ag, Sc, Y, La, Lu, and Au) clusters

    International Nuclear Information System (INIS)

    Zhang Meng; Feng Xiao-Juan; Zhao Li-Xia; Zhang Hong-Yu; Luo You-Hua

    2012-01-01

    Discovering highly stable metal fullerenes such as the celebrated C 60 is interesting in cluster science as they have potential applications as building blocks in new nanostructures. We here investigated the structural and electronic properties of the fullerenes M 12 @Au 20 (M = Na, Al, Ag, Sc, Y, La, Lu, and Au), using a first-principles investigation with the density functional theory. It is found that these compound clusters possess a similar cage structure to the icosahedral Au 32 fullerene. La 12 @Au 20 is found to be particularly stable among these clusters. The binding energy of La 12 @Au 20 is 3.43 eV per atom, 1.05 eV larger than that in Au 32 . The highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gap of La 12 @Au 20 is only 0.31 eV, suggesting that it should be relatively chemically reactive. (condensed matter: structural, mechanical, and thermal properties)

  12. Liquid-liquid interface assisted synthesis of size- and thickness-controlled Ag nanoplates

    International Nuclear Information System (INIS)

    Jin Mingshang; Kuang Qin; Han Xiguang; Xie Shuifen; Xie Zhaoxiong; Zheng Lansun

    2010-01-01

    Here we proposed a synthetic method of high-purity Ag nanoplates by the reduction of aqueous Ag + ions at the aqueous-organic interface with the reductant ferrocene. We demonstrated that the as-prepared Ag nanoplates can be widely tunable from 600 nm to 7 μm in size and from 10 to 35 nm in thickness, simply by adjusting the component of organic phase. To our knowledge, there are few methods to tailor the size and the thickness of metal nanoplates in such a large range although many efforts have been made aiming to realize it. Our proposed synthetic strategy is rapid, template-free, seed-less, and high-yield, and could be applied to synthesize analogous two-dimensional nanostructures of other noble metals, such as Pt, Au, and Pd. - Graphical abstract: High-purity Ag nanoplates were synthesized by the reduction of aqueous Ag + ions at the aqueous-organic interface with the reductant ferrocene, the size and thickness of which were widely tunable.

  13. Composite particle production in relativistic Au+Au collisions at AGS: First results from the E866 forward spectrometer at sign 2, 4, and 10.8 A·GeV

    International Nuclear Information System (INIS)

    Ashktorab, K.

    1996-01-01

    Particle spectra were measured for Au + Au collisions at 2, 4, and 10. 8 A·GeV using the E866 spectrometers. Recent results on proton emission and composite particle production form the E866 forward spectrometer data taken in 1994 together with the first results from the 1995/6 AGS running period are presented. Preliminary results indicate a decrease in the coalescence scaling coefficient with increasing projectile energy and centrality

  14. Colloidal Au and Au-alloy catalysts for direct borohydride fuel cells: Electrocatalysis and fuel cell performance

    Science.gov (United States)

    Atwan, Mohammed H.; Macdonald, Charles L. B.; Northwood, Derek O.; Gyenge, Elod L.

    Supported colloidal Au and Au-alloys (Au-Pt and Au-Pd, 1:1 atomic ratio) on Vulcan XC-72 (with 20 wt% metal load) were prepared by the Bönneman method. The electrocatalytic activity of the colloidal metals with respect to borohydride electro-oxidation for fuel cell applications was investigated by voltammetry on static and rotating electrodes, chronoamperometry, chronopotentiometry and fuel cell experiments. The fundamental electrochemical techniques showed that alloying Au, a metal that leads to the maximum eight-electron oxidation of BH 4 -, with Pd or Pt, well-known catalysts of dehydrogenation reactions, improved the electrode kinetics of BH 4 - oxidation. Fuel cell experiments corroborated the kinetic studies. Using 5 mg cm -2 colloidal metal load on the anode, it was found that Au-Pt was the most active catalyst giving a cell voltage of 0.47 V at 100 mA cm -2 and 333 K, while under identical conditions the cell voltage using colloidal Au was 0.17 V.

  15. Colloidal Au and Au-alloy catalysts for direct borohydride fuel cells: Electrocatalysis and fuel cell performance

    Energy Technology Data Exchange (ETDEWEB)

    Atwan, Mohammed H.; Northwood, Derek O. [Department of Mechanical, Auto and Materials Engineering, University of Windsor, Windsor (Canada N9B 3P4); Macdonald, Charles L.B. [Department of Chemistry and Biochemistry, University of Windsor, Windsor (Canada N9B 3P4); Gyenge, Elod L. [Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC (Canada V6T 1Z4)

    2006-07-14

    Supported colloidal Au and Au-alloys (Au-Pt and Au-Pd, 1:1 atomic ratio) on Vulcan XC-72 (with 20wt% metal load) were prepared by the Bonneman method. The electrocatalytic activity of the colloidal metals with respect to borohydride electro-oxidation for fuel cell applications was investigated by voltammetry on static and rotating electrodes, chronoamperometry, chronopotentiometry and fuel cell experiments. The fundamental electrochemical techniques showed that alloying Au, a metal that leads to the maximum eight-electron oxidation of BH{sub 4}{sup -}, with Pd or Pt, well-known catalysts of dehydrogenation reactions, improved the electrode kinetics of BH{sub 4}{sup -} oxidation. Fuel cell experiments corroborated the kinetic studies. Using 5mgcm{sup -2} colloidal metal load on the anode, it was found that Au-Pt was the most active catalyst giving a cell voltage of 0.47V at 100mAcm{sup -2} and 333K, while under identical conditions the cell voltage using colloidal Au was 0.17V. (author)

  16. Platinum(iv) prodrug conjugated Pd@Au nanoplates for chemotherapy and photothermal therapy

    Science.gov (United States)

    Shi, Saige; Chen, Xiaolan; Wei, Jingping; Huang, Yizhuan; Weng, Jian; Zheng, Nanfeng

    2016-03-01

    Owing to the excellent near infrared (NIR) light absorption and efficient passive targeting toward tumor tissue, two-dimensional (2D) core-shell PEGylated Pd@Au nanoplates have great potential in both photothermal therapy and drug delivery systems. In this work, we successfully conjugate Pd@Au nanoplates with a platinum(iv) prodrug c,c,t-[Pt(NH3)2Cl2(O2CCH2CH2CO2H)2] to obtain a nanocomposite (Pd@Au-PEG-Pt) for combined photothermal-chemotherapy. The prepared Pd@Au-PEG-Pt nanocomposite showed excellent stability in physiological solutions and efficient Pt(iv) prodrug loading. Once injected into biological tissue, the Pt(iv) prodrug was easily reduced by physiological reductants (e.g. ascorbic acid or glutathione) into its cytotoxic and hydrophilic Pt(ii) form and released from the original nanocomposite, and the NIR laser irradiation could accelerate the release of Pt(ii) species. More importantly, Pd@Au-PEG-Pt has high tumor accumulation (29%ID per g), which makes excellent therapeutic efficiency at relatively low power density possible. The in vivo results suggested that, compared with single therapy the combined thermo-chemotherapy treatment with Pd@Au-PEG-Pt resulted in complete destruction of the tumor tissue without recurrence, while chemotherapy using Pd@Au-PEG-Pt without irradiation or photothermal treatment using Pd@Au-PEG alone did not. Our work highlights the prospects of a feasible drug delivery strategy of the Pt prodrug by using 2D Pd@Au nanoplates as drug delivery carriers for multimode cancer treatment.Owing to the excellent near infrared (NIR) light absorption and efficient passive targeting toward tumor tissue, two-dimensional (2D) core-shell PEGylated Pd@Au nanoplates have great potential in both photothermal therapy and drug delivery systems. In this work, we successfully conjugate Pd@Au nanoplates with a platinum(iv) prodrug c,c,t-[Pt(NH3)2Cl2(O2CCH2CH2CO2H)2] to obtain a nanocomposite (Pd@Au-PEG-Pt) for combined photothermal-chemotherapy. The

  17. Evidence from d+Au measurements for final-state suppression of high-p(T) hadrons in Au+Au collisions at RHIC.

    Science.gov (United States)

    Adams, J; Adler, C; Aggarwal, M M; Ahammed, Z; Amonett, J; Anderson, B D; Anderson, M; Arkhipkin, D; Averichev, G S; Badyal, S K; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellwied, R; Berger, J; Bezverkhny, B I; Bhardwaj, S; Bhaskar, P; Bhati, A K; Bichsel, H; Billmeier, A; Bland, L C; Blyth, C O; Bonner, B E; Botje, M; Boucham, A; Brandin, A; Bravar, A; Cadman, R V; Cai, X Z; Caines, H; Calderón de la Barca Sánchez, M; Carroll, J; Castillo, J; Castro, M; Cebra, D; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, Y; Chernenko, S P; Cherney, M; Chikanian, A; Choi, B; Christie, W; Coffin, J P; Cormier, T M; Cramer, J G; Crawford, H J; Das, D; Das, S; Derevschikov, A A; Didenko, L; Dietel, T; Dong, X; Draper, J E; Du, F; Dubey, A K; Dunin, V B; Dunlop, J C; Dutta Majumdar, M R; Eckardt, V; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Fachini, P; Faine, V; Faivre, J; Fatemi, R; Filimonov, K; Filip, P; Finch, E; Fisyak, Y; Flierl, D; Foley, K J; Fu, J; Gagliardi, C A; Ganti, M S; Gagunashvili, N; Gans, J; Gaudichet, L; Germain, M; Geurts, F; Ghazikhanian, V; Ghosh, P; Gonzalez, J E; Grachov, O; Grigoriev, V; Gronstal, S; Grosnick, D; Guedon, M; Guertin, S M; Gupta, A; Gushin, E; Gutierrez, T D; Hallman, T J; Hardtke, D; Harris, J W; Heinz, M; Henry, T W; Heppelmann, S; Herston, T; Hippolyte, B; Hirsch, A; Hjort, E; Hoffmann, G W; Horsley, M; Huang, H Z; Huang, S L; Humanic, T J; Igo, G; Ishihara, A; Jacobs, P; Jacobs, W W; Janik, M; Johnson, I; Jones, P G; Judd, E G; Kabana, S; Kaneta, M; Kaplan, M; Keane, D; Kiryluk, J; Kisiel, A; Klay, J; Klein, S R; Klyachko, A; Koetke, D D; Kollegger, T; Konstantinov, A S; Kopytine, M; Kotchenda, L; Kovalenko, A D; Kramer, M; Kravtsov, P; Krueger, K; Kuhn, C; Kulikov, A I; Kumar, A; Kunde, G J; Kunz, C L; Kutuev, R Kh; Kuznetsov, A A; Lamont, M A C; Landgraf, J M; Lange, S; Lansdell, C P; Lasiuk, B; Laue, F; Lauret, J; Lebedev, A; Lednický, R; Leontiev, V M; LeVine, M J; Li, C; Li, Q; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, L; Liu, Z; Liu, Q J; Ljubicic, T; Llope, W J; Long, H; Longacre, R S; Lopez-Noriega, M; Love, W A; Ludlam, T; Lynn, D; Ma, J; Ma, Y G; Magestro, D; Mahajan, S; Mangotra, L K; Mahapatra, D P; Majka, R; Manweiler, R; Margetis, S; Markert, C; Martin, L; Marx, J; Matis, H S; Matulenko, Yu A; McShane, T S; Meissner, F; Melnick, Yu; Meschanin, A; Messer, M; Miller, M L; Milosevich, Z; Minaev, N G; Mironov, C; Mishra, D; Mitchell, J; Mohanty, B; Molnar, L; Moore, C F; Mora-Corral, M J; Morozov, V; de Moura, M M; Munhoz, M G; Nandi, B K; Nayak, S K; Nayak, T K; Nelson, J M; Nevski, P; Nikitin, V A; Nogach, L V; Norman, B; Nurushev, S B; Odyniec, G; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Paic, G; Pandey, S U; Pal, S K; Panebratsev, Y; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Perevoztchikov, V; Peryt, W; Petrov, V A; Phatak, S C; Picha, R; Planinic, M; Pluta, J; Porile, N; Porter, J; Poskanzer, A M; Potekhin, M; Potrebenikova, E; Potukuchi, B V K S; Prindle, D; Pruneau, C; Putschke, J; Rai, G; Rakness, G; Raniwala, R; Raniwala, S; Ravel, O; Ray, R L; Razin, S V; Reichhold, D; Reid, J G; Renault, G; Retiere, F; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevski, O V; Romero, J L; Rose, A; Roy, C; Ruan, L J; Rykov, V; Sahoo, R; Sakrejda, I; Salur, S; Sandweiss, J; Savin, I; Schambach, J; Scharenberg, R P; Schmitz, N; Schroeder, L S; Schweda, K; Seger, J; Seliverstov, D; Seyboth, P; Shahaliev, E; Shao, M; Sharma, M; Shestermanov, K E; Shimanskii, S S; Singaraju, R N; Simon, F; Skoro, G; Smirnov, N; Snellings, R; Sood, G; Sorensen, P; Sowinski, J; Spinka, H M; Srivastava, B; Stanislaus, S; Stock, R; Stolpovsky, A; Strikhanov, M; Stringfellow, B; Struck, C; Suaide, A A P; Sugarbaker, E; Suire, C; Sumbera, M; Surrow, B; Symons, T J M; Szanto de Toledo, A; Szarwas, P; Tai, A; Takahashi, J; Tang, A H; Thein, D; Thomas, J H; Tikhomirov, V; Tokarev, M; Tonjes, M B; Trainor, T A; Trentalange, S; Tribble, R E; Trivedi, M D; Trofimov, V; Tsai, O; Ullrich, T; Underwood, D G; Van Buren, G; VanderMolen, A M; Vasiliev, A N; Vasiliev, M; Vigdor, S E; Viyogi, Y P; Voloshin, S A; Waggoner, W; Wang, F; Wang, G; Wang, X L; Wang, Z M; Ward, H; Watson, J W; Wells, R; Westfall, G D; Whitten, C; Wieman, H; Willson, R; Wissink, S W; Witt, R; Wood, J; Wu, J; Xu, N; Xu, Z; Xu, Z Z; Yakutin, A E; Yamamoto, E; Yang, J; Yepes, P; Yurevich, V I; Zanevski, Y V; Zborovský, I; Zhang, H; Zhang, H Y; Zhang, W M; Zhang, Z P; Zołnierczuk, P A; Zoulkarneev, R; Zoulkarneeva, J; Zubarev, A N

    2003-08-15

    We report measurements of single-particle inclusive spectra and two-particle azimuthal distributions of charged hadrons at high transverse momentum (high p(T)) in minimum bias and central d+Au collisions at sqrt[s(NN)]=200 GeV. The inclusive yield is enhanced in d+Au collisions relative to binary-scaled p+p collisions, while the two-particle azimuthal distributions are very similar to those observed in p+p collisions. These results demonstrate that the strong suppression of the inclusive yield and back-to-back correlations at high p(T) previously observed in central Au+Au collisions are due to final-state interactions with the dense medium generated in such collisions.

  18. Effect of gold subsurface layer on the surface activity and segregation in Pt/Au/Pt{sub 3}M (where M = 3d transition metals) alloy catalyst from first-principles

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang-Eun [Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), 39-1 Hawolgok, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Global E3 Institute and Department of Materials Science and Engineering, Yonsei University, 120-749 Seoul (Korea, Republic of); Lim, Dong-Hee [Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), 39-1 Hawolgok, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Department of Environmental Engineering, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju, Chungbuk 362-763 (Korea, Republic of); Jang, Jong Hyun; Kim, Hyoung Juhn; Yoon, Sung Pil; Han, Jonghee; Nam, Suk Woo [Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), 39-1 Hawolgok, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Hong, Seong-Ahn [Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), 39-1 Hawolgok, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Department of Advanced Materials Chemistry, Korea University, Sejong-city 339-700 (Korea, Republic of); Soon, Aloysius, E-mail: aloysius.soon@yonsei.ac.kr, E-mail: hchahm@kist.re.kr [Global E3 Institute and Department of Materials Science and Engineering, Yonsei University, 120-749 Seoul (Korea, Republic of); Ham, Hyung Chul, E-mail: aloysius.soon@yonsei.ac.kr, E-mail: hchahm@kist.re.kr [Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), 39-1 Hawolgok, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Clean Energy and Chemical Engineering, University of Science and Technology (UST), 217 Gajungro, Yuseong-gu, Daejeon 305-333 (Korea, Republic of)

    2015-01-21

    The effect of a subsurface hetero layer (thin gold) on the activity and stability of Pt skin surface in Pt{sub 3}M system (M = 3d transition metals) is investigated using the spin-polarized density functional theory calculation. First, we find that the heterometallic interaction between the Pt skin surface and the gold subsurface in Pt/Au/Pt{sub 3}M system can significantly modify the electronic structure of the Pt skin surface. In particular, the local density of states projected onto the d states of Pt skin surface near the Fermi level is drastically decreased compared to the Pt/Pt/Pt{sub 3}M case, leading to the reduction of the oxygen binding strength of the Pt skin surface. This modification is related to the increase of surface charge polarization of outmost Pt skin atoms by the electron transfer from the gold subsurface atoms. Furthermore, a subsurface gold layer is found to cast the energetic barrier to the segregation loss of metal atoms from the bulk (inside) region, which can enhance the durability of Pt{sub 3}M based catalytic system in oxygen reduction condition at fuel cell devices. This study highlights that a gold subsurface hetero layer can provide an additional mean to tune the surface activity toward oxygen species and in turn the oxygen reduction reaction, where the utilization of geometric strain already reaches its practical limit.

  19. Development of microstructured large area magnetic calorimeters with Au:Er- and Ag:Er-sensors for the detection of x-ray quanta and high energetic particles; Entwicklung grossflaechiger mikrostrukturierter magnetischer Kalorimeter mit Au:Er- und Ag:Er-Sensoren fuer den energieaufgeloesten Nachweis von Roentgenquanten und hochenergetischen Teilchen

    Energy Technology Data Exchange (ETDEWEB)

    Burck, Andreas

    2008-11-04

    This thesis describes the development of large-area magnetic calorimeters which could for example be used for the investigation of the dissociative recombination or the measurement of the Lamb-shift for hydrogenlike heavy ions. The detectors consist of two meandershaped niobium thin film pickup coils and a paramagnetic sensor. The deposition of energy in the sensor results in a temperature change and therefore in a change of magnetisation of the sensor, which can be measured by a SQUID-magnetometer with high precision. As sensormaterials a dilute alloy of gold-erbium (Au:Er) as well as silver-erbium (Ag:Er) were used. Whereas the Ag:Er-sensor was glued on the pickup coil the Au:Er-sensor was for the first time microstructured by a novel microstructuring process established in this thesis. For the characterisation of the detectors and the sensormaterials a fluorescence source and a {sup 55}Fe source were used. The thermodynamic properties of the Au:Er-sensors thereby show promising results, as the magnetisation shows bulk properties down to 20 mK. The measurements of the signalize and the magnetisation with the detector which was equipped with a Ag:Er-sensor showed that the thermodynamic properties of the Ag:Eralloy could be fully described. Furthermore the shape of the pulses, the noise and the energy resolution of both detectors will be discussed. (orig.)

  20. Noble metals can have different effects on photocatalysis over metal-organic frameworks (MOFs): a case study on M/NH₂-MIL-125(Ti) (M=Pt and Au).

    Science.gov (United States)

    Sun, Dengrong; Liu, Wenjun; Fu, Yanghe; Fang, Zhenxing; Sun, Fangxiang; Fu, Xianzhi; Zhang, Yongfan; Li, Zhaohui

    2014-04-14

    M-doped NH2-MIL-125(Ti) (M=Pt and Au) were prepared by using the wetness impregnation method followed by a treatment with H2 flow. The resultant samples were characterized by powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), X-ray absorption fine structure (XAFS) analyses, N2-sorption BET surface area, and UV/Vis diffuse reflectance spectroscopy (DRS). The photocatalytic reaction carried out in saturated CO2 with triethanolamine (TEOA) as sacrificial agent under visible-light irradiations showed that the noble metal-doping on NH2-MIL-125(Ti) promoted the photocatalytic hydrogen evolution. Unlike that over pure NH2-MIL-125(Ti), in which only formate was produced, both hydrogen and formate were formed over Pt- and Au-loaded NH2-MIL-125(Ti). However, Pt and Au have different effects on the photocatalytic performance for formate production. Compared with pure NH2-MIL-125(Ti), Pt/NH2-MIL-125(Ti) showed an enhanced activity for photocatalytic formate formation, whereas Au has a negative effect on this reaction. To elucidate the origin of the different photocatalytic performance, electron spin resonance (ESR) analyses and density functional theory (DFT) calculations were carried out over M/NH2-MIL-125(Ti).The photocatalytic mechanisms over M/NH2-MIL-125(Ti) (M=Pt and Au) were proposed. For the first time, the hydrogen spillover from the noble metal Pt to the framework of NH2-MIL-125(Ti) and its promoting effect on the photocatalytic CO2 reduction is revealed. The elucidation of the mechanism on the photocatalysis over M/NH2-MIL-125(Ti) can provide some guidance in the development of new photocatalysts based on MOF materials. This study also demonstrates the potential of using noble metal-doped MOFs in photocatalytic reactions involving hydrogen as a reactant, like hydrogenation reactions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. The Shear Strength and Fracture Behavior of Sn-Ag- xSb Solder Joints with Au/Ni-P/Cu UBM

    Science.gov (United States)

    Lee, Hwa-Teng; Hu, Shuen-Yuan; Hong, Ting-Fu; Chen, Yin-Fa

    2008-06-01

    This study investigates the effects of Sb addition on the shear strength and fracture behavior of Sn-Ag-based solders with Au/Ni-P/Cu underbump metallization (UBM) substrates. Sn-3Ag- xSb ternary alloy solder joints were prepared by adding 0 wt.% to 10 wt.% Sb to a Sn-3.5Ag alloy and joining them with Au/Ni-P/Cu UBM substrates. The solder joints were isothermally stored at 150°C for up to 625 h to study their microstructure and interfacial reaction with the UBM. Single-lap shear tests were conducted to evaluate the mechanical properties, thermal resistance, and failure behavior. The results show that UBM effectively suppressed intermetallic compound (IMC) formation and growth during isothermal storage. The Sb addition helped to refine the Ag3Sn compounds, further improving the shear strength and thermal resistance of the solders. The fracture behavior evolved from solder mode toward the mixed mode and finally to the IMC mode with increasing added Sb and isothermal storage time. However, SnSb compounds were found in the solder with 10 wt.% Sb; they may cause mechanical degradation of the solder after long-term isothermal storage.

  2. Influence of elastic-like relaxation on the size distribution of monatomic Ag chains on the steps of a vicinal Pt surface

    International Nuclear Information System (INIS)

    Tokar, V.I.; Dreysse, H.

    2007-01-01

    We discuss the statistics of the chains of Ag atoms self-assembled on the steps of a vicinal Pt surface as established experimentally and calculated within a lattice gas model by Gambardella et al. [Phys. Rev. B 73 (2006) 245425]. We suggest that the discrepancy between the theory and experiment may be due to additional interatomic interactions inside the clusters unaccounted for in the model. Our consideration is based on an exactly solvable one-dimensional equilibrium model of self-assembly proposed by us recently. We argue that the model provides an adequate approximate description of the Ag/Pt system and show that the chain length distribution in the model can be fitted to the experimental data with high accuracy

  3. Study of the radioactive disintegration of /sup 187/Au existence of E0 transitions in /sup 187/Pt?

    CERN Document Server

    Braham, A B; Bourgeois, C; Desthuilliers-Porquet, M G; Höglund, A; Huck, A; Kilcher, P; Knipper, A; Letessier, J; Serre, Claude; Schuck, C

    1979-01-01

    The decay /sup 187/Au to /sup 187/Pt has been studied using on-line mass-separated sources produced at ISOCELE (ORSAY) and ISOLDE (CERN). Lifetime measurements are performed with a Gerholm spectrometer and precise conversion electron determination with a 180 degrees spectrograph. A decay scheme is proposed. Low-lying low-spin states in /sup 187/Pt are discussed. Special attention is given to four highly converted transitions (260.3, 262.5, 498.2 and 498.8 keV) which are tentatively considered to have large E0 components. (41 refs).

  4. Sunlight impelled photocatalytic pursuance of Ag-TiO2-SGO and Pt-TiO2-SGO ternary nanocomposites on rhodamine B degradation

    Science.gov (United States)

    Alamelu, K.; Ali, B. M. Jaffar

    2018-04-01

    We demonstrate a hydrothermal method combined with polyol reduction process for the synthesis of an Ag-TiO2-SGO and Pt-TiO2-SGO ternary nanocomposites in which the Ag, Pt and TiO2 nanoparticles are dispersed on the Sulfonated graphene oxide nanosheets. The structural and optical properties of obtained nanocomposites were characterized by XRD, UV-DRS, Raman, FTIR and Photoluminescence spectroscopy. The nanocomposites shows increased light absorption ability in the visible region due to surface plasmon resonance effect of noble metal. The rate of electron-hole pair recombination was significating reduced for nanocomposites system compare to pure. Also, their Performance for the photocatalytic degradation of Rhodamine B as a model organic pollutant is explored. The results showed that Ag-TiO2-SGO and Pt-TiO2-SGO nanocomposites could degrade 95% of the dye within 90 min, under natural sunlight irradiation. The reaction kinetics of ternary nanocomposites exhibit more than 2.2 fold increased photocatalytic activity compared to pristine TiO2. Sulfonated graphene based ternary photocatalyst are potential candidates for wastewater treatment in real time application, due to this ability degrade cationic and anionic dyes.

  5. The interplay between surface-water and hydrogen bonding in a water adlayer on Pt(111) and Ag(111)

    Energy Technology Data Exchange (ETDEWEB)

    Delle Site, Luigi [Max-Planck-Institut fuer Polymerforschung, Ackermannweg 10, D-55128 Mainz (Germany); Ghiringhelli, Luca M [Max-Planck-Institut fuer Polymerforschung, Ackermannweg 10, D-55128 Mainz (Germany); Andreussi, Oliviero [Scuola Normale Superiore, Piazza dei Cavalieri 7, 56100 Pisa (Italy); Donadio, Davide [Computational Science, Department of Chemistry and Applied Biosciences, ETH Zurich, USI-Campus, via Giuseppe Buffi 13, CH-6900 Lugano (Switzerland); Parrinello, Michele [Scuola Normale Superiore, Piazza dei Cavalieri 7, 56100 Pisa (Italy)

    2007-06-20

    The structure of a water adlayer on a Pt(111) surface is investigated by means of extensive first-principles calculations. Allowing for proton disorder, the ground state energy for the {radical}3 x {radical}3R30{sup o} structure can be found. This results from an interplay between water/metal chemical bonding and the hydrogen bonding of the water network. This picture is supported by substituting Pt(111) with Ag(111): the almost inert surface allows for the reconstruction of the hydrogen network. (fast track communication)

  6. The interplay between surface-water and hydrogen bonding in a water adlayer on Pt(111) and Ag(111)

    International Nuclear Information System (INIS)

    Delle Site, Luigi; Ghiringhelli, Luca M; Andreussi, Oliviero; Donadio, Davide; Parrinello, Michele

    2007-01-01

    The structure of a water adlayer on a Pt(111) surface is investigated by means of extensive first-principles calculations. Allowing for proton disorder, the ground state energy for the √3 x √3R30 o structure can be found. This results from an interplay between water/metal chemical bonding and the hydrogen bonding of the water network. This picture is supported by substituting Pt(111) with Ag(111): the almost inert surface allows for the reconstruction of the hydrogen network. (fast track communication)

  7. Multilevel resistance switching effect in Au/La2/3Ba1/3MnO3/Pt heterostructure manipulated by external fields

    Science.gov (United States)

    Wen, Jiahong; Zhao, Xiaoyu; Li, Qian; Zhang, Sheng; Wang, Dunhui; Du, Youwei

    2018-04-01

    Multilevel resistance switching (RS) effect has attracted more and more attention due to its promising potential for the increase of storage density in memory devices. In this work, the transport properties are investigated in an Au/La2/3Ba1/3MnO3 (LBMO)/Pt heterostructure. Taking advantage of the strong interplay among the spin, charge, orbital and lattice of LBMO, the Au/LBMO/Pt device can exhibit bipolar RS effect and magnetoresistance effect simultaneously. Under the coaction of electric field and magnetic field, four different resistance states are achieved in this device. These resistance states show excellent repeatability and retentivity and can be switched between any two states, which suggest the potential applications in the multilevel RS memory devices with enhanced storage density.

  8. Noble metal (Pt or Au)-doped monolayer MoS2 as a promising adsorbent and gas-sensing material to SO2, SOF2 and SO2F2: a DFT study

    Science.gov (United States)

    Chen, Dachang; Zhang, Xiaoxing; Tang, Ju; Cui, Hao; Li, Yi

    2018-02-01

    We explored the adsorption of SO2, SOF2, and SO2F2 on Pt- or Au-doped MoS2 monolayer based on density functional theory. The adsorption energy, adsorption distance, charge transfer as well as density of states were discussed. SO2 and SOF2 exhibit strong chemical interactions with Pt-doped MoS2 based on large adsorption energy, charge transfer, and changes of electron orbitals in gas molecule. SO2 also shows obvious chemisorption on Au-doped MoS2 with apparent magnetism transfer from Au to gas molecules. The adsorption of SO2F2 on Pt-MoS2 and SOF2 on Au-MoS2 exhibits weaker chemical interactions and SO2F2 losses electrons when adsorbed on Pt-MoS2 which is different from other gas adsorption. The adsorption of SO2F2 on Au-MoS2 represents no obvious chemical interaction but physisorption. The gas-sensing properties are also evaluated based on DFT results. This work could provide prospects and application value for typical noble metal-doped MoS2 as gas-sensing materials.

  9. Cube-like Fe3O4@SiO2@Au@Ag magnetic nanoparticles: a highly efficient SERS substrate for pesticide detection

    Science.gov (United States)

    Sun, Mei; Zhao, Aiwu; Wang, Dapeng; Wang, Jin; Chen, Ping; Sun, Henghui

    2018-04-01

    As a novel surface-enhanced Raman spectroscopic (SERS) nanocomposite, cube-like Fe3O4@SiO2@Au@Ag magnetic nanoparticles (NPs) were synthesized for the first time. Cube-like α-Fe2O3 NPs with uniform size were achieved by optimizing reaction temperature and time. Firstly, the cube-like Fe3O4@SiO2 with good dispersity was achieved by calcining α-Fe2O3@SiO2 NPs in hydrogen atmosphere at 360 °C for 2.5 h, followed by self-assembling a PEI shell via sonication. Furthermore, the Au@Ag particles were densely assembled on the Fe3O4@SiO2 NPs to form the Fe3O4@SiO2@Au@Ag composite structure via strong Ag-N interaction. The obtained nanocomposites exhibited an excellent SERS behavior, reflected by the low detection of limit (p-ATP) at the 5 × 10-14 M level. Moreover, these nanocubes were used for the detection of thiram, and the detection limit can reach 5 × 10-11 M. Meanwhile, the U.S. Environmental Protection Agency specifies that the residue in fruit must be lower than 7 ppm. Hence, the resulting substrate with high SERS activity has great practical potential applications in the rapid detection of chemical, biological, and environment pollutants with a simple portable Raman instrument at trace level.

  10. Arrays of Ag and Au nanoparticles with terpyridine- and thiophene-based ligands: morphology and optical responses

    Czech Academy of Sciences Publication Activity Database

    Prusková, M.; Sutrová, V.; Šlouf, Miroslav; Vlčková, B.; Vohlídal, J.; Šloufová, I.

    2017-01-01

    Roč. 33, č. 17 (2017), s. 4146-4156 ISSN 0743-7463 R&D Projects: GA ČR(CZ) GAP108/12/1143 Institutional support: RVO:61389013 Keywords : nanocomposite monolayers * self-assembly * Ag and Au arrays Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 3.833, year: 2016

  11. Two complexes of Pt(IV) and Au(III) with 2,2'-dipyridylamine and 2,2'-dipyridylaminide ligands.

    Science.gov (United States)

    Chernyshev, Alexander N; Kukushkin, Vadim Yu; Haukka, Matti

    2014-12-01

    Two noble metal complexes involving ancillary chloride ligands and chelating 2,2'-bipyridylamine (Hdpa) or its deprotonated derivative (dpa), namely [bis(pyridin-2-yl-κN)amine]tetrachloridoplatinum(IV), [PtCl4(C10H9N3)], and [bis(pyridin-2-yl-κN)aminido]dichloridogold(III), [AuCl2(C10H8N3)], are presented and structurally characterized. The metal atom in the former has a slightly distorted octahedral coordination environment, formed by four chloride ligands and two pyridyl N atoms of Hdpa, while the metal atom in the latter has a slightly distorted square-planar coordination environment, formed by two chloride ligands and two pyridyl N atoms of dpa. The difference in conjugation between the pyridine rings in normal and deprotonated 2,2'-dipyridylamine is discussed on the basis of the structural features of these complexes. The influence of weak interactions on the supramolecular structures of the complexes, providing one-dimensional chains of [PtCl4(C10H9N3)] and dimers of [AuCl2(C10H8N3)], are discussed.

  12. Sputter deposition on gas diffusion electrodes of Pt-Au nanoclusters for methanol oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Giorgi, L.; Giorgi, R.; Gagliardi, S.; Serra, E. [ENEA Casaccia Research Center, Rome (Italy). Physics Technologies and New Materials; Alvisi, M.; Signore, M.A. [ENEA Brindisi Research Center, Brindisi (Italy). Physics Technologies and New Materials

    2008-07-01

    Polymer electrolyte fuel cells (PEFCs) are suited for use in commercial electrical vehicle and electric power applications. The gas diffusion electrodes of PEFCs are catalyzed by the deposition of platinum (Pt) nanoparticles on carbon powder. The particles must be localized on the electrode surface in order to achieve high electrocatalyst utilization. This study discussed a method of preparing PEFC electrodes using sputter deposition of a Pt-gold (Au) alloy nanoparticles on carbon powders. The method was designed to improve electrode performance and catalyst utilization. The nano-sized alloy clusters were deposited on a gas diffusion electrode at room temperature. The deposits were then characterized using field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) in order to examine the effect of the deposition technique on the nano-morphology and electrocatalytic performance of the electrode. Results of the study showed that the technique can be used in the large-scale manufacture of fuel cell electrodes. 3 refs., 1 fig.

  13. Kinetics of transformation of deformation processed gold-matrix composite

    Science.gov (United States)

    Wongpreedee, Kageeporn

    Gold matrix Ḏeformation-processed M&barbelow;etal M&barbelow;etal C&barbelow;omposites (DMMC) have been developed that have better strength and conductivity than conventional gold alloys. However, DMMC possess metastable two-phase microstructures, and their strength and conductivity decrease after prolonged exposure to elevated temperatures. The kinetics of the transformation from the metastable two-phase microstructure to the equilibrium single-phase solid solution is of interest. This document describes a study of the elevated temperature stability of Au DMMC's and the relationship between microstructure and resistivity of three compositions: Au-7 vol %Ag, Au-14 vol %Ag, and Au-vol 7%Pt. DMMC samples were prepared by a powder metallurgy technique and mechanical processes. The smallest final diameter of these wires was 120 mum. Avrami and Arrhenius relations were used to evaluate the kinetic transformation. The extensive deformation used to produce these composites reshaped the initially equi-axed powder particles into a nanofilamentary composite. Electrical resistivity measurements were used to determine the degree of transformation from the initial metastable nano-filamentary composite to the equilibrium solid solution condition. These measurements indicated that this transformation in Au-14 at%Ag, Au-7 at %Ag Au and Au-7 at %Pt DMMC wires proceeded with activation energies of 141, 156, and 167 kJ/mol, respectively. It is thought that these empirically determined activation energies differ from those determined in single crystal, planar interface Au-Ag and Au-Pt diffusion couples due to chemical potential, surface curvature, and strain effects. The DMMC systems reach the equilibrium solid solution condition faster than single crystal, planar interface systems for two reasons: (1) far more defects (dislocations, grain boundaries, vacancies from non-conservative dislocation motion, etc.) are present in the Au-Ag and Au-Pt DMMC composites, and (2) the small

  14. A ternary functional Ag@GO@Au sandwiched hybrid as an ultrasensitive and stable surface enhanced Raman scattering platform

    Science.gov (United States)

    Zhang, Cong-yun; Hao, Rui; Zhao, Bin; Hao, Yao-wu; Liu, Ya-qing

    2017-07-01

    The graphene-mediated surface enhanced Raman scattering (SERS) substrates by virtues of plasmonic metal nanostructures and graphene or its derivatives have attracted tremendous interests which are expected to make up the deficiency of traditional plasmonic metal substrates. Herein, we designed and fabricated a novel ternary Ag@GO@Au sandwich hybrid wherein the ultrathin graphene oxide (GO) films were seamlessly wrapped around the hierarchical flower-like Ag particle core and meanwhile provided two-dimensional anchoring scaffold for the coating of Au nanoparticles (NPs). The surface coverage density of loading Au NPs could be readily controlled by tuning the dosage amount of Au particle solutions. These features endowed the sandwiched structures high enrichment capability for analytes such as aromatic molecules and astonishing SERS performance. The Raman signals were enormously enhanced with an ultrasensitive detection limit of rhodamine-6G (R6G) as low as 10-13 M based on the chemical enhancement from GO and multi-dimensional plasmonic coupling between the metal nanoparticles. In addition, the GO interlayer as an isolating shell could effectively prevent the metal-molecule direct interaction and suppress the oxidation of Ag after exposure at ambient condition which enabled the substrates excellent reproducibility with less than 6% signal variations and prolonged life-time. To evaluate the feasibility and the practical application for SERS detection in real-world samples based on GO sandwiched hybrid as SERS-active substrate, three different prohibited colorants with a series of concentrations were measured with a minimum detected concentration down to 10-9 M. Furthermore, the prepared GO sandwiched nanostructures can be used to identify different types of colorants existing in red wine, implying the great potential applications for single-particle SERS sensing of biotechnology and on-site monitoring in food security.

  15. Effect of the Fabrication Parameters of the Nanosphere Lithography Method on the Properties of the Deposited Au-Ag Nanoparticle Arrays.

    Science.gov (United States)

    Liu, Jing; Chen, Chaoyang; Yang, Guangsong; Chen, Yushan; Yang, Cheng-Fu

    2017-04-03

    The nanosphere lithography (NSL) method can be developed to deposit the Au-Ag triangle hexagonal nanoparticle arrays for the generation of localized surface plasmon resonance. Previously, we have found that the parameters used to form the NSL masks and the physical methods required to deposit the Au-Ag thin films had large effects on the geometry properties of the nanoparticle arrays. Considering this, the different parameters used to grow the Au-Ag triangle hexagonal nanoparticle arrays were investigated. A single-layer NSL mask was formed by using self-assembly nano-scale polystyrene (PS) nanospheres with an average radius of 265 nm. At first, the concentration of the nano-scale PS nanospheres in the solution was set at 6 wt %. Two coating methods, drop-coating and spin-coating, were used to coat the nano-scale PS nanospheres as a single-layer NSL mask. From the observations of scanning electronic microscopy (SEM), we found that the matrixes of the PS nanosphere masks fabricated by using the drop-coating method were more uniform and exhibited a smaller gap than those fabricated by the spin-coating method. Next, the drop-coating method was used to form the single-layer NSL mask and the concentration of nano-scale PS nanospheres in a solution that was changed from 4 to 10 wt %, for further study. The SEM images showed that when the concentrations of PS nanospheres in the solution were 6 and 8 wt %, the matrixes of the PS nanosphere masks were more uniform than those of 4 and 10 wt %. The effects of the one-side lifting angle of substrates and the vaporization temperature for the solvent of one-layer self-assembly PS nanosphere thin films, were also investigated. Finally, the concentration of the nano-scale PS nanospheres in the solution was set at 8 wt % to form the PS nanosphere masks by the drop-coating method. Three different physical deposition methods, including thermal evaporation, radio-frequency magnetron sputtering, and e-gun deposition, were used to

  16. Effect of the Fabrication Parameters of the Nanosphere Lithography Method on the Properties of the Deposited Au-Ag Nanoparticle Arrays

    Directory of Open Access Journals (Sweden)

    Jing Liu

    2017-04-01

    Full Text Available The nanosphere lithography (NSL method can be developed to deposit the Au-Ag triangle hexagonal nanoparticle arrays for the generation of localized surface plasmon resonance. Previously, we have found that the parameters used to form the NSL masks and the physical methods required to deposit the Au-Ag thin films had large effects on the geometry properties of the nanoparticle arrays. Considering this, the different parameters used to grow the Au-Ag triangle hexagonal nanoparticle arrays were investigated. A single‐layer NSL mask was formed by using self‐assembly nano-scale polystyrene (PS nanospheres with an average radius of 265 nm. At first, the concentration of the nano-scale PS nanospheres in the solution was set at 6 wt %. Two coating methods, drop-coating and spin-coating, were used to coat the nano-scale PS nanospheres as a single‐layer NSL mask. From the observations of scanning electronic microscopy (SEM, we found that the matrixes of the PS nanosphere masks fabricated by using the drop-coating method were more uniform and exhibited a smaller gap than those fabricated by the spin-coating method. Next, the drop-coating method was used to form the single‐layer NSL mask and the concentration of nano-scale PS nanospheres in a solution that was changed from 4 to 10 wt %, for further study. The SEM images showed that when the concentrations of PS nanospheres in the solution were 6 and 8 wt %, the matrixes of the PS nanosphere masks were more uniform than those of 4 and 10 wt %. The effects of the one-side lifting angle of substrates and the vaporization temperature for the solvent of one-layer self-assembly PS nanosphere thin films, were also investigated. Finally, the concentration of the nano-scale PS nanospheres in the solution was set at 8 wt % to form the PS nanosphere masks by the drop-coating method. Three different physical deposition methods, including thermal evaporation, radio-frequency magnetron sputtering, and e

  17. Measurements of mass-dependent azimuthal anisotropy in central p + Au, d + Au, and 3He + Au collisions at √{sN N}=200 GeV

    Science.gov (United States)

    Adare, A.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Alfred, M.; Andrieux, V.; Apadula, N.; Asano, H.; Azmoun, B.; Babintsev, V.; Bagoly, A.; Bai, M.; Bandara, N. S.; Bannier, B.; Barish, K. N.; Bathe, S.; Bazilevsky, A.; Beaumier, M.; Beckman, S.; Belmont, R.; Berdnikov, A.; Berdnikov, Y.; Blau, D. S.; Boer, M.; Bok, J. S.; Boyle, K.; Brooks, M. L.; Bryslawskyj, J.; Bumazhnov, V.; Campbell, S.; Canoa Roman, V.; Cervantes, R.; Chen, C.-H.; Chi, C. Y.; Chiu, M.; Choi, I. J.; Choi, J. B.; Chujo, T.; Citron, Z.; Connors, M.; Cronin, N.; Csanád, M.; Csörgő, T.; Danley, T. W.; Datta, A.; Daugherity, M. S.; David, G.; Deblasio, K.; Dehmelt, K.; Denisov, A.; Deshpande, A.; Desmond, E. J.; Dion, A.; Diss, P. B.; Dixit, D.; Do, J. H.; Drees, A.; Drees, K. A.; Durham, J. M.; Durum, A.; Enokizono, A.; En'yo, H.; Esumi, S.; Fadem, B.; Fan, W.; Feege, N.; Fields, D. E.; Finger, M.; Finger, M.; Fokin, S. L.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fukuda, Y.; Gal, C.; Gallus, P.; Garg, P.; Ge, H.; Giordano, F.; Glenn, A.; Goto, Y.; Grau, N.; Greene, S. V.; Grosse Perdekamp, M.; Gunji, T.; Guragain, H.; Hachiya, T.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Hamilton, H. F.; Han, S. Y.; Hanks, J.; Hasegawa, S.; Haseler, T. O. S.; Hashimoto, K.; He, X.; Hemmick, T. K.; Hill, J. C.; Hill, K.; Hodges, A.; Hollis, R. S.; Homma, K.; Hong, B.; Hoshino, T.; Hotvedt, N.; Huang, J.; Huang, S.; Imai, K.; Imrek, J.; Inaba, M.; Iordanova, A.; Isenhower, D.; Ivanishchev, D.; Jacak, B. V.; Jezghani, M.; Ji, Z.; Jia, J.; Jiang, X.; Johnson, B. M.; Jorjadze, V.; Jouan, D.; Jumper, D. S.; Kanda, S.; Kang, J. H.; Kapukchyan, D.; Karthas, S.; Kawall, D.; Kazantsev, A. V.; Key, J. A.; Khachatryan, V.; Khanzadeev, A.; Kim, C.; Kim, D. J.; Kim, E.-J.; Kim, G. W.; Kim, M.; Kim, M. H.; Kimelman, B.; Kincses, D.; Kistenev, E.; Kitamura, R.; Klatsky, J.; Kleinjan, D.; Kline, P.; Koblesky, T.; Komkov, B.; Kotov, D.; Kudo, S.; Kurgyis, B.; Kurita, K.; Kurosawa, M.; Kwon, Y.; Lacey, R.; Lajoie, J. G.; Lebedev, A.; Lee, S.; Lee, S. H.; Leitch, M. J.; Leung, Y. H.; Lewis, N. A.; Li, X.; Li, X.; Lim, S. H.; Liu, M. X.; Loggins, V.-R.; Lökös, S.; Lovasz, K.; Lynch, D.; Majoros, T.; Makdisi, Y. I.; Makek, M.; Manion, A.; Manko, V. I.; Mannel, E.; Masuda, H.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Meles, A.; Mendoza, M.; Metzger, W. J.; Mignerey, A. C.; Mihalik, D. E.; Milov, A.; Mishra, D. K.; Mitchell, J. T.; Mitsuka, G.; Miyasaka, S.; Mizuno, S.; Mohanty, A. K.; Montuenga, P.; Moon, T.; Morrison, D. P.; Morrow, S. I.; Moukhanova, T. V.; Murakami, T.; Murata, J.; Mwai, A.; Nagai, K.; Nagashima, K.; Nagashima, T.; Nagle, J. L.; Nagy, M. I.; Nakagawa, I.; Nakagomi, H.; Nakano, K.; Nattrass, C.; Netrakanti, P. K.; Niida, T.; Nishimura, S.; Nouicer, R.; Novák, T.; Novitzky, N.; Nyanin, A. S.; O'Brien, E.; Ogilvie, C. A.; Orjuela Koop, J. D.; Osborn, J. D.; Oskarsson, A.; Ottino, G. J.; Ozawa, K.; Pak, R.; Pantuev, V.; Papavassiliou, V.; Park, J. S.; Park, S.; Pate, S. F.; Patel, M.; Peng, J.-C.; Peng, W.; Perepelitsa, D. V.; Perera, G. D. N.; Peressounko, D. Yu.; Perezlara, C. E.; Perry, J.; Petti, R.; Phipps, M.; Pinkenburg, C.; Pinson, R.; Pisani, R. P.; Pun, A.; Purschke, M. L.; Radzevich, P. V.; Rak, J.; Ramson, B. J.; Ravinovich, I.; Read, K. F.; Reynolds, D.; Riabov, V.; Riabov, Y.; Richford, D.; Rinn, T.; Rolnick, S. D.; Rosati, M.; Rowan, Z.; Rubin, J. G.; Runchey, J.; Safonov, A. S.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Sako, H.; Samsonov, V.; Sarsour, M.; Sato, K.; Sato, S.; Schaefer, B.; Schmoll, B. K.; Sedgwick, K.; Seidl, R.; Sen, A.; Seto, R.; Sett, P.; Sexton, A.; Sharma, D.; Shein, I.; Shibata, T.-A.; Shigaki, K.; Shimomura, M.; Shioya, T.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Singh, B. K.; Singh, C. P.; Singh, V.; Skoby, M. J.; Slunečka, M.; Snowball, M.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Sourikova, I. V.; Stankus, P. W.; Stepanov, M.; Stoll, S. P.; Sugitate, T.; Sukhanov, A.; Sumita, T.; Sun, J.; Sziklai, J.; Takeda, A.; Taketani, A.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Tarnai, G.; Tieulent, R.; Timilsina, A.; Todoroki, T.; Tomášek, M.; Towell, C. L.; Towell, R.; Towell, R. S.; Tserruya, I.; Ueda, Y.; Ujvari, B.; van Hecke, H. W.; Vazquez-Carson, S.; Velkovska, J.; Virius, M.; Vrba, V.; Vukman, N.; Wang, X. R.; Wang, Z.; Watanabe, Y.; Watanabe, Y. S.; Wei, F.; White, A. S.; Wong, C. P.; Woody, C. L.; Wysocki, M.; Xia, B.; Xu, C.; Xu, Q.; Xue, L.; Yalcin, S.; Yamaguchi, Y. L.; Yamamoto, H.; Yanovich, A.; Yin, P.; Yoo, J. H.; Yoon, I.; Yu, H.; Yushmanov, I. E.; Zajc, W. A.; Zelenski, A.; Zharko, S.; Zhou, S.; Zou, L.; Phenix Collaboration

    2018-06-01

    We present measurements of the transverse-momentum dependence of elliptic flow v2 for identified pions and (anti)protons at midrapidity (|η |<0.35 ), in 0%-5% central p +Au and 3He+Au collisions at √{sNN}=200 GeV. When taken together with previously published measurements in d +Au collisions at √{sNN}=200 GeV, the results cover a broad range of small-collision-system multiplicities and intrinsic initial geometries. We observe a clear mass-dependent splitting of v2(pT) in d +Au and 3He+Au collisions, just as in large nucleus-nucleus (A +A ) collisions, and a smaller splitting in p +Au collisions. Both hydrodynamic and transport model calculations successfully describe the data at low pT (<1.5 GeV /c ), but fail to describe various features at higher pT. In all systems, the v2 values follow an approximate quark-number scaling as a function of the hadron transverse kinetic energy per constituent quark (K ET/nq ), which was also seen previously in A +A collisions.

  18. Transverse momentum and centrality dependence of high-ptnon-photonic electron suppression in Au+Au collisions at $\\sqrt{s_{NN}}$= 200 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Abelev, B.I.; Adams, J.; Aggarwal, M.M.; Ahammed, Z.; Amonett,J.; Anderson, B.D.; Anderson, M.; Arkhipkin, D.; Averichev, G.S.; Bai,Y.; Balewski, J.; Barannikova, O.; Barnby, L.S.; Baudot, J.; Bekele, S.; Belaga, V.V.; Bellingeri-Laurikainen, A.; Bellwied, R.; Benedosso, F.; Bhardwaj, S.; Bhasin, A.; Bhati, A.K.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Bland, L.C.; Blyth, S.-L.; Bonner, B.E.; Botje, M.; Bouchet, J.; Brandin, A.V.; Bravar, A.; Bystersky, M.; Cadman, R.V.; Cai,X.Z.; Caines, H.; Calderon de la Barca Sanchez, M.; Castillo, J.; Catu,O.; Cebra, D.; Chajecki, Z.; Chaloupka, P.; Chattopadhyay, S.; Chen,H.F.; Chen, J.H.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Coffin, J.P.; Cormier, T.M.; Cosentino, M.R.; Cramer, J.G.; Crawford,H.J.; Das, D.; Das, S.; Daugherity, M.; de Moura, M.M.; Dedovich, T.G.; DePhillips, M.; Derevschikov, A.A.; Didenko, L.; Dietel, T.; Djawotho,P.; Dogra, S.M.; Dong, W.J.; Dong, X.; Draper, J.E.; Du, F.; Dunin, V.B.; Dunlop, J.C.; Dutta Mazumdar, M.R.; Eckardt, V.; Edwards, W.R.; Efimov,L.G.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Fachini, P.; Fatemi, R.; Fedorisin, J.; Filimonov, K.; Filip, P.; Finch,E.; Fine, V.; Fisyak, Y.; Fu, J.; Gagliardi, C.A.; Gaillard, L.; Ganti,M.S.; Ghazikhanian, V.; Ghosh, P.; Gonzalez, J.S.; Gorbunov, Y.G.; Gos,H.; Grebenyuk, O.; Grosnick, D.; Guertin, S.M.; Guimaraes, K.S.F.F.; Guo,Y.; Gupta, N.; Gutierrez, T.D.; Haag, B.; Hallman, T.J.; Hamed, A.; Harris, J.W.; He, W.; Heinz, M.; Henry, T.W.; Hepplemann, S.; Hippolyte,B.; Hirsch, A.; Hjort, E.; Hoffman, A.M.; Hoffmann, G.W.; Horner, M.J.; Huang, H.Z.; Huang, S.L.; Hughes, E.W.; Humanic, T.J.; Igo, G.; Jacobs,P.; Jacobs, W.W.; Jakl, P.; Jia, F.; Jiang, H.; Jones, P.G.; Judd, E.G.; Kabana, S.; Kang, K.; Kapitan, J.; Kaplan, M.; Keane, D.; Kechechyan, A.; Khodyrev, V.Yu.; Kim, B.C.; Kiryluk, J.; Kisiel, A.; Kislov, E.M.; Klein,S.R.; Kocoloski, A.; Koetke, D.D.; et al.

    2006-07-11

    The STAR collaboration at RHIC reports measurements of theinclusive yield of non-photonic electrons, which arise dominantly fromsemi-leptonic decays of heavy flavor mesons, over a broad range oftransverse momenta (1.2<pt<10 gevc) in pp, dAu, and AuAucollisions at sqrt sNN = 200 GeV. The non-photonic electron yieldexhibits unexpectedly large suppression in central AuAu collisions athigh pt, suggesting substantial heavy quark energy loss at RHIC. Thecentrality and \\pt dependences of the suppression provide constraints ontheoretical models of suppression.

  19. Energy-resolved attosecond interferometric photoemission from Ag(111) and Au(111) surfaces

    Science.gov (United States)

    Ambrosio, M. J.; Thumm, U.

    2018-04-01

    Photoelectron emission from solid surfaces induced by attosecond pulse trains into the electric field of delayed phase-coherent infrared (IR) pulses allows the surface-specific observation of energy-resolved electronic phase accumulations and photoemission delays. We quantum-mechanically modeled interferometric photoemission spectra from the (111) surfaces of Au and Ag, including background contributions from secondary electrons and direct emission by the IR pulse, and adjusted parameters of our model to energy-resolved photoelectron spectra recently measured at a synchrotron light source by Roth et al. [J. Electron Spectrosc. 224, 84 (2018), 10.1016/j.elspec.2017.05.008]. Our calculated spectra and photoelectron phase shifts are in fair agreement with the experimental data of Locher et al. [Optica 2, 405 (2015), 10.1364/OPTICA.2.000405]. Our model's not reproducing the measured energy-dependent oscillations of the Ag(111) photoemission phases may be interpreted as evidence for subtle band-structure effects on the final-state photoelectron-surface interaction not accounted for in our simulation.

  20. Synthesis and Optical Properties of Au-Ag Alloy Nanoclusters with Controlled Composition

    Directory of Open Access Journals (Sweden)

    J. F. Sánchez-Ramírez

    2008-01-01

    Full Text Available Colloidal solid-solution-like Au-Ag alloy nanoclusters of different compositions were synthesized through citrate reduction of mixed metal ions of low concentrations, without using any other protective or capping agents. Optical absorption of the alloy nanoclusters was studied both theoretically and experimentally. The position of the surface plasmon resonance (SPR absorption band of the nanoclusters could be tuned from 419 nm to 521 nm through the variation of their composition. Considering effective dielectric constant of the alloy, optical absorption spectra for the nanoclusters were calculated using Mie theory, and compared with the experimentally obtained spectra. Theoretically obtained optical spectra well resembled the experimental spectra when the true size distribution of the nanoparticles was considered. High-resolution transmission electron microscopy (HREM, high-angle annular dark field (HAADF imaging, and energy dispersive spectroscopy (EDS revealed the true alloy nature of the nanoparticles with nominal composition being preserved. The synthesis technique can be extended to other bimetallic alloy nanoclusters containing Ag.

  1. Transverse momentum and centrality dependence of high-pT nonphotonic electron suppression in Au+Au collisions at sqrt[s NN]=200 GeV.

    Science.gov (United States)

    Abelev, B I; Aggarwal, M M; Ahammed, Z; Anderson, B D; Arkhipkin, D; Averichev, G S; Bai, Y; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Baumgart, S; Belaga, V V; Bellingeri-Laurikainen, A; Bellwied, R; Benedosso, F; Betts, R R; Bhardwaj, S; Bhasin, A; Bhati, A K; Bichsel, H; Bielcik, J; Bielcikova, J; Bland, L C; Blyth, S-L; Bombara, M; Bonner, B E; Botje, M; Bouchet, J; Brandin, A V; Bravar, A; Burton, T P; Bystersky, M; Cadman, R V; Cai, X Z; Caines, H; Calderón de la Barca Sánchez, M; Callner, J; Catu, O; Cebra, D; Chajecki, Z; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, J Y; Cheng, J; Cherney, M; Chikanian, A; Christie, W; Chung, S U; Coffin, J P; Cormier, T M; Cosentino, M R; Cramer, J G; Crawford, H J; Das, D; Dash, S; Daugherity, M; de Moura, M M; Dedovich, T G; Dephillips, M; Derevschikov, A A; Didenko, L; Dietel, T; Djawotho, P; Dogra, S M; Dong, X; Drachenberg, J L; Draper, J E; Du, F; Dunin, V B; Dunlop, J C; Dutta Mazumdar, M R; Eckardt, V; Edwards, W R; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Estienne, M; Fachini, P; Fatemi, R; Fedorisin, J; Feng, A; Filip, P; Finch, E; Fine, V; Fisyak, Y; Fu, J; Gagliardi, C A; Gaillard, L; Ganti, M S; Garcia-Solis, E; Ghazikhanian, V; Ghosh, P; Gorbunov, Y G; Gos, H; Grebenyuk, O; Grosnick, D; Guertin, S M; Guimaraes, K S F F; Gupta, N; Haag, B; Hallman, T J; Hamed, A; Harris, J W; He, W; Heinz, M; Henry, T W; Heppelmann, S; Hippolyte, B; Hirsch, A; Hjort, E; Hoffman, A M; Hoffmann, G W; Hofman, D; Hollis, R; Horner, M J; Huang, H Z; Hughes, E W; Humanic, T J; Igo, G; Iordanova, A; Jacobs, P; Jacobs, W W; Jakl, P; Jia, F; Jones, P G; Judd, E G; Kabana, S; Kang, K; Kapitan, J; Kaplan, M; Keane, D; Kechechyan, A; Kettler, D; Khodyrev, V Yu; Kim, B C; Kiryluk, J; Kisiel, A; Kislov, E M; Klein, S R; Knospe, A G; Kocoloski, A; Koetke, D D; Kollegger, T; Kopytine, M; Kotchenda, L; Kouchpil, V; Kowalik, K L; Kravtsov, P; Kravtsov, V I; Krueger, K; Kuhn, C; Kulikov, A I; Kumar, A; Kurnadi, P; Kuznetsov, A A; Lamont, M A C; Landgraf, J M; Lange, S; Lapointe, S; Laue, F; Lauret, J; Lebedev, A; Lednicky, R; Lee, C-H; Lehocka, S; LeVine, M J; Li, C; Li, Q; Li, Y; Lin, G; Lin, X; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, H; Liu, J; Liu, L; Ljubicic, T; Llope, W J; Longacre, R S; Love, W A; Lu, Y; Ludlam, T; Lynn, D; Ma, G L; Ma, J G; Ma, Y G; Magestro, D; Mahapatra, D P; Majka, R; Mangotra, L K; Manweiler, R; Margetis, S; Markert, C; Martin, L; Matis, H S; Matulenko, Yu A; McClain, C J; McShane, T S; Melnick, Yu; Meschanin, A; Millane, J; Miller, M L; Minaev, N G; Mioduszewski, S; Mironov, C; Mischke, A; Mitchell, J; Mohanty, B; Morozov, D A; Munhoz, M G; Nandi, B K; Nattrass, C; Nayak, T K; Nelson, J M; Nepali, N S; Netrakanti, P K; Nogach, L V; Nurushev, S B; Odyniec, G; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Pachr, M; Pal, S K; Panebratsev, Y; Pavlinov, A I; Pawlak, T; Peitzmann, T; Perevoztchikov, V; Perkins, C; Peryt, W; Phatak, S C; Planinic, M; Pluta, J; Poljak, N; Porile, N; Poskanzer, A M; Potekhin, M; Potrebenikova, E; Potukuchi, B V K S; Prindle, D; Pruneau, C; Putschke, J; Qattan, I A; Raniwala, R; Raniwala, S; Ray, R L; Relyea, D; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Rose, A; Roy, C; Ruan, L; Russcher, M J; Sahoo, R; Sakrejda, I; Sakuma, T; Salur, S; Sandweiss, J; Sarsour, M; Sazhin, P S; Schambach, J; Scharenberg, R P; Schmitz, N; Seger, J; Selyuzhenkov, I; Seyboth, P; Shabetai, A; Shahaliev, E; Shao, M; Sharma, M; Shen, W Q; Shimanskiy, S S; Sichtermann, E P; Simon, F; Singaraju, R N; Smirnov, N; Snellings, R; Sorensen, P; Sowinski, J; Speltz, J; Spinka, H M; Srivastava, B; Stadnik, A; Stanislaus, T D S; Staszak, D; Stock, R; Strikhanov, M; Stringfellow, B; Suaide, A A P; Suarez, M C; Subba, N L; Sumbera, M; Sun, X M; Sun, Z; Surrow, B; Symons, T J M; Szanto de Toledo, A; Takahashi, J; Tang, A H; Tarnowsky, T; Thomas, J H; Timmins, A R; Timoshenko, S; Tokarev, M; Trainor, T A; Trentalange, S; Tribble, R E; Tsai, O D; Ulery, J; Ullrich, T; Underwood, D G; Van Buren, G; van der Kolk, N; van Leeuwen, M; Vander Molen, A M; Varma, R; Vasilevski, I M; Vasiliev, A N; Vernet, R; Vigdor, S E; Viyogi, Y P; Vokal, S; Voloshin, S A; Waggoner, W T; Wang, F; Wang, G; Wang, J S; Wang, X L; Wang, Y; Watson, J W; Webb, J C; Westfall, G D; Wetzler, A; Whitten, C; Wieman, H; Wissink, S W; Witt, R; Wu, J; Wu, Y; Xu, N; Xu, Q H; Xu, Z; Yepes, P; Yoo, I-K; Yue, Q; Yurevich, V I; Zhan, W; Zhang, H; Zhang, W M; Zhang, Y; Zhang, Z P; Zhao, Y; Zhong, C; Zhou, J; Zoulkarneev, R; Zoulkarneeva, Y; Zubarev, A N; Zuo, J X

    2007-05-11

    The STAR collaboration at the BNL Relativistic Heavy-Ion Collider (RHIC) reports measurements of the inclusive yield of nonphotonic electrons, which arise dominantly from semileptonic decays of heavy flavor mesons, over a broad range of transverse momenta (1.2<p(T)<10 GeV/c) in p+p, d+Au, and Au+Au collisions at sqrt[s_{NN}]=200 GeV. The nonphotonic electron yield exhibits an unexpectedly large suppression in central Au+Au collisions at high p(T), suggesting substantial heavy-quark energy loss at RHIC. The centrality and p(T) dependences of the suppression provide constraints on theoretical models of suppression.

  2. Theoretical study of PTCDA adsorbed on the coinage metal surfaces, Ag(111), Au(111) and Cu(111)

    International Nuclear Information System (INIS)

    Romaner, L; Nabok, D; Puschnig, P; Ambrosch-Draxl, C; Zojer, E

    2009-01-01

    A thorough understanding of the adsorption of molecules on metallic surfaces is a crucial prerequisite for the development and improvement of functionalized materials. A prominent representative within the class of π-conjugated molecules is 3,4,9,10-perylene-tetracarboxylic acid dianhydride (PTCDA) which, adsorbed on the Ag(111), Au(111) or Cu(111) surfaces, shows characteristic trends for work-function modification, alignment of molecular levels with the substrate Fermi energy and binding distances. We carried out density functional theory (DFT) calculations to investigate to what extent these trends can be rationalized on a theoretical basis. We used different density functionals (DF) including a fully non-local van der Waals (vdW) DF capable of describing dispersion interactions. We show that, rather independent of the DF, the calculations yield level alignments and work-function modifications consistent with ultra-violet photoelectron spectroscopy when the monolayer is placed onto the surfaces at the experimental distances (as determined from x-ray standing wave experiments). The lowest unoccupied molecular orbital is occupied on the Ag and Cu surfaces, whereas it remains unoccupied on the Au surface. Simultaneously, the work function increases for Ag but decreases for Cu and Au. Adsorption distances and energies, on the other hand, depend very sensitively on the choice of the DF. While calculations in the local density approximation bind the monolayer consistently with the experimental trends, the generalized gradient approximation in several flavors fails to reproduce realistic distances and energies. Calculations employing the vdW-DF reveal that substantial bonding contributions arise from dispersive interactions. They yield reasonable binding energies but larger binding distances than the experiments.

  3. Neutron Capture Gamma Ray Cross Sections for Ta, Ag, In and Au between 30 and 175 keV

    Energy Technology Data Exchange (ETDEWEB)

    Hellstroem, J; Beshai, S

    1971-11-15

    A new detector has been used to determine neutron capture gamma ray cross sections for Ta, Ag, In and Au. The results are listed and discussed together with associated problems. The energy range from 30 keV to 175 keV is considered

  4. Neutron Capture Gamma Ray Cross Sections for Ta, Ag, In and Au between 30 and 175 keV

    International Nuclear Information System (INIS)

    Hellstroem, J.; Beshai, S.

    1971-11-01

    A new detector has been used to determine neutron capture gamma ray cross sections for Ta, Ag, In and Au. The results are listed and discussed together with associated problems. The energy range from 30 keV to 175 keV is considered

  5. Improved Pt/Au and W/Pt/Au Schottky contacts on n-type ZnO using ozone cleaning

    International Nuclear Information System (INIS)

    Ip, K.; Gila, B.P.; Onstine, A.H.; Lambers, E.S.; Heo, Y.W.; Baik, K.H.; Norton, D.P.; Pearton, S.J.; Kim, S.; LaRoche, J.R; Ren, F.

    2004-01-01

    UV-ozone cleaning prior to metal deposition of either e-beam Pt contacts or sputtered W contacts on n-type single-crystal ZnO is found to significantly improve their rectifying characteristics. Pt contacts deposited directly on the as-received ZnO surface are Ohmic but show rectifying behavior with ozone cleaning. The Schottky barrier height of these Pt contacts was 0.70 eV, with ideality factor of 1.5 and a saturation current density of 6.2x10 -6 A cm -2 . In contrast, the as-deposited W contacts are Ohmic, independent of the use of ozone cleaning. Postdeposition annealing at 700 deg. C produces rectifying behavior with Schottky barrier heights of 0.45 eV for control samples and 0.49 eV for those cleaned with ozone exposure. The improvement in rectifying properties of both the Pt and W contacts is related to removal of surface carbon contamination from the ZnO

  6. RGO/Au NPs/N-doped CNTs supported on nickel foam as an anode for enzymatic biofuel cells.

    Science.gov (United States)

    Zhang, He; Zhang, Lingling; Han, Yujie; Yu, You; Xu, Miao; Zhang, Xueping; Huang, Liang; Dong, Shaojun

    2017-11-15

    In this study, three-dimensional reduced graphene oxide/Au NPs/nitrogen-doped carbon nanotubes (RGO/Au NPs/N-doped CNTs) assembly supported on nickel foam was utilized as an anode for enzymatic biofuel cells (EBFCs). 3D RGO/Au NPs was obtained by electrodepositing reduced graphene oxide on nickel foam (Ni foam), while Au NPs were co-deposited during the process. Afterwards, nitrogen doped CNTs (N-CNTs) were allowed to grow seamlessly on the surfaces of 3D RGO/Au NPs via a simple chemical vapor deposition (CVD) process. In this nanostructure, Au NPs co-deposition and nitrogen doping offer more active sites for bioelectrocatalysis. Additionally, N-CNTs were demonstrated providing high specific surface area for enzyme immobilization and facilitating the electron transfer between glucose oxidase (GOx) and electrode. The resulting bioanode achieved efficient glucose oxidation with high current densities of 7.02mAcm -2 (0.3V vs. Ag/AgCl). Coupling with a Pt cathode, the fabricated glucose/air biofuel cell exhibited an open-circuit potential of 0.32V and generated a maximum power density 235µWcm -2 at 0.15V. This novel electrode substrate achieved high performance in current density at bioelectrochemical systems and could be useful for further exploiting the application of three dimensional carbon-based nanomaterials in EBFCs. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Addressing Challenges and Scalability in the Synthesis of Thin Uniform Metal Shells on Large Metal Nanoparticle Cores: Case Study of Ag-Pt Core-Shell Nanocubes.

    Science.gov (United States)

    Aslam, Umar; Linic, Suljo

    2017-12-13

    Bimetallic nanoparticles in which a metal is coated with an ultrathin (∼1 nm) layer of a second metal are often desired for their unique chemical and physical properties. Current synthesis methods for producing such core-shell nanostructures often require incremental addition of a shell metal precursor which is rapidly reduced onto metal cores. A major shortcoming of this approach is that it necessitates precise concentrations of chemical reagents, making it difficult to perform at large scales. To address this issue, we considered an approach whereby the reduction of the shell metal precursor was controlled through in situ chemical modification of the precursor. We used this approach to develop a highly scalable synthesis for coating atomic layers of Pt onto Ag nanocubes. We show that Ag-Pt core-shell nanostructures are synthesized in high yields and that these structures effectively combine the optical properties of the plasmonic Ag nanocube core with the surface properties of the thin Pt shell. Additionally, we demonstrate the scalability of the synthesis by performing a 10 times scale-up.

  8. Charged hadron transverse momentum distributions in Au+Au collisions at √sNN=200 GeV

    Science.gov (United States)

    Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Ballintijn, M.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Lee, J. W.; Manly, S.; McLeod, D.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Veres, G. I.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    2004-01-01

    We present transverse momentum distributions of charged hadrons produced in Au+Au collisions at sNN=200 GeV. The spectra were measured for transverse momenta pT from 0.25 to 4.5 GeV/c in a pseudorapidity range of 0.2<η<1.4. The evolution of the spectra is studied as a function of collision centrality, from 65 to 344 participating nucleons. The results are compared to data from proton-antiproton collisions and Au+Au collisions at lower RHIC energies. We find a significant change of the spectral shape between proton-antiproton and semi-peripheral Au+Au collisions. Comparing semi-peripheral to central Au+Au collisions, we find that the yields at high pT exhibit approximate scaling with the number of participating nucleons, rather than scaling with the number of binary collisions.

  9. Effects of plasmon excitation on photocatalytic activity of Ag/TiO 2 and Au/TiO2 nanocomposites

    DEFF Research Database (Denmark)

    Sellappan, Raja; González-Posada, Fernando; Chakarov, Dinko

    2013-01-01

    Model nanocomposite photocatalysts consisting of undoped TiO2 films with optically active Ag or Au nanoparticles (NPs) were designed, fabricated, and examined to address the role of plasmon excitations in their performance. Different composition configurations were tested in which the NPs were ei...

  10. Correlation between magnetoresistance and magnetization in Ag Mn and Au Mn spin glasses

    International Nuclear Information System (INIS)

    Majumdar, A.K.

    1982-08-01

    Magnetization has been measured between 2 and 77 K and mostly up to fields of 20 K Oe in Ag Mn (1.1 and 5.4 at %) and Au Mn (1.8 and 4.6 at %) spin glass samples where the transverse magnetoresistance was measured earlier. It is found for the first time over a wide range of temperature and magnetic field that the negative magnetoresistance varies as the square of the bulk magnetization resulting in an universal curve in the spin glass regime. A theoretical justification is provided in terms of exciting theories. (author)

  11. Silver- and Zirconium-added ternary and quaternary TiAu based high temperature shape memory alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wadood, A., E-mail: abdul.wadood@ist.edu.pk [High Temperature Materials Unit, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Department of Materials Science and Engineering, Institute of Space Technology (IST), Near Rawat Toll Plaza, Islamabad (Pakistan); Yamabe-Mitarai, Y. [High Temperature Materials Unit, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan)

    2015-10-15

    Low strength in B2 phase, incomplete shape memory effect and high cost of Au are obstacles for the use of Ti–50Au as a high temperature shape memory alloy. We investigated the effects of partial substitution of Ti with Zr and Au with Ag in Ti–Au on phase constitution, phase transformation, and high temperature thermo-mechanical and shape memory properties. Partial substitution of Ti with Zr in Ti–50Au and Ti–40Au–10Ag was found to improve the thermo-mechanical and shape memory effect. However, partial substitution of Au with Ag in Ti–50Au and Ti–50Au–10Zr was found to have negligible effects. Reasons for such different behavior of Zr- and Ag-added Ti–Au alloys are considered. - Highlights: • Au, Ag and Ti, Zr belong to same group. Effects of partial substitution of Au with Ag and Ti with Zr in Ti–Au are investigated. • Zr was found more effective than Ag in improving shape memory and mechanical properties. • Same atomic size of Au and Ag and large size misfit b/w Ti and Zr atoms. • Ag resulted large amount of precipitation in Ti–Au.

  12. First principles-based adsorption comparison of group IV elements (C, Si, Ge, and Sn) on Au(111)/Ag(111) surface

    International Nuclear Information System (INIS)

    Chakraborty, Sudip; Rajesh, Ch.

    2012-01-01

    We have reported a first-principle investigation of the structural properties of monomer and dimer for group IV elements (C, Si, Ge, and Sn) adsorbed on the Au(111) and Ag(111) surfaces. The calculations were performed by means of a plane wave based pseudopotential method under the framework of density functional theory. The results reveal the preference of adatom to be adsorbed on the hexagonal closed packed site of the metal (111) surfaces with strong binding energy. The structures introduce interlayer forces in the adsorbate. The strong bonding with the surface atoms is a result of p–d hybridization. The adsorption energy follows a sequence as one goes down in the group IV elements which imply that the interaction of the group IV elements with Au/Ag is decreasing as the atomic number increases.

  13. Photoproduced fluorescent Au(I)@(Ag2/Ag3)-thiolate giant cluster: an intriguing sensing platform for DMSO and Pb(II).

    Science.gov (United States)

    Ganguly, Mainak; Mondal, Chanchal; Jana, Jayasmita; Pal, Anjali; Pal, Tarasankar

    2014-01-14

    Synergistic evolution of fluorescent Au(I)@(Ag2/Ag3)-thiolate core-shell particles has been made possible under the Sun in presence of the respective precursor coinage metal compounds and glutathione (GSH). The green chemically synthesized fluorescent clusters are giant (∼600 nm) in size and robust. Among all the common water miscible solvents, exclusively DMSO exhibits selective fluorescence quenching (Turn Off) because of the removal of GSH from the giant cluster. Again, only Pb(II) ion brings back the lost fluorescence (Turn On) leaving aside all other metal ions. This happens owing to the strong affinity of the sulfur donor of DMSO for Pb(II). Thus, employing the aqueous solution containing the giant cluster, we can detect DMSO contamination in water bodies at trace level. Besides, a selective sensing platform has emerged out for Pb(II) ion with a detection limit of 14 × 10(-8) M. Pb(II) induced fluorescence recovery is again vanished by I(-) implying a promising route to sense I(-) ion.

  14. Optical Property Characterization of Novel Graphene-X (X=Ag, Au and Cu Nanoparticle Hybrids

    Directory of Open Access Journals (Sweden)

    Sumit Ranjan Sahu

    2013-01-01

    Full Text Available The present investigation reports new results on optical properties of graphene-metal nanocomposites. These composites were prepared by a solution-based chemical approach. Graphene has been prepared by thermal reduction of graphene oxide (GO at 90°C by hydrazine hydrate in an ammoniacal medium. This ammoniacal solution acts as a solvent as well as a basic medium where agglomeration of graphene can be prevented. This graphene solution has further been used for functionalization with Ag, Au, and Cu nanoparticles (NPs. The samples were characterized by X-ray diffraction (XRD, Raman spectroscopy, UV-Vis spectroscopy, scanning electron microscopy (SEM, and transmission electron microscopy (TEM to reveal the nature and type of interaction of metal nanoparticles with graphene. The results indicate distinct shift of graphene bands both in Raman and UV-Vis spectroscopies due to the presence of the metal nanoparticles. Raman spectroscopic analysis indicates blue shift of D and G bands in Raman spectra of graphene due to the presence of metal nanoparticles except for the G band of Cu-G, which undergoes red shift, reflecting the charge transfer interaction between graphene sheets and metal nanoparticles. UV-Vis spectroscopic analysis also indicates blue shift of graphene absorption peak in the hybrids. The plasmon peak position undergoes blue shift in Ag-G, whereas red shift is observed in Au-G and Cu-G.

  15. A partial phase diagram of Pt-rich Pt-Mn alloys

    CERN Document Server

    Sembiring, T; Ohshima, K I; Ota, K; Shishido, T

    2002-01-01

    We have performed the X-ray and electron diffraction studies to reconstruct a partial phase diagram of Pt-rich Pt-Mn alloys in the composition range of 10 to 35 at.% Mn. Electrical resistivity measurement was also used for determining the order-disorder transition temperature in Pt-14.2 at.% Mn alloy. The phase boundary between Cu sub 3 Au type and ABC sub 6 type ordered structures is established, in which the latter has been found recently by the present [J.Phys. Soc. Jpn. 71 (2002) 681]. In the ABC sub 6 type ordered phase, superlattice reflections both at 1/2 1/2 1/2 and its equivalent position (L-point) and at 100, 110 and their equivalent positions (X-point) appear in the composition range from 12.5 to 14.4 at.% Mn below 682degC. In the Cu sub 3 Au type ordered phase, diffuse maxima at L-point appear in the composition range from 15.9 to 19.7 at.% Mn in addition to the superlattice reflections at X-point. The Cu sub 3 Au type ordered structure is found to be stable in the composition range from 19.7 to 3...

  16. Evidence of final-state suppression of high-p{_ T} hadrons in Au + Au collisions using d + Au measurements at RHIC

    Science.gov (United States)

    Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Becker, B.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Harrington, A. S.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Lee, J. W.; Lin, W. T.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Roland, C.; Roland, G.; Sagerer, J.; Sarin, P.; Sedykh, I.; Skulski, W.; Smith, C. E.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Veres, G. I.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wysłouch, B.; Zhang, J.

    Transverse momentum spectra of charged hadrons with pT 2 GeV/c). In contrast, the d + Au nuclear modification factor exhibits no suppression of the high-pT yields. These measurements suggest a large energy loss of the high-pT particles in the highly interacting medium created in the central Au + Au collisions. The lack of suppression in d + Au collisions suggests that it is unlikely that initial state effects can explain the suppression in the central Au + Au collisions. PACS: 25.75.-q

  17. Hyperthermal and low-energy Ne{sup +} scattering from Au and Pt surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Tolstogouzov, A. E-mail: alexander@ipelp.pd.cnr.it; Daolio, S.; Pagura, C

    2001-07-01

    Energy spectra of Ne{sup +} ions scattered off Au and Pt polycrystalline targets at low (200-1400 eV) and hyperthermal (down to 40 eV) energies were studied by mass-resolved ion-scattering spectrometry. Two scattering peaks with presumably different nature were revealed and their characteristics, namely, the relative energy position, the full-width at half-maximum (FWHM) and the normalized intensity, as a function of the primary energy were investigated. One of these peaks, named as the binary collision approximation (BCA)-peak, was interpreted using the BCA model. Another one, the so-called high-energy (HE)-peak, was situated at an energy position near to the primary energy, and we explain its origins in terms of non-binary (collective) interactions.

  18. Decay of 185Au: sign of shape coexistence in 185Pt

    International Nuclear Information System (INIS)

    Roussiere, B.; Bourgeois, C.; Kilcher, P.; Sauvage, J.; Porquet, M.G.

    1984-01-01

    The decay of 185 Au has been studied on-line with mass-separated sources from the ISOCELE facility. Precise conversion-electron measurements have been performed with a 180 0 magnetic spectrograph. Level scheme of 185 Pt has been established, and the Tsub(1/2)=33 min isomeric state has been located at 103.2 keV with respect to the Tsub(1/2)=71 min ground state. Two very converted transitions have been observed. The level scheme is discussed in the framework of an ''axial-rotor + quasi-particle'' approach: numerous states are interpreted assuming a prolate shape of the nucleus. Ten levels with low-spin and negative-parity (π - ) decay mainly to the 1/2 - [521] band via strong M1 transitions and are not expected from the calculations performed with the prolate cores. The possibility of shape coexistence is discussed

  19. Direct observation of dijets in central Au+Au collisions at sqrt[sNN]=200 GeV.

    Science.gov (United States)

    Adams, J; Aggarwal, M M; Ahammed, Z; Amonett, J; Anderson, B D; Anderson, M; Arkhipkin, D; Averichev, G S; Bai, Y; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellingeri-Laurikainen, A; Bellwied, R; Bezverkhny, B I; Bhardwaj, S; Bhasin, A; Bhati, A K; Bichsel, H; Bielcik, J; Bielcikova, J; Bland, L C; Blyth, C O; Blyth, S-L; Bonner, B E; Botje, M; Bouchet, J; Brandin, A V; Bravar, A; Bystersky, M; Cadman, R V; Cai, X Z; Caines, H; Calderón de la Barca Sánchez, M; Castillo, J; Catu, O; Cebra, D; Chajecki, Z; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, Y; Cheng, J; Cherney, M; Chikanian, A; Choi, H A; Christie, W; Coffin, J P; Cormier, T M; Cosentino, M R; Cramer, J G; Crawford, H J; Das, D; Das, S; Daugherity, M; de Moura, M M; Dedovich, T G; Dephillips, M; Derevschikov, A A; Didenko, L; Dietel, T; Djawotho, P; Dogra, S M; Dong, W J; Dong, X; Draper, J E; Du, F; Dunin, V B; Dunlop, J C; Dutta Mazumdar, M R; Eckardt, V; Edwards, W R; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Estienne, M; Fachini, P; Fatemi, R; Fedorisin, J; Filimonov, K; Filip, P; Finch, E; Fine, V; Fisyak, Y; Fu, J; Gagliardi, C A; Gaillard, L; Gans, J; Ganti, M S; Ghazikhanian, V; Ghosh, P; Gonzalez, J E; Gorbunov, Y G; Gos, H; Grebenyuk, O; Grosnick, D; Guertin, S M; Guimaraes, K S F F; Guo, Y; Gupta, N; Gutierrez, T D; Haag, B; Hallman, T J; Hamed, A; Harris, J W; He, W; Heinz, M; Henry, T W; Hepplemann, S; Hippolyte, B; Hirsch, A; Hjort, E; Hoffmann, G W; Horner, M J; Huang, H Z; Huang, S L; Hughes, E W; Humanic, T J; Igo, G; Jacobs, P; Jacobs, W W; Jakl, P; Jia, F; Jiang, H; Jones, P G; Judd, E G; Kabana, S; Kang, K; Kapitan, J; Kaplan, M; Keane, D; Kechechyan, A; Khodyrev, V Yu; Kim, B C; Kiryluk, J; Kisiel, A; Kislov, E M; Klein, S R; Koetke, D D; Kollegger, T; Kopytine, M; Kotchenda, L; Kouchpil, V; Kowalik, K L; Kramer, M; Kravtsov, P; Kravtsov, V I; Krueger, K; Kuhn, C; Kulikov, A I; Kumar, A; Kuznetsov, A A; Lamont, M A C; Landgraf, J M; Lange, S; Lapointe, S; Laue, F; Lauret, J; Lebedev, A; Lednicky, R; Lee, C-H; Lehocka, S; Levine, M J; Li, C; Li, Q; Li, Y; Lin, G; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, H; Liu, J; Liu, L; Liu, Z; Ljubicic, T; Llope, W J; Long, H; Longacre, R S; Lopez-Noriega, M; Love, W A; Lu, Y; Ludlam, T; Lynn, D; Ma, G L; Ma, J G; Ma, Y G; Magestro, D; Mahapatra, D P; Majka, R; Mangotra, L K; Manweiler, R; Margetis, S; Markert, C; Martin, L; Matis, H S; Matulenko, Yu A; McClain, C J; McShane, T S; Melnick, Yu; Meschanin, A; Miller, M L; Minaev, N G; Mioduszewski, S; Mironov, C; Mischke, A; Mishra, D K; Mitchell, J; Mohanty, B; Molnar, L; Moore, C F; Morozov, D A; Munhoz, M G; Nandi, B K; Nattrass, C; Nayak, T K; Nelson, J M; Netrakanti, P K; Nikitin, V A; Nogach, L V; Nurushev, S B; Odyniec, G; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Pachr, M; Pal, S K; Panebratsev, Y; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Peitzmann, T; Perevoztchikov, V; Perkins, C; Peryt, W; Petrov, V A; Phatak, S C; Picha, R; Planinic, M; Pluta, J; Poljak, N; Porile, N; Porter, J; Poskanzer, A M; Potekhin, M; Potrebenikova, E; Potukuchi, B V K S; Prindle, D; Pruneau, C; Putschke, J; Rakness, G; Raniwala, R; Raniwala, S; Ray, R L; Razin, S V; Reinnarth, J; Relyea, D; Retiere, F; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Rose, A; Roy, C; Ruan, L; Russcher, M J; Sahoo, R; Sakrejda, I; Salur, S; Sandweiss, J; Sarsour, M; Sazhin, P S; Schambach, J; Scharenberg, R P; Schmitz, N; Schweda, K; Seger, J; Selyuzhenkov, I; Seyboth, P; Shabetai, A; Shahaliev, E; Shao, M; Sharma, M; Shen, W Q; Shimanskiy, S S; Sichtermann, E; Simon, F; Singaraju, R N; Smirnov, N; Snellings, R; Sood, G; Sorensen, P; Sowinski, J; Speltz, J; Spinka, H M; Srivastava, B; Stadnik, A; Stanislaus, T D S; Stock, R; Stolpovsky, A; Strikhanov, M; Stringfellow, B; Suaide, A A P; Sugarbaker, E; Sumbera, M; Sun, Z; Surrow, B; Swanger, M; Symons, T J M; Szanto de Toledo, A; Tai, A; Takahashi, J; Tang, A H; Tarnowsky, T; Thein, D; Thomas, J H; Timmins, A R; Timoshenko, S; Tokarev, M; Trentalange, S; Tribble, R E; Tsai, O D; Ulery, J; Ullrich, T; Underwood, D G; Van Buren, G; van der Kolk, N; van Leeuwen, M; Vander Molen, A M; Varma, R; Vasilevski, I M; Vasiliev, A N; Vernet, R; Vigdor, S E; Viyogi, Y P; Vokal, S; Voloshin, S A; Waggoner, W T; Wang, F; Wang, G; Wang, J S; Wang, X L; Wang, Y; Watson, J W; Webb, J C; Westfall, G D; Wetzler, A; Whitten, C; Wieman, H; Wissink, S W; Witt, R; Wood, J; Wu, J; Xu, N; Xu, Q H; Xu, Z; Yepes, P; Yoo, I-K; Yurevich, V I; Zhan, W; Zhang, H; Zhang, W M; Zhang, Y; Zhang, Z P; Zhao, Y; Zhong, C; Zoulkarneev, R; Zoulkarneeva, Y; Zubarev, A N; Zuo, J X

    2006-10-20

    The STAR Collaboration at the Relativistic Heavy Ion Collider reports measurements of azimuthal correlations of high transverse momentum (pT) charged hadrons in Au+Au collisions at higher pT than reported previously. As (pT) is increased, a narrow, back-to-back peak emerges above the decreasing background, providing a clear dijet signal for all collision centralities studied. Using these correlations, we perform a systematic study of dijet production and suppression in nuclear collisions, providing new constraints on the mechanisms underlying partonic energy loss in dense matter.

  20. X-ray fluorescence determination of Au, Pd and Pt from chloride solutions after preconcentration on cellulose filters

    International Nuclear Information System (INIS)

    Gordeeva, V.P.; Glazkova, S.V.; Tsysin, G.I.; Ivanov, V.M.; Zolotov, Yu. A.

    2003-01-01

    The aim of this work was synthesis of new sorption cellulose filters for dynamic preconcentration of Au, Pd and Pt from chloride solutions and subsequent XRF determination of these elements on the filters. New filters were prepared by impregnation of a filter paper with solution of tri-n-octylamine and paraffin in hexane (TOA-filters). The effect of paraffin and TOA concentration in hexane on a content of nitrogen in a filter was studied. It was found that Au(III), Pd(II) and Pt(IV) were quantitatively recovered on the TOA-filters (filtering surface diameter of 23 mm, thickness of 0.15 mm) from 0.5 - 1 M HCl at a flow rates of 2-5 ml min-1 from 10-100 ml of solution. The mathematical model of sorption dynamics was offered for the estimation of potential possibilities of new impregnated sorbents and for the evaluation of optimum dynamic conditions allowing to achieve of maximum concentration efficiency (CE max ). The elements were determined directly on the filters by XRF spectrometer. Palladium was also determined on the TOA-filters after formation of coloured compounds of metal with 4-(2-pyridylazo)resorcinol (PAR) by diffuse reflectance spectroscopy with the calculation of calorimetric characteristics and using test-scale. (authors)

  1. Synthesis and characterization of Pd@M(x)Cu(1-x) (M = Au, Pd, and Pt) nanocages with porous walls and a yolk-shell structure through galvanic replacement reactions.

    Science.gov (United States)

    Xie, Shuifen; Jin, Mingshang; Tao, Jing; Wang, Yucai; Xie, Zhaoxiong; Zhu, Yimei; Xia, Younan

    2012-11-19

    This paper describes the synthesis of Pd@M(x)Cu(1-x) (M = Au, Pd, and Pt) nanocages with a yolk-shell structure through galvanic replacement reactions that involve Pd@Cu core-shell nanocubes as sacrificial templates and ethylene glycol as the solvent. Compared with the most commonly used templates based on Ag, Cu offers a much lower reduction potential (0.34 versus 0.80 V), making the galvanic reaction more easily to conduct, even at room temperature. Our structural and compositional characterizations indicated that the products were hollow inside, and each one of them contained porous M-Cu alloy walls and a Pd cube in the interior. For the Pd@Au(x)Cu(1-x) yolk-shell nanocages, they displayed broad extinction peaks extending from the visible to the near-IR region. Our mechanistic study revealed that the dissolution of the Cu shell preferred to start from the slightly truncated corners and then progressed toward the interior, because the Cu {100} side faces were protected by a surface capping layer of hexadecylamine. This galvanic approach can also be extended to generating other hollow metal nanostructures by using different combinations of Cu nanostructures and salt precursors. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Comparison between the fragmentation processes in central Pb + Ag and Pb + Au collisions

    International Nuclear Information System (INIS)

    Jouault, B.; Royer, G.; Sebille, F.; Haddad, F.; Lecolley, J.F.

    1996-01-01

    The fragmentation processes of a medium mass system and of a very massive one formed in central collisions are compared within the Landau-Vlasov model taking into account both the isospin dependence and the two-body residual interactions. The simulations predict the formation of a roughly ellipsoidal source in the central Pb + Ag reactions while, for the Pb + Au system, the fragmentation occurs from an hollow source, the configuration of which being intermediate between bubble-like and toroidal shapes. This difference shapes explain and allow to reproduce semi-quantitatively the two different profiles of the experimental kinetic energy spectra. (authors)

  3. High-p$_{T}$ Tomography of d+Au and Au+Au at SPS, RHIC, and LHC

    CERN Document Server

    Vitev, I; Vitev, Ivan; Gyulassy, Miklos

    2002-01-01

    The interplay of nuclear effects on the p_T > 2 GeV inclusive hadron spectra in d+Au and Au+Au reactions at root(s) = 17, 200, 5500 GeV is compared to leading order perturbative QCD calculations for elementary p+p (p-bar+p) collisions. The competition between nuclear shadowing, Cronin effect, and jet energy loss due to medium-induced gluon radiation is predicted to lead to a striking energy dependence of the nuclear suppression/enhancement pattern in A+A reactions. We show that future d+Au data can used to disentangle the initial and final state effects.

  4. Ag on Si(111) from basic science to application

    Energy Technology Data Exchange (ETDEWEB)

    Belianinov, Aleksey [Iowa State Univ., Ames, IA (United States)

    2012-01-01

    In our work we revisit Ag and Au adsorbates on Si(111)-7x7, as well as experiment with a ternary system of Pentacene, Ag and Si(111). Of particular interest to us is the Si(111)-(√3x√3)R30°}–Ag (Ag-Si-√3 hereafter). In this thesis I systematically explore effects of Ag deposition on the Ag-Si-√3 at different temperatures, film thicknesses and deposition fluxes. The generated insight of the Ag system on the Si(111) is then applied to generate novel methods of nanostructuring and nanowire growth. I then extend our expertise to the Au system on the Ag-Si(111) to gain insight into Au-Si eutectic silicide formation. Finally we explore behavior and growth modes of an organic molecule on the Ag-Si interface.

  5. Mass and velocity of fragments from the reaction 17-115 MeV/u 40Ar + Cu, Ag and Au

    International Nuclear Information System (INIS)

    Colin, E.; Guinet, D.; Stern, M.

    1998-01-01

    Measurements are reported for fragment masses and velocities from the reactions 17-115 MeV/u 40 Ar + Cu, Ag and Au. High momentum and energy deposition are reported for selected events, even for higher incident energy. Further study is needed to understand their origin. (authors)

  6. Optical characterization of broad plasmon resonances of Pd/Pt nanoparticles

    Science.gov (United States)

    Valizade-Shahmirzadi, N.; Pakizeh, T.

    2018-04-01

    In this paper, optical properties of nanoparticles (nanodisks and nanospheres) composed of photofunctional metals like palladium (Pd) and platinum (Pt) over a large dimension range are investigated using the electromagnetic simulation and quasi-static theory. These characteristics are compared with their counterparts in plasmonic gold (Au) nanoparticles. Pd/Pt-nanodisks with larger dimension have higher absorption and lower scattering efficiencies than Au-nanodisks that accompany with lower extinction efficiencies and broader resonances. Although an increment in the dimension (diameter and height) of Au/Pd/Pt-nanoparticles decreases the absorption-to-scattering ratios, these ratios are less sensitive to the height size in Au-nanodisks, which causes their LSPR spectra become much broader. It is noteworthy that the LSPR quality factor of Pd nanoparticles is improved by considering the radiative damping and depolarization in quasi-static method unlike the Au nanoparticles. The importance of the highly absorptive Pd/Pt nanoparticles can be traced in the photo-functionalized and energy applications.

  7. Quantum tunneling in real space: Tautomerization of single porphycene molecules on the (111) surface of Cu, Ag, and Au

    Science.gov (United States)

    Kumagai, Takashi; Ladenthin, Janina N.; Litman, Yair; Rossi, Mariana; Grill, Leonhard; Gawinkowski, Sylwester; Waluk, Jacek; Persson, Mats

    2018-03-01

    Tautomerization in single porphycene molecules is investigated on Cu(111), Ag(111), and Au(111) surfaces by a combination of low-temperature scanning tunneling microscopy (STM) experiments and density functional theory (DFT) calculations. It is revealed that the trans configuration is the thermodynamically stable form of porphycene on Cu(111) and Ag(111), whereas the cis configuration occurs as a meta-stable form. The trans → cis or cis → trans conversion on Cu(111) can be induced in an unidirectional fashion by injecting tunneling electrons from the STM tip or heating the surface, respectively. We find that the cis ↔ cis tautomerization on Cu(111) occurs spontaneously via tunneling, verified by the negligible temperature dependence of the tautomerization rate below ˜23 K. Van der Waals corrected DFT calculations are used to characterize the adsorption structures of porphycene and to map the potential energy surface of the tautomerization on Cu(111). The calculated barriers are too high to be thermally overcome at cryogenic temperatures used in the experiment and zero-point energy corrections do not change this picture, leaving tunneling as the most likely mechanism. On Ag(111), the reversible trans ↔ cis conversion occurs spontaneously at 5 K and the cis ↔ cis tautomerization rate is much higher than on Cu(111), indicating a significantly smaller tautomerization barrier on Ag(111) due to the weaker interaction between porphycene and the surface compared to Cu(111). Additionally, the STM experiments and DFT calculations reveal that tautomerization on Cu(111) and Ag(111) occurs with migration of porphycene along the surface; thus, the translational motion couples with the tautomerization coordinate. On the other hand, the trans and cis configurations are not discernible in the STM image and no tautomerization is observed for porphycene on Au(111). The weak interaction of porphycene with Au(111) is closest to the gas-phase limit and therefore the absence

  8. Structure reactivity relationships during N2O hydrogenation over Au-Ag alloys: A study by field emission techniques

    Science.gov (United States)

    Jacobs, Luc; Barroo, Cédric; Gilis, Natalia; Lambeets, Sten V.; Genty, Eric; Visart de Bocarmé, Thierry

    2018-03-01

    To make available atomic oxygen at the surface of a catalyst is the key step for oxidation reactions on Au-based catalysts. In this context, Au-Ag alloys catalysts exhibit promising properties for selective oxidation reactions of alcohols: low temperature activity and high selectivity. The presence of O(ads) and its effects on the catalytic reactivity is studied via the N2O dissociative adsorption and subsequent hydrogenation. Field emission techniques are particularly suited to study this reaction: Field Ion Microscopy (FIM) and Field Emission Microscopy (FEM) enable to image the extremity of sharp metallic tips, the size and morphology of which are close to those of one single catalytic particle. The reaction dynamics is studied in the 300-320 K temperature range and at a pressure of 3.5 × 10-3 Pa. The main results are a strong structure/reactivity relationship during N2O + H2 reaction over Au-8.8 at.%Ag model catalysts. Comparison of high-resolution FIM images of the clean sample and FEM images during reaction shows a sensitivity of the reaction to the local structure of the facets, independently of the used partial pressures of both N2O and H2. This suggests a localised dissociative adsorption step for N2O and H2 with the formation of a reactive interface around the {210} facets.

  9. Observation of D0 meson nuclear modifications in Au+Au collisions at sqrt[s(NN)] = 200 GeV.

    Science.gov (United States)

    Adamczyk, L; Adkins, J K; Agakishiev, G; Aggarwal, M M; Ahammed, Z; Alekseev, I; Alford, J; Anson, C D; Aparin, A; Arkhipkin, D; Aschenauer, E C; Averichev, G S; Banerjee, A; Beavis, D R; Bellwied, R; Bhasin, A; Bhati, A K; Bhattarai, P; Bichsel, H; Bielcik, J; Bielcikova, J; Bland, L C; Bordyuzhin, I G; Borowski, W; Bouchet, J; Brandin, A V; Brovko, S G; Bültmann, S; Bunzarov, I; Burton, T P; Butterworth, J; Caines, H; Calderón de la Barca Sánchez, M; Cebra, D; Cendejas, R; Cervantes, M C; Chaloupka, P; Chang, Z; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, L; Cheng, J; Cherney, M; Chikanian, A; Christie, W; Chwastowski, J; Codrington, M J M; Contin, G; Cramer, J G; Crawford, H J; Cui, X; Das, S; Davila Leyva, A; De Silva, L C; Debbe, R R; Dedovich, T G; Deng, J; Derevschikov, A A; Derradi de Souza, R; Dhamija, S; di Ruzza, B; Didenko, L; Dilks, C; Ding, F; Djawotho, P; Dong, X; Drachenberg, J L; Draper, J E; Du, C M; Dunkelberger, L E; Dunlop, J C; Efimov, L G; Engelage, J; Engle, K S; Eppley, G; Eun, L; Evdokimov, O; Eyser, O; Fatemi, R; Fazio, S; Fedorisin, J; Filip, P; Finch, E; Fisyak, Y; Flores, C E; Gagliardi, C A; Gangadharan, D R; Garand, D; Geurts, F; Gibson, A; Girard, M; Gliske, S; Greiner, L; Grosnick, D; Gunarathne, D S; Guo, Y; Gupta, A; Gupta, S; Guryn, W; Haag, B; Hamed, A; Han, L-X; Haque, R; Harris, J W; Heppelmann, S; Hirsch, A; Hoffmann, G W; Hofman, D J; Horvat, S; Huang, B; Huang, H Z; Huang, X; Huck, P; Humanic, T J; Igo, G; Jacobs, W W; Jang, H; Judd, E G; Kabana, S; Kalinkin, D; Kang, K; Kauder, K; Ke, H W; Keane, D; Kechechyan, A; Kesich, A; Khan, Z H; Kikola, D P; Kisel, I; Kisiel, A; Koetke, D D; Kollegger, T; Konzer, J; Koralt, I; Kotchenda, L; Kraishan, A F; Kravtsov, P; Krueger, K; Kulakov, I; Kumar, L; Kycia, R A; Lamont, M A C; Landgraf, J M; Landry, K D; Lauret, J; Lebedev, A; Lednicky, R; Lee, J H; LeVine, M J; Li, C; Li, W; Li, X; Li, X; Li, Y; Li, Z M; Lisa, M A; Liu, F; Ljubicic, T; Llope, W J; Lomnitz, M; Longacre, R S; Luo, X; Ma, G L; Ma, Y G; Madagodagettige Don, D M M D; Mahapatra, D P; Majka, R; Margetis, S; Markert, C; Masui, H; Matis, H S; McDonald, D; McShane, T S; Minaev, N G; Mioduszewski, S; Mohanty, B; Mondal, M M; Morozov, D A; Mustafa, M K; Nandi, B K; Nasim, Md; Nayak, T K; Nelson, J M; Nigmatkulov, G; Nogach, L V; Noh, S Y; Novak, J; Nurushev, S B; Odyniec, G; Ogawa, A; Oh, K; Ohlson, A; Okorokov, V; Oldag, E W; Olvitt, D L; Pachr, M; Page, B S; Pal, S K; Pan, Y X; Pandit, Y; Panebratsev, Y; Pawlak, T; Pawlik, B; Pei, H; Perkins, C; Peryt, W; Pile, P; Planinic, M; Pluta, J; Poljak, N; Porter, J; Poskanzer, A M; Pruthi, N K; Przybycien, M; Pujahari, P R; Putschke, J; Qiu, H; Quintero, A; Ramachandran, S; Raniwala, R; Raniwala, S; Ray, R L; Riley, C K; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Ross, J F; Roy, A; Ruan, L; Rusnak, J; Rusnakova, O; Sahoo, N R; Sahu, P K; Sakrejda, I; Salur, S; Sandweiss, J; Sangaline, E; Sarkar, A; Schambach, J; Scharenberg, R P; Schmah, A M; Schmidke, W B; Schmitz, N; Seger, J; Seyboth, P; Shah, N; Shahaliev, E; Shanmuganathan, P V; Shao, M; Sharma, B; Shen, W Q; Shi, S S; Shou, Q Y; Sichtermann, E P; Singaraju, R N; Skoby, M J; Smirnov, D; Smirnov, N; Solanki, D; Sorensen, P; Spinka, H M; Srivastava, B; Stanislaus, T D S; Stevens, J R; Stock, R; Strikhanov, M; Stringfellow, B; Sumbera, M; Sun, X; Sun, X M; Sun, Y; Sun, Z; Surrow, B; Svirida, D N; Symons, T J M; Szelezniak, M A; Takahashi, J; Tang, A H; Tang, Z; Tarnowsky, T; Thomas, J H; Timmins, A R; Tlusty, D; Tokarev, M; Trentalange, S; Tribble, R E; Tribedy, P; Trzeciak, B A; Tsai, O D; Turnau, J; Ullrich, T; Underwood, D G; Van Buren, G; van Nieuwenhuizen, G; Vandenbroucke, M; Vanfossen, J A; Varma, R; Vasconcelos, G M S; Vasiliev, A N; Vertesi, R; Videbæk, F; Viyogi, Y P; Vokal, S; Vossen, A; Wada, M; Wang, F; Wang, G; Wang, H; Wang, J S; Wang, X L; Wang, Y; Wang, Y; Webb, G; Webb, J C; Westfall, G D; Wieman, H; Wissink, S W; Witt, R; Wu, Y F; Xiao, Z; Xie, W; Xin, K; Xu, H; Xu, J; Xu, N; Xu, Q H; Xu, Y; Xu, Z; Yan, W; Yang, C; Yang, Y; Yang, Y; Ye, Z; Yepes, P; Yi, L; Yip, K; Yoo, I-K; Yu, N; Zawisza, Y; Zbroszczyk, H; Zha, W; Zhang, J B; Zhang, J L; Zhang, S; Zhang, X P; Zhang, Y; Zhang, Z P; Zhao, F; Zhao, J; Zhong, C; Zhu, X; Zhu, Y H; Zoulkarneeva, Y; Zyzak, M

    2014-10-03

    We report the first measurement of charmed-hadron (D(0)) production via the hadronic decay channel (D(0) → K(-) + π(+)) in Au+Au collisions at sqrt[s(NN)] = 200 GeV with the STAR experiment. The charm production cross section per nucleon-nucleon collision at midrapidity scales with the number of binary collisions, N(bin), from p+p to central Au+Au collisions. The D(0) meson yields in central Au + Au collisions are strongly suppressed compared to those in p+p scaled by N(bin), for transverse momenta p(T) > 3 GeV/c, demonstrating significant energy loss of charm quarks in the hot and dense medium. An enhancement at intermediate p(T) is also observed. Model calculations including strong charm-medium interactions and coalescence hadronization describe our measurements.

  10. Observation of D0 Meson Nuclear Modifications in Au +Au Collisions at √sNN =200 GeV

    Science.gov (United States)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Anson, C. D.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Averichev, G. S.; Banerjee, A.; Beavis, D. R.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Borowski, W.; Bouchet, J.; Brandin, A. V.; Brovko, S. G.; Bültmann, S.; Bunzarov, I.; Burton, T. P.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Cebra, D.; Cendejas, R.; Cervantes, M. C.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, H. F.; Chen, J. H.; Chen, L.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Chwastowski, J.; Codrington, M. J. M.; Contin, G.; Cramer, J. G.; Crawford, H. J.; Cui, X.; Das, S.; Davila Leyva, A.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; Derradi de Souza, R.; Dhamija, S.; di Ruzza, B.; Didenko, L.; Dilks, C.; Ding, F.; Djawotho, P.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Engle, K. S.; Eppley, G.; Eun, L.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Fedorisin, J.; Filip, P.; Finch, E.; Fisyak, Y.; Flores, C. E.; Gagliardi, C. A.; Gangadharan, D. R.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Gliske, S.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Haag, B.; Hamed, A.; Han, L.-X.; Haque, R.; Harris, J. W.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, B.; Huang, H. Z.; Huang, X.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Kesich, A.; Khan, Z. H.; Kikola, D. P.; Kisel, I.; Kisiel, A.; Koetke, D. D.; Kollegger, T.; Konzer, J.; Koralt, I.; Kotchenda, L.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulakov, I.; Kumar, L.; Kycia, R. A.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; LeVine, M. J.; Li, C.; Li, W.; Li, X.; Li, X.; Li, Y.; Li, Z. M.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, G. L.; Ma, Y. G.; Madagodagettige Don, D. M. M. D.; Mahapatra, D. P.; Majka, R.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; McShane, T. S.; Minaev, N. G.; Mioduszewski, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nelson, J. M.; Nigmatkulov, G.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Ohlson, A.; Okorokov, V.; Oldag, E. W.; Olvitt, D. L.; Pachr, M.; Page, B. S.; Pal, S. K.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlak, T.; Pawlik, B.; Pei, H.; Perkins, C.; Peryt, W.; Pile, P.; Planinic, M.; Pluta, J.; Poljak, N.; Porter, J.; Poskanzer, A. M.; Pruthi, N. K.; Przybycien, M.; Pujahari, P. R.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Riley, C. K.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Ross, J. F.; Roy, A.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Sangaline, E.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, B.; Shen, W. Q.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Singaraju, R. N.; Skoby, M. J.; Smirnov, D.; Smirnov, N.; Solanki, D.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stevens, J. R.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Sun, X.; Sun, X. M.; Sun, Y.; Sun, Z.; Surrow, B.; Svirida, D. N.; Symons, T. J. M.; Szelezniak, M. A.; Takahashi, J.; Tang, A. H.; Tang, Z.; Tarnowsky, T.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Trzeciak, B. A.; Tsai, O. D.; Turnau, J.; Ullrich, T.; Underwood, D. G.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Vanfossen, J. A.; Varma, R.; Vasconcelos, G. M. S.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Viyogi, Y. P.; Vokal, S.; Vossen, A.; Wada, M.; Wang, F.; Wang, G.; Wang, H.; Wang, J. S.; Wang, X. L.; Wang, Y.; Wang, Y.; Webb, G.; Webb, J. C.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y. F.; Xiao, Z.; Xie, W.; Xin, K.; Xu, H.; Xu, J.; Xu, N.; Xu, Q. H.; Xu, Y.; Xu, Z.; Yan, W.; Yang, C.; Yang, Y.; Yang, Y.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zawisza, Y.; Zbroszczyk, H.; Zha, W.; Zhang, J. B.; Zhang, J. L.; Zhang, S.; Zhang, X. P.; Zhang, Y.; Zhang, Z. P.; Zhao, F.; Zhao, J.; Zhong, C.; Zhu, X.; Zhu, Y. H.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration

    2014-10-01

    We report the first measurement of charmed-hadron (D0) production via the hadronic decay channel (D0→K-+π+) in Au +Au collisions at √sNN =200 GeV with the STAR experiment. The charm production cross section per nucleon-nucleon collision at midrapidity scales with the number of binary collisions, Nbin, from p +p to central Au +Au collisions. The D0 meson yields in central Au +Au collisions are strongly suppressed compared to those in p+p scaled by Nbin, for transverse momenta pT>3 GeV /c, demonstrating significant energy loss of charm quarks in the hot and dense medium. An enhancement at intermediate pT is also observed. Model calculations including strong charm-medium interactions and coalescence hadronization describe our measurements.

  11. Anomolous, intensity dependent losses in Au(32+) beams

    International Nuclear Information System (INIS)

    Blaskiewicz, M.; Ahrens, L.; Calvani, H.

    1997-01-01

    The AGS Booster is a rapid cycling proton and heavy ion synchrotron. Anomolous, intensity dependent losses in Au(32+) beams have been observed in the AGS Booster. No collective signal is expected, or observed, but increasing the number of injected ions decreases the beam lifetime. The loss rates for Au(32+) are compared with those for Au(15+)

  12. Contact interaction of the Bi12GeO20, Bi12SiO20, and Bi4Ge3O12 melts with noble metals

    Science.gov (United States)

    Denisov, V. M.; Podkopaev, O. I.; Denisova, L. T.; Kuchumova, O. V.; Istomin, S. A.; Pastukhov, E. A.

    2014-02-01

    The sessile drop method is used to study the contact interaction of Ag, Au, Pd, Pt, and Ir with the Bi2O3-GeO2 and Bi2O3-SiO2 melts. These melts spread over Ag and Pd and, in some cases, over Au and Pt at a rather high speed and form equilibrium contact angles on Ir.

  13. A comparative study of Cu, Ag and Au doped CeO_2 in the total oxidation of volatile organic compounds (VOCs)

    International Nuclear Information System (INIS)

    Aboukaïs, Antoine; Skaf, Mira; Hany, Sara; Cousin, Renaud; Aouad, Samer; Labaki, Madona; Abi-Aad, Edmond

    2016-01-01

    Total oxidation of two Volatile Organic Compounds (VOCs), propylene and toluene, was investigated over M/CeO_2 catalysts, where M is a metal from IB group (i.e. Au, Ag, Cu), prepared by two different methods: the conventional wet impregnation and the deposition-precipitation. The catalysts have been characterized by means of total surface area (BET), X-ray diffraction (XRD), electron paramagnetic resonance (EPR), X-ray photoelectron spectroscopy (XPS), diffuse reflectance ultra-violet-visible spectroscopy (DR-UV/Vis), and temperature-programmed reduction (TPR), in order to explain the differences observed in their catalytic activity towards the studied reactions. By comparing the two different preparation methods, the presence of metal in high oxidation state for gold and silver, and the presence of clusters for copper were the main factors responsible for the high catalytic activity. This latter was also found to be related, when comparing the different IB metals, to the values of the oxidation/reduction potential of the redox couples of the different metals. - Highlights: • IB metals (Au, Ag and Cu) were supported on ceria (CeO_2) by two different methods. • The solids were tested as catalysts for total oxidation of propylene and toluene. • The deposition-precipitation is better for Au whereas for Ag and Cu it is the impregnation. • High oxidation states of gold and silver and clusters of copper enhanced catalytic behavior. • Catalytic activity is linked to the oxidation/reduction potential of the redox IB couples.

  14. Design and Investigation of SST/nc-Si:H/M (M = Ag, Au, Ni and M/nc-Si:H/M Multifunctional Devices

    Directory of Open Access Journals (Sweden)

    A. F. Qasrawi

    2013-01-01

    Full Text Available Hydrogenated nanocrystalline Silicon thin films prepared by the very high frequency chemical vapor deposition technique (VHF-CVD on stainless steel (SST substrates are used to design Schottky point contact barriers for the purpose of solar energy conversion and passive electronic component applications. In this process, the contact performance between SST and M (M = Ag, Au, and Ni and between Ag, Au, and Ni electrodes was characterized by means of current-voltage, capacitance-voltage, and light intensity dependence of short circuit ( current and open circuit voltage ( of the contacts. Particularly, the devices ideality factors, barrier heights were evaluated by the Schottky method and compared to the Cheung's. Best Schottky device performance with lowest ideality factor suitable for electronic applications was observed in the SST/nc-Si:H/Ag structure. This device reflects a of 229 mV with an of 1.6 mA/cm2 under an illumination intensity of ~40 klux. On the other hand, the highest being 9.0 mA/cm2 and the of 53.1 mV were observed for Ni/nc-Si:H/Au structure. As these voltages represent the maximum biasing voltage for some of the designed devices, the SST/nc-Si:H/M and M/nc-Si:H/M can be regarded as multifunctional self-energy that provided electronic devices suitable for active or passive applications.

  15. Electrochemistry of conductive polymers 39. Contacts between conducting polymers and noble metal nanoparticles studied by current-sensing atomic force microscopy.

    Science.gov (United States)

    Cho, Shin Hyo; Park, Su-Moon

    2006-12-28

    Electrical properties of contacts formed between conducting polymers and noble metal nanoparticles have been examined using current-sensing atomic force microscopy (CS-AFM). Contacts formed between electrochemically prepared pi-conjugated polymer films such as polypyrrole (PPy), poly(3-methylthiophene) (P3MeT), as well as poly(3,4-ethylenedioxythiophene) (PEDOT) and noble metal nanoparticles including platinum (Pt), gold (Au), and silver (Ag) have been examined. The Pt nanoparticles were electrochemically deposited on a pre-coated PPy film surface by reducing a platinum precursor (PtCl62-) at a constant potential. Both current and scanning electron microscopic images of the film showed the presence of Pt islands. The Au and Ag nanoparticles were dispersed on the P3MeT and PEDOT film surfaces simply by dipping the polymer films into colloid solutions containing Au or Ag particles for specified periods (5 to approximately 10 min). The deposition of Au or Ag particles resulted from either their physical adsorption or chemical bonding between particles and the polymer surface depending on the polymer. When compared with PPy, P3MeT and PEDOT showed a stronger binding to Au or Ag nanoparticles when dipped in their colloidal solutions for the same period. This indicates that Au and Ag particles are predominantly linked with the sulfur atoms via chemical bonding. Of the two, PEDOT was more conductive at the sites where the particles are connected to the polymer. It appears that PEDOT has better aligned sulfur atoms on the surface and is strongly bonded to Au and Ag nanoparticles due to their strong affinity to gold and silver. The current-voltage curves obtained at the metal islands demonstrate that the contacts between these metal islands and polymers are ohmic.

  16. A wide range optical pH sensor for living cells using Au@Ag nanoparticles functionalized carbon nanotubes based on SERS signals.

    Science.gov (United States)

    Chen, Peng; Wang, Zhuyuan; Zong, Shenfei; Chen, Hui; Zhu, Dan; Zhong, Yuan; Cui, Yiping

    2014-10-01

    p-Aminothiophenol (pATP) functionalized multi-walled carbon nanotubes (MWCNTs) have been demonstrated as an efficient pH sensor for living cells. The proposed sensor employs gold/silver core-shell nanoparticles (Au@Ag NPs) functionalized MWCNTs hybrid structure as the surface-enhanced Raman scattering (SERS) substrate and pATP molecules as the SERS reporters, which possess a pH-dependent SERS performance. By using MWCNTs as the substrate to be in a state of aggregation, the pH sensing range could be extended to pH 3.0∼14.0, which is much wider than that using unaggregated Au@Ag NPs without MWCNTs. Furthermore, the pH-sensitive performance was well retained in living cells with a low cytotoxicity. The developed SERS-active MWCNTs-based nanocomposite is expected to be an efficient intracellular pH sensor for bio-applications.

  17. 3He induced reactions on natAg and 197Au at 1.8, 3.6 and 4.8 GeV

    International Nuclear Information System (INIS)

    Brzychczyk, J.; Jagiellonian Univ., Krakow; Pollacco, E.C.; Volant, C.; Legrain, R.; Kwiatkowski, K.; Morley, K.B.; Renshaw-Foxford, E.; Bracken, D.S.; Viola, V.E.; Yoder, N.R.

    1995-03-01

    The 3 He induced reactions on Ag and Au are studied using a large solid angle and low energy threshold detector array. The data show consistency with intranuclear cascade and expanding emitting source description. Charge moment analysis is presented. (author). 18 refs., 8 figs

  18. Development of microstructured large area magnetic calorimeters with Au:Er- and Ag:Er-sensors for the detection of x-ray quanta and high energetic particles

    International Nuclear Information System (INIS)

    Burck, Andreas

    2008-01-01

    This thesis describes the development of large-area magnetic calorimeters which could for example be used for the investigation of the dissociative recombination or the measurement of the Lamb-shift for hydrogenlike heavy ions. The detectors consist of two meandershaped niobium thin film pickup coils and a paramagnetic sensor. The deposition of energy in the sensor results in a temperature change and therefore in a change of magnetisation of the sensor, which can be measured by a SQUID-magnetometer with high precision. As sensormaterials a dilute alloy of gold-erbium (Au:Er) as well as silver-erbium (Ag:Er) were used. Whereas the Ag:Er-sensor was glued on the pickup coil the Au:Er-sensor was for the first time microstructured by a novel microstructuring process established in this thesis. For the characterisation of the detectors and the sensormaterials a fluorescence source and a 55 Fe source were used. The thermodynamic properties of the Au:Er-sensors thereby show promising results, as the magnetisation shows bulk properties down to 20 mK. The measurements of the signalize and the magnetisation with the detector which was equipped with a Ag:Er-sensor showed that the thermodynamic properties of the Ag:Eralloy could be fully described. Furthermore the shape of the pulses, the noise and the energy resolution of both detectors will be discussed. (orig.)

  19. Electrochemical Deposition of Platinum and Palladium on Gold Nanoparticles Loaded Carbon Nanotube Support for Oxidation Reactions in Fuel Cell

    Directory of Open Access Journals (Sweden)

    Surin Saipanya

    2014-01-01

    Full Text Available Pt and Pd sequentially electrodeposited Au nanoparticles loaded carbon nanotube (Au-CNT was prepared for the electrocatalytic study of methanol, ethanol, and formic acid oxidations. All electrochemical measurements were carried out in a three-electrode cell. A platinum wire and Ag/AgCl were used as auxiliary and reference electrodes, respectively. Suspension of the Au-CNT, phosphate buffer, isopropanol, and Nafion was mixed and dropped on glassy carbon as a working electrode. By sequential deposition method, PdPtPt/Au-CNT, PtPdPd/Au-CNT, and PtPdPt/Au-CNT catalysts were prepared. Cyclic voltammograms (CVs of those catalysts in 1 M H2SO4 solution showed hydrogen adsorption and hydrogen desorption reactions. CV responses for those three catalysts in methanol, ethanol, and formic acid electrooxidations studied in 2 M CH3OH, CH3CH2OH, and HCOOH in 1 M H2SO4 show characteristic oxidation peaks. The oxidation peaks at anodic scan contribute to those organic substance oxidations while the peaks at cathodic scan are related with the reoxidation of the adsorbed carbonaceous species. Comparing all those three catalysts, it can be found that the PdPtPt/Au-CNT catalyst is good at methanol oxidation; the PtPdPt/Au-CNT effectively enhances ethanol oxidation while the PtPdPd/Au-CNT exceptionally catalyzes formic acid oxidation. Therefore, a different stoichiometry affects the electrochemical active surface area of the catalysts to achieve the catalytic oxidation reactions.

  20. Interaction between impurities in Ag dilute alloys

    International Nuclear Information System (INIS)

    Krolas, K.; Wodniecka, B.; Wodniecki, P.; Uniwersytet Jagiellonski, Krakow

    1977-01-01

    Time dependent perturbed angular correlation measurements of gamma radiation in 111 Cd after 111 In decay were performed in AgPd and AgPt alloys. The concentration of Pd or Pt atoms being the nearest neighbours to the probe atoms is much higher than that one deduced from random impurity distribution. This effect results from the attractive interaction between the In probe atoms and Pt or Pd impurity atoms in silver host lattice. The binding energy of InPd and InPt complexes was measured as 135 +- 9 meV and 171 +- 9 meV, respectively. (author)

  1. Partonic Flow and phi-Meson production in Au+Au collisions at sqrt radical sNN = 200 GeV.

    Science.gov (United States)

    Abelev, B I; Aggarwal, M M; Ahammed, Z; Anderson, B D; Arkhipkin, D; Averichev, G S; Bai, Y; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Baumgart, S; Belaga, V V; Bellingeri-Laurikainen, A; Bellwied, R; Benedosso, F; Betts, R R; Bhardwaj, S; Bhasin, A; Bhati, A K; Bichsel, H; Bielcik, J; Bielcikova, J; Bland, L C; Blyth, S-L; Bombara, M; Bonner, B E; Botje, M; Bouchet, J; Brandin, A V; Bravar, A; Burton, T P; Bystersky, M; Cadman, R V; Cai, X Z; Caines, H; Calderón de la Barca Sánchez, M; Callner, J; Catu, O; Cebra, D; Chajecki, Z; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, J Y; Cheng, J; Cherney, M; Chikanian, A; Christie, W; Chung, S U; Coffin, J P; Cormier, T M; Cosentino, M R; Cramer, J G; Crawford, H J; Das, D; Dash, S; Daugherity, M; de Moura, M M; Dedovich, T G; DePhillips, M; Derevschikov, A A; Didenko, L; Dietel, T; Djawotho, P; Dogra, S M; Dong, X; Drachenberg, J L; Draper, J E; Du, F; Dunin, V B; Dunlop, J C; Dutta Mazumdar, M R; Eckardt, V; Edwards, W R; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Estienne, M; Fachini, P; Fatemi, R; Fedorisin, J; Feng, A; Filip, P; Finch, E; Fine, V; Fisyak, Y; Fu, J; Gagliardi, C A; Gaillard, L; Ganti, M S; Garcia-Solis, E; Ghazikhanian, V; Ghosh, P; Gorbunov, Y G; Gos, H; Grebenyuk, O; Grosnick, D; Grube, B; Guertin, S M; Guimaraes, K S F F; Gupta, N; Haag, B; Hallman, T J; Hamed, A; Harris, J W; He, W; Heinz, M; Henry, T W; Heppelmann, S; Hippolyte, B; Hirsch, A; Hjort, E; Hoffman, A M; Hoffmann, G W; Hofman, D J; Hollis, R S; Horner, M J; Huang, H Z; Hughes, E W; Humanic, T J; Igo, G; Iordanova, A; Jacobs, P; Jacobs, W W; Jakl, P; Jia, F; Jones, P G; Judd, E G; Kabana, S; Kang, K; Kapitan, J; Kaplan, M; Keane, D; Kechechyan, A; Kettler, D; Khodyrev, V Yu; Kim, B C; Kiryluk, J; Kisiel, A; Kislov, E M; Klein, S R; Knospe, A G; Kocoloski, A; Koetke, D D; Kollegger, T; Kopytine, M; Kotchenda, L; Kouchpil, V; Kowalik, K L; Kravtsov, P; Kravtsov, V I; Krueger, K; Kuhn, C; Kulikov, A I; Kumar, A; Kurnadi, P; Kuznetsov, A A; Lamont, M A C; Landgraf, J M; Lange, S; LaPointe, S; Laue, F; Lauret, J; Lebedev, A; Lednicky, R; Lee, C-H; Lehocka, S; LeVine, M J; Li, C; Li, Q; Li, Y; Lin, G; Lin, X; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, H; Liu, J; Liu, L; Ljubicic, T; Llope, W J; Longacre, R S; Love, W A; Lu, Y; Ludlam, T; Lynn, D; Ma, G L; Ma, J G; Ma, Y G; Mahapatra, D P; Majka, R; Mangotra, L K; Manweiler, R; Margetis, S; Markert, C; Martin, L; Matis, H S; Matulenko, Yu A; McClain, C J; McShane, T S; Melnick, Yu; Meschanin, A; Millane, J; Miller, M L; Minaev, N G; Mioduszewski, S; Mironov, C; Mischke, A; Mitchell, J; Mohanty, B; Morozov, D A; Munhoz, M G; Nandi, B K; Nattrass, C; Nayak, T K; Nelson, J M; Nepali, C; Netrakanti, P K; Nogach, L V; Nurushev, S B; Odyniec, G; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Pachr, M; Pal, S K; Panebratsev, Y; Pavlinov, A I; Pawlak, T; Peitzmann, T; Perevoztchikov, V; Perkins, C; Peryt, W; Phatak, S C; Planinic, M; Pluta, J; Poljak, N; Porile, N; Poskanzer, A M; Potekhin, M; Potrebenikova, E; Potukuchi, B V K S; Prindle, D; Pruneau, C; Putschke, J; Qattan, I A; Raniwala, R; Raniwala, S; Ray, R L; Relyea, D; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Rose, A; Roy, C; Ruan, L; Russcher, M J; Sahoo, R; Sakrejda, I; Sakuma, T; Salur, S; Sandweiss, J; Sarsour, M; Sazhin, P S; Schambach, J; Scharenberg, R P; Schmitz, N; Seger, J; Selyuzhenkov, I; Seyboth, P; Shabetai, A; Shahaliev, E; Shao, M; Sharma, M; Shen, W Q; Shimanskiy, S S; Sichtermann, E P; Simon, F; Singaraju, R N; Smirnov, N; Snellings, R; Sorensen, P; Sowinski, J; Speltz, J; Spinka, H M; Srivastava, B; Stadnik, A; Stanislaus, T D S; Staszak, D; Stock, R; Strikhanov, M; Stringfellow, B; Suaide, A A P; Suarez, M C; Subba, N L; Sumbera, M; Sun, X M; Sun, Z; Surrow, B; Symons, T J M; Szanto de Toledo, A; Takahashi, J; Tang, A H; Tarnowsky, T; Thomas, J H; Timmins, A R; Timoshenko, S; Tokarev, M; Trainor, T A; Trentalange, S; Tribble, R E; Tsai, O D; Ulery, J; Ullrich, T; Underwood, D G; Van Buren, G; van der Kolk, N; van Leeuwen, M; Vander Molen, A M; Varma, R; Vasilevski, I M; Vasiliev, A N; Vernet, R; Vigdor, S E; Viyogi, Y P; Vokal, S; Voloshin, S A; Waggoner, W T; Wang, F; Wang, G; Wang, J S; Wang, X L; Wang, Y; Watson, J W; Webb, J C; Westfall, G D; Wetzler, A; Whitten, C; Wieman, H; Wissink, S W; Witt, R; Wu, J; Wu, Y; Xu, N; Xu, Q H; Xu, Z; Yepes, P; Yoo, I-K; Yue, Q; Yurevich, V I; Zhan, W; Zhang, H; Zhang, W M; Zhang, Y; Zhang, Z P; Zhao, Y; Zhong, C; Zhou, J; Zoulkarneev, R; Zoulkarneeva, Y; Zubarev, A N; Zuo, J X

    2007-09-14

    We present first measurements of the phi-meson elliptic flow (v2(pT)) and high-statistics pT distributions for different centralities from radical sNN=200 GeV Au+Au collisions at RHIC. In minimum bias collisions the v2 of the phi meson is consistent with the trend observed for mesons. The ratio of the yields of the Omega to those of the phi as a function of transverse momentum is consistent with a model based on the recombination of thermal s quarks up to pT approximately 4 GeV/c, but disagrees at higher momenta. The nuclear modification factor (R CP) of phi follows the trend observed in the K S 0 mesons rather than in Lambda baryons, supporting baryon-meson scaling. These data are consistent with phi mesons in central Au+Au collisions being created via coalescence of thermalized s quarks and the formation of a hot and dense matter with partonic collectivity at RHIC.

  2. Identified hadron transverse momentum spectra in Au+Au collisions at sNN=62.4 GeV

    Science.gov (United States)

    Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Chai, Z.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Halliwell, C.; Hamblen, J.; Hauer, M.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Reed, C.; Roland, C.; Roland, G.; Sagerer, J.; Seals, H.; Sedykh, I.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; Nieuwenhuizen, G. J. Van; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Wenger, E.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wysłouch, B.

    2007-02-01

    Transverse momentum spectra of pions, kaons, protons, and antiprotons from Au+Au collisions at sNN = 62.4 GeV have been measured by the PHOBOS experiment at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory. The identification of particles relies on three different methods: low momentum particles stopping in the first detector layers; the specific energy loss (dE/dx) in the silicon spectrometer, and time-of-flight measurement. These methods cover the transverse momentum ranges 0.03 0.2, 0.2 1.0, and 0.5 3.0 GeV/c, respectively. Baryons are found to have substantially harder transverse momentum spectra than mesons. The pT region in which the proton to pion ratio reaches unity in central Au+Au collisions at sNN = 62.4 GeV fits into a smooth trend as a function of collision energy. At low transverse mass, the spectra of various species exhibit a significant deviation from transverse mass scaling. The observed particle yields at very low pT are comparable to extrapolations from higher pT for kaons, protons and antiprotons. By comparing our results to Au+Au collisions at sNN = 200 GeV, we conclude that the net proton yield at midrapidity is proportional to the number of participant nucleons in the collision.

  3. Rich Ground State Chemical Ordering in Nanoparticles: Exact Solution of a Model for Ag-Au Clusters

    DEFF Research Database (Denmark)

    Larsen, Peter Mahler; Jacobsen, Karsten Wedel; Schiøtz, Jakob

    2018-01-01

    We show that nanoparticles can have very rich ground state chemical order. This is illustrated by determining the chemical ordering of Ag-Au 309-atom Mackay icosahedral nanoparticles. The energy of the nanoparticles is described using a cluster expansion model, and a Mixed Integer Programming (MIP......) approach is used to find the exact ground state configurations for all stoichiometries. The chemical ordering varies widely between the different stoichiometries, and display a rich zoo of structures with non-trivial ordering....

  4. Structural and electrical characterization of AuPtAlTi ohmic contacts to AlGaN/GaN with varying annealing temperature and Al content

    OpenAIRE

    Fay, Mike W.; Han, Y.; Brown, Paul D.; Harrison, Ian; Hilton, K.P.; Munday, A.; Wallis, D.; Balmer, R.S.; Uren, M.J.; Martin, T.

    2008-01-01

    The effect of varying annealing temperature and Al layer thickness on the structural and electrical characteristics of AuPtAlTi/AlGaN/GaN ohmic contact structures has been systematically investigated. The relationship between annealing temperature, Al content, interfacial microstructure, surface planarity and contact resistance is\\ud examined. In particular, the presence of a detrimental low temperature Pt-Al reaction is identified. This is implicated in both the requirement for a higher Al:T...

  5. Induced accumulation of Au, Ag and Cu in Brassica napus grown in a mine tailings with the inoculation of Aspergillus niger and the application of two chemical compounds.

    Science.gov (United States)

    González-Valdez, Eduardo; Alarcón, Alejandro; Ferrera-Cerrato, Ronald; Vega-Carrillo, Héctor René; Maldonado-Vega, María; Salas-Luévano, Miguel Ángel; Argumedo-Delira, Rosalba

    2018-06-15

    This study evaluated the ability of Brassica napus for extracting gold (Au), silver (Ag) and copper (Cu) from a mine tailings, with the inoculation of two Aspergillus niger strains, and the application of ammonium thiocyanate (NH 4 SCN) or ammonium thiosulfate [(NH 4 ) 2 S 2 O 3 ]. After seven weeks of growth inoculated or non-inoculated plants were applied with 1 or 2 g kg -1 of either NH 4 SCN or (NH 4 ) 2 S 2 O 3 , respectively. Eight days after the application of the chemical compounds, plants were harvested for determining the total dry biomass, and the content of Au, Ag, and Cu in plant organs. Application of (NH 4 ) 2 S 2 O 3 or NH 4 SCN resulted in enhanced Au-accumulation in stems (447% and 507%, respectively), while either (NH 4 ) 2 S 2 O 3 +Aspergillus, or NH 4 SCN increased the Au-accumulation in roots (198.5% and 404%, respectively) when compared to the control. Treatments with (NH 4 ) 2 S 2 O 3 or (NH 4 ) 2 S 2 O 3 +Aspergillus significantly increased (P ≤ 0.001) the accumulation of Ag in leaves (677% and 1376%, respectively), while NH 4 SCN + Aspergillus, and (NH 4 ) 2 S 2 O 3 enhanced the accumulation in stems (7153% and 6717.5%). The Ag-accumulation in roots was stimulated by NH 4 SCN+ Aspergillus, and (NH 4 ) 2 S 2 O 3 + Aspergillus (132.5% and 178%, respectively), when compared to the control. The combination of NH 4 SCN+Aspergillus significantly enhanced the Cu-accumulation in leaves (228%); whereas NH 4 SCN+ Aspergillus, or (NH 4 ) 2 S 2 O 3 + Aspergillus resulted in greater accumulation of Cu in stems (1233.5% and 1580%, respectively) than the control. Results suggest that either NH 4 SCN or (NH 4 ) 2 S 2 O 3 (with or without Aspergillus) improved the accumulation of Au and Ag by B. napus. Accumulation of Au and Ag in plant organs overpassed the hyperaccumulation criterion (> 1 mg kg -1 of plant biomass); whereas Cu-accumulation in stems and roots also overpassed such criterion (> 1000 mg kg -1 ) by applying

  6. Identified baryon and meson distributions at large transverse momenta from Au + Au collisions at square root sNN=200 GeV.

    Science.gov (United States)

    Abelev, B I; Aggarwal, M M; Ahammed, Z; Anderson, B D; Anderson, M; Arkhipkin, D; Averichev, G S; Bai, Y; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellingeri-Laurikainen, A; Bellwied, R; Benedosso, F; Bhardwaj, S; Bhasin, A; Bhati, A K; Bichsel, H; Bielcik, J; Bielcikova, J; Bland, L C; Blyth, S-L; Bonner, B E; Botje, M; Bouchet, J; Brandin, A V; Bravar, A; Burton, T P; Bystersky, M; Cadman, R V; Cai, X Z; Caines, H; Calderón de la Barca Sánchez, M; Castillo, J; Catu, O; Cebra, D; Chajecki, Z; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, J H; Cheng, J; Cherney, M; Chikanian, A; Christie, W; Coffin, J P; Cormier, T M; Cosentino, M R; Cramer, J G; Crawford, H J; Das, D; Das, S; Dash, S; Daugherity, M; de Moura, M M; Dedovich, T G; Dephillips, M; Derevschikov, A A; Didenko, L; Dietel, T; Djawotho, P; Dogra, S M; Dong, W J; Dong, X; Draper, J E; Du, F; Dunin, V B; Dunlop, J C; Dutta Mazumdar, M R; Eckardt, V; Edwards, W R; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Estienne, M; Fachini, P; Fatemi, R; Fedorisin, J; Filip, P; Finch, E; Fine, V; Fisyak, Y; Fu, J; Gagliardi, C A; Gaillard, L; Ganti, M S; Ghazikhanian, V; Ghosh, P; Gonzalez, J E; Gorbunov, Y G; Gos, H; Grebenyuk, O; Grosnick, D; Guertin, S M; Guimaraes, K S F F; Gupta, N; Gutierrez, T D; Haag, B; Hallman, T J; Hamed, A; Harris, J W; He, W; Heinz, M; Henry, T W; Hepplemann, S; Hippolyte, B; Hirsch, A; Hjort, E; Hoffman, A M; Hoffmann, G W; Horner, M J; Huang, H Z; Huang, S L; Hughes, E W; Humanic, T J; Igo, G; Jacobs, P; Jacobs, W W; Jakl, P; Jia, F; Jiang, H; Jones, P G; Judd, E G; Kabana, S; Kang, K; Kapitan, J; Kaplan, M; Keane, D; Kechechyan, A; Khodyrev, V Yu; Kim, B C; Kiryluk, J; Kisiel, A; Kislov, E M; Klein, S R; Kocoloski, A; Koetke, D D; Kollegger, T; Kopytine, M; Kotchenda, L; Kouchpil, V; Kowalik, K L; Kramer, M; Kravtsov, P; Kravtsov, V I; Krueger, K; Kuhn, C; Kulikov, A I; Kumar, A; Kuznetsov, A A; Lamont, M A C; Landgraf, J M; Lange, S; Lapointe, S; Laue, F; Lauret, J; Lebedev, A; Lednicky, R; Lee, C-H; Lehocka, S; Levine, M J; Li, C; Li, Q; Li, Y; Lin, G; Lin, X; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, H; Liu, J; Liu, L; Liu, Z; Ljubicic, T; Llope, W J; Long, H; Longacre, R S; Love, W A; Lu, Y; Ludlam, T; Lynn, D; Ma, G L; Ma, J G; Ma, Y G; Magestro, D; Mahapatra, D P; Majka, R; Mangotra, L K; Manweiler, R; Margetis, S; Markert, C; Martin, L; Matis, H S; Matulenko, Yu A; McClain, C J; McShane, T S; Melnick, Yu; Meschanin, A; Millane, J; Miller, M L; Minaev, N G; Mioduszewski, S; Mironov, C; Mischke, A; Mishra, D K; Mitchell, J; Mohanty, B; Molnar, L; Moore, C F; Morozov, D A; Munhoz, M G; Nandi, B K; Nattrass, C; Nayak, T K; Nelson, J M; Nepali, N S; Netrakanti, P K; Nogach, L V; Nurushev, S B; Odyniec, G; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Pachr, M; Pal, S K; Panebratsev, Y; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Peitzmann, T; Perevoztchikov, V; Perkins, C; Peryt, W; Phatak, S C; Picha, R; Planinic, M; Pluta, J; Poljak, N; Porile, N; Porter, J; Poskanzer, A M; Potekhin, M; Potrebenikova, E; Potukuchi, B V K S; Prindle, D; Pruneau, C; Putschke, J; Rakness, G; Raniwala, R; Raniwala, S; Ray, R L; Razin, S V; Reinnarth, J; Relyea, D; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Rose, A; Roy, C; Ruan, L; Russcher, M J; Sahoo, R; Sakuma, T; Salur, S; Sandweiss, J; Sarsour, M; Sazhin, P S; Schambach, J; Scharenberg, R P; Schmitz, N; Seger, J; Selyuzhenkov, I; Seyboth, P; Shabetai, A; Shahaliev, E; Shao, M; Sharma, M; Shen, W Q; Shimanskiy, S S; Sichtermann, E P; Simon, F; Singaraju, R N; Smirnov, N; Snellings, R; Sood, G; Sorensen, P; Sowinski, J; Speltz, J; Spinka, H M; Srivastava, B; Stadnik, A; Stanislaus, T D S; Stock, R; Stolpovsky, A; Strikhanov, M; Stringfellow, B; Suaide, A A P; Subba, N L; Sugarbaker, E; Sumbera, M; Sun, Z; Surrow, B; Swanger, M; Symons, T J M; Szanto de Toledo, A; Tai, A; Takahashi, J; Tang, A H; Tarnowsky, T; Thein, D; Thomas, J H; Timmins, A R; Timoshenko, S; Tokarev, M; Trainor, T A; Trentalange, S; Tribble, R E; Tsai, O D; Ulery, J; Ullrich, T; Underwood, D G; Van Buren, G; van der Kolk, N; van Leeuwen, M; Vander Molen, A M; Varma, R; Vasilevski, I M; Vasiliev, A N; Vernet, R; Vigdor, S E; Viyogi, Y P; Vokal, S; Voloshin, S A; Waggoner, W T; Wang, F; Wang, G; Wang, J S; Wang, X L; Wang, Y; Watson, J W; Webb, J C; Westfall, G D; Wetzler, A; Whitten, C; Wieman, H; Wissink, S W; Witt, R; Wood, J; Wu, J; Xu, N; Xu, Q H; Xu, Z; Yepes, P; Yoo, I-K; Yurevich, V I; Zhan, W; Zhang, H; Zhang, W M; Zhang, Y; Zhang, Z P; Zhao, Y; Zhong, C; Zoulkarneev, R; Zoulkarneeva, Y; Zubarev, A N; Zuo, J X

    2006-10-13

    Transverse momentum spectra of pi+/-, p, and p up to 12 GeV/c at midrapidity in centrality selected Au + Au collisions at square root sNN=200 GeV are presented. In central Au + Au collisions, both pi +/- and p(p) show significant suppression with respect to binary scaling at pT approximately >4 GeV/c. Protons and antiprotons are less suppressed than pi+/-, in the range 1.5 approximately 5 GeV/c. The results at high pT indicate that the partonic sources of pi+/-, p, and p have similar energy loss when traversing the nuclear medium.

  7. A comparative study of Cu, Ag and Au doped CeO{sub 2} in the total oxidation of volatile organic compounds (VOCs)

    Energy Technology Data Exchange (ETDEWEB)

    Aboukaïs, Antoine, E-mail: aboukais@univ-littoral.fr [Unité de Chimie Environnementale et Interactions sur le Vivant EA 4492, ULCO, Equipe de Catalyse-UCEIV, MREI, 59140, Dunkerque (France); Skaf, Mira, E-mail: miraskaf@hotmail.com [Unité de Chimie Environnementale et Interactions sur le Vivant EA 4492, ULCO, Equipe de Catalyse-UCEIV, MREI, 59140, Dunkerque (France); Department of Chemistry, Faculty of Sciences, University of Balamand, P.O. Box 100, Deir El Balamand, Kelhat-Tripoli (Lebanon); Hany, Sara, E-mail: sarahani@hotmail.com [Unité de Chimie Environnementale et Interactions sur le Vivant EA 4492, ULCO, Equipe de Catalyse-UCEIV, MREI, 59140, Dunkerque (France); Cousin, Renaud, E-mail: Renaud.Cousin@univ-littoral.fr [Unité de Chimie Environnementale et Interactions sur le Vivant EA 4492, ULCO, Equipe de Catalyse-UCEIV, MREI, 59140, Dunkerque (France); Aouad, Samer, E-mail: Samer.Aouad@balamand.edu.lb [Department of Chemistry, Faculty of Sciences, University of Balamand, P.O. Box 100, Deir El Balamand, Kelhat-Tripoli (Lebanon); Labaki, Madona, E-mail: mlabaki@ul.edu.lb [Laboratory of Physical Chemistry of Materials (LCPM)/PR2N, Faculty of Sciences, Lebanese University, Fanar, PO Box 90656, Jdeidet El Metn (Lebanon); Abi-Aad, Edmond, E-mail: abiaad@univ-littoral.fr [Unité de Chimie Environnementale et Interactions sur le Vivant EA 4492, ULCO, Equipe de Catalyse-UCEIV, MREI, 59140, Dunkerque (France)

    2016-07-01

    Total oxidation of two Volatile Organic Compounds (VOCs), propylene and toluene, was investigated over M/CeO{sub 2} catalysts, where M is a metal from IB group (i.e. Au, Ag, Cu), prepared by two different methods: the conventional wet impregnation and the deposition-precipitation. The catalysts have been characterized by means of total surface area (BET), X-ray diffraction (XRD), electron paramagnetic resonance (EPR), X-ray photoelectron spectroscopy (XPS), diffuse reflectance ultra-violet-visible spectroscopy (DR-UV/Vis), and temperature-programmed reduction (TPR), in order to explain the differences observed in their catalytic activity towards the studied reactions. By comparing the two different preparation methods, the presence of metal in high oxidation state for gold and silver, and the presence of clusters for copper were the main factors responsible for the high catalytic activity. This latter was also found to be related, when comparing the different IB metals, to the values of the oxidation/reduction potential of the redox couples of the different metals. - Highlights: • IB metals (Au, Ag and Cu) were supported on ceria (CeO{sub 2}) by two different methods. • The solids were tested as catalysts for total oxidation of propylene and toluene. • The deposition-precipitation is better for Au whereas for Ag and Cu it is the impregnation. • High oxidation states of gold and silver and clusters of copper enhanced catalytic behavior. • Catalytic activity is linked to the oxidation/reduction potential of the redox IB couples.

  8. Evidence for non-conservative current-induced forces in the breaking of Au and Pt atomic chains.

    Science.gov (United States)

    Sabater, Carlos; Untiedt, Carlos; van Ruitenbeek, Jan M

    2015-01-01

    This experimental work aims at probing current-induced forces at the atomic scale. Specifically it addresses predictions in recent work regarding the appearance of run-away modes as a result of a combined effect of the non-conservative wind force and a 'Berry force'. The systems we consider here are atomic chains of Au and Pt atoms, for which we investigate the distribution of break down voltage values. We observe two distinct modes of breaking for Au atomic chains. The breaking at high voltage appears to behave as expected for regular break down by thermal excitation due to Joule heating. However, there is a low-voltage breaking mode that has characteristics expected for the mechanism of current-induced forces. Although a full comparison would require more detailed information on the individual atomic configurations, the systems we consider are very similar to those considered in recent model calculations and the comparison between experiment and theory is very encouraging for the interpretation we propose.

  9. Evidence for non-conservative current-induced forces in the breaking of Au and Pt atomic chains

    Directory of Open Access Journals (Sweden)

    Carlos Sabater

    2015-12-01

    Full Text Available This experimental work aims at probing current-induced forces at the atomic scale. Specifically it addresses predictions in recent work regarding the appearance of run-away modes as a result of a combined effect of the non-conservative wind force and a ‘Berry force’. The systems we consider here are atomic chains of Au and Pt atoms, for which we investigate the distribution of break down voltage values. We observe two distinct modes of breaking for Au atomic chains. The breaking at high voltage appears to behave as expected for regular break down by thermal excitation due to Joule heating. However, there is a low-voltage breaking mode that has characteristics expected for the mechanism of current-induced forces. Although a full comparison would require more detailed information on the individual atomic configurations, the systems we consider are very similar to those considered in recent model calculations and the comparison between exper