WorldWideScience

Sample records for afterloading brachytherapy volume

  1. Human factors evaluation of remote afterloading brachytherapy: Human error and critical tasks in remote afterloading brachytherapy and approaches for improved system performance. Volume 1

    International Nuclear Information System (INIS)

    Remote Afterloading Brachytherapy (RAB) is a medical process used in the treatment of cancer. RAB uses a computer-controlled device to remotely insert and remove radioactive sources close to a target (or tumor) in the body. Some RAB problems affecting the radiation dose to the patient have been reported and attributed to human error. To determine the root cause of human error in the RAB system, a human factors team visited 23 RAB treatment sites in the US The team observed RAB treatment planning and delivery, interviewed RAB personnel, and performed walk-throughs, during which staff demonstrated the procedures and practices used in performing RAB tasks. Factors leading to human error in the RAB system were identified. The impact of those factors on the performance of RAB was then evaluated and prioritized in terms of safety significance. Finally, the project identified and evaluated alternative approaches for resolving the safety significant problems related to human error

  2. Human factors evaluation of remote afterloading brachytherapy: Human error and critical tasks in remote afterloading brachytherapy and approaches for improved system performance. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Callan, J.R.; Kelly, R.T.; Quinn, M.L. [Pacific Science and Engineering Group, San Diego, CA (United States)] [and others

    1995-05-01

    Remote Afterloading Brachytherapy (RAB) is a medical process used in the treatment of cancer. RAB uses a computer-controlled device to remotely insert and remove radioactive sources close to a target (or tumor) in the body. Some RAB problems affecting the radiation dose to the patient have been reported and attributed to human error. To determine the root cause of human error in the RAB system, a human factors team visited 23 RAB treatment sites in the US The team observed RAB treatment planning and delivery, interviewed RAB personnel, and performed walk-throughs, during which staff demonstrated the procedures and practices used in performing RAB tasks. Factors leading to human error in the RAB system were identified. The impact of those factors on the performance of RAB was then evaluated and prioritized in terms of safety significance. Finally, the project identified and evaluated alternative approaches for resolving the safety significant problems related to human error.

  3. Human factors evaluation of remote afterloading brachytherapy. Volume 2, Function and task analysis

    International Nuclear Information System (INIS)

    A human factors project on the use of nuclear by-product material to treat cancer using remotely operated afterloaders was undertaken by the Nuclear Regulatory Commission. The purpose of the project was to identify factors that contribute to human error in the system for remote afterloading brachytherapy (RAB). This report documents the findings from the first phase of the project, which involved an extensive function and task analysis of RAB. This analysis identified the functions and tasks in RAB, made preliminary estimates of the likelihood of human error in each task, and determined the skills needed to perform each RAB task. The findings of the function and task analysis served as the foundation for the remainder of the project, which evaluated four major aspects of the RAB system linked to human error: human-system interfaces; procedures and practices; training and qualifications of RAB staff; and organizational practices and policies. At its completion, the project identified and prioritized areas for recommended NRC and industry attention based on all of the evaluations and analyses

  4. Human factors evaluation of remote afterloading brachytherapy. Volume 2, Function and task analysis

    Energy Technology Data Exchange (ETDEWEB)

    Callan, J.R.; Gwynne, J.W. III; Kelly, T.T.; Muckler, F.A. [Pacific Science and Engineering Group, San Diego, CA (United States); Saunders, W.M.; Lepage, R.P.; Chin, E. [University of California San Diego Medical Center, CA (United States). Div. of Radiation Oncology; Schoenfeld, I.; Serig, D.I. [Nuclear Regulatory Commission, Washington, DC (United States). Div. of Systems Technology

    1995-05-01

    A human factors project on the use of nuclear by-product material to treat cancer using remotely operated afterloaders was undertaken by the Nuclear Regulatory Commission. The purpose of the project was to identify factors that contribute to human error in the system for remote afterloading brachytherapy (RAB). This report documents the findings from the first phase of the project, which involved an extensive function and task analysis of RAB. This analysis identified the functions and tasks in RAB, made preliminary estimates of the likelihood of human error in each task, and determined the skills needed to perform each RAB task. The findings of the function and task analysis served as the foundation for the remainder of the project, which evaluated four major aspects of the RAB system linked to human error: human-system interfaces; procedures and practices; training and qualifications of RAB staff; and organizational practices and policies. At its completion, the project identified and prioritized areas for recommended NRC and industry attention based on all of the evaluations and analyses.

  5. Afterloading: The Technique That Rescued Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Aronowitz, Jesse N., E-mail: jesse.aronowitz@umassmemorial.org

    2015-07-01

    Although brachytherapy had been established as a highly effective modality for the treatment of cancer, its application was threatened by mid-20th century due to appreciation of the radiation hazard to health care workers. This review examines how the introduction of afterloading eliminated exposure and ushered in a brachytherapy renaissance.

  6. Experiences with alanine dosimetry in afterloading brachytherapy

    International Nuclear Information System (INIS)

    At the present, the most commonly used dosimetry for radiotherapy applications are ionisation chambers and thermoluminescent dosimeters (TLD). However, there are some undesirable characteristics of these dosimetry systems, such as large detection volume (ionisation chamber) as well as fading of the radiation induced signal with time and destructive readout (TLG). The present study is an investigation into the use of the alanine/ESR dosimetry in fractionated afterloading brachytherapy during the whole radiotherapy course. There are some qualities which make alanine dosimetry attractive. These are the linear energy response, low fading under standard conditions, and the nondestructive readout. Thus the alanine dosimetry makes possible cumulative dose measurements during the radiotherapy course and an archival storage. By ionizing radiation (gamma, e, n, p, charged particles) free radicals (unpaired electrons) are produced in the amino acid alanine. The continuous wave electron spin resonance (ESR) spectroscopy is used to determine the number of free radicals, which is proportional to the absorbed dose and the alanine content of the dosimeter. The ESR measurements were made at room temperature using a Bruker EPR analyzer EMS-104. The dosimeters used in the test are alanine pellets (23.72 mg weight, 4.9 mm diameter, 1 mm height) as well as flexible alanine film dosimeters (thickness about 500 μm). The dosimeters consist of a blend of L-alpha-alanine and a binder. The alanine content of the pellets and the film dosimeters is about 88 % and 50 % by weight, respectively. The dosimeters for the calculation of the dose-effect-relationship were irradiated at the Physical-Technical Bundesanstalt in Braunschweig by a standard 60Co source. The maximum deviation from the calculated linear function is about 0.12 Gy in the dose range up to 80 Gy. The goal of medical applications was the superficial dose measurement in afterloading brachytherapy during the radiotherapy course in

  7. Cost effective method of manual afterloading 192Ir brachytherapy

    International Nuclear Information System (INIS)

    Full text: In radiotherapy, brachytherapy mode of treatment has equal importance like the external beam radiotherapy. In our hospital we have manual afterloading 137Cs kit supplied by BRIT for intracavitary treatment of carcinoma cervix and vaginal cases. In July 1999, we also started afterloading 192Ir brachytherapy. For a hospital like ours, where funds are minimal, it is impossible to procure remote afterloading brachytherapy unit, which is very costly. So we have developed the cost-effective 192Ir manual brachytherapy and so far we have done 60 cases which include intraluminal and interstitial cases

  8. Human error in remote Afterloading Brachytherapy

    International Nuclear Information System (INIS)

    Remote Afterloading Brachytherapy (RAB) is a medical process used in the treatment of cancer. RAB uses a computer-controlled device to remotely insert and remove radioactive sources close to a target (or tumor) in the body. Some RAB problems affecting the radiation dose to the patient have been reported and attributed to human error. To determine the root cause of human error in the RAB system, a human factors team visited 23 RAB treatment sites in the US. The team observed RAB treatment planning and delivery, interviewed RAB personnel, and performed walk-throughs, during which staff demonstrated the procedures and practices used in performing RAB tasks. Factors leading to human error in the RAB system were identified. The impact of those factors on the performance of RAB was then evaluated and prioritized in terms of safety significance. Finally, the project identified and evaluated alternative approaches for resolving the safety significant problems related to human error

  9. Radiation Exposure Reduction to Brachytherapy Staff By Using Remote Afterloading

    International Nuclear Information System (INIS)

    The radiation exposures to the personnel staff from patients with brachytherapy implants in a brachytherapy service were reviewed. Exposures to the brachytherapy personnel, as determined by Thermoluminescence Dosimeter (TLD) monitors, indicates a four-fold reduction in exposures after the implantation of the use of remote afterloading devices. Quarterly TLD monitor data for seven quarters prior to the use of remote afterloading devices demonstrate an average projected annual dose equivalent to the brachytherapy staff of 2543 Μ Sv. After the implantation of the remote afterloading devices, the quarterly TLD monitor data indicate an average dose equivalent per person of 153 Μ Sv. This is 76% reduction in exposure to brachytherapy personnel with the use of these devices

  10. Volume and dose rate dependent (MDR-LDR Ir-192 afterloading interstitial brachytherapy) treatment optimisation, for squamouscell carcinoma of the lip

    International Nuclear Information System (INIS)

    Introduction: From 1/1/90 to 1/1/95, 53 patients with squamouscell carcinoma of the lip were treated by MDR or LDR Ir-192 afterloading interstitital brachytherapy. We compare the oncological and aesthetical results and sequelae depending on the volume and the dose rate. Material and methods: 53 patients, 41 men and 12 women, median age = 66y; 48 primary tumors (T1 = 26; T2 = 16; T3 = 6; N0 = 47; N1 = 1; M0 = 48) and 5 recurrencies; squamouscell carcinoma (grade 1 =45, g2 =6, g3 =2); clinical extension: buccal comissure=3, check =2, muscular =15, skin =7, lower and upper lip =1. Before radiotherapy, 28 biopsies and 25 excisional surgeries (19 with positive margins, 6 with negative margins) were performed. Brachytherapy was performed alone (dose 60-75 Gy BD85%) or as a boost (dose 10-30 Gy BD85%) associated with external beam (dose 46-50 Gy). MDR or LDR microselectron's afterloading was done after a computerised dosimetry (Paris System): treatment mean time = 30, 98 hours; mean volume = 10,2 cc (T1-T2 8, 61cc); Ir - 192 activity = range 0,7 - 4,792 mCi/cm; reference dose rate 45,6 - 290, 1 cGy/h. Results: 46 patients are alive without cancer, 1 died without responding, 6 died from non oncological diseases; 8 patients had recurrences (5 local, 3 nodal) but are alive. Mean follow-up 30,83 months (range 3-60m), mean DFS = 22,49 m (range 5-57m). Acute secondary effects: 30 radioepithelyties (grade 1 = 7, g2=23, g3=14), and 39 radiomucitis (g1=3; g2=23; g3=13); mean time for complete healing = 21, 66 days. Sequelae: moderate sclerosis of the skin =11, skin retraction = 1, hyperpigmentation2, depigmentation= 10, edema= 6, gingivitis= 7. Aesthetical results: good32; moderate= 18; bad= 2, very bad= 1 (uncontrolled tumor). Conclusions: The sequelae and aesthetical results are closely dependent on the treated volume and the dose rate, less dependent on the total dose, and independent on the Iridium activity. Complete healing time does not influence the late aesthetical results

  11. Remote Afterloading High Dose Rate Brachytherapy AMC EXPERIANCES

    Energy Technology Data Exchange (ETDEWEB)

    Park, Su Gyong; Chang, Hye Sook; Choi, Eun Kyong; Yi, Byong Yong [Ulsan University College of Medicine, Seoul (Korea, Republic of)

    1992-12-15

    Remote afterloading high dose rate brachytherapy(HDRB) is a new technology and needs new biological principle for time and dose schedule. Here, authors attempt to evaluate the technique and clinical outcome in 116 patients, 590 procedures performed at Asan Medical Center for 3 years. From Sep. 1985 to Aug 1992, 471 procedures of intracavitary radiation in 55 patients of cervical cancer and 26 of nasopharyngeal cancer, 79 intraluminal radiation in 12 of esophageal cancer, 11 of endobronchial cancer and 1 Klatskin tumor and 40 interstitial brachytherapy in 4 of breast cancer, 1 sarcoma and 1 urethral cancer were performed. Median follow-up was 7 months with range 1-31 months. All procedures except interstitial were performed under the local anesthesia and they were all well tolerated and completed the planned therapy except 6 patients. 53/58 patients with cervical cancer and 22/26 patients with nasopharynx cancer achieved CR. Among 15 patients with palliative therapy, 80% achieves palliation. We will describe the details of the technique and results in the text. To evaluate biologic effects of HDRB and optimal time/dose/fractionation schedule, we need longer follow-up. But authors feel that HDRB with proper fractionation schedule may yield superior results compared to the low dose rate brachytherapy considering the advantages of HDRB in safety factor for operator, better control of radiation dose and volume and patients comfort over the low dose brachytherapy.

  12. Human factors evaluation of remote afterloading brachytherapy. Supporting analyses of human-system interfaces, procedures and practices, training and organizational practices and policies. Volume 3

    International Nuclear Information System (INIS)

    A human factors project on the use of nuclear by-product material to treat cancer using remotely operated afterloaders was undertaken by the Nuclear Regulatory Commission. The purpose of the project was to identify factors that contribute to human error in the system for remote afterloading brachytherapy (RAB). This report documents the findings from the second, third, fourth, and fifth phases of the project, which involved detailed analyses of four major aspects of the RAB system linked to human error: human-system interfaces; procedures and practices; training practices and policies; and organizational practices and policies, respectively. Findings based on these analyses provided factual and conceptual support for the final phase of this project, which identified factors leading to human error in RAB. The impact of those factors on RAB performance was then evaluated and prioritized in terms of safety significance, and alternative approaches for resolving safety significant problems were identified and evaluated

  13. Human factors evaluation of remote afterloading brachytherapy. Supporting analyses of human-system interfaces, procedures and practices, training and organizational practices and policies. Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    Callan, J.R.; Kelly, R.T.; Quinn, M.L. [Pacific Science & Engineering Group, San Diego, CA (United States)] [and others

    1995-07-01

    A human factors project on the use of nuclear by-product material to treat cancer using remotely operated afterloaders was undertaken by the Nuclear Regulatory Commission. The purpose of the project was to identify factors that contribute to human error in the system for remote afterloading brachytherapy (RAB). This report documents the findings from the second, third, fourth, and fifth phases of the project, which involved detailed analyses of four major aspects of the RAB system linked to human error: human-system interfaces; procedures and practices; training practices and policies; and organizational practices and policies, respectively. Findings based on these analyses provided factual and conceptual support for the final phase of this project, which identified factors leading to human error in RAB. The impact of those factors on RAB performance was then evaluated and prioritized in terms of safety significance, and alternative approaches for resolving safety significant problems were identified and evaluated.

  14. Real-time in vivo dosimetry and error detection during afterloading brachytherapy

    DEFF Research Database (Denmark)

    Kertzscher Schwencke, Gustavo Adolfo Vladimir

    Image guided afterloaded brachytherapy (BT) allows for conformal and patient specific radiotherapy (RT) treatments against cancer, where high dose concentrations are administered to the tumor volume and small doses to organs at risk (OARs). In afterloaded BT, ionizing radiation is delivered by...... cervical cancer at the Aarhus University Hospital. The tools and methods developed for the implementation targeted requirements for accurate IVD and the demands for a time-efficient and straightforward clinical approach. The performance of all developments was explored based on IVD results for 20 PDR BT...... means of a radionuclide attached to a source chain that is placed inside source catheters implanted in the target region. As for any RT treatment modality, BT treatments are subject to discrepancies between the delivered and planned treatments. Given the localized and high dose concentration near BT...

  15. A compilation of current regulations, standards and guidelines in remote afterloading brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Tortorelli, J.P.; Simion, G.P.; Kozlowski, S.D. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1994-10-01

    Over a dozen government and professional organizations in the United States and Europe have issued regulations and guidance concerning quality management in the practice of remote afterloading brachytherapy. Information from the publications of these organizations was collected and collated for this report. This report provides the brachytherapy licensee access to a broad field of quality management information in a single, topically organized document.

  16. A compilation of current regulations, standards and guidelines in remote afterloading brachytherapy

    International Nuclear Information System (INIS)

    Over a dozen government and professional organizations in the United States and Europe have issued regulations and guidance concerning quality management in the practice of remote afterloading brachytherapy. Information from the publications of these organizations was collected and collated for this report. This report provides the brachytherapy licensee access to a broad field of quality management information in a single, topically organized document

  17. Reduction in radiation exposure to nursing personnel with the use of remote afterloading brachytherapy devices

    International Nuclear Information System (INIS)

    The radiation exposure to nursing personnel from patients with brachytherapy implants on a large brachytherapy service were reviewed. Exposure to nurses, as determined by TLD monitors, indicates a 7-fold reduction in exposure after the implementation of the use of remote afterloading devices. Quarterly TLD monitor data for six quarters prior to the use of remote afterloading devices demonstrate an average projected annual dose equivalent to the nurses of 152 and 154 mrem (1.5 mSv). After the implementation of the remote afterloading devices, the quarterly TLD monitor data indicate an average dose equivalent per nurse of 23 and 19 mrem (0.2 mSv). This is an 87% reduction in exposure to nurses with the use of these devices (p less than 0.01)

  18. A new afterloading-applicator for primary brachytherapy of endometrial cancer

    International Nuclear Information System (INIS)

    Presented is a new afterloading applicator used for primary brachytherapy of endometrial cancer. The advantages: The afterloading applicator holds six afterloading tubes which bundled together in a cover. After the cover is pulled back, the individual tubes expand as a result of the sleeve shape and of the inherent stress of the plastic material used and make direct contact with the endometrium and with the tumor. The applicator is 8 mm in diameter which means that the cervix has to be dilated to Hegar 8 or 9. Radiation planning is done on the basis of orthogonal localisation X-rays or MR. The newly designed applicator can be used for both HDR and LDR afterloading procedures. We have clinical experiences in 42 applications. (orig.)

  19. A new afterloading-applicator for primary brachytherapy of endometrial cancer. First clinical experiences. Neuentwicklung eines Afterloading-Applikators zur primaeren Behandlung des Endometriumkarzinoms. Erster klinischer Erfahrungsbericht

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, M.; Schulz-Wendtland, R.; Richard, F. (Freiburg Univ. (Germany). Abt. Gynaekologische Radiologie); Hooft, E. van t' (Nucletron, Leersum (Netherlands))

    1991-09-01

    Presented is a new afterloading applicator used for primary brachytherapy of endometrial cancer. The advantages: The afterloading applicator holds six afterloading tubes which bundled together in a cover. After the cover is pulled back, the individual tubes expand as a result of the sleeve shape and of the inherent stress of the plastic material used and make direct contact with the endometrium and with the tumor. The applicator is 8 mm in diameter which means that the cervix has to be dilated to Hegar 8 or 9. Radiation planning is done on the basis of orthogonal localisation X-rays or MR. The newly designed applicator can be used for both HDR and LDR afterloading procedures. We have clinical experiences in 42 applications. (orig.).

  20. Radiological safety problems in intracavitary brachytherapy using the manual afterloading in Venezuela

    International Nuclear Information System (INIS)

    In three venezuelan public hospitals it was detected radioactive contamination for Cs-137 during inspection with the wipe test technique in areas where is applied intracavitary brachytherapy using manual afterloading. This caused a condition of great stress in the personal engaged the treatments. In each Cs-137 source in these hospitals was tested leakage. The source plastic holder was analysed. The authors were able to demonstrate: a) The radioactive contamination found in the treatment area had its origin in the Cs-137 capsule corrosion and b) The corrosion in the source capsule was produced by the radiolytic degradation of the PVC tube used as source-holder in the intracavitary treatments. (authors). 3 refs., 1 tab

  1. Interstitial brachytherapy for carcinoma of the base of tongue using a high dose rate 192Ir remote afterloader

    International Nuclear Information System (INIS)

    We have applied an interstitial brachytherapy employing a high dose rate 192Ir remote afterloader to five patients with cancer of the base of tongue since December 1994. Insertion of applicators was carried out with tracheotomy under general anesthesia. Brachytherapy was delivered twice a day with a 6-hour interval. Irradiation dose was estimated at the point of 5 mm from outer applicators. HDR brachytherapy was well tolerated for 4-5 days in all patients and acute radiation reaction was minimal. Local control were observed in two cases. In conclusion, our preliminary experience suggests that HDR brachytherapy may be an option in the radiotherapy for carcinoma of the base of tongue. Optimal dose-fractionation protocol should be established. (author)

  2. Poster — Thur Eve — 40: Automated Quality Assurance for Remote-Afterloading High Dose Rate Brachytherapy

    International Nuclear Information System (INIS)

    High dose rate (HDR) remote afterloading brachytherapy involves sending a small, high-activity radioactive source attached to a cable to different positions within a hollow applicator implanted in the patient. It is critical that the source position within the applicator and the dwell time of the source are accurate. Daily quality assurance (QA) tests of the positional and dwell time accuracy are essential to ensure that the accuracy of the remote afterloader is not compromised prior to patient treatment. Our centre has developed an automated, video-based QA system for HDR brachytherapy that is dramatically superior to existing diode or film QA solutions in terms of cost, objectivity, positional accuracy, with additional functionalities such as being able to determine source dwell time and transit time of the source. In our system, a video is taken of the brachytherapy source as it is sent out through a position check ruler, with the source visible through a clear window. Using a proprietary image analysis algorithm, the source position is determined with respect to time as it moves to different positions along the check ruler. The total material cost of the video-based system was under $20, consisting of a commercial webcam and adjustable stand. The accuracy of the position measurement is ±0.2 mm, and the time resolution is 30 msec. Additionally, our system is capable of robustly verifying the source transit time and velocity (a test required by the AAPM and CPQR recommendations), which is currently difficult to perform accurately

  3. Poster — Thur Eve — 40: Automated Quality Assurance for Remote-Afterloading High Dose Rate Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Anthony; Ravi, Ananth [Sunnybrook Health Sciences Centre/Odette Cancer Centre (Canada)

    2014-08-15

    High dose rate (HDR) remote afterloading brachytherapy involves sending a small, high-activity radioactive source attached to a cable to different positions within a hollow applicator implanted in the patient. It is critical that the source position within the applicator and the dwell time of the source are accurate. Daily quality assurance (QA) tests of the positional and dwell time accuracy are essential to ensure that the accuracy of the remote afterloader is not compromised prior to patient treatment. Our centre has developed an automated, video-based QA system for HDR brachytherapy that is dramatically superior to existing diode or film QA solutions in terms of cost, objectivity, positional accuracy, with additional functionalities such as being able to determine source dwell time and transit time of the source. In our system, a video is taken of the brachytherapy source as it is sent out through a position check ruler, with the source visible through a clear window. Using a proprietary image analysis algorithm, the source position is determined with respect to time as it moves to different positions along the check ruler. The total material cost of the video-based system was under $20, consisting of a commercial webcam and adjustable stand. The accuracy of the position measurement is ±0.2 mm, and the time resolution is 30 msec. Additionally, our system is capable of robustly verifying the source transit time and velocity (a test required by the AAPM and CPQR recommendations), which is currently difficult to perform accurately.

  4. Comparison of 60Cobalt and 192Iridium sources in high dose rate afterloading brachytherapy

    International Nuclear Information System (INIS)

    Purpose: 60Co sources with dimensions identical to those of 192Ir have recently been made available in clinical brachytherapy. A longer half time reduces demands on logistics and quality assurance and perhaps costs. Material and Methods: Comparison of the physical properties of 60Co and 192Ir with regard to brachytherapy. Results: Required activities for the same air kerma rate are lower by a factor of 2.8 for 60Co. Differential absorption in tissues of different densities can be neglected. Monte Carlo calculations demonstrate that integral dose due to radial dose fall off is higher for 192Ir in comparison to 60Co within the first 22 cm from the source (normalization at 1 cm). At larger distances this relationship is reversed. Conclusion: Clinical examples for intracavitary and interstitial applications however, show practically identical dose distributions in the treatment volume. (orig.)

  5. A brachytherapy procedure for carcinoma of the mobile tongue with small source high dose rate remote afterloading method

    International Nuclear Information System (INIS)

    Interstitial brachytherapy was conducted for mobile tongue carcinoma using a new high dose rate remote afterloading machine (microSelectron-HDR) with small 192Ir source. A detailed method was described, approaching from submandibular skin by open-ended stainless steel needles to the tongue lesion, and replacing each needle into flexible nylon tube from the oral cavity. We deal with a new Linked Double-Button technique and treatment policy in this paper. Complete local control was obtained in all 7 patients applied as of February 1992, up to 9-months follow-up, and quality of life of patients after this method was proved as good as that in low dose rate procedure. (author)

  6. Inverse planning in brachytherapy from radium to high rate 192 iridium afterloading

    International Nuclear Information System (INIS)

    We consider the inverse planning problem in brachytherapy, i.e. the problem to determine an optimal number of catheters, number of sources for low-dose rate brachytherapy (LDR) and the optimal dwell times for high-dose rate brachytherapy (HDR) necessary to obtain an optimal as possible dose distribution. Starting from the 1930s, inverse planning for LDR brachytherapy used geometrically derived rules to determine the optimal placement of sources in order to achieve a uniform dose distribution of a specific level in planes, spheres and cylinders. Rules and nomograms were derived which still are widely used. With the rapid development of 3D imaging technologies and the rapidly increasing computer power we have now entered the new era of computer-based inverse planning in brachytherapy. The inverse planning is now an optimisation process adapted to the individual geometry of the patient. New inverse planning optimisation algorithms are anatomy-based that consider the real anatomy of the tumour and the organs at risk (OAR). Computer-based inverse planning considers various effects such as stability of solutions for seed misplacements which cannot ever be solved analytically without gross simplifications. In the last few years multiobjective (MO) inverse planning algorithms have been developed which recognise the MO optimisation problem which is inherent in inverse planning in brachytherapy. Previous methods used a trial and error method to obtain a satisfactory solution. MO optimisation replaces this trial and error process by presenting a representative set of dose distributions that can be obtained. With MO optimisation it is possible to obtain information that can be used to obtain the optimum number of catheters, their position and the optimum distribution of dwell times for HDR brachytherapy. For LDR brachytherapy also the stability of solutions due to seed migration can also be improved. A spectrum of alternative solutions is available and the treatment planner

  7. Implementation of 'early alert system' area detector at patient from entrance in afterloading brachytherapy

    International Nuclear Information System (INIS)

    A system of area monitors to detect the involuntary exit of the radiation sources used in low dose rate deferred brachytherapy treatment is being implemented in all facilities in Chile. The first implementation of this system, named 'Early Alert', was 5 years ago as a complement to the administrative procedures and verification measures by the medical physics carried out through visual verifications and by means of portable radiation detectors. This detector of the system should be located preferentially at the exit of the treatment room at a height not smaller than two meters. This has resulted in an increase of facilities safety in this practice. (author)

  8. TMH index for an independent method of verification of a brachytherapy treatment plan on micro selectron high dose rate remote afterloading machine

    International Nuclear Information System (INIS)

    The purpose of this paper is to find an independent method for verification of a brachytherapy treatment plan on micro selectron high dose rate (HDR) remote afterloading machine. This TMH Index is simple to calculate prior to approving patient treatment execution at the treatment console as an independent check by the medical physicist. Also, it is sensitive enough to identify significant error in the dose specification points, dwell positions and/or prescribed dose for Rotterdam applications. Similar index may be derived for any other application, where dose specification points and type of applicator are constant

  9. Quality audits of the remote-controlled automatically-driven gamma ray afterloading equipment used in brachytherapy in the Czech Republic

    International Nuclear Information System (INIS)

    To reach safety and precise application of ionisation radiation to patients Atomic act declares, in its Article no. 7, requirements for medical exposure. There are also given -among others -the demands to install the quality assurance programmes (QA) for medical actions and functions. Since 1997, when the act has been adopted, a set of five Recommendations of State Office for Nuclear Safety (SONS ) for radiotherapy has been prepared to instruct users how to prepare quality control system (i.e. system of tests required by of the regulation no.184/1997 Sb. -acceptance, status and constancy tests) for main types of sources used in radiotherapy for treatment of the patients. Among them also the Recommendation on QA in brachytherapy has been issued by SONS in 1998. National Radiation Protection Institute (NRPI) has been performing the regular in situ quality audits in which the chosen parameters (which could seriously influence the dose to the patients -i.e. absorbed dose, main geometrical and radiation parameters etc ) are independently checked by the NRPI experts. System of Quality Audits on the sources used in teletherapy has been introduced in 1997 and at present time they are smoothly carried out according the SONS's demands. This work describes the process of installing of the Quality Audit system on brachytherapy. The work described here forms the only part of the activities, which have been carrying out by the department of dosimetry gamma and X-rays of NRPI to support supervisions of SONS in the field of radiation protection in radiotherapy .Quality audits in brachytherapy will extend the possibilities of NRPI. The Methods NRPI 43-01.30 prepared by NRPI could be used as documentation for all types of test which are at present time required by Czech legislation for the remote-controlled automatically-driven gamma-ray afterloading equipment used in brachytherapy. (authors)

  10. Brachytherapy

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Brachytherapy What is Brachytherapy and how is it used? ... will I feel during this procedure? What is brachytherapy and how is it used? Brachytherapy is a ...

  11. Effects of Endovascular Brachytherapy with 192Ir Afterloading System on Expression of Type Ⅰ Collagen after Angioplasty

    Institute of Scientific and Technical Information of China (English)

    向定成; 杨传红; 候友贤; 龚志华; 易绍东; 邱建

    2003-01-01

    Objectives To investi-gate the effect and mechanism of endovascularbrachytherapy with 192Ir on expression of type Ⅰ collagen, metalloproteinases - 1 (MMP - 1) and the tissueinhibitor (TIMP- 1 ) after angioplasty. MethodsRestenotic model of domestic microswine was em-ployed and the iliac arteries were randomized to radi-ation group ( n = 12), which were treated with 20 ~ 25Gy of 192Ir, and non - radiation group ( n = 36) afterangioplasty. The target vessels were harvested in theend of 3 months and 6 months after angioplasty. Im-munohistochemistry and in situ hybridization were usedto detect proteins of type Ⅰ collagen, MMP-1 andTIMP- 1, and mRNA expression of type Ⅰ collagen.Results The protein and mRNA of type Ⅰ collagen,the ratios of TIMP-1/MMP-1 were significantlylower iu radiation group than in non- radiation group( P < 0.05 or 0.01 ). The peak of transcription of typeⅠ collagen mRNA was at 6 months and 3 months in non-radiation group and radiation group respectively.Conclusions Endovascular brachytherapy with192Ir might modify the metabolism of extracellular ma-trix after angioplasty by inhibiting the synthesis of typeⅠ collagen and the activities of MMP - 1 and TIMP - 1.

  12. The application of Geant4 simulation code for brachytherapy treatment

    CERN Document Server

    Agostinelli, S; Garelli, S; Paoli, G; Nieminen, P; Pia, M G

    2000-01-01

    Brachytherapy is a radiotherapeutic modality that makes use of radionuclides to deliver a high radiation dose to a well-defined volume while sparing surrounding healthy structures. At the National Institute for Cancer Research of Genova a High Dose Rate remote afterloading system provides Ir(192) endocavitary brachytherapy treatments. We studied the possibility to use the Geant4 Monte Carlo simulation toolkit in brachytherapy for calculation of complex physical parameters, not directly available by experiment al measurements, used in treatment planning dose deposition models.

  13. Dose volume analysis in brachytherapy and stereotactic radiosurgery

    CERN Document Server

    Tozer-Loft, S M

    2000-01-01

    compared with a range of figures of merit which express different aspects of the quality of each dose distributions. The results are analysed in an attempt to answer the question: What are the important features of the dose distribution (conformality, uniformity, etc) which show a definite relationship with the outcome of the treatment? Initial results show positively that, when Gamma Knife radiosurgery is used to treat acoustic neuroma, some measures of conformality seem to have a surprising, but significant association with outcome. A brief introduction to three branches of radiotherapy is given: interstitial brachytherapy, external beam megavoltage radiotherapy, and stereotactic radiosurgery. The current interest in issues around conformity, uniformity and optimisation is explained in the light of technical developments in these fields. A novel method of displaying dose-volume information, which mathematically suppresses the inverse-square law, as first suggested by L.L. Anderson for use in brachytherapy i...

  14. Sole conformal perioperative interstitial brachytherapy of early stage breast carcinoma using high-dose rate afterloading: longer-term results and toxicity

    International Nuclear Information System (INIS)

    Aims and Background: This study of high-dose-rate brachytherapy to the lumpectomy site as the sole radiation presents longer-term results and toxicity of accelerated partial-breast irradiation, using three-dimensional treatment planning. Materials and Methods: From March 2002 to July 2004, 25 patients were prospectively included in this study. Six patients were excluded because of definitive histology of lobular carcinoma or positive margin. The median age at the time of treatment was 63.2 years (range 44 - 77 years). Median follow- up of all patients was 44 months (range 30 - 53 months) with a minimum follow-up of 30 months. Radiation was delivered using the high-dose-rate remote after loader VariSource with 192Ir source. The patients received radiation twice a day at least 6 hours apart for a total of 10 fractions over five days with a single dose of 3.4 Gy. The total dose was 34.0 Gy prescribed as a minimum peripheral dose to match or minimally exceed the volume defined by the surgical clips as seen on computed-tomography (CT) scans. Free-hand technique allows conformal placement of the catheters to the shape of the lumpectomy cavity. Side-effects and toxicity were scored using the EORTC/RTOG scale. Results: At a median follow-up of 44 months none of the women had developed in-field breast recurrences, one patient had out-of-field recurrences and one patient presented distant metastases. There were no regional nodal recurrences. In each woman, target volume size in cm3 (median 91.3 cm3), dose volume histogram (DVH), and dose homogeneity index (DHI) were calculated. Median DHI was 0.42. Median volume of breast tissue receiving 100 % of the prescription dose, V100, was 87 %; and V150 48.5 %. We noticed two treatment complications: haematoma and abscess in the place of the tumour bed after extirpation. At last follow-up, all patients rated the overall cosmetic outcome as excellent or good. Conclusions: This method is suitable only for patients with histologically

  15. Dose volume analysis in brachytherapy and stereotactic radiosurgery

    Energy Technology Data Exchange (ETDEWEB)

    Tozer-Loft, S.M

    2000-12-01

    A brief introduction to three branches of radiotherapy is given: interstitial brachytherapy, external beam megavoltage radiotherapy, and stereotactic radiosurgery. The current interest in issues around conformity, uniformity and optimisation is explained in the light of technical developments in these fields. A novel method of displaying dose-volume information, which mathematically suppresses the inverse-square law, as first suggested by L.L. Anderson for use in brachytherapy is explained in detail, and some improvements proposed. These 'natural' histograms are extended to show the effects of real point sources which do not exactly follow the inverse-square law, and to demonstrate the in-target dose-volume distribution, previously unpublished. The histograms are used as a way of mathematically analysing the properties of theoretical mono-energetic radionuclides, and for demonstrating the dosimetric properties of a potential new brachytherapy source (Ytterbium-169). A new modification of the Anderson formalism is then described for producing Anderson Inverse-Square Shifted (AISS) histograms for the Gamma Knife, which are shown to be useful for demonstrating the quality of stereotactic radiosurgery dose distributions. A study is performed analysing the results of Gamma Knife treatments on 44 patients suffering from a benign brain tumour (acoustic neuroma). Follow-up data is used to estimate the volume shrinkage or growth of each tumour, and this measure of outcome is compared with a range of figures of merit which express different aspects of the quality of each dose distributions. The results are analysed in an attempt to answer the question: What are the important features of the dose distribution (conformality, uniformity, etc) which show a definite relationship with the outcome of the treatment? Initial results show positively that, when Gamma Knife radiosurgery is used to treat acoustic neuroma, some measures of conformality seem to have a surprising

  16. [Brachytherapy].

    Science.gov (United States)

    Itami, Jun

    2014-12-01

    Brachytherapy do require a minimal expansion of CTV to obtain PTV and it is called as ultimate high precision radiation therapy. In high-dose rate brachytherapy, applicators will be placed around or into the tumor and CT or MRI will be performed with the applicators in situ. With such image-guided brachytherapy (IGBT) 3-dimensional treatment planning becomes possible and DVH of the tumor and organs at risk can be obtained. It is now even possible to make forward planning satisfying dose constraints. Traditional subjective evaluation of brachytherapy can be improved to the objective one by IGBT. Brachytherapy of the prostate cancer, cervical cancer, and breast cancer with IGBT technique was described. PMID:25596048

  17. Design and construction of a holder to the safety handling of Cs-137 to be used in cervix cancer treatments using intracavitary brachytherapy by afterloading

    International Nuclear Information System (INIS)

    In venezuelan public hospitals where cervix cancer treatments are performed by means of Cs-137 manual afterloading systems, the handling of the sources is done with two type of holders, metallic and plastic, the plastic holders are pieces of induced serious radio-sanitary problem such as loser of the Cs-137 source and radioactive contamination in the treatment area, this has caused the interruption of the treatments in many hospitals. This interruption had a high social cost because of the thousands women waiting for intracavitary therapy. To start again with the treatments, the metallic holders were required but there were not enough funds in the budget, because of this problem in a short time IVIS'S health physics drew and made a low price source holder. (authors). 2 figs., 2 tabs

  18. Results of high dose rate afterloading brachytherapy boost to conventional external beam radiation therapy for initial and locally advanced prostate cancer

    International Nuclear Information System (INIS)

    Purpose: To evaluate the impact on biochemical control (bNED), acute and late gastro-intestinal (GI) and urological (GU) morbidity of initial and locally advanced prostate cancer treated with fractionated transrectal ultrasound-guided (TRUS) high dose rate after loading brachytherapy (HDR-B) as a boost to conventional external beam radiation therapy (EBRT). Patients and methods: From March 1997 to February 2000 a total of 119 patients with any of the following characteristics were eligible for study entry: biopsy proven adenocarcinoma Gleason scored (GS), initial prostatic specific antigen (PSA) level dosage 1992 AJCC clinical stage T3a or less, and prostatic volume <60 cc. All patients had prior to HDR-B a course of EBRT 6 MV photons to a median dose of 45 Gy, in 1.8 Gy fractions, to the prostate and seminal vesicles only. HDR-B treatment planning and dosimetric calculations were generated with the Nucletron Planning System. Patients were grouped into two groups, according to their risk for biochemical failure: low-risk group without (LR) or with neoadjuvant total androgen deprivation (AD) prior to EBRT (LR+AD) and high-risk group without (HR) or with neoadjuvant AD (HR+AD), for bNED and dose-escalation protocol. LR encompassed patients who presented GS<6, T1 or T2a and or initial PSA<10 ng/ml, who were treated with 16 Gy (4 Gy fractions, b.i.d.) HDR-B. The remaining patients were grouped into HR or HR+AD and received 20 Gy (5 Gy fractions, b.i.d.) HDR-B. The planning was optimized using the standard geometric optimization. Biological effective doses (BED) for tumor control and late responding tissue were calculated using a α/β ratio of 1.5 and 3 Gy, respectively. They were matched with bNED, acute and late gastrointestinal (GI) and urological (GU) morbidity, according to the RTOG/EORTC scoring criteria. Results: Median age of patients was 68 years (range 47-83), with a median follow-up of 41 months (range 18-48). The crude and actuarial biochemical controls (b

  19. Optimisation, dose and volume relationships in interstitials volume implants

    International Nuclear Information System (INIS)

    Over the years, tools of brachytherapy application/implantation and treatment planning have evolved. The most important shift in the implantation came from the pre-loaded to after-loaded implants. The radiation sources for temporary implants changed from caesium needles to iridium seeds. The calculation tools changed from manual look up tables to computerised dosimetry systems and the standard approach to brachytherapy source distribution became more Quimby-like. To promote more uniform reporting in brachytherapy, the American Brachytherapy Society (ABS) endorsed recommendations put-forth by the American Endocurietherapy Society for dose volume specifications, method description and evaluation parameter reporting and, more recently, guidelines have come from ICRU as well. Basic approach for planning interstitial implants, dose optimisation, dose-volume specifications and quality assessment indices for high dose rate (HDR) implants have been discussed

  20. Time, dose and volume factors in interstitial brachytherapy combined with external irradiation for oral tongue carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Yorozu, Atsunori [National Tokyo Second Hospital (Japan)

    1996-04-01

    This is a retrospective analysis of 136 patients with squamous cell carcinoma of stages I and II of the oral tongue who were treated with interstitial brachytherapy alone or in combination with external irradiation between 1976 and 1991. Control of the primary lesion and the occurrence of late complications were analyzed with respect to dose, time and tumor size with the Cox hazard model. The 5-year survival rates for stages I and II were 84.5% and 75.6%. The 5-year primary control rate was 91.3% for stage I and 77.3% for stage II (p<0.05). Local control and survival rates were comparable with those of other modalities. The significant factor in local control was stage. For lesions more than 30 mm in diameter, local control was rather poor in the group given only brachytherapy compared with the group given combined therapy. After 30 Gy of external irradiation, local control was better at a brachytherapy dose >50 Gy compared with a brachytherapy dose <=50 Gy. Mucosal ulcer occurred frequently with increasing total dose and tumor volume. Bone necrosis increased significantly with increasing external irradiation dose. We suggest that external irradiation of 30 Gy followed by brachytherapy of 52 Gy is a better choice for T2 lesions >30 mm. Late complications should be reduced by using a spacer, improvements in dental and oral hygiene, and a sophisticated implant method. (author).

  1. Automated planning volume definition in soft-tissue sarcoma adjuvant brachytherapy

    International Nuclear Information System (INIS)

    In current practice, the planning volume for adjuvant brachytherapy treatment for soft-tissue sarcoma is either not determined a priori (in this case, seed locations are selected based on isodose curves conforming to a visual estimate of the planning volume), or it is derived via a tedious manual process. In either case, the process is subjective and time consuming, and is highly dependent on the human planner. The focus of the work described herein involves the development of an automated contouring algorithm to outline the planning volume. Such an automatic procedure will save time and provide a consistent and objective method for determining planning volumes. In addition, a definitive representation of the planning volume will allow for sophisticated brachytherapy treatment planning approaches to be applied when designing treatment plans, so as to maximize local tumour control and minimize normal tissue complications. An automated tumour volume contouring algorithm is developed utilizing computational geometry and numerical interpolation techniques in conjunction with an artificial intelligence method. The target volume is defined to be the slab of tissue r cm perpendicularly away from the curvilinear plane defined by the mesh of catheters. We assume that if adjacent catheters are over 2r cm apart, the tissue between the two catheters is part of the tumour bed. Input data consist of the digitized coordinates of the catheter positions in each of several cross-sectional slices of the tumour bed, and the estimated distance r from the catheters to the tumour surface. Mathematically, one can view the planning volume as the volume enclosed within a minimal smoothly-connected surface which contains a set of circles, each circle centred at a given catheter position in a given cross-sectional slice. The algorithm performs local interpolation on consecutive triplets of circles. The effectiveness of the algorithm is evaluated based on its performance on a collection of

  2. Addendum to brachytherapy dose-volume histogram commissioning with multiple planning systems.

    Science.gov (United States)

    Gossman, Michael S

    2016-01-01

    The process for validating dose-volume histogram data in brachytherapy software is presented as a supplement to a previously published article. Included is the DVH accuracy evaluation of the Best NOMOS treatment planning system called "Best TPS VolumePlan." As done previously in other software, a rectangular cuboid was contoured in the treatment planning system. A single radioactive 125I source was positioned coplanar and concentric with one end. Calculations were performed to estimate dose deposition in partial volumes of the cuboid structure, using the brachytherapy dosimetry formalism defined in AAPM Task Group 43. Hand-calculated, dose-volume results were compared to TPS-generated, point-source-approximated dose-volume histogram data to establish acceptance. The required QA for commissioning was satisfied for the DVH as conducted previously for other software, using the criterion that the DVH %VolTPS "actual variance" calculations should differ by no more than 5% at any specific radial distance with respect to %VolTG-43, and the "average variance" DVH %VolTPS calculations should differ by no more than 2% over all radial distances with respect to %VolTG-43. The average disagreement observed between hand calculations and treatment planning system DVH was less than 0.5% on average for this treatment planning system and less than 1.1% maximally for 1 ≤ r ≤ 5 cm. PMID:27167288

  3. Intravitreal bevacizumab combined with plaque brachytherapy reduces melanoma tumor volume and enhances resolution of exudative detachment

    Directory of Open Access Journals (Sweden)

    Houston SK

    2013-01-01

    Full Text Available Samuel K Houston,1 Nisha V Shah,1 Christina Decatur,1 Marcela Lonngi,1 William Feuer,1 Arnold M Markoe,2 Timothy G Murray1–31Department of Ophthalmology, 2Department of Radiation Oncology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, 3Murray Ocular Oncology and Retina, Miami, FL, USABackground: The purpose of this study was to evaluate intravitreal bevacizumab as an adjuvant treatment to plaque brachytherapy in the treatment of choroidal melanoma.Methods: This was a retrospective, consecutive study of 124 patients treated from 2007 to 2009 for choroidal melanoma with plaque brachytherapy. Patients were treated with I-125 plaque brachytherapy with 2 mm margins and 85 Gy to the tumor apex. Consecutive patients were injected intravitreally with 2.5 mg/0.1 mL bevacizumab at a site away from the primary tumor and immediately following plaque removal. Choroidal melanomas were observed using indirect ophthalmoscopy, wide-angle photography, and ultrasound. The main outcome measures were tumor volume, resolution of exudative retinal detachment, and visual acuity.Results: One hundred and twenty-four patients met our inclusion criteria and were included in the analysis. The mean patient age was 65.7 years, and the mean apical tumor height was 4.0 ± 2.7 mm and basal diameter was 12.7 ± 3.0 mm. Mean follow-up was 24 months. Prior to treatment, 100% of tumors had exudative retinal detachment, and pretreatment visual acuity was 20/55 (median 20/40. Tumor control was 100%, metastasis was 0% at last follow-up, and 89.8% had complete resolution of exudative retinal detachment, with a mean time to resolution of 3.36 months. At one month, 43% had complete resolution of exudative retinal detachment, which increased to 73% at 4 months. Visual acuity was 20/62 (median 20/40 at 4 months, with stabilization to 20/57 (median 20/40 at 8 months, 20/56 (median 20/30 at 12 months, and 20/68 (median 20/50 at 24 months. Tumor

  4. Development of computerized dose planning system and applicator for high dose rate remote afterloading irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Choi, T. J. [Keimyung Univ., Taegu (Korea); Kim, S. W. [Fatima Hospital, Taegu (Korea); Kim, O. B.; Lee, H. J.; Won, C. H. [Keimyung Univ., Taegu (Korea); Yoon, S. M. [Dong-a Univ., Pusan (Korea)

    2000-04-01

    To design and fabricate of the high dose rate source and applicators which are tandem, ovoids and colpostat for OB/Gyn brachytherapy includes the computerized dose planning system. Designed the high dose rate Ir-192 source with nuclide atomic power irradiation and investigated the dose characteristics of fabricated brachysource. We performed the effect of self-absorption and determining the gamma constant and output factor and determined the apparent activity of designed source. he automated computer planning system provided the 2D distribution and 3D includes analysis programs. Created the high dose rate source Ir-192, 10 Ci(370GBq). The effective attenuation factor from the self-absorption and source wall was examined to 0.55 of the activity of bare source and this factor is useful for determination of the apparent activity and gamma constant 4.69 Rcm{sup 2}/mCi-hr. Fabricated the colpostat was investigated the dose distributions of frontal, axial and sagittal plane in intra-cavitary radiation therapy for cervical cancer. The reduce dose at bladder and rectum area was found about 20 % of original dose. The computerized brachytherapy planning system provides the 2-dimensional isodose and 3-D include the dose-volume histogram(DVH) with graphic-user-interface mode. emoted afterloading device was built for experiment of created Ir-192 source with film dosimetry within {+-}1 mm discrepancy. 34 refs., 25 figs., 11 tabs. (Author)

  5. Brachytherapy applications and techniques

    CERN Document Server

    Devlin, Phillip M

    2015-01-01

    Written by the foremost experts in the field, this volume is a comprehensive text and practical reference on contemporary brachytherapy. The book provides detailed, site-specific information on applications and techniques of brachytherapy in the head and neck, central nervous system, breast, thorax, gastrointestinal tract, and genitourinary tract, as well as on gynecologic brachytherapy, low dose rate and high dose rate sarcoma brachytherapy, vascular brachytherapy, and pediatric applications. The book thoroughly describes and compares the four major techniques used in brachytherapy-intraca

  6. High-dose-rate prostate brachytherapy inverse planning on dose-volume criteria by simulated annealing

    Science.gov (United States)

    Deist, T. M.; Gorissen, B. L.

    2016-02-01

    High-dose-rate brachytherapy is a tumor treatment method where a highly radioactive source is brought in close proximity to the tumor. In this paper we develop a simulated annealing algorithm to optimize the dwell times at preselected dwell positions to maximize tumor coverage under dose-volume constraints on the organs at risk. Compared to existing algorithms, our algorithm has advantages in terms of speed and objective value and does not require an expensive general purpose solver. Its success mainly depends on exploiting the efficiency of matrix multiplication and a careful selection of the neighboring states. In this paper we outline its details and make an in-depth comparison with existing methods using real patient data.

  7. High-dose-rate prostate brachytherapy inverse planning on dose-volume criteria by simulated annealing.

    Science.gov (United States)

    Deist, T M; Gorissen, B L

    2016-02-01

    High-dose-rate brachytherapy is a tumor treatment method where a highly radioactive source is brought in close proximity to the tumor. In this paper we develop a simulated annealing algorithm to optimize the dwell times at preselected dwell positions to maximize tumor coverage under dose-volume constraints on the organs at risk. Compared to existing algorithms, our algorithm has advantages in terms of speed and objective value and does not require an expensive general purpose solver. Its success mainly depends on exploiting the efficiency of matrix multiplication and a careful selection of the neighboring states. In this paper we outline its details and make an in-depth comparison with existing methods using real patient data. PMID:26760757

  8. Preimplant factors affecting postimplant CT-determined prostate volume and the CT/TRUS volume ratio after transperineal interstitial prostate brachytherapy with 125I free seeds

    International Nuclear Information System (INIS)

    The aim was to identify preimplant factors affecting postimplant prostate volume and the increase in prostate volume after transperineal interstitial prostate brachytherapy with 125I free seeds. We reviewed the records of 180 patients who underwent prostate brachytherapy with 125I free seeds for clinical T1/T2 prostate cancer. Eighty-one (45%) of the 180 patients underwent neoadjuvant hormonal therapy. No patient received supplemental external beam radiotherapy. Postimplant computed tomography was undertaken, and postimplant dosimetric analysis was performed. Univariate and multivariate analyses were performed to identify preimplant factors affecting postimplant prostate volume by computed tomography and the increase in prostate volume after implantation. Preimplant prostate volume by transrectal ultrasound, serum prostate-specific antigen, number of needles, and number of seeds implanted were significantly correlated with postimplant prostate volume by computed tomography. The increase in prostate volume after implantation was significantly higher in patients with neoadjuvant hormonal therapy than in those without. Preimplant prostate volume by transrectal ultrasound, number of needles, and number of seeds implanted were significantly correlated with the increase in prostate volume after implantation. Stepwise multiple linear regression analysis showed that preimplant prostate volume by transrectal ultrasound and neoadjuvant hormonal therapy were significant independent factors affecting both postimplant prostate volume by computed tomography and the increase in prostate volume after implantation. The results of the present study show that preimplant prostate volume by transrectal ultrasound and neoadjuvant hormonal therapy are significant preimplant factors affecting both postimplant prostate volume by computed tomography and the increase in prostate volume after implantation

  9. Brachytherapy: Physical and clinical aspects

    International Nuclear Information System (INIS)

    Brachytherapy is a term used to describe the short distance treatment of cancer with radiation from small, encapsulated radionuclide sources. This type of treatment is given by placing sources directly into or near the volume to be treated. The dose is then delivered continuously, either over a short period of time (temporary implants) or over the lifetime of the source to a complete decay (permanent implants). Most common brachytherapy sources emit photons; however, in a few specialized situations b or neutron emitting sources are used. There are two main types of brachytherapy treatment: 1) Intracavitary, in which the sources are placed in body cavities close to the tumour volume; 2) Interstitial, in which the sources are implanted within the tumour volume. Intracavitary treatments are always temporary, of short duration, while interstitial treatments may be temporary or permanent. Temporary implants are inserted using either manual or remote afterloading procedures. Other, less common forms of brachytherapy treatments include surface plaque, intraluminal, intraoperative and intravascular source applications; for these treatments either g or b emitting sources are used. The physical advantage of brachytherapy treatments compared with external beam radiotherapy is the improved localized delivery of dose to the target volume of interest. The disadvantage is that brachytherapy can only be used in cases in which the tumour is well localized and relatively small. In a typical radiotherapy department about 10-20% of all radiotherapy patients are treated with brachytherapy. Several aspects must be considered when giving brachytherapy treatments. Of importance is the way in which the sources are positioned relative to the volume to be treated, and several different models have been developed over the past decades for this purpose. The advantage of using a well established model is that one benefits from the long experience associated with such models and that one can

  10. Brachytherapy- past, present and future

    International Nuclear Information System (INIS)

    Discovery of radioactivity by Henry Becquerel and radium by Madame and Pierre Curie was probably the greatest event of 19th century in the field of medical science. Radium was used for brachytherapy as early as 1901. Today almost every organ is amenable to brachytherapy procedure. High dose rate remote afterloading systems have increased the patients comfort and complete radiation protection to the staff during treatment. Computers have not only improved the precision of treatment but also made 3 D conformal brachytherapy possible. As the goal of cancer management is changing from just life preservation to organ and function preservation without compromising cure rate, the role of brachytherapy is becoming more and more prominent. Intensive efforts will be needed to meet with the future challenges. (author). 13 refs

  11. High dose rate brachytherapy for prostate cancer. The first report

    Energy Technology Data Exchange (ETDEWEB)

    Kitano, Masashi; Nishiguchi, Iku; Isobe, Yoshinori; Irie, Akira; Egawa, Shin; Hayakawa, Kazushige [Kitasato Univ., Sagamihara, Kanagawa (Japan). School of Medicine

    2001-09-01

    Iridium-192 high-dose-rate (HDR) brachytherapy may improve local control because of more outstanding dose distribution than external beam radiotherapy in patients with prostate cancer. We report the experience of HDR-brachytherapy for prostate cancer. Between June 1999 and August 2000, forty-five patients with carcinoma of the prostate were treated by using HDR-brachytherapy followed by external beam radiotherapy at Kitasato University East Hospital. T1, 2, 3, T4 and unknown tumors were found in 14, 19, 10, 1 and 1 cases respectively. Using a perineal template, eighteen afterloading needles were inserted to the prostate and seminal vesicle. Then a CT scan was performed to ensure the relationship between needles and the prostate. Treatment volume was defined at 5 mm outside of the capsule of the prostate. Dose prescription was 4 Gy per fraction, and total dose was 20 Gy/5 fractions/3 days. External beam conformal irradiation was then given to the prostate and seminal vesicle to a dose of 30 Gy/10 fractions in two weeks. The median follow-up time was 6.6 months (range, 1.5-14.4 months). Treatment in all patients could be accomplished. No patient experienced acute side-effects of grade 3 or higher. One patient developed a late intestinal side-effect of grade 3. In our institution, because the tips of afterloading needles were inserted through the prostate into the lumen of the bladder, good dose distribution was obtained. It is suggested that this treatment was effective to decrease PSA value and can be safely performed even in old patients. (author)

  12. The Efficacy of Neoadjuvant Androgen Deprivation Therapy as a Prostate Volume Reduction before Brachytherapy for Clinically Localized Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Miki,Kenta

    2007-12-01

    Full Text Available From September 2003 to December 2005, 188 patients who visited our hospital and allied institutions for the purpose of prostate brachytherapy were administrated hormonal therapy for volume reductions before brachytherapy. The pretreatment and posttreatment of prostate volume using a transrectal ultrasound volumetric study and the types and duration of hormonal therapy were analyzed. We administered 91 patients with Luteinizing hormone-releasing hormone (LH-RH agonist, 49 patients with anti-androgen (bicaltamide/flutamide, and 48 patients with maximum androgen blockade (MAB. The duration of the hormonal therapy was 1-3 months for 49 patients, 4-6 months for 59 patients, 7-9 months for 40 patients, 10-12 months for 32 patients, and over 13 months for 8 patients. Before the initiation of hormonal therapy, the mean prostate volume was 35.12 ml (11.04-78.71 ml, and the average of prostate volume before and after hormonal therapy was 36.79 ml and 24.79 ml, respectively (a 32.4% reduction. The prostate volume reduction rate was 32.0% for the LH-RH agonist only, 18.1% for the anti-androgen only and 41.2% for the MAB. No statistically significant difference was observed for the duration of hormonal therapy between 3 groups. A three-month course of the neoadjuvant LH-RH agonist indicated a sufficient volume reduction effectiveness for a large prostate volume.

  13. Narrow safety range of intraoperative rectal irradiation exposure volume for avoiding bleeding after seed implant brachytherapy

    International Nuclear Information System (INIS)

    Rectal toxicity is less common after 125I seed implant brachytherapy for prostate cancer, and intraoperative rectal dose-volume constraints (the constraint) is still undetermined in pioneering studies. As our constraint failed to prevent grade 2 or 3 rectal bleeding (bled-pts) in 5.1% of patients, we retrospectively explored another constraint for the prevention of rectal bleeding. The study population consisted of 197 patients treated with the brachytherapy as monotherapy using real-time intraoperative transrectal ultrasound (US)-guided treatment at a prescribed dose of 145 Gy. Post-implant dosimetry was performed on Day 1 and Day 30 after implantation using computed tomography (CT) imaging. Rectal bleeding toxicity was classified by CTC-AE ver. 3.0 during a mean 29-month (range, 12-48 months) period after implantation. The differences in rV100s were compared among intraoperative, Day 1 and Day 30 dosimetry, and between that of patients with grade 2 or 3 rectal bleeding (the bled-pts) and of the others (the spared-pts). All patients were divided into groups based on provisional rV100s that were increased stepwise in 0.1-cc increments from 0 to 1.0 cc. The difference in the ratios of the bled-pts to the spared-pts was tested by chi-square tests, and their odds ratios were calculated (bled-OR). All statistical analyses were performed by t-tests. The mean values of rV100us, rV100CT-1, and rV100CT-30 were 0.31 ± 0.43, 0.22 ± 0.36, and 0.59 ± 0.68 cc, respectively. These values temporarily decreased (p = 0.020) on Day 1 and increased (p = 0.000) on Day 30. There was no significant difference in rV100s between the bled-pts and spared-pts at any time of dosimetry. The maximum bled-OR was identified among patients with an rV100us value above 0.1 cc (p = 0.025; OR = 7.8; 95% CI, 1.4-145.8); an rV100CT-1 value above 0.3 cc (p = 0.014; OR = 16.2; 95% CI, 3.9-110.7), and an rV100CT-30 value above 0.5 cc (p = 0.019; OR = 6.3; 95% CI, 1.5-42.3). By retrospective analysis

  14. Assessment of dose-volume histograms in brachytherapy 3D high-rate; Evaluacion de los histogramas dosis volumen en braquiterapia de alta tasa 3D

    Energy Technology Data Exchange (ETDEWEB)

    Gomez Barrado, A.; Tripero Oter, J.; Sanchez Jimenez, E.; Sanchez-Reyes, A.

    2013-07-01

    The use of systems of treatment planning using 3D reconstruction algorithms are becoming more frequent in brachytherapy treatments. The implementation of these systems entails great qualitative and quantitative procedural changes in the way to evaluate the clinical dosimetry about the 2D classical systems. This paper describes the experience of our Centre in employment and prescription dose using histograms dose-volume in the treatment of brachytherapy of high rate. (Author)

  15. Evaluation of two intracavitary high-dose-rate brachytherapy devices for irradiating additional and irregularly shaped volumes of breast tissue

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Sharon M., E-mail: sharonlu@ucsd.edu [Department of Radiation Oncology and Center for Advanced Radiotherapy Technologies (CART), University of California, San Diego, La Jolla, CA (United States); Scanderbeg, Daniel J.; Barna, Patrick; Yashar, William; Yashar, Catheryn [Department of Radiation Oncology and Center for Advanced Radiotherapy Technologies (CART), University of California, San Diego, La Jolla, CA (United States)

    2012-04-01

    The SAVI and Contura breast brachytherapy applicators represent 2 recent advancements in brachytherapy technology that have expanded the number of women eligible for accelerated partial breast irradiation in the treatment of early-stage breast cancer. Early clinical experience with these 2 single-entry, multichannel high-dose-rate brachytherapy devices confirms their ease of use and dosimetric versatility. However, current clinical guidelines for SAVI and Contura brachytherapy may result in a smaller or less optimal volume of treated tissue compared with traditional interstitial brachytherapy. This study evaluates the feasibility of using the SAVI and Contura to irradiate larger and irregularly shaped target volumes, approaching what is treatable with the interstitial technique. To investigate whether additional tissue can be treated, 17 patients treated with the SAVI and 3 with the Contura were selected. For each patient, the planning target volume (PTV) was modified to extend 1.1 cm, 1.3 cm, and 1.5 cm beyond the tumor bed cavity. To evaluate dose conformance to an irregularly shaped target volume, 9 patients treated with the SAVI and 3 with the Contura were selected from the original 20 patients. The following asymmetric PTV margin combinations were assessed for each patient: 1.5/0.3, 1.3/0.3, and 1.1/0.3 cm. For all patients, treatment planning was performed, adopting the National Surgical Adjuvant Breast and Bowel Project guidelines, and dosimetric comparisons were made. The 6-1 and 8-1 SAVI devices can theoretically treat a maximal tissue margin of 1.5 cm and an asymmetric PTV with margins ranging from 0.3 to 1.5 cm. The 10-1 SAVI and Contura can treat a maximal margin of 1.3 cm and 1.1 cm, respectively, and asymmetric PTV with margins ranging from 0.3-1.3 cm. Compared with the Contura, the SAVI demonstrated greater dosimetric flexibility. Risk of developing excessive hot spots increased with the size of the SAVI device. Both the SAVI and Contura appear

  16. Calibration of 192Ir high-dose-rate afterloading systems

    International Nuclear Information System (INIS)

    A method is described for calibration of 192Ir high-dose-rate (HDR) brachytherapy afterloading systems. Since NIST does not offer calibration of ionization chambers with the gamma-ray spectrum of iridium-192, an interpolation procedure is employed, using calibrations above (137Cs, 662 keV) and below (250 kVcp, 146-keV x rays) the exposure-weighted average 192Ir energy of 397 keV. The same total wall + cap thickness must be used for both calibrations, and for the 192Ir measurements. A wall + cap thickness of 0.3 g/cm2 is recommended to assure charged particle equilibrium and to exclude secondary electrons emitted from the source encapsulation. Procedures are described for determining the corrections for source-chamber distance and room scatter during the source calibration in inverse-square-law geometry. A new well-type ionization chamber has been designed specifically for convenient routine use with the HDR afterloading system. It can be calibrated by means of a previously calibrated 192Ir source, and offers a simple means for verifying the decay rate and for calibrating 192Ir replacement sources

  17. Pulsed low dose rate brachytherapy for pelvic malignancies

    International Nuclear Information System (INIS)

    Purpose: The pulsed low dose rate remote afterloading unit was designed to combine the radiation safety and isodose optimization advantages of high dose rate technology with the radiobiologic advantages of continuous low dose rate brachytherapy. This is the first report of a prospective clinical trial evaluating the relative incidence of acute toxicity and local control in patients with pelvic malignancies who underwent interstitial or intracavitary brachytherapy with the pulsed low dose rate remote afterloader. Methods and Materials: From 5/11/92-6/21/95, 65 patients underwent 77 brachytherapy procedures as part of their treatment regimen for pelvic malignancies. Using the pulsed low dose rate Selectron, equipped with a single cable-driven 0.3-1.0 Ci Ir192 source, target volume doses of 0.40-0.85 Gy per pulse were prescribed to deliver the clinically determined dose. Forty-five intracavitary and 32 interstitial procedures were performed. Fifty-four patients had primary and 11 recurrent disease. Patients were followed closely to assess incidence of Grade 3-5 acute and delayed toxicity, local control, and survival. Results: With a median follow-up of 16.1 months (range 1-29), 33 patients are NED, 10 alive with disease, 13 dead with disease, 4 dead of intercurrent disease, and 5 lost to follow-up. Local control was maintained until last follow-up or death in 48 cases, local failure occurred in 11, unknown in 5. Grade 3-5 acute toxicities (requiring medical or surgical intervention) occurred in 5 out of 77 procedures (6.5%), delayed complications in 10 patients (15% actuarial incidence at 2 years). In the 52 procedures performed for 42 patients with cervix cancer, the acute toxicity incidence was 5.8%, with a 14% 2-year actuarial incidence of delayed complications. Of 32 interstitial templates performed on 30 patients for pelvic malignancies, there were three incidences of acute toxicity and five delayed toxicities. Conclusion: Using the parameters described for this

  18. An assessment of the radiological impact of brachytherapy application in Metro Manila hospitals

    International Nuclear Information System (INIS)

    One of the most important uses of radioactive sources in medicine is the application of brachytherapy technology. Brachytherapy is a method of radiation therapy where an encapsulated radioactive source delivers gamma or beta radiation into a tumor site. The paper describes different categories of brachytherapy applications involving manual insertion or afterloading and remote afterloading techniques. A list of five hospitals in Metro Manila practicing different techniques of brachytherapy are enumerated. Because of the widespread uses of radioactive sources in brachytherapy technology in medicine, inadequate control in its use had led to a number of incidents resulting to unnecessary exposure of radiation workers, patients and general public. This study was initiated to determine the radilogical hazards involved in brachytherapy applications. It presents contingency scenarios and their projected radiological consequences. (author). 7 refs., 2 tabs

  19. Asymmetric dose–volume optimization with smoothness control for rotating-shield brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yunlong [Department of Electrical and Computer Engineering, University of Iowa, 4016 Seamans Center, Iowa City, Iowa 52242 (United States); Flynn, Ryan T.; Kim, Yusung [Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 (United States); Wu, Xiaodong, E-mail: xiaodong-wu@uiowa.edu [Department of Electrical and Computer Engineering, University of Iowa, 4016 Seamans Center, Iowa City, Iowa 52242 and Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 (United States)

    2014-11-01

    Purpose: It is important to reduce fluence map complexity in rotating-shield brachytherapy (RSBT) inverse planning to improve delivery efficiency while maintaining plan quality. This study proposes an efficient and effective RSBT dose optimization method which enables to produce smooth fluence maps. Methods: Five cervical cancer patients each with a high-risk clinical-target-volume (HR-CTV) larger than 40 cm{sup 3} were considered as the test cases. The RSBT source was a partially shielded electronic brachytherapy source (Xoft Axxent™). The anchor RSBT plans generated by the asymmetric dose–volume optimization with smoothness control (ADOS) method were compared against those produced by the dose–surface optimization (DSO) method and inverse-planning with simulated annealing (IPSA). Either L{sub 1}-norm or L{sub 2}-norm was used to measure the smoothness of a fluence map in the proposed ADOS method as one weighted term of the objective function. Uniform dwell-time scaling was applied to all plans such that HR-CTV D{sub 90} was maximized without violating the D{sub 2cc} tolerances of the rectum, bladder, and sigmoid colon. The quality of the anchor plans was measured with HR-CTV D{sub 90} of the anchor plans. Single-shielded RSBT [(S-RSBT), RSBT with single, fix sized delivery window] and dynamic-sheilded RSBT [(D-RSBT), RSBT with dynamically varying sized delivery window] delivery plans generated based on the anchor plans were also measured, with delivery time constraints of 10, 20, and 30 min/fraction (fx). Results: The average HR-CTV D{sub 90} values of the anchor plans achieved by the ADOS, DSO, and IPSA methods were 111.5, 94.2, and 107.4 Gy, respectively, where the weighting parameter β used in ADOS with L{sub 2}-norm was set to be 100. By using S-RSBT sequencing and 20 min/fx delivery time, the corresponding D{sub 90} values were 88.8, 81.9, and 83.4 Gy; while using D-RSBT sequencing with 20 min/fx delivery time, the corresponding D{sub 90} values were

  20. Fast 3D 192Ir-afterloading quality assurance a new general dosimetric concept applying tissue substituting scintillators

    International Nuclear Information System (INIS)

    Problems of brachytherapy: The steep dose gradient demands high precision in dosimetry, localization, planning and quality assurance. 192Ir-Dosimetry: The broad, depth dependent, low energy photon spectrum, requires dosemeter probes with a wide linear range and high spatial resolution, being independent of energy, incidence and temperature, to overcome the disadvantages of common detectors. Tissue substituting plastic scintillators are optimal for brachytherapy dosimetry. Tiny (1-10 mm3) NE 102A detectors, connected by thin multi-fibre plastic light guides (Cerenkov compensated) to photo-multiplier tubes (PMTs) of high sensitivity and stability allow fast measurements of all basic absorbed dose data within ≤2% precision up to 10 cm depth with high spatial resolution. Afterloading quality assurance: Multi-detector arrays and multi-channel PMTs, open new possibilities of fast 3D-quality assurance by simultaneous measurement at many points. In tissue equivalent phantoms this allows fast systematic checks of stepping source hard-and software, as well as individual dosimetric treatment planning, optimization, simulation, and verification. Afterloading dose monitor: Integrated into the applicator, the really delivered distribution of absorbed dose to water is monitored directly during stepping source afterloading brachytherapy with high spatial (≤0.1 mm) or temporal resolution (≤0.1 s). It indicates errors of planning or application, of step position or step size, of dwell time or travel time. In combination with on-line 3D treatment planning the distribution of dose really delivered can be visualized. Verification: The tiny plastic scintillator array is the ideal probe for192 Ir-afterloading in-vivo dosimetry, also in IORT. Conclusion: Plastic scintillation dosimetry enables versatile and fast 3D-quality assurance of 192Ir-afterloading with high precision

  1. BEDVH--A method for evaluating biologically effective dose volume histograms: Application to eye plaque brachytherapy implants

    Energy Technology Data Exchange (ETDEWEB)

    Gagne, Nolan L.; Leonard, Kara L.; Huber, Kathryn E.; Mignano, John E.; Duker, Jay S.; Laver, Nora V.; Rivard, Mark J. [Department of Radiation Oncology, Tufts University School of Medicine, Boston, Massachusetts 02111 (United States); Department of Ophthalmology, Tufts University School of Medicine, Boston, Massachusetts 02111 (United States); Departments of Ophthalmology and Pathology, Tufts University School of Medicine, Boston, Massachusetts 02111 (United States); Department of Radiation Oncology, Tufts University School of Medicine, Boston, Massachusetts 02111 (United States)

    2012-02-15

    Purpose: A method is introduced to examine the influence of implant duration T, radionuclide, and radiobiological parameters on the biologically effective dose (BED) throughout the entire volume of regions of interest for episcleral brachytherapy using available radionuclides. This method is employed to evaluate a particular eye plaque brachytherapy implant in a radiobiological context. Methods: A reference eye geometry and 16 mm COMS eye plaque loaded with {sup 103}Pd, {sup 125}I, or {sup 131}Cs sources were examined with dose distributions accounting for plaque heterogeneities. For a standardized 7 day implant, doses to 90% of the tumor volume ( {sub TUMOR}D{sub 90}) and 10% of the organ at risk volumes ( {sub OAR}D{sub 10}) were calculated. The BED equation from Dale and Jones and published {alpha}/{beta} and {mu} parameters were incorporated with dose volume histograms (DVHs) for various T values such as T = 7 days (i.e., {sub TUMOR} {sup 7}BED{sub 10} and {sub OAR} {sup 7}BED{sub 10}). By calculating BED throughout the volumes, biologically effective dose volume histograms (BEDVHs) were developed for tumor and OARs. Influence of T, radionuclide choice, and radiobiological parameters on {sub TUMOR}BEDVH and {sub OAR}BEDVH were examined. The nominal dose was scaled for shorter implants to achieve biological equivalence. Results: {sub TUMOR}D{sub 90} values were 102, 112, and 110 Gy for {sup 103}Pd, {sup 125}I, and {sup 131}Cs, respectively. Corresponding {sub TUMOR} {sup 7}BED{sub 10} values were 124, 140, and 138 Gy, respectively. As T decreased from 7 to 0.01 days, the isobiologically effective prescription dose decreased by a factor of three. As expected, {sub TUMOR} {sup 7}BEDVH did not significantly change as a function of radionuclide half-life but varied by 10% due to radionuclide dose distribution. Variations in reported radiobiological parameters caused {sub TUMOR} {sup 7}BED{sub 10} to deviate by up to 46%. Over the range of {sub OAR

  2. Citron - the first indigenous remote afterloading intracavitary brachytherapy unit

    International Nuclear Information System (INIS)

    In keeping with its tradition of pioneering cancer patient cure and care, the Cancer Institute embarked on a project funded by DAE in 1994 to develop an economical import substitute. The prototype unit named CITRON promises to be a suitable import substitute satisfying a long standing need in the country

  3. Procedures for calibration of brachytherapy sources

    International Nuclear Information System (INIS)

    Brachytherapy source strength verification is a responsibility of the user of these source, in fact of the Medical Physicists in charge of this issue in a Radiotherapy Service. The calibration procedures in the users conditions are shown. Specifics methods for source strength determination are recommended, both for High Dose Rate (HDR) sources with Remote Afterloading equipment and for Low Dose Rate sources. The The results of the calibration of HDR Remote After loaders are indicated

  4. SU-E-T-546: Use of Implant Volume for Quality Assurance of Low Dose Rate Brachytherapy Treatment Plans

    Energy Technology Data Exchange (ETDEWEB)

    Wilkinson, D; Kolar, M [Radiation Oncology, Cleveland Clinic Foundation, Cleveland, OH (United States)

    2014-06-01

    Purpose: To analyze the application of volume implant (V100) data as a method for a global check of low dose rate (LDR) brachytherapy plans. Methods: Treatment plans for 335 consecutive patients undergoing permanent seed implants for prostate cancer and for 113 patients treated with plaque therapy for ocular melanoma were analyzed. Plaques used were 54 COMS (10 to 20 mm, notched and regular) and 59 Eye Physics EP917s with variable loading. Plots of treatment time x implanted activity per unit dose versus v100 ^.667 were made. V100 values were obtained using dose volume histograms calculated by the treatment planning systems (Variseed 8.02 and Plaque Simulator 5.4). Four different physicists were involved in planning the prostate seed cases; two physicists for the eye plaques. Results: Since the time and dose for the prostate cases did not vary, a plot of implanted activity vs V100 ^.667 was made. A linear fit with no intercept had an r{sup 2} = 0.978; more than 94% of the actual activities fell within 5% of the activities calculated from the linear fit. The greatest deviations were in cases where the implant volumes were large (> 100 cc). Both COMS and EP917 plaque linear fits were good (r{sup 2} = .967 and .957); the largest deviations were seen for large volumes. Conclusions: The method outlined here is effective for checking planning consistency and quality assurance of two types of LDR brachytherapy treatment plans (temporary and permanent). A spreadsheet for the calculations enables a quick check of the plan in situations were time is short (e.g. OR-based prostate planning)

  5. A comparison of organs at risk doses in GYN intracavitary brachytherapy for different tandem lengths and bladder volumes.

    Science.gov (United States)

    Siavashpour, Zahra; Aghamiri, Mahmoud Reza; Jaberi, Ramin; ZareAkha, Naser; Dehghan Manshadi, Hamid Reza; Kirisits, Christian; Sedaghat, Mahbod

    2016-01-01

    The purpose of this study was to investigate the concurrent effects of tandem length and bladder volume on dose to pelvic organs at risk (OARs) in HDR intracavitary brachytherapy treatment of cervical cancer. Twenty patients with locally advanced cervical cancer were selected for brachytherapy using Rotterdam applicators. The patients were CT scanned twice with empty and full bladder. Two treatment plans were prepared on each of the image sets. Patients were categorized into two groups; those treated with a tandem length of 4 cm or smaller (T ≤ 4 cm) and those with tandem length larger than 4 cm (T > 4 cm). Only one tandem tip angle of 30° was studied. Dose-volume histograms (DVHs) of OARs were calculated and compared. Bladder dose was significantly affected by both bladder volume and tandem physical length for T ≤ 4 cm. This was reflected on the values obtained for D2cm³, D1cm³, and D0.1cm³ for both empty and full bladder cases. When T > 4 cm, no correlation could be established between variations in bladder dose and blad-der volume. Rectum dose was generally lower when the bladder was empty and T > 4 cm. Dose to sigmoid was increased when T > 4 cm; this increase was larger when the bladder was full. Our results suggest that, for tandems longer than 4 cm, keeping the bladder empty may reduce the dose to rectum and sigmoid. This is contrary to cases where a shorter than 4 cm tandem is used in which a full bladder (about 50-120 cm³) tends to result in a lower dose to rectum and sigmoid. Attention should be given to doses to sigmoid with long tandem lengths, as a larger tandem generally results in a larger dose to sigmoid. PMID:27167253

  6. SU-E-T-546: Use of Implant Volume for Quality Assurance of Low Dose Rate Brachytherapy Treatment Plans

    International Nuclear Information System (INIS)

    Purpose: To analyze the application of volume implant (V100) data as a method for a global check of low dose rate (LDR) brachytherapy plans. Methods: Treatment plans for 335 consecutive patients undergoing permanent seed implants for prostate cancer and for 113 patients treated with plaque therapy for ocular melanoma were analyzed. Plaques used were 54 COMS (10 to 20 mm, notched and regular) and 59 Eye Physics EP917s with variable loading. Plots of treatment time x implanted activity per unit dose versus v100 ^.667 were made. V100 values were obtained using dose volume histograms calculated by the treatment planning systems (Variseed 8.02 and Plaque Simulator 5.4). Four different physicists were involved in planning the prostate seed cases; two physicists for the eye plaques. Results: Since the time and dose for the prostate cases did not vary, a plot of implanted activity vs V100 ^.667 was made. A linear fit with no intercept had an r2 = 0.978; more than 94% of the actual activities fell within 5% of the activities calculated from the linear fit. The greatest deviations were in cases where the implant volumes were large (> 100 cc). Both COMS and EP917 plaque linear fits were good (r2 = .967 and .957); the largest deviations were seen for large volumes. Conclusions: The method outlined here is effective for checking planning consistency and quality assurance of two types of LDR brachytherapy treatment plans (temporary and permanent). A spreadsheet for the calculations enables a quick check of the plan in situations were time is short (e.g. OR-based prostate planning)

  7. Time, dose and volume factors in interstitial brachytherapy combined with external irradiation for oral tongue carcinoma

    International Nuclear Information System (INIS)

    This is a retrospective analysis of 136 patients with squamous cell carcinoma of stages I and II of the oral tongue who were treated with interstitial brachytherapy alone or in combination with external irradiation between 1976 and 1991. Control of the primary lesion and the occurrence of late complications were analyzed with respect to dose, time and tumor size with the Cox hazard model. The 5-year survival rates for stages I and II were 84.5% and 75.6%. The 5-year primary control rate was 91.3% for stage I and 77.3% for stage II (p50 Gy compared with a brachytherapy dose 30 mm. Late complications should be reduced by using a spacer, improvements in dental and oral hygiene, and a sophisticated implant method. (author)

  8. Brachytherapy in the conservative treatment of soft tissue sarcomas extending to neurovascular structures: an analysis of 38 cases

    International Nuclear Information System (INIS)

    To evaluate the tolerance of neurovascular structures to brachytherapy, a retrospective review of our series was undertaken. Between May 1986 and January 1994, 85 patients with soft tissue sarcomas underwent conservative surgery and low-dose rate interstitial irradiation. Thirty-eight patients had tumors extending to neurovascular structures. Brachytherapy was part of initial treatment in 30 patients and was done in 7 cases for recurrent sarcomas. Afterloading catethers for brachytherapy were inserted intraoperatively and placed direct upon or under the neurovascular structures in the tumor bed. A mean dose of 20 Gy was delivered to the target volume. Thirty patients received 45 to 50 Gy of postoperative external irradiation. With a median follow-up of 39 months, the 3-year actuarial survival was 82.9%, the 3-year disease-free survival was 71.9% and the 3-year actuarial local control was 91%. The 3-year actuarial incidence of distant metastase was 28%. Acute side effects occurred in 12 patients requiring conservative surgical procedures in 6 cases. Significant late toxicity occurred in 8 patients : 2 lymphoedemas interfering with normal activity, 1 partial artery stenosis, 5 peripheral neuropathy (2 grade 2, 3 grade 3). Late toxicity has led to significant impairment of mobility in 4 patients. Limb preservation was achieved in every patient, no amputation was required. We conclude that integration of brachytherapy in the conservative treatment of soft tissue sarcomas extending to neurovascular structures can provide excellent local control with an acceptable level of toxicity

  9. Uncertainties of target volume delineation in MRI guided adaptive brachytherapy of cervix cancer: A multi-institutional study

    International Nuclear Information System (INIS)

    Background and aim: We aimed to quantify target volume delineation uncertainties in cervix cancer image guided adaptive brachytherapy (IGABT). Materials and methods: Ten radiation oncologists delineated gross tumour volume (GTV), high- and intermediate-risk clinical target volume (HR CTV, IR CTV) in six patients. Their contours were compared with two reference delineations (STAPLE-Simultaneous Truth and Performance Level Estimation and EC- expert consensus) by calculating volumetric and planar conformity index (VCI and PCI) and inter-delineation distances (IDD). Results: VCISTAPLE and VCIEC were 0.76 and 0.72 for HR CTV, 0.77 and 0.68 for IR CTV and 0.59 and 0.58 for GTV. Variation was most prominent caudally and cranially in all target volumes and posterolaterally in IR CTV. IDDSTAPLE and IDDEC for HR CTV (3.6 ± 3.5 and 3.8 ± 3.4 mm) were significantly lower than for GTV (4.8 ± 4.2 and 4.2 ± 3.5 mm) and IR CTV (4.7 ± 5.2 and 5.2 ± 5.6 mm) (p < 0.05). Conclusions: Due to lower delineation uncertainties when compared to GTV and IR CTV, HR CTV may be considered most robust volume for dose prescription and optimization in cervix cancer IGABT. Adequate imaging, training and use of contouring recommendations are main strategies to minimize delineation uncertainties

  10. Apparent diffusion coefficients in GEC ESTRO target volumes for image guided adaptive brachytherapy of locally advanced cervical cancer

    Energy Technology Data Exchange (ETDEWEB)

    Haack, Soeren (Dept. of Clinical Engineering, Aarhus Univ. Hospital (Denmark)), E-mail: Soeren.haack@stab.rm.dk; Morre Pedersen, Erik (Dept. of Radiology, Aarhus Sygehus, Aarhus Univ. Hospital (Denmark)); Jespersen, Sune N. (Center of Functionally Integrative Neuroscience, Aarhus Univ. Hospital (Denmark)); Kallehauge, Jesper F. (Dept. of Medical Physics, Aarhus Univ. Hospital (Denmark)); Lindegaard, Jacob Christian; Tanderup, Kari (Dept. of Oncology Aarhus Univ. Hospital (Denmark))

    2010-10-15

    Background and purpose. T2 weighted MRI is recommended for image guided adaptive brachytherapy (IGABT) in cervical cancer. Diffusion weighted imaging (DWI) and the derived apparent diffusion coefficient (ADC) may add additional biological information on tumour cell density. The purpose of this study was to evaluate the distribution of the ADC within target volumes as recommended by GEC-ESTRO: Gross Tumour Volume at BT (GTVBT), High-Risk Clinical Tumour Volume (HR-CTV) and Intermediate-Risk Clinical Target Volume (IR-CTV) and to evaluate the change of diffusion between fractions of IGABT. Material and methods. Fifteen patients with locally advanced cervical cancer were examined by MRI before their first (BT1) and second (BT2) fraction of IGABT, resulting in a total of 30 MR examinations including both T2 weighted and DWI sequences. The Apparent Diffusion Coefficient (ADC) was calculated by use of three levels of b-values (0, 600, 1000 s/mm2). ADC maps were constructed and fused with the GEC ESTRO target contours. The mean ADC value within each target volume was calculated. Furthermore, volumes of low diffusion (ADClow) were defined based on an ADC threshold of 1.2 x 10-3 mm2/s, and overlap with target volumes was evaluated. Change of ADC level in target volumes and change of ADClow volume from BT1 to BT2 was also evaluated. Results. The mean ADC was significantly lower in GTVBT than in HR-CTV (p<0.001) which again was significantly lower than in IR-CTV (p<0.001). There was no significant change of the ADClow volume or ADC level within each target structure between BT1 and BT2 (p=0.242). All three GEC-ESTRO volumes contained volumes with low diffusion. The GTVBT contained 37.2% volume of low diffusion, HR-CTV 20.3% and IR-CTV 10.8%. Conclusion. With DWI we were able to find a significant difference in ADC-values for the three different GEC ESTRO targets. This supports the assumption that the target volumes used for dose prescription in IGABT contain tissues with

  11. CT based three dimensional dose-volume evaluations for high-dose rate intracavitary brachytherapy for cervical cancer

    Science.gov (United States)

    2014-01-01

    Background In this study, high risk clinical target volumes (HR-CTVs) according to GEC-ESTRO guideline were contoured retrospectively based on CT images taken at the time of high-dose rate intracavitary brachytherapy (HDR-ICBT) and correlation between clinical outcome and dose of HR-CTV were analyzed. Methods Our study population consists of 51 patients with cervical cancer (Stages IB-IVA) treated with 50 Gy external beam radiotherapy (EBRT) using central shield combined with 2–5 times of 6 Gy HDR-ICBT with or without weekly cisplatin. Dose calculation was based on Manchester system and prescribed dose of 6 Gy were delivered for point A. CT images taken at the time of each HDR-ICBT were reviewed and HR-CTVs were contoured. Doses were converted to the equivalent dose in 2 Gy (EQD2) by applying the linear quadratic model (α/β = 10 Gy). Results Three-year overall survival, Progression-free survival, and local control rate was 82.4%, 85.3% and 91.7%, respectively. Median cumulative dose of HR-CTV D90 was 65.0 Gy (52.7-101.7 Gy). Median length from tandem to the most lateral edge of HR-CTV at the first ICBT was 29.2 mm (range, 18.0-51.9 mm). On univariate analysis, both LCR and PFS was significantly favorable in those patients D90 for HR-CTV was 60 Gy or greater (p = 0.001 and 0.03, respectively). PFS was significantly favorable in those patients maximum length from tandem to edge of HR-CTV at first ICBT was shorter than 3.5 cm (p = 0.042). Conclusion Volume-dose showed a relationship to the clinical outcome in CT based brachytherapy for cervical carcinoma. PMID:24938757

  12. Inter fraction variations in rectum and bladder volumes and dose distributions during high dose rate brachytherapy treatment of the uterine cervix investigated by repetitive CT-examinations

    International Nuclear Information System (INIS)

    Purpose: To evaluate variation of dose to organs at risk for patients receiving fractionated high dose rate gynaecological brachytherapy by using CT-based 3D treatment planning and dose-volume histograms (DVH). Materials and methods: Fourteen patients with cancer of the uterine cervix underwent three to six CT examinations (mean 4.9) during their course of high-dose-rate brachytherapy using radiographically compatible applicators. The rectal and bladder walls were delineated and DVHs were calculated. Results: Inter fraction variation of the bladder volume (CVmean=44.1%) was significantly larger than the inter fraction variation of the mean dose (CVmean=19.9%, P=0.005) and the maximum dose (CVmean=17.5%, P=0.003) of the bladder wall. The same trend was seen for rectum, although the figures were not significantly different. Performing CT examinations at four of seven brachytherapy fractions reduced the uncertainty to 4 and 7% for the bladder and rectal doses, respectively. A linear regression analysis showed a significant, negative relationship between time after treatment start and the whole bladder volume (P=0.018), whereas no correlation was found for the rectum. For both rectum and bladder a linear regression analysis revealed a significant, negative relationship between the whole volume and median dose (P<0.05). Conclusion: Preferably a CT examination should be provided at every fraction. However, this is logistically unfeasible in most institutions. To obtain reliable DVHs the patients will in the future undergo 3-4 CT examinations during the course of brachytherapy at our institution. Since this study showed an association between large bladder volumes and dose reductions, the patients will be treated with a standardized bladder volume

  13. SU-E-T-634: Analysis of Volume Based GYN HDR Brachytherapy Plans for Dose Calculation to Organs At Risk(OAR)

    International Nuclear Information System (INIS)

    Purpose: We have analyzed the dose volume histogram of 140 CT based HDR brachytherapy plans and evaluated the dose received to OAR ; rectum, bladder and sigmoid colon based on recommendations from ICRU and Image guided brachytherapy working group for cervical cancer . Methods: Our treatment protocol consist of XRT to whole pelvis with 45 Gy at 1.8Gy/fraction followed by 30 Gy at 6 Gy per fraction by HDR brachytherapy in 2 weeks . The CT compatible tandem and ovoid applicators were used and stabilized with radio opaque packing material. The patient was stabilized using special re-locatable implant table and stirrups for reproducibility of the geometry during treatment. The CT scan images were taken at 3mm slice thickness and exported to the treatment planning computer. The OAR structures, bladder, rectum and sigmoid colon were outlined on the images along with the applicators. The prescription dose was targeted to A left and A right as defined in Manchester system and optimized on geometry . The dosimetry was compared on all plans using the parameter Ci.sec.cGy-1 . Using the Dose Volume Histogram (DVH) obtained from the plans the doses to rectum, sigmoid colon and bladder for ICRU defined points and 2cc volume were analyzed and reported. The following criteria were used for limiting the tolerance dose by volume (D2cc) were calculated. The rectum and sigmoid colon doses were limited to <75Gy. The bladder dose was limited to < 90Gy from both XRT and HDR brachytherapy. Results: The average total (XRT+HDRBT) BED values to prescription volume was 120 Gy. Dose 2cc to rectum was 70Gy +/− 17Gy, dose to 2cc bladder was 82+/−32 Gy. The average Ci.sec.cGy-1 calculated for the HDR plans was 6.99 +/− 0.5 Conclusion: The image based treatment planning enabled to evaluati volume based dose to critical structures for clinical interpretation

  14. SU-E-T-634: Analysis of Volume Based GYN HDR Brachytherapy Plans for Dose Calculation to Organs At Risk(OAR)

    Energy Technology Data Exchange (ETDEWEB)

    Nair, M; Li, C; White, M; Davis, J [Joe Arrington Cancer Center, Lubbock, TX (United States)

    2014-06-15

    Purpose: We have analyzed the dose volume histogram of 140 CT based HDR brachytherapy plans and evaluated the dose received to OAR ; rectum, bladder and sigmoid colon based on recommendations from ICRU and Image guided brachytherapy working group for cervical cancer . Methods: Our treatment protocol consist of XRT to whole pelvis with 45 Gy at 1.8Gy/fraction followed by 30 Gy at 6 Gy per fraction by HDR brachytherapy in 2 weeks . The CT compatible tandem and ovoid applicators were used and stabilized with radio opaque packing material. The patient was stabilized using special re-locatable implant table and stirrups for reproducibility of the geometry during treatment. The CT scan images were taken at 3mm slice thickness and exported to the treatment planning computer. The OAR structures, bladder, rectum and sigmoid colon were outlined on the images along with the applicators. The prescription dose was targeted to A left and A right as defined in Manchester system and optimized on geometry . The dosimetry was compared on all plans using the parameter Ci.sec.cGy-1 . Using the Dose Volume Histogram (DVH) obtained from the plans the doses to rectum, sigmoid colon and bladder for ICRU defined points and 2cc volume were analyzed and reported. The following criteria were used for limiting the tolerance dose by volume (D2cc) were calculated. The rectum and sigmoid colon doses were limited to <75Gy. The bladder dose was limited to < 90Gy from both XRT and HDR brachytherapy. Results: The average total (XRT+HDRBT) BED values to prescription volume was 120 Gy. Dose 2cc to rectum was 70Gy +/− 17Gy, dose to 2cc bladder was 82+/−32 Gy. The average Ci.sec.cGy-1 calculated for the HDR plans was 6.99 +/− 0.5 Conclusion: The image based treatment planning enabled to evaluati volume based dose to critical structures for clinical interpretation.

  15. Clinical impact of MRI assisted dose volume adaptation and dose escalation in brachytherapy of locally advanced cervix cancer

    International Nuclear Information System (INIS)

    Background: To investigate the clinical impact of MRI based cervix cancer brachytherapy combined with external beam radiochemotherapy applying dose volume adaptation and dose escalation in a consecutive group of patients with locally advanced cervix cancer. Methods: In the period 1998-2003, 145 patients with cervix cancer stages IB-IVA were treated with definitive radiotherapy +/- cisplatin chemotherapy. Median age was 60 years. In 67 patients, the tumour size was 2-5 cm, in 78 patients it was >5 cm. In 29 cases the standard intracavitary technique was combined with interstitial brachytherapy. Total prescribed dose was 80-85 Gy (total biologically equivalent dose in 2 Gy fractions). Since 2001, MRI based treatment planning integrated systematic concepts for High Risk Clinical Target Volume (HR CTV) and organs at risk (OAR), biological modelling, Dose-Volume-Histogram analysis, dose-volume-adaptation (D90, D 2 cm3), and dose escalation, if appropriate and feasible. Findings: Dose volume adaptation was performed in 130/145 patients. The mean D90 during the whole period was 86 Gy, with a mean D90 of 81 Gy and 90 Gy during the first and second period, respectively (p 5 cm it was 71% in 1998-2000 and 90% in 2001-2003 (p = 0.05). Progression free survival (PFS) for true pelvis (local control) was 85%, PFS for distant metastases was 80%, both at 3 years. Local control for tumours >5 cm was 64% in 1998-2000 and 82% in 2001-2003 (p = 0.09) and 100% and 96%, respectively, for tumours 2-5 cm. PFS for distant metastases remained the same during the two treatment periods with 79% and 80%. Overall survival (OS) was 58%, and cancer-specific survival (CSS) was 68% at 3 years. In the two different periods improvement in OS was from 53% to 64% (p = 0.03) and in CSS from 62% to 74% (p = 0.13). Improvement occurred only in tumours >5 cm: OS 28% versus 58% (p = 0.003); CSS 40% versus 62% (p = 0.07). Actuarial late morbidity rate (LENT SOMA, grades 3 and 4) at 3 years was

  16. Dosimetric coverage of the prostate, normal tissue sparing, and acute toxicity with high-dose-rate brachytherapy for large prostate volumes

    International Nuclear Information System (INIS)

    Purpose: to evaluate dosimetric coverage of the prostate, normal tissue sparing, and acute toxicity with HDR brachytherapy for large prostate volumes. Materials and methods: one hundred and two prostate cancer patients with prostate volumes >50 mL (range: 5-29 mL) were treated with high-dose-rate (HDR) brachytherapy ± intensity modulated radiation therapy (IMRT) to 4,500 cGy in 25 daily fractions between 2009 and 2013. HDR brachytherapy monotherapy doses consisted of two 1,350-1,400 cGy fractions separated by 2-3 weeks, and HDR brachytherapy boost doses consisted of two 950-1,150 cGy fractions separated by 4 weeks. Twelve of 32 (38%) unfavorable intermediate risk, high risk, and very high risk patients received androgen deprivation therapy. Acute toxicity was graded according to the Common Terminology Criteria for Adverse Events (CTCAE) version 4. Results: median follow-up was 14 months. Dosimetric goals were achieved in over 90% of cases. Three of 102 (3%) patients developed Grade 2 acute proctitis. No variables were significantly associated with Grade 2 acute proctitis. Seventeen of 102 (17%) patients developed Grade 2 acute urinary retention. American Urological Association (AUA) symptom score was the only variable significantly associated with Grade 2 acute urinary retention (p-0.04). There was no ≥ Grade 3 acute toxicity. Conclusions: dosimetric coverage of the prostate and normal tissue sparing were adequate in patients with prostate volumes >50 mL. Higher pre-treatment AUA symptom scores increased the relative risk of Grade 2 acute urinary retention. However, the overall incidence of acute toxicity was acceptable in patients with large prostate volumes. (author)

  17. Dosimetric coverage of the prostate, normal tissue sparing, and acute toxicity with high-dose-rate brachytherapy for large prostate volumes

    Energy Technology Data Exchange (ETDEWEB)

    Yang, George; Strom, Tobin J.; Shrinath, Kushagra; Mellon, Eric A.; Fernandez, Daniel C.; Biagioli, Matthew C. [Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL (United States); Wilder, Richard B., E-mail: mcbiagioli@yahoo.com [Cancer Treatment Centers of America, Newnan, GA (United States)

    2015-05-15

    Purpose: to evaluate dosimetric coverage of the prostate, normal tissue sparing, and acute toxicity with HDR brachytherapy for large prostate volumes. Materials and methods: one hundred and two prostate cancer patients with prostate volumes >50 mL (range: 5-29 mL) were treated with high-dose-rate (HDR) brachytherapy ± intensity modulated radiation therapy (IMRT) to 4,500 cGy in 25 daily fractions between 2009 and 2013. HDR brachytherapy monotherapy doses consisted of two 1,350-1,400 cGy fractions separated by 2-3 weeks, and HDR brachytherapy boost doses consisted of two 950-1,150 cGy fractions separated by 4 weeks. Twelve of 32 (38%) unfavorable intermediate risk, high risk, and very high risk patients received androgen deprivation therapy. Acute toxicity was graded according to the Common Terminology Criteria for Adverse Events (CTCAE) version 4. Results: median follow-up was 14 months. Dosimetric goals were achieved in over 90% of cases. Three of 102 (3%) patients developed Grade 2 acute proctitis. No variables were significantly associated with Grade 2 acute proctitis. Seventeen of 102 (17%) patients developed Grade 2 acute urinary retention. American Urological Association (AUA) symptom score was the only variable significantly associated with Grade 2 acute urinary retention (p-0.04). There was no ≥ Grade 3 acute toxicity. Conclusions: dosimetric coverage of the prostate and normal tissue sparing were adequate in patients with prostate volumes >50 mL. Higher pre-treatment AUA symptom scores increased the relative risk of Grade 2 acute urinary retention. However, the overall incidence of acute toxicity was acceptable in patients with large prostate volumes. (author)

  18. Radiological protection of patients in brachytherapy

    International Nuclear Information System (INIS)

    Full text: The prefix 'brachy' means short-range, so brachytherapy is the administration of radiation therapy using small radioactive sources in the form of needles, tubes, wires or seeds, which are placed within the tumor -interstitial form- or very near of it, superficially or in an endo-cavity form. This technique, which was limited by the size of the primary tumor, has the advantage, that the radiation, can be adjusted to the size and shape of the tumor volume and the radioisotope used, - short range -, is selected with the criteria of getting the dose in the organs at risk, as low as possible, making what it is known as conformal radiotherapy. Radioactive sources may be permanent or temporary implants. The application of radioactive material, can be manually or automatically. In the first case, a major breakthrough from the radioprotection point of view, was the use of afterloading devices, methodology highly recommended to reduce the radiation exposure to staff. With the development of technology, remotely controlled afterloading devices were introduced, which in addition to complying with the above requirement, allow the source to move in different positions along catheters housed in one or more channels, making therapeutic brachytherapy treatments in tumor volumes possible, that due to its length, decades ago would have been an unthinkable deal. In all cases, sources, which may vary from the 3 mm in length, 125 Iodine or 198 Gold seeds, to extensive wires of 192 Iridium, are encapsulated for two main purposes: preventing leakage of radioactive material and absorption of unwanted radiation, alpha and beta, produced by the radioactive decay. Consequently, it should be highly unlikely that the radioactive material, could be lost or located in the patient, in a different place of the one that was planned. However, history shows us the opposite. Its is known the kind of deterministic effect that radiation is going to produce in the tumor, where the severity of

  19. Image guided Brachytherapy: The paradigm of Gynecologic and Partial Breast HDR Brachytherapy

    Science.gov (United States)

    Diamantopoulos, S.; Kantemiris, I.; Konidari, A.; Zaverdinos, P.

    2015-09-01

    High dose rate (HDR) brachytherapy uses high strength radioactive sources and temporary interstitial implants to conform the dose to target and minimize the treatment time. The advances of imaging technology enable accurate reconstruction of the implant and exact delineation of high-risk CTV and the surrounding critical structures. Furthermore, with sophisticated treatment planning systems, applicator devices and stepping source afterloaders, brachytherapy evolved to a more precise, safe and individualized treatment. At the Radiation Oncology Department of Metropolitan Hospital Athens, MRI guided HDR gynecologic (GYN) brachytherapy and accelerated partial breast irradiation (APBI) with brachytherapy are performed routinely. Contouring and treatment planning are based on the recommendations of the GEC - ESTRO Working group. The task of this presentation is to reveal the advantages of 3D image guided brachytherapy over 2D brachytherapy. Thus, two patients treated at our department (one GYN and one APBI) will be presented. The advantage of having adequate dose coverage of the high risk CTV and simultaneous low doses to the OARs when using 3D image- based brachytherapy will be presented. The treatment techniques, equipment issues, as well as implantation, imaging and treatment planning procedures will be described. Quality assurance checks will be treated separately.

  20. HDR endobronchial brachytherapy

    International Nuclear Information System (INIS)

    Introduction: This is a restrospective study to review the palliation rate, survival rate and complications of high dose rate (HDR) endobronchial brachytherapy in the treatment of airway obstruction of recurrent lung cancer or metastasis. Material and method: Between september 1992 and may 1995 it has been treated forty (40) patients with endobronchial lesions. 38 patients with unique endobronchial lesion and 2 patients with double lesions. 32 had primary lung carcinoma: 27 with epidermoid carcinoma (1 bilateral), 2 with adenocarcinoma, 1 with small cell carcinoma, 1 with undifferentiated carcinoma and 1 with primary double (adenocarcinoma and large cell carcinoma). 8 patients had endobronchial metastasis: 2 hypernefroma, 3 breast carcinoma, 1 colon cancer, 1 seminoma and 1 Ewing sarcoma. 33 patients were male (82.5%) and 7 female (17.5%). The treatment was carried out in three weekly fractions with a dose of 750 cGy per fraction at 1 cm from the source. An afterloaded equipment was used (microselectron HDR). The most frequent sites were: right main stem bronchus 9 patients (22.5%), left main stem bronchus 7 patients (17.5%), and right middle bronchus 5 patients (12.5%). Results and discussion: The endoscopic global response assessed after three weeks was of 70%. The symptomatic response was 95% hemoptysis control, 87% dysnea control, 80% obstructive pneumonia control and 70% cough control. The minimum follow up was one year. There were three cases of massive hemoptysis and three patients developed local recurrence (one received a second brachytherapy treatment). Conclusion: HDR brachytherapy offers an excellent long term palliation for any of the obstructing symptoms, being effective in more than 70% in patients with recurrence lung primary cancer or endobronchial metastasis with a low complication rate

  1. Implementation of microsource high dose rate (mHDR) brachytherapy in developing countries

    International Nuclear Information System (INIS)

    Brachytherapy using remote afterloading of a single high dose rate 192Ir microsource was developed in the 1970s. After its introduction to clinics, this system has spread rapidly among developed Member States and has become a highly desirable modality in cancer treatment. This technique is now gradually being introduced to the developing Member States. The 192Ir sources are produced with a high specific activity. This results in a high dose rate (HDR) to the tumour and shorter treatment times. The high specific activity simultaneously results in a much smaller source (so-called micro source, around I mm in diameter) which may be easily inserted into tissue through a thin delivery tube, the so-called interstitial treatment, as well as easily inserted into body cavities, the so-called intracavitary or endoluminal treatment. Another advantage is the ability to change dwell time (the time a source remains in one position) of the stepping source which allows dose distribution to match the target volume more closely. The purpose of this TECDOC is to advise radiation oncologists, medical physicists and hospital administrators in hospitals which are planning to introduce 192Ir microsource HDR (mHDR) remote afterloading systems. The document supplements IAEA-TECDOC-1040, Design and Implementation of a Radiotherapy Programme: Clinical, Medical Physics, Radiation Protection and Safety Aspects, and will facilitate implementation of this new brachytherapy technology, especially in developing countries. The operation of the system, 'how to use the system', is not within the scope of this document. This TECDOC is based on the recommendations of an Advisory Group meeting held in Vienna in April 1999

  2. Computed Tomography-Guided Interstitial HDR Brachytherapy (CT-HDRBT) of the Liver in Patients with Irresectable Intrahepatic Cholangiocarcinoma

    International Nuclear Information System (INIS)

    Purpose: This study was designed to investigate the clinical outcome of patients with irresectable, intrahepatic cholangiocarcinoma (IHC) treated with computed tomography (CT)-guided HDR-brachytherapy (CT-HDRBT) for local tumor ablation.MethodFifteen consecutive patients with histologically proven cholangiocarcinoma were selected for this retrospective study. Patients were treated by high-dose-rate internal brachytherapy (HDRBT) using an Iridium-192 source in afterloading technique through CT-guided percutaneous placed catheters. A total of 27 brachytherapy treatments were performed in these patients between 2006 and 2009. Median tumor enclosing target dose was 20 Gy, and mean target volume of the radiated tumors was 131 (± 90) ml (range, 10–257 ml). Follow-up consisted of clinical visits and magnetic resonance imaging of the liver every third month. Statistical evaluation included survival analysis using the Kaplan–Meier method. Results: After a median follow-up of 18 (range, 1–27) months after local ablation, 6 of the 15 patients are still alive; 4 of them did not get further chemotherapy and are regarded as disease-free. The reached median local tumor control was 10 months; median local tumor control, including repetitive local ablation, was 11 months. Median survival after local ablation was 14 months and after primary diagnosis 21 months. Conclusion: In view of current clinical data on the clinical outcome of cholangiocarcinoma, locally ablative treatment with CT-HDRBT represents a promising and safe technique for patients who are not eligible for tumor resection.

  3. Prostate volume changes during permanent seed brachytherapy: an analysis of intra-operative variations, predictive factors and clinical implication

    International Nuclear Information System (INIS)

    To determine prostate volume (Pvol) changes at 3 different time points during the course of I125 permanent seed brachytherapy (PB). To assess the impact of these changes on acute urinary retention (AUR) and dosimetric outcome. We analyzed 149 hormone-naïve patients. Measurements of the prostate volume were done using three-dimensional transrectal ultrasound (3D-TRUS) in the operating room before insertion of any needle (V1), after the insertion of 2 fixation needles with a harpoon (V2) and upon completion of the implant (V3). The quality of the implant was analyzed with the D90 (minimum dose in Grays received by 90% of the prostate volume) at day 30. Mean baseline prostate volume (V1) was 37.4 ± 9.6 cc. A volume increase of >5% was seen in 51% between V1-V2 (mean = 2.5 cc, p < 0.01), in 42% between V2-V3 (mean = 1.9 cc, p < 0.01) and in 71% between V1-V3 (mean = 4.5 cc, p < 0.01). Pvol changes caused by insertion of the fixation needles were not statistically different than those caused by the implant itself (p = 0.23). In multivariate linear regression analysis, baseline Pvol is predictive of Pvol changes between V2 and V1 and V3 and V1 but not between V3 and V2. The extent of prostate swelling had an influence on D90. An increase of 10% in prostate volume between V1 and V2 results in an increase of D90 at Day 30 by 11.7%. Baseline Pvol (V1) was the only predictor of the duration of urinary retention in both univariate and multivariate (p = 0.04) regression analysis. A large part of intraoperative swelling occurs already after the insertion of the fixation needles. This early prostate swelling predicts for D90 but not for AUR

  4. Comparison and Consensus Guidelines for Delineation of Clinical Target Volume for CT- and MR-Based Brachytherapy in Locally Advanced Cervical Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, Akila N., E-mail: aviswanathan@lroc.harvard.edu [Brigham and Women' s Hospital/Dana-Farber Cancer Institute, Boston, Massachusetts (United States); Erickson, Beth [Medical College of Wisconsin, Milwaukee, Wisconsin (United States); Gaffney, David K. [University of Utah Huntsman Cancer Hospital, Salt Lake City, Utah (United States); Beriwal, Sushil [University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania (United States); Bhatia, Sudershan K. [University of Iowa, Iowa City, Iowa (United States); Lee Burnett, Omer [University of Alabama, Birmingham, Alabama (United States); D' Souza, David P.; Patil, Nikhilesh [London Health Sciences Centre and Western University, London, Ontario (Canada); Haddock, Michael G. [Mayo Medical Center, Rochester, Minnesota (United States); Jhingran, Anuja [University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Jones, Ellen L. [University of North Carolina, Chapel Hill, North Carolina (United States); Kunos, Charles A. [Case Western Reserve University, Cleveland, Ohio (United States); Lee, Larissa J. [Brigham and Women' s Hospital/Dana-Farber Cancer Institute, Boston, Massachusetts (United States); Lin, Lilie L. [University of Pennsylvania, Philadelphia, Pennsylvania (United States); Mayr, Nina A. [University of Washington, Seattle, Washington (United States); Petersen, Ivy [Mayo Medical Center, Rochester, Minnesota (United States); Petric, Primoz [Division of Radiotherapy, Institute of Oncology Ljubljana, Ljubljana (Slovenia); Department of Radiation Oncology, National Center for Cancer Care and Research, Doha (Qatar); Portelance, Lorraine [University of Miami Miller School of Medicine, Miami, Florida (United States); Small, William [Loyola University Strich School of Medicine, Chicago, Illinois (United States); Strauss, Jonathan B. [The Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois (United States); and others

    2014-10-01

    Objective: To create and compare consensus clinical target volume (CTV) contours for computed tomography (CT) and 3-Tesla (3-T) magnetic resonance (MR) image-based cervical-cancer brachytherapy. Methods and Materials: Twenty-three experts in gynecologic radiation oncology contoured the same 3 cervical cancer brachytherapy cases: 1 stage IIB near-complete response (CR) case with a tandem and ovoid, 1 stage IIB partial response (PR) case with tandem and ovoid with needles, and 1 stage IB2 CR case with a tandem and ring applicator. The CT contours were completed before the MRI contours. These were analyzed for consistency and clarity of target delineation using an expectation maximization algorithm for simultaneous truth and performance level estimation (STAPLE), with κ statistics as a measure of agreement between participants. The conformity index was calculated for each of the 6 data sets. Dice coefficients were generated to compare the CT and MR contours of the same case. Results: For all 3 cases, the mean tumor volume was smaller on MR than on CT (P<.001). The κ and conformity index estimates were slightly higher for CT, indicating a higher level of agreement on CT. The Dice coefficients were 89% for the stage IB2 case with a CR, 74% for the stage IIB case with a PR, and 57% for the stage IIB case with a CR. Conclusion: In a comparison of MR-contoured with CT-contoured CTV volumes, the higher level of agreement on CT may be due to the more distinct contrast medium visible on the images at the time of brachytherapy. MR at the time of brachytherapy may be of greatest benefit in patients with large tumors with parametrial extension that have a partial or complete response to external beam. On the basis of these results, a 95% consensus volume was generated for CT and for MR. Online contouring atlases are available for instruction at (http://www.nrgoncology.org/Resources/ContouringAtlases/GYNCervicalBrachytherapy.aspx)

  5. Comparison and Consensus Guidelines for Delineation of Clinical Target Volume for CT- and MR-Based Brachytherapy in Locally Advanced Cervical Cancer

    International Nuclear Information System (INIS)

    Objective: To create and compare consensus clinical target volume (CTV) contours for computed tomography (CT) and 3-Tesla (3-T) magnetic resonance (MR) image-based cervical-cancer brachytherapy. Methods and Materials: Twenty-three experts in gynecologic radiation oncology contoured the same 3 cervical cancer brachytherapy cases: 1 stage IIB near-complete response (CR) case with a tandem and ovoid, 1 stage IIB partial response (PR) case with tandem and ovoid with needles, and 1 stage IB2 CR case with a tandem and ring applicator. The CT contours were completed before the MRI contours. These were analyzed for consistency and clarity of target delineation using an expectation maximization algorithm for simultaneous truth and performance level estimation (STAPLE), with κ statistics as a measure of agreement between participants. The conformity index was calculated for each of the 6 data sets. Dice coefficients were generated to compare the CT and MR contours of the same case. Results: For all 3 cases, the mean tumor volume was smaller on MR than on CT (P<.001). The κ and conformity index estimates were slightly higher for CT, indicating a higher level of agreement on CT. The Dice coefficients were 89% for the stage IB2 case with a CR, 74% for the stage IIB case with a PR, and 57% for the stage IIB case with a CR. Conclusion: In a comparison of MR-contoured with CT-contoured CTV volumes, the higher level of agreement on CT may be due to the more distinct contrast medium visible on the images at the time of brachytherapy. MR at the time of brachytherapy may be of greatest benefit in patients with large tumors with parametrial extension that have a partial or complete response to external beam. On the basis of these results, a 95% consensus volume was generated for CT and for MR. Online contouring atlases are available for instruction at (http://www.nrgoncology.org/Resources/ContouringAtlases/GYNCervicalBrachytherapy.aspx)

  6. 22: Use of a portable personal computer for treatment planning in intraoperative high-dose-rate brachytherapy

    International Nuclear Information System (INIS)

    An intraoperative high-dose-rate brachytherapy has been performed. A remote afterloading equipment with a small Ir-192 source was used. As applicators thin hollow steel needles are implanted into the tumor. The exact target volume is determined only during the operation. Therefore it is not possible to make a preoperative treatment plan. Thus use was made of a small portable computer system. The software designed by the authors allows the positions of the applicators and points of interest with prescribed doses to be input by means of a keyboard, a mouse or a digitizer. Using methods from nonlinear programming, the dwell times for each stopping point of the source are calculated in such a way that the prescribed doses in each point of interest are approximated as closely as possible. 7 refs.; 1 figure; 2 tabs

  7. Fractionated afterloading therapy in inoperable malignant tumours of the brain

    International Nuclear Information System (INIS)

    With the advent of the method of afterloading the range of uses for fractionated interstitial brady-therapy could be broadened to include malignant cerebral tumours. The mean survival time of 33 female patients was calculated to be 8.3 months for the entire group and 11.3 months for cases not otherwise pretreated. Even though the age, tumour volume, target dose and Karnofsky index obviously tended to influence the survival time, such relationships could not be confirmed statistically. Using the method by Kaplan-Meier it was determined that 65% of the total study group were likely to survive beyond six months and 32% to survive for one year. A separate analysis of patients receiving no previous treatment showed these chances to be 75% and 44%, respectively. The advantages of this therapy are discussed on a comparative basis. (VHE)

  8. Risk analysis of brachytherapy events

    International Nuclear Information System (INIS)

    For prevention radiological events it is necessary to identify hazardous situation and to analyse the nature of committed errors. Though the recommendation on the classification and prevention of radiological events: Radiological accidents has been prepared in the framework of Czech Society of Radiation Oncology, Biology and Physics and it was approved by Czech regulatory body (SONS) in 1999, only a few reports have been submitted up to now from brachytherapy practice. At the radiotherapy departments attention has been paid more likely to the problems of dominant teletherapy treatments. But in the two last decades the usage of brachytherapy methods has gradually increased because .nature of this treatment well as the possibilities of operating facility have been completely changed: new radionuclides of high activity are introduced and sophisticate afterloading systems controlled by computers are used. Consequently also the nature of errors, which can occurred in the clinical practice, has been changing. To determine the potentially hazardous parts of procedure the so-called 'process tree', which follows the flow of entire treatment process, has been created for most frequent type of applications. Marking the location of errors on the process tree indicates where failures occurred and accumulation of marks along branches show weak points in the process. Analysed data provide useful information to prevent medical events in brachytherapy .The results strength the requirements given in Recommendations of SONS and revealed the need for its amendment. They call especially for systematic registration of the events. (authors)

  9. Pelvic interstitial brachytherapy - improving the therapeutic ratio with magnetic resonance imaging and optimization

    International Nuclear Information System (INIS)

    Introduction Interstitial brachytherapy in the pelvic region is often hampered by the radiation oncologist's inability to precisely differentiate tumor versus normal tissue during the planning and implantation procedures, often resulting in either excessive or incomplete coverage of tumor volume. The marked improvement in pelvic imaging seen with magnetic resonance, in conjunction with isodose optimization programs for remote-afterloading units, has created an opportunity to significantly improve the therapeutic ratio. Methods From 1992-1995, 23 interstitial perineal templates were performed in 22 patients with pelvic malignancies, using the pulsed low-dose-rate Selectron with dose optimization. MR imaging was performed immediately prior to the implant, with a MUPIT placed against the perineum and a vaginal obturator in place. These images were used for tumor volume measurements, determination of the number, depth and angle of needles required for the implant, and identification of position of normal tissues (rectum, small bowel, bladder) relative to the tumor. After implantation of stainless steel needles, orthogonal radiographs were obtained for isodose calculation, and planning carried out with isodose optimization. Patients were followed closely on a routine schedule, until time of last visit or until death. Every effort possible was made to assess local disease status at time of death. Results Sixteen patients with primary disease (14 cervix, 1 vulva, 1 vagina) and 6 with recurrent (2 with prior radiation) were implanted, all but 3 with curative intent. Nine patients with advanced cervix or vulvar cancer received concomitant chemotherapy (5FU + platinum or mitomycin-C) with the external beam therapy. At a median follow-up of 18.1 months for all cases, only three patients have failed locally for an actuarial local control of 85% at 1.5 years. Nine patients are alive and free of disease, 8 are alive with distant disease only (mean follow-up of 19.1 months), 2

  10. Dosimetry of HDR afterloading machines with Ir-192- und Co-60-sources. Comparison of different international protocols

    International Nuclear Information System (INIS)

    The air kerma rate in air at a reference distance of 1 meter from the source is the recommended quantity for the specification of gamma ray source in brachytherapy. The absorbed dose for the patients is directly proportional to the air kerma rate. Therefore the air kerma rate should be determined before the first use of the source on patients by a medical physicist who is independent from the source manufacturer. The air kerma rate will then be applied in the calculation of the dose delivered to patients. In practice, high dose rate (HDR) Ir-192 afterloading machines are mostly used in brachytherapy treatment. Currently HDR-Co-60 increasingly come into operation, too. The essential advantage of the use of Co-60 sources is its longer half-life compared to Ir-192. In addition, the purchasing and disposal costs are lower. The use of HDR-Co-60- afterloading machines is also quite interesting for developing countries. This work describes the dosimetry at HDR afterloading machines according to the protocols DIN 6809-2 (1993) in relation to the DGMP-Report 13 (2006), IAEA-TECDOC-1274 (2002) and AAPM Report 41 (1993) with the nuclides Ir-192 and Co-60. We have used 3 different measurement methods (with a cylindrical chamber in solid phantom and in free air and with a well chamber) in dependence of each of the protocols. We have shown that the standard deviations of the measured air kerma rate for the Co-60 source are generally larger than those of the Ir-192 source. The measurements with the well chamber had the lowest deviation from the certificate value. In all protocols and methods the deviations stood for both nuclides by a maximum of about 1.2% for Ir-192 and 2.5% for Co-60-sources respectively. (orig.)

  11. Innovation in gynaecological brachytherapy: new technologies, pulse dose-rate brachytherapy, image, definition of new volumes of interest and their impact on dosimetry: application in a clinical research programme 'S.T.I.C.'

    International Nuclear Information System (INIS)

    Brachytherapy plays a fundamental role in the therapeutic approach of patients with stage I-IV cervical carcinoma. Technical modalities have evolved during the last decades: stepping source technology, imaging modalities development, specially IMN, treatment planning system integrating 3D images. Images from CT-Scan and MRI have contributed to a better knowledge of tumoral extension and critical organs. CT and/or MRI compatible applicators allow a sectional image based approach with a better definition of tumour volume compared to traditional approaches. The introduction of 3D image based approach for GTV and CTV requires new definitions and a common language. In 2000, a working group within GEC-ESTRO was created to support 3D image based 3D treatment planning approach in cervix cancer BT. The task was to determine a common terminology enabling various groups to use a common language. Recommendations were described and proposed based on clinical experience and dosimetric concepts of different institutions. Two CTVs were described en relation to the risk for recurrence: high-risk CTV and intermediate risk CTV. In order to better define the role of such definitions and their potential impact on the complication incidence in patients with cervical cancer, a special French programme was developed. The aim of this programme is to study the incidence of the severe 2-year complication rate in two comparable patient populations: one population is treated using PDR brachytherapy with CT-Scan or MRI with the applicators in place allowing a 3D dosimetry with optimization, the second population is treated using standard X-rays radiographs, without any delineation of the target nor optimisation. Each population arm includes 425 patients. A medico-economic assessment is performed, allowing a real cost of the most sophisticated approach compared to a historical dosimetric system. (author)

  12. Prostate brachytherapy

    Science.gov (United States)

    Implant therapy - prostate cancer; Radioactive seed placement; Internal radiation therapy - prostate; High dose radiation (HDR) ... Brachytherapy takes 30 minutes or more, depending on the type of therapy you have. Before the procedure, ...

  13. High-Dose-Rate 192Ir Brachytherapy Dose Verification: A Phantom Study

    Directory of Open Access Journals (Sweden)

    Alireza Nikoofar

    2015-05-01

    Full Text Available Background: The high-dose-rate (HDR brachytherapy might be an effective tool for palliation of dysphagia. Because of some concerns about adverse effects due to absorbed radiation dose, it is important to estimate absorbed dose in risky organs during this treatment. Objectives: This study aimed to measure the absorbed dose in the parotid, thyroid, and submandibular gland, eye, trachea, spinal cord, and manubrium of sternum in brachytherapy in an anthropomorphic phantom. Materials and Methods: To measure radiation dose, eye, parotid, thyroid, and submandibular gland, spine, and sternum, an anthropomorphic phantom was considered with applicators to set thermoluminescence dosimeters (TLDs. A specific target volume of about 23 cm3 in the upper thoracic esophagus was considered as target, and phantom planned computed tomography (CT for HDR brachytherapy, then with a micro-Selectron HDR (192Ir remote after-loading unit. Results: Absorbed doses were measured with calibrated TLDs and were expressed in centi-Gray (cGy. In regions far from target (≥ 16 cm such as submandibular, parotid and thyroid glands, mean measured dose ranged from 1.65 to 5.5 cGy. In closer regions (≤ 16 cm, the absorbed dose might be as high as 113 cGy. Conclusions: Our study showed similar depth and surface doses; in closer regions, the surface and depth doses differed significantly due to the role of primary radiation that had imposed a high-dose gradient and difference between the plan and measurement, which was more severe because of simplifications in tissue inhomogeneity, considered in TPS relative to phantom.

  14. CT-guided interstitial HDR brachytherapy for recurrent glioblastoma multiforme. Long-term results

    Energy Technology Data Exchange (ETDEWEB)

    Tselis, N.; Roeddiger, S.; Filipowicz, I.; Kontova, M.; Heyd, R.; Zamboglou, N. [Offenbach Hospital (Germany). Dept. of Radiotherapy and Interdisciplinary Oncology; Kolotas, C. [Offenbach Hospital (Germany). Dept. of Radiotherapy and Interdisciplinary Oncology; Hirslanden Medical Center, Aarau (Switzerland). Inst. of Radiotherapy; Birn, G. [Offenbach Hospital (Germany). Dept. of Neurosurgery; Fountzilas, G.; Selviaridis, P. [Aristotle Univ. of Thessaloniki School of Medicine, Thessaloniki (Greece); Baltas, D.; Anagnostopoulos, G. [Offenbach Hospital (Germany). Dept. of Medical Physics and Engineering

    2007-10-15

    Background and Purpose: Recurrences of glioblastoma multiforme (GBM) within previously irradiated volumes pose a serious therapeutic challenge. This retrospective study evaluates the long-term tumor control of recurrent GBM treated with interstitial high-dose-rate brachytherapy (HDR-BRT). Patients and Methods: Between 1995 and 2003, 84 patients were treated for recurrent cerebral GBM located within previously irradiated volumes. All patients had received adjuvant external radiotherapy following primary surgery, with a focal dose up to 60 Gy. The median recurrent tumor volume was 51 cm{sup 3} (3-207 cm{sup 3}), and the HDR-BRT consisted of an afterloading {sup 192}Ir implant which delivered a median dose of 40 Gy (30-50 Gy). Catheter implantation was implemented using interactive computed tomography (CT) guidance under local anesthesia and sedoanalgesia. Results: After a median follow-up of 61 months, 5/84 patients (6%) were alive. The median post-BRT survival was 37 weeks, and the median overall survival 78 weeks. Moderate to severe complications occurred in 5/84 cases (6%). Conclusion: For patients with recurrences of GBM within previously irradiated volumes, CT-guided interstitial HDR-BRT is a feasible treatment option that can play an important role in providing palliation. (orig.)

  15. Dose volume histogram analysis of normal structures associated with accelerated partial breast irradiation delivered by high dose rate brachytherapy and comparison with whole breast external beam radiotherapy fields

    Directory of Open Access Journals (Sweden)

    Mutyala Subhakar

    2008-11-01

    Full Text Available Abstract Purpose To assess the radiation dose delivered to the heart and ipsilateral lung during accelerated partial breast brachytherapy using a MammoSite™ applicator and compare to those produced by whole breast external beam radiotherapy (WBRT. Materials and methods Dosimetric analysis was conducted on patients receiving MammoSite breast brachytherapy following conservative surgery for invasive ductal carcinoma. Cardiac dose was evaluated for patients with left breast tumors with a CT scan encompassing the entire heart. Lung dose was evaluated for patients in whom the entire lung was scanned. The prescription dose of 3400 cGy was 1 cm from the balloon surface. MammoSite dosimetry was compared to simulated WBRT fields with and without radiobiological correction for the effects of dose and fractionation. Dose parameters such as the volume of the structure receiving 10 Gy or more (V10 and the dose received by 20 cc of the structure (D20, were calculated as well as the maximum and mean doses received. Results Fifteen patients were studied, five had complete lung data and six had left-sided tumors with complete cardiac data. Ipsilateral lung volumes ranged from 925–1380 cc. Cardiac volumes ranged from 337–551 cc. MammoSite resulted in a significantly lower percentage lung V30 and lung and cardiac V20 than the WBRT fields, with and without radiobiological correction. Conclusion This study gives low values for incidental radiation received by the heart and ipsilateral lung using the MammoSite applicator. The volume of heart and lung irradiated to clinically significant levels was significantly lower with the MammoSite applicator than using simulated WBRT fields of the same CT data sets. Trial registration Dana Farber Trial Registry number 03-179

  16. An analysis of personnel dose records which justifies the application of cost-benefit analysis techniques in the design of an afterloading facility and the use of controlled areas and systems of work within suite to control occupational exposure.

    Science.gov (United States)

    Gifford, D; Godden, T J; Kear, D

    1990-03-01

    The sealed source operational policies employed at the Bristol Radiotherapy and Oncology Centre were originally designed to meet the requirements of the 1972 Code of Practice by ensuring that individual personnel doses were kept below the relevant quarterly and annual dose limits. In 1982-1983, measures were taken to improve personnel radiation safety within the brachytherapy treatment facility by (a) making preparations for the introduction of Selectron medium-dose-rate (MDR) afterloading systems at the centre for intracavitary brachytherapy and (b) reviewing the operational policies to ensure that they meet the more stringent requirements of the ALARA (as low as reasonably achievable) principle, a principle subsequently embodied in the 1985 UK ionising Radiations Regulations (IRR 85). When considering the implications of making existing single-bedded side wards, originally designed for low-dose-rate brachytherapy and suitable for the new systems, the cost of the extra protection required to reduce the instantaneous dose rate in the ward corridors adjacent to the treatment room to less than 7.5 microSv h-1 had to be determined. On the basis of the cost-benefit analysis, it was decided not to provide additional shielding but rather to introduce administrative controls based on local rules which contained systems of work and the operational policies for the afterloading systems. After using the MDR afterloading systems for 2 years, a period in which there has also been a marked increase in interstitial brachytherapy, an analysis was made of the doses received by nursing staff over the past 8 years. This has shown that, in spite of higher dose rates in the corridor areas because of the use of an MDR system and the increase in interstitial techniques, the doses to ward nurses have been significantly reduced by encouraging staff to comply with the ALARA principle and the introduction of afterloading systems. PMID:2110492

  17. Effectiveness of interstitial brachytherapy when used alone or in combination with external irradiation for carcinoma of the tongue (T2N0 cases)

    International Nuclear Information System (INIS)

    We analyzed the results of radiation therapy and evaluated its effectiveness as a treatment method. Between 1967 and 1980, a total of 200 patients with squamous cell carcinomas of the tongue (T2N0M0, stage II by UICC) were treated with interstitial brachytherapy alone or in combination with external irradiation (combined therapy) at the Department of Radiology, Osaka University Medical School. We found that there was no significant difference between interstitial brachytherapy alone and combined therapy with regard to local control rates. With interstitial brachytherapy alone, local control rates for the Ir-192 remote afterloading method were greater than those for Ra-226 needles. The incidence of neck metastases out of the irradiated field was higher with combined therapy than with interstitial brachytherapy alone. We found that irradiation treatment with thin Ir-192 wire using the afterloading method produced excellent results for patients with carcinomas of the tongue (T2N0 cases). (author)

  18. Review of clinical brachytherapy uncertainties: Analysis guidelines of GEC-ESTRO and the AAPM

    International Nuclear Information System (INIS)

    Background and purpose: A substantial reduction of uncertainties in clinical brachytherapy should result in improved outcome in terms of increased local control and reduced side effects. Types of uncertainties have to be identified, grouped, and quantified. Methods: A detailed literature review was performed to identify uncertainty components and their relative importance to the combined overall uncertainty. Results: Very few components (e.g., source strength and afterloader timer) are independent of clinical disease site and location of administered dose. While the influence of medium on dose calculation can be substantial for low energy sources or non-deeply seated implants, the influence of medium is of minor importance for high-energy sources in the pelvic region. The level of uncertainties due to target, organ, applicator, and/or source movement in relation to the geometry assumed for treatment planning is highly dependent on fractionation and the level of image guided adaptive treatment. Most studies to date report the results in a manner that allows no direct reproduction and further comparison with other studies. Often, no distinction is made between variations, uncertainties, and errors or mistakes. The literature review facilitated the drafting of recommendations for uniform uncertainty reporting in clinical BT, which are also provided. The recommended comprehensive uncertainty investigations are key to obtain a general impression of uncertainties, and may help to identify elements of the brachytherapy treatment process that need improvement in terms of diminishing their dosimetric uncertainties. It is recommended to present data on the analyzed parameters (distance shifts, volume changes, source or applicator position, etc.), and also their influence on absorbed dose for clinically-relevant dose parameters (e.g., target parameters such as D90 or OAR doses). Publications on brachytherapy should include a statement of total dose uncertainty for the entire

  19. Bladder and rectum dose define 3D treatment planning for cervix cancer brachytherapy comparison of dose volume histograms for organ contour and organ wall contour

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Won [Myongji Hospital, Gangneong (Korea, Republic of); Kim, Jong Won; Kim, Dae Hyun; Choi, Joon Yong [The Catholic Univ. of Korea College of Medicine, Seoul (Korea, Republic of); Choi, Joon Yong [Dongguk Univ. Medical Center, Seoul (Korea, Republic of); Won, Yeong Jin [Inje Univ. lsan Paik Hospital, Goyang (Korea, Republic of)

    2012-12-15

    To analyze the correlation between dose volume histograms(DVH) based on organ outer wall contour and organ wall delineation for bladder and rectum, and to compare the doses to these organs with the absorbed doses at the bladder and rectum. Individual CT based brachytherapy treatment planning was performed in 13 patients with cervical cancer as part of a prospective comparative trial. The external contours and the organ walls were delineated for the bladder and rectum in order to compute the corresponding dose volume histograms. The minimum dose in 0.1 cm{sup 3}, 1 cm{sup 3}, 2 cm{sup 3}, 5 cm{sup 3}, 10 cm{sup 3} volumes receiving the highest dose were compared with the absorbed dose at the rectum and bladder reference point. Results: The bladder and rectal doses derived from organ outer wall contour and computed for volumes of 2 cm{sup 3}, provided a good estimate for the doses computed for the organ wall contour only. This correspondence was no longer true when large volumes were considered. For clinical applications, when volumes smaller than 5 cm{sup 2} are considered, the dose.volume histograms computed from external organ contours for the bladder and rectum can be used instead of dose.volume histograms computed for the organ walls only. External organ contours are indeed easier to obtain. The dose at the ICRU rectum reference point provides a good estimate of the rectal dose computed for volumes smaller than 2 cm{sup 2} only for a midline position of the rectum. The ICRU bladder reference point provides a good estimate of the dose computed for the bladder wall only in cases of appropriate balloon position.

  20. Consecutive magnetic resonance imaging during brachytherapy for cervical carcinoma: predictive value of volume measurements with respect to persistent disease and prognosis

    International Nuclear Information System (INIS)

    Cervical cancer is associated with a high yearly mortality. The presence of persistent disease after radiotherapy is a significant predictor of patient survival. The aim of our study was to assess if tumor volume regression measured with MR imaging at the time of brachytherapy can discriminate between patients who eventually will achieve a complete response to radiotherapy from those who will not. The second objective was to evaluate whether tumor volume regression predicts overall treatment failure. MRI was evaluated quantitatively in 35 patients; by means of tumor volumetry on T2-weighted MR images before treatment, at the first BCT application, and at the final BCT. The MR images were independently analyzed by two investigators. As a reference standard histopathologic confirmation of residual tumor and/or clinical exam during follow-up > 1 year were used. Area under the curve were compared, P-values <0.05 were considered significant. There was a good correlation between volume measurements made by the two observers. A residual tumor volume >9.4 cm3 at final BCT and tumor volume regression < 77 % of the pre-treatment volume were significantly associated with local residual tumor after completion of therapy (p < 0.02) (AUC, 0.98-1.00). A volume >2.8 cm3 at final BCT was associated with overall treatment failure (p < 0.03). Our study shows that volume analysis during BCT is a predictive tool for local tumor response and overall treatment outcome. The potential of local response assessment to identify patients at high risk of overall treatment failure is promising

  1. Determination of the accuracy of implant reconstruction and dose delivery in brachytherapy in The Netherlands and Belgium

    International Nuclear Information System (INIS)

    Purpose: To gain insight into the accuracy of brachytherapy treatments, the accuracy of implant reconstruction and dose delivery was investigated in 33 radiotherapy institutions in The Netherlands and Belgium. Materials and methods: The accuracy of the implant reconstruction method was determined using a cubic phantom containing 25 spheres at well-known positions. Reconstruction measurements were obtained on 41 brachytherapy localizers, 33 of which were simulators. The reconstructed distances between the spheres were compared with the true distances. The accuracy of the dose delivery was determined for high dose rate (HDR), pulsed dose rate (PDR) and low dose rate (LDR) afterloading systems using a polymethyl methacrylate cylindrical phantom containing a NE 2571 ionization chamber in its centre. The institutions were asked to deliver a prescribed dose at the centre of the phantom. The measured dose was compared with the prescribed dose. Results: The average reconstruction accuracy was -0.07 mm (±0.4 mm, 1 SD) for 41 localizers. The average deviation of the measured dose from the prescribed dose was +0.9% (±1.3%, 1 SD) for 21 HDR afterloading systems, +1.0% (±2.3%, 1 SD) for 12 PDR afterloaders, and +1.8% (±2.5%, 1 SD) for 15 LDR afterloaders. Conclusions: This comparison showed a good accuracy of brachytherapy implant reconstruction and dose delivery in The Netherlands and Belgium

  2. Development on Monte Carlo methodology with scatter correction factor of afterloading 192 Ir source

    International Nuclear Information System (INIS)

    Objective: To facilitate activity measurement by using the thimble ionization chamber in hospitals, to obtain air kerma scatter correction factor of medical afterloading of 192Ir source by developing an available and convenient calculation method. Methods: According to International Atomic Energy Agency (IAEA) 1079 Report to calculate the scatter correction factor of 192Ir source, to measure air kerma of 192Ir source with and without lead shield using thimble ionization chamber. Simulation measurement conditions were used to calculate scatter correction factor of 192Ir source and comparison was made between experimental results and literature records. At the same time, the different ionization chamber models were simulated at different room sizes to obtain scattering correction factor of 192 Ir source. Results: Comparison was made between the simulation scatter correction factors of 192Ir source and experiment by the shadow shield, and the relative deviation was 0.8%. The deviation of the 192Ir activity calculated according to the simulated scatter correction factor and measured by well type ionization chamber was 2.4%. By comparison between the calculated results by using two kinds of spherical ionization chamber and those ones deduced by IAEA 1079 Report,the relative deviations ranged within 0.3%-0.4%. Five different types of thimble ionization chamber and different room sizes were simulated and calculated by MC simulation, with the relative deviation within 3%. Conclusions: Monte Carlo simulation method for calculating afterloading 192Ir source's scatter correction factor is feasible, and this method is convenient for use in the thimble chamber for brachytherapy QA work in the hospital. (authors)

  3. New Brachytherapy Standards Paradigm Shift

    International Nuclear Information System (INIS)

    The absorbed dose to water rate at short distances in water is the quantity of interest for dosimetry in radiotherapy, but no absorbed dose to water primary standards have been available to date for dosimetry of brachytherapy sources. Currently, the procedures to determine the absorbed dose imparted to the patient in brachytherapy treatments are based on measurements traceable to air kerma standards. These procedures are affected by an uncertainty that is larger than the limit recommended by the IAEA dosimetry protocol (IAEA TRS 398 (2000)). Based on this protocol, the goal for the uncertainty of the dose delivered to the target volume should be within 5% (at the level of one standard deviation) to assure the effectiveness of a radiotherapy treatment. The international protocols for the calibration of brachytherapy gamma ray sources are based on the reference air kerma rate or the air kerma strength. The absorbed dose to water, in water at the reference position around a brachytherapy source is then calculated by applying the formalism of the protocols based on a conversion constant, the dose rate constant Λ, specific for the characteristics and geometry of the brachytherapy source. The determination of this constant relies on Monte Carlo simulations and relative measurements performed with passive dosimeters, and therefore it is typically affected by large uncertainties, larger than 5% (at the level of one standard deviation). The conversion procedure needed for brachytherapy dosimetry is a source of additional uncertainty on the final value of the absorbed dose imparted to the patient. It is due to a lack of metrology standards that makes dosimetry of brachytherapy sources less accurate than dosimetry of external radiation beams produced by 60Co sources and accelerators currently used in external beam radiotherapy. This paper reviews the current developments of absorbed dose to water primary standards for brachytherapy and the rationale for the choice of the

  4. Treatment of Locally Advanced Vaginal Cancer With Radiochemotherapy and Magnetic Resonance Image-Guided Adaptive Brachytherapy: Dose–Volume Parameters and First Clinical Results

    International Nuclear Information System (INIS)

    Purpose: To investigate the clinical feasibility of magnetic resonance image-guided adaptive brachytherapy (IGABT) for patients with locally advanced vaginal cancer and to report treatment outcomes. Methods and Materials: Thirteen patients with vaginal cancer were treated with external beam radiotherapy (45–50.4 Gy) plus IGABT with or without chemotherapy. Distribution of International Federation of Gynecology and Obstetrics stages among patients were as follows: 4 patients had Stage II cancer, 5 patients had Stage III cancer, and 4 patients had Stage IV cancer. The concept of IGABT as developed for cervix cancer was transferred and adapted for vaginal cancer, with corresponding treatment planning and reporting. Doses were converted to the equivalent dose in 2 Gy, applying the linear quadratic model (α/β = 10 Gy for tumor; α/β = 3 for organs at risk). Endpoints studied were gross tumor volume (GTV), dose-volume parameters for high-risk clinical target volume (HRCTV), and organs at risk, local control (LC), adverse side effects, and survival. Results: The mean GTV (± 1 standard deviation) at diagnosis was 45.3 (±30) cm3, and the mean GTV at brachytherapy was 10 (±14) cm3. The mean D90 for the HRCTV was 86 (±13) Gy. The mean D2cc for bladder, urethra, rectum, and sigmoid colon were 80 (±20) Gy, 76 (±16) Gy, 70 (±9) Gy, and 60 (±9) Gy, respectively. After a median follow-up of 43 months (range, 19–87 months), one local recurrence and two distant metastases cases were observed. Actuarial LC and overall survival rates at 3 years were 92% and 85%. One patient with Stage IVA and 1 patient with Stage III disease experienced fistulas (one vesicovaginal, one rectovaginal), and 1 patient developed periurethral necrosis. Conclusions: The concept of IGABT, originally developed for treating cervix cancer, appears to be applicable to vaginal cancer treatment with only minor adaptations. Dose-volume parameters for HRCTV and organs at risk are in a comparable range

  5. Treatment of Locally Advanced Vaginal Cancer With Radiochemotherapy and Magnetic Resonance Image-Guided Adaptive Brachytherapy: Dose-Volume Parameters and First Clinical Results

    Energy Technology Data Exchange (ETDEWEB)

    Dimopoulos, Johannes C.A. [Department of Radiation Oncology, Metropolitan Hospital, Athens (Greece); Schmid, Maximilian P., E-mail: maximilian.schmid@akhwien.at [Department of Radiotherapy, Medical University of Vienna, Vienna (Austria); Fidarova, Elena; Berger, Daniel; Kirisits, Christian; Poetter, Richard [Department of Radiotherapy, Medical University of Vienna, Vienna (Austria)

    2012-04-01

    Purpose: To investigate the clinical feasibility of magnetic resonance image-guided adaptive brachytherapy (IGABT) for patients with locally advanced vaginal cancer and to report treatment outcomes. Methods and Materials: Thirteen patients with vaginal cancer were treated with external beam radiotherapy (45-50.4 Gy) plus IGABT with or without chemotherapy. Distribution of International Federation of Gynecology and Obstetrics stages among patients were as follows: 4 patients had Stage II cancer, 5 patients had Stage III cancer, and 4 patients had Stage IV cancer. The concept of IGABT as developed for cervix cancer was transferred and adapted for vaginal cancer, with corresponding treatment planning and reporting. Doses were converted to the equivalent dose in 2 Gy, applying the linear quadratic model ({alpha}/{beta} = 10 Gy for tumor; {alpha}/{beta} = 3 for organs at risk). Endpoints studied were gross tumor volume (GTV), dose-volume parameters for high-risk clinical target volume (HRCTV), and organs at risk, local control (LC), adverse side effects, and survival. Results: The mean GTV ({+-} 1 standard deviation) at diagnosis was 45.3 ({+-}30) cm{sup 3}, and the mean GTV at brachytherapy was 10 ({+-}14) cm{sup 3}. The mean D90 for the HRCTV was 86 ({+-}13) Gy. The mean D2cc for bladder, urethra, rectum, and sigmoid colon were 80 ({+-}20) Gy, 76 ({+-}16) Gy, 70 ({+-}9) Gy, and 60 ({+-}9) Gy, respectively. After a median follow-up of 43 months (range, 19-87 months), one local recurrence and two distant metastases cases were observed. Actuarial LC and overall survival rates at 3 years were 92% and 85%. One patient with Stage IVA and 1 patient with Stage III disease experienced fistulas (one vesicovaginal, one rectovaginal), and 1 patient developed periurethral necrosis. Conclusions: The concept of IGABT, originally developed for treating cervix cancer, appears to be applicable to vaginal cancer treatment with only minor adaptations. Dose-volume parameters for HRCTV and

  6. Erectile function after prostate brachytherapy

    International Nuclear Information System (INIS)

    Purpose: To evaluate erectile function after permanent prostate brachytherapy using a validated patient-administered questionnaire and to determine the effect of multiple clinical, treatment, and dosimetric parameters on penile erectile function. Methods and materials: A total of 226 patients with preimplant erectile function determined by the International Index of Erectile Function (IIEF) questionnaire underwent permanent prostate brachytherapy in two prospective randomized trials between February 2001 and January 2003 for clinical Stage T1c-T2c (2002 American Joint Committee on Cancer) prostate cancer. Of the 226 patients, 132 were potent before treatment and, of those, 128 (97%) completed and returned the IIEF questionnaire after brachytherapy. The median follow-up was 29.1 months. Potency was defined as an IIEF score of ≥13. The clinical, treatment, and dosimetric parameters evaluated included patient age; preimplant IIEF score; clinical T stage; pretreatment prostate-specific antigen level; Gleason score; elapsed time after implantation; preimplant nocturnal erections; body mass index; presence of hypertension or diabetes mellitus; tobacco consumption; the volume of the prostate gland receiving 100%, 150%, and 200% of the prescribed dose (V100/150/200); the dose delivered to 90% of the prostate gland (D90); androgen deprivation therapy; supplemental external beam radiotherapy (EBRT); isotope; prostate volume; planning volume; and radiation dose to the proximal penis. Results: The 3-year actuarial rate of potency preservation was 50.5%. For patients who maintained adequate posttreatment erectile function, the preimplant IIEF score was 29, and in patients with brachytherapy-related ED, the preimplant IIEF score was 25. The median time to the onset of ED was 5.4 months. After brachytherapy, the median IIEF score was 20 in potent patients and 3 in impotent patients. On univariate analysis, the preimplant IIEF score, patient age, presence of nocturnal erections

  7. A manual afterloading technique for the treatment of patients with bronchial carcinoma using iridium-192 wire

    International Nuclear Information System (INIS)

    A manual afterloading technique using iridium-192 wire is described for the palliative treatment of patients with bronchial or oesophageal lesions, where the purchase of expensive remote afterloading equipment is not immediately possible. (UK)

  8. Inter-application variation of dose and spatial location of D2cm3 volumes of OARs during MR image based cervix brachytherapy

    International Nuclear Information System (INIS)

    Purpose: Evaluation of Inter-application variation of doses and spatial location of D2cm3 volumes of OARs during MR-image based cervix brachytherapy. Materials and methods: Twenty-seven patients treated with EMBRACE protocol were analyzed. Every patient had two applications, one week apart. For each application patient had undergone MR-imaging (MR-1 and MR-2), volume delineation, reconstruction, treatment planning (plan-1 and plan-2) and dose evaluation. Both the image series were then co-registered with applicator as the reference coordinate system (Eclipse planning system v8.6.14). Inter-application dose, volume and spatial location of D2cm3 variation were evaluated. Results: The largest inter-application systematic and random dose variations were observed for sigmoid as compared to rectum and bladder. The mean (±SD) of the relative D2cm3 variations were 0.6(±15.1)%, 0.9(±13.1)% and 11.9(±37.5)% for rectum, bladder and sigmoid respectively. The overlap of D2cm3 volumes was more than 50% in 16(59%), 8(30%) and 3(11%) patients for rectum, bladder and sigmoid, respectively. Conclusion: The 2 cm3 volumes between the applications/fractions are quite stable in topography for bladder and rectum, and hence the current practice of cumulative addition of D2cm3 dose is expected to be valid for bladder and rectum. For sigmoid, significant topographical changes were seen, which need further validation in a larger patient population and in multi-centric settings

  9. An afterloading procedure using 137Cs needle for tongue carcinoma

    International Nuclear Information System (INIS)

    We have developed an afterloading procedure using Cs needle for tongue carcinoma. Seven patients with T1-2NO squamous cell carcinoma of the oral tongue were treated by this method at the Oita Medical University between 1988 and 1994. This method reduced the radiotherapist's radiation exposure and resulted in good local control in the primary site. We have found no other report of a case treated in this way. We emphasize that cesium therapy using an afterloading procedure is very useful in treating tongue carcinoma. (author)

  10. Dose-volume histogram parameters of high-dose-rate brachytherapy for Stage I-II cervical cancer (≤4cm) arising from a small-sized uterus treated with a point A dose-reduced plan

    International Nuclear Information System (INIS)

    We investigated the rectal dose-sparing effect and tumor control of a point A dose-reduced plan in patients with Stage I-II cervical cancer (≤4 cm) arising from a small-sized uterus. Between October 2008 and August 2011, 19 patients with Stage I-II cervical cancer (≤4 cm) were treated with external beam radiotherapy (EBRT) for the pelvis and CT-guided brachytherapy. Seven patients were treated with brachytherapy with standard loading of source-dwell positions and a fraction dose of 6 Gy at point A (conventional brachy-plan). The other 12 patients with a small uterus close to the rectum or small intestine were treated with brachytherapy with a point A dose-reduction to match D2cc of the rectum and <6 Gy as the dose constraint ('point A dose-reduced plan') instead of the 6-Gy plan at point A ('tentative 6-Gy plan'). The total doses from EBRT and brachytherapy were added up and normalized to a biological equivalent dose of 2 Gy per fraction (EQD2). The median doses to the high-risk clinical target volume (HR-CTV) D90 in the conventional brachy-plan, tentative 6-Gy plan and point A dose-reduced plan were 62 GyEQD2, 80 GyEQD2 and 64 GyEQD2, respectively. The median doses of rectal D2cc in the corresponding three plans were 42 GyEQD2, 62 GyEQD2 and 51 GyEQD2, respectively. With a median follow-up period of 35 months, three patients developed Grade-1 late rectal complications and no patients developed local recurrence. Our preliminary results suggested that CT-guided brachytherapy using an individualized point A dose-reduced plan might be useful for reducing late rectal complications while maintaining primary tumor control. (author)

  11. [Mathematical Modelling of the Dependence of the Performance of the Left Ventricle of the Heart on Preload and Afterload].

    Science.gov (United States)

    Syomin, F A; Zberia, M V; Koubassova, N A; Tsaturyan, A K

    2015-01-01

    The results of the numerical simulation of the end-diastolic, end-systolic and stroke volumes of the left ventricle of the heart are presented. The simulation was based on a published simple kinetic model of cardiac muscle and approximation of the ventricle geometry with thick-wall cylinder where the fibre orientation varied linearly from sub-epicardium towards sub-endocardium. Blood flow was modelled with a liner compartment model. This simplified approach provides correct dependencies of the stroke volume on the pre- and afterload, namely end-diastolic pressure and peripheral resistance. The calculations show that the stroke volume is independent of arterial compliance and blood inertia. PMID:26841514

  12. Afterloading intracavitary irradiation and expanding stent for malignant biliary obstruction

    International Nuclear Information System (INIS)

    A double lumen catheter was developed as an apllicator for the remote afterloading (RALS) of 60Co source for the intracavitary irradiation of an obstructed common bile duct caused by carcinoma of the gallbladder. This was followed by the placement of nylon-covered expandable metallic stents to maintain patency. This combination effectively provided palliation. (author)

  13. 20: Afterloading treatment planning with the IBM personal computer AT

    International Nuclear Information System (INIS)

    With HDR (high dose rate) afterloading treatment, a very critical dependence of normal tissue reaction (rate of side effects of organs at risk) on dosage was demonstrated compared with the effect of low dose rate application. Furthermore, a stronger dependence of normal tissue reaction (steeper curves) on application of a single HDR afterloading fraction compared with that on total dose application over several weeks was observed. All these observations require exact dosage of HDR afterloading application to all points of organs at risk concerned in order to compensate the radiobiologically critical dosage of HDR. On the other hand, a threshold of 7 to 7.5 Gy per single fraction at organs at risk should not be exceeded. Therefore, HDR afterloading treatment requires optimization of source arrangement or source movement in order to receive good results. Since 1976, computer optimization of the movement of a highly active Ir-192 source is used, since 1987, an IBM PC AT is used for this calculation. The computer optimization programme, its data output and isodose calculation parts, is briefly discussed. 3 refs.; 5 figs

  14. Relocation of a nucletron microselectron-HDR brachytherapy system

    International Nuclear Information System (INIS)

    Full text: For a period of four weeks, our clinical Nucletron microSelectron high dose rate (HDR) brachytherapy system was pulled out of clinical use and relocated to a new building. During this period decommission tests, de-wiring of the treatment unit and its associated safety system (such as radiation detector, emergency off circuits and door interlocks), transportation of all equipment, re-wiring of this equipment in the new location and recommission tests were carried out. The decommission and recommission test program was designed upon consultation with the manufacturer's (Nucletron) acceptance test procedures and work carried out by others. The ACPSEM tolerances for remote afterloaders was used as a guideline. In addition to mandatory dosimetry, positional, workstation database and safety tests, two Australian Standard compliance tests were carried out. The compliance tests involved one for remote afterloaders and another for treatment room design. This testing program was designed and implemented with the aim of ensuring ongoing safe delivery of brachytherapy doses to the patient. The testing program consisted of two parts. The first involved a series of decommissioning tests that consisted of dosimetry tests such as source and check cable positional accuracy and source calibration tests. In addition to these tests an inventory of standard plans, patient records and system configuration information was catalogued. The second part involved a series of recommission tests and involved carrying out dosimetry tests on the brachytherapy system (positional accuracy and calibration tests), simulating common treatment scenarios (prostate, cervical, vaginal and bile duct) and checking standard plans; patient records and system configuration had remained unchanged. During this period, other tests were carried out. These included Nucletron acceptance and preventative maintenance tests, Australian Standards compliance testing and integrity of network transfer of

  15. In-phantom dosimetric measurements as quality control for brachytherapy. System check and constancy check; Messungen im Festkoerperphantom als Qualitaetskontrolle in der Brachytherapie. Systempruefung und Konstanzpruefung

    Energy Technology Data Exchange (ETDEWEB)

    Kollefrath, Michael; Bruggmoser, Gregor; Nanko, Norbert; Gainey, Mark [Universitaetsklinik Freiburg (Germany). Klinik fuer Strahlenheilkunde

    2015-09-01

    In brachytherapy dosimetric measurements are difficult due to the inherent dose-inhomogeneities. Typically in routine clinical practice only the nominal dose rate is determined for computer controlled afterloading systems. The region of interest lies close to the source when measuring the spatial dose distribution. In this region small errors in the positioning of the detector, and its finite size, lead to large measurement uncertainties that exacerbate the routine dosimetric control of the system in the clinic. The size of the measurement chamber, its energy dependence, and the directional dependence of the measurement apparatus are the factors which have a significant influence on dosimetry. Although ionisation chambers are relatively large, they are employed since similar chambers are commonly found on clinical brachytherapy units. The dose is determined using DIN 6800 [11] since DIN 6809-2 [12], which deals with dosimetry in brachytherapy, is antiquated and is currently in the process of revision. Further information regarding dosimetry for brachytherapy can be found in textbooks [1] and [2]. The measurements for this work were performed with a HDR (High-Dose-Rate) {sup 192}Ir source, type mHDR V2, and a Microselectron Afterloader V2 both from Nucletron/Elekta. In this work two dosimetric procedures are presented which, despite the aforemention difficulties, should assist in performing checks of the proper operation of the system. The first is a system check that measures the dose distribution along a line and is to be performed when first bringing the afterloader into operation, or after significant changes to the system. The other is a dosimetric constancy check, which with little effort can be performed monthly or weekly. It simultaneously verifies the positioning of the source at two positions, the functionality of the system clock and the automatic re-calculation of the source activity.

  16. A comparison between tandem and ovoids and interstitial gynecologic template brachytherapy dosimetry using a hypothetical computer model

    International Nuclear Information System (INIS)

    Purpose: To evaluate the dose distribution within the clinical target volume between two gynecologic brachytherapy systems - the tandem and ovoids and the Syed-Neblett gynecologic template - using a hypothetical computer model. Methods and Materials: Source positions of an intracavitary system (tandem and ovoids) and an interstitial system (GYN template) were digitized into the Nucletron Brachytherapy Planning System. The GYN template is composed of a 13-catheter implant (12 catheters plus a tandem) based on the Syed-Neblett gynecologic template. For the tandem and ovoids, the dwell times of all sources were evenly weighted to produce a pear-shaped isodose distribution. For the GYN template, the dwell times were determined using volume optimization. The prescribed dose was then normalized to point A in the intracavitary system and to a selected isodose line in the interstitial system. The treated volume in the two systems was kept approximately the same, and a cumulative dose-volume histogram of the treated volume was then generated with the Nucletron Brachytherapy Planning System to use for comparison. To evaluate the dose to a hypothetical target, in this case the cervix, a 2-cm-long, 3-cm-diameter cylinder centered along the tandem was digitized as the clinical target volume. The location of this hypothetical cervix was based on the optimal application of the brachytherapy system. A visual comparison of clinical target coverage by the treated volume on three different orthogonal planes through the treated volume was performed. The percentage dose-volume histograms of the target were generated for comparison. Multiple midline points were also placed at 5-mm intervals away from the tandem in the plane of the cervix to simulate the location of potential bladder and rectal dose points. Doses to these normal structures were calculated for comparison. Results: Although both systems covered the hypothetical cervix adequately, the interstitial system had a better

  17. WE-F-BRD-01: HDR Brachytherapy II: Integrating Imaging with HDR

    International Nuclear Information System (INIS)

    In recent years, with the advent of high/pulsed dose rate afterloading technology, advanced treatment planning systems, CT/MRI compatible applicators, and advanced imaging platforms, image-guided adaptive brachytherapy treatments (IGABT) have started to play an ever increasing role in modern radiation therapy. The most accurate way to approach IGABT treatment is to provide the infrastructure that combines in a single setting an appropriate imaging device, a treatment planning system, and a treatment unit. The Brachytherapy Suite is not a new concept, yet the modern suites are incorporating state-of-the-art imaging (MRI, CBCT equipped simulators, CT, and /or US) that require correct integration with each other and with the treatment planning and delivery systems. Arguably, an MRI-equipped Brachytherapy Suite is the ideal setup for real-time adaptive brachytherapy treatments. The main impediment to MRI-IGABT adoption is access to MRI scanners. Very few radiation oncology departments currently house MRI scanners, and even fewer in a dedicated Brachytherapy Suite. CBCT equipped simulators are increasingly offered by manufacturers as part of a Brachytherapy Suite installation. If optimized, images acquired can be used for treatment planning, or can be registered with other imaging modalities. This infrastructure is relevant for all forms of brachytherapy, especially those utilizing multi-fractionated courses of treatment such as prostate and cervix. Moreover, for prostate brachytherapy, US imaging systems can be part of the suite to allow for real-time HDR/LDR treatments. Learning Objectives: Understand the adaptive workflow of MR-based IGBT for cervical cancer. Familiarize with commissioning aspects of a CBCT equipped simulator with emphasis on brachytherapy applications Learn about the current status and future developments in US-based prostate brachytherapy

  18. WE-F-BRD-01: HDR Brachytherapy II: Integrating Imaging with HDR

    Energy Technology Data Exchange (ETDEWEB)

    Craciunescu, O [Duke University Medical Center, Durham, NC (United States); Todor, D [Virginia Commonwealth University, Richmond, VA (United States); Leeuw, A de

    2014-06-15

    In recent years, with the advent of high/pulsed dose rate afterloading technology, advanced treatment planning systems, CT/MRI compatible applicators, and advanced imaging platforms, image-guided adaptive brachytherapy treatments (IGABT) have started to play an ever increasing role in modern radiation therapy. The most accurate way to approach IGABT treatment is to provide the infrastructure that combines in a single setting an appropriate imaging device, a treatment planning system, and a treatment unit. The Brachytherapy Suite is not a new concept, yet the modern suites are incorporating state-of-the-art imaging (MRI, CBCT equipped simulators, CT, and /or US) that require correct integration with each other and with the treatment planning and delivery systems. Arguably, an MRI-equipped Brachytherapy Suite is the ideal setup for real-time adaptive brachytherapy treatments. The main impediment to MRI-IGABT adoption is access to MRI scanners. Very few radiation oncology departments currently house MRI scanners, and even fewer in a dedicated Brachytherapy Suite. CBCT equipped simulators are increasingly offered by manufacturers as part of a Brachytherapy Suite installation. If optimized, images acquired can be used for treatment planning, or can be registered with other imaging modalities. This infrastructure is relevant for all forms of brachytherapy, especially those utilizing multi-fractionated courses of treatment such as prostate and cervix. Moreover, for prostate brachytherapy, US imaging systems can be part of the suite to allow for real-time HDR/LDR treatments. Learning Objectives: Understand the adaptive workflow of MR-based IGBT for cervical cancer. Familiarize with commissioning aspects of a CBCT equipped simulator with emphasis on brachytherapy applications Learn about the current status and future developments in US-based prostate brachytherapy.

  19. Stereotactic transgluteal approach for brachytherapy of prostate cancer

    International Nuclear Information System (INIS)

    A new 3-dimensional stereotactic transgluteal CT-guided approach is presented for brachytherapy of localized prostate adenocarcinoma. Sixty patients aged 60 to 90 years (stage T1, T2) have been treated by this method with Pd-103 seeds during the past two years. The prescribed dose was 12,000 cGy. Volume and treatment planning were performed with CT. Placement of the afterloading needles was accomplished with a patented. FDA-approved stereotactic system mounted on a CT table. The mean PSA level was 12.0 ng/ml. The prostatic volume was 60-150 cm3 in 33 patients. Fifteen patients had moderate obstructive uropathy prior to the procedure. TURP defects were present in 13 patients, one of whom had unsuccessfully undergone external radiation therapy and hormonal manipulation. High grade tumors (Gleason's score, 7-10) were present in 18 patients. PSA levels decreased to less than 4 ng/ml in 96% of the patients measured three to six months after the procedure and to less than 2 ng ml in 62% of the patients. Prostatic volume decreased by 40%-50% in patients measured three to six months after the procedure. There was significant clinical improvement in patients with obstructive uropathy in three to six months. With the exception of frequency and burning of urination observed in 20% of patients for a transient period of one to three months, there have been no significant complications. No patients experienced incontinence or infection. Patients who were sexually active prior to the procedure remained so after the procedure. The transgluteal approach with 3-d stereotaxis offers several advantages over the transperineal ultrasound guided method in terms of precision of needle placement, treatment of difficult patients with large prostate glands and TURP defects, and avoidance of bone interference and urethral penetration. The simplicity of this technique makes this treatment a viable alternative to watchful waiting in selected patients and can be applicable to candidates who

  20. In-phantom dosimetric measurements as quality control for brachytherapy. System check and constancy check

    International Nuclear Information System (INIS)

    In brachytherapy dosimetric measurements are difficult due to the inherent dose-inhomogeneities. Typically in routine clinical practice only the nominal dose rate is determined for computer controlled afterloading systems. The region of interest lies close to the source when measuring the spatial dose distribution. In this region small errors in the positioning of the detector, and its finite size, lead to large measurement uncertainties that exacerbate the routine dosimetric control of the system in the clinic. The size of the measurement chamber, its energy dependence, and the directional dependence of the measurement apparatus are the factors which have a significant influence on dosimetry. Although ionisation chambers are relatively large, they are employed since similar chambers are commonly found on clinical brachytherapy units. The dose is determined using DIN 6800 [11] since DIN 6809-2 [12], which deals with dosimetry in brachytherapy, is antiquated and is currently in the process of revision. Further information regarding dosimetry for brachytherapy can be found in textbooks [1] and [2]. The measurements for this work were performed with a HDR (High-Dose-Rate) 192Ir source, type mHDR V2, and a Microselectron Afterloader V2 both from Nucletron/Elekta. In this work two dosimetric procedures are presented which, despite the aforemention difficulties, should assist in performing checks of the proper operation of the system. The first is a system check that measures the dose distribution along a line and is to be performed when first bringing the afterloader into operation, or after significant changes to the system. The other is a dosimetric constancy check, which with little effort can be performed monthly or weekly. It simultaneously verifies the positioning of the source at two positions, the functionality of the system clock and the automatic re-calculation of the source activity.

  1. SU-E-T-525: Dose Volume Histograms (DVH) Analysis and Comparison with ICRU Point Doses in MRI Guided HDR Brachytherapy for Cervical Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Badkul, R; McClinton, C; Kumar, P; Mitchell, M [University of Kansas Medical Center, Kansas City, KS (United States)

    2014-06-01

    Purpose: Brachytherapy plays a crucial role in management of cervix cancer. MRI compatible applicators have made it possible to accurately delineate gross-target-volume(GTV) and organs-at-risk(OAR) volumes, as well as directly plan, optimize and adapt dose-distribution for each insertion. We sought to compare DVH of tumor-coverage and OARs to traditional Point-A, ICRU-38 bladder and rectum point-doses for four different planning-techniques. Methods: MRI based 3D-planning was performed on Nucletron-Oncentra-TPS for 3 selected patients with varying tumor-sizes and anatomy. GTV,high-risk-clinical-target-volume(HR-CTV), intermediate-risk-clinical-target-volume(IR-CTV) and OARs: rectum, bladder, sigmoid-colon, vaginal-mucosa were delineated. Three conventionally used techniques: mg-Radium-equivalent(RaEq),equal-dwell-weights(EDW), Medical-College-of-Wisconsin proposed points-optimization (MCWO) and a manual-graphical-optimization(MGO) volume-coverage based technique were applied for each patient. Prescription was 6Gy delivered to point-A in Conventional techniques (RaEq, EDW, MCWO). For MGO, goal was to achieve 90%-coverage (D90) to HR-CTV with prescription-dose. ICRU point doses for rectum and bladder, point-A doses, DVH-doses for HR-CTV-D90,0.1cc-volume(D0.1),1ccvolume( D1),2cc-volume(D2) were collected for all plans and analyzed . Results: Mean D90 for HR-CTV normalized to MGO were 0.89,0.84,0.9,1.0 for EDW, RaEq, MCWO, MGO respectively. Mean point-A doses were 21.7% higher for MGO. Conventional techniques with Point-A prescriptions under covered HR-CTV-D90 by average of 12% as compared to MGO. Rectum, bladder and sigmoid doses were highest in MGO-plans for ICRU points as well as D0.1,D1 and D2 doses. Among conventional-techniques, rectum and bladder ICRU and DVH doses(0.1,1,2cc) were not significantly different (within 7%).Rectum D0.1 provided good estimation of ICRU-rectum-point doses (within 3.9%),rectum D0.1 were higher from 0.8 to 3.9% while bladder D0

  2. The American Brachytherapy Society recommendations for low-dose-rate brachytherapy for carcinoma of the cervix

    International Nuclear Information System (INIS)

    Purpose: This report presents guidelines for using low-dose-rate (LDR) brachytherapy in the management of patients with cervical cancer. Methods: Members of the American Brachytherapy Society (ABS) with expertise in LDR brachytherapy for cervical cancer performed a literature review, supplemented by their clinical experience, to formulate guidelines for LDR brachytherapy of cervical cancer. Results: The ABS strongly recommends that radiation treatment for cervical carcinoma (with or without chemotherapy) should include brachytherapy as a component. Precise applicator placement is essential for improved local control and reduced morbidity. The outcome of brachytherapy depends, in part, on the skill of the brachytherapist. Doses given by external beam radiotherapy and brachytherapy depend upon the initial volume of disease, the ability to displace the bladder and rectum, the degree of tumor regression during pelvic irradiation, and institutional practice. The ABS recognizes that intracavitary brachytherapy is the standard technique for brachytherapy for cervical carcinoma. Interstitial brachytherapy should be considered for patients with disease that cannot be optimally encompassed by intracavitary brachytherapy. The ABS recommends completion of treatment within 8 weeks, when possible. Prolonging total treatment duration can adversely affect local control and survival. Recommendations are made for definitive and postoperative therapy after hysterectomy. Although recognizing that many efficacious LDR dose schedules exist, the ABS presents suggested dose and fractionation schemes for combining external beam radiotherapy with LDR brachytherapy for each stage of disease. The dose prescription point (point A) is defined for intracavitary insertions. Dose rates of 0.50 to 0.65 Gy/h are suggested for intracavitary brachytherapy. Dose rates of 0.50 to 0.70 Gy/h to the periphery of the implant are suggested for interstitial implant. Use of differential source activity or

  3. Human reliability in high dose rate afterloading radiotherapy based on FMECA

    International Nuclear Information System (INIS)

    Objective: To put forward reasonable and feasible recommendations against the procedure with relative high risk during the high dose rate (HDR) afterloading radiotherapy, so as to enhance its clinical application safety, through studying the human reliability in the process of carrying out the HDR afterloading radiotherapy. Methods: Basic data were collected by on-site investigation and process analysis as well as expert evaluation. Failure mode, effect and criticality analysis (FMECA) employed to study the human reliability in the execution of HDR afterloading radiotherapy. Results: The FMECA model of human reliability for HDR afterloading radiotherapy was established, through which 25 procedures with relative high risk index were found,accounting for 14.1% of total 177 procedures. Conclusions: FMECA method in human reliability study for HDR afterloading radiotherapy is feasible. The countermeasures are put forward to reduce the human error, so as to provide important basis for enhancing clinical application safety of HDR afterloading radiotherapy. (authors)

  4. High dose rate 60Co remote afterloading irradiation in cancer of the cervix in Haiti, 1977-1984

    International Nuclear Information System (INIS)

    From 1977 through 1984, 293 previously untreated patients with biopsy proven carcinoma of the uterine cervix were treated by whole pelvis irradiation and high intensity 60Co remote afterloading (RAL) intrauterine tandem techniques in Haiti. The treatment results were analyzed retrospectively to evaluate the therapeutic results and prognostic factors of a strict protocol involving 40 Gy to the whole pelvis (2 Gy/day, 5 days/week). In addition, on the 5th day of the 3rd week, the first outpatient 60Co remote afterloading intracavitary insertion, delivering 7.5 Gy to point A with each insertion, repeated 3 times by a week separation for a total of 4 times. The total TDF for external beam plus RAL was 158 and 175 for early and late effects respectively. One hundred-four patients were evaluable after 1 year or more follow-up, with a median of 26.5 months. No evidence of disease (NED) by Stage at 1 year was: Stage I of 100% (3/3), Stage II of 82% (9/11), Stage III of 80% (47/59), and Stage IV of 58% (18/31). The post-therapeutic complication rate was 7.7%, with no fistulas or requirement of surgical intervention. Those with documented follow-up of at least 2 years (74 patients) had comparable survival to other high dose rate and low dose rate studies. This study shows that outpatient brachytherapy can be carried out without sophisticated and expensive equipment with minimal staff trained in radiation therapy. A detailed description of this outpatient RAL technique and results are described so that this method can be adapted to other developing and industrialized nations where cost containment is becoming a key issue

  5. Rectal function following prostate brachytherapy

    International Nuclear Information System (INIS)

    Purpose: Quality of life following therapeutic intervention for carcinoma of the prostate gland has not been well documented. In particular, a paucity of data has been published regarding bowel function following prostate brachytherapy. This study evaluated late bowel function in 209 consecutive prostate brachytherapy patients via a one-time questionnaire administered 16-55 months postimplant. Materials and Methods: Two hundred nineteen consecutive patients underwent permanent prostate brachytherapy from April 1995 through February 1998 using either 125I or 103Pd for clinical T1c-T3a carcinoma of the prostate gland. Of the 219 patients, 7 had expired. Of the remaining 212 patients (median follow-up, 28 months), each patient was mailed a self-administered questionnaire (10 questions) with a prestamped return envelope; 209 (98.6%) surveys were returned. Clinical parameters evaluated for bowel dysfunction included patient age, diabetes, hypertension, history of tobacco consumption, clinical T-stage, elapsed time since implant, and prostate ultrasound volume. Treatment parameters included utilization of neoadjuvant hormonal manipulation, utilization of moderate dose external beam radiation therapy prior to implantation, choice of isotope (125I vs. 103Pd), rectal dose (average, median and maximum doses), total implanted seed strength, values of the minimum dose received by 90% of the prostate gland (D90), and the percent prostate volume receiving 100%, 150%, and 200% of the prescribed minimum peripheral dose (V100, V150 and V200, respectively). Because detailed baseline bowel function was not available for these patients, a cross-sectional survey was performed in which 30 newly diagnosed prostate cancer patients of comparable demographics served as controls. Results: The total rectal function scores for the brachytherapy and control patients were 4.3 and 1.6, respectively, out of a total 27 points (p 103Pd resulted in lower radiation doses to the rectum, the choice of

  6. Patterns of care for brachytherapy in Europe (PC BE) in Spain and Poland: Comparative results

    International Nuclear Information System (INIS)

    Background: Cancer incidence and its mortality depend on a number of factors, including age, socio-economic status and geographic situation, and its incidence is growing around the world. Cancer incidence in Europe is now about 4000 patients per million per year and due to the ageing population a yearly increase of 1 - 1.5 % in cancer cases is estimated in the next two decades. Most of the cancer treatments will include external beam radiotherapy or brachytherapy. Brachytherapy has increased its use as a radical or palliative treatment and become more sophisticated with the spread of pulsed dose rate and high dose rate afterloading machines, and the use of new planning systems has additionally improved quality of treatment. Aim: The aim of the present study was to compare two countries (Poland and Spain) and to report the differences in the use of brachytherapy in these countries. For this reason, several characteristics related to brachytherapy were compared. Materials/Methods: The data used were collected using a web site questionnaire for the year 2002 where every centre that participated in the survey could introduce, change or update the information requested. Hospitals included in the study were those that provided data on brachytherapy, because our objective was to compare the brachytherapy facilities between Poland and Spain. Results: Data were available for 22 centres in Poland and 39 centres in Spain that provided brachytherapy in 2002. Spain having more centres that applied brachytherapy (1.0 centre per 1,000,000 inhabitants in Spain vs. 0.6 centre per 1,000,000 inhabitants in Poland), the average number of brachytherapy patients per centre is lower in Spain than in Poland, 137 and 382 respectively. The 5 main tumour sites treated with brachytherapy in Poland were: gynaecological (73.7 %), bronchus (13.0 %), breast (2.8 %), prostate (2.4 %) and head and neck (1.6 %). In Spain they were: gynaecological (59.7 %), breast (15.4 %), prostate (12.8 %), head

  7. Acceptance testing and commissioning of a new model HDR afterloader

    International Nuclear Information System (INIS)

    We have recently performed acceptance testing procedures and have commissioned a new model HDR afterloader, the Varian VariSource with ''Intelligent Drive.'' Our site was one of the first installations worldwide. It is our intent to describe our tests and the results of the tests particularly as they may differ from other afterloaders. The Ir-192 source is unique among afterloaders marketed in the US in that it is very slender (OD of source wire is 0.59 mm) and relatively long (two 0.5 cm sources for a total active length of 1.0 cm). A check of source homogeneity by autoradiograph as urged by the US Nuclear Regulatory Commission demonstrates no detectable source inhomogeneity. Reentrant well ionization chambers are calibrated in the US with a 3.5 mm long source at Accredited Dosimetry Calibration Laboratories. Therefore calibration needs to be considered with some care. Calibration of the first delivered source with a well ionization chamber indicated agreement with the manufacturer's stated activity to within 0.5%. Source positioning is checked with a device called a 'cam scale'. Tests have been carried out on this system and it has been found to accurately indicate source position to within ±0.5 mm. Timer accuracy has been found to be better than 0.1% for dwell times of several hundred seconds. The intelligent drive system and the small source diameter allow the source wire to negotiate paths with small radius of curvature. A series of tests have been made in which the source is forced to negotiate 'U' turns of decreasing radius of curvature. A 4.7 F, 100 cm long catheter was used for these tests and the 'U' turn was positioned at approximately 90 cm. Under these conditions, the VariSource was consistently able to traverse a 1.25 cm radius of curvature, which is better than the manufacturer's stated limit of 1.5 cm

  8. Intracavitary mould brachytherapy in malignant tumors of the maxilla

    International Nuclear Information System (INIS)

    Purpose: To integrate brachytherapy in the combined modality management of malignant tumors of the maxilla, as a means of increasing the radiotherapy dose to the tumor bed while avoiding high doses to the orbital contents. Materials and methods: Following a partial or total maxillectomy, a duplication of the interim surgical obturator was created using a wash of vinyl polysiloxane. This mould was used as a carrier for afterloading nylon catheters through which 192-Iridium seed-ribbons were inserted. Following brachytherapy, selected patients also received external beam irradiation. Results and discussion: After a median follow-up of 36 months, 9 out of 11 patients are alive and disease-free; 1 developed a local recurrence and another relapsed at another site in the oral cavity. Transient grade 1 - 2 mucositis at the implant site was observed in all patients. The review of computer isodose distributions showed that the average dose received by the homolateral eyeball was 10% (range 9,2 - 10.0) of the prescribed surface dose to the surgical cavity. Conclusions: Brachytherapy can be integrated in the management of patients with malignant tumors of the maxilla in the form of a custom-made intracavitary mould carrying 192-Iridium sources. We found this technique particularly useful in cases with close or positive surgical margins

  9. Radiation safety program in a high dose rate brachytherapy facility

    International Nuclear Information System (INIS)

    The use of remote afterloading equipment has been developed to improve radiation safety in the delivery of treatment in brachytherapy. Several accidents, however, have been reported involving high dose-rate brachytherapy system. These events, together with the desire to address the concerns of radiation workers, and the anticipated adoption of the International Basic Safety Standards for Protection Against Ionizing Radiation (IAEA, 1996), led to the development of the radiation safety program at the Department of Radiotherapy, Jose R. Reyes Memorial Medical Center and at the Division of Radiation Oncology, St. Luke's Medical Center. The radiation safety program covers five major aspects: quality control/quality assurance, radiation monitoring, preventive maintenance, administrative measures and quality audit. Measures for evaluation of effectiveness of the program include decreased unnecessary exposures of patients and staff, improved accuracy in treatment delivery and increased department efficiency due to the development of staff vigilance and decreased anxiety. The success in the implementation required the participation and cooperation of all the personnel involved in the procedures and strong management support. This paper will discuss the radiation safety program for a high dose rate brachytherapy facility developed at these two institutes which may serve as a guideline for other hospitals intending to install a similar facility. (author)

  10. Criteria for the evaluation of brachytherapy for malignant brain tumors

    International Nuclear Information System (INIS)

    Thirty two patients with recurrent or unresectable malignant brain tumors were treated by interstitial brachytherapy with Ir-192 seeds. After-loading catheters were stereotactically implanted under local anesthesia using a Brown-Roberts-wells (BRW) CT guided stereotactic system. The response to the therapy was followed by serial CT and MRI scans and evaluated three months after implantation by the standard criteria for the evaluation of chemotherapy because there is no set of criteria available for radiation therapy. After interstitial brachytherapy, the most commonly observed CT and MRI finding was central low attenuation, that is, the central enhanced tumor replaced by the radiation necrosis. Three months after the treatment, these findings were observed in 23 patients out of 32 patients on the CT and MRI. We observed complete response (CR) in 6 of 32 patients, partial response (PR) in 9, no change (NC) in 7 and progressive disease (PD) in 9. In 6 CR patients, the tumor disappeared by three months after treatment. In 15 patients of 17 NC and PD patients, the central low attenuation was observed and their prognosis was better than those without central necrosis. The results suggested the standard criteria for the evaluation of chemotherapy, such as CR, PR etc, cannot be applicable to our series because the tumor mass replaced by necrotic tissue and remained as a mass lesion in most cases and new criteria in consideration of this low attenuation on CT and MRI will be needed for the evaluation of brachytherapy on neuroimagings. (author)

  11. Prostate cancer brachytherapy

    International Nuclear Information System (INIS)

    The transperineal brachytherapy with 125I/Pd103 seed implantation guided by transurethral ultrasound must be presented as therapeutical option of low urinary morbidity in patients with localized prostate cancer. The combined clinical staging - including Gleason and initial PSA - must be encouraged, for definition of a group of low risk and indication of exclusive brachytherapy. Random prospective studies are necessary in order to define the best role of brachytherapy, surgery and external beam radiation therapy

  12. Tolerance of the carotid-sheath contents to brachytherapy: an experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Werber, J.L.; Sood, B.; Alfieri, A.; McCormick, S.A.; Vikram, B. (Department of Otolaryngology--Head and Neck Surgery, New York Medical College, Beth Israel (USA))

    1991-06-01

    Tumor invasion of the carotid artery is a potential indication for brachytherapy, which delivers a high dose of irradiation to residual tumor while limiting the dose to adjacent healthy tissues. The tolerance of carotid-sheath contents to varying doses of brachytherapy, however, has not been clearly established. In order to evaluate brachytherapy effects on carotid-sheath contents, after-loading catheters were implanted bilaterally in 3 groups of 6 rabbits each (18 rabbits). Iridium 192 brachytherapy doses of either 5000 cGy (rad), 9000 cGy, or 13,000 cGy were delivered unilaterally, with the contralateral neck serving as a nonirradiated control in each animal. There were no carotid ruptures and wound healing was normal. Two animals from each group were killed at 6, 20, and 48 weeks. Even at the highest dose (13,000 cGy), nerve conduction studies performed on the vagus nerve prior to sacrifice revealed no increased latency, histologic changes were minimal, and carotid arteries were patent. These observations suggest that the carotid-sheath contents in healthy rabbits could tolerate high doses (up to 13,000 cGy) of low-dose-rate interstitial brachytherapy without complications.

  13. Tolerance of the carotid-sheath contents to brachytherapy: an experimental study

    International Nuclear Information System (INIS)

    Tumor invasion of the carotid artery is a potential indication for brachytherapy, which delivers a high dose of irradiation to residual tumor while limiting the dose to adjacent healthy tissues. The tolerance of carotid-sheath contents to varying doses of brachytherapy, however, has not been clearly established. In order to evaluate brachytherapy effects on carotid-sheath contents, after-loading catheters were implanted bilaterally in 3 groups of 6 rabbits each (18 rabbits). Iridium 192 brachytherapy doses of either 5000 cGy (rad), 9000 cGy, or 13,000 cGy were delivered unilaterally, with the contralateral neck serving as a nonirradiated control in each animal. There were no carotid ruptures and wound healing was normal. Two animals from each group were killed at 6, 20, and 48 weeks. Even at the highest dose (13,000 cGy), nerve conduction studies performed on the vagus nerve prior to sacrifice revealed no increased latency, histologic changes were minimal, and carotid arteries were patent. These observations suggest that the carotid-sheath contents in healthy rabbits could tolerate high doses (up to 13,000 cGy) of low-dose-rate interstitial brachytherapy without complications

  14. Dynamic rotating-shield brachytherapy

    International Nuclear Information System (INIS)

    Purpose: To present dynamic rotating shield brachytherapy (D-RSBT), a novel form of high-dose-rate brachytherapy (HDR-BT) with electronic brachytherapy source, where the radiation shield is capable of changing emission angles during the radiation delivery process.Methods: A D-RSBT system uses two layers of independently rotating tungsten alloy shields, each with a 180° azimuthal emission angle. The D-RSBT planning is separated into two stages: anchor plan optimization and optimal sequencing. In the anchor plan optimization, anchor plans are generated by maximizing the D90 for the high-risk clinical-tumor-volume (HR-CTV) assuming a fixed azimuthal emission angle of 11.25°. In the optimal sequencing, treatment plans that most closely approximate the anchor plans under the delivery-time constraint will be efficiently computed. Treatment plans for five cervical cancer patients were generated for D-RSBT, single-shield RSBT (S-RSBT), and 192Ir-based intracavitary brachytherapy with supplementary interstitial brachytherapy (IS + ICBT) assuming five treatment fractions. External beam radiotherapy doses of 45 Gy in 25 fractions of 1.8 Gy each were accounted for. The high-risk clinical target volume (HR-CTV) doses were escalated such that the D2cc of the rectum, sigmoid colon, or bladder reached its tolerance equivalent dose in 2 Gy fractions (EQD2 with α/β= 3 Gy) of 75 Gy, 75 Gy, or 90 Gy, respectively.Results: For the patients considered, IS + ICBT had an average total dwell time of 5.7 minutes/fraction (min/fx) assuming a 10 Ci192Ir source, and the average HR-CTV D90 was 78.9 Gy. In order to match the HR-CTV D90 of IS + ICBT, D-RSBT required an average of 10.1 min/fx more delivery time, and S-RSBT required 6.7 min/fx more. If an additional 20 min/fx of delivery time is allowed beyond that of the IS + ICBT case, D-RSBT and S-RSBT increased the HR-CTV D90 above IS + ICBT by an average of 16.3 Gy and 9.1 Gy, respectively.Conclusions: For cervical cancer patients, D

  15. Dynamic rotating-shield brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yunlong [Department of Electrical and Computer Engineering, University of Iowa, 4016 Seamans Center, Iowa City, Iowa 52242 (United States); Flynn, Ryan T.; Kim, Yusung [Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 (United States); Yang, Wenjun [Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705 (United States); Wu, Xiaodong [Department of Electrical and Computer Engineering, University of Iowa, 4016 Seamans Center, Iowa City, Iowa 52242 and Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 (United States)

    2013-12-15

    Purpose: To present dynamic rotating shield brachytherapy (D-RSBT), a novel form of high-dose-rate brachytherapy (HDR-BT) with electronic brachytherapy source, where the radiation shield is capable of changing emission angles during the radiation delivery process.Methods: A D-RSBT system uses two layers of independently rotating tungsten alloy shields, each with a 180° azimuthal emission angle. The D-RSBT planning is separated into two stages: anchor plan optimization and optimal sequencing. In the anchor plan optimization, anchor plans are generated by maximizing the D{sub 90} for the high-risk clinical-tumor-volume (HR-CTV) assuming a fixed azimuthal emission angle of 11.25°. In the optimal sequencing, treatment plans that most closely approximate the anchor plans under the delivery-time constraint will be efficiently computed. Treatment plans for five cervical cancer patients were generated for D-RSBT, single-shield RSBT (S-RSBT), and {sup 192}Ir-based intracavitary brachytherapy with supplementary interstitial brachytherapy (IS + ICBT) assuming five treatment fractions. External beam radiotherapy doses of 45 Gy in 25 fractions of 1.8 Gy each were accounted for. The high-risk clinical target volume (HR-CTV) doses were escalated such that the D{sub 2cc} of the rectum, sigmoid colon, or bladder reached its tolerance equivalent dose in 2 Gy fractions (EQD2 with α/β= 3 Gy) of 75 Gy, 75 Gy, or 90 Gy, respectively.Results: For the patients considered, IS + ICBT had an average total dwell time of 5.7 minutes/fraction (min/fx) assuming a 10 Ci{sup 192}Ir source, and the average HR-CTV D{sub 90} was 78.9 Gy. In order to match the HR-CTV D{sub 90} of IS + ICBT, D-RSBT required an average of 10.1 min/fx more delivery time, and S-RSBT required 6.7 min/fx more. If an additional 20 min/fx of delivery time is allowed beyond that of the IS + ICBT case, D-RSBT and S-RSBT increased the HR-CTV D{sub 90} above IS + ICBT by an average of 16.3 Gy and 9.1 Gy, respectively

  16. Interstitial brachytherapy in carcinoma of the penis

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhary, A.J.; Ghosh, S.; Bhalavat, R.L. [Tata Memorial Hospital, Mumbai (India). Dept. of Radiation Oncology; Kulkarni, J.N. [Tata Memorial Hospital, Mumbai (India). Dept. of Surgery; Sequeira, B.V.E. [Tata Memorial Hospital, Mumbai (India). Dept. of Medical Physics

    1999-01-01

    Aim: Keeping in line with the increasing emphasis on organ preservation, we at the Tata Memorial Hospital have evaluated the role of Ir-192 interstitial implant as regards local control, functional and cosmetic outcome in early as well as locally recurrent carcinoma of the distal penis. Patients and Methods: From October 1988 to December 1996, 23 patients with histopathologically proven cancer of the penis were treated with radical radiation therapy using Ir-192 temporary interstitial implant. Our patients were in the age group of 20 to 60 years. The primary lesions were T1 and 7, T2 in 7 and recurrent in 9 patients. Only 7 patients had palpable groin nodes at presentation, all of which were pathologically negative. The median dose of implant was 50 Gy (range 40 to 60 Gy), using the LDR afterloading system and the Paris system of implant rules for dosimetry. Follow-up ranged from 4 to 117 months (median 24 months). Results: At last follow-up 18 of the 23 patients remained locally controlled with implant alone. Three patients failed only locally, 2 locoregionally and 1 only at the groin. Of the 5 patients who failed locally, 4 were successfully salvaged with partial penectomy and remained controlled when last seen. Local control with implant alone at 8 years was 70% by life table analysis. The patients had excellent functional and cosmetic outcome. We did not record any case of skin or softtissue necrosis. Only 2 patients developed meatal stenosis, both of which were treated endoscopically. Conclusion: Our results lead us to interpret that interstitial brachytherapy with Ir-192 offers excellent local control rates with preservation of organ and function. Penectomy can be reserved as a means for effective salvage. (orig.) [Deutsch] Ziel: Das Prinzip des Organerhalts gewinnt in der Onkologie zunehmend an Bedeutung. Ziel dieser Untersuchung war es, die Rolle der interstitiellen Brachytherapie mit Ir-192 zur Behandlung des fruehen und rezidivierten Peniskarzinoms zu

  17. Variation of treatment planning parameters (D90 HR-CTV, D2cc for OAR) for cervical cancer tandem ring brachytherapy in a multicentre setting: Comparison of standard planning and 3D image guided optimisation based on a joint protocol for dose-volume constraints

    International Nuclear Information System (INIS)

    Purpose: To perform a qualitative and quantitative comparison of different treatment planning methods used in different centres for MRI-based brachytherapy (BT) of cervical cancer. Materials and methods: Two representative patients with advanced cervical cancer (1 'limited volume case'; 1 'extensive volume case') were planned for brachytherapy (BT) with a tandem-ring applicator by six different centres. During a workshop all centres produced an institutional standard plan and an MRI-based adaptive treatment plan for each case. Optimisation was based on the fractionation schedule (HDR, PDR) and method according to the institutional protocol. Results: The loading pattern, dwell times, shape of the point A isodose varied considerably between institutional standard plans, as did dose-volume parameters for high risk CTV (HR-CTV) and also for the D2cc for OAR, violating the dose-volume constraints in many situations. During optimisation, the centres stayed as close as possible to the standard loading pattern and dwell times. The dose distributions and dose-volume parameters between the plans from the different centres became much more comparable after optimisation. The prescribed dose to the HR-CTV could be achieved in the limited volume case by all centres, in the extensive case only if additional needles were applied. Conclusion: Treatment planning for gynaecologic brachytherapy based on different traditions shows less variation in regard to target coverage and OAR dose, when 3D image-based optimisation is performed with a uniform prescription protocol.

  18. Remote afterloading interstitial radiotherapy of patients with vulva cancer

    International Nuclear Information System (INIS)

    Experience in application of interstitial gamma-therapy according remote afterloading technique for the period of 1991 - 1996 is described. Computer-aided programmed complex NPS (Nucletron) was used for dosimetric planning. Micro Selectron-LDR (Nucletron, Netherlands) with 137Cs source and Micro Selectron-HDR (Nucletron) with 192Ir sources were used for irradiation. Interstitial gamma-therapy was used as a component of associated radio- and combined therapy of 21 patients with primary vulva cancer and 10 patients with recurrent vulva cancer. It is shown that the complete tumor regression was attained in 48.4 %, partial regression in 35.5 %, stabilization of the process in 16.1 % of cases. Three-year survival of patients with primary vulva cancer was 33.7 %

  19. American Brachytherapy Society (ABS) recommendations for transperineal permanent brachytherapy of prostate cancer

    International Nuclear Information System (INIS)

    Purpose/Objective: To develop and disseminate the American Brachytherapy Society (ABS) recommendations for the clinical quality assurance and guidelines of permanent transperineal prostate brachytherapy with 125I or 103Pd. Methods and Materials: The ABS formed a committee of experts in prostate brachytherapy to develop consensus guidelines through a critical analysis of published data supplemented by their clinical experience. The recommendations of the panels were reviewed and approved by the Board of Directors of the ABS. Results: Patients with high probability of organ-confined disease are appropriately treated with brachytherapy alone. Brachytherapy candidates with a significant risk of extraprostatic extension should be treated with supplemental external beam radiation therapy (EBRT). Patient selection guidelines were developed. Dosimetric planning of the implant should be carried out for all patients before seed insertion. A modified peripheral loading is preferred. The AAPM TG-43 recommendations requiring a change in prescription dose for 125I sources should be universally implemented. The recommended prescription doses for monotherapy are 145 Gy for 125I and 115-120 Gy for 103Pd. The corresponding boost doses (after 40-50 Gy EBRT) are 100-110 Gy and 80-90 Gy, respectively. Clinical evidence to guide selection of radionuclide (103Pd or 125I) is lacking. Post implant dosimetry and evaluation must be performed on all patients. It is suggested that the dose that covers 90% (D90) and 100% (D100) of the prostate volume and the percentage of the prostate volume receiving the prescribed dose (V100) be obtained from a dose-volume histogram (DVH) and reported. Conclusion: Guidelines for appropriate patient selection, dose reporting, and improved quality of permanent prostate brachytherapy are presented. These broad recommendations are intended to be technical and advisory in nature, but the ultimate responsibility for the medical decisions rests with the treating

  20. CT-based interstitial HDR brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Kolotas, C.; Baltas, D.; Zamboglou, N. [Staedtische Kliniken Offenbach (Germany). Strahlenklinik

    1999-09-01

    Purpose: Development, application and evaluation of a CT-guided implantation technique and a fully CT-based treatment planning procedure for brachytherapy. Methods and Materials: A brachytherapy procedure based on CT-guided implantation technique and CT-based treatment planning has been developed and clinical evaluated. For this purpose a software system (PROMETHEUS) for the 3D reconstruction of brachytherapy catheters and patient anatomy using only CT scans has been developed. An interface for the Nucletron PLATO BPS treatment planning system for optimization and calculation of dose distribution has been devised. The planning target volume(s) are defined as sets of points using contouring tools and are used for optimization of the 3D dose distribution. Dose-volume histogram based analysis of the dose distribution (COIN analysis) enables a clinically realistic evaluation of the brachytherapy application to be made. The CT-guided implantation of catheters and the CT-based treatment planning procedure has been performed for interstitial brachytherapy and for different tumor sites in 197 patients between 1996 and 1997. Results: The accuracy of the CT reconstruction was tested using first a quality assurance phantom and second, a simulated interstitial implant of 12 needles. These were compared with the results of reconstruction using radiographs. Both methods gave comparable results with regard to accuracy, but the CT based reconstruction was faster. Clinical feasibility was proved in pre-irradiated recurrences of brain tumors, in pretreated recurrences or metastatic disease, and in breast carcinomas. The tumor volumes treated were in the range 5.1 to 2,741 cm{sup 3}. Analysis of implant quality showed a slightly significant lower COIN value for the bone implants, but no differences with respect to the planning target volume. Conclusions: The Offenbach system, incorporating the PROMETHEUS software for interstitial HDR brachytherapy has proved to be extremely valuable

  1. Nerve tolerance to high-dose-rate brachytherapy in patients with soft tissue sarcoma: a retrospective study

    International Nuclear Information System (INIS)

    Brachytherapy, interstitial tumor bed irradiation, following conservative surgery has been shown to provide excellent local control and limb preservation in patients with soft tissue sarcomas (STS), whereas little is known about the tolerance of peripheral nerves to brachytherapy. In particular, nerve tolerance to high-dose-rate (HDR) brachytherapy has never been properly evaluated. In this study, we examined the efficacy and radiation neurotoxicity of HDR brachytherapy in patients with STS in contact with neurovascular structures. Between 1995 and 2000, seven patients with STS involving the neurovascular bundle were treated in our institute with limb-preserving surgery, followed by fractionated HDR brachytherapy. Pathological examination demonstrated that 6 patients had high-grade lesions with five cases of negative margins and one case with positive margins, and one patient had a low-grade lesion with a negative margin. Afterloading catheters placed within the tumor bed directly upon the preserved neurovascular structures were postoperatively loaded with Iridium-192 with a total dose of 50 Gy in 6 patients. One patient received 30 Gy of HDR brachytherapy combined with 20 Gy of adjuvant external beam radiation. With a median follow-up of 4 years, the 5-year actuarial overall survival, disease-free survival, and local control rates were 83.3, 68.6, and 83.3%, respectively. None of the 7 patients developed HDR brachytherapy-induced peripheral neuropathy. Of 5 survivors, 3 evaluable patients had values of motor nerve conduction velocity of the preserved peripheral nerve in the normal range. In this study, there were no practical and electrophysiological findings of neurotoxicity of HDR brachytherapy. Despite the small number of patients, our encouraging results are valuable for limb-preserving surgery of unmanageable STS involving critical neurovascular structures

  2. Interstitial brachytherapy dosimetry update

    International Nuclear Information System (INIS)

    In March 2004, the American Association of Physicists in Medicine (AAPM) published an update to the AAPM Task Group No. 43 Report (TG-43) which was initially published in 1995. This update was pursued primarily due to the marked increase in permanent implantation of low-energy photon-emitting brachytherapy sources in the United States over the past decade, and clinical rationale for the need of accurate dosimetry in the implementation of interstitial brachytherapy. Additionally, there were substantial improvements in the brachytherapy dosimetry formalism, accuracy of related parameters and methods for determining these parameters. With salient background, these improvements are discussed in the context of radiation dosimetry. As an example, the impact of this update on the administered dose is assessed for the model 200 103Pd brachytherapy source. (authors)

  3. High-risk clinical target volume delineation in CT-guided cervical cancer brachytherapy - Impact of information from FIGO stage with or without systematic inclusion of 3D documentation of clinical gynecological examination

    Energy Technology Data Exchange (ETDEWEB)

    Hegazy, Neamat [Dept. of Radiotherapy, Comprehensive Cancer Centre Vienna, Medical Univ. of Vienna, Vienna (Austria); Dept. of Clinical Oncology, Medical Univ. of Alexandria, Alexandria (Egypt); Poetter Rickard; Kirisits, Christian [Dept. of Radiotherapy, Comprehensive Cancer Centre Vienna, Medical Univ. of Vienna, Vienna (Austria); Christian Doppler Lab. for Medical Radiation Research for Radiation Oncology, Medical Univ. Vienna (Austria); Berger, Daniel; Federico, Mario; Sturdza, Alina; Nesvacil, Nicole [Dept. of Radiotherapy, Comprehensive Cancer Centre Vienna, Medical Univ. of Vienna, Vienna (Austria)], e-mail: nicole.nesvacil@meduniwien.ac.at

    2013-10-15

    Purpose: The aim of the study was to improve computed tomography (CT)-based high-risk clinical target volume (HR CTV) delineation protocols for cervix cancer patients, in settings without any access to magnetic resonance imaging (MRI) at the time of brachytherapy. Therefore the value of a systematic integration of comprehensive three-dimensional (3D) documentation of repetitive gynecological examination for CT-based HR CTV delineation protocols, in addition to information from FIGO staging, was investigated. In addition to a comparison between reference MRI contours and two different CT-based contouring methods (using complementary information from FIGO staging with or without additional 3D clinical drawings), the use of standardized uterine heights was also investigated. Material and methods: Thirty-five cervix cancer patients with CT- and MR-images and 3D clinical drawings at time of diagnosis and brachytherapy were included. HR CTV{sub stage} was based on CT information and FIGO stage. HR CTV{sub stage} {sub +3Dclin} was contoured on CT using FIGO stage and 3D clinical drawing. Standardized HR CTV heights were: 1/1, 2/3 and 1/2 of uterine height. MRI-based HR CTV was delineated independently. Resulting widths, thicknesses, heights, and volumes of HR CTV{sub stage}, HR CTV{sub stage+3Dclin} and MRI-based HR CTV contours were compared. Results: The overall normalized volume ratios (mean{+-}SD of CT/MRI{sub ref} volume) of HR CTV{sub stage} and HR{sub stage+3Dclin} were 2.6 ({+-}0.6) and 2.1 ({+-}0.4) for 1/1 and 2.3 ({+-}0.5) and 1.8 ({+-}0.4), for 2/3, and 1.9 ({+-}0.5) and 1.5 ({+-}0.3), for 1/2 of uterine height. The mean normalized widths were 1.5{+-}0.2 and 1.2{+-}0.2 for HR CTV{sub stage} and HR CTV{sub stage+3Dclin}, respectively (p < 0.05). The mean normalized heights for HR CTV{sub stage} and HR CTV{sub stage+3Dclin} were both 1.7{+-}0.4 for 1/1 (p < 0.05.), 1.3{+-}0.3 for 2/3 (p < 0.05) and 1.1{+-}0.3 for 1/2 of uterine height. Conclusion: CT-based HR

  4. Progress and review of brachytherapy for cancer of the oral region

    International Nuclear Information System (INIS)

    Radiation therapy contributes greatly to the treatment of head and neck cancer, because it maintains the normal anatomy, minimizes functional loss, and facilitates a patient's return to work. Brachytherapy using small radiation sources is an indispensable modality for the treatment of cancer of the oral region, in which emphasis should be laid on the maintenance of normal anatomy and function and a high quality of life. Brachytherapy was performed in 62% of the radiation therapy patients with cancer of the oral region. Interstitial brachytherapy with radium, 192Ir-hairpin was administered to more than 80% of the patients with tongue cancer and 198Au-grain was frequently used for other site of the oral region. Introduction of the remote afterloading system (RALS) has completely eliminated the possibility of personnel exposure and increased the indication for brachytherapy. There is a lot of work to be done in the near future, including the establishment of dose-time relationship for RALS and the development of related apparatus and instruments and the standardization of dose assessment. (author)

  5. Brachytherapy on treatment of childhood rhabdomyosarcoma

    International Nuclear Information System (INIS)

    complications. Late effects were observed on head and neck patients and included facial deformity and discromies in five of seven patients. The incidence and the intensity of late effects were low in patients with extremities and genital tumors. The results confirm the value of brachytherapy on treatment of childhood rhabdomyosarcoma with high local control rates and acceptable morbidity. The brachytherapy technique employed depend of the site and volume of the tumor. It can not be established a specific one to each clinical situation

  6. Innovation in gynaecological brachytherapy: new technologies, pulse dose-rate brachytherapy, image, definition of new volumes of interest and their impact on dosimetry: application in a clinical research programme 'S.T.I.C.'; Nouveautes en curietherapie gynecologique: nouvelles technologies, curietherapie pulsee, imagerie, definitions de nouveaux volumes d'interet et leur impact sur la dosimetrie: applications dans le cadre d'un STIC

    Energy Technology Data Exchange (ETDEWEB)

    Haie-Meder, C. [Institut Gustave-Roussy, Service de Curietherapie, 94 - Villejuif (France); Peiffert, D. [Centre Alexis-Vautrin, Service de Radiotherapie, 54 - Vandoeuvre-Les-Nancy (France)

    2006-11-15

    Brachytherapy plays a fundamental role in the therapeutic approach of patients with stage I-IV cervical carcinoma. Technical modalities have evolved during the last decades: stepping source technology, imaging modalities development, specially IMN, treatment planning system integrating 3D images. Images from CT-Scan and MRI have contributed to a better knowledge of tumoral extension and critical organs. CT and/or MRI compatible applicators allow a sectional image based approach with a better definition of tumour volume compared to traditional approaches. The introduction of 3D image based approach for GTV and CTV requires new definitions and a common language. In 2000, a working group within GEC-ESTRO was created to support 3D image based 3D treatment planning approach in cervix cancer BT. The task was to determine a common terminology enabling various groups to use a common language. Recommendations were described and proposed based on clinical experience and dosimetric concepts of different institutions. Two CTVs were described en relation to the risk for recurrence: high-risk CTV and intermediate risk CTV. In order to better define the role of such definitions and their potential impact on the complication incidence in patients with cervical cancer, a special French programme was developed. The aim of this programme is to study the incidence of the severe 2-year complication rate in two comparable patient populations: one population is treated using PDR brachytherapy with CT-Scan or MRI with the applicators in place allowing a 3D dosimetry with optimization, the second population is treated using standard X-rays radiographs, without any delineation of the target nor optimisation. Each population arm includes 425 patients. A medico-economic assessment is performed, allowing a real cost of the most sophisticated approach compared to a historical dosimetric system. (author)

  7. Image-Based Brachytherapy for the Treatment of Cervical Cancer

    International Nuclear Information System (INIS)

    Cervical cancer is a disease that requires considerable multidisciplinary coordination of care and labor in order to maximize tumor control and survival while minimizing treatment-related toxicity. As with external beam radiation therapy, the use of advanced imaging and 3-dimensional treatment planning has generated a paradigm shift in the delivery of brachytherapy for the treatment of cervical cancer. The use of image-based brachytherapy, most commonly with magnetic resonance imaging (MRI), requires additional attention and effort by the treating physician to prescribe dose to the proper volume and account for adjacent organs at risk. This represents a dramatic change from the classic Manchester approach of orthogonal radiographic images and prescribing dose to point A. We reviewed the history and currently evolving data and recommendations for the clinical use of image-based brachytherapy with an emphasis on MRI-based brachytherapy

  8. Image-Based Brachytherapy for the Treatment of Cervical Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Harkenrider, Matthew M., E-mail: mharkenrider@lumc.edu; Alite, Fiori; Silva, Scott R.; Small, William

    2015-07-15

    Cervical cancer is a disease that requires considerable multidisciplinary coordination of care and labor in order to maximize tumor control and survival while minimizing treatment-related toxicity. As with external beam radiation therapy, the use of advanced imaging and 3-dimensional treatment planning has generated a paradigm shift in the delivery of brachytherapy for the treatment of cervical cancer. The use of image-based brachytherapy, most commonly with magnetic resonance imaging (MRI), requires additional attention and effort by the treating physician to prescribe dose to the proper volume and account for adjacent organs at risk. This represents a dramatic change from the classic Manchester approach of orthogonal radiographic images and prescribing dose to point A. We reviewed the history and currently evolving data and recommendations for the clinical use of image-based brachytherapy with an emphasis on MRI-based brachytherapy.

  9. Brachytherapy in thetreatment of the oral and oropharyngeal cancer

    Directory of Open Access Journals (Sweden)

    A. M. Zhumankulov

    2015-01-01

    Full Text Available Background. One of the methods of radiotherapy of malignant tumors of oral cavity and oropharyngeal region today is interstitial radiation therapy – brachytherapy, allowing you to create the optimum dose of irradiation to the tumor, necessary for its destruction, without severe radiation reactions in the surrounding tissues unchanged. Brachytherapy has the following advantages: high precision – the ability of the local summarization of high single doses in a limited volume of tissue; good tolerability; a short time of treatment. At this time, brachytherapy is the method of choice used as palliative therapy and as a component of radical treatment.Objective: The purpose of this article is a literature review about the latest achievements of interstitial brachytherapy in malignant tumors of the oral cavity and oropharynx.

  10. MRI-assisted versus conventional treatment planning in brachytherapy of cervical and endometrial carcinoma: The impact of individual anatomy on dose distribution in target volume and organs at risk

    International Nuclear Information System (INIS)

    Objective: Dose prescription and definition of target volume in brachytherapy of cervical and endometrial cancer are calculated to standard points as Manchester point A or point My(ometrium) in most centers. Calculation of doses to organs at risk mainly relies on ICRU-report 38. But standard dose prescription neglects individual patient anatomy. While MRI and CT had widespread impact on individual planning in external beam radiotherapy, there is still a minor influence on brachytherapy. The impact of individual anatomy on dose distribution in target volume and organs at risk demonstrates the objective of individual brachytherapy planning. Materials and Methods: 8 patients with cervical and 4 patients with endometrial carcinoma underwent MRI of the pelvis with in-situ applicators (ring-tandem applicators for cervical carcinoma and modified Heyman-capsules for endometrial carcinoma). T1w slices were angulated coronal and sagittal to get rectangular reproductions to applicator axis. Orthogonal or isocentric X-ray films for conventional treatment planning were done. MRI-information on target and organs at risk was transformed into coordinates relative to applicator axis and dose calculation on the database of conventional treatment planning was performed by Nucletron Planning System PLATO. Isodoses were projected into MRI slices. Prescribed dose to patients with cervical cancer was 8.5 Gy to point A resp. 10 Gy to point My (2cm below fundal myometrium and 2cm lateral applicator axis) in endometrial cancer. Results: Dose prescription to Manchester point A or point My represented in only 50% of cases uterine serosa. Instead of 2cm lateral of applicator axis, uterine surface ranged from 1.0 cm to 3.9 cm at the level of point A (mean 2.25 cm coronal and 1.77 cm sagittal) and from 1.5 cm to 4.4 cm at the level of point My (mean 2.7 cm coronal and 2.1 cm sagittal). Uterine volume ranged from 69 cc to 277 cc, mean volume was 150cc. Dose-volume histograms of patients with

  11. Sealed source and device design safety testing: Technical report on the findings of task 4 -- Investigation of failed Nitinol brachytherapy wire. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Benac, D.J.; Burghard, H.C. [Southwest Research Inst., San Antonio, TX (United States)

    1996-03-01

    This report covers an investigation of the nature and cause of failure in Nitinol brachytherapy sourcewires. The investigation was initiated after two clinical incidents in which sourcewires failed during or immediately after a treatment. The investigation determined that the two clinical Nitinol sourcewires failed in a brittle manner, which is atypical for Nitinol. There were no material anomalies or subcritical flaws to explain the brittle failures. The bend tests also demonstrated that neither moist environment, radiation, nor low-temperature structural transformation was a likely root cause of the failures. However, degradation of the PTFE was consistently evident, and those sourcewires shipped or stored with PTFE sleeves consistently failed in laboratory bend tests. On the basis of the results of this study, it was concluded that the root cause of the in-service failures of the sourcewires was environmentally induced embrittlement due to the breakdown of the PTFE protective sleeves in the presence of the high-radiation field and subsequent reaction or interaction of the breakdown products with the Nitinol alloy.

  12. Sealed source and device design safety testing: Technical report on the findings of task 4 -- Investigation of failed Nitinol brachytherapy wire. Volume 2

    International Nuclear Information System (INIS)

    This report covers an investigation of the nature and cause of failure in Nitinol brachytherapy sourcewires. The investigation was initiated after two clinical incidents in which sourcewires failed during or immediately after a treatment. The investigation determined that the two clinical Nitinol sourcewires failed in a brittle manner, which is atypical for Nitinol. There were no material anomalies or subcritical flaws to explain the brittle failures. The bend tests also demonstrated that neither moist environment, radiation, nor low-temperature structural transformation was a likely root cause of the failures. However, degradation of the PTFE was consistently evident, and those sourcewires shipped or stored with PTFE sleeves consistently failed in laboratory bend tests. On the basis of the results of this study, it was concluded that the root cause of the in-service failures of the sourcewires was environmentally induced embrittlement due to the breakdown of the PTFE protective sleeves in the presence of the high-radiation field and subsequent reaction or interaction of the breakdown products with the Nitinol alloy

  13. Evaluation and test of 192Ir air kerma strength for afterloading systems

    International Nuclear Information System (INIS)

    Objective: To study the method of measuring air kerma strength of afterloading units with 192Ir source by using well type ionization chamber. Methods: The air kerma strength of 30 afterloading units with 192Ir source was measured using 2000A electrometer and 1000 plus well type ionization chamber, and apparent activity of the source was calculated with the air kerma strength and apparent activity conversion factor. The measured activity of the source was compared with the original value of the source provided by the manufacturer, and the relevant deviation should be within ±5%. Results: The air kerma strength of afterloading units with 192Ir sources was tested. The relevant deviation of the measured activity and the original value was within -0.1%-4.4%. Conclusions: The measurement method with a well type ionization chamber is convenient and highly accurate which can be used for the test of quality control in hospitals. (authors)

  14. Interstitial brachytherapy in carcinoma of the penis

    International Nuclear Information System (INIS)

    Aim: Keeping in line with the increasing emphasis on organ preservation, we at the Tata Memorial Hospital have evaluated the role of Ir-192 interstitial implant as regards local control, functional and cosmetic outcome in early as well as locally recurrent carcinoma of the distal penis. Patients and Methods: From October 1988 to December 1996, 23 patients with histopathologically proven cancer of the penis were treated with radical radiation therapy using Ir-192 temporary interstitial implant. Our patients were in the age group of 20 to 60 years. The primary lesions were T1 and 7, T2 in 7 and recurrent in 9 patients. Only 7 patients had palpable groin nodes at presentation, all of which were pathologically negative. The median dose of implant was 50 Gy (range 40 to 60 Gy), using the LDR afterloading system and the Paris system of implant rules for dosimetry. Follow-up ranged from 4 to 117 months (median 24 months). Results: At last follow-up 18 of the 23 patients remained locally controlled with implant alone. Three patients failed only locally, 2 locoregionally and 1 only at the groin. Of the 5 patients who failed locally, 4 were successfully salvaged with partial penectomy and remained controlled when last seen. Local control with implant alone at 8 years was 70% by life table analysis. The patients had excellent functional and cosmetic outcome. We did not record any case of skin or softtissue necrosis. Only 2 patients developed meatal stenosis, both of which were treated endoscopically. Conclusion: Our results lead us to interpret that interstitial brachytherapy with Ir-192 offers excellent local control rates with preservation of organ and function. Penectomy can be reserved as a means for effective salvage. (orig.)

  15. The Fricke dosimeter as an absorbed dose to water primary standard for Ir-192 brachytherapy

    Science.gov (United States)

    El Gamal, Islam; Cojocaru, Claudiu; Mainegra-Hing, Ernesto; McEwen, Malcolm

    2015-06-01

    The aim of this project was to develop an absorbed dose to water primary standard for Ir-192 brachytherapy based on the Fricke dosimeter. To achieve this within the framework of the existing TG-43 protocol, a determination of the absorbed dose to water at the reference position, D(r0,θ0), was undertaken. Prior to this investigation, the radiation chemical yield of the ferric ions (G-value) at the Ir-192 equivalent photon energy (0.380 MeV) was established by interpolating between G-values obtained for Co-60 and 250 kV x-rays. An irradiation geometry was developed with a cylindrical holder to contain the Fricke solution and allow irradiations in a water phantom to be conducted using a standard Nucletron microSelectron V2 HDR Ir-192 afterloader. Once the geometry and holder were optimized, the dose obtained with the Fricke system was compared to the standard method used in North America, based on air-kerma strength. Initial investigations focused on reproducible positioning of the ring-shaped holder for the Fricke solution with respect to the Ir-192 source and obtaining an acceptable type A uncertainty in the optical density measurements required to yield the absorbed dose. Source positioning was found to be reproducible to better than 0.3 mm, and a careful cleaning and control procedure reduced the variation in optical density reading due to contamination of the Fricke solution by the PMMA holder. It was found that fewer than 10 irradiations were required to yield a type A standard uncertainty of less than 0.5%. Correction factors to take account of the non-water components of the geometry and the volume averaging effect of the Fricke solution volume were obtained from Monte Carlo calculations. A sensitivity analysis showed that the dependence on the input data used (e.g. interaction cross-sections) was small with a type B uncertainty for these corrections estimated to be 0.2%. The combined standard uncertainty in the determination of absorbed dose to water

  16. The Fricke dosimeter as an absorbed dose to water primary standard for Ir-192 brachytherapy

    International Nuclear Information System (INIS)

    The aim of this project was to develop an absorbed dose to water primary standard for Ir-192 brachytherapy based on the Fricke dosimeter. To achieve this within the framework of the existing TG-43 protocol, a determination of the absorbed dose to water at the reference position, D(r0,θ0), was undertaken. Prior to this investigation, the radiation chemical yield of the ferric ions (G-value) at the Ir-192 equivalent photon energy (0.380 MeV) was established by interpolating between G-values obtained for Co-60 and 250 kV x-rays.An irradiation geometry was developed with a cylindrical holder to contain the Fricke solution and allow irradiations in a water phantom to be conducted using a standard Nucletron microSelectron V2 HDR Ir-192 afterloader. Once the geometry and holder were optimized, the dose obtained with the Fricke system was compared to the standard method used in North America, based on air-kerma strength.Initial investigations focused on reproducible positioning of the ring-shaped holder for the Fricke solution with respect to the Ir-192 source and obtaining an acceptable type A uncertainty in the optical density measurements required to yield the absorbed dose. Source positioning was found to be reproducible to better than 0.3 mm, and a careful cleaning and control procedure reduced the variation in optical density reading due to contamination of the Fricke solution by the PMMA holder. It was found that fewer than 10 irradiations were required to yield a type A standard uncertainty of less than 0.5%.Correction factors to take account of the non-water components of the geometry and the volume averaging effect of the Fricke solution volume were obtained from Monte Carlo calculations. A sensitivity analysis showed that the dependence on the input data used (e.g. interaction cross-sections) was small with a type B uncertainty for these corrections estimated to be 0.2%.The combined standard uncertainty in the determination of absorbed dose to water at

  17. Interstitial high dose rate brachytherapy for cancer of the oral tongue

    International Nuclear Information System (INIS)

    Between October 1992 and March 1996, 34 patients with cancer of the tongue without nodal metastases underwent fractionated interstitial brachytherapy with a high dose rate (HDR) iridium remote afterloader. The types of treatment consisted of brachytherapy (BT) alone: 8 cases, BT after surgery: 3 cases, BT after systemic chemotherapy: 3 cases, BT after arterial infusion (AI): 14 cases, BT after external beam radiotherapy (ERT): 5 cases, and BT after AI+ERT: 1 case. Applicators were implanted under general anesthesia. Reference dose was estimated at point 5 mm from source. Brachytherapy was carried out in 10 fractions twice a day for 5 days. Patients received 60 Gy with BT alone, 45-55 Gy after ERT, and 50-55 Gy after chemotherapy. Local failure was found in 5 cases with T2 lesions. Recurrence occurred in 5 out of 27 cases with tumor thickness of 10 mm or less. On the other hand, there were no recurrences in 7 cases with tumor thickness of more than 10 mm. Among various types of treatment, BT following systemic chemotherapy or AI exhibited better results (local failure: 1/17) than other modalities. Lymph node metastases appeared in 11 cases. Cause specific survival was 91% at 2 years in all cases. Ulcerations of the tongue were noted in 7 in 26 evaluable cases. Although ulceration occurred in 6/13 cases treated until March 1994, the incidence decreased to 1/13 afterwards. Careful implantation and dose prescription contributed to the decrease in ulceration. Ulcerative lesions healed with conservative care within 6 months in all cases. Bone exposure occurred in 2 cases that received 60 Gy following AI for advanced diseases. HDR fractionated brachytherapy may be a workable alternative to LDR therapy for cancer of the tongue. Brachytherapy following chemotherapy can be applied to more advanced cases of the disease. (K.H.)

  18. Restenosis: Intracoronary Brachytherapy.

    Science.gov (United States)

    Drachman, Douglas E.; Simon, Daniel I.

    2002-04-01

    Though interventional strategies have revolutionized the management of patients with symptomatic coronary artery disease, in-stent restenosis has emerged as the single most important limitation of long-term success following percutaneous coronary intervention. Once present, in-stent restenosis is extraordinarily difficult to treat, with conventional revascularization techniques failing in 50% to 80% of patients. Intracoronary radiation, or brachytherapy, targets cellular proliferation within the culprit neointima. Clinical trials have demonstrated that brachytherapy is a highly effective treatment for in-stent restenosis, reducing angiographic restenosis by 50% to 60% and the need for target vessel revascularization by 40% to 50%. The benefits of intracoronary brachytherapy may be particularly pronounced in certain patient subgroups (eg, those with diabetes, long lesions, or lesions in saphenous vein bypass grafts), but comes at the cost of an increased rate of late stent thrombosis and the need for extended antiplatelet therapy. The role of brachytherapy in the arsenal of the interventional cardiologist will continue to evolve, particularly in light of the unprecedented recent advances with the use of drug-eluting stents for restenosis prevention. PMID:11858773

  19. Erectile dysfunction following treatment with low-dose brachytherapy for prostate cancer

    International Nuclear Information System (INIS)

    Of 260 prostate cancer patients, 26% had potency before brachytherapy when defined as an sexual health inventory for men (SHIM) score of ≥12. Three years after brachytherapy, 44% patients had preserved erectile function (EF-pts) and 56% were erectile dysfunction (ED-pts). Between ED-pts and EF-pts, we compared the doses delivered to the penile bulb or neurovascular bundle using a dose-volume histogram obtained from brachytherapy postplan and patients' characteristics. The mean age and prostate volume of ED-pts were significantly higher than those of EF-pts. No difference was observed in the respective doses between the 2 groups.(author)

  20. Audit on source strength determination for HDR and PDR 192Ir brachytherapy in Sweden

    International Nuclear Information System (INIS)

    Background and purpose: To investigate the status of source strength determination in terms of reference air kerma rate (RAKR) for HDR and PDR 192Ir brachytherapy in Sweden. Materials and methods: RAKR was determined in each of the 14 Swedish afterloaders, using calibrated equipment from the Swedish Secondary Standard Dosimetry Laboratory. Results: Values of RAKR from the external audit, the hospitals and vendors agreed within the uncertainty limits guaranteed by the vendors. Conclusions: The accuracy in RAKR determination has increased over the last years as a result of increased availability of interpolation standards for HDR 192Ir and the increased use of robust well-type ion chambers designed for brachytherapy. It is recommended to establish a ratio between the RAKR value from own measurements at the hospital and that of the vendor since such a ratio embeds constant systematic differences due to e.g. varying traceability and therefore has the potential of being less uncertain than the RAKR alone. Traceability to primary standards for HDR 192Ir sources will in the future significantly decrease the uncertainty in RAKR of 192Ir brachytherapy

  1. Prospective multi-center trial utilizing electronic brachytherapy for the treatment of endometrial cancer

    International Nuclear Information System (INIS)

    A modified form of high dose rate (HDR) brachytherapy has been developed called Axxent Electronic Brachytherapy (EBT). EBT uses a kilovolt X-ray source and does not require treatment in a shielded vault or a HDR afterloader unit. A multi-center clinical study was carried out to evaluate the success of treatment delivery, safety and toxicity of EBT in patients with endometrial cancer. A total of 15 patients with stage I or II endometrial cancer were enrolled at 5 sites. Patients were treated with vaginal EBT alone or in combination with external beam radiation. The prescribed doses of EBT were successfully delivered in all 15 patients. From the first fraction through 3 months follow-up, there were 4 CTC Grade 1 adverse events and 2 CTC Grade II adverse events reported that were EBT related. The mild events reported were dysuria, vaginal dryness, mucosal atrophy, and rectal bleeding. The moderate treatment related adverse events included dysuria, and vaginal pain. No Grade III or IV adverse events were reported. The EBT system performed well and was associated with limited acute toxicities. EBT shows acute results similar to HDR brachytherapy. Additional research is needed to further assess the clinical efficacy and safety of EBT in the treatment of endometrial cancer

  2. Clinical outcome of high-dose-rate interstitial brachytherapy in patients with oral cavity cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sung Uk; Cho, Kwan Ho; Moon, Sung Ho; Choi, Sung Weon; Park, Joo Yong; Yun, Tak; Lee, Sang Hyun; Lim, Young Kyung; Jeong, Chi Young [National Cancer Center, Goyang (Korea, Republic of)

    2014-12-15

    To evaluate the clinical outcome of high-dose-rate (HDR) interstitial brachytherapy (IBT) in patients with oral cavity cancer. Sixteen patients with oral cavity cancer treated with HDR remote-control afterloading brachytherapy using 192Ir between 2001 and 2013 were analyzed retrospectively. Brachytherapy was administered in 11 patients as the primary treatment and in five patients as salvage treatment for recurrence after the initial surgery. In 12 patients, external beam radiotherapy (50-55 Gy/25 fractions) was combined with IBT of 21 Gy/7 fractions. In addition, IBT was administered as the sole treatment in three patients with a total dose of 50 Gy/10 fractions and as postoperative adjuvant treatment in one patient with a total of 35 Gy/7 fractions. The 5-year overall survival of the entire group was 70%. The actuarial local control rate after 3 years was 84%. All five recurrent cases after initial surgery were successfully salvaged using IBT +/- external beam radiotherapy. Two patients developed local recurrence at 3 and 5 months, respectively, after IBT. The acute complications were acceptable (< or =grade 2). Three patients developed major late complications, such as radio-osteonecrosis, in which one patient was treated by conservative therapy and two required surgical intervention. HDR IBT for oral cavity cancer was effective and acceptable in diverse clinical settings, such as in the cases of primary or salvage treatment.

  3. Clinical outcome of high-dose-rate interstitial brachytherapy in patients with oral cavity cancer

    International Nuclear Information System (INIS)

    To evaluate the clinical outcome of high-dose-rate (HDR) interstitial brachytherapy (IBT) in patients with oral cavity cancer. Sixteen patients with oral cavity cancer treated with HDR remote-control afterloading brachytherapy using 192Ir between 2001 and 2013 were analyzed retrospectively. Brachytherapy was administered in 11 patients as the primary treatment and in five patients as salvage treatment for recurrence after the initial surgery. In 12 patients, external beam radiotherapy (50-55 Gy/25 fractions) was combined with IBT of 21 Gy/7 fractions. In addition, IBT was administered as the sole treatment in three patients with a total dose of 50 Gy/10 fractions and as postoperative adjuvant treatment in one patient with a total of 35 Gy/7 fractions. The 5-year overall survival of the entire group was 70%. The actuarial local control rate after 3 years was 84%. All five recurrent cases after initial surgery were successfully salvaged using IBT +/- external beam radiotherapy. Two patients developed local recurrence at 3 and 5 months, respectively, after IBT. The acute complications were acceptable (< or =grade 2). Three patients developed major late complications, such as radio-osteonecrosis, in which one patient was treated by conservative therapy and two required surgical intervention. HDR IBT for oral cavity cancer was effective and acceptable in diverse clinical settings, such as in the cases of primary or salvage treatment.

  4. Current Brachytherapy Quality Assurance Guidance: Does It Meet the Challenges of Emerging Image-Guided Technologies?

    International Nuclear Information System (INIS)

    In the past decade, brachytherapy has shifted from the traditional surgical paradigm to more modern three-dimensional image-based planning and delivery approaches. The role of intraoperative and multimodality image-based planning is growing. Published American Association of Physicists in Medicine, American College of Radiology, European Society for Therapeutic Radiology and Oncology, and International Atomic Energy Agency quality assurance (QA) guidelines largely emphasize the QA of planning and delivery devices rather than processes. These protocols have been designed to verify compliance with major performance specifications and are not risk based. With some exceptions, complete and clinically practical guidance exists for sources, QA instrumentation, non-image-based planning systems, applicators, remote afterloading systems, dosimetry, and calibration. Updated guidance is needed for intraoperative imaging systems and image-based planning systems. For non-image-based brachytherapy, the American Association of Physicists in Medicine Task Group reports 56 and 59 provide reasonable guidance on procedure-specific process flow and QA. However, improved guidance is needed even for established procedures such as ultrasound-guided prostate implants. Adaptive replanning in brachytherapy faces unsolved problems similar to that of image-guided adaptive external beam radiotherapy

  5. Prospective multi-center trial utilizing electronic brachytherapy for the treatment of endometrial cancer

    Directory of Open Access Journals (Sweden)

    Thropay John P

    2010-07-01

    Full Text Available Abstract Background A modified form of high dose rate (HDR brachytherapy has been developed called Axxent Electronic Brachytherapy (EBT. EBT uses a kilovolt X-ray source and does not require treatment in a shielded vault or a HDR afterloader unit. A multi-center clinical study was carried out to evaluate the success of treatment delivery, safety and toxicity of EBT in patients with endometrial cancer. Methods A total of 15 patients with stage I or II endometrial cancer were enrolled at 5 sites. Patients were treated with vaginal EBT alone or in combination with external beam radiation. Results The prescribed doses of EBT were successfully delivered in all 15 patients. From the first fraction through 3 months follow-up, there were 4 CTC Grade 1 adverse events and 2 CTC Grade II adverse events reported that were EBT related. The mild events reported were dysuria, vaginal dryness, mucosal atrophy, and rectal bleeding. The moderate treatment related adverse events included dysuria, and vaginal pain. No Grade III or IV adverse events were reported. The EBT system performed well and was associated with limited acute toxicities. Conclusions EBT shows acute results similar to HDR brachytherapy. Additional research is needed to further assess the clinical efficacy and safety of EBT in the treatment of endometrial cancer.

  6. Fricke gel dosimetric catheters in high dose rate brachytherapy. In phantom dose distribution measurements of a 5 catheter implant

    International Nuclear Information System (INIS)

    Due to the complexity and the many steps involved in a high dose rate brachytherapy process, radiation dose delivered to the patient during the treatment is susceptible to many inaccuracies and may not accurately match the planned dose. In vivo dosimetry is a reliable solution to compare planned and delivered dose distributions, representing therefore a valid tool to systematically perform a quality control of the radiotherapic process and eventually increment treatment accuracy. In this study, Fricke gel dosimetric catheters (FGDC) were investigated to perform dose distribution measurements of a brachytherapy implant. The brachytherapy implant was established in a water phantom with five flexible plastic needles and irradiation was performed with a high dose rate remote afterloading device provided with an Ir-192 radioactive source. Comparison between dose distributions measured with ten FGDC located in the proximity of the implant needles and calculated by the treatment planning system shows very good agreement for seven out of ten dosimeters, whereas the remaining three show a local underestimation of the dose. In phantom results indicate that Fricke gel dosimetric catheters might be valid candidates for performing in vivo dosimetry in high dose rate brachytherapy. However, further measurements are still required to validate this dosimetric method.

  7. Management of malignant airway obstruction: clinical and dosimetric considerations using an iridium-192 afterloading technique in conjunction with the neodymium-YAG laser

    International Nuclear Information System (INIS)

    Fourteen patients with malignant airway obstruction have had 21 placements of a flexible nylon catheter for afterloading iridium-192 using the flexible fiberoptic bronchoscope. Prescribed therapy was completed in 13 patients (18 courses). All patients had prior full-dose external irradiation, and no effective surgical or chemotherapeutic options remained. While many have had a trial of neodymium-YAG (yttrium-aluminum-garnet) laser therapy alone, eight patients received laser treatment one to three weeks prior to planned brachytherapy to provide immediate relief of symptoms and/or facilitate access and safe catheter placement. Most patients (64%) had recurrent squamous cell lung cancer. A dose of 3000 cGy is currently specified to 5 mm and 10 mm in the bronchus and trachea, respectively. Nine of the 13 treated patients have had follow-up bronchoscopy at approximately three months post-treatment with improvement documented in seven and progression in two patients. A single patient treated with laser and 6000 rad at 5 mm developed a bronchoesophageal fistula. No other complication has been observed. The technique is simple and safe with the use of laser therapy when needed and appears to offer effective palliation in most patients even when standard therapy is exhausted

  8. Interstitial Radiotherapy of the base of the tongue: improved non-looping afterloading technique

    International Nuclear Information System (INIS)

    A modification of the non-looping afterloading interstitial technique for tongue-cancer therapy is described. The subsequent risk of tearing or breaking of the tubes, resulting in radioactive sources left as foreign bodies in soft tissures, is reduced. In addition, evaluation of implant postion is simplified by the use of radioopaque tubes

  9. Studies on 192Ir afterloading irradiation of the canine prostate with special consideration of thermoluminescent dosimetry

    International Nuclear Information System (INIS)

    A method for high dose rate afterloading irradiation of the prostate with iridium 192 was developed. The isodoses of the urethra and rectum, which were measured by means of thermoluminescent dosimetry, showed deviations from the doses pre-calculated by computer (BRACHY), because this calculation is based on an anatomically ideal condition. (MBC)

  10. Brachytherapy optimal planning with application to intravascular radiation therapy

    DEFF Research Database (Denmark)

    Sadegh, Payman; Mourtada, Firas A.; Taylor, Russell H.; Anderson, James H.

    1999-01-01

    We have been studying brachytherapy planning with the objective of manimizing the maximum deviation of the delivered dose from prescribed dose bounds for treatment volumes. A general framework for optimal treatment planning is presented and the minmax optimization is formulated as a linear program....... Dose rate calculations are based on the sosimetry formulation of the American Association of Physicists in Medicine, Task Group 43. We apply the technique to optimal planning for intravascular brachytherapy of intimal hyperplasia using ultrasound data and 192Ir seeds. The planning includes...

  11. Imaging method for monitoring delivery of high dose rate brachytherapy

    Science.gov (United States)

    Weisenberger, Andrew G; Majewski, Stanislaw

    2012-10-23

    A method for in-situ monitoring both the balloon/cavity and the radioactive source in brachytherapy treatment utilizing using at least one pair of miniature gamma cameras to acquire separate images of: 1) the radioactive source as it is moved in the tumor volume during brachytherapy; and 2) a relatively low intensity radiation source produced by either an injected radiopharmaceutical rendering cancerous tissue visible or from a radioactive solution filling a balloon surgically implanted into the cavity formed by the surgical resection of a tumor.

  12. Demonstration of brachytherapy boost dose-response relationships in glioblastoma multiforme

    International Nuclear Information System (INIS)

    Purpose: To evaluate brachytherapy dose-response relationships in adults with glioblastoma undergoing temporary 125I implant boost after external beam radiotherapy. Methods and Materials: Since June 1987, orthogonal radiographs using a fiducial marker box have been used to verify brain implant source positions and generate dose-volume histograms at the University of California, San Francisco. For adults who underwent brachytherapy boost for glioblastoma from June 1987 through December 1992, tumor volumes were reoutlined to ensure consistency and dose-volume histograms were recalculated. Univariate and multivariate analyses of various patient and treatment parameters were performed evaluating for influence of dose on freedom from local failure (FFLF) and actuarial survival. Results: Of 102 implant boosts, 5 were excluded because computer plans were unavailable. For the remaining 97 patients, analyses with adjustment for known prognostic factors (age, KPS, extent of initial surgical resection) and prognostic factors identified on univariate testing (adjuvant chemotherapy) showed that higher minimum brachytherapy tumor dose was strongly associated with improved FFLF (p = 0.001). A quadratic relationship was found between total biological effective dose and survival, with a trend toward optimal survival probability at 47 Gy minimum brachytherapy tumor dose (corresponding to about 65 Gy to 95% of the tumor volume); survival decreased with lower or higher doses. Two patients expired and one requires hospice care because of brain necrosis after brachytherapy doses > 63 Gy to 95% of the tumor volume with 60 Gy to > 18 cm3 of normal brain. Conclusion: Although higher minimum brachytherapy tumor dose was strongly associated with better local control, a brachytherapy boost dose > 50-60 Gy may result in life-threatening necrosis. We recommend careful conformation of the prescription isodose line to the contrast enhancing tumor volume, delivery of a minimum brachytherapy boost

  13. Glass microspheres for brachytherapy

    International Nuclear Information System (INIS)

    We developed the capacity to produce glass microspheres containing in their structure one or more radioactive isotopes useful for brachytherapy. We studied the various facts related with their production: (Rare earth) alumino silicate glass making, glass characterization, microspheres production, nuclear activation through (n,γ) nuclear reactions, mechanical characterization before and after irradiation. Corrosion tests in simulated human plasma and mechanical properties characterization were done before and after irradiation. (author)

  14. The history of brachytherapy in Russia: comparison of 60Co vs. 192Ir sources

    International Nuclear Information System (INIS)

    Brachytherapy is known as the first historical method of radiotherapy. At the beginning of its development it was used only as manual applications of liquid solutions of nuclides. Only from the middle of 1950-th specialized machines for automatic afterloading have been designed. The first types of the machines were those with pneumatically driven pellets of 137Cs. The main advantage of this nuclide is its long half-life time of about 30 years resulting in long periods between source replacements. But due to the same reason, it is impossible to provide high source activity within small pellets. So those machines can be defined as those of low dose rate (less than 2 Gy/hr.). Patients had to spend up to 1-3 days with applicators inserted to obtain the full therapeutic dose of 24 Gy

  15. Development of high-activity 252Cf sources for neutron brachytherapy

    International Nuclear Information System (INIS)

    The Gershenson Radiation Oncology Center of Wayne State University (WSU), Detroit, Michigan, is using 252Cf medical sources for neutron brachytherapy. These sources are based on a 20-year-old design containing ≤ 30 microg 252Cf in the form of a cermet wire of Cf2O3 in a palladium matrix. The Radiochemical Engineering Development Center (REDC) of Oak Ridge National Laboratory has been asked to develop tiny high-activity 252Cf neutron sources for use with remote afterloading equipment to reduce treatment times and dose to clinical personnel and to expedite treatment of brain and other tumors. To date, the REDC has demonstrated that 252Cf loadings can be greatly increased in cermet wires much smaller than before. Equipment designed for hot cell fabrication of these wires is being tested. A parallel program is under way to relicense the existing source design for fabrication at the REDC

  16. Methodology, results and experience of independent brachytherapy plan verifications based on DICOM standard

    International Nuclear Information System (INIS)

    The use of a high dose rate source together with an afterloading treatment delivery in brachytherapy plans allows for dose modulation minimizing dose to staff. An independent verification of the exported data to the treatment station is required by local regulations (being also a widely accepted recommendation on the international literature2). We have developed a methodology under home brew code to import DICOM treatment data onto an Excel spreadsheet that is able to calculate dose on given reference points using the TG-43 formalism of the AAPM3-5. It employs analytic fits of anisotropy factor and radial dose function for different sources6-8. The end point implementations we present here allow merging in one step an independent verification and a treatment printout. The use of DICOM standard makes our code versatile and provides greater compatibility with respect to current treatment planning systems. (Author)

  17. Experiences of high dose rate interstitial brachytherapy for carcinoma of the mobile tongue

    International Nuclear Information System (INIS)

    Interstitial brachytherapy was conducted for mobile tongue carcinoma using a high dose rate remote afterloading machine with small 192I source. Detailed method, named as 'linked double-botton technique', is to approach from submandibular skin by an open-ended stainless steel needles to the tongue lesion, and to replace each needle into flexible nylon tube from the oral cavity. Delivered dose was 60 Gy/10 Fr./5-6 days at the distance 5 mm from the source plane. Ten patients with mobile tongue carcinoma Tl-2N0 were treated with this method from October 1991 through August 1992. Local was uncontrolled in one patient, in whom the lesion was combined with leukoplakia at both lateral borders of the tongue. This was in accordance with the result in low dose rate treatment. This can be a substitute to low dose rate system for treatment of mobile tongue carcinoma. (author)

  18. Physics and quality assurance of low dose rate brachytherapy

    International Nuclear Information System (INIS)

    Purpose: The purpose of this course is to review the physical principles underlying design, clinical application and execution of interstitial and intracavitary implants in the classical low dose-rate (LDR) range. This year, the course will focus on quality assurance of sources, applicators and treatment planning software. In addition, development of procedures and QA checks designed optimize treatment delivery accuracy and patient safety during each individual procedure will be reviewed. The level of presentation will be designed to accommodate both physicists and physicians. Implementation of recently published AAPM Task Group reports (no. 40, 'Comprehensive Quality Assurance' and No. 43, 'Dosimetry of Interstitial Brachytherapy Sources') will be reviewed. Outline: (A) General Principles (1) QA endpoints: temporal accuracy, positional accuracy, dose delivery accuracy, and safety of the patient, personnel, and the institution (2) QA procedure development: forms, checklists, test development and design of treatment delivery procedures (B) QA of treatment delivery devices (1) Source acceptance testing and QA a) calibration and source strength specification standards b) leakage tests and source geometry verification (2) Applicator acceptance testing and QA (3) Remote afterloading devices (4) Treatment planning systems a) graphic input/output devices, implant geometry reconstruction, and graphical display b) dose calculation accuracy i) review of brachytherapy dose calculation algorithms ii) dosimetric benchmarks available: Task Group 43 report (C) Procedure-specific QA 1) Organization of treatment delivery team 2) Preplanning and preparation 3) Applicator insertion 4) Radiographic examination of the implant, prescription, and treatment calculation 5) Source insertion 6) Treatment planning and physicist review of treatment plans 7) QA during patient treatment and removal of sources and applicators

  19. Radiotherapy and Brachytherapy : Proceedings of the NATO Advanced Study Institute on Physics of Modern Radiotherapy & Brachytherapy

    CERN Document Server

    Lemoigne, Yves

    2009-01-01

    This volume collects a series of lectures presented at the tenth ESI School held at Archamps (FR) in November 2007 and dedicated to radiotherapy and brachytherapy. The lectures focus on the multiple facets of radiotherapy in general, including external radiotherapy (often called teletherapy) as well as internal radiotherapy (called brachytherapy). Radiotherapy strategy and dose management as well as the decisive role of digital imaging in the associated clinical practice are developed in several articles. Grouped under the discipline of Conformal Radiotherapy (CRT), numerous modern techniques, from Multi-Leaf Collimators (MLC) to Intensity Modulated RadioTherapy (IMRT), are explained in detail. The importance of treatment planning based upon patient data from digital imaging (Computed Tomography) is also underlined. Finally, despite the quasi- totality of patients being presently treated with gamma and X-rays, novel powerful tools are emerging using proton and light ions (like carbon ions) beams, bound to bec...

  20. Local anesthesia for prostate brachytherapy

    International Nuclear Information System (INIS)

    Purpose: To demonstrate the technique and feasibility of prostate brachytherapy performed with local anesthesia only. Methods and Materials: A 5 by 5 cm patch of perineal skin and subcutaneous tissue is anesthetized by local infiltration of 10 cc of 1% lidocaine with epinephrine, using a 25-gauge 5/8-inch needle. Immediately following injection into the subcutaneous tissues, the deeper tissues, including the pelvic floor and prostate apex, are anesthetized by injecting 15 cc lidocaine solution with approximately 8 passes of a 20-gauge 1.0-inch needle. Following subcutaneous and peri-apical lidocaine injections, the patient is brought to the simulator suite and placed in leg stirrups. The transrectal ultrasound (TRUS) probe is positioned to reproduce the planning images and a 3.5- or 6.0-inch, 22-gauge spinal needle is inserted into the peripheral planned needle tracks, monitored by TRUS. When the tips of the needles reach the prostatic base, about 1 cc of lidocaine solution is injected in the intraprostatic track, as the needle is slowly withdrawn, for a total volume of 15 cc. The implants are done with a Mick Applicator, inserting and loading groups of two to four needles, so that a maximum of only about four needles are in the patient at any one time. During the implant procedure, an additional 1 cc of lidocaine solution is injected into one or more needle tracks if the patient experiences substantial discomfort. The total dose of lidocaine is generally limited to 500 mg (50 ml of 1% solution). Results: To date, we have implanted approximately 50 patients in our simulator suite, using local anesthesia. Patients' heart rate and diastolic blood pressure usually showed moderate changes, consistent with some discomfort. The time from first subcutaneous injection and completion of the source insertion ranged from 35 to 90 minutes. Serum lidocaine levels were below or at the low range of therapeutic. There has been only one instance of acute urinary retention in the

  1. Implementation of a High-Dose-Rate Brachytherapy Program for Carcinoma of the Cervix in Senegal: A Pragmatic Model for the Developing World

    Energy Technology Data Exchange (ETDEWEB)

    Einck, John P., E-mail: jeinck@ucsd.edu [Department of Radiation Medicine and Applied Sciences, University of California San Diego, San Diego, California (United States); Hudson, Alana [Department of Oncology, Tom Baker Cancer Centre, University of Calgary, Calgary, Alberta (Canada); Shulman, Adam C. [Overlook Medical Center, Summit, New Jersey (United States); Yashar, Catheryn M. [Department of Radiation Medicine and Applied Sciences, University of California San Diego, San Diego, California (United States); Dieng, Mamadou M.; Diagne, Magatte; Gueye, Latifatou; Gningue, Fama; Gaye, Pape M. [Départemént de Radiothérapie, Institut Joliot-Curie, Hôpital Aristide Le Dantec, Dakar (Senegal); Fisher, Brandon J. [GammaWest Cancer Services, Salt Lake City, Utah (United States); Mundt, Arno J. [Department of Radiation Medicine and Applied Sciences, University of California San Diego, San Diego, California (United States); Brown, Derek W. [Department of Oncology, Tom Baker Cancer Centre, University of Calgary, Calgary, Alberta (Canada)

    2014-07-01

    West Africa has one of the highest incidence rates of carcinoma of the cervix in the world. The vast majority of women do not have access to screening or disease treatment, leading to presentation at advanced stages and to high mortality rates. Compounding this problem is the lack of radiation treatment facilities in Senegal and many other parts of the African continent. Senegal, a country of 13 million people, had a single {sup 60}Co teletherapy unit before our involvement and no brachytherapy capabilities. Radiating Hope, a nonprofit organization whose mission is to provide radiation therapy equipment to countries in the developing world, provided a high-dose-rate afterloading unit to the cancer center for curative cervical cancer treatment. Here we describe the implementation of high-dose-rate brachytherapy in Senegal requiring a nonstandard fractionation schedule and a novel treatment planning approach as a possible blueprint to providing this technology to other developing countries.

  2. Implementation of a High-Dose-Rate Brachytherapy Program for Carcinoma of the Cervix in Senegal: A Pragmatic Model for the Developing World

    International Nuclear Information System (INIS)

    West Africa has one of the highest incidence rates of carcinoma of the cervix in the world. The vast majority of women do not have access to screening or disease treatment, leading to presentation at advanced stages and to high mortality rates. Compounding this problem is the lack of radiation treatment facilities in Senegal and many other parts of the African continent. Senegal, a country of 13 million people, had a single 60Co teletherapy unit before our involvement and no brachytherapy capabilities. Radiating Hope, a nonprofit organization whose mission is to provide radiation therapy equipment to countries in the developing world, provided a high-dose-rate afterloading unit to the cancer center for curative cervical cancer treatment. Here we describe the implementation of high-dose-rate brachytherapy in Senegal requiring a nonstandard fractionation schedule and a novel treatment planning approach as a possible blueprint to providing this technology to other developing countries

  3. Salvage Brachytherapy for Biochemically Recurrent Prostate Cancer following Primary Brachytherapy

    Science.gov (United States)

    Lacy, John M.; Wilson, William A.; Bole, Raevti; Chen, Li; Meigooni, Ali S.; Rowland, Randall G.; Clair, William H. St.

    2016-01-01

    Purpose. In this study, we evaluated our experience with salvage brachytherapy after discovery of biochemical recurrence after a prior brachytherapy procedure. Methods and Materials. From 2001 through 2012 twenty-one patients treated by brachytherapy within University of Kentucky or from outside centers developed biochemical failure and had no evidence of metastases. Computed tomography (CT) scans were evaluated; patients who had an underseeded portion of their prostate were considered for reimplantation. Results. The majority of the patients in this study (61.9%) were low risk and median presalvage PSA was 3.49 (range 17.41–1.68). Mean follow-up was 61 months. At last follow-up after reseeding, 11/21 (52.4%) were free of biochemical recurrence. There was a trend towards decreased freedom from biochemical recurrence in low risk patients (p = 0.12). International Prostate Symptom Scores (IPSS) increased at 3-month follow-up visits but decreased and were equivalent to baseline scores at 18 months. Conclusions. Salvage brachytherapy after primary brachytherapy is possible; however, in our experience the side-effect profile after the second brachytherapy procedure was higher than after the first brachytherapy procedure. In this cohort of patients we demonstrate that approximately 50% oncologic control, low risk patients appear to have better outcomes than others. PMID:27092279

  4. Intraluminal High-Dose-Rate Brachytherapy for the Tumors of Gastrointestinal Tract

    International Nuclear Information System (INIS)

    Purpose : Intraluminal High dose rate brachytherapy is an accepted treatment for the tumors of GI tract. However, there is only some limited clinical data for intraluminal high dose rate brachytherapy for the tumors of GI tract. Materials and Methods : Between February 1991 and July 1993, 18 patients who have the tumors of GI tract (esophageal cancer-8 cases, rectal cancer-10 cases) were treated with high dose rae iridium-192 afterloading system )Microselectron-HDR, Nucletron CO, Netherland) at the department of therapeutic radiology, St. Mary's hospital, Catholic university medical college. Age rage was 47-87 years with a mean age 71 years. All patients were treated with intraluminal high dose rate brachytherapy within two weeks after conventional external radiation therapy and received 3-5 Gy/fraction 3-4 times per week to a total dose 12-20 Gy (mean 17 Gy). Standard fractionation and conventional dose were delivered for external radiation therapy. Total dose of external radiation therapy ranged 41.4-59.4 Gy (mean 49.6 Gy). Median follow up was 19 months. Results : The analysis was based on 18 patients. The complete response and partial response in esophageal cancer was similar (38%). Two year rates for survival and median survival were 13% and 10 months, respectively. Among 10 patients of rectal cancers, partial response was obtained in 6 patients (60%). There was no complete response in the patients with rectal cancer, but good palliative results were achieved in all patients. Conclusion : Although the number of patients was not large and the follow up period was relatively short, these findings suggested that intraluminal high dose rate brachytherapy could be useful in the treatment of the patients with advanced tumors of GI tract

  5. Erectile function after permanent prostate brachytherapy

    International Nuclear Information System (INIS)

    Purpose: To determine the incidence of potency preservation after permanent prostate brachytherapy using a validated patient-administered questionnaire and to evaluate the effect of multiple clinical and treatment parameters on penile erectile function. Methods and Materials: Four hundred twenty-five patients underwent permanent prostate brachytherapy from April 1995 to October 1999. Two hundred nine patients who were potent before brachytherapy and who at the time of the survey were not receiving hormonal therapy were mailed the specific erectile questions of the International Index of Erectile Function (IIEF) questionnaire with a self-addressed stamped envelope. The questionnaire consisted of 5 questions, with a maximal score of 25. Of the 209 patients, 181 (87%) completed and returned the questionnaire. The mean and median follow-up was 40.4±14.9 and 40.6 months, respectively (range 19-75). Preimplant erectile function was assigned using a three-tiered scoring system (2 = erections always or nearly always sufficient for vaginal penetration; 1 = erections sufficient for vaginal penetration but considered suboptimal; 0 = the inability to obtain erections and/or erections inadequate for vaginal penetration). Postimplant potency was defined as an IIEF score ≥11. The clinical parameters evaluated for erectile function included patient age, preimplant potency, clinical T-stage, pretreatment prostate-specific antigen level, Gleason score, elapsed time after implantation, hypertension, diabetes mellitus, and tobacco consumption. Treatment parameters included radiation dose to the prostate gland, use of hormonal manipulation, use of supplemental external beam radiotherapy (EBRT), choice of isotope, prostate volume, and planning volume. The efficacy of sildenafil citrate in brachytherapy-induced erectile dysfunction (ED) was also evaluated. Results: Pretreatment erectile function scores of 2 and 1 were assigned to 125 and 56 patients, respectively. With a 6-year follow

  6. Comparison of different application systems and CT-assisted treatment planning procedures in the treatment of primary endometrium carcinoma. Is it technically possible to include the whole uterus volume in the volume treated by brachytherapy?

    International Nuclear Information System (INIS)

    In a consecutive series of 10 patients with primary irradiated endometrial carcinoma we analyzed the correlation between target volume and treated volume using either standard 1-channel applicators or individual Heyman-applicators. Application of the ovoids was followed by a planning CT scan for all patients. Based on this, target volume (uterus volume) was estimated on a 3D-planning system. According to the measurable length of the uterus cavity we determined the corresponding standard 1-channel applicator and calculated the respectively treated volume. Estimating the advantages of an optimized treatment planning strategy for individual Heyman-applications we compared the treated volumes, which result from a standardized and optimized treatment planning procedure. The mean uterus volume was 180 cm3 (range 57 to 316 cm3). Asymmetric uterus configurations with longitudinal or sagittal side differences exceeding 1 cm were found in 40% of the cases. Using standard 1-channel applicators on average 47% (range 25 to 89%) of the uterus volume were enclosed by the treated volume compared to 70% for Heyman-applications. Differentiating these individual applications according to the variable treatment modality values of mean 66% (range 36 to 110%) for the standardized and 73% (range 48 to 95%) for the optimized treatment planning strategy were found. Moreover optimized planning modalities led to an improved coverage of the target volume in 5 out of 10 cases with an increase in volume of 20% on average (range 11 to 32%). In 3 cases changes of less than 5% were noticed (no improvement). In order to protect organs at risk treated volume had to be decreased in 2 cases for 19% and 40% respectively. (orig./MG)

  7. Penile brachytherapy: Results for 49 patients

    International Nuclear Information System (INIS)

    Purpose: To report results for 49 men with squamous cell carcinoma (SCC) of the penis treated with primary penile interstitial brachytherapy at one of two institutions: the Ottawa Regional Cancer Center, Ottawa, and the Princess Margaret Hospital, Toronto, Ontario, Canada. Methods and Materials: From September 1989 to September 2003, 49 men (mean age, 58 years; range, 22-93 years) had brachytherapy for penile SCC. Fifty-one percent of tumors were T1, 33% T2, and 8% T3; 4% were in situ and 4% Tx. Grade was well differentiated in 31%, moderate in 45%, and poor in 2%; grade was unspecified for 20%. One tumor was verrucous. All tumors in Toronto had pulsed dose rate (PDR) brachytherapy (n = 23), whereas those in Ottawa had either Iridium wire (n 22) or seeds (n = 4). Four patients had a single plane implant with a plastic tube technique, and all others had a volume implant with predrilled acrylic templates and two or three parallel planes of needles (median, six needles). Mean needle spacing was 13.5 mm (range, 10-18 mm), mean dose rate was 65 cGy/h (range, 33-160 cGy/h), and mean duration was 98.8 h (range, 36-188 h). Dose rates for PDR brachytherapy were 50-61.2 cGy/h, with no correction in total dose, which was 60 Gy in all cases. Results: Median follow-up was 33.4 months (range, 4-140 months). At 5 years, actuarial overall survival was 78.3% and cause-specific survival 90.0%. Four men died of penile cancer, and 6 died of other causes with no evidence of recurrence. The cumulative incidence rate for never having experienced any type of failure at 5 years was 64.4% and for local failure was 85.3%. All 5 patients with local failure were successfully salvaged by surgery; 2 other men required penectomy for necrosis. The soft tissue necrosis rate was 16% and the urethral stenosis rate 12%. Of 8 men with regional failure, 5 were salvaged by lymph node dissection with or without external radiation. All 4 men with distant failure died of disease. Of 49 men, 42 had an intact

  8. 106Ruthenium Brachytherapy for Retinoblastoma

    International Nuclear Information System (INIS)

    Purpose: To evaluate the efficacy of 106Ru plaque brachytherapy for the treatment of retinoblastoma. Methods and Materials: We reviewed a retrospective, noncomparative case series of 39 children with retinoblastoma treated with 106Ru plaques at the Jules-Gonin Eye Hospital between October 1992 and July 2006, with 12 months of follow-up. Results: A total of 63 tumors were treated with 106Ru brachytherapy in 41 eyes. The median patient age was 27 months. 106Ru brachytherapy was the first-line treatment for 3 tumors (4.8%), second-line treatment for 13 (20.6%), and salvage treatment for 47 tumors (74.6%) resistant to other treatment modalities. Overall tumor control was achieved in 73% at 1 year. Tumor recurrence at 12 months was observed in 2 (12.5%) of 16 tumors for which 106Ru brachytherapy was used as the first- or second-line treatment and in 15 (31.9%) of 47 tumors for which 106Ru brachytherapy was used as salvage treatment. Eye retention was achieved in 76% of cases (31 of 41 eyes). Univariate and multivariate analyses revealed no statistically significant risk factors for tumor recurrence. Radiation complications included retinal detachment in 7 (17.1%), proliferative retinopathy in 1 (2.4%), and subcapsular cataract in 4 (9.7%) of 41 eyes. Conclusion: 106Ru brachytherapy is an effective treatment for retinoblastoma, with few secondary complications. Local vitreous seeding can be successfully treated with 106Ru brachytherapy

  9. Esthesioneuroblastoma - treatment of recurrences by means of remote-controlled afterloading-technique

    International Nuclear Information System (INIS)

    At the Radiological Hospital of the Heidelberg University, one patient with a local recurrence of an esthesioneuroblastoma situated on the left-hand side of the skull base was treated between February 11 and March 18, 1986, by an afterloading contact therapy with curative intent. After preceding surgery and percutaneous radiotherapy, repeated local recurrences and locoregional lymph node metastases had occured. The contact therapy was performed after adjusting an individual face mask in which the afterloading probe was placed and brought into its position in the tumor region. The irradiation scheme was based on the transformation of the source coordinates from the stereoscopic X-ray localization system into the coordinate system of the computed tomogram by means of X-ray right reference points. The irradiation planning by computed tomography allows to optimize the arrangement of sources within the tumor region. The principles of the method as well as the treatment result are presented. (orig.)

  10. Remote afterloading high dose-rate intracavity radiotherapy for advanced maxillary cancer. Treatment with individual appliances

    International Nuclear Information System (INIS)

    Seven advanced maxillary cancers, 5 squamous cell carcinomas, and 2 adenoid cystic carcinomas were treated with remote afterloading high dose-rate intracavity radiotherapy. For treatment, we fabricated individual dental acrylic appliances for the postoperative area of the oral cavity. Because the appliance was specially matched to the remaining maxillary structures, radiation doses to the treated area were easily reproduced without distress to the patient. However, minor or major complications (moderate or severe mucositis and osteoradionecrosis) were observed in all patients. In this study, the number of patients was too small to assess the significance of this treatment. Nevertheless, with improvements, we think that remote afterloading high dose-rate intracavity radiotherapy with a dental acrylic appliance will soon be used to treat advanced maxillary carcinoma. (author)

  11. Dosimetric characterization and output verification for conical brachytherapy surface applicators. Part I. Electronic brachytherapy source

    International Nuclear Information System (INIS)

    Purpose: Historically, treatment of malignant surface lesions has been achieved with linear accelerator based electron beams or superficial x-ray beams. Recent developments in the field of brachytherapy now allow for the treatment of surface lesions with specialized conical applicators placed directly on the lesion. Applicators are available for use with high dose rate (HDR)192Ir sources, as well as electronic brachytherapy sources. Part I of this paper will discuss the applicators used with electronic brachytherapy sources; Part II will discuss those used with HDR 192Ir sources. Although the use of these applicators has gained in popularity, the dosimetric characteristics including depth dose and surface dose distributions have not been independently verified. Additionally, there is no recognized method of output verification for quality assurance procedures with applicators like these. Existing dosimetry protocols available from the AAPM bookend the cross-over characteristics of a traditional brachytherapy source (as described by Task Group 43) being implemented as a low-energy superficial x-ray beam (as described by Task Group 61) as observed with the surface applicators of interest. Methods: This work aims to create a cohesive method of output verification that can be used to determine the dose at the treatment surface as part of a quality assurance/commissioning process for surface applicators used with HDR electronic brachytherapy sources (Part I) and192Ir sources (Part II). Air-kerma rate measurements for the electronic brachytherapy sources were completed with an Attix Free-Air Chamber, as well as several models of small-volume ionization chambers to obtain an air-kerma rate at the treatment surface for each applicator. Correction factors were calculated using MCNP5 and EGSnrc Monte Carlo codes in order to determine an applicator-specific absorbed dose to water at the treatment surface from the measured air-kerma rate. Additionally, relative dose

  12. Intra coronary brachytherapy

    International Nuclear Information System (INIS)

    Despite the initial promise of vasculopathy intervention restenosis- a consequence of the (normal) would healing process-has emerged as a major problem. Angiographic restenosis has been reported in 40-60% of patients after successful P TCA. The basic mechanism of restenosis, (acute recoil, negative remodeling and neo intimal hyperplasia), are only partially counteracted by endovascular prosthetic devices (s tents). The rate of in-s tent restenosis, which is primarily caused by neo intimal hyperplasia due to the (micro) trauma of the arterial wall by the s tent struts, has been reduced to 18-32%. Ionizing (beta or gamma) radiations has been established as a potent treatment for malignant disorders. In recent years, there has also been increasing interest among clinicians in the management of benign lesions with radiation. Over the past several years, there has been a growing body of evidence that endovascular brachytherapy has a major impact on the biology of the restenosis. It must be underlined that understanding the biology and pathophysiology of restenosis and assessing various treatment options should preferably be a team effort, with the three gracesbeing interventional cardiologist, nuclear oncologist, and industrial partners. The vast amount of data in over 20000 patients from a wide range of randomized controlled trials, has shown that brachytherapy is the only effective treatment for in-s tent restenosis. We are learning more and more about how to improve brachytherapy. While the new coated s tents that we heard about today is fascinating and extremely promising, brachytherapy still has a very important place in difficult patients, such as those with total occlusions, osti al lesions, left main lesions, multivessel disease and diabetes. Regarding to above mentioned tips, we (a research team work, in the Nuclear Research Center Of the Atomic Energy Organization Of Iran), focused on synthesis and preparation of radioactive materials for use in I c-B T. We

  13. Regional Cardiac Dysfunction and Dyssynchrony in a Murine Model of Afterload Stress

    OpenAIRE

    Bauer, Michael; Cheng, Susan; Unno, Kazumasa; Lin, Fen-Chiung; Liao, Ronglih

    2013-01-01

    Small animal models of afterload stress have contributed much to our present understanding of the progression from hypertension to heart failure. High-sensitivity methods for phenotyping cardiac function in vivo, particular in the setting of compensated cardiac hypertrophy, may add new information regarding alterations in cardiac performance that can occur even during the earliest stages of exposure to pressure overload. We have developed an echocardiographic analytical method, based on speck...

  14. Mechanical efficiency of stunned myocardium is modulated by increased afterload dependency

    OpenAIRE

    Fan, Dongsheng; Soei, Lou Kie; Sassen, L. M.; Krams, Rob; Verdouw, Pieter

    1994-01-01

    textabstractOxygen consumption (MVO2) of stunned myocardium is relatively high compared to, and poorly correlated with, systolic contractile function. The aim of this study was to investigate whether an increased afterload dependency, induced by the decreased contractility of the stunned myocardium, contributes to the large variability in the mechanical efficiency data. Methods: In 13 anaesthetised open thorax pigs undergoing two cycles of 10 min occlusion of left anterior descending coronary...

  15. Pulmonary vascular wall stiffness: An important contributor to the increased right ventricular afterload with pulmonary hypertension

    OpenAIRE

    Wang, Zhijie; Chesler, Naomi C

    2011-01-01

    Pulmonary hypertension (PH) is associated with structural and mechanical changes in the pulmonary vascular bed that increase right ventricular (RV) afterload. These changes, characterized by narrowing and stiffening, occur in both proximal and distal pulmonary arteries (PAs). An important consequence of arterial narrowing is increased pulmonary vascular resistance (PVR). Arterial stiffening, which can occur in both the proximal and distal pulmonary arteries, is an important index of disease p...

  16. Frequency of afterload homocysteinemia in normal population of Southern Iran: a pilot study.

    Science.gov (United States)

    Akbari, A; Dehbozorgian, J; Afrasibi, A R; Gafari, H; Gerdabi, J; Karimi, M

    2010-04-01

    The objectives of the present pilot study were to investigate the effect of an oral methionine load on plasma homocysteine in healthy subjects southern Iran. We studied 50 peoples (10 men, 40 women, median age 27.5, range 20-37) referred to screening center for marriage since different part of southern Iran. Methionine (0.1 g kg(-1) b.wt.) was immediately administrated orally in 200 mL of orange juice and a second blood was obtained 4 h later. Plasma level of homocysteine was carried out by high performance liquid chromatography and flumetric detection. A homocysteine level above 15 mmol L(-1) was considered high. The mean fasting and afterload homocysteine were 15.28 and 31.29 micromol L(-1), respectively. Fasting hyperhomocysteinemia (>15 micromol L(-1)) was detected in 12% of male and 8% in female which significantly higher in men than women (p homocysteine levels (> 31 micromol L(-1)) was detected in 16% of male and 14%in female which higher in men than women. Notably 80% of participants had normal total homocystein concentration (homocystein levels (p = 0.000), in 8% of those normal homocystein level, methionine afterload homocystein levels became abnormal. In conclusion, based on results, we recommend the methionine afterload homocystein levels in high risk cases with normal fasting level in order to unmissed some cases with normal basal homocystein level. PMID:20836293

  17. Inverse planning and class solutions for brachytherapy treatment planning

    International Nuclear Information System (INIS)

    Brachytherapy or interventional radiooncology is a method of radiation therapy. It is a method, where a small encapsulated radioactive source is placed near to / in the tumour and therefore delivers high doses directly to the target volume. Organs at risk (OARs) are spared due to the inverse square dose fall-off. In the past years there was a slight stagnation in the development of techniques for brachytherapy treatment. While external beam radiotherapy became more and more sophisticated, in brachytherapy traditional methods have been still used. Recently, 3D imaging was considered also as the modality for brachytherapy and more precise brachytherapy could expand. Nowadays, an image guided brachytherapy is state-of-art in many centres. Integration of imaging methods lead to the dose distribution individually tailored for each patient. Treatment plan optimization is mostly performed manually as an adaptation of a standard loading pattern. Recently, inverse planning approaches have been introduced into brachytherapy. The aim of this doctoral thesis was to analyze inverse planning and to develop concepts how to integrate inverse planning into cervical cancer brachytherapy. First part of the thesis analyzes the Hybrid Inverse treatment Planning and Optimization (HIPO) algorithm and proposes a workflow how to safely work with this algorithm. The problem of inverse planning generally is that only the dose and volume parameters are taken into account and spatial dose distribution is neglected. This fact can lead to unwanted high dose regions in a normal tissue. A unique implementation of HIPO into the treatment planning system using additional features enabled to create treatment plans similar to the plans resulting from manual optimization and to shape the high dose regions inside the CTV. In the second part the HIPO algorithm is compared to the Inverse Planning Simulated Annealing (IPSA) algorithm. IPSA is implemented into the commercial treatment planning system. It

  18. Quality assurance programme in high dose rate brachytherapy with Iridium-192 source. Recommendations of the French Medical Physicists Society

    International Nuclear Information System (INIS)

    A report on Quality Assurance in High Dose Rate brachytherapy with Iridium-192 source has been prepared by the task group of the Brachytherapy committee of the French Medical Physicists Society. This report provides recommendations on what should be tested, the methods to be used, the test frequencies and the tolerances. The Quality Assurance Programme concerns mainly the Q.A. on the treatment unit, the treatment planning system and the patient procedure. Tolerances and action levels are linked to international recommendations. Safety standards are linked to national legislation and to international recommendations. It is the responsibility of the Institution to verify that the source calibration provided by the manufacturer is correct. The calibration of the Iridium-192 source should be an in-air measurement of air-kerma using an ionization chamber. The recommended tolerance between manufacturer and Institution calibration is 3 %. Quality Control on remote afterloading systems should include consideration of the accuracy and reproducibility of positioning of sources in the applicators. Safety features must also be evaluated regularly and emergency procedures should be tested regularly and posted in a prominent place. After the detailed acceptance tests of dose calculation algorithm, routine checks should be done after software update. An independent dose calculation is recommended before treatment. The recommended agreement with the computer calculation should be within 10%. A written dosimetry report for each brachytherapy procedure is recommended to be inserted in patient charts. The results of all tests should be recorded in a logbook. Fault conditions should be carefully documented

  19. Brachytherapy in childhood rhabdomyosarcoma treatment

    International Nuclear Information System (INIS)

    A retrospective study of 21 children with rhabdomyosarcoma treated by brachytherapy to the primary site of the tumor at the Radiotherapy Department of the A.C.Camargo Hospital between january/1980 to june/1993 was undertaken. The main objectives were to comprove the utility of brachytherapy in childhood rhabdomyosarcoma, to evaluate the local control and survival, in association with chemotherapy, to analyze the late effects of the treatment and to determinate the preferential technique to each clinical situation. All patients received brachytherapy to the tumor site. The radioactive isotopes employed were Gold198, Cesium137 and Iridium192. The brachytherapy techniques depended on the tumor site, period of treatment, availability of the radioactive material and stage of the disease. Patients treated exclusively by brachytherapy received 40 Gy to 60 Gy. When brachytherapy was associated with external radiotherapy the dose ranged from 20 Gy to 40 Gy. Local control was achieved in 18 of 20 patients (90%). The global survival and local control survival rates were 61.9% (13/21 patients) and 72,2% (13/18 patients) respectively. (author)

  20. Intraluminal brachytherapy with metallic stenting in the palliative treatment of malignant obstruction of the bile duct

    International Nuclear Information System (INIS)

    The purpose of this study was to describe the outcome of intraluminal high-dose-rate (HDR) brachytherapy with metallic stenting in patients with obstructing extrahepatic cholangiocarcinoma. Eight patients with inoperable and/or unresectable extrahepatic bile duct carcinomas were treated with intraluminal brachytherapy (ILBT) followed by self-expandable metallic stent placement. Following percutaneous transhepatic drainage, ILBT was delivered by an HDR-Ir-192 source using the Micro-Selectron afterloading device. Two treatments were planned one week apart, with each treatment consisting of a single 10 Gy fraction. Biliary patency and palliative effect were assessed by serial labs (including bilirubin/alkaline phosphatase), symptomatic improvement, and/or cholangiography. All eight patients tolerated the first application of ILBT well, and five of them completed two-intraluminal treatments. Six of eight had satisfactory control of jaundice until death. Pain relief was observed in four of five (80%) and pruritis in six of seven (86%) patients experiencing such symptoms. The mean and median times of stent patency were 6.9 and 5 months (range, 4-14), respectively. Gastrointestinal bleeding and/or cholangitis occurred in three patients. HDR ILBT with metallic stenting for patients with obstructive jaundice from extrahepatic bile duct carcinoma appears to be feasible and associated with acceptable toxicity. These treatments may lead to an improved quality of life in these patients. (author)

  1. Brachytherapy on carcinoma of the lip. A clinical study of 387 patients

    International Nuclear Information System (INIS)

    INTRODUCTION: Actually the local control of the lip cancer with surgery or radiotherapy is similar (98%). The brachytherapy has the advantage of the preservation of the organ with an effective local control of the disease. MATERIAL AND METHODS: From 1977 to 1990, 387 consecutive patients histologically proven carcinoma of the lip were treated by intersticial implants using Iridium-192 wires afterloading technique, associated with surgery in 35 cases, 352 cases (91%) affected the lower lip and 35 (9%) the upper lip. The series was classified by the TNM-UICC system: 335 patients were T1 and 52 were T2; all of the patients were N0 at the diagnosis. The implant configuration was triangular in 199 cases and coplanar in 188 cases. The median dose administrated was 65 Gy (range 50-75 Gy). The median dose rate was 80 cGy h-1 (range: 34-205 cGy h-1). RESULTS: The actuarial local control of the series was 97% at 5 and 10 years and the actuarial survival was 98% at 5 and 10 years. We have studied the treatment complications and cosmesis correlated with a group of clinics and therapeutics factors by means of an univariate and multivariate statistical analysis. CONCLUSIONS: The brachytherapy, if administered properly, is the election treatment for lip cancer by its effectiveness in controlling tumor, additionally results in excellent cosmesis and a low incidence of treatment complications

  2. Dosimetric verification of source strength for HDR afterloading units with 192Ir- and 60Co- photon sources: comparison of three different international protocols

    International Nuclear Information System (INIS)

    Before clinical use of a brachytherapy source, regulations or recommendations by medical physics societies require an independent measurement of its air kerma strength by a qualified medical physicist. Currently, in addition to 192Ir, also HDR-60Co sources are increasingly coming into operation. However, the existing dosimetry protocols do not provide any guidelines for 60Co sources. The purpose of this work was therefore to compare air Kerma rate measurements as recommended by different dosimetry protocols for 192Ir HDR sources and to test their applicability to 60Co sources. Dosimetric verification of HDR afterloading source specification was performed according to three protocols, DIN 6809-2 (1993) in combination with DGMP-Report 13 (2006), IAEA-TECDOC-1274 (2002) and AAPM Report 41 (1993) for the nuclides 192Ir and 60Co. Measurements of the sources reference air kerma rate were performed with 3 different methods (with a cylindrical chamber both in a solid phantom and in free air, and with a well chamber) and evaluated using all three protocols for each type of source and method of measurement. The measurements with all protocols and methods show deviations from the certified specification smaller than about 1.2% for 192Ir and 2.5% for 60Co sources. The measurements with the well chamber showed the lowest deviations from the certificate value. Air kerma rate measurements for 60Co HDR sources using the existing protocols are possible with accuracy sufficient to verify source calibration as provided by the source certificate. However, extension of the protocols by correction factors for measurement with 60Co sources would be helpful. (author)

  3. Brachytherapy for penis cancer

    International Nuclear Information System (INIS)

    INTRODUCTION: A conservative treatment of carcinoma of the penis with interstitial radiotherapy, has the advantage of preservation the function of the organ with an effective local control of the disease. MATERIAL AND METHODS: From 1980 to 1996, twenty consecutive patients with squamous cell carcinoma of the penis were treated by interstitial implants using iridium-192 wires afterloading technique. The group included 19 patients with T1 and one with Cu in situ, according to TNM-UICC classification; all of the patients were NO (no metastases in inguinal nodes. The median dose administrated was 63.9 Gy (range 60-68 Gy). The mean number of needles inserted was 5 (4-7). The mean follow-up was 80 (13-186) months. RESULTS: The actuarial disease-free survival was 87.7% at 5 and 10 years. Local control with penile conservation was obtained in 80%. It will be described the technique. After treatment, two patients developed local recurrence. One of them underwent penile amputation with local control, but progressed regionally. The other one had local, ingunal and systemic recurrence. One more patient developed metastatic inguinal nodes. These three patients died of systemic disease. Late complications were; urethral stenosis in 3:20 patients (15%), foreskin sclerosis in 4 uncircumcised patients (20%) and local necrosis in other 4 patients. Complications could be treated conservatively in most of them. We have analyzed the relations between these late complications and dose and dose rate. CONCLUSIONS: Interstitial implants using iridium-192 wires provides effective control of penile carcinoma preserving morphology and function

  4. Brachytherapy in cervix cancers: techniques and concepts evolution

    International Nuclear Information System (INIS)

    Brachytherapy plays an important role in the treatment of patients with cervical carcinoma. Technical modalities have evolved during the last years and have benefited from imaging modalities development, specially MRI. Imaging modalities contribute to a better knowledge of tumoral extension and critical organs. Ultrasound during brachytherapy has led to the almost complete eradication of uterine perforation. In the future, a more systematic use of systems allowing optimization may induce a better dose distribution in the tumor as well as in the critical organs. Recent data provided information in favor of a better analysis in the relative role of dose-rate, total dose and treated volume and their influence on the local control and complication incidence. Concomitant radio-chemotherapy represents a standard in the treatment of patients with tumoral size exceeding 4 cm. Some questions still remain: is concomitant chemotherapy of benefit during brachytherapy? Is there any place for complementary surgery, specially in patients with complete response after external irradiation with concomitant chemotherapy and brachytherapy? In order to answer the former question, a phase III randomized trial is going to start, with the Federation Nationale des Centres de Lutte Contre le Cancer as a promoter. (authors)

  5. Permanent iodine 125 brachytherapy in patients with progressive or recurrent glioblastoma multiforme

    Science.gov (United States)

    Larson, David A.; Suplica, Jeffrey M.; Chang, Susan M.; Lamborn, Kathleen R.; McDermott, Michael W.; Sneed, Penny K.; Prados, Michael D.; Wara, William M.; Nicholas, M. Kelly; Berger, Mitchel S.

    2004-01-01

    This study reports the initial experience at the University of California San Francisco (UCSF) with tumor resection and permanent, low-activity iodine 125 (125I) brachytherapy in patients with progressive or recurrent glioblastoma multiforme (GM) and compares these results to those of similar patients treated previously at UCSF with temporary brachytherapy without tumor resection. Thirty-eight patients with progressive or recurrent GM were treated at UCSF with repeat craniotomy, tumor resection, and permanent, low-activity 125I brachytherapy between June 1997 and May 1998. Selection criteria were Karnofsky performance score ⩾60, unifocal, contrast-enhancing, well-circumscribed progressive or recurrent GM that was judged to be completely resectable, and no evidence of leptomeningeal or subependymal spread. The median brachytherapy dose 5 mm exterior to the resection cavity was 300 Gy (range, 150–500 Gy). One patient was excluded from analysis. Median survival was 52 weeks from the date of brachytherapy. Age, Karnofsky performance score, and preimplant tumor volume were all statistically significant on univariate analyses. Multivariate analysis for survival showed only age to be significant. Median time to progression was 16 weeks. Both univariate and multivariate analysis of freedom from progression showed only preoperative tumor volume to be significant. Comparison to temporary brachytherapy patients showed no apparent difference in survival time. Chronic steroid requirements were low in patients with minimal postoperative residual tumor. We conclude that permanent 125I brachytherapy for recurrent or progressive GM is well tolerated. Survival time was comparable to that of a similar group of patients treated with temporary brachytherapy. PMID:15134626

  6. Multihelix rotating shield brachytherapy for cervical cancer

    International Nuclear Information System (INIS)

    Purpose: To present a novel brachytherapy technique, called multihelix rotating shield brachytherapy (H-RSBT), for the precise angular and linear positioning of a partial shield in a curved applicator. H-RSBT mechanically enables the dose delivery using only linear translational motion of the radiation source/shield combination. The previously proposed approach of serial rotating shield brachytherapy (S-RSBT), in which the partial shield is rotated to several angular positions at each source dwell position [W. Yang et al., “Rotating-shield brachytherapy for cervical cancer,” Phys. Med. Biol. 58, 3931–3941 (2013)], is mechanically challenging to implement in a curved applicator, and H-RSBT is proposed as a feasible solution. Methods: A Henschke-type applicator, designed for an electronic brachytherapy source (Xoft Axxent™) and a 0.5 mm thick tungsten partial shield with 180° or 45° azimuthal emission angles and 116° asymmetric zenith angle, is proposed. The interior wall of the applicator contains six evenly spaced helical keyways that rigidly define the emission direction of the partial radiation shield as a function of depth in the applicator. The shield contains three uniformly distributed protruding keys on its exterior wall and is attached to the source such that it rotates freely, thus longitudinal translational motion of the source is transferred to rotational motion of the shield. S-RSBT and H-RSBT treatment plans with 180° and 45° azimuthal emission angles were generated for five cervical cancer patients with a diverse range of high-risk target volume (HR-CTV) shapes and applicator positions. For each patient, the total number of emission angles was held nearly constant for S-RSBT and H-RSBT by using dwell positions separated by 5 and 1.7 mm, respectively, and emission directions separated by 22.5° and 60°, respectively. Treatment delivery time and tumor coverage (D90 of HR-CTV) were the two metrics used as the basis for evaluation and

  7. Multihelix rotating shield brachytherapy for cervical cancer

    Energy Technology Data Exchange (ETDEWEB)

    Dadkhah, Hossein [Department of Biomedical Engineering, University of Iowa, 1402 Seamans Center for the Engineering Arts and Sciences, Iowa City, Iowa 52242 (United States); Kim, Yusung; Flynn, Ryan T., E-mail: ryan-flynn@uiowa.edu [Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 (United States); Wu, Xiaodong [Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 and Department of Electrical and Computer Engineering, University of Iowa, 4016 Seamans Center for the Engineering Arts and Sciences, Iowa City, Iowa 52242 (United States)

    2015-11-15

    Purpose: To present a novel brachytherapy technique, called multihelix rotating shield brachytherapy (H-RSBT), for the precise angular and linear positioning of a partial shield in a curved applicator. H-RSBT mechanically enables the dose delivery using only linear translational motion of the radiation source/shield combination. The previously proposed approach of serial rotating shield brachytherapy (S-RSBT), in which the partial shield is rotated to several angular positions at each source dwell position [W. Yang et al., “Rotating-shield brachytherapy for cervical cancer,” Phys. Med. Biol. 58, 3931–3941 (2013)], is mechanically challenging to implement in a curved applicator, and H-RSBT is proposed as a feasible solution. Methods: A Henschke-type applicator, designed for an electronic brachytherapy source (Xoft Axxent™) and a 0.5 mm thick tungsten partial shield with 180° or 45° azimuthal emission angles and 116° asymmetric zenith angle, is proposed. The interior wall of the applicator contains six evenly spaced helical keyways that rigidly define the emission direction of the partial radiation shield as a function of depth in the applicator. The shield contains three uniformly distributed protruding keys on its exterior wall and is attached to the source such that it rotates freely, thus longitudinal translational motion of the source is transferred to rotational motion of the shield. S-RSBT and H-RSBT treatment plans with 180° and 45° azimuthal emission angles were generated for five cervical cancer patients with a diverse range of high-risk target volume (HR-CTV) shapes and applicator positions. For each patient, the total number of emission angles was held nearly constant for S-RSBT and H-RSBT by using dwell positions separated by 5 and 1.7 mm, respectively, and emission directions separated by 22.5° and 60°, respectively. Treatment delivery time and tumor coverage (D{sub 90} of HR-CTV) were the two metrics used as the basis for evaluation and

  8. High dose rate brachytherapy using custom made superficial mould applicators and Leipzig applicators for non melanoma localized skin cancer

    International Nuclear Information System (INIS)

    Purpose: advances in technology and the commercial production of Leipzig applicators allowed High Dose Rate after-load brachytherapy (HDR-BT) to address a number of the challenges associated with the delivery of superficial radiation to treat localized non melanoma skin cancer (NMSK). We reviewed our uni-institutional experience on the treatment of NMSK with HDR-BT. Methods: data were collected retrospectively from patients attending the Radiation Oncology Department at AV Carvalho Insitute, Sao Paulo, Brazil. HDR-BT was done using the stepping source HDR 192Ir Microselectron (Nucletron BV). The planning target volume consisted of the macroscopic lesion plus a 5mm to 10mm margin.The depth of treatment was 0.5 cm in smaller (< 2.0 cm) tumors and 10 to 15 mm for lesions bigger than that. Results: Thirteen patients were treated with HDR-BT from June, 2007 to June 2013. The median age and follow up time were 72 (38-90) years old and 36 (range, 7-73) months, respectively. There a predominance of males (61.5%) and of patients referred for adjuvant treatment due positive surgical margins or because they have had only a excision biopsy without safety margins (61.5%). Six (46.2%) patients presented with squamous cell carcinoma and 7 (53.8%) patients presented with basal cell carcinoma. The median tumor size was 20 (range, 5-42) mm. Patients were treated with a median total dose of 40 Gy (range, 20 -60), given in 10 (range, 2-15) fractions, given daily or twice a week. All patients responded very well to treatment and only one patient has failed locally so far, after 38 months of the end of the irradiation. The crude and actuarial 3-year local control rates were 100% and 80%, respectively. Moist desquamation, grade 2 RTOG, was observed in 4 (30.8%) patients. Severe late complication, radiation-induced dyspigmentation, occurred in 2 patients and 1 of the patients also showed telangiectasia in the irradiated area. The cosmetic result was considered good in 84% (11/13) patients

  9. High dose rate brachytherapy using custom made superficial mould applicators and Leipzig applicators for non melanoma localized skin cancer

    Energy Technology Data Exchange (ETDEWEB)

    Pellizzon, A. Cassio A.; Miziara, Daniela; Lima, Flavia Pedroso de; Miziara, Miguel

    2014-07-01

    Purpose: advances in technology and the commercial production of Leipzig applicators allowed High Dose Rate after-load brachytherapy (HDR-BT) to address a number of the challenges associated with the delivery of superficial radiation to treat localized non melanoma skin cancer (NMSK). We reviewed our uni-institutional experience on the treatment of NMSK with HDR-BT. Methods: data were collected retrospectively from patients attending the Radiation Oncology Department at AV Carvalho Insitute, Sao Paulo, Brazil. HDR-BT was done using the stepping source HDR 192Ir Microselectron (Nucletron BV). The planning target volume consisted of the macroscopic lesion plus a 5mm to 10mm margin.The depth of treatment was 0.5 cm in smaller (< 2.0 cm) tumors and 10 to 15 mm for lesions bigger than that. Results: Thirteen patients were treated with HDR-BT from June, 2007 to June 2013. The median age and follow up time were 72 (38-90) years old and 36 (range, 7-73) months, respectively. There a predominance of males (61.5%) and of patients referred for adjuvant treatment due positive surgical margins or because they have had only a excision biopsy without safety margins (61.5%). Six (46.2%) patients presented with squamous cell carcinoma and 7 (53.8%) patients presented with basal cell carcinoma. The median tumor size was 20 (range, 5-42) mm. Patients were treated with a median total dose of 40 Gy (range, 20 -60), given in 10 (range, 2-15) fractions, given daily or twice a week. All patients responded very well to treatment and only one patient has failed locally so far, after 38 months of the end of the irradiation. The crude and actuarial 3-year local control rates were 100% and 80%, respectively. Moist desquamation, grade 2 RTOG, was observed in 4 (30.8%) patients. Severe late complication, radiation-induced dyspigmentation, occurred in 2 patients and 1 of the patients also showed telangiectasia in the irradiated area. The cosmetic result was considered good in 84% (11/13) patients

  10. Feasibility of combined operation and perioperative intensity-modulated brachytherapy of advanced/recurrent malignancies involving the skull base

    Energy Technology Data Exchange (ETDEWEB)

    Strege, R.J.; Eichmann, T.; Mehdorn, H.M. [University Hospital Schleswig-Holstein, Kiel (Germany). Dept. of Neurosurgery; Kovacs, G.; Niehoff, P. [University Hospital Schleswig-Holstein, Kiel (Germany). Interdisciplinary Brachytherapy Center; Maune, S. [University Hospital Schleswig-Holstein, Kiel (Germany). Dept. of Otolaryngology; Holland, D. [University Hospital Schleswig-Holstein, Kiel (Germany). Dept. of Ophthalmology

    2005-02-01

    Purpose: To assess the technical feasibility and toxicity of combined operation and perioperative intensity-modulated fractionated interstitial brachytherapy (IMBT) in advanced-stage malignancies involving the skull base with the goal of preserving the patients' senses of sight. Patients and Methods: This series consisted of 18 consecutive cases: ten patients with paranasal sinus carcinomas, five with sarcomas, two with primitive neuroectodermal tumors (PNETs), and one with parotid gland carcinoma. After, in most cases, subtotal surgical resection (R1-R2: carried out so that the patients' senses of sight were preserved), two to twelve (mean five) afterloading plastic tubes were placed into the tumor bed. IMBT was performed with an iridium-192 stepping source in pulsed-dose-rate/high-dose-rate (PDR/HDR) afterloading technique. The total IMBT dose, ranging from 10 to 30 Gy, was administered in a fractionated manner (3-5 Gy/day, 5 days/week). Results: Perioperative fractionated IMBT was performed in 15 out of 18 patients and was well tolerated. Complications that partially prevented or delayed IMBT in some cases included cerebrospinal fluid leakage (twice), meningitis (twice), frontal brain syndrome (twice), afterloading tube displacement (twice), seizure (once), and general morbidity (once). No surgery- or radiation-induced injuries to the cranial nerves or eyes occurred. Median survival times were 33 months after diagnosis and 16 months after combined operation and IMBT. Conclusion: Perioperative fractionated IMBT after extensive but vision-preserving tumor resection seems to be a safe and well-tolerated treatment of advanced/recurrent malignancies involving the skull base. These preliminary state suggest that combined operation and perioperative fractionated IMBT is a palliative therapeutic option in the management of fatal malignancies involving the base of the skull, a strategy which leaves the patients' visual acuity intact. (orig.)

  11. Customized individual applicators for endocavitary brachytherapy in patients with cancers of the nasal cavity, sinonasal region and nasopharynx.

    Science.gov (United States)

    Kadah, Basel Al; Niewald, Marcus; Papaspyrou, George; Dzierma, Yvonne; Schneider, Mathias; Schick, Bernhard

    2016-06-01

    Brachytherapy has become an established therapeutic regimen for primary, persistent, recurrent and metastatic tumour disease in the head and neck region. This study presents the authors' preliminary experience with intracavitary brachytherapy by means of an individual silicone applicator in the treatment of patients with nasal, sinonasal, orbital and nasopharyngeal cancer. Between January 2001 and January 2013, twenty patients with cancer of the nasal cavity, the paranasal sinuses and nasopharynx underwent surgery and intracavitary brachytherapy with the aid of an individually manufactured silicone applicator in the Department of Otolaryngology, Head and Neck Surgery and in the Department of Radiotherapy and Radiooncology at the Saarland University Medical Center of Homburg, Germany. The tumour was localized in the nasal cavity/paranasal sinuses (15) affecting the orbit twice and the nasopharynx (5). There were 14 patients with squamous cell carcinoma, 2 patients with mixed tumours and one patient with adenocarcinoma, adenoid cystic carcinoma, mucosal melanoma or plasmocytoma. The majority of the patients presented with advanced disease (T3 or T4 tumours). In 18/20 patients, brachytherapy was performed as a boost technique, in the remaining two solely because of a previous radiation series. All surgical interventions were performed endonasally. Three to six weeks after surgery, a cast of the nasal cavity was created under general anaesthesia. Subsequently, an individual brachytherapy silicon applicator with two to four plastic tubes was manufactured. The radiation therapy was applied using the Ir-192 high-dose-rate-afterloading method (total dose 10-20 Gy) in two to five sessions, additionally in 18/20 patients a percutaneous radiotherapy with a total dose of 30-60 Gy was applied. After a mean duration of follow-up of 2 years, 7/20 patients experienced a local progression, 5/19 a regional recurrence in the neck nodes and 4/19 distant metastases. The 2-year

  12. Near-catheter dosimetry of a HDR brachytherapy source using Gafchromic film

    International Nuclear Information System (INIS)

    High dose rate intraluminal brachytherapy treatments can be delivered using as few as one or two afterloading catheters, delivering doses of up to 10 Gy at 10 mm, leading to high dose gradients and extreme hot spots close to the catheter. These conditions have the potential to damage the patient's health tissues, possibly leading to necrosis, or even death from uncontrolled bleeding. Ionisation chambers and solid state detectors are limited in their usefulness for near-catheter dosimetry because of their physical size and in some cases energy and dose rate dependence. In contrast, radiochromic film has a large dose–response range, excellent spatial resolution, near-energy independence for megavoltage photons and the ability to measure dose in two dimensions, making it ideal for this application. The aim of this study was to measure the location and relative magnitude of any dosimetric hot spots produced by a typical endobronchial treatment plan. The study also investigated the effect of the step size of the 192Ir source on both the dose hot spots and dose distribution. Our measurements show that for a typical single catheter treatment with 2.5 mm step size the maximum dose hot spots at the catheter surface are up to 37 times the prescription dose, up to 40 times for a 5 mm step size, and up to 46 times for a 10 mm step size. It is important that brachytherapy clinicians and physicists understand that hot spot magnitude increases with source step sizes and are aware of the risks associated with this form of brachytherapy treatment.

  13. Dosimetry audit on the accuracy of 192Ir brachytherapy source strength determinations in Sweden

    International Nuclear Information System (INIS)

    The absorbed dose delivered to the patient in brachytherapy is directly proportional to the source strength in terms of the reference air-kerma rate (RAKR). Verification of this quantity by the hospitals is widely recognized as an important part of a quality assurance program. An external audit was performed on behalf of the Secondary Standard Dosimetry Laboratory at the Swedish Radiation Protection Authority (SSI). The aim was to investigate how accurately the source-strength in 192Ir brachytherapy is determined at Swedish hospitals. The SSI reference well-type ion chamber and calibrated equipment were used to measure the RAKR of an 192Ir source in each of the 14 Swedish afterloading units. Comparisons with values determined by vendors and hospitals were made. Agreement in values of RAKR as determined by SSI, hospitals and vendors were in all cases within the ±3% uncertainty (at a coverage factor of k=2), typically guaranteed by the vendors. The good agreement reflects the robustness and easy handling of well-type chambers designed for brachytherapy in use by all Swedish hospitals. The 192Ir calibration service planned at SSI will solve the hospitals current problem with recalibration of equipment. SSI can also advise hospitals to follow the IAEA recommendations for measurement techniques and maintenance of equipment. It is worthwhile for the hospitals to establish their own ratio (or deviation) with the vendor and follow it as function of time. Such a mean-ratio embeds systematic differences of various origins and have a lower uncertainty than has the RAKR alone, making it useful for early detection of problems with equipment or routines. SSI could also define requirements for the agreement between source strengths as determined by hospitals and vendors and couple this to an action plan, dependent on level of disagreement, and some kind of reporting to SSI

  14. Seeing is saving: the benefit of 3D imaging in gynecologic brachytherapy.

    Science.gov (United States)

    Viswanathan, Akila N; Erickson, Beth A

    2015-07-01

    Despite a concerning decline in the use of brachytherapy over the past decade, no other therapy is able to deliver a very high dose of radiation into or near a tumor, with a rapid fall-off of dose to adjacent structures. Compared to traditional X-ray-based brachytherapy that relies on points, the use of CT and MR for 3D planning of gynecologic brachytherapy provides a much more accurate volume-based calculation of dose to an image-defined tumor and to the bladder, rectum, sigmoid, and other pelvic organs at risk (OAR) for radiation complications. The publication of standardized guidelines and an online contouring teaching atlas for performing 3D image-based brachytherapy has created a universal platform for communication and training. This has resulted in a uniform approach to using image-guided brachytherapy for treatment and an internationally accepted format for reporting clinical outcomes. Significant improvements in survival and reductions in toxicity have been reported with the addition of image guidance to increase dose to tumor and decrease dose to the critical OAR. Future improvements in individualizing patient treatments should include a more precise definition of the target. This will allow dose modulation based on the amount of residual disease visualized on images obtained at the time of brachytherapy. PMID:25748646

  15. Harmony search optimization for HDR prostate brachytherapy

    Science.gov (United States)

    Panchal, Aditya

    In high dose-rate (HDR) prostate brachytherapy, multiple catheters are inserted interstitially into the target volume. The process of treating the prostate involves calculating and determining the best dose distribution to the target and organs-at-risk by means of optimizing the time that the radioactive source dwells at specified positions within the catheters. It is the goal of this work to investigate the use of a new optimization algorithm, known as Harmony Search, in order to optimize dwell times for HDR prostate brachytherapy. The new algorithm was tested on 9 different patients and also compared with the genetic algorithm. Simulations were performed to determine the optimal value of the Harmony Search parameters. Finally, multithreading of the simulation was examined to determine potential benefits. First, a simulation environment was created using the Python programming language and the wxPython graphical interface toolkit, which was necessary to run repeated optimizations. DICOM RT data from Varian BrachyVision was parsed and used to obtain patient anatomy and HDR catheter information. Once the structures were indexed, the volume of each structure was determined and compared to the original volume calculated in BrachyVision for validation. Dose was calculated using the AAPM TG-43 point source model of the GammaMed 192Ir HDR source and was validated against Varian BrachyVision. A DVH-based objective function was created and used for the optimization simulation. Harmony Search and the genetic algorithm were implemented as optimization algorithms for the simulation and were compared against each other. The optimal values for Harmony Search parameters (Harmony Memory Size [HMS], Harmony Memory Considering Rate [HMCR], and Pitch Adjusting Rate [PAR]) were also determined. Lastly, the simulation was modified to use multiple threads of execution in order to achieve faster computational times. Experimental results show that the volume calculation that was

  16. MRI/TRUS data fusion for brachytherapy

    CERN Document Server

    Daanen, V; Giraud, J Y; Fourneret, P; Descotes, J L; Bolla, M; Collomb, D; Troccaz, Jocelyne

    2006-01-01

    BACKGROUND: Prostate brachytherapy consists in placing radioactive seeds for tumour destruction under transrectal ultrasound imaging (TRUS) control. It requires prostate delineation from the images for dose planning. Because ultrasound imaging is patient- and operator-dependent, we have proposed to fuse MRI data to TRUS data to make image processing more reliable. The technical accuracy of this approach has already been evaluated. METHODS: We present work in progress concerning the evaluation of the approach from the dosimetry viewpoint. The objective is to determine what impact this system may have on the treatment of the patient. Dose planning is performed from initial TRUS prostate contours and evaluated on contours modified by data fusion. RESULTS: For the eight patients included, we demonstrate that TRUS prostate volume is most often underestimated and that dose is overestimated in a correlated way. However, dose constraints are still verified for those eight patients. CONCLUSIONS: This confirms our init...

  17. Water equivalent phantom materials for 192Ir brachytherapy

    Science.gov (United States)

    Schoenfeld, Andreas A.; Harder, Dietrich; Poppe, Björn; Chofor, Ndimofor

    2015-12-01

    Several solid phantom materials have been tested regarding their suitability as water substitutes for dosimetric measurements in brachytherapy with 192Ir as a typical high energy photon emitter. The radial variations of the spectral photon fluence, of the total, primary and scattered photon fluence and of the absorbed dose to water in the transversal plane of the tested cylindrical phantoms surrounding a centric and coaxially arranged Varian GammaMed afterloading 192Ir brachytherapy source were Monte-Carlo simulated in EGSnrc. The degree of water equivalence of a phantom material was evaluated by comparing the radial dose-to-water profile in the phantom material with that in water. The phantom size was varied over a large range since it influences the dose contribution by scattered photons with energies diminished by single and multiple Compton scattering. Phantom axis distances up to 10 cm were considered as clinically relevant. Scattered photons with energies reaching down into the 25 keV region dominate the photon fluence at source distances exceeding 3.5 cm. The tested phantom materials showed significant differences in the degree of water equivalence. In phantoms with radii up to 10 cm, RW1, RW3, Solid Water, HE Solid Water, Virtual Water, Plastic Water DT, and Plastic Water LR phantoms show excellent water equivalence with dose deviations from a water phantom not exceeding 0.8%, while Original Plastic Water (as of 2015), Plastic Water (1995), Blue Water, polyethylene, and polystyrene show deviations up to 2.6%. For larger phantom radii up to 30 cm, the deviations for RW1, RW3, Solid Water, HE Solid Water, Virtual Water, Plastic Water DT, and Plastic Water LR remain below 1.4%, while Original Plastic Water (as of 2015), Plastic Water (1995), Blue Water, polyethylene, and polystyrene produce deviations up to 8.1%. PMMA plays a separate role, with deviations up to 4.3% for radii not exceeding 10 cm, but below 1% for radii up to 30 cm. As suggested by

  18. Water equivalent phantom materials for (192)Ir brachytherapy.

    Science.gov (United States)

    Schoenfeld, Andreas A; Harder, Dietrich; Poppe, Björn; Chofor, Ndimofor

    2015-12-21

    Several solid phantom materials have been tested regarding their suitability as water substitutes for dosimetric measurements in brachytherapy with (192)Ir as a typical high energy photon emitter. The radial variations of the spectral photon fluence, of the total, primary and scattered photon fluence and of the absorbed dose to water in the transversal plane of the tested cylindrical phantoms surrounding a centric and coaxially arranged Varian GammaMed afterloading (192)Ir brachytherapy source were Monte-Carlo simulated in EGSnrc. The degree of water equivalence of a phantom material was evaluated by comparing the radial dose-to-water profile in the phantom material with that in water. The phantom size was varied over a large range since it influences the dose contribution by scattered photons with energies diminished by single and multiple Compton scattering. Phantom axis distances up to 10 cm were considered as clinically relevant. Scattered photons with energies reaching down into the 25 keV region dominate the photon fluence at source distances exceeding 3.5 cm.The tested phantom materials showed significant differences in the degree of water equivalence. In phantoms with radii up to 10 cm, RW1, RW3, Solid Water, HE Solid Water, Virtual Water, Plastic Water DT, and Plastic Water LR phantoms show excellent water equivalence with dose deviations from a water phantom not exceeding 0.8%, while Original Plastic Water (as of 2015), Plastic Water (1995), Blue Water, polyethylene, and polystyrene show deviations up to 2.6%. For larger phantom radii up to 30 cm, the deviations for RW1, RW3, Solid Water, HE Solid Water, Virtual Water, Plastic Water DT, and Plastic Water LR remain below 1.4%, while Original Plastic Water (as of 2015), Plastic Water (1995), Blue Water, polyethylene, and polystyrene produce deviations up to 8.1%. PMMA plays a separate role, with deviations up to 4.3% for radii not exceeding 10 cm, but below 1% for radii up to 30 cm.As suggested

  19. Aktuelle Entwicklungen in der Strahlentherapie des Prostatakarzinoms: HDR-Brachytherapie

    Directory of Open Access Journals (Sweden)

    Knocke-Abulesz TH

    2004-01-01

    Full Text Available In der primären Therapie des Prostatakarzinoms ist die Seed-Implantation neben der radikalen Prostatektomie und der konformalen 3D-geplanten Teletherapie in den letzten Jahren insbesondere bei den lokal begrenzten Tumoren die dritte etablierte Behandlungstechnik geworden. In den USA werden bereits fast ein Drittel der Patienten mit dieser Technik behandelt. Im Gegensatz hierzu wurde in der Strahlentherapie in den letzten beiden Jahrzehnten die Langzeit-Implantation von Nukliden bei den meisten Tumoren zugunsten der fraktionierten Afterloading-Bestrahlung in "high dose rate" (HDR- Technik ersetzt – wobei partiell für HNO- und gynäkologische Tumoren die HDR-Technik als "pulse-dose-rate" (PDR- Verfahren modifiziert wird, um die biologischen Vorteile der LDR- und die technologischen Vorteile der HDR-Anwendung zu vereinen. Vorteile der Methode im Vergleich zur Seed-Implantation sind: – Niedrigere Kosten, allgemeine Verfügbarkeit, – Idealer Strahlenschutz, – Zuverlässige Dosisverteilung, – Keine Migration von Seeds, – Durchführbar auch nach TURP, – Durchführbar bei manifesten Lokalrezidiven. Allerdings liegen bisher nur vereinzelte klinische Ergebnisse beim Prostatakarzinom vor, die zeigen, daß eine lokale Dosiserhöhung in Kombination mit der Teletherapie eine Verbesserung der lokalen Kontrolle bei kapselüberschreitenden Tumoren ermöglicht. Inwieweit der Einsatz der Technik bei Lokalrezidiven zu langandauernden Remissionen führen kann, ist Gegenstand von laufenden Untersuchungen. Der Ersatz der Seed-Implantation durch eine 2-tägige fraktionierte Brachytherapie mit vier Bestrahlungen ist derzeit Gegenstand einer prospektiven Studie, deren erste Langzeitergebnisse in diesem Jahr erwartet werden.

  20. Study of dose calculation on breast brachytherapy using prism TPS

    International Nuclear Information System (INIS)

    PRISM is one of non-commercial Treatment Planning System (TPS) and is developed at the University of Washington. In Indonesia, many cancer hospitals use expensive commercial TPS. This study aims to investigate Prism TPS which been applied to the dose distribution of brachytherapy by taking into account the effect of source position and inhomogeneities. The results will be applicable for clinical Treatment Planning System. Dose calculation has been implemented for water phantom and CT scan images of breast cancer using point source and line source. This study used point source and line source and divided into two cases. On the first case, Ir-192 seed source is located at the center of treatment volume. On the second case, the source position is gradually changed. The dose calculation of every case performed on a homogeneous and inhomogeneous phantom with dimension 20 × 20 × 20 cm3. The inhomogeneous phantom has inhomogeneities volume 2 × 2 × 2 cm3. The results of dose calculations using PRISM TPS were compared to literature data. From the calculation of PRISM TPS, dose rates show good agreement with Plato TPS and other study as published by Ramdhani. No deviations greater than ±4% for all case. Dose calculation in inhomogeneous and homogenous cases show similar result. This results indicate that Prism TPS is good in dose calculation of brachytherapy but not sensitive for inhomogeneities. Thus, the dose calculation parameters developed in this study were found to be applicable for clinical treatment planning of brachytherapy

  1. Study of dose calculation on breast brachytherapy using prism TPS

    Science.gov (United States)

    Fendriani, Yoza; Haryanto, Freddy

    2015-09-01

    PRISM is one of non-commercial Treatment Planning System (TPS) and is developed at the University of Washington. In Indonesia, many cancer hospitals use expensive commercial TPS. This study aims to investigate Prism TPS which been applied to the dose distribution of brachytherapy by taking into account the effect of source position and inhomogeneities. The results will be applicable for clinical Treatment Planning System. Dose calculation has been implemented for water phantom and CT scan images of breast cancer using point source and line source. This study used point source and line source and divided into two cases. On the first case, Ir-192 seed source is located at the center of treatment volume. On the second case, the source position is gradually changed. The dose calculation of every case performed on a homogeneous and inhomogeneous phantom with dimension 20 × 20 × 20 cm3. The inhomogeneous phantom has inhomogeneities volume 2 × 2 × 2 cm3. The results of dose calculations using PRISM TPS were compared to literature data. From the calculation of PRISM TPS, dose rates show good agreement with Plato TPS and other study as published by Ramdhani. No deviations greater than ±4% for all case. Dose calculation in inhomogeneous and homogenous cases show similar result. This results indicate that Prism TPS is good in dose calculation of brachytherapy but not sensitive for inhomogeneities. Thus, the dose calculation parameters developed in this study were found to be applicable for clinical treatment planning of brachytherapy.

  2. Tomosynthesis-based localization of radioactive seeds in prostate brachytherapy

    International Nuclear Information System (INIS)

    Accurately assessing the quality of prostate brachytherapy intraoperatively would be valuable for improved clinical outcome by ensuring the delivery of a prescribed tumoricidal radiation dose to the entire prostate gland. One necessary step towards this goal is the robust and rapid localization of implanted seeds. Several methods have been developed to locate seeds from x-ray projection images, but they fail to detect completely-overlapping seeds, thus necessitating manual intervention. To overcome this limitation, we have developed a new method where (1) a three-dimensional volume is reconstructed from x-ray projection images using a brachytherapy-specific tomosynthesis reconstruction algorithm with built-in blur compensation and (2) the seeds are located in this reconstructed volume. In contrast to other projection-based methods, our method can detect completely overlapping seeds. Our simulation results indicate that we can locate all implanted seeds in the prostate using a tomosynthesis angle of 30 deg. and seven projection images. The mean localization error is 1.27 mm for a case with 100 seeds. We have also tested our method using a prostate phantom with 61 implanted seeds and succeeded in locating all seeds automatically. We believe this new method can be useful for the intraoperative quality assessment of prostate brachytherapy in the future

  3. 'Homogeneity in brachytherapy' - Dummy run experience in Belgium

    International Nuclear Information System (INIS)

    Purpose: The homogeneity of brachytherapy treatments in Belgium was appreciated through a dummy run with two fictive patients. Materiel and Methods: All members of the Belgian Brachytherapy Board received last year a questionnaire about treatment technique, technical approach, dosimetry and treatment planning, for 2 selected clinical histories. Case 1: T1 G1 NO MO - SCC of the lateral border of the mobile tongue (dimensions: 12x10x5mm). Case 2: T1 G1 NO MO - SCC of the lateral side of the nose (10x12x3mm). Results: 10 members out of 14 from the Belgian Brachytherapy Board returned their questionnaire. Little variation has been observed regarding treatment technique, technical approach (H and N: hairpins or loops, skin: plastic tubes), dose (60-65 Gy), activity of Ir-192 (1-2 mCi/cm), definition of Gross Tumor Volume and dosimetry (Paris System). On the contrary, a large difference was observed in the definition of the Clinical Target Volume and the Treated Volume. Despite of this large difference, the ratio treated volume on clinical target volume was always satisfactory (1,2 for skin cancer - 2 for H and N cancer), indicating that the treatment was well adapted to the Clinical Target Volume in all but 1 instance. Variations of a factor 2 in the dose rate of irradiation were tolerated (40-80 cGy/h). Conclusion: Rigid guidelines are mostly followed by the responders concerning dose, dose prescription and implantation techniques. Large variations are encountered concerning safety margins (Clinical Target definition) and dose rate

  4. Optimization of a breast implant in Brachytherapy PDR. Validation with Monte Carlo simulation and measurements with TLDs and GafChromic films

    International Nuclear Information System (INIS)

    Background and purpose: The calculation of the dose distribution of Brachytherapy breast implant has been carried out in accordance with the Paris System (PS) in the majority of the radiotherapy departments in Europe. PDR (Pulsed Dose Rate) has lead to an improvement of the treatment procedure, optimization tools, however, allow an improvement of the treatment technique. The goal of this study was to perform a dosimetric verification of an optimized seven needles implant and to try to decrease the active length while preserving the same treatment volume. This corresponds to a ratio 'treated length/active length' (L t/L a) that tends towards 1. Material and Methods: A dosimetry phantom was made of polystyrene, capable of receiving the implant, TLDs (LiF100 1mm3 micro cubes) and films (GafChromic MD55-2). Dose distributions for one source position and for the implant in conformity with the PS were calculated, utilizing version 14.2 of the Plato TPS (Nucletron); the remote afterloading system was a microSelectron-PDR (Nucletron). MCNP (Monte Carlo N-Particles transport) modeling was used for various configurations to evaluate the influence of the composition of the medium, of the presence of the needles and the lack of scatter. Results: The benefit of the optimization was shown by the determination of a L t/L a factor of 1.05 instead of 0.7 for the standard PS. The dose distributions calculated by Plato are in agreement with TLD and film measurements for the optimization and the PS (<5%). The TPS results were confirmed by MC calculation as well as by measurements. MC calculations also showed that only the lack of scatter had a significant influence on the dose received by the skin (20%) Conclusions: The optimization brings a significant benefit in protecting the skin and in homogeneity of the dose distribution in the treated volume. Through MC simulation, this work made it possible to update a parameter significantly influencing dose distribution calculations: the

  5. Brachytherapy dosimeter with silicon photomultipliers

    Energy Technology Data Exchange (ETDEWEB)

    Moutinho, L.M., E-mail: moutinho@ua.pt [i3N, Physics Department, University of Aveiro (Portugal); Castro, I.F.C. [i3N, Physics Department, University of Aveiro (Portugal); Peralta, L. [Faculdade de Ciências da Universidade de Lisboa (Portugal); Laboratório de Instrumentação e Física Experimental de Partículas (LIP), Lisboa (Portugal); Abreu, M.C. [Laboratório de Instrumentação e Física Experimental de Partículas (LIP), Lisboa (Portugal); Veloso, J.F.C.A. [i3N, Physics Department, University of Aveiro (Portugal)

    2015-07-01

    In-vivo and in-situ measurement of the radiation dose administered during brachytherapy faces several technical challenges, requiring a very compact, tissue-equivalent, linear and highly sensitive dosimeter, particularly in low-dose rate brachytherapy procedures, which use radioactive seeds with low energy and low dose deposition rate. In this work we present a scintillating optical fiber dosimeter composed of a flexible sensitive probe and a dedicated electronic readout system based on silicon photomultiplier photodetection, capable of operating both in pulse and current modes. The performance of the scintillating fiber optic dosimeter was evaluated in low energy regimes, using an X-ray tube operating at voltages of 40–50 kV and currents below 1 mA, to assess minimum dose response of the scintillating fiber. The dosimeter shows a linear response with dose and is capable of detecting mGy dose variations like an ionization chamber. Besides fulfilling all the requirements for a dosimeter in brachytherapy, the high sensitivity of this device makes it a suitable candidate for application in low-dose rate brachytherapy. According to Peralta and Rego [1], the BCF-10 and BCF-60 scintillating optical fibers used in dosimetry exhibit high variations in their sensitivity for photon beams in the 25–100 kVp energy range. Energy linearity for energies below 50 keV needs to be further investigated, using monochromatic X-ray photons.

  6. Brachytherapy dosimeter with silicon photomultipliers

    Science.gov (United States)

    Moutinho, L. M.; Castro, I. F. C.; Peralta, L.; Abreu, M. C.; Veloso, J. F. C. A.

    2015-07-01

    In-vivo and in-situ measurement of the radiation dose administered during brachytherapy faces several technical challenges, requiring a very compact, tissue-equivalent, linear and highly sensitive dosimeter, particularly in low-dose rate brachytherapy procedures, which use radioactive seeds with low energy and low dose deposition rate. In this work we present a scintillating optical fiber dosimeter composed of a flexible sensitive probe and a dedicated electronic readout system based on silicon photomultiplier photodetection, capable of operating both in pulse and current modes. The performance of the scintillating fiber optic dosimeter was evaluated in low energy regimes, using an X-ray tube operating at voltages of 40-50 kV and currents below 1 mA, to assess minimum dose response of the scintillating fiber. The dosimeter shows a linear response with dose and is capable of detecting mGy dose variations like an ionization chamber. Besides fulfilling all the requirements for a dosimeter in brachytherapy, the high sensitivity of this device makes it a suitable candidate for application in low-dose rate brachytherapy. According to Peralta and Rego [1], the BCF-10 and BCF-60 scintillating optical fibers used in dosimetry exhibit high variations in their sensitivity for photon beams in the 25-100 kVp energy range. Energy linearity for energies below 50 keV needs to be further investigated, using monochromatic X-ray photons.

  7. In vivo dosimetry in brachytherapy

    DEFF Research Database (Denmark)

    Tanderup, Kari; Beddar, Sam; Andersen, Claus Erik; Kertzscher Schwencke, Gustavo Adolfo Vladimir; Cygler, Joanna E.

    2013-01-01

    In vivo dosimetry (IVD) has been used in brachytherapy (BT) for decades with a number of different detectors and measurement technologies. However, IVD in BT has been subject to certain difficulties and complexities, in particular due to challenges of the high-gradient BT dose distribution and the...

  8. Brachytherapy in coronary artery disease

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ho Chun [Chonnam National University Medicine School, Gwangju (Korea, Republic of)

    2006-04-15

    Coronary artery disease is a leading cause of morbidity and mortality across the world. Percutaneous coronary intervention has become the major technique of revascularization. However, restenosis remains a major limitation of this procedure. Recently the need for repeat intervention due to restenosis, the most vexing long-term failure of percutaneous coronary intervention, has been significantly reduced owing to the introduction to two major advances, intracoronary brachytherapy and the drug-eluting stents, intracoronary brachytherapy has been employed in recent years to prevent restenosis lesions with effective results, principally in in-stent restenosis. Restenosis is generally considered as an excessive form of normal wound healing divided up in processes: elastic recoil, neointimal hyperplasia, and negative vascular remodeling. Restenosis has previously been regarded as a proliferative process in which neointimal thickening, mediated by a cascade of inflammatory mediators and other factors, is the key factor. Ionizing radiation has been shown to decrease the proliferative response to injury in animal models of restenosis. Subsequently, several randomized, double-blind trials have demonstrated that intracoronary brachytherapy can reduce the rates to both angiographic restenosis and clinical event rates in patients undergoing percutaneous coronary intervention for in-stent restenosis. Some problems, such as late thrombosis and edge restenosis, have been identified as limiting factors of this technique. Brachytherapy is a promising method of preventing and treating coronary artery restenosis.

  9. 10 CFR 35.690 - Training for use of remote afterloader units, teletherapy units, and gamma stereotactic...

    Science.gov (United States)

    2010-01-01

    ... Accreditation Council for Graduate Medical Education or the Royal College of Physicians and Surgeons of Canada... Oncology of the Accreditation Council for Graduate Medical Education or the Royal College of Physicians and... COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units, Teletherapy Units,...

  10. Dosimetry in intravascular brachytherapy

    International Nuclear Information System (INIS)

    Among the cardiovascular diseases responsible for deaths in the adult population in almost all countries of the world, the most common is acute myocardial infarction, which generally occurs because of the occlusion of one or more coronary arteries. Several diagnostic techniques and therapies are being tested for the treatment of coronary artery disease. Balloon angioplasty has been a popular treatment which is less invasive than traditional surgeries involving revascularization of the myocardium, thus promising a better quality of life for patients. Unfortunately, the rate of restenosis (re-closing of the vessel) after balloon angioplasty is high (approximately 30-50% within the first year after treatment).Recently, the idea of delivering high radiation doses to coronary arteries to avoid or delay restenosis has been suggested. Known as intravascular brachytherapy, the technique has been used with several radiation sources, and researchers have obtained success in decreasing the rate of restenosis in some patient populations. In order to study the radiation dosimetry in the patient and radiological protection for the attending staff for this therapy, radiation dose distributions for monoenergetic electrons and photons (at nine discrete energies) were calculated for blood vessels of diameter 0.15, o,30 and 0.45 cm with balloon and wire sources using the radiation transport code MCNP4B. Specific calculations were carried out for several candidate radionuclides as well. Two s tent sources (metallic prosthesis that put inside of patient's artery through angioplasty) employing 32 P are also simulated. Advantages and disadvantages of the various radionuclides and source geometries are discussed. The dosimetry developed here will aid in the realization of the benefits obtained in patients for this promising new technology. (author)

  11. Iodine-125 Seed Implantation (Permanent Brachytherapy for Clinically Localized Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Saika,Takeshi

    2008-02-01

    Full Text Available From January 2004 to March 2007, 308 patients with clinically localized prostate cancer were treated using iodine-125 (125I seed implantation (permanent brachytherapy at Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences. We evaluated the treatment’s effi cacy and morbidity in 300 prostate cancer patients who were followed up for more than 1 month after brachytherapy. Based on the National Comprehensive Cancer Network (NCCN guidelines, patients with a prostate volume of less than 40 ml in transrectal ultrasound imaging were classifi ed as low or intermediate risk. The median patient age was 67 years (range 50 to 79 years, the median prostate-specific antigen (PSA value before biopsy was 6.95 ng/ml (range 1.13 to 24.7 ng/ml, and the median prostate volume was 24.33 ml (range 9.3 to 41.76 ml. The median follow-up was 18 months (range 1 to 36 months and the PSA levels decreased in almost all patients after brachytherapy. Although 194 of 300 patients (64.7% complained of diffi culty in urination, pollakisuria/urgency, miction pain, and/or urinary incontinence, all of which might be associated with radiation prostatitis during the fi rst month after brachytherapy, these symptoms gradually improved. 125I seed implantation brachytherapy is safe and eff ective for localized prostate cancer within short-term follow up.

  12. THYROID HORMONE REVERSES AGING-INDUCED MYOCARDIAL FATTY ACID OXIDATION DEFECTS AND IMPROVES THE RESPONSE TO ACUTELY INCREASED AFTERLOAD

    Energy Technology Data Exchange (ETDEWEB)

    Ledee, Dolena; Portman, Michael A.; Kajimoto, Masaki; Isern, Nancy G.; Olson, Aaron

    2013-06-07

    Background: Subclinical hypothyroidism occurs during aging in humans and mice and may contribute to development of heart failure. Aging also impairs myocardial fatty acid oxidation, causing increased reliance on flux through pyruvate dehydrogenase (PDH) to maintain function. We hypothesize that the metabolic changes in aged hearts make them less tolerant to acutely increased work and that thyroid hormone reverses these defects. Methods: Studies were performed on young (Young, 4-6 months) and aged (Old, 22-24 months) C57/BL6 mice at standard (50 mmHg) and high afterload (80 mmHg). Another aged group received thyroid hormone for 3 weeks (Old-TH, high afterload only). Function was measured in isolated working hearts along with substrate fractional contributions (Fc) to the citric acid cycle (CAC) using perfusate with 13C labeled lactate, pyruvate, glucose and unlabeled palmitate and insulin. Results: Cardiac function was similar between Young and Old mice at standard afterload. Palmitate Fc was reduced but no individual carbohydrate contributions differed. CAC and individual substrate fluxes decreased in aged. At high afterload, -dP/dT was decreased in Old versus Young. Similar to low afterload, palmitate Fc was decreased in Old. Thyroid hormone reversed aging-induced changes in palmitate Fc and flux while significantly improving cardiac function. Conclusion: The aged heart shows diminished ability to increase cardiac work due to substrate limitations, primarily impaired fatty acid oxidation. The heart accommodates slightly by increasing efficiency through oxidation of carbohydrate substrates. Thyroid hormone supplementation in aged mice significantly improves cardiac function potentially through restoration of fatty acid oxidation.

  13. Paddle-based rotating-shield brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yunlong; Xu, Weiyu [Department of Electrical and Computer Engineering, University of Iowa, 4016 Seamans Center, Iowa City, Iowa 52242 (United States); Flynn, Ryan T.; Kim, Yusung; Bhatia, Sudershan K.; Buatti, John M. [Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 (United States); Dadkhah, Hossein [Department of Biomedical Engineering, University of Iowa, 1402 Seamans Center, Iowa City, Iowa 52242 (United States); Wu, Xiaodong, E-mail: xiaodong-wu@uiowa.edu [Department of Electrical and Computer Engineering, University of Iowa, 4016 Seamans Center, Iowa City, Iowa 52242 and Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 (United States)

    2015-10-15

    Purpose: The authors present a novel paddle-based rotating-shield brachytherapy (P-RSBT) method, whose radiation-attenuating shields are formed with a multileaf collimator (MLC), consisting of retractable paddles, to achieve intensity modulation in high-dose-rate brachytherapy. Methods: Five cervical cancer patients using an intrauterine tandem applicator were considered to assess the potential benefit of the P-RSBT method. The P-RSBT source used was a 50 kV electronic brachytherapy source (Xoft Axxent™). The paddles can be retracted independently to form multiple emission windows around the source for radiation delivery. The MLC was assumed to be rotatable. P-RSBT treatment plans were generated using the asymmetric dose–volume optimization with smoothness control method [Liu et al., Med. Phys. 41(11), 111709 (11pp.) (2014)] with a delivery time constraint, different paddle sizes, and different rotation strides. The number of treatment fractions (fx) was assumed to be five. As brachytherapy is delivered as a boost for cervical cancer, the dose distribution for each case includes the dose from external beam radiotherapy as well, which is 45 Gy in 25 fx. The high-risk clinical target volume (HR-CTV) doses were escalated until the minimum dose to the hottest 2 cm{sup 3} (D{sub 2cm{sup 3}}) of either the rectum, sigmoid colon, or bladder reached their tolerance doses of 75, 75, and 90 Gy{sub 3}, respectively, expressed as equivalent doses in 2 Gy fractions (EQD2 with α/β = 3 Gy). Results: P-RSBT outperformed the two other RSBT delivery techniques, single-shield RSBT (S-RSBT) and dynamic-shield RSBT (D-RSBT), with a properly selected paddle size. If the paddle size was angled at 60°, the average D{sub 90} increases for the delivery plans by P-RSBT on the five cases, compared to S-RSBT, were 2.2, 8.3, 12.6, 11.9, and 9.1 Gy{sub 10}, respectively, with delivery times of 10, 15, 20, 25, and 30 min/fx. The increases in HR-CTV D{sub 90}, compared to D-RSBT, were 16

  14. High-dose-rate afterloading intracavitary irradiation and expandable metallic biliary endoprosthesis for malignant biliary obstruction

    International Nuclear Information System (INIS)

    A double lumen catheter was developed as an applicator for the remote afterloading system (RALS) of 60Co for the intracavitary irradiation of an obstructed common bile duct due to gallbladder cancer in 1 case and by cholangiocarcinoma in 7 cases. This was followed by the biliary endoprosthesis with expandable metallic stents to maintain patency. The mean survival period after treatment was not long (14 weeks). However, removal of the external drainage tube was possible in 7 of the 8 cases, and none of the 8 cases showed dislodgement or deformity of the stent, or obstruction of the bile duct in the stent-inserted area. This combination effectively provided palliation, and has considerable potential for malignant biliary obstruction. (author)

  15. Rectal complication after remote afterloading intracavitary therapy for carcinoma of the uterine cervix

    Energy Technology Data Exchange (ETDEWEB)

    Teshima, T.; Chatani, M.; Hata, K.; Inoue, Ta.; Inoue, To.; Suzuki, T.

    1985-06-01

    From August 1978 through December 1980, 119 patients of previously untreated carcinoma of the uterine cervix were treated using RALS, remote afterloading high dose rate intracavitary therapy at our department. The data from 92 out of 119 patients were available for analysis of rectal complication. The incidence of major rectal complications was only 2% (2/92). Uni- and multivariate analyses were used based on the external criterion variable of rectal complication which included even minor injuries. By using these methods, it was clearly indicated that these factors such as TDF of rectum, Z-coordinate of weighted geometric center (WGC-Z), the dose of whole pelvic irradiation, history of chemotherapy and Treponema pallidum hemoagglutination test (TPHA) were important for occurrence of rectal complication. According to discriminant score, 71 out of 92 cases (77%) could be correctly discriminated.

  16. Rectal complication after remote afterloading intracavitary therapy for carcinoma of the uterine cervix

    International Nuclear Information System (INIS)

    From August 1978 through December 1980, 119 patients of previously untreated carcinoma of the uterine cervix were treated using RALS, remote afterloading high dose rate intracavitary therapy at our department. The data from 92 out of 119 patients were available for analysis of rectal complication. The incidence of major rectal complications was only 2% (2/92). Uni- and multivariate analyses were used based on the external criterion variable of rectal complication which included even minor injuries. By using these methods, it was clearly indicated that these factors such as TDF of rectum, Z-coordinate of weighted geometric center (WGC-Z), the dose of whole pelvic irradiation, history of chemotherapy and Treponema pallidum hemoagglutination test (TPHA) were important for occurrence of rectal complication. According to discriminant score, 71 out of 92 cases (77%) could be correctly discriminated. (orig.)

  17. The role of dosimetry audits in radiotherapy quality assurance: The 8 year experience in Greek radiotherapy and brachytherapy centers

    International Nuclear Information System (INIS)

    Twenty six (26) radiotherapy (RT) centers (public and private) operate in Greece up to date (Apr. 2010), where 36 linacs and 8 Co-60 teletherapy units are being used, producing 64 photon beams (Co60, 6-23 MV) and 126 electron beams (4-21 MeV) in total. Furthermore, 7 HDR Ir192 and 2 MDR/LDR Cs137 remote afterloading brachytherapy systems operate. The Ionizing Radiation Calibration Laboratory (IRCL) of the Greek Atomic Energy Commission (GAEC) runs dosimetry audits in all Greek radiotherapy centers by means of on-site visits, in order to assess the dose accuracy, to identify and resolve problems on dosimetry, to provide intercomparisons to hospitals and disseminate the IAEA TRS 398 protocol. Additionally, the GAEC's IRCL calibrates the reference dosimetry equipment of all RT centers, in terms of absorbed dose in water at Co60 beam quality and air kerma strength at Ir192 qualities. The GAEC's dosimetry audit is a continuous process: The 1st round has been completed for the photons beams (2002 - 2006), electrons (2002 - 2008) and brachytherapy (2006-2009). The 2nd round is at the final stage for photons (2006-2010) and in progress for the rest, while a 3rd round for photons has already been initiated. The audit results for the photons 1st round have been published. This work presents the results of these audits and focuses on the improvements of RT centers' dosimetry during the successive audit rounds

  18. Dosimetry experience of 192IR sources used In HDR brachytherapy for cervical cancer

    International Nuclear Information System (INIS)

    Purpose/Objective: The 192IR Sources are the most commonly used in radiotherapy treatments HDR worldwide. According to international recommendations on quality assurance in HDR brachytherapy, an acceptance test based on the determination of the source strength of any new source shall be carried out before first application to verify the manufacturer’s calibration data. The present paper gives the experimental determination of the source strength for our brachytherapy sources used until now in brachytherapy treatments. Materials/Methods: At Mother Teresa University Hospital we have a cost-effective gynecological brachytherapy unit from Eckert & Ziegler BEBIG named GyneSource® that is a five channel HDR after loader equipped with an 192IR source. The software used is HDR plus™ 2.5 that delivers an optimized treatment plan and makes the process especially fast and we use intracavitary BEBIG applicators. From April 2009 up to December 2012, we have imported nine HDR 192IR Sources. The exchange of the source and acceptance test is done by the physicist of the clinic once the source is imported. The measurements are done with a Well-type ionization chamber HDR1000 Plus and the electrometer used is MAX4000. Only seven sources are compared as we miss the dosimetry data of the first source, and the forth source was not measured and not used because the machine was not working in that time. Results/Conclusions: Eight sources were accepted for clinically use as the measurement were within the tolerance. The source number four with e deviation of -1.92% has been double checked compared with a free in-air measurement with farmer type chamber that gave a deviation to source certificate of 4% that is still inside the tolerance to accept a source for clinical use. The deviations of measured Air Kerma rate to the value of the sources certificates of all our used 192IR sources are less than 2%, which are within the tolerance. The checked value of updated source strength in

  19. Combined transperineal radiofrequency (RF) interstitial hyperthermia and brachytherapy for localized prostate cancer (PC)

    International Nuclear Information System (INIS)

    Hyperthermia has been used effectively as a radiation sensitizer. Interstitial hyperthermoradiotherapy has been therefore utilized as a minimal invasive therapy in attempts to improve local tumor control for various cancers, but not for urological cancer. The purpose of this study was to investigate the safety and feasibility of transperineal hyperthermoradiotherapy for localized PC. Based on our basic study of hyperthermoradiotherapy, we devised the procedure of combined transperineal RF interstitial hyperthermia and brachytherapy for localized prostate cancer. Two patients with localized PC underwent transperineal RF interstitial hyperthermia combined with brachytherapy operation the 192-Ir remote after-loading system (RALS). Under transrectal ultrasound guidance, a total number of 12-18 stainless steel needles for 192-Ir RALS were implanted into the prostatic gland and seminal vesicles (SV) in an optimized pattern. Eight of the needles were used as electrodes for hyperthermia, and were electrically insultated using the vinyl catheter along the length of the subdermal fatty tissue to protect from overheating. Three other needles were utilized for continuous temperature mapping in the prostate. Rectal temperature was also monitored. Total radiation doses of 70 Gy to the prostate and SV were planned as a combination of brachytherapy (24 Gy/4 fraction) and external irradiation using a four-field box technique (46 Gy/23 fraction). Hyperthermic treatment (goal of 42 to 43 deg C for 60 minutes) was performed twice following the 1st and 4th brachytherapy at an interval of more than 48 hours for the recovery of cancer cells from thermotolerance. Both patients reached the treatment goal of all intraprostatic temperatures >43.0 deg C, which was considered favorable for hyperthermia, and the rectal temperatures of both patients remained <38 deg C during hyperthermia. In serial PSA measurements of both patients, serum PSA was less than 1.0 ng/ml within 3 months and has since

  20. Combined transperineal radiofrequency (RF) interstitial hyperthermia and brachytherapy for localized prostate cancer (PC)

    Energy Technology Data Exchange (ETDEWEB)

    Urakami, Shinji; Gonda, Nobuko; Kikuno, Nobuyuki [Shimane Medical Univ., Izumo (Japan)] (and others)

    2001-05-01

    Hyperthermia has been used effectively as a radiation sensitizer. Interstitial hyperthermoradiotherapy has been therefore utilized as a minimal invasive therapy in attempts to improve local tumor control for various cancers, but not for urological cancer. The purpose of this study was to investigate the safety and feasibility of transperineal hyperthermoradiotherapy for localized PC. Based on our basic study of hyperthermoradiotherapy, we devised the procedure of combined transperineal RF interstitial hyperthermia and brachytherapy for localized prostate cancer. Two patients with localized PC underwent transperineal RF interstitial hyperthermia combined with brachytherapy operation the 192-Ir remote after-loading system (RALS). Under transrectal ultrasound guidance, a total number of 12-18 stainless steel needles for 192-Ir RALS were implanted into the prostatic gland and seminal vesicles (SV) in an optimized pattern. Eight of the needles were used as electrodes for hyperthermia, and were electrically insultated using the vinyl catheter along the length of the subdermal fatty tissue to protect from overheating. Three other needles were utilized for continuous temperature mapping in the prostate. Rectal temperature was also monitored. Total radiation doses of 70 Gy to the prostate and SV were planned as a combination of brachytherapy (24 Gy/4 fraction) and external irradiation using a four-field box technique (46 Gy/23 fraction). Hyperthermic treatment (goal of 42 to 43 deg C for 60 minutes) was performed twice following the 1st and 4th brachytherapy at an interval of more than 48 hours for the recovery of cancer cells from thermotolerance. Both patients reached the treatment goal of all intraprostatic temperatures >43.0 deg C, which was considered favorable for hyperthermia, and the rectal temperatures of both patients remained <38 deg C during hyperthermia. In serial PSA measurements of both patients, serum PSA was less than 1.0 ng/ml within 3 months and has since

  1. Acute urinary toxicity following transperineal prostate brachytherapy using a modified Quimby loading method

    International Nuclear Information System (INIS)

    Purpose: To examine the acute urinary toxicity following transperineal prostate implant using a modified Quimby loading method with regard to time course, severity, and factors that may be associated with a higher incidence of morbidity. Methods and Materials: One hundred thirty-nine patients with prostate adenocarcinoma treated with brachytherapy from 1997 through 1999 had follow-up records available for review. Patients considered for definitive brachytherapy alone included those with prostate specific antigen (PSA) ≤6, Gleason score (GS) ≤6, clinical stage 6, PSA>6, or Stage>T2a were treated with external beam radiation therapy followed by brachytherapy boost. Sources were loaded according to a modified Quimby method. At each follow-up, toxicity was graded based on a modified RTOG urinary toxicity scale. Results: Acute urinary toxicity occurred in 88%. Grade I toxicity was reported in 23%, grade II in 45%, and grade III in 20%, with 14% requiring prolonged (greater than 1 week) intermittent or indwelling catheterization. Overall median duration of symptoms was 12 months. There was no difference in duration of symptoms between patients treated with I-125 or Pd-103 sources (p=0.71). After adjusting for GS and PSA, multivariate logistic regression analysis showed higher incidence of grade 3 toxicity in patients with larger prostate volumes (p=0.002), and those with more seeds implanted (p<0.001). Higher incidence of prolonged catheterization was found in patients receiving brachytherapy alone (p=0.01), with larger prostate volumes (p=0.01), and those with more seeds implanted (p<0.001). Conclusion: Interstitial brachytherapy for prostate cancer leads to a high incidence of acute urinary toxicity, most of which is mild to moderate in severity. A prolonged need for catheterization can occur in some patients. Patients receiving brachytherapy alone, those with prostate volumes greater than 30 cc, and those implanted with a greater number of seeds have the highest

  2. A gEUD-based inverse planning technique for HDR prostate brachytherapy: Feasibility study

    International Nuclear Information System (INIS)

    Purpose: The purpose of this work was to study the feasibility of a new inverse planning technique based on the generalized equivalent uniform dose for image-guided high dose rate (HDR) prostate cancer brachytherapy in comparison to conventional dose-volume based optimization. Methods: The quality of 12 clinical HDR brachytherapy implants for prostate utilizing HIPO (Hybrid Inverse Planning Optimization) is compared with alternative plans, which were produced through inverse planning using the generalized equivalent uniform dose (gEUD). All the common dose-volume indices for the prostate and the organs at risk were considered together with radiobiological measures. The clinical effectiveness of the different dose distributions was investigated by comparing dose volume histogram and gEUD evaluators. Results: Our results demonstrate the feasibility of gEUD-based inverse planning in HDR brachytherapy implants for prostate. A statistically significant decrease in D10 or/and final gEUD values for the organs at risk (urethra, bladder, and rectum) was found while improving dose homogeneity or dose conformity of the target volume. Conclusions: Following the promising results of gEUD-based optimization in intensity modulated radiation therapy treatment optimization, as reported in the literature, the implementation of a similar model in HDR brachytherapy treatment plan optimization is suggested by this study. The potential of improved sparing of organs at risk was shown for various gEUD-based optimization parameter protocols, which indicates the ability of this method to adapt to the user's preferences.

  3. Pulsed dose rate (PDR) brachytherapy as salvage treatment of locally advanced or recurrent gynecologic cancer

    DEFF Research Database (Denmark)

    Jensen, P T; Roed, H; Engelholm, S A; Rosendal, F

    1998-01-01

    presents the first clinical results from The Finsen Center with PDR-brachytherapy in patients with locally advanced or recurrent gynecologic cancer. METHODS AND MATERIALS: Between June 1993 and August 1996, 34 patients with gynecologic malignancies (22 pelvic recurrences, 12 primary locally advanced) have...... recurrent gynecologic cancer, although substantial toxicity is observed in patients with large treatment volumes and recurrent disease....

  4. The reference isodose length (RIL) in endovascular brachytherapy: physical aspects

    International Nuclear Information System (INIS)

    Full text: In a forthcoming recommendation of the endovascular GEC ESTRO (European Society for Therapeutic Radiology and Oncology) working group terms and concepts are defined for prescribing, reporting and recording lengths (volumes) for endovascular brachytherapy. Following these recommendation the reference isodose length (RIL) is one of the most important parameter for treatment planning. It is defined as the vessel length at the reference depth (1 or 2 mm) enclosed by the 90 % isodose. The RIL is thus a physical parameter to characterize a source configuration and depends on active source length (ASL), nuclide, source design, and reference depth. RILs are determined by (i) Monte Carlo calculations (EGSnrc code) and (ii) film dosimetry (radiochromic films + special phantom) for three endovascular brachytherapy devices currently in clinical use (192Ir: 23 mm ASL, 32P: 40 mm ASL, 90Sr: 40 mm ASL). The calculated RIL at 2 mm distance from the source axis are 15.4 mm, 36.8 mm and 35.8 mm for the 192Ir, 32P, 90Sr sources, respectively. The results obtained with EGSnrc are in very good agreement with the measured longitudinal dose profiles. The reference isodose length (RIL) is a useful and essential parameter in endovascular brachytherapy treatment planning, which critically depends on source design. Monte Carlo methods are a valuable tool to calculate/verify the RIL of different devices at the respective reference depth. (author)

  5. MAGIC with formaldehyde applied to dosimetry of HDR brachytherapy source

    International Nuclear Information System (INIS)

    The use of polymer gel dosimeters in brachytherapy can allow the determination of three-dimensional dose distributions in large volumes and with high spatial resolution if an adequate calibration process is performed. One of the major issues in these experiments is the polymer gel response dependence on dose rate when high dose rate sources are used and the doses in the vicinity of the sources are to be determinated. In this study, the response of a modified MAGIC polymer gel with formaldehyde around an Iridium-192 HDR brachytherapy source is presented. Experimental results obtained with this polymer gel were compared with ionization chamber measurements and with Monte Carlo simulation with PENELOPE. A maximum difference of 3.10% was found between gel dose measurements and Monte Carlo simulation at a radial distance of 18 mm from the source. The results obtained show that the gel's response is strongly influenced by dose rate and that a different calibration should be used for the vicinity of the source and for regions of lower dose rates. The results obtained in this study show that, provided the proper calibration is performed, MAGIC with formaldehyde can be successfully used to accurate determinate dose distributions form high dose rate brachytherapy sources.

  6. Panoptes: Calibration of a dosimetry system for eye brachytherapy

    International Nuclear Information System (INIS)

    Intraocular cancer is a serious threat to the lives of those that suffer from it. Dosimetry for eye brachytherapy presents a significant challenge due to the inherently steep dose gradients that are needed to treat such small tumours in close proximity to sensitive normal structures. This issue is addressed by providing much needed quality assurance to eye brachytherapy, a novel volumetric dosimetry system, called PANOPTES was developed. This study focuses on the preliminary characterisation and calibration of the system. Using ion beam facilities, the custom, pixelated silicon detector of PANOPTES was shown to have good charge collection uniformity and a well defined sensitive volume. Flat-field calibration was conducted on the device using a 250 kVp orthovoltage beam. Finally, the detector and phantom were simulated with Monte Carlo in Geant4, to create water equivalent dose correction factors for each pixel across a range of angles. - Highlights: • Volumetric detector system produced for plaque brachytherapy. • Orthovoltage, flat-field calibration performed for detector pixels. • Monte Carlo simulation showed mostly little angular deviation across all angles. • Ion beam induced charge collection showed pixels uniform and fully depleted

  7. GGEMS-Brachy: GPU GEant4-based Monte Carlo simulation for brachytherapy applications

    Science.gov (United States)

    Lemaréchal, Yannick; Bert, Julien; Falconnet, Claire; Després, Philippe; Valeri, Antoine; Schick, Ulrike; Pradier, Olivier; Garcia, Marie-Paule; Boussion, Nicolas; Visvikis, Dimitris

    2015-07-01

    In brachytherapy, plans are routinely calculated using the AAPM TG43 formalism which considers the patient as a simple water object. An accurate modeling of the physical processes considering patient heterogeneity using Monte Carlo simulation (MCS) methods is currently too time-consuming and computationally demanding to be routinely used. In this work we implemented and evaluated an accurate and fast MCS on Graphics Processing Units (GPU) for brachytherapy low dose rate (LDR) applications. A previously proposed Geant4 based MCS framework implemented on GPU (GGEMS) was extended to include a hybrid GPU navigator, allowing navigation within voxelized patient specific images and analytically modeled 125I seeds used in LDR brachytherapy. In addition, dose scoring based on track length estimator including uncertainty calculations was incorporated. The implemented GGEMS-brachy platform was validated using a comparison with Geant4 simulations and reference datasets. Finally, a comparative dosimetry study based on the current clinical standard (TG43) and the proposed platform was performed on twelve prostate cancer patients undergoing LDR brachytherapy. Considering patient 3D CT volumes of 400  × 250  × 65 voxels and an average of 58 implanted seeds, the mean patient dosimetry study run time for a 2% dose uncertainty was 9.35 s (≈500 ms 10-6 simulated particles) and 2.5 s when using one and four GPUs, respectively. The performance of the proposed GGEMS-brachy platform allows envisaging the use of Monte Carlo simulation based dosimetry studies in brachytherapy compatible with clinical practice. Although the proposed platform was evaluated for prostate cancer, it is equally applicable to other LDR brachytherapy clinical applications. Future extensions will allow its application in high dose rate brachytherapy applications.

  8. GGEMS-Brachy: GPU GEant4-based Monte Carlo simulation for brachytherapy applications

    International Nuclear Information System (INIS)

    In brachytherapy, plans are routinely calculated using the AAPM TG43 formalism which considers the patient as a simple water object. An accurate modeling of the physical processes considering patient heterogeneity using Monte Carlo simulation (MCS) methods is currently too time-consuming and computationally demanding to be routinely used. In this work we implemented and evaluated an accurate and fast MCS on Graphics Processing Units (GPU) for brachytherapy low dose rate (LDR) applications. A previously proposed Geant4 based MCS framework implemented on GPU (GGEMS) was extended to include a hybrid GPU navigator, allowing navigation within voxelized patient specific images and analytically modeled 125I seeds used in LDR brachytherapy. In addition, dose scoring based on track length estimator including uncertainty calculations was incorporated. The implemented GGEMS-brachy platform was validated using a comparison with Geant4 simulations and reference datasets. Finally, a comparative dosimetry study based on the current clinical standard (TG43) and the proposed platform was performed on twelve prostate cancer patients undergoing LDR brachytherapy. Considering patient 3D CT volumes of 400  × 250  × 65 voxels and an average of 58 implanted seeds, the mean patient dosimetry study run time for a 2% dose uncertainty was 9.35 s (≈500 ms 10−6 simulated particles) and 2.5 s when using one and four GPUs, respectively. The performance of the proposed GGEMS-brachy platform allows envisaging the use of Monte Carlo simulation based dosimetry studies in brachytherapy compatible with clinical practice. Although the proposed platform was evaluated for prostate cancer, it is equally applicable to other LDR brachytherapy clinical applications. Future extensions will allow its application in high dose rate brachytherapy applications. (paper)

  9. Ocular brachytherapy with a holmium-166 irradiator device

    International Nuclear Information System (INIS)

    The ocular brachytherapy is a method that allows controlling ocular tumors. However, the irradiation of the ocular area in high doses can bring damages mainly to the surrounding healthy tissue, such as lens, retina and bone tissue of the orbital area in growth phase. Brachytherapy in comparison to teletherapy allows a large reduction of the absorbed doses in the adjacent tissues avoiding deleterious effects. Various types of radionuclides can be applied to ocular brachytherapy. Those radionuclides shall be encapsulated and placed juxtaposed to the sclera, back to the tumor. Herein, a new device was developed to encapsulate the radioactive material. It can easily place back of the eyeball. A computational model of the ocular area was developed in order to simulate the spatial dose distribution promoted by the holmium-166 nuclide distributed inside the irradiator device. The simulations addressed a device placed on the surface of the sclera, rotated 90 deg taken at the normal axis forward to the lens. The simulation was carried on the code Monte Carlo MCNP5. The computational simulation generates the spatial dose distribution in the treated volume. All continuous beta and the discrete gamma and X-ray spectra emitted by the holmium-166 were incorporated on simulations. The results allow comparing the space dose distribution to other types of sources used for the same end. The sclera absorbed dose, the maximum apical tumor dose, as well as on the tumor base were investigated. Indeed, the tumor thickness defines the conditions of irradiation. The holmium-166 dose distribution provides a tool to propose a better and optimized protocol for ocular brachytherapy. (author)

  10. Strategies and technical aspects in endoluminal HDR brachytherapy

    International Nuclear Information System (INIS)

    Endoluminal brachytherapy is an effective palliative modality to relieve endoluminal obstruction (in bronchus. bile, bile ducts and oesophageal neoplasms) that can be used alone or definitively to boost the primary site after or during a course of external irradiation. It is known that those patients with local complete response after radiotherapy and/or brachytherapy survive longer than those with a worse regional control. So it is really important to deliver the highest dose to the tumour while minimizing side-effects. Our studies are now directed to focus tolerance of bronchial tree vs pulmonary parenchymal tissue of oesophageal mucosa vs pulmonary and gastrointestinal structures of biliary tree vs liver parenchyma. Recent reports relate about mucosal ulceration and stenosis with pseudomembrane build up and/or fatal haemoptysis and haemorrhage. The question that we address now is if it is possible to obtain a real three dimensional view of the isodose curves in patients instead of constantly relying on catheter placements controlling high dose side effects. In our department the operating room is planned for the patient preparation and to enable precise localization of applicators and accurate delivery of HDR brachytherapy. So in the same room anaestesy, endoscopy, X-rays and therapy are performed without the need to transfer patients elsewhere that can lead to catheter displacement. We are also trying to introduce systematically some marker near or in the tumour during endoscopy in order to verify the precise localization of our target in the radiogram. In bronchus HDR-brachytherapy we generally use a specific contrast medium (Hystrast) that allows us to see the entire region of the pulmonary tree where catheters are introduced. So we can conclude that the major improvements achieved because of the integration of application, planning and treatment are 1) Individualization of treatment planning with respect to the target volume. 2) Improvement of planning

  11. Physical aspects of radioisotope brachytherapy

    International Nuclear Information System (INIS)

    The present report represents an attempt to provide, within a necessarily limited compass, an authoritative guide to all important physical aspects of the use of sealed gamma sources in radiotherapy. Within the report, reference is made wherever necessary to the more extensive but scattered literature on this subject. While this report attempts to cover all the physical aspects of radioisotope 'brachytherapy' it does not, of course, deal exhaustively with any one part of the subject. 384 refs, 3 figs, 6 tabs

  12. Study on application of human cognition reliability model in human error in emergency response against the source blockage of high dose rate afterloading unit

    International Nuclear Information System (INIS)

    Objective: To put forward reasonable and feasible recommendations aiming at enhancing the application safety of afterloading unit, through studying the human reliability in the emergency response against the source blockage of afterloading unit. Methods: Based on the human cognition reliability model, ten operation errors during the emergency response against the source blockage of afterloading unit were analyzed and permissible time widow of emergency response operation were determined. The human error probability was calculated with the execution time of emergency response operation obtained through simulation, observation and recording. Results: The operation action, relevant permissible time window and execution time were obtained with the corresponding human error probabilities in the range 0.04-0.27. Conclusions: The human error model in emergency response against the source blockage of afterloading unit based on HCRmodel is feasible, and provides important reference basis to reduce the occurrence of potential exposure and mitigate the consequence of potential exposure. (authors)

  13. AAPM Task Group 128: Quality assurance tests for prostate brachytherapy ultrasound systems

    International Nuclear Information System (INIS)

    While ultrasound guided prostate brachytherapy has gained wide acceptance as a primary treatment tool for prostate cancer, quality assurance of the ultrasound guidance system has received very little attention. Task Group 128 of the American Association of Physicists in Medicine was created to address quality assurance requirements specific to transrectal ultrasound used for guidance of prostate brachytherapy. Accurate imaging guidance and dosimetry calculation depend upon the quality and accuracy of the ultrasound image. Therefore, a robust quality assurance program for the ultrasound system is essential. A brief review of prostate brachytherapy and ultrasound physics is provided, followed by a recommendation for elements to be included in a comprehensive test phantom. Specific test recommendations are presented, covering grayscale visibility, depth of penetration, axial and lateral resolution, distance measurement, area measurement, volume measurement, needle template/electronic grid alignment, and geometric consistency with the treatment planning computer.

  14. Interstitial prostate brachytherapy. LDR-PDR-HDR

    International Nuclear Information System (INIS)

    The first comprehensive overview of interstitial brachytherapy for the management of local or locally advanced prostate cancer. Written by an interdisciplinary team who have been responsible for the successful GEC-ESTRO/EAU Teaching Course. Discusses in detail patient selection, the results of different methods, the role of imaging, and medical physics issues. Prostate brachytherapy has been the subject of heated debate among surgeons and the proponents of the various brachytherapy methods. This very first interdisciplinary book on the subject provides a comprehensive overview of innovations in low dose rate (LDR), high dose rate (HDR), and pulsed dose rate (PDR) interstitial brachytherapy for the management of local or locally advanced prostate cancer. In addition to detailed chapters on patient selection and the use of imaging in diagnostics, treatment guidance, and implantation control, background chapters are included on related medical physics issues such as treatment planning and quality assurance. The results obtained with the different treatment options and the difficult task of salvage treatment are fully discussed. All chapters have been written by internationally recognized experts in their fields who for more than a decade have formed the teaching staff responsible for the successful GEC-ESTRO/EAU Prostate Brachytherapy Teaching Course. This book will be invaluable in informing residents and others of the scientific background and potential of modern prostate brachytherapy. It will also prove a useful source of up-to-date information for those who specialize in prostate brachytherapy or intend to start an interstitial brachytherapy service.

  15. Characterization of a fiber-coupled Al2O3:C luminescence dosimetry system for online in vivo dose verification during Ir-192 brachytherapy

    DEFF Research Database (Denmark)

    Andersen, Claus Erik; Nielsen, Søren Kynde; Greilich, Steffen;

    2009-01-01

    fit into applicators such as standard needles or catheters. The system measures the absorbed dose rate (0.1 s time resolution) and total absorbed dose on the basis of radioluminescence (RL) and optically stimulated luminescence (OSL) from aluminum oxide crystals attached to optical fiber cables (1 mm...... outer diameter). The system was tested in the range from 0 to 4 Gy using a solid-water phantom, a Varian GammaMed Plus Ir-192 PDR afterloader, and dosimetry probes inserted into stainless-steel brachytherapy needles. The calibrated system was found to be linear in the tested dose range. The...... reproducibility (one standard deviation) for RL and OSL measurements was 1.3%. The measured depth-dose profiles agreed well with the theoretical expectations computed with the EGSNRC Monte Carlo code, suggesting that the energy dependence for the dosimeter probes (relative to water) is less than 6% for source...

  16. HDR brachytherapy. An option for preventing nonmalignant obstruction in patients after lung transplantation

    International Nuclear Information System (INIS)

    Purpose: Interventional bronchoscopy is the main treatment modality in managing benign airway obstructions following lung transplantation. We analyzed the effect of intraluminal brachytherapy on preventing recurrence of hyperplastic tissue. Patients and methods: From September 2002 to September 2004, a total of 24 intraluminal brachytherapy applications were carried out on 12 lung transplant patients in 15 different locations. A single dose of 3 Gy was calculated at a 5-mm distance from the catheter surface; the target volume included a stenosis plus safety interval of 0.5-1.0 cm. Results: All patients had a mean 10.6 local interventions (Argon plasma coagulation, balloon dilatations, stenting) over 4.4 months before the first application of endobronchial brachytherapy, with a mean amount of 2.4 applications per month. The mean forced expiratory volume in 1 s (FEV1) was 2,219 ml in the 3 months before application of brachytherapy. After endobronchial brachytherapy, all patients experienced improvement in clinical status and respiratory function. The mean level of FEV1 in the 3 months after application was 2,435 ml (p = 0.02), and the number of invasive interventions dropped to a mean rate of 5.2 interventions in the 5.1 months after the first intervention, with an amount of 1 application per month. No treatment-related complications were seen. Four patients were treated twice, 1 patient three times, and 1 patient four times at the same localization. Conclusions: Recurrent symptomatic benign airway obstruction from hyperplastic tissue in the bronchus after lung transplantation can be successfully treated with intraluminal high-dose-rate brachytherapy with a dose of 3 Gy at a 5-mm distance from the catheter surface and a longitudinal safety margin of 1 cm. (orig.)

  17. HDR brachytherapy. An option for preventing nonmalignant obstruction in patients after lung transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, A.; Karstens, J.H.; Christiansen, H. [Medical School Hannover (Germany). Dept. of Radiation Oncology; Warszawski-Baumann, A.; Baumann, R. [Medical School Hannover (Germany). Dept. of Radiation Oncology; Medical Practice for Radiotherapy and Radiation Oncology, Hannover (Germany); Gottlieb, J.; Welte, T. [Medical School Hannover (Germany). Dept. of Respiratory Medicine

    2012-12-15

    Purpose: Interventional bronchoscopy is the main treatment modality in managing benign airway obstructions following lung transplantation. We analyzed the effect of intraluminal brachytherapy on preventing recurrence of hyperplastic tissue. Patients and methods: From September 2002 to September 2004, a total of 24 intraluminal brachytherapy applications were carried out on 12 lung transplant patients in 15 different locations. A single dose of 3 Gy was calculated at a 5-mm distance from the catheter surface; the target volume included a stenosis plus safety interval of 0.5-1.0 cm. Results: All patients had a mean 10.6 local interventions (Argon plasma coagulation, balloon dilatations, stenting) over 4.4 months before the first application of endobronchial brachytherapy, with a mean amount of 2.4 applications per month. The mean forced expiratory volume in 1 s (FEV1) was 2,219 ml in the 3 months before application of brachytherapy. After endobronchial brachytherapy, all patients experienced improvement in clinical status and respiratory function. The mean level of FEV1 in the 3 months after application was 2,435 ml (p = 0.02), and the number of invasive interventions dropped to a mean rate of 5.2 interventions in the 5.1 months after the first intervention, with an amount of 1 application per month. No treatment-related complications were seen. Four patients were treated twice, 1 patient three times, and 1 patient four times at the same localization. Conclusions: Recurrent symptomatic benign airway obstruction from hyperplastic tissue in the bronchus after lung transplantation can be successfully treated with intraluminal high-dose-rate brachytherapy with a dose of 3 Gy at a 5-mm distance from the catheter surface and a longitudinal safety margin of 1 cm. (orig.)

  18. High dose rate brachytherapy for oral cancer

    International Nuclear Information System (INIS)

    Brachytherapy results in better dose distribution compared with other treatments because of steep dose reduction in the surrounding normal tissues. Excellent local control rates and acceptable side effects have been demonstrated with brachytherapy as a sole treatment modality, a postoperative method, and a method of reirradiation. Low-dose-rate (LDR) brachytherapy has been employed worldwide for its superior outcome. With the advent of technology, high-dose-rate (HDR) brachytherapy has enabled health care providers to avoid radiation exposure. This therapy has been used for treating many types of cancer such as gynecological cancer, breast cancer, and prostate cancer. However, LDR and pulsed-dose-rate interstitial brachytherapies have been mainstays for head and neck cancer. HDR brachytherapy has not become widely used in the radiotherapy community for treating head and neck cancer because of lack of experience and biological concerns. On the other hand, because HDR brachytherapy is less time-consuming, treatment can occasionally be administered on an outpatient basis. For the convenience and safety of patients and medical staff, HDR brachytherapy should be explored. To enhance the role of this therapy in treatment of head and neck lesions, we have reviewed its outcomes with oral cancer, including Phase I/II to Phase III studies, evaluating this technique in terms of safety and efficacy. In particular, our studies have shown that superficial tumors can be treated using a non-invasive mold technique on an outpatient basis without adverse reactions. The next generation of image-guided brachytherapy using HDR has been discussed. In conclusion, although concrete evidence is yet to be produced with a sophisticated study in a reproducible manner, HDR brachytherapy remains an important option for treatment of oral cancer. (author)

  19. Treatment results of stereotactic interstitial brachytherapy for primary and metastatic brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, G.L.; Luxton, G.; Cohen, D.; Petrovich, Z.; Langholz, B.; Apuzzo, M.L.; Sapozink, M.D. (USC School of Medicine, Los Angeles, CA (USA))

    1991-08-01

    A total of 41 stereotactic interstitial brain implants in 39 patients were performed for recurrence after teletherapy (recurrence implant), or as part of initial treatment in conjunction with teletherapy (primary implant). Implanted tumors consisted of malignant gliomas (33), other primary brain tumors (3), and single metastatic lesions (3). All patients were temporarily implanted with Ir-192 using a coaxial catheter afterloading system; two patients were implanted twice. Survival post-implant for glioblastoma multiforme (GBM), 13 patients, was 10 months whether implanted primarily or for recurrence. Mean time to recurrence, measured from initiation of teletherapy to implantation, was 10 months. Twenty patients with anaplastic astrocytoma (AA) had a median survival post-implant of 23 months for primary implants (7 patients) and 11 months for recurrence implants (13 patients). Mean time to recurrence, measured from initiation of teletherapy to implantation, was 19 months. Three patients (9%) of the evaluable group required reoperation for symptomatic mass effect, all with initial diagnosis of AA. Survival for this subgroup was 14, 22, and 32 months post-implantation. Using stereotactic techniques, interstitial brachytherapy of brain tumors was technically feasible with negligible acute morbidity and mortality, and appeared to offer limited prolongation of control for a subset of patients with recurrent malignant gliomas. The role of this modality in primary treatment for malignant gliomas needs to be further defined by prospectively randomized trials.

  20. Manual calculation of treatment time for high dose rate brachytherapy with a flexible intraoperative template (FIT)

    International Nuclear Information System (INIS)

    A method is presented for estimating the total treatment time for a brachytherapy radiation fraction with a planar flexible intraoperative template (FIT), using an 192Ir high dose rate afterloading device. The FIT can be rectangular or irregularly shaped. The manual calculation serves as an independent check of the treatment time calculated by the treatment planning system for applications with varying sizes, shapes and dose prescription depths. The parameters required for the calculation are the number of active dwell positions, the catheter spacing and dwell position spacing, the source strength, the applied dose and the depth of dose prescription. For a fixed depth of dose prescription (1.25 cm) and fixed dwell position and catheter spacing (0.5 and 1 cm respectively) the manual calculation accurately predicts (usually within 2%) the total treatment time as calculated by the treatment planning system. For varying catheter and dwell position spacings and dose prescription depths the accuracy is still within 7%. An action threshold of 5% allows detection of errors made in the number of active dwell positions (±9), catheter spacing (±1 mm) and dose prescription depth (±1 mm). Errors in dwell position spacing (0.25 cm or more) could also be accurately detected. (author)

  1. Radiation therapy for carcinoma of the uterine cervix. Comparison of two brachytherapy schedules

    International Nuclear Information System (INIS)

    We compared the survival rates and late effects for two groups of cervical cancer patients treated with almost the same external radiotherapy but different remote afterloading systems (RALS) for high-dose-rate intracavitary radiation therapy regimens. A total of 218 patients with carcinoma of the uterine cervix were treated. For 98 patients, intracavitary brachytherapy was delivered with 6-7.5 Gy/fraction to Point A (Group A), and for 120, 5 Gy/fraction with a modified source step size (Group B). The 3-year cause-specific survival rates by stage and treatment schedule were Group A: 91% and Group B: 96% in Stage I, 89% and 92% in Stage II, 64% and 75% in Stage III, 44% and 69% in Stage IV. The survival curves did not reveal any statistically significant differences at any stage. The 3-year cumulative local failure rates were 14% in Group A and 7% in Group B (P = 0.1202), while the actuarial rates of developing rectal complication (Grade 2 or more) at 3 years were 25% in Group A and 4% in Group B (P < 0.0001). This retrospective analysis suggests that a low dose per fraction with modified source step size is advantageous because of yielding almost the same local control but with fewer rectal complications. (author)

  2. Dosimetry Modeling for Focal Low-Dose-Rate Prostate Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Al-Qaisieh, Bashar [Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds (United Kingdom); Mason, Josh, E-mail: joshua.mason@nhs.net [Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds (United Kingdom); Bownes, Peter; Henry, Ann [Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds (United Kingdom); Dickinson, Louise [Division of Surgery and Interventional Science, University College London, London (United Kingdom); Department of Radiology, Northwick Park Hospital, London North West NHS Trust, London (United Kingdom); Ahmed, Hashim U. [Division of Surgery and Interventional Science, University College London, London (United Kingdom); University College London Hospital, London (United Kingdom); Emberton, Mark [University College London Hospital, London (United Kingdom); Langley, Stephen [St Luke' s Cancer Centre, Guildford (United Kingdom)

    2015-07-15

    Purpose: Focal brachytherapy targeted to an individual lesion(s) within the prostate may reduce side effects experienced with whole-gland brachytherapy. The outcomes of a consensus meeting on focal prostate brachytherapy were used to investigate optimal dosimetry of focal low-dose-rate (LDR) prostate brachytherapy targeted using multiparametric magnetic resonance imaging (mp-MRI) and transperineal template prostate mapping (TPM) biopsy, including the effects of random and systematic seed displacements and interseed attenuation (ISA). Methods and Materials: Nine patients were selected according to clinical characteristics and concordance of TPM and mp-MRI. Retrospectively, 3 treatment plans were analyzed for each case: whole-gland (WG), hemi-gland (hemi), and ultra-focal (UF) plans, with 145-Gy prescription dose and identical dose constraints for each plan. Plan robustness to seed displacement and ISA were assessed using Monte Carlo simulations. Results: WG plans used a mean 28 needles and 81 seeds, hemi plans used 17 needles and 56 seeds, and UF plans used 12 needles and 25 seeds. Mean D90 (minimum dose received by 90% of the target) and V100 (percentage of the target that receives 100% dose) values were 181.3 Gy and 99.8% for the prostate in WG plans, 195.7 Gy and 97.8% for the hemi-prostate in hemi plans, and 218.3 Gy and 99.8% for the focal target in UF plans. Mean urethra D10 was 205.9 Gy, 191.4 Gy, and 92.4 Gy in WG, hemi, and UF plans, respectively. Mean rectum D2 cm{sup 3} was 107.5 Gy, 77.0 Gy, and 42.7 Gy in WG, hemi, and UF plans, respectively. Focal plans were more sensitive to seed displacement errors: random shifts with a standard deviation of 4 mm reduced mean target D90 by 14.0%, 20.5%, and 32.0% for WG, hemi, and UF plans, respectively. ISA has a similar impact on dose-volume histogram parameters for all plan types. Conclusions: Treatment planning for focal LDR brachytherapy is feasible. Dose constraints are easily met with a notable

  3. Dosimetry Modeling for Focal Low-Dose-Rate Prostate Brachytherapy

    International Nuclear Information System (INIS)

    Purpose: Focal brachytherapy targeted to an individual lesion(s) within the prostate may reduce side effects experienced with whole-gland brachytherapy. The outcomes of a consensus meeting on focal prostate brachytherapy were used to investigate optimal dosimetry of focal low-dose-rate (LDR) prostate brachytherapy targeted using multiparametric magnetic resonance imaging (mp-MRI) and transperineal template prostate mapping (TPM) biopsy, including the effects of random and systematic seed displacements and interseed attenuation (ISA). Methods and Materials: Nine patients were selected according to clinical characteristics and concordance of TPM and mp-MRI. Retrospectively, 3 treatment plans were analyzed for each case: whole-gland (WG), hemi-gland (hemi), and ultra-focal (UF) plans, with 145-Gy prescription dose and identical dose constraints for each plan. Plan robustness to seed displacement and ISA were assessed using Monte Carlo simulations. Results: WG plans used a mean 28 needles and 81 seeds, hemi plans used 17 needles and 56 seeds, and UF plans used 12 needles and 25 seeds. Mean D90 (minimum dose received by 90% of the target) and V100 (percentage of the target that receives 100% dose) values were 181.3 Gy and 99.8% for the prostate in WG plans, 195.7 Gy and 97.8% for the hemi-prostate in hemi plans, and 218.3 Gy and 99.8% for the focal target in UF plans. Mean urethra D10 was 205.9 Gy, 191.4 Gy, and 92.4 Gy in WG, hemi, and UF plans, respectively. Mean rectum D2 cm3 was 107.5 Gy, 77.0 Gy, and 42.7 Gy in WG, hemi, and UF plans, respectively. Focal plans were more sensitive to seed displacement errors: random shifts with a standard deviation of 4 mm reduced mean target D90 by 14.0%, 20.5%, and 32.0% for WG, hemi, and UF plans, respectively. ISA has a similar impact on dose-volume histogram parameters for all plan types. Conclusions: Treatment planning for focal LDR brachytherapy is feasible. Dose constraints are easily met with a notable reduction

  4. Combination of 5α-reductase inhibitor with combined androgen blockade (CAB) as a novel cytoreductive regimen before prostate brachytherapy: Ultra-CAB.

    Science.gov (United States)

    Muro, Yusuke; Kosaka, Takeo; Mizuno, Ryuichi; Ohashi, Toshio; Shigematsu, Naoyuki; Oya, Mototsugu

    2015-01-01

    We report a first case of using a 5α-reductase inhibitor (5ARI) and combined androgen blockade (CAB) as a cytoreductive regimen before prostate brachytherapy. Prostate volume reduction with CAB is limited to approximately 40% in most cases, making it difficult to meet anatomical constraints to perform these procedures in cases with large prostate volume. With the added administration of 5ARI, further volume reduction can be expected. Here, we describe this cytoreductive regimen used in a 63 year-old prostate cancer patient who became eligible to receive brachytherapy after dutasteride (0.5 mg daily) was added to CAB and prostate volume reduction of 57% was achieved. PMID:26069888

  5. SU-E-J-222: Evaluation of Deformable Registration of PET/CT Images for Cervical Cancer Brachytherapy

    International Nuclear Information System (INIS)

    Purpose: PET/CT provides important functional information for radiotherapy targeting of cervical cancer. However, repeated PET/CT procedures for external beam and subsequent brachytherapy expose patients to additional radiation and are not cost effective. Our goal is to investigate the possibility of propagating PET-active volumes for brachytherapy procedures through deformable image registration (DIR) of earlier PET/CT and ultimately to minimize the number of PET/CT image sessions required. Methods: Nine cervical cancer patients each received their brachytherapy preplanning PET/CT at the end of EBRT with a Syed template in place. The planning PET/CT was acquired on the day of brachytherapy treatment with the actual applicator (Syed or Tandem and Ring) and rigidly registered. The PET/CT images were then deformably registered creating a third (deformed) image set for target prediction. Regions of interest with standardized uptake values (SUV) greater than 65% of maximum SUV were contoured as target volumes in all three sets of PET images. The predictive value of the registered images was evaluated by comparing the preplanning and deformed PET volumes with the planning PET volume using Dice's coefficient (DC) and center-of-mass (COM) displacement. Results: The average DCs were 0.12±0.14 and 0.19±0.16 for rigid and deformable predicted target volumes, respectively. The average COM displacements were 1.9±0.9 cm and 1.7±0.7 cm for rigid and deformable registration, respectively. The DCs were improved by deformable registration, however, both were lower than published data for DIR in other modalities and clinical sites. Anatomical changes caused by different brachytherapy applicators could have posed a challenge to the DIR algorithm. The physiological change from interstitial needle placement may also contribute to lower DC. Conclusion: The clinical use of DIR in PET/CT for cervical cancer brachytherapy appears to be limited by applicator choice and requires further

  6. The use of TLDs for brachytherapy dosimetry

    International Nuclear Information System (INIS)

    Thermoluminescent dosimeters (TLDs) are routinely used to measure the dose around brachytherapy sources due to their small size and high precision. This work presents a concise overview of the use of LiF:Mg,Ti TLDs for brachytherapy dosimetry including the experimental procedures required to achieve high-precision measurements as well as new results regarding the intrinsic energy dependence with some of the commonly used brachytherapy sources. Equations to correct TLD light output to air kerma are outlined and a description of the method to determine the intrinsic energy dependence is presented. For the intrinsic energy dependence investigation, a review of previously published results is presented as well as new experimental results using 125I, 103Pd, 192Ir, and miniature x-ray brachytherapy sources at the University of Wisconsin Medical Radiation Research Center (UWMRRC). The results of these experiments are consistent with previous work and give valuable insight to investigators using TLDs for brachytherapy measurements. - Highlights: • Brachytherapy measurements with LiF:Mg,Ti TLDs performed. • Intrinsic energy dependence for several brachytherapy sources determined. • New LiF:Mg,Ti energy dependence results compared with previous data for x-ray beams. • Uncertainty of LiF:Mg,Ti TLD measurements reviewed

  7. Study of dose calculation on breast brachytherapy using prism TPS

    Energy Technology Data Exchange (ETDEWEB)

    Fendriani, Yoza; Haryanto, Freddy [Nuclear Physics and Biophysics Research Division, FMIPA Institut Teknologi Bandung, Physics Buildings, Jl. Ganesha 10, Bandung 40132 (Indonesia)

    2015-09-30

    PRISM is one of non-commercial Treatment Planning System (TPS) and is developed at the University of Washington. In Indonesia, many cancer hospitals use expensive commercial TPS. This study aims to investigate Prism TPS which been applied to the dose distribution of brachytherapy by taking into account the effect of source position and inhomogeneities. The results will be applicable for clinical Treatment Planning System. Dose calculation has been implemented for water phantom and CT scan images of breast cancer using point source and line source. This study used point source and line source and divided into two cases. On the first case, Ir-192 seed source is located at the center of treatment volume. On the second case, the source position is gradually changed. The dose calculation of every case performed on a homogeneous and inhomogeneous phantom with dimension 20 × 20 × 20 cm{sup 3}. The inhomogeneous phantom has inhomogeneities volume 2 × 2 × 2 cm{sup 3}. The results of dose calculations using PRISM TPS were compared to literature data. From the calculation of PRISM TPS, dose rates show good agreement with Plato TPS and other study as published by Ramdhani. No deviations greater than ±4% for all case. Dose calculation in inhomogeneous and homogenous cases show similar result. This results indicate that Prism TPS is good in dose calculation of brachytherapy but not sensitive for inhomogeneities. Thus, the dose calculation parameters developed in this study were found to be applicable for clinical treatment planning of brachytherapy.

  8. Predictive factors for late toxicity after endobronchial brachytherapy: a multivariate analysis

    International Nuclear Information System (INIS)

    Purpose: To determine the predictive factors associated with hemoptysis and radiation bronchitis after endobronchial brachytherapy by univariate and multivariate analyses Methods and Materials: One hundred forty-nine patients underwent endobronchial brachytherapy and were divided into three therapeutic groups: group 1: patients treated with palliative intent (n = 47); group 2: patients treated with curative intent (small endobronchial tumors without mediastinal or general dissemination: n = 73); group 3: patients also receiving external irradiation (n = 29). One hundred twelve patients had previously received external irradiation. Brachytherapy was delivered with a dose per fraction ranging from 4 to 7 Gy and a prescription point between 0.5 and 1.5 cm, usually 1 cm from the source center. Two to six fractions were delivered according to the therapeutic group and clinical situation. The influence of the following variables on the incidence of hemoptysis or radiation bronchitis was studied: age, sex, Karnofsky score, therapeutic group, histologic type, endoscopic tumor length, dose per fraction, total brachytherapy dose, total external beam irradiation dose, total dose (brachytherapy dose plus external irradiation dose), volumes of the 100% and 200% isodoses, and volumes of the 7 and 14 Gy isodoses. Results: We observed 11 hemoptyses (7.4%), 10 were lethal. All but one occurred in patients with progressive disease. Two clinical factors were significantly associated with hemoptysis by univariate analysis: palliative group (p = 0.009) and endobronchial tumor length (p = 0.004). No technical factors seem to be implicated in the occurrence of hemoptysis. Only endobronchial tumor length remained in the multivariate model (p = 0.02). Radiation bronchitis was observed in 13 cases (8.7%). By univariate analysis, a good Karnofsky score (p = 0.02), curative treatment (p = 0.02), and tumor location on trachea and main stem bronchus (p = 0.002) were significantly associated

  9. Effects of changed working methods on personnel doses at a I-131 and afterloading therapy ward

    International Nuclear Information System (INIS)

    The external load of the personnel from I-131 therapy can be kept small (almost 'neglectable') by appropriate behaviour without keeping patients 'under-lock and key'. The marked decrease in personnel doses is due to improved radiation protection for afterloading therapy (gynecological Ra-therapy, Cs-137-therapy) by technical equipment. This therapy is now possible but with the door of the application room closed; when the door is opened, the instruments automatically go back to their original position. From 1975 through 1982, there were remote control errors forcing the personnel to withdraw the instruments to the safe manually. Despite working regulations the personnel was able to go into the room without prior instrument withdrawal. The personnel doses so received were within the tolerance limits, however markedly above the inevitable values. Because of regular thyroid gland examination of the personnel there is proof for the fact that the radiation load of this organ from I-131 is probably smaller than 2% (6 mSv/a=600 mrem/a) of the annual limit value of 0.3 Sv (30 rem) which corresponds to 6 times the value of normal load. (orig./HP)

  10. The Transition from 2-D Brachytherapy to 3-D High Dose Rate Brachytherapy

    International Nuclear Information System (INIS)

    Brachytherapy is a major treatment modality in the treatment of common cancers including cervical cancer. This publication addresses the recent technological change in brachytherapy treatment planning with better access to 3-D volumetric patient imaging modalities including computed tomography (CT) and magnetic resonance (MR) as opposed to traditional 2-D planar images. In the context of 2-D and 3-D brachytherapy, the publication provides definitions, clinical indications, transitioning milestones, commissioning steps, quality assurance measures, and a related questionnaire. Staff training and resourcing are also addressed. The publication will serve as a guide to radiotherapy departments in Member States who wish to make the transition from 2-D to 3-D brachytherapy

  11. Use of Monte Carlo Methods in brachytherapy

    International Nuclear Information System (INIS)

    The Monte Carlo method has become a fundamental tool for brachytherapy dosimetry mainly because no difficulties associated with experimental dosimetry. In brachytherapy the main handicap of experimental dosimetry is the high dose gradient near the present sources making small uncertainties in the positioning of the detectors lead to large uncertainties in the dose. This presentation will review mainly the procedure for calculating dose distributions around a fountain using the Monte Carlo method showing the difficulties inherent in these calculations. In addition we will briefly review other applications of the method of Monte Carlo in brachytherapy dosimetry, as its use in advanced calculation algorithms, calculating barriers or obtaining dose applicators around. (Author)

  12. Definition study of the project Dosimetry Brachytherapy

    International Nuclear Information System (INIS)

    The purpose of the research project Dosimetry Brachytherapy is the standardization of calibration methods and quality control procedures used for Brachytherapy sources. Proposals to develop measurement standards and methods for calibrating these sources are presented. Brachytherapy sources will be calibrated in terms of reference airkerma rate or in terms of absorbed dose in water. Therefore, in this project, special attention will be given to the in-phantom measurement method described by Meertens and the use of re-entrant ionisation chambers as transfer standards. In this report, a workplan and time schedule is included. (author). 19 refs.; 1 fig

  13. CT based HDR brachytherapy for intracavitary applications

    International Nuclear Information System (INIS)

    Brachytherapy is most commonly used in combination with external radiotherapy for gynecological cancers of cervix, vagina and endometrium. The characteristic rapid fall off of the dose in brachytherapy makes it useful to deliver a localized high dose to tumor. In gynecological applications the dose limiting critical structures are bladder and rectum. The dose received by rectum and bladder has been an interesting issue all these decades. This work presents the dosimetric and planning aspects of CT based High Dose Rate brachytherapy for intracavitary applications

  14. Higher caseload improves cervical cancer survival in patients treated with brachytherapy

    International Nuclear Information System (INIS)

    Increased caseload has been associated with better patient outcomes in many areas of health care, including high-risk surgery and cancer treatment. However, such a positive volume vs. outcome relationship has not yet been validated for cervical cancer brachytherapy. The purpose of this study was to examine the relationship between physician caseload and survival rates in cervical cancer treated with brachytherapy using population-based data. Between 2005 and 2010, a total of 818 patients were identified using the Taiwan National Health Insurance Research Database. Multivariate analysis using a Cox proportional hazards model and propensity scores was used to assess the relationship between 5-year survival rates and physician caseloads. As the caseload of individual physicians increased, unadjusted 5-year survival rates increased (P = 0.005). Using a Cox proportional hazard model, patients treated by high-volume physicians had better survival rates (P = 0.03), after adjusting for comorbidities, hospital type, and treatment modality. When analyzed by propensity score, the adjusted 5-year survival rate differed significantly between patients treated by high/medium-volume physicians vs. patients treated by low/medium-volume physicians (60% vs. 54%, respectively; P = 0.04). Provider caseload affected survival rates in cervical cancer patients treated with brachytherapy. Both Cox proportional hazard model analysis and propensity scores showed association between high/medium volume physicians and improved survival

  15. Identifying afterloading PDR and HDR brachytherapy errors using real-time fiber-coupled Al2O3:C dosimetry and a novel statistical error decision criterion

    DEFF Research Database (Denmark)

    Kertzscher, Gustavo; Andersen, Claus Erik; Siebert, Frank-André;

    2011-01-01

    conditions, and (2) test a new statistical error decision concept based on full uncertainty analysis. Materials and methodsPhantom studies of two gynecological cancer PDR and one prostate cancer HDR patient treatment plans were performed using tandem ring applicators or interstitial needles. Imposed...... advantage of a statistical error criterion....

  16. New brachytherapy standards paradigm shift

    International Nuclear Information System (INIS)

    Full text: The absorbed dose rate to water at short distances (1 cm typically) in water, is the quantity of interest for dosimetry in radiotherapy treatments. Moreover, the dose imparted to cancer patients must be known within a narrow band of uncertainty to avoid either damage to the healthy tissue resulting from exceeding international accepted tolerance levels or lack of tumor control due to a low dose delivered to the target volume. The goal for the uncertainty of the dose delivered to the target volume would be around 5% (at the level of one standard deviation), to assure the effectiveness of the radiotherapy treatment. This also takes into account the uncertainties in dose calculation algorithms. In current brachytherapy (BT) treatments, the procedures to determine the absorbed dose imparted to the patient are not based on absorbed dose standards, but are based on measurements traceable to air kerma standards. In fact, the recommended quantity for the calibration of BT gamma ray sources is the reference air kerma rate, KR, defined as the kerma rate to air, in air, at the reference distance of 1 m from the radioactive source, corrected for air attenuation and scattering. The absorbed dose around a BT source is currently calculated by applying the formalism of the international AAPM Task Group 43 protocol and its update. This protocol is based on the air kerma strength, SK, a quantity that is numerically equivalent to KR, at a distance of 1 m from the source. The dose rate constant Λ converts the air-kerma strength SK to the absorbed dose rate to water, D.(r0,θ0), in water at the reference position: D.(r0,θ0) = SK·A (1). Recently, a lower limit of 2,50 % was obtained for the estimated overall uncertainty (at the level of one standard deviation) on measurements of D.(r0,θ0) due to a HDR 192I BT source based on equation (1). However, in most cases the determination of 5K is typically affected by an uncertainty within 0,8 % (at the level of one standard

  17. Potential brachytherapy nuclides of future

    International Nuclear Information System (INIS)

    In the past there were relatively few radionuclides available for brachytherapy. But the situation is rapidly changing with the development of many new sources with properties that may be advantageous in certain clinical situations. In the choice of an acceptable, rather than an ideal radionuclide, it is important to consider the physical dose distribution, radiobiological effectiveness, ease of radiation protection, logistics and cost. Taking into account these factors, a number of radionuclides have been tried and more are being considered for specific type of applications. Presently, 137Cs is the most commonly used radionuclide for intracavitary therapy and 192Ir for interstitial therapy. 125I has more or less replaced 198Au for permanent implants. Clinical studies are being carried out to assess the feasibility of replacing 137Cs with 241Am for intracavitary applications and 125I with 103Pd and/or 169Yb for interstitial permanent implants. Other radionuclides being considered are 75Fe and 145Sm. Neutron induced brachytherapy is a new technique being tried to ensure complete radiation safety. (author). 1 tab

  18. Comprehensive brachytherapy physical and clinical aspects

    CERN Document Server

    Baltas, Dimos; Meigooni, Ali S; Hoskin, Peter J

    2013-01-01

    Modern brachytherapy is one of the most important oncological treatment modalities requiring an integrated approach that utilizes new technologies, advanced clinical imaging facilities, and a thorough understanding of the radiobiological effects on different tissues, the principles of physics, dosimetry techniques and protocols, and clinical expertise. A complete overview of the field, Comprehensive Brachytherapy: Physical and Clinical Aspects is a landmark publication, presenting a detailed account of the underlying physics, design, and implementation of the techniques, along with practical guidance for practitioners. Bridging the gap between research and application, this single source brings together the technological basis, radiation dosimetry, quality assurance, and fundamentals of brachytherapy. In addition, it presents discussion of the most recent clinical practice in brachytherapy including prostate, gynecology, breast, and other clinical treatment sites. Along with exploring new clinical protocols, ...

  19. Peroperative transperineal brachytherapy for recurrent pelvic malignancies

    International Nuclear Information System (INIS)

    Recurrent pelvic malignancies represent often a challenge to the therapist due to the limited efficacy of most classical treatment especially in case of prior radiation or lateral extension. Moreover, a surgical resection such as a total pelvic exenteration is only recommended for central recurrence due to the severe mutilation. An innovative approach combining transperineal brachytherapy (BT) with rigid templates and peroperative BT with plastic tubes was developed for the treatment of pelvic recurrence. Plastic tubes were placed during surgery using hollow perineal needles. The laparotomy offers the possibility of a perfect visualisation of the target area to be implanted. Furthermore, a debulking of the tumor mass is possible, limiting the residual volume to be treated. One week after surgery, the loading with 192iridium wires is performed after simulation and dosimetry CTscan. Computed dosimetry is obtained by means of orthogonal radiographs and isodoses are superimposed on the CTslices. Since december 1994, 3 patients were treated for a pelvic relapse of a cervix cancer (2pts) and a sigmoidal cancer (1ppt) to test the feasibility of this approach. Two patients had an history of pelvic irradiation. The third patient was treated with an implant after 40 Gy external beam radiotherapy. A total dose of 60 to 80 Gy was delivered with this technique to a volume ranging from 15 to 24 cm3. One patient had an acute urethritis and another developed a vesicovaginal fistula after a biopsy performed for a slight irregularity of the vaginal mucosa in the highly irradiated area. One relapse in the implanted area is reported within this period of observation. Additional follow up and experience is required to assess the real efficacy of this method. Nevertheless, this approach offers a good alternative for patients relapsing in the pelvis especially in already irradiated area with a good acute and late tolerance and a satisfactory implantation technique

  20. AB012. Brachytherapy for localized prostate cancer

    Science.gov (United States)

    Xu, Yong; Yang, Yong

    2016-01-01

    Background To evaluate the security and effect of brachytherapy for localized prostate cancer. Methods Forty five patients with Tl–T2 prostate cancer were treated with real-time transperineal ultrasound-guide 125I seeds prostate implantation. Results The median operation time was 90 min, the median number of I seeds used was 56. The follow up time was 12–48 months, the cases of PSA Brachytherapy for localized prostate cancer is safe and effective.

  1. Registration of structurally dissimilar images in MRI-based brachytherapy

    International Nuclear Information System (INIS)

    A serious challenge in image registration is the accurate alignment of two images in which a certain structure is present in only one of the two. Such topological changes are problematic for conventional non-rigid registration algorithms. We propose to incorporate in a conventional free-form registration framework a geometrical penalty term that minimizes the volume of the missing structure in one image. We demonstrate our method on cervical MR images for brachytherapy. The intrapatient registration problem involves one image in which a therapy applicator is present and one in which it is not. By including the penalty term, a substantial improvement in the surface distance to the gold standard anatomical position and the residual volume of the applicator void are obtained. Registration of neighboring structures, i.e. the rectum and the bladder is generally improved as well, albeit to a lesser degree. (paper)

  2. Radiation Protection in Brachytherapy. Report of the SEFM Task Group on Brachytherapy

    International Nuclear Information System (INIS)

    This document presents the report of the Brachytherapy Task Group of the Spanish Society of Medical Physics. It is dedicated to the radiation protection aspects involved in brachytherapy. The aim of this work is to include the more relevant aspects related to radiation protection issues that appear in clinical practice, and for the current equipment in Spain. Basically this report focuses on the typical contents associated with high dose rate brachytherapy with 192Ir and 60Co sources, and permanent seed implants with 125I, 103Pd and 131Cs, which are the most current and widespread modalities. Ophthalmic brachytherapy (COMS with 125I, 106Ru, 90Sr) is also included due to its availability in a significant number of spanish hospitals. The purpose of this report is to assist to the medical physicist community in establishing a radiation protection program for brachytherapy procedures, trying to solve some ambiguities in the application of legal requirements and recommendations in clinical practice. (Author)

  3. Instantaneous Decrease in Left Ventricular Afterload during Transcatheter Aortic Valve Implantation Results in Immediate Changes in Left Ventricular Strain.

    Science.gov (United States)

    Swan, Amy; Prakash, Roshan; Chew, Derek P; Perry, Rebecca; Sinhal, Ajay; Selvanayagam, Joseph B; Joseph, Majo X

    2016-05-01

    Severe aortic stenosis causes chronic increased afterload on the left ventricle (LV) resulting in myocardial hypertrophy and ultimately dysfunction if left untreated. Transcatheter aortic valve implantation (TAVI) immediately decreases the afterload on the LV by reducing the pressure gradient through the aortic valve. In our study, we aim to evaluate immediate changes in LV mechanics using intra-procedural transesophageal echocardiography (TEE) to assess circumferential and radial strain via speckle tracking. Intra-operative TEE was performed during TAVI for 53 patients (mean age 84 ± 8 years). Two-dimensional images in the transgastric view were acquired at the level of the papillary muscle. Circumferential and radial strain was calculated using speckle tracking with Philips Qlab software. Global LV afterload was measured by calculating valvulo-arterial impedance (Zva). Immediately post-TAVI, there was a change in both radial strain rate (Pre: 0.73 ± 0.04 vs. Post: 0.88 ± 0.04 per second, P < 0.001) and circumferential strain rate (-0.53 ± 0.04 (pre) vs. -0.74 ± 0.04 (post) per second, P < 0.001). There was also an immediate improvement in circumferential global strain parameters (-14.5 ± 5% (pre) vs. -16.0 ± 4.7% (post), P < 0.05), whereas there was no significant change seen in global radial strain (15.6 ± 0.8% (pre) vs. 15.2 ± 0.9% (post), P = 0.69). No significant change was seen in LV ejection fraction (51.5 ± 14.2% (pre) vs. 52.1 ± 14.0% (post), P = 0.77). Speckle tracking using TEE images is feasible and identifies significant improvements in LV strain and strain rate immediately following TAVI that is not detected by conventional measure of LV function. PMID:26676176

  4. Intraluminal brachytherapy in treatment of malignant obstructive jaundice

    International Nuclear Information System (INIS)

    Objective: To study the practicability and preliminary effect of intraluminal brachytherapy in treatment of malignant obstructive jaundice. Methods: Intraluminal brachytherapy was performed in 4 patients who had been treated with biliary stent implantation. Results: No complications related to intraluminal brachytherapy had happened. One patient was followed up by means of CT, showing reduction in tumor size. Conclusion: Intraluminal brachytherapy is a safe and effective method in treating malignant tumor causing obstructive jaundice

  5. Two years experience with a computer-assisted monitoring and recording system used in gynecological afterloading therapy

    International Nuclear Information System (INIS)

    A computer program running on a simple desk-calculator has been developed for monitoring and recording gynecological high-dose afterloading therapy. For treatment monitoring the multiple-probe AM6-system (PTW-Freiburg) is used which allows for dose measurements in the urinary bladder and the rectum. The probe signals are processed on line in order to indicate the actual dose at the measuring points. After completing the irradiation the treatment is documented. Performing fractionated treatment the measuring data are stored in the computer memory for calculating total accumulated dose. The above-described monitoring- and protocolling system has proven its usefulness during two years of clinical work. (orig.)

  6. Orbital rhabdomyosarcoma of the child: the role of PDR brachytherapy in eye preservation

    International Nuclear Information System (INIS)

    Material and Methods: There were four children (8-7-5 years and(15(12)) months old) with recurrent/primary embryonal rhabdomyosarcoma treated with curative intention by peroperative PDR boost brachytherapy in combination with radio-chemotherapy and/or surgery. PDR brachytherapy according to the Kiel protocol: daily five pulses, two hours each, with 1 Gy on the reference isodose which is usually 2-3 mm close to the applicator surface. CT simulation based conformal treatment planning was carried out in each case. The implant was done intraoperatively using the free-hand plastic tube method, after a macroscopically complete excision of the tumor. Due to treatment planning individual target volume, eye with N, opticus and bone structures, as well as the applicators and other regions of interest were visualized. Manual volume optimisation was practiced and natural volumen-dose histograms were analysed in 'classic' graphic mode as well as in a special colour coded three-dimensional visualization in cine mode on the screen. One child received, three months before the recurrence was operated, 50 Gy hyperfractionated external beam radiation (2 Gy fractions) and was irradiated with 20 Gy brachytherapy in four days. The second patient received ten days after 20 Gy brachytherapy 32 Gy hyperfractionated external beam radiation. The third child (external beam treatment outside of our clinic), received conventional fractionated irradiation with 1.6 Gy fraction dose instead of a prescribed hyperfractionated external beam therapy and her brachytherapy dose was 25 Gy. At the (15(12)) months old child with primary embryonal rhabdomyosarcoma we applied 20 Gy brachytherapy and 24 Gy hyperfractionated external beam irradiation. All patients received multidrug chemotherapy according to the German Study Protocol (CWS-91). Results: Follow-up is 34, 28, 22, and 6 months for recurrent embryonal rhabdomyosarcoma patients (stand February 96). We observed at 9 months one rhabdomyosarcoma

  7. Salvage/Adjuvant Brachytherapy After Ophthalmic Artery Chemosurgery for Intraocular Retinoblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Francis, Jasmine H., E-mail: francij1@mskcc.org [Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Barker, Christopher A.; Wolden, Suzanne L.; McCormick, Beryl; Segal, Kira; Cohen, Gil [Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Gobin, Y. Pierre; Marr, Brian P. [Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Weill-Cornell Medical College, New York-Presbyterian Hospital, New York, New York (United States); Brodie, Scott E. [Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Mount Sinai School of Medicine, New York, New York (United States); Dunkel, Ira J.; Abramson, David H. [Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Weill-Cornell Medical College, New York-Presbyterian Hospital, New York, New York (United States)

    2013-11-01

    Purpose: To evaluate the efficacy and toxicity of brachytherapy after ophthalmic artery chemosurgery (OAC) for retinoblastoma. Methods and Materials: This was a single-arm, retrospective study of 15 eyes in 15 patients treated with OAC followed by brachytherapy at (blinded institution) between May 1, 2006, and December 31, 2012, with a median 19 months' follow-up from plaque insertion. Outcome measurements included patient and ocular survival, visual function, and retinal toxicity measured by electroretinogram (ERG). Results: Brachytherapy was used as adjuvant treatment in 2 eyes and as salvage therapy in 13 eyes of which 12 had localized vitreous seeding. No patients developed metastasis or died of retinoblastoma. The Kaplan-Meier estimate of ocular survival was 79.4% (95% confidence interval 48.7%-92.8%) at 18 months. Three eyes were enucleated, and an additional 6 eyes developed out-of-target volume recurrences, which were controlled with additional treatments. Patients with an ocular complication had a mean interval between last OAC and plaque of 2.5 months (SD 2.3 months), which was statistically less (P=.045) than patients without ocular complication who had a mean interval between last OAC and plaque of 6.5 months (SD 4.4 months). ERG responses from pre- versus postplaque were unchanged or improved in more than half the eyes. Conclusions: Brachytherapy following OAC is effective, even in the presence of vitreous seeding; the majority of eyes maintained stable or improved retinal function following treatment, as assessed by ERG.

  8. Salvage/Adjuvant Brachytherapy After Ophthalmic Artery Chemosurgery for Intraocular Retinoblastoma

    International Nuclear Information System (INIS)

    Purpose: To evaluate the efficacy and toxicity of brachytherapy after ophthalmic artery chemosurgery (OAC) for retinoblastoma. Methods and Materials: This was a single-arm, retrospective study of 15 eyes in 15 patients treated with OAC followed by brachytherapy at (blinded institution) between May 1, 2006, and December 31, 2012, with a median 19 months' follow-up from plaque insertion. Outcome measurements included patient and ocular survival, visual function, and retinal toxicity measured by electroretinogram (ERG). Results: Brachytherapy was used as adjuvant treatment in 2 eyes and as salvage therapy in 13 eyes of which 12 had localized vitreous seeding. No patients developed metastasis or died of retinoblastoma. The Kaplan-Meier estimate of ocular survival was 79.4% (95% confidence interval 48.7%-92.8%) at 18 months. Three eyes were enucleated, and an additional 6 eyes developed out-of-target volume recurrences, which were controlled with additional treatments. Patients with an ocular complication had a mean interval between last OAC and plaque of 2.5 months (SD 2.3 months), which was statistically less (P=.045) than patients without ocular complication who had a mean interval between last OAC and plaque of 6.5 months (SD 4.4 months). ERG responses from pre- versus postplaque were unchanged or improved in more than half the eyes. Conclusions: Brachytherapy following OAC is effective, even in the presence of vitreous seeding; the majority of eyes maintained stable or improved retinal function following treatment, as assessed by ERG

  9. Brachytherapy next generation: robotic systems.

    Science.gov (United States)

    Popescu, Tiberiu; Kacsó, Alex Cristian; Pisla, Doina; Kacsó, Gabriel

    2015-12-01

    In a field dominated by external beam radiation therapy (EBRT), both the therapeutic and technical possibilities of brachytherapy (BT) are underrated, shadowed by protons and intensity modulated radiotherapy. Decreasing expertise and indications, as well as increasing lack of specific BT training for radiation therapy (RT) residents led to the real need of shortening its learning curve and making it more popular. Developing robotic BT devices can be a way to mitigate the above issues. There are many teams working at custom-made robotic BT platforms to perfect and overcome the limitations of the existing systems. This paper provides a picture of the current state-of-the-art in robotic assisted BT, as it also conveys the author's solution to the problem, a parallel robot that uses CT-guidance. PMID:26816510

  10. Volume study pre and post-implant brachytherapy prostate for establishment of PTV margins; Estudio de volumenes pre y post-implante en braquiterapia de prostata para establecimiento de margenes del PTV

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez Dominguez, M.; Carrasco Herrera, M.; Baeza Trujillo, M.; Herrador Cordoba, M.

    2011-07-01

    Treatment of prostate cancer by permanent implantation of radioactive seeds is now a good alternative to radical surgery or radiotherapy, as it provides a good tumor control while the risk is reduced by a lower complication irradiation of adjacent healthy organs. The large volume change during seed implantation occurs in the prostate of the patient, makes it important to consider margins around the organs of interest both to ensure optimal coverage and minimal tumor irradiation of healthy tissue. Analyze how the volume varies during and after implantation and establish a margin around the prostate to the practice of our hospital are the two objectives of this work.

  11. Fractionated intraluminal HDR {sup 192}Ir brachytherapy as palliative treatment in patients with endobronchial metastases from non-bronchogenic primaries

    Energy Technology Data Exchange (ETDEWEB)

    Stranzl, H.; Gabor, S.; Mayer, R.; Prettenhofer, U.; Wurzinger, G.; Hackl, A. [University Medical School of Graz (Austria)

    2002-08-01

    Patienten (weiblich n=3, maennlich n=8, medianes Alter 66 Jahre, Range 44-81 Jahre) mit histologisch gesicherter endobronchialer Metastasierung eines extrapulmonalen Primaerherdes (Urogenitaltrakt n=5, Gastrointestinaltrakt n=3, Kopf-Hals-Tumor n=2, Brust n=1) einer HDR-Brachytherapie im Afterloading-Verfahren unterzogen (Tabelle 1). Der mediane Zeitraum zwischen Diagnose des extrapulmonalen Primaertumors und der Diagnose der endobronchialen Metastasierung betrug 39 Monate (1-99 Monate). Die intraluminale Brachytherapie wurde mit drei bis vier Applikationen in woechentlichem Abstand mit einer Einzeldosis von 5-6 Gy durchgefuehrt. Keiner der elf Patienten erhielt zusaetzlich eine palliative Chemothgerapie. Ergebnisse: Der mittlere Nachbeobachtungszeitraum lag bei 15 Monaten (1,4-59 Monate). Die endoskopischen Nachuntersuchungen zeigten eine komplette Remission bei drei Patienten (27%) und eine partielle Remission bei fuenf Patienten (46%); bei weiteren drei Patienten (27%) konnte keine signifikante Tumorverkleinerung beobachtet werden. Bei keinem der Patienten bestand bei der endoskopischen Kontrolluntersuchung eine lokale endobronchiale Tumorprogression. Zum Zeitpunkt der Auswertung waren fuenf Patienten am Leben, davon war ein Patient (20%) ohne bronchoskopischen Hinweis auf ein lokales Tumorgeschehen, und vier Patienten (80%) zeigten einen endobronchialen Resttumor. Eine subjektive Linderung der Beschwerden konnte bei acht (73%) der elf Patienten erzielt werden. (orig.)

  12. 10 CFR 35.432 - Calibration measurements of brachytherapy sources.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Calibration measurements of brachytherapy sources. 35.432 Section 35.432 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Manual Brachytherapy § 35.432 Calibration measurements of brachytherapy sources. (a) Before the first medical use of...

  13. 10 CFR 35.406 - Brachytherapy sources accountability.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Brachytherapy sources accountability. 35.406 Section 35.406 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Manual Brachytherapy § 35.406 Brachytherapy sources accountability. (a) A licensee shall maintain accountability at all...

  14. Navigation system for interstitial brachytherapy

    International Nuclear Information System (INIS)

    The purpose of the stud was to develop a computed tomography (CT) based electromagnetic navigation system for interstitial brachytherapy. This is especially designed for situations when needles have to be positioned adjacent to or within critical anatomical structures. In such instances interactive 3D visualisation of the needle positions is essential. The material consisted of a Polhemus electromagnetic 3D digitizer, a Pentium 200 MHz laptop and a voice recognition for continuous speech. In addition, we developed an external reference system constructed of Perspex which could be positioned above the tumour region and attached to the patient using a non-invasive fixation method. A specially designed needle holder and patient bed were also developed. Measurements were made on a series of phantoms in order to study the efficacy and accuracy of the navigation system. The mean navigation accuracy of positioning the 20.0 cm length metallic needles within the phantoms was in the range 2.0-4.1 mm with a maximum of 5.4 mm. This is an improvement on the accuracy of a CT-guided technique which was in the range 6.1-11.3 mm with a maximum of 19.4 mm. The mean reconstruction accuracy of the implant geometry was 3.2 mm within a non-ferromagnetic environment. We found that although the needles were metallic this did not have a significant influence. We also found for our experimental setups that the CT table and operation table non-ferromagnetic parts had no significant influence on the navigation accuracy. This navigation system will be a very useful clinical tool for interstitial brachytherapy applications, particularly when critical structures have to be avoided. It also should provide a significant improvement on our existing technique

  15. Measurement of air kerma rate and absorbed dose for brachytherapy sources with secondary standard dosimeter

    International Nuclear Information System (INIS)

    The air kerma measurements for brachytherapy sources are generally recommended to be done at one meter using large volume chambers. These measurements pose problems due to low signal from brachytherapy sources. Non-availability of calibrated large volume chambers at a hospital adds to the problem of air kerma measurements. Therefore, the use of commonly available secondary standard dosimeter having 0.6 cc chambers has been examined. Correction factors to be applied at small source to chamber distances have been determined. Measurements from 137Cs source of nominal activity as low as 1.11 GBq (30 mCi) could be carried out using an integration time of about 20 minutes at minimum distance of 1.5 cm. For source to chamber distance beyond 5 cm, the correction factor approaches unity. (author)

  16. Methodology, results and experience of independent brachytherapy plan verifications based on DICOM standard; Implementacion, resultados y experiencia de una verificacion independiente de tratamientos de braquiterapia basada en el estandar DICOM

    Energy Technology Data Exchange (ETDEWEB)

    Ferrando Sanchez, A.; Pardo Perez, E.; Castro Novals, J.; Casa de Julian, M. A. de la; Cabello Murillo, E.; Diaz Fuentes, R.; Molina Lopez, M. Y.

    2013-09-01

    The use of a high dose rate source together with an afterloading treatment delivery in brachytherapy plans allows for dose modulation minimizing dose to staff. An independent verification of the exported data to the treatment station is required by local regulations (being also a widely accepted recommendation on the international literature). We have developed a methodology under home brew code to import DICOM treatment data onto an Excel spreadsheet that is able to calculate dose on given reference points using the TG-43 formalism of the AAPM3-5. It employs analytic fits of anisotropy factor and radial dose function for different sources. The end point implementations we present here allow merging in one step an independent verification and a treatment printout. The use of DICOM standard makes our code versatile and provides greater compatibility with respect to current treatment planning systems. (Author)

  17. Brachytherapy emulating robotic radiosurgery in patients with cervical carcinoma

    International Nuclear Information System (INIS)

    To evaluate the technique, dosimetry, dose-volume-histograms (DVHs) and acute toxicity for CyberKnife® boost irradiation instead of intra-cervical brachytherapy in patients with cervical cancer. Eleven who were not suitable for brachytherapy with FIGO stage IIB-IIIB cervical cancer underwent primary chemoradiation. After fiducial implantation, T2 contrast-enhanced planning MRI and CT scans at 2-mm slice thickness were collected in the treatment position. The clinical target volume was defined as cervix + macroscopic residual tumour on MRI. Five fractions of 6 Gy each were prescribed to the target volume with a covering single dose 6 Gy. DVH parameters were evaluated for the target and organs at risk. Acute toxicity was documented once a week. DmeanPTV ranged from 33.6-40 Gy, median 36.7 Gy with a coverage of the PTV calculated to 100% of the prescribed dose ranging from 93.0-99.3% (median 97.7%). For the PTV the median CN was 0.78 (range, 0.66 to 0.87) and the median CI was 1.28 (range 1.15 to 1.52). Gastrointestinal (GI) and genitourinary (GU) toxicity was mild. There was no grade 3 or higher GI and GU toxicity. After 6 months of follow up, there were no local recurrences. For the complete treatment, a median EQD2 to 1 cc and 2 cc of the bladder wall was 98.8 Gy and 87.1 Gy, respectively. Median EQD2 to 1 cc and 2 cc of the rectal wall was 72.3 Gy and 64 Gy, respectively, correlating with a risk < 10% for Grade 2–4 late toxicity. CyberKnife robotic radiosurgery in patients with cervical cancer provides excellent target coverage with steep dose gradients toward normal tissues and safe DVH parameters for bladder, rectum and sigmoid. Acute toxicity was mild. Longer follow-up is needed to evaluate the oncological equality

  18. Dose and volume specification for reporting interstitial therapy

    International Nuclear Information System (INIS)

    The ICRU has previously published reports dealing with Dose Specification for Reporting External Beam Therapy with Photons and Electrons (ICRU Report 29, ICRU, 1978), Dose Specification for Reporting External Beam Therapy (ICRU Report 50, ICRU, 1993) and Dose and Volume Specification for Reporting Intracavitary Therapy in Gynecology (ICRU Report 38, ICRU, 1985). The present report addresses the problem of absorbed dose specification for report interstitial therapy. Although specific to interstitial therapy, many of the concepts developed in this report are also applicable to certain other kinds of brachytherapy applications. In particular, special cases of intraluminal brachytherapy and plesio-brachytherapy via surface molds employing x or gamma emitters are addressed in this report

  19. Dose and volume specification for reporting interstitial therapy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-30

    The ICRU has previously published reports dealing with Dose Specification for Reporting External Beam Therapy with Photons and Electrons (ICRU Report 29, ICRU, 1978), Dose Specification for Reporting External Beam Therapy (ICRU Report 50, ICRU, 1993) and Dose and Volume Specification for Reporting Intracavitary Therapy in Gynecology (ICRU Report 38, ICRU, 1985). The present report addresses the problem of absorbed dose specification for report interstitial therapy. Although specific to interstitial therapy, many of the concepts developed in this report are also applicable to certain other kinds of brachytherapy applications. In particular, special cases of intraluminal brachytherapy and plesio-brachytherapy via surface molds employing x or gamma emitters are addressed in this report.

  20. Clinical experience with the MammoSite[reg] radiation therapy system for brachytherapy of breast cancer: Results from an international phase II trial

    International Nuclear Information System (INIS)

    Background and purpose: In a prospective multi-center phase II trial, we investigated the MammoSite[reg] Radiation Therapy System, a new device for delivering intracavitary brachytherapy following breast conserving surgery. The MammoSite[reg] is a dual lumen, closed ended catheter with a small, spherical inflatable balloon and a port for connecting a remote afterloader to the central lumen. We analyzed the surgical procedure and placement of the MammoSite[reg], treatment planning and radiation delivery complications and cosmesis, as well the comfort for the patients. Patients and methods: Between 2002 and 2004 a total of 32 patients (pts) were implanted using the MammoSite[reg]. The reference isodose was defined 1 cm from the balloon surface. We analyzed the post-implant anatomic position of the applicator and the geometric form of the balloon via ultrasound, CT and X-ray, related side effects, cosmetic outcome and patient quality of life. Results: Twenty-three out of 32 patients (72%) were eligible for MammoSite[reg] intracavitary brachytherapy. Twenty-eight percentage had to be excluded because of different reasons. Eleven patients were treated with primary brachytherapy with a total dose of 34 Gy (2x3.4 Gy) and 12 had a boost with a mean dose of 13.3 Gy (range: 7.5-15 Gy; 2x2.5 Gy) combined with EBRT and doses ranged between 46 and 50 Gy. In three cases a balloon rupture occurred. We observed two abscesses within 3 months of implantation and serious seroma development in 10 patients (39%). Skin related side effects were erythema in 21 patients (91%), hyperpigmentation in 13 patients (56%) and teleangiectasia in six patients (26%) after mean follow-up 20 months. Conclusions: The MammoSite[reg] Radiation Therapy System is a feasible treatment modality for intracavitary brachytherapy of breast cancer after breast conserving surgery. The advantage of the system is only one applicator is necessary for the delivery of a fractionated radiotherapy. In addition, patient

  1. Treatment of localized prostate cancer with brachytherapy: six years experience

    International Nuclear Information System (INIS)

    The usage of ultrasound scan to perform prostate biopsy punctures, the new radiation therapies and the more accurate selection of patients has allowed brachytherapy to play an important role in the treatment of the localized pathology. The objective of this paper is to review the results obtained when treating the localized prostate cancer by using brachytherapy with mud 125. Materials and methods: Between December 1999 and July 2006, 100 prostate cancer patients were treated at the Hospital Italiano de Buenos Aires, using brachytherapy with mud 125. One of the patients was treated with a combined therapy (brachytherapy + external radiotherapy). For that reason, the patient was not taken into consideration for this paper. The average age was 65.95 (52-79). The tumoral stages were T1c in 81% of the patients and T2a in 19% of them. The PSA was always below 15 ng/ml, with an average of 8.92 ng/ml; inferior to 10 ng/ml in 72 patients and between 10 and 15 ng/m ml in 28 of them. The average prostate volume was 34.68 c.c. (18.70 c.c.-58.00 c.c.). The combined Gleason score was below 6 (except for three patients with Gleason 7 who had a PSA below 10, stage T1c). The dose used was 16,000 cGy as recommended by the TG43. The energy charge of each seed was between 0.28 and 0.40 mci. Thirty days later, a prostate axial computer tomography was carried out every 3 mm. with a scanning set every 5 mm. to perform a dosimetric control of the implant. Results: The average age was 65.95 (52-79). The control computer tomography showed an adequate dosimetric coverage for the entire prostate volume, with a maximum urethral dose not above 400 Gy and a maximum rectal dose below 100 Gy. The PSA of all patients decreased to a normal level 6 months after the treatment started. The average follow-up of the 71 patients able to be tested from an oncological perspective lasted 31.15 months, with a minimum of 18 and a maximum of 72 months. Currently, seven patients of those tested (9.86%) manifest

  2. ACPSEM brachytherapy working group recommendations for quality assurance in brachytherapy

    International Nuclear Information System (INIS)

    The Australasian College of Physical Scientists and Engineers in Medicine (ACPSEM) Radiation Oncology Specialty Group (ROSG) formed a series of working groups in 2011 to develop recommendation papers for guidance of radiation oncology medical physics practice within the Australasian setting. These recommendations are intended to provide guidance for safe work practices and a suitable level of quality control without detailed work instructions. It is the responsibility of the medical physicist to ensure that locally available equipment and procedures are sufficiently sensitive to establish compliance to these recommendations. The recommendations are endorsed by the ROSG, have been subject to independent expert reviews and have also been approved by the ACPSEM Council. For the Australian audience, these recommendations should be read in conjunction with the Tripartite Radiation Oncology Practice Standards. This publication presents the recommendations of the ACPSEM Brachytherapy Working Group (BTWG) and has been developed in alignment with other international associations. However, these recommendations should be read in conjunction with relevant national, state or territory legislation and local requirements, which take precedence over the ACPSEM recommendation papers. It is hoped that the users of this and other ACPSEM recommendation papers will contribute to the development of future versions through the Radiation Oncology Specialty Group of the ACPSEM.

  3. Computed tomography-guided permanent brachytherapy for locoregional recurrent gastric cancer

    International Nuclear Information System (INIS)

    Locoregional recurrence is the typical pattern of recurrence in gastric cancer, and cannot be removed by surgery in most of the patients. We aimed to evaluate the feasibility and efficacy of computed tomography (CT)-guided brachytherapy for patients with locoregional recurrent gastric cancer. We reviewed the case histories of 28 patients with locoregional recurrent gastric cancer that were selected for CT- guided brachytherapy by a multidisciplinary team. The clinical data of the patients including patient characteristics, treatment parameters, short-term effects, and survival data were collected and analyzed. 15-75 125I seeds were implanted into each patient to produce a minimal peripheral dose (MPD) 100-160 Gy. Median day 0 dosimetry was significant for the following: V100 (the volume treated with the prescription dose) 95.8% (90.2-120.5%) and D90 (prescription dose received by at least 90% of the volume) 105.2% (98.0-124.6%) of prescription dose. No serious complications occurred during the study. Two months after brachytherapy, complete response, partial response and progressive disease were observed in 50.0%, 28.6% and 21.4% of patients, respectively. The median survival time was 22.0 ± 5.2 months, and the 1, 2,and 3-year survival rate was 89 ± 6%, 52 ± 10% and 11 ± 7%, respectively. A univariate analysis showed that the tumor size was a significant predictor of overall survival (P = 0.034). Patients with tumors <3 cm had relatively higher complete response rate (66.7%), compared to those with tumors >3 cm (30.8%). The PTV (planning target volume) smaller than 45 cm3 was significantly correlated with achieving complete tumor eradication in the treated region (P = 0.020). For selected patients with limited locoregional recurrent gastric cancer, CT-guided brachytherapy using 125I seeds implantation can provide a high local control rate, with minimal trauma

  4. Optimization in brachytherapy with the implementation of Radiobiology

    International Nuclear Information System (INIS)

    In the brachytherapy planning treatments with High dose rates (HDR), the optimization algorithms used are based in dosimetric considerations and/or geometric ones, ignoring the radiobiological response of the tissue treated. In this work we wish to show the implementation of radiobiological concepts in the optimization. Assuming that the subtiles differences that result in the dose distribution among the different optimization models which are not visible in an isodose plane, it is studied how is classically make it , the quality implant through natural histograms about dose volumes and the resulting parameters. Also is studied the necrosis probability which may be caused by the choice of some optimization model, allowing with this the choice of the best implant. (Author)

  5. Dosimetric calculus in intravascular brachytherapy

    International Nuclear Information System (INIS)

    Among the cardiovascular diseases, the most common is acute myocardial infarction, which occurs because of the occlusion of one or more coronary arteries. Balloon angioplasty has been a popular treatment which is less invasive than surgeries involving revascularization of the myocardium, thus promising a better quality of life for patients. Unfortunately, the rate of restenosis (re-closing of the vessel) after balloon angioplasty is high (approximately 30-50% within the first year after treatment). Known as Intravascular Brachytherapy, the technique has been used with several radiation sources, and researchers have obtained success in decreasing the rate of restenosis. In order to study the radiation dosimetry in the patient and radiological protection for this therapy, radiation dose distributions for monoenergetic electrons and photons (at nine discrete energies) were calculated for blood vessels of diameter 0.15, 0.30 and 0.45 cm with balloon and wire sources using the radiation transport code MCNP4B. Specific calculations were carried out for several radionuclides. Two stent sources employing 32P are also simulated. Advantages and disadvantages of the radionuclides and source geometries are discussed and the dosimetry developed here will aid in the realization of the benefits obtained in patients. (author)

  6. HDR intralumenal brachytherapy in bronchial cancer: review of our experience

    International Nuclear Information System (INIS)

    The main indications for brachytherapy in the treatment of endobronchial cancer are dyspnea. postobstructive pneumonia and atelectasis, cough and hemoptysis resulting from broncus obstruction by exophytic intralumenal tumor growth. High Dose Rate intralumenal brachytherapy (HDRBT) may be combined with external beam radiotherapy (EBRT), in particular as almost all tumors are too large for HDRBT alone. From January 1992 to September 1995 we treated 268 patients affected by bronchial cancer, with EBRT combined with HDRBT. All patients were staged as IIIa-IIIb-IV but KPS was >60 and expectancy of life > than 3 months. After bronchoscopy and Tc simulation we found that almost 10% of patients were downstaged. Treatment was always realized delivering 60 Gy to the tumour volume and 50 Gy to the mediastinal structures with EBRT. Brachytherapy was performed during the radiotherapy course. In 38 patients HDRBT was realized just one time, at the beginning of EBRT, with a dose of 10 Gy calculated at 1cm from the central axis of the catheter. In 47 HDRBT was performed twice (at the beginning and at the end of EBRT) with a dose of 7 Gy calculated at 1 cm from the central axis. From 1994 we started a 3 fractions protocol (Timing: days 1.15.30) with a dose of 5 Gy calculated at 0.5 cm from the axis. Of the 183 patients introduced in the protocol 170 received the three fractions of HDRBT and 13 were excluded from the study for personal or clinical reasons. In 97% of cases the application did not need general anesthesia; local anesthesia has been sufficient supplemented by some drug for sedation and coughing. Anyway both bronchoscopy and HDRBT (with anterior-posterior and lateral chest X-ray) are performed in the same shielded room without the necessity of displacing the patient. In almost 60% of treatments we used just one endobronchial applicator. In case of tumor involvement of the carina, two applicators were introduced. By this a larger tumor volume can be treated with adequate

  7. High dose rate brachytherapy for the treatment of soft tissue sarcoma of the extremity

    International Nuclear Information System (INIS)

    Purpose: we examined the role of preoperative neoadjuvant chemoradiation and adjuvant high-dose rate brachytherapy on the management of prognostically unfavorable soft tissue sarcomas of the extremities. Our goal was to examine the effect of high dose rate interstitial brachytherapy (HDR IBT) on reducing the risk of local recurrence following limb-sparing resection, as well as shortening treatment duration. Materials and methods: eleven patients, ranging in age from 31 to 73 years old, with soft tissue sarcoma of the extremity were treated at USC/Norris Comprehensive Cancer Center during 1994 and 1995. All patients had biopsy proven soft tissue sarcoma, and all were suitable candidates for limb-sparing surgery. All lesions were greater than 5cm in size and were primarily high grade. Tumor histologies included malignant fibrous histiocytoma (45%), liposarcoma (18%) and leiomyosarcoma, synovial cell sarcoma and spindle cell sarcoma (36%). Sites of tumor origin were the lower extremity (55%), upper extremity (18%) and buttock (9%), 1 patient (9%) had lesions in both the upper and lower extremity. Patients received HDR IBT following combined chemotherapy and external beam irradiation (EBRT) and en bloc resection of the sarcoma. Neoadjuvant chemotherapy consisted of three to four cycles of either Ifosfamide/Mesna with or without Adriamycin, or Mesna, Adriamycin, Ifosfamide and Dacarbazine. One patient received Cis-platin in addition to Ifos/Adr. A minimum of two cycles of chemotherapy were administered prior to EBRT. Additional cycles of chemotherapy were completed concurrently with EBRT but prior to HDR IBT. Preoperative EBRT doses ranging from 40 to 59.4 Gy were given in daily fractions of 180 to 200cGy. Following en bloc resection, HDR IBT was administered using the Omnitrontm 2000 remote afterloading system. Doses ranging from 13 to 30 Gy were delivered to the surgical tumor bed at depths of 0.5mm to 0.75mm from the radioactive source. Results: median follow-up was

  8. Pulsed-dose-rate brachytherapy: design of convenient (daytime-only) schedules

    International Nuclear Information System (INIS)

    Purpose: To design pulsed-brachytherapy (PDR) protocols that are expected to be at least as clinically efficacious (in terms of both tumor control and late sequelae) as continuous low-dose-rate (CLDR) regimens, but that involve irradiation only during extended office hours. Both interstitial and intracavitary brachytherapy protocols are considered. Methods and Materials: The linear quadratic formalism was used in which the late normal tissue damage and tumor control for one protocol relative to another are assumed to be determined primarily by the level of cellular survival. PDR schedules were designed in which pulses are delivered during 'extended office hours' (8 A.M. to 8 P.M.) with no irradiation overnight. Generally, the proposed PDR regimes last the same number of treatment days as the corresponding CLDR regimen, but the PDR treatment lasts longer on the final day (i.e., until 8 P.M.). PDR doses were calculated such as to produce a tumor control which is equivalent to standard CLDR protocols, and the corresponding predicted late complication rate was compared with that for CLDR. Ranges of plausible values for the half-times of sublethal damage repair for tumors and for late-responding normal tissues were considered. Results: As has been previously shown, the efficacy of PDR relative to CLDR depends considerably on the repair rates for sublethal damage repair. Clinical and experimental evidence suggests that average repair half-times for early effects (e.g., tumor control) are less than about a half hour, and for late sequelae are more than about an hour. If these estimates are correct, daytime PDR regimes can usually be designed which take the same number of days as the corresponding CLDR regimen, but have comparable or better therapeutic ratios than CLDR. Conclusion: Protocols for PDR can be designed to involve irradiation only during extended office hours, that are likely to result in clinical results comparable or better than CLDR, for any expected

  9. Adaptive brachytherapy of cervical cancer, comparison of conventional point A and CT based individual treatment planning

    International Nuclear Information System (INIS)

    Background. Locally advanced cervical cancer is commonly treated with external radiation therapy combined with local brachytherapy. The brachytherapy is traditionally given based on standard dose planning with prescription of dose to point A. Dosimetric aspects when changing from former standard treatment to individualized treatment plans based on computed tomography (CT) images are here investigated. Material and methods. Brachytherapy data from 19 patients with a total of 72 individual treatment fractions were retrospectively reviewed. Standard library plans were analyzed with respect to doses to organs at risk (OARs), and the result was compared to corresponding delivered individualized plans. The theoretical potential of further optimization based on prescription to target volumes was investigated. The treatments were performed with a Fletcher applicator. Results. For standard treatment planning, the tolerance dose limits were exceeded in the bladder, rectum and sigmoid in 26%, 4% and 15% of the plans, respectively. This was observed most often for the smallest target volumes. The individualized planning of the delivered treatment gave the possibility of controlling the dose to critical organs to below certain limits. The dose was still prescribed to point A. An increase in target dose coverage was achieved when additional individual optimization was performed, while still keeping the dose to the OARs below predefined limits. Relatively low average target coverage, especially for the largest volumes was however seen. Conclusion. The individualized delivered treatment plans ensured that doses to OARs were within acceptable limits. This was not the case in 42% of the corresponding standard plans. Further optimized treatment plans were found to give an overall better dose coverage. In lack of MR capacity, it may be favorable to use CT for planning due to possible protection of OARs. The CT based target volumes were, however, not equivalent to the volumes described

  10. Chemoradiation in cervical cancer with cisplatin and high-dose rate brachytherapy combined with external beam radiotherapy. Results of a phase-II study

    Energy Technology Data Exchange (ETDEWEB)

    Strauss, H.G.; Laban, C.; Puschmann, D.; Koelbl, H. [Dept. of Gynecology, Martin-Luther Univ. Halle-Wittenberg (Germany); Kuhnt, T.; Pigorsch, S.; Dunst, J.; Haensgen, G. [Dept. of Radiotherapy, Martin-Luther Univ. Halle-Wittenberg (Germany)

    2002-07-01

    chemoradiation with cisplatin 40 mg/m{sup 2} weekly x 6 using HDR brachytherapy represents a promising treatment of cervical cancer with an acceptable toxicity. (orig.) [German] Hintergrund: 1999 zeigten fuenf randomisierte Studien, dass die simultane Radiochemotherapie mit Cisplatin und einer Low-Dose-Rate-Brachytherapie fuer Patientinnen mit einem lokal fortgeschrittenen Zervixkarzinom und in der adjuventen Hochrisikosituation einen Ueberlebensvorteil bringt. Wir untersuchten die Sicherheit und Effektivitaet der simultanen Radiochemotherapie mit Cisplatin und High-Dose-Rate-Brachytherapie bei diesen Patientinnen. Patientinnen und Methode: 27 Patientinnen wurden in unserer Phase-II-Studie eingeschlossen: 13 mit lokal fortgeschrittenen Zervixkarzinomen (Gruppe A) und 14 adjuvante Hochrisikopatientinnen (Gruppe B). Die primaer radiochemotherapierten Faelle erhielten 25 Fraktionen einer perktuanen Hochvolttherapie des Beckens (1,8 Gy pro Fraktion/Einbringen eines Mittelblocks nach elf Fraktionen). Die Brachytherapie wurde bei den FIGO-Stadien IIB-IIIB nach dem High-Dose-Rate-Afterloading-Prinzip mit 7 Gy pro Fraktion in Punkt A (Gesamtdosis 35 Gy) appliziert. Die Gesamtdosis der kombinierten Therapie war 70 Gy in Punkt A und 52-54 Gy in Punkt B. Bei den FIGO-Stadien IVA erfolgte keine Brachyhtherapie. Bei der adjuvanten Strahlentherapie wurde die perkutane Hochvolttherapie des Beckens mit Fraktionen von 1,8 Gy bis zu einer Gesamtdosis von 50,4 Gy appliziert. Die High-Dose-Rate-Afterloading-Brachytherapie mit zwei Fraktionen von 5 Gy erfolgte nur bei Patientinnen, bei denen sich im Operationspraeparat tumorbefallene Resektionsraender oder ein Befall der Scheide fanden. Das Chemotherapieregime mit 6 woechentlichen Gaben von 40 mg/m{sup 2} Cisplatin entsprach dem der Studien 120 und 123 der GOG. Ergebnisse: 18 von 27 Patientinnen (66,7%) erhielten alle sechs Cisplatingaben. Eine Unterbrechung der Strahlentherapie aufgrund von Nebenwirkungen war in keinem Fall erforderlich. Die G3

  11. MRS-guided HDR brachytherapy boost to the dominant intraprostatic lesion in high risk localised prostate cancer

    International Nuclear Information System (INIS)

    It is known that the vast majority of prostate cancers are multifocal. However radical radiotherapy historically treats the whole gland rather than individual cancer foci. Magnetic resonance spectroscopy (MRS) can be used to non-invasively locate individual cancerous tumours in prostate. Thus an intentionally non-uniform dose distribution treating the dominant intraprostatic lesion to different dose levels than the remaining prostate can be delivered ensuring the maximum achievable tumour control probability. The aim of this study is to evaluate, using radiobiological means, the feasibility of a MRS-guided high dose rate (HDR) brachytherapy boost to the dominant lesion. Computed tomography and MR/MRS were performed for treatment planning of a high risk localised prostate cancer. Both were done without endorectal coil, which distorts shape of prostate during the exams. Three treatment plans were compared: - external beam radiation therapy (EBRT) only - combination of EBRT and HDR brachytherapy - combination of EBRT and HDR brachytherapy with a synchronous integrated boost to the dominant lesion The criteria of plan comparison were: the minimum, maximum and average doses to the targets and organs at risk; dose volume histograms; biologically effective doses for organs at risk and tumour control probability for the target volumes consisting of the dominant lesion as detected by MR/MRS and the remaining prostate volume. Inclusion of MRS information on the location of dominant lesion allows a safe increase of the dose to the dominant lesion while dose to the remaining target can be even substantially decreased keeping the same, high tumour control probability. At the same time an improved urethra sparing was achieved comparing to the treatment plan using a combination of EBRT and uniform HDR brachytherapy. MRS-guided HDR brachytherapy boost to dominant lesion has the potential to spare the normal tissue, especially urethra, while keeping the tumour control probability

  12. Intensity Modulated Proton Beam Radiation for Brachytherapy in Patients With Cervical Carcinoma

    International Nuclear Information System (INIS)

    Purpose: To evaluate intensity modulated proton therapy (IMPT) in patients with cervical cancer in terms of coverage, conformity, and dose–volume histogram (DVH) parameters correlated with recommendations from magnetic resonance imaging (MRI)-guided brachytherapy. Methods and Materials: Eleven patients with histologically proven cervical cancer underwent primary chemoradiation for the pelvic lymph nodes, the uterus, the cervix, and the parametric region, with a symmetric margin of 1 cm. The prescription was for 50.4 Gy, with 1.8 Gy per fraction. The prescribed dose to the parametria was 2.12 Gy up to 59.36 Gy in 28 fractions as a simultaneous boost. For several reasons, the patients were unable to undergo brachytherapy. As an alternative, IMPT was planned with 5 fractions of 6 Gy to the cervix, including the macroscopic tumor with an MRI-guided target definition, with an isotropic margin of 5 mm for planning target volume (PTV) definition. Groupe-Europeen de Curietherapie and European society for Radiotherapy and Oncology (GEC-ESTRO) criteria were used for DVH evaluation. Reference comparison plans were optimized for volumetric modulated rapid arc (VMAT) therapy with the RapidArc (RA). Results: The dose to the high-risk volume was calculated with α/β = 10 with 89.6 Gy. For IMPT, the clinical target volume showed a mean dose of 38.2 ± 5.0 Gy (35.0 ±1.8 Gy for RA). The D98% was 31.9 ± 2.6 Gy (RA: 30.8 ± 1.0 Gy). With regard to the organs at risk, the 2Gy Equivalent Dose (EQD2) (α/β = 3) to 2 cm3 of the rectal wall, sigmoid wall, and bladder wall was 62.2 ± 6.4 Gy, 57.8 ± 6.1 Gy, and 80.6 ± 8.7 Gy (for RA: 75.3 ± 6.1 Gy, 66.9 ± 6.9 Gy, and 89.0 ± 7.2 Gy, respectively). For the IMPT boost plans in combination with external beam radiation therapy, all DVH parameters correlated with <5% risk for grades 2 to 4 late gastrointestinal and genitourinary toxicity. Conclusion: In patients who are not eligible for brachytherapy, IMPT as a boost technique

  13. Intensity Modulated Proton Beam Radiation for Brachytherapy in Patients With Cervical Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Clivio, Alessandro [Oncology Institute of Southern Switzerland, Bellinzona (Switzerland); Kluge, Anne [Department of Radiation Oncology, Charité University Hospital, Berlin (Germany); Cozzi, Luca, E-mail: lucozzi@iosi.ch [Oncology Institute of Southern Switzerland, Bellinzona (Switzerland); Köhler, Christhardt [Department of Gynecology, Charité University Hospital, Berlin (Germany); Neumann, Oliver [Department of Radiation Oncology, Charité University Hospital, Berlin (Germany); Vanetti, Eugenio [Oncology Institute of Southern Switzerland, Bellinzona (Switzerland); Wlodarczyk, Waldemar; Marnitz, Simone [Department of Radiation Oncology, Charité University Hospital, Berlin (Germany)

    2013-12-01

    Purpose: To evaluate intensity modulated proton therapy (IMPT) in patients with cervical cancer in terms of coverage, conformity, and dose–volume histogram (DVH) parameters correlated with recommendations from magnetic resonance imaging (MRI)-guided brachytherapy. Methods and Materials: Eleven patients with histologically proven cervical cancer underwent primary chemoradiation for the pelvic lymph nodes, the uterus, the cervix, and the parametric region, with a symmetric margin of 1 cm. The prescription was for 50.4 Gy, with 1.8 Gy per fraction. The prescribed dose to the parametria was 2.12 Gy up to 59.36 Gy in 28 fractions as a simultaneous boost. For several reasons, the patients were unable to undergo brachytherapy. As an alternative, IMPT was planned with 5 fractions of 6 Gy to the cervix, including the macroscopic tumor with an MRI-guided target definition, with an isotropic margin of 5 mm for planning target volume (PTV) definition. Groupe-Europeen de Curietherapie and European society for Radiotherapy and Oncology (GEC-ESTRO) criteria were used for DVH evaluation. Reference comparison plans were optimized for volumetric modulated rapid arc (VMAT) therapy with the RapidArc (RA). Results: The dose to the high-risk volume was calculated with α/β = 10 with 89.6 Gy. For IMPT, the clinical target volume showed a mean dose of 38.2 ± 5.0 Gy (35.0 ±1.8 Gy for RA). The D{sub 98%} was 31.9 ± 2.6 Gy (RA: 30.8 ± 1.0 Gy). With regard to the organs at risk, the 2Gy Equivalent Dose (EQD2) (α/β = 3) to 2 cm{sup 3} of the rectal wall, sigmoid wall, and bladder wall was 62.2 ± 6.4 Gy, 57.8 ± 6.1 Gy, and 80.6 ± 8.7 Gy (for RA: 75.3 ± 6.1 Gy, 66.9 ± 6.9 Gy, and 89.0 ± 7.2 Gy, respectively). For the IMPT boost plans in combination with external beam radiation therapy, all DVH parameters correlated with <5% risk for grades 2 to 4 late gastrointestinal and genitourinary toxicity. Conclusion: In patients who are not eligible for brachytherapy, IMPT as a boost

  14. New method for the induction of therapeutic amenorrhea: low dose endometrial afterloading irradiation. Clinical and hormonal studies

    Energy Technology Data Exchange (ETDEWEB)

    Gronroos, M.; Turunen, T.; Raekallio, J.; Ruotsalinen, P.; Salmi, T. (Turku Univ. (Finland). Dept. of Obstetrics and Gynecology)

    1982-08-01

    The authors present a new method for the induction of therapeutic amenorrhea: low dose endometrial afterloading irradiation. The problem with this method has been how to inactivate the endometrium while maintaining the physiological function of the ovaries. In 5/29 young patients regular or irregular bleedings occurred after an endometrial dose of 11+-1 Gy. These subjects were given a repeat low dose intrauterine irradiation. Thereafter no bleedings were found in four out of five patients. Two to 9 years after the repeat irradiation the plasma levels of E/sub 1/, E/sub 2/, FSH and LH corresponded closely to those of healthy women in reproductive age in three out of five patients; some high plasma P levels indicated ovulation. In two patients the E/sub 1/, E/sub 2/, and P values were more likely postmenopausal but, on the other hand, FSH and LH values reproductive ones. 19 refs.

  15. A new method for the induction of therapeutic amenorrhea: low dose endometrial afterloading irradiation. Clinical and hormonal studies

    International Nuclear Information System (INIS)

    The authors present a new method for the induction of therapeutic amenorrhea: low dose endometrial afterloading irradiation. The problem with this method has been how to inactivate the endometrium while maintaining the physiological function of the ovaries. In 5/29 young patients regular or irregular bleedings occurred after an endometrial dose of 11+-1 Gy. These subjects were given a repeat low dose intrauterine irradiation. Thereafter no bleedings were found in four out of five patients. Two to 9 years after the repeat irradiation the plasma levels of E1, E2, FSH and LH corresponded closely to those of healthy women in reproductive age in three out of five patients; some high plasma P levels indicated ovulation. In two patients the E1, E2, and P values were more likely postmenopausal but, on the other hand, FSH and LH values reproductive ones. (author)

  16. Dose optimisation in single plane interstitial brachytherapy

    DEFF Research Database (Denmark)

    Tanderup, Kari; Hellebust, Taran Paulsen; Honoré, Henriette H;

    2006-01-01

    BACKGROUND AND PURPOSE: Brachytherapy dose distributions can be optimised       by modulation of source dwell times. In this study dose optimisation in       single planar interstitial implants was evaluated in order to quantify the       potential benefit in patients. MATERIAL AND METHODS: In 14...

  17. Severe rectal complications after prostate brachytherapy

    International Nuclear Information System (INIS)

    Purpose: Some investigators have reported severe rectal complications after brachytherapy. Due to the low number of such events, their relationship to dosimetric parameters has not been well characterized. Methods and materials: A total of 3126 patients were treated with low dose rate brachytherapy from 1998 through 2010. 2464 had implant alone, and 313 had implant preceded by 44–46 Gy supplemental external beam radiation (EBRT). Post-implant dosimetry was based on a CT scan obtained on the day of implant, generally within 30 min of the procedure. Every patient’s record was reviewed for occurrence of rectal complications. Results: Eight of 2464 patients (0.32%) treated with brachytherapy alone developed a radiation-related rectal fistula. Average prostatic and rectal dose parameters were moderately higher for fistula patients than for patients without a severe rectal complication. For instance, the average R100 was 1.2 ± 0.75 cc for fistula patients, versus 0.37 ± 0.88 cc for non-fistula patients. However, the fistula patients’ values were well within the range of values for patients without a rectal complication. Four patients had some attempt at repair or reconstruction, but long-term functional outcomes were not favorable. Conclusions: Rectal fistulas are a very uncommon potential complication of prostate brachytherapy, which can occur even in the setting of acceptable day 0 rectal doses. Their occurrence is not easily explained by standard dosimetric or clinical factors

  18. Early voiding dysfunction associated with prostate brachytherapy.

    Science.gov (United States)

    Wagner; Nag; Young; Bahnson

    2000-12-15

    Introduction: Transperineal prostate brachytherapy is gaining popularity as a treatment for clinically localized carcinoma of the prostate. Very little prospective data exists addressing the issue of complications associated with this procedure. We present an analysis of the early voiding dysfunction associated with prostate brachytherapy. Materials and Methods: Forty-six consecutive patients who underwent Palladium-103 (Pd-103) seed placement for clinically localized prostate carcinoma were evaluated prospectively for any morbidity associated with the procedure. Twenty-three patients completed an International Prostate Symptom Score (IPSS) questionnaire preoperatively, at their first postoperative visit, and at their second postoperative visit. The total IPSS, each of the seven individual components, and the "bother" score were evaluated separately for each visit, and statistical significance was determined. Results: Urinary retention occurred in 7/46 patients (15%). Of these, 5 were able to void spontaneously after catheter removal. One patient is maintained with a suprapubic tube, and one patient is currently on continuous intermittent catheterization. Baseline IPSS was 7.1 and this went to 20.0 at the first postoperative visit (p<0.001). By the second postoperative visit, the IPSS was 8.0. Conclusions: In our experience, prostate brachytherapy for localized carcinoma of the prostate is associated with a 15% catheterization rate and a significant increase in the IPSS (7.1 to 20.0). This increase in the IPSS seems to be self-limited. Patients need to be educated on these issues prior to prostate brachytherapy. PMID:11113369

  19. Dose calculation in brachytherapy with microcomputers

    International Nuclear Information System (INIS)

    The computer algorithms, that allow the calculation of brachytherapy doses and its graphic representation for implants, using programs developed for Pc microcomputers are presented. These algorithms allow to localized the sources in space, from their projection in radiographics images and trace isodose counter. (C.G.C.)

  20. CT-guided brachytherapy. A novel percutaneous technique for interstitial ablation of liver malignancies; CT-gesteuerte Brachytherapie. Eine neue perkutane Technik zur interstitiellen Ablation von Lebermetastasen

    Energy Technology Data Exchange (ETDEWEB)

    Ricke, J.; Wust, P.; Stohlmann, A.; Beck, A.; Cho, C.H.; Pech, M.; Wieners, G.; Spors, B.; Werk, M.; Rosner, C.; Haenninen, E.L.; Felix, R. [Klinik fuer Strahlenheilkunde, Charite Virchow-Klinikum, Humboldt-Univ. zu Berlin (Germany)

    2004-05-01

    Purpose: to assess safety and efficacy of CT-guided brachytherapy of liver malignancies. Patients and methods: 21 patients with 21 liver malignancies (19 metastases, two primary liver tumors) were treated with interstitial CT-guided brachytherapy applying a {sup 192}Ir source. In all patients, the use of image-guided thermal tumor ablation such as by radiofrequency or laser-induced thermotherapy (LITT) was impeded either by tumor size {>=} 5 cm in seven, adjacent portal or hepatic vein in ten, or adjacent bile duct bifurcation in four patients. Dosimetry was performed using three-dimensional CT data sets acquired after CT-guided positioning of the brachytherapy catheters. Results: the mean tumor diameter was 4.6 cm (2.5-11 cm). The mean minimal tumor dose inside the tumor margin amounted to 17 Gy (12-20 Gy). The proportion of the liver parenchyma exposed to > 5 gy was 18% (5-39%) of total liver parenchyma minus tumor volume. Nausea and vomiting were observed in six patients after brachytherapy (28%). One patient demonstrated obstructive jaundice due to tumor edema after irradiation of a metastasis adjacent to the bile duct bifurcation. We commonly encountered asymptomatic increases of liver enzymes. Local control rates after 6 and 12 months were 87% and 70%, respectively. Conclusion: CT-guided brachytherapy is safe and effective. This technique displays broader indications compared to image-guided thermal ablation by radiofrequency or LITT with respect to tumor size or localization. (orig.) [German] Ziel: Analyse der Sicherheit und Effektivitaet CT-gesteuerter Brachytherapie zur Ablation von Lebermalignomen. Patienten und Methodik: 21 Patienten mit 21 Lebermalignomen (19 Metastasen, zwei primaere Lebermalignome) wurden mit perkutaner, CT-gesteuerter interstitieller Brachytherapie mit {sup 192}Ir behandelt. Alle Patienten wiesen Umstaende auf, die eine bildgefuehrte thermische Ablation mit Radiofrequenz oder laserinduzierter Thermotherapie (LITT) einschraenkten

  1. Combination of 5α-reductase inhibitor with combined androgen blockade (CAB) as a novel cytoreductive regimen before prostate brachytherapy: Ultra-CAB

    OpenAIRE

    Muro, Yusuke; Kosaka, Takeo; Mizuno, Ryuichi; Ohashi, Toshio; Shigematsu, Naoyuki; Oya, Mototsugu

    2015-01-01

    We report a first case of using a 5α-reductase inhibitor (5ARI) and combined androgen blockade (CAB) as a cytoreductive regimen before prostate brachytherapy. Prostate volume reduction with CAB is limited to approximately 40% in most cases, making it difficult to meet anatomical constraints to perform these procedures in cases with large prostate volume. With the added administration of 5ARI, further volume reduction can be expected. Here, we describe this cytoreductive regimen used in a 63 y...

  2. Conformational episcleral brachytherapy in ocular tumors

    International Nuclear Information System (INIS)

    Brachytherapy with an episcleral plate is an alternative treatment for choroid melanomas and retinoblastomas that allows the sight to be saved. The most common techniques use a metal applicator with beta or Co-60 transmitters, which have a standard geometry, require surgical installation of the active devices and do not allow optimized dosimetry. In 1997, the Clinica Alemana in Santiago, Chile, developed a new device based on the one described by J.P. Gerard (1988), with plastic material, personalized and with delayed charge. Three cases have been treated. Two retinoblastomas: 1) Primary treatment in unilateral Rb, R.E. group II in a 9 month old boy, 2) External post radiotherapy rescue in oculus ultimus by bilateral Rb in a 10 year old girl, and 3) Choroid melanoma T3N0M0 in a 77 year old woman. A personalized applicator was prepared in each case depending on the size and location of the tumor. The distribution of the vector catheters was designed following the Paris system standards. The applicator was inserted in the operating room, under general anesthesia by a team of trained ophthalmologists. An X-ray and helichoidal simulation scan were taken with fictitious sources. Previsional dosimetry was undertaken, with evaluation of the dosage to the tumor apex, crystalline lens, sclera and optic nerve. Prolonged activation with low level dosage Ir-192 wires was performed in a protected room. When the programmed dosage was completed, the sources and then the inactive applicator were removed. Dosage: A 40 Gy dose was applied in the retinoblastoma to the tumor apex and 60 Gy to the melanoma, over a 2 to 3 day period. Tolerance was excellent, there were no incidents or acute complications. The retinoblastomas fully regressed in 1 to 2 weeks, with no local relapse or after affects after 2, 4 and 6 months of follow-up. The 3 patients have retained their sight. The development of this technique is feasible and with enough resources, relatively easy to implement. It has

  3. Langzeitergebnisse bei Aderhautmelanom nach 106Ruthenium-Brachytherapie

    OpenAIRE

    Krause, Nona

    2015-01-01

    Introduction: 106Ruthenium-brachytherapy (106Ru-brachytherapy) is an established therapy for small and medium-sized uveal melanomas. The aim of this study was to examine the long-time results in regard to recurrence rate, complication rate, ocular preservation, metastasis rate and survival with malignant uveal and ciliary body melanoma, as well as relevant prognosis factors, subsequent to 106Ru-brachytherapy. Methodology: In this retrospective study of all cases with uveal or with ciliary ...

  4. Prostate cancer brachytherapy; Braquiterapia de cancer de prostata

    Energy Technology Data Exchange (ETDEWEB)

    Abreu, Carlos Eduardo Vita; Silva, Joao L. F. [Hospital Sirio Libanes, Sao Paulo, SP (Brazil). Centro de Oncologia. Dep. de Radioterapia; Srougi, Miguel; Nesrallah, Adriano [Universidade Federal de Sao Paulo (UNIFESP), SP (Brazil). Escola Paulista de Medicina (EPM). Disciplina de Urologia]. E-mail: cevitabr@mandic.com.br

    1999-07-01

    The transperineal brachytherapy with {sup 125}I/Pd{sup 103} seed implantation guided by transurethral ultrasound must be presented as therapeutical option of low urinary morbidity in patients with localized prostate cancer. The combined clinical staging - including Gleason and initial PSA - must be encouraged, for definition of a group of low risk and indication of exclusive brachytherapy. Random prospective studies are necessary in order to define the best role of brachytherapy, surgery and external beam radiation therapy.

  5. Low dose rate Ir-192 interstitial brachytherapy for prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Oki, Yosuke; Dokiya, Takushi; Yorozu, Atsunori; Suzuki, Takayuki; Saito, Shiro; Monma, Tetsuo; Ohki, Takahiro [National Tokyo Medical Center (Japan); Murai, Masaru; Kubo, Atsushi

    2000-04-01

    From December 1997 through January 1999, fifteen prostatic cancer patients were treated with low dose rate Ir-192 interstitial brachytherapy using TRUS and perineal template guidance without external radiotherapy. Up to now, as no apparent side effects were found, the safety of this treatment is suggested. In the future, in order to treat prostatic cancer patients with interstitial brachytherapy using I-125 or Pd-103, more investigation for this low dose rate Ir-192 interstitial brachytherapy is needed. (author)

  6. Reduction of rectal doses by removal of gas in the rectum during vaginal cuff brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Sabater, S.; Sevillano, M.M.; Andres, I.; Berenguer, R. [Complejo Hospitalario Univ. de Albacete (CHUA) (Spain). Dept. of Radiation Oncology; Machin-Hamalainen, S. [C.S. General Ricardos, Madrid (Spain); Mueller, K.; Arenas, M. [Hospital Univ. Sant Joan, Reus (Spain). Dept. of Radiation Oncology

    2013-11-15

    Objective: The goal of this work was to evaluate whether the volume reduction related to removal of gas in the rectum could be translated in lower doses to organs at risk (OAR) during vaginal cuff brachytherapy (VBT). Material and methods: Fourteen pairs of brachytherapy planning CT scans derived from 11 patients were re-segmented and re-planned using the same parameters. The only difference between pairs of CTs was the presence or lack of gas in the rectum. The first CT showed the basal status and the second was carried out after gas removal with a tube. A set of values derived from bladder and rectum dose-volume histograms (DVH) and dose-surface histograms (DSH) were extracted. Moreover the cylinder position related to the patient craniocaudal axis was recorded. Results: Rectum volume decreased significantly from 77.8 {+-} 45 to 55.43 {+-} 17.6 ml (p = 0.0052) after gas removal. Such volume diminution represented a significant reduction on all rectal DVH parameters analyzed except D{sub 25%} and D{sub 50%}. DSH parameter results were similar to previous ones. A nonsignificant increase of the bladder volume was observed and was associated with an increase of the DVH metrics analyzed. Conclusion: Removal of gas pockets is a simple and inexpensive maneuver that decreases rectal dose parameters on VBT, which can be translated as a better therapeutic ratio. It also suggests that other actions directed to empty the rectum could have a similar effect. (orig.)

  7. Combined re-excision and perioperative interstitial brachytherapy for salvage of breast conservation therapy recurrences

    International Nuclear Information System (INIS)

    Purpose: To evaluate local control, survival and cosmetic outcome of combined second lumpectomy and interstitial brachytherapy as salvage treatment for isolated local recurrence of breast cancer after breast conserving therapy. Materials and Methods: Between 1983 and 1996, 32 patients with isolated breast recurrence previously treated by breast conserving therapy, underwent salvage lumpectomy and perioperative brachytherapy. Initial staging and treatment were performed between 1975 and 1994. Median age at diagnosis was 45 years (range 31-67 years), 79% were pre or peri menopausal. Tumors were staged according to the AJCC-system with pathologic findings. Distribution of stage was T1 (n=24), T2 (n=8), in 79% of the patients axillary lymph nodes were negative and all were free of systemic disease. Breast conserving treatment consisted of lumpectomy plus axillary lymph nodes dissection, the mean excised breast tissue volume was 290 cc. All patient received external beam radiation therapy to a dose of 50 Gy/25 fr delivered on breast and nodal areas. Tumor bed was boosted to a total dose of 56 Gy (range 52-66 Gy) by external beam irradiation. Cosmetic outcome after initial therapy was excellent to good in all patients. The mean interval from the initial treatment and first local recurrence was 51 months. The tumor size at recurrence range between 0.2-2.5cm (median 1cm). Recurrence occurs on the boost area of the primary tumor in 13 patients, in other part of the breast in 14 and in the field edge in 5 patients. Treatment of the recurrence consisted of salvage lumpectomy, with a mean excised tissue volume of 51 cc. In all cases perioperative brachytherapy was also performed by introperative plastic tubes positioning. The implant target volume was determined according to surgery findings. Iridium wires were placed into the tubes with a delay of 3 to 4 days. Brachytherapy set up included one (n=20) or two (n=12) planes implants. The mean implant volume determined according

  8. Rapid emission angle selection for rotating-shield brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yunlong [Department of Electrical and Computer Engineering, University of Iowa, 4016 Seamans Center, Iowa City, Iowa 52242 (United States); Flynn, Ryan T.; Kim, Yusung; Bhatia, Sudershan K.; Sun, Wenqing [Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 (United States); Yang Wenjun [Department of Biomedical Engineering, University of Iowa, 1402 Seamans Center for the Engineering Arts and Sciences, Iowa City, Iowa 52242 (United States); Wu Xiaodong [Department of Electrical and Computer Engineering, University of Iowa, 4016 Seamans Center, Iowa City, Iowa 52242 and Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 (United States)

    2013-05-15

    Purpose: The authors present a rapid emission angle selection (REAS) method that enables the efficient selection of the azimuthal shield angle for rotating shield brachytherapy (RSBT). The REAS method produces a Pareto curve from which a potential RSBT user can select a treatment plan that balances the tradeoff between delivery time and tumor dose conformity. Methods: Two cervical cancer patients were considered as test cases for the REAS method. The RSBT source considered was a Xoft Axxent{sup TM} electronic brachytherapy source, partially shielded with 0.5 mm of tungsten, which traveled inside a tandem intrauterine applicator. Three anchor RSBT plans were generated for each case using dose-volume optimization, with azimuthal shield emission angles of 90 Degree-Sign , 180 Degree-Sign , and 270 Degree-Sign . The REAS method converts the anchor plans to treatment plans for all possible emission angles by combining neighboring beamlets to form beamlets for larger emission angles. Treatment plans based on exhaustive dose-volume optimization (ERVO) and exhaustive surface optimization (ERSO) were also generated for both cases. Uniform dwell-time scaling was applied to all plans such that that high-risk clinical target volume D{sub 90} was maximized without violating the D{sub 2cc} tolerances of the rectum, bladder, and sigmoid colon. Results: By choosing three azimuthal emission angles out of 32 potential angles, the REAS method performs about 10 times faster than the ERVO method. By setting D{sub 90} to 85-100 Gy{sub 10}, the delivery times used by REAS generated plans are 21.0% and 19.5% less than exhaustive surface optimized plans used by the two clinical cases. By setting the delivery time budget to 5-25 and 10-30 min/fx, respectively, for two the cases, the D{sub 90} contributions for REAS are improved by 5.8% and 5.1% compared to the ERSO plans. The ranges used in this comparison were selected in order to keep both D{sub 90} and the delivery time within acceptable

  9. Brachytherapy in the treatment of genitourinary rhabdomyosarcoma in children

    International Nuclear Information System (INIS)

    Brachytherapy has been widely used at the Institut Gustave Roussy since 1972 in pediatric oncology. In genitourinary rhabdomyosarcoma, because of its ballistic and physical characteristics, it represents the optimal treatment whenever irradiation is required and brachytherapy feasible. Between 1976 and 1998, 23 children with bladder or prostate rhabdomyosarcoma were treated with a protocol including brachytherapy, with five of them treated with a salvage brachytherapy. All but one brachytherapy was performed during the surgery. Among the 18 brachy-therapies performed as a first-line treatment, eight presented a tumoral evolution: five presented a local evolution, one a local and nodal evolution and two a nodal evolution. Brachytherapy allowed a conservative treatment among ten out of 11 children alive with no evidence of disease. Among the five patients with salvage brachytherapy, two presented a second recurrence. Sequelae were minimal, consisting of one grade I rectitis and one asymptomatic vesical and ureteral reflux. These results are consistent with the published data using more radical treatment. Brachytherapy can represent an alternative to radical surgery, when indications are clearly defined in bladder or prostate rhabdomyosarcoma. This type of treatment can be performed only integrated with other treatments, more particularly with surgery. This approach requires a close cooperation between the different specialists: pediatricians, surgeons and brachy-therapists. (authors)

  10. Implementation of High Dose Rate Brachytherapy in Limited Resource Settings

    International Nuclear Information System (INIS)

    Brachytherapy is an essential component of the curative treatment of cervical cancer, a disease with high incidence in many developing countries The IAEA supports the use of high dose rate brachytherapy for centres with a large number of patients with this disease. HDR brachytherapy is also used in other common cancers such as breast cancer, lung, oesophagus and prostate. This publication provides guidance to radiation oncologists, medical physicists and planners on establishing and operating a high dose rate brachytherapy unit with modern standards and presents the main issues to be addressed for its effective and safe operation

  11. Iodine-125 interstitial brachytherapy for experimental liver cancer

    Institute of Scientific and Technical Information of China (English)

    ZHOU Fei-guo; YAN Jian-jun; HUANG Liang; LIU Cai-feng; ZHANG Xiang-hua; ZHOU Wei-ping; YAN Yi-qun

    2007-01-01

    Objective:To study the effect of iodine-125 interstitial brachytherapy on liver cancer.Methods:Animal model of human liver cancer was established by injecting SMMC-7721 cells cultivated in vitro subcutaneously into the flank of BALB/c nude mice.Nude mice with tumor of 5 mm in diameter were randomly divided into 2 groups(n=10).One iodine-125 seed of apparent activity 0.8 mCi was implanted into the center of tumor in treatment group,whereas an inactive seed was implanted in control group.The other 20 nude mice with tumor reaching 10 mm in diameter were also treated as above.The size of tumor was determined weekly after implantation,and pathological examination and blood routine were taken on the 28th day.Results:Tumor growth was obviously inhibited in treatment group of tumor of 5 mm in diameter,and there was statistically significant difference in tumor volume between treatment and control groups(P<0.01).Around iodine-125 seed,apparent necrosis of tumor was shown in treatment group,accompanied by karyopyknosis and reduced plasma in residual tumor cells microscopically.Tumor growth was not inhibited in either treatment or control group of tumor of 10 mm in diameter.There was no obvious adverse effect except for decreased white blood cells in treatment groups.Conclusion:There is certain effect of iodine-125 interstitial brachytherapy on liver cancer,which is associated with the size of tumor.

  12. Development of prostate voxel models for brachytherapy treatment

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Adriano M.; Reis, Lucas P.; Grynberg, Suely E., E-mail: amsantos@cdtn.b [Center for Development of Nuclear Technology (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    The tools developed recently in the areas of computer graphics and animation movies to computer games allow the creation of new voxel anthropomorphic phantoms with better resolution and thus, more anatomical details. These phantoms can be used in nuclear applications, especially in radiation protection for estimating doses in cases of occupational or accidental radioactive incidents, and in medical and biological applications. For dose estimates, the phantoms are coupled to a Monte Carlo code, which will be responsible for the transport of radiation in this environment. This study aimed to develop a computational tool to estimate the isodose curves in the prostate after brachytherapy seed implants. For this, we have created a model called FANTPROST in the shape of a 48 mm side cube, with a standard prostate inserted in the center of this cube with different distributions of brachytherapy seeds in this volume. The prostate, according to this model, was obtained from the phantom voxels MASH2 developed by Numerical Dosimetry Group, Department of Nuclear Energy - Federal University of Pernambuco. The modeling of the seeds, added to FANTPROST, was done through the use of geometric information of Iodine-125 Amersham 6711 commercial seed. The simulations were performed by the code MCNP5 for spatial distributions containing different amounts of seeds within the FANTPROST. The obtained curves allowed an estimation of the behavior of the maximum dose that decreases with distance, showing that this tool can be used for a more accurate analysis of the effects produced by the presence of such seeds in the prostate and its vicinity. (author)

  13. A comparison of complications between ultrasound-guided prostate brachytherapy and open prostate brachytherapy

    International Nuclear Information System (INIS)

    Purpose: Prostate brachytherapy has reemerged during the 1990s as a treatment for clinically localized prostate cancer. The renewed popularity of prostate brachytherapy is largely due to the use of transrectal ultrasound of the prostate, which allows for more accurate isotope placement within the prostate when compared to the open approach. The present study investigates whether this improved cancer control is at the expense of increased morbidity by comparing the morbidity after transrectal ultrasound-guided prostate brachytherapy to the morbidity after prostate brachytherapy performed via an open approach. Methods and Materials: All men in the Medicare population who underwent prostate brachytherapy in the year 1991 were identified. These men were further stratified into those men who underwent prostate brachytherapy via an open approach and the men who underwent prostate brachytherapy with ultrasound guidance. All subsequent inpatient, outpatient, and physician (Part B) Medicare claims for these men from the years 1991-1993 were then analyzed to determine outcomes. Results: In the year 1991, 2124 men in the Medicare population underwent prostate brachytherapy. An open approach was used in 715 men (33.7%), and ultrasound guidance was used in 1409 men (66.3%). Mean age for both cohorts was 73.7 years with a range of 50.7-92.8 years for the ultrasound group and 60.6-92.1 years for the open group. A surgical procedure for the relief of bladder outlet obstruction was performed in 122 men (8.6%) in the ultrasound group and in 54 men (7.6%) in the open group. An artificial urinary sphincter was placed in 2 men (0.14%) in the ultrasound group and in 2 men (0.28%) in the open group. A penile prosthesis was implanted in 10 men (0.71%) in the ultrasound group and in 4 men (0.56%) in the open group. A diagnosis code for urinary incontinence was carried by 95 men (6.7%) in the ultrasound group and by 45 men (6.3%) in the open group. A diagnosis code for erectile dysfunction

  14. Effect of Bladder Distension on Dose Distribution of Intracavitary Brachytherapy for Cervical Cancer: Three-Dimensional Computed Tomography Plan Evaluation

    International Nuclear Information System (INIS)

    Purpose: To quantify the effect of bladder volume on the dose distribution during intracavitary brachytherapy for cervical cancer. Methods and Patients: The study was performed on 10 women with cervical cancer who underwent brachytherapy treatment. After insertion of the brachytherapy applicator, the patients were transferred to the computed tomography unit. Two sets of computed tomography slices were taken, including the pelvis, one with an empty bladder and one after the bladder was filled with saline. The target and critical organs were delineated by the radiation oncologist and checked by the expert radiologist. The radiotherapy plan was run on the Plato planning system, version 14.1, to determine the dose distributions, dose-volume histograms, and maximal dose points. The doses and organ volumes were compared with the Wilcoxon signed ranks test on a personal computer using the Statistical Package for Social Sciences, version 11.0, statistical program. Results: No significant difference regarding the dose distribution and target volumes between an empty or full bladder was observed. Bladder fullness significantly affected the dose to the small intestine, rectum, and bladder. The median of maximal doses to the small intestine was significantly greater with an empty bladder (493 vs. 284 cGy). Although dosimetry revealed lower doses for larger volumes of bladder, the median maximal dose to the bladder was significantly greater with a full bladder (993 vs. 925 cGy). The rectal doses were also affected by bladder distension. The median maximal dose was significantly lower in the distended bladder (481vs. 628 cGy). Conclusions: Bladder fullness changed the dose distributions to the bladder, rectum, and small intestine. The clinical importance of these changes is not known and an increase in the use of three-dimensional brachytherapy planning will highlight the answer to this question

  15. Observation of hyperfractional integrated intracavitary brachytherapy on efficacy and complications in patients with middle and advanced squamous cell carcinoma of the cervix

    International Nuclear Information System (INIS)

    Objective: To observe and compare the efficacy and complications of hyperfractional integrated intracavitary brachtherapy in middle-advanced squamous-cell carcinoma with the traditional brachytherapy. Methods: In the observed group, 328 patients with cervical cancer received hyperfractional integrated intracavitary after loading therapy between Jan 2004 and Jan 2005 were selected. The dose of point A was 2.5 Gy-3.0 Gy/fraction, 2 fractions per week, and the total dose of reference point A was 49.8 Gy in stage IIb, 52.6 Gy in stage IIIb. In the control group, 331 cases treated with traditional afterloading brachytherapy between Jan 2002 and Dec 2003 were selected. The dose of point A was 5.0∼7.0 Gy/fraction, 1 fraction per week, and the total dose of point A was 50.1 Gy in stage IIb, 53.5 Gy in stage IIIb, In vitro irradiation began at the same time with the intracavitary brachytherapy. The whole pelvic was irradiated with 15 MV X-rays. Results: In the observed group, the recent control rate of stage IIb was 97.2% (104/107), 94.1% (208/221) for stage IIIb. The 3- year survival rate was 80.5% (264/328), and the 5-year survival rate was 68.6% (225/328). The complication rate was 5.2% (17/328) for cystitis, 14.6% (48/328) for proctitis. Out of 331 cases in control group, the recent control rate of stage IIb was 95.4% (103/108), 92.8% (207/223) for stage IIIb. The 3-year survival rate was 75.2% (249/332), the 5-year survival rate was 62.5% (207/331). The complication rate was 13.3% (44/331) for cystitis, and 32.3% (107/331) for proctitis. Conclusions: Compared with combination of traditional brachytherapy and external radiotherapy, combination of hyperfractional integrated brachtherapy therapy and external radiotherapy has no significant improvement for recent control rate and long-term survival rate, but could reduce the complication rates of cystitis and proctitis. (authors)

  16. Dosimetric analysis of 3D image-guided HDR brachytherapy planning for the treatment of cervical cancer: is point A-based dose prescription still valid in image-guided brachytherapy?

    Science.gov (United States)

    Kim, Hayeon; Beriwal, Sushil; Houser, Chris; Huq, M Saiful

    2011-01-01

    The purpose of this study was to analyze the dosimetric outcome of 3D image-guided high-dose-rate (HDR) brachytherapy planning for cervical cancer treatment and compare dose coverage of high-risk clinical target volume (HRCTV) to traditional Point A dose. Thirty-two patients with stage IA2-IIIB cervical cancer were treated using computed tomography/magnetic resonance imaging-based image-guided HDR brachytherapy (IGBT). Brachytherapy dose prescription was 5.0-6.0 Gy per fraction for a total 5 fractions. The HRCTV and organs at risk (OARs) were delineated following the GYN GEC/ESTRO guidelines. Total doses for HRCTV, OARs, Point A, and Point T from external beam radiotherapy and brachytherapy were summated and normalized to a biologically equivalent dose of 2 Gy per fraction (EQD2). The total planned D90 for HRCTV was 80-85 Gy, whereas the dose to 2 mL of bladder, rectum, and sigmoid was limited to 85 Gy, 75 Gy, and 75 Gy, respectively. The mean D90 and its standard deviation for HRCTV was 83.2 ± 4.3 Gy. This is significantly higher (p IGBT in HDR cervical cancer treatment needs advanced concept of evaluation in dosimetry with clinical outcome data about whether this approach improves local control and/or decreases toxicities. PMID:20488690

  17. Development of a Brachytherapy Software Nomogram Equivalent

    International Nuclear Information System (INIS)

    The main objective of this project is developing a software nomogram equivalent. A nomogram is a graph typically comprised of three parallel lines. Each of the lines is graduated for a different variable, often in a non-linear scale. The lines are oriented in such a manner that if a straight line is drawn connecting two of the three variables, the value of the third variable is uniquely determined by the intersection of the connecting line and the graduated line of the third variable. The value of the third variable is determined by reading the graduated scale at the point of intersection. A nomogram as applied in brachytherapy is used for determining the required amount of radioactive material to be implanted in a diseased site. A typical brachytherapy nomogram relates the average dimension of a site, the air kerma strength per source and the number of sources required for yielding a therapeutic radiation dose to the site. More sophisticated nomograms also provide scales for recommending source and needle spacings. For decades the nomogram has been clinically employed as a brachytherapy treatment planning tool. Imaging modalities such as CT and ultrasound ushered in modern image-based brachytherapy treatment planning. These modern imaging techniques dramatically advanced the state of the art of brachytherapy, often obviating the use of nomograms. Although the routine use of nomograms has decreased, there are clinical situations where nomograms still prove useful for brachytherapy treatment planning. Often times the dimensions of a tumor or tumor bed are not known prior to surgery and delineated images of the site are not available. In such situations the tumor dimensions can be measured in the OR and a nomogram applied for rapid treatment planning. By definition a nomogram is a graphical tool, which is fixed and cannot be modified. Differences of opinion and treatment philosophies exist among physicians and institutions. These varying approaches can lead to

  18. A Phase III Randomized Trial of the Timing of Meloxicam With Iodine-125 Prostate Brachytherapy

    International Nuclear Information System (INIS)

    Purpose: Nonsteroidal anti-inflammatory medication is used to reduce prostate edema and urinary symptoms following prostate brachytherapy. We hypothesized that a cyclooxygenase-2 (COX-2) inhibitor regimen started 1 week prior to seed implant might diminish the inflammatory response, thus reducing edema, retention rates, and symptom severity. Methods and Materials: From March 2004 to February 2008, 316 men consented to an institutional review board-approved randomized study of a 4-week course of meloxicam, 7.5 mg orally twice per day, starting either on the day of implant or 1 week prior to implant. Brachytherapy was performed using iodine-125 seeds and was preplanned and performed under transrectal ultrasound (TRUS) and fluoroscopic guidance. Prostate volume obtained by MR imaging at 1 month was compared to baseline prostate volume obtained by TRUS planimetry and expressed as an edema factor. The trial endpoints were prostate edema at 1 month, International Prostate Symptom Score (IPSS) questionnaire results at 1 and 3 months, and any need for catheterization. Results: Results for 300 men were analyzed. Median age was 61 (range, 45-79 years), and median TRUS prostate volume was 35.7 cc (range, 18.1-69.5 cc). Median IPSS at baseline was 5 (range, 0-24) and was 15 at 1 month, 16 at 3 months, and 10 at 6 months. Catheterization was required for 7% of patients (6.2% day 0 arm vs. 7.9% day -7 arm; p = 0.65). The median edema factor at 1 month was 1.02 (range, 0.73-1.7). 1.01 day 0 arm vs. 1.05 day -7 arm. Baseline prostate volume remained the primary predictor of postimplant urinary retention. Conclusions: Starting meloxicam 1 week prior to brachytherapy compared to starting immediately after the procedure did not reduce 1-month edema, improve IPSSs at 1 or 3 months, or reduce the need for catheterization.

  19. Comparison Analysis of MR Images Before and After External Beam Radiotherapy in Brachytherapy

    International Nuclear Information System (INIS)

    To analyze availability of MR images before and after external beam radiotherapy in brachytherapy, we will acquire MR images before and after external beam radiotherapy and compare the change of direction of uterine cavity and analyze the accuracy of applicator insertion. From January 2009 to December 2010, we compared MR images before and after external beam radiotherapy for uterine cervical cancer only with radical purpose treatment. MR images which was acquired after external beam radiotherapy has done with inserted status of CT/MR applicator. As a consequence, the tumor was markedly reduced after external beam radiotherapy. The change of anteflexion of uterus turned into retroflexion of the uterine cavity was 17.1%. The case of wrong insertion of tandem include direction or length was 14.3%. According to MR images taken after external beam radiotherapy, we recognized not only reduced the tumor volume but the marked change of exact direction or length of the uterine cavity. So the confirmation of accurate insertion based on MR images before brachytherapy could be very helpful for optimal brachytherapy treatment planning with reduced applicator insertion errors.

  20. Dosimetric and clinical comparison between MammoSite and interstitial HDR brachytherapy in treatment of early stage breast cancer after conserving surgery

    International Nuclear Information System (INIS)

    Objective: To comparatively study dosimetric evaluation, side effects in early and late stage, and cosmetic outcome between MammoSite and interstitial using high-dose-rate (HDR) brachytherapy accelerated partial breast irradiation (APBI) in early stage breast cancer patient after conserving surgery. Methods: From January 2004 to December 2004, 10 breast cancer cases were treated with HDR 192Ir APBI after Lumpectomy surgery, 6 cases with interstitial brachytherapy, 4 cases with MammoSite. Sources were placed during the operation in all patients, distance from cavity to skin > 5-7 mm in interstitial brachytherapy group, one case is 6.5 mm, 3 cases > 10 mm in MammoSite group. Treatment Target area is 20 mm away from cavity in interstitial brachytherapy group with DHI 0.77, 10 mm away from Balloon margin in MammoSite with DHI 0.73. Results: Follow up 12-24 months while median follow-up was 18 months for the whole group (100%). During the treatment, grade III acute reactions were not seen in both group, grade I or II were seen including: erythema, edema, tenderness and infection. More late toxicity reaction including skin fibrosis, breast tenderness and fat necrosis were observed in interstitial brachytherapy group than that of MammoSite group. Cosmetic outcome evaluation were excellent in 12 months 100% (patient) and 83% (doctor) in interstitial brachytherapy, 100% in MammoSite group, respectively, none recurrence. Conclusions: Interstitial brachytherapy shows more uniformity in dose distribution as well as larger treatment volume, while MammoSite tends to be stable in repeatability and easy in use. Both groups show excellent cosmetic results, with same acute and late reactions. (authors)

  1. SU-E-T-366: Clinical Implementation of MR-Guided Vaginal Cylinder Brachytherapy

    International Nuclear Information System (INIS)

    Purpose: To evaluate the accuracy of MR-based vaginal brachytherapy source localization using an in-house MR-visible marker versus the alignment of an applicator model to MR images. Methods: Three consecutive patients undergoing vaginal HDR brachytherapy with a plastic cylinder were scanned with both CT and MRI (including T1- and T2- weighted images). An MR-visible source localization marker, consisting of a sealed thin catheter filled with either water (for T2 contrast) or Gd-doped water (for T1 contrast), was assembled shortly before scanning. Clinically, the applicator channel was digitized on CT with an x-ray marker. To evaluate the efficacy of MR-based applicator reconstruction, each MR image volume was aligned locally to the CT images based on the region containing the cylinder. Applicator digitization was performed on the MR images using (1) the MR visible marker and (2) alignment of an applicator surface model from Varian's Brachytherapy Planning software to the MRI images. Resulting source positions were compared with the original CT digitization. Results: Although the source path was visualized by the MR marker, the applicator tip proved difficult to identify due to challenges in achieving a watertight seal. This resulted in observed displacements of the catheter tip, at times >1cm. Deviations between the central source positions identified via aligning the applicator surface model to MR and using the xray marker on CT ranged from 0.07 – 0.19 cm and 0.07 – 0.20 cm on T1- weighted and T2-weighted images, respectively. Conclusion: Based on the current study, aligning the applicator model to MRI provides a practical, current approach to perform MR-based brachytherapy planning. Further study is needed to produce catheters with reliably and reproducibly identifiable tips. Attempts are being made to improve catheter seals, as well as to increase the viscosity of the contrast material to decrease fluid mobility inside the catheter

  2. SU-E-T-447: Electronic Brachytherapy (EBT) Treatment of Cervical Cancer - First Clinical Experience

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D; Johnson, M; Thompson, J; Ahmad, S [University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (United States); Chan, L; Hausen, H [Xoft Inc., San Jose, CA (United States)

    2014-06-01

    Purpose: To study the first trial patient in which an electronic brachytherapy (EBT) x-ray source is utilized for treatment of cervical cancer. Methods: During patient treatment, a miniaturized x-ray source was used in combination with a customized titanium tandem and ovoid applicator set. The semi-specialized source was modeled with formalisms outlined by AAMP Task Group 43. Multiple models were used to compensate for variable attenuation conditions as a function of source positions. Varian Brachyvision treatment planning software was utilized on CT data sets for dose calculations prior to treatment delivery. The dose was prescribed to “point A” as defined by American Brachytherapy society. Additional treatments plans were created from those clinically utilized in patient care and were recalculated for an existing Ir-192 source model. Dose volume histograms (DVH) and point dose calculations were compared between the modalities for the clinical condition present in patients treated with EBT. Results: Clinical treatment times, though longer than those typically experienced by Ir-192 users, were manageable. Instantaneous dose rates at personal positions within the treatment vault were lower than those measured during intra operative radiation therapy and breast EBT treatments. Due to lower average photon energy in EBT, dose gradients within the treatment plans were as expected steeper than those observed in Ir-192 based brachytherapy. DVH comparisons between Ir-192 and EBT treatments showed an expected decrease in the integral dose to normal tissues of interest for EBT. In comparing plans created for EBT delivery with those calculated for Ir-192, average dose values for EBT were more than 4%, 11%, and 9% lower at predefined bladder, rectum and “point B” positions, respectively. Conclusion: For the first time, we have demonstrated that the utilizing electronic brachytherapy system for tandem and ovoid based treatment of cancer of the cervix is feasible, and

  3. SU-E-T-447: Electronic Brachytherapy (EBT) Treatment of Cervical Cancer - First Clinical Experience

    International Nuclear Information System (INIS)

    Purpose: To study the first trial patient in which an electronic brachytherapy (EBT) x-ray source is utilized for treatment of cervical cancer. Methods: During patient treatment, a miniaturized x-ray source was used in combination with a customized titanium tandem and ovoid applicator set. The semi-specialized source was modeled with formalisms outlined by AAMP Task Group 43. Multiple models were used to compensate for variable attenuation conditions as a function of source positions. Varian Brachyvision treatment planning software was utilized on CT data sets for dose calculations prior to treatment delivery. The dose was prescribed to “point A” as defined by American Brachytherapy society. Additional treatments plans were created from those clinically utilized in patient care and were recalculated for an existing Ir-192 source model. Dose volume histograms (DVH) and point dose calculations were compared between the modalities for the clinical condition present in patients treated with EBT. Results: Clinical treatment times, though longer than those typically experienced by Ir-192 users, were manageable. Instantaneous dose rates at personal positions within the treatment vault were lower than those measured during intra operative radiation therapy and breast EBT treatments. Due to lower average photon energy in EBT, dose gradients within the treatment plans were as expected steeper than those observed in Ir-192 based brachytherapy. DVH comparisons between Ir-192 and EBT treatments showed an expected decrease in the integral dose to normal tissues of interest for EBT. In comparing plans created for EBT delivery with those calculated for Ir-192, average dose values for EBT were more than 4%, 11%, and 9% lower at predefined bladder, rectum and “point B” positions, respectively. Conclusion: For the first time, we have demonstrated that the utilizing electronic brachytherapy system for tandem and ovoid based treatment of cancer of the cervix is feasible, and

  4. The Effects of Metallic Implants on Electroporation Therapies: Feasibility of Irreversible Electroporation for Brachytherapy Salvage

    International Nuclear Information System (INIS)

    Purpose: Electroporation-based therapies deliver brief electric pulses into a targeted volume to destabilize cellular membranes. Nonthermal irreversible electroporation (IRE) provides focal ablation with effects dependent on the electric field distribution, which changes in heterogeneous environments. It should be determined if highly conductive metallic implants in targeted regions, such as radiotherapy brachytherapy seeds in prostate tissue, will alter treatment outcomes. Theoretical and experimental models determine the impact of prostate brachytherapy seeds on IRE treatments. Materials and Methods: This study delivered IRE pulses in nonanimal, as well as in ex vivo and in vivo tissue, with and in the absence of expired radiotherapy seeds. Electrical current was measured and lesion dimensions were examined macroscopically and with magnetic resonance imaging. Finite-element treatment simulations predicted the effects of brachytherapy seeds in the targeted region on electrical current, electric field, and temperature distributions. Results: There was no significant difference in electrical behavior in tissue containing a grid of expired radiotherapy seeds relative to those without seeds for nonanimal, ex vivo, and in vivo experiments (all p > 0.1). Numerical simulations predict no significant alteration of electric field or thermal effects (all p > 0.1). Histology showed cellular necrosis in the region near the electrodes and seeds within the ablation region; however, there were no seeds beyond the ablation margins. Conclusion: This study suggests that electroporation therapies can be implemented in regions containing small metallic implants without significant changes to electrical and thermal effects relative to use in tissue without the implants. This supports the ability to use IRE as a salvage therapy option for brachytherapy

  5. The Effects of Metallic Implants on Electroporation Therapies: Feasibility of Irreversible Electroporation for Brachytherapy Salvage

    Energy Technology Data Exchange (ETDEWEB)

    Neal, Robert E., E-mail: robert.neal@alfred.org.au [The Alfred Hospital, Radiology Research Unit, Department of Radiology (Australia); Smith, Ryan L., E-mail: ryan.smith@wbrc.org.au [The Alfred Hospital, William Buckland Radiotherapy Centre (Australia); Kavnoudias, Helen, E-mail: H.Kavnoudias@alfred.org.au [The Alfred Hospital, Radiology Research Unit, Department of Radiology (Australia); Rosenfeldt, Franklin, E-mail: F.Rosenfeldt@alfred.org.au; Ou, Ruchong, E-mail: Ruchong.Ou@bakeridi.edu.au [Monash University, Department of Surgery (Australia); Mclean, Catriona A., E-mail: C.Mclean@alfred.org.au [The Alfred Hospital, Department of Anatomical Pathology (Australia); Davalos, Rafael V., E-mail: davalos@vt.edu [Virginia Tech, School of Biomedical Engineering and Sciences (United States); Thomson, Kenneth R., E-mail: K.Thomson@alfred.org.au [The Alfred Hospital, Radiology Research Unit, Department of Radiology (Australia)

    2013-12-15

    Purpose: Electroporation-based therapies deliver brief electric pulses into a targeted volume to destabilize cellular membranes. Nonthermal irreversible electroporation (IRE) provides focal ablation with effects dependent on the electric field distribution, which changes in heterogeneous environments. It should be determined if highly conductive metallic implants in targeted regions, such as radiotherapy brachytherapy seeds in prostate tissue, will alter treatment outcomes. Theoretical and experimental models determine the impact of prostate brachytherapy seeds on IRE treatments. Materials and Methods: This study delivered IRE pulses in nonanimal, as well as in ex vivo and in vivo tissue, with and in the absence of expired radiotherapy seeds. Electrical current was measured and lesion dimensions were examined macroscopically and with magnetic resonance imaging. Finite-element treatment simulations predicted the effects of brachytherapy seeds in the targeted region on electrical current, electric field, and temperature distributions. Results: There was no significant difference in electrical behavior in tissue containing a grid of expired radiotherapy seeds relative to those without seeds for nonanimal, ex vivo, and in vivo experiments (all p > 0.1). Numerical simulations predict no significant alteration of electric field or thermal effects (all p > 0.1). Histology showed cellular necrosis in the region near the electrodes and seeds within the ablation region; however, there were no seeds beyond the ablation margins. Conclusion: This study suggests that electroporation therapies can be implemented in regions containing small metallic implants without significant changes to electrical and thermal effects relative to use in tissue without the implants. This supports the ability to use IRE as a salvage therapy option for brachytherapy.

  6. General problems of the carcinoma of the cervix and presentation of a new circular applicator for the afterloading technique with the selectron

    International Nuclear Information System (INIS)

    During our radiooncologic experience, we have learned the problems caused by insufficient information on the patient and his tumor. Histologic data, stage and a drawing of the extension of the tumor are generally submitted to the radiotherapeutist. This study is intended to remind that some other factors are important for the radiooncologic decision about local and temporal dose distribution, such as tumor size, endometrial extension to the fundus, frequency of metastases and recurrences, different histology/grading, and performed surgical technique/radicality. The vital importance of these factors is explained. A new circular applicator is presented for routine afterloading irradiation with the selectron. The applicator has proved to be useful in practice. The problems of the afterloading technique as against the radium technique are indicated, especially with regard to the dose rate in point A. (orig.)

  7. 10 CFR 35.400 - Use of sources for manual brachytherapy.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Use of sources for manual brachytherapy. 35.400 Section 35.400 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Manual Brachytherapy § 35.400 Use of sources for manual brachytherapy. A licensee shall use only brachytherapy sources...

  8. Radiochromic dye film studies for brachytherapy applications.

    Science.gov (United States)

    Martínez-Dávalos, A; Rodríguez-Villafuerte, M; Díaz-Perches, R; Arzamendi-Pérez, S

    2002-01-01

    Commercial radiochromic dye films have been used in recent years to quantify absorbed dose in several medical applications. In this study we present the characterisation of the GafChromic MD-55-2 dye film, a double sensitive layer film suitable for photon irradiation in brachytherapy applications. Dose measurements were carried out with a low dose rate 137Cs brachytherapy source, which produces very steep dose gradients in its vicinity, and therefore requires the capability of producing high spatial resolution isodose curves. Quantification of the dose rate in water per unit air kerma strength was obtained using a high-resolution transmission commercial scanner (Agfa DuoScan T1200 with the capability of digitising up to 600 x 1200 pixels per inch using 36 bits per pixel, together with optical density measurements. The Monte Carlo calculations and experimental measurements compared well in the 0-50 Gy dose interval used in this study. PMID:12382798

  9. Radiochromic dye film studies for brachytherapy applications

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Davalos, A.; Rodriguez-Villafuerte, M.; Diaz-Perches, R.; Arzamendi-Perez, S

    2002-07-01

    Commercial radiochromic dye films have been used in recent years to quantify absorbed dose in several medical applications. In this study we present the characterisation of the GafChromic MD-55-2 dye film, a double sensitive layer film suitable for photon irradiation in brachytherapy applications. Dose measurements were carried out with a low dose rate {sup 137}Cs brachytherapy source, which produces very steep dose gradients in its vicinity, and therefore requires the capability of producing high spatial resolution isodose curves. Quantification of the dose rate in water per unit air kerma strength was obtained using a high-resolution transmission commercial scanner (Agfa DuoScan T1200) with the capability of digitising up to 600 x 1200 pixels per inch using 36 bits per pixel, together with optical density measurements. The Monte Carlo calculations and experimental measurements compared well in the 0-50 Gy dose interval used in this study. (author)

  10. Radiochromic dye film studies for brachytherapy applications

    International Nuclear Information System (INIS)

    Commercial radiochromic dye films have been used in recent years to quantify absorbed dose in several medical applications. In this study we present the characterisation of the GafChromic MD-55-2 dye film, a double sensitive layer film suitable for photon irradiation in brachytherapy applications. Dose measurements were carried out with a low dose rate 137Cs brachytherapy source, which produces very steep dose gradients in its vicinity, and therefore requires the capability of producing high spatial resolution isodose curves. Quantification of the dose rate in water per unit air kerma strength was obtained using a high-resolution transmission commercial scanner (Agfa DuoScan T1200) with the capability of digitising up to 600 x 1200 pixels per inch using 36 bits per pixel, together with optical density measurements. The Monte Carlo calculations and experimental measurements compared well in the 0-50 Gy dose interval used in this study. (author)

  11. The evolution of brachytherapy treatment planning

    International Nuclear Information System (INIS)

    Brachytherapy is a mature treatment modality that has benefited from technological advances. Treatment planning has advanced from simple lookup tables to complex, computer-based dose-calculation algorithms. The current approach is based on the AAPM TG-43 formalism with recent advances in acquiring single-source dose distributions. However, this formalism has clinically relevant limitations for calculating patient dose. Dose-calculation algorithms are being developed based on Monte Carlo methods, collapsed cone, and solving the linear Boltzmann transport equation. In addition to improved dose-calculation tools, planning systems and brachytherapy treatment planning will account for material heterogeneities, scatter conditions, radiobiology, and image guidance. The AAPM, ESTRO, and other professional societies are working to coordinate clinical integration of these advancements. This Vision 20/20 article provides insight into these endeavors.

  12. The evolution of brachytherapy treatment planning

    Energy Technology Data Exchange (ETDEWEB)

    Rivard, Mark J.; Venselaar, Jack L. M.; Beaulieu, Luc [Department of Radiation Oncology, Tufts University School of Medicine, Boston, Massachusetts 02111 (United States); Department of Medical Physics, Instituut Verbeeten, P.O. Box 90120, 5000 LA Tilburg (Netherlands); Departement de Radio-Oncologie et Centre de Recherche en Cancerologie de l' Universite Laval, Centre Hospitalier Universitaire de Quebec, 11 Cote du Palais, Quebec, Quebec G1R 2J6 (Canada) and Departement de Physique, de Genie Physique et d' Optique, Universite Laval, Quebec, Quebec G1K 7P4 (Canada)

    2009-06-15

    Brachytherapy is a mature treatment modality that has benefited from technological advances. Treatment planning has advanced from simple lookup tables to complex, computer-based dose-calculation algorithms. The current approach is based on the AAPM TG-43 formalism with recent advances in acquiring single-source dose distributions. However, this formalism has clinically relevant limitations for calculating patient dose. Dose-calculation algorithms are being developed based on Monte Carlo methods, collapsed cone, and solving the linear Boltzmann transport equation. In addition to improved dose-calculation tools, planning systems and brachytherapy treatment planning will account for material heterogeneities, scatter conditions, radiobiology, and image guidance. The AAPM, ESTRO, and other professional societies are working to coordinate clinical integration of these advancements. This Vision 20/20 article provides insight into these endeavors.

  13. Sexual function after permanent prostate brachytherapy

    International Nuclear Information System (INIS)

    Purpose: To determine the incidence of potency preservation following permanent prostate brachytherapy and to evaluate the effect of multiple clinical and treatment parameters on penile erectile function. Materials and Methods: 425 patients underwent permanent prostate brachytherapy from April 1995 to October 1999. 209 patients who were potent prior to brachytherapy and currently not receiving hormonal manipulation were mailed an International Index of Erectile Function (IIEF) questionnaire with a pre-addressed stamped envelope. 180 patients completed and returned the questionnaire. Median patient follow-up was 39 months (range 18-74 months). Pre-implant erectile function was assigned using a three-tiered scoring system (2 = erections always or nearly always sufficient for vaginal penetration; 1 = erections sufficient for vaginal penetration but considered suboptimal; 0 = the inability to obtain erections and/or erections inadequate for vaginal penetration). Post-implant potency was defined as an IIEF score >11. Clinical parameters evaluated for sexual function included patient age, clinical T stage, elapsed time since implantation, hypertension, diabetes mellitus, and tobacco consumption. Evaluated treatment parameters included the utilization of neoadjuvant hormonal manipulation and the choice of isotope. The efficacy of sildenafil citrate in brachytherapy induced erectile dysfunction (ED) was also evaluated. Results: A pre-treatment erectile function score of 2 and 1 were assigned to 126 and 54 patients respectively. With 6 year follow up, 39% of patients maintained potency following prostate brachytherapy with a plateau on the curve. Post-implant preservation of potency (IIEF>11) correlated with pre-implant erectile function (50% versus 14% for pre-implant scores of 2 and 1 respectively, p≤0.0001), patient age (56%, 38%, and 23% for patients <60 years of age, 60-69 years of age, and ≥70 years of age respectively, p=0.012) and a history of diabetes mellitus

  14. Monte Carlo Dosimetry of the 60Co BEBIG High Dose Rate for Brachytherapy.

    Directory of Open Access Journals (Sweden)

    Luciana Tourinho Campos

    Full Text Available The use of high-dose-rate brachytherapy is currently a widespread practice worldwide. The most common isotope source is 192Ir, but 60Co is also becoming available for HDR. One of main advantages of 60Co compared to 192Ir is the economic and practical benefit because of its longer half-live, which is 5.27 years. Recently, Eckert & Ziegler BEBIG, Germany, introduced a new afterloading brachytherapy machine (MultiSource®; it has the option to use either the 60Co or 192Ir HDR source. The source for the Monte Carlo calculations is the new 60Co source (model Co0.A86, which is referred to as the new BEBIG 60Co HDR source and is a modified version of the 60Co source (model GK60M21, which is also from BEBIG.The purpose of this work is to obtain the dosimetry parameters in accordance with the AAPM TG-43U1 formalism with Monte Carlo calculations regarding the BEBIG 60Co high-dose-rate brachytherapy to investigate the required treatment-planning parameters. The geometric design and material details of the source was provided by the manufacturer and was used to define the Monte Carlo geometry. To validate the source geometry, a few dosimetry parameters had to be calculated according to the AAPM TG-43U1 formalism. The dosimetry studies included the calculation of the air kerma strength Sk, collision kerma in water along the transverse axis with an unbounded phantom, dose rate constant and radial dose function. The Monte Carlo code system that was used was EGSnrc with a new cavity code, which is a part of EGS++ that allows calculating the radial dose function around the source. The spectrum to simulate 60Co was composed of two photon energies, 1.17 and 1.33 MeV. Only the gamma part of the spectrum was used; the contribution of the electrons to the dose is negligible because of the full absorption by the stainless-steel wall around the metallic 60Co. The XCOM photon cross-section library was used in subsequent simulations, and the photoelectric effect, pair

  15. Evolution of dose distribution calculations in brachytherapy

    International Nuclear Information System (INIS)

    In this report the evolution of dose distribution calculations is revised in detail, considering the simplest case (a point source in free space) and the more complex situation of a real encapsulated line source embedded in a scattering medium. The most recent formalism to perform the dosimetry of interstitial brachytherapy sources is presented, where measured or measurable dose rates from actual sources in a tissue equivalent phantom are required as input data

  16. Brachytherapy in treatment of vaginal cancer

    OpenAIRE

    A. D. Kaprin; V. N. Galkin; S. A. Ivanov; V. A. Solodkiy; V. A. Titova

    2016-01-01

    Characteristics of diagnosis and treatment of different types of primary vaginal cancer are highlighted, the role and place of brachytherapy as independent method or combined treatment modality for this pathology is shown in the review. Epidemiological data on incidence of vaginal cancer in Russia are represented, presumptive mechanisms for development of the disease, risk factors, histological types, features of the course, clinical presentation, diagnostic algorithm are described. Treatment...

  17. Photoacoustic imaging of prostate brachytherapy seeds

    OpenAIRE

    Su, Jimmy L.; Bouchard, Richard R.; Karpiouk, Andrei B.; Hazle, John D.; Emelianov, Stanislav Y.

    2011-01-01

    Brachytherapy seed therapy is an increasingly common way to treat prostate cancer through localized radiation. The current standard of care relies on transrectal ultrasound (TRUS) for imaging guidance during the seed placement procedure. As visualization of individual metallic seeds tends to be difficult or inaccurate under TRUS guidance, guide needles are generally tracked to infer seed placement. In an effort to improve seed visualization and placement accuracy, the use of photoacoustic (PA...

  18. Erectile Function Durability Following Permanent Prostate Brachytherapy

    International Nuclear Information System (INIS)

    Purpose: To evaluate long-term changes in erectile function following prostate brachytherapy. Methods and Materials: This study included 226 patients with prostate cancer and preimplant erectile function assessed by the International Index of Erectile Function-6 (IIEF-6) who underwent brachytherapy in two prospective randomized trials between February 2001 and January 2003. Median follow-up was 6.4 years. Pre- and postbrachytherapy potency was defined as IIEF-6 ≥ 13 without pharmacologic or mechanical support. The relationship among clinical, treatment, and dosimetric parameters and erectile function was examined. Results: The 7-year actuarial rate of potency preservation was 55.6% with median postimplant IIEF of 22 in potent patients. Potent patients were statistically younger (p = 0.014), had a higher preimplant IIEF (p < 0.001), were less likely to be diabetic (p = 0.002), and were more likely to report nocturnal erections (p = 0.008). Potency preservation in men with baseline IIEF scores of 29-30, 24-28, 18-23, and 13-17 were 75.5% vs. 73.6%, 51.7% vs. 44.8%, 48.0% vs. 40.0%, and 23.5% vs. 23.5% in 2004 vs. 2008. In multivariate Cox regression analysis, preimplant IIEF, hypertension, diabetes, prostate size, and brachytherapy dose to proximal penis strongly predicted for potency preservation. Impact of proximal penile dose was most pronounced for men with IIEF of 18-23 and aged 60-69. A significant minority of men who developed postimplant impotence ultimately regained erectile function. Conclusion: Potency preservation and median IIEF scores following brachytherapy are durable. Thoughtful dose sparing of proximal penile structures and early penile rehabilitation may further improve these results.

  19. Magnetite nanoparticles for nonradionuclide brachytherapy1

    OpenAIRE

    Safronov, Victor; Sozontov, Evgeny; Polikarpov, Mikhail

    2015-01-01

    Magnetite nanoparticles possess several properties that can make them useful for targeted delivery of radiation to tumors for the purpose of brachytherapy. Such particles are biodegradable and magnetic and can emit secondary radiation when irradiated by an external source. In this work, the dose distribution around a magnetite particle of 10 nm diameter being irradiated by monochromatic X-rays with energies in the range 4–60 keV is calculated.

  20. Cellular Hypertrophy and Increased Susceptibility to Spontaneous Calcium-Release of Rat Left Atrial Myocytes Due to Elevated Afterload

    Science.gov (United States)

    Zhang, Haifei; Cannell, Mark B.; Kim, Shang Jin; Watson, Judy J.; Norman, Ruth; Calaghan, Sarah C.; Orchard, Clive H.; James, Andrew F.

    2015-01-01

    Atrial remodeling due to elevated arterial pressure predisposes the heart to atrial fibrillation (AF). Although abnormal sarcoplasmic reticulum (SR) function has been associated with AF, there is little information on the effects of elevated afterload on atrial Ca2+-handling. We investigated the effects of ascending aortic banding (AoB) on Ca2+-handling in rat isolated atrial myocytes in comparison to age-matched sham-operated animals (Sham). Myocytes were either labelled for ryanodine receptor (RyR) or loaded with fluo-3-AM and imaged by confocal microscopy. AoB myocytes were hypertrophied in comparison to Sham controls (P<0.0001). RyR labeling was localized to the z-lines and to the cell edge. There were no differences between AoB and Sham in the intensity or pattern of RyR-staining. In both AoB and Sham, electrical stimulation evoked robust SR Ca2+-release at the cell edge whereas Ca2+ transients at the cell center were much smaller. Western blotting showed a decreased L-type Ca channel expression but no significant changes in RyR or RyR phosphorylation or in expression of Na+/Ca2+ exchanger, SR Ca2+ ATPase or phospholamban. Mathematical modeling indicated that [Ca2+]i transients at the cell center were accounted for by simple centripetal diffusion of Ca2+ released at the cell edge. In contrast, caffeine (10 mM) induced Ca2+ release was uniform across the cell. The caffeine-induced transient was smaller in AoB than in Sham, suggesting a reduced SR Ca2+-load in hypertrophied cells. There were no significant differences between AoB and Sham cells in the rate of Ca2+ extrusion during recovery of electrically-stimulated or caffeine-induced transients. The incidence and frequency of spontaneous Ca2+-transients following rapid-pacing (4 Hz) was greater in AoB than in Sham myocytes. In conclusion, elevated afterload causes cellular hypertrophy and remodeling of atrial SR Ca2+-release. PMID:26713852

  1. Dosimetry in high dose rate endoluminal brachytherapy

    International Nuclear Information System (INIS)

    In endoluminal brachytherapy for the tracheobronchial tree, esophagus, and bile duct, a reference point for dose calculation has been often settled at 1 cm outside from the middle of source travel path. In the current study, a change in the ratio of the reference point dose on the convex to concave side (Dq/Dp) was calculated, provided the source travel path bends as is the case in most endoluminal brachytherapies. Point source was presumed to move stepwise at 1 cm interval from 4 to 13 locations. Retention time at each location was calculated by personal computer so as to deliver equal dose at 1 cm from the linear travel path. With the retention time remaining constant, the change of Dq/Dp was assessed by bending the source travel path. Results indicated that the length of the source travel path and radius of its curve influenced the pattern of change in Dq/Dp. Therefore, it was concluded that the difference in reference dose on the convex and concave side of the curved path is not negligible under certain conditions in endoluminal brachytherapy. In order to maintain the ratio more than 0.9, relatively greater radius was required when the source travel path was decreased. (author)

  2. Paraspinal tumors: Techniques and results of brachytherapy

    International Nuclear Information System (INIS)

    Because of their proximity to nerve roots and the spinal cord, it is frequently difficult to achieve complete resection of paraspinal tumors. We have used brachytherapy in an attempt to prevent local recurrence and its associated neurological sequelae. This report analyzes our experience with 35 patients to determine the feasibility, optimal techniques, and efficacy of this approach. The tumor types were non small-cell lung cancer (18), sarcomas (9), and other tumor types (8). Temporary, single plane implants using Ir-192 (median minimum peripheral dose 3000 cGy) were used in 21 patients, and permanent I-125 implants were used in 14 cases (median matched peripheral dose 12,500 cGy). Local control was achieved in 51% (18/35). However, local control was poor when lung cancers were implanted and in cases where the dura was exposed. Radiation myelitis did not occur despite the combined effects of previous external beam radiotherapy (N = 21) and brachytherapy. Our experience demonstrates that combined surgery and paraspinal brachytherapy can be performed with acceptable toxicity and is reasonably effective in preventing local relapse and its neurologic sequelae, particularly for tumors other than lung cancers

  3. Brachytherapy treatment with high dose rate

    International Nuclear Information System (INIS)

    Retrospectively analyze results and prognostic factors of cervical cancer patients treated with radio concomitant cisplatin-based chemotherapy, radiation therapy combined modality. Methods: From January 2003 to December 2007, 198 patients with invasive cervical cancer were treated at the Oncology Department of Hospital Robau Celestino Hernandez (brachytherapy performed at INOR). The most common age group was 31 to 40 years. The histology in squamous cell carcinoma accounted for 84.3% of cases. The treatment consisted of external pelvic irradiation and vaginal brachytherapy, high dose rate. Concomitant chemotherapy consisted of cisplatin 40 mg/m2 weekly with a maximum of 70 mg for 5 weeks. Results: 66.2% of patients completed 5 cycles of chemotherapy. The median overall survival was 39 months, overall survival, disease-free survival and survival free of locoregional recurrence at 5 years of 78%, 76% and 78.6% respectively .. We found that clinical stage, histological type (adenocarcinoma worst outcome) were statistically related to level of response. Conclusions: Treatment with external pelvic radiation, brachytherapy and concurrent weekly cisplatin in patients with stage IIIB cervical cancer is feasible in the Chilean public health system, well tolerated and results comparable to international literature. (Author)

  4. Radioactive seed immobilization techniques for interstitial brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Yan, K.; Podder, T.; Buzurovic, I.; Hu, Y.; Dicker, A.; Valicenti, R.; Yu, Y. [Thomas Jefferson University, Department of Radiation Oncology, Philadelphia, PA (United States); Messing, E. [University of Rochester, Departments of Urology and Surgery, Rochester, NY (United States); Rubens, D. [University of Rochester, Departments of Imaging Science and Surgery, Rochester, NY (United States); Sarkar, N. [Vanderbilt University, Department of Mechanical Engineering, Nashville, TN (United States); Ng, W. [Nangyang Technical University, School of Mechanical and Aerospace Engineering, Singapore (Singapore)

    2008-06-15

    In prostate brachytherapy, seeds can detach from their deposited sites and move locally in the pelvis or migrate to distant sites including the pulmonary and cardiac regions. Undesirable consequences of seed migration include inadequate dose coverage of the prostate and tissue irradiation effects at the site of migration. Thus, it is clinically important to develop seed immobilization techniques. We first analyze the possible causes for seed movement, and propose three potential techniques for seed immobilization: (1) surgical glue, (2) laser coagulation and (3) diathermy coagulation. The feasibility of each method is explored. Experiments were carried out using fresh bovine livers to investigate the efficacy of seed immobilization using surgical glue. Results have shown that the surgical glue can effectively immobilize the seeds. Evaluation of the radiation dose distribution revealed that the non-immobilized seed movement would change the planned isodose distribution considerably; while by using surgical glue method to immobilize the seeds, the changes were negligible. Prostate brachytherapy seed immobilization is necessary and three alternative mechanisms are promising for addressing this issue. Experiments for exploring the efficacy of the other two proposed methods are ongoing. Devices compatible with the brachytherapy procedure will be designed in future. (orig.)

  5. Real-time optimized intraoperative dosimetry for prostate brachytherapy: A pilot study

    International Nuclear Information System (INIS)

    Purpose: To assess the feasibility of real-time intraoperative treatment planning for permanent prostate brachytherapy analyzing the impact on operative time and adequacy of postimplant dosimetry. Methods and Materials: Seventeen consecutive patients undergoing permanent brachytherapy for prostate cancer had real-time intraoperative computer-based and optimized treatment planning. The first 8 patients were implanted using a plan generated before the surgery and served to assure the team qualitatively that this could be performed without greatly increasing intraoperative time. They served as control group for expected achieved dosimetry results reviewing the D90, V100, V150 parameters from the dose-volume histograms. The next 9 patients were implanted according to the real-time plan. The times needed to carry out various steps of the procedure were recorded. The achieved dosimetry was then compared to the control group to assure that accuracy was unchanged. Results: The median operative time for patients undergoing intraoperative dosimetry was 57 min. Of this, 21 min were devoted to anesthesia and nursing functions. Postoperative dosimetry showed a median achieved V100 (volume of prostate receiving 100% of prescribed dose) of 97% for the control group. For the real-time dosimetry group, the median V100 was similar at 94%. The V150 (volume receiving 150%) is 49% for both groups. The D90 (dose received by 90% of the target) was normalized for easy comparison and was consistently slightly greater than the prescription dose. Conclusion: Treatment planning for permanent brachytherapy of prostate cancer has historically been performed as a computer-generated and optimized plan run weeks in advance of an implant, or according to a set pattern using an intraoperative nomogram. These data show that planning can now be optimized intraoperatively using widely available software without compromising the operative time or implant quality.

  6. Iodine-125 thin seeds decrease prostate swelling during transperineal interstitial permanent prostate brachytherapy

    International Nuclear Information System (INIS)

    Prostate swelling following seed implantation is a well-recognised phenomenon. The purpose of this intervention was to assess whether using thinner seeds reduces post-implant swelling with permanent prostate brachytherapy. Eighteen consecutive patients eligible for prostate seed brachytherapy underwent seed implantation using iodine-125 (I-125) thin seeds. Operative time, dosimetry, prostate swelling and toxicity were assessed and compared with standard I-125 stranded seed controls, sourced from the department's brachytherapy database. A learning curve was noted with the thin seeds in terms of greater bending and deviation of needles from their intended path. This translated into significantly longer total operative time (88 vs 103 minutes; P=0.009, 95% confidence interval (CI) 4.1-24.3) and time per needle insertion (2.6 vs 3.7 minutes; P<0.001, 95% CI 0.5-1.3) for the thin seeds. Day 30 prostate volumes were significantly smaller in the thin seed group compared with standard seeds (40.9cc vs 46.8cc; P=0.001, 95% CI 1.5-5.6). The ratio of preoperative transrectal ultrasound to day 30 post-implant CT volume was also smaller in the thin seed group (1.2±0.1 for standard seeds vs 1.1±0.1 for thin seeds). Post-implant dosimetric parameters were comparable for both groups. No significant differences were seen in acute urinary morbidity or quality of life between the two groups. I-125 thin seeds are associated with an initial learning curve, with longer operative time, even for experienced brachytherapists. The significant reduction in day 30 prostate volumes with the thin seeds has useful implications in terms of optimising dose coverage to the prostate in the early period post-implantation, as well as improving the accuracy of post-implant dosimetric assessments.

  7. Microdosimetric evaluation of relative biological effectiveness for 103PD, 125I, 241AM, and 192IR brachytherapy sources

    International Nuclear Information System (INIS)

    Purpose: To determine the microdosimetric-derived relative biological effectiveness (RBE) of 103Pd, 125I, 241Am, and 192Ir brachytherapy sources at low doses and/or low dose rates. Methods and Materials: The Theory of Dual Radiation Action can be used to predict expected RBE values based on the spatial distribution of energy deposition at microscopic levels from these sources. Single-event lineal energy spectra for these isotopes have been obtained both experimentally and theoretically. A grid-defined wall-less proportional counter was used to measure the lineal energy distributions. Unlike conventional Rossi proportional counters, the counter used in these measurements has a conducting nylon fiber as the central collecting anode and has no metal parts. Thus, the Z-dependence of the photoelectric effect is eliminated as a source of measurement error. Single-event spectra for these brachytherapy sources have been also calculated by: (a) the Monte Carlo code MCNP to generate the electron slowing down spectrum, (b) transport of monoenergetic electron tracks, event by event, with our Monte Carlo code DELTA, (c) using the concept of associated volume to obtain the lineal energy distribution f(y) for each monoenergetic electron, and (d) obtaining the composite lineal energy spectrum for a given brachytherapy source based on the electron spectrum calculated at step (a). Results: Relative to 60Co, the RBE values obtained from this study are: 2.3 for 103Pd, 2.1 for 125I, 2.1 for 241Am, and 1.3 for 192Ir. Conclusions: These values are consistent with available data from in vitro cell survival experiments. We suggest that, at least for these brachytherapy sources, microdosimetry may be used as a credible alternative to time-consuming (and often uncertain) radiobiological experiments to obtain information on radition quality and make reliable predictions of RBE in low dose rate brachytherapy

  8. Sci—Fri PM: Topics — 08: The Role and Benefits of Electromagnetic Needle-Tracking Technologies in Brachytherapy

    International Nuclear Information System (INIS)

    In modern brachytherapy, application of large doses of ionizing radiation in a limited number of fractions is frequent. Furthermore, as with any surgical procedures, brachytherapy is subject to learning curve effects. In this context, there could be advantages of integrating real-time tracking of needles/catheters to existing protocols given the recent prominent advances in tracking technologies. In this work, we review the use of an electromagnetic tracking system (EMTS) based on the second generation Aurora® Planar Field Generator (Northern Digital Inc) and custom design needles (Philips Healthcare) for brachytherapy applications. The position and orientation information is obtained from 5 degrees of freedom sensors. Basic system performance characterization is performed in well-controlled conditions to establish accuracy and reproducibility as well as potential interference from standard brachytherapy equipment. The results show that sensor locations can be tracked to within 0.04mm (la) when located within 26cm of the generator. Orientation accuracy of the needle remained within ±1° in the same region, but rose quickly at larger distances. The errors on position and orientation strongly dependent the sensor position in the characterization volume (500×500×500mm3). The presence of an ultrasound probe was shown to have negligible effects on tracking accuracy. The use of EMTS for automatic catheter/applicator reconstruction was also explored. Reconstruction time was less than 10 sec/channel and tips identification was within 0.69±0.29mm of the reference values. Finally, we demonstrate that hollow needle designs with special EM adaptation also allow for real-time seed drop position estimation. In phantom experiments showed that drop positions were on average within 1.6±0.9mm of the reference position measured from μCT. Altogether, EMTS offer promising benefits in a wide range of brachytherapy applications

  9. A comparison of ICRU point doses and volumetric doses of organs at risk (OARs) in brachytherapy for cervical cancer

    International Nuclear Information System (INIS)

    In brachytherapy for cervix cancer, doses to organs at risk (OARs) are traditionally calculated using the ICRU-38 point doses to rectum and bladder. Three-dimensional image-guided brachytherapy allows assessment of OAR dose with dose volume histograms (DVHs). The purpose of this study was to analyse the correlation between DVHs and ICRU point doses. Using the PLATO™ planning system, the bladder, rectum and sigmoid were retrospectively contoured on 62 CT datasets for 20 patients treated with definitive radiotherapy. The median external beam radiotherapy dose was 45 Gy. Brachytherapy was delivered using a CT-MRI compatible tandem and ovoids to a median dose of 24 Gy in three fractions. DVHs were calculated, and the minimum dose to 2 cc of tissue receiving the highest dose (D2cc) was recorded and compared with the ICRU point doses (DICRU). The mean rectal DICRU was 4.01 Gy compared with D2cc of 4.28 Gy. The mean bladder DICRU was 6.74 Gy compared with D2cc of 8.65 Gy. The mean sigmoid D2cc was 4.58 Gy. The mean dose ratios (D2cc/DICRU) were 1.08 for rectum and 1.39 for bladder. DICRU correlated with D2cc for rectum (r = 0.76, P = 0.001) and for bladder (r = 0.78, P = 0.01). OAR doses assessed by DVH criteria were higher than ICRU point doses. The significant correlation between D2cc and DICRU has allowed us to set DVH dose constraints for CT-based brachytherapy and thus begin the transition from two-dimensional to three-dimensional image-guided brachytherapy planning.

  10. Sci—Fri PM: Topics — 08: The Role and Benefits of Electromagnetic Needle-Tracking Technologies in Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Beaulieu, L.; Racine, E.; Boutaleb, S.; Filion, O. [Département de Radio-Oncologie et Centre de Recherche du CHU de Québec, CHU de Québec, Québec (Québec), and Département de Physique, de Génie Physique et d' Optique et Centre de recherche en sur le Cancer, Université Laval, Québec (Québec) (Canada); Poulin, E.; Hautvast, G. [Biomedical Systems, Philips Group Innovation, High Tech Campus 34 (HTC 34), Eindhoven (Netherlands); Binnekamp, D. [Integrated Clinical Solutions and Marketing, Philips Healthcare, Veenpluis 4-6, Best (Netherlands)

    2014-08-15

    In modern brachytherapy, application of large doses of ionizing radiation in a limited number of fractions is frequent. Furthermore, as with any surgical procedures, brachytherapy is subject to learning curve effects. In this context, there could be advantages of integrating real-time tracking of needles/catheters to existing protocols given the recent prominent advances in tracking technologies. In this work, we review the use of an electromagnetic tracking system (EMTS) based on the second generation Aurora® Planar Field Generator (Northern Digital Inc) and custom design needles (Philips Healthcare) for brachytherapy applications. The position and orientation information is obtained from 5 degrees of freedom sensors. Basic system performance characterization is performed in well-controlled conditions to establish accuracy and reproducibility as well as potential interference from standard brachytherapy equipment. The results show that sensor locations can be tracked to within 0.04mm (la) when located within 26cm of the generator. Orientation accuracy of the needle remained within ±1° in the same region, but rose quickly at larger distances. The errors on position and orientation strongly dependent the sensor position in the characterization volume (500×500×500mm{sup 3}). The presence of an ultrasound probe was shown to have negligible effects on tracking accuracy. The use of EMTS for automatic catheter/applicator reconstruction was also explored. Reconstruction time was less than 10 sec/channel and tips identification was within 0.69±0.29mm of the reference values. Finally, we demonstrate that hollow needle designs with special EM adaptation also allow for real-time seed drop position estimation. In phantom experiments showed that drop positions were on average within 1.6±0.9mm of the reference position measured from μCT. Altogether, EMTS offer promising benefits in a wide range of brachytherapy applications.

  11. Risk factors for acute urinary retention requiring temporary intermittent catheterization after prostate brachytherapy: a prospective study

    International Nuclear Information System (INIS)

    Purpose: We prospectively investigated prognostic factors for men undergoing transperineal radioactive seed implantation for prostate cancer at the University of Washington. Methods and Materials: Between February and April, 1998, 62 consecutive unselected patients were prospectively followed after brachytherapy for early-stage prostate adenocarcinoma. Pretreatment variables included age, American Urological Association (AUA) score, uroflowimetry, and prostate volume by ultrasound. Nonrandomized variables included hormonal therapy, seed type, and use of pelvic radiotherapy. Patients were contacted by phone at one week postoperatively and at one-month intervals thereafter. Follow-up continued until all patients provided the date of last catheterization. Results: Urinary retention rate at one week was 34% (21 of 63 patients). At one month, 29%; at three months, 18%; and at six months, 10%. Preoperative flow rate and post-void residual did not predict for retention (p=.48 and p=.58). Use of alpha blockers, hormonal therapy, type of seed (103Pd or 1251), or external beam radiotherapy had no impact on risk of retention at any followup point. Preimplant volume and AUA score predicted for retention on univariate analysis, but on multivariate analysis only postimplant volume remained significant (p=.02) for predicting retention risk and duration. Conclusion: Patients with large prostate size (>36 g) and higher AUA score (>10) appear to be at greater risk of risk of retention as well as duration of retention as defined in our study. Further investigation will be needed to clarify the risk of urinary retention for men undergoing brachytherapy

  12. Dosimetry measurements at close range to high dose-rate brachytherapy for endovascular irradiation

    International Nuclear Information System (INIS)

    Purpose/Objective: Transluminal angioplasty in peripheral as well as coronary arteries has been an important treatment approach for arterial occlusive diseases. However, the major limitation seems to be that more than 40% of the treated arteries undergo restenosis or reocclusion within the first year. There have been some reports that endovascular brachytherapy may be useful to prevent arterial restenosis. According to the recently organized randomized study, the dose will be prescribed at the depth of one-half the luminal diameter plus 0.2 mm (round up to the nearest half millimeter) for 14 Gray using the Ir-192 high dose-rate (HDR) remote afterloading device. There is no reliable dosimetry data measured at millimeter range. The purpose of this paper is to accurately measure the specific dose rate per curie at close millimeter range for high activity iridium-192 source in HDR machine. Material and Methods: A plastic tissue-equivalent phantom was specially designed and built for this experiment. A small hole was drilled into the phantom to simulate the artery and big enough to fit a 6F luminal catheter used to position the radiation source in phantom. The high activity iridiu source from the Nucletron remote afterloading device was used and programmed to the predetermined positions. Since the measurements were required for high spatial resolutions, both low sensitivity films and mini-thermoluminescent dosimeters (TLD) of 1 mm3 in size were used for dose measurements. The measurements were performed repeatedly for better statistical accuracy. Prior to exposure, the films were cut in an appropriate size and sandwiched between two halves of the phantom sealed with light-proof tape. The source was run to the preset dwell position and dwell time to expose the film to a density of between 2 to 3. The exposed films were then developed and scanned with an automatic optical density scanner and then the results were converted to absorbed doses. The aperture size effect is

  13. Interfractional change of high-risk CTV D90 during image-guided brachytherapy for uterine cervical cancer

    International Nuclear Information System (INIS)

    The purpose of this study was to evaluate interfractional changes of the minimum dose delivered to 90% of the high-risk clinical target volume (HR-CTV D90) and D2cc of the bladder and rectum during brachytherapy for uterine cervical cancer patients. A total of 52 patients received external beam radiotherapy and high-dose-rate intracavitary brachytherapy (ICBT). For each of four ICBT applications, a pelvic CT scan was performed and the HR-CTV was delineated. Retrospectively, these patients were divided into two groups: (1) the standard dose group with 6 Gy to point A in each ICBT, and (2) the adaptive dose group with a modified dose to point A to cover the HR-CTV with the 6-Gy isodose line as much as possible. The HR-CTV D90 was assessed in every session, and analyzed as interfractional changes. In the standard dose group, the interfractional changes of the HR-CTV D90 showed a linear increase from the first to the third of the four ICBT (average 6.1, 6.6, 7.0 and 7.1 Gy, respectively). In contrast, those of the adaptive dose group remained almost constant (average 7.2, 7.2, 7.3 and 7.4 Gy, respectively). Especially, in the case of a large HR-CTV volume (≥35 cm3) at first ICBT, the total HR-CTV D90 of the adaptive dose group with brachytherapy was significantly higher than that of the standard dose group. There were no significant differences in total D2cc in bladder and rectum between the two groups. Image-guided adaptive brachytherapy based on interfractional tumor volume change improves the dose to the HR-CTV while keeping rectal and bladder doses within acceptable levels. (author)

  14. Interfractional change of high-risk CTV D90 during image-guided brachytherapy for uterine cervical cancer.

    Science.gov (United States)

    Ohkubo, Yu; Ohno, Tatsuya; Noda, Shin-ei; Kubo, Nobuteru; Nakagawa, Akiko; Kawahara, Masahiro; Abe, Takanori; Kiyohara, Hiroki; Wakatsuki, Masaru; Nakano, Takashi

    2013-11-01

    The purpose of this study was to evaluate interfractional changes of the minimum dose delivered to 90% of the high-risk clinical target volume (HR-CTV D90) and D2cc of the bladder and rectum during brachytherapy for uterine cervical cancer patients. A total of 52 patients received external beam radiotherapy and high-dose-rate intracavitary brachytherapy (ICBT). For each of four ICBT applications, a pelvic CT scan was performed and the HR-CTV was delineated. Retrospectively, these patients were divided into two groups: (i) the standard dose group with 6 Gy to point A in each ICBT, and (ii) the adaptive dose group with a modified dose to point A to cover the HR-CTV with the 6-Gy isodose line as much as possible. The HR-CTV D90 was assessed in every session, and analyzed as interfractional changes. In the standard dose group, the interfractional changes of the HR-CTV D90 showed a linear increase from the first to the third of the four ICBT (average 6.1, 6.6, 7.0 and 7.1 Gy, respectively). In contrast, those of the adaptive dose group remained almost constant (average 7.2, 7.2, 7.3 and 7.4 Gy, respectively). Especially, in the case of a large HR-CTV volume (≥35 cm(3)) at first ICBT, the total HR-CTV D90 of the adaptive dose group with brachytherapy was significantly higher than that of the standard dose group. There were no significant differences in total D2cc in bladder and rectum between the two groups. Image-guided adaptive brachytherapy based on interfractional tumor volume change improves the dose to the HR-CTV while keeping rectal and bladder doses within acceptable levels. PMID:23732770

  15. Prospective Clinical Trial of Bladder Filling and Three-Dimensional Dosimetry in High-Dose-Rate Vaginal Cuff Brachytherapy

    International Nuclear Information System (INIS)

    Purpose: To investigate the effect of bladder filling on dosimetry and to determine the best bladder dosimetric parameter for vaginal cuff brachytherapy. Methods and Materials: In this prospective clinical trial, a total of 20 women underwent vaginal cylinder high-dose-rate brachytherapy. The bladder was full for Fraction 2 and empty for Fraction 3. Dose-volume histogram and dose-surface histogram values were generated for the bladder, rectum, and urethra. The midline maximal bladder point (MBP) and the midline maximal rectal point were recorded. Paired t tests, Pearson correlations, and regression analyses were performed. Results: The volume and surface area of the irradiated bladder were significantly smaller when the bladder was empty than when full. Of the several dose-volume histogram and dose-surface histogram parameters evaluated, the bladder maximal dose received by 2 cm3 of tissue, volume of bladder receiving ≥50% of the dose, volume of bladder receiving ≥70% of the dose, and surface area of bladder receiving ≥50% of the dose significantly predicted for the difference between the empty vs. full filling state. The volume of bladder receiving ≥70% of the dose and the maximal dose received by 2 cm3 of tissue correlated significantly with the MBP. Bladder filling did not alter the volume or surface area of the rectum irradiated. However, an empty bladder did result in the nearest point of bowel being significantly closer to the vaginal cylinder than when the bladder was full. Conclusions: Patients undergoing vaginal cuff brachytherapy treated with an empty bladder have a lower bladder dose than those treated with a full bladder. The MBP correlated well with the volumetric assessments of bladder dose and provided a noninvasive method for reporting the MBP dose using three-dimensional imaging. The MBP can therefore be used as a surrogate for complex dosimetry in the clinic

  16. Suitability of point kernel dose calculation techniques in brachytherapy treatment planning

    Directory of Open Access Journals (Sweden)

    Lakshminarayanan Thilagam

    2010-01-01

    Full Text Available Brachytherapy treatment planning system (TPS is necessary to estimate the dose to target volume and organ at risk (OAR. TPS is always recommended to account for the effect of tissue, applicator and shielding material heterogeneities exist in applicators. However, most brachytherapy TPS software packages estimate the absorbed dose at a point, taking care of only the contributions of individual sources and the source distribution, neglecting the dose perturbations arising from the applicator design and construction. There are some degrees of uncertainties in dose rate estimations under realistic clinical conditions. In this regard, an attempt is made to explore the suitability of point kernels for brachytherapy dose rate calculations and develop new interactive brachytherapy package, named as BrachyTPS, to suit the clinical conditions. BrachyTPS is an interactive point kernel code package developed to perform independent dose rate calculations by taking into account the effect of these heterogeneities, using two regions build up factors, proposed by Kalos. The primary aim of this study is to validate the developed point kernel code package integrated with treatment planning computational systems against the Monte Carlo (MC results. In the present work, three brachytherapy applicators commonly used in the treatment of uterine cervical carcinoma, namely (i Board of Radiation Isotope and Technology (BRIT low dose rate (LDR applicator and (ii Fletcher Green type LDR applicator (iii Fletcher Williamson high dose rate (HDR applicator, are studied to test the accuracy of the software. Dose rates computed using the developed code are compared with the relevant results of the MC simulations. Further, attempts are also made to study the dose rate distribution around the commercially available shielded vaginal applicator set (Nucletron. The percentage deviations of BrachyTPS computed dose rate values from the MC results are observed to be within plus/minus 5

  17. SU-E-T-564: Multi-Helix Rotating Shield Brachytherapy for Cervical Cancer

    International Nuclear Information System (INIS)

    Purpose: To present a novel and practical brachytherapy technique, called multi-helix rotating shield brachytherapy (H-RSBT), for the precise positioning of a partial shield in a curved applicator. H-RSBT enables RSBT delivery using only translational motion of the radiation source/shield combination. H-RSBT overcomes the challenges associated with previously proposed RSBT approaches based on a serial (S-RSBT) step-and-shoot delivery technique, which required independent translational and rotational motion. Methods: A Fletcher-type applicator, compatible with the combination of a Xoft Axxent™ electronic brachytherapy source and a 0.5 mm thick tungsten shield, is proposed. The wall of the applicator contains six evenly-spaced helical keyways that rigidly define the emission direction of the shield as a function of depth. The shield contains three protruding keys and is attached to the source such that it rotates freely. S-RSBT and H-RSBT treatment plans with 180° and 45° azimuthal emission angles were generated for five cervical cancer patients representative of a wide range of high-risk clinical target volume (HR-CTV) shapes and applicator positions. The number of beamlets used in the treatment planning process was nearly constant for S-RSBT and H-RSBT by using dwell positions separated by 5 and 1.7 mm, respectively, and emission directions separated by 22.5° and 60°, respectively. For all the treatment plans the EQD2 of the HR-CTV was escalated until the EQD2cc tolerance of either the bladder, rectum, or sigmoid colon was reached. Results: Treatment times for H-RSBT tended to be shorter than for S-RSBT, with changes of −38.47% to 1.12% with an average of −8.34%. The HR-CTV D90 changed by −8.81% to 2.08% with an average of −2.46%. Conclusion: H-RSBT is a mechanically feasible technique in the curved applicators needed for cervical cancer brachytherapy. S-RSBT and H-RSBT dose distributions were clinically equivalent for all patients considered, with

  18. SU-E-T-564: Multi-Helix Rotating Shield Brachytherapy for Cervical Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Dadkhah, H; Wu, X [University of Iowa, Iowa City, IA (United States); Flynn, R; Kim, Y [University of Iowa Hospitals and Clinics, Iowa City, IA (United States)

    2015-06-15

    Purpose: To present a novel and practical brachytherapy technique, called multi-helix rotating shield brachytherapy (H-RSBT), for the precise positioning of a partial shield in a curved applicator. H-RSBT enables RSBT delivery using only translational motion of the radiation source/shield combination. H-RSBT overcomes the challenges associated with previously proposed RSBT approaches based on a serial (S-RSBT) step-and-shoot delivery technique, which required independent translational and rotational motion. Methods: A Fletcher-type applicator, compatible with the combination of a Xoft Axxent™ electronic brachytherapy source and a 0.5 mm thick tungsten shield, is proposed. The wall of the applicator contains six evenly-spaced helical keyways that rigidly define the emission direction of the shield as a function of depth. The shield contains three protruding keys and is attached to the source such that it rotates freely. S-RSBT and H-RSBT treatment plans with 180° and 45° azimuthal emission angles were generated for five cervical cancer patients representative of a wide range of high-risk clinical target volume (HR-CTV) shapes and applicator positions. The number of beamlets used in the treatment planning process was nearly constant for S-RSBT and H-RSBT by using dwell positions separated by 5 and 1.7 mm, respectively, and emission directions separated by 22.5° and 60°, respectively. For all the treatment plans the EQD2 of the HR-CTV was escalated until the EQD{sub 2cc} tolerance of either the bladder, rectum, or sigmoid colon was reached. Results: Treatment times for H-RSBT tended to be shorter than for S-RSBT, with changes of −38.47% to 1.12% with an average of −8.34%. The HR-CTV D{sub 90} changed by −8.81% to 2.08% with an average of −2.46%. Conclusion: H-RSBT is a mechanically feasible technique in the curved applicators needed for cervical cancer brachytherapy. S-RSBT and H-RSBT dose distributions were clinically equivalent for all patients

  19. Comparative dosimetry in intracavitary balloon catheter brachytherapy with I-125 and in Cf-252 brachytherapy combined with BNCT for brain tumors

    OpenAIRE

    Samia de Freitas Brandao; Tarcisio Passos Ribeiro de Campos

    2013-01-01

    Objective Comparative analysis of dosimetry in intracavitary balloon catheter brachytherapy with I-125 and in Cf-252 brachytherapy combined with BNCT for treatment of brain tumors. Materials and Methods Simulations of intracavitary balloon catheter brachytherapy with I-125 and in Cf-252 brachytherapy combined with BNCT were performed with the MCNP5 code, modeling the treatment of a brain tumor on a voxel computational phantom representing a human head. Absorbed dose rates were converted int...

  20. Decline in urinary retention incidence in 805 patients after prostate brachytherapy: The effect of learning curve?

    International Nuclear Information System (INIS)

    Purpose: To evaluate the incidence and factors predictive of acute urinary retention (AUR) in 805 consecutive patients treated with prostate brachytherapy monotherapy and to examine the possible effect of a learning curve. Methods and Materials: Between July 1998 and November 2002, 805 patients were treated with prostate brachytherapy. Low-risk patients (Gleason Score (GS) ≤6; prostate specific antigen (PSA) ≤10, and ≤ T2b [UICC 1997]) received implant alone. Patients with prostate volume of 50 cc or more, GS = 7, or PSA = 10 to 15 received 6 months of androgen suppression (AS) with brachytherapy. Patient, treatment, and dosimetric factors examined include baseline prostate symptom score (IPSS), diabetes, vascular disease, PSA, Gleason score, clinical stage, AS, ultrasound planning target volume (PUTV), postimplant prostate volume (obtained with 'Day 30' postimplant CT), CT:PUTV ratio (surrogate for postimplant edema), number of seeds, number of needles, number of seeds per needle, dosimetric parameters (V100, V150, and D90), date of implant (learning curve), and implanting oncologists. Univariate and multivariate analyses were carried out. Results: Acute urinary retention in the first 200 patients was 17% vs. 6.3% in the most recently treated 200 patients (p = 0.002). Overall AUR was 12.7%, and prolonged urinary obstruction incidence (>20 days) was 5%. On multivariate analysis, factors predictive of any AUR include baseline IPSS (p = 20 days) on multivariate analysis include IPSS (p < 0.01), number of needles (p < 0.001), diabetes mellitus (p = 0.048), and CT:PUTV ratio (p < 0.001) Conclusion: Over the years, our AUR rate has fallen significantly (from 17% to 6.3%). On multivariate analysis, highly significant factors include IPSS, PUTV, CT:PUTV ratio (i.e., degree of prostate edema), and order of implant (learning curve). Over the course of the program, we have deliberately reduced the number of needles and OR time per patient, which have potentially

  1. Caudal epidural anesthesia during intracavitary brachytherapy for cervical cancer

    International Nuclear Information System (INIS)

    It has been suggested that pain control during intracavitary brachytherapy for cervical cancer is insufficient in most hospitals in Japan. Our hospital began using caudal epidural anesthesia during high-dose-rate (HDR) intracavitary brachytherapy in 2011. The purpose of the present study was to retrospectively investigate the effects of caudal epidural anesthesia during HDR intracavitary brachytherapy for cervical cancer patients. Caudal epidural anesthesia for 34 cervical cancer patients was performed during HDR intracavitary brachytherapy between October 2011 and August 2013. We used the patients' self-reported Numeric Rating Scale (NRS) score at the first session of HDR intracavitary brachytherapy as a subjective evaluation of pain. We compared NRS scores of the patients with anesthesia with those of 30 patients who underwent HDR intracavitary brachytherapy without sacral epidural anesthesia at our hospital between May 2010 and August 2011. Caudal epidural anesthesia succeeded in 33 patients (97%), and the NRS score was recorded in 30 patients. The mean NRS score of the anesthesia group was 5.17 ± 2.97, significantly lower than that of the control group's 6.80 ± 2.59 (P = 0.035). The caudal epidural block resulted in no side-effects. Caudal epidural anesthesia is an effective and safe anesthesia option during HDR intracavitary brachytherapy for cervical cancer. (author)

  2. Radiation Protection in Brachytherapy in the Next Decade

    International Nuclear Information System (INIS)

    Brachytherapy procedures are increasing in number, and account for an important share of radiation exposure in medicine at a time when there is a dramatic rise in cancer across the developing world. Important areas in relation to radiation safety in brachytherapy include that all efforts be made to ensure that protection in the treatment is optimized and all measures are taken to prevent accidental exposures from occurring. Historical and ongoing accidents that have resulted in patient and public doses or inappropriate medical outcomes represent opportunities for continuous improvement in radiation protection. Additionally, staff in brachytherapy treatment facilities may receive high radiation doses if radiological protection tools are not used properly. Brachytherapy uniquely presents the possibility for doses that require active management. In modern brachytherapy centres, radiation doses are incurred by staff (e.g. loading of seeds, plaques, caesium implants, associated fluoroscopy). There is also a large variation in the practice of brachytherapy on a global scale and several facilities still practise older techniques with significantly higher staff dose potential. In addition, technological developments and newer techniques present new radiation protection concerns and an increasing blurring of historical responsibilities that need to be addressed with specific recommendations for the practising medical community. Along with an increase in equipment and to safeguard resources, additional qualified and trained brachytherapy staff are required worldwide. (author)

  3. The dosimetry of brachytherapy-induced erectile dysfunction

    International Nuclear Information System (INIS)

    There is emerging evidence that brachytherapy-induced erectile dysfunction (ED) is technique-related and may be minimized by careful attention to source placement. Herein, we review the relationship between radiation doses to the prostate gland/surrounding structures and the development of brachytherapy-induced ED. The permanent prostate brachytherapy literature was reviewed using MEDLINE searches to ensure completeness. Although the site-specific structure associated with brachytherapy-induced ED remains unknown, there is an increasing body of data implicating the proximal penis. With day 0 CT-based dosimetry, the dose to 50% (D50) and 25% (D25) of the bulb of the penis should be maintained below 40% and 60% mPD, respectively, while the crura D50 should be maintained below 28% mPD to maximize post-brachytherapy potency. To date, there is no data to suggest that either radiation doses to the neurovascular bundles or choice of isotope is associated with brachytherapy-induced ED, while conflicting data has been reported regarding radiation dose to the prostate and the use of supplemental external beam radiation therapy. Although the etiology of brachytherapy-induced ED is likely multifactorial, the available data supports the proximal penis as an important site-specific structure. Refinements in implant technique, including preplanning and intraoperative seed placement, will result in lower radiation doses to the proximal penis with potential improvement in potency preservation

  4. The long term effects of high dose rate brachytherapy on neointimal hyperplasia formation in the rat carotid artery - an update

    International Nuclear Information System (INIS)

    Purpose/Objective: A large number of investigators have begun utilizing radiation modalities in order to prevent or delay neointimal hyperplasia (NIH) formation. Following our initial successful studies looking at single fraction low doses of HDR brachytherapy given immediately after injury, we extended this model to look at the long term effects on the inhibition of NIH in the rat common carotid artery. Materials and Methods: The right common carotid arteries (CCA) of 4-5 month old male Sprague Dawley rats were injured using a 2F balloon catheter. Immediately post-injury, a delivery catheter was sutured alongside the injured artery and the vessel received either 0, 5, or 10 Gy irradiation using an Iridium 192 afterloader. Six months post-treatment, the animals were sacrificed and both the right and left CCA were harvested following perfusion fixation, and processed for light and electron micrography. Specimens were stained with PAS and the intima and media areas were calculated using a computer-assisted digitizing program. Additional immunocytochemical staining was carried out, looking particularly at PDGF. Results: In contrast to our previous findings which were assessed at 3 weeks post-treatment, at the later time point of 6 months post-treatment, there was no significant reduction in intimal area of the radiation-treated balloon-injured animals compared to the balloon-injured alone and the intima: media ratios was the same in both groups (Fig. 1). The lumenal area in both treatment groups was significantly reduced from normal controls (Fig. 2). Immunocytochemical staining for PDGF at 3 weeks demonstrated that there was an immediate (24 hours) release of growth factor from the medial smooth muscle in the balloon-injured animals; there was no similar release in the radiation-treated animals at the 1 day, 1 or 3 week time points. This will now be assessed at the later time points. Higher doses of 15-25 Gy are now being studied since other investigators have shown

  5. The case for focal brachytherapy for the management of low grade prostate cancer

    International Nuclear Information System (INIS)

    Full text: Radical therapy of low to intermediate prostate cancer patients can cause substantial adverse events relating to genitourinary and rectal toxicity. Yet there is little evidence that such treatment results in increased life expectancy. On the other hand, watchful waiting is associated with active surveillance and the patient must accept that the cancer remains untreated and has a risk of progression. Focal therapy of low grade prostate cancer provides an intermediate approach to the management of this cancer. The approach is to treat only those positive segments on biopsy and so reduce the likelihood of adverse events. However, continued surveillance is required because of the increased risk of disease progression. Focal therapy needs to be evaluated using available ablative therapies. Recent studies of focal HIFU for 20 patients showed PSA reduced from 7.3 to 1.5 ng/mL at 12 months. 1/20 patients had inadequate erections and 2120 required pads. 17/19 had no histological evidence of cancer and none had evidence of high volume or Gleason = 7 cancer in the treated lobe. Seed brachytherapy is commonly used for radical prostate treatment of low volume disease. As the same template can be used for seed therapy as is used for biopsy, the technique is ideally suited for focal brachytherapy. As any treatment involving less than the entire gland involves the risk of leaving viable cancer cells outside the treatment zone, a phase 3 randomised clinical trial between radical and focal brachytherapy is advocated to demonstrate the efficacy and safety of the latter relative to radical therapy.

  6. Single fraction multimodal image guided focal salvage high-dose-rate brachytherapy for recurrent prostate cancer

    Science.gov (United States)

    Rischke, Hans-Christian; Meyer, Philipp Tobias; Knobe, Sven; Volgeova-Neher, Natalja; Kollefrath, Michael; Jilg, Cordula Annette; Grosu, Anca Ligia; Baltas, Dimos; Kroenig, Malte

    2016-01-01

    Purpose We present a novel method for treatment of locally recurrent prostate cancer (PCa) following radiation therapy: focal, multimodal image guided high-dose-rate (HDR) brachytherapy. Material and methods We treated two patients with recurrent PCa after primary (#1) or adjuvant (#2) external beam radiation therapy. Multiparametric magnetic resonance imaging (mpMRI), choline, positron emission tomography combined with computed tomography (PET/CT), or prostate-specific membrane antigen (PSMA)-PET combined with CT identified a single intraprostatic lesion. Positron emission tomography or magnetic resonance imaging – transrectal ultrasound (MRI-TRUS) fusion guided transperineal biopsy confirmed PCa within each target lesion. We defined a PET and mpMRI based gross tumor volume (GTV). A 5 mm isotropic margin was applied additionally to each lesion to generate a planning target volume (PTV), which accounts for technical fusion inaccuracies. A D90 of 18 Gy was intended in one fraction to each PTV using ultrasound guided HDR brachytherapy. Results Six month follow-up showed adequate prostate specific antygen (PSA) decline in both patients (ΔPSA 83% in patient 1 and ΔPSA 59.3% in patient 2). Follow-up 3-tesla MRI revealed regressive disease in both patients and PSMA-PET/CT showed no evidence of active disease in patient #1. No acute or late toxicities occurred. Conclusions Single fraction, focal, multimodal image guided salvage HDR brachytherapy for recurrent prostate cancer is a feasible therapy for selected patients with single lesions. This approach has to be evaluated in larger clinical trials. PMID:27504134

  7. Pretreatment Nomogram to Predict the Risk of Acute Urinary Retention After I-125 Prostate Brachytherapy

    International Nuclear Information System (INIS)

    Purpose: Acute urinary retention (AUR) after iodine-125 (I-125) prostate brachytherapy negatively influences long-term quality of life and therefore should be prevented. We aimed to develop a nomogram to preoperatively predict the risk of AUR. Methods: Using the preoperative data of 714 consecutive patients who underwent I-125 prostate brachytherapy between 2005 and 2008 at our department, we modeled the probability of AUR. Multivariate logistic regression analysis was used to assess the predictive ability of a set of pretreatment predictors and the additional value of a new risk factor (the extent of prostate protrusion into the bladder). The performance of the final model was assessed with calibration and discrimination measures. Results: Of the 714 patients, 57 patients (8.0%) developed AUR after implantation. Multivariate analysis showed that the combination of prostate volume, IPSS score, neoadjuvant hormonal treatment and the extent of prostate protrusion contribute to the prediction of AUR. The discriminative value (receiver operator characteristic area, ROC) of the basic model (including prostate volume, International Prostate Symptom Score, and neoadjuvant hormonal treatment) to predict the development of AUR was 0.70. The addition of prostate protrusion significantly increased the discriminative power of the model (ROC 0.82). Calibration of this final model was good. The nomogram showed that among patients with a low sum score (35 points), the risk of AUR was more than 20%. Conclusion: This nomogram is a useful tool for physicians to predict the risk of AUR after I-125 prostate brachytherapy. The nomogram can aid in individualized treatment decision-making and patient counseling.

  8. Evaluation of time, attendance of medical staff, and resources during interstitial brachytherapy for prostate cancer. DEGRO-QUIRO trial

    International Nuclear Information System (INIS)

    The German Society of Radiation Oncology initiated a multicenter trial to evaluate core processes and subprocesses of radiotherapy by prospective evaluation of all important procedures in the most frequent malignancies treated by radiation therapy. The aim of this analysis was to assess the required resources for interstitial high-dose-rate (HDR) and low-dose-rate (LDR) prostate brachytherapy (BRT) based on actual time measurements regarding allocation of personnel and room occupation needed for specific procedures. Two radiotherapy centers (community hospital of Offenbach am Main and community hospital of Eschweiler) participated in this prospective study. Working time of the different occupational groups and room occupancies for the workflow of prostate BRT were recorded and methodically assessed during a 3-month period. For HDR and LDR BRT, a total of 560 and 92 measurements, respectively, were documented. The time needed for treatment preplanning was median 24 min for HDR (n=112 measurements) and 6 min for LDR BRT (n=21). Catheter implantation with intraoperative HDR real-time planning (n=112), postimplantation HDR treatment planning (n=112), and remotely controlled HDR afterloading irradiation (n=112) required median 25, 39, and 50 min, respectively. For LDR real-time planning (n=39) and LDR treatment postplanning (n=32), the assessed median duration was 91 and 11 min, respectively. Room occupancy and overall mean medical staff times were 194 and 910 min respectively, for HDR, and 113 and 371 min, respectively, for LDR BRT. In this prospective analysis, the resource requirements for the application of HDR and LDR BRT of prostate cancer were assessed methodically and are presented for first time. (orig.)

  9. Bladder Function Preservation With Brachytherapy, External Beam Radiation Therapy, and Limited Surger in Bladder Cancer Patients: Long-Term Results

    International Nuclear Information System (INIS)

    Purpose: To report long-term results of a bladder preservation strategy for muscle-invasive bladder cancer (MIBC) using external beam radiation therapy and brachytherapy/interstitial radiation therapy (IRT). Methods and Materials: Between May 1989 and October 2011, 192 selected patients with MIBC were treated with a combined regimen of preoperative external beam radiation therapy and subsequent surgical exploration with or without partial cystectomy and insertion of source carrier tubes for afterloading IRT using low dose rate and pulsed dose rate. Data for oncologic and functional outcomes were prospectively collected. The primary endpoints were local recurrence-free survival (LRFS), bladder function preservation survival, and salvage cystectomy-free survival. The endpoints were constructed according to the Kaplan-Meier method. Results: The mean follow-up period was 105.5 months. The LRFS rate was 80% and 73% at 5 and 10 years, respectively. Salvage cystectomy-free survival at 5 and 10 years was 93% and 85%. The 5- and 10-year overall survival rates were 65% and 46%, whereas cancer-specific survival at 5 and 10 years was 75% and 67%. The distant metastases-free survival rate was 76% and 69% at 5 and 10 years. Multivariate analysis revealed no independent predictors of LRFS. Radiation Therapy Oncology Group grade ≥3 late bladder and rectum toxicity were recorded in 11 patients (5.7%) and 2 patients (1%), respectively. Conclusions: A multimodality bladder-sparing regimen using IRT offers excellent long-term oncologic outcome in selected patients with MIBC. The late toxicity rate is low, and the majority of patients preserve their functional bladder

  10. Evaluation of time, attendance of medical staff, and resources during interstitial brachytherapy for prostate cancer. DEGRO-QUIRO trial

    Energy Technology Data Exchange (ETDEWEB)

    Tselis, N.; Zamboglou, N. [Sana Klinikum Offenbach, Department of Radiation Oncology, Offenbach am Main (Germany); Maurer, U. [St.-Antonius-Hospital, Strahlentherapie, Eschweiler (Germany); Popp, W. [Prime Networks AG, Basel (Switzerland); Sack, H. [University of Essen, Department of Radiation Oncology, Essen (Germany)

    2014-04-15

    The German Society of Radiation Oncology initiated a multicenter trial to evaluate core processes and subprocesses of radiotherapy by prospective evaluation of all important procedures in the most frequent malignancies treated by radiation therapy. The aim of this analysis was to assess the required resources for interstitial high-dose-rate (HDR) and low-dose-rate (LDR) prostate brachytherapy (BRT) based on actual time measurements regarding allocation of personnel and room occupation needed for specific procedures. Two radiotherapy centers (community hospital of Offenbach am Main and community hospital of Eschweiler) participated in this prospective study. Working time of the different occupational groups and room occupancies for the workflow of prostate BRT were recorded and methodically assessed during a 3-month period. For HDR and LDR BRT, a total of 560 and 92 measurements, respectively, were documented. The time needed for treatment preplanning was median 24 min for HDR (n=112 measurements) and 6 min for LDR BRT (n=21). Catheter implantation with intraoperative HDR real-time planning (n=112), postimplantation HDR treatment planning (n=112), and remotely controlled HDR afterloading irradiation (n=112) required median 25, 39, and 50 min, respectively. For LDR real-time planning (n=39) and LDR treatment postplanning (n=32), the assessed median duration was 91 and 11 min, respectively. Room occupancy and overall mean medical staff times were 194 and 910 min respectively, for HDR, and 113 and 371 min, respectively, for LDR BRT. In this prospective analysis, the resource requirements for the application of HDR and LDR BRT of prostate cancer were assessed methodically and are presented for first time. (orig.)

  11. Iridium-192 sources production for brachytherapy use

    International Nuclear Information System (INIS)

    The incidence of cancer increases every year in Brazil and turns out to be one of the most important causes of mortality. Some of the patients are treated with brachytherapy, a form of lesion treatment which is based on the insertion of sources into tumors, in this particular case, activated iridium wires. During this process, the ionizing radiation efficiently destroys the malignant cells. These iridium wires have a nucleus made out of an iridium-platinum alloy 20-30/70-80 of 0,1 mm in diameter either coated by platinum or encased in a platinum tube. The technique consists in irradiating the wire in the reactor neutron flux in order to produce iridium-192. The linear activity goes from 1 mCi/cm to 4 mCi/cm and the basic characteristic, which is required, is the homogeneity of the activation along the wire. It should not present a dispersion exceeding 5% on a wire measuring 50 cm in length, 0.5 mm or 0.3 mm in diameter. Several experiments were carried out in order to define the activation parameters. Wires from different origins were analyzed. It was concluded that United States of America and France wires were found to be perfectly adequate for brachytherapy purposes and have therefore been sent to specialized hospitals and successfully applied to cancer patients. Considering that the major purpose of this work is to make this product more accessible in Brazil, at a cost reflecting the Brazilian reality, the IPEN is promoting the preparation of iridium-192 sources to be used in brachytherapy, on a national level. (author)

  12. Perioperative interstitial brachytherapy for recurrent keloid scars

    International Nuclear Information System (INIS)

    Purpose: Evaluation of the results of perioperative interstitial brachytherapy with low dose-rate (L.D.R.) Ir-192 in the treatment of keloid scars. Patients and methods: We performed a retrospective analysis of 73 histologically confirmed keloids (from 58 patients) resistant to medico surgical treated by surgical excision plus early perioperative brachytherapy. All lesions were initially symptomatic. Local control was evaluated by clinical evaluation. Functional and cosmetic results were assessed in terms of patient responses to a self-administered questionnaire. Results: Median age was 28 years (range 13-71 years). Scars were located as follows: 37% on the face, 32% on the trunk or abdomen, 16% on the neck, and 15% on the arms or legs. The mean delay before loading was four hours (range, 1-6 h). The median dose was 20 Gy (range, 15-40 Gy). Sixty-four scars (from 53 patients) were evaluated. Local control was 86% (follow-up, 44.5 months; range, 14-150 months). All relapses occurred early within 2 years posttreatment. At 20 months, survival without recurrence was significantly lower when treated lengths were more than 6 cm long. The rate was 100% for treated scars below 4.5 cm in length, 95% (95% CI: 55-96) for those 4.5-6 cm long, and 75% (95% CI: 56-88) beyond 6 cm (p = 0.038). Of the 35 scars (28 patients) whose results were reassessed, six remained symptomatic and the esthetic results were considered to be good in 51% (18/35) and average in 37% (13/35) (median follow-up, 70 months; range, 16-181 months). Conclusion: Early perioperative L.D.R. brachytherapy delivering 20 Gy at 5 mm reduced the rate of recurrent keloids resistant to other treatments and gave good functional results. (authors)

  13. High-dose rate brachytherapy in the treatment of prostate cancer: acute toxicity and biochemical behavior analysis

    International Nuclear Information System (INIS)

    Objective: this study focuses on the biochemical response of the following variables: prostate volume, prostate-specific antigen (PSA) value, Gleason scores, staging, the risk of the disease, and hormone therapy. Objective: in the period between February of 1998 and July of 2001, 46 patients with prostate cancer were treated with radiotherapy, in a combination of teletherapy and high-dose rate (HDR) brachytherapy. The age ranged from 51 to 79 years (averaging 66.4 years). T1c stage was the most frequent one: 30 (65%). The Gleason score was below 7 in 78% of the patients. PSA ranged from 3.4 to 33.3, being below 10 in 39% of the cases. The average prostatic volume was 32.3 cc. Twenty-eight percent of the patients received hormone therapy. Teletherapy dose ranged from 45 to 50.4 Gy, associated to four fractions of 4 Gy of HDR brachytherapy. Results: the follow-up period varied from 6 to 43 months. Four patients missed the follow-up and four died (one due to the disease). Out of the 39 patients that were analyzed, 76% presented a less than 1.5 PSA. None of the analyzed variables were found to be of statistical significance (p > 0.05) regarding biochemical control. Conclusion: the use of HDR brachytherapy was found to be effective in the treatment of prostate cancer and, in this study, the variables considered as prognostic factors did not interfere in the biochemical control. (author)

  14. Radioactive seed migration after prostate brachytherapy with Iodine-125 using loose seeds versus stranded seeds

    International Nuclear Information System (INIS)

    Objectives: To assess the incidence and clinical parameters that could influence migration of seeds in localized prostate cancer patients treated by stranded versus loose sources by Iodine-125 brachytherapy. Materials and Methods: 100 patients were treated from January/1998 until December/2006. Age, PSA, clinical stage, Gleason, prostate volume, number of seeds, activity of radioactive seeds, and dosimetric parameters, such as V100, V150 and D90 were evaluated. Results: Mean follow-up was 79 months (18 - 120. CI 95%: 72 - 85). Overall, 6 of 100 patients experienced seed migration. Seed migration was found in 4/50 (8%) patients using loose seeds and in 2/50 (4%) treated by stranded seeds. Mean value dosimetric parameters for stranded seeds were greater than those for loose seeds (V100(%): 88.7/82, D90(Gy): 149.2/140.3, D90(%): 104.2/93.8, V150 (%): 53.8/47, respectively). No significant difference in migration of seeds was detected between loose and stranded seeds considering age (p = 0.33), PSA (p = 0.391), prostate volume (p 0.397), activity of radioactive seeds (p = 0.109), number of seeds (p 0.338), V100 (p = 0.332), although significant differences were measured in the values of D90 (% and Gy) (p = 0.022 and 0.011) and V150 (p = 0.023). Conclusions: Seed migration after brachytherapy might occur and it does affect post-implant dosimetry. (author)

  15. The Activity Check of Brachytherapy Isotope

    International Nuclear Information System (INIS)

    An isotope Ir-192, which is used in brachytherapy depends on import in whole quantities. There are a few ways for its activity. measurement using Welltype chamber or the way to rely on authentic decay table of manufacturer. In-air dosimetry using Farmer Chamber, etc. In this paper, let me introduce the way using Farmer chamber which is easier and simple. With the Farmer chamber and source calibration jig, take a measurement the activity of an isotope Ir-192 and compare the value with the value from decay table of manufacturer and check the activity of source. The result of measurement, compared the value from decay table, by ±2.1. (which belongs to recommendable value for AAPM ±5% as difference of error range). It is possible to use on clinical medicine. With the increase in use of brachytherapy, the increase of import is essential. And an accurate activity check of source is compulsory. For the activity check of source, it was possible to use Farmer chamber and source calibration jig without additional purchase of Well type chamber.

  16. A study of brachytherapy for intraocular tumor

    International Nuclear Information System (INIS)

    Our purpose of this study is to perform brachytherapy for intraocular tumor. The result were as followed. 1. Eye model was determined as a 25 mm diameter sphere. Ir-192 was considered the most appropriate as radioisotope for brachytherapy, because of the size, half, energy and availability. 2. Considering the biological response with human tissue and protection of exposed dose, we made the plaques with gold, of which size were 15 mm, 17 mm and 20 mm in diameter, and 1.5 mm in thickness. 3. Transmission factor of plaques are all 0.71 with TLD and film dosimetry at the surface of plaques and 0.45, 0.49 at 1.5 mm distance of surface, respectively. 4. As compared the measured data for the plaque with Ir-192 seeds to results of computer dose calculation model by Gary Luxton et al. and CAP-PLAN (Radiation Treatment Planning System), absorbed doses are within ±10% and distance deviations are within 0.4 mm. Maximum error is -11.3% and 0.8 mm, respectively. 7 figs, 2 tabs, 28 refs. (Author)

  17. Evaluation of resins for use in brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Luiz Claudio F.M. Garcia; Ferraz, Wilmar Barbosa; Chrcanovic, Bruno Ramos; Santos, Ana Maria M., E-mail: ferrazw@cdtn.b, E-mail: amms@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    Brachytherapy is an advanced cancer treatment where radioactive seeds or sources are placed near or directly into the tumor thus reducing the radiation exposure in the surrounding healthy tissues. Prostate cancer can be treated with interstitial brachytherapy in initial stage of the disease in which tiny radioactive seeds with cylindrical geometry are used. Several kinds of seeds have been developed in order to obtain a better dose distribution around them and with a lower cost manufacturing. These seeds consist of an encapsulation, a radionuclide carrier, and X-ray marker. Among the materials that have potential for innovation in the construction of seeds, biocompatible resins appear as an important option. In this paper, we present some characterization results with Fourier transform infrared spectroscopic (FTIR) and ultraviolet-visible spectroscopy (UV-vis) performed on two types of resins in which curing temperatures for each one were varied as also the results of coatings with these resins under titanium substrates. Interactions of these resins in contact with the simulated body fluid were evaluated by atomic force microscopy, scanning electron microscopy, and energy dispersive X-ray spectroscopy. (author)

  18. Samarium-145: a new brachytherapy source

    International Nuclear Information System (INIS)

    A new radiation source has been produced for brachytherapy, with radiation energies slightly above those of 125I, and a Tsub(1/2) of 340 d. This source, 145Sm, is produced by neutron irradiation of 144Sm (96.5% enriched). Decay is by electron capture with 140 K x-rays per 100 disintergrations in the energy region between 38-45 keV, plus 13 γ-rays at 61 keV. These sources are encapsulated in Ti tubes, approx. 0.8 mm x 4.5 mm, and have been developed for temporary implantation in brain and ocular tumours. The 38-61 keV photons should make such sources easy to shield, while providing a dose distribution from source arrays somewhat more homogeneous than that from 125I. In addition, the 340 d half life of 145Sm permits its use for times significantly longer than that of 60 d 125I. While the 145Sm sources have been designed primarily for implantation in a brain tumour, they should be useful for almost any conventional brachytherapy application. (author)

  19. Risk of All-Cause and Prostate Cancer-Specific Mortality After Brachytherapy in Men With Small Prostate Size

    International Nuclear Information System (INIS)

    Background: Brachytherapy for prostate cancer can be technically challenging in men with small prostates (≤20 cc), but it is unknown whether their outcomes are different than those of men with larger prostates. Methods and Materials: We studied 6,416 men treated with brachytherapy in one of 21 community-based practices. Cox regression and Fine and Gray's regression were used to determine whether volume ≤20 cc was associated with a higher risk of all-cause mortality (ACM) or prostate cancer-specific mortality (PCSM), respectively, after adjustment for other known prognostic factors. Results: 443 patients (6.9%) had a prostate volume ≤20 cc. After a median follow-up of 2.91 years (interquartile range, 1.06-4.79), volume ≤20 cc was associated with a significantly higher risk of ACM (adjusted hazard ratio = 1.33 [95% CI 1.08-1.65], p = 0.0085) with 3-year estimates of ACM for ≤20 cc vs. >20 cc of 13.0% vs. 6.9% (p = 0.028). Only 23 men (0.36%) have died of prostate cancer, and no difference was seen in PCSM by volume (p = 0.4). Conclusion: Men with small prostates at the time of implant had a 33% higher risk of ACM, and the underlying cause of this remains uncertain. No increase in PCSM was observed in men with volume ≤20cc, suggesting that a small prostate should not in itself be a contraindication for brachytherapy, but inasmuch as absolute rates of PCSM were small, further follow-up will be needed to confirm this finding.

  20. Manual on brachytherapy. Incorporating: Applications guide, procedures guide, basics guide

    International Nuclear Information System (INIS)

    In addition to a basic guide to the principles of the production of ionizing radiation and to methods of radiation protection and dosimetry, this booklet includes information about radiation protection procedures for brachytherapy

  1. Nursing intervention in gynecologic brachytherapy under general anesthesia

    International Nuclear Information System (INIS)

    We reconsidered our nursing intervention in gynecologic intracavitary brachytherapy as general anesthesia was introduced. We recognized that safety, comfort, privacy protection and relief of anxiety of the patients were important points for nursing with corporation of other medical staffs. (author)

  2. Brachytherapy. Pulsed dose rate brachytherapy - Radiation protection: medical sheet ED 4250

    International Nuclear Information System (INIS)

    After having indicated the required authorization to implement brachytherapy techniques, this document presents the various aspects and measures related to radiation protection when performing pulsed-dose-rate brachytherapy treatments. It presents the concerned personnel, describes the operational process, indicates the associated hazards and the risk related to ionizing radiation, and describes how the risk is to be assessed and how exposure levels are to be determined (elements of risk assessment, delimitation of controlled and monitored areas, personnel classification, and choice of the dose monitoring method). It describes the various components of a risk management strategy (risk reduction, technical measures regarding the installation and the personnel, training and information, prevention and medical monitoring). It briefly presents how risk management is to be assessed, and mentions other related risks (biological risk, handling and posture, handling of heavy loads, mental workload, chemical risk)

  3. Dose effect of guidewire position in intravascular brachytherapy

    International Nuclear Information System (INIS)

    It has been reported that the dose effects of metallic guidewires are significant in intravascular brachytherapy (IVBT) using a beta source. The purpose of this work is to investigate the dependence of these dose effects on guidewire position. The EGS4 Monte Carlo codes were used to perform the dose calculations for the 90Sr (NOVOSTE), 32P (Guidant) and 192Ir (BEST Ind.) sources with and without a guidewire in place. Guidewires were placed at various distances from the central axes of the sources. Due to the attenuation by the guidewires, a dose reduction of up to 70% behind a guidewire was observed for the beta sources, while the dose perturbation was found to be negligible for the gamma source. The dose reduction for the beta sources was found to be dependent on the guidewire location. For example, the dose reduction was 10% higher for a stainless steel guidewire located at 0.5 mm than that for the guidewire at 2 mm from the central axis of the source. The portion of the target volume affected (shadowed) dosimetrically by the guidewire was reduced when the guidewire was positioned farther away from the source. The shadow volume (in which the dose reduction occurs) can be reduced by up to 45% as the guidewire is moved away from the source axis from 0.5 mm to 2 mm. The dosimetric perturbations due to the presence of a metallic guidewire as well as their dependence on guidewire location should be considered in designing a new IVBT delivery device, in analysing the treatment efficacy, and/or in dose prescription for a beta source. (author)

  4. Automated treatment planning engine for prostate seed implant brachytherapy

    International Nuclear Information System (INIS)

    Purpose: To develop a computer-intelligent planning engine for automated treatment planning and optimization of ultrasound- and template-guided prostate seed implants. Methods and Materials: The genetic algorithm was modified to reflect the 2D nature of the implantation template. A multi-objective decision scheme was used to rank competing solutions, taking into account dose uniformity and conformity to the planning target volume (PTV), dose-sparing of the urethra and the rectum, and the sensitivity of the resulting dosimetry to seed misplacement. Optimized treatment plans were evaluated using selected dosimetric quantifiers, dose-volume histogram (DVH), and sensitivity analysis based on simulated seed placement errors. These dosimetric planning components were integrated into the Prostate Implant Planning Engine for Radiotherapy (PIPER). Results: PIPER has been used to produce a variety of plans for prostate seed implants. In general, maximization of the minimum peripheral dose (mPD) for given implanted total source strength tended to produce peripherally weighted seed patterns. Minimization of the urethral dose further reduced the loading in the central region of the PTV. Isodose conformity to the PTV was achieved when the set of objectives did not reflect seed positioning uncertainties; the corresponding optimal plan generally required fewer seeds and higher source strength per seed compared to the manual planning experience. When seed placement uncertainties were introduced into the set of treatment planning objectives, the optimal plan tended to reach a compromise between the preplanned outcome and the likelihood of retaining the preferred outcome after implantation. The reduction in the volatility of such seed configurations optimized under uncertainty was verified by sensitivity studies. Conclusion: An automated treatment planning engine incorporating real-time sensitivity analysis was found to be a useful tool in dosimetric planning for prostate

  5. Techniques and results of brachytherapy for carcinoma of the tongue

    International Nuclear Information System (INIS)

    Three hundred and twelve patients with 1987 UICC T1, 2 carcinoma of the tongue, who underwent definitive brachytherapy from November, 1978 to March, 1991 in the Department of Radiology, Kyushu University Hospital, and from January, 1985 to December, 1994 in the Department of Radiotherapy, Kyushu Cancer Center, were reviewed retrospectively. All patients were admitted 15-30 mg Pentazocine and O.25 mg Atropine sulfate as the premedication. Thirty to 60 minutes after, the tip of tongue and the lesion were put under local infiltration anesthesia with 10-20 ml of 1-2% Lidocaine or 1% Procaine HCL. The tongue was pulled out by the thread of the tip. Partial resection or wide excisional biopsy of the tumor was performed to reduce the tumor volume and the radiation volume and also to estimate Jacobson-Yamamoto's grading histologically in the bottom of the tumor. Radium needles or Iridium hair pins were implanted in the lesion following Paterson's method, and left for 3-10 days to the minimum tumor dose of 70 Gy calculated by computer. The secondary neck lymph node metastases rates of the patients with T1 carcinoma of the tongue were 27% and 53% in the Jacobson-Yamamoto grading 1-3 group and 4 group. The rates of the patients with T2 were 28% and 82% in 1-3 group and 4 group. Two year's local control rates of the patients with T1 and T2 carcinoma were 95% and 82%. Two year's late reaction (mandibular bone exposure or refractory ulcer of soft tissue) rates of the patients with T1 and T2 carcinoma were 7% and 12%. (author)

  6. Parameterization of brachytherapy source phase space file for Monte Carlo-based clinical brachytherapy dose calculation

    International Nuclear Information System (INIS)

    A common approach to implementing the Monte Carlo method for the calculation of brachytherapy radiation dose deposition is to use a phase space file containing information on particles emitted from a brachytherapy source. However, the loading of the phase space file during the dose calculation consumes a large amount of computer random access memory, imposing a higher requirement for computer hardware. In this study, we propose a method to parameterize the information (e.g., particle location, direction and energy) stored in the phase space file by using several probability distributions. This method was implemented for dose calculations of a commercial Ir-192 high dose rate source. Dose calculation accuracy of the parameterized source was compared to the results observed using the full phase space file in a simple water phantom and in a clinical breast cancer case. The results showed the parameterized source at a size of 200 kB was as accurate as the phase space file represented source of 1.1 GB. By using the parameterized source representation, a compact Monte Carlo job can be designed, which allows an easy setup for parallel computing in brachytherapy planning. (paper)

  7. Parameterization of brachytherapy source phase space file for Monte Carlo-based clinical brachytherapy dose calculation

    Science.gov (United States)

    Zhang, M.; Zou, W.; Chen, T.; Kim, L.; Khan, A.; Haffty, B.; Yue, N. J.

    2014-01-01

    A common approach to implementing the Monte Carlo method for the calculation of brachytherapy radiation dose deposition is to use a phase space file containing information on particles emitted from a brachytherapy source. However, the loading of the phase space file during the dose calculation consumes a large amount of computer random access memory, imposing a higher requirement for computer hardware. In this study, we propose a method to parameterize the information (e.g., particle location, direction and energy) stored in the phase space file by using several probability distributions. This method was implemented for dose calculations of a commercial Ir-192 high dose rate source. Dose calculation accuracy of the parameterized source was compared to the results observed using the full phase space file in a simple water phantom and in a clinical breast cancer case. The results showed the parameterized source at a size of 200 kB was as accurate as the phase space file represented source of 1.1 GB. By using the parameterized source representation, a compact Monte Carlo job can be designed, which allows an easy setup for parallel computing in brachytherapy planning.

  8. Intraluminal brachytherapy in the treatment of bile duct carcinoma

    International Nuclear Information System (INIS)

    Patients with carcinoma of the biliary tract have a poor prognosis because the disease is often unresectable at diagnosis. Intraluminal brachytherapy has been reported as an effective treatment for localized cholangiocarcinoma of the biliary tract. The purpose of our study was to analyse the survival of patients treated with brachytherapy and make some recommendations regarding its use. Fifteen patients underwent brachytherapy via a trans-hepatic approach at the Royal Prince Alfred Hospital from 1983 to 1993. Eleven patients had low-dose rate brachytherapy and four patients had high-dose rate treatment. There were nine males and six females. The median age was 64 years. Other treatment included bypass procedures in two patients, endoscopic stents in 14 patients and external beam irradiation in one patient. The median survival was 12.5 months and 47% of the patients survived 1 year. The only complication reported was cholangitis which was seen in one patient. There did not seem to be any difference in survival or complications between low- and high-dose rate brachytherapy. It is concluded that the addition of intraluminal brachytherapy after biliary drainage prolongs survival and is a safe and effective treatment, but patients still have a high rate of local failure, and further studies will be needed to address this problem. (authors)

  9. The correlation between DVH at CT-image based 192Ir intracavitary brachytherapy and effects or complications for patients with locally advanced cervical cancer

    International Nuclear Information System (INIS)

    Objective: To investigate the correlation between dose volume histogram (DVH) of tumor targets and organs at risk (OAR) at CT-image based 192Ir brachytherapy and effects and complications for patients with locally advanced cervical cancer. Methods: Ten patients with FIGO stage IIIB cervical cancer received CT image-based 192Ir intracavitary brachytherapy after 54 Gy of three-dimensional four-field pelvic external beam radiotherapy and concurrent weekly cisplatin chemotherapy. Before each brachytherapy, CT images were acquired with applicators in place. Gross tumor volume (GTV), clinical target volume (CTV) and OAR were contoured and inverse treatment planning was designed and optimized by using PLATO treatment planning system. Conventional two-dimensional plans were also designed for comparison.The total intracavitary brachytherapy dose was 30-42 Gy in 5-7 fractions. The patients were followed, and the local control and complications were analyzed. The biologically equivalent dose (BED) and biologically equivalent dose in 2 Gy fractions (BED2) for GTV, CTV and OAR were calculated. The minimum dose in the most irradiated tissue volume 2 cm3 (D2cm3)adjacent to the applicator of the sigmoid colon, rectum,bladder and small bowel was determined from the DVH. Results: The 1-year local pelvic control rate was 90% and grade 1-2 late complication of sigmoid colon and rectum was 50%. No grade 3 or more complications developed. On CT-image based planning, the BED and BED2 to 90% of the CTV (D90) were 95.50 Gy ± 7. 81 Gy and 79. 73 Gy ± 6. 57 Gy. The BED and BED2 to 90% of the GTV (D90) were 101.86 Gy ± 7.27 Gy and 84. 95 Gy ± 6. 1 Gy. The volume enclosed by 90% of prescribed dose (V90) for GTV and CTV were 92% ±4% and 87% ±7% respectively. The D2cm3 for rectum and sigmoid colon were 74. 97 Gy ±1.64 Gy and 67. 93 Gy ± 4. 30 Gy(EQD2, α/β = 3). Comparing with 2D brachytherapy plans , CT - image based planning has improved D90 and V90 for GTV and CTV with similar dose

  10. Predictive Factors and Management of Rectal Bleeding Side Effects Following Prostate Cancer Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Price, Jeremy G. [Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, New York (United States); Stone, Nelson N. [Department of Urology, Icahn School of Medicine at Mount Sinai, New York, New York (United States); Stock, Richard G., E-mail: Richard.Stock@mountsinai.org [Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, New York (United States)

    2013-08-01

    Purpose: To report on the incidence, nature, and management of rectal toxicities following individual or combination brachytherapy following treatment for prostate cancer over a 17-year period. We also report the patient and treatment factors predisposing to acute ≥grade 2 proctitis. Methods and Materials: A total of 2752 patients were treated for prostate cancer between October 1990 and April 2007 with either low-dose-rate brachytherapy alone or in combination with androgen depletion therapy (ADT) or external beam radiation therapy (EBRT) and were followed for a median of 5.86 years (minimum 1.0 years; maximum 19.19 years). We investigated the 10-year incidence, nature, and treatment of acute and chronic rectal toxicities following BT. Using univariate, and multivariate analyses, we determined the treatment and comorbidity factors predisposing to rectal toxicities. We also outline the most common and effective management for these toxicities. Results: Actuarial risk of ≥grade 2 rectal bleeding was 6.4%, though notably only 0.9% of all patients required medical intervention to manage this toxicity. The majority of rectal bleeding episodes (72%) occurred within the first 3 years following placement of BT seeds. Of the 27 patients requiring management for their rectal bleeding, 18 underwent formalin treatment and nine underwent cauterization. Post-hoc univariate statistical analysis revealed that coronary artery disease (CAD), biologically effective dose, rectal volume receiving 100% of the prescription dose (RV100), and treatment modality predict the likelihood of grade ≥2 rectal bleeding. Only CAD, treatment type, and RV100 fit a Cox regression multivariate model. Conclusions: Low-dose-rate prostate brachytherapy is very well tolerated and rectal bleeding toxicities are either self-resolving or effectively managed by medical intervention. Treatment planning incorporating adjuvant ADT while minimizing RV100 has yielded the best toxicity-free survival following

  11. Novel tools for stepping source brachytherapy treatment planning: Enhanced geometrical optimization and interactive inverse planning

    Energy Technology Data Exchange (ETDEWEB)

    Dinkla, Anna M., E-mail: a.m.dinkla@amc.uva.nl; Laarse, Rob van der; Koedooder, Kees; Petra Kok, H.; Wieringen, Niek van; Pieters, Bradley R.; Bel, Arjan [Department of Radiation Oncology, Academic Medical Center Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ (Netherlands)

    2015-01-15

    Purpose: Dose optimization for stepping source brachytherapy can nowadays be performed using automated inverse algorithms. Although much quicker than graphical optimization, an experienced treatment planner is required for both methods. With automated inverse algorithms, the procedure to achieve the desired dose distribution is often based on trial-and-error. Methods: A new approach for stepping source prostate brachytherapy treatment planning was developed as a quick and user-friendly alternative. This approach consists of the combined use of two novel tools: Enhanced geometrical optimization (EGO) and interactive inverse planning (IIP). EGO is an extended version of the common geometrical optimization method and is applied to create a dose distribution as homogeneous as possible. With the second tool, IIP, this dose distribution is tailored to a specific patient anatomy by interactively changing the highest and lowest dose on the contours. Results: The combined use of EGO–IIP was evaluated on 24 prostate cancer patients, by having an inexperienced user create treatment plans, compliant to clinical dose objectives. This user was able to create dose plans of 24 patients in an average time of 4.4 min/patient. An experienced treatment planner without extensive training in EGO–IIP also created 24 plans. The resulting dose-volume histogram parameters were comparable to the clinical plans and showed high conformance to clinical standards. Conclusions: Even for an inexperienced user, treatment planning with EGO–IIP for stepping source prostate brachytherapy is feasible as an alternative to current optimization algorithms, offering speed, simplicity for the user, and local control of the dose levels.

  12. Gamma knife radiosurgery for uveal melanoma ineligible for brachytherapy by the Collaborative Ocular Melanoma Study criteria

    Directory of Open Access Journals (Sweden)

    Nicola G Ghazi

    2008-09-01

    Full Text Available Nicola G Ghazi1, Christopher S Ketcherside1, Jason Sheehan2, Brian P Conway11Department of Ophthalmology and 2Neurosurgery, University of Virginia Health System, Charlottesville, VA, USAPurpose: To report outcomes of Gamma Knife radiosurgery (GKRS in treating uveal melanoma lesions ineligible for standard brachytherapy.Methods: A retrospective interventional case series of uveal melanoma patients treated with GKRS between 1996 and 2004 was performed. The main outcome measures were local tumor control, metastasis, and death.Results: Four patients with uveal melanoma treated with GKS were identified. Three tumors involved the ciliary body and one was macular with its border within 2 mm of the optic disc. Adequate globe stabilization was achieved by retrobulbar anesthesia in all cases. Pretreatment mean visual acuity was 20/30. Tumor volume as determined by magnetic resonance imaging ranged from 0.05 to 0.30 cc. Ultrasonographic greatest tumor diameter and height ranged from 11 to 18 mm (mean 14.5 mm and 2.9 to 4.5 mm (mean 3.6 mm, respectively. The peripheral dose varied from 16.5 to 30 Gray. Local tumor control was achieved in all cases over a follow up period of 6 to 96 months. Mean final visual acuity was 20/50. One eye was enucleated for neovascular glaucoma and one patient died from liver and lung metastasis.Conclusions: GKRS for uveal melanoma appears to be safe and effective. The metastasis and mortality rates appear to be comparable to those following brachytherapy and enucleation. Moreover, local tumor control and enucleation rates are similar to those following brachytherapy. The findings in this small series suggest a role for GKRS in the treatment of selected cases of uveal melanomas.Keywords: gamma knife radiosurgery, radiation therapy, uveal melanoma

  13. Novel tools for stepping source brachytherapy treatment planning: Enhanced geometrical optimization and interactive inverse planning

    International Nuclear Information System (INIS)

    Purpose: Dose optimization for stepping source brachytherapy can nowadays be performed using automated inverse algorithms. Although much quicker than graphical optimization, an experienced treatment planner is required for both methods. With automated inverse algorithms, the procedure to achieve the desired dose distribution is often based on trial-and-error. Methods: A new approach for stepping source prostate brachytherapy treatment planning was developed as a quick and user-friendly alternative. This approach consists of the combined use of two novel tools: Enhanced geometrical optimization (EGO) and interactive inverse planning (IIP). EGO is an extended version of the common geometrical optimization method and is applied to create a dose distribution as homogeneous as possible. With the second tool, IIP, this dose distribution is tailored to a specific patient anatomy by interactively changing the highest and lowest dose on the contours. Results: The combined use of EGO–IIP was evaluated on 24 prostate cancer patients, by having an inexperienced user create treatment plans, compliant to clinical dose objectives. This user was able to create dose plans of 24 patients in an average time of 4.4 min/patient. An experienced treatment planner without extensive training in EGO–IIP also created 24 plans. The resulting dose-volume histogram parameters were comparable to the clinical plans and showed high conformance to clinical standards. Conclusions: Even for an inexperienced user, treatment planning with EGO–IIP for stepping source prostate brachytherapy is feasible as an alternative to current optimization algorithms, offering speed, simplicity for the user, and local control of the dose levels

  14. Stereotactic intracavitary brachytherapy with P-32 for cystic craniopharyngiomas in children

    International Nuclear Information System (INIS)

    Although microsurgery remains the first-line treatment, gross total resection of cystic craniopharyngeomas (CP) is associated with significant morbidity and mortality and the addition of external irradiation to subtotal resection proves to achieve similar tumor control. However, concern regarding long-term morbidity associated with external irradiation in children still remains. With this retrospective analysis, the authors emphasize intracavitary brachytherapy using phosphorus-32 (P-32) as a treatment option for children with cystic CP. Between 1992 and 2009, 17 children (median age 15.4 years; range 7-18 years) with cystic CP underwent intracavitary brachytherapy using P-32. Eleven patients were treated for recurrent tumor cysts; 6 patients were treated primarily. MR imaging revealed solitary cysts in 7 patients; 10 patients had mixed solid-cystic lesions (median tumor volume 11.1 ml; range 0.5-78.9 ml). The median follow-up time was 61.9 months (range 16.9-196.6 months). Local cyst control could be achieved in 14 patients (82 %). Three patients showed progression of the treated cystic formation (in-field progression) after a median time of 8.3 months (range 5.3-10.3 months), which led to subsequent interventions. The development of new, defined cysts and progression of solid tumor parts (out-of-field progression) occurred in 5 patients and led to additional interventions in 4 cases. There was neither surgery-related permanent morbidity nor mortality in this study. The overall progression-free survival was 75, 63, and 52 % after 1, 3, and 5 years, respectively. Intracavitary brachytherapy using P-32 represents a safe and effective treatment option for children harboring cystic CP, even as primary treatment. However, P-32 does not clearly affect growth of solid tumor parts or the development of new cystic formations. (orig.)

  15. Brachytherapy as Part of the Multidisciplinary Treatment of Childhood Rhabdomyosarcomas of the Orbit

    International Nuclear Information System (INIS)

    Introduction: Rhabdomyosarcomas in the orbit form a major challenge in terms of cure without severe side effects in childhood cancer. Our specifically developed approach consists of applying brachytherapy to the tumor area using a mold. Analysis of its results for 20 patients was performed. Methods and Materials: Thirteen patients were referred for brachytherapy if complete remission was not reached after chemotherapy (Group I) and 7 in case of relapse (Group II). In total, 20 patients were treated between 1991 and 2007. Four were female and 16 male; their ages varied from 1.1 to 16.5 years, with an average of 8.5 years. After macroscopically radical tumor resection, molds with holes drilled to hold flexible catheters were placed into the orbit. The dose to the clinical target volume was 40-50 Gy. Results: Three patients of Group I and 1 patient of Group II developed local recurrence and underwent exenteration. The progression-free survival in Group I is 71.9% (95% CI 0.44-1.0), in Group II 85.7% (95% CI 0.60-1.0), the overall 5-year survival rate of the entire group is 92% (95% CI 0.76-1.0). During treatment, no serious side effects were observed. The late complications encountered in this series were cataract in 2 patients, 1 of whom also developed mild retinopathy. Two patients with ptosis needed surgical correction. No facial asymmetries or bone growth anomalies were observed. Conclusions: This entire procedure of brachytherapy with a mold offers a tailor-made treatment for orbital rhabdomyosarcomas with only few signs of late toxicity.

  16. Proposal of a new grading system for evaluation of tongue hemiatrophy as a late effect of brachytherapy for oral tongue cancer

    International Nuclear Information System (INIS)

    Purpose: To evaluate tongue hemiatrophy as a late effect of brachytherapy, a new grading system was designed and applied to patients who had received low dose rate (LDR) or high dose rate (HDR) brachytherapy for early tongue cancer. Methods and materials: Between December 1998 and April 1999, 49 patients who had received brachytherapy for early tongue cancer (T1/T2=22:27) at Osaka University Hospital were investigated. All patients had undergone either LDR or HDR brachytherapy with Ir-192 (LDR/HDR=30:19) between 1980 and 1998. Atrophic changes in their tongue were classified into four categories (G0-G3): G3, not able to protrude the tongue beyond incisors; G2, hemiatrophy is seen on the irradiated side in the resting position of the tongue; G1, deviation of the tip of the tongue to the irradiated side is seen when protruded; and G0, none of these signs. The relationship between tongue hemiatrophy and tumor factors, treatment factors, and patients' functional impairment was then investigated. The median time from treatment to assessment was 75 months (range 8-219 months). Volume index was defined as the number of needles that were implanted vertically into the tongue. Results: Fourteen patients were classified as G0, 29 as G1, five as G2, and one as G3. None of the G0 patients showed any speech or swallowing dysfunction, pain or contracted feeling, or general dissatisfaction with post-treatment tongue status. There was a tendency for such problems to increase with the tongue hemiatrophy grade. The frequency of T2 and non-superficial type tumors also tended to increase with the tongue hemiatrophy grade. The volume index of the G2-3 hemiatrophy group was significantly larger than that of the G0-1 group (P=0.041). Conclusion: This new grading system makes evaluation of atrophic changes in the tongue after brachytherapy easy and effective

  17. Predictors of Metastatic Disease After Prostate Brachytherapy

    International Nuclear Information System (INIS)

    Purpose: To identify predictors of metastatic disease after brachytherapy treatment for prostate cancer. Methods and Materials: All patients who received either brachytherapy alone (implant) or brachytherapy in combination with external beam radiation therapy for treatment of localized prostate cancer at The Mount Sinai Hospital between June 1990 and March 2007 with a minimum follow-up of 2 years were included. Univariate and multivariable analyses were performed on the following variables: risk group, Gleason score (GS), clinical T stage, pretreatment prostate-specific antigen level, post-treatment prostate-specific antigen doubling time (PSA-DT), treatment type (implant vs. implant plus external beam radiation therapy), treatment era, total biological effective dose, use of androgen deprivation therapy, age at diagnosis, and race. PSA-DT was analyzed in the following ordinate groups: 0 to 90 days, 91 to 180 days, 180 to 360 days, and greater than 360 days. Results: We included 1,887 patients in this study. Metastases developed in 47 of these patients. The 10-year freedom from distant metastasis (FFDM) rate for the entire population was 95.1%. Median follow-up was 6 years (range, 2–15 years). The only two significant predictors of metastatic disease by multivariable analyses were GS and PSA-DT (p < 0.001 for both variables). Estimated 10-year FFDM rates for GS of 6 or less, GS of 7, and GS of 8 or greater were 97.9%, 94.3%, and 76.1%, respectively (p < 0.001). Estimated FFDM rates for PSA-DT of 0 to 90 days, 91 to 180 days, 181 to 360 days, and greater than 360 days were 17.5%, 67.9%, 74%, and 94.8%, respectively (p < 0.001). Estimated 10-year FFDM rates for the low-, intermediate-, and high-risk groups were 98.6%, 96.2%, and 86.7%, respectively. A demographic shift to patients presenting with higher-grade disease in more recent years was observed. Conclusions: GS and post-treatment PSA-DT are both statistically significant independent predictors of metastatic

  18. Dose optimization of intra-operative high dose rate interstitial brachytherapy implants for soft tissue sarcoma

    Directory of Open Access Journals (Sweden)

    Jamema Swamidas

    2009-01-01

    Full Text Available Objective : A three dimensional (3D image-based dosimetric study to quantitatively compare geometric vs. dose-point optimization in combination with graphical optimization for interstitial brachytherapy of soft tissue sarcoma (STS. Materials and Methods : Fifteen consecutive STS patients, treated with intra-operative, interstitial Brachytherapy, were enrolled in this dosimetric study. Treatment plans were generated using dose points situated at the "central plane between the catheters", "between the catheters throughout the implanted volume", at "distances perpendicular to the implant axis" and "on the surface of the target volume" Geometrically optimized plans had dose points defined between the catheters, while dose-point optimized plans had dose points defined at a plane perpendicular to the implant axis and on the target surface. Each plan was graphically optimized and compared using dose volume indices. Results : Target coverage was suboptimal with coverage index (CI = 0.67 when dose points were defined at the central plane while it was superior when the dose points were defined at the target surface (CI=0.93. The coverage of graphically optimized plans (GrO was similar to non-GrO with dose points defined on surface or perpendicular to the implant axis. A similar pattern was noticed with conformity index (0.61 vs. 0.82. GrO were more conformal and less homogeneous compared to non-GrO. Sum index was superior for dose points defined on the surface of the target and relatively inferior for plans with dose points at other locations (1.35 vs. 1.27. Conclusions : Optimization with dose points defined away from the implant plane and on target results in superior target coverage with optimal values of other indices. GrO offer better target coverage for implants with non-uniform geometry and target volume.

  19. Effectiveness of interstitial brachytherapy HDR combined with surgery in the treatment of locally advanced carcinoma of the vulva

    International Nuclear Information System (INIS)

    To asses the potential improvement of local control and survival of patients operated for stage III carcinoma of the vulva with adjuvant interstitial brachytherapy HDR. The potential for sparing the urethral and anal sphincter was also examined. Thirty one patients with stage III carcinoma of vulva were treated primarily with radical vulctomy. Due to proximity of tumor to the urethra or anus flexible or rigid catheters were placed in the involved area for perioperative interstitial brachytherapy HDR. Total dose delivered to the treatment volume was 30 Gy (6Gy per fraction) or 25 Gy (6 Gy per fraction) if external beam irradiation was given. Follow-up ranged from 12 to 48 months (median 29 months). The 3-year overall survival was 74 %. Eight patients (26 %) died of the disease. Eleven patients (34.5 %) recurred: 8 locally, 3 had distant metastases. A multivariate analysis indicated that tumor size and nodal status were independent prognostic factors for survival and local control. Eleven patients (34.5%) developed grade 3 or 4 (EORTC scoring system) complications. Preservation of sphincter function was obtained in all but one patient. The addition of interstitial brachytherapy HDR to primary surgery for locally advanced carcinoma of the vulva has a potential for improving local control and survival. By limiting the need for exonerative surgery, it also contributes to a significantly better quality of due to preservation of the urethra and anus. Further improvement in the stability of the catheters is needed to improve the incidence of severe complications. (author)

  20. Quality assurance for high dose rate brachytherapy treatment planning optimization: using a simple optimization to verify a complex optimization

    International Nuclear Information System (INIS)

    As dose optimization for high dose rate brachytherapy becomes more complex, it becomes increasingly important to have a means of verifying that optimization results are reasonable. A method is presented for using a simple optimization as quality assurance for the more complex optimization algorithms typically found in commercial brachytherapy treatment planning systems. Quality assurance tests may be performed during commissioning, at regular intervals, and/or on a patient specific basis. A simple optimization method is provided that optimizes conformal target coverage using an exact, variance-based, algebraic approach. Metrics such as dose volume histogram, conformality index, and total reference air kerma agree closely between simple and complex optimizations for breast, cervix, prostate, and planar applicators. The simple optimization is shown to be a sensitive measure for identifying failures in a commercial treatment planning system that are possibly due to operator error or weaknesses in planning system optimization algorithms. Results from the simple optimization are surprisingly similar to the results from a more complex, commercial optimization for several clinical applications. This suggests that there are only modest gains to be made from making brachytherapy optimization more complex. The improvements expected from sophisticated linear optimizations, such as PARETO methods, will largely be in making systems more user friendly and efficient, rather than in finding dramatically better source strength distributions. (paper)

  1. Comparison of Oncentra® Brachy IPSA and graphical optimisation techniques: a case study of HDR brachytherapy head and neck and prostate plans

    Energy Technology Data Exchange (ETDEWEB)

    Jameson, Michael G, E-mail: michael.jameson@sswahs.nsw.gov.au [Liverpool and Macarthur Cancer Therapy Centres, Liverpool, New South Wales (Australia); Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales (Australia); Ingham Institute of Applied Medical Research, Liverpool, New South Wales (Australia); Ohanessian, Lucy [Liverpool and Macarthur Cancer Therapy Centres, Liverpool, New South Wales (Australia); Batumalai, Vikneswary [Liverpool and Macarthur Cancer Therapy Centres, Liverpool, New South Wales (Australia); Ingham Institute of Applied Medical Research, Liverpool, New South Wales (Australia); South Western Sydney Clinical School, School of Medicine, University of New South Wales (Australia); Patel, Virendra [Liverpool and Macarthur Cancer Therapy Centres, Liverpool, New South Wales (Australia); Holloway, Lois C [Liverpool and Macarthur Cancer Therapy Centres, Liverpool, New South Wales (Australia); Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales (Australia); Ingham Institute of Applied Medical Research, Liverpool, New South Wales (Australia); South Western Sydney Clinical School, School of Medicine, University of New South Wales (Australia); Institute of Medical Physics, School of Physics, University of Sydney, Sydney, New South Wales (Australia)

    2015-06-15

    There are a number of different dwell positions and time optimisation options available in the Oncentra® Brachy (Elekta Brachytherapy Solutions, Veenendaal, The Netherlands) brachytherapy treatment planning system. The purpose of this case study was to compare graphical (GRO) and inverse planning by simulated annealing (IPSA) optimisation techniques for interstitial head and neck (HN) and prostate plans considering dosimetry, modelled radiobiology outcome and planning time. Four retrospective brachytherapy patients were chosen for this study, two recurrent HN and two prostatic boosts. Manual GRO and IPSA plans were generated for each patient. Plans were compared using dose–volume histograms (DVH) and dose coverage metrics including; conformity index (CI), homogeneity index (HI) and conformity number (CN). Logit and relative seriality models were used to calculate tumour control probability (TCP) and normal tissue complication probability (NTCP). Approximate planning time was also recorded. There was no significant difference between GRO and IPSA in terms of dose metrics with mean CI of 1.30 and 1.57 (P > 0.05) respectively. IPSA achieved an average HN TCP of 0.32 versus 0.12 for GRO while for prostate there was no significant difference. Mean GRO planning times were greater than 75 min while average IPSA planning times were less than 10 min. Planning times for IPSA were greatly reduced compared to GRO and plans were dosimetrically similar. For this reason, IPSA makes for a useful planning tool in HN and prostate brachytherapy.

  2. Comparison of Oncentra® Brachy IPSA and graphical optimisation techniques: a case study of HDR brachytherapy head and neck and prostate plans

    International Nuclear Information System (INIS)

    There are a number of different dwell positions and time optimisation options available in the Oncentra® Brachy (Elekta Brachytherapy Solutions, Veenendaal, The Netherlands) brachytherapy treatment planning system. The purpose of this case study was to compare graphical (GRO) and inverse planning by simulated annealing (IPSA) optimisation techniques for interstitial head and neck (HN) and prostate plans considering dosimetry, modelled radiobiology outcome and planning time. Four retrospective brachytherapy patients were chosen for this study, two recurrent HN and two prostatic boosts. Manual GRO and IPSA plans were generated for each patient. Plans were compared using dose–volume histograms (DVH) and dose coverage metrics including; conformity index (CI), homogeneity index (HI) and conformity number (CN). Logit and relative seriality models were used to calculate tumour control probability (TCP) and normal tissue complication probability (NTCP). Approximate planning time was also recorded. There was no significant difference between GRO and IPSA in terms of dose metrics with mean CI of 1.30 and 1.57 (P > 0.05) respectively. IPSA achieved an average HN TCP of 0.32 versus 0.12 for GRO while for prostate there was no significant difference. Mean GRO planning times were greater than 75 min while average IPSA planning times were less than 10 min. Planning times for IPSA were greatly reduced compared to GRO and plans were dosimetrically similar. For this reason, IPSA makes for a useful planning tool in HN and prostate brachytherapy

  3. Differentiation between radionecrosis and malignant brain tumor recurrence in patients treated by 192Ir HDR brachytherapy: 1H - MRS analysis of the brain metabolic spectrum

    International Nuclear Information System (INIS)

    Computerized tomography (CT) with contrast infusion and Magnetic Resonance Imaging (MRI) do not differentiate radionecrosis and malignant tumor recurrence. Proton Magnetic Resonance Spectroscopy seems to be a new radiological method that could solve this problem. The aim of the study was to evaluate the usability of 1H - MRS in patients after brachytherapy. Sixty patients were treated by 192Ir HDR brachytherapy because of malignant brain tumors (gliomas and brain metastases). Prospectively, 4 months after brachytherapy, 24 patients underwent MRI and 1H - MRS examinations. All patients qualified for the prospective study were in good general condition before and after the brachytherapy (Karnofsky Performance Score (KPS) > 60%). Combined assessment of MRI and 1H - MRS gave us the possibility to differentiate the observed pathological changes. In 18 cases (75%) there was a decrease in tumor volume. The tumor infiltration area was larger than the necrotic area in 5 cases. An isolated recurrence mass was observed in only one case. Neurosurgical brain decompression with pathological mass resection was needed in 6 patients with increased intracranial pressure and enhanced neurological deficits. Histopathological examination confirmed the diagnosis revealed in the 1H - MRS examination in each case. Proton Magnetic Resonance Spectroscopy is helpful in evaluating the influence of radiation on the tumor and the surrounding brain tissue. Moreover, it solves the problem of differentiating between radionecrosis and tumor recurrence. (author)

  4. Epoxy resins used to seal brachytherapy seed

    International Nuclear Information System (INIS)

    Prostate cancer treatment with brachytherapy is recommended for patients with cancer at an early stage. In this treatment, small radioactive seeds are implanted directly in the prostate gland. These seeds are composed at least of one radionuclide carrier and an X-ray marker enclosed within a metallic tube usually sealed by laser process. This process is expensive and, furthermore, it can provoke a partial volatilization of the radionuclide and change the isotropy in dose distribution around the seed. In this paper, we present a new sealing process using epoxy resin. Three kinds of resins were utilized and characterized by scanning electron microscopy (SEM), energy dispersive X ray (EDS) and by differential scanning calorimetry (DSC) after immersion in simulated body fluid (SBF) and in sodium iodine solution (NaI). The sealing process showed excellent potential to replace the sealing laser usually employed. (author)

  5. Balloon brachytherapy: how I do it

    International Nuclear Information System (INIS)

    To describe the technical aspects of insertion of MammoSite Radiation System, cosmetic issues, patients selection for the procedure and their satisfaction. Seventy patients underwent brachytherapy after insertion of the MammoSite catheter and received a boost HDR totaling 1500 cGy in six fractions over a three day period. Each patient then received 5 weeks of external beam radiotherapy to the whole breast. Only T1-2 patients were treated. All patients had excellent cosmetic results. The complications (minimal skin erythema, hematoma, balloon leak, seroma, were minimal. The safety and effectiveness of the MammoSite Radiation Therapy System as a replacement for whole breast irradiation in the treatment of breast cancer has not yet been established. (author)

  6. Verification of ophthalmic brachytherapy treatment planning

    International Nuclear Information System (INIS)

    Ophthalmic brachytherapy dose calculations were performed as an independent verification of commercial dosimetry software (BEBIG Plaque Simulator). Excel spreadsheets were constructed to follow the formalism of the AAPM Task Group No. 43. As a software commissioning tool, TG43 seed-based coordinates were reformatted to be compatible with plaque-based BEBIG dose tables for centrally positioned seeds. Plaque central axis doses were also calculated for rings of seeds. Close agreement with BEBIG doses was obtained in both cases. Tailored spreadsheet versions were subsequently created to verify patient treatment plans. Treatment time and dose to a specified central-axis point are calculated for ROPES plaques fully loaded with I-125 model 6702 seeds. Copyright (2001) Australasian College of Physical Scientists and Engineers in Medicine

  7. 10 CFR 35.490 - Training for use of manual brachytherapy sources.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Training for use of manual brachytherapy sources. 35.490 Section 35.490 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Manual Brachytherapy § 35.490 Training for use of manual brachytherapy sources. Except as provided in § 35.57, the...

  8. 10 CFR 35.2432 - Records of calibration measurements of brachytherapy sources.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Records of calibration measurements of brachytherapy... Records § 35.2432 Records of calibration measurements of brachytherapy sources. (a) A licensee shall maintain a record of the calibrations of brachytherapy sources required by § 35.432 for 3 years after...

  9. Eradicative brachytherapy with hyaluronate gel injection into pararectal space in treatment of bulky vaginal stump recurrence of uterine cancer

    International Nuclear Information System (INIS)

    The purpose of this study is to develop a procedure for eradicative brachytherapy that can deliver a curative boost dose to bulky (>4 cm) vaginal stump recurrence of uterine cancer without risk of damaging surrounding organs. We separated risk organs (the rectum and sigmoid) from the target during brachytherapy, with a hyaluronate gel injection into the pararectal space via the percutaneous paraperineal approach under local anesthesia. The rectum anchored to the sacrum by native ligament was expected to shift posteriorly. We encountered a patient with bulky stump recurrence of uterine cancer, approximately 8 cm in maximum diameter. She was complaining of abdominal pain and constipation due to bowel encasement. Following 50 Gy of external beam radiotherapy, we applied a single fraction of brachytherapy under gel separation and delivered 14.5 Gy (50.8 GyE: equivalent dose in 2-Gy fraction calculated with linear quadratic model at α/β=3) to the target. The gel injection procedure was completed in 30 min without complications. A total irradiation dose of 100.8 GyE was delivered to the target and the cumulative minimum dose to the most irradiated rectosigmoidal volume of 2 cc (cumulative D2cc) was calculated as 58.5 GyE with gel injection, and was estimated to be 96 GyE without. Over three years, the local stump tumor has completely disappeared, with no complications. Brachytherapy with a pararectal gel injection can be a safe and effective eradicative option for bulky vaginal stump recurrence. (author)

  10. Phase I Trial of Gross Total Resection, Permanent Iodine-125 Brachytherapy, and Hyperfractionated Radiotherapy for Newly Diagnosed Glioblastoma Multiforme

    International Nuclear Information System (INIS)

    Purpose: To evaluate the feasibility of gross total resection and permanent I-125 brachytherapy followed by hyperfractionated radiotherapy for patients with newly diagnosed glioblastoma. Methods and Materials: From April 1999 to May 2002, 21 patients with glioblastoma multiforme were enrolled on a Phase I protocol investigating planned gross total resection and immediate placement of permanent I-125 seeds, followed by postoperative hyperfractionated radiotherapy to a dose of 60 Gy at 100 cGy b.i.d., 5 days per week. Median age and Karnofsky performance status were 50 years (range, 32-65 years) and 90 (range, 70-100), respectively. Toxicity was assessed according to Radiation Therapy Oncology Group criteria. Results: Eighteen patients completed treatment according to protocol. The median preoperative tumor volume on magnetic resonance imaging was 18.6 cm3 (range, 4.4-41.2 cm3). The median brachytherapy dose measured 5 mm radially outward from the resection cavity was 400 Gy (range, 200-600 Gy). Ten patients underwent 12 reoperations, with 11 of 12 reoperations demonstrating necrosis without evidence of tumor. Because of high toxicity, the study was terminated early. Median progression-free survival and overall survival were 57 and 114 weeks, respectively, but not significantly improved compared with historical patients treated at University of California, San Francisco, with gross total resection and radiotherapy without brachytherapy. Conclusions: Treatment with gross total resection and permanent I-125 brachytherapy followed by hyperfractionated radiotherapy as performed in this study results in high toxicity and reoperation rates, without demonstrated improvement in survival

  11. Interstitial high-dose-rate brachytherapy in locally advanced and recurrent vulvar cancer

    Science.gov (United States)

    Białas, Brygida; Fijałkowski, Marek; Wojcieszek, Piotr; Szlag, Marta; Cholewka, Agnieszka; Ślęczka, Maciej; Kołosza, Zofia

    2016-01-01

    Purpose The aim of the study was to report our experience with high-dose-rate interstitial brachytherapy (HDR-ISBT) in locally advanced and recurrent vulvar cancer. Material and methods Between 2004 and 2014, fourteen women with locally advanced or recurrent vulvar cancer were treated using HDR-ISBT in our Centre. High-dose-rate interstitial brachytherapy was performed as a separate treatment or in combination with external beam radiotherapy (EBRT) (given prior to brachytherapy). Results Patients were divided into: group I (n = 6) with locally advanced tumors, stages III-IVA after an incisional biopsy only, and group II (n = 8) with recurrent vulvar cancer after previous radical surgery. In group I, median follow up was 12 months (range 7-18 months); 1-year overall survival (OS) was 83%. Transient arrest of cancer growth or tumor regression was noticed in all patients but 4/6 developed relapse. Median time to failure was 6.3 months (range 3-11 months). The 1-year progression-free survival (PFS) was 33%. In group II, median follow up was 28 months (range 13-90 months). The 1-year and 3-year OS was 100% and 80%, respectively. The arrest of cancer growth or tumor regression was achieved in all patients. In 4/8 patients neither clinical nor histological symptoms of relapse were observed but 4/8 women experienced relapse. Median time to failure was 31 months (range 13-76 months). The 1-year and 3-year PFS was 100% and 62.5%, respectively. Two patients (14.3%) in group II had severe late toxicity (G3). Conclusions High-dose-rate interstitial brachytherapy is a well-tolerated treatment option in selected patients with advanced or recurrent vulvar cancer. It is a safe and effective treatment modality for advanced and recurrent vulvar cancer, yielding good local control with acceptable late treatment related side effects. In our study, patients with recurrent vulvar cancer had better results in HDR-ISBT treatment, probably because of the smaller tumor volume. This

  12. Sensitivity of low energy brachytherapy Monte Carlo dose calculations to uncertainties in human tissue composition

    International Nuclear Information System (INIS)

    Purpose: The objective of this work is to assess the sensitivity of Monte Carlo (MC) dose calculations to uncertainties in human tissue composition for a range of low photon energy brachytherapy sources: 125I, 103Pd, 131Cs, and an electronic brachytherapy source (EBS). The low energy photons emitted by these sources make the dosimetry sensitive to variations in tissue atomic number due to the dominance of the photoelectric effect. This work reports dose to a small mass of water in medium Dw,m as opposed to dose to a small mass of medium in medium Dm,m. Methods: Mean adipose, mammary gland, and breast tissues (as uniform mixture of the aforementioned tissues) are investigated as well as compositions corresponding to one standard deviation from the mean. Prostate mean compositions from three different literature sources are also investigated. Three sets of MC simulations are performed with the GEANT4 code: (1) Dose calculations for idealized TG-43-like spherical geometries using point sources. Radial dose profiles obtained in different media are compared to assess the influence of compositional uncertainties. (2) Dose calculations for four clinical prostate LDR brachytherapy permanent seed implants using 125I seeds (Model 2301, Best Medical, Springfield, VA). The effect of varying the prostate composition in the planning target volume (PTV) is investigated by comparing PTV D90 values. (3) Dose calculations for four clinical breast LDR brachytherapy permanent seed implants using 103Pd seeds (Model 2335, Best Medical). The effects of varying the adipose/gland ratio in the PTV and of varying the elemental composition of adipose and gland within one standard deviation of the assumed mean composition are investigated by comparing PTV D90 values. For (2) and (3), the influence of using the mass density from CT scans instead of unit mass density is also assessed. Results: Results from simulation (1) show that variations in the mean compositions of tissues affect low energy

  13. Stereotactic intracavitary brachytherapy with P-32 for cystic craniopharyngiomas in children

    Energy Technology Data Exchange (ETDEWEB)

    Maarouf, Mohammad; El Majdoub, Faycal [University Hospital of Cologne, Department of Stereotaxy and Functional Neurosurgery, Cologne (Germany); University of Witten/Herdecke, Department of Stereotaxy and Functional Neurosurgery, Center of Neurosurgery, Cologne-Merheim Medical Center (CMMC), Cologne (Germany); Fuetsch, Manuel [University Hospital of Munich, Department of Neurosurgery, Munich (Germany); Hoevels, Mauritius [University Hospital of Cologne, Department of Stereotaxy and Functional Neurosurgery, Cologne (Germany); Lehrke, Ralph [St. Barbara-Klinik Hamm-Heessen, Department of Stereotaxy and Functional Neurosurgery, Hamm (Germany); Berthold, Frank [University Hospital of Cologne, Department Pediatric Oncology, Cologne (Germany); Voges, Juergen [University Hospital of Magdeburg, Department of Stereotaxy and Functional Neurosurgery, Magdeburg (Germany); Sturm, Volker [University Hospital of Cologne, Department of Stereotaxy and Functional Neurosurgery, Cologne (Germany); University Hospital of Wurzburg, Department of Neurosurgery, Wuerzburg (Germany)

    2016-03-15

    Although microsurgery remains the first-line treatment, gross total resection of cystic craniopharyngeomas (CP) is associated with significant morbidity and mortality and the addition of external irradiation to subtotal resection proves to achieve similar tumor control. However, concern regarding long-term morbidity associated with external irradiation in children still remains. With this retrospective analysis, the authors emphasize intracavitary brachytherapy using phosphorus-32 (P-32) as a treatment option for children with cystic CP. Between 1992 and 2009, 17 children (median age 15.4 years; range 7-18 years) with cystic CP underwent intracavitary brachytherapy using P-32. Eleven patients were treated for recurrent tumor cysts; 6 patients were treated primarily. MR imaging revealed solitary cysts in 7 patients; 10 patients had mixed solid-cystic lesions (median tumor volume 11.1 ml; range 0.5-78.9 ml). The median follow-up time was 61.9 months (range 16.9-196.6 months). Local cyst control could be achieved in 14 patients (82 %). Three patients showed progression of the treated cystic formation (in-field progression) after a median time of 8.3 months (range 5.3-10.3 months), which led to subsequent interventions. The development of new, defined cysts and progression of solid tumor parts (out-of-field progression) occurred in 5 patients and led to additional interventions in 4 cases. There was neither surgery-related permanent morbidity nor mortality in this study. The overall progression-free survival was 75, 63, and 52 % after 1, 3, and 5 years, respectively. Intracavitary brachytherapy using P-32 represents a safe and effective treatment option for children harboring cystic CP, even as primary treatment. However, P-32 does not clearly affect growth of solid tumor parts or the development of new cystic formations. (orig.) [German] Obwohl die Mikrochirurgie die Methode der Wahl darstellt, ist die komplette Resektion zystischer Kraniopharyngeome haeufig mit einer

  14. Methods for prostate stabilization during transperineal LDR brachytherapy

    International Nuclear Information System (INIS)

    In traditional prostate brachytherapy procedures for a low-dose-rate (LDR) radiation seed implant, stabilizing needles are first inserted to provide some rigidity and support to the prostate. Ideally this will provide better seed placement and an overall improved treatment. However, there is much speculation regarding the effectiveness of using regular brachytherapy needles as stabilizers. In this study, we explored the efficacy of two types of needle geometries (regular brachytherapy needle and hooked needle) and several clinically feasible configurations of the stabilization needles. To understand and assess the prostate movement during seed implantation, we collected in vivo data from patients during actual brachytherapy procedures. In vitro experimentation with tissue-equivalent phantoms allowed us to further understand the mechanics behind prostate stabilization. We observed superior stabilization with the hooked needles compared to the regular brachytherapy needles (more than 40% in bilateral parallel needle configuration). Prostate movement was also reduced significantly when regular brachytherapy needles were in an angulated configuration as compared to the parallel configuration (more than 60%). When the hooked needles were angulated for stabilization, further reduction in prostate displacement was observed. In general, for convenience of dosimetric planning and to avoid needle collision, all needles are desired to be in a parallel configuration. In this configuration, hooked needles provide improved stabilization of the prostate. On the other hand, both regular and hooked needles appear to be equally effective in reducing prostate movement when they are in angulated configurations, which will be useful in seed implantation using a robotic system. We have developed nonlinear spring-damper model for the prostate movement which can be used for adapting dosimetric planning during brachytherapy as well as for developing more realistic haptic devices and

  15. A workshop on developing risk assessment methods for medical use of radioactive material. Volume 1: Summary

    Energy Technology Data Exchange (ETDEWEB)

    Tortorelli, J.P. [ed.] [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

    1995-08-01

    A workshop was held at the Idaho National Engineering Laboratory, August 16--18, 1994 on the topic of risk assessment on medical devices that use radioactive isotopes. Its purpose was to review past efforts to develop a risk assessment methodology to evaluate these devices, and to develop a program plan and a scoping document for future methodology development. This report contains a summary of that workshop. Participants included experts in the fields of radiation oncology, medical physics, risk assessment, human-error analysis, and human factors. Staff from the US Nuclear Regulatory Commission (NRC) associated with the regulation of medical uses of radioactive materials and with research into risk-assessment methods participated in the workshop. The workshop participants concurred in NRC`s intended use of risk assessment as an important technology in the development of regulations for the medical use of radioactive material and encouraged the NRC to proceed rapidly with a pilot study. Specific recommendations are included in the executive summary and the body of this report. An appendix contains the 8 papers presented at the conference: NRC proposed policy statement on the use of probabilistic risk assessment methods in nuclear regulatory activities; NRC proposed agency-wide implementation plan for probabilistic risk assessment; Risk evaluation of high dose rate remote afterloading brachytherapy at a large research/teaching institution; The pros and cons of using human reliability analysis techniques to analyze misadministration events; Review of medical misadministration event summaries and comparison of human error modeling; Preliminary examples of the development of error influences and effects diagrams to analyze medical misadministration events; Brachytherapy risk assessment program plan; and Principles of brachytherapy quality assurance.

  16. A workshop on developing risk assessment methods for medical use of radioactive material. Volume 1: Summary

    International Nuclear Information System (INIS)

    A workshop was held at the Idaho National Engineering Laboratory, August 16--18, 1994 on the topic of risk assessment on medical devices that use radioactive isotopes. Its purpose was to review past efforts to develop a risk assessment methodology to evaluate these devices, and to develop a program plan and a scoping document for future methodology development. This report contains a summary of that workshop. Participants included experts in the fields of radiation oncology, medical physics, risk assessment, human-error analysis, and human factors. Staff from the US Nuclear Regulatory Commission (NRC) associated with the regulation of medical uses of radioactive materials and with research into risk-assessment methods participated in the workshop. The workshop participants concurred in NRC's intended use of risk assessment as an important technology in the development of regulations for the medical use of radioactive material and encouraged the NRC to proceed rapidly with a pilot study. Specific recommendations are included in the executive summary and the body of this report. An appendix contains the 8 papers presented at the conference: NRC proposed policy statement on the use of probabilistic risk assessment methods in nuclear regulatory activities; NRC proposed agency-wide implementation plan for probabilistic risk assessment; Risk evaluation of high dose rate remote afterloading brachytherapy at a large research/teaching institution; The pros and cons of using human reliability analysis techniques to analyze misadministration events; Review of medical misadministration event summaries and comparison of human error modeling; Preliminary examples of the development of error influences and effects diagrams to analyze medical misadministration events; Brachytherapy risk assessment program plan; and Principles of brachytherapy quality assurance

  17. Dosimetry on ocular brachytherapy with ROPES plaque with Iodine-125 and Palladium-103 seeds

    International Nuclear Information System (INIS)

    Radiotherapy is an alternative to ocular enucleation. However, the irradiation of ocular region can bring deleterious effects due to the high doses, mainly in the lens, retina and in the bone structures in growth phase. Brachytherapy instead of teletherapy looks for departuring absorbed doses in tumor minimizing doses in the lens and the adjacent tissues of the eyeball (orbital region), avoiding deleterious effects. Thus, a three-dimensional computational model of ocular area was developed to simulate orbital irradiation with ROPES ophthalmologic plaque placed on the sclera surface filled to ten iodine-125 seeds, and palladium-103 seeds. Simulations are performed on the MCNP5 code. The computational simulation allows evaluating how the dose rates are spatially distributed in the orbital volume. The results are normalized to 100% at the maximum dose on the tumor base, and by the applied source activity. The maximum dose is found onto the eyeball, in the vitreous. The present model represents an advance in simulating and predicting absorbed dose on ocular brachytherapy. (author)

  18. Dosimetry on ocular brachytherapy with ROPE plaque with iodine125 and palladium-103

    International Nuclear Information System (INIS)

    Radiotherapy is an alternative to ocular enucleation. However, the irradiation of ocular region can bring deleterious effects due to the high doses, mainly in the lens, retina and in the bone structures in growth phase. Brachytherapy instead of teletherapy looks for departing absorbed doses in tumor minimizing doses in the lens and the adjacent tissues of the eyeball (orbital region), avoiding deleterious effects. Thus, a three-dimensional computational model of ocular area was developed to simulate orbital irradiation with ROPES ophthalmologic plaque placed on the sclera surface filled to ten iodine-125 seeds, and palladium-103 seeds. Simulations are performed on the MCNP5 code. The computational simulation allows evaluating how the dose rates are spatially distributed in the orbital volume. The results are normalized to 100% at the maximum dose on the tumor base, and by the applied source activity. The maximum dose is found onto the eyeball, in the vitreous. The present model represents an advance in simulating and predicting absorbed dose on ocular brachytherapy. (author)

  19. The development of a human eye model for ophthalmic iodine-125 brachytherapy dosimetry

    International Nuclear Information System (INIS)

    Full text: Radiotherapy is used to treat malign tumors. Radiotherapy is an alternative to enucleation in ocular tumors. However, the irradiation of ocular region can bring damages due high doses, mainly in the crystalline lens and in the bone tissue in growth phase. Brachytherapy instead of teletherapy looks for reducing doses in the crystalline lens and the adjacent tissues of the ocular globe (orbital region), minimizing side effects. Herein, some encapsulated radioisotopes in radioactive seeds applied to the ocular brachytherapy are available. Thus, a three-dimensional computational voxel model of the ocular region with its heterogeneous tissues, globe and adjacent tissues is developed. This computational model is used to simulate orbital irradiation with radioactive seeds positioned on the sclera surface through the MCNP5 code. The computational simulation allows evaluating how doses are spatially distributed in the orbital volume in treatments with the radioactive seeds of iodine-125. Therefore, the results allow comparing the spatial doses distribution obtained through the MCNP5 simulation for those two distinct types of radioactive seeds. Bench markets from literature validates the proposed simulations. (author)

  20. Dosimetry on ocular brachytherapy with I-125 ophthalmologic ROPES and COMS plaques

    International Nuclear Information System (INIS)

    Radiotherapy is an alternative to ocular enucleation. However, the irradiation of ocular region can bring deleterious effects due to the high doses, mainly in the lens, retina and in the bone structures in growth phase. Brachytherapy instead of teletherapy looks for departuring absorbed doses in tumor minimizing doses in the lens and the adjacent tissues of the eyeball (orbital region), avoiding deleterious effects. Thus, a three-dimensional computational voxel model and an analytical model were coupled, including the heterogeneous properties of the globe and the adjacent tissues. The analytical model was applied to define the thin structures of the ocular globe. This computational model is used to simulate orbital irradiation with ROPES and COMS ophthalmologic plaques placed on the sclera surface filled to ten and eight iodine-125 seeds, respectively. Simulations are performed on the MCNP5 code. The computational simulation allows evaluating how the dose rates are spatially distributed in the orbital volume. The results are normalized to 100% at the maximum dose on the tumor base, and by the applied source activity. The external globe structures receive 0.5% of the maximum internal dose. The crystalline lens dosimetry depends on the position and thickness of the tumor and the plaque diameters. On the present case, 12.75% of maximum dose is found on the lens. The maximum dose is found onto the eyeball, in the vitreous. The present model represents an advance in simulating and predicting absorbed dose on ocular brachytherapy, incorporating anthropomorphic and anthropometric features of the real eyeball. (author)

  1. Hybrid dosimetry: Feasibility of mixing angulated and parallel needles in planning prostate brachytherapy

    International Nuclear Information System (INIS)

    Pubic arch interference (PAI) often caused inadequate prostate coverage during transperineal brachytherapy using all parallel needles. In this paper, a hybrid implantation approach is presented in which additional angulated needles can be used to avoid PAI. This approach can be applied in prostate brachytherapy using a robotic assisted device. To examine the feasibility of this approach, volume data from three prostate seed implant patients were selected, which represent small, medium, and large prostates. As the blocking area was artificially increased simulating pubic arch overlap, the dosimetry outcomes and ratio of number of angulated needles to the total number of needles were analyzed. The hybrid dosimetry broke down when blocking is over 42%. As the percent of blocking increased, the ratio of the number of angulated needles to the total number of needles increased, while the dosimetry outcomes only had a slight trend of worsening. When close to the breakdown point, the dosimetry outcomes worsen drastically. Therefore, for moderate PAI the hybrid dosimetry is feasible

  2. Is the Use of a Surrogate Urethra an Option in Prostate High-Dose-Rate Brachytherapy?

    International Nuclear Information System (INIS)

    Purpose: To investigate the accuracy and the dosimetric consequences of substituting a surrogate urethra assumed to be at the geometric center of the prostate, in place of the true urethra when using high-dose-rate (HDR) brachytherapy for the treatment of prostate cancer. Methods and Materials: One hundred prostate cancer patients treated with HDR brachytherapy constituted the study group. A pre-plan was made with the urethra visualized. The true urethra was defined, and a surrogate urethra was placed at the geometric center of the prostate. The distance between the two urethras was measured. The deviation was evaluated at the base, middle, and apex. To evaluate the dosimetric consequences for the true urethra when using a surrogate urethra, two different dose plans were made: one based on the true urethra and one based on the surrogate urethra. The dose-volume histograms for the true urethra were analyzed. Results: The deviation between the true urethra and the surrogate urethra was greatest at the base of the prostate. A statistically significant difference was seen between the dosimetric parameters for the true and the surrogate urethra when the dose plan was made using the surrogate urethra. In this situation the dose to the true urethra was increased above our defined maximum tolerance limit. Conclusions: When using dose plans made according to a surrogate urethra the dose to the true urethra might be too high to be acceptable. If the true urethra is not visualized, severe damage could easily develop in a significant number of patients

  3. Different effects of bladder distention on point A-based and 3D-conformal intracavitary brachytherapy planning for cervical cancer

    OpenAIRE

    Ju, Sang Gyu; Huh, Seung Jae; Shin, Jung Suk; Park, Won; Nam, Heerim; Bae, Sunhyun; Oh, Dongryul; Hong, Chae-Seon; Kim, Jin Sung; Han, Youngyih; Choi, Doo Ho

    2012-01-01

    This study sought to evaluate the differential effects of bladder distention on point A-based (AICBT) and three-dimensional conformal intracavitary brachytherapy (3D-ICBT) planning for cervical cancer. Two sets of CT scans were obtained for ten patients to evaluate the effect of bladder distention. After the first CT scan, with an empty bladder, a second set of CT scans was obtained with the bladder filled. The clinical target volume (CTV), bladder, rectum, and small bowel were delineated on ...

  4. Recommendations from Gynaecological (GYN) GEC-ESTRO Working Group (IV): Basic principles and parameters for MR imaging within the frame of image based adaptive cervix cancer brachytherapy

    OpenAIRE

    Dimopoulos, Johannes C.A.; Petrow, Peter; Tanderup, Kari; Petric, Primoz; Berger, Daniel; Kirisits, Christian; Pedersen, Erik M; van Limbergen, Erik; Haie-Meder, Christine; Pötter, Richard

    2012-01-01

    The GYN GEC-ESTRO working group issued three parts of recommendations and highlighted the pivotal role of MRI for the successful implementation of 3D image-based cervical cancer brachytherapy (BT). The main advantage of MRI as an imaging modality is its superior soft tissue depiction quality. To exploit the full potential of MRI for the better ability of the radiation oncologist to make the appropriate choice for the BT application technique and to accurately define the target volumes and the...

  5. In vivo assessment of catheter positioning accuracy and prolonged irradiation time on liver tolerance dose after single-fraction 192Ir high-dose-rate brachytherapy

    International Nuclear Information System (INIS)

    To assess brachytherapy catheter positioning accuracy and to evaluate the effects of prolonged irradiation time on the tolerance dose of normal liver parenchyma following single-fraction irradiation with 192 Ir. Fifty patients with 76 malignant liver tumors treated by computed tomography (CT)-guided high-dose-rate brachytherapy (HDR-BT) were included in the study. The prescribed radiation dose was delivered by 1 - 11 catheters with exposure times in the range of 844 - 4432 seconds. Magnetic resonance imaging (MRI) datasets for assessing irradiation effects on normal liver tissue, edema, and hepatocyte dysfunction, obtained 6 and 12 weeks after HDR-BT, were merged with 3D dosimetry data. The isodose of the treatment plan covering the same volume as the irradiation effect was taken as a surrogate for the liver tissue tolerance dose. Catheter positioning accuracy was assessed by calculating the shift between the 3D center coordinates of the irradiation effect volume and the tolerance dose volume for 38 irradiation effects in 30 patients induced by catheters implanted in nearly parallel arrangement. Effects of prolonged irradiation were assessed in areas where the irradiation effect volume and tolerance dose volume did not overlap (mismatch areas) by using a catheter contribution index. This index was calculated for 48 irradiation effects induced by at least two catheters in 44 patients. Positioning accuracy of the brachytherapy catheters was 5-6 mm. The orthogonal and axial shifts between the center coordinates of the irradiation effect volume and the tolerance dose volume in relation to the direction vector of catheter implantation were highly correlated and in first approximation identically in the T1-w and T2-w MRI sequences (p = 0.003 and p < 0.001, respectively), as were the shifts between 6 and 12 weeks examinations (p = 0.001 and p = 0.004, respectively). There was a significant shift of the irradiation effect towards the catheter entry site compared with the

  6. Preliminary results of a phase I/II study of HDR brachytherapy alone for T1/T2 breast cancer

    International Nuclear Information System (INIS)

    Purpose: To investigate the feasibility, toxicity, cosmetic outcome, and local control of high-dose-rate (HDR) brachytherapy alone without whole breast external beam irradiation for early-stage breast carcinoma. Methods and Materials: Between June 1997 and August 1999, 32 women diagnosed with a total of 33 AJCC Stage I/II breast carcinomas underwent surgical breast excision and postoperative irradiation using HDR brachytherapy interstitial implantation as part of a multi-institutional clinical Phase I/II protocol. Eligible patients included those with T1, T2, N0, N1 (≤3 nodes positive), and M0 tumors of nonlobular histologic features with negative surgical margins, no extracapsular lymph node extension, and a negative postexcision mammogram. Brachytherapy catheters were placed at the initial excision, reexcision, or either sentinel or full-axillary sampling. Direct visualization, surgical clips, and ultrasound and/or CT scan assisted in the delineation of the target volume, defined as the excision cavity plus a 2-cm margin. High-activity 192Ir (3-10 Ci) was used to deliver 340 cGy/fraction, 2 fractions/d, for 5 consecutive days, to a total dose of 34 Gy to the target volume. Source position and dwell times were calculated using standard volume optimization techniques. Results: The median follow-up of all patients was 33 months, and the mean patient age was 63 years. The mean tumor size was 1.3 cm, and 55% had an extensive intraductal component. Three patients had positive axillary nodes. Two patients experienced moderate perioperative pain that required narcotic analgesics. No peri- or postoperative infections occurred. No wound healing problems and no significant skin reactions related to the implant developed. The Radiation Therapy Oncology Group late radiation morbidity scoring scheme was applied to the entire 33-case cohort. In the assessment of the skin, 30 cases were Grade 0-1 and 3 cases were Grade 2. Subcutaneous toxicity was scored as 11 patients with

  7. A theoretical derivation of the nomograms for permanent prostate brachytherapy

    International Nuclear Information System (INIS)

    This study calculates the required minimum radioactivity to deliver a prescribed dose of radiation to a target using radioisotopes in permanent prostate brachytherapy. Assuming the radioactivity to be in a continuous form, an integral equation -- Fredholm equation of the first kind, can be formulated with the radioactivity density used as the variable. The density distribution to produce a uniform volume dose rate is determined using a quadrature method and the radial profile behaves smoothly from the zero radius, and peaks sharply approaching the volume boundary. The density for Pd-103 is about 1.5 times that of I-125 due to its higher spatial attenuation. A nomogram is the relationship between the total activity per unit dose (A) and the dimension of the volume (d). Expressing the nomogram as A=cxdn U/Gy, then (c,n)= [(0.0098, 2.09) I-125] and [(0.031, 2.25) Pd-103]. Compared with the Memorial nomogram, (c,n)=[(0.011,2.2) I-125] and [(0.036,2.56) Pd-103], or that quoted by AAPM TG64, (c,n)=[(0.014,2.05) I-125] and [(0.056,2.22) Pd-103], our calculation determined an average 33% and 35% decrease for I-125, and 89% and 77% decrease for Pd-103, respectively. Two reasons for the extra total activity found in the Memorial and AAPM nomograms are: (a) An imperfect clinical situation limited by the restraints of implant techniques (e.g., use of templates) associated with the presence of adjacent normal organs, and (b) source discretization into seeds. When radioactivity is clumped as discrete seeds, higher activity is needed because of 'wastage' in two aspects: (a) Dose cold-spots at intersource spaces, (b) hot-spots around the sources. Thus in theory, use of lower activity seeds will require less total activity to deliver a prescribed dose. Based on our study, Pd-103 delivers a higher therapeutic ratio and a lower integral dose to the patient compared to I-125

  8. Endocavity Ultrasound Hyperthermia for Locally Advanced Cervical Cancer: Patient-specific Modeling, Experimental Verification, and Combination with HDR Brachytherapy

    International Nuclear Information System (INIS)

    The feasibility of targeted hyperthermia delivery by an intrauterine ultrasound applicator to patient-specific treatment volumes in conjunction with HDR brachytherapy was investigated using theory and experiment. 30 HDR brachytherapy treatment plans were inspected to define hyperthermia treatment volumes (HTVs) based on tumor and radiation target volumes. Several typical cases were imported into a patient-specific treatment planning platform that optimized acoustic output power from an endocavity multisectored tubular array to conform temperature and thermal dose to HTVs. Perfusion was within a clinical range of 0.5-3 kg m-3 s-1. Applicators were constructed with 1-3 elements at 6.5-8 MHz with 90 deg. -360 deg. sectoring and 25-35 mm heating length housed in a water-cooled PET catheter. Acoustic output was compared to heating in ex vivo tissue assessed with implanted thermometry. Radiation attenuation through the device was measured in an ionization chamber. The HTV extends 2-4 cm in diameter and 2-4 cm in length. The bladder and rectum can be within 10-12 mm. HTV targets can be covered with temperature clouds >41 deg. and thermal dose t43>5 min with 45 deg. C maximum temperature and rectal temperature <41.5 deg. C. Sectored applicators preferentially direct energy laterally into the parametrium to limit heating of rectum and bladder. Interstitial brachytherapy catheters within the HTV could be used for thermal feedback during HT treatment. Temperature distributions in phantom show preferential heating within sectors and align well with acoustic output. Heating control along the device length and in angle is evident. A 4-6% reduction in radiation transmission through the transducers was observed, which could likely be compensated for in planning. Patient-specific modeling and experimental heating demonstrated 3-D conformal heating capabilities of endocavity ultrasound applicators.

  9. Utilization and Outcomes of Breast Brachytherapy in Younger Women

    International Nuclear Information System (INIS)

    Purpose: To directly compare (1) radiation treatment utilization patterns; (2) risks of subsequent mastectomy; and (3) costs of radiation treatment in patients treated with brachytherapy versus whole-breast irradiation (WBI), in a national, contemporary cohort of women with incident breast cancer, aged 64 years and younger. Methods and Materials: Using MarketScan health care claims data, we identified 45,884 invasive breast cancer patients (aged 18-64 years), treated from 2003 to 2010 with lumpectomy, followed by brachytherapy (n=3134) or whole-breast irradiation (n=42,750). We stratified patients into risk groups according to age (Age<50 vs Age≥50) and endocrine therapy status (Endocrine− vs Endocrine+). “Endocrine+” patients filled an endocrine therapy prescription within 1 year after lumpectomy. Pathologic hormone receptor status was not available in this dataset. In brachytherapy versus WBI patients, utilization trends and 5-year subsequent mastectomy risks were compared. Stratified, adjusted subsequent mastectomy risks were calculated using proportional hazards regression. Results: Brachytherapy utilization increased from 2003 to 2010: in patients Age<50, from 0.6% to 4.9%; patients Age≥50 from 2.2% to 11.3%; Endocrine− patients, 1.3% to 9.4%; Endocrine+ patients, 1.9% to 9.7%. Age influenced treatment selection more than endocrine status: 17% of brachytherapy patients were Age<50 versus 32% of WBI patients (P<.001); whereas 41% of brachytherapy patients were Endocrine–versus 44% of WBI patients (P=.003). Highest absolute 5-year subsequent mastectomy risks occurred in Endocrine−/Age<50 patients (24.4% after brachytherapy vs 9.0% after WBI (hazard ratio [HR] 2.18, 95% confidence interval [CI] 1.37-3.47); intermediate risks in Endocrine−/Age≥50 patients (8.6% vs 4.9%; HR 1.76, 95% CI 1.26-2.46); and lowest risks in Endocrine+ patients of any age: Endocrine+/Age<50 (5.5% vs 4.5%; HR 1.18, 95% CI 0.61-2.31); Endocrine+/Age≥50 (4.2% vs 2

  10. Utilization and Outcomes of Breast Brachytherapy in Younger Women

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Grace L. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Department of Health Services Research, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Huo, Jinhai [Department of Health Services Research, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Giordano, Sharon H. [Department of Health Services Research, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Hunt, Kelly K. [Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Buchholz, Thomas A. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Smith, Benjamin D., E-mail: bsmith3@mdanderson.org [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Department of Health Services Research, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2015-09-01

    Purpose: To directly compare (1) radiation treatment utilization patterns; (2) risks of subsequent mastectomy; and (3) costs of radiation treatment in patients treated with brachytherapy versus whole-breast irradiation (WBI), in a national, contemporary cohort of women with incident breast cancer, aged 64 years and younger. Methods and Materials: Using MarketScan health care claims data, we identified 45,884 invasive breast cancer patients (aged 18-64 years), treated from 2003 to 2010 with lumpectomy, followed by brachytherapy (n=3134) or whole-breast irradiation (n=42,750). We stratified patients into risk groups according to age (Age<50 vs Age≥50) and endocrine therapy status (Endocrine− vs Endocrine+). “Endocrine+” patients filled an endocrine therapy prescription within 1 year after lumpectomy. Pathologic hormone receptor status was not available in this dataset. In brachytherapy versus WBI patients, utilization trends and 5-year subsequent mastectomy risks were compared. Stratified, adjusted subsequent mastectomy risks were calculated using proportional hazards regression. Results: Brachytherapy utilization increased from 2003 to 2010: in patients Age<50, from 0.6% to 4.9%; patients Age≥50 from 2.2% to 11.3%; Endocrine− patients, 1.3% to 9.4%; Endocrine+ patients, 1.9% to 9.7%. Age influenced treatment selection more than endocrine status: 17% of brachytherapy patients were Age<50 versus 32% of WBI patients (P<.001); whereas 41% of brachytherapy patients were Endocrine–versus 44% of WBI patients (P=.003). Highest absolute 5-year subsequent mastectomy risks occurred in Endocrine−/Age<50 patients (24.4% after brachytherapy vs 9.0% after WBI (hazard ratio [HR] 2.18, 95% confidence interval [CI] 1.37-3.47); intermediate risks in Endocrine−/Age≥50 patients (8.6% vs 4.9%; HR 1.76, 95% CI 1.26-2.46); and lowest risks in Endocrine+ patients of any age: Endocrine+/Age<50 (5.5% vs 4.5%; HR 1.18, 95% CI 0.61-2.31); Endocrine+/Age≥50 (4.2% vs 2

  11. 18F-fluorodeoxyglucose Positron Emisson Tomography/Computed Tomography Guided Conformal Brachytherapy for Cervical Cancer

    International Nuclear Information System (INIS)

    Purpose: To evaluate the feasibility of 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT)-guided conformal brachytherapy treatment planning in patients with cervical cancer. Methods and Materials: Pretreatment FDG-PET/CT was performed for 12 patients with cervical cancer. Brachytherapy simulation was performed after an external-beam radiation therapy median dose of 4140 cGy. Patients underwent FDG-PET/CT scans with placement of tandem and ovoid applicators. The gross tumor volume (GTV) was determined by adjusting the window and level to a reasonable value and outlining the edge of the enhancing area, which was done in consultation with a nuclear medicine physician. A standardized uptake value profile of the tumor margin was taken for each patient relative to the maximum uptake value of each tumor and analyzed. The plan was designed to deliver 400 cGy to point A (point A plan) or to cover the clinical target volume (CTV) (PET/CT plan). Results: The median dose that encompassed 95% of the target volume (D95) of the CTV was 323.0 cGy for the point A plan vs 399.0 cGy for the PET/CT plan (P=.001). The maximum standardized uptake values (SUVmax) of the tumors were reduced by a median of 57% (range, 13%-80%). All but 1 patient presented with discernable residual uptake within the tumors. The median value of the thresholds of the tumors contoured by simple visual analysis was 41% (range, 23%-71%). Conclusions: In this study, the PET/CT plan was better than the conventional point A plan in terms of target coverage without increasing the dose to the normal tissue, making optimized 3-dimensional brachytherapy treatment planning possible. In comparison with the previously reported study with PET or CT alone, we found that visual target localization was facilitated by PET fusion on indeterminate CT masses. Further studies are needed to characterize the metabolic activity detected during radiation therapy for more reliable targeting.

  12. 18F-fluorodeoxyglucose Positron Emisson Tomography/Computed Tomography Guided Conformal Brachytherapy for Cervical Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Heerim [Department of Radiation Oncology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Huh, Seung Jae, E-mail: sj5201.huh@samsung.com [Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Ju, Sang Gyu; Park, Won; Lee, Jeong Eun [Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Choi, Joon Young; Kim, Byung-Tae [Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Kim, Chan Kyo; Park, Byung Kwan [Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2012-09-01

    Purpose: To evaluate the feasibility of 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT)-guided conformal brachytherapy treatment planning in patients with cervical cancer. Methods and Materials: Pretreatment FDG-PET/CT was performed for 12 patients with cervical cancer. Brachytherapy simulation was performed after an external-beam radiation therapy median dose of 4140 cGy. Patients underwent FDG-PET/CT scans with placement of tandem and ovoid applicators. The gross tumor volume (GTV) was determined by adjusting the window and level to a reasonable value and outlining the edge of the enhancing area, which was done in consultation with a nuclear medicine physician. A standardized uptake value profile of the tumor margin was taken for each patient relative to the maximum uptake value of each tumor and analyzed. The plan was designed to deliver 400 cGy to point A (point A plan) or to cover the clinical target volume (CTV) (PET/CT plan). Results: The median dose that encompassed 95% of the target volume (D95) of the CTV was 323.0 cGy for the point A plan vs 399.0 cGy for the PET/CT plan (P=.001). The maximum standardized uptake values (SUV{sub max}) of the tumors were reduced by a median of 57% (range, 13%-80%). All but 1 patient presented with discernable residual uptake within the tumors. The median value of the thresholds of the tumors contoured by simple visual analysis was 41% (range, 23%-71%). Conclusions: In this study, the PET/CT plan was better than the conventional point A plan in terms of target coverage without increasing the dose to the normal tissue, making optimized 3-dimensional brachytherapy treatment planning possible. In comparison with the previously reported study with PET or CT alone, we found that visual target localization was facilitated by PET fusion on indeterminate CT masses. Further studies are needed to characterize the metabolic activity detected during radiation therapy for more reliable targeting.

  13. 125iodine brachytherapy for colorectal adenocarcinoma recurrent in the pelvis and paraortics

    International Nuclear Information System (INIS)

    Purpose: To evaluate the results of 125I brachytherapy in colorectal cancers recurrent in the pelvis and paraortics. Methods and Materials: From September 1989 to January 1997, 29 patients with colorectal adenocarcinoma recurrent in the pelvis or the paraortic nodes were treated intraoperatively with permanent 125iodine seed implantation at the James Cancer Center of The Ohio State University (OSU). All patients had undergone prior surgery; 72% had prior EBRT. The implanted residual tumor volume was microscopic in 38% and gross in 62%. The implanted area (median 25 cc) received a median minimal peripheral dose of 140 Gy to total decay. An omental pedicle was used to minimize irradiation of the bowel. Five patients received additional postimplant EBRT (20-50 Gy; median 30 Gy). Results: The 1-, 2-, and 4-year actuarial local-regional control rates were 38%, 17%, and 17%, respectively, with a median time to local failure of 11 months (95% CI 10-12 months). The first manifestation of disease progression in 52% of the patients was local-regional. In addition, 22 patients (75%) developed distant metastases. The 1-, 2-, and 4-year actuarial overall survival rates were 70%, 35%, and 21%, (median = 18 months; 95% CI: 14-22 months). Overall survival was better for patients smaller volume implants (p = 0.007), with a lower total activity implanted (p = 0.0003), with a smaller number of implanted sites (p = 0.004), and with microscopic residual disease (p = 0.01). Patients receiving additional EBRT also had a better prognosis (p = 0.005). Local tumor progression was the cause of death in 34% of the patients who have died at the time of this report and 56% died of distant metastases. Of the patients, 13 (45%) experienced 15 toxic events, including 3 patients (10%) with enteric fistula. Neuropathy was not observed. Conclusions: 125I brachytherapy can be successfully used for salvage in patients with recurrent colorectal cancer. Patients with isolated, microscopic, or minimal

  14. The role of brachytherapy in radiation and isotopes centre of Khartoum (RICK)

    CERN Document Server

    Ali, A M

    2000-01-01

    As there are many efforts devoted in order to manage the cancer, here the researcher handle one of these efforts that play a major part in treating the cancer internationally, it is a brachytherapy system. Brachytherapy was carried out mostly with radium sources, but recently some artificial sources are incorporated in this mode of treatment such as Cs-137, Ir-192, Au-198, P-32, Sr-90 and I-125. The research cover history of brachytherapy and radioactive sources used in, techniques of implementation, radiation protection and methods of brachytherapy dose calculation, as well as brachytherapy in radiation and isotopes centre in Khartoum.

  15. A first experience of high dose rate (HDR) brachytherapy for tongue cancer

    International Nuclear Information System (INIS)

    We performed HDR brachytherapy for 12 patients with tongue cancer from April, 1996 to May, 1998. The patients included 7 men and 5 women. Ten of patients received HDR brachytherapy alone and two were treated with HDR brachytherapy and external irradiation and chemotherapy. In brachytherapy alone cases irradiated dose were between 42 Gy/14 fr and 60 Gy/10 fr, and the other two were irradiated 18 Gy/6 fr and 30 Gy/10 fr. We obtained CR for 12 patients and recurrence occurred in three cases. Late injury was observed in one case. In conclusion, HDR brachytherapy will be a promising therapeutic protocol for treatment of stage 1, 2 tongue cancer. (author)

  16. Construction balance analysis of dose rate medium brachytherapy TDS

    International Nuclear Information System (INIS)

    One of the most important part of brachytherapy instrument design activities is analyze by determining the centroid point of construction in order to maintain the balance of brachytherapy instrument, either during operation as well as when transported. Operation of brachytherapy is not only done in one place so it is necessary to balance the analysis of the forces at the time did not move, moved on the horizontal floor and sloping floor. Calculation approach who is done to calculate the weight of mechanical components on each module, and then calculate the centroid of each module, for the balance of forces analysis performed with the assumption at the time of brachytherapy in the position of not moving on a horizontal floor, moved from a place to another on the horizontal floor and on the floor with sloping angle 30°. Base on the results of this analysis are expected to balance the four wheels can move without slipping at the time of decline or incline. Also, results of analysis can be used in designing a mobile construction brachytherapy taking into consideration the aesthetic ideal, easy to operate, ensure the safety of equipment, operator and patient. (author)

  17. Percutaneous interstitial brachytherapy for adrenal metastasis. Technical report

    International Nuclear Information System (INIS)

    We developed and evaluated the feasibility of a brachytherapy technique as a safe and effective treatment for adrenal metastasis. Adapting a paravertebral insertion technique in radiofrequency ablation of adrenal tumors, we developed an interstitial brachytherapy for adrenal metastasis achievable on an outpatient basis. Under local anesthesia and under X-ray CT guidance, brachytherapy applicator needles were percutaneously inserted into the target. A treatment plan was created to eradicate the tumor while preserving normal organs including the spinal cord and kidney. We applied this interstitial brachytherapy technique to two patients: one who developed adrenal metastasis as the third recurrence of uterine cervical cancer after reirradiation, and one who developed metachronous multiple metastases from malignant melanoma. The whole procedure was completed in 2.5 hours. There were no procedure-related or radiation-related early/late complications. 18F-fluorodeoxyglucose positron emission tomography (FDG PET)-CT images at two and three months after treatment showed absence of FDG uptake, and no recurrence of the adrenal tumor was observed for over seven months until expiration, and for six months until the present, respectively. This interventional interstitial brachytherapy procedure may be useful as a safe and eradicative treatment for adrenal metastasis. (author)

  18. Simple DVH parameter addition as compared to deformable registration for bladder dose accumulation in cervix cancer brachytherapy

    DEFF Research Database (Denmark)

    Andersen, Else Stougård; Noe, Karsten Østergaaard; Sørensen, Thomas Sangild; Nielsen, Søren Kynde; LU, Fokdal; Paludan, Merete; Lindegaard, Jacob Christian; Tanderup, Kari

    2013-01-01

    Background and purpose: Variations in organ position, shape, and volume cause uncertainties in dose assessment for brachytherapy (BT) in cervix cancer. The purpose of this study was to evaluate uncertainties associated with bladder dose accumulation based on DVH parameter addition (previously...... called "the worst case assumption") in fractionated BT. Materials and methods: Forty-seven patients treated for locally advanced cervical cancer were included. All patients received EBRT combined with two individually planned 3D image-guided adaptive BT fractions. D2 and D0.1 were estimated by DVH...

  19. Dosimetric feasibility of stereotactic body radiation therapy as an alternative to brachytherapy for definitive treatment of medically inoperable early stage endometrial cancer

    International Nuclear Information System (INIS)

    This study was designed to evaluate the dosimetric feasibility of definitive stereotactic body radiation therapy (SBRT) for the treatment of medically inoperable early stage endometrial cancer. CT simulation scans from 10 medically inoperable early stage endometrial cancer patients previously treated with high dose-rate (HDR) intracavitary brachytherapy were used to generate Helical Tomotherapy (HT) plans using the IMRT mode with clinical target volumes (CTVs) that included the uterus plus cervix. A prescription dose of 34 Gy in 4 fractions was used. The SBRT dosimetry was compared to the 10 prior intracavitary brachytherapy plans normalized to a standard dose. Organs at risk (OARs) evaluated were the bladder, rectum, sigmoid, femoral heads, and other bowel, including both large and small bowel. The simulation CT and daily image guidance for 4 patients treated with this technique were evaluated to assess for interfraction variation in the uterine position and effects on dosimetry. Compared to intracavitary brachytherapy, HT SBRT produced significantly greater overall target coverage to the uterus, boost CTV, and PTV, with exception of the V150% of the uterus. HT SBRT significantly increased dose to the rectum, bowel, and femoral heads compared to intracavitary brachytherapy, though not outside of dose tolerance limits. Review of daily image guidance for patients treated with this technique demonstrated good reproducibility with a mean overlap index of 0.87 (range, 0.74 – 0.99). Definitive SBRT for medically inoperable early stage endometrial cancer appears to be a feasible treatment option. Future studies are warranted to evaluate long-term clinical outcomes with this technique, compared to HDR intracavitary brachytherapy

  20. Matched-pair analysis and dosimetric variations of two types of software for interstitial permanent brachytherapy for prostate cancer

    International Nuclear Information System (INIS)

    The purpose of this study was to determine whether identical dosimetric results could be achieved using different planning software for permanent interstitial brachytherapy for prostate cancer. Data from 492 patients treated with brachytherapy were used for matched-pair analysis. Interplant and Variseed were used as software for ultrasound-based treatment planning. Institution, neoadjuvant hormonal therapy, prostate volume, and source strength were used for factors to match the 2 groups. The study population comprised of 126 patients with treatment planning using Interplant software and 127 matched patients using Variseed software. Dosimetric results were compared between the 2 groups. The Variseed group showed significantly higher values for dose covering 90% of prostate volume (pD90), prostate volume covered by 150% of prescription dose (pV150), and dose covering 30% of the urethra (uD30) compared with the Interplant group. Our results showed that use of different software could lead to different dosimetric results, which might affect the clinical outcomes.

  1. Is a Loose-Seed Nomogram Still Valid for Prostate Brachytherapy in a Stranded-Seed Era?

    International Nuclear Information System (INIS)

    Purpose: To characterize the amount of activity required to treat the prostate with stranded 125I radioactive seeds and compare our stranded data with the amount of activity recommended when individual seeds are implanted using a Mick applicator. Methods and Materials: Data from two groups of patients at University of Texas M. D. Anderson Cancer Center who were treated with prostate brachytherapy as monotherapy were analyzed. The first group included 100 patients implanted with individual seeds in 2000 and 2001. The second group comprised 81 patients for whom stranded seeds were implanted in 2006 and 2007. Seeds in both groups were 125I seeds with an air kerma strength of 0.497 U per seed (0.391 mCi per seed). The prescribed dose to planning target volume