WorldWideScience

Sample records for afterloading brachytherapy volume

  1. Afterloading techniques in brachytherapy

    International Nuclear Information System (INIS)

    Kirsch, M.; Orban, R.; Lorenz, B.

    1981-01-01

    The advantages of applying modern afterloading methods in brachytherapie of malignant diseases are outlined. They include, among other things, a considerable reduction in radiation exposure to staff involved. Furthermore, the radiation protection requirements imposed by the licensing authority on the construction, equipment and operation of remote controlled afterloading installations with gamma sources of up to 4 TBq (108 Ci) have been compiled. (author)

  2. Radiation Exposure Reduction to Brachytherapy Staff By Using Remote Afterloading

    International Nuclear Information System (INIS)

    Attalla, E.M.

    2005-01-01

    The radiation exposures to the personnel staff from patients with brachytherapy implants in a brachytherapy service were reviewed. Exposures to the brachytherapy personnel, as determined by Thermoluminescence Dosimeter (TLD) monitors, indicates a four-fold reduction in exposures after the implantation of the use of remote afterloading devices. Quarterly TLD monitor data for seven quarters prior to the use of remote afterloading devices demonstrate an average projected annual dose equivalent to the brachytherapy staff of 2543 Μ Sv. After the implantation of the remote afterloading devices, the quarterly TLD monitor data indicate an average dose equivalent per person of 153 Μ Sv. This is 76% reduction in exposure to brachytherapy personnel with the use of these devices

  3. An afterloading brachytherapy device utilizing thermoplastic material

    International Nuclear Information System (INIS)

    Kim, T.H.; Gerbi, J.B.; Deibel, F.C.; Khan, F.M.; Priest, J.R.

    1989-01-01

    An afterloading brachytherapy device for treatment of residual cancer in an enucleated orbit with two cesium-137 sources was designed using a thermoplastic material, Aquaplast. The device consists of a face-mask support held in place with elastic bands around the head and an acrylic afterloading applicator. The device is very easy to make, holds the sources firmly in place, allows full mobility of the patient, and gives excellent dose distribution to the target area. It was easily tolerated by a 7-year-old child during the 50 h of treatment. (author). 3 refs.; 4 figs

  4. Experiences with alanine dosimetry in afterloading brachytherapy

    International Nuclear Information System (INIS)

    Eberhardt, H.-J.; Gohs, U.

    1996-01-01

    At the present, the most commonly used dosimetry for radiotherapy applications are ionisation chambers and thermoluminescent dosimeters (TLD). However, there are some undesirable characteristics of these dosimetry systems, such as large detection volume (ionisation chamber) as well as fading of the radiation induced signal with time and destructive readout (TLG). The present study is an investigation into the use of the alanine/ESR dosimetry in fractionated afterloading brachytherapy during the whole radiotherapy course. There are some qualities which make alanine dosimetry attractive. These are the linear energy response, low fading under standard conditions, and the nondestructive readout. Thus the alanine dosimetry makes possible cumulative dose measurements during the radiotherapy course and an archival storage. By ionizing radiation (gamma, e, n, p, charged particles) free radicals (unpaired electrons) are produced in the amino acid alanine. The continuous wave electron spin resonance (ESR) spectroscopy is used to determine the number of free radicals, which is proportional to the absorbed dose and the alanine content of the dosimeter. The ESR measurements were made at room temperature using a Bruker EPR analyzer EMS-104. The dosimeters used in the test are alanine pellets (23.72 mg weight, 4.9 mm diameter, 1 mm height) as well as flexible alanine film dosimeters (thickness about 500 μm). The dosimeters consist of a blend of L-alpha-alanine and a binder. The alanine content of the pellets and the film dosimeters is about 88 % and 50 % by weight, respectively. The dosimeters for the calculation of the dose-effect-relationship were irradiated at the Physical-Technical Bundesanstalt in Braunschweig by a standard 60Co source. The maximum deviation from the calculated linear function is about 0.12 Gy in the dose range up to 80 Gy. The goal of medical applications was the superficial dose measurement in afterloading brachytherapy during the radiotherapy course in

  5. Human factors evaluation of remote afterloading brachytherapy. Volume 2, Function and task analysis

    Energy Technology Data Exchange (ETDEWEB)

    Callan, J.R.; Gwynne, J.W. III; Kelly, T.T.; Muckler, F.A. [Pacific Science and Engineering Group, San Diego, CA (United States); Saunders, W.M.; Lepage, R.P.; Chin, E. [University of California San Diego Medical Center, CA (United States). Div. of Radiation Oncology; Schoenfeld, I.; Serig, D.I. [Nuclear Regulatory Commission, Washington, DC (United States). Div. of Systems Technology

    1995-05-01

    A human factors project on the use of nuclear by-product material to treat cancer using remotely operated afterloaders was undertaken by the Nuclear Regulatory Commission. The purpose of the project was to identify factors that contribute to human error in the system for remote afterloading brachytherapy (RAB). This report documents the findings from the first phase of the project, which involved an extensive function and task analysis of RAB. This analysis identified the functions and tasks in RAB, made preliminary estimates of the likelihood of human error in each task, and determined the skills needed to perform each RAB task. The findings of the function and task analysis served as the foundation for the remainder of the project, which evaluated four major aspects of the RAB system linked to human error: human-system interfaces; procedures and practices; training and qualifications of RAB staff; and organizational practices and policies. At its completion, the project identified and prioritized areas for recommended NRC and industry attention based on all of the evaluations and analyses.

  6. Human factors evaluation of remote afterloading brachytherapy. Volume 2, Function and task analysis

    International Nuclear Information System (INIS)

    Callan, J.R.; Gwynne, J.W. III; Kelly, T.T.; Muckler, F.A.; Saunders, W.M.; Lepage, R.P.; Chin, E.; Schoenfeld, I.; Serig, D.I.

    1995-05-01

    A human factors project on the use of nuclear by-product material to treat cancer using remotely operated afterloaders was undertaken by the Nuclear Regulatory Commission. The purpose of the project was to identify factors that contribute to human error in the system for remote afterloading brachytherapy (RAB). This report documents the findings from the first phase of the project, which involved an extensive function and task analysis of RAB. This analysis identified the functions and tasks in RAB, made preliminary estimates of the likelihood of human error in each task, and determined the skills needed to perform each RAB task. The findings of the function and task analysis served as the foundation for the remainder of the project, which evaluated four major aspects of the RAB system linked to human error: human-system interfaces; procedures and practices; training and qualifications of RAB staff; and organizational practices and policies. At its completion, the project identified and prioritized areas for recommended NRC and industry attention based on all of the evaluations and analyses

  7. A compilation of current regulations, standards and guidelines in remote afterloading brachytherapy

    International Nuclear Information System (INIS)

    Tortorelli, J.P.; Simion, G.P.; Kozlowski, S.D.

    1994-10-01

    Over a dozen government and professional organizations in the United States and Europe have issued regulations and guidance concerning quality management in the practice of remote afterloading brachytherapy. Information from the publications of these organizations was collected and collated for this report. This report provides the brachytherapy licensee access to a broad field of quality management information in a single, topically organized document

  8. A compilation of current regulations, standards and guidelines in remote afterloading brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Tortorelli, J.P.; Simion, G.P.; Kozlowski, S.D. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1994-10-01

    Over a dozen government and professional organizations in the United States and Europe have issued regulations and guidance concerning quality management in the practice of remote afterloading brachytherapy. Information from the publications of these organizations was collected and collated for this report. This report provides the brachytherapy licensee access to a broad field of quality management information in a single, topically organized document.

  9. Reduction in radiation exposure to nursing personnel with the use of remote afterloading brachytherapy devices

    International Nuclear Information System (INIS)

    Grigsby, P.W.; Perez, C.A.; Eichling, J.; Purdy, J.; Slessinger, E.

    1991-01-01

    The radiation exposure to nursing personnel from patients with brachytherapy implants on a large brachytherapy service were reviewed. Exposure to nurses, as determined by TLD monitors, indicates a 7-fold reduction in exposure after the implementation of the use of remote afterloading devices. Quarterly TLD monitor data for six quarters prior to the use of remote afterloading devices demonstrate an average projected annual dose equivalent to the nurses of 152 and 154 mrem (1.5 mSv). After the implementation of the remote afterloading devices, the quarterly TLD monitor data indicate an average dose equivalent per nurse of 23 and 19 mrem (0.2 mSv). This is an 87% reduction in exposure to nurses with the use of these devices (p less than 0.01)

  10. Intraluminal brachytherapy in carcinoma of the oesophagus: comparison of afterloading techniques

    International Nuclear Information System (INIS)

    Udaya Kumar, M.; Supe, S.S.; Swamy, Kumara; Keshava, S.L.; Anantha, N.

    1993-01-01

    For improved local control or palliation of oesophageal cancers, intra-luminal brachytherapy (ILB) has emerged as an increasingly popular treatment modality of therapy in recent years. In combination with external radiotherapy, after-loaded ILB can increase local control rates and may prolong survival of these patients. In this paper two techniques of ILB viz., manual and low dose-rate remote after loading methods, using caesium-137 tubes and pellets respectively, are described in detail. On comparison of these two techniques it was found that both of them were similar with respect to their physical characteristic (dose rate, dose fall-off, maximum spinal cord dose, total reference air kerma, etc.). Clinically, the manual after-loaded ILB technique was found to be easier to use when compared with the low-dose rate remote after-loader. In addition, the number of patients with uterine cancers being high in a developing country, it was found that it was inappropriate to use the low dose remote after-loaders, designed for use in gynaecological cancers, for ILB of oesophageal cancers. Therefore, in the absence of high dose rate after-loaders, which can be utilized for intracavitary treatments of both uterine and oesophageal malignancies effectively, the manual after-loading ILB system as described in this paper could be a practical alternative. (author). 19 refs., 4 figs., 2 tabs

  11. A new afterloading applicator for primary brachytherapy of endometrial cancer

    International Nuclear Information System (INIS)

    Bauer, M.; Schulz-Wendtland, R.

    1993-01-01

    The authors describe and have used a new afterloading applicator in six patients for primary radiation therapy of endometrial cancer. The first introduction of the applicator was done under general anaesthesia. Dilating the cervical canal to Heger 9 made insertion easier. Prior to application it is advisable to probe the lumen of the uterine cavity with a tube or curette to estimate how far the applicator must be spread open. For brachytherapy it is advantageous to remove necrotic tumour portions. This requires experienced hands to avoid perforation of the uterus. The new afterloading applicator is easy to use, and permits direct contact between the six tubes and the tumour. In conjunction with careful planning with the help of MRI, it provides an optimal system for the treatment of endometrial cancer. (Author)

  12. Human factors evaluation of remote afterloading brachytherapy: Human error and critical tasks in remote afterloading brachytherapy and approaches for improved system performance. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Callan, J.R.; Kelly, R.T.; Quinn, M.L. [Pacific Science and Engineering Group, San Diego, CA (United States)] [and others

    1995-05-01

    Remote Afterloading Brachytherapy (RAB) is a medical process used in the treatment of cancer. RAB uses a computer-controlled device to remotely insert and remove radioactive sources close to a target (or tumor) in the body. Some RAB problems affecting the radiation dose to the patient have been reported and attributed to human error. To determine the root cause of human error in the RAB system, a human factors team visited 23 RAB treatment sites in the US The team observed RAB treatment planning and delivery, interviewed RAB personnel, and performed walk-throughs, during which staff demonstrated the procedures and practices used in performing RAB tasks. Factors leading to human error in the RAB system were identified. The impact of those factors on the performance of RAB was then evaluated and prioritized in terms of safety significance. Finally, the project identified and evaluated alternative approaches for resolving the safety significant problems related to human error.

  13. Human factors evaluation of remote afterloading brachytherapy: Human error and critical tasks in remote afterloading brachytherapy and approaches for improved system performance. Volume 1

    International Nuclear Information System (INIS)

    Callan, J.R.; Kelly, R.T.; Quinn, M.L.

    1995-05-01

    Remote Afterloading Brachytherapy (RAB) is a medical process used in the treatment of cancer. RAB uses a computer-controlled device to remotely insert and remove radioactive sources close to a target (or tumor) in the body. Some RAB problems affecting the radiation dose to the patient have been reported and attributed to human error. To determine the root cause of human error in the RAB system, a human factors team visited 23 RAB treatment sites in the US The team observed RAB treatment planning and delivery, interviewed RAB personnel, and performed walk-throughs, during which staff demonstrated the procedures and practices used in performing RAB tasks. Factors leading to human error in the RAB system were identified. The impact of those factors on the performance of RAB was then evaluated and prioritized in terms of safety significance. Finally, the project identified and evaluated alternative approaches for resolving the safety significant problems related to human error

  14. Volume and dose rate dependent (MDR-LDR Ir-192 afterloading interstitial brachytherapy) treatment optimisation, for squamouscell carcinoma of the lip

    International Nuclear Information System (INIS)

    Stas, Nathalie; Goncalves, Julieta; Pinho, Eliana; Trigo, Lurdes; Fernandes, Tome; Vieira, Elio

    1996-01-01

    Introduction: From 1/1/90 to 1/1/95, 53 patients with squamouscell carcinoma of the lip were treated by MDR or LDR Ir-192 afterloading interstitital brachytherapy. We compare the oncological and aesthetical results and sequelae depending on the volume and the dose rate. Material and methods: 53 patients, 41 men and 12 women, median age = 66y; 48 primary tumors (T1 = 26; T2 = 16; T3 = 6; N0 = 47; N1 = 1; M0 = 48) and 5 recurrencies; squamouscell carcinoma (grade 1 =45, g2 =6, g3 =2); clinical extension: buccal comissure=3, check =2, muscular =15, skin =7, lower and upper lip =1. Before radiotherapy, 28 biopsies and 25 excisional surgeries (19 with positive margins, 6 with negative margins) were performed. Brachytherapy was performed alone (dose 60-75 Gy BD85%) or as a boost (dose 10-30 Gy BD85%) associated with external beam (dose 46-50 Gy). MDR or LDR microselectron's afterloading was done after a computerised dosimetry (Paris System): treatment mean time = 30, 98 hours; mean volume = 10,2 cc (T1-T2 8, 61cc); Ir - 192 activity = range 0,7 - 4,792 mCi/cm; reference dose rate 45,6 - 290, 1 cGy/h. Results: 46 patients are alive without cancer, 1 died without responding, 6 died from non oncological diseases; 8 patients had recurrences (5 local, 3 nodal) but are alive. Mean follow-up 30,83 months (range 3-60m), mean DFS = 22,49 m (range 5-57m). Acute secondary effects: 30 radioepithelyties (grade 1 = 7, g2=23, g3=14), and 39 radiomucitis (g1=3; g2=23; g3=13); mean time for complete healing = 21, 66 days. Sequelae: moderate sclerosis of the skin =11, skin retraction = 1, hyperpigmentation2, depigmentation= 10, edema= 6, gingivitis= 7. Aesthetical results: good32; moderate= 18; bad= 2, very bad= 1 (uncontrolled tumor). Conclusions: The sequelae and aesthetical results are closely dependent on the treated volume and the dose rate, less dependent on the total dose, and independent on the Iridium activity. Complete healing time does not influence the late aesthetical results

  15. Human error in remote Afterloading Brachytherapy

    International Nuclear Information System (INIS)

    Quinn, M.L.; Callan, J.; Schoenfeld, I.; Serig, D.

    1994-01-01

    Remote Afterloading Brachytherapy (RAB) is a medical process used in the treatment of cancer. RAB uses a computer-controlled device to remotely insert and remove radioactive sources close to a target (or tumor) in the body. Some RAB problems affecting the radiation dose to the patient have been reported and attributed to human error. To determine the root cause of human error in the RAB system, a human factors team visited 23 RAB treatment sites in the US. The team observed RAB treatment planning and delivery, interviewed RAB personnel, and performed walk-throughs, during which staff demonstrated the procedures and practices used in performing RAB tasks. Factors leading to human error in the RAB system were identified. The impact of those factors on the performance of RAB was then evaluated and prioritized in terms of safety significance. Finally, the project identified and evaluated alternative approaches for resolving the safety significant problems related to human error

  16. Remote Afterloading High Dose Rate (HDR) Endobronchial Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Hyesook; Choi, Eun Kyung; Yi, Byong Yong; Kim, Won Dong; Kim, Woo Sung; Koh, Youn Suck [Ulsan University College of Medicine, Seoul (Korea, Republic of)

    1991-12-15

    Authors described the remote afterloading endobronchial brachytherapy (EBBT) technique using the microSelectron HDR Ir-192 and the Asan Medical Center experience. Total 28 EBBT in 9 patients were performed since November 1989 and 24 EBBT in 8 patients were employed for palliation and 3 EBBT in 1 patient was treated curatively. Authors observed a significant relief of obstructive symptom with tumor regression in 7 patients out of 8 who were treated palliatively but one of them died of pulmonary congestion in 3 weeks after EBBT. One patient with prior therapy of extensive electrocautery expired within 1 day after 2nd EBBT procedure with massive hemorrhage from the lesion. EBBT procedure has been tolerable and can be performed as an outpatient.

  17. Remote Afterloading High Dose Rate (HDR) Endobronchial Brachytherapy

    International Nuclear Information System (INIS)

    Chang, Hyesook; Choi, Eun Kyung; Yi, Byong Yong; Kim, Won Dong; Kim, Woo Sung; Koh, Youn Suck

    1991-01-01

    Authors described the remote afterloading endobronchial brachytherapy (EBBT) technique using the microSelectron HDR Ir-192 and the Asan Medical Center experience. Total 28 EBBT in 9 patients were performed since November 1989 and 24 EBBT in 8 patients were employed for palliation and 3 EBBT in 1 patient was treated curatively. Authors observed a significant relief of obstructive symptom with tumor regression in 7 patients out of 8 who were treated palliatively but one of them died of pulmonary congestion in 3 weeks after EBBT. One patient with prior therapy of extensive electrocautery expired within 1 day after 2nd EBBT procedure with massive hemorrhage from the lesion. EBBT procedure has been tolerable and can be performed as an outpatient

  18. Human factors evaluation of remote afterloading brachytherapy. Supporting analyses of human-system interfaces, procedures and practices, training and organizational practices and policies. Volume 3

    International Nuclear Information System (INIS)

    Callan, J.R.; Kelly, R.T.; Quinn, M.L.

    1995-07-01

    A human factors project on the use of nuclear by-product material to treat cancer using remotely operated afterloaders was undertaken by the Nuclear Regulatory Commission. The purpose of the project was to identify factors that contribute to human error in the system for remote afterloading brachytherapy (RAB). This report documents the findings from the second, third, fourth, and fifth phases of the project, which involved detailed analyses of four major aspects of the RAB system linked to human error: human-system interfaces; procedures and practices; training practices and policies; and organizational practices and policies, respectively. Findings based on these analyses provided factual and conceptual support for the final phase of this project, which identified factors leading to human error in RAB. The impact of those factors on RAB performance was then evaluated and prioritized in terms of safety significance, and alternative approaches for resolving safety significant problems were identified and evaluated

  19. Human factors evaluation of remote afterloading brachytherapy. Supporting analyses of human-system interfaces, procedures and practices, training and organizational practices and policies. Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    Callan, J.R.; Kelly, R.T.; Quinn, M.L. [Pacific Science & Engineering Group, San Diego, CA (United States)] [and others

    1995-07-01

    A human factors project on the use of nuclear by-product material to treat cancer using remotely operated afterloaders was undertaken by the Nuclear Regulatory Commission. The purpose of the project was to identify factors that contribute to human error in the system for remote afterloading brachytherapy (RAB). This report documents the findings from the second, third, fourth, and fifth phases of the project, which involved detailed analyses of four major aspects of the RAB system linked to human error: human-system interfaces; procedures and practices; training practices and policies; and organizational practices and policies, respectively. Findings based on these analyses provided factual and conceptual support for the final phase of this project, which identified factors leading to human error in RAB. The impact of those factors on RAB performance was then evaluated and prioritized in terms of safety significance, and alternative approaches for resolving safety significant problems were identified and evaluated.

  20. Physical optimization of afterloading techniques

    International Nuclear Information System (INIS)

    Anderson, L.L.

    1985-01-01

    Physical optimization in brachytherapy refers to the process of determining the radioactive-source configuration which yields a desired dose distribution. In manually afterloaded intracavitary therapy for cervix cancer, discrete source strengths are selected iteratively to minimize the sum of squares of differences between trial and target doses. For remote afterloading with a stepping-source device, optimized (continuously variable) dwell times are obtained, either iteratively or analytically, to give least squares approximations to dose at an arbitrary number of points; in vaginal irradiation for endometrial cancer, the objective has included dose uniformity at applicator surface points in addition to a tapered contour of target dose at depth. For template-guided interstitial implants, seed placement at rectangular-grid mesh points may be least squares optimized within target volumes defined by computerized tomography; effective optimization is possible only for (uniform) seed strength high enough that the desired average peripheral dose is achieved with a significant fraction of empty seed locations. (orig.) [de

  1. Radiological safety problems in intracavitary brachytherapy using the manual afterloading in Venezuela

    International Nuclear Information System (INIS)

    Lea, D.; Gonzales, E.; Gallardo, J.; Diaz, M.

    1996-01-01

    In three venezuelan public hospitals it was detected radioactive contamination for Cs-137 during inspection with the wipe test technique in areas where is applied intracavitary brachytherapy using manual afterloading. This caused a condition of great stress in the personal engaged the treatments. In each Cs-137 source in these hospitals was tested leakage. The source plastic holder was analysed. The authors were able to demonstrate: a) The radioactive contamination found in the treatment area had its origin in the Cs-137 capsule corrosion and b) The corrosion in the source capsule was produced by the radiolytic degradation of the PVC tube used as source-holder in the intracavitary treatments. (authors). 3 refs., 1 tab

  2. MRI-guided brachytherapy for cancer of the oesophagus

    International Nuclear Information System (INIS)

    Aydin, H.; Bachmann, G.; Lieven, H. von; Sens, M.

    1993-01-01

    A method of brachytherapy treatment planning using MRI is presented. In 13 patients with inoperable squamous cell cancer of the thoracic oesophagus an intraluminal afterloading boost with MRI assistance was performed. A new type of flexible catheter was filled with 1/100 diluted Gd-DTPA and introduced into the oesophagus before performing MRI in the sagittal, coronal and transverse planes. One sagittal or coronal picture which showed the catheter tip and the residual cancer was magnified to ''life size''. The position of the catheter was corrected if necessary and the treatment volume decided. The contrast medium was then aspirated out of the catheter and a thinner afterloading catheter pushed into the outer catheter. The patient was moved immediately to the afterloading room and received the first dose of boost irradiation. This method allows much more precise brachytherapy planning since it shows the cancer and the catheter together. It is superior to localising the cancer with a barium swallow or endoscopy because MRI visualises the whole extent of the residual cancer, which can then be covered with the necessary dose. (orig.)

  3. Modeling volume effects of experimental brachytherapy in the rat rectum: uncovering the limitations of a radiobiologic concept

    International Nuclear Information System (INIS)

    Johannessen, Hans-Olaf; Dale, Einar; Hellebust, Taran P.; Olsen, Dag R.; Nesland, Jahn M.; Giercksky, Karl-Erik

    2002-01-01

    Purpose: To analyze the significance of volume effects in experimental brachytherapy, based on modeling normal tissue complication probability. Methods and Materials: Experimental brachytherapy in the rat rectum was based on an eight-step 2.5-mm step size source configuration for 192 Ir, afterloaded into an unshielded polystyrene applicator. Volume effects were studied using a half-circumferential lead-shielded applicator and a shorter (two-step) source configuration. The main end point was rectal stenosis. Results: Rectal stenosis was always caused by a radiation ulcer. With the shielded configuration, single-dose ED 50 (50% incidence of rectal stenosis) increased from 23 Gy to 36.5 Gy. Single-dose ED 50 for the short configuration was 77.9 Gy. The data showed a reasonable fit to a three-parameter version of the biophysical model described by Jackson et al. (1995). This model assumes that organs consist of a large number of radiobiologically independent subunits and that radiation causes a complication if the fraction of the organ damaged is greater than its functional reserve. The fraction of the organ damaged is calculated summing over fractions of the organ damaged at each dose level. The calculated mean functional reserve (ν 50 ) of the rat rectum, assuming a cumulative functional reserve distribution in the group of experimental rats, was 0.53. Conclusions: The volume effect observed within small brachytherapy volumes agreed well with clinical experience of large tolerance doses in contact X-ray therapy. However, the ν 50 value was comparable to the high functional reserve value reported for liver. Experimental volume effects probably reflect repair processes originating in the areas adjacent to small radiation fields of brachytherapy more than the radiobiologic characteristics of the cells in the irradiated volume

  4. SU-E-T-242: Design of a Novel Afterloader Clearance QA Device for Biliary HDR Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Mullins, JP; Deufel, CL [Mayo Clinic, Rochester, MN (United States)

    2015-06-15

    Purpose: Bile duct cancer affects 2–3 thousand people annually in the United States. Radiation therapy has been shown to double median survival, with combined external beam and intraluminal high dose-rate (HDR) brachytherapy being most effective. Endoscopic retrograde cholangiopancreatography (ERCP) biliary HDR, a less-invasive alternative to trans-hepatic brachytherapy, is delivered through a catheter that travels a tortuous path from nose to bile duct, requiring wire drive force and dexterity beyond typical afterloader performance specifications. Thus, specific afterloader quality assurance(QA) is recommended for this procedure. Our aim was to create a device and process for Varisource afterloader clearance QA with objectives that it be quantitative and can monitor afterloader performance over time, compare performance between two distinct afterloaders and potentially Result in a predictive nomogram for patient-specific clearance. Methods: Based on retrospective reconstruction of 20 ERCP patient anatomies, we designed a phantom to test afterloader ability to drive the source wire along an intended treatment path. The ability of the afterloader to fully extend the intended treatment path is a function of number and diameters of turns. We have determined experimentally that relative position of the turns does not impact performance. Results: Both patient and QA paths involve three common turns/loops: a large turn representing the stomach(10.8cm±2.0cm), an elliptical loop representing the duodenum(7.3cm±1.5cmx4.8cm±0.7cm), and a final turn at the end of the bile duct that may be tight for some patient-specific anatomies and absent in others(3.7cm±0.7cm, where present). Our phantom design uses anatomical average turn diameters for the stomach and duodenum then terminates in a turn of quantitatively selectable diameter. The smallest final turn diameter that an afterloader can pass is recorded as the QA parameter. Conclusion: With this device and QA process, we

  5. Clinical result of high-dose rate intraluminal brachytherapy for esophageal carcinoma with a remote afterloading system

    International Nuclear Information System (INIS)

    Fukuda, Haruyuki; Nakajima, Toshifumi; Tada, Takuhito; Tanaka, Masahiro; Tsumura, Masashi; Onoyama, Yasuto

    1992-01-01

    During the period from 1977 through 1987, 105 patients with esophageal carcinoma were radically treated by radiotherapy. Forty-six patients receiving therapy before August 1982 were all treated by external beam therapy alone (Group 1). Since September 1982, 26 patients were treated by external beam therapy alone (Group 2) and 33 patients were treated by high-dose-rate intraluminal brachytherapy with a remote afterloading system combined with external beam therapy (Group 3). Dose of external beam therapy for Group 1, Group 2 and Group 3 patients were 66.7 Gy, 68.7 Gy and 55.9 Gy on the average. The intraluminal brachytherapy was performed with a total dose of 12 Gy consisting of 3 Gy twice a week. Ten of 72 patients (14%) treated by external beam therapy alone achieved complete response, whereas 14 of 33 patients (42%) treated by high-dose-rate intraluminal brachytherapy combined with external beam therapy had complete response. One-, and 3-year survival rates were 36% and 10% in the Group 1, 32% and 12% in the Group 2 and 56% and 36% in the Group 3. For Group 3, good survival rate was obtained in tumorous type and serrated type. Patients with tumor of less than 5 cm in Group 3 had good survival. The data suggest that the high-dose-rate intraluminal bracytherapy prescribed as a boost therapy following external beam therapy is an effective therapy modality for esophageal carcinoma which is of non-circumferential tumor or less than 5 cm. (author)

  6. Reconstruction of MRI/CT compatible ring and tandem applicators in CT or MRI images used for treatment planning in brachytherapy

    International Nuclear Information System (INIS)

    Surendran, N.; Kim, Hayeon; Beriwal, Sushil; Saiful Huq, M.

    2008-01-01

    Brachytherapy (BT) plays a crucial role in the management of invasive cervix cancer from stage I to IV. Intracavitary techniques are based on afterloading devices, with different types of applicators. CT and/or MRI compatible applicators allow a sectional image based approach with a better assessment of gross tumour volume (GTV) and definition and delineation of target volume (CTV) compared to traditional approaches. To evaluate reconstruction of MRI/CT compatible ring and tandem applicators in 3D CT or MRI images used for treatment planning in Brachytherapy

  7. High-dose rate brachytherapy in the treatment of carcinoma of uterine cervix: twenty-year experience with cobalt after-loading system.

    Science.gov (United States)

    Mosalaei, A; Mohammadianpanah, M; Omidvari, S; Ahmadloo, N

    2006-01-01

    This retrospective analysis aims to report results of patients with cancer of uterine cervix treated with external-beam radiotherapy (EBR) and high-dose rate (HDR) brachytherapy, using manual treatment planning. From 1975 to 1995, 237 patients with FIGO stages IIB-IVA and mean age of 54.31 years were treated. EBR dose to the whole pelvis was 50 Gy in 25 fractions. Brachytherapy with HDR after-loading cobalt source (Cathetron) was performed following EBR completion with a dose of 30 Gy in three weekly fractions of 10 Gy to point A. Survival, local control, and genitourinary and gastrointestinal complications were assessed. In a median follow-up of 60.2 months, the 10-year overall and disease-free survival rate was 62.4%. Local recurrence was seen in 12.2% of patients. Distant metastases to the lymph nodes, peritoneum, lung, liver, and bone occurred in 25.3% of patients. Less than 6% of patients experienced severe genitourinary and/or gastrointestinal toxicity that were relieved by surgical intervention. No treatment-related mortality was seen. This series suggests that 50 Gy to the whole pelvis together with three fractions of 10 Gy to point A with HDR brachytherapy is an effective fractionation schedule in the treatment of locally advanced cancer of cervix. To decrease the complications, newer devices and treatment planning may be beneficial.

  8. Quality audits of the remote-controlled automatically-driven gamma ray afterloading equipment used in brachytherapy in the Czech Republic

    International Nuclear Information System (INIS)

    Zackova, H.; Horakova, I.

    2001-01-01

    To reach safety and precise application of ionisation radiation to patients Atomic act declares, in its Article no. 7, requirements for medical exposure. There are also given -among others -the demands to i nstall the quality assurance programmes (QA) for medical actions and functions . Since 1997, when the act has been adopted, a set of five Recommendations of State Office for Nuclear Safety (SONS ) for radiotherapy has been prepared to instruct users how to prepare quality control system (i.e. system of tests required by of the regulation no.184/1997 Sb. -acceptance, status and constancy tests) for main types of sources used in radiotherapy for treatment of the patients. Among them also the Recommendation on QA in brachytherapy has been issued by SONS in 1998. National Radiation Protection Institute (NRPI) has been performing the regular in situ quality audits in which the chosen parameters (which could seriously influence the dose to the patients -i.e. absorbed dose, main geometrical and radiation parameters etc ) are independently checked by the NRPI experts. System of Quality Audits on the sources used in teletherapy has been introduced in 1997 and at present time they are smoothly carried out according the SONS's demands. This work describes the process of installing of the Quality Audit system on brachytherapy. The work described here forms the only part of the activities, which have been carrying out by the department of dosimetry gamma and X-rays of NRPI to support supervisions of SONS in the field of radiation protection in radiotherapy .Quality audits in brachytherapy will extend the possibilities of NRPI. The Methods NRPI 43-01.30 prepared by NRPI could be used as documentation for all types of test which are at present time required by Czech legislation for the remote-controlled automatically-driven gamma-ray afterloading equipment used in brachytherapy. (authors)

  9. Phantom study of radiation doses outside the target volume brachytherapy versus external radiotherapy of early breast cancer

    International Nuclear Information System (INIS)

    Johansson, Bengt; Persson, Essie; Westman, Gunnar; Persliden, Jan

    2003-01-01

    Background and purpose: Brachytherapy is sometimes suggested as an adjuvant treatment after surgery of some tumours. When introducing this, it would be useful to have an estimate of the dose distribution to different body sites, both near and distant to target, comparing conventional external irradiation to brachytherapy. The aim of the present study was to determine radiation doses with both methods at different body sites, near and distant to target, in an experimental situation on an operated left sided breast cancer on a female Alderson phantom. Methods: Five external beam treatments with isocentric tangential fields were given by a linear accelerator. A specified dose of 1.0 Gy was given to the whole left sided breast volume. Five interstitial brachytherapy treatments were given to the upper, lateral quadrant of the left breast by a two plane, 10 needles implant. A dose of 1.0 Gy specified according to the Paris system was administered by a pulsed dose rate afterloading machine. Absorbed dose in different fixed dose points were measured by thermoluminescence dosimeters. Results: Both methods yielded an absorbed dose of the same size to the bone marrow and internal organs distant to target, 1.0-1.4% of the prescribed dose. There was a trend of lower doses to the lower half of the trunk and higher doses to the upper half of the trunk, respectively, by brachytherapy. A 90% reduction of absorbed dose with brachytherapy compared to external irradiation was found in the near-target region within 5 cm from target boundary where parts of the left lung and the heart are situated. If an adjuvant dose of 50 Gy is given with the external radiotherapy and brachytherapy, the absorbed dose in a part of the myocardium could be reduced from 31.8 to 2.1 Gy. Conclusions: Near target, brachytherapy yielded a considerably lower absorbed dose which is of special importance when considering radiation effects on the myocard and lungs. We could not demonstrate any difference of

  10. Remote-controlled afterloading for intracavitary brachytherapy in gynecological carcinomas

    International Nuclear Information System (INIS)

    Rotte, K.

    1983-01-01

    Classical radiotherapy is gradually being replaced by remote-controlled afterloading procedures in the intracavitary treatment of tumors found during gynecological examination. These new procedures practically eliminate the exposure of the clinic staff to radiation. The possibilities of this new method are discussed with regard to the physics and biology of radiation. Our own results with this new method are reported. (orig.)

  11. Oncentra brachytherapy planning system.

    Science.gov (United States)

    Yang, Jack

    2018-03-27

    In modern cancer management, treatment planning has progressed as a contemporary tool with all the advances in computing power in recent years. One of the advanced planning tools uses 3-dimensional (3D) data sets for accurate dose distributions in patient prescription. Among these planning processes, brachytherapy has been a very important part of a successful cancer management program, offering clinical benefits with specific or combined treatments with external beam therapy. In this chapter, we mainly discussed the Elekta Oncentra planning system, which is the main treatment planning tool for high-dose rate (HDR) modality in our facility and in many other facilities in the United States. HDR is a technically advanced form of brachytherapy; a high-intensity radiation source (3.6 mm in length) is delivered with step motor in submillimeter precision under computer guidance directly into the tumor areas while minimizing injury to surrounding normal healthy tissue. Oncentra planning is the key component to generate a deliverable brachytherapy procedure, which is executed on the microSelectron V3 remote afterloader treatment system. Creating a highly conformal plan can be a time-consuming task. The development of Oncentra software (version 4.5.3) offers a variety of useful tools that facilitate many of the clinical challenging tasks for planning, such as contouring and image reconstruction, as well as rapid planning calculations with dose and dose volume histogram analysis. Oncentra Brachy module creates workflow and optimizes the planning accuracy for wide varieties of clinical HDR treatments, such as skin, gynecologic (GYN), breast, prostate, and many other applications. The treatment file can also be transferred to the afterloader control station for speedy delivery. The design concept, calculation algorithms, and optimization modules presented some key characteristics to plan and treat the patients effectively and accurately. The dose distribution and accuracy of

  12. A new applicator design for endocavitary brachytherapy of cancer in the nasopharynx

    International Nuclear Information System (INIS)

    Levendag, Peter C.; Peters, Rob; Meeuwis, Cees A.; Visch, Leo L.; Sipkema, Dick; Pan, Connie de; Schmitz, Paul I.M.

    1997-01-01

    Introduction: In attempting to improve local tumor control by higher doses of radiation, there has been a resurgence of interest in the implementation of brachytherapy in the management of primary and recurrent cancers of the nasopharynx. Brachytherapy with its steep dose fall-off is of particular interest because of the proximity of critical dose limiting structures. Recent developments in brachytherapy, such as the introduction of pulsed-dose-rate and high-dose-rate computerized afterloaders, have encouraged further evolution of brachytherapy techniques. Materials and methods: We have designed an inexpensive, re-usable and flexible silicone applicator, tailored to the shape of the soft tissues of the nasopharynx, which can be used with either low-dose-rate brachytherapy or high (pulsed)-dose-rate remote controlled afterloaders. Results and conclusions: This Rotterdam nasopharynx applicator proved to be easy to introduce, patient friendly and can remain in situ for the duration of the treatment (2-6 days). The design, technique of application and the first consecutive 5 years of clinical experience in using this applicator are presented

  13. Brachytherapy for carcinoma of the cervix: A Canadian survey of practice patterns in a changing era

    International Nuclear Information System (INIS)

    Pearce, Andrew; Craighead, Peter; Kay, Ian; Traptow, Laurel; Doll, Corinne

    2009-01-01

    Background and purpose: This survey aimed to document practices of Canadian radiation oncologists performing gynecologic brachytherapy for carcinoma of the cervix and to determine what the effect of the phasing-out of LDR after-loading systems from the commercial market is having on practice. Materials and methods: A 26-item questionnaire was developed to survey various aspects of brachytherapy practice to include: number of patients treated, prescription points/volume, dose and fractionation, timing, critical structure delineation, expected changes due to the phasing-out of support for low dose rate systems, and support for the development of national guidelines. A link to a web-based survey collection instrument was emailed to each radiation oncologist in Canada practicing gynecologic brachytherapy. Results: A 67% response rate was achieved in this web-based survey. Radiation oncologists currently using HDR brachytherapy are most commonly delivering 5 fractions of 6 Gy in addition to an EBRT dose of 45 Gy in 25 fractions. The median total dose equivalents to Point A was 82.9 Gy for both early and advanced disease. In response to the announcement by a major vendor that they would be phasing-out service for a popular LDR after-loader, 49% of Canadian radiation oncologists who practice brachytherapy for cervix cancer are changing to an HDR technique with a further 9% changing to a PDR technique. Eighty-six percent of respondents would support the development of national guidelines for cervix brachytherapy in Canada. Conclusions: Variation in practice exists in Canada in brachytherapy for cervix cancer. Many centers are in the process of phasing-out LDR techniques in response to the withdrawal of commercial support for these systems. Support for the development of Canadian national guidelines is high.

  14. A new applicator system for afterloading brachytherapy of the uterine cervix

    International Nuclear Information System (INIS)

    Duehmke, E.; Busch, M. II; Kirschner, H.

    1990-01-01

    We developed a new application system for the intracavitary afterloading therapy of the cervix carcinoma. With this system special problems of the application as the possible perforation of the cervix uteri are prevented. (orig.) [de

  15. Radiation safety program in high dose rate brachytherapy facility at INHS Asvini

    Directory of Open Access Journals (Sweden)

    Kirti Tyagi

    2014-01-01

    Full Text Available Brachytherapy concerns primarily the use of radioactive sealed sources which are inserted into catheters or applicators and placed directly into tissue either inside or very close to the target volume. The use of radiation in treatment of patients involves both benefits and risks. It has been reported that early radiation workers had developed radiation induced cancers. These incidents lead to continuous work for the improvement of radiation safety of patients and personnel The use of remote afterloading equipment has been developed to improve radiation safety in the delivery of treatment in brachytherapy. The widespread adoption of high dose rate brachytherapy needs appropriate quality assurance measures to minimize the risks to both patients and medical staff. The radiation safety program covers five major aspects: quality control, quality assurance, radiation monitoring, preventive maintenance, administrative measures and quality audit. This paper will discuss the radiation safety program developedfor a high dose rate brachytherapy facility at our centre which may serve as a guideline for other centres intending to install a similar facility.

  16. Pulsed dose rate brachytherapy – is it the right way?

    Directory of Open Access Journals (Sweden)

    Janusz Skowronek

    2010-10-01

    Full Text Available Pulsed dose rate (PDR-BT treatment is a brachytherapy modality that combines physical advantages of high-doserate (HDR-BT technology (isodose optimization, radiation safety with the radiobiological advantages of low-dose-rate (LDR-BT brachytherapy. Pulsed brachytherapy consists of using stronger radiation source than for LDR-BT and producing series of short exposures of 10 to 30 minutes in every hour to approximately the same total dose in the sameoverall time as with the LDR-BT. Modern afterloading equipment offers certain advantages over interstitial or intracavitaryinsertion of separate needles, tubes, seeds or wires. Isodose volumes in tissues can be created flexibly by a combinationof careful placement of the catheter and the adjustment of the dwell times of the computerized stepping source.Automatic removal of the radiation sources into a shielded safe eliminates radiation exposures to staff and visitors.Radiation exposure is also eliminated to the staff who formerly loaded and unloaded multiplicity of radioactive sources into the catheters, ovoids, tubes etc. This review based on summarized clinical investigations, analyses the feasibility and the background to introduce this brachytherapy technique and chosen clinical applications of PDR-BT.

  17. Volume correction factor in time dose relationships in brachytherapy

    International Nuclear Information System (INIS)

    Supe, S.J.; Sasane, J.B.

    1987-01-01

    Paterson's clinical data about the maximum tolerance doses for various volumes of interstitial implants with Ra-226 delivered in seven days was made use of in deriving volume correction factors for TDF and CRE concepts respectively for brachytherapy. The derived volume correction factors for TDF and for CRE differ fromthe one assumed for CRE by Kirk et al. and implied for TDF by Goitein. A normalising volume of 70 cc has been suggested for both CRE and TDF concepts for brachytherapy. A table showing the volume corrected TDF is presented for various volumes and dose rates for continuous irradiation. The use of this table is illustrated with examples. (orig.) [de

  18. Tolerance of human skin applying pulsed brachytherapy with large afterloading moulds

    International Nuclear Information System (INIS)

    Fritz, Peter; Hensley, Frank W.; Berns, Christiane; Schraube, Peter; Wannenmacher, Michael

    1995-01-01

    Purpose: The concept of pulsed brachytherapy suggested by Brenner and Hall requires an unusual fractionation scheme. The effectiveness and sequelae of this new irradiation method was observed on patients with disseminated cutaneous metastases of breast cancer. Materials and Methods: A flexible, re-usable skin mould (weight 110 g) was developed for use with a PDR afterload. An array of 18 parallel catheters (2 mm diameter) at equal distances of 10 mm was constructed by fixation of the catheters in a plastic wire mesh. The array is sewn between two foam rubber slabs of 5 mm thickness to provide a defined constant distance to the skin. Irradiations are performed up to a maximum field size of 17 x 23,5 cm 2 with a nominal 37 GBq Ir-192 source in pulses of 1 Gy per hour at the skin surface. The dose distribution is geometrically optimized to provide a homogeneous skin dose (100±10%). The 80% dose level lies at 5 mm below the skin surface. 20 patients suffering from cutaneous metastases at the thoracic wall were treated with 22 fields (area irradiated: 100-919 cm 2 ) at total doses of 40 to 50 Gy applying two PDR courses with a pause of 4 to 6 weeks. 12 of the fields were previously irradiated with external beam therapy to doses of 40 to 60 Gy at 7 to 22 months in advance. Results: Complete remissions (CR) were achieved in 21 out of 22 fields. (18(20)) patients were free of relapse at the time of death or evaluation. Pre-irradiated fields (n=12): follow-up times 6-21,5 months (median: 11,5 months). CR: (11(12)) fields. Recurrencies:(2(12)) fields. Maximum degree of early skin reactions: marked erythema: (8(12)) fields; epitheliolysis (>50% field size): (4(12)) fields. Intermediate skin reactions after minimum follow-up of 6 months: pigmentation/atrophy: (8(12)) fields; marked teleangiectasia: (3(12)) fields; small skin necrosis:(1(12)) fields. Newly irradiated fields (n=11): follow-up: 6-13,5 months (median:8 month). CR: (11(11)) fields. Recurrencies:(0(11)) fields

  19. Tumor hypoxia - A confounding or exploitable factor in interstitial brachytherapy? Effects of tissue trauma in an experimental rat tumor model

    NARCIS (Netherlands)

    van den Berg, AP; van Geel, CAJF; van Hooije, CMC; van der Kleij, AJ; Visser, AG

    2000-01-01

    Purpose: To evaluate the potential effects of tumor hypoxia induced by afterloading catheter implantation on the effectiveness of brachytherapy in a rat tumor model. Methods and Materials: Afterloading catheters (4) Here implanted in subcutaneously growing R1M rhabdomyosarcoma in female Wag/Rij

  20. Afterloading

    Energy Technology Data Exchange (ETDEWEB)

    Watson, E R [Glasgow Western Infirmary (UK)

    1981-12-01

    In view of the likely revision of the Code of Practice for radiation safety for radiotherapy departments, a review of existing safety precautions is undertaken. Most of the dose to radiographers comes from unsealed sources (e.g. /sup 131/I) and the use of small sealed sources in the form of intracavitory insertions, implants and moulds. Small sealed sources are dealt with in particular. Factors considered in minimising the dose to operational personnel are shielding, distance, time and manual or automatic afterloading of the radiation source. A detailed discussion is given on various commercial afterloading devices and operational experience of treating carcinoma of the cervix at Glasgow is reported. It is concluded that manual afterloading does not protect the staff at greatest risk (usually nurses) and that automatic afterloading machines appear to be the ideal solution.

  1. Comparison of 60Cobalt and 192Iridium sources in high dose rate afterloading brachytherapy

    International Nuclear Information System (INIS)

    Richter, J.; Baier, K.; Flentje, M.

    2008-01-01

    Purpose: 60 Co sources with dimensions identical to those of 192 Ir have recently been made available in clinical brachytherapy. A longer half time reduces demands on logistics and quality assurance and perhaps costs. Material and Methods: Comparison of the physical properties of 60 Co and 192 Ir with regard to brachytherapy. Results: Required activities for the same air kerma rate are lower by a factor of 2.8 for 60 Co. Differential absorption in tissues of different densities can be neglected. Monte Carlo calculations demonstrate that integral dose due to radial dose fall off is higher for 192 Ir in comparison to 60 Co within the first 22 cm from the source (normalization at 1 cm). At larger distances this relationship is reversed. Conclusion: Clinical examples for intracavitary and interstitial applications however, show practically identical dose distributions in the treatment volume. (orig.)

  2. In-phantom dosimetric measurements as quality control for brachytherapy. System check and constancy check; Messungen im Festkoerperphantom als Qualitaetskontrolle in der Brachytherapie. Systempruefung und Konstanzpruefung

    Energy Technology Data Exchange (ETDEWEB)

    Kollefrath, Michael; Bruggmoser, Gregor; Nanko, Norbert; Gainey, Mark [Universitaetsklinik Freiburg (Germany). Klinik fuer Strahlenheilkunde

    2015-09-01

    In brachytherapy dosimetric measurements are difficult due to the inherent dose-inhomogeneities. Typically in routine clinical practice only the nominal dose rate is determined for computer controlled afterloading systems. The region of interest lies close to the source when measuring the spatial dose distribution. In this region small errors in the positioning of the detector, and its finite size, lead to large measurement uncertainties that exacerbate the routine dosimetric control of the system in the clinic. The size of the measurement chamber, its energy dependence, and the directional dependence of the measurement apparatus are the factors which have a significant influence on dosimetry. Although ionisation chambers are relatively large, they are employed since similar chambers are commonly found on clinical brachytherapy units. The dose is determined using DIN 6800 [11] since DIN 6809-2 [12], which deals with dosimetry in brachytherapy, is antiquated and is currently in the process of revision. Further information regarding dosimetry for brachytherapy can be found in textbooks [1] and [2]. The measurements for this work were performed with a HDR (High-Dose-Rate) {sup 192}Ir source, type mHDR V2, and a Microselectron Afterloader V2 both from Nucletron/Elekta. In this work two dosimetric procedures are presented which, despite the aforemention difficulties, should assist in performing checks of the proper operation of the system. The first is a system check that measures the dose distribution along a line and is to be performed when first bringing the afterloader into operation, or after significant changes to the system. The other is a dosimetric constancy check, which with little effort can be performed monthly or weekly. It simultaneously verifies the positioning of the source at two positions, the functionality of the system clock and the automatic re-calculation of the source activity.

  3. Inverse planning in brachytherapy from radium to high rate 192 iridium afterloading

    International Nuclear Information System (INIS)

    Lahanas, M.; Mould, R.F.; Baltas, D.; Karauzakis, K.; Giannouli, S.; Baltas, D.

    2004-01-01

    We consider the inverse planning problem in brachytherapy, i.e. the problem to determine an optimal number of catheters, number of sources for low-dose rate brachytherapy (LDR) and the optimal dwell times for high-dose rate brachytherapy (HDR) necessary to obtain an optimal as possible dose distribution. Starting from the 1930s, inverse planning for LDR brachytherapy used geometrically derived rules to determine the optimal placement of sources in order to achieve a uniform dose distribution of a specific level in planes, spheres and cylinders. Rules and nomograms were derived which still are widely used. With the rapid development of 3D imaging technologies and the rapidly increasing computer power we have now entered the new era of computer-based inverse planning in brachytherapy. The inverse planning is now an optimisation process adapted to the individual geometry of the patient. New inverse planning optimisation algorithms are anatomy-based that consider the real anatomy of the tumour and the organs at risk (OAR). Computer-based inverse planning considers various effects such as stability of solutions for seed misplacements which cannot ever be solved analytically without gross simplifications. In the last few years multiobjective (MO) inverse planning algorithms have been developed which recognise the MO optimisation problem which is inherent in inverse planning in brachytherapy. Previous methods used a trial and error method to obtain a satisfactory solution. MO optimisation replaces this trial and error process by presenting a representative set of dose distributions that can be obtained. With MO optimisation it is possible to obtain information that can be used to obtain the optimum number of catheters, their position and the optimum distribution of dwell times for HDR brachytherapy. For LDR brachytherapy also the stability of solutions due to seed migration can also be improved. A spectrum of alternative solutions is available and the treatment planner

  4. BRIT manual after loading brachytherapy kit for intracavitary: initial experience

    International Nuclear Information System (INIS)

    Aggarwal, Lalit M.; Mandal, Abhijit; Asthana, Anupam K.; Shahi, Uday P.; Pradhan, Satyajit

    2007-01-01

    Brachytherapy continues to serve as an important and rapidly evolving tool in the management of cancer. Technological developments in the last two decades have dramatic impact on the safe practice of brachytherapy. A wide range of brachytherapy sources and equipment are available for new therapeutic possibilities. However, decision making with regard to new brachytherapy facilities are need based and depend on the patient load, socioeconomic status of the patients, and funds available with the institution. Remote afterloading equipments are fast replacing the Manual After Loading (MAL) systems. However, keeping in view the large number of patients, who can not afford expensive treatment, the utility of manual after loading system which is inexpensive, cannot be ignored

  5. Radiobiological considerations in gynaecological HDR and LDR brachytherapy

    International Nuclear Information System (INIS)

    Bauer, M.; Schulz-Wendtland, R.

    1989-01-01

    In brachytherapy the advantages of high dose rate over low dose rate afterloading therapy were obvious. Out-patient treatment becomes possible, the position of the sources is reproducible and can be observed during the treatment and the patients have to be immobilised for only a short time, giving less psychological stress and a decreased risk of thrombosis and embolism. When changing from LDR to HDR afterloading therapy we are not yet able to evaluate its biological impact. Radiobiological considerations and our experimental data, however, give us the following clinical consequences by using HDR brachytherapy: There is a need for about 15 fractions or more and each increase in dose rate requires higher fractioning. Due to the steep dose rate decline and the inhomogeneous dose distribution, multiple equivalence factors are necessary when fractioning is not sufficiently high. Correction factors to reduce the dose close to the source are low, with increasing distance from the source they increase. If HDR radiation therapy is used, the percutaneous dose in the pelvic wall region should be reduced. The reduction of the dose in HDR brachytherapy is a compromise to limit the side effects caused by the radiation. The drawback is a small therapeutic range and reduced therapeutic effectivity at the tumour. (orig.) [de

  6. Physics and quality assurance for brachytherapy - Part II: Low dose rate and pulsed dose rate

    International Nuclear Information System (INIS)

    Williamson, Jeffrey F.

    1997-01-01

    Purpose: A number of recent developments have revitalized brachytherapy including remote afterloading, implant optimization, increasing use of 3D imaging, and advances in dose specification and basic dosimetry. However, the core physical principles underlying the classical methods of dose calculation and arrangement of multiple sources remain unchanged. The purpose of this course is to review these principles and their applications to low dose-rate interstitial and intracavitary brachytherapy. Emphasis will be placed upon the classical implant systems along with classical and modern methods of dose specification. The level of presentation is designed for radiation oncology residents and beginning clinical physicists. A. Basic Principles (1) Radium-substitute vs. low-energy sealed sources (2) Dose calculation principles (3) The mysteries of source strength specification revealed: mgRaEq, mCi and air-kerma strength B. Interstitial Brachytherapy (1) Target volume, implanted volume, dose specification in implants and implant optimization criteria (2) Classical implant systems: Manchester Quimby and Paris a) Application of the Manchester system to modern brachytherapy b) Comparison of classical systems (3) Permanent interstitial implants a) Photon energy and half life b) Dose specification and pre-operative planning (4) The alphabet soup of dose specification: MCD (mean central dose), minimum dose, MPD (matched peripheral dose), MPD' (minimum peripheral dose) and DVH (dose-volume histogram) quality indices C. Intracavitary Brachytherapy for Carcinoma of the Cervix (1) Basic principles a) Manchester System: historical foundation of U.S. practice patterns b) Principles of applicator design (2) Dose specification and treatment prescription a) mg-hrs, reference points, ICRU Report 38 reference volume -- Point A dose vs mg-hrs and IRAK (Integrated Reference Air Kerma) -- Tissue volume treated vs mg-hrs and IRAK b) Practical methods of treatment specification and prescription

  7. Physics and quality assurance for brachytherapy - Part II: Low dose rate and pulsed dose rate

    International Nuclear Information System (INIS)

    Williamson, Jeffrey F.

    1996-01-01

    Purpose: A number of recent developments have revitalized brachytherapy including remote afterloading, implant optimization, increasing use of 3D imaging, and advances in dose specification and basic dosimetry. However, the core physical principles underlying the classical methods of dose calculation and arrangement of multiple sources remain unchanged. The purpose of this course is to review these principles and their applications to low dose-rate interstitial and intracavitary brachytherapy. Emphasis will be placed upon the classical implant systems along with classical and modern methods of dose specification. The level of presentation is designed for radiation oncology residents and beginning clinical physicists. A. Basic Principles (1) Radium-substitute vs. low-energy sealed sources (2) Dose calculation principles (3) The mysteries of source strength specification revealed: mgRaEq, mCi and air-kerma strength B. Interstitial Brachytherapy (1) Target volume, implanted volume, dose specification in implants and implant optimization criteria (2) Classical implant systems: Manchester Quimby and Paris a) Application of the Manchester system to modern brachytherapy b) Comparison of classical systems (3) Permanent interstitial implants a) Photon energy and half life b) Dose specification and pre-operative planning (4) The alphabet soup of dose specification: MCD (mean central dose), minimum dose, MPD (matched peripheral dose), MPD' (minimum peripheral dose) and DVH (dose-volume histogram) quality indices C. Intracavitary Brachytherapy for Carcinoma of the Cervix (1) Basic principles a) Manchester System: historical foundation of U.S. practice patterns b) Principles of applicator design (2) Dose specification and treatment prescription a) mg-hrs, reference points, ICRU Report 38 reference volume --Point A dose vs mg-hrs and IRAK (Integrated Reference Air Kerma) --Tissue volume treated vs mg-hrs and IRAK b) Practical methods of treatment specification and prescription

  8. Quality control of 192Ir high dose rate after loading brachytherapy dose veracity

    International Nuclear Information System (INIS)

    Feng Zhongsu; Xu Xiao; Liu Fen

    2008-01-01

    Recently, 192 Ir high dose rate (HDR) afterloading are widely used in brachytherapy. The advantage of using HDR systems over low dose rate systems are shorter treatment time and higher fraction dose. To guarantee the veracity of the delivery dose, several quality control methods are deseribed in this work. With these we can improve the position precision, time precision and dose precision of the brachytherapy. (authors)

  9. Three-dimensional brachytherapy optimization techniques in the treatment of patients with cervix cancer

    International Nuclear Information System (INIS)

    Haie-Meder, C.; Mazeron, R.; Verezesan, O.; Monnier, L.; Vieillot, S.; Dumas, I.; Lhomme, C.; Morice, P.; Barillot, I.

    2009-01-01

    Traditionally, prescription and treatment planning in intracavitary brachytherapy for cervix cancer have used either reference points (mainly points A and B) or reference isodoses (60 Gy according to ICRU recommendations) to report doses to the target volume. Doses to critical organs were reported at bladder and rectum ICRU points. This practice has been supported by a long-standing clinical experience that has yielded an acceptable therapeutic ratio. The recent development of imaging has contributed to the improvement in target and organs at risk knowledge. In 2005 and 2006, the European group of brachytherapy -European Society for therapeutic radiology and oncology (GEC-E.S.T.R.O.) recommendations publications on 3-D based image brachytherapy have defined the different volumes of interest. These recommendations have been validated with intercomparison delineation studies. With the concomitant development of remote after-loading projectors, provided with miniaturized sources, it is now possible to plan radiation doses by adjusting dwell positions and relative dwell time values. These procedures allow better coverage of the targets while sparing O.A.R.. The recent literature data evidence a significant improvement in local control with no increase in complications. Further studies are needed to better define the dose recommended in both tumour and organs at risk. This is one of the goals of the European study on MRI-guided brachytherapy in locally advanced cervical cancer (E.M.B.R.A.C.E.) protocol (meaning of acronym: an international study on MRI-guided brachytherapy in locally advanced cervical cancer). (authors)

  10. Relocation of a nucletron microselectron-HDR brachytherapy system

    Energy Technology Data Exchange (ETDEWEB)

    Bartrum, T; Tran, T; Freeman, N; Morales, J [St Vincents Hospital, Darlinghurst, NSW (Australia)

    2004-12-15

    Full text: For a period of four weeks, our clinical Nucletron microSelectron high dose rate (HDR) brachytherapy system was pulled out of clinical use and relocated to a new building. During this period decommission tests, de-wiring of the treatment unit and its associated safety system (such as radiation detector, emergency off circuits and door interlocks), transportation of all equipment, re-wiring of this equipment in the new location and recommission tests were carried out. The decommission and recommission test program was designed upon consultation with the manufacturer's (Nucletron) acceptance test procedures and work carried out by others. The ACPSEM tolerances for remote afterloaders was used as a guideline. In addition to mandatory dosimetry, positional, workstation database and safety tests, two Australian Standard compliance tests were carried out. The compliance tests involved one for remote afterloaders and another for treatment room design. This testing program was designed and implemented with the aim of ensuring ongoing safe delivery of brachytherapy doses to the patient. The testing program consisted of two parts. The first involved a series of decommissioning tests that consisted of dosimetry tests such as source and check cable positional accuracy and source calibration tests. In addition to these tests an inventory of standard plans, patient records and system configuration information was catalogued. The second part involved a series of recommission tests and involved carrying out dosimetry tests on the brachytherapy system (positional accuracy and calibration tests), simulating common treatment scenarios (prostate, cervical, vaginal and bile duct) and checking standard plans; patient records and system configuration had remained unchanged. During this period, other tests were carried out. These included Nucletron acceptance and preventative maintenance tests, Australian Standards compliance testing and integrity of network transfer of

  11. Relocation of a nucletron microselectron-HDR brachytherapy system

    International Nuclear Information System (INIS)

    Bartrum, T.; Tran, T.; Freeman, N.; Morales, J.

    2004-01-01

    Full text: For a period of four weeks, our clinical Nucletron microSelectron high dose rate (HDR) brachytherapy system was pulled out of clinical use and relocated to a new building. During this period decommission tests, de-wiring of the treatment unit and its associated safety system (such as radiation detector, emergency off circuits and door interlocks), transportation of all equipment, re-wiring of this equipment in the new location and recommission tests were carried out. The decommission and recommission test program was designed upon consultation with the manufacturer's (Nucletron) acceptance test procedures and work carried out by others. The ACPSEM tolerances for remote afterloaders was used as a guideline. In addition to mandatory dosimetry, positional, workstation database and safety tests, two Australian Standard compliance tests were carried out. The compliance tests involved one for remote afterloaders and another for treatment room design. This testing program was designed and implemented with the aim of ensuring ongoing safe delivery of brachytherapy doses to the patient. The testing program consisted of two parts. The first involved a series of decommissioning tests that consisted of dosimetry tests such as source and check cable positional accuracy and source calibration tests. In addition to these tests an inventory of standard plans, patient records and system configuration information was catalogued. The second part involved a series of recommission tests and involved carrying out dosimetry tests on the brachytherapy system (positional accuracy and calibration tests), simulating common treatment scenarios (prostate, cervical, vaginal and bile duct) and checking standard plans; patient records and system configuration had remained unchanged. During this period, other tests were carried out. These included Nucletron acceptance and preventative maintenance tests, Australian Standards compliance testing and integrity of network transfer of

  12. Investigations concerning the application of PDR-afterloading-therapy

    International Nuclear Information System (INIS)

    Pohlmann, S.; Brock, A.; Prager, W.; Friedrich, K.

    1995-01-01

    Introduction: Despite the gain in experiences concerning the PDR-afterloading technology there are still some important questions about its application: Questions: 1. Are the radiation reactions of PDR with Ir-192 and LDR with Co-60 nearly the same? 2. In which way the PDR-regimen has to be modified in case of tumor volume 3 , e.g. brachytherapy in the head and neck region? 3. Is it possible to interrupt the PDR-therapy during the night? Material and methods: We compared the radiation reactions of LDR-technique and two PDR-regimens by means of the guinea pig skin model (20 female animals) The following regimens are used: 1. continuos LDR-regimen 30 Gy in 60 hours 2. PDR-regimen 0,5 Gy hourly pulse length 10 minutes, 30 Gy in 60 hours 3. PDR-regimen with 9 hours night break 30 Gy/60 hours The isodose distribution patterns of the LDR-source (Co-60 source with an activity of 2 GBq) and the PDR-source (Ir-192 source with an activity of nearly 15 GBq) are the same. We implanted an interstitial applicator on the right hand side of the animal back with a Co-60 source and on the left hand side an interstitial applicator for a PDR-irradiation. The radiation reactions were controlled by the help of an evaluation table in which the criteria of radiation reaction - exsudation, hair growth and atrophy - were classified according to the degree of seriousness. The observation time is maximal 21 months. The degrees of seriousness are presented graphically in diagrams which we analysed by means of the cross-correlation-function. Results and conclusions: 1. Generally, it is possible to compare the radiation reactions of PDR irradiation and the classic continuos LDR brachytherapy with Co-60-sources. Calculations with the aid of the Monte-Carlo-method resulted in the fact that the gamma dose is the same in a distance of 2 mm from the source. 2. The activity of the source corresponds to the volume of tumor: the smaller the volume of the tumor the lower the dose rate (activity) of the

  13. Brachytherapy of endometrial cancers

    International Nuclear Information System (INIS)

    Peiffert, D.; Hoffstetter, S.; Charra-Brunaud, C.

    2003-01-01

    Endometrial adenocarcinomas rank third as tumoral sites en France. The tumors are confined to the uterus in 80% of the cases. Brachytherapy has a large place in the therapeutic strategy. The gold standard treatment remains extra-fascial hysterectomy with bilateral annexiectomy and bilateral internal iliac lymph node dissection. However, after surgery alone, the rate of locoregional relapses reaches 4-20%, which is reduced to 0-5% after postoperative brachytherapy of the vaginal cuff. This postoperative brachytherapy is delivered as outpatients treatment, by 3 or 4 fractions, at high dose rate. The utero-vaginal preoperative brachytherapy remains well adapted to the tumors which involve the uterine cervix. Patients presenting a localized tumor but not operable for general reasons (< 10%) can be treated with success by exclusive irradiation, which associates a pelvic irradiation followed by an utero-vaginal brachytherapy. A high local control of about 80-90% is obtained, a little lower than surgery, with a higher risk of late complications. Last but not least, local relapses in the vaginal cuff, or in the perimeatic area, can be treated by interstitial salvage brachytherapy, associated if possible with external beam irradiation. The local control is reached in half of the patients, but metastatic dissemination is frequent. We conclude that brachytherapy has a major role in the treatment of endometrial adenocarcinomas, in combination with surgery, or with external beam irradiation for not operable patients or in case of local relapses. It should use new technologies now available including computerized after-loaders and 3D dose calculation. (authors)

  14. Implementation of 3D-virtual brachytherapy in the management of breast cancer: a description of a new method of interstitial brachytherapy

    International Nuclear Information System (INIS)

    Vicini, Frank A.; Jaffray, David A.; Horwitz, Eric M.; Edmundson, Gregory K.; DeBiose, David A.; Kini, Vijay R.; Martinez, Alvaro A.

    1998-01-01

    preoperatively. Results: Intraoperative ultrasound was used to check the real-time position of the afterloading needles in reference to the chest wall and posterior border of the target volume. No adjustment of needles was required in any of the 11 patients. Assessment of target volume coverage between the virtual implant and the actual CT image of the implant showed excellent agreement. In each case, all target volume boundaries specified by the physician were adequately covered. The total number of implant planes, intertemplate separation, and template orientation were identical between the virtual and real implant. Conclusion: We conclude that 3D virtual brachytherapy may offer an improved technique for accurately performing interstitial implants of the breast with a closed lumpectomy cavity in selected patients. Although preliminary results show excellent coverage of the desired target volume, additional patients will be required to establish the reproducibility of this technique and its practical limitations

  15. Procedures for calibration of brachytherapy sources

    International Nuclear Information System (INIS)

    Alfonso Laguardia, R.; Alonso Samper, J.L.; Morales Lopez, J.L.; Saez Nunez, D.G.

    1997-01-01

    Brachytherapy source strength verification is a responsibility of the user of these source, in fact of the Medical Physicists in charge of this issue in a Radiotherapy Service. The calibration procedures in the users conditions are shown. Specifics methods for source strength determination are recommended, both for High Dose Rate (HDR) sources with Remote Afterloading equipment and for Low Dose Rate sources. The The results of the calibration of HDR Remote After loaders are indicated

  16. Dosimetric advancement of high-dose-rate after-loading 192Ir source

    International Nuclear Information System (INIS)

    Zhang Shuxu; Li Wenhua; Xu Hairong

    2004-01-01

    High-dose-rate (HDR) 192 Ir source is a nuclide commonly used in the brachytherapy system. The basic dosimetry data of the near source area is usually measured by pin ion chambers or TLD techniques, but these methods have a lower spatial resolution than Electron spin resonance (ESR) dosimetry which has a spatial resolution of 156 μm, and the Monte Carlo photon transport simulations are taken as the golden standard of those measures. The precision in two-dimensional dose distribution measured by GafChromic film is reported to be 1.0%. In vivo dosimetry using TLD during HDR intracavitary after-loading brachytherapy is a good predictor of late rectal complications. The accuracy of magnetic resonance imaging (MRI) Fricke-gel dosimetry for three-dimensional dose distribution is about 2.5% with a spatial resolution of 1.56 mm. The optical computed tomography polymer gel dosimetry has a unique advance than MRI gel dosimetry

  17. Postoperative HDR afterloading brachytherapy: Vaginal tumor recurrence rates in patients with endometrial carcinoma dependent on treatment volumes

    International Nuclear Information System (INIS)

    Kloetzer, K.H.; Guenther, R.; Wendt, T.

    1997-01-01

    Patients and Method: At Jena University, Department of Radiotherapy, from 1981 to 1990 108 patients with endometrical carcinoma were postoperatively treated with high dose radiation brachytherapy of the vagina without additional percutaneous radiotherapy. Histology showed more or less differenciated adenocarcinoma in 90% of all patients, all patients were postoperatively stage I or II without proven lymphatic metastases. Dependent on individual figures patients were distributed to 3 different gorups: group A: 4 x 10 Gy, tissue-thickness of 1 cm (vaginal apex) respectively 0.5 cm (lower vaginal walls); group B: 4 x 10 Gy, tissue thickness of 1 cm (upper vaginal wall); group C: 4 x 10 Gy, tissue-thickness of 0.5 cm (both excluding the lower vaginal walls). Results: Both 3-year survival rates (group A: 96.6%, group B: 96.9%, group C: 97.7%) and tumor relapse rates of the vaginal apex (group A: 0, group B: 3.1%, group C: 2.2%) don't show significant differences. No case of local tumor recurrence was seen in the upper 2/3 of the vagina and the pelvic walls. Late side effects concerning bladder and rectum (grade III to IV, EORTC/RTOG) could be minimized by reducing the treatment volume (group A: 6.8%/12.6%, group B: 6,2%/3.1%, group C: 2.2%/0). (orig./AJ) [de

  18. 1251 seed calibration using afterloading equipment SeedSelectron. Practical solution to meet the recommendations of the AAPM

    International Nuclear Information System (INIS)

    Perez-Calatayud, J.; Richart, J.; Perez-Garcia, J.; Guirado, D.; Ballester, F.; Rodriguez, S.; Santos, M.; Depiaggio, M.; Carmona, V.; Lliso, F.; Camacho, C.; Pujades, M. C.

    2011-01-01

    SeedSelectron is a system used in the afterloader permanent implant brachytherapy seeds 1-125 interstitial prostate. Two aspects are critical when you can meet the recommendations of the AAPM: a practical difficulty to check the quantity of seed required, and the great uncertainty of all measured diodes. The purpose of this paper is to present a practical solution that has been adopted to implement the recommendations of the AAPM

  19. Experience with LDR and MDR brachytherapy for cervical cancer

    International Nuclear Information System (INIS)

    Okawa, Tomohiko; Okawa, Midori-Kita; Kaneyasu, Yuko; Karasawa, Kumiko; Fukuhara, Noboru

    1996-01-01

    As the brachytherapy dose-rate increases, it is necessary to reduce the total dose or to increase the fraction number with reducing the fraction dose in order not to increase the incidence of the late effect. With the introduction to the Tokyo Women's Medical College, Hospital of a remote afterloading system of Selectron - MDR, delivering dose-rate to point A became approximately twice of that with our classical cesium LDR manual afterloading technique. Material and Methods: Between 1987 to 1993 a total of, previously untreated 74 patients with cervical cancer received MDR brachytherapy using a Selection - MDR. This analysis is therefore of those patients series who underwent radical radioradiotherapy with MDR, 1987-1993, in comparison with the 347 cases who were treated with classical manual LDR afterloading machine, 1969-1986. The treatment was a brachytherapy during external radiotherapy and dos-rate at point A was 160-180 cGy/hour with MDR and 80-90 cGy/hour with LDR. The mean fraction dose was 800-1000 cGy by MDR and 1000-1200 cGy by LDR and fraction number was increased 1-2times in the MDR group with no change of a total dose at point A. Results: The mean age was 63.3 years in the MDR group and 60.2 in the LDR group. In the MDR group, 4 patients were at stage I, 16 stage II, 32 stage III, and 22 stage IV. In the LDR group, 32 were at stage I, 83 stage II, 183 stage III, and 49 stage IV. The medical rate was not significantly different between two groups. The tumor response by manual examination one month after radiotherapy showed no significant difference. The 5-year survival rate for the MDR and LDR groups were 100% : 78% at stage I, 61% : 71% at stage II and 52% : 53% at stage III, with no significant differences. Late complications by severity with grade II-III according to Kottureire's classification were not significantly different in the rectum or bladder. These results suggested that MDR brachytherapy was useful for the patients' QOL as it reduced the

  20. Pulsed dose rate (PDR) brachytherapy as salvage treatment of locally advanced or recurrent gynecologic cancer

    DEFF Research Database (Denmark)

    Jensen, P T; Roed, H; Engelholm, S A

    1998-01-01

    PURPOSE: Pulsed dose rate (PDR) brachytherapy is a new treatment option permitting dose distribution optimization in interstitial implants. It possesses the advantage of equipment simplification and radiation protection to the staff, compared to the manually afterloading technique. This study pre...

  1. [Developments in brachytherapy].

    Science.gov (United States)

    Ikeda, H

    1995-09-01

    Brachytherapy is one of the ideal methods of radiotherapy because of the concentration of a high dose on the target. Recent developments, including induction of afterloading method, utilization of small-sized high-activity sources such as Iridium-192, and induction of high technology and computerization, have made for shortening of irradiation time and source handling, which has led to easier management of the patient during treatment. Dose distribution at high dose rate (HDR) is at least as good as that of low dose rate (LDR), and selection of fractionation and treatment time assures even greater biological effects on hypoxic tumor cells than LDR. Experience with HDR brachytherapy in uterine cervix cancer using Cobalt-60 during the past 20 years in this country has gradually been evaluated in U.S. and Europe. The indications for HDR treatment have extended to esophagus, bronchus, bile duct, brain, intraoperative placement of source guide, and perineal region using templates, as well as the conventional use for uterus, tongue and so on.

  2. Impact of aortic root size on left ventricular afterload and stroke volume.

    Science.gov (United States)

    Sahlén, Anders; Hamid, Nadira; Amanullah, Mohammed Rizwan; Fam, Jiang Ming; Yeo, Khung Keong; Lau, Yee How; Lam, Carolyn S P; Ding, Zee Pin

    2016-07-01

    The left ventricle (LV) ejects blood into the proximal aorta. Age and hypertension are associated with stiffening and dilation of the aortic root, typically viewed as indicative of adverse remodeling. Based on analytical considerations, we hypothesized that a larger aortic root should be associated with lower global afterload (effective arterial elastance, EA) and larger stroke volume (SV). Moreover, as antihypertensive drugs differ in their effect on central blood pressure, we examined the role of antihypertensive drugs for the relation between aortic root size and afterload. We studied a large group of patients (n = 1250; 61 ± 12 years; 78 % males; 64 % hypertensives) from a single-center registry with known or suspected coronary artery disease. Aortic root size was measured by echocardiography as the diameter of the tubular portion of the ascending aorta. LV outflow tract Doppler was used to record SV. In the population as a whole, after adjusting for key covariates in separate regression models, aortic root size was an independent determinant of both SV and EA. This association was found to be heterogeneous and stronger in patients taking a calcium channel blocker (CCB; 10.6 % of entire population; aortic root size accounted for 8 % of the explained variance of EA). Larger aortic root size is an independent determinant of EA and SV. This association was heterogeneous and stronger in patients on CCB therapy.

  3. Reirradiation of nasopharyngeal carcinoma with intracavitary mold brachytherapy: an effective means of local salvage

    International Nuclear Information System (INIS)

    Law, Stephen C.K.; Lam, W.-K.; Ng, M.-F.; Au, S.-K.; Mak, W.-T.; Lau, W.-H.

    2002-01-01

    Purpose: To assess the role of intracavitary mold brachytherapy in salvaging local failure of nasopharyngeal carcinoma (NPC). Methods and Materials: The outcomes of 118 consecutive NPC patients with local failure treated with mold brachytherapy between 1989 and 1996 were retrospectively reviewed. Eleven patients received additional external radiotherapy. Results: All molds were tailor-made, and the whole procedure was performed under local anesthesia. Pharyngeal recess dissection was routinely performed to allow direct contact of the radioactive source with the pharyngeal recess, a common site of local failure. Initially, the molds were preloaded with 192 Ir wires, but since 1992, the sources have been manually afterloaded; the mold has also been redesigned for better conformity, ease of insertion, and radiation safety. Using brachytherapy alone, 50-55 Gy was given for recurrence in 4-7 days; for persistence, 40 Gy was administered. The overall complete remission rate was 97%. The rates of 5-year local control, relapse-free survival, disease-specific survival, overall survival, and major complication were 85%, 68.3%, 74.8%, 61.3%, and 46.9%, respectively. Major complications included nasopharyngeal necrosis with headache, necrosis of cervical vertebrae with atlantoaxial instability, temporal lobe necrosis, and palsy of the cranial nerves. The afterloaded mold was as effective as the preloaded version, but with fewer complications. Conclusions: Intracavitary mold brachytherapy was effective in salvaging NPC with early-stage local persistence or first recurrence

  4. Dose-volume analysis for quality assurance of interstitial brachytherapy for breast cancer

    International Nuclear Information System (INIS)

    Vicini, Frank A.; Kestin, Larry L.; Edmundson, Gregory K.; Jaffray, David A.; Wong, John W.; Kini, Vijay R.; Chen, Peter Y.; Martinez, Alvaro A.

    1999-01-01

    Purpose/Objective: The use of brachytherapy in the management of breast cancer has increased significantly over the past several years. Unfortunately, few techniques have been developed to compare dosimetric quality and target volume coverage concurrently. We present a new method of implant evaluation that incorporates computed tomography-based three-dimensional (3D) dose-volume analysis with traditional measures of brachytherapy quality. Analyses performed in this fashion will be needed to ultimately assist in determining the efficacy of breast implants. Methods and Materials: Since March of 1993, brachytherapy has been used as the sole radiation modality after lumpectomy in selected protocol patients with early-stage breast cancer treated with breast-conserving therapy. Eight patients treated with high-dose-rate (HDR) brachytherapy who had surgical clips outlining the lumpectomy cavity and underwent computed tomography (CT) scanning after implant placement were selected for this study. For each patient, the postimplant CT dataset was transferred to a 3D treatment planning system. The lumpectomy cavity, target volume (lumpectomy cavity plus a 1-cm margin), and entire breast were outlined on each axial slice. Once all volumes were entered, the programmed HDR brachytherapy source positions and dwell times were imported into the 3D planning system. Using the tools provided by the 3D planning system, the implant dataset was then registered to the visible implant template in the CT dataset. The distribution of the implant dose was analyzed with respect to defined volumes via dose-volume histograms (DVH). Isodose surfaces, the dose homogeneity index, and dosimetric coverage of the defined volumes were calculated and contrasted. All patients received 32 Gy to the entire implanted volume in 8 fractions of 4 Gy over 4 days. Results: Three-plane implants were used for 7 patients and a two-plane implant for 1 patient. The median number of needles per implant was 16.5 (range

  5. Development of computerized dose planning system and applicator for high dose rate remote afterloading irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Choi, T. J. [Keimyung Univ., Taegu (Korea); Kim, S. W. [Fatima Hospital, Taegu (Korea); Kim, O. B.; Lee, H. J.; Won, C. H. [Keimyung Univ., Taegu (Korea); Yoon, S. M. [Dong-a Univ., Pusan (Korea)

    2000-04-01

    To design and fabricate of the high dose rate source and applicators which are tandem, ovoids and colpostat for OB/Gyn brachytherapy includes the computerized dose planning system. Designed the high dose rate Ir-192 source with nuclide atomic power irradiation and investigated the dose characteristics of fabricated brachysource. We performed the effect of self-absorption and determining the gamma constant and output factor and determined the apparent activity of designed source. he automated computer planning system provided the 2D distribution and 3D includes analysis programs. Created the high dose rate source Ir-192, 10 Ci(370GBq). The effective attenuation factor from the self-absorption and source wall was examined to 0.55 of the activity of bare source and this factor is useful for determination of the apparent activity and gamma constant 4.69 Rcm{sup 2}/mCi-hr. Fabricated the colpostat was investigated the dose distributions of frontal, axial and sagittal plane in intra-cavitary radiation therapy for cervical cancer. The reduce dose at bladder and rectum area was found about 20 % of original dose. The computerized brachytherapy planning system provides the 2-dimensional isodose and 3-D include the dose-volume histogram(DVH) with graphic-user-interface mode. emoted afterloading device was built for experiment of created Ir-192 source with film dosimetry within {+-}1 mm discrepancy. 34 refs., 25 figs., 11 tabs. (Author)

  6. BED-Volume histograms calculation for routine clinical dosimetry in brachytherapy

    International Nuclear Information System (INIS)

    Galelli, M.; Feroldi, P.

    1995-01-01

    The consideration of volumes is essential in Brachytherapy clinical dosimetry (I.C.R.U). Indeed, several indices, all based on dose-volume histograms (DVHs), have been designed in order to evaluate: before the therapy the volumetric quality of different possible implant geometries; during the therapy the consistency of the real and the previsional implants. Radiobiological evaluations, considering the dose deposition temporal pattern of treatment, can be usefully added to dosimetric calculations, to compare different treatment schedules. The Linear-Quadratic model is the most used: radiobiological modelisation and Biologically Effective Dose (BED) is principal related dosimetric quantity. Therefore, the consideration of BED-volume histogram (BED-VHs) is a straightforward extension of DVHs. In practice, BED-VHs can help relative comparisons and optimisations in treatment planning when combined to dose-volume histograms. Since 1994 the dosimetric calculations for all the gynecological brachytherapy treatments are performed considering also DVHs and BED-VHs. In this presentation we show the methods of BEDVHs calculation, together with some typical results

  7. Implementation of microsource high dose rate (mHDR) brachytherapy in developing countries

    International Nuclear Information System (INIS)

    2001-11-01

    Brachytherapy using remote afterloading of a single high dose rate 192 Ir microsource was developed in the 1970s. After its introduction to clinics, this system has spread rapidly among developed Member States and has become a highly desirable modality in cancer treatment. This technique is now gradually being introduced to the developing Member States. The 192 Ir sources are produced with a high specific activity. This results in a high dose rate (HDR) to the tumour and shorter treatment times. The high specific activity simultaneously results in a much smaller source (so-called micro source, around I mm in diameter) which may be easily inserted into tissue through a thin delivery tube, the so-called interstitial treatment, as well as easily inserted into body cavities, the so-called intracavitary or endoluminal treatment. Another advantage is the ability to change dwell time (the time a source remains in one position) of the stepping source which allows dose distribution to match the target volume more closely. The purpose of this TECDOC is to advise radiation oncologists, medical physicists and hospital administrators in hospitals which are planning to introduce 192 Ir microsource HDR (mHDR) remote afterloading systems. The document supplements IAEA-TECDOC-1040, Design and Implementation of a Radiotherapy Programme: Clinical, Medical Physics, Radiation Protection and Safety Aspects, and will facilitate implementation of this new brachytherapy technology, especially in developing countries. The operation of the system, 'how to use the system', is not within the scope of this document. This TECDOC is based on the recommendations of an Advisory Group meeting held in Vienna in April 1999

  8. Ultrasonography-guided cobalt-60 brachytherapy for malignant glioma

    International Nuclear Information System (INIS)

    Sakai, Noboru; Takenaka, Katsunobu; Ueda, Tatsuya

    1989-01-01

    Brachytherapy with cobalt-60 source is reported. In this method it is characterized that the source is inserted interstitially with remote control system by after-loading method via outer catheter (using tandem tube), which was established in the center of residual tumor, using ultrasonography guide with trepanation, or intraoperatively put within the dead space after tumor resection. Six cases of deep-seated and recurrent malignant glioma, were treated with this method. A total dose of 20 to 45 Gy (10 to 15 Gy/day for 2 to 3 days) was delivered to the target. Additionally conventional external irradiation was followed. The effect of cobalt-60 brachytherapy on such tumors were favorable especially for well-circumscribed glioma less than 3 cm on CT scan. (author)

  9. Afterloading

    Energy Technology Data Exchange (ETDEWEB)

    Watson, E R [Glasgow Western Infirmary (UK)

    1981-12-01

    The protection of personnel, particularly nurses, looking after patients being treated with small sealed radioactive sources in the form of intracavitary insertions is one of the main outstanding radiation protection problems. Automatic afterloading machines would seem to be an ideal solution as manual afterloading does not protect the staff at greatest risk. High and low dose rate machines each have their own followers. The use of the low dose rate Selectron unit at Glasgow in the treatment of 35 patients mostly with carcinoma of the cervix is discussed. The Selectron unit has presented certain problems but these are gradually being overcome. The patients have accepted the machine fairly well but it is too early to give a meaningful assessment of the results.

  10. Brachytherapy source calibration, reviews, and consistency of 192Ir high-dose rate afterloading sources supplied over the period of 10 years: a retrospective analysis

    International Nuclear Information System (INIS)

    Nagappan, Balasubramanian; Kumar, Yogesh; Patel, Narayan P.; Dhull, Anil Kumar; Kaushal, Vivek

    2015-01-01

    Measurement and verification of strength of monomodal high-dose rate (mHDR) 192 Ir source supplied by the vendor is a major part of quality assurance program. Reference air kerma rate (RAKR) or air kerma strength (AKS) is the recommended quantity to specify the strength of gamma emitting brachytherapy sources. Physicist in our institution performed the source calibration as soon as each 192 Ir new source was loaded on the mHDR afterloading machine. The AKS accurately measured using a physikalisch technische werkstatten (PTW) re-entrant chamber-electrometer system in a scatter-free geometry was used to compute the air kerma rate (AKR) at one-meter distance in the air. To ensure accurate dose delivery to brachytherapy patients, measured AKS or RAKR should be entered correctly in both HDR treatment console station (TCS) as well as treatment planning system (TPS) associated with it. The clinical outcome mainly depends not only on the accuracy of the source strength measurement in the hospital but also on the correct source strength entered into both TCS and TPS software. A retrospective study on 22 mHDR V2 sources supplied by the vendor for the period of 10 years was taken up to access the accuracy of source strength supplied to the Radiotherapy department. The results are analyzed and reported. The accuracy in measured RAKR of all 22 sources supplied by vendor was well within the tolerance limits set by the national regulatory body and international recommendations. The deviations observed between measured RAKR versus manufacturer's quoted RAKR were in the range from -1.71% to +1.15%. In conclusion, the measured RAKR have good agreement with vendor quoted RAKR values. (author)

  11. Preliminary results of interstitial [sup 192]Ir brachytherapy for malignant gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Kengo; Nakagawa, Minoru; Higashi, Hisato [Okayama Univ. (Japan). School of Medicine; and others

    1992-09-01

    Twenty-six patients with recurrent or unremovable malignant gliomas were treated by interstitial brachytherapy with iridium-192 seeds. Stereotactic implantation of the afterloading catheters using the Brown-Roberts-Wells computed tomography (CT)-guided stereotactic system was performed in 24 patients and surgical CT, magnetic resonance imaging, and clinical examination. Tumor regression was seen in 17 patients 1-3 months after implantation. Tumor progression was seen in only three patients. After interstitial brachytherapy, the most commonly observed CT finding was central low density. Median survival time was 18 months after implantation. Autopsies in five patients revealed the delayed effects of radiation injury such as typical vascular changes, microcalcification, and coagulative necrosis in the implant area and tumor recurrence at the periphery. The results suggest that brachytherapy is not curative but prolonged the median survival time by 6 months. (author).

  12. Prostate Brachytherapy Case Volumes by Academic and Nonacademic Practices: Implications for Future Residency Training

    International Nuclear Information System (INIS)

    Orio, Peter F.; Nguyen, Paul L.; Buzurovic, Ivan; Cail, Daniel W.; Chen, Yu-Wei

    2016-01-01

    Purpose: The use of prostate brachytherapy has continued to decline in the United States. We examined the national practice patterns of both academic and nonacademic practices performing prostate brachytherapy by case volume per year to further characterize the decline and postulate the effect this trend might have on training the next generation of residents. Methods and Materials: Men diagnosed with prostate cancer who had undergone radiation therapy in 2004 to 2012 were identified. The annual brachytherapy case volume at each facility was determined and further categorized into ≤12 cases per year (ie, an average of ≤1 cases per month), 13 to 52 cases per year, and ≥53 cases per year (ie, an average of ≥1 cases per week) in academic practices versus nonacademic practices. Results: In 2004 to 2012, academic practices performing an average of ≤1 brachytherapy cases per month increased from 56.4% to 73.7%. In nonacademic practices, this percentage increased from 60.2% to 77.4% (P<.0001 for both). Practices performing an average of ≥1 cases per week decreased among both academic practices (from 6.7% to 1.5%) and nonacademic practices (from 4.5% to 2.7%). Conclusions: Both academic and nonacademic radiation oncology practices have demonstrated a significant reduction in the use of prostate brachytherapy from 2004 to 2012. With the case volume continuing to decline, it is unclear whether we are prepared to train the next generation of residents in this critical modality.

  13. Physics and quality assurance for high dose rate brachytherapy

    International Nuclear Information System (INIS)

    Anderson, Lowell L.

    1995-01-01

    Purpose: To review the physical aspects of high dose rate (HDR) brachytherapy, including commissioning and quality assurance, source calibration and dose distribution measurements, and treatment planning methods. Following the introduction of afterloading in brachytherapy, development efforts to make it 'remote' culminated in 1964 with the near-simultaneous appearance of remote afterloaders in five major medical centers. Four of these machines were 'high dose rate', three employing 60Co and one (the GammaMed) using a single, cable-mounted 192Ir source. Stepping-motor source control was added to the GammaMed in 1974, making it the precursor of modern remote afterloaders, which are now suitable for interstitial as well as intracavitary brachytherapy by virtue of small source-diameter and indexer-accessed multiple channels. Because the 192Ir sources currently used in HDR remote afterloaders are supplied at a nominal air-kerma strength of 11.4 cGy cm2 s-1 (10 Ci), are not collimated in clinical use, and emit a significant fraction (15%) of photons at energies greater than 600 keV, shielding and facility design must be undertaken as carefully and thoroughly as for external beam installations. Licensing requirements of regulatory agencies must be met with respect both to maximum permissible dose limits and to the existence and functionality of safety devices (door interlocks, radiation monitors, etc.). Commissioning and quality assurance procedures that must be documented for HDR remote afterloading relate to (1) machine, applicator, guide-tube, and facility functionality checks, (2) source calibration, (3) emergency response readiness, (4) planning software evaluation, and (5) independent checks of clinical dose calculations. Source calibration checks must be performed locally, either by in-air measurement of air kerma strength or with a well ionization chamber calibrated (by an accredited standards laboratory) against an in-air measurement of air kerma strength for the

  14. High dose rate afterloading intraluminal brachytherapy for advanced inoperable rectal carcinoma

    International Nuclear Information System (INIS)

    Hoskin, Peter J.; Canha, Sandra M. de; Bownes, Peter; Bryant, Linda; Jones, Rob Glynne

    2004-01-01

    Background and purpose: High dose rate intraluminal brachytherapy for tumours of the rectal and anal canal which were inoperable either because of the age and frailty of the patient or because of advanced disease has been evaluated. Patients and methods: In a retrospective review of 50 consecutive patients the two main indications for brachytherapy were as part of a radical radiation programme in those unfit for major surgery (26 patients) or as palliation for advanced or metastatic disease (22 patients). Radical treatment was either sole treatment delivering 6 Gy fraction 2 to 3 times weekly up to 36 Gy or as a boost of 12 Gy after 45 Gy in 25 fractions external beam chemoradiation. Palliative treatments were given predominantly as a single dose of 10 Gy. Results: This was predominantly a group of frail elderly patients with a median age of 82 years (range 35-91). Local tumour response was seen in 21/25 assessable patients with 14 complete responses. Median survival for the entire population was 6 months (range 1-54 months); in patients treated with 'radical' intent this was 25 months (range 1.5-54) and in the palliative group 7.2 months (range 1-37). The most common presenting symptom was bleeding per rectum for which a 64% response rate was obtained with 57% complete responses. Mucous discharge responded in 64% with 28% complete responses. The median duration of response was 7 months. Conclusion: Intraluminal HDR brachytherapy is an effective local treatment for patients otherwise unfit for radical surgery both as a component of radical treatment, or as a simple single palliative procedure

  15. Is there any advantage of CT based 3-dimensional conformal planning over conventional orthogonal x-ray based planning in HDR brachytherapy in breast cancer

    International Nuclear Information System (INIS)

    Biswal, B.M.; Idris, N.R.; Zakaria, A.B.; Khairul, N.

    2003-01-01

    The conventional brachytherapy dose calculation is based on a particular brachytherapy rule or individual dosimetry based on the reconstruction of the sources from the orthogonal films. In the recent years many centers are using CT based 3D conformal brachytherapy in order to improve the dosimetric outcome of a given plan. Here we would like to present our experience on the use of both techniques to deliver HDR interstitial brachytherapy as boost in early breast cancer. From January 2001 to January 2003, we treated 4 breast cancer patients using conventional orthogonal x-rays and CT scan in 3 cases for the treatment plan. All patients received an external beam radiotherapy dose of 46 Gy in 23 fractions over 4.5 weeks to the whole breast using 6 MV photon beam. Subsequently the primary lesion was supplimented with HDR brachytherapy to a dose of 2.5 Gy BID for 3 consecutive days using a (192)Ir microSelectronHDR. The dose prescription was individualized to encompass the tumor volume with a 10 mm margin. The differences of the dosimetric outcome were compared. All patients completed above schedule of radiotherapy. The primary was implanted with single plane in 3 patients and multiplane implant in 4 patients. Orthogonal x-ray based localization was performed in 4 patients and CT scan based localization in 3 cases. Three patients were implanted single plane and 4 patients with multiplane implants with a median catheter number of 9 (range 6-14). The 3D conformal dose optimization was performed using Nucletron planning system (Plato). The mean 100% and 150% isodose volume was 67.3 cm 3 and 31.25cm 3 respectively. The identification of primary tumor volume, organ at risk, and identification of afterloading catheters were superior in CT based plan than conventional planning. CT scan based 3D conformal brachytherapy planning give better identification of tumor volume and its curvature, decrease the time to identify the sources and evaluate the radiation dose to organs at

  16. Impact of systematic errors on DVH parameters of different OAR and target volumes in Intracavitary Brachytherapy (ICBT)

    International Nuclear Information System (INIS)

    Mourya, Ankur; Singh, Gaganpreet; Kumar, Vivek; Oinam, Arun S.

    2016-01-01

    Aim of this study is to analyze the impact of systematic errors on DVH parameters of different OAR and Target volumes in intracavitary brachytherapy (ICBT). To quantify the changes in dose-volume histogram parameters due to systematic errors in applicator reconstruction of brachytherapy planning, known errors in catheter reconstructions have to be introduced in applicator coordinate system

  17. Patterns of care for brachytherapy in Europe. Results in Spain.

    Science.gov (United States)

    López Torrecilla, J; Guedea, F; Heeren, G; Nissin, R; Ellison, T; Cottier, B

    2006-05-01

    In 2003 ESTRO began a project whose primary objective, was to make a map in the European area of infrastructures in technology and personnel for brachytherapy. A survey and a web site were elaborated. The survey was sent to the 76 Spanish Radiation Oncology departments in May 2003. By the end of 2003, 66 (86.8%) services had responded, 40 (71.4%) of which had brachytherapy. The services with brachytherapy treated 73.5% of the total patients, an average of 1,199 patients. The mean number of patients treated with brachytherapy by department was 135.5 and the number of applications was 265 annually. The average number of specialists was 7, 4 of them trained in brachytherapy. The average weekly work load of the radiation oncologists, physicists, and technicians was 22.6 h, 13.8 h and 21.0 h, respectively. The mean time dedicated to each patient by radiation oncologists, physicists and technicians was 9.2 h; 6.19 h; 7.2 h, respectively. The total number of afterloaders was 43 (22 HDR, 18 LDR, 3 PDR). The tumours most frequently treated with brachytherapy were gynaecological (56.24%), breast (14.2%) and prostate (11.7%). High dose rate was used in 47.46% of the patients and low dose rate in 47.24%. Between 1997 and 2002 there was an increase of 50.53% in patients treated with brachytherapy. The survey shows the brachytherapy resources and activity in Spain up to 2003. Increased use of brachytherapy in prostate tumours, prevalence of gynaecology brachytherapy and similar number of treatments with HDR and LDR are demonstrated in the Patterns of Care of Brachytherapy in Europe (PCBE) study in Spain.

  18. Gynecological brachytherapy - from low-dose-rate to high-tech. Gynaekologische Brachytherapie - von Low-dose-rate zu High-tech

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, T. (Abt. Strahlenthgerapie, Klinik und Poliklinik fuer Radiologie, Medizinische Akademie ' Carl Gustav Carus' , Dresden (Germany)); Christen, N. (Abt. Strahlenthgerapie, Klinik und Poliklinik fuer Radiologie, Medizinische Akademie ' Carl Gustav Carus' , Dresden (Germany)); Alheit, H.D. (Abt. Strahlenthgerapie, Klinik und Poliklinik fuer Radiologie, Medizinische Akademie ' Carl Gustav Carus' , Dresden (Germany))

    1993-03-01

    The transition from low-dose-rate (LDR) brachytherapy to high-dose-rate (HDR) afterloading treatment is in progress in most centres of radiation therapy. First reports of studies comparing HDR and LDR treatment in cervix cancer demonstrate nearly equal local control. In our own investigations on 319 patients with primary irradiated carcinoma of the cervix (125 HDR/194 LDR) we found the following control rates: Stage FIGO I 95.4%/82.9% (HDR versus LDR), stage FIGO II 71.4%/73.7%, stage FIGO III 57.9%/38.5%. The results are not significant. The side effects - scored after EORT/RTOG criteria - showed no significant differences between both therapies for serious radiogenic late effects on intestine, bladder and vagina. The study and findings from the literature confirm the advantage of the HDR-procedure for patient and radiooncologist and for radiation protection showing at least the same results as in the LDR-area. As for radiobiolgical point of view it is important to consider that the use of fractionation in the HDR-treatment is essential for the sparing of normal tissues and therefore a greater number of small fractionation doses in the brachytherapy should be desirable too. On the other hand the rules, which are true for fractionated percutaneous irradiation therapy (overall treatment time as short as possible to avoid reppopulation of tumor cells) should be taken into consideration in combined brachy-teletherapy regime in gynecologic tumors. The first step in this direction may be accelerated regime with a daily application of both treatment procedures. The central blocking of the brachytherapy region from the whole percutaneous treatment target volume should be critically reflected, especially in the case of advanced tumors. (orig.)

  19. Application of the Monte Carlo integration method in calculations of dose distributions in HDR-Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Baltas, D; Geramani, K N; Ioannidis, G T; Kolotas, C; Zamboglou, N [Strahlenklinik, Stadtische Kliniken Offenbach, Offenbach (Germany); Giannouli, S [Department of Electrical and Computer Engineering, National Technical University of Athens, Athens (Greece)

    1999-12-31

    Source anisotropy is a very important factor in brachytherapy quality assurance of high dose rate HDR Ir 192 afterloading stepping sources. If anisotropy is not taken into account then doses received by a brachytherapy patient in certain directions can be in error by a clinically significant amount. Experimental measurements of anisotropy are very labour intensive. We have shown that within acceptable limits of accuracy, Monte Carlo integration (MCI) of a modified Sievert integral (3D generalisation) can provide the necessary data within a much shorter time scale than can experiments. Hence MCI can be used for routine quality assurance schedules whenever a new design of HDR or PDR Ir 192 is used for brachytherapy afterloading. Our MCI calculation results are comparable with published experimental data and Monte Carlo simulation data for microSelectron and VariSource Ir 192 sources. We have shown not only that MCI offers advantages over alternative numerical integration methods, but also that treating filtration coefficients as radial distance-dependent functions improves Sievert integral accuracy at low energies. This paper also provides anisotropy data for three new Ir 192 sources, one for microSelectron-HDR and two for the microSelectron-PDR, for which data currently is not available. The information we have obtained in this study can be incorporated into clinical practice.

  20. Automated planning volume definition in soft-tissue sarcoma adjuvant brachytherapy

    International Nuclear Information System (INIS)

    Lee, Eva K.; Fung, Albert Y.C.; Zaider, Marco; Brooks, J. Paul

    2002-01-01

    In current practice, the planning volume for adjuvant brachytherapy treatment for soft-tissue sarcoma is either not determined a priori (in this case, seed locations are selected based on isodose curves conforming to a visual estimate of the planning volume), or it is derived via a tedious manual process. In either case, the process is subjective and time consuming, and is highly dependent on the human planner. The focus of the work described herein involves the development of an automated contouring algorithm to outline the planning volume. Such an automatic procedure will save time and provide a consistent and objective method for determining planning volumes. In addition, a definitive representation of the planning volume will allow for sophisticated brachytherapy treatment planning approaches to be applied when designing treatment plans, so as to maximize local tumour control and minimize normal tissue complications. An automated tumour volume contouring algorithm is developed utilizing computational geometry and numerical interpolation techniques in conjunction with an artificial intelligence method. The target volume is defined to be the slab of tissue r cm perpendicularly away from the curvilinear plane defined by the mesh of catheters. We assume that if adjacent catheters are over 2r cm apart, the tissue between the two catheters is part of the tumour bed. Input data consist of the digitized coordinates of the catheter positions in each of several cross-sectional slices of the tumour bed, and the estimated distance r from the catheters to the tumour surface. Mathematically, one can view the planning volume as the volume enclosed within a minimal smoothly-connected surface which contains a set of circles, each circle centred at a given catheter position in a given cross-sectional slice. The algorithm performs local interpolation on consecutive triplets of circles. The effectiveness of the algorithm is evaluated based on its performance on a collection of

  1. Automated planning volume definition in soft-tissue sarcoma adjuvant brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eva K. [Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA (United States); School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA (United States); Fung, Albert Y.C.; Zaider, Marco [Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY (United States); Brooks, J. Paul [School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA (United States)

    2002-06-07

    In current practice, the planning volume for adjuvant brachytherapy treatment for soft-tissue sarcoma is either not determined a priori (in this case, seed locations are selected based on isodose curves conforming to a visual estimate of the planning volume), or it is derived via a tedious manual process. In either case, the process is subjective and time consuming, and is highly dependent on the human planner. The focus of the work described herein involves the development of an automated contouring algorithm to outline the planning volume. Such an automatic procedure will save time and provide a consistent and objective method for determining planning volumes. In addition, a definitive representation of the planning volume will allow for sophisticated brachytherapy treatment planning approaches to be applied when designing treatment plans, so as to maximize local tumour control and minimize normal tissue complications. An automated tumour volume contouring algorithm is developed utilizing computational geometry and numerical interpolation techniques in conjunction with an artificial intelligence method. The target volume is defined to be the slab of tissue r cm perpendicularly away from the curvilinear plane defined by the mesh of catheters. We assume that if adjacent catheters are over 2r cm apart, the tissue between the two catheters is part of the tumour bed. Input data consist of the digitized coordinates of the catheter positions in each of several cross-sectional slices of the tumour bed, and the estimated distance r from the catheters to the tumour surface. Mathematically, one can view the planning volume as the volume enclosed within a minimal smoothly-connected surface which contains a set of circles, each circle centred at a given catheter position in a given cross-sectional slice. The algorithm performs local interpolation on consecutive triplets of circles. The effectiveness of the algorithm is evaluated based on its performance on a collection of

  2. Procedures for brachytherapy sources lost in a radiotherapy department; Protocolo para fontes de braquiterapia extraviadas no ambiente hospitalar

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Adelaide de [Sao Paulo Univ., Ribeirao Preto, SP (Brazil). Faculdade de Filosofia, Ciencias e Letras

    1997-12-31

    Brachytherapy sources are easily lost in a Radiotherapy Department owing to unexpected behaviour of the patient and/or inattention of the people in charge of the sources. This work reports a protocol to be used when brachytherapy sources are lost and it was based on the search of three sealed sources of Cesium 137 with activity of 37 x 10{sup 7} Bq, removed by a patient from a conventional afterloading intra-uterine system (Henscke). (author) 5 refs., 3 figs.; e-mail: dalmeida at biomag.ffclrp.usp.br

  3. Introduction of a hybrid treatment delivery system used for quality assurance in multi-catheter interstitial brachytherapy

    Science.gov (United States)

    Kallis, Karoline; Kreppner, Stephan; Lotter, Michael; Fietkau, Rainer; Strnad, Vratislav; Bert, Christoph

    2018-05-01

    Multi-catheter interstitial brachytherapy (iBT) is a treatment option for breast cancer patients after breast conserving surgery. Typically, only a few additional quality interventions after the first irradiation have been introduced to ensure the planned treatment delivery. Therefore, the purpose of this study is to show the possibilities of an electromagnetic tracking (EMT) system integrated into the afterloader for quality assurance (QA) in high-dose rate (HDR) iBT of patients with breast cancer. The hybrid afterloader system equipped with an electromagnetic sensor was used for all phantom and patient measurements. Phantom measurements were conducted to estimate the quality of different evaluation schemes. After a coherent point drift registration of the EMT traces to the reconstructed catheters based on computed tomograms the dwell positions (DP) were defined. Different fitting and interpolation methods were analyzed for the reconstruction of DPs. All estimated DPs were compared to the DPs defined in treatment planning. Until now, the implant geometry of 20 patients treated with HDR brachytherapy was acquired and explored. Regarding the reconstruction techniques, both fitting and interpolation were able to detect manually introduced shifts and swaps. Nonetheless, interpolation showed superior results (RMSE  =  1.27 mm), whereas fitting seemed to be more stable to distortion and motion. The EMT system proved to be beneficial for QA in brachytherapy and furthermore, clinical feasibility was proven.

  4. Physics and quality assurance for brachytherapy - Part I: High dose rates

    International Nuclear Information System (INIS)

    Anderson, Lowell L.

    1997-01-01

    Purpose: To review the physical aspects of high dose rate (HDR) brachytherapy, including commissioning and quality assurance, source calibration and dose distribution measurements, and treatment planning methods. Following the introduction of afterloading in brachytherapy, development efforts to make it 'remote' culminated in 1964 with the near-simultaneous appearance of remote afterloaders in five major medical centers. Four of these machines were 'high dose rate', three employing 60Co and one (the GammaMed) using a single, cable-mounted 192Ir source. Stepping-motor source control was added to the GammaMed in 1974, making it the precursor of modern remote afterloaders, which are now suitable for interstitial, well as intracavitary brachytherapy by virtue of small source-diameter and indexer-accessed multiple channels. Because the 192Ir sources currently used in HDR remote afterloaders are supplied at a nominal air-kerma strength of 11.4 cGy cm2 s-1 (10 Ci), are not collimated in clinical use, and emit a significant fraction (15%) of photons at energies greater than 600 keV, shielding and facility design must be undertaken as carefully and thoroughly as for external beam installations. Licensing requirements of regulatory agencies must be met with respect both to maximum permissible dose limits and to the existence and functionality of safety devices (door interlocks, radiation monitors, etc.). Commissioning and quality assurance procedures that must be documented for HDR remote afterloading relate to (1) machine, applicator, guide-tube, and facility functionality checks, (2) source calibration, (3) emergency response readiness, (4) planning software evaluation, and (5) independent checks of clinical dose calculations. Source calibration checks must be performed locally, either by in-air measurement of air kerma strength or with a well ionization chamber calibrated (by an accredited standards laboratory) against an in-air measurement of air kerma strength for the

  5. Image guided, adaptive, accelerated, high dose brachytherapy as model for advanced small volume radiotherapy

    International Nuclear Information System (INIS)

    Haie-Meder, Christine; Siebert, Frank-Andre; Poetter, Richard

    2011-01-01

    Brachytherapy has consistently provided a very conformal radiation therapy modality. Over the last two decades this has been associated with significant improvements in imaging for brachytherapy applications (prostate, gynecology), resulting in many positive advances in treatment planning, application techniques and clinical outcome. This is emphasized by the increased use of brachytherapy in Europe with gynecology as continuous basis and prostate and breast as more recently growing fields. Image guidance enables exact knowledge of the applicator together with improved visualization of tumor and target volumes as well as of organs at risk providing the basis for very individualized 3D and 4D treatment planning. In this commentary the most important recent developments in prostate, gynecological and breast brachytherapy are reviewed, with a focus on European recent and current research aiming at the definition of areas for important future research. Moreover the positive impact of GEC-ESTRO recommendations and the highlights of brachytherapy physics are discussed what altogether presents a full overview of modern image guided brachytherapy. An overview is finally provided on past and current international brachytherapy publications focusing on 'Radiotherapy and Oncology'. These data show tremendous increase in almost all research areas over the last three decades strongly influenced recently by translational research in regard to imaging and technology. In order to provide high level clinical evidence for future brachytherapy practice the strong need for comprehensive prospective clinical research addressing brachytherapy issues is high-lighted.

  6. Brachytherapy in the conservative treatment of soft tissue sarcomas extending to neurovascular structures: an analysis of 38 cases

    International Nuclear Information System (INIS)

    Thomas, L.; Delannes, M.; Stoeckle, E.; Martel, P.; Pigneux, J.; Daly-Schveitzer, N.; Bui, B.N.; Chevreau, C.; Kantor, G.

    1996-01-01

    To evaluate the tolerance of neurovascular structures to brachytherapy, a retrospective review of our series was undertaken. Between May 1986 and January 1994, 85 patients with soft tissue sarcomas underwent conservative surgery and low-dose rate interstitial irradiation. Thirty-eight patients had tumors extending to neurovascular structures. Brachytherapy was part of initial treatment in 30 patients and was done in 7 cases for recurrent sarcomas. Afterloading catethers for brachytherapy were inserted intraoperatively and placed direct upon or under the neurovascular structures in the tumor bed. A mean dose of 20 Gy was delivered to the target volume. Thirty patients received 45 to 50 Gy of postoperative external irradiation. With a median follow-up of 39 months, the 3-year actuarial survival was 82.9%, the 3-year disease-free survival was 71.9% and the 3-year actuarial local control was 91%. The 3-year actuarial incidence of distant metastase was 28%. Acute side effects occurred in 12 patients requiring conservative surgical procedures in 6 cases. Significant late toxicity occurred in 8 patients : 2 lymphoedemas interfering with normal activity, 1 partial artery stenosis, 5 peripheral neuropathy (2 grade 2, 3 grade 3). Late toxicity has led to significant impairment of mobility in 4 patients. Limb preservation was achieved in every patient, no amputation was required. We conclude that integration of brachytherapy in the conservative treatment of soft tissue sarcomas extending to neurovascular structures can provide excellent local control with an acceptable level of toxicity

  7. WE-F-BRD-01: HDR Brachytherapy II: Integrating Imaging with HDR

    International Nuclear Information System (INIS)

    Craciunescu, O; Todor, D; Leeuw, A de

    2014-01-01

    In recent years, with the advent of high/pulsed dose rate afterloading technology, advanced treatment planning systems, CT/MRI compatible applicators, and advanced imaging platforms, image-guided adaptive brachytherapy treatments (IGABT) have started to play an ever increasing role in modern radiation therapy. The most accurate way to approach IGABT treatment is to provide the infrastructure that combines in a single setting an appropriate imaging device, a treatment planning system, and a treatment unit. The Brachytherapy Suite is not a new concept, yet the modern suites are incorporating state-of-the-art imaging (MRI, CBCT equipped simulators, CT, and /or US) that require correct integration with each other and with the treatment planning and delivery systems. Arguably, an MRI-equipped Brachytherapy Suite is the ideal setup for real-time adaptive brachytherapy treatments. The main impediment to MRI-IGABT adoption is access to MRI scanners. Very few radiation oncology departments currently house MRI scanners, and even fewer in a dedicated Brachytherapy Suite. CBCT equipped simulators are increasingly offered by manufacturers as part of a Brachytherapy Suite installation. If optimized, images acquired can be used for treatment planning, or can be registered with other imaging modalities. This infrastructure is relevant for all forms of brachytherapy, especially those utilizing multi-fractionated courses of treatment such as prostate and cervix. Moreover, for prostate brachytherapy, US imaging systems can be part of the suite to allow for real-time HDR/LDR treatments. Learning Objectives: Understand the adaptive workflow of MR-based IGBT for cervical cancer. Familiarize with commissioning aspects of a CBCT equipped simulator with emphasis on brachytherapy applications Learn about the current status and future developments in US-based prostate brachytherapy

  8. WE-F-BRD-01: HDR Brachytherapy II: Integrating Imaging with HDR

    Energy Technology Data Exchange (ETDEWEB)

    Craciunescu, O [Duke University Medical Center, Durham, NC (United States); Todor, D [Virginia Commonwealth University, Richmond, VA (United States); Leeuw, A de

    2014-06-15

    In recent years, with the advent of high/pulsed dose rate afterloading technology, advanced treatment planning systems, CT/MRI compatible applicators, and advanced imaging platforms, image-guided adaptive brachytherapy treatments (IGABT) have started to play an ever increasing role in modern radiation therapy. The most accurate way to approach IGABT treatment is to provide the infrastructure that combines in a single setting an appropriate imaging device, a treatment planning system, and a treatment unit. The Brachytherapy Suite is not a new concept, yet the modern suites are incorporating state-of-the-art imaging (MRI, CBCT equipped simulators, CT, and /or US) that require correct integration with each other and with the treatment planning and delivery systems. Arguably, an MRI-equipped Brachytherapy Suite is the ideal setup for real-time adaptive brachytherapy treatments. The main impediment to MRI-IGABT adoption is access to MRI scanners. Very few radiation oncology departments currently house MRI scanners, and even fewer in a dedicated Brachytherapy Suite. CBCT equipped simulators are increasingly offered by manufacturers as part of a Brachytherapy Suite installation. If optimized, images acquired can be used for treatment planning, or can be registered with other imaging modalities. This infrastructure is relevant for all forms of brachytherapy, especially those utilizing multi-fractionated courses of treatment such as prostate and cervix. Moreover, for prostate brachytherapy, US imaging systems can be part of the suite to allow for real-time HDR/LDR treatments. Learning Objectives: Understand the adaptive workflow of MR-based IGBT for cervical cancer. Familiarize with commissioning aspects of a CBCT equipped simulator with emphasis on brachytherapy applications Learn about the current status and future developments in US-based prostate brachytherapy.

  9. Endobronchial and endoesophageal high dose rate brachytherapy for malignant airway and digestive tract obstructions

    International Nuclear Information System (INIS)

    Mehta, Minesh P.

    1996-01-01

    With an annual incidence of more than 160,000 cases and a local failure rate between 30-50%, endobronchial occlusion seen with lung cancer is a common and potentially life-threatening complication. Several methods of managing this exist and recently endobronchial brachytherapy has been used extensively as a consequence of the development of fiberoptic bronchoscopy and high dose rate remote afterloading technology. Procedurally, one or more afterloading catheters are inserted in the involved portions of the tracheobronchial tree through fiberoptic guidance. Treatment techniques range from 1-4 applications fractionated over several weeks or given over 2 days with a single insertion procedure. Almost all procedures are currently performed in the outpatient setting. The major application of this technology is in the palliation of occlusive symptomatology. Clinical improvement ranges from 50-100%, radiographic reaeration ranges from 46-88% and bronchoscopic responses ranges from 59-100%. Symptomatic relief is usually quite durable with more than 70% of the patients' remaining life-time rendered symptom-free and symptom-improved. Recently, this modality has been explored for its curative potential as a boost following external beam radiotherapy. It is clear from these series, that in selected patients, endobronchial boost produces significant reaeration and sparing of lung volume from subsequent external radiation, and a few cases may even become resectable. Demonstration of the survival advantage will, however, require larger clinical trials with adequate controls. Some reports have suggested an unacceptably high rate of fatal hemoptysis following HDR endobronchial brachytherapy. Review of the world literature suggests that fatal hemoptysis rates range from 0-50% with an average of about 8%, comparable to an average of 5% with low dose rate brachytherapy. Other recognized complications include fistulae and radiation bronchitis. Because the majority of patients with

  10. Definitive Brachytherapy for Kaposi's Sarcoma

    International Nuclear Information System (INIS)

    Williams, A.; Ezzell, G.; Zalupski, M.; Fontanesi, J.

    1996-01-01

    Purpose: To assess the efficacy and possible complications in patients diagnosed with Kaposi's sarcoma and treated with definitive brachytherapy. Methods and Materials: Between January, 1995 and December, 1995, four patients with Kaposi's sarcoma (KS) were treated with brachytherapy. Three patients, all with positive HIV status were treated using Iridium 192 (Ir-192) sources via a high-dose rate remote afterloader. One patient with endemic KS was treated using the application of catheters loaded with Californium 252. Eight sites were treated and included scalp, feet, nose, penis, hand, neck, and back. Dose rate for Ir-192 was 330cGy/fx to a total dose of 990cGy. The Californium was delivered as 100nGy/b.i.d. to a total dose of 900nGy. Follow-up as ranged from 2-6 months. Results: All four patients remain alive. Seven of eight sites have had complete clinical response and each patient has reported durable pain relief that has not subsided through last follow-up of 1/96. Two of eight sites, both treated with surface mold technique with Californium 252 developed moist desquamation. The remaining six sites did not demonstrate significant toxicity. Conclusion: Brachytherapy can offer Kaposi's sarcoma patients results that are equivalent to external beam radiation therapy, with minimal complications, a shorter treatment time and potential cost effectiveness

  11. High-dose-rate brachytherapy using molds for oral cavity cancer. The technique and its limitations

    International Nuclear Information System (INIS)

    Nishimura, Yasumasa; Yokoe, Yoshihiko; Nagata, Yasushi; Okajima, Kaoru; Nishida, Mitsuo; Hiraoka, Masahiro

    1998-01-01

    With the availability of a high-dose-rate (HDR) remote afterloading device, a Phase I/II protocol was initiated at our institution to assess the toxicity and efficacy of HDR intracavitary brachytherapy, using molds, in the treatment of squamous cell carcinomas of the oral cavity. Eight patients with squamous cell carcinoma of the oral cavity were treated by the technique. The primary sites of the tumors were the buccal mucosa, oral floor, and gingiva. Two of the buccal mucosal cancers were located in the retromolar trigon. For each patient, a customized mold was fabricated, in which two to four afterloading catheters were placed for an 192 Ir HDR source. Four to seven fractions of 3-4 Gy, 5 mm below the mold surface, were given following external radiation therapy of 40-60 Gy/ 2 Gy. The total dose of HDR brachytherapy ranged from 16 to 28Gy. Although a good initial complete response rate of 7/8 (88%) was achieved, there was local recurrence in four of these seven patients. Both of the retromolar trigon tumors showed marginal recurrence. No serious (e.g., ulcer or bone exposure) late radiation damage has been observed thus far in the follow up period of 15-57 months. High-dose-rate brachytherapy using the mold technique seems a safe and useful method for selected early and superficial oral cavity cancer. However, it is not indicated for thick tumors and/or tumors located in the retromolar trigon. (author)

  12. Radiological protection of patients in brachytherapy

    International Nuclear Information System (INIS)

    Sacc, Ricardo; Herrero, Flavia

    2008-01-01

    Full text: The prefix 'brachy' means short-range, so brachytherapy is the administration of radiation therapy using small radioactive sources in the form of needles, tubes, wires or seeds, which are placed within the tumor -interstitial form- or very near of it, superficially or in an endo-cavity form. This technique, which was limited by the size of the primary tumor, has the advantage, that the radiation, can be adjusted to the size and shape of the tumor volume and the radioisotope used, - short range -, is selected with the criteria of getting the dose in the organs at risk, as low as possible, making what it is known as conformal radiotherapy. Radioactive sources may be permanent or temporary implants. The application of radioactive material, can be manually or automatically. In the first case, a major breakthrough from the radioprotection point of view, was the use of afterloading devices, methodology highly recommended to reduce the radiation exposure to staff. With the development of technology, remotely controlled afterloading devices were introduced, which in addition to complying with the above requirement, allow the source to move in different positions along catheters housed in one or more channels, making therapeutic brachytherapy treatments in tumor volumes possible, that due to its length, decades ago would have been an unthinkable deal. In all cases, sources, which may vary from the 3 mm in length, 125 Iodine or 198 Gold seeds, to extensive wires of 192 Iridium, are encapsulated for two main purposes: preventing leakage of radioactive material and absorption of unwanted radiation, alpha and beta, produced by the radioactive decay. Consequently, it should be highly unlikely that the radioactive material, could be lost or located in the patient, in a different place of the one that was planned. However, history shows us the opposite. Its is known the kind of deterministic effect that radiation is going to produce in the tumor, where the severity of

  13. Pelvic interstitial brachytherapy - improving the therapeutic ratio with magnetic resonance imaging and optimization

    International Nuclear Information System (INIS)

    Swift, Patrick S.; Hricak, Hedvig; Forstner, Rosemary; Powell, C. Bethan; Purser, Phil; Weaver, Keith; Phillips, Theodore L.

    1996-01-01

    Introduction Interstitial brachytherapy in the pelvic region is often hampered by the radiation oncologist's inability to precisely differentiate tumor versus normal tissue during the planning and implantation procedures, often resulting in either excessive or incomplete coverage of tumor volume. The marked improvement in pelvic imaging seen with magnetic resonance, in conjunction with isodose optimization programs for remote-afterloading units, has created an opportunity to significantly improve the therapeutic ratio. Methods From 1992-1995, 23 interstitial perineal templates were performed in 22 patients with pelvic malignancies, using the pulsed low-dose-rate Selectron with dose optimization. MR imaging was performed immediately prior to the implant, with a MUPIT placed against the perineum and a vaginal obturator in place. These images were used for tumor volume measurements, determination of the number, depth and angle of needles required for the implant, and identification of position of normal tissues (rectum, small bowel, bladder) relative to the tumor. After implantation of stainless steel needles, orthogonal radiographs were obtained for isodose calculation, and planning carried out with isodose optimization. Patients were followed closely on a routine schedule, until time of last visit or until death. Every effort possible was made to assess local disease status at time of death. Results Sixteen patients with primary disease (14 cervix, 1 vulva, 1 vagina) and 6 with recurrent (2 with prior radiation) were implanted, all but 3 with curative intent. Nine patients with advanced cervix or vulvar cancer received concomitant chemotherapy (5FU + platinum or mitomycin-C) with the external beam therapy. At a median follow-up of 18.1 months for all cases, only three patients have failed locally for an actuarial local control of 85% at 1.5 years. Nine patients are alive and free of disease, 8 are alive with distant disease only (mean follow-up of 19.1 months), 2

  14. Impact of 'optimized' treatment planning for tandem and ring, and tandem and ovoids, using high dose rate brachytherapy for cervical cancer

    International Nuclear Information System (INIS)

    Noyes, William R.; Peters, Nancy E.; Thomadsen, Bruce R.; Fowler, Jack F.; Buchler, Dolores A.; Stitt, Judith A.; Kinsella, Timothy J.

    1995-01-01

    Purpose: Different treatment techniques are used in high dose rate (HDR) remote afterloading intracavitary brachytherapy for uterine cervical cancer. We have investigated the differences between 'optimized' and 'nonoptimized' therapy using both a tandem and ring (T/R) applicator, and a tandem and ovoids (T/O), applicator. Methods and Materials: HDR afterloading brachytherapy using the Madison System for Stage IB cervical cancer was simulated for 10 different patients using both a T/R applicator and a T/O applicator. A treatment course consists of external beam irradiation and five insertions of HDR afterloading brachytherapy. Full dosimetry calculations were performed at the initial insertion for both applicators and used as a reference for the following four insertions of the appropriate applicator. Forty dosimetry calculations were performed to determine the dose delivered to Point M (similar to Point A), Point E (obturator lymph nodes), vaginal surface, bladder, and rectum. 'Optimized' doses were specified to Point M and to the vaginal surface. 'Nonoptimized' doses were specified to Point M only. Using the linear-quadratic equation, calculations have been performed to convert the delivered dose using HDR to the biologically equivalent doses at the conventional low dose rate (LDR) at 0.60 Gy/h. Results: Major differences between 'optimized' and 'nonoptimized' LDR equivalent doses were found at the vaginal surface, bladder, and rectum. Overdoses at the vaginal surface, bladder, and rectum were calculated to be 208%, nil, and 42%, respectively, for the T/R applicator with 'nonoptimization'. However, for the T/O applicator, the overdoses were smaller, being nil, 32%, and 27%, respectively, with 'nonoptimization'. Conclusion: Doses given in high dose rate intracavitary brachytherapy border on tissue tolerance. 'Optimization' of either applicator decreases the risk of a dose that may have potential for complications. Optimization of a tandem and ovoids best ensures

  15. Dwell time modulation restrictions do not necessarily improve treatment plan quality for prostate HDR brachytherapy

    International Nuclear Information System (INIS)

    Balvert, Marleen; Gorissen, Bram L; Den Hertog, Dick; Hoffmann, Aswin L

    2015-01-01

    Inverse planning algorithms for dwell time optimisation in interstitial high-dose-rate (HDR) brachytherapy may produce solutions with large dwell time variations within catheters, which may result in undesirable selective high-dose subvolumes. Extending the dwell time optimisation model with a dwell time modulation restriction (DTMR) that limits dwell time differences between neighboring dwell positions has been suggested to eliminate this problem. DTMRs may additionally reduce the sensitivity for uncertainties in dwell positions that inevitably result from catheter reconstruction errors and afterloader source positioning inaccuracies. This study quantifies the reduction of high-dose subvolumes and the robustness against these uncertainties by applying a DTMR to template-based prostate HDR brachytherapy implants. Three different DTMRs were consecutively applied to a linear dose-based penalty model (LD) and a dose-volume based model (LDV), both obtained from literature. The models were solved with DTMR levels ranging from no restriction to uniform dwell times within catheters in discrete steps. Uncertainties were simulated on clinical cases using in-house developed software, and dose-volume metrics were calculated in each simulation. For the assessment of high-dose subvolumes, the dose homogeneity index (DHI) and the contiguous dose volume histogram were analysed. Robustness was measured by the improvement of the lowest D 90% of the planning target volume (PTV) observed in the simulations. For (LD), a DTMR yields an increase in DHI of approximately 30% and reduces the size of the largest high-dose volume by 2–5 cc. However, this comes at a cost of a reduction in D 90% of the PTV of 10%, which often implies that it drops below the desired minimum of 100%. For (LDV), none of the DTMRs were able to improve high-dose volume measures. DTMRs were not capable of improving robustness of PTV D 90% against uncertainty in dwell positions for both models. (paper)

  16. Current status of brachytherapy in cancer treatment – short overview

    Directory of Open Access Journals (Sweden)

    Janusz Skowronek

    2017-12-01

    Full Text Available Cancer incidence and mortality depend on a number of factors, including age, socio-economic status and geographical location, and its prevalence is growing around the world. Most of cancer treatments include external beam radiotherapy or brachytherapy. Brachytherapy, a type of radiotherapy with energy from radionuclides inserted directly into the tumor, is increasingly used in cancer treatment. For cervical and skin cancers, it has become a standard therapy for more than 100 years as well as an important part of the treatment guidelines for other malignancies, including head and neck, skin, breast, and prostate cancers. Compared to external beam radiotherapy, brachytherapy has the potential to deliver an ablative radiation dose over a short period of time directly to the altered tissue area with the advantage of a rapid fall-off in dose, and consequently, sparing of adjacent organs. As a result, the patient is able to complete the treatment earlier, and the risks of occurrence of another cancer are lower than in conventional radiotherapy treatment. Brachytherapy has increased its use as a radical or palliative treatment, and become more advanced with the spread of pulsed-dose-rate and high-dose-rate afterloading machines; the use of new 3D/4D planning systems has additionally improved the quality of the treatment. The aim of the present study was to present short summaries of current studies on brachytherapy for the most frequently diagnosed tumors. Data presented in this manuscript should help especially young physicians or physicists to explore and introduce brachytherapy in cancer treatments.

  17. Risk analysis of brachytherapy events

    International Nuclear Information System (INIS)

    Buricova, P.; Zackova, H.; Hobzova, L.; Novotny, J.; Kindlova, A.

    2005-01-01

    For prevention radiological events it is necessary to identify hazardous situation and to analyse the nature of committed errors. Though the recommendation on the classification and prevention of radiological events: Radiological accidents has been prepared in the framework of Czech Society of Radiation Oncology, Biology and Physics and it was approved by Czech regulatory body (SONS) in 1999, only a few reports have been submitted up to now from brachytherapy practice. At the radiotherapy departments attention has been paid more likely to the problems of dominant teletherapy treatments. But in the two last decades the usage of brachytherapy methods has gradually increased because .nature of this treatment well as the possibilities of operating facility have been completely changed: new radionuclides of high activity are introduced and sophisticate afterloading systems controlled by computers are used. Consequently also the nature of errors, which can occurred in the clinical practice, has been changing. To determine the potentially hazardous parts of procedure the so-called 'process tree', which follows the flow of entire treatment process, has been created for most frequent type of applications. Marking the location of errors on the process tree indicates where failures occurred and accumulation of marks along branches show weak points in the process. Analysed data provide useful information to prevent medical events in brachytherapy .The results strength the requirements given in Recommendations of SONS and revealed the need for its amendment. They call especially for systematic registration of the events. (authors)

  18. WE-DE-201-08: Multi-Source Rotating Shield Brachytherapy Apparatus for Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Dadkhah, H; Wu, X [University of Iowa, Iowa City, Iowa (United States); Kim, Y; Flynn, R [University of Iowa Hospitals and Clinics, Iowa City, IA (United States)

    2016-06-15

    Purpose: To introduce a novel multi-source rotating shield brachytherapy (RSBT) apparatus for the precise simultaneous angular and linear positioning of all partially-shielded 153Gd radiation sources in interstitial needles for treating prostate cancer. The mechanism is designed to lower the detrimental dose to healthy tissues, the urethra in particular, relative to conventional high-dose-rate brachytherapy (HDR-BT) techniques. Methods: Following needle implantation, the delivery system is docked to the patient template. Each needle is coupled to a multi-source afterloader catheter by a connector passing through a shaft. The shafts are rotated by translating a moving template between two stationary templates. Shaft walls as well as moving template holes are threaded such that the resistive friction produced between the two parts exerts enough force on the shafts to bring about the rotation. Rotation of the shaft is then transmitted to the shielded source via several keys. Thus, shaft angular position is fully correlated with the position of the moving template. The catheter angles are simultaneously incremented throughout treatment as needed, and only a single 360° rotation of all catheters is needed for a full treatment. For each rotation angle, source depth in each needle is controlled by a multi-source afterloader, which is proposed as an array of belt-driven linear actuators, each of which drives a source wire. Results: Optimized treatment plans based on Monte Carlo dose calculations demonstrated RSBT with the proposed apparatus reduced urethral D{sub 1cc} below that of conventional HDR-BT by 35% for urethral dose gradient volume within 3 mm of the urethra surface. Treatment time to deliver 20 Gy with multi-source RSBT apparatus using nineteen 62.4 GBq {sup 153}Gd sources is 117 min. Conclusions: The proposed RSBT delivery apparatus in conjunction with multiple nitinol catheter-mounted platinum-shielded {sup 153}Gd sources enables a mechanically feasible

  19. Surgery and postoperative brachytherapy for treatment of small volume uterine cervix cancer: an alternative to the standard association of utero vaginal brachytherapy + surgery

    International Nuclear Information System (INIS)

    Gallocher, O.; Thomas, L.; Pigneux, J.; Stocke, E.; Bussieres, E.; Avril, A.; Floquet, A.

    2002-01-01

    Purpose. -Evaluate the results of the treatment of small uterine cervix cancer with the association of surgery and postoperative vaginal brachytherapy, without unfavourable prognostic factors. Patients and methods. -After radical hysterectomy with lymphadenectomy, 29 women (mean age: 44 years) with carcinoma < 25 mm (26 stage IB1, 3 IIA, mean size: 15 mm) were treated by post-operative prophylactic vaginal brachytherapy using low dose rate. Ovarian transposition was performed at the surgical time in 14 young women (mean age 35 years). Results. - The actuarial specific survival rates at 5 and 10 years were 100% and 90% respectively, with a mean follow-up 75 months. Only one local recurrence was observed. The rate of grade 1 post-operative complication was 7%. The conservation rate of the ovarian function was 85% for young women. Conclusion. -Treatment of small volume uterine cervix cancer using first surgery and post-operative vaginal brachytherapy is a reliable therapeutic option. The results in terms of specific survival and complications are the same with those after standard association of preoperative utero-vaginal brachytherapy and surgery. (authors)

  20. Survey of brachytherapy practice in France in 1995. Definitive results

    International Nuclear Information System (INIS)

    Peiffert, D.; Simon, J.M.; Baillet, F.

    1998-01-01

    A survey questionnaire was sent to the 189 French departments of radiation Oncology and 166 responded (88%). Ninety-nine departments declared treating patients by brachytherapy and 358 shielded rooms were available. In Low Dose Rate (LDR) 81 departments used Cesium sources (159 after-loaders, 1,060 sources); Iridium wires were used by 84 departments (673 meters used). Only six departments used other elements. Twenty-six departments were equipped with high dose rate after loaders (HDR) all of them also using LDR techniques for most of the patients. A total of 9,160 patients were treated: 7,868 with LDR and 1,292 with HDR. The common sites treated by LDR were utero-vagina (4,300), breast (1,415), head and neck (1,409), skin (610), anorectal (220) and urologic (70). HDR was used for vaginal cuff (628), bronchi (371), oesophagus (232). PDR just started (33 patients) for a feasibility trial. The rate of patients treated by brachytherapy is around 6-8% of the irradiated patients, but the indications vary is each department. The diffusion of the techniques, and new indications should increase the number of patients being treated by brachytherapy. (authors)

  1. Brachytherapy dose-volume histogram computations using optimized stratified sampling methods

    International Nuclear Information System (INIS)

    Karouzakis, K.; Lahanas, M.; Milickovic, N.; Giannouli, S.; Baltas, D.; Zamboglou, N.

    2002-01-01

    A stratified sampling method for the efficient repeated computation of dose-volume histograms (DVHs) in brachytherapy is presented as used for anatomy based brachytherapy optimization methods. The aim of the method is to reduce the number of sampling points required for the calculation of DVHs for the body and the PTV. From the DVHs are derived the quantities such as Conformity Index COIN and COIN integrals. This is achieved by using partial uniform distributed sampling points with a density in each region obtained from a survey of the gradients or the variance of the dose distribution in these regions. The shape of the sampling regions is adapted to the patient anatomy and the shape and size of the implant. For the application of this method a single preprocessing step is necessary which requires only a few seconds. Ten clinical implants were used to study the appropriate number of sampling points, given a required accuracy for quantities such as cumulative DVHs, COIN indices and COIN integrals. We found that DVHs of very large tissue volumes surrounding the PTV, and also COIN distributions, can be obtained using a factor of 5-10 times smaller the number of sampling points in comparison with uniform distributed points

  2. Comparison of Computed Tomography– and Magnetic Resonance Imaging–based Clinical Target Volume Contours at Brachytherapy for Cervical Cancer

    International Nuclear Information System (INIS)

    Swanick, Cameron W.; Castle, Katherine O.; Vedam, Sastry; Munsell, Mark F.; Turner, Lehendrick M.; Rauch, Gaiane M.; Jhingran, Anuja; Eifel, Patricia J.; Klopp, Ann H.

    2016-01-01

    Purpose: We prospectively compared computed tomography (CT)– and magnetic resonance imaging (MRI)–based high-risk clinical target volume (HR-CTV) contours at the time of brachytherapy for cervical cancer in an effort to identify patients who might benefit most from MRI-based planning. Methods and Materials: Thirty-seven patients who had undergone a pretreatment diagnostic MRI scan were included in the analysis. We delineated the HR-CTV on the brachytherapy CT and brachytherapy MRI scans independently for each patient. We then calculated the absolute volumes for each HR-CTV and the Dice coefficient of similarity (DC, a measure of spatial agreement) for the HR-CTV contours. We identified the clinical and tumor factors associated with (1) a discrepancy in volume between the CT HR-CTV and MRI HR-CTV contours; and (2) DC. The mean values were compared using 1-way analysis of variance or paired or unpaired t tests, as appropriate. Simple and multivariable linear regression analyses were used to model the effects of covariates on the outcomes. Results: Patients with International Federation of Gynecology and Obstetrics stage IB to IVA cervical cancer were treated with intracavitary brachytherapy using tandem and ovoid (n=33) or tandem and cylinder (n=4) applicators. The mean CT HR-CTV volume (44.1 cm"3) was larger than the mean MRI HR-CTV volume (35.1 cm"3; P 5 cm and parametrial invasion on MRI at diagnosis and for those with a high BMI.

  3. An analysis of personnel dose records which justifies the application of cost-benefit analysis techniques in the design of an afterloading facility and the use of controlled areas and systems of work within suite to control occupational exposure

    Energy Technology Data Exchange (ETDEWEB)

    Gifford, D; Kear, D [Bristol General Hospital (UK); Godden, T J [Bristol Radiotherapy and Oncology Centre (UK)

    1990-03-01

    The sealed source operational policies employed at the Bristol Radiotherapy and Oncology Centre are reviewed. On the basis of the cost-benefit analysis, it was decided not to provide additional shielding but rather to introduce administrative controls based on local rules which contained systems of work and the operational policies for the afterloading systems. After using the MDR afterloading systems for 2 years, a period in which there has also been a marked increase in interstitial brachytherapy, an analysis was made of the doses received by nursing staff over the past 8 years. This has shown that, in spite of higher dose rates in the corridor areas because of the use of an MDR system and the increase in interstitial techniques, the doses to ward nurses have been significantly reduced by encouraging staff to comply with the ALARA principle and the introduction of afterloading systems. (author).

  4. Monte Carlo Simulation of stepping source in afterloading intracavitary brachytherapy for GZP6 unit

    International Nuclear Information System (INIS)

    Toossi, M.T.B.; Abdollahi, M.; Ghorbani, M.

    2010-01-01

    Full text: Stepping source in brachytherapy systems is used to treat a target lesion longer than the effective treatment length of the source. Dose calculation accuracy plays a vital role in the outcome of brachytherapy treatment. In this study, the stepping source (channel 6) of GZP6 brachytherapy unit was simulated by Monte Carlo simulation and matrix shift method. The stepping source of GZP6 was simulated by Monte Carlo MCNPX code. The Mesh tally (type I) was employed for absorbed dose calculation in a cylindrical water phantom. 5 x 108 photon histories were scored and a 0.2% statistical uncertainty was obtained by Monte Carlo calculations. Dose distributions were obtained by our matrix shift method for esophageal cancer tumor lengths of 8 and 10 cm. Isodose curves produced by simulation and TPS were superimposed to estimate the differences. Results Comparison of Monte Carlo and TPS dose distributions show that in longitudinal direction (source movement direction) Monte Carlo and TPS dose distributions are comparable. [n transverse direction, the dose differences of 7 and 5% were observed for esophageal tumor lengths of 8 and 10 cm respectively. Conclusions Although, the results show that the maximum difference between Monte Carlo and TPS calculations is about 7%, but considering that the certified activity is given with ± I 0%, uncertainty, then an error of the order of 20% for Monte Carlo calculation would be reasonable. It can be suggested that accuracy of the dose distribution produced by TPS is acceptable for clinical applications. (author)

  5. Comparison of Computed Tomography– and Magnetic Resonance Imaging–based Clinical Target Volume Contours at Brachytherapy for Cervical Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Swanick, Cameron W. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Castle, Katherine O. [Southeast Louisiana Radiation Oncology Group, Baton Rouge, Louisiana (United States); Vedam, Sastry [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Munsell, Mark F. [Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Turner, Lehendrick M. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Rauch, Gaiane M. [Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Jhingran, Anuja; Eifel, Patricia J. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Klopp, Ann H., E-mail: aklopp@mdanderson.org [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2016-11-15

    Purpose: We prospectively compared computed tomography (CT)– and magnetic resonance imaging (MRI)–based high-risk clinical target volume (HR-CTV) contours at the time of brachytherapy for cervical cancer in an effort to identify patients who might benefit most from MRI-based planning. Methods and Materials: Thirty-seven patients who had undergone a pretreatment diagnostic MRI scan were included in the analysis. We delineated the HR-CTV on the brachytherapy CT and brachytherapy MRI scans independently for each patient. We then calculated the absolute volumes for each HR-CTV and the Dice coefficient of similarity (DC, a measure of spatial agreement) for the HR-CTV contours. We identified the clinical and tumor factors associated with (1) a discrepancy in volume between the CT HR-CTV and MRI HR-CTV contours; and (2) DC. The mean values were compared using 1-way analysis of variance or paired or unpaired t tests, as appropriate. Simple and multivariable linear regression analyses were used to model the effects of covariates on the outcomes. Results: Patients with International Federation of Gynecology and Obstetrics stage IB to IVA cervical cancer were treated with intracavitary brachytherapy using tandem and ovoid (n=33) or tandem and cylinder (n=4) applicators. The mean CT HR-CTV volume (44.1 cm{sup 3}) was larger than the mean MRI HR-CTV volume (35.1 cm{sup 3}; P<.0001, paired t test). On multivariable analysis, a higher body mass index (BMI) and tumor size ≥5 cm with parametrial invasion on the MRI scan at diagnosis were associated with an increased discrepancy in volume between the HR-CTV contours (P<.02 for both). In addition, the spatial agreement (as measured by DC) between the HR-CTV contours decreased with an increasing BMI (P=.013). Conclusions: We recommend MRI-based brachytherapy planning for patients with tumors >5 cm and parametrial invasion on MRI at diagnosis and for those with a high BMI.

  6. Intracavitary mould brachytherapy in malignant tumors of the maxilla

    International Nuclear Information System (INIS)

    Rosenblatt, Edward; Blumenfeld, Israel; Cederbaum, Martin; Kuten, Abraham

    1996-01-01

    Purpose: To integrate brachytherapy in the combined modality management of malignant tumors of the maxilla, as a means of increasing the radiotherapy dose to the tumor bed while avoiding high doses to the orbital contents. Materials and methods: Following a partial or total maxillectomy, a duplication of the interim surgical obturator was created using a wash of vinyl polysiloxane. This mould was used as a carrier for afterloading nylon catheters through which 192-Iridium seed-ribbons were inserted. Following brachytherapy, selected patients also received external beam irradiation. Results and discussion: After a median follow-up of 36 months, 9 out of 11 patients are alive and disease-free; 1 developed a local recurrence and another relapsed at another site in the oral cavity. Transient grade 1 - 2 mucositis at the implant site was observed in all patients. The review of computer isodose distributions showed that the average dose received by the homolateral eyeball was 10% (range 9,2 - 10.0) of the prescribed surface dose to the surgical cavity. Conclusions: Brachytherapy can be integrated in the management of patients with malignant tumors of the maxilla in the form of a custom-made intracavitary mould carrying 192-Iridium sources. We found this technique particularly useful in cases with close or positive surgical margins

  7. Three-dimensional brachytherapy optimization techniques in the treatment of patients with cervix cancer; Apport des techniques de curietherapie optimisee grace a l'imagerie tridimensionnelle dans la prise en charge des patientes atteintes d'un cancer du col uterin

    Energy Technology Data Exchange (ETDEWEB)

    Haie-Meder, C.; Mazeron, R.; Verezesan, O.; Monnier, L.; Vieillot, S. [Institut Gustave-Roussy, Service de Curietherapie, 94 - Villejuif (France); Dumas, I. [Institut Gustave-Roussy, Service de Physique, 94 - Villejuif (France); Lhomme, C. [Institut Gustave-Roussy, Service d' Ooncologie Gynecologique, 94 - Villejuif (France); Morice, P. [Institut Gustave-Roussy, Service de Chirurgie Oncologique, 94 - Villejuif (France); Barillot, I. [Centre Regional Universitaire de Cancerologie Henry-S.-Kaplan, Hopital Bretonneau, CHU de Tours, 37 - Tours (France); Universite Francois-Rabelais, 37 - Tours (France)

    2009-10-15

    Traditionally, prescription and treatment planning in intracavitary brachytherapy for cervix cancer have used either reference points (mainly points A and B) or reference isodoses (60 Gy according to ICRU recommendations) to report doses to the target volume. Doses to critical organs were reported at bladder and rectum ICRU points. This practice has been supported by a long-standing clinical experience that has yielded an acceptable therapeutic ratio. The recent development of imaging has contributed to the improvement in target and organs at risk knowledge. In 2005 and 2006, the European group of brachytherapy -European Society for therapeutic radiology and oncology (GEC-E.S.T.R.O.) recommendations publications on 3-D based image brachytherapy have defined the different volumes of interest. These recommendations have been validated with intercomparison delineation studies. With the concomitant development of remote after-loading projectors, provided with miniaturized sources, it is now possible to plan radiation doses by adjusting dwell positions and relative dwell time values. These procedures allow better coverage of the targets while sparing O.A.R.. The recent literature data evidence a significant improvement in local control with no increase in complications. Further studies are needed to better define the dose recommended in both tumour and organs at risk. This is one of the goals of the European study on MRI-guided brachytherapy in locally advanced cervical cancer (E.M.B.R.A.C.E.) protocol (meaning of acronym: an international study on MRI-guided brachytherapy in locally advanced cervical cancer). (authors)

  8. Human reliability in high dose rate afterloading radiotherapy based on FMECA

    International Nuclear Information System (INIS)

    Deng Jun; Fan Yaohua; Yue Baorong; Wei Kedao; Ren Fuli

    2012-01-01

    Objective: To put forward reasonable and feasible recommendations against the procedure with relative high risk during the high dose rate (HDR) afterloading radiotherapy, so as to enhance its clinical application safety, through studying the human reliability in the process of carrying out the HDR afterloading radiotherapy. Methods: Basic data were collected by on-site investigation and process analysis as well as expert evaluation. Failure mode, effect and criticality analysis (FMECA) employed to study the human reliability in the execution of HDR afterloading radiotherapy. Results: The FMECA model of human reliability for HDR afterloading radiotherapy was established, through which 25 procedures with relative high risk index were found,accounting for 14.1% of total 177 procedures. Conclusions: FMECA method in human reliability study for HDR afterloading radiotherapy is feasible. The countermeasures are put forward to reduce the human error, so as to provide important basis for enhancing clinical application safety of HDR afterloading radiotherapy. (authors)

  9. Radiation safety program in a high dose rate brachytherapy facility

    International Nuclear Information System (INIS)

    Rodriguez, L.V.; Hermoso, T.M.; Solis, R.C.

    2001-01-01

    The use of remote afterloading equipment has been developed to improve radiation safety in the delivery of treatment in brachytherapy. Several accidents, however, have been reported involving high dose-rate brachytherapy system. These events, together with the desire to address the concerns of radiation workers, and the anticipated adoption of the International Basic Safety Standards for Protection Against Ionizing Radiation (IAEA, 1996), led to the development of the radiation safety program at the Department of Radiotherapy, Jose R. Reyes Memorial Medical Center and at the Division of Radiation Oncology, St. Luke's Medical Center. The radiation safety program covers five major aspects: quality control/quality assurance, radiation monitoring, preventive maintenance, administrative measures and quality audit. Measures for evaluation of effectiveness of the program include decreased unnecessary exposures of patients and staff, improved accuracy in treatment delivery and increased department efficiency due to the development of staff vigilance and decreased anxiety. The success in the implementation required the participation and cooperation of all the personnel involved in the procedures and strong management support. This paper will discuss the radiation safety program for a high dose rate brachytherapy facility developed at these two institutes which may serve as a guideline for other hospitals intending to install a similar facility. (author)

  10. [Brachytherapy of brainstem tumors].

    Science.gov (United States)

    Julow, Jenö; Viola, Arpád; Major, Tibor; Valálik, István; Sági, Sarolta; Mangel, László; Kovács, Rita Beáta; Repa, Imre; Bajzik, Gábor; Németh, György

    2004-01-20

    The optimal therapy of brain stem tumours of different histopathology determines the expected length of survival. Authors report 125Iodine interstitial irradiation of brain stem tumours with stereotactic brachytherapy. Two patients having brain stem tumours were suffering from glioma or from metastases of a carcinoma. In Case 1 the tumour volume was 1.98 cm3 at the time of planning interstitial irradiation. The control MRI examination performed at 42 months post-op showed a postirradiation cyst size of 5.73 cm3 indicating 65.5% shrinkage. In Case 2 the shrinkage was more apparent as the tumour volume measured on the control MRI at 8 months post-op was only 0.16 cm3 indicating 97.4% shrinkage of the 6.05 cm3 target volume at the time of brachytherapy with the metastasis practically disappearing. Quick access to histopathological results of the stereotactic intraoperative biopsy made it possible to carry out the 125Iodine stereotactic brachytherapy immediately after the biopsy, resulting in less inconvenience for patients of a second possible intervention. The control MRI scans show significant shrinkage of tumours in both patients. The procedure can be performed as a biopsy. The CT and image fusion guided 125Iodine stereotactic brachytherapy can be well planned dosimetrically and is surgically precise.

  11. Review of the afterloading techniques in gynecologic radiation therapy

    International Nuclear Information System (INIS)

    Rotte, K.

    1975-01-01

    A review of clinically used afterloading techniques - remote controlled and manually operated ones - is given by tables. The advantages of afterloading techniques are discussed with regard to radiation protection as well as to the therapy of gynecologic carcinomas. (orig.) [de

  12. Image Guided Cervical Brachytherapy: 2014 Survey of the American Brachytherapy Society

    Energy Technology Data Exchange (ETDEWEB)

    Grover, Surbhi, E-mail: Surbhi.grover@uphs.upenn.edu [Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Harkenrider, Matthew M. [Department of Radiation Oncology, Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois (United States); Cho, Linda P. [Department of Radiation Oncology, Brigham & Women' s Hospital/Dana-Farber Cancer Institute, Boston, Massachusetts (United States); Erickson, Beth [Department Radiation Oncology, Froedtert Hospital and Medical College of Wisconsin, Milwaukee, Wisconsin (United States); Small, Christina [Department of Public Health Sciences, Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois (United States); Small, William [Department of Radiation Oncology, Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois (United States); Viswanathan, Akila N. [Department of Radiation Oncology, Brigham & Women' s Hospital/Dana-Farber Cancer Institute, Boston, Massachusetts (United States)

    2016-03-01

    Purpose: To provide an update of the 2007 American brachytherapy survey on image-based brachytherapy, which showed that in the setting of treatment planning for gynecologic brachytherapy, although computed tomography (CT) was often used for treatment planning, most brachytherapists used point A for dose specification. Methods and Materials: A 45-question electronic survey on cervical cancer brachytherapy practice patterns was sent to all American Brachytherapy Society members and additional radiation oncologists and physicists based in the United States between January and September 2014. Responses from the 2007 survey and the present survey were compared using the χ{sup 2} test. Results: There were 370 respondents. Of those, only respondents, not in training, who treat more than 1 cervical cancer patient per year and practice in the United States, were included in the analysis (219). For dose specification to the target (cervix and tumor), 95% always use CT, and 34% always use MRI. However, 46% use point A only for dose specification to the target. There was a lot of variation in parameters used for dose evaluation of target volume and normal tissues. Compared with the 2007 survey, use of MRI has increased from 2% to 34% (P<.0001) for dose specification to the target. Use of volume-based dose delineation to the target has increased from 14% to 52% (P<.0001). Conclusion: Although use of image-based brachytherapy has increased in the United States since the 2007 survey, there is room for further growth, particularly with the use of MRI. This increase may be in part due to educational initiatives. However, there is still significant heterogeneity in brachytherapy practice in the United States, and future efforts should be geared toward standardizing treatment.

  13. Genitourinary Toxicity After High-Dose-Rate (HDR) Brachytherapy Combined With Hypofractionated External Beam Radiotherapy for Localized Prostate Cancer: An Analysis to Determine the Correlation Between Dose-Volume Histogram Parameters in HDR Brachytherapy and Severity of Toxicity

    International Nuclear Information System (INIS)

    Ishiyama, Hiromichi; Kitano, Masashi; Satoh, Takefumi; Kotani, Shouko; Uemae, Mineko; Matsumoto, Kazumasa; Okusa, Hiroshi; Tabata, Ken-ichi; Baba, Shiro; Hayakawa, Kazushige

    2009-01-01

    Purpose: To evaluate the severity of genitourinary (GU) toxicity in high-dose-rate (HDR) brachytherapy combined with hypofractionated external beam radiotherapy (EBRT) for prostate cancer and to explore factors that might affect the severity of GU toxicity. Methods and Materials: A total of 100 Japanese men with prostate cancer underwent 192 Ir HDR brachytherapy combined with hypofractionated EBRT. Mean (SD) dose to 90% of the planning target volume was 6.3 (0.7) Gy per fraction of HDR. After 5 fractions of HDR treatment, EBRT with 10 fractions of 3 Gy was administrated. The urethral volume receiving 1-15 Gy per fraction in HDR brachytherapy (V1-V15) and the dose to at least 5-100% of urethral volume in HDR brachytherapy (D5-D100) were compared between patients with Grade 3 toxicity and those with Grade 0-2 toxicity. Prostate volume, patient age, and International Prostate Symptom Score were also compared between the two groups. Results: Of the 100 patients, 6 displayed Grade 3 acute GU toxicity, and 12 displayed Grade 3 late GU toxicity. Regarding acute GU toxicity, values of V1, V2, V3, and V4 were significantly higher in patients with Grade 3 toxicity than in those with Grade 0-2 toxicity. Regarding late GU toxicity, values of D70, D80, V12, and V13 were significantly higher in patients with Grade 3 toxicity than in those with Grade 0-2 toxicity. Conclusions: The severity of GU toxicity in HDR brachytherapy combined with hypofractionated EBRT for prostate cancer was relatively high. The volume of prostatic urethra was associated with grade of acute GU toxicity, and urethral dose was associated with grade of late GU toxicity.

  14. Total reference air kerma can accurately predict isodose surface volumes in cervix cancer brachytherapy. A multicenter study

    DEFF Research Database (Denmark)

    Nkiwane, Karen S; Andersen, Else; Champoudry, Jerome

    2017-01-01

    PURPOSE: To demonstrate that V60 Gy, V75 Gy, and V85 Gy isodose surface volumes can be accurately estimated from total reference air kerma (TRAK) in cervix cancer MRI-guided brachytherapy (BT). METHODS AND MATERIALS: 60 Gy, 75 Gy, and 85 Gy isodose surface volumes levels were obtained from treatm...

  15. Dose mapping of the rectal wall during brachytherapy with an array of scintillation dosimeters

    International Nuclear Information System (INIS)

    Cartwright, L. E.; Suchowerska, N.; Yin, Y.; Lambert, J.; Haque, M.; McKenzie, D. R.

    2010-01-01

    Purpose: In pelvic brachytherapy treatments, the rectum is an organ at risk. The authors have developed an array of scintillation dosimeters suitable for in vivo use that enables quality assurance of the treatment delivery and provides an alert to potential radiation accidents. Ultimately, this will provide evidence to direct treatment planning and dose escalation and correlate dose with the rectal response. Methods: An array of 16 scintillation dosimeters in an insertable applicator has been developed. The dosimeters were calibrated simultaneously in a custom designed circular jig before use. Each dosimeter is optically interfaced to a set of pixels on a CCD camera located outside the treatment bunker. A customized software converts pixel values into dose rate and accumulates dose for presentation during treatment delivery. The performance of the array is tested by simulating brachytherapy treatments in a water phantom. The treatment plans were designed to deliver a known dose distribution on the surface of the rectal applicator, assumed to represent the dose to the rectal wall. Results: The measured doses were compared to those predicted by the treatment plan and found to be in agreement to within the uncertainty in measurement, usually within 3%. The array was also used to track the progression of the source as it moved along the catheter. The measured position was found to agree with the position reported by the afterloader to within the measurement uncertainty, usually within 2 mm. Conclusions: This array is capable of measuring the actual dose received by each region of the rectal wall during brachytherapy treatments. It will provide real time monitoring of treatment delivery and raise an alert to a potential radiation accident. Real time dose mapping in the clinical environment will give the clinician additional confidence to carry out dose escalation to the tumor volume while avoiding rectal side effects.

  16. Surface applicators for high dose rate brachytherapy in AIDS-related kaposi's sarcoma

    International Nuclear Information System (INIS)

    Evans, Michael D.C.; Yassa, Mariam; Podgorsak, Ervin B.; Roman, Ted N.; Schreiner, L. John; Souhami, Luis

    1997-01-01

    Purpose: The development of commercially available surface applicators using high dose rate remote afterloading devices has enabled radiotherapy centers to treat selected superficial lesions using a remote afterloading brachytherapy unit. The dosimetric parameters of these applicators, the clinical implementation of this technique, and a review of the initial patient treatment regimes are presented. Methods and Materials: A set of six fixed-diameter (1, 2, and 3 cm), tungsten/steel surface applicators is available for use with a single stepping-source (Ir-192, 370 GBq) high dose rate afterloader. The source can be positioned either in a parallel or perpendicular orientation to the treatment plane at the center of a conical aperture that sits at an SSD of approximately 15 mm and is used with a 1-mm thick removable plastic cap. The surface dose rates, percent depth dose, and off-axis ratios were measured. A custom-built, ceiling-mounted immobilization device secures the applicator on the surface of the patient's lesion during treatment. Results: Between November 1994, and September 1996, 16 AIDS-related Kaposi's sarcoma patients having a total of 120 lesions have been treated with palliative intent. Treatment sites were distributed between the head and neck, extremity, and torso. Doses ranged from 8 to 20 Gy, with a median dose of 10 Gy delivered in a single fraction. Treatments were well tolerated with minimal skin reaction, except for patients with lesions treated to 20 Gy who developed moderate/severe desquamation. Conclusion: Radiotherapy centers equipped with a high dose rate remote afterloading unit may treat small selected surface lesions with commercially available surface applicators. These surface applicators must be used with a protective cap to eliminate electron contamination. The optimal surface dose appears to be either 10 or 15 Gy depending upon the height of the lesion

  17. High-dose-rate afterloading brachytherapy in carcinoma of the cervix: an experience of 1992 patients

    International Nuclear Information System (INIS)

    Lorvidhaya, Vicharn; Tonusin, Anun; Changwiwit, Witit; Chitapanarux, Imjai; Srisomboon, Jatupol; Wanwilairat, Somsak; Chawapun, Nisa; Sukthomya, Vimol

    2000-01-01

    Purpose: To report the results of radiation therapy in carcinoma of the cervix treated by external irradiation and high-dose-rate (HDR) intracavitary brachytherapy. Methods and Materials: This is a retrospective analysis of 2063 patients with histologically proven carcinoma of the cervix treated by external irradiation and HDR intracavitary brachytherapy between March 1985-December 1991. The Kaplan-Meier method was used for survival and disease-free survival analysis. Late complications in the bowel and bladder were calculated actuarially. Results: There were 71 patients who did not complete the course of irradiation so only 1992 patients were retrospectively analyzed for survival. There were 2 patients (0.1%) in Stage IA, 211 (10.2%) Stage IB, 225 (10.9%) in Stage IIA, 902 (43.7%) in Stage IIB, 14 (0.7%) in Stage IIIA, 675 (32.7%) in Stage IIIB, 16 (0.8%) in Stage IVA, and 16 (0.8%) in Stage IVB. The median follow-up time was 96 months. The actuarial 5-year disease-free survival rate was 79.5%, 70.0%, 59.4%, 46.1%, 32.3%, 7.8%, and 23.1% for Stage IB, IIA, IIB, IIIA, IIIB, IVA, and IVB respectively. The actuarial 5-year disease-free survival rate for Stage IB 1 and IB 2 squamous cell carcinoma was 88.7% and 67.0%. The actuarial 5-year overall survival rate was 86.3%, 81.1%, 73.0%, 50.3%, 47.8%, 7.8%, and 30.8% for Stage IB, IIA, IIB, IIIA, IIIB, IVA, and IVB respectively. Pattern of failure revealed 20.8% local recurrence, 18.7% distant metastases, and 4% in both. The late complication rate Grade 3 and 4 (RTOG) for bowel and bladder combined was 7.0% with 1.9% Grade 4. Conclusion: HDR brachytherapy used in this series produced pelvic control and survival rates comparable to other LDR series

  18. Demonstration of brachytherapy boost dose-response relationships in glioblastoma multiforme

    International Nuclear Information System (INIS)

    Sneed, Penny K.; Lamborn, Kathleen R.; Larson, David A.; Prados, Michael D.; Malec, Mary K.; McDermott, Michael W.; Weaver, Keith A.; Phillips, Theodore L.; Wara, William M.; Gutin, Philip H.

    1996-01-01

    Purpose: To evaluate brachytherapy dose-response relationships in adults with glioblastoma undergoing temporary 125 I implant boost after external beam radiotherapy. Methods and Materials: Since June 1987, orthogonal radiographs using a fiducial marker box have been used to verify brain implant source positions and generate dose-volume histograms at the University of California, San Francisco. For adults who underwent brachytherapy boost for glioblastoma from June 1987 through December 1992, tumor volumes were reoutlined to ensure consistency and dose-volume histograms were recalculated. Univariate and multivariate analyses of various patient and treatment parameters were performed evaluating for influence of dose on freedom from local failure (FFLF) and actuarial survival. Results: Of 102 implant boosts, 5 were excluded because computer plans were unavailable. For the remaining 97 patients, analyses with adjustment for known prognostic factors (age, KPS, extent of initial surgical resection) and prognostic factors identified on univariate testing (adjuvant chemotherapy) showed that higher minimum brachytherapy tumor dose was strongly associated with improved FFLF (p = 0.001). A quadratic relationship was found between total biological effective dose and survival, with a trend toward optimal survival probability at 47 Gy minimum brachytherapy tumor dose (corresponding to about 65 Gy to 95% of the tumor volume); survival decreased with lower or higher doses. Two patients expired and one requires hospice care because of brain necrosis after brachytherapy doses > 63 Gy to 95% of the tumor volume with 60 Gy to > 18 cm 3 of normal brain. Conclusion: Although higher minimum brachytherapy tumor dose was strongly associated with better local control, a brachytherapy boost dose > 50-60 Gy may result in life-threatening necrosis. We recommend careful conformation of the prescription isodose line to the contrast enhancing tumor volume, delivery of a minimum brachytherapy

  19. Re-evaluation of a radiation protection cost benefit analysis study in brachytherapy

    International Nuclear Information System (INIS)

    Broek, J.G. van den; Weatherburn, H.

    1994-01-01

    This study investigates changes in the NRPB advice concerning cost benefit analysis over the last 10 years by correcting all figures for inflation and applying them to a particular radiation protection example, a previously published case of the introduction of afterloading brachytherapy equipment at the Christie Hospital, Manchester. It has been shown that for this example NRPB advice at one time led to a large cost benefit, at another time led to a large cost deficit and later still it again gives a large cost benefit. Application of cost benefit analysis to decision making in radiation protection is therefore shown to be in need of further investigation and clarification. (author)

  20. Dosimetric Coverage of the Prostate, Normal Tissue Sparing, and Acute Toxicity with High-Dose-Rate Brachytherapy for Large Prostate Volumes

    Directory of Open Access Journals (Sweden)

    George Yang

    2015-06-01

    Full Text Available ABSTRACTPurposeTo evaluate dosimetric coverage of the prostate, normal tissue sparing, and acute toxicity with HDR brachytherapy for large prostate volumes.Materials and MethodsOne hundred and two prostate cancer patients with prostate volumes >50 mL (range: 5-29 mL were treated with high-dose-rate (HDR brachytherapy ± intensity modulated radiation therapy (IMRT to 4,500 cGy in 25 daily fractions between 2009 and 2013. HDR brachytherapy monotherapy doses consisted of two 1,350-1,400 cGy fractions separated by 2-3 weeks, and HDR brachytherapy boost doses consisted of two 950-1,150 cGy fractions separated by 4 weeks. Twelve of 32 (38% unfavorable intermediate risk, high risk, and very high risk patients received androgen deprivation therapy. Acute toxicity was graded according to the Common Terminology Criteria for Adverse Events (CTCAE version 4.ResultsMedian follow-up was 14 months. Dosimetric goals were achieved in over 90% of cases. Three of 102 (3% patients developed Grade 2 acute proctitis. No variables were significantly associated with Grade 2 acute proctitis. Seventeen of 102 (17% patients developed Grade 2 acute urinary retention. American Urological Association (AUA symptom score was the only variable significantly associated with Grade 2 acute urinary retention (p=0.04. There was no ≥ Grade 3 acute toxicity.ConclusionsDosimetric coverage of the prostate and normal tissue sparing were adequate in patients with prostate volumes >50 mL. Higher pre-treatment AUA symptom scores increased the relative risk of Grade 2 acute urinary retention. However, the overall incidence of acute toxicity was acceptable in patients with large prostate volumes.

  1. Dosimetric coverage of the prostate, normal tissue sparing, and acute toxicity with high-dose-rate brachytherapy for large prostate volumes

    Energy Technology Data Exchange (ETDEWEB)

    Yang, George; Strom, Tobin J.; Shrinath, Kushagra; Mellon, Eric A.; Fernandez, Daniel C.; Biagioli, Matthew C. [Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL (United States); Wilder, Richard B., E-mail: mcbiagioli@yahoo.com [Cancer Treatment Centers of America, Newnan, GA (United States)

    2015-05-15

    Purpose: to evaluate dosimetric coverage of the prostate, normal tissue sparing, and acute toxicity with HDR brachytherapy for large prostate volumes. Materials and methods: one hundred and two prostate cancer patients with prostate volumes >50 mL (range: 5-29 mL) were treated with high-dose-rate (HDR) brachytherapy ± intensity modulated radiation therapy (IMRT) to 4,500 cGy in 25 daily fractions between 2009 and 2013. HDR brachytherapy monotherapy doses consisted of two 1,350-1,400 cGy fractions separated by 2-3 weeks, and HDR brachytherapy boost doses consisted of two 950-1,150 cGy fractions separated by 4 weeks. Twelve of 32 (38%) unfavorable intermediate risk, high risk, and very high risk patients received androgen deprivation therapy. Acute toxicity was graded according to the Common Terminology Criteria for Adverse Events (CTCAE) version 4. Results: median follow-up was 14 months. Dosimetric goals were achieved in over 90% of cases. Three of 102 (3%) patients developed Grade 2 acute proctitis. No variables were significantly associated with Grade 2 acute proctitis. Seventeen of 102 (17%) patients developed Grade 2 acute urinary retention. American Urological Association (AUA) symptom score was the only variable significantly associated with Grade 2 acute urinary retention (p-0.04). There was no ≥ Grade 3 acute toxicity. Conclusions: dosimetric coverage of the prostate and normal tissue sparing were adequate in patients with prostate volumes >50 mL. Higher pre-treatment AUA symptom scores increased the relative risk of Grade 2 acute urinary retention. However, the overall incidence of acute toxicity was acceptable in patients with large prostate volumes. (author)

  2. Evaluation of two intracavitary high-dose-rate brachytherapy devices for irradiating additional and irregularly shaped volumes of breast tissue

    International Nuclear Information System (INIS)

    Lu, Sharon M.; Scanderbeg, Daniel J.; Barna, Patrick; Yashar, William; Yashar, Catheryn

    2012-01-01

    The SAVI and Contura breast brachytherapy applicators represent 2 recent advancements in brachytherapy technology that have expanded the number of women eligible for accelerated partial breast irradiation in the treatment of early-stage breast cancer. Early clinical experience with these 2 single-entry, multichannel high-dose-rate brachytherapy devices confirms their ease of use and dosimetric versatility. However, current clinical guidelines for SAVI and Contura brachytherapy may result in a smaller or less optimal volume of treated tissue compared with traditional interstitial brachytherapy. This study evaluates the feasibility of using the SAVI and Contura to irradiate larger and irregularly shaped target volumes, approaching what is treatable with the interstitial technique. To investigate whether additional tissue can be treated, 17 patients treated with the SAVI and 3 with the Contura were selected. For each patient, the planning target volume (PTV) was modified to extend 1.1 cm, 1.3 cm, and 1.5 cm beyond the tumor bed cavity. To evaluate dose conformance to an irregularly shaped target volume, 9 patients treated with the SAVI and 3 with the Contura were selected from the original 20 patients. The following asymmetric PTV margin combinations were assessed for each patient: 1.5/0.3, 1.3/0.3, and 1.1/0.3 cm. For all patients, treatment planning was performed, adopting the National Surgical Adjuvant Breast and Bowel Project guidelines, and dosimetric comparisons were made. The 6–1 and 8–1 SAVI devices can theoretically treat a maximal tissue margin of 1.5 cm and an asymmetric PTV with margins ranging from 0.3 to 1.5 cm. The 10–1 SAVI and Contura can treat a maximal margin of 1.3 cm and 1.1 cm, respectively, and asymmetric PTV with margins ranging from 0.3–1.3 cm. Compared with the Contura, the SAVI demonstrated greater dosimetric flexibility. Risk of developing excessive hot spots increased with the size of the SAVI device. Both the SAVI and Contura

  3. Current Brachytherapy Quality Assurance Guidance: Does It Meet the Challenges of Emerging Image-Guided Technologies?

    International Nuclear Information System (INIS)

    Williamson, Jeffrey F.

    2008-01-01

    In the past decade, brachytherapy has shifted from the traditional surgical paradigm to more modern three-dimensional image-based planning and delivery approaches. The role of intraoperative and multimodality image-based planning is growing. Published American Association of Physicists in Medicine, American College of Radiology, European Society for Therapeutic Radiology and Oncology, and International Atomic Energy Agency quality assurance (QA) guidelines largely emphasize the QA of planning and delivery devices rather than processes. These protocols have been designed to verify compliance with major performance specifications and are not risk based. With some exceptions, complete and clinically practical guidance exists for sources, QA instrumentation, non-image-based planning systems, applicators, remote afterloading systems, dosimetry, and calibration. Updated guidance is needed for intraoperative imaging systems and image-based planning systems. For non-image-based brachytherapy, the American Association of Physicists in Medicine Task Group reports 56 and 59 provide reasonable guidance on procedure-specific process flow and QA. However, improved guidance is needed even for established procedures such as ultrasound-guided prostate implants. Adaptive replanning in brachytherapy faces unsolved problems similar to that of image-guided adaptive external beam radiotherapy

  4. The incorporation of specific tissue/nuclide attenuation data into the Anderson method for producing brachytherapy volume-dose histograms

    International Nuclear Information System (INIS)

    Loft, S.M.; Dale, R.G.

    1990-01-01

    Anderson (1986) has proposed an analytical method for deriving volume-dose histograms relating to three-dimensional brachytherapy distributions. Because the mathematical transformation allows the otherwise dominant effects of the inverse-square fall-off about individual sources to be effectively suppressed, resulting histograms provide the potential for visually and numerically assessing overall quality of a brachytherapy treatment. In this paper the Anderson equations have been combined with the radial-dose polynomials of Dale, which are applicable to a number of tissue/nuclide combinations, and the predictions of the combined formalism used to further investigate the physical aspects of brachytherapy dosimetry. The problems associated with the dosimetry of low-energy γ-emitters such as 125 I are once again highlighted, as are potential advantages of using a radionuclide with an intermediate γ-ray energy. (author)

  5. Comparison and Consensus Guidelines for Delineation of Clinical Target Volume for CT- and MR-Based Brachytherapy in Locally Advanced Cervical Cancer

    International Nuclear Information System (INIS)

    Viswanathan, Akila N.; Erickson, Beth; Gaffney, David K.; Beriwal, Sushil; Bhatia, Sudershan K.; Lee Burnett, Omer; D'Souza, David P.; Patil, Nikhilesh; Haddock, Michael G.; Jhingran, Anuja; Jones, Ellen L.; Kunos, Charles A.; Lee, Larissa J.; Lin, Lilie L.; Mayr, Nina A.; Petersen, Ivy; Petric, Primoz; Portelance, Lorraine; Small, William; Strauss, Jonathan B.

    2014-01-01

    Objective: To create and compare consensus clinical target volume (CTV) contours for computed tomography (CT) and 3-Tesla (3-T) magnetic resonance (MR) image-based cervical-cancer brachytherapy. Methods and Materials: Twenty-three experts in gynecologic radiation oncology contoured the same 3 cervical cancer brachytherapy cases: 1 stage IIB near-complete response (CR) case with a tandem and ovoid, 1 stage IIB partial response (PR) case with tandem and ovoid with needles, and 1 stage IB2 CR case with a tandem and ring applicator. The CT contours were completed before the MRI contours. These were analyzed for consistency and clarity of target delineation using an expectation maximization algorithm for simultaneous truth and performance level estimation (STAPLE), with κ statistics as a measure of agreement between participants. The conformity index was calculated for each of the 6 data sets. Dice coefficients were generated to compare the CT and MR contours of the same case. Results: For all 3 cases, the mean tumor volume was smaller on MR than on CT (P<.001). The κ and conformity index estimates were slightly higher for CT, indicating a higher level of agreement on CT. The Dice coefficients were 89% for the stage IB2 case with a CR, 74% for the stage IIB case with a PR, and 57% for the stage IIB case with a CR. Conclusion: In a comparison of MR-contoured with CT-contoured CTV volumes, the higher level of agreement on CT may be due to the more distinct contrast medium visible on the images at the time of brachytherapy. MR at the time of brachytherapy may be of greatest benefit in patients with large tumors with parametrial extension that have a partial or complete response to external beam. On the basis of these results, a 95% consensus volume was generated for CT and for MR. Online contouring atlases are available for instruction at (http://www.nrgoncology.org/Resources/ContouringAtlases/GYNCervicalBrachytherapy.aspx)

  6. Comparison and Consensus Guidelines for Delineation of Clinical Target Volume for CT- and MR-Based Brachytherapy in Locally Advanced Cervical Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, Akila N., E-mail: aviswanathan@lroc.harvard.edu [Brigham and Women' s Hospital/Dana-Farber Cancer Institute, Boston, Massachusetts (United States); Erickson, Beth [Medical College of Wisconsin, Milwaukee, Wisconsin (United States); Gaffney, David K. [University of Utah Huntsman Cancer Hospital, Salt Lake City, Utah (United States); Beriwal, Sushil [University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania (United States); Bhatia, Sudershan K. [University of Iowa, Iowa City, Iowa (United States); Lee Burnett, Omer [University of Alabama, Birmingham, Alabama (United States); D' Souza, David P.; Patil, Nikhilesh [London Health Sciences Centre and Western University, London, Ontario (Canada); Haddock, Michael G. [Mayo Medical Center, Rochester, Minnesota (United States); Jhingran, Anuja [University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Jones, Ellen L. [University of North Carolina, Chapel Hill, North Carolina (United States); Kunos, Charles A. [Case Western Reserve University, Cleveland, Ohio (United States); Lee, Larissa J. [Brigham and Women' s Hospital/Dana-Farber Cancer Institute, Boston, Massachusetts (United States); Lin, Lilie L. [University of Pennsylvania, Philadelphia, Pennsylvania (United States); Mayr, Nina A. [University of Washington, Seattle, Washington (United States); Petersen, Ivy [Mayo Medical Center, Rochester, Minnesota (United States); Petric, Primoz [Division of Radiotherapy, Institute of Oncology Ljubljana, Ljubljana (Slovenia); Department of Radiation Oncology, National Center for Cancer Care and Research, Doha (Qatar); Portelance, Lorraine [University of Miami Miller School of Medicine, Miami, Florida (United States); Small, William [Loyola University Strich School of Medicine, Chicago, Illinois (United States); Strauss, Jonathan B. [The Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois (United States); and others

    2014-10-01

    Objective: To create and compare consensus clinical target volume (CTV) contours for computed tomography (CT) and 3-Tesla (3-T) magnetic resonance (MR) image-based cervical-cancer brachytherapy. Methods and Materials: Twenty-three experts in gynecologic radiation oncology contoured the same 3 cervical cancer brachytherapy cases: 1 stage IIB near-complete response (CR) case with a tandem and ovoid, 1 stage IIB partial response (PR) case with tandem and ovoid with needles, and 1 stage IB2 CR case with a tandem and ring applicator. The CT contours were completed before the MRI contours. These were analyzed for consistency and clarity of target delineation using an expectation maximization algorithm for simultaneous truth and performance level estimation (STAPLE), with κ statistics as a measure of agreement between participants. The conformity index was calculated for each of the 6 data sets. Dice coefficients were generated to compare the CT and MR contours of the same case. Results: For all 3 cases, the mean tumor volume was smaller on MR than on CT (P<.001). The κ and conformity index estimates were slightly higher for CT, indicating a higher level of agreement on CT. The Dice coefficients were 89% for the stage IB2 case with a CR, 74% for the stage IIB case with a PR, and 57% for the stage IIB case with a CR. Conclusion: In a comparison of MR-contoured with CT-contoured CTV volumes, the higher level of agreement on CT may be due to the more distinct contrast medium visible on the images at the time of brachytherapy. MR at the time of brachytherapy may be of greatest benefit in patients with large tumors with parametrial extension that have a partial or complete response to external beam. On the basis of these results, a 95% consensus volume was generated for CT and for MR. Online contouring atlases are available for instruction at (http://www.nrgoncology.org/Resources/ContouringAtlases/GYNCervicalBrachytherapy.aspx)

  7. BEDVH--A method for evaluating biologically effective dose volume histograms: Application to eye plaque brachytherapy implants

    International Nuclear Information System (INIS)

    Gagne, Nolan L.; Leonard, Kara L.; Huber, Kathryn E.; Mignano, John E.; Duker, Jay S.; Laver, Nora V.; Rivard, Mark J.

    2012-01-01

    Purpose: A method is introduced to examine the influence of implant duration T, radionuclide, and radiobiological parameters on the biologically effective dose (BED) throughout the entire volume of regions of interest for episcleral brachytherapy using available radionuclides. This method is employed to evaluate a particular eye plaque brachytherapy implant in a radiobiological context. Methods: A reference eye geometry and 16 mm COMS eye plaque loaded with 103 Pd, 125 I, or 131 Cs sources were examined with dose distributions accounting for plaque heterogeneities. For a standardized 7 day implant, doses to 90% of the tumor volume ( TUMOR D 90 ) and 10% of the organ at risk volumes ( OAR D 10 ) were calculated. The BED equation from Dale and Jones and published α/β and μ parameters were incorporated with dose volume histograms (DVHs) for various T values such as T = 7 days (i.e., TUMOR 7 BED 10 and OAR 7 BED 10 ). By calculating BED throughout the volumes, biologically effective dose volume histograms (BEDVHs) were developed for tumor and OARs. Influence of T, radionuclide choice, and radiobiological parameters on TUMOR BEDVH and OAR BEDVH were examined. The nominal dose was scaled for shorter implants to achieve biological equivalence. Results: TUMOR D 90 values were 102, 112, and 110 Gy for 103 Pd, 125 I, and 131 Cs, respectively. Corresponding TUMOR 7 BED 10 values were 124, 140, and 138 Gy, respectively. As T decreased from 7 to 0.01 days, the isobiologically effective prescription dose decreased by a factor of three. As expected, TUMOR 7 BEDVH did not significantly change as a function of radionuclide half-life but varied by 10% due to radionuclide dose distribution. Variations in reported radiobiological parameters caused TUMOR 7 BED 10 to deviate by up to 46%. Over the range of OAR α/β values, OAR 7 BED 10 varied by up to 41%, 3.1%, and 1.4% for the lens, optic nerve, and lacrimal gland, respectively. Conclusions: BEDVH permits evaluation of the

  8. Erectile function after prostate brachytherapy

    International Nuclear Information System (INIS)

    Merrick, Gregory S.; Butler, Wayne M.; Wallner, Kent E.; Galbreath, Robert W.; Anderson, Richard L.; Kurko, Brian S.; Lief, Jonathan H.; Allen, Zachariah A.

    2005-01-01

    Purpose: To evaluate erectile function after permanent prostate brachytherapy using a validated patient-administered questionnaire and to determine the effect of multiple clinical, treatment, and dosimetric parameters on penile erectile function. Methods and materials: A total of 226 patients with preimplant erectile function determined by the International Index of Erectile Function (IIEF) questionnaire underwent permanent prostate brachytherapy in two prospective randomized trials between February 2001 and January 2003 for clinical Stage T1c-T2c (2002 American Joint Committee on Cancer) prostate cancer. Of the 226 patients, 132 were potent before treatment and, of those, 128 (97%) completed and returned the IIEF questionnaire after brachytherapy. The median follow-up was 29.1 months. Potency was defined as an IIEF score of ≥13. The clinical, treatment, and dosimetric parameters evaluated included patient age; preimplant IIEF score; clinical T stage; pretreatment prostate-specific antigen level; Gleason score; elapsed time after implantation; preimplant nocturnal erections; body mass index; presence of hypertension or diabetes mellitus; tobacco consumption; the volume of the prostate gland receiving 100%, 150%, and 200% of the prescribed dose (V 100/150/200 ); the dose delivered to 90% of the prostate gland (D 90 ); androgen deprivation therapy; supplemental external beam radiotherapy (EBRT); isotope; prostate volume; planning volume; and radiation dose to the proximal penis. Results: The 3-year actuarial rate of potency preservation was 50.5%. For patients who maintained adequate posttreatment erectile function, the preimplant IIEF score was 29, and in patients with brachytherapy-related ED, the preimplant IIEF score was 25. The median time to the onset of ED was 5.4 months. After brachytherapy, the median IIEF score was 20 in potent patients and 3 in impotent patients. On univariate analysis, the preimplant IIEF score, patient age, presence of nocturnal

  9. Fricke gel-layer dosimetry in HDR brachytherapy

    International Nuclear Information System (INIS)

    Gambarini, G.; Negri, A.; Carrara, M.; Marchesini, R.

    2008-01-01

    Full text: In the last decade, technological improvements in radiotherapy have been significant and consequently the use and importance of radiotherapy in cancer treatment have increased greatly. In brachytherapy, new possibilities have been opened by the impressive progresses in 3D imaging, by the development of sophisticated techniques for modern afterloaders and by the constantly increasing speed and capacity of computers. However, these methodological improvements require corresponding improvements in the dosimetry methods, in order to ensure that the values calculated with computer treatment planning systems, adopted in the clinical praxis, agree with the delivered dose distributions. Fricke gel-layer dosimeters (FGLD) are under study by our group as a reliable alternative to films, semiconductors arrays or thermoluminescent dosimeters (TLDs). In the last years, we have significantly improved this technique by defining the FGLD best chemical composition, by optimizing the image acquisition assessment and by developing a dedicated software for image analysis. In this study, experimental measurements of planar dose distributions of a clinical 192 Ir source (Microselectron HDR, Nucletron) obtained by irradiating a series of piled-up FGL dosimeters in a tissue-equivalent phantom are presented. The obtained results were in accordance to TLD measurements and to treatment planning system (Plato, Nucletron) calculations. FGLD have proven to be a reliable tool to achieve HDR brachytherapy dose distribution measurements

  10. Stem signal suppression in fiber-coupled Al2O3:C dosimetry for 192Ir brachytherapy

    DEFF Research Database (Denmark)

    Kertzscher Schwencke, Gustavo Adolfo Vladimir; Andersen, Claus Erik; Edmund, J.M.

    2011-01-01

    was adapted for on-line in-vivo dosimetry using fiber-coupled carbon doped aluminum oxide (Al2O3:C). The technique involved a two-channel optical filtration of the radioluminescence (RL) emitted from a pre-irradiated Al2O3:C crystal with enhanced sensitivity. The system responded linearly in the absorbed dose......The stem signal, composed of fluorescence and Čerenkov light, becomes a significant source of uncertainty in fiber-coupled afterloaded brachytherapy dosimetry when the source dwells near the fiber cable but far from the detector. A stem suppression technique originally developed for scintillators...

  11. Implications for dosimetric changes when introducing MR-guided brachytherapy for small volume cervix cancer: a comparison of CT and MR-based treatments in a single centre

    International Nuclear Information System (INIS)

    Dempsey, Claire; Govindarajulu, Geetha; Sridharan, Swetha; Capp, Anne; O'Brien, Peter

    2014-01-01

    To evaluate cervix brachytherapy dosimetry with the introduction of magnetic resonance (MR) based treatment planning and volumetric prescriptions and propose a method for plan evaluation in the transition period. The treatment records of 69 patients were reviewed retrospectively. Forty one patients were treated using computed tomography (CT)-based, Point A-based prescriptions and 28 patients were treated using magnetic resonance (MR)-based, volumetric prescriptions. Plans were assessed for dose to Point A and organs at risk (OAR) with additional high-risk clinical target volume (HR-CTV) dose assessment for MR-based brachytherapy plans. ICRU-38 point doses and GEC-ESTRO recommended volumetric doses (D2 cc for OAR and D 100 , D 98 and D 90 for HR-CTV) were also considered. For patients with small HR-CTV sizes, introduction of MR-based volumetric brachytherapy produced a change in dose delivered to Point A and OAR. Point A doses fell by 4.8 Gy (p = 0.0002) and ICRU and D 2cc doses for OAR also reduced (p < 0.01). Mean Point A doses for MR-based brachytherapy treatment plans were closer to those of HR-CTV D 100 for volumes less than 20 cm 3 and HR-CTV D 98 for volumes between 20 and 35 cm 3 , with a significant difference (p < 0.0001) between Point A and HR-CTV D 90 doses in these ranges. In order to maintain brachytherapy dose consistency across varying HR-CTV sizes there must be a relationship between the volume of the HR-CTV and the prescription dose. Rather than adopting a ‘one size fits all’ approach during the transition to volume-based prescriptions, this audit has shown that separating prescription volumes into HR-CTV size categories of less than 20 cm 3 , between 20 and 35 cm 3 , and more than 35 cm 3 the HR-CTV can provide dose uniformity across all volumes and can be directly linked to traditional Point A prescriptions.

  12. Interstitial brachytherapy in carcinoma of the penis

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhary, A.J.; Ghosh, S.; Bhalavat, R.L. [Tata Memorial Hospital, Mumbai (India). Dept. of Radiation Oncology; Kulkarni, J.N. [Tata Memorial Hospital, Mumbai (India). Dept. of Surgery; Sequeira, B.V.E. [Tata Memorial Hospital, Mumbai (India). Dept. of Medical Physics

    1999-01-01

    Aim: Keeping in line with the increasing emphasis on organ preservation, we at the Tata Memorial Hospital have evaluated the role of Ir-192 interstitial implant as regards local control, functional and cosmetic outcome in early as well as locally recurrent carcinoma of the distal penis. Patients and Methods: From October 1988 to December 1996, 23 patients with histopathologically proven cancer of the penis were treated with radical radiation therapy using Ir-192 temporary interstitial implant. Our patients were in the age group of 20 to 60 years. The primary lesions were T1 and 7, T2 in 7 and recurrent in 9 patients. Only 7 patients had palpable groin nodes at presentation, all of which were pathologically negative. The median dose of implant was 50 Gy (range 40 to 60 Gy), using the LDR afterloading system and the Paris system of implant rules for dosimetry. Follow-up ranged from 4 to 117 months (median 24 months). Results: At last follow-up 18 of the 23 patients remained locally controlled with implant alone. Three patients failed only locally, 2 locoregionally and 1 only at the groin. Of the 5 patients who failed locally, 4 were successfully salvaged with partial penectomy and remained controlled when last seen. Local control with implant alone at 8 years was 70% by life table analysis. The patients had excellent functional and cosmetic outcome. We did not record any case of skin or softtissue necrosis. Only 2 patients developed meatal stenosis, both of which were treated endoscopically. Conclusion: Our results lead us to interpret that interstitial brachytherapy with Ir-192 offers excellent local control rates with preservation of organ and function. Penectomy can be reserved as a means for effective salvage. (orig.) [Deutsch] Ziel: Das Prinzip des Organerhalts gewinnt in der Onkologie zunehmend an Bedeutung. Ziel dieser Untersuchung war es, die Rolle der interstitiellen Brachytherapie mit Ir-192 zur Behandlung des fruehen und rezidivierten Peniskarzinoms zu

  13. Mechanism of remote controlled after-loading radiotherapy unit

    International Nuclear Information System (INIS)

    Morimoto, Masaki

    1980-01-01

    Employing a small amount of Radium-226 or Cesium-137 source was to be used hitherto for the treatment of carcinoma of the uterine cervix in used After-loading techniques. It involved, however, radiation risk to the staff and patient. The long treatment time are also a pain (strain) on the patient. In recent years, we have developed a remote control after-loading unit, which was named as RALSTRON, which was complete eliminated the disadvantage of conventional radium therapy. This unit also has disadvantage, however, that the design for the remote after-loader for intracavitary applicators present considerable difficulties, because many sources of different active lengths and loading patterns are required. A solution to this problem was carried out by using small point source, placed in Tandem applicator, of high activity and moving them back slowly during the treatment. Recently, this unit was installed many hospitals about 80 units in Japan, and are used. In this paper are given about a mechanism and safety deviced of this unit. (author)

  14. The American Brachytherapy Society recommendations for low-dose-rate brachytherapy for carcinoma of the cervix

    International Nuclear Information System (INIS)

    Nag, Subir; Chao, Clifford; Erickson, Beth; Fowler, Jeffery; Gupta, Nilendu; Martinez, Alvaro; Thomadsen, Bruce

    2002-01-01

    Purpose: This report presents guidelines for using low-dose-rate (LDR) brachytherapy in the management of patients with cervical cancer. Methods: Members of the American Brachytherapy Society (ABS) with expertise in LDR brachytherapy for cervical cancer performed a literature review, supplemented by their clinical experience, to formulate guidelines for LDR brachytherapy of cervical cancer. Results: The ABS strongly recommends that radiation treatment for cervical carcinoma (with or without chemotherapy) should include brachytherapy as a component. Precise applicator placement is essential for improved local control and reduced morbidity. The outcome of brachytherapy depends, in part, on the skill of the brachytherapist. Doses given by external beam radiotherapy and brachytherapy depend upon the initial volume of disease, the ability to displace the bladder and rectum, the degree of tumor regression during pelvic irradiation, and institutional practice. The ABS recognizes that intracavitary brachytherapy is the standard technique for brachytherapy for cervical carcinoma. Interstitial brachytherapy should be considered for patients with disease that cannot be optimally encompassed by intracavitary brachytherapy. The ABS recommends completion of treatment within 8 weeks, when possible. Prolonging total treatment duration can adversely affect local control and survival. Recommendations are made for definitive and postoperative therapy after hysterectomy. Although recognizing that many efficacious LDR dose schedules exist, the ABS presents suggested dose and fractionation schemes for combining external beam radiotherapy with LDR brachytherapy for each stage of disease. The dose prescription point (point A) is defined for intracavitary insertions. Dose rates of 0.50 to 0.65 Gy/h are suggested for intracavitary brachytherapy. Dose rates of 0.50 to 0.70 Gy/h to the periphery of the implant are suggested for interstitial implant. Use of differential source activity or

  15. Movement of the cervix in after-loading brachytherapy: implications for designing external-beam radiotherapy boost fields.

    Science.gov (United States)

    Hombaiah, U; Blake, P; Bidmead, M

    2006-05-01

    Women with invasive carcinoma of the cervix treated by chemo-radiotherapy and brachytherapy may also receive a pelvic sidewall boost using a midline shield (MLS). The purpose of this study was to assess the usefulness of implanted gold grains in detecting the movement of the cervix caused by the insertion of low-dose-rate brachytherapy applicators, and its implications in designing the MLS. The medical records of 42 women with various stages of cervical carcinoma, who were treated by radical chemo-radiotherapy, were reviewed. All of these women underwent examination under anaesthesia (EUA) and a gold-grain insertion to demarcate the vaginal tumour extent, in the antero-posterior and lateral planes, before starting external-beam radiotherapy. The isocentric orthogonal films (simulator films) of external radiotherapy and brachytherapy were compared to assess the change in position of the gold grains and the consequences for the design of the MLS for parametrial and pelvic sidewall boosts. A significant shift in the position of the gold grains was noted in both the x (lateral) and the y (cranial/caudal) axes. The median shift of the midline, right and left lateral gold grains was 4.5, 5 and 7 mm in the x axis, whereas it was 10, 8 and 9.5 mm in the y axis, respectively. The median shift in the x and y axes was 5.5 and 9 mm, ranging from 1 to 40 mm and 1 to 45 mm, respectively. The gold grains were shifted cranially in 34 (80%) and laterally in 29 (69%) women. Thirty-two women (76.2%) received parametrial boost radiotherapy, of which 25 (59.5%) women had a customised, pear-shaped shield, and the remaining seven (16.7%) had a straight-sided, rectangular MLS. Four women (9.5%) relapsed locally, and three of them had been treated using a customised shield. In two of these four women, there was an absolute under-dosage of the central pelvis at the tip of the intra-uterine tube by 50% of the parametrial boost dose (5.4 Gy/3 fractions/3 days). Insertion of the gold grains

  16. The american brachytherapy society recommendations for permanent prostate brachytherapy postimplant dosimetric analysis

    International Nuclear Information System (INIS)

    Nag, Subir; Bice, William; Wyngaert, Keith de; Prestidge, Bradley; Stock, Richard; Yu Yan

    2000-01-01

    Purpose: The purpose of this report is to establish guidelines for postimplant dosimetric analysis of permanent prostate brachytherapy. Methods: Members of the American Brachytherapy Society (ABS) with expertise in prostate dosimetry evaluation performed a literature review and supplemented with their clinical experience formulated guidelines for performing and analyzing postimplant dosimetry of permanent prostate brachytherapy. Results: The ABS recommends that postimplant dosimetry should be performed on all patients undergoing permanent prostate brachytherapy for optimal patient care. At present, computed tomography (CT)-based dosimetry is recommended, based on availability cost and the ability to image the prostate as well as the seeds. Additional plane radiographs should be obtained to verify the seed count. Until the ideal postoperative interval for CT scanning has been determined, each center should perform dosimetric evaluation of prostate implants at a consistent postoperative interval. This interval should be reported. Isodose displays should be obtained at 50%, 80%, 90%, 100%, 150%, and 200% of the prescription dose and displayed on multiple cross-sectional images of the prostate. A dose-volume histogram (DVH) of the prostate should be performed and the D 90 (dose to 90% of the prostate gland) reported by all centers. Additionally, the D 80, D 100, the fractional V 80, V 90, V 100, V 150, and V 200, (i.e., the percentage of prostate volume receiving 80%, 90%, 100%, 150%, and 200% of the prescribed dose, respectively), the rectal, and urethral doses should be reported and ultimately correlated with clinical outcome in the research environment. On-line real-time dosimetry, the effects of dose heterogeneity, and the effects of tissue heterogeneity need further investigation. Conclusion: It is essential that postimplant dosimetry should be performed on all patients undergoing permanent prostate brachytherapy. Guidelines were established for the performance

  17. Identifying afterloading PDR and HDR brachytherapy errors using real-time fiber-coupled Al2O3:C dosimetry and a novel statistical error decision criterion

    International Nuclear Information System (INIS)

    Kertzscher, Gustavo; Andersen, Claus E.; Siebert, Frank-Andre; Nielsen, Soren Kynde; Lindegaard, Jacob C.; Tanderup, Kari

    2011-01-01

    Background and purpose: The feasibility of a real-time in vivo dosimeter to detect errors has previously been demonstrated. The purpose of this study was to: (1) quantify the sensitivity of the dosimeter to detect imposed treatment errors under well controlled and clinically relevant experimental conditions, and (2) test a new statistical error decision concept based on full uncertainty analysis. Materials and methods: Phantom studies of two gynecological cancer PDR and one prostate cancer HDR patient treatment plans were performed using tandem ring applicators or interstitial needles. Imposed treatment errors, including interchanged pairs of afterloader guide tubes and 2-20 mm source displacements, were monitored using a real-time fiber-coupled carbon doped aluminum oxide (Al 2 O 3 :C) crystal dosimeter that was positioned in the reconstructed tumor region. The error detection capacity was evaluated at three dose levels: dwell position, source channel, and fraction. The error criterion incorporated the correlated source position uncertainties and other sources of uncertainty, and it was applied both for the specific phantom patient plans and for a general case (source-detector distance 5-90 mm and position uncertainty 1-4 mm). Results: Out of 20 interchanged guide tube errors, time-resolved analysis identified 17 while fraction level analysis identified two. Channel and fraction level comparisons could leave 10 mm dosimeter displacement errors unidentified. Dwell position dose rate comparisons correctly identified displacements ≥5 mm. Conclusion: This phantom study demonstrates that Al 2 O 3 :C real-time dosimetry can identify applicator displacements ≥5 mm and interchanged guide tube errors during PDR and HDR brachytherapy. The study demonstrates the shortcoming of a constant error criterion and the advantage of a statistical error criterion.

  18. Implementation of 'early alert system' area detector at patient from entrance in afterloading brachytherapy

    International Nuclear Information System (INIS)

    Videla Valdebenito, R.

    2001-01-01

    A system of area monitors to detect the involuntary exit of the radiation sources used in low dose rate deferred brachytherapy treatment is being implemented in all facilities in Chile. The first implementation of this system, named 'Early Alert', was 5 years ago as a complement to the administrative procedures and verification measures by the medical physics carried out through visual verifications and by means of portable radiation detectors. This detector of the system should be located preferentially at the exit of the treatment room at a height not smaller than two meters. This has resulted in an increase of facilities safety in this practice. (author) [es

  19. Survey of brachytherapy practice in the United States: a report of the Clinical Research Committee of the American Endocurietherapy Society.

    Science.gov (United States)

    Nag, S; Owen, J B; Farnan, N; Pajak, T F; Martinez, A; Porter, A; Blasko, J; Harrison, L B

    1995-01-01

    To obtain reliable data on the extent of the brachytherapy practice in the United States by conducting a comprehensive survey of all facilities. The Clinical Research Committee of the AES surveyed all 1321 radiation oncology facilities identified in the Patterns of Care Study (PCS) of the American College of Radiology (ACR). Multiple mailings and follow-up were made to obtain a high response rate. Survey responders and nonresponders were compared using chi-square tests. Summary statistics were reported. Of the 1321 facilities, 1054 responded (80%). Hospital-based and larger facilities had a statistically significant higher rate of response. Brachytherapy was being performed at 819 facilities (the median number of procedures = 21-50). Two hundred and two facilities did no brachytherapy. The common isotopes used were 137Cs (705 facilities), 192Ir (585 facilities), 125I (236 facilities), and 131I (194 facilities). The common brachytherapy techniques used were intracavitary (751 facilities), interstitial (536 facilities), intraluminal (310 facilities), and plaques (148 facilities). Remote afterloaded brachytherapy was used at 205 centers as follows: high dose rate (HDR) (164), medium dose rate (MDR) (5), and low dose rate (LDR) (36). Computerized dosimetry was most commonly used (790 facilities), followed by Patterson-Parker (104 facilities) and Quimby (72 facilities). The common sites treated were cervix (701 facilities), endometrium (565 facilities), head and neck (354 facilities), and lung (344 facilities). Data regarding brachytherapy practice has been obtained from a large percentage (80%) of all facilities in the United States. The majority (78-81%) of radiation oncology facilities perform brachytherapy; however, its use is restricted to gynecological implants in many of these centers. The results from this survey will be used to develop a pattern of care study and data registry in brachytherapy.

  20. Inter fraction variations in rectum and bladder volumes and dose distributions during high dose rate brachytherapy treatment of the uterine cervix investigated by repetitive CT-examinations

    International Nuclear Information System (INIS)

    Hellebust, Taran Paulsen; Dale, Einar; Skjoensberg, Ane; Olsen, Dag Rune

    2001-01-01

    Purpose: To evaluate variation of dose to organs at risk for patients receiving fractionated high dose rate gynaecological brachytherapy by using CT-based 3D treatment planning and dose-volume histograms (DVH). Materials and methods: Fourteen patients with cancer of the uterine cervix underwent three to six CT examinations (mean 4.9) during their course of high-dose-rate brachytherapy using radiographically compatible applicators. The rectal and bladder walls were delineated and DVHs were calculated. Results: Inter fraction variation of the bladder volume (CV mean =44.1%) was significantly larger than the inter fraction variation of the mean dose (CV mean =19.9%, P=0.005) and the maximum dose (CV mean =17.5%, P=0.003) of the bladder wall. The same trend was seen for rectum, although the figures were not significantly different. Performing CT examinations at four of seven brachytherapy fractions reduced the uncertainty to 4 and 7% for the bladder and rectal doses, respectively. A linear regression analysis showed a significant, negative relationship between time after treatment start and the whole bladder volume (P=0.018), whereas no correlation was found for the rectum. For both rectum and bladder a linear regression analysis revealed a significant, negative relationship between the whole volume and median dose (P<0.05). Conclusion: Preferably a CT examination should be provided at every fraction. However, this is logistically unfeasible in most institutions. To obtain reliable DVHs the patients will in the future undergo 3-4 CT examinations during the course of brachytherapy at our institution. Since this study showed an association between large bladder volumes and dose reductions, the patients will be treated with a standardized bladder volume

  1. 10 CFR 35.647 - Additional technical requirements for mobile remote afterloader units.

    Science.gov (United States)

    2010-01-01

    ... on the remote afterloader unit, on the control console, and in the facility; (3) Viewing and intercom... 10 Energy 1 2010-01-01 2010-01-01 false Additional technical requirements for mobile remote... MATERIAL Photon Emitting Remote Afterloader Units, Teletherapy Units, and Gamma Stereotactic Radiosurgery...

  2. Quality assurance in breast cancer brachytherapy: geographic miss in the interstitial boost treatment of the tumor bed.

    Science.gov (United States)

    Sedlmayer, F; Rahim, H B; Kogelnik, H D; Menzel, C; Merz, F; Deutschmann, H; Kranzinger, M

    1996-03-15

    To assess the role of geographic misses in the interstitial boost treatment of breast cancer patients and to evaluate methods of optimizing breast implants in design, performance, and dosimetry. During lumpectomy, the tumor excision sites of 89 patients were marked by five hemoclips. Postoperative radiographs demonstrated the clips' positions with respect to the extension of the surgical cavity, which was demarcated by air and hematoseroma. Twenty-seven selected patients received interstitial boosts to the tumor bed. The implant was first designed according to the clinical assumptions of the tumor bed's topography and then compared with the radiological findings. Prior to brachytherapy, the planning of the implant's dimension and the needle guidance was performed under simulator control. Dose distributions were first calculated following the Paris System and then electively optimized for the target volume by changing source positions and dwell times. Compared to clinical estimations, the radiological determination of the tumor bed's location revealed an overall potential of topographic errors of 51.8% (14 out of 27 patients), rising up to 78.5% in patients with large adipose breasts (11 out of 13 patients). This observation was due to a high mobility of the tissue, leading to varying tumor site projections at the time of mammography, surgery, and brachytherapy. In all patients, the presimulation of the implant resulted in an adequate coverage of the target volume. In 17 of the 27 treated patients, dose distributions were modified to achieve a higher dose delivery in zones where a higher residual tumor load was expected (boost-in-boost). Breast implants have a high potential of geographic misses that can be avoided by intraoperative clip demarcation. The delineation of the tumor bed allows for dose reports actually referring to the target volume and not to the implant system to be obtained. In addition, modern afterloading techniques offer possibilities of

  3. Quality assurance in breast cancer brachytherapy: geographic miss in the interstitial boost treatment of the tumor bed

    International Nuclear Information System (INIS)

    Sedlmayer, Felix; Rahim, Hassan B. K.; Kogelnik, H. Dieter; Menzel, Christian; Merz, Florian; Deutschmann, Heinz; Kranzinger, Manfred

    1996-01-01

    Purpose: To assess the role of geographic misses in the interstitial boost treatment of breast cancer patients and to evaluate methods of optimizing breast implants in design, performance, and dosimetry. Methods and Materials: During lumpectomy, the tumor excision sites of 89 patients were marked by five hemoclips. Postoperative radiographs demonstrated the clips' positions with respect to the extension of the surgical cavity, which was demarcated by air and hematoseroma. Twenty-seven selected patients received interstitial boosts to the tumor bed. The implant was first designed according to the clinical assumptions of the tumor bed's topography and then compared with the radiological findings. Prior to brachytherapy, the planning of the implant's dimension and the needle guidance was performed under simulator control. Dose distributions were first calculated following the Paris System and then electively optimized for the target volume by changing source positions and dwell times. Results: Compared to clinical estimations, the radiological determination of the tumor bed's location revealed an overall potential of topographic errors of 51.8% (14 out of 27 patients), rising up to 78.5% in patients with large adipose breasts (11 out of 13 patients). This observation was due to a high mobility of the tissue, leading to varying tumor site projections at the time of mammography, surgery, and brachytherapy. In all patients, the presimulation of the implant resulted in an adequate coverage of the target volume. In 17 of the 27 treated patients, dose distributions were modified to achieve a higher dose delivery in zones where a higher residual tumor load was expected (boost-in-boost). Conclusion: Breast implants have a high potential of geographic misses that can be avoided by intraoperative clip demarcation. The delineation of the tumor bed allows for dose reports actually referring to the target volume and not to the implant system to be obtained. In addition, modern

  4. Postoperative vaginal cuff irradiation using high dose rate remote afterloading: a Phase II clinical protocol

    International Nuclear Information System (INIS)

    Noyes, William R.; Bastin, Kenneth; Edwards, Scott A.; Buchler, Dolores A.; Stitt, Judith A.; Thomadsen, Bruce R.; Fowler, Jack F.; Kinsella, Timothy J.

    1995-01-01

    Purpose: In September 1989, a postoperative Phase II high dose rate (HDR) brachytherapy protocol was started for International Federation of Gynecology and Obstetrics (FIGO) Stage I endometrial adenocarcinoma. This review reports the overall survival, local control, and complication rates for the initial 63 patients treated in this Phase II study. Methods and Materials: High dose rate brachytherapy was delivered using an Iridium-192 HDR remote afterloader. Sixty-three patients were entered into the Phase II protocol, each receiving two vaginal cuff treatments 1 week apart (range 4-12 days) with vaginal ovoids (diameter 2.0-3.0 cm). No patient received adjuvant external beam radiation. A dose of 32.4 Gy in two fractions was prescribed to the ovoid surface in 63 patients. The first three patients treated at our institution received 15, 16.2, and 29 Gy, respectively, to determine acute effects. Results: At a median follow-up of 1.6 years (range 0.75-4.3 years) no patient has developed a vaginal cuff recurrence. One regional recurrence (1.6%) occurred at 1.2 years at the pelvic side wall. This patient is alive and without evidence of disease 7 months after completion of salvage irradiation, which resulted in the only vaginal stenosis (1.6%). Fourteen patients (22%) experienced vaginal apex fibrosis by physical exam, which was clinically symptomatic in four patients. Two patients reported stress incontinence; however, these symptoms were noted prior to their HDR therapy. One patient died 2.4 years after HDR therapy due to cardiovascular disease without evidence of cancer at autopsy. Conclusion: Preliminary results of our phase II HDR vaginal cuff protocol for postoperative FIGO Stage IA, Grade 3 or Stage IB, Grade 1-2 patients demonstrate that 32.4 Gy in two fractions is well tolerated by the vaginal cuff mucosa. Local control appears comparable to our prior experience and others with low dose rate (LDR) brachytherapy. Additional patient accrual and further follow

  5. Impact of afterload on the assessment of severity of aortic stenosis.

    Science.gov (United States)

    Chang, Sung-A; Kim, Hyung-Kwan; Sohn, Dae-Won

    2012-06-01

    Aortic stenosis (AS) is increasingly diagnosed in current aging society. Echocardiography is the most important tool in the assessment of AS and its severity. However, load-dependency of Doppler measurement could affect the accuracy of AS severity assessment. We tried to evaluate the impact of afterload on the assessment of AS severity by modification of afterload using pneumatic compression (Pcom). Forty patients diagnosed as moderate or severe AS [effective orifice area of aortic valve (EOA(AV)) by continuity equation of < 1.5 cm(2)] were consecutively enrolled. Patients with severely uncontrolled hypertension, severe left ventricular (LV) dysfunction, and other significant valve disease were excluded. Comprehensive echocardiography was performed at baseline to assess AS severity. Then, pneumatic compression of the lower extremities by 100 mmHg was applied to increase LV afterload. After 3 minutes, echocardiography was repeated to assess AS severity. Mean blood pressure was significantly increased under Pcom (p < 0.001), while heart rate remained unchanged. Peak aortic valve velocity (V(max)) was slightly, but significantly decreased under Pcom (p = 0.03). However, Doppler velocity index and EOA(AV) by continuity equation were not affected by Pcom. AS severity assessment by echocardiography was not dependent on the change of LV afterload imposed by Pcom. AV V(max) was slightly decreased with LV afterload increment, but these changes were too small to alter treatment plan of AS patients. EOA(AV) and Doppler velocity index are more stable parameters for AS severity assessment.

  6. Clinical outcome of high-dose-rate interstitial brachytherapy in patients with oral cavity cancer

    International Nuclear Information System (INIS)

    Lee, Sung Uk; Cho, Kwan Ho; Moon, Sung Ho; Choi, Sung Weon; Park, Joo Yong; Yun, Tak; Lee, Sang Hyun; Lim, Young Kyung; Jeong, Chi Young

    2014-01-01

    To evaluate the clinical outcome of high-dose-rate (HDR) interstitial brachytherapy (IBT) in patients with oral cavity cancer. Sixteen patients with oral cavity cancer treated with HDR remote-control afterloading brachytherapy using 192Ir between 2001 and 2013 were analyzed retrospectively. Brachytherapy was administered in 11 patients as the primary treatment and in five patients as salvage treatment for recurrence after the initial surgery. In 12 patients, external beam radiotherapy (50-55 Gy/25 fractions) was combined with IBT of 21 Gy/7 fractions. In addition, IBT was administered as the sole treatment in three patients with a total dose of 50 Gy/10 fractions and as postoperative adjuvant treatment in one patient with a total of 35 Gy/7 fractions. The 5-year overall survival of the entire group was 70%. The actuarial local control rate after 3 years was 84%. All five recurrent cases after initial surgery were successfully salvaged using IBT +/- external beam radiotherapy. Two patients developed local recurrence at 3 and 5 months, respectively, after IBT. The acute complications were acceptable (< or =grade 2). Three patients developed major late complications, such as radio-osteonecrosis, in which one patient was treated by conservative therapy and two required surgical intervention. HDR IBT for oral cavity cancer was effective and acceptable in diverse clinical settings, such as in the cases of primary or salvage treatment.

  7. Identifying afterloading PDR and HDR brachytherapy errors using real-time fiber-coupled Al2O3:C dosimetry and a novel statistical error decision criterion

    DEFF Research Database (Denmark)

    Kertzscher, Gustavo; Andersen, Claus Erik; Siebert, Frank-André

    2011-01-01

    treatment errors, including interchanged pairs of afterloader guide tubes and 2–20mm source displacements, were monitored using a real-time fiber-coupled carbon doped aluminum oxide (Al2O3:C) crystal dosimeter that was positioned in the reconstructed tumor region. The error detection capacity was evaluated...

  8. A comparison between tandem and ovoids and interstitial gynecologic template brachytherapy dosimetry using a hypothetical computer model

    International Nuclear Information System (INIS)

    Hsu, I-Chow J.; Speight, Joycelyn; Hai, Jenny; Vigneault, Eric; Phillips, Theodore; Pouliot, Jean

    2002-01-01

    Purpose: To evaluate the dose distribution within the clinical target volume between two gynecologic brachytherapy systems - the tandem and ovoids and the Syed-Neblett gynecologic template - using a hypothetical computer model. Methods and Materials: Source positions of an intracavitary system (tandem and ovoids) and an interstitial system (GYN template) were digitized into the Nucletron Brachytherapy Planning System. The GYN template is composed of a 13-catheter implant (12 catheters plus a tandem) based on the Syed-Neblett gynecologic template. For the tandem and ovoids, the dwell times of all sources were evenly weighted to produce a pear-shaped isodose distribution. For the GYN template, the dwell times were determined using volume optimization. The prescribed dose was then normalized to point A in the intracavitary system and to a selected isodose line in the interstitial system. The treated volume in the two systems was kept approximately the same, and a cumulative dose-volume histogram of the treated volume was then generated with the Nucletron Brachytherapy Planning System to use for comparison. To evaluate the dose to a hypothetical target, in this case the cervix, a 2-cm-long, 3-cm-diameter cylinder centered along the tandem was digitized as the clinical target volume. The location of this hypothetical cervix was based on the optimal application of the brachytherapy system. A visual comparison of clinical target coverage by the treated volume on three different orthogonal planes through the treated volume was performed. The percentage dose-volume histograms of the target were generated for comparison. Multiple midline points were also placed at 5-mm intervals away from the tandem in the plane of the cervix to simulate the location of potential bladder and rectal dose points. Doses to these normal structures were calculated for comparison. Results: Although both systems covered the hypothetical cervix adequately, the interstitial system had a better

  9. Calibration of {sup 192}Ir high dose rate brachytherapy sources

    Energy Technology Data Exchange (ETDEWEB)

    Marechal, M H [Instituto de Radioprotecao e Dozimetria, Rio de Jainero (Brazil); Almeida, C.E. de [Laboratorio de Ciencias Radiologicas, UERL, Rio de Janeiro (Brazil); Sibata, C H [Roswell Park Cancer Inst., Buffalo, NY (United States)

    1996-08-01

    A method for calibration of high dose rate sources used in afterloading brachytherapy systems is described. The calibration for {sup 192}Ir is determined by interpolating {sup 60}Co gamma-rays and 250 kV x-rays calibration factors. All measurements were done using the same build up caps as described by Goetsch et al and recommended by AAPM. The attenuation correction factors were determined to be 0.9903, 0.9928 and 0.9993 for {sup 192}Ir, {sup 60}Co and 250 kV x-ray, respectively. A wall + cap thickness of 0.421 g.cm{sup -2} is recommended for all measurements to ensure electronic equilibrium for {sup 60}Co and {sup 192}Ir gamma-ray beams. A mathematical formalism is described for determination of (N{sub x}){sub Ir}. (author). 5 refs, 1 fig.

  10. Effect of geometrical optimization on the treatment volumes and the dose homogeneity of biplane interstitial brachytherapy implants

    International Nuclear Information System (INIS)

    Anacak, Yavuz; Esassolak, Mustafa; Aydin, Ayhan; Aras, Arif; Olacak, Ibrahim; Haydaroglu, Ayfer

    1997-01-01

    Background and purpose: The isodose distributions of HDR stepping source brachytherapy implants can be modified by changing dwell times and this procedure is called optimization. The purpose of this study is to evaluate the effect of geometrical optimization on the brachytherapy volumes and the dose homogeneity inside the implant and to compare them with non-optimized counterparts. Material and methods: A set of biplane breast implants consisting of 84 different configurations have been digitized by the planning computer and volumetric analysis was performed for both non-optimized and geometrically optimized implants. Treated length (T L ), treated volume (V 100 ), irradiated volume (V 50 ), overdose volume (V 200 ) and quality index (QI) have been calculated for every non-optimized implant and compared to its corresponding geometrically optimized implant having a similar configuration and covering the same target length. Results: The mean T L was 74.48% of the active length (A L ) for non-optimized implants and was 91.87% for optimized implants (P 50 /V 100 value was 2.71 for non-optimized implants and 2.65 for optimized implants (P 200 /V 100 value was 0.09 for non-optimized implants and 0.10 for optimized implants (P < 0.001). Conclusions: By performing geometrical optimization it is possible to implant shorter needles for a given tumour to adequately cover the target volume with the reference isodose and thus surgical damage is reduced. The amount of healthy tissues outside the target receiving considerable radiation is significantly reduced due to the decrease in irradiated volume. Dose homogeneity inside the implant is significantly improved. Although there is a slight increase of overdose volume inside the implant, this increase is considered to be negligible in clinical applications

  11. Radiobiological equivalent of low/high dose rate brachytherapy and evaluation of tumor and normal responses to the dose.

    Science.gov (United States)

    Manimaran, S

    2007-06-01

    The aim of this study was to compare the biological equivalent of low-dose-rate (LDR) and high-dose-rate (HDR) brachytherapy in terms of the more recent linear quadratic (LQ) model, which leads to theoretical estimation of biological equivalence. One of the key features of the LQ model is that it allows a more systematic radiobiological comparison between different types of treatment because the main parameters alpha/beta and micro are tissue-specific. Such comparisons also allow assessment of the likely change in the therapeutic ratio when switching between LDR and HDR treatments. The main application of LQ methodology, which focuses on by increasing the availability of remote afterloading units, has been to design fractionated HDR treatments that can replace existing LDR techniques. In this study, with LDR treatments (39 Gy in 48 h) equivalent to 11 fractions of HDR irradiation at the experimental level, there are increasing reports of reproducible animal models that may be used to investigate the biological basis of brachytherapy and to help confirm theoretical predictions. This is a timely development owing to the nonavailability of sufficient retrospective patient data analysis. It appears that HDR brachytherapy is likely to be a viable alternative to LDR only if it is delivered without a prohibitively large number of fractions (e.g., fewer than 11). With increased scientific understanding and technological capability, the prospect of a dose equivalent to HDR brachytherapy will allow greater utilization of the concepts discussed in this article.

  12. Fast neutron therapy with high intensity Cf-252 sources by remotely controlled afterloading and clinical experiences in the treatment of gynaecological cancers

    International Nuclear Information System (INIS)

    Yamashita, H.; Hashimoto, S.; Wada, M.; Dokiya, T.

    1986-01-01

    Cf-252 fast neutron therapy with high intensity Cf-252 sources was tested for the treatment of advanced gynaecological cancers using a remotely controlled afterloading machine designed by the author and manufactured by Toshiba. Using high intensity sources and short treatment times in a special treatment room, personnel or environment exposure to radiation was at a safe level, i.e. almost nil. During 1978-1983 18 stage III cases of cancer of the uterine cervix were treated with complete response in 78% and 44% 5 year survivals. The types of acute and delayed effects of Cf-252 were the same as Co-60 or Cs-137 but the rectum was found sensitive in this system of brachytherapy. A dose of 1,000-1,500 cGy/6-10 F in 10-22 days of Cf-252 radiation was tolerated and produced tumor cure

  13. Outcome of treatment of upper third vaginal recurrences of cervical and endometrial carcinomas with interstitial brachytherapy

    International Nuclear Information System (INIS)

    Charra, C.; Roy, P.; Coquard, R.; Romestaing, P.; Ardiet, J.M.; Gerard, J.P.

    1998-01-01

    Purpose: To describe an original brachytherapy technique using a dedicated intravaginal template for the treatment of vaginal vault recurrences and to evaluate the results of such a treatment. Methods and Materials: Between 1978 and 1993, 78 patients with isolated recurrence of cervical or endometrial carcinoma located in the vaginal vault have been treated in Lyon. Initial treatment was surgery alone in 49 cases and irradiation with surgery in 37 cases. Treatment of the vaginal recurrence was performed with interstitial Iridium 192 brachytherapy combined with pelvic external beam radiation therapy in 34 patients. The tumor was implanted with a dedicated intravaginal plastic template. Six parallel metallic needles were implanted in the vaginal vault and afterloaded with Iridium 192 wires of 4 to 6 cm long. The mucosa of the upper half of the vagina received the same dose as the one encompassing the tumor on the 85% isodose of the Paris system. Results: At 5 years the local control rate was 70% and the overall survival rate 56%. Grade 3 complications occurred in 10% of the cases and only in patients who had received irradiation during the initial treatment of the primary tumor. Conclusions: This brachytherapy technique makes it possible to perform Iridium 192 implants in a difficult situation with a favorable long-term control rate and an acceptable rate of complications

  14. Biological effective dose evaluation in gynaecological brachytherapy: LDR and HDR treatments, dependence on radiobiological parameters, and treatment optimisation.

    Science.gov (United States)

    Bianchi, C; Botta, F; Conte, L; Vanoli, P; Cerizza, L

    2008-10-01

    This study was undertaken to compare the biological efficacy of different high-dose-rate (HDR) and low-dose-rate (LDR) treatments of gynaecological lesions, to identify the causes of possible nonuniformity and to optimise treatment through customised calculation. The study considered 110 patients treated between 2001 and 2006 with external beam radiation therapy and/or brachytherapy with either LDR (afterloader Selectron, (137)Cs) or HDR (afterloader microSelectron Classic, (192)Ir). The treatments were compared in terms of biologically effective dose (BED) to the tumour and to the rectum (linear-quadratic model) by using statistical tests for comparisons between independent samples. The difference between the two treatments was statistically significant in one case only. However, within each technique, we identified considerable nonuniformity in therapeutic efficacy due to differences in fractionation schemes and overall treatment time. To solve this problem, we created a Microsoft Excel spreadsheet allowing calculation of the optimal treatment for each patient: best efficacy (BED(tumour)) without exceeding toxicity threshold (BED(rectum)). The efficacy of a treatment may vary as a result of several factors. Customised radiobiological evaluation is a useful adjunct to clinical evaluation in planning equivalent treatments that satisfy all dosimetric constraints.

  15. Radiotherapy of Teikyo University. Second report. Experience and the current status at Itabashi Hospital. Brachytherapy

    International Nuclear Information System (INIS)

    Ogata, Hitoshi; Yokokawa, Tokuzo; Shirai, Tatsuo; Furui, Shigeru

    2005-01-01

    To answer the big trend of information disclosure, we are trying to report the experience and the current status of Radiotherapy in Teikyo University. Since 1974, Teikyo University has installed a High-Dose-Rate Remote Afterloading System (HDR RALS) at Itabashi Hospital for brachytherapy. We analyzed the total cases comprehensively in this paper. There were 421 cases treated by Ralstron (Shimazu Co.) between 1974 and 1995 and 128 cases treated additionally between the renewal by Microselectron (Nucletron Co.) and the end of 2002. For several years from the beginning, the number of cases treated by Ralstron had been 30-35 cases annually, but since 1987, the number decreased markedly to fewer than 10 cases per year. After the installation of Microselectron, the number increased gradually to 15 cases per year. Gynecologic tumors accounted for 88.5% of the total cases, namely 96.9% by Ralstron and 60.1% by Microselectron. The others treated by Microselectron were 27 cases with Head and Neck tumors, and 21 cases with digestive tract tumors. To increase the number of the patients for brachytherapy, we should continue to open our current status, and make close relationships between the neighbor hospitals and Teikyo Hospital. (author)

  16. Implementation of a High-Dose-Rate Brachytherapy Program for Carcinoma of the Cervix in Senegal: A Pragmatic Model for the Developing World

    International Nuclear Information System (INIS)

    Einck, John P.; Hudson, Alana; Shulman, Adam C.; Yashar, Catheryn M.; Dieng, Mamadou M.; Diagne, Magatte; Gueye, Latifatou; Gningue, Fama; Gaye, Pape M.; Fisher, Brandon J.; Mundt, Arno J.; Brown, Derek W.

    2014-01-01

    West Africa has one of the highest incidence rates of carcinoma of the cervix in the world. The vast majority of women do not have access to screening or disease treatment, leading to presentation at advanced stages and to high mortality rates. Compounding this problem is the lack of radiation treatment facilities in Senegal and many other parts of the African continent. Senegal, a country of 13 million people, had a single 60 Co teletherapy unit before our involvement and no brachytherapy capabilities. Radiating Hope, a nonprofit organization whose mission is to provide radiation therapy equipment to countries in the developing world, provided a high-dose-rate afterloading unit to the cancer center for curative cervical cancer treatment. Here we describe the implementation of high-dose-rate brachytherapy in Senegal requiring a nonstandard fractionation schedule and a novel treatment planning approach as a possible blueprint to providing this technology to other developing countries

  17. Implementation of a High-Dose-Rate Brachytherapy Program for Carcinoma of the Cervix in Senegal: A Pragmatic Model for the Developing World

    Energy Technology Data Exchange (ETDEWEB)

    Einck, John P., E-mail: jeinck@ucsd.edu [Department of Radiation Medicine and Applied Sciences, University of California San Diego, San Diego, California (United States); Hudson, Alana [Department of Oncology, Tom Baker Cancer Centre, University of Calgary, Calgary, Alberta (Canada); Shulman, Adam C. [Overlook Medical Center, Summit, New Jersey (United States); Yashar, Catheryn M. [Department of Radiation Medicine and Applied Sciences, University of California San Diego, San Diego, California (United States); Dieng, Mamadou M.; Diagne, Magatte; Gueye, Latifatou; Gningue, Fama; Gaye, Pape M. [Départemént de Radiothérapie, Institut Joliot-Curie, Hôpital Aristide Le Dantec, Dakar (Senegal); Fisher, Brandon J. [GammaWest Cancer Services, Salt Lake City, Utah (United States); Mundt, Arno J. [Department of Radiation Medicine and Applied Sciences, University of California San Diego, San Diego, California (United States); Brown, Derek W. [Department of Oncology, Tom Baker Cancer Centre, University of Calgary, Calgary, Alberta (Canada)

    2014-07-01

    West Africa has one of the highest incidence rates of carcinoma of the cervix in the world. The vast majority of women do not have access to screening or disease treatment, leading to presentation at advanced stages and to high mortality rates. Compounding this problem is the lack of radiation treatment facilities in Senegal and many other parts of the African continent. Senegal, a country of 13 million people, had a single {sup 60}Co teletherapy unit before our involvement and no brachytherapy capabilities. Radiating Hope, a nonprofit organization whose mission is to provide radiation therapy equipment to countries in the developing world, provided a high-dose-rate afterloading unit to the cancer center for curative cervical cancer treatment. Here we describe the implementation of high-dose-rate brachytherapy in Senegal requiring a nonstandard fractionation schedule and a novel treatment planning approach as a possible blueprint to providing this technology to other developing countries.

  18. The influence of isotope and prostate volume on urinary morbidity after prostate brachytherapy

    International Nuclear Information System (INIS)

    Niehaus, Angela; Merrick, Gregory S.; Butler, Wayne M.; Wallner, Kent E.; Allen, Zachariah A.; Galbreath, Robert W.; Adamovich, Edward

    2006-01-01

    Purpose: To evaluate the influence of isotope and prostate size on International Prostate Symptom Score (IPSS) normalization, catheter dependency, and the need for surgical intervention secondary to bladder outlet obstruction after prostate brachytherapy. Methods and Materials: Between January 1998 and June 2003, 976 consecutive patients underwent brachytherapy for clinical stage T1b-T3a (2002 American Joint Committee on Cancer) prostate cancer. Seven hundred eighty-nine (80.8%) were implanted with 103 Pd and 187 (19.2%) with 125 I. The median follow-up was 41.2 months. Patients were stratified into size cohorts ≤25 cm 3 , 25.1-35 cm 3 , 35.1-45 cm 3 , and >45 cm 3 . Four hundred eighteen patients (42.8%) received androgen deprivation therapy (ADT). Four hundred eighty-six patients (49.7%) received supplemental external-beam radiation therapy (XRT). In all patients, an alpha blocker was initiated before implantation and continued at least until the IPSS returned to baseline. IPSS resolution was defined as a return to within one point of baseline. The median number of IPSS determinations per patient was 21. Clinical, treatment, and dosimetric parameters evaluated included patient age, pretreatment PSA, Gleason score, clinical T stage, percent positive biopsies, preimplant IPSS, ultrasound volume, planning volume, isotope, V 100/150/20 , D 9 , urethral dose (average and maximum), supplemental XRT, ADT, and the duration of ADT (≤6 months vs. >6 months). Catheter dependency and the need for postsurgical intervention were also evaluated. Results: For both isotopes and all prostate size cohorts, IPSS peaked 1 month after implantation and returned to baseline at a mean of 1.9 months. Stratification of prostate size cohorts by isotope demonstrated no significant differences in prolonged catheter dependency (≥5 days), IPSS resolution, or postimplant surgical intervention. In Cox regression analysis, IPSS normalization was best predicted by preimplant IPSS, XRT, and

  19. Dosimetric impact of prostate volume change between CT-based HDR brachytherapy fractions

    International Nuclear Information System (INIS)

    Kim, Yongbok; Hsu, I-C.; Lessard, Etienne; Vujic, Jasmina; Pouliot, Jean

    2004-01-01

    Purpose: The objective is to evaluate the prostate volume change and its dosimetric consequences after the insertion of catheters for high-dose-rate brachytherapy. Methods and Materials: For 13 consecutive patients, a spiral CT scan was acquired before each of the 2 fractions, separated on average by 20 hours. The coordinates of the catheters were obtained on 3 axial CT slices corresponding to apex, mid portion, and base portion of the prostate. A mathematical expansion model was used to evaluate the change of prostate volumes between the 2 fractions. It is based on the difference in the cube of the average distance between the centroid and catheter positions. The variation of implant dose-volume histograms between fractions was computed for plans produced by either inverse planning based on simulated annealing or geometric optimization. Results: The average magnitude of either increase or reduction in prostate volume was 7.8% (range, 2-17%). This volume change corresponds to an average prostate radius change of only 2.5% (range, 0.7-5.4%). For 5 patients, the prostate volume increased on average by 9% (range, 2-17%), whereas a reduction was observed for 8 patients by an average of 7% (range, 2-13%). More variation was observed at the prostate base than at mid or apex gland. The comparison of implant dose-volume histograms showed a small reduction of V100 receiving the prescription dose, with an average of 3.5% (range, 0.5-12%) and 2.2% (range, 1-6%) for inverse planning based on our simulated annealing and geometric optimization plans, respectively. Conclusion: Small volume change was observed between treatment fractions. This translates into small changes in dose delivered to the prostate volume

  20. 'Homogeneity in brachytherapy' - Dummy run experience in Belgium

    International Nuclear Information System (INIS)

    Methords

    1996-01-01

    Purpose: The homogeneity of brachytherapy treatments in Belgium was appreciated through a dummy run with two fictive patients. Materiel and Methods: All members of the Belgian Brachytherapy Board received last year a questionnaire about treatment technique, technical approach, dosimetry and treatment planning, for 2 selected clinical histories. Case 1: T1 G1 NO MO - SCC of the lateral border of the mobile tongue (dimensions: 12x10x5mm). Case 2: T1 G1 NO MO - SCC of the lateral side of the nose (10x12x3mm). Results: 10 members out of 14 from the Belgian Brachytherapy Board returned their questionnaire. Little variation has been observed regarding treatment technique, technical approach (H and N: hairpins or loops, skin: plastic tubes), dose (60-65 Gy), activity of Ir-192 (1-2 mCi/cm), definition of Gross Tumor Volume and dosimetry (Paris System). On the contrary, a large difference was observed in the definition of the Clinical Target Volume and the Treated Volume. Despite of this large difference, the ratio treated volume on clinical target volume was always satisfactory (1,2 for skin cancer - 2 for H and N cancer), indicating that the treatment was well adapted to the Clinical Target Volume in all but 1 instance. Variations of a factor 2 in the dose rate of irradiation were tolerated (40-80 cGy/h). Conclusion: Rigid guidelines are mostly followed by the responders concerning dose, dose prescription and implantation techniques. Large variations are encountered concerning safety margins (Clinical Target definition) and dose rate

  1. Fractionated afterloading therapy in inoperable malignant tumours of the brain

    International Nuclear Information System (INIS)

    Sparenberg, A.

    1987-01-01

    With the advent of the method of afterloading the range of uses for fractionated interstitial brady-therapy could be broadened to include malignant cerebral tumours. The mean survival time of 33 female patients was calculated to be 8.3 months for the entire group and 11.3 months for cases not otherwise pretreated. Even though the age, tumour volume, target dose and Karnofsky index obviously tended to influence the survival time, such relationships could not be confirmed statistically. Using the method by Kaplan-Meier it was determined that 65% of the total study group were likely to survive beyond six months and 32% to survive for one year. A separate analysis of patients receiving no previous treatment showed these chances to be 75% and 44%, respectively. The advantages of this therapy are discussed on a comparative basis. (VHE) [de

  2. Brachytherapy: The need for a national metrology lab in Spain

    International Nuclear Information System (INIS)

    Aviles Lucas, P.

    2011-01-01

    Radiotherapy, along with chemotherapy and surgery, is an essential therapeutic technique for treating malignant tumours. Part of the challenge of a suitable radiotherapy treatment lies on the optimisation of the irradiated volume, which must be adapted to the tumour volume as far as possible. Depending on position of the radiation source relative to the patient, the procedure in question could be external radiotherapy, or brachytherapy. In a brachytherapy procedure, relatively small encapsulated radioactive sources are placed close to or in the tumour volume to be treated. This therapeutic treatment has two obvious advantages; on one hand the prescribed dose can be adjusted to the tumour volume, preventing unnecessary exposure of the adjacent healthy tissues, and on the other, it decreases the treatment duration compared to a radiotherapy treatment. (Author) 19 refs.

  3. Temporal relationship between prostate brachytherapy and the diagnosis of colorectal cancer

    International Nuclear Information System (INIS)

    Gutman, Sarah A.; Merrick, Gregory S.; Butler, Wayne M.; Wallner, Kent E.; Allen, Zachariah A.; Galbreath, Robert W.; Adamovich, Edward

    2006-01-01

    Purpose: To identify the location of pretreatment and posttreatment colorectal malignancies and posttreatment colorectal polyps in patients with clinically localized prostate cancer managed with brachytherapy. Methods and Materials: From April 1995 through July 2004, 1,351 consecutive patients underwent brachytherapy for clinical stage T1b-T3a (American Joint Committee on Cancer, 2002) prostate cancer. Supplemental external beam radiotherapy (XRT) was administered to 699 patients. The median follow-up was 4.6 years. Operative and pathology reports were reviewed for all patients with pretreatment and posttreatment colorectal cancer and posttreatment colorectal polyps. Multiple parameters were evaluated for the development of colorectal cancer or colorectal polyps. Results: Colorectal cancer was diagnosed in 23 and 25 patients before and after prostate brachytherapy, respectively. No differences were identified in the distribution of colorectal cancers either before or after treatment (3 and 4 rectal cancers in the pre- and postbrachytherapy cohorts). Thirty-five of the 48 colorectal cancers (73%) were diagnosed within 5 years of brachytherapy with a peak incidence 1 year after brachytherapy. One hundred ninety-two colorectal polyps were diagnosed after brachytherapy, 160 (83%) occurred within 4 years of brachytherapy, and only 27 (14%) were located in the rectum. In multivariate Cox regression analysis, prostate D 9 (minimum percentage of the dose covering 90% of the target volume) predicted for posttreatment colorectal cancer. Rectal polyps were most closely related to patient age and percent positive biopsies, whereas sigmoid/colon polyps were best predicted by patient age, planning volume, and supplemental XRT. Conclusions: Colorectal cancer was diagnosed with equal frequency before and after brachytherapy with comparable geographic distributions. In addition, the vast majority of postbrachytherapy colorectal polyps were located beyond the confines of the rectum

  4. Estimation of Filling and Afterload Conditions by Pump Intrinsic Parameters in a Pulsatile Total Artificial Heart.

    Science.gov (United States)

    Cuenca-Navalon, Elena; Laumen, Marco; Finocchiaro, Thomas; Steinseifer, Ulrich

    2016-07-01

    A physiological control algorithm is being developed to ensure an optimal physiological interaction between the ReinHeart total artificial heart (TAH) and the circulatory system. A key factor for that is the long-term, accurate determination of the hemodynamic state of the cardiovascular system. This study presents a method to determine estimation models for predicting hemodynamic parameters (pump chamber filling and afterload) from both left and right cardiovascular circulations. The estimation models are based on linear regression models that correlate filling and afterload values with pump intrinsic parameters derived from measured values of motor current and piston position. Predictions for filling lie in average within 5% from actual values, predictions for systemic afterload (AoPmean , AoPsys ) and mean pulmonary afterload (PAPmean ) lie in average within 9% from actual values. Predictions for systolic pulmonary afterload (PAPsys ) present an average deviation of 14%. The estimation models show satisfactory prediction and confidence intervals and are thus suitable to estimate hemodynamic parameters. This method and derived estimation models are a valuable alternative to implanted sensors and are an essential step for the development of a physiological control algorithm for a fully implantable TAH. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  5. Tumor dose-volume response in image-guided adaptive brachytherapy for cervical cancer: A meta-regression analysis.

    Science.gov (United States)

    Mazeron, Renaud; Castelnau-Marchand, Pauline; Escande, Alexandre; Rivin Del Campo, Eleonor; Maroun, Pierre; Lefkopoulos, Dimitri; Chargari, Cyrus; Haie-Meder, Christine

    2016-01-01

    Image-guided adaptive brachytherapy is a high precision technique that allows dose escalation and adaptation to tumor response. Two monocentric studies reported continuous dose-volume response relationships, however, burdened by large confidence intervals. The aim was to refine these estimations by performing a meta-regression analysis based on published series. Eligibility was limited to series reporting dosimetric parameters according to the Groupe Européen de Curiethérapie-European SocieTy for Radiation Oncology recommendations. The local control rates reported at 2-3 years were confronted to the mean D90 clinical target volume (CTV) in 2-Gy equivalent using the probit model. The impact of each series on the relationships was pondered according to the number of patients reported. An exhaustive literature search retrieved 13 series reporting on 1299 patients. D90 high-risk CTV ranged from 70.9 to 93.1 Gy. The probit model showed a significant correlation between the D90 and the probability of achieving local control (p < 0.0001). The D90 associated to a 90% probability of achieving local control was 81.4 Gy (78.3-83.8 Gy). The planning aim of 90 Gy corresponded to a 95.0% probability (92.8-96.3%). For the intermediate-risk CTV, less data were available, with 873 patients from eight institutions. Reported mean D90 intermediate-risk CTV ranged from 61.7 to 69.1 Gy. A significant dose-volume effect was observed (p = 0.009). The D90 of 60 Gy was associated to a 79.4% (60.2-86.0%) local control probability. Based on published data from a high number of patients, significant dose-volume effect relationships were confirmed and refined between the D90 of both CTV and the probability of achieving local control. Further studies based on individual data are required to develop nomograms including nondosimetric prognostic criteria. Copyright © 2016 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  6. Computed tomography in brachytherapy

    International Nuclear Information System (INIS)

    Mansfield, C.M.; Lee, K.R.; Dwyer, S.; Zellmer, D.; Cook, P.

    1983-01-01

    CT scanning adds to the ability to evaluate brachytherapy techniques. It provides an additional method in the assessment of patients who are candidates for or who are being treated by brachytherapy. The CT scan can give information regarding the position of the sources and their relation to the tumor and normal structures with greater ease than do orthogonal views. This makes it possible to accurately calculate areas of high or low dose. Potential areas of overdose can be recognized, thereby decreasing the chances of postbrachytherapy complications. CT scanning can be used at various levels of complexity in dosimetry evaluation. Adequate brachytherapy dosimetry information is obtainable from CT slices through one or more levels of the implanted volume. In some instances it is possible to obtain additional information by reconstructing the scans in other planes, e.g., coronal or sagittal. Three-dimensional viewing of the implant is desirable, but it should be pointed out that this approach is time-consuming and beyond the capabilities of most institutions at present. It will be necessary to continue work on three-dimensional treatment planning to make it readily available

  7. Inverse planning and class solutions for brachytherapy treatment planning

    International Nuclear Information System (INIS)

    Trnkova, P.

    2010-01-01

    Brachytherapy or interventional radiooncology is a method of radiation therapy. It is a method, where a small encapsulated radioactive source is placed near to / in the tumour and therefore delivers high doses directly to the target volume. Organs at risk (OARs) are spared due to the inverse square dose fall-off. In the past years there was a slight stagnation in the development of techniques for brachytherapy treatment. While external beam radiotherapy became more and more sophisticated, in brachytherapy traditional methods have been still used. Recently, 3D imaging was considered also as the modality for brachytherapy and more precise brachytherapy could expand. Nowadays, an image guided brachytherapy is state-of-art in many centres. Integration of imaging methods lead to the dose distribution individually tailored for each patient. Treatment plan optimization is mostly performed manually as an adaptation of a standard loading pattern. Recently, inverse planning approaches have been introduced into brachytherapy. The aim of this doctoral thesis was to analyze inverse planning and to develop concepts how to integrate inverse planning into cervical cancer brachytherapy. First part of the thesis analyzes the Hybrid Inverse treatment Planning and Optimization (HIPO) algorithm and proposes a workflow how to safely work with this algorithm. The problem of inverse planning generally is that only the dose and volume parameters are taken into account and spatial dose distribution is neglected. This fact can lead to unwanted high dose regions in a normal tissue. A unique implementation of HIPO into the treatment planning system using additional features enabled to create treatment plans similar to the plans resulting from manual optimization and to shape the high dose regions inside the CTV. In the second part the HIPO algorithm is compared to the Inverse Planning Simulated Annealing (IPSA) algorithm. IPSA is implemented into the commercial treatment planning system. It

  8. Feasibility of combined operation and perioperative intensity-modulated brachytherapy of advanced/recurrent malignancies involving the skull base

    Energy Technology Data Exchange (ETDEWEB)

    Strege, R.J.; Eichmann, T.; Mehdorn, H.M. [University Hospital Schleswig-Holstein, Kiel (Germany). Dept. of Neurosurgery; Kovacs, G.; Niehoff, P. [University Hospital Schleswig-Holstein, Kiel (Germany). Interdisciplinary Brachytherapy Center; Maune, S. [University Hospital Schleswig-Holstein, Kiel (Germany). Dept. of Otolaryngology; Holland, D. [University Hospital Schleswig-Holstein, Kiel (Germany). Dept. of Ophthalmology

    2005-02-01

    Purpose: To assess the technical feasibility and toxicity of combined operation and perioperative intensity-modulated fractionated interstitial brachytherapy (IMBT) in advanced-stage malignancies involving the skull base with the goal of preserving the patients' senses of sight. Patients and Methods: This series consisted of 18 consecutive cases: ten patients with paranasal sinus carcinomas, five with sarcomas, two with primitive neuroectodermal tumors (PNETs), and one with parotid gland carcinoma. After, in most cases, subtotal surgical resection (R1-R2: carried out so that the patients' senses of sight were preserved), two to twelve (mean five) afterloading plastic tubes were placed into the tumor bed. IMBT was performed with an iridium-192 stepping source in pulsed-dose-rate/high-dose-rate (PDR/HDR) afterloading technique. The total IMBT dose, ranging from 10 to 30 Gy, was administered in a fractionated manner (3-5 Gy/day, 5 days/week). Results: Perioperative fractionated IMBT was performed in 15 out of 18 patients and was well tolerated. Complications that partially prevented or delayed IMBT in some cases included cerebrospinal fluid leakage (twice), meningitis (twice), frontal brain syndrome (twice), afterloading tube displacement (twice), seizure (once), and general morbidity (once). No surgery- or radiation-induced injuries to the cranial nerves or eyes occurred. Median survival times were 33 months after diagnosis and 16 months after combined operation and IMBT. Conclusion: Perioperative fractionated IMBT after extensive but vision-preserving tumor resection seems to be a safe and well-tolerated treatment of advanced/recurrent malignancies involving the skull base. These preliminary state suggest that combined operation and perioperative fractionated IMBT is a palliative therapeutic option in the management of fatal malignancies involving the base of the skull, a strategy which leaves the patients' visual acuity intact. (orig.)

  9. A multicenter study to quantify systematic variations and associated uncertainties in source positioning with commonly used HDR afterloaders and ring applicators for the treatment of cervical carcinomas

    Energy Technology Data Exchange (ETDEWEB)

    Awunor, O., E-mail: onuora.awunor@stees.nhs.uk [The Medical Physics Department, The James Cook University Hospital, Marton Road, Middlesbrough TS4 3BW, England (United Kingdom); Berger, D. [Department of Radiotherapy, General Hospital of Vienna, Vienna A-1090 (Austria); Kirisits, C. [Department of Radiotherapy, Comprehensive Cancer Center, Medical University of Vienna, Vienna A-1090 (Austria)

    2015-08-15

    Purpose: The reconstruction of radiation source position in the treatment planning system is a key part of the applicator reconstruction process in high dose rate (HDR) brachytherapy treatment of cervical carcinomas. The steep dose gradients, of as much as 12%/mm, associated with typical cervix treatments emphasize the importance of accurate and precise determination of source positions. However, a variety of methodologies with a range in associated measurement uncertainties, of up to ±2.5 mm, are currently employed by various centers to do this. In addition, a recent pilot study by Awunor et al. [“Direct reconstruction and associated uncertainties of {sup 192}Ir source dwell positions in ring applicators using gafchromic film in the treatment planning of HDR brachytherapy cervix patients,” Phys. Med. Biol. 58, 3207–3225 (2013)] reported source positional differences of up to 2.6 mm between ring sets of the same type and geometry. This suggests a need for a comprehensive study to assess and quantify systematic source position variations between commonly used ring applicators and HDR afterloaders across multiple centers. Methods: Eighty-six rings from 20 European brachytherapy centers were audited in the form of a postal audit with each center collecting the data independently. The data were collected by setting up the rings using a bespoke jig and irradiating gafchromic films at predetermined dwell positions using four afterloader types, MicroSelectron, Flexitron, GammaMed, and MultiSource, from three manufacturers, Nucletron, Varian, and Eckert & Ziegler BEBIG. Five different ring types in six sizes (Ø25–Ø35 mm) and two angles (45° and 60°) were used. Coordinates of irradiated positions relative to the ring center were determined and collated, and source position differences quantified by ring type, size, and angle. Results: The mean expanded measurement uncertainty (k = 2) along the direction of source travel was ±1.4 mm. The standard deviation

  10. Iodine-125 seed implantation (permanent brachytherapy) for clinically localized prostate cancer

    International Nuclear Information System (INIS)

    Ebara, Shin; Katayama, Yoshihisa; Tanimoto, Ryuta

    2008-01-01

    From January 2004 to March 2007, 308 patients with clinically localized prostate cancer were treated using iodine-125 ( 125 I) seed implantation (permanent brachytherapy) at Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences. We evaluated the treatment's efficacy and morbidity in 300 prostate cancer patients who were followed up for more than 1 month after brachytherapy. Based on the National Comprehensive Cancer Network (NCCN) guidelines, patients with a prostate volume of less than 40 ml in transrectal ultrasound imaging were classified as low or intermediate risk. The median patient age was 67 years (range 50 to 79 years), the median prostate-specific antigen (PSA) value before biopsy was 6.95 ng/ml (range 1.13 to 24.7 ng/ml), and the median prostate volume was 24.33 ml (range 9.3 to 41.76 ml). The median follow-up was 18 months (range 1 to 36 months) and the PSA levels decreased in almost all patients after brachytherapy. Although 194 of 300 patients (64.7%) complained of difficulty in urination, pollakisuria/urgency, miction pain, and/or urinary incontinence, all of which might be associated with radiation prostatitis during the first month after brachytherapy, these symptoms gradually improved. 125 I seed implantation brachytherapy is safe and effective for localized prostate cancer within short-term follow up. (author)

  11. Clinical Investigations of a CT-based reconstruction and 3D-Treatment planning system in interstitial brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Kolotas, C; Zamboglou, N [Strahlenklinik, Stadtische Kliniken Offenbach, Offenbach (Germany)

    1999-12-31

    Purpose: Development, application and evaluation of a CT-guided implantation technique and a fully CT based treatment planning procedure for brachytherapy. Methods and Materials : A brachytherapy procedure based on CT-guided implantation technique and CT based treatment planning has been developed and clinically evaluated. For this purpose a software system (PROMETHEUS) for the 3D reconstruction of brachytherapy catheters and patient anatomy using only CT scans has been developed. An interface for the Nucletron Plato BPS treatment planning system for the optimisation and calculation of dose distribution has been devised. The planning target volume(s) are defined as sets of points using contouring tools and are for optimisation of the 3D dose distribution. Dose-volume histogram-based analysis of the dose distribution enables a clinically realistic evaluation of the brachytherapy application to be made. The CT-guided implantation of catheters and the CT-based treatment planning procedure has been performed for interstitial brachytherapy and for different tumour and anatomical localizations in 197 patients between 1996 and 1997. Results : The accuracy of the CT reconstruction was tested using a quality assurance phantom an an interstitial implant of 12 needles and compared with the results of reconstruction using radiographs[hs. Both methods give comparable results with regard to accuracy. The CT based reconstruction was faster. Clinical feasibility has been proven in pre-irradiated recurrences of brain tumour, in pre-treated recurrences or metastatic disease, and in breast carcinomas. The tumour volume treated ranged from 5.1 - 2741 cm3. Analysis of the implant quality showed a slight significant lower COIN value for the bone implants, but no differences in respect to the planning target volume. Conclusions : With the integration of CT imaging in the treatment planning and documentation of brachytherapy, we have a new CT based quality assurance method to evaluate

  12. Clinical Investigations of a CT-based reconstruction and 3D-Treatment planning system in interstitial brachytherapy

    International Nuclear Information System (INIS)

    Kolotas, C.; Zamboglou, N.

    1998-01-01

    Purpose: Development, application and evaluation of a CT-guided implantation technique and a fully CT based treatment planning procedure for brachytherapy. Methods and Materials : A brachytherapy procedure based on CT-guided implantation technique and CT based treatment planning has been developed and clinically evaluated. For this purpose a software system (PROMETHEUS) for the 3D reconstruction of brachytherapy catheters and patient anatomy using only CT scans has been developed. An interface for the Nucletron Plato BPS treatment planning system for the optimisation and calculation of dose distribution has been devised. The planning target volume(s) are defined as sets of points using contouring tools and are for optimisation of the 3D dose distribution. Dose-volume histogram-based analysis of the dose distribution enables a clinically realistic evaluation of the brachytherapy application to be made. The CT-guided implantation of catheters and the CT-based treatment planning procedure has been performed for interstitial brachytherapy and for different tumour and anatomical localizations in 197 patients between 1996 and 1997. Results : The accuracy of the CT reconstruction was tested using a quality assurance phantom an an interstitial implant of 12 needles and compared with the results of reconstruction using radiographs[hs. Both methods give comparable results with regard to accuracy. The CT based reconstruction was faster. Clinical feasibility has been proven in pre-irradiated recurrences of brain tumour, in pre-treated recurrences or metastatic disease, and in breast carcinomas. The tumour volume treated ranged from 5.1 - 2741 cm3. Analysis of the implant quality showed a slight significant lower COIN value for the bone implants, but no differences in respect to the planning target volume. Conclusions : With the integration of CT imaging in the treatment planning and documentation of brachytherapy, we have a new CT based quality assurance method to evaluate

  13. Should the bladder be full or empty during gynecologic brachytherapy applications? A bladder dose volume histogram analysis and implications for treatment

    International Nuclear Information System (INIS)

    Dusenbery, Kathryn E.; Lewandowski, Loretta A.; Higgins, Patrick D.

    1996-01-01

    Purpose: Chronic radiation cystitis is an uncommon but debilitating late complication of definitive external beam (EB) and brachytherapy (BT) for cervix cancer. During BT an indwelling catheter is usually placed in the bladder, collapsing it closer to the BT sources. We have devised a method to deliver BT with a full bladder. The difference in bladder dose in the full and empty state were analyzed during definitive EBT and BT for cervix cancer. Methods: The technique of Lyman and Wolbarst (1) were used to evaluate the bladder complication probability for a representative cervix cancer patient undergoing EBT and BT. DVHs were generated from CT scans obtained with a full and empty bladder. Three possible dose prescriptions were analyzed. Results: The DVH for the full and empty situations are shown. With the bladder full, the volume of bladder predicted to receive ≥ 80 Gy was approximately 10% for all dose schemes evaluated, whereas with the bladder empty, up to 50% of the bladder volume received ≥ 80 Gy. Conclusions: A distended bladder improves the DVH. A technique for performing full bladder LDR brachytherapy will be discussed

  14. Long duration mild temperature hyperthermia and brachytherapy.

    Science.gov (United States)

    Armour, E P; Raaphorst, G P

    2004-03-01

    Combining long duration mild temperature hyperthermia (LDMH) and low dose-rate (LDR) brachytherapy to enhance therapeutic killing of cancer cells was proposed many years ago. The cellular and tumour research that supports this hypothesis is presented in this review. Research describing LDMH interaction with pulsed brachytherapy and high dose-rate brachytherapy using clinically relevant parameters are compared with LDMH/LDR brachytherapy. The mechanism by which LDMH sensitizes LDR has been established as the inhibition of sublethal damage repair. The molecular mechanisms have been shown to involve DNA repair enzymes, but the exact nature of these processes is still under investigation. The relative differences between LDMH interactions with human and rodent cells are presented to help in the understanding of possible roles of LDMH in clinical application. The role of LDMH in modifying tumour blood flow and its possible role in LDR sensitization of tumours is also presented. The positive aspects of LDMH-brachytherapy for clinical application are sixfold; (1) the thermal goals (temperature, time and volume) are achievable with currently available technology, (2) the hyperthermia by itself has no detectable toxic effects, (3) thermotolerance appears to play a minor if any role in radiation sensitization, (4) TER of around 2 can be expected, (5) hypoxic fraction may be decreased due to blood flow modification and (6) simultaneous chemotherapy may also be sensitized. Combined LDMH and brachytherapy is a cancer therapy that has established biological rationale and sufficient technical and clinical advancements to be appropriately applied. This modality is ripe for clinical testing.

  15. The relative efficacy of HDR and LDR interstitial brachytherapy in squamous cell carcinoma of vagina

    International Nuclear Information System (INIS)

    Demanes, D. J.; Hsu, I-C.; Lin, S.; Ewing, T.; Rodriguez, R.

    1996-01-01

    Introduction: Beginning in 1982 we performed low dose rate (LDR) interstitial template brachytherapy (ISTB) for carcinoma of the vagina. High dose rate (HDR) remote afterloading has been used exclusively since 1991. We compare the results LDR and HDR brachytherapy. Material and Methods: Between 1982 and 1994, 30 patients with primary squamous cell carcinoma of vagina received external beam radiotherapy (EBRT) and brachytherapy. The AJCC stage distribution was 3 stage I, 25 stage II, and 2 stage III. The average central pelvic EBRT dose was 35 Gy. Pelvic side wall EBRT doses ranged from 45 to 50.4 Gy. Nineteen patients had LDR treatment; 3 intracavitary brachytherapy (ICB) and 16 ISTB. Eleven patients had HDR treatment; 2 ICB and 9 ISB. The average dose delivered by LDR was 41.2 Gy usually in 2 fractions, and by HDR 32.5 Gy in 6 fractions of 500-550 cGy. Local failures were confirmed pathologically. The absolute survival (AS) and relapse-free survival (RFS) were calculated using Kaplan-Meier method and compared with logrank statistics. Results: The mean follow-up was 77 months for LDR and 23 months for HDR. Local and regional control was achieved in 90% (27/30) of the patients. Three year AS was 84% and RFS was 87%. There was no significant difference between LDR and HDR in AS, RFS or local-regional control, (log rank p=0.85, p=0.12 and p=0.35 respectively). The single HDR local failure presented in a patient with extensive stage II disease who declined ISTB. There were fewer complications following HDR. The 1 case of extensive vaginal necrosis and the 3 cases of rectovaginal fistula that required surgery occurred only with LDR brachytherapy. Discussion: Excellent local and regional control of carcinoma of the vagina can be achieved by administering limited doses of external radiation and brachytherapy. Interstitial template implants are the best means of encompassing paravaginal disease while sparing the adjacent uninvolved normal tissues from high doses of

  16. Initial Clinical Experience With the Strut-Adjusted Volume Implant (SAVI) Breast Brachytherapy Device for Accelerated Partial-Breast Irradiation (APBI): First 100 Patients With More Than 1 Year of Follow-Up

    International Nuclear Information System (INIS)

    Yashar, Catheryn M.; Scanderbeg, Daniel; Kuske, Robert; Wallace, Anne; Zannis, Victor; Blair, Sarah; Grade, Emily; Swenson, Virginia H.; Quiet, Coral

    2011-01-01

    Purpose: The Strut-Adjusted Volume Implant (SAVI; Cianna Medical, Aliso Viejo, CA) is a multichannel single-entry brachytherapy device designed to allow dose modulation to minimize normal tissue dose while simultaneously maximizing target coverage. This is the first report on the initial 102 patients with nearly 2 years of median follow-up. Methods and Materials: One hundred two patients were treated at two institutions. Data were collected on eligibility and dosimetry and followed for toxicity and recurrence. Results: The median follow-up is 21 months. Overall dosimetry is outstanding (median percent of target volume receiving 90% of the prescription dose was 95.9%, volume of target receiving 150% of the prescription dose was 27.8 mL, and volume of target receiving 200% of the prescription dose was 14.0 cm 3 ). No devices were pulled prior to treatment completion. For patients with a skin bridge of less than 7 mm, the maximum median skin dose was 280 cGy (median percent of target volume receiving 90% of the prescription dose was 95.2%, volume of target receiving 150% of the prescription dose was 25.8 cm 3 and volume of target receiving 200% of the prescription dose was 12.7 mL). For patients with both chest wall and skin of less than 7 mm, the maximum median lung dose was 205 cGy with simultaneous skin dose of 272 cGy. The rate of telangiectasia was 1.9%. Grade 1 hyperpigmentation developed in 10 patients (9.8%) and Grade 2 fibrosis in 2 patients (1.9%). There were 2 symptomatic seromas and 2 cases of asymptomatic fat necrosis (1.9%). Of the patients, 27% were not eligible for MammoSite balloon brachytherapy (Hologic, Inc., Marlborough, MA) and 5% were not eligible for any balloon brachytherapy. The recurrence rate was 1%. Conclusions: The SAVI appears to safely allow an increase in eligibility for APBI over balloon brachytherapy or three-dimensional conformal radiation, highlighting the outstanding device flexibility to maximize the target dose and minimize the

  17. Dosimetric comparison of vaginal vault ovoid brachytherapy versus intensity-modulated radiation therapy plans in postoperative patients of cervical carcinoma following whole pelvic radiotherapy

    Directory of Open Access Journals (Sweden)

    Divya Khosla

    2014-01-01

    Full Text Available Introduction: Dosimetric study to compare high dose rate (HDR vaginal vault ovoid brachytherapy plan versus intensity-modulated radiation therapy (IMRT boost plan for doses delivered to target volume and organs at risk (OAR in postoperative patients of cervical carcinoma following whole pelvic radiotherapy (WPRT. Materials and Methods: Fifteen postoperative patients of cervical carcinoma suitable for vaginal ovoid brachytherapy following WPRT of 46 Gy/23 fractions/4.5 weeks were included. All were treated with brachytherapy (two sessions of 8.5 Gy each. The equivalent dose for IMRT was calculated by computing biologically effective dose of brachytherapy by linear quadratic model. Dose of brachytherapy (two sessions of 8.5 Gy was equivalent to IMRT dose of 26 Gy/13 fractions. Doses to target volume and OAR were compared between HDR and IMRT plans. Results: Target volume was well covered with both HDR and IMRT plans, but dose with brachytherapy was much higher (P < 0.05. Mean doses, doses to 0.1, 1, 2, and 5cc, 1/3 rd , 1/2, and 2/3 rd volume of bladder and rectum were significantly lower with HDR plans. Conclusion: In postoperative patients of cervical carcinoma, HDR brachytherapy following WPRT appears to be better than IMRT for tumor coverage and reducing dose to critical organs.

  18. SU-G-201-07: Dosimetric Verification of a 3D Printed HDR Skin Brachytherapy Applicator

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, K; Stanley, D; Eng, T; Kirby, N; Gutierrez, A; Stathakis, S; Papanikolaou, N [University of Texas HSC SA, San Antonio, TX (United States); Baumgarten, A; Pelletier, C; Jung, J; Feng, Y; Huang, Z; Ju, A [East Carolina University, Greenville, NC (United States); Corbett, M [Greenville Health System, Greenville, SC (United States)

    2016-06-15

    Purpose: The use of radiation as a treatment modality for skin cancer has increased significantly over the last decade with standardized applicators. Utilizing 3D printing, the ability to make applicators specifically designed for each patient’s anatomy has become economically feasible. With this in mind it was the aim of this study to determine the dosimetric accuracy of a 3-D printed HDR brachytherapy applicator for the skin. Methods: A CT reference image was used to generate a custom applicator based on an anthropomorphic head and neck phantom. To create the applicator a 1cm expansion anteriorly with 0.5cmX0.5cm trenches on the outer surface that were spaced 1cm sup-inf to accommodate standard 6F flexible catheters. The applicator was printed using PLA material using a printrbot simple printer. A treatment plan optimized to deliver a clinically representative volume was created in Oncentra and delivered with a nucletron afterloader. Measurements were made using TLDs and EBT3 gafchromic film that were placed between the applicator and the phantom’s forehead. An additional piece of film was also used to qualitatively asses the dose distribution in the transverse plane. Using a standard vaginal cylinder and bolus, a standardized curve correlating TLD and film exposure-to-radiation dose was established by irradiating film to known doses (200,500,700 cGy) at a 3.5 cm radius distance. Results: Evaluated TLDs showed the absolute dose delivered to the skin surface using the 3-D printed bolus was 615cGy±6%, with a mean predicted TPS value in the measured area of 617.5±7%. Additionally, planar dose distributions had good qualitative agreement with calculated TPS isodoses. Conclusion: This work demonstrates patient specific 3-D printed HDR brachytherapy applicators for skin cancer treatments are practical and accurate in TPS calculations but additional measurements are needed to verify additional sites and dose at depth.

  19. SU-G-201-07: Dosimetric Verification of a 3D Printed HDR Skin Brachytherapy Applicator

    International Nuclear Information System (INIS)

    Rasmussen, K; Stanley, D; Eng, T; Kirby, N; Gutierrez, A; Stathakis, S; Papanikolaou, N; Baumgarten, A; Pelletier, C; Jung, J; Feng, Y; Huang, Z; Ju, A; Corbett, M

    2016-01-01

    Purpose: The use of radiation as a treatment modality for skin cancer has increased significantly over the last decade with standardized applicators. Utilizing 3D printing, the ability to make applicators specifically designed for each patient’s anatomy has become economically feasible. With this in mind it was the aim of this study to determine the dosimetric accuracy of a 3-D printed HDR brachytherapy applicator for the skin. Methods: A CT reference image was used to generate a custom applicator based on an anthropomorphic head and neck phantom. To create the applicator a 1cm expansion anteriorly with 0.5cmX0.5cm trenches on the outer surface that were spaced 1cm sup-inf to accommodate standard 6F flexible catheters. The applicator was printed using PLA material using a printrbot simple printer. A treatment plan optimized to deliver a clinically representative volume was created in Oncentra and delivered with a nucletron afterloader. Measurements were made using TLDs and EBT3 gafchromic film that were placed between the applicator and the phantom’s forehead. An additional piece of film was also used to qualitatively asses the dose distribution in the transverse plane. Using a standard vaginal cylinder and bolus, a standardized curve correlating TLD and film exposure-to-radiation dose was established by irradiating film to known doses (200,500,700 cGy) at a 3.5 cm radius distance. Results: Evaluated TLDs showed the absolute dose delivered to the skin surface using the 3-D printed bolus was 615cGy±6%, with a mean predicted TPS value in the measured area of 617.5±7%. Additionally, planar dose distributions had good qualitative agreement with calculated TPS isodoses. Conclusion: This work demonstrates patient specific 3-D printed HDR brachytherapy applicators for skin cancer treatments are practical and accurate in TPS calculations but additional measurements are needed to verify additional sites and dose at depth.

  20. Recommendations from gynaecological (GYN) GEC ESTRO working group (II): Concepts and terms in 3D image-based treatment planning in cervix cancer brachytherapy-3D dose volume parameters and aspects of 3D image-based anatomy, radiation physics, radiobiology

    International Nuclear Information System (INIS)

    Poetter, Richard; Haie-Meder, Christine; Limbergen, Erik van; Barillot, Isabelle; Brabandere, Marisol De; Dimopoulos, Johannes; Dumas, Isabelle; Erickson, Beth; Lang, Stefan; Nulens, An; Petrow, Peter; Rownd, Jason; Kirisits, Christian

    2006-01-01

    The second part of the GYN GEC ESTRO working group recommendations is focused on 3D dose-volume parameters for brachytherapy of cervical carcinoma. Methods and parameters have been developed and validated from dosimetric, imaging and clinical experience from different institutions (University of Vienna, IGR Paris, University of Leuven). Cumulative dose volume histograms (DVH) are recommended for evaluation of the complex dose heterogeneity. DVH parameters for GTV, HR CTV and IR CTV are the minimum dose delivered to 90 and 100% of the respective volume: D90, D100. The volume, which is enclosed by 150 or 200% of the prescribed dose (V150, V200), is recommended for overall assessment of high dose volumes. V100 is recommended for quality assessment only within a given treatment schedule. For Organs at Risk (OAR) the minimum dose in the most irradiated tissue volume is recommended for reporting: 0.1, 1, and 2 cm 3 ; optional 5 and 10 cm 3 . Underlying assumptions are: full dose of external beam therapy in the volume of interest, identical location during fractionated brachytherapy, contiguous volumes and contouring of organ walls for >2 cm 3 . Dose values are reported as absorbed dose and also taking into account different dose rates. The linear-quadratic radiobiological model-equivalent dose (EQD 2 )-is applied for brachytherapy and is also used for calculating dose from external beam therapy. This formalism allows systematic assessment within one patient, one centre and comparison between different centres with analysis of dose volume relations for GTV, CTV, and OAR. Recommendations for the transition period from traditional to 3D image-based cervix cancer brachytherapy are formulated. Supplementary data (available in the electronic version of this paper) deals with aspects of 3D imaging, radiation physics, radiation biology, dose at reference points and dimensions and volumes for the GTV and CTV (adding to [Haie-Meder C, Poetter R, Van Limbergen E et al

  1. Estimation of frequency, population doses and stochastic risks in brachytherapy in Japan, 1983

    International Nuclear Information System (INIS)

    Maruyama, Takashi; Kumamoto, Yoshikazu; Noda, Yutaka; Nishizawa, Kanae; Furuya, Yoshiro; Iwai, Kazuo.

    1988-01-01

    Based on the replies to a questionnaire distributed throughout Japan in 1983, genetically significant dose (GSD), per Caput mean bone marrow dose (CMD), leukemogenically significant dose (LSD), malignantly significant dose (MSD), and per Caput effective dose equivalent (EDE) from using small sealed radiation sources for radiotherapy were estimated. Annual frequencies of brachytherapy were estimated to be 2.6 x 10 3 for men and 36.3 x 10 3 for women, with a total of 38.9 x 10 3 . The annual frequencies of using afterloading technique were 0.3 x 10 3 for men and 18.8 x 10 3 for women, with a total of 19.1 x 10 3 . The annual population doses per person were 7.9 nGy for GSD, 118 μGy for CMD, 19.3 μGy for LSD, 172 μGy for MSD, and 428 μGy for EDE. The annual collective effective dose equivalent was estimated to be 5.13 x 10 4 man Sv. (Namekawa, K.)

  2. A gEUD-based inverse planning technique for HDR prostate brachytherapy: Feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Giantsoudi, D. [Department of Radiological Sciences, University of Texas Health Sciences Center, San Antonio, Texas 78229 (United States); Department of Radiation Oncology, Francis H. Burr Proton Therapy Center, Boston, Massachusetts 02114 (United States); Baltas, D. [Department of Medical Physics and Engineering, Strahlenklinik, Klinikum Offenbach GmbH, 63069 Offenbach (Germany); Nuclear and Particle Physics Section, Physics Department, University of Athens, 15701 Athens (Greece); Karabis, A. [Pi-Medical Ltd., Athens 10676 (Greece); Mavroidis, P. [Department of Radiological Sciences, University of Texas Health Sciences Center, San Antonio, Texas 78299 and Department of Medical Radiation Physics, Karolinska Institutet and Stockholm University, 17176 (Sweden); Zamboglou, N.; Tselis, N. [Strahlenklinik, Klinikum Offenbach GmbH, 63069 Offenbach (Germany); Shi, C. [St. Vincent' s Medical Center, 2800 Main Street, Bridgeport, Connecticut 06606 (United States); Papanikolaou, N. [Department of Radiological Sciences, University of Texas Health Sciences Center, San Antonio, Texas 78299 (United States)

    2013-04-15

    Purpose: The purpose of this work was to study the feasibility of a new inverse planning technique based on the generalized equivalent uniform dose for image-guided high dose rate (HDR) prostate cancer brachytherapy in comparison to conventional dose-volume based optimization. Methods: The quality of 12 clinical HDR brachytherapy implants for prostate utilizing HIPO (Hybrid Inverse Planning Optimization) is compared with alternative plans, which were produced through inverse planning using the generalized equivalent uniform dose (gEUD). All the common dose-volume indices for the prostate and the organs at risk were considered together with radiobiological measures. The clinical effectiveness of the different dose distributions was investigated by comparing dose volume histogram and gEUD evaluators. Results: Our results demonstrate the feasibility of gEUD-based inverse planning in HDR brachytherapy implants for prostate. A statistically significant decrease in D{sub 10} or/and final gEUD values for the organs at risk (urethra, bladder, and rectum) was found while improving dose homogeneity or dose conformity of the target volume. Conclusions: Following the promising results of gEUD-based optimization in intensity modulated radiation therapy treatment optimization, as reported in the literature, the implementation of a similar model in HDR brachytherapy treatment plan optimization is suggested by this study. The potential of improved sparing of organs at risk was shown for various gEUD-based optimization parameter protocols, which indicates the ability of this method to adapt to the user's preferences.

  3. New after-loading intrauterine packing device: ten years experience

    International Nuclear Information System (INIS)

    Sklaroff, D.M.; Baker, A.S.; Tasbas, M.

    1985-01-01

    A new variation of the uterine packing device for the treatment of endometrial carcinoma is described. It combines the advantages of the Holter technique with the after-loading method described by Simon. This device has been in use for more than 10 years and has been found most satisfactory

  4. Brachytherapy in head and neck cancers; Curietherapie des cancers de la sphere ORL

    Energy Technology Data Exchange (ETDEWEB)

    Mazeron, J.J.; Noel, G.; Simon, J.M.; Racadot, S.; Jauffret, E. [Groupe Hospitalier la Pitie-Salpetriere, Centre des Tumeurs, 75 - Paris (France)

    2003-02-01

    Experience accumulated over several decades with radiation of Head and Neck tumours by irradiation has demonstrated the need for a high tumour dose to achieve local control. With external beam irradiation alone, it is difficult to spare adjacent normal tissues, resulting in undesirable late effects on the salivary glands; mandible, and muscles of mastication. Interstitial implantation is ideally suited to deliver a high dose limited to the volume of the primary tumor, thus minimizing sequels. A large experience has been accumulated with low dose rate (LDR) brachytherapy in treatment of carcinoma of oral cavity, oropharynx, and nasopharynx. Recent analysis of large clinical series provided data indicating that modalities of low dose rate brachytherapy should be optimized in treating these tumors for increasing therapeutic ratio. Low dose rate brachytherapy is now challenged by high dose rate (HDR) brachytherapy and pulsed dose rate (PDR) brachytherapy. Preliminary results obtained with these two last modalities are discussed regarding to those of low dose rate brachytherapy. (authors)

  5. Contractility-afterload mismatch in patients with protein-losing enteropathy after the Fontan operation.

    Science.gov (United States)

    Ozawa, Hideto; Ueno, Takayoshi; Iwai, Shigemitsu; Kawata, Hiroaki; Nishigaki, Kyouichi; Kishimoto, Hidefumi; Sawa, Yoshiki

    2014-10-01

    This study aimed to clarify the relationship between onset of protein-losing enteropathy (PLE) and Fontan circulation, with special reference to the development of contractility-afterload mismatch. The PLE group comprised 9 patients who experienced PLE after undergoing the Fontan operation, and the control group consisted of 32 patients had did not experienced PLE more than 10 years after the Fontan operation. The study compared the pre- and postoperative values of arterial elastance (Ea), end-systolic elastance (Ees), and contractility-afterload mismatch (Ea/Ees). Furthermore, the variations in the values were examined during the preoperative, postoperative, and midterm postoperative periods in seven PLE patients who underwent cardiac catheterization at the onset of PLE and during the pre- and postintervention periods in three PLE patients who underwent surgical intervention to improve the Fontan circulation after the onset of PLE. Comparison of the values obtained before and after Fontan operations showed that the Ea values increased significantly in the PLE group. However, the pre- and postoperative Ees values did not differ in the two groups. During the postoperative period, Ea/Ees increased significantly, and the Ea and Ea/Ees values increased continuously until the onset of PLE in the PLE group. In the patients who underwent surgical intervention to improve the Fontan circulation after the onset of PLE, the Ea/Ees decreased significantly, and the serum albumin levels improved after the intervention. Contractility-afterload mismatch, mainly caused by the increase in the afterload of the systemic ventricle, may have an important role in the development of PLE after the Fontan operation.

  6. Dosimetry audit on the accuracy of 192Ir brachytherapy source strength determinations in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson Tedgren, Aasa

    2007-11-15

    The absorbed dose delivered to the patient in brachytherapy is directly proportional to the source strength in terms of the reference air-kerma rate (RAKR). Verification of this quantity by the hospitals is widely recognized as an important part of a quality assurance program. An external audit was performed on behalf of the Secondary Standard Dosimetry Laboratory at the Swedish Radiation Protection Authority (SSI). The aim was to investigate how accurately the source-strength in 192Ir brachytherapy is determined at Swedish hospitals. The SSI reference well-type ion chamber and calibrated equipment were used to measure the RAKR of an 192Ir source in each of the 14 Swedish afterloading units. Comparisons with values determined by vendors and hospitals were made. Agreement in values of RAKR as determined by SSI, hospitals and vendors were in all cases within the +-3% uncertainty (at a coverage factor of k=2), typically guaranteed by the vendors. The good agreement reflects the robustness and easy handling of well-type chambers designed for brachytherapy in use by all Swedish hospitals. The 192Ir calibration service planned at SSI will solve the hospitals current problem with recalibration of equipment. SSI can also advise hospitals to follow the IAEA recommendations for measurement techniques and maintenance of equipment. It is worthwhile for the hospitals to establish their own ratio (or deviation) with the vendor and follow it as function of time. Such a mean-ratio embeds systematic differences of various origins and have a lower uncertainty than has the RAKR alone, making it useful for early detection of problems with equipment or routines. SSI could also define requirements for the agreement between source strengths as determined by hospitals and vendors and couple this to an action plan, dependent on level of disagreement, and some kind of reporting to SSI

  7. Dosimetry audit on the accuracy of 192Ir brachytherapy source strength determinations in Sweden

    International Nuclear Information System (INIS)

    Carlsson Tedgren, Aasa

    2007-11-01

    The absorbed dose delivered to the patient in brachytherapy is directly proportional to the source strength in terms of the reference air-kerma rate (RAKR). Verification of this quantity by the hospitals is widely recognized as an important part of a quality assurance program. An external audit was performed on behalf of the Secondary Standard Dosimetry Laboratory at the Swedish Radiation Protection Authority (SSI). The aim was to investigate how accurately the source-strength in 192 Ir brachytherapy is determined at Swedish hospitals. The SSI reference well-type ion chamber and calibrated equipment were used to measure the RAKR of an 192 Ir source in each of the 14 Swedish afterloading units. Comparisons with values determined by vendors and hospitals were made. Agreement in values of RAKR as determined by SSI, hospitals and vendors were in all cases within the ±3% uncertainty (at a coverage factor of k=2), typically guaranteed by the vendors. The good agreement reflects the robustness and easy handling of well-type chambers designed for brachytherapy in use by all Swedish hospitals. The 192 Ir calibration service planned at SSI will solve the hospitals current problem with recalibration of equipment. SSI can also advise hospitals to follow the IAEA recommendations for measurement techniques and maintenance of equipment. It is worthwhile for the hospitals to establish their own ratio (or deviation) with the vendor and follow it as function of time. Such a mean-ratio embeds systematic differences of various origins and have a lower uncertainty than has the RAKR alone, making it useful for early detection of problems with equipment or routines. SSI could also define requirements for the agreement between source strengths as determined by hospitals and vendors and couple this to an action plan, dependent on level of disagreement, and some kind of reporting to SSI

  8. NOTE: Monte Carlo evaluation of kerma in an HDR brachytherapy bunker

    Science.gov (United States)

    Pérez-Calatayud, J.; Granero, D.; Ballester, F.; Casal, E.; Crispin, V.; Puchades, V.; León, A.; Verdú, G.

    2004-12-01

    In recent years, the use of high dose rate (HDR) after-loader machines has greatly increased due to the shift from traditional Cs-137/Ir-192 low dose rate (LDR) to HDR brachytherapy. The method used to calculate the required concrete and, where appropriate, lead shielding in the door is based on analytical methods provided by documents published by the ICRP, the IAEA and the NCRP. The purpose of this study is to perform a more realistic kerma evaluation at the entrance maze door of an HDR bunker using the Monte Carlo code GEANT4. The Monte Carlo results were validated experimentally. The spectrum at the maze entrance door, obtained with Monte Carlo, has an average energy of about 110 keV, maintaining a similar value along the length of the maze. The comparison of results from the aforementioned values with the Monte Carlo ones shows that results obtained using the albedo coefficient from the ICRP document more closely match those given by the Monte Carlo method, although the maximum value given by MC calculations is 30% greater.

  9. American Brachytherapy Society recommendations for reporting morbidity after prostate brachytherapy

    International Nuclear Information System (INIS)

    Nag, Subir; Ellis, Rodney J.; Merrick, Gregory S.; Bahnson, Robert; Wallner, Kent; Stock, Richard

    2002-01-01

    Purpose: To standardize the reporting of brachytherapy-related prostate morbidity to guide ongoing clinical practice and future investigations. Methods: Members of the American Brachytherapy Society (ABS) with expertise in prostate brachytherapy performed a literature review and, guided by their clinical experience, formulated specific recommendations for reporting on morbidity related to prostate brachytherapy. Results: The ABS recommends using validated, patient-administered health-related quality-of-life instruments for the determination of baseline and follow-up data regarding bowel, urinary, and sexual function. Both actuarial and crude incidences should be reported, along with the temporal resolution of specific complications, and correlated with the doses to the normal tissues. The International Prostate Symptom Score is recommended to assess urinary morbidity, and any dysuria, gross hematuria, urinary retention, incontinence, or medication use should be quantified. Likewise, the ''Sexual Health Inventory for Men,'' which includes the specific erectile questions of the International Index of Erectile Function, is the preferred instrument for reporting sexual function, and the loss of sexual desire, incidence of hematospermia, painful orgasm (orgasmalgia), altered orgasm intensity, decreased ejaculatory volume, use of erectile aids, and use of hormones for androgen deprivation should be quantified. The ABS recommends adoption of the Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer acute and late radiation morbidity scoring scheme for reporting rectal morbidity and noting the incidence of rectal steroid, laser, or antidiarrheal use. Conclusion: It is important to focus on health-related quality-of-life issues in the treatment of prostate cancer, because the control rates are very similar between appropriate treatment modalities. The ABS recommends using the International Prostate Symptom Score, International Index of

  10. SU-E-J-222: Evaluation of Deformable Registration of PET/CT Images for Cervical Cancer Brachytherapy

    International Nuclear Information System (INIS)

    Liao, Y; Turian, J; Templeton, A; Kiel, K; Chu, J; Kadir, T

    2014-01-01

    Purpose: PET/CT provides important functional information for radiotherapy targeting of cervical cancer. However, repeated PET/CT procedures for external beam and subsequent brachytherapy expose patients to additional radiation and are not cost effective. Our goal is to investigate the possibility of propagating PET-active volumes for brachytherapy procedures through deformable image registration (DIR) of earlier PET/CT and ultimately to minimize the number of PET/CT image sessions required. Methods: Nine cervical cancer patients each received their brachytherapy preplanning PET/CT at the end of EBRT with a Syed template in place. The planning PET/CT was acquired on the day of brachytherapy treatment with the actual applicator (Syed or Tandem and Ring) and rigidly registered. The PET/CT images were then deformably registered creating a third (deformed) image set for target prediction. Regions of interest with standardized uptake values (SUV) greater than 65% of maximum SUV were contoured as target volumes in all three sets of PET images. The predictive value of the registered images was evaluated by comparing the preplanning and deformed PET volumes with the planning PET volume using Dice's coefficient (DC) and center-of-mass (COM) displacement. Results: The average DCs were 0.12±0.14 and 0.19±0.16 for rigid and deformable predicted target volumes, respectively. The average COM displacements were 1.9±0.9 cm and 1.7±0.7 cm for rigid and deformable registration, respectively. The DCs were improved by deformable registration, however, both were lower than published data for DIR in other modalities and clinical sites. Anatomical changes caused by different brachytherapy applicators could have posed a challenge to the DIR algorithm. The physiological change from interstitial needle placement may also contribute to lower DC. Conclusion: The clinical use of DIR in PET/CT for cervical cancer brachytherapy appears to be limited by applicator choice and requires further

  11. Dosimetry experience of 192IR sources used In HDR brachytherapy for cervical cancer

    International Nuclear Information System (INIS)

    Daci, Lulzime; Myrku, Rodina Cela

    2013-01-01

    Purpose/Objective: The 192IR Sources are the most commonly used in radiotherapy treatments HDR worldwide. According to international recommendations on quality assurance in HDR brachytherapy, an acceptance test based on the determination of the source strength of any new source shall be carried out before first application to verify the manufacturer’s calibration data. The present paper gives the experimental determination of the source strength for our brachytherapy sources used until now in brachytherapy treatments. Materials/Methods: At Mother Teresa University Hospital we have a cost-effective gynecological brachytherapy unit from Eckert & Ziegler BEBIG named GyneSource® that is a five channel HDR after loader equipped with an 192IR source. The software used is HDR plus™ 2.5 that delivers an optimized treatment plan and makes the process especially fast and we use intracavitary BEBIG applicators. From April 2009 up to December 2012, we have imported nine HDR 192IR Sources. The exchange of the source and acceptance test is done by the physicist of the clinic once the source is imported. The measurements are done with a Well-type ionization chamber HDR1000 Plus and the electrometer used is MAX4000. Only seven sources are compared as we miss the dosimetry data of the first source, and the forth source was not measured and not used because the machine was not working in that time. Results/Conclusions: Eight sources were accepted for clinically use as the measurement were within the tolerance. The source number four with e deviation of -1.92% has been double checked compared with a free in-air measurement with farmer type chamber that gave a deviation to source certificate of 4% that is still inside the tolerance to accept a source for clinical use. The deviations of measured Air Kerma rate to the value of the sources certificates of all our used 192IR sources are less than 2%, which are within the tolerance. The checked value of updated source strength in

  12. Effect of tumor dose, volume and overall treatment time on local control after radiochemotherapy including MRI guided brachytherapy of locally advanced cervical cancer

    DEFF Research Database (Denmark)

    Tanderup, Kari; Fokdal, Lars Ulrik; Sturdza, Alina

    2016-01-01

    -center patient series (retroEMBRACE). Materials and methods This study analyzed 488 locally advanced cervical cancer patients treated with external beam radiotherapy ± chemotherapy combined with IGABT. Brachytherapy contouring and reporting was according to ICRU/GEC-ESTRO recommendations. The Cox Proportional...... Hazards model was applied to analyze the effect on local control of dose-volume metrics as well as overall treatment time (OTT), dose rate, chemotherapy, and tumor histology. Results With a median follow up of 46 months, 43 local failures were observed. Dose (D90) to the High Risk Clinical Target Volume...

  13. Brachytherapy in cervix cancers: techniques and concepts evolution

    International Nuclear Information System (INIS)

    Haie-Meder, C.; Crevoisier, R. de; Petrow, P.; Fromm, S.; Delapierre, M.; Albano, M.; Petit, C.; Briot, E.

    2003-01-01

    Brachytherapy plays an important role in the treatment of patients with cervical carcinoma. Technical modalities have evolved during the last years and have benefited from imaging modalities development, specially MRI. Imaging modalities contribute to a better knowledge of tumoral extension and critical organs. Ultrasound during brachytherapy has led to the almost complete eradication of uterine perforation. In the future, a more systematic use of systems allowing optimization may induce a better dose distribution in the tumor as well as in the critical organs. Recent data provided information in favor of a better analysis in the relative role of dose-rate, total dose and treated volume and their influence on the local control and complication incidence. Concomitant radio-chemotherapy represents a standard in the treatment of patients with tumoral size exceeding 4 cm. Some questions still remain: is concomitant chemotherapy of benefit during brachytherapy? Is there any place for complementary surgery, specially in patients with complete response after external irradiation with concomitant chemotherapy and brachytherapy? In order to answer the former question, a phase III randomized trial is going to start, with the Federation Nationale des Centres de Lutte Contre le Cancer as a promoter. (authors)

  14. Ejaculatory Function After Permanent 125I Prostate Brachytherapy for Localized Prostate Cancer

    International Nuclear Information System (INIS)

    Huyghe, Eric; Delannes, Martine; Wagner, Fabien M.; Delaunay, Boris; Nohra, Joe; Thoulouzan, Matthieu; Shut-Yee, J. Yeung; Plante, Pierre; Soulie, Michel; Thonneau, Patrick; Bachaud, Jean Marc

    2009-01-01

    Purpose: Ejaculatory function is an underreported aspect of male sexuality in men treated for prostate cancer. We conducted the first detailed analysis of ejaculatory function in patients treated with permanent 125 I prostate brachytherapy for localized prostate cancer. Patients and Methods: Of 270 sexually active men with localized prostate cancer treated with permanent 125 I prostate brachytherapy, 241 (89%), with a mean age of 65 years (range, 43-80), responded to a mailed questionnaire derived from the Male Sexual Health Questionnaire regarding ejaculatory function. Five aspects of ejaculatory function were examined: frequency, volume, dry ejaculation, pleasure, and pain. Results: Of the 241 sexually active men, 81.3% had conserved ejaculatory function after prostate brachytherapy; however, the number of patients with rare/absent ejaculatory function was double the pretreatment number (p < .0001). The latter finding was correlated with age (p < .001) and the preimplant International Index of Erectile Function score (p < .001). However, 84.9% of patients with maintained ejaculatory function after implantation reported a reduced volume of ejaculate compared with 26.9% before (p < .001), with dry ejaculation accounting for 18.7% of these cases. After treatment, 30.3% of the patients experienced painful ejaculation compared with 12.9% before (p = .0001), and this was associated with a greater number of implanted needles (p = .021) and the existence of painful ejaculation before implantation (p < .0001). After implantation, 10% of patients who continued to be sexually active experienced no orgasm compared with only 1% before treatment. in addition, more patients experienced late/difficult or weak orgasms (p = .001). Conclusion: Most men treated with brachytherapy have conserved ejaculatory function after prostate brachytherapy. However, most of these men experience a reduction in volume and a deterioration in orgasm.

  15. Pulsed dose rate and fractionated high dose rate brachytherapy: choice of brachytherapy schedules to replace low dose rate treatments

    International Nuclear Information System (INIS)

    Visser, Andries G.; Aardweg, Gerard J.M.J. van den; Levendag, Peter C.

    1996-01-01

    Purpose: Pulsed dose rate (PDR) brachytherapy is a new type of afterloading brachytherapy (BT) in which a continuous low dose rate (LDR) treatment is simulated by a series of 'pulses,' i.e., fractions of short duration (less than 0.5 h) with intervals between fractions of 1 to a few hours. At the Dr. Daniel den Hoed Cancer Center, the term 'PDR brachytherapy' is used for treatment schedules with a large number of fractions (at least four per day), while the term 'fractionated high dose rate (HDR) brachytherapy' is used for treatment schedules with just one or two brachytherapy fractions per day. Both treatments can be applied as alternatives for LDR BT. This article deals with the choice between PDR and fractionated HDR schedules and proposes possible fractionation schedules. Methods and Materials: To calculate HDR and PDR fractionation schedules with the intention of being equivalent to LDR BT, the linear-quadratic (LQ) model has been used in an incomplete repair formulation as given by Brenner and Hall, and by Thames. In contrast to earlier applications of this model, both the total physical dose and the overall time were not kept identical for LDR and HDR/PDR schedules. A range of possible PDR treatment schedules is presented, both for booster applications (in combination with external radiotherapy (ERT) and for BT applications as a single treatment. Because the knowledge of both α/β values and the half time for repair of sublethal damage (T (1(2)) ), which are required for these calculations, is quite limited, calculations regarding the equivalence of LDR and PDR treatments have been performed for a wide range of values of α/β and T (1(2)) . The results are presented graphically as PDR/LDR dose ratios and as ratios of the PDR/LDR tumor control probabilities. Results: If the condition that total physical dose and overall time of a PDR treatment must be exactly identical to the values for the corresponding LDR treatment regimen is not applied, there appears

  16. Dosimetry audit on the accuracy of {sup 192}Ir brachytherapy source strength determinations in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson Tedgren, Aasa

    2007-11-15

    The absorbed dose delivered to the patient in brachytherapy is directly proportional to the source strength in terms of the reference air-kerma rate (RAKR). Verification of this quantity by the hospitals is widely recognized as an important part of a quality assurance program. An external audit was performed on behalf of the Secondary Standard Dosimetry Laboratory at the Swedish Radiation Protection Authority (SSI). The aim was to investigate how accurately the source-strength in {sup 192}Ir brachytherapy is determined at Swedish hospitals. The SSI reference well-type ion chamber and calibrated equipment were used to measure the RAKR of an {sup 192}Ir source in each of the 14 Swedish afterloading units. Comparisons with values determined by vendors and hospitals were made. Agreement in values of RAKR as determined by SSI, hospitals and vendors were in all cases within the {+-}3% uncertainty (at a coverage factor of k=2), typically guaranteed by the vendors. The good agreement reflects the robustness and easy handling of well-type chambers designed for brachytherapy in use by all Swedish hospitals. The {sup 192}Ir calibration service planned at SSI will solve the hospitals current problem with recalibration of equipment. SSI can also advise hospitals to follow the IAEA recommendations for measurement techniques and maintenance of equipment. It is worthwhile for the hospitals to establish their own ratio (or deviation) with the vendor and follow it as function of time. Such a mean-ratio embeds systematic differences of various origins and have a lower uncertainty than has the RAKR alone, making it useful for early detection of problems with equipment or routines. SSI could also define requirements for the agreement between source strengths as determined by hospitals and vendors and couple this to an action plan, dependent on level of disagreement, and some kind of reporting to SSI.

  17. Flushing-free film test of "1"9"2Ir accuracy of position and step distance for afterloading systems

    International Nuclear Information System (INIS)

    Lu Feng; Chen Rui; Shang Yunying; Chen Yue; Min Nan; Chen Yingmin; Deng Daping

    2014-01-01

    Objective: To study the method of measuring the position accuracy and the step distance accuracy of afterloading system with "1"9"2Ir source by using flushing-free film. Methods: The position accuracy and the step distance accuracy of a China-made afterloading system with "1"9"2Ir source was measured by using GAFCHROMIC"® EBT"3 flushing-free film. The film was scanned to proper image format, required by dose analysis software, by EPSON PREFACTION V700 PHOTO scanner. Then images are analyzed by using film dose analysis software in SNC Patient 5.2. Results: With focus on the center of active section of source, the position accuracy of this afterloading system with "1"9"2Ir source was -0.75 mm. Using film analysis could make the step point to tell apart if the step distance was 5 mm away by the method of film analysis, but couldnot make it to tell apart if the step distance was 2.5 mm away. The 2.5 mm step distance accuracy could be judged if the distance between the 1"s"t point and the 3"r"d point was 5 mm, then the 2.5 mm step distance could be deemed to no deviation. The 5 mm step distance of this afterloading system had no deviation in continuous 9 step points measured by flushing-free film. The indirect measuring results of the 2.5 mm step distance had no deviation as well. The position accuracy of this afterloading system measured with the flushing-free film accorded with the national standards. Conclusions: The method of measuring the position accuracy and the step distance accuracy of the afterloading system with "1"9"2Ir source by using flushing-free film is technically feasible. (authors)

  18. High dose rate brachytherapy for superficial cancer of the esophagus

    International Nuclear Information System (INIS)

    Maingon, Philippe; D'Hombres, Anne; Truc, Gilles; Barillot, Isabelle; Michiels, Christophe; Bedenne, Laurent; Horiot, Jean Claude

    2000-01-01

    Purpose: We analyzed our experience with external radiotherapy, combined modality treatment, or HDR brachytherapy alone to limited esophageal cancers. Methods and Materials: From 1991 to 1996, 25 patients with limited superficial esophagus carcinomas were treated by high dose rate brachytherapy. The mean age was 63 years (43-86 years). Five patients showed superficial local recurrence after external radiotherapy. Eleven patients without invasion of the basal membrane were staged as Tis. Fourteen patients with tumors involving the submucosa without spreading to the muscle were staged as T1. Treatment consisted of HDR brachytherapy alone in 13 patients, external radiotherapy and brachytherapy in 8 cases, and concomitant chemo- and radiotherapy in 4 cases. External beam radiation was administered to a total dose of 50 Gy using 2 Gy daily fractions in 5 weeks. In cases of HDR brachytherapy alone (13 patients), 6 applications were performed once a week. Results: The mean follow-up is 31 months (range 24-96 months). Twelve patients received 2 applications and 13 patients received 6 applications. Twelve patients experienced a failure (48%), 11/12 located in the esophagus, all of them in the treated volume. One patient presented an isolated distant metastasis. In the patients treated for superficial recurrence, 4/5 were locally controlled (80%) by brachytherapy alone. After brachytherapy alone, 8/13 patients were controlled (61%). The mean disease-free survival is 14 months (1-36 months). Overall survival is 76% at 1 year, 37% at 2 years, and 14% at 3 years. Overall survival for Tis patients is 24% vs. 20% for T1 (p 0.83). Overall survival for patients treated by HDR brachytherapy alone is 43%. One patient presented with a fistula with local failure after external radiotherapy and brachytherapy. Four stenosis were registered, two were diagnosed on barium swallowing without symptoms, and two required dilatations. Conclusion: High dose rate brachytherapy permits the treating

  19. Intracavitary irradiation of prostatic carcinoma by a high dose-rate afterloading technique

    Energy Technology Data Exchange (ETDEWEB)

    Odelberg-Johnson, O.; Underskog, I.; Johansson, J.E.; Bernshaw, D.; Sorbe, B.; Persson, J.E. (Oerebro Medical Center Hospital (Sweden). Dept. of Oncology Oerebro Medical Center Hospital (Sweden). Dept. of Urology Oerebro Medical Center Hospital (Sweden). Dept. of Gynecologic Oncology Oerebro Medical Center Hospital (Sweden). Dept. of Radiation Physics)

    1991-01-01

    A high dose-rate ({sup 60}Co) afterloading technique was evaluated in a series of 73 patients with prostatic carcinoma stages I-IV. The intraurethral irradiation was combined with external pelvic radiotherapy. A minimum total dose of 78 Gy was delivered to the target volume. In a subgroup of patients extramustine (Estracyt) was given as adjuvant chemohormonal therapy during irradiation. The median follow-up for the whole group was 63 months. The crude 5-year survival rate was 60% and the corrected survival rate 90%. Survival was related to the tumor grade. Local pelvic recurrences were recorded in 17.8%. 'Viable cells' in posttherapy aspiration biopsy were not associated with tumor recurrences or survival. Four patients (5%) had grade 3 late radiation reactions with urethral structure or bladder fibrosis. Urinary tract infections and prior transurethral resections were not associated with a higher frequency of reactions. Concurrent estramustine therapy seemed to increase the frequency of both acute and chronic radiation reactions. Local control, recurrence, and survival were not affected by chemohormonal therapy. The use of tomography, magnetic resonance, and ultrasound as aids to computerized dosimetry may improve local dose distribution and reduce the irradiated volume. (orig.).

  20. Assessment of right ventricular afterload in mitral valve diseases with radionuclide angiography

    International Nuclear Information System (INIS)

    Shimizu, Mitsuharu; Nakagawa, Tomio; Kohno, Yoshihiro; Kuroda, Masahiro; Takeda, Yoshihiro; Hiraki, Yoshio; Nagaya, Isao; Senoh, Yoshimasa; Teramoto, Shigeru

    1991-01-01

    Right ventricular function at rest and during exercise was studied in 33 patients with mitral valve disease by equilibrium gated radionuclide angiography using 99m Tc in vivo labeled red blood cells. Radionuclide measurements of right ventricular ejection fraction (RVEF) were correlated with mean pulmonary arterial pressure (mPAP). RVEF decreased significantly with exercise. There was no significant correlation between RVEF at rest and mPAP. However, mPAP showed significant negative correlation with RVEF during exercise and with the changes of RVEF from rest to exercise. It is concluded that RVEF during exercise in mitral valve disease is affected by right ventricular afterload, and the measurements of RVEF at rest and during exercise by equilibrium gated radionuclide angiography is useful to assess right ventricular afterload. (author)

  1. Proficiency-based cervical cancer brachytherapy training.

    Science.gov (United States)

    Zhao, Sherry; Francis, Louise; Todor, Dorin; Fields, Emma C

    2018-04-25

    Although brachytherapy increases the local control rate for cervical cancer, there has been a progressive decline in its use. Furthermore, the training among residency programs for gynecologic brachytherapy varies considerably, with some residents receiving little to no training. This trend is especially concerning given the association between poor applicator placement and decline in local control. Considering the success of proficiency-based training in other procedural specialties, we developed and implemented a proficiency-based cervical brachytherapy training curriculum for our residents. Each resident placed tandem and ovoid applicators with attending guidance and again alone 2 weeks later using a pelvic model that was modified to allow for cervical brachytherapy. Plain films were taken of the pelvic model, and applicator placement quality was evaluated. Other evaluated metrics included retention of key procedural details, the time taken for each procedure and presession and postsession surveys to assess confidence. During the initial session, residents on average met 4.5 of 5 placement criteria, which improved to 5 the second session. On average, residents were able to remember 7.6 of the 8 key procedural steps. Execution time decreased by an average of 10.5%. Resident confidence with the procedure improved dramatically, from 2.6 to 4.6 of 5. Residents who had previously never performed a tandem and ovoid procedure showed greater improvements in these criteria than those who had. All residents strongly agreed that the training was helpful and wanted to participate again the following year. Residents participating in this simulation training had measurable improvements in the time to perform the procedure, applicator placement quality, and confidence. This curriculum is easy to implement and is of great value for training residents, and would be particularly beneficial in programs with low volume of cervical brachytherapy cases. Simulation programs could

  2. Standardization of prostate brachytherapy treatment plans

    International Nuclear Information System (INIS)

    Ove, Roger; Wallner, Kent; Badiozamani, Kas; Korjsseon, Tammy; Sutlief, Steven

    2001-01-01

    Purpose: Whereas custom-designed plans are the norm for prostate brachytherapy, the relationship between linear prostate dimensions and volume calls into question the routine need for customized treatment planning. With the goal of streamlining the treatment-planning process, we have compared the treatment margins (TMs) achieved with one standard plan applied to patients with a wide range of prostate volumes. Methods and Materials: Preimplant transrectal ultrasound (TRUS) images of 50 unselected University of Washington patients with T1-T2 cancer and a prostate volume between 20 cc and 50 cc were studied. Patients were arbitrarily grouped into categories of 20-30 cc, 30-40 cc, and 40-50 cc. A standard 19-needle plan was devised for patients in the 30- to 40-cc range, using an arbitrary minimum margin of 5 mm around the gross tumor volume (GTV), making use of inverse planning technology to achieve 100% coverage of the target volume with accentuation of dose at the periphery and sparing of the central region. The idealized plan was applied to each patient's TRUS study. The distances (TMs) between the prostatic edge (GTV) and treated volume (TV) were determined perpendicular to the prostatic margin. Results: Averaged over the entire patient group, the ratio of thickness to width was 1.4, whereas the ratio of length to width was 1.3. These values were fairly constant over the range of volumes, emphasizing that the prostate retains its general shape as volume increases. The idealized standard plan was overlaid on the ultrasound images of the 17 patients in the 30- to 40-cc group and the V100, the percentage of target volume receiving 100% or more of the prescription dose, was 98% or greater for 15 of the 17 patients. The lateral and posterior TMs fell within a narrow range, most being within 2 mm of the idealized 5-mm TM. To estimate whether a 10-cc volume-interval stratification was reasonable, the standard plan generated from the 30- to 40-cc prostate model was

  3. CT-image-based conformal brachytherapy of breast cancer. The significance of semi-3-D and 3-D treatment planning.

    Science.gov (United States)

    Polgár, C; Major, T; Somogyi, A; Takácsi-Nagy, Z; Mangel, L C; Forrai, G; Sulyok, Z; Fodor, J; Németh, G

    2000-03-01

    To compare the conventional 2-D, the simulator-guided semi-3-D and the recently developed CT-guided 3-D brachytherapy treatment planning in the interstitial radiotherapy of breast cancer. In 103 patients with T1-2, N0-1 breast cancer the tumor bed was clipped during breast conserving surgery. Fifty-two of them received boost brachytherapy after 46 to 50 Gy teletherapy and 51 patients were treated with brachytherapy alone via flexible implant tubes. Single, double and triple plane implant was used in 6, 89 and 8 cases, respectively. The dose of boost brachytherapy and sole brachytherapy prescribed to dose reference points was 3 times 4.75 Gy and 7 times 5.2 Gy, respectively. The positions of dose reference points varied according to the level (2-D, semi-3-D and 3-D) of treatment planning performed. The treatment planning was based on the 3-D reconstruction of the surgical clips, implant tubes and skin points. In all cases the implantations were planned with a semi-3-D technique aided by simulator. In 10 cases a recently developed CT-guided 3-D planning system was used. The semi-3-D and 3-D treatment plans were compared to hypothetical 2-D plans using dose-volume histograms and dose non-uniformity ratios. The values of mean central dose, mean skin dose, minimal clip dose, proportion of underdosaged clips and mean target surface dose were evaluated. The accuracy of tumor bed localization and the conformity of planning target volume and treated volume were also analyzed in each technique. With the help of conformal semi-3-D and 3-D brachytherapy planning we could define reference dose points, active source positions and dwell times individually. This technique decreased the mean skin dose with 22.2% and reduced the possibility of geographical miss. We could achieve the best conformity between the planning target volume and the treated volume with the CT-image based 3-D treatment planning, at the cost of worse dose homogeneity. The mean treated volume was reduced by 25

  4. Effect of edema, relative biological effectiveness, and dose heterogeneity on prostate brachytherapy

    International Nuclear Information System (INIS)

    Wang, Jian Z.; Mayr, Nina A.; Nag, Subir; Montebello, Joseph; Gupta, Nilendu; Samsami, Nina; Kanellitsas, Christos

    2006-01-01

    Many factors influence response in low-dose-rate (LDR) brachytherapy of prostate cancer. Among them, edema, relative biological effectiveness (RBE), and dose heterogeneity have not been fully modeled previously. In this work, the generalized linear-quadratic (LQ) model, extended to account for the effects of edema, RBE, and dose heterogeneity, was used to assess these factors and their combination effect. Published clinical data have shown that prostate edema after seed implant has a magnitude (ratio of post- to preimplant volume) of 1.3-2.0 and resolves exponentially with a half-life of 4-25 days over the duration of the implant dose delivery. Based on these parameters and a representative dose-volume histogram (DVH), we investigated the influence of edema on the implant dose distribution. The LQ parameters (α=0.15 Gy -1 and α/β=3.1 Gy) determined in earlier studies were used to calculate the equivalent uniform dose in 2 Gy fractions (EUD 2 ) with respect to three effects: edema, RBE, and dose heterogeneity for 125 I and 103 Pd implants. The EUD 2 analysis shows a negative effect of edema and dose heterogeneity on tumor cell killing because the prostate edema degrades the dose coverage to tumor target. For the representative DVH, the V 100 (volume covered by 100% of prescription dose) decreases from 93% to 91% and 86%, and the D 90 (dose covering 90% of target volume) decrease from 107% to 102% and 94% of prescription dose for 125 I and 103 Pd implants, respectively. Conversely, the RBE effect of LDR brachytherapy [versus external-beam radiotherapy (EBRT) and high-dose-rate (HDR) brachytherapy] enhances dose effect on tumor cell kill. In order to balance the negative effects of edema and dose heterogeneity, the RBE of prostate brachytherapy was determined to be approximately 1.2-1.4 for 125 I and 1.3-1.6 for 103 Pd implants. These RBE values are consistent with the RBE data published in the literature. These results may explain why in earlier modeling studies

  5. A new after-loading intrauterine packing device: ten years experience.

    Science.gov (United States)

    Sklaroff, D M; Baker, A S; Tasbas, M

    1985-12-01

    A new variation of the uterine packing device for the treatment of endometrial carcinoma is described. It combines the advantages of the Holter technique with the after-loading method described by Simon. This device has been in use for more than 10 years and has been found most satisfactory.

  6. Impact of catheter reconstruction error on dose distribution in high dose rate intracavitary brachytherapy and evaluation of OAR doses

    International Nuclear Information System (INIS)

    Thaper, Deepak; Shukla, Arvind; Rathore, Narendra; Oinam, Arun S.

    2016-01-01

    In high dose rate brachytherapy (HDR-B), current catheter reconstruction protocols are relatively slow and error prone. The purpose of this study is to evaluate the impact of catheter reconstruction error on dose distribution in CT based intracavitary brachytherapy planning and evaluation of its effect on organ at risk (OAR) like bladder, rectum and sigmoid and target volume High risk clinical target volume (HR-CTV)

  7. Sigmoid Colon is an Unexpected Organ at Risk in Brachytherapy for Cervix Cancer

    International Nuclear Information System (INIS)

    Ffrrcsi, H.F.; Mrcpfrcr, I.B.; Appleby, H.

    2006-01-01

    Purpose: To identify organs at risk (OAR) and analyze the dose volume histograms (DVHs) for intracavitary brachytherapy in cancer of the cervix. Late toxicities are our concern in treatment of cancer cervix especially as it is presenting in younger age population. Material and Methods: Patients with cancer of the cervix were treated using CT and MRI compatible, high dose rate, (HDR) applicators. CT images were acquired with the intra-uterine tube and colpostats in place and subsequently imported into Varian Brachyvision planning software. We identified the gross tumour volume (GTV) and organs at risk (OARs) and analyzed the dose distribution using dose volume histograms (DVHs). Doses were calculated according to ICRU 38. Critical tissue DVHs were analysed following the American Brachytherapy Society rules. Dose points are recorded as the dose encompassed by the greatest contiguous I cm3, 2 cm3, and 5 cm3 volumes in the plan. Results: We found the sigmoid colon to be a relatively immobile structure that repeatedly received doses in excess of 70% of the intended point A dose. The only solution in order to bring sigmoid DVHs within 5% toxicity limits was to reduce the dose to point A. Planning images and DVHs for the OARs are shown as an example of our work. Conclusion: The recto-sigmoid colon is identified as an unexpected OAR in a majority of cervix brachytherapy plans. A new consensus on the DVH limit of this structure will be needed in the era of CT planned brachytherapy, if arbitrary dose reductions to point A are to be the solution to the problem of sigmoid DVHs that exceed conventional tolerance limits

  8. American brachytherapy society (ABS) consensus guidelines for brachytherapy of esophageal cancer

    International Nuclear Information System (INIS)

    Gaspar, Laurie E.; Nag, Subir; Herskovic, Arnold; Mantravadi, Rao; Speiser, Burton

    1997-01-01

    Introduction: There is wide variation in the indications, treatment regimens, and dosimetry for brachytherapy in the treatment of cancer of the esophagus. No guidelines for optimal therapy currently exist. Methods and Materials: Utilizing published reports and clinical experience, representatives of the Clinical Research Committee of the American Brachytherapy Society (ABS) formulated guidelines for brachytherapy in esophageal cancer. Results: Recommendations were made for brachytherapy in the definitive and palliative treatment of esophageal cancer. (A) Definitive treatment: Good candidates for brachytherapy include patients with unifocal thoracic adeno- or squamous cancers ≤ 10 cm in length, with no evidence of intra-abdominal or metastatic disease. Contraindications include tracheal or bronchial involvement, cervical esophagus location, or stenosis that cannot be bypassed. The esophageal brachytherapy applicator should have an external diameter of 6-10 mm. If 5FU-based chemotherapy and 45-50-Gy external beam are used, recommended brachytherapy is either: (i) HDR 10 Gy in two weekly fractions of 5 Gy each; or (ii) LDR 20 Gy in a single course at 0.4-1 Gy/hr. All doses are specified 1 cm from the midsource or middwell position. Brachytherapy should follow external beam radiation therapy and should not be given concurrently with chemotherapy. (B) Palliative treatment: Patients with adeno- or squamous cancers of the thoracic esophagus with distant metastases or unresectable local disease progression/recurrence after definitive radiation treatment should be considered for brachytherapy with palliative intent. After limited dose (30 Gy) EBRT, the recommended brachytherapy is either: (i) HDR 10-14 Gy in one or two fractions; or (ii) LDR 20-25 Gy in a single course at 0.4-1 Gy/hr. The need for external beam radiation in newly diagnosed patients with a life expectancy of less than 3 months is controversial. In these cases, HDR of 15-20 Gy in two to four fractions or

  9. Applicability and dosimetric impact of ultrasound-based preplanning in high-dose-rate brachytherapy of prostate cancer

    International Nuclear Information System (INIS)

    Aebersold, D.M.; Isaak, B.; Behrensmeier, F.; Kolotas, C.; Mini, R.; Greiner, R.H.; Thalmann, G.; Kranzbuehler, H.

    2004-01-01

    Background and purpose: analyses of permanent brachytherapy seed implants of the prostate have demonstrated that the use of a preplan may lead to a considerable decrease of dosimetric implant quality. The authors aimed to determine whether the same drawbacks of preplanning also apply to high-dose-rate (HDR) brachytherapy. Patients and methods: 15 patients who underwent two separate HDR brachytherapy implants in addition to external-beam radiation therapy for advanced prostate cancer were analyzed. A pretherapeutic transrectal ultrasound was performed in all patients to generate a preplan for the first brachytherapy implant. For the second brachytherapy, a subset of patients were treated by preplans based on the ultrasound from the first brachytherapy implant. Preplans were compared with the respective postplans assessing the following parameters: coverage index, minimum target dose, homogeneity index, and dose exposure of organs at risk. The prostate geometries (volume, width, height, length) were compared as well. Results: at the first brachytherapy, the matching between the preplan and actual implant geometry was sufficient in 47% of the patients, and the preplan could be applied. The dosimetric implant quality decreased considerably: the mean coverage differed by -0.11, the mean minimum target dose by -0.15, the mean homogeneity index by -0.09. The exposure of organs at risk was not substantially altered. At the second brachytherapy, all patients could be treated by the preplan; the differences between the implant quality parameters were less pronounced. The changes of prostate geometry between preplans and postplans were considerable, the differences in volume ranging from -8.0 to 13.8 cm 3 and in dimensions (width, height, length) from -1.1 to 1.0 cm. Conclusion: preplanning in HDR brachytherapy of the prostate is associated with a substantial decrease of dosimetric implant quality, when the preplan is based on a pretherapeutic ultrasound. The implant quality

  10. Implant volume as a prognostic variable in brachytherapy decision-making for malignant gliomas stratified by the RTOG recursive partitioning analysis

    International Nuclear Information System (INIS)

    Videtic, Gregory M.M.; Gaspar, Laurie E.; Zamorano, Lucia; Stitt, Larry W.; Fontanesi, James; Levin, Kenneth J.

    2001-01-01

    Purpose: When an initial retrospective review of malignant glioma patients (MG) undergoing brachytherapy was carried out using the Radiation Therapy Oncology Group (RTOG) recursive partitioning analysis (RPA) criteria, it revealed that glioblastoma multiforme (GBM) cases benefit the most from implant. In the present study, we focused exclusively on these GBM patients stratified by RPA survival class and looked at the relationship between survival and implanted target volume, to distinguish the prognostic value of volume in general and for a given GBM class. Methods and Materials: Between 1991 and 1998, 75 MG patients were treated with surgery, external beam radiation, and stereotactic iodine-125 (I-125) implant. Of these, 53 patients (70.7%) had GBMs, with 52 (98%) having target volume (TV) data for analysis. Stratification by RPA criteria showed 12, 26, 13, and 1 patients in classes III to VI, respectively. For analysis purposes, classes V and VI were merged. There were 27 (51.9%) male and 25 (48.1%) female patients. Mean age was 57.5 years (range 14-79). Median Karnofsky performance status (KPS) was 90 (range 50-100). Median follow-up time was 11 months (range 2-79). Results: At analysis, 18 GBM patients (34.6%) were alive and 34 (65.4%) were dead. Two-year and 5-year survivals were 42% and 17.5%, respectively, with a median survival time (MST) of 16 months. Two-year survivals and MSTs for the implanted GBM patients compared to the RTOG database were as follows: 74% vs. 35% and 28 months vs. 17.9 months for class III; 32% vs. 15% and 16 months vs. 11.1 months for class IV; 29% vs. 6% and 11 months vs. 8.9 months for class V/VI. Mean implanted TV was 15.5 cc (range 0.8-78), which corresponds to a spherical implant diameter of 3.1 cm. Plotting survival as a function of 5-cc TV increments suggested a trend toward poorer survival as the implanted volume increases. The impact of incremental changes in TV on survival within a given RPA class of GBMs was compared to the

  11. THYROID HORMONE REVERSES AGING-INDUCED MYOCARDIAL FATTY ACID OXIDATION DEFECTS AND IMPROVES THE RESPONSE TO ACUTELY INCREASED AFTERLOAD

    Energy Technology Data Exchange (ETDEWEB)

    Ledee, Dolena; Portman, Michael A.; Kajimoto, Masaki; Isern, Nancy G.; Olson, Aaron

    2013-06-07

    Background: Subclinical hypothyroidism occurs during aging in humans and mice and may contribute to development of heart failure. Aging also impairs myocardial fatty acid oxidation, causing increased reliance on flux through pyruvate dehydrogenase (PDH) to maintain function. We hypothesize that the metabolic changes in aged hearts make them less tolerant to acutely increased work and that thyroid hormone reverses these defects. Methods: Studies were performed on young (Young, 4-6 months) and aged (Old, 22-24 months) C57/BL6 mice at standard (50 mmHg) and high afterload (80 mmHg). Another aged group received thyroid hormone for 3 weeks (Old-TH, high afterload only). Function was measured in isolated working hearts along with substrate fractional contributions (Fc) to the citric acid cycle (CAC) using perfusate with 13C labeled lactate, pyruvate, glucose and unlabeled palmitate and insulin. Results: Cardiac function was similar between Young and Old mice at standard afterload. Palmitate Fc was reduced but no individual carbohydrate contributions differed. CAC and individual substrate fluxes decreased in aged. At high afterload, -dP/dT was decreased in Old versus Young. Similar to low afterload, palmitate Fc was decreased in Old. Thyroid hormone reversed aging-induced changes in palmitate Fc and flux while significantly improving cardiac function. Conclusion: The aged heart shows diminished ability to increase cardiac work due to substrate limitations, primarily impaired fatty acid oxidation. The heart accommodates slightly by increasing efficiency through oxidation of carbohydrate substrates. Thyroid hormone supplementation in aged mice significantly improves cardiac function potentially through restoration of fatty acid oxidation.

  12. Calculation of integrated biological response in brachytherapy

    International Nuclear Information System (INIS)

    Dale, Roger G.; Coles, Ian P.; Deehan, Charles; O'Donoghue, Joseph A.

    1997-01-01

    Purpose: To present analytical methods for calculating or estimating the integrated biological response in brachytherapy applications, and which allow for the presence of dose gradients. Methods and Materials: The approach uses linear-quadratic (LQ) formulations to identify an equivalent biologically effective dose (BED eq ) which, if applied to a specified tissue volume, would produce the same biological effect as that achieved by a given brachytherapy application. For simple geometrical cases, BED multiplying factors have been derived which allow the equivalent BED for tumors to be estimated from a single BED value calculated at a dose reference point. For more complex brachytherapy applications a voxel-by-voxel determination of the equivalent BED will be more accurate. Equations are derived which when incorporated into brachytherapy software would facilitate such a process. Results: At both high and low dose rates, the BEDs calculated at the dose reference point are shown to be lower than the true values by an amount which depends primarily on the magnitude of the prescribed dose; the BED multiplying factors are higher for smaller prescribed doses. The multiplying factors are less dependent on the assumed radiobiological parameters. In most clinical applications involving multiple sources, particularly those in multiplanar arrays, the multiplying factors are likely to be smaller than those derived here for single sources. The overall suggestion is that the radiobiological consequences of dose gradients in well-designed brachytherapy treatments, although important, may be less significant than is sometimes supposed. The modeling exercise also demonstrates that the integrated biological effect associated with fractionated high-dose-rate (FHDR) brachytherapy will usually be different from that for an 'equivalent' continuous low-dose-rate (CLDR) regime. For practical FHDR regimes involving relatively small numbers of fractions, the integrated biological effect to

  13. American Brachytherapy Society consensus report for accelerated partial breast irradiation using interstitial multicatheter brachytherapy.

    Science.gov (United States)

    Hepel, Jaroslaw T; Arthur, Douglas; Shaitelman, Simona; Polgár, Csaba; Todor, Dorin; Zoberi, Imran; Kamrava, Mitchell; Major, Tibor; Yashar, Catheryn; Wazer, David E

    To develop a consensus report for the quality practice of accelerated partial breast irradiation (APBI) using interstitial multicatheter brachytherapy (IMB). The American Brachytherapy Society Board appointed an expert panel with clinical and research experience with breast brachytherapy to provide guidance for the current practice of IMB. This report is based on a comprehensive literature review with emphasis on randomized data and expertise of the panel. Randomized trials have demonstrated equivalent efficacy of APBI using IMB compared with whole breast irradiation for select patients with early-stage breast cancer. Several techniques for placement of interstitial catheters are described, and importance of three-dimensional planning with appropriate optimization is reviewed. Optimal target definition is outlined. Commonly used dosing schemas include 50 Gy delivered in pulses of 0.6-0.8 Gy/h using pulsed-dose-rate technique and 34 Gy in 10 fractions, 32 Gy in eight fractions, or 30 Gy in seven fractions using high-dose-rate technique. Potential toxicities and strategies for toxicity avoidance are described in detail. Dosimetric constraints include limiting whole breast volume that receives ≥50% of prescription dose to 0.75 (>0.85 preferred), V 150  < 45 cc, and V 200  < 14 cc. Using an optimal implant technique coupled with optimal planning and appropriate dose constraints, a low rate of toxicity and a good-to-excellent cosmetic outcome of ≥90% is expected. IMB is an effective technique to deliver APBI for appropriately selected women with early-stage breast cancer. This consensus report has been created to assist clinicians in the appropriate practice of APBI using IMB. Copyright © 2017 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  14. American brachytherapy society (ABS) guidelines for brachytherapy of esophageal cancer

    International Nuclear Information System (INIS)

    Nag, Subir; Gaspar, Laurie; Herskovic, Arnold; Mantravadi, Prasad; Speiser, Burton

    1996-01-01

    Introduction: There is wide variation in the indications, techniques, treatment regimens and dosimetry being used to treat cancer of the esophagus and no guidelines exist for optimal therapy. Methods: The Clinical Research Committee of the ABS met to formulate consensus guidelines for brachytherapy in esophageal cancer. Results: Good candidates for brachytherapy include patients with unifocal disease, with thoracic tumor 10 cm primary regional lymph adenopathy or tumor located in the gastro-esophageal junction or cervical esophagus. Contraindications include tracheo-esophageal fistula or stenosis that cannot be by-passed. The esophageal or nasogastric tube inserted should have a diameter of 6-10 mm whenever possible. If 5FU-based chemotherapy and 50 Gy external beam (EBRT) are used, it is suggested that the low dose rate brachytherapy (LDR) dose be 20 Gy at 0.4-1 Gy/hr, prescribed at 1 cm from the source. If high dose rate (HDR) is used, the dose recommended is 10 Gy in 2 weekly fractions of 5 Gy each, given after EBRT. Chemotherapy is not usually given concurrently with brachytherapy, and when it is, the brachytherapy dose is reduced. The length of esophagus treated by brachytherapy includes the post-EBRT involved area and a 1-2 cm margin proximally and distally. Supportive care, given during EBRT includes an antifungal agent (e.g., diflucan) and carafate. Gradual dilatation of the esophagus is required post-treatment for esophageal strictures. Conclusion: Guidelines were developed for brachytherapy in esophageal cancer. As more clinical data becomes available, these guidelines will be updated by the ABS

  15. Functional reserve of the ischemic left ventricle with ventricular aneurysm to afterload stress

    International Nuclear Information System (INIS)

    Tsuiki, Kai; Kobayashi, Tadashi; Hayasaka, Makio

    1985-01-01

    The response of left ventricular function to afterload stress was assessed using DSA for eight patients with old anterior myocardial infarction and ventricular aneurysm including that of the anterior wall. After initial DSA in the basal state, methoxamine was infused intravenously (1 to 2 mg/min). When aortic systolic blood pressure increased by 30 to 50 mmHg, a second DSA was performed for each patient. Left ventricular volumes and ejection fractions were calculated by the area-length method, and regional wall motion was assessed by the visual method according to the AHA classification and the curvature radius of the apical ventricular aneurysm was calculated. Methoxamine induced neither acute heart failure nor angina pectoris in the present series. The heart rates decreased, and there were a significant increase in end-systolic volumes (p ES ). However, ΔESV and ΔR ES did not correlate; ΔR ES was much greater in two patients, who were relatively old. Their aneurysms were circumscribed within the left ventricular anterior wall, their ejection fractions were relatively increased; and their onsets of acute myocardial infarction were relatively recent. (J.P.N.)

  16. Radiotherapy and Brachytherapy : Proceedings of the NATO Advanced Study Institute on Physics of Modern Radiotherapy & Brachytherapy

    CERN Document Server

    Lemoigne, Yves

    2009-01-01

    This volume collects a series of lectures presented at the tenth ESI School held at Archamps (FR) in November 2007 and dedicated to radiotherapy and brachytherapy. The lectures focus on the multiple facets of radiotherapy in general, including external radiotherapy (often called teletherapy) as well as internal radiotherapy (called brachytherapy). Radiotherapy strategy and dose management as well as the decisive role of digital imaging in the associated clinical practice are developed in several articles. Grouped under the discipline of Conformal Radiotherapy (CRT), numerous modern techniques, from Multi-Leaf Collimators (MLC) to Intensity Modulated RadioTherapy (IMRT), are explained in detail. The importance of treatment planning based upon patient data from digital imaging (Computed Tomography) is also underlined. Finally, despite the quasi- totality of patients being presently treated with gamma and X-rays, novel powerful tools are emerging using proton and light ions (like carbon ions) beams, bound to bec...

  17. Esthesioneuroblastoma - treatment of recurrences by means of remote-controlled afterloading-technique

    International Nuclear Information System (INIS)

    Schulz-Wendtland, R.; Bauer, M.; Wilhelm, K.R.; Mende, U.; Dreyer, M.

    1990-01-01

    At the Radiological Hospital of the Heidelberg University, one patient with a local recurrence of an esthesioneuroblastoma situated on the left-hand side of the skull base was treated between February 11 and March 18, 1986, by an afterloading contact therapy with curative intent. After preceding surgery and percutaneous radiotherapy, repeated local recurrences and locoregional lymph node metastases had occured. The contact therapy was performed after adjusting an individual face mask in which the afterloading probe was placed and brought into its position in the tumor region. The irradiation scheme was based on the transformation of the source coordinates from the stereoscopic X-ray localization system into the coordinate system of the computed tomogram by means of X-ray right reference points. The irradiation planning by computed tomography allows to optimize the arrangement of sources within the tumor region. The principles of the method as well as the treatment result are presented. (orig.) [de

  18. The Real-Time Dose Measurement Scintillating Fiber Array for Brachytherapy Procedures

    Science.gov (United States)

    Tynes, Lawrence

    2007-03-01

    Brachytherapy is a treatment modality that uses tiny radioactive sources (few mm in length) by delivering enough doses to kill cancer tumors or plaque build-up. The type of sources used in hospitals include both gamma and beta emitters. Presently, the technique suffers from not having a single detector with the capability of providing accurate dose distribution information within sub-mm accuracy. The current standard is based primarily on well chambers and film dosimetry. The Center for Advanced Medical Instrumentation (CAMI) at Hampton University is developing a Scintillating Fiber Based Beta Detector prototype in collaboration with the National Institute for Standards and Technology (NIST) to address this problem. The device is composed of an array of 1x1 mm^2 scintillating fibers optically coupled to photo-multiplier tubes for photon-to-current conversion. A CAMAC LabView based data acquisition system is used for real time data collection and histogramming, data analysis. A set of data were collected at the nearby Bon Secours DePaul Medical Center using a GammaMed 12i HDR after-loader housing a 6.62 mCi Ir-192 source. Preliminary comparison between our device and film dosimetry will be discussed.

  19. Dosimetric evaluation of rectum and bladder using image-based CT planning and orthogonal radiographs with ICRU 38 recommendations in intracavitary brachytherapy

    Directory of Open Access Journals (Sweden)

    Jamema Swamidas

    2008-01-01

    Full Text Available The purpose is to compare CT-based dosimetry with International Commission on Radiation Units and Measurements (ICRU 38 bladder and rectum reference points in patients of carcinoma of uterine cervix treated with intracavitary brachytherapy (ICA. Twenty-two consecutive patients were evaluated. Orthogonal radiographs and CT images were acquired and transferred to PLATO planning system. Bladder and rectal reference points were identified according to ICRU 38 recommendations. Dosimetry was carried out based on Manchester system. Patient treatment was done using 192 Iridium high dose rate (HDR remote after-loading machine based on the conventional radiograph-based dosimetry. ICRU rectal and bladder point doses from the radiograph plans were compared with D 2 , dose received by 2 cm 3 of the organ receiving maximum dose from CT plan. V 2 , volume of organ receiving dose more than the ICRU reference point, was evaluated. The mean (±standard deviation volume of rectum and bladder was 60 (±28 cm 3 and 138 (±41 cm 3 respectively. The mean reference volume in radiograph and CT plan was 105 (±7 cm 3 and 107 (±7 cm 3 respectively. It was found that 6 (±4 cm3 of rectum and 16 (±10 cm 3 of bladder received dose more than the prescription dose. V2 of rectum and bladder was 7 (±1.7 cm 3 and 20.8 (±6 cm 3 respectively. Mean D 2 of rectum and bladder was found to be 1.11 (±0.2 and 1.56 (±0.6 times the mean ICRU reference points respectively. This dosimteric study suggests that comparison of orthogonal X-ray-based and CT-based HDR ICA planning is feasible. ICRU rectal point dose correlates well with maximum rectal dose, while ICRU bladder point underestimates the maximum bladder dose.

  20. HDR brachytherapy. An option for preventing nonmalignant obstruction in patients after lung transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, A.; Karstens, J.H.; Christiansen, H. [Medical School Hannover (Germany). Dept. of Radiation Oncology; Warszawski-Baumann, A.; Baumann, R. [Medical School Hannover (Germany). Dept. of Radiation Oncology; Medical Practice for Radiotherapy and Radiation Oncology, Hannover (Germany); Gottlieb, J.; Welte, T. [Medical School Hannover (Germany). Dept. of Respiratory Medicine

    2012-12-15

    Purpose: Interventional bronchoscopy is the main treatment modality in managing benign airway obstructions following lung transplantation. We analyzed the effect of intraluminal brachytherapy on preventing recurrence of hyperplastic tissue. Patients and methods: From September 2002 to September 2004, a total of 24 intraluminal brachytherapy applications were carried out on 12 lung transplant patients in 15 different locations. A single dose of 3 Gy was calculated at a 5-mm distance from the catheter surface; the target volume included a stenosis plus safety interval of 0.5-1.0 cm. Results: All patients had a mean 10.6 local interventions (Argon plasma coagulation, balloon dilatations, stenting) over 4.4 months before the first application of endobronchial brachytherapy, with a mean amount of 2.4 applications per month. The mean forced expiratory volume in 1 s (FEV1) was 2,219 ml in the 3 months before application of brachytherapy. After endobronchial brachytherapy, all patients experienced improvement in clinical status and respiratory function. The mean level of FEV1 in the 3 months after application was 2,435 ml (p = 0.02), and the number of invasive interventions dropped to a mean rate of 5.2 interventions in the 5.1 months after the first intervention, with an amount of 1 application per month. No treatment-related complications were seen. Four patients were treated twice, 1 patient three times, and 1 patient four times at the same localization. Conclusions: Recurrent symptomatic benign airway obstruction from hyperplastic tissue in the bronchus after lung transplantation can be successfully treated with intraluminal high-dose-rate brachytherapy with a dose of 3 Gy at a 5-mm distance from the catheter surface and a longitudinal safety margin of 1 cm. (orig.)

  1. HDR brachytherapy. An option for preventing nonmalignant obstruction in patients after lung transplantation

    International Nuclear Information System (INIS)

    Meyer, A.; Karstens, J.H.; Christiansen, H.; Gottlieb, J.; Welte, T.

    2012-01-01

    Purpose: Interventional bronchoscopy is the main treatment modality in managing benign airway obstructions following lung transplantation. We analyzed the effect of intraluminal brachytherapy on preventing recurrence of hyperplastic tissue. Patients and methods: From September 2002 to September 2004, a total of 24 intraluminal brachytherapy applications were carried out on 12 lung transplant patients in 15 different locations. A single dose of 3 Gy was calculated at a 5-mm distance from the catheter surface; the target volume included a stenosis plus safety interval of 0.5-1.0 cm. Results: All patients had a mean 10.6 local interventions (Argon plasma coagulation, balloon dilatations, stenting) over 4.4 months before the first application of endobronchial brachytherapy, with a mean amount of 2.4 applications per month. The mean forced expiratory volume in 1 s (FEV1) was 2,219 ml in the 3 months before application of brachytherapy. After endobronchial brachytherapy, all patients experienced improvement in clinical status and respiratory function. The mean level of FEV1 in the 3 months after application was 2,435 ml (p = 0.02), and the number of invasive interventions dropped to a mean rate of 5.2 interventions in the 5.1 months after the first intervention, with an amount of 1 application per month. No treatment-related complications were seen. Four patients were treated twice, 1 patient three times, and 1 patient four times at the same localization. Conclusions: Recurrent symptomatic benign airway obstruction from hyperplastic tissue in the bronchus after lung transplantation can be successfully treated with intraluminal high-dose-rate brachytherapy with a dose of 3 Gy at a 5-mm distance from the catheter surface and a longitudinal safety margin of 1 cm. (orig.)

  2. Orbital rhabdomyosarcoma of the child: the role of PDR brachytherapy in eye preservation

    International Nuclear Information System (INIS)

    Kovacs, G.; Rochels, R.; Mehdorn, H.M.; Werner, J.; Wilhelm, R.; Kohr, P.; Kimmig, B. N.

    1996-01-01

    Material and Methods: There were four children (8-7-5 years and(15(12)) months old) with recurrent/primary embryonal rhabdomyosarcoma treated with curative intention by peroperative PDR boost brachytherapy in combination with radio-chemotherapy and/or surgery. PDR brachytherapy according to the Kiel protocol: daily five pulses, two hours each, with 1 Gy on the reference isodose which is usually 2-3 mm close to the applicator surface. CT simulation based conformal treatment planning was carried out in each case. The implant was done intraoperatively using the free-hand plastic tube method, after a macroscopically complete excision of the tumor. Due to treatment planning individual target volume, eye with N, opticus and bone structures, as well as the applicators and other regions of interest were visualized. Manual volume optimisation was practiced and natural volumen-dose histograms were analysed in 'classic' graphic mode as well as in a special colour coded three-dimensional visualization in cine mode on the screen. One child received, three months before the recurrence was operated, 50 Gy hyperfractionated external beam radiation (2 Gy fractions) and was irradiated with 20 Gy brachytherapy in four days. The second patient received ten days after 20 Gy brachytherapy 32 Gy hyperfractionated external beam radiation. The third child (external beam treatment outside of our clinic), received conventional fractionated irradiation with 1.6 Gy fraction dose instead of a prescribed hyperfractionated external beam therapy and her brachytherapy dose was 25 Gy. At the (15(12)) months old child with primary embryonal rhabdomyosarcoma we applied 20 Gy brachytherapy and 24 Gy hyperfractionated external beam irradiation. All patients received multidrug chemotherapy according to the German Study Protocol (CWS-91). Results: Follow-up is 34, 28, 22, and 6 months for recurrent embryonal rhabdomyosarcoma patients (stand February 96). We observed at 9 months one rhabdomyosarcoma

  3. Afterloading intracavitary irradiation and expanding stent for malignant biliary obstruction

    Energy Technology Data Exchange (ETDEWEB)

    Yoshimura, Hitoshi; Sakaguchi, Hiroshi; Yoshioka, Tetsuya and others

    1989-02-01

    A double lumen catheter was developed as an apllicator for the remote afterloading (RALS) of /sup 60/Co source for the intracavitary irradiation of an obstructed common bile duct caused by carcinoma of the gallbladder. This was followed by the placement of nylon-covered expandable metallic stents to maintain patency. This combination effectively provided palliation. (author).

  4. Place of the brachytherapy in the therapeutic strategy of rhabdomyosarcomas of the nasogenian groove of children

    International Nuclear Information System (INIS)

    Breton-Callu, C.; Haie-Meder, C.; Oberlin, O.; Delapierre, M.; Gerbaulet, A.

    2000-01-01

    The brachytherapy in the treatment of rhabdomyosarcomas of the nasogenian groove has to be discussed when it exists a residual tumor after an initial chemotherapy and leads to good results, in term of local control. An advantage of the brachytherapy in comparison with external irradiation, in the treatment of children tumors, is the small size of the treated volume, that allows to decrease the aftereffects incidence. The brachytherapy comes in the frame of a therapeutic needing a multidisciplinary approach and a cooperation between surgeons, brachy-therapists and onco-pediatricians. (N.C.)

  5. A dosimetric intercomparison of brachytherapy facilities in Ireland, Scotland and the North of England

    International Nuclear Information System (INIS)

    Heeney, Conor; McClean, Brendan; Kelly, Colin

    2005-01-01

    Background and purpose: A dosimetric intercomparison of brachytherapy remote afterloading units in Ireland, Scotland and the North of England has been carried out involving 9 radiotherapy centres, and sampling 5 HDR and 6 LDR units. Materials and methods: Absolute calibrations have been performed in air on both HDR and LDR sources. The results are expressed in terms of a ratio of local to calibrated value. Frequency distributions were obtained for the multi-source LDR units by individually measuring each source. Using these distributions the effect of non-uniform source strength on the dose rate at Manchester point A was assessed for a typical clinical brachytherapy insertion for carcinoma of the cervix. Both frequency and dose rate distribution curves were modeled using normal statistics and characterised in terms of the mean (μ) and standard deviation (σ). Results: Evaluation of the HDR units indicated a mean ratio of 1.008 (±0.01) while for LDR the mean ratio was 0.997 (±0.02). The LDR frequency distributions demonstrated a variation of σ values extending from 1.4 to 3.0% of μ. It was shown that this non-uniformity in source strength introduced an uncertainty in the treatment planning process of between 0.8 and 1.8% when compared to the assumption of uniform source strength. Conclusions: The results of this intercomparison indicate dosimetric consistency between centres for both LDR and HDR units. The distribution of LDR source strengths were within expected limits and the resultant dose rate distributions were considered clinically acceptable

  6. Frequency of afterload homocysteinemia in normal population of Southern Iran: a pilot study.

    Science.gov (United States)

    Akbari, A; Dehbozorgian, J; Afrasibi, A R; Gafari, H; Gerdabi, J; Karimi, M

    2010-04-01

    The objectives of the present pilot study were to investigate the effect of an oral methionine load on plasma homocysteine in healthy subjects southern Iran. We studied 50 peoples (10 men, 40 women, median age 27.5, range 20-37) referred to screening center for marriage since different part of southern Iran. Methionine (0.1 g kg(-1) b.wt.) was immediately administrated orally in 200 mL of orange juice and a second blood was obtained 4 h later. Plasma level of homocysteine was carried out by high performance liquid chromatography and flumetric detection. A homocysteine level above 15 mmol L(-1) was considered high. The mean fasting and afterload homocysteine were 15.28 and 31.29 micromol L(-1), respectively. Fasting hyperhomocysteinemia (>15 micromol L(-1)) was detected in 12% of male and 8% in female which significantly higher in men than women (p homocysteine levels (> 31 micromol L(-1)) was detected in 16% of male and 14%in female which higher in men than women. Notably 80% of participants had normal total homocystein concentration (homocystein levels (p = 0.000), in 8% of those normal homocystein level, methionine afterload homocystein levels became abnormal. In conclusion, based on results, we recommend the methionine afterload homocystein levels in high risk cases with normal fasting level in order to unmissed some cases with normal basal homocystein level.

  7. Combined transperineal radiofrequency (RF) interstitial hyperthermia and brachytherapy for localized prostate cancer (PC)

    International Nuclear Information System (INIS)

    Urakami, Shinji; Gonda, Nobuko; Kikuno, Nobuyuki

    2001-01-01

    Hyperthermia has been used effectively as a radiation sensitizer. Interstitial hyperthermoradiotherapy has been therefore utilized as a minimal invasive therapy in attempts to improve local tumor control for various cancers, but not for urological cancer. The purpose of this study was to investigate the safety and feasibility of transperineal hyperthermoradiotherapy for localized PC. Based on our basic study of hyperthermoradiotherapy, we devised the procedure of combined transperineal RF interstitial hyperthermia and brachytherapy for localized prostate cancer. Two patients with localized PC underwent transperineal RF interstitial hyperthermia combined with brachytherapy operation the 192-Ir remote after-loading system (RALS). Under transrectal ultrasound guidance, a total number of 12-18 stainless steel needles for 192-Ir RALS were implanted into the prostatic gland and seminal vesicles (SV) in an optimized pattern. Eight of the needles were used as electrodes for hyperthermia, and were electrically insultated using the vinyl catheter along the length of the subdermal fatty tissue to protect from overheating. Three other needles were utilized for continuous temperature mapping in the prostate. Rectal temperature was also monitored. Total radiation doses of 70 Gy to the prostate and SV were planned as a combination of brachytherapy (24 Gy/4 fraction) and external irradiation using a four-field box technique (46 Gy/23 fraction). Hyperthermic treatment (goal of 42 to 43 deg C for 60 minutes) was performed twice following the 1st and 4th brachytherapy at an interval of more than 48 hours for the recovery of cancer cells from thermotolerance. Both patients reached the treatment goal of all intraprostatic temperatures >43.0 deg C, which was considered favorable for hyperthermia, and the rectal temperatures of both patients remained <38 deg C during hyperthermia. In serial PSA measurements of both patients, serum PSA was less than 1.0 ng/ml within 3 months and has since

  8. Prostate cancer brachytherapy

    International Nuclear Information System (INIS)

    Abreu, Carlos Eduardo Vita; Silva, Joao L. F.; Srougi, Miguel; Nesrallah, Adriano

    1999-01-01

    The transperineal brachytherapy with 125 I/Pd 103 seed implantation guided by transurethral ultrasound must be presented as therapeutical option of low urinary morbidity in patients with localized prostate cancer. The combined clinical staging - including Gleason and initial PSA - must be encouraged, for definition of a group of low risk and indication of exclusive brachytherapy. Random prospective studies are necessary in order to define the best role of brachytherapy, surgery and external beam radiation therapy

  9. Evaluation of the effect of prostate volume change on tumor control probability in LDR brachytherapy.

    Science.gov (United States)

    Knaup, Courtney; Mavroidis, Panayiotis; Stathakis, Sotirios; Smith, Mark; Swanson, Gregory; Papanikolaou, Niko

    2011-09-01

    This study evaluates low dose-rate brachytherapy (LDR) prostate plans to determine the biological effect of dose degradation due to prostate volume changes. In this study, 39 patients were evaluated. Pre-implant prostate volume was determined using ultrasound. These images were used with the treatment planning system (Nucletron Spot Pro 3.1(®)) to create treatment plans using (103)Pd seeds. Following the implant, patients were imaged using CT for post-implant dosimetry. From the pre and post-implant DVHs, the biologically equivalent dose and the tumor control probability (TCP) were determined using the biologically effective uniform dose. The model used RBE = 1.75 and α/β = 2 Gy. The prostate volume changed between pre and post implant image sets ranged from -8% to 110%. TCP and the mean dose were reduced up to 21% and 56%, respectively. TCP is observed to decrease as the mean dose decreases to the prostate. The post-implant tumor dose was generally observed to decrease, compared to the planned dose. A critical uniform dose of 130 Gy was established. Below this dose, TCP begins to fall-off. It was also determined that patients with a small prostates were more likely to suffer TCP decrease. The biological effect of post operative prostate growth due to operative trauma in LDR was evaluated using the concept. The post-implant dose was lower than the planned dose due to an increase of prostate volume post-implant. A critical uniform dose of 130 Gy was determined, below which TCP begun to decline.

  10. Timing of computed tomography-based postimplant assessment following permanent transperineal prostate brachytherapy

    International Nuclear Information System (INIS)

    Prestidge, Bradley R.; Bice, William S.; Kiefer, Eric J.; Prete, James J.

    1998-01-01

    Purpose: To establish the rate of resolution of prostatic edema following transperineal interstitial permanent prostate brachytherapy, and to determine the results and impact of timing of the postimplant assessment on the dose-volume relationship. Methods and Materials: A series of 19 consecutive patients with early-stage adenocarcinoma of the prostate receiving transperineal interstitial permanent prostate brachytherapy, were enrolled in this study. Twelve received 125 I and seven received 103 Pd. Postoperative assessment included a computed tomographic (CT) scan on postoperative days 1, 8, 30, 90, and 180. On each occasion, CT scans were performed on a GE helical unit at 3-mm abutting slices, 15-cm field of view. Prostate volumes were outlined on CT scans by a single clinician. Following digitization of the volumes and radioactive sources, volumes and dose-volume histograms were calculated. The prostate volume encompassed by the 80% and 100% reference isodose volumes was calculated. Results: Preimplant transrectal ultrasound determined volumes varied from 17.5 to 38.6 cc (median 27.9 cc). Prostate volumes previously defined on 40 randomly selected postimplant CT scans were compared in a blinded fashion to a second CT-derived volume and ranged from -32% to +24%. The Pearson correlation coefficient for prostate CT volume reproducibility was 0.77 (p < 0.03). CT scan-determined volume performed on postoperative day 1 was an average of 41.4% greater than the volume determined by preimplant ultrasound. Significant decreases in average volume were seen during the first month postoperatively. Average volume decreased 14% from day 1 to day 8, 10% from day 8 to day 30, 3% from day 30 to day 90, and 2% thereafter. Coverage of the prostate volume by the 80% isodose volume increased from 85.6% on postoperative day 1 to 92.2% on postoperative day 180. The corresponding increase in the 100% reference dose coverage of the prostate volume ranged from 73.1% to 83.3% between

  11. Developing A Directional High-Dose Rate (d-HDR) Brachytherapy Source

    Science.gov (United States)

    Heredia, Athena Yvonne

    Conventional sources used in brachytherapy provide nearly isotropic or radially symmetric dose distributions. Optimizations of dose distributions have been limited to varied dwell times at specified locations within a given treatment volume, or manipulations in source position for seed implantation techniques. In years past, intensity modulated brachytherapy (IMBT) has been used to reduce the amount of radiation to surrounding sensitive structures in select intracavitary cases by adding space or partial shields. Previous work done by Lin et al., at the University of Wisconsin-Madison, has shown potential improvements in conformality for brachytherapy treatments using a directionally shielded low dose rate (LDR) source for treatments in breast and prostate. Directional brachytherapy sources irradiate approximately half of the radial angles around the source, and adequately shield a quarter of the radial angles on the opposite side, with sharp gradient zones between the treated half and shielded quarter. With internally shielded sources, the radiation can be preferentially emitted in such a way as to reduce toxicities in surrounding critical organs. The objective of this work is to present findings obtained in the development of a new directional high dose rate (d-HDR) source. To this goal, 103Pd (Z = 46) is reintroduced as a potential radionuclide for use in HDR brachytherapy. 103Pd has a low average photon energy (21 keV) and relatively short half -life (17 days), which is why it has historically been used in low dose rate applications and implantation techniques. Pd-103 has a carrier-free specific activity of 75000 Ci/g. Using cyclotron produced 103Pd, near carrier-free specific activities can be achieved, providing suitability for high dose rate applications. The evolution of the d-HDR source using Monte Carlo simulations is presented, along with dosimetric parameters used to fully characterize the source. In addition, a discussion on how to obtain elemental

  12. Radiobiological modelling of dose-gradient effects in low dose rate, high dose rate and pulsed brachytherapy

    International Nuclear Information System (INIS)

    Armpilia, C; Dale, R G; Sandilos, P; Vlachos, L

    2006-01-01

    This paper presents a generalization of a previously published methodology which quantified the radiobiological consequences of dose-gradient effects in brachytherapy applications. The methodology uses the linear-quadratic (LQ) formulation to identify an equivalent biologically effective dose (BED eq ) which, if applied uniformly to a specified tissue volume, would produce the same net cell survival as that achieved by a given non-uniform brachytherapy application. Multiplying factors (MFs), which enable the equivalent BED for an enclosed volume to be estimated from the BED calculated at the dose reference surface, have been calculated and tabulated for both spherical and cylindrical geometries. The main types of brachytherapy (high dose rate (HDR), low dose rate (LDR) and pulsed (PB)) have been examined for a range of radiobiological parameters/dimensions. Equivalent BEDs are consistently higher than the BEDs calculated at the reference surface by an amount which depends on the treatment prescription (magnitude of the prescribed dose) at the reference point. MFs are closely related to the numerical BED values, irrespective of how the original BED was attained (e.g., via HDR, LDR or PB). Thus, an average MF can be used for a given prescribed BED as it will be largely independent of the assumed radiobiological parameters (radiosensitivity and α/β) and standardized look-up tables may be applicable to all types of brachytherapy treatment. This analysis opens the way to more systematic approaches for correlating physical and biological effects in several types of brachytherapy and for the improved quantitative assessment and ranking of clinical treatments which involve a brachytherapy component

  13. Erectile function after permanent prostate brachytherapy

    International Nuclear Information System (INIS)

    Merrick, Gregory S.; Butler, Wayne M.; Galbreath, Robert W.; Stipetich, Robin L.; Abel, Laurie J.; Lief, Jonathan H.

    2002-01-01

    Purpose: To determine the incidence of potency preservation after permanent prostate brachytherapy using a validated patient-administered questionnaire and to evaluate the effect of multiple clinical and treatment parameters on penile erectile function. Methods and Materials: Four hundred twenty-five patients underwent permanent prostate brachytherapy from April 1995 to October 1999. Two hundred nine patients who were potent before brachytherapy and who at the time of the survey were not receiving hormonal therapy were mailed the specific erectile questions of the International Index of Erectile Function (IIEF) questionnaire with a self-addressed stamped envelope. The questionnaire consisted of 5 questions, with a maximal score of 25. Of the 209 patients, 181 (87%) completed and returned the questionnaire. The mean and median follow-up was 40.4±14.9 and 40.6 months, respectively (range 19-75). Preimplant erectile function was assigned using a three-tiered scoring system (2 = erections always or nearly always sufficient for vaginal penetration; 1 = erections sufficient for vaginal penetration but considered suboptimal; 0 = the inability to obtain erections and/or erections inadequate for vaginal penetration). Postimplant potency was defined as an IIEF score ≥11. The clinical parameters evaluated for erectile function included patient age, preimplant potency, clinical T-stage, pretreatment prostate-specific antigen level, Gleason score, elapsed time after implantation, hypertension, diabetes mellitus, and tobacco consumption. Treatment parameters included radiation dose to the prostate gland, use of hormonal manipulation, use of supplemental external beam radiotherapy (EBRT), choice of isotope, prostate volume, and planning volume. The efficacy of sildenafil citrate in brachytherapy-induced erectile dysfunction (ED) was also evaluated. Results: Pretreatment erectile function scores of 2 and 1 were assigned to 125 and 56 patients, respectively. With a 6-year follow

  14. The feasibility study and characterization of a two-dimensional diode array in “magic phantom” for high dose rate brachytherapy quality assurance

    International Nuclear Information System (INIS)

    Espinoza, A.; Beeksma, B.; Petasecca, M.; Fuduli, I.; Porumb, C.; Cutajar, D.; Lerch, M. L. F.; Rosenfeld, A. B.; Corde, S.; Jackson, M.

    2013-01-01

    Purpose: High dose rate (HDR) brachytherapy is a radiation treatment technique capable of delivering large dose rates to the tumor. Radiation is delivered using remote afterloaders to drive highly active sources (commonly 192 Ir with an air KERMA strength range between 20 000 and 40 000 U, where 1 U = 1 μGy m 2 /h in air) through applicators directly into the patient's prescribed region of treatment. Due to the obvious ramifications of incorrect treatment while using such an active source, it is essential that there are methods for quality assurance (QA) that can directly and accurately verify the treatment plan and the functionality of the remote afterloader. This paper describes the feasibility study of a QA system for HDR brachytherapy using a phantom based two-dimensional 11 × 11 epitaxial diode array, named “magic phantom.”Methods: The HDR brachytherapy treatment plan is translated to the phantom with two rows of 10 (20 in total) HDR source flexible catheters, arranged above and below the diode array “magic plate” (MP). Four-dimensional source tracking in each catheter is based upon a developed fast iterative algorithm, utilizing the response of the diodes in close proximity to the 192 Ir source, sampled at 100 ms intervals by a fast data acquisition (DAQ) system. Using a 192 Ir source in a solid water phantom, the angular response of the developed epitaxial diodes utilized in the MP and also the variation of the MP response as a function of the source-to-detector distance (SDD) were investigated. These response data are then used by an iterative algorithm for source dwelling position determination. A measurement of the average transit speed between dwell positions was performed using the diodes and a fast DAQ.Results: The angular response of the epitaxial diode showed a variation of 15% within 360°, with two flat regions above and below the detector face with less than 5% variation. For SDD distances of between 5 and 30 mm the relative response of

  15. Pilot study in the treatment of endometrial carcinoma with 3D image-based high-dose-rate brachytherapy using modified Heyman packing: Clinical experience and dose-volume histogram analysis

    International Nuclear Information System (INIS)

    Weitmann, Hajo Dirk; Poetter, Richard; Waldhaeusl, Claudia; Nechvile, Elisabeth; Kirisits, Christian; Knocke, Tomas Hendrik

    2005-01-01

    Purpose: The aim of this study was to evaluate dose distribution within uterus (clinical target volume [CTV]) and tumor (gross tumor volume [GTV]) and the resulting clinical outcome based on systematic three-dimensional treatment planning with dose-volume adaptation. Dose-volume assessment and adaptation in organs at risk and its impact on side effects were investigated in parallel. Methods and Materials: Sixteen patients with either locally confined endometrial carcinoma (n = 15) or adenocarcinoma of uterus and ovaries after bilateral salpingo-oophorectomy (n = 1) were included. Heyman packing was performed with mean 11 Norman-Simon applicators (3-18). Three-dimensional treatment planning based on computed tomography (n = 29) or magnetic resonance imaging (n = 18) was done in all patients with contouring of CTV, GTV, and organs at risk. Dose-volume adaptation was achieved by dwell location and time variation (intensity modulation). Twelve patients treated with curative intent received five to seven fractions of high-dose-rate brachytherapy (7 Gy per fraction) corresponding to a total dose of 60 Gy (2 Gy per fraction and α/β of 10 Gy) to the CTV. Four patients had additional external beam radiotherapy (range, 10-40 Gy). One patient had salvage brachytherapy and 3 patients were treated with palliative intent. A dose-volume histogram analysis was performed in all patients. On average, 68% of the CTV and 92% of the GTV were encompassed by the 60 Gy reference volume. Median minimum dose to 90% of CTV and GTV (D90) was 35.3 Gy and 74 Gy, respectively. Results: All patients treated with curative intent had complete remission (12/12). After a median follow-up of 47 months, 5 patients are alive without tumor. Seven patients died without tumor from intercurrent disease after median 22 months. The patient with salvage treatment had a second local recurrence after 27 months and died of endometrial carcinoma after 57 months. In patients treated with palliative intent

  16. Use of an iPad App to simulate pressure-volume loops and cardiovascular physiology.

    Science.gov (United States)

    Leisman, Staci; Burkhoff, Daniel

    2017-09-01

    The purpose of this laboratory exercise is to model the changes in preload, afterload, and contractility on a simulated pressure-volume loop and to correlate those findings with common measurements of clinical cardiovascular physiology. Once students have modeled these changes on a healthy heart, the students are asked to look at a simulated case of cardiogenic shock. Effects on preload, contractility, and afterload are explored, as well as the hemodynamic effects of a number of student-suggested treatment strategies. Copyright © 2017 the American Physiological Society.

  17. Intensity Modulated Proton Beam Radiation for Brachytherapy in Patients With Cervical Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Clivio, Alessandro [Oncology Institute of Southern Switzerland, Bellinzona (Switzerland); Kluge, Anne [Department of Radiation Oncology, Charité University Hospital, Berlin (Germany); Cozzi, Luca, E-mail: lucozzi@iosi.ch [Oncology Institute of Southern Switzerland, Bellinzona (Switzerland); Köhler, Christhardt [Department of Gynecology, Charité University Hospital, Berlin (Germany); Neumann, Oliver [Department of Radiation Oncology, Charité University Hospital, Berlin (Germany); Vanetti, Eugenio [Oncology Institute of Southern Switzerland, Bellinzona (Switzerland); Wlodarczyk, Waldemar; Marnitz, Simone [Department of Radiation Oncology, Charité University Hospital, Berlin (Germany)

    2013-12-01

    Purpose: To evaluate intensity modulated proton therapy (IMPT) in patients with cervical cancer in terms of coverage, conformity, and dose–volume histogram (DVH) parameters correlated with recommendations from magnetic resonance imaging (MRI)-guided brachytherapy. Methods and Materials: Eleven patients with histologically proven cervical cancer underwent primary chemoradiation for the pelvic lymph nodes, the uterus, the cervix, and the parametric region, with a symmetric margin of 1 cm. The prescription was for 50.4 Gy, with 1.8 Gy per fraction. The prescribed dose to the parametria was 2.12 Gy up to 59.36 Gy in 28 fractions as a simultaneous boost. For several reasons, the patients were unable to undergo brachytherapy. As an alternative, IMPT was planned with 5 fractions of 6 Gy to the cervix, including the macroscopic tumor with an MRI-guided target definition, with an isotropic margin of 5 mm for planning target volume (PTV) definition. Groupe-Europeen de Curietherapie and European society for Radiotherapy and Oncology (GEC-ESTRO) criteria were used for DVH evaluation. Reference comparison plans were optimized for volumetric modulated rapid arc (VMAT) therapy with the RapidArc (RA). Results: The dose to the high-risk volume was calculated with α/β = 10 with 89.6 Gy. For IMPT, the clinical target volume showed a mean dose of 38.2 ± 5.0 Gy (35.0 ±1.8 Gy for RA). The D{sub 98%} was 31.9 ± 2.6 Gy (RA: 30.8 ± 1.0 Gy). With regard to the organs at risk, the 2Gy Equivalent Dose (EQD2) (α/β = 3) to 2 cm{sup 3} of the rectal wall, sigmoid wall, and bladder wall was 62.2 ± 6.4 Gy, 57.8 ± 6.1 Gy, and 80.6 ± 8.7 Gy (for RA: 75.3 ± 6.1 Gy, 66.9 ± 6.9 Gy, and 89.0 ± 7.2 Gy, respectively). For the IMPT boost plans in combination with external beam radiation therapy, all DVH parameters correlated with <5% risk for grades 2 to 4 late gastrointestinal and genitourinary toxicity. Conclusion: In patients who are not eligible for brachytherapy, IMPT as a boost

  18. Palliative interstitial HDR brachytherapy for recurrent rectal cancer. Implantation techniques and results

    International Nuclear Information System (INIS)

    Kolotas, C.; Roeddiger, S.; Martin, T.; Tselis, N.; Baltas, D.; Zamboglou, N.; Strassmann, G.; Aebersold, D.M.

    2003-01-01

    Purpose: To report the methods and clinical results of CT-based interstitial high-dose-rate (HDR) brachytherapy procedures for the palliative treatment of recurrent rectal cancer. Patients and Methods: A total of 44 brachytherapy implants were performed in 38 patients. CT-guided catheter implants were performed in 34 patients under local anesthesia and sedation, and four patients were implanted intraoperatively. Of 40 CT-guided implants, 20 were done using metallic needles introduced via the sacrum and 20 were transperineal implants of plastic tubes in the presacral region. Postimplant CT scans were used for three-dimensional (3-D) conformal brachytherapy planning. Patients implanted with metallic needles were given a single fraction of 10-15 Gy using HDR 192 Ir, and those who received transperineal implants of plastic catheters were given fractionated brachytherapy, 5 Gy twice daily to a total dose of 30-40 Gy. The median tumor volume was 225 cm 3 with a range of 41-2,103 cm 3 . Results: After a median follow-up of 23.4 months, a total of 13/38 patients were alive. The median postbrachytherapy survival was 15 months with 18 of the 25 deaths due to distant metastases. Tumor response was as follows: 6/38 partial remission, 28/38 stable disease, and 4/38 local progression. A planning target volume (PTV) coverage > 85% was achieved in 42/44 implants. The treatment was well tolerated, and no acute complications were observed. One patient developed a fistula after 8 months. Pain relief was recorded in 34 patients (89.5%), and the median duration of this palliative effect was 5 months with a range of 1-13 months. Conclusions: Interstitial HDR brachytherapy is a valuable tool for the delivery of high doses and achieves effective palliation in recurrent rectal carcinoma. (orig.)

  19. Palliative interstitial HDR brachytherapy for recurrent rectal cancer. Implantation techniques and results

    Energy Technology Data Exchange (ETDEWEB)

    Kolotas, C. [Dept. of Radiation Oncology, Offenbach Hospital, Offenbach (Germany); Dept. of Radio-Oncology, Univ. of Bern, Inselspital, Bern (Switzerland); Roeddiger, S.; Martin, T.; Tselis, N.; Baltas, D.; Zamboglou, N. [Dept. of Radiation Oncology, Offenbach Hospital, Offenbach (Germany); Strassmann, G. [Dept. of Radiotherapy, Univ. Hospital, Philipps Univ., Marburg (Germany); Aebersold, D.M. [Dept. of Radio-Oncology, Univ. of Bern, Inselspital, Bern (Switzerland)

    2003-07-01

    Purpose: To report the methods and clinical results of CT-based interstitial high-dose-rate (HDR) brachytherapy procedures for the palliative treatment of recurrent rectal cancer. Patients and Methods: A total of 44 brachytherapy implants were performed in 38 patients. CT-guided catheter implants were performed in 34 patients under local anesthesia and sedation, and four patients were implanted intraoperatively. Of 40 CT-guided implants, 20 were done using metallic needles introduced via the sacrum and 20 were transperineal implants of plastic tubes in the presacral region. Postimplant CT scans were used for three-dimensional (3-D) conformal brachytherapy planning. Patients implanted with metallic needles were given a single fraction of 10-15 Gy using HDR {sup 192}Ir, and those who received transperineal implants of plastic catheters were given fractionated brachytherapy, 5 Gy twice daily to a total dose of 30-40 Gy. The median tumor volume was 225 cm{sup 3} with a range of 41-2,103 cm{sup 3}. Results: After a median follow-up of 23.4 months, a total of 13/38 patients were alive. The median postbrachytherapy survival was 15 months with 18 of the 25 deaths due to distant metastases. Tumor response was as follows: 6/38 partial remission, 28/38 stable disease, and 4/38 local progression. A planning target volume (PTV) coverage > 85% was achieved in 42/44 implants. The treatment was well tolerated, and no acute complications were observed. One patient developed a fistula after 8 months. Pain relief was recorded in 34 patients (89.5%), and the median duration of this palliative effect was 5 months with a range of 1-13 months. Conclusions: Interstitial HDR brachytherapy is a valuable tool for the delivery of high doses and achieves effective palliation in recurrent rectal carcinoma. (orig.)

  20. CT-image based conformal brachytherapy of breast cancer. The significance of semi-3-D and 3-D treatment planning

    International Nuclear Information System (INIS)

    Polgar, C.; Major, T.; Somogyi, A.; Takacsi-Nagy, Z.; Mangel, L.C.; Fodor, J.; Nemeth, G.; Forrai, G.; Sulyok, Z.

    2000-01-01

    In 103 patients with T1-2, N0-1 breast cancer the tumor bed was clipped during breast conserving surgery. Fifty-two of them received boost brachytherapy after 46 to 50 Gy teletherapy and 51 patients were treated with brachytherapy alone via flexible implant tubes. Single double and triple plane implant was used in 6,89 and 8 cases, respectively. The dose of boost brachytherapy and sole brachytherapy prescribed to dose reference points was 3 times 4.75 Gy and 7 times 5.2 Gy, respectively. The positions of dose reference points varied according to the level (2-D, semi-3-D and 3-D) of treatment planning performed. The treatment planning was based on the 3-D reconstruction of the surgical clips, implant tubes and skin points. In all cases the implantations were planned with a semi-3-D technique aided by simulator. In 10 cases a recently developed CT-guided 3-D planning system was used. The semi-3D and 3-D treatment plans were compared to hypothetical 2-D plans using dose-volume histograms and dose non-uniformity ratios. The values of mean central dose, mean skin dose, minimal clip dose, proportion of underdosaged clips and mean target surface dose were evaluated. The accuracy of tumor bed localization and the conformity of planning target volume and treated volume were also analyzed in each technique. Results: With the help of conformal semi-3D and 3D brachytherapy planning we could define reference dose points, active source positions and dwell times individually. This technique decreased the mean skin dose with 22.2% and reduced the possibility of geographical miss. We could achieve the best conformity between the planning target volume and the treated volume with the CT-image based 3-D treatment planning, at the cost of worse dose homogeneity. The mean treated volume was reduced by 25.1% with semi-3-D planning, however, its was increased by 16.2% with 3-D planning, compared to the 2-D planning. (orig.) [de

  1. MO-E-BRD-02: Accelerated Partial Breast Irradiation in Brachytherapy: Is Shorter Better?

    International Nuclear Information System (INIS)

    Todor, D.

    2015-01-01

    Is Non-invasive Image-Guided Breast Brachytherapy Good? – Jess Hiatt, MS Non-invasive Image-Guided Breast Brachytherapy (NIBB) is an emerging therapy for breast boost treatments as well as Accelerated Partial Breast Irradiation (APBI) using HDR surface breast brachytherapy. NIBB allows for smaller treatment volumes while maintaining optimal target coverage. Considering the real-time image-guidance and immobilization provided by the NIBB modality, minimal margins around the target tissue are necessary. Accelerated Partial Breast Irradiation in brachytherapy: is shorter better? - Dorin Todor, PhD VCU A review of balloon and strut devices will be provided together with the origins of APBI: the interstitial multi-catheter implant. A dosimetric and radiobiological perspective will help point out the evolution in breast brachytherapy, both in terms of devices and the protocols/clinical trials under which these devices are used. Improvements in imaging, delivery modalities and convenience are among the factors driving the ultrashort fractionation schedules but our understanding of both local control and toxicities associated with various treatments is lagging. A comparison between various schedules, from a radiobiological perspective, will be given together with a critical analysis of the issues. to review and understand the evolution and development of APBI using brachytherapy methods to understand the basis and limitations of radio-biological ‘equivalence’ between fractionation schedules to review commonly used and proposed fractionation schedules Intra-operative breast brachytherapy: Is one stop shopping best?- Bruce Libby, PhD. University of Virginia A review of intraoperative breast brachytherapy will be presented, including the Targit-A and other trials that have used electronic brachytherapy. More modern approaches, in which the lumpectomy procedure is integrated into an APBI workflow, will also be discussed. Learning Objectives: To review past and current

  2. MO-E-BRD-02: Accelerated Partial Breast Irradiation in Brachytherapy: Is Shorter Better?

    Energy Technology Data Exchange (ETDEWEB)

    Todor, D. [Virginia Commonwealth University (United States)

    2015-06-15

    Is Non-invasive Image-Guided Breast Brachytherapy Good? – Jess Hiatt, MS Non-invasive Image-Guided Breast Brachytherapy (NIBB) is an emerging therapy for breast boost treatments as well as Accelerated Partial Breast Irradiation (APBI) using HDR surface breast brachytherapy. NIBB allows for smaller treatment volumes while maintaining optimal target coverage. Considering the real-time image-guidance and immobilization provided by the NIBB modality, minimal margins around the target tissue are necessary. Accelerated Partial Breast Irradiation in brachytherapy: is shorter better? - Dorin Todor, PhD VCU A review of balloon and strut devices will be provided together with the origins of APBI: the interstitial multi-catheter implant. A dosimetric and radiobiological perspective will help point out the evolution in breast brachytherapy, both in terms of devices and the protocols/clinical trials under which these devices are used. Improvements in imaging, delivery modalities and convenience are among the factors driving the ultrashort fractionation schedules but our understanding of both local control and toxicities associated with various treatments is lagging. A comparison between various schedules, from a radiobiological perspective, will be given together with a critical analysis of the issues. to review and understand the evolution and development of APBI using brachytherapy methods to understand the basis and limitations of radio-biological ‘equivalence’ between fractionation schedules to review commonly used and proposed fractionation schedules Intra-operative breast brachytherapy: Is one stop shopping best?- Bruce Libby, PhD. University of Virginia A review of intraoperative breast brachytherapy will be presented, including the Targit-A and other trials that have used electronic brachytherapy. More modern approaches, in which the lumpectomy procedure is integrated into an APBI workflow, will also be discussed. Learning Objectives: To review past and current

  3. MO-E-BRD-03: Intra-Operative Breast Brachytherapy: Is One Stop Shopping Best?

    International Nuclear Information System (INIS)

    Libby, B.

    2015-01-01

    Is Non-invasive Image-Guided Breast Brachytherapy Good? – Jess Hiatt, MS Non-invasive Image-Guided Breast Brachytherapy (NIBB) is an emerging therapy for breast boost treatments as well as Accelerated Partial Breast Irradiation (APBI) using HDR surface breast brachytherapy. NIBB allows for smaller treatment volumes while maintaining optimal target coverage. Considering the real-time image-guidance and immobilization provided by the NIBB modality, minimal margins around the target tissue are necessary. Accelerated Partial Breast Irradiation in brachytherapy: is shorter better? - Dorin Todor, PhD VCU A review of balloon and strut devices will be provided together with the origins of APBI: the interstitial multi-catheter implant. A dosimetric and radiobiological perspective will help point out the evolution in breast brachytherapy, both in terms of devices and the protocols/clinical trials under which these devices are used. Improvements in imaging, delivery modalities and convenience are among the factors driving the ultrashort fractionation schedules but our understanding of both local control and toxicities associated with various treatments is lagging. A comparison between various schedules, from a radiobiological perspective, will be given together with a critical analysis of the issues. to review and understand the evolution and development of APBI using brachytherapy methods to understand the basis and limitations of radio-biological ‘equivalence’ between fractionation schedules to review commonly used and proposed fractionation schedules Intra-operative breast brachytherapy: Is one stop shopping best?- Bruce Libby, PhD. University of Virginia A review of intraoperative breast brachytherapy will be presented, including the Targit-A and other trials that have used electronic brachytherapy. More modern approaches, in which the lumpectomy procedure is integrated into an APBI workflow, will also be discussed. Learning Objectives: To review past and current

  4. CT or MRI for image-based brachytherapy in cervical cancer

    International Nuclear Information System (INIS)

    Krishnatry, R.; Patel, F.D.; Singh, P.; Sharma, S.C.; Oinam, A.S.; Shukla, A.K.

    2012-01-01

    The objective of this study was to compare volumes and doses of tumour and organs at risk with computed tomography vs. magnetic resonance imaging in cervical cancer brachytherapy. Seventeen previously untreated patients with cervical cancer suitable for radical treatment were included. All patients underwent brachytherapy using a magnetic resonance imaging-compatible applicator followed by both computed tomography and magnetic resonance imaging. The tumour and organs at risk (bladder, rectum, sigmoid and intestines) were contoured on computed tomography using only clinical findings and on magnetic resonance imaging using GEC-ESTRO guidelines. The volume and doses for tumour and organs at risk were evaluated using two-sided t-test. When magnetic resonance imaging information is not included in contouring on computed tomography images, there is significant underestimation of tumour height and overestimation of the width (P 100 , D 90 and D 100 for high- and intermediate-risk clinical target volume in computed tomography and magnetic resonance imaging. The volumes and doses to 0.1, 1 and 2 cc for organs at risk were also similar. Magnetic resonance imaging remains the gold standard for tumour delineation, but computed tomography with clinical information can give comparable results, which need to be studied further. Computed tomography-based contouring can be used comfortably for delineation of organs at risk. (author)

  5. Acceptance testing and commissioning of a new model HDR afterloader

    International Nuclear Information System (INIS)

    McDermott, Patrick N.; Somnay, Archana R.; Alecu, Rodica

    1996-01-01

    We have recently performed acceptance testing procedures and have commissioned a new model HDR afterloader, the Varian VariSource with ''Intelligent Drive.'' Our site was one of the first installations worldwide. It is our intent to describe our tests and the results of the tests particularly as they may differ from other afterloaders. The Ir-192 source is unique among afterloaders marketed in the US in that it is very slender (OD of source wire is 0.59 mm) and relatively long (two 0.5 cm sources for a total active length of 1.0 cm). A check of source homogeneity by autoradiograph as urged by the US Nuclear Regulatory Commission demonstrates no detectable source inhomogeneity. Reentrant well ionization chambers are calibrated in the US with a 3.5 mm long source at Accredited Dosimetry Calibration Laboratories. Therefore calibration needs to be considered with some care. Calibration of the first delivered source with a well ionization chamber indicated agreement with the manufacturer's stated activity to within 0.5%. Source positioning is checked with a device called a 'cam scale'. Tests have been carried out on this system and it has been found to accurately indicate source position to within ±0.5 mm. Timer accuracy has been found to be better than 0.1% for dwell times of several hundred seconds. The intelligent drive system and the small source diameter allow the source wire to negotiate paths with small radius of curvature. A series of tests have been made in which the source is forced to negotiate 'U' turns of decreasing radius of curvature. A 4.7 F, 100 cm long catheter was used for these tests and the 'U' turn was positioned at approximately 90 cm. Under these conditions, the VariSource was consistently able to traverse a 1.25 cm radius of curvature, which is better than the manufacturer's stated limit of 1.5 cm

  6. Postoperative vaginal irradiation with high dose rate afterloading technique in endometrial carcinoma stage I

    International Nuclear Information System (INIS)

    Sorbe, B.G.; Smeds, A.C.

    1990-01-01

    A high dose rate ( 60 Co) afterloading technique was used for postoperative prophylactic vaginal irradiation in a series of 404 women with endometrial carcinoma Stage I. The total recurrence rate was 3.7% with 0.7% vaginal deposits. The crude 5-year survival rate for the complete series was 91.8% compared to 13.3% for those with recurrences. Depth of myometrial infiltration (greater than 1/3 of the uterine wall) and nuclear grade were the most important prognostic factors. Clinically significant late radiation reactions (bladder and/or rectum) were recorded in 6.9%. Dose per fraction and the size of the target volume were highly significantly related to the occurrence of both early and late radiation reactions. Vaginal shortening is closely related to the dose per fraction, length of the reference isodose, and the applicator diameter. The shape of the vaginal applicator versus the isodoses and the importance of the source train geometry and relative activity for dose gradient inhomogeneities within the target volume are discussed. Cumulative radiation effect (CRE) and linear-quadratic (LQ) calculations have been performed and related to tissue reactions within the target volume and in the risk organs. An alpha-beta quotient of 8.8 for vaginal shrinkage effect and 2.0 for late rectal complications are suggested on the basis of calculations using a maximum likelihood method for quantal radiation data

  7. Cardiovascular radiotherapy. A multi-disciplinary textbook. 2. rev. and enl. ed.

    International Nuclear Information System (INIS)

    Hehrlein, C.

    2002-01-01

    Cardiovascular radiotherapy has made rapid progress over the past few years, thus necessitating a revision and re-edition of this textbook. The structure of the first edition has been largely retained, but there have nevertheless been some important new additions, including chapters on ''New insights on vessel thrombosis and the edge effect following vascular brachytherapy'', ''Catheter-based intracoronary brachytherapy using the β emitter phosphorus 32'', ''Intracoronary afterloading using the Novoste trademark system'' and ''Catheter-based γ-HDR brachytherapy of the peripheral vessels''. The contributions contained in the first edition have also been thoroughly revised

  8. Clinical experience with the MammoSite[reg] radiation therapy system for brachytherapy of breast cancer: Results from an international phase II trial

    International Nuclear Information System (INIS)

    Niehoff, Peter; Polgar, Csaba; Ostertag, Horst; Major, Tibor; Sulyok, Zoltan; Kimmig, Bernhard; Kovacs, Gyoergy

    2006-01-01

    Background and purpose: In a prospective multi-center phase II trial, we investigated the MammoSite[reg] Radiation Therapy System, a new device for delivering intracavitary brachytherapy following breast conserving surgery. The MammoSite[reg] is a dual lumen, closed ended catheter with a small, spherical inflatable balloon and a port for connecting a remote afterloader to the central lumen. We analyzed the surgical procedure and placement of the MammoSite[reg], treatment planning and radiation delivery complications and cosmesis, as well the comfort for the patients. Patients and methods: Between 2002 and 2004 a total of 32 patients (pts) were implanted using the MammoSite[reg]. The reference isodose was defined 1 cm from the balloon surface. We analyzed the post-implant anatomic position of the applicator and the geometric form of the balloon via ultrasound, CT and X-ray, related side effects, cosmetic outcome and patient quality of life. Results: Twenty-three out of 32 patients (72%) were eligible for MammoSite[reg] intracavitary brachytherapy. Twenty-eight percentage had to be excluded because of different reasons. Eleven patients were treated with primary brachytherapy with a total dose of 34 Gy (2x3.4 Gy) and 12 had a boost with a mean dose of 13.3 Gy (range: 7.5-15 Gy; 2x2.5 Gy) combined with EBRT and doses ranged between 46 and 50 Gy. In three cases a balloon rupture occurred. We observed two abscesses within 3 months of implantation and serious seroma development in 10 patients (39%). Skin related side effects were erythema in 21 patients (91%), hyperpigmentation in 13 patients (56%) and teleangiectasia in six patients (26%) after mean follow-up 20 months. Conclusions: The MammoSite[reg] Radiation Therapy System is a feasible treatment modality for intracavitary brachytherapy of breast cancer after breast conserving surgery. The advantage of the system is only one applicator is necessary for the delivery of a fractionated radiotherapy. In addition, patient

  9. LDR vs. HDR brachytherapy for localized prostate cancer: the view from radiobiological models.

    Science.gov (United States)

    King, Christopher R

    2002-01-01

    Permanent LDR brachytherapy and temporary HDR brachytherapy are competitive techniques for clinically localized prostate radiotherapy. Although a randomized trial will likely never be conducted comparing these two forms of brachytherapy, a comparative radiobiological modeling analysis proves useful in understanding some of their intrinsic differences, several of which could be exploited to improve outcomes. Radiobiological models based upon the linear quadratic equations are presented for fractionated external beam, fractionated (192)Ir HDR brachytherapy, and (125)I and (103)Pd LDR brachytherapy. These models incorporate the dose heterogeneities present in brachytherapy based upon patient-derived dose volume histograms (DVH) as well as tumor doubling times and repair kinetics. Radiobiological parameters are normalized to correspond to three accepted clinical risk factors based upon T-stage, PSA, and Gleason score to compare models with clinical series. Tumor control probabilities (TCP) for LDR and HDR brachytherapy (as monotherapy or combined with external beam) are compared with clinical bNED survival rates. Predictions are made for dose escalation with HDR brachytherapy regimens. Model predictions for dose escalation with external beam agree with clinical data and validate the models and their underlying assumptions. Both LDR and HDR brachytherapy achieve superior tumor control when compared with external beam at conventional doses (LDR brachytherapy as boost achieves superior tumor control than when used as monotherapy. Stage for stage, both LDR and current HDR regimens achieve similar tumor control rates, in agreement with current clinical data. HDR monotherapy with large-dose fraction sizes might achieve superior tumor control compared with LDR, especially if prostate cancer possesses a high sensitivity to dose fractionation (i.e., if the alpha/beta ratio is low). Radiobiological models support the current clinical evidence for equivalent outcomes in localized

  10. Intravascular brachytherapy for peripheral vascular disease

    Directory of Open Access Journals (Sweden)

    Hagen, Anja

    2008-09-01

    Full Text Available Scientific background: Percutaneous transluminal angioplasties (PTA through balloon dilatation with or without stenting, i.e. vessel expansion through balloons with or without of implantation of small tubes, called stents, are used in the treatment of peripheral artery occlusive disease (PAOD. The intravascular vessel irradiation, called intravascular brachytherapy, promises a reduction in the rate of repeated stenosis (rate of restenosis after PTA. Research questions: The evaluation addresses questions on medical efficacy, cost-effectiveness as well as ethic, social and legal implications in the use of brachytherapy in PAOD patients. Methods: A systematic literature search was conducted in August 2007 in the most important medical electronic databases for publications beginning from 2002. The medical evaluation included randomized controlled trials (RCT. The information synthesis was performed using meta-analysis. Health economic modeling was performed with clinical assumptions derived from the meta-analysis and economical assumptions derived from the German Diagnosis Related Groups (G-DRG-2007. Results: Medical evaluation: Twelve publications about seven RCT on brachytherapy vs. no brachytherapy were included in the medical evaluation. Two RCT showed a significant reduction in the rate of restenosis at six and/or twelve months for brachytherapy vs. no brachytherapy after successful balloon dilatation, the relative risk in the meta-analysis was 0.62 (95% CI: 0.46 to 0.84. At five years, time to recurrence of restenosis was significantly delayed after brachytherapy. One RCT showed a significant reduction in the rate of restenosis at six months for brachytherapy vs. no brachytherapy after PTA with optional stenting, the relative risk in the meta-analysis was 0.76 (95% CI: 0.61 to 0.95. One RCT observed a significantly higher rate of late thrombotic occlusions after brachytherapy in the subgroup of stented patients. A single RCT for brachytherapy

  11. Design and construction of a holder to the safety handling of Cs-137 to be used in cervix cancer treatments using intracavitary brachytherapy by afterloading

    International Nuclear Information System (INIS)

    Gonzales, E.; Lea, D.

    1996-01-01

    In venezuelan public hospitals where cervix cancer treatments are performed by means of Cs-137 manual afterloading systems, the handling of the sources is done with two type of holders, metallic and plastic, the plastic holders are pieces of induced serious radio-sanitary problem such as loser of the Cs-137 source and radioactive contamination in the treatment area, this has caused the interruption of the treatments in many hospitals. This interruption had a high social cost because of the thousands women waiting for intracavitary therapy. To start again with the treatments, the metallic holders were required but there were not enough funds in the budget, because of this problem in a short time IVIS'S health physics drew and made a low price source holder. (authors). 2 figs., 2 tabs

  12. Ultrasound-guided interstitial brachytherapy in the treatment of advanced vaginal recurrences from cervical and endometrial carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Weitmann, H.D.; Knocke, T.H.; Waldhaeusl, C.; Poetter, R. [Dept. of Radiotherapy and Radiobiology, Medical Univ. of Vienna (Austria)

    2006-02-01

    Background: in advanced vaginal recurrences of cervical and endometrial carcinomas therapeutic options are rare because of preceding therapy. Patients and methods: 23 patients developing advanced vaginal recurrences of cervical and endometrial carcinomas were included. 15 patients started with external-beam therapy to the pelvis and eight patients after preceding radiotherapy underwent brachytherapy alone. All patients had ultrasound-guided implantation of transvaginal or transperineal interstitial needles for brachytherapy. Median prescribed total dose was 64 Gy. Results: 18 patients (78%) achieved complete remission. Six patients are alive without tumor and one with tumor after a median follow-up of 64 months. 14 patients died of tumor and two of intercurrent disease. 5-year disease-specific survival and local control rate were 43% and 47%, respectively, in patients with complete remission. Univariate analysis found time to relapse > 2 years, initial diameter {<=} 4 cm, initial volume < 15 cm{sup 3}, no extension to the pelvic side wall, volume before brachytherapy < 7.5 cm{sup 3}, brachytherapy coverage index > 0.8, and prescribed total dose > 64 Gy being positive predictors for local control and survival. Conclusion: the use of ultrasound guidance for placement of interstitial needles in template-based brachytherapy of advanced recurrent gynecologic malignancies is a feasible, safe, and cheap method with encouraging results. Today, ultrasound imaging can be also used to some extent for treatment planning which requires further development. Patient- and treatment-related prognostic factors can be defined. (orig.)

  13. Clinical results in carcinoma of the cervix: radium compared to caesium using remote afterloading

    International Nuclear Information System (INIS)

    Jackson, S.M.; Fairey, R.N.; Kornelsen, R.O.; Young, M.E.J.; Wong, F.L.

    1989-01-01

    In 1979 the Cancer Control Agency of British Columbia changed from radium to remote controlled afterloaded caesium in the treatment of carcinoma of the cervix. In 3 years prior to the change, 139 patients received radium as part of their treatment and in the 3 years after the change, 158 patients received caesium. Overall referral patterns, patient and cancer demographics, and treatment policies were stable throughout the 6-year period. Radiotherapy technique, dose, dose distribution and dose rate were comparable for both radium and caesium treated patients. The results of treatment in the two time periods showed no difference in survival, local tumour control or complications. The use of afterloading has not compromised treatment results and has allowed better nursing care for patients and protection from radiation for all staff. (author)

  14. Intracavitary afterloading boost in anal canal carcinoma. Results, function and quality of life

    Energy Technology Data Exchange (ETDEWEB)

    Vordermark, D.; Flentje, M.; Koelbl, O. [Wuerzburg Univ. (Germany). Klinik und Poliklinik fuer Strahlentherapie; Sailer, M. [Wuerzburg Univ. (Germany). Klinik fuer Chirurgie

    2001-05-01

    Background: First clinical data on a new intracavitary afterloading boost method for anal canal carcinoma is reported. Patients and Methods: 20 consecutive patients (T1 5%, T2 70%, T3 20%, T4 5%; N0 75%, N1 10%, N2 15%; all M0) treated with external beam pelvic radiotherapy (median dose 56 Gy, range 46-64 Gy), simultaneous 5-FU and mitomycin (in 75%) and an intracavitary afterloading boost (one or two fractions of 5 Gy at 5 mm depth) were analyzed after a mean {+-}SD follow-up for living patients of 4.4{+-}2.1 years. Quality of life (QoL) and anorectal manometry parameters were assessed in ten colostomy-free survivors. Results: Overall, recurrence-free and colostomy-free survival at 5 years were 84%, 79% and 69%, respectively. No death was tumorrelated. The only local failure was successfully salvaged by local excision. All three colostomies were performed for toxicity. Resting pressure and maximum squeeze pressure of the anal sphincter were reduced by 51% and 71%, as compared with control subjects, but quality of life was similar compared to healthy volunteers. Conclusion: the described regimen is highly effective but associated with increased toxicity. (orig.) [German] Hintergrund: Erste klinische Ergebnisse einer neuen Methode zur intrakavitaeren Afterloading-Boost-Bestrahlung des Analkanalkarzinoms werden vorgestellt. Patienten und Methoden: 20 in Folge behandelte Patienten (T1 5%, T2 70%, T3 20%, T4 5%, N0 75%, N1 10%, N2 15 %; alle M0) erhielten eine perkutane Bestrahlung (mediane Dosis 56 Gy, 46-64 Gy), simultan 5-FU und Mitomycin (75%) und einen intrakavitaeren Afterloading-Boost (eine oder zwei Fraktionen mit je 5 Gy in 5 mm Tiefe). Der mittlere Nachbeobachtungszeitraum lebender Patienten betrug 4,4{+-}2,1 Jahre. Zehn kolostomiefrei Ueberlebende wurden bezueglich Lebensqualitaet und anorektaler Manometriewerte untersucht. Ergebnisse: Gesamtueberleben, rezidivfreies und kolostomiefreies Ueberleben nach 5 Jahren betrugen 84%, 79% und 69%. Kein Todesfall war

  15. Advancements in brachytherapy

    DEFF Research Database (Denmark)

    Tanderup, Kari; Ménard, Cynthia; Polgar, Csaba

    2017-01-01

    Brachytherapy is a radiotherapy modality associated with a highly focal dose distribution. Brachytherapy treats the cancer tissue from the inside, and the radiation does not travel through healthy tissue to reach the target as with external beam radiotherapy techniques. The nature of brachytherap...

  16. Directional interstitial brachytherapy from simulation to application

    Science.gov (United States)

    Lin, Liyong

    Organs at risk (OAR) are sometimes adjacent to or embedded in or overlap with the clinical target volume (CTV) to be treated. The purpose of this PhD study is to develop directionally low energy gamma-emitting interstitial brachytherapy sources. These sources can be applied between OAR to selectively reduce hot spots in the OARs and normal tissues. The reduction of dose over undesired regions can expand patient eligibility or reduce toxicities for the treatment by conventional interstitial brachytherapy. This study covers the development of a directional source from design optimization to construction of the first prototype source. The Monte Carlo code MCNP was used to simulate the radiation transport for the designs of directional sources. We have made a special construction kit to assemble radioactive and gold-shield components precisely into D-shaped titanium containers of the first directional source. Directional sources have a similar dose distribution as conventional sources on the treated side but greatly reduced dose on the shielded side, with a sharp dose gradient between them. A three-dimensional dose deposition kernel for the 125I directional source has been calculated. Treatment plans can use both directional and conventional 125I sources at the same source strength for low-dose-rate (LDR) implants to optimize the dose distributions. For prostate tumors, directional 125I LDR brachytherapy can potentially reduce genitourinary and gastrointestinal toxicities and improve potency preservation for low risk patients. The combination of better dose distribution of directional implants and better therapeutic ratio between tumor response and late reactions enables a novel temporary LDR treatment, as opposed to permanent or high-dose-rate (HDR) brachytherapy for the intermediate risk T2b and high risk T2c tumors. Supplemental external-beam treatments can be shortened with a better brachytherapy boost for T3 tumors. In conclusion, we have successfully finished the

  17. A quality indicator to evaluate high-dose-rate intracavitary brachytherapy for cancer of the cervix

    International Nuclear Information System (INIS)

    Morales, Francisco Contreras; Soboll, Daniel Scheidegger

    2000-01-01

    The aim of this report is to prevent a simple quality indicator (QI) that can be promptly used to evaluate the high-dose-rate (HDR) intracavitary brachytherapy for the treatment of cancer of the cervix, and if necessary, to correct applicators' geometry before starting the treatment. We selected 51 HDR intracavitary applications of brachytherapy of patients with carcinoma of the cervix treated with 60 mm uterine tandem and small Fletcher colpostat, according to the Manchester method (dose prescription on point A). A QI was defined as the ratio between the volume of 100% isodose curve of the study insertion and the volume of the 100% isodose curve of an insertion considered to be ideal. The data obtained were distributed in three groups: the group with tandem placement slippage (67,5%), a group with colpostat placement slippage (21,9%), and a third group, considered normal (10,6%). Each group showed particular characteristics (p < 0.0001). QI can be the best auxiliary method to establish the error tolerance (%) allowed for HDR intracavitary brachytherapy. (author)

  18. Asymmetric dose–volume optimization with smoothness control for rotating-shield brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yunlong [Department of Electrical and Computer Engineering, University of Iowa, 4016 Seamans Center, Iowa City, Iowa 52242 (United States); Flynn, Ryan T.; Kim, Yusung [Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 (United States); Wu, Xiaodong, E-mail: xiaodong-wu@uiowa.edu [Department of Electrical and Computer Engineering, University of Iowa, 4016 Seamans Center, Iowa City, Iowa 52242 and Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 (United States)

    2014-11-01

    Purpose: It is important to reduce fluence map complexity in rotating-shield brachytherapy (RSBT) inverse planning to improve delivery efficiency while maintaining plan quality. This study proposes an efficient and effective RSBT dose optimization method which enables to produce smooth fluence maps. Methods: Five cervical cancer patients each with a high-risk clinical-target-volume (HR-CTV) larger than 40 cm{sup 3} were considered as the test cases. The RSBT source was a partially shielded electronic brachytherapy source (Xoft Axxent™). The anchor RSBT plans generated by the asymmetric dose–volume optimization with smoothness control (ADOS) method were compared against those produced by the dose–surface optimization (DSO) method and inverse-planning with simulated annealing (IPSA). Either L{sub 1}-norm or L{sub 2}-norm was used to measure the smoothness of a fluence map in the proposed ADOS method as one weighted term of the objective function. Uniform dwell-time scaling was applied to all plans such that HR-CTV D{sub 90} was maximized without violating the D{sub 2cc} tolerances of the rectum, bladder, and sigmoid colon. The quality of the anchor plans was measured with HR-CTV D{sub 90} of the anchor plans. Single-shielded RSBT [(S-RSBT), RSBT with single, fix sized delivery window] and dynamic-sheilded RSBT [(D-RSBT), RSBT with dynamically varying sized delivery window] delivery plans generated based on the anchor plans were also measured, with delivery time constraints of 10, 20, and 30 min/fraction (fx). Results: The average HR-CTV D{sub 90} values of the anchor plans achieved by the ADOS, DSO, and IPSA methods were 111.5, 94.2, and 107.4 Gy, respectively, where the weighting parameter β used in ADOS with L{sub 2}-norm was set to be 100. By using S-RSBT sequencing and 20 min/fx delivery time, the corresponding D{sub 90} values were 88.8, 81.9, and 83.4 Gy; while using D-RSBT sequencing with 20 min/fx delivery time, the corresponding D{sub 90} values were

  19. Evaluation of the effect of prostate volume change on tumor control probability in LDR brachytherapy

    Directory of Open Access Journals (Sweden)

    Courtney Knaup

    2011-09-01

    Full Text Available Purpose: This study evaluates low dose-rate brachytherapy (LDR prostate plans to determine the biological effectof dose degradation due to prostate volume changes. Material and methods: In this study, 39 patients were evaluated. Pre-implant prostate volume was determinedusing ultrasound. These images were used with the treatment planning system (Nucletron Spot Pro 3.1® to create treatmentplans using 103Pd seeds. Following the implant, patients were imaged using CT for post-implant dosimetry. Fromthe pre and post-implant DVHs, the biologically equivalent dose and the tumor control probability (TCP were determinedusing the biologically effective uniform dose. The model used RBE = 1.75 and α/β = 2 Gy. Results: The prostate volume changed between pre and post implant image sets ranged from –8% to 110%. TCP andthe mean dose were reduced up to 21% and 56%, respectively. TCP is observed to decrease as the mean dose decreasesto the prostate. The post-implant tumor dose was generally observed to decrease, compared to the planned dose.A critical uniform dose of 130 Gy was established. Below this dose, TCP begins to fall-off. It was also determined thatpatients with a small prostates were more likely to suffer TCP decrease. Conclusions: The biological effect of post operative prostate growth due to operative trauma in LDR was evaluatedusing the concept. The post-implant dose was lower than the planned dose due to an increase of prostate volumepost-implant. A critical uniform dose of 130 Gy was determined, below which TCP begun to decline.

  20. Novel high dose rate lip brachytherapy technique to improve dose homogeneity and reduce toxicity by customized mold

    International Nuclear Information System (INIS)

    Feldman, Jon; Appelbaum, Limor; Sela, Mordechay; Voskoboinik, Ninel; Kadouri, Sarit; Weinberger, Jeffrey; Orion, Itzhak; Meirovitz, Amichay

    2014-01-01

    The purpose of this study is to describe a novel brachytherapy technique for lip Squamous Cell Carcinoma, utilizing a customized mold with embedded brachytherapy sleeves, which separates the lip from the mandible, and improves dose homogeneity. Seven patients with T2 lip cancer treated with a “sandwich” technique of High Dose Rate (HDR) brachytherapy to the lip, consisting of interstitial catheters and a customized mold with embedded catheters, were reviewed for dosimetry and outcome using 3D planning. Dosimetric comparison was made between the “sandwich” technique to “classic” – interstitial catheters only plan. We compared dose volume histograms for Clinical Tumor Volume (CTV), normal tissue “hot spots” and mandible dose. We are reporting according to the ICRU 58 and calculated the Conformal Index (COIN) to show the advantage of our technique. The seven patients (ages 36–81 years, male) had median follow-up of 47 months. Four patients received Brachytherapy and External Beam Radiation Therapy, 3 patients received brachytherapy alone. All achieved local control, with excellent esthetic and functional results. All patients are disease free. The Customized Mold Sandwich technique (CMS) reduced the high dose region receiving 150% (V150) by an average of 20% (range 1–47%), The low dose region (les then 90% of the prescribed dose) improved by 73% in average by using the CMS technique. The COIN value for the CMS was in average 0.92 as opposed to 0.88 for the interstitial catheter only. All differences (excluding the low dose region) were statistically significant. The CMS technique significantly reduces the high dose volume and increases treatment homogeneity. This may reduce the potential toxicity to the lip and adjacent mandible, and results in excellent tumor control, cosmetic and functionality

  1. Postoperative vaginal irradiation by a high dose-rate afterloading technique in endometrial carcinoma stage I

    International Nuclear Information System (INIS)

    Sorbe, B.; Smeds, A.C.

    1989-01-01

    A high dose-rate (cobalt-60) afterloading technique was used for postoperative vaginal irradiation in a series of 404 women with endometrial carcinoma stage I. The total recurrence rate was 3.7% with 0.7% vaginal lesions. The crude 5-year survival rate for the complete series was 91.8% compared to 13.3% for those with recurrences. Depth of myometrical infiltration (>1/3 of the uterine wall) and nuclear grade were the most important prognostic factors. Clinically significant late radiation reactions (bladder and/or rectum) were recorded in 6.9%. The absorbed dose per fraction and the size of the treatment volume were significantly related to the occurrence of both early and late radiation reactions. Vaginal shortening was closely related to the dose per fraction, length of the referce isodose and the applicator diameter. The shape of the vaginal applicator versus the isodose contours and the importance of the source train geometry and relative activity for absorbed dose inhomogeneitis within the treatment volume are discussed. Cumulative radiation effect (CRE) and linear-quadratic (LQ) calculations have been performed and related to tissue reactions within the target volume and in the risk organs. An alpha-beta quotient of 8.8 Gy for vaginal shrinkage effect and 2.0 Gy for late rectal complications are suggested on the basis of calculations using a maximum likelihood method for quantal radiation data. (orig.)

  2. GGEMS-Brachy: GPU GEant4-based Monte Carlo simulation for brachytherapy applications

    Science.gov (United States)

    Lemaréchal, Yannick; Bert, Julien; Falconnet, Claire; Després, Philippe; Valeri, Antoine; Schick, Ulrike; Pradier, Olivier; Garcia, Marie-Paule; Boussion, Nicolas; Visvikis, Dimitris

    2015-07-01

    In brachytherapy, plans are routinely calculated using the AAPM TG43 formalism which considers the patient as a simple water object. An accurate modeling of the physical processes considering patient heterogeneity using Monte Carlo simulation (MCS) methods is currently too time-consuming and computationally demanding to be routinely used. In this work we implemented and evaluated an accurate and fast MCS on Graphics Processing Units (GPU) for brachytherapy low dose rate (LDR) applications. A previously proposed Geant4 based MCS framework implemented on GPU (GGEMS) was extended to include a hybrid GPU navigator, allowing navigation within voxelized patient specific images and analytically modeled 125I seeds used in LDR brachytherapy. In addition, dose scoring based on track length estimator including uncertainty calculations was incorporated. The implemented GGEMS-brachy platform was validated using a comparison with Geant4 simulations and reference datasets. Finally, a comparative dosimetry study based on the current clinical standard (TG43) and the proposed platform was performed on twelve prostate cancer patients undergoing LDR brachytherapy. Considering patient 3D CT volumes of 400  × 250  × 65 voxels and an average of 58 implanted seeds, the mean patient dosimetry study run time for a 2% dose uncertainty was 9.35 s (≈500 ms 10-6 simulated particles) and 2.5 s when using one and four GPUs, respectively. The performance of the proposed GGEMS-brachy platform allows envisaging the use of Monte Carlo simulation based dosimetry studies in brachytherapy compatible with clinical practice. Although the proposed platform was evaluated for prostate cancer, it is equally applicable to other LDR brachytherapy clinical applications. Future extensions will allow its application in high dose rate brachytherapy applications.

  3. GGEMS-Brachy: GPU GEant4-based Monte Carlo simulation for brachytherapy applications

    International Nuclear Information System (INIS)

    Lemaréchal, Yannick; Bert, Julien; Schick, Ulrike; Pradier, Olivier; Garcia, Marie-Paule; Boussion, Nicolas; Visvikis, Dimitris; Falconnet, Claire; Després, Philippe; Valeri, Antoine

    2015-01-01

    In brachytherapy, plans are routinely calculated using the AAPM TG43 formalism which considers the patient as a simple water object. An accurate modeling of the physical processes considering patient heterogeneity using Monte Carlo simulation (MCS) methods is currently too time-consuming and computationally demanding to be routinely used. In this work we implemented and evaluated an accurate and fast MCS on Graphics Processing Units (GPU) for brachytherapy low dose rate (LDR) applications. A previously proposed Geant4 based MCS framework implemented on GPU (GGEMS) was extended to include a hybrid GPU navigator, allowing navigation within voxelized patient specific images and analytically modeled 125 I seeds used in LDR brachytherapy. In addition, dose scoring based on track length estimator including uncertainty calculations was incorporated. The implemented GGEMS-brachy platform was validated using a comparison with Geant4 simulations and reference datasets. Finally, a comparative dosimetry study based on the current clinical standard (TG43) and the proposed platform was performed on twelve prostate cancer patients undergoing LDR brachytherapy. Considering patient 3D CT volumes of 400  × 250  × 65 voxels and an average of 58 implanted seeds, the mean patient dosimetry study run time for a 2% dose uncertainty was 9.35 s (≈500 ms 10 −6 simulated particles) and 2.5 s when using one and four GPUs, respectively. The performance of the proposed GGEMS-brachy platform allows envisaging the use of Monte Carlo simulation based dosimetry studies in brachytherapy compatible with clinical practice. Although the proposed platform was evaluated for prostate cancer, it is equally applicable to other LDR brachytherapy clinical applications. Future extensions will allow its application in high dose rate brachytherapy applications. (paper)

  4. Brachytherapy in childhood rhabdomyosarcoma treatment

    International Nuclear Information System (INIS)

    Novaes, Paulo Eduardo Ribeiro dos Santos

    1995-01-01

    A retrospective study of 21 children with rhabdomyosarcoma treated by brachytherapy to the primary site of the tumor at the Radiotherapy Department of the A.C.Camargo Hospital between january/1980 to june/1993 was undertaken. The main objectives were to comprove the utility of brachytherapy in childhood rhabdomyosarcoma, to evaluate the local control and survival, in association with chemotherapy, to analyze the late effects of the treatment and to determinate the preferential technique to each clinical situation. All patients received brachytherapy to the tumor site. The radioactive isotopes employed were Gold 198 , Cesium 137 and Iridium 192 . The brachytherapy techniques depended on the tumor site, period of treatment, availability of the radioactive material and stage of the disease. Patients treated exclusively by brachytherapy received 40 Gy to 60 Gy. When brachytherapy was associated with external radiotherapy the dose ranged from 20 Gy to 40 Gy. Local control was achieved in 18 of 20 patients (90%). The global survival and local control survival rates were 61.9% (13/21 patients) and 72,2% (13/18 patients) respectively. (author)

  5. Permanent Prostate Brachytherapy in Prostate Glands 3

    International Nuclear Information System (INIS)

    Mayadev, Jyoti; Merrick, Gregory S.; Reed, Joshua R.; Butler, Wayne M.; Galbreath, Robert W.; Allen, Zachariah A.; Wallner, Kent E.

    2010-01-01

    Purpose: To investigate the dosimetry, treatment-related morbidity, and biochemical outcomes for brachytherapy in patients with prostate glands 3 . Methods and Materials: From November 1996 to October 2006, 104 patients with prostate glands 3 underwent brachytherapy. Multiple prostate, urethral, and rectal dosimetric parameters were evaluated. Treatment-related urinary and rectal morbidity were assessed from patient questionnaires. Cause-specific survival, biochemical progression-free survival, and overall survival were recorded. Results: The median patient age, follow up, and pre-treatment ultrasound volume was 64 years, 5.0 years and 17.6cm 3 , respectively. Median day 0 dosimetry was significant for the following: V100 98.5%, D90 126.1% and R100 <0.5% of prescription dose. The mean urethral and maximum urethral doses were 119.6% and 133.8% of prescription. The median time to International Prostate Symptom Score resolution was 4 months. There were no RTOG grade III or IV rectal complications. The cause-specific survival, biochemical progression-free survival, and overall survival rates were 100%, 92.5%, and 77.8% at 9 years. For biochemically disease-free patients, the median most recent postbrachytherapy PSA value was 0.02 ng/mL. Conclusion: Our results demonstrate that brachytherapy for small prostate glands is highly effective, with an acceptable morbidity profile, excellent postimplant dosimetry, acceptable treatment-related morbidity, and favorable biochemical outcomes.

  6. Monte Carlo model for a prototype CT-compatible, anatomically adaptive, shielded intracavitary brachytherapy applicator for the treatment of cervical cancer

    Energy Technology Data Exchange (ETDEWEB)

    Price, Michael J.; Gifford, Kent A.; Horton, John L. Jr.; Eifel, Patricia J.; Gillin, Michael T.; Lawyer, Ann A.; Mourtada, Firas [Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, 1220 Holcombe Boulevard, Houston, Texas 77030 and Graduate School of Biomedical Sciences, University of Texas-Houston, 6767 Bertner Avenue, Houston, Texas 77030 (United States); Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, 1220 Holcombe Boulevard, Houston, Texas 77030 (United States); Division of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, 1220 Holcombe Boulevard, Houston, Texas 77030 and Graduate School of Biomedical Sciences, University of Texas-Houston, 6767 Bertner Avenue, Houston, Texas 77030 (United States); Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, 1220 Holcombe Boulevard, Houston, Texas 77030 and Graduate School of Biomedical Sciences, University of Texas-Houston, 6767 Bertner Avenue, Houston, Texas 77030 (United States); Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, 1220 Holcombe Boulevard, Houston, Texas 77030 (United States); Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, 1220 Holcombe Boulevard, Houston, Texas 77030 and Graduate School of Biomedical Sciences, University of Texas-Houston, 6767 Bertner Avenue, Houston, Texas 77030 (United States)

    2009-09-15

    Purpose: Current, clinically applicable intracavitary brachytherapy applicators that utilize shielded ovoids contain a pair of tungsten-alloy shields which serve to reduce dose delivered to the rectum and bladder during source afterloading. After applicator insertion, these fixed shields are not necessarily positioned to provide optimal shielding of these critical structures due to variations in patient anatomies. The authors present a dosimetric evaluation of a novel prototype intracavitary brachytherapy ovoid [anatomically adaptive applicator (A{sup 3})], featuring a single shield whose position can be adjusted with two degrees of freedom: Rotation about and translation along the long axis of the ovoid. Methods: The dosimetry of the device for a HDR {sup 192}Ir was characterized using radiochromic film measurements for various shield orientations. A MCNPX Monte Carlo model was developed of the prototype ovoid and integrated with a previously validated model of a v2 mHDR {sup 192}Ir source (Nucletron Co.). The model was validated for three distinct shield orientations using film measurements. Results: For the most complex case, 91% of the absolute simulated and measured dose points agreed within 2% or 2 mm and 96% agreed within 10% or 2 mm. Conclusions: Validation of the Monte Carlo model facilitates future investigations into any dosimetric advantages the use of the A{sup 3} may have over the current state of art with respect to optimization and customization of dose delivery as a function of patient anatomical geometries.

  7. Monte Carlo model for a prototype CT-compatible, anatomically adaptive, shielded intracavitary brachytherapy applicator for the treatment of cervical cancer

    International Nuclear Information System (INIS)

    Price, Michael J.; Gifford, Kent A.; Horton, John L. Jr.; Eifel, Patricia J.; Gillin, Michael T.; Lawyer, Ann A.; Mourtada, Firas

    2009-01-01

    Purpose: Current, clinically applicable intracavitary brachytherapy applicators that utilize shielded ovoids contain a pair of tungsten-alloy shields which serve to reduce dose delivered to the rectum and bladder during source afterloading. After applicator insertion, these fixed shields are not necessarily positioned to provide optimal shielding of these critical structures due to variations in patient anatomies. The authors present a dosimetric evaluation of a novel prototype intracavitary brachytherapy ovoid [anatomically adaptive applicator (A 3 )], featuring a single shield whose position can be adjusted with two degrees of freedom: Rotation about and translation along the long axis of the ovoid. Methods: The dosimetry of the device for a HDR 192 Ir was characterized using radiochromic film measurements for various shield orientations. A MCNPX Monte Carlo model was developed of the prototype ovoid and integrated with a previously validated model of a v2 mHDR 192 Ir source (Nucletron Co.). The model was validated for three distinct shield orientations using film measurements. Results: For the most complex case, 91% of the absolute simulated and measured dose points agreed within 2% or 2 mm and 96% agreed within 10% or 2 mm. Conclusions: Validation of the Monte Carlo model facilitates future investigations into any dosimetric advantages the use of the A 3 may have over the current state of art with respect to optimization and customization of dose delivery as a function of patient anatomical geometries.

  8. A Dose-Volume Analysis of Magnetic Resonance Imaging-Aided High-Dose-Rate Image-Based Interstitial Brachytherapy for Uterine Cervical Cancer

    International Nuclear Information System (INIS)

    Yoshida, Ken; Yamazaki, Hideya; Takenaka, Tadashi; Kotsuma, Tadayuki; Yoshida, Mineo; Furuya, Seiichi; Tanaka, Eiichi; Uegaki, Tadaaki; Kuriyama, Keiko; Matsumoto, Hisanobu; Yamada, Shigetoshi; Ban, Chiaki

    2010-01-01

    Purpose: To investigate the feasibility of our novel image-based high-dose-rate interstitial brachytherapy (HDR-ISBT) for uterine cervical cancer, we evaluated the dose-volume histogram (DVH) according to the recommendations of the Gynecological GEC-ESTRO Working Group for image-based intracavitary brachytherapy (ICBT). Methods and Materials: Between June 2005 and June 2007, 18 previously untreated cervical cancer patients were enrolled. We implanted magnetic resonance imaging (MRI)-available plastic applicators by our unique ambulatory technique. Total treatment doses were 30-36 Gy (6 Gy per fraction) combined with external beam radiotherapy (EBRT). Treatment plans were created based on planning computed tomography with MRI as a reference. DVHs of the high-risk clinical target volume (HR CTV), intermediate-risk CTV (IR CTV), and the bladder and rectum were calculated. Dose values were biologically normalized to equivalent doses in 2-Gy fractions (EQD 2 ). Results: The median D90 (HR CTV) and D90 (IR CTV) per fraction were 6.8 Gy (range, 5.5-7.5) and 5.4 Gy (range, 4.2-6.3), respectively. The median V100 (HR CTV) and V100 (IR CTV) were 98.4% (range, 83-100) and 81.8% (range, 64-93.8), respectively. When the dose of EBRT was added, the median D90 and D100 of HR CTV were 80.6 Gy (range, 65.5-96.6) and 62.4 Gy (range, 49-83.2). The D 2cc of the bladder was 62 Gy (range, 51.4-89) and of the rectum was 65.9 Gy (range, 48.9-76). Conclusions: Although the targets were advanced and difficult to treat effectively by ICBT, MRI-aided image-based ISBT showed favorable results for CTV and organs at risk compared with previously reported image-based ICBT results.

  9. A dose-volume analysis of magnetic resonance imaging-aided high-dose-rate image-based interstitial brachytherapy for uterine cervical cancer.

    Science.gov (United States)

    Yoshida, Ken; Yamazaki, Hideya; Takenaka, Tadashi; Kotsuma, Tadayuki; Yoshida, Mineo; Furuya, Seiichi; Tanaka, Eiichi; Uegaki, Tadaaki; Kuriyama, Keiko; Matsumoto, Hisanobu; Yamada, Shigetoshi; Ban, Chiaki

    2010-07-01

    To investigate the feasibility of our novel image-based high-dose-rate interstitial brachytherapy (HDR-ISBT) for uterine cervical cancer, we evaluated the dose-volume histogram (DVH) according to the recommendations of the Gynecological GEC-ESTRO Working Group for image-based intracavitary brachytherapy (ICBT). Between June 2005 and June 2007, 18 previously untreated cervical cancer patients were enrolled. We implanted magnetic resonance imaging (MRI)-available plastic applicators by our unique ambulatory technique. Total treatment doses were 30-36 Gy (6 Gy per fraction) combined with external beam radiotherapy (EBRT). Treatment plans were created based on planning computed tomography with MRI as a reference. DVHs of the high-risk clinical target volume (HR CTV), intermediate-risk CTV (IR CTV), and the bladder and rectum were calculated. Dose values were biologically normalized to equivalent doses in 2-Gy fractions (EQD(2)). The median D90 (HR CTV) and D90 (IR CTV) per fraction were 6.8 Gy (range, 5.5-7.5) and 5.4 Gy (range, 4.2-6.3), respectively. The median V100 (HR CTV) and V100 (IR CTV) were 98.4% (range, 83-100) and 81.8% (range, 64-93.8), respectively. When the dose of EBRT was added, the median D90 and D100 of HR CTV were 80.6 Gy (range, 65.5-96.6) and 62.4 Gy (range, 49-83.2). The D(2cc) of the bladder was 62 Gy (range, 51.4-89) and of the rectum was 65.9 Gy (range, 48.9-76). Although the targets were advanced and difficult to treat effectively by ICBT, MRI-aided image-based ISBT showed favorable results for CTV and organs at risk compared with previously reported image-based ICBT results. (c) 2010 Elsevier Inc. All rights reserved.

  10. SU-F-BRA-04: Prostate HDR Brachytherapy with Multichannel Robotic System

    International Nuclear Information System (INIS)

    Joseph, F Maria; Podder, T; Yu, Y

    2015-01-01

    Purpose: High-dose-rate (HDR) brachytherapy is gradually becoming popular in treating patients with prostate cancers. However, placement of the HDR needles at desired locations into the patient is challenging. Application of robotic system may improve the accuracy of the clinical procedure. This experimental study is to evaluate the feasibility of using a multichannel robotic system for prostate HDR brachytherapy. Methods: In this experimental study, the robotic system employed was a 6-DOF Multichannel Image-guided Robotic Assistant for Brachytherapy (MIRAB), which was designed and fabricated for prostate seed implantation. The MIRAB has the provision of rotating 16 needles while inserting them. Ten prostate HDR brachytherapy needles were simultaneously inserted using MIRAB into a commercially available prostate phantom. After inserting the needles into the prostate phantom at desired locations, 2mm thick CT slices were obtained for dosimetric planning. HDR plan was generated using Oncetra planning system with a total prescription dose of 34Gy in 4 fractions. Plan quality was evaluated considering dose coverage to prostate and planning target volume (PTV), with 3mm margin around prostate, as well as the dose limit to the organs at risk (OARs) following the American Brachytherapy Society (ABS) guidelines. Results: From the CT scan, it is observed that the needles were inserted straight into the desired locations and they were adequately spaced and distributed for a clinically acceptable HDR plan. Coverage to PTV and prostate were about 91% (V100= 91%) and 96% (V100=96%), respectively. Dose to 1cc of urethra, rectum, and bladder were within the ABS specified limits. Conclusion: The MIRAB was able to insert multiple needles simultaneously into the prostate precisely. By controlling the MIRAB to insert all the ten utilized needles into the prostate phantom, we could achieve the robotic HDR brachytherapy successfully. Further study for assessing the system

  11. Experience from long-term monitoring of RAKR ratios in 192Ir brachytherapy

    International Nuclear Information System (INIS)

    Carlsson Tedgren, Asa; Bengtsson, Emil; Hedtjaern, Hakan; Johansson, Asa; Karlsson, Leif; Lamm, Inger-Lena; Lundell, Marie; Mejaddem, Younes; Munck af Rosenschoeld, Per; Nilsson, Josef; Wieslander, Elinore; Wolke, Jeanette

    2008-01-01

    Background: Ratios of values of brachytherapy source strengths, as measured by hospitals and vendors, comprise constant differences as, e.g., systematic errors in ion chamber calibration factors and measurement setup. Such ratios therefore have the potential to reveal the systematic changes in routines or calibration services at either the hospital or the vendor laboratory, which could otherwise be hidden by the uncertainty in the source strength values. Methods: The RAKR of each new source in 13 afterloading units at five hospitals were measured by well-type ion chambers and compared to values for the same source stated on vendor certificates. Results: Differences from unity in the ratios of RAKR values determined by hospitals and vendors are most often small and stable around their mean values to within ±1.5%. Larger deviations are rare but occur. A decreasing ratio, seen at two hospitals for the same source, was useful in detecting an erroneous pressure gauge at the vendor's site. Conclusions: Establishing a mean ratio of RAKR values, as measured at the hospital and supplied on the vendor certificate, and monitoring this as a function of time are an easy way for the early detection of problems with equipment or routines at either the hospital or the vendor site

  12. Dosimetric comparison of different dose prescription systems with CT based intracavitary brachytherapy and manual back projection technique to reconstruct the applicator

    International Nuclear Information System (INIS)

    Oinam, A.S.; Dubey, S.; Kehwar, T.S.; Rout, Sanjaya K.; Patel, F.D.; Sharma, S.C.; Goyal, D.R.; Narayan, P.

    2002-01-01

    Intracavitary brachytherapy is one of the well-established techniques for the treatment of carcinoma of cervix. The prediction of late effect of normal tissue like rectum and bladder needs the defining of the volume of the bladder and rectum in situ. In the normal planning of intracavitary and interstitial implants, simulated radiograph films are used to reconstruct the applicator geometry and dose points to represent the dose to critical organs. CT based brachytherapy can define such volume instead of defining dose points, which represent the dose to these critical organs

  13. CT-image based conformal brachytherapy of breast cancer. The significance of semi-3-D and 3-D treatment planning

    Energy Technology Data Exchange (ETDEWEB)

    Polgar, C.; Major, T.; Somogyi, A.; Takacsi-Nagy, Z.; Mangel, L.C.; Fodor, J.; Nemeth, G. [Orszagos Onkologiai Intezet, Budapest (Hungary). Dept. of Radiotherapy; Forrai, G. [Haynal Imre Univ. of Health Sciences, Budapest (Hungary). Dept. of Radiology; Sulyok, Z. [Orszagos Onkologiai Intezet, Budapest (Hungary). Dept. of Surgery

    2000-03-01

    In 103 patients with T1-2, N0-1 breast cancer the tumor bed was clipped during breast conserving surgery. Fifty-two of them received boost brachytherapy after 46 to 50 Gy teletherapy and 51 patients were treated with brachytherapy alone via flexible implant tubes. Single double and triple plane implant was used in 6,89 and 8 cases, respectively. The dose of boost brachytherapy and sole brachytherapy prescribed to dose reference points was 3 times 4.75 Gy and 7 times 5.2 Gy, respectively. The positions of dose reference points varied according to the level (2-D, semi-3-D and 3-D) of treatment planning performed. The treatment planning was based on the 3-D reconstruction of the surgical clips, implant tubes and skin points. In all cases the implantations were planned with a semi-3-D technique aided by simulator. In 10 cases a recently developed CT-guided 3-D planning system was used. The semi-3D and 3-D treatment plans were compared to hypothetical 2-D plans using dose-volume histograms and dose non-uniformity ratios. The values of mean central dose, mean skin dose, minimal clip dose, proportion of underdosaged clips and mean target surface dose were evaluated. The accuracy of tumor bed localization and the conformity of planning target volume and treated volume were also analyzed in each technique. Results: With the help of conformal semi-3D and 3D brachytherapy planning we could define reference dose points, active source positions and dwell times individually. This technique decreased the mean skin dose with 22.2% and reduced the possibility of geographical miss. We could achieve the best conformity between the planning target volume and the treated volume with the CT-image based 3-D treatment planning, at the cost of worse dose homogeneity. The mean treated volume was reduced by 25.1% with semi-3-D planning, however, its was increased by 16.2% with 3-D planning, compared to the 2-D planning. (orig.) [German] Bei 103 Patientinnen mit Mammakarzinom der Stadien T1

  14. Ocular brachytherapy with a holmium-166 irradiator device

    International Nuclear Information System (INIS)

    Mourao, Arnaldo P.; Campos, Tarcisio P.R.

    2009-01-01

    The ocular brachytherapy is a method that allows controlling ocular tumors. However, the irradiation of the ocular area in high doses can bring damages mainly to the surrounding healthy tissue, such as lens, retina and bone tissue of the orbital area in growth phase. Brachytherapy in comparison to teletherapy allows a large reduction of the absorbed doses in the adjacent tissues avoiding deleterious effects. Various types of radionuclides can be applied to ocular brachytherapy. Those radionuclides shall be encapsulated and placed juxtaposed to the sclera, back to the tumor. Herein, a new device was developed to encapsulate the radioactive material. It can easily place back of the eyeball. A computational model of the ocular area was developed in order to simulate the spatial dose distribution promoted by the holmium-166 nuclide distributed inside the irradiator device. The simulations addressed a device placed on the surface of the sclera, rotated 90 deg taken at the normal axis forward to the lens. The simulation was carried on the code Monte Carlo MCNP5. The computational simulation generates the spatial dose distribution in the treated volume. All continuous beta and the discrete gamma and X-ray spectra emitted by the holmium-166 were incorporated on simulations. The results allow comparing the space dose distribution to other types of sources used for the same end. The sclera absorbed dose, the maximum apical tumor dose, as well as on the tumor base were investigated. Indeed, the tumor thickness defines the conditions of irradiation. The holmium-166 dose distribution provides a tool to propose a better and optimized protocol for ocular brachytherapy. (author)

  15. Ocular brachytherapy with a holmium-166 irradiator device

    Energy Technology Data Exchange (ETDEWEB)

    Mourao, Arnaldo P. [Centro Federal de Educacao Tecnoloica de Minas Gerais (CEFET-MG), Belo Horizonte, MG (Brazil). Nucleo de Engenharia Hospitalar], e-mail: aprata@des.cefetmg.br; Campos, Tarcisio P.R. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Programa de Pos-graduacao em Ciencias e Tecnicas Nucleares], e-mail: campos@nuclear.ufmg.br

    2009-07-01

    The ocular brachytherapy is a method that allows controlling ocular tumors. However, the irradiation of the ocular area in high doses can bring damages mainly to the surrounding healthy tissue, such as lens, retina and bone tissue of the orbital area in growth phase. Brachytherapy in comparison to teletherapy allows a large reduction of the absorbed doses in the adjacent tissues avoiding deleterious effects. Various types of radionuclides can be applied to ocular brachytherapy. Those radionuclides shall be encapsulated and placed juxtaposed to the sclera, back to the tumor. Herein, a new device was developed to encapsulate the radioactive material. It can easily place back of the eyeball. A computational model of the ocular area was developed in order to simulate the spatial dose distribution promoted by the holmium-166 nuclide distributed inside the irradiator device. The simulations addressed a device placed on the surface of the sclera, rotated 90 deg taken at the normal axis forward to the lens. The simulation was carried on the code Monte Carlo MCNP5. The computational simulation generates the spatial dose distribution in the treated volume. All continuous beta and the discrete gamma and X-ray spectra emitted by the holmium-166 were incorporated on simulations. The results allow comparing the space dose distribution to other types of sources used for the same end. The sclera absorbed dose, the maximum apical tumor dose, as well as on the tumor base were investigated. Indeed, the tumor thickness defines the conditions of irradiation. The holmium-166 dose distribution provides a tool to propose a better and optimized protocol for ocular brachytherapy. (author)

  16. Interstitial prostate brachytherapy. LDR-PDR-HDR

    International Nuclear Information System (INIS)

    Kovacs, Gyoergy; Hoskin, Peter

    2013-01-01

    The first comprehensive overview of interstitial brachytherapy for the management of local or locally advanced prostate cancer. Written by an interdisciplinary team who have been responsible for the successful GEC-ESTRO/EAU Teaching Course. Discusses in detail patient selection, the results of different methods, the role of imaging, and medical physics issues. Prostate brachytherapy has been the subject of heated debate among surgeons and the proponents of the various brachytherapy methods. This very first interdisciplinary book on the subject provides a comprehensive overview of innovations in low dose rate (LDR), high dose rate (HDR), and pulsed dose rate (PDR) interstitial brachytherapy for the management of local or locally advanced prostate cancer. In addition to detailed chapters on patient selection and the use of imaging in diagnostics, treatment guidance, and implantation control, background chapters are included on related medical physics issues such as treatment planning and quality assurance. The results obtained with the different treatment options and the difficult task of salvage treatment are fully discussed. All chapters have been written by internationally recognized experts in their fields who for more than a decade have formed the teaching staff responsible for the successful GEC-ESTRO/EAU Prostate Brachytherapy Teaching Course. This book will be invaluable in informing residents and others of the scientific background and potential of modern prostate brachytherapy. It will also prove a useful source of up-to-date information for those who specialize in prostate brachytherapy or intend to start an interstitial brachytherapy service.

  17. Salvage/Adjuvant Brachytherapy After Ophthalmic Artery Chemosurgery for Intraocular Retinoblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Francis, Jasmine H., E-mail: francij1@mskcc.org [Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Barker, Christopher A.; Wolden, Suzanne L.; McCormick, Beryl; Segal, Kira; Cohen, Gil [Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Gobin, Y. Pierre; Marr, Brian P. [Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Weill-Cornell Medical College, New York-Presbyterian Hospital, New York, New York (United States); Brodie, Scott E. [Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Mount Sinai School of Medicine, New York, New York (United States); Dunkel, Ira J.; Abramson, David H. [Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Weill-Cornell Medical College, New York-Presbyterian Hospital, New York, New York (United States)

    2013-11-01

    Purpose: To evaluate the efficacy and toxicity of brachytherapy after ophthalmic artery chemosurgery (OAC) for retinoblastoma. Methods and Materials: This was a single-arm, retrospective study of 15 eyes in 15 patients treated with OAC followed by brachytherapy at (blinded institution) between May 1, 2006, and December 31, 2012, with a median 19 months' follow-up from plaque insertion. Outcome measurements included patient and ocular survival, visual function, and retinal toxicity measured by electroretinogram (ERG). Results: Brachytherapy was used as adjuvant treatment in 2 eyes and as salvage therapy in 13 eyes of which 12 had localized vitreous seeding. No patients developed metastasis or died of retinoblastoma. The Kaplan-Meier estimate of ocular survival was 79.4% (95% confidence interval 48.7%-92.8%) at 18 months. Three eyes were enucleated, and an additional 6 eyes developed out-of-target volume recurrences, which were controlled with additional treatments. Patients with an ocular complication had a mean interval between last OAC and plaque of 2.5 months (SD 2.3 months), which was statistically less (P=.045) than patients without ocular complication who had a mean interval between last OAC and plaque of 6.5 months (SD 4.4 months). ERG responses from pre- versus postplaque were unchanged or improved in more than half the eyes. Conclusions: Brachytherapy following OAC is effective, even in the presence of vitreous seeding; the majority of eyes maintained stable or improved retinal function following treatment, as assessed by ERG.

  18. Salvage/Adjuvant Brachytherapy After Ophthalmic Artery Chemosurgery for Intraocular Retinoblastoma

    International Nuclear Information System (INIS)

    Francis, Jasmine H.; Barker, Christopher A.; Wolden, Suzanne L.; McCormick, Beryl; Segal, Kira; Cohen, Gil; Gobin, Y. Pierre; Marr, Brian P.; Brodie, Scott E.; Dunkel, Ira J.; Abramson, David H.

    2013-01-01

    Purpose: To evaluate the efficacy and toxicity of brachytherapy after ophthalmic artery chemosurgery (OAC) for retinoblastoma. Methods and Materials: This was a single-arm, retrospective study of 15 eyes in 15 patients treated with OAC followed by brachytherapy at (blinded institution) between May 1, 2006, and December 31, 2012, with a median 19 months' follow-up from plaque insertion. Outcome measurements included patient and ocular survival, visual function, and retinal toxicity measured by electroretinogram (ERG). Results: Brachytherapy was used as adjuvant treatment in 2 eyes and as salvage therapy in 13 eyes of which 12 had localized vitreous seeding. No patients developed metastasis or died of retinoblastoma. The Kaplan-Meier estimate of ocular survival was 79.4% (95% confidence interval 48.7%-92.8%) at 18 months. Three eyes were enucleated, and an additional 6 eyes developed out-of-target volume recurrences, which were controlled with additional treatments. Patients with an ocular complication had a mean interval between last OAC and plaque of 2.5 months (SD 2.3 months), which was statistically less (P=.045) than patients without ocular complication who had a mean interval between last OAC and plaque of 6.5 months (SD 4.4 months). ERG responses from pre- versus postplaque were unchanged or improved in more than half the eyes. Conclusions: Brachytherapy following OAC is effective, even in the presence of vitreous seeding; the majority of eyes maintained stable or improved retinal function following treatment, as assessed by ERG

  19. Treatment of Locally Advanced Vaginal Cancer With Radiochemotherapy and Magnetic Resonance Image-Guided Adaptive Brachytherapy: Dose–Volume Parameters and First Clinical Results

    International Nuclear Information System (INIS)

    Dimopoulos, Johannes C.A.; Schmid, Maximilian P.; Fidarova, Elena; Berger, Daniel; Kirisits, Christian; Pötter, Richard

    2012-01-01

    Purpose: To investigate the clinical feasibility of magnetic resonance image-guided adaptive brachytherapy (IGABT) for patients with locally advanced vaginal cancer and to report treatment outcomes. Methods and Materials: Thirteen patients with vaginal cancer were treated with external beam radiotherapy (45–50.4 Gy) plus IGABT with or without chemotherapy. Distribution of International Federation of Gynecology and Obstetrics stages among patients were as follows: 4 patients had Stage II cancer, 5 patients had Stage III cancer, and 4 patients had Stage IV cancer. The concept of IGABT as developed for cervix cancer was transferred and adapted for vaginal cancer, with corresponding treatment planning and reporting. Doses were converted to the equivalent dose in 2 Gy, applying the linear quadratic model (α/β = 10 Gy for tumor; α/β = 3 for organs at risk). Endpoints studied were gross tumor volume (GTV), dose-volume parameters for high-risk clinical target volume (HRCTV), and organs at risk, local control (LC), adverse side effects, and survival. Results: The mean GTV (± 1 standard deviation) at diagnosis was 45.3 (±30) cm 3 , and the mean GTV at brachytherapy was 10 (±14) cm 3 . The mean D90 for the HRCTV was 86 (±13) Gy. The mean D2cc for bladder, urethra, rectum, and sigmoid colon were 80 (±20) Gy, 76 (±16) Gy, 70 (±9) Gy, and 60 (±9) Gy, respectively. After a median follow-up of 43 months (range, 19–87 months), one local recurrence and two distant metastases cases were observed. Actuarial LC and overall survival rates at 3 years were 92% and 85%. One patient with Stage IVA and 1 patient with Stage III disease experienced fistulas (one vesicovaginal, one rectovaginal), and 1 patient developed periurethral necrosis. Conclusions: The concept of IGABT, originally developed for treating cervix cancer, appears to be applicable to vaginal cancer treatment with only minor adaptations. Dose-volume parameters for HRCTV and organs at risk are in a comparable

  20. Treatment of Locally Advanced Vaginal Cancer With Radiochemotherapy and Magnetic Resonance Image-Guided Adaptive Brachytherapy: Dose-Volume Parameters and First Clinical Results

    Energy Technology Data Exchange (ETDEWEB)

    Dimopoulos, Johannes C.A. [Department of Radiation Oncology, Metropolitan Hospital, Athens (Greece); Schmid, Maximilian P., E-mail: maximilian.schmid@akhwien.at [Department of Radiotherapy, Medical University of Vienna, Vienna (Austria); Fidarova, Elena; Berger, Daniel; Kirisits, Christian; Poetter, Richard [Department of Radiotherapy, Medical University of Vienna, Vienna (Austria)

    2012-04-01

    Purpose: To investigate the clinical feasibility of magnetic resonance image-guided adaptive brachytherapy (IGABT) for patients with locally advanced vaginal cancer and to report treatment outcomes. Methods and Materials: Thirteen patients with vaginal cancer were treated with external beam radiotherapy (45-50.4 Gy) plus IGABT with or without chemotherapy. Distribution of International Federation of Gynecology and Obstetrics stages among patients were as follows: 4 patients had Stage II cancer, 5 patients had Stage III cancer, and 4 patients had Stage IV cancer. The concept of IGABT as developed for cervix cancer was transferred and adapted for vaginal cancer, with corresponding treatment planning and reporting. Doses were converted to the equivalent dose in 2 Gy, applying the linear quadratic model ({alpha}/{beta} = 10 Gy for tumor; {alpha}/{beta} = 3 for organs at risk). Endpoints studied were gross tumor volume (GTV), dose-volume parameters for high-risk clinical target volume (HRCTV), and organs at risk, local control (LC), adverse side effects, and survival. Results: The mean GTV ({+-} 1 standard deviation) at diagnosis was 45.3 ({+-}30) cm{sup 3}, and the mean GTV at brachytherapy was 10 ({+-}14) cm{sup 3}. The mean D90 for the HRCTV was 86 ({+-}13) Gy. The mean D2cc for bladder, urethra, rectum, and sigmoid colon were 80 ({+-}20) Gy, 76 ({+-}16) Gy, 70 ({+-}9) Gy, and 60 ({+-}9) Gy, respectively. After a median follow-up of 43 months (range, 19-87 months), one local recurrence and two distant metastases cases were observed. Actuarial LC and overall survival rates at 3 years were 92% and 85%. One patient with Stage IVA and 1 patient with Stage III disease experienced fistulas (one vesicovaginal, one rectovaginal), and 1 patient developed periurethral necrosis. Conclusions: The concept of IGABT, originally developed for treating cervix cancer, appears to be applicable to vaginal cancer treatment with only minor adaptations. Dose-volume parameters for HRCTV and

  1. Multi-atlas-based automatic 3D segmentation for prostate brachytherapy in transrectal ultrasound images

    Science.gov (United States)

    Nouranian, Saman; Mahdavi, S. Sara; Spadinger, Ingrid; Morris, William J.; Salcudean, S. E.; Abolmaesumi, P.

    2013-03-01

    One of the commonly used treatment methods for early-stage prostate cancer is brachytherapy. The standard of care for planning this procedure is segmentation of contours from transrectal ultrasound (TRUS) images, which closely follow the prostate boundary. This process is currently performed either manually or using semi-automatic techniques. This paper introduces a fully automatic segmentation algorithm which uses a priori knowledge of contours in a reference data set of TRUS volumes. A non-parametric deformable registration method is employed to transform the atlas prostate contours to a target image coordinates. All atlas images are sorted based on their registration results and the highest ranked registration results are selected for decision fusion. A Simultaneous Truth and Performance Level Estimation algorithm is utilized to fuse labels from registered atlases and produce a segmented target volume. In this experiment, 50 patient TRUS volumes are obtained and a leave-one-out study on TRUS volumes is reported. We also compare our results with a state-of-the-art semi-automatic prostate segmentation method that has been clinically used for planning prostate brachytherapy procedures and we show comparable accuracy and precision within clinically acceptable runtime.

  2. Brachytherapy: The need for a national metrology lab in Spain; Branquiterapia: la necesidad de un laboratorio nacional de metrologia en Espana

    Energy Technology Data Exchange (ETDEWEB)

    Aviles Lucas, P.

    2011-07-01

    Radiotherapy, along with chemotherapy and surgery, is an essential therapeutic technique for treating malignant tumours. Part of the challenge of a suitable radiotherapy treatment lies on the optimisation of the irradiated volume, which must be adapted to the tumour volume as far as possible. Depending on position of the radiation source relative to the patient, the procedure in question could be external radiotherapy, or brachytherapy. In a brachytherapy procedure, relatively small encapsulated radioactive sources are placed close to or in the tumour volume to be treated. This therapeutic treatment has two obvious advantages; on one hand the prescribed dose can be adjusted to the tumour volume, preventing unnecessary exposure of the adjacent healthy tissues, and on the other, it decreases the treatment duration compared to a radiotherapy treatment. (Author) 19 refs.

  3. Acute genitourinary toxicity after high-dose-rate (HDR) brachytherapy combined with hypofractionated external-beam radiation therapy for localized prostate cancer: Correlation between the urethral dose in HDR brachytherapy and the severity of acute genitourinary toxicity

    International Nuclear Information System (INIS)

    Akimoto, Tetsuo; Ito, Kazuto; Saitoh, Jun-ichi; Noda, Shin-ei; Harashima, Koichi; Sakurai, Hideyuki; Nakayama, Yuko; Yamamoto, Takumi; Suzuki, Kazuhiro; Nakano, Takashi; Niibe, Hideo

    2005-01-01

    Purpose: Several investigations have revealed that the α/β ratio for prostate cancer is atypically low, and that hypofractionation or high-dose-rate (HDR) brachytherapy regimens using appropriate radiation doses may be expected to yield tumor control and late sequelae rates that are better or at least as favorable as those achieved with conventional radiation therapy. In this setting, we attempted treating localized prostate cancer patients with HDR brachytherapy combined with hypofractionated external beam radiation therapy (EBRT). The purpose of this study was to evaluate the feasibility of using this approach, with special emphasis on the relationship between the severity of acute genitourinary (GU) toxicity and the urethral dose calculated from the dose-volume histogram (DVH) of HDR brachytherapy. Methods and Materials: Between September 2000 and December 2003, 70 patients with localized prostate cancer were treated by iridium-192 HDR brachytherapy combined with hypofractionated EBRT at the Gunma University Hospital. Hypofractionated EBRT was administered in fraction doses of 3 Gy, three times per week; a total dose of 51 Gy was delivered to the prostate gland and the seminal vesicles using the four-field technique. No elective pelvic irradiation was performed. After the completion of EBRT, all the patients additionally received transrectal ultrasonography (TRUS)-guided HDR brachytherapy. The fraction size and the number of fractions in HDR brachytherapy were prospectively changed, whereas the total radiation dose for EBRT was fixed at 51 Gy. The fractionation in HDR brachytherapy was as follows: 5 Gy x 5, 7 Gy x 3, 9 Gy x 2, administered twice per day, although the biologic effective dose (BED) for HDR brachytherapy combined with EBRT, assuming that the α/β ratio is 3, was almost equal to 138 in each fractionation group. The planning target volume was defined as the prostate gland with 5-mm margin all around, and the planning was conducted based on

  4. A comparison of complications between ultrasound-guided prostate brachytherapy and open prostate brachytherapy

    International Nuclear Information System (INIS)

    Benoit, Ronald M.; Naslund, Michael J.; Cohen, Jeffrey K.

    2000-01-01

    Purpose: Prostate brachytherapy has reemerged during the 1990s as a treatment for clinically localized prostate cancer. The renewed popularity of prostate brachytherapy is largely due to the use of transrectal ultrasound of the prostate, which allows for more accurate isotope placement within the prostate when compared to the open approach. The present study investigates whether this improved cancer control is at the expense of increased morbidity by comparing the morbidity after transrectal ultrasound-guided prostate brachytherapy to the morbidity after prostate brachytherapy performed via an open approach. Methods and Materials: All men in the Medicare population who underwent prostate brachytherapy in the year 1991 were identified. These men were further stratified into those men who underwent prostate brachytherapy via an open approach and the men who underwent prostate brachytherapy with ultrasound guidance. All subsequent inpatient, outpatient, and physician (Part B) Medicare claims for these men from the years 1991-1993 were then analyzed to determine outcomes. Results: In the year 1991, 2124 men in the Medicare population underwent prostate brachytherapy. An open approach was used in 715 men (33.7%), and ultrasound guidance was used in 1409 men (66.3%). Mean age for both cohorts was 73.7 years with a range of 50.7-92.8 years for the ultrasound group and 60.6-92.1 years for the open group. A surgical procedure for the relief of bladder outlet obstruction was performed in 122 men (8.6%) in the ultrasound group and in 54 men (7.6%) in the open group. An artificial urinary sphincter was placed in 2 men (0.14%) in the ultrasound group and in 2 men (0.28%) in the open group. A penile prosthesis was implanted in 10 men (0.71%) in the ultrasound group and in 4 men (0.56%) in the open group. A diagnosis code for urinary incontinence was carried by 95 men (6.7%) in the ultrasound group and by 45 men (6.3%) in the open group. A diagnosis code for erectile dysfunction

  5. Physical aspects of endovascular brachytherapy

    International Nuclear Information System (INIS)

    Kirisits, C.

    2001-11-01

    Restenosis is severely limiting the outcome of vascular interventions. In several clinical trials endovascular brachytherapy has shown to reduce the restenosis rate. Local radiotherapy to the injured vessel wall is a promising new type of treatment in order to inhibit a complex wound healing process resulting in cell proliferation and re-obstruction of the treated vessel. Treatment planning has to be based on the dose distribution in the vicinity of the sources used. Source strength was determined in terms of air kerma rate for gamma nuclides (Iridium-192) and absorbed dose to water at reference distance of 2 mm for beta nuclides (Strontium-90/Yttrium-90, Phosphor-32), respectively. Radial dose profiles and the Reference Isodose Length (RIL) were determined using the EGSnrc code and GafChromic film. Good agreement was found between both methods. In order to treat the entire clinical target length, the (RIL) is an essential value during treatment planning. Examples are described for different levels of treatment planing including recommendations for optimal choice and positioning of the radioactive devices inside the artery. IVUS based treatment planning is illustrated with superposition of isodoses on cross-sectional images. A calculation model for radioactive stents is presented in order to determine dose volume histograms in a retrospective analysis. Radiation protection issues for endovascular brachytherapy are discussed in detail. Personal dose for the involved personnel is estimated based on calculations and measurements. Beta ray dosimetry is performed with suitable detectors. In order to estimate the exposure to the patient the dose to organs at risk is calculated and compared to the dose from angiography. There is an additional radiation exposure to patients and personnel caused by endovascular brachytherapy, but the values are much smaller than those caused by diagnostic angiography. (author)

  6. Inverse treatment planning based on MRI for HDR prostate brachytherapy

    International Nuclear Information System (INIS)

    Citrin, Deborah; Ning, Holly; Guion, Peter; Li Guang; Susil, Robert C.; Miller, Robert W.; Lessard, Etienne; Pouliot, Jean; Xie Huchen; Capala, Jacek; Coleman, C. Norman; Camphausen, Kevin; Menard, Cynthia

    2005-01-01

    Purpose: To develop and optimize a technique for inverse treatment planning based solely on magnetic resonance imaging (MRI) during high-dose-rate brachytherapy for prostate cancer. Methods and materials: Phantom studies were performed to verify the spatial integrity of treatment planning based on MRI. Data were evaluated from 10 patients with clinically localized prostate cancer who had undergone two high-dose-rate prostate brachytherapy boosts under MRI guidance before and after pelvic radiotherapy. Treatment planning MRI scans were systematically evaluated to derive a class solution for inverse planning constraints that would reproducibly result in acceptable target and normal tissue dosimetry. Results: We verified the spatial integrity of MRI for treatment planning. MRI anatomic evaluation revealed no significant displacement of the prostate in the left lateral decubitus position, a mean distance of 14.47 mm from the prostatic apex to the penile bulb, and clear demarcation of the neurovascular bundles on postcontrast imaging. Derivation of a class solution for inverse planning constraints resulted in a mean target volume receiving 100% of the prescribed dose of 95.69%, while maintaining a rectal volume receiving 75% of the prescribed dose of <5% (mean 1.36%) and urethral volume receiving 125% of the prescribed dose of <2% (mean 0.54%). Conclusion: Systematic evaluation of image spatial integrity, delineation uncertainty, and inverse planning constraints in our procedure reduced uncertainty in planning and treatment

  7. Novel use of ViewRay MRI guidance for high-dose-rate brachytherapy in the treatment of cervical cancer.

    Science.gov (United States)

    Ko, Huaising C; Huang, Jessie Y; Miller, Jessica R; Das, Rupak K; Wallace, Charles R; De Costa, Anna-Maria A; Francis, David M; Straub, Margaret R; Anderson, Bethany M; Bradley, Kristin A

    To characterize image quality and feasibility of using ViewRay MRI (VR)-guided brachytherapy planning for cervical cancer. Cervical cancer patients receiving intracavitary brachytherapy with tandem and ovoids, planned using 0.35T VR MRI at our institution, were included in this series. The high-risk clinical target volume (HR-CTV), visible gross tumor volume, bladder, sigmoid, bowel, and rectum contours for each fraction of brachytherapy were evaluated for dosimetric parameters. Typically, five brachytherapy treatments were planned using the T2 sequence on diagnostic MRI for the first and third fractions, and a noncontrast true fast imaging with steady-state precession sequence on VR or CT scan for the remaining fractions. Most patients received 5.5 Gy × 5 fractions using high-dose-rate Ir-192 following 45 Gy of whole-pelvis radiotherapy. The plan was initiated at 5.5 Gy to point A and subsequently optimized and prescribed to the HR-CTV. The goal equivalent dose in 2 Gy fractions for the combined external beam and brachytherapy dose was 85 Gy. Soft-tissue visualization using contrast-to-noise ratios to distinguish normal tissues from tumor at their interface was compared between diagnostic MRI, CT, and VR. One hundred and forty-two fractions of intracavitary brachytherapy were performed from April 2015 to January 2017 on 29 cervical cancer patients, ranging from stages IB1 to IVA. The median HR-CTV was 27.78 cc, with median D 90 HR-CTV of 6.1 Gy. The median time from instrument placement to start of treatment using VR was 65 min (scan time 2 min), compared to 105 min using diagnostic MRI (scan time 11 min) (t-test, p < 0.01). The contrast-to-noise ratio of tumor to cervix in both diagnostic MRI and VR had significantly higher values compared to CT (ANOVA and t-tests, p < 0.01). We report the first clinical use of VR-guided brachytherapy. Time to treatment using this approach was shorter compared to diagnostic MRI. VR also provided significant

  8. High dose rate brachytherapy for oral cancer.

    Science.gov (United States)

    Yamazaki, Hideya; Yoshida, Ken; Yoshioka, Yasuo; Shimizutani, Kimishige; Furukawa, Souhei; Koizumi, Masahiko; Ogawa, Kazuhiko

    2013-01-01

    Brachytherapy results in better dose distribution compared with other treatments because of steep dose reduction in the surrounding normal tissues. Excellent local control rates and acceptable side effects have been demonstrated with brachytherapy as a sole treatment modality, a postoperative method, and a method of reirradiation. Low-dose-rate (LDR) brachytherapy has been employed worldwide for its superior outcome. With the advent of technology, high-dose-rate (HDR) brachytherapy has enabled health care providers to avoid radiation exposure. This therapy has been used for treating many types of cancer such as gynecological cancer, breast cancer, and prostate cancer. However, LDR and pulsed-dose-rate interstitial brachytherapies have been mainstays for head and neck cancer. HDR brachytherapy has not become widely used in the radiotherapy community for treating head and neck cancer because of lack of experience and biological concerns. On the other hand, because HDR brachytherapy is less time-consuming, treatment can occasionally be administered on an outpatient basis. For the convenience and safety of patients and medical staff, HDR brachytherapy should be explored. To enhance the role of this therapy in treatment of head and neck lesions, we have reviewed its outcomes with oral cancer, including Phase I/II to Phase III studies, evaluating this technique in terms of safety and efficacy. In particular, our studies have shown that superficial tumors can be treated using a non-invasive mold technique on an outpatient basis without adverse reactions. The next generation of image-guided brachytherapy using HDR has been discussed. In conclusion, although concrete evidence is yet to be produced with a sophisticated study in a reproducible manner, HDR brachytherapy remains an important option for treatment of oral cancer.

  9. Predictive factors for acute and late urinary toxicity after permanent interstitial brachytherapy in Japanese patients

    International Nuclear Information System (INIS)

    Tanimoto, Ryuta; Bekku, Kensuke; Katayama, Norihisa

    2013-01-01

    The objectives of this study were to describe the frequency of and to determine predictive factors associated with Radiation Therapy Oncology Group urinary toxicity in prostate brachytherapy patients. From January 2004 to April 2011, 466 consecutive Japanese patients underwent permanent iodine-125-seed brachytherapy (median follow up 48 months). International Prostate Symptom Score and Radiation Therapy Oncology Group toxicity data were prospectively collected. Prostate volume, International Prostate Symptom Score before and after brachytherapy, and postimplant analysis were examined for an association with urinary toxicity, defined as Radiation Therapy Oncology Group urinary toxicity of Grade 1 or higher. Logistic regression analysis was used to examine the factors associated with urinary toxicity. The rate of Radiation Therapy Oncology Group urinary toxicity grade 1 or higher at 1, 6, 12, 24, 36 and 48 months was 67%, 40%, 21%, 31%, 27% and 28%, respectively. Grade 2 or higher urinary toxicity was less than 1% at each time-point. International Prostate Symptom Score was highest at 3 months and returned to normal 12 months after brachytherapy. On multivariate analysis, patients with a larger prostate size, greater baseline International Prostate Symptom Score, higher prostate V100, higher prostate V150, higher prostate D90 and a greater number of seeds had more acute urinary toxicities at 1 month and 12 months after brachytherapy. On multivariate analysis, significant predictors for urinary toxicity at 1 month and 12 months were a greater baseline International Prostate Symptom Score and prostate V100. Most urinary symptoms are tolerated and resolved within 12 months after prostate brachytherapy. Acute and late urinary toxicity after brachytherapy is strongly related to the baseline International Prostate Symptom Score and prostate V100. (author)

  10. The monetary value of the man.rem and optimization in radiation therapy (brachytherapy)

    International Nuclear Information System (INIS)

    Ennow, K.R.; Jessen, K.A.

    1979-01-01

    The personnel exposed by sources used for intracavitary radiation therapy in Denmark receive more than 40% of the collective dose recorded by personal dosemeters in Denmark. As the application of after-loading technique has become generally accepted by the medical profession in Denmark as a replacement to a considerable degree for manual radium therapy, the most promising suggestion for reduction of radiation doses is the introduction of after-loading facilities in all radiation therapy centres. Such facilities are now being planned in Denmark but their realization will entail great expense and therefore the financial aspects of these plans will be very important. At present the advantage of after-loading cannot be simply demonstrated to the politicians holding the purse strings, i.e. in terms of improved therapeutical gain, e.g. increased survival, although the incidence of complications has been shown to be lower, but the reduction in personnel radiation doses by the change to after-loading will be evident and be an important part of the cost-benefit analysis. By detailed investigation of all expenditures and savings, cost-benefit analysis has been carried out in order to isolate the relationship between expense and the collective dose reduction. If after-loading facilities are established in Denmark today with the intention of reducing the risk for employees and without any expectation of improvements in treatment, the monetary value of the man.rem implied is 10,000 kr. or 2000 US dollars. (author)

  11. Indications and technical aspects of brachytherapy in breast conserving treatment of breast cancer

    International Nuclear Information System (INIS)

    Erik Van, Limbergen

    2003-01-01

    Improved local control rates have been demonstrated in retrospective studies as well as in randomized trials on brachytherapy with increasing doses to the tumour bed. The higher local control obtained by interstitial breast implants, as compared to external photon or electron beam boosts, have been mainly attributed to the higher doses actually delivered to the tumour bed by these implants for the same nominal dose as compared to external beam radiotherapy (RT). On the other hand, poor cosmesis has also been correlated with radiation dose to the breast skin (radiation telangiectases), and breast tissue (retraction due to fibrosis), the latter depending not only on RT dose but also on the treated boost volume. For this reason, a possible benefit of interstitial implants will only be realized when the gain in local control goes together with minimal cosmetic damage. Therefore, the ballistic advantages of interstitial implants have to be maximally exploited: i.e. the treated volume should be maximally adapted to the target volume, and additional irradiation of the breast skin by the boost technique should be avoided. This paper deals in detail with the technical aspects of breast brachytherapy that seem to be relevant for high quality outcome. (author)

  12. High dose rate brachytherapy for oral cancer

    International Nuclear Information System (INIS)

    Yamazaki, Hideya; Yoshida, Ken; Yoshioka, Yasuo; Shimizutani, Kimishige; Koizumi, Masahiko; Ogawa, Kazuhiko; Furukawa, Souhei

    2013-01-01

    Brachytherapy results in better dose distribution compared with other treatments because of steep dose reduction in the surrounding normal tissues. Excellent local control rates and acceptable side effects have been demonstrated with brachytherapy as a sole treatment modality, a postoperative method, and a method of reirradiation. Low-dose-rate (LDR) brachytherapy has been employed worldwide for its superior outcome. With the advent of technology, high-dose-rate (HDR) brachytherapy has enabled health care providers to avoid radiation exposure. This therapy has been used for treating many types of cancer such as gynecological cancer, breast cancer, and prostate cancer. However, LDR and pulsed-dose-rate interstitial brachytherapies have been mainstays for head and neck cancer. HDR brachytherapy has not become widely used in the radiotherapy community for treating head and neck cancer because of lack of experience and biological concerns. On the other hand, because HDR brachytherapy is less time-consuming, treatment can occasionally be administered on an outpatient basis. For the convenience and safety of patients and medical staff, HDR brachytherapy should be explored. To enhance the role of this therapy in treatment of head and neck lesions, we have reviewed its outcomes with oral cancer, including Phase I/II to Phase III studies, evaluating this technique in terms of safety and efficacy. In particular, our studies have shown that superficial tumors can be treated using a non-invasive mold technique on an outpatient basis without adverse reactions. The next generation of image-guided brachytherapy using HDR has been discussed. In conclusion, although concrete evidence is yet to be produced with a sophisticated study in a reproducible manner, HDR brachytherapy remains an important option for treatment of oral cancer. (author)

  13. MRI-based preplanning in low-dose-rate prostate brachytherapy

    International Nuclear Information System (INIS)

    Tanaka, Osamu; Hayashi, Shinya; Matsuo, Masayuki; Nakano, Masahiro; Kubota, Yasuaki; Maeda, Sunaho; Ohtakara, Kazuhiro; Deguchi, Takashi; Hoshi, Hiroaki

    2008-01-01

    Purpose: To compare the dosimetric results between MRI-based and TRUS-based preplanning in permanent prostate brachytherapy, and to estimate the accuracy of MRI-based preplanning by comparing with CT/MRI fusion-based postimplant dosimetry. Methods and materials: Twenty-one patients were entered in this prospective study with written informed consent. MRI-based and TRUS-based preplanning were performed. The seed and needle locations were identical according to MRI-based and TRUS-based preplanning. MRI-based and TRUS-based preplanning were compared using DVH-related parameters. Following brachytherapy, the accuracy of the MRI-based preplanning was evaluated by comparing it with CT/MRI fusion-based postimplant dosimetry. Results: Mean MRI-based prostate volume was slightly underestimated (0.73 cc in mean volume) in comparison to TRUS-based volume. There were no significant differences in the mean DVH-related parameters except with rectal V 100 (cc) between TRUS-based and MRI-based preplanning. Mean rectal V 100 (cc) was 0.74 cc in TRUS-based and 0.29 cc in MRI-based preplanning, respectively, and the values demonstrated a statistical difference. There was no statistical difference in mean rectal V 150 (cc), and rectal V 100 (cc) between MRI-based preplanning and CT/MRI fusion-based postimplant dosimetry. Conclusion: Prostate volume estimation and DVH-related parameters in MRI-based preplanning were almost identical to TRUS-based preplanning. From the results of CT/MRI fusion-based postimplant dosimetry, MRI-based preplanning was therefore found to be a reliable and useful modality, as well as being helpful for TRUS-based preplanning. MRI-based preplanning can more accurately predict postimplant rectal dose than TRUS-based preplanning

  14. Methodology, results and experience of independent brachytherapy plan verifications based on DICOM standard; Implementacion, resultados y experiencia de una verificacion independiente de tratamientos de braquiterapia basada en el estandar DICOM

    Energy Technology Data Exchange (ETDEWEB)

    Ferrando Sanchez, A.; Pardo Perez, E.; Castro Novals, J.; Casa de Julian, M. A. de la; Cabello Murillo, E.; Diaz Fuentes, R.; Molina Lopez, M. Y.

    2013-09-01

    The use of a high dose rate source together with an afterloading treatment delivery in brachytherapy plans allows for dose modulation minimizing dose to staff. An independent verification of the exported data to the treatment station is required by local regulations (being also a widely accepted recommendation on the international literature). We have developed a methodology under home brew code to import DICOM treatment data onto an Excel spreadsheet that is able to calculate dose on given reference points using the TG-43 formalism of the AAPM3-5. It employs analytic fits of anisotropy factor and radial dose function for different sources. The end point implementations we present here allow merging in one step an independent verification and a treatment printout. The use of DICOM standard makes our code versatile and provides greater compatibility with respect to current treatment planning systems. (Author)

  15. Sequential evaluation of prostate edema after permanent seed prostate brachytherapy using CT-MRI fusion

    International Nuclear Information System (INIS)

    Taussky, Daniel; Austen, Lyn; Toi, Ants; Yeung, Ivan; Williams, Theresa; Pearson, Shannon; McLean, Michael; Pond, Gregory; Crook, Juanita

    2005-01-01

    Purpose: To analyze the extent and time course of prostate edema and its effect on dosimetry after permanent seed prostate brachytherapy. Methods and Materials: Twenty patients scheduled for permanent seed 125 I prostate brachytherapy agreed to a prospective study on postimplant edema. Implants were preplanned using transrectal ultrasonography. Postimplant dosimetry was calculated using computed tomography-magnetic resonance imaging (CT-MRI) fusion on the day of the implant (Day 1) and Days 8 and 30. The prostate was contoured on MRI, and the seeds were located on CT. Factors investigated for an influence on edema were the number of seeds and needles, preimplant prostate volume, transitional zone index (transition zone volume divided by prostate volume), age, and prostate-specific antigen level. Prostate dosimetry was evaluated by the percentage of the prostate volume receiving 100% of the prescribed dose (V 100 ) and percentage of prescribed dose received by 90% of the prostate volume (D 90 ). Results: Prostate edema was maximal on Day 1, with the median prostate volume 31% greater than preimplant transrectal ultrasound volume (range, 0.93-1.72; p 100 on Day 1 was 93.6% (range, 86.0-98.2%) and was 96.3% (range, 85.7-99.5%) on Day 30 (p = 0.079). Patients with a Day 1 V 100 >93% were less affected by edema resolution, showing a median increase in V 100 of 0.67% on Day 30 compared with 2.77% for patients with a V 100 100 >93%)

  16. 10 CFR 35.406 - Brachytherapy sources accountability.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Brachytherapy sources accountability. 35.406 Section 35....406 Brachytherapy sources accountability. (a) A licensee shall maintain accountability at all times... area. (c) A licensee shall maintain a record of the brachytherapy source accountability in accordance...

  17. Construction and use of an applicator of the afterloading type for treatment of the uterine cervix

    International Nuclear Information System (INIS)

    Miola, U.J.; Vizeu, D.M.; Moura, A.M.S.; Petito, J.W.

    The construction of an afterloading type applicator for treatment of cancer of the uterine cervix is described. The technique of intercavitary treatment of cancer of the uterine cervix used in the Osvaldo Cruz Institute of Radiotherapy (Brazil) is also discribed [pt

  18. Precision of RL/OSL medical dosimetry with fiber-coupled Al2O3:C: Influence of readout delay and temperature variations

    DEFF Research Database (Denmark)

    Andersen, Claus Erik; Morgenthaler Edmund, Jens; Damkjær, Sidsel Marie Skov

    2010-01-01

    Carbon-doped aluminum oxide (Al2O3:C) crystals attached to 15 m optical fiber cables can be used for online in vivo dosimetry during, for example, remotely afterloaded brachytherapy. Radioluminescence (RL) is generated spontaneously in Al2O3:C during irradiation, and this scintillator-like signal...

  19. MO-AB-BRA-03: Development of Novel Real Time in Vivo EPID Treatment Verification for Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Fonseca, G; Podesta, M [Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht 6201 BN (Netherlands); Reniers, B [Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht 6201 BN (Netherlands); Research Group NuTeC, CMK, Hasselt University, Agoralaan Gebouw H, Diepenbeek B-3590 (Belgium); Verhaegen, F [Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht 6201 BN (Netherlands); Medical Physics Unit, Department of Oncology, McGill University, Montreal, Quebec H3G 1A4 (Canada)

    2016-06-15

    Purpose: High Dose Rate (HDR) brachytherapy treatments are employed worldwide to treat a wide variety of cancers. However, in vivo dose verification remains a challenge with no commercial dosimetry system available to verify the treatment dose delivered to the patient. We propose a novel dosimetry system that couples an independent Monte Carlo (MC) simulation platform and an amorphous silicon Electronic Portal Imaging Device (EPID) to provide real time treatment verification. Methods: MC calculations predict the EPID response to the photon fluence emitted by the HDR source by simulating the patient, the source dwell positions and times, and treatment complexities such as tissue compositions/densities and different applicators. Simulated results are then compared against EPID measurements acquired with ∼0.14s time resolution which allows dose measurements for each dwell position. The EPID has been calibrated using an Ir-192 HDR source and experiments were performed using different phantoms, including tissue equivalent materials (PMMA, lung and bone). A source positioning accuracy of 0.2 mm, without including the afterloader uncertainty, was ensured using a robotic arm moving the source. Results: An EPID can acquire 3D Cartesian source positions and its response varies significantly due to differences in the material composition/density of the irradiated object, allowing detection of changes in patient geometry. The panel time resolution allows dose rate and dwell time measurements. Moreover, predicted EPID images obtained from clinical treatment plans provide anatomical information that can be related to the patient anatomy, mostly bone and air cavities, localizing the source inside of the patient using its anatomy as reference. Conclusion: Results obtained show the feasibility of the proposed dose verification system that is capable to verify all the brachytherapy treatment steps in real time providing data about treatment delivery quality and also applicator

  20. Penile brachytherapy: Results for 49 patients

    International Nuclear Information System (INIS)

    Crook, Juanita M.; Jezioranski, John; Grimard, Laval; Esche, Bernd; Pond, G.

    2005-01-01

    Purpose: To report results for 49 men with squamous cell carcinoma (SCC) of the penis treated with primary penile interstitial brachytherapy at one of two institutions: the Ottawa Regional Cancer Center, Ottawa, and the Princess Margaret Hospital, Toronto, Ontario, Canada. Methods and Materials: From September 1989 to September 2003, 49 men (mean age, 58 years; range, 22-93 years) had brachytherapy for penile SCC. Fifty-one percent of tumors were T1, 33% T2, and 8% T3; 4% were in situ and 4% Tx. Grade was well differentiated in 31%, moderate in 45%, and poor in 2%; grade was unspecified for 20%. One tumor was verrucous. All tumors in Toronto had pulsed dose rate (PDR) brachytherapy (n = 23), whereas those in Ottawa had either Iridium wire (n 22) or seeds (n = 4). Four patients had a single plane implant with a plastic tube technique, and all others had a volume implant with predrilled acrylic templates and two or three parallel planes of needles (median, six needles). Mean needle spacing was 13.5 mm (range, 10-18 mm), mean dose rate was 65 cGy/h (range, 33-160 cGy/h), and mean duration was 98.8 h (range, 36-188 h). Dose rates for PDR brachytherapy were 50-61.2 cGy/h, with no correction in total dose, which was 60 Gy in all cases. Results: Median follow-up was 33.4 months (range, 4-140 months). At 5 years, actuarial overall survival was 78.3% and cause-specific survival 90.0%. Four men died of penile cancer, and 6 died of other causes with no evidence of recurrence. The cumulative incidence rate for never having experienced any type of failure at 5 years was 64.4% and for local failure was 85.3%. All 5 patients with local failure were successfully salvaged by surgery; 2 other men required penectomy for necrosis. The soft tissue necrosis rate was 16% and the urethral stenosis rate 12%. Of 8 men with regional failure, 5 were salvaged by lymph node dissection with or without external radiation. All 4 men with distant failure died of disease. Of 49 men, 42 had an intact

  1. Brachytherapy for coronary restenosis: state of art in 2003

    International Nuclear Information System (INIS)

    Latorzeff, I.; Delannes, M.; Latorzeff, I.; Carrie, D.; Alibelli, M.J.; Bonnet, J.; Duthil, P.

    2003-01-01

    Based on therapeutic approach for benign diseases, vascular brachytherapy decreases smooth vascular muscle cells proliferation and multiplication which lead to the formation of the neo-intima. The radioactive positive action affects arterial recoil due to post angioplasty vessel injury. Randomized studies has shown good angiographic results up to 6 months of follow-up, with 50% in-stent restenosis rate decrease and on the analysed segment as well. Decrease on Mace and TLR show statistically significance. Results don't correlate with emitter and beta emitters had been introduced in France recently. Vascular brachytherapy is actually indicated for in-stent restenosis, there is no evidence to perform this treatment for de novo lesion. Geographic miss, source centering, late thrombosis and pullback procedure may interfere with treatment quality. IVUS allows best target volume determination to a higher quality level. Internationals guidelines such as Eva-Gec-Estro recommendations could increase treatment safety and enable development of an optimal technique. (authors)

  2. Exclusive brachytherapy for T1-T2 N0 cancer of the oral tongue: prognostic factors for local control

    International Nuclear Information System (INIS)

    Frezza, G.; Baldissera, A.; Bunkheila, F.; Caliceti, U.; Galuppi, A.; Guidetti, A.; Sorrenti, G.

    1996-01-01

    INTRODUCTION: The files of a group of patients (pts) treated with brachytherapy alone for cancer of the oral tongue were reviewed to assess the prognostic role of T stage, volume of disease, total dose and dose-rate. PATIENTS METHODS AND RESULTS: From 1982 to 1994 46 pts (29 males, 17 females, age 38-84 years, median 63.1 years) were treated with 192 Ir brachytherapy, in 2 cases followed by prophylactic neck dissection for cancer of the oral tongue (T1N0: 19 pts; T2N0: 27 pts). Brachytherapy was performed with hairpins in the early years of the study (17 pts) and more recently with plastic tubes (29 pts), according to the Parts System. Dose ranged from 60-70 Gy with a dose-rate of 0.38-0.62 Gy/h (median 63.8 and 0.52 respectively). Volume of the disease was retrospectively assessed as the product of the three diameters of the lesion calculated for provisional dosimetry (range 0.25- 16 cc.). Median follow up is 72 mos (range: 14-153 mos). RESULTS: Overall local control was 82.6% ((38(46)) pts; T1: (18(19)), 94.7 %; T2: (22(27)), 81.5 %). Five of 8 pts who recurred were submitted to salvage surgery, and 3 of them are alive and free from disease at 34, 52 and 87 mos respectively. Recurrences appeared after 3-13 mos (median 5.5 mos) and were related to total dose ( 63 Gy (1(18)); 5.5 %) and to dose-rate ( 45 cGy/h (4(36)): 11.1 %). The volume of disease was not of prognostic significance since local control was 79.6 % ((6(28)) pts) in pts with a disease smaller than 3 cc. and 88.9 % in pts with large volume ((2(18)) pts). Seven (15.2 %) grade 3 complications (necrosis of the mandibular bone and- or of the soft tissues) were observed. Complication rate was higher in the high dose group (>63 Gy (4(18)) pts: 22.2 %) and was less affected by dose-rate (> 45 cGy/h (6(36)) pts: 16.6 %). No relationship between complications and volume was observed ( 3cc.: 16.6 %). All complications healed spontaneously. DISCUSSION AND CONCLUSION: For T1-T2 cancer of the oral tongue exclusive

  3. Overview of brachytherapy resources in Europe: A survey of patterns of care study for brachytherapy in Europe

    International Nuclear Information System (INIS)

    Guedea, Ferran; Ellison, Tracey; Venselaar, Jack; Borras, Josep Maria; Hoskin, Peter; Poetter, Richard; Heeren, Germaine; Nisin, Roselinne; Francois, Guy; Mazeron, Jean Jacques; Limbergen, Erik Van; Ventura, Montserrat; Taillet, Michel; Cottier, Brian

    2007-01-01

    Background and purpose: The Patterns of Care for Brachytherapy in Europe (PCBE) study is aimed at establishing a detailed information system on brachytherapy throughout Europe. Materials and methods: The questionnaire was web-based and the analysis used data from each radiotherapy department with brachytherapy. There were three groups: Group I with 19 countries (15 initial European Community (EC) countries plus Iceland, Monaco, Norway and Switzerland -EC+4-), Group II with 10 countries (New European Community countries -NEC-) and Group III with 14 countries (Other European Countries -OEC-). Results: In the European area there are 36 of 43 countries (85%) which achieved data collection from at least 50% of centres, and were included in the analysis. The tumour site that had the largest number of treated patients was gynaecological tumours. Several variations have been found in the mean number of patients treated per consultant radiation oncologist and physicist; and in the proportion of brachytherapy patients with gynaecology, prostate and breast tumours, by country and by European area. The provided data showed that the average number of brachytherapy patients per centre increased by 10% between 1997 and 2002. Conclusions: A European wide evaluation of brachytherapy practice using a web-based questionnaire is feasible and that there is considerable variation in both patterns of practice and available resources

  4. SU-F-T-28: Evaluation of BEBIG HDR Co-60 After-Loading System for Skin Cancer Treatment Using Conical Surface Applicator

    Energy Technology Data Exchange (ETDEWEB)

    Safigholi, H; Soliman, A; Song, W Y [Department of Medical Physics, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON (Canada); Meigooni, A S [Department of Radiation Therapy, Comprehensive Cancer Center of Nevada, Las Vegas, NV (United States); Han, D [Departemt of Radiation Oncology, University of California San Francisco, San Francisco, CA (United States)

    2016-06-15

    Purpose: To evaluate the possibility of utilizing the BEBIG HDR 60Co remote after-loading system for malignant skin surface treatment using Monte Carlo (MC) simulation technique. Methods: First TG-43 parameters of BEBIG-Co-60 and Nucletron Ir-192-mHDR-V2 brachytherapy sources were simulated using MCNP6 code to benchmark the sources against the literature. Second a conical tungsten-alloy with 3-cm diameter of Planning-Target-Volume (PTV) at surface for use with a single stepping HDR source is designed. The HDR source is modeled parallel to treatment plane at the center of the conical applicator with a source surface distance (SSD) of 1.5-cm and a removable plastic end-cap with a 1-mm thickness. Third, MC calculated dose distributions from HDR Co-60 for conical surface applicator were compared with the simulated data using HDR Ir-192 source. The initial calculations were made with the same conical surface applicator (standard-applicator) dimensions as the ones used with the Ir-192 system. Fourth, the applicator wall-thickness for the Co-60 system was increased (doubled) to diminish leakage dose to levels received when using the Ir-192 system. With this geometry, percentage depth dose (PDD), and relative 2D-dose profiles in transverse/coronal planes were normalized at 3-mm prescription-depth evaluated along the central axis. Results: PDD for Ir-192 and Co-60 were similar with standard and thick-walled applicator. 2D-relative dose distribution of Co-60, inside the standard-conical-applicator, generated higher penumbra (7.6%). For thick-walled applicator, it created smaller penumbra (<4%) compared to Ir-192 source in the standard-conicalapplicator. Dose leakage outside of thick-walled applicator with Co-60 source was approximately equal (≤3%) with standard applicator using Ir-192 source. Conclusion: Skin cancer treatment with equal quality can be performed with Co-60 source and thick-walled conical applicators instead of Ir-192 with standard applicators. These conical

  5. Development of brachytherapy medium doserate

    International Nuclear Information System (INIS)

    Atang Susila; Ari Satmoko; Ahmad Rifai; Kristiyanti

    2010-01-01

    Brachytherapy has proven to be an effective treatment for different types of cancers and it become a common treatment modality in most radiotherapy clinics. PRPN has had experience in development of Low Dose Rate Brachytherapy for cervix cancer treatment. However the treatment process using LDR device needs 5 hours in time that the patient feel uncomfort. Therefore PRPN develops Medium Dose Rate Brachytherapy with radiation activity not more than 5 Currie. The project is divided into two stages. Purchasing of TPS software and TDS design are held in 2010, and the construction will be in 2011. (author)

  6. Brachytherapy

    Science.gov (United States)

    ... the use of a type of energy, called ionizing radiation, to kill cancer cells and shrink tumors. External ... In all cases of brachytherapy, the source of radiation is encapsulated ... non-radioactive metallic capsule. This prevents the radioactive materials ...

  7. Clinically evident fat necrosis in women treated with high-dose-rate brachytherapy alone for early-stage breast cancer

    International Nuclear Information System (INIS)

    Wazer, David E.; Lowther, David; Boyle, Teresa; Ulin, Kenneth; Neuschatz, Andrew; Ruthazer, Robin; DiPetrillo, Thomas A.

    2001-01-01

    Purpose: To investigate the incidence of and variables associated with clinically evident fat necrosis in women treated on a protocol of high-dose-rate (HDR) brachytherapy alone without external-beam whole-breast irradiation for early-stage breast carcinoma. Methods and Materials: From 6/1997 until 8/1999, 30 women diagnosed with Stage I or II breast carcinoma underwent surgical excision and postoperative irradiation via HDR brachytherapy implant as part of a multi-institutional clinical Phase I/II protocol. Patients eligible included those with T1, T2, N0, N1 (≤3 nodes positive), M0 tumors of nonlobular histology with negative surgical margins, no extracapsular lymph-node extension, and a negative postexcision mammogram. Brachytherapy catheters were placed at the initial excision, re-excision, or at the time of axillary sampling. Direct visualization, surgical clips, ultrasound, or CT scans assisted in delineating the target volume defined as the excision cavity plus 2-cm margin. High activity 192 Ir (3-10 Ci) was used to deliver 340 cGy per fraction, 2 fractions per day, for 5 consecutive days to a total dose of 34 Gy to the target volume. Source position and dwell times were calculated using standard volume optimization techniques. Dosimetric analyses were performed with three-dimensional postimplant dose and volume reconstructions. The median follow-up of all patients was 24 months (range, 12-36 months). Results: Eight patients (crude incidence of 27%) developed clinically evident fat necrosis postimplant in the treated breast. Fat necrosis was determined by clinical presentation including pain and swelling in the treated volume, computed tomography, and/or biopsy. All symptomatic patients (7 of 8 cases) were successfully treated with 3 to 12 months of conservative management. Continuous variables that were found to be associated significantly with fat necrosis included the number of source dwell positions (p=0.04), and the volume of tissue which received

  8. Risk of Late Urinary Complications Following Image Guided Adaptive Brachytherapy for Locally Advanced Cervical Cancer: Refining Bladder Dose-Volume Parameters.

    Science.gov (United States)

    Manea, Elena; Escande, Alexandre; Bockel, Sophie; Khettab, Mohamed; Dumas, Isabelle; Lazarescu, Ioana; Fumagalli, Ingrid; Morice, Philippe; Deutsch, Eric; Haie-Meder, Christine; Chargari, Cyrus

    2018-06-01

    To study correlations between dose-volume parameters of the whole bladder and bladder trigone and late urinary toxicity in locally advanced cervical cancer patients treated with pulsed-dose-rate brachytherapy. Patients with locally advanced cervical cancer treated with chemoradiation therapy and pulsed-dose-rate brachytherapy from 2004 to 2015 were included. Cumulative dose-volume parameters of the whole bladder and bladder trigone were converted into 2-Gy/fraction equivalents (EQD2, with α/β = 3 Gy); these parameters, as well as clinical factors, were analyzed as predictors of toxicity in patients without local relapse. A total of 297 patients fulfilled the inclusion criteria. The median follow-up period was 4.9 years (95% confidence interval 4.5-5.3 years). In patients without local relapse (n = 251), the Kaplan-Meier estimated grade 2 or higher urinary toxicity rates at 3 years and 5 years were 25.4% and 32.1%, respectively. Minimal dose to the most exposed 2 cm 3 of the whole bladder [Formula: see text] , bladder International Commission on Radiation Units & Measurements (ICRU) (B ICRU ) dose, and trigone dose-volume parameters correlated with grade 2 or higher toxicity. At 3 years, the cumulative incidence of grade 2 or higher complications was 22.8% (standard error, 2.9%) for bladder [Formula: see text]   60 Gy EQD2 was significant for grade 2 or higher toxicity (P = .027). The probability of grade 3 or higher toxicities increased with bladder [Formula: see text]  > 80 Gy EQD2 (16.7% vs 1.6%; hazard ratio [HR], 5.77; P = .039), B ICRU dose > 65 Gy EQD2 (4.9% vs 1.3%; HR, 6.36; P = .018), and trigone D 50%  > 60 Gy EQD2 (3.1% vs 1.2%; HR, 6.29; P = .028). Pearson correlation coefficients showed a moderate correlation between bladder [Formula: see text] , B ICRU dose, and bladder trigone D 50% (P < .0001). These data suggest that [Formula: see text]  ≤ 80 Gy EQD2 should be advised for minimizing the risk of severe urinary

  9. Mixed integer programming improves comprehensibility and plan quality in inverse optimization of prostate HDR Brachytherapy

    NARCIS (Netherlands)

    Gorissen, B.L.; den Hertog, D.; Hoffmann, A.L.

    2013-01-01

    Current inverse treatment planning methods that optimize both catheter positions and dwell times in prostate HDR brachytherapy use surrogate linear or quadratic objective functions that have no direct interpretation in terms of dose-volume histogram (DVH) criteria, do not result in an optimum or

  10. A Phase III Randomized Trial of the Timing of Meloxicam With Iodine-125 Prostate Brachytherapy

    International Nuclear Information System (INIS)

    Crook, Juanita; Patil, Nikhilesh; Wallace, Kris; Borg, Jette; Zhou, David; Ma, Clement; Pond, Greg

    2010-01-01

    Purpose: Nonsteroidal anti-inflammatory medication is used to reduce prostate edema and urinary symptoms following prostate brachytherapy. We hypothesized that a cyclooxygenase-2 (COX-2) inhibitor regimen started 1 week prior to seed implant might diminish the inflammatory response, thus reducing edema, retention rates, and symptom severity. Methods and Materials: From March 2004 to February 2008, 316 men consented to an institutional review board-approved randomized study of a 4-week course of meloxicam, 7.5 mg orally twice per day, starting either on the day of implant or 1 week prior to implant. Brachytherapy was performed using iodine-125 seeds and was preplanned and performed under transrectal ultrasound (TRUS) and fluoroscopic guidance. Prostate volume obtained by MR imaging at 1 month was compared to baseline prostate volume obtained by TRUS planimetry and expressed as an edema factor. The trial endpoints were prostate edema at 1 month, International Prostate Symptom Score (IPSS) questionnaire results at 1 and 3 months, and any need for catheterization. Results: Results for 300 men were analyzed. Median age was 61 (range, 45-79 years), and median TRUS prostate volume was 35.7 cc (range, 18.1-69.5 cc). Median IPSS at baseline was 5 (range, 0-24) and was 15 at 1 month, 16 at 3 months, and 10 at 6 months. Catheterization was required for 7% of patients (6.2% day 0 arm vs. 7.9% day -7 arm; p = 0.65). The median edema factor at 1 month was 1.02 (range, 0.73-1.7). 1.01 day 0 arm vs. 1.05 day -7 arm. Baseline prostate volume remained the primary predictor of postimplant urinary retention. Conclusions: Starting meloxicam 1 week prior to brachytherapy compared to starting immediately after the procedure did not reduce 1-month edema, improve IPSSs at 1 or 3 months, or reduce the need for catheterization.

  11. Dosimetric Effects of Air Pockets Around High-Dose Rate Brachytherapy Vaginal Cylinders

    International Nuclear Information System (INIS)

    Richardson, Susan; Palaniswaamy, Geethpriya; Grigsby, Perry W.

    2010-01-01

    Purpose: Most physicians use a single-channel vaginal cylinder for postoperative endometrial cancer brachytherapy. Recent published data have identified air pockets between the vaginal cylinders and the vaginal mucosa. The purpose of this research was to evaluate the incidence, size, and dosimetric effects of these air pockets. Methods and Materials: 25 patients receiving postoperative vaginal cuff brachytherapy with a high-dose rate vaginal cylinders were enrolled in this prospective data collection study. Patients were treated with 6 fractions of 200 to 400 cGy per fraction prescribed at 5 mm depth. Computed tomography simulation for brachytherapy treatment planning was performed for each fraction. The quantity, volume, and dosimetric impact of the air pockets surrounding the cylinder were quantified. Results: In 25 patients, a total of 90 air pockets were present in 150 procedures (60%). Five patients had no air pockets present during any of their treatments. The average number of air pockets per patient was 3.6, with the average total air pocket volume being 0.34 cm 3 (range, 0.01-1.32 cm 3 ). The average dose reduction to the vaginal mucosa at the air pocket was 27% (range, 9-58%). Ten patients had no air pockets on their first fraction but air pockets occurred in subsequent fractions. Conclusion: Air pockets between high-dose rate vaginal cylinder applicators and the vaginal mucosa are present in the majority of fractions of therapy, and their presence varies from patient to patient and fraction to fraction. The existence of air pockets results in reduced radiation dose to the vaginal mucosa.

  12. Time, dose and volume factors in interstitial brachytherapy combined with external irradiation for oral tongue carcinoma

    International Nuclear Information System (INIS)

    Yorozu, Atsunori

    1996-01-01

    This is a retrospective analysis of 136 patients with squamous cell carcinoma of stages I and II of the oral tongue who were treated with interstitial brachytherapy alone or in combination with external irradiation between 1976 and 1991. Control of the primary lesion and the occurrence of late complications were analyzed with respect to dose, time and tumor size with the Cox hazard model. The 5-year survival rates for stages I and II were 84.5% and 75.6%. The 5-year primary control rate was 91.3% for stage I and 77.3% for stage II (p 50 Gy compared with a brachytherapy dose 30 mm. Late complications should be reduced by using a spacer, improvements in dental and oral hygiene, and a sophisticated implant method. (author)

  13. Seed Implant Retention Score Predicts the Risk of Prolonged Urinary Retention After Prostate Brachytherapy

    International Nuclear Information System (INIS)

    Lee, Hoon K.; Adams, Marc T.; Shi, Qiuhu; Basillote, Jay; LaMonica, Joanne; Miranda, Luis; Motta, Joseph

    2010-01-01

    Purpose: To risk-stratify patients for urinary retention after prostate brachytherapy according to a novel seed implant retention score (SIRS). Patients and Methods: A total of 835 patients underwent transperineal prostate seed implant from March 1993 to January 2007; 197 patients had 125 I and 638 patients had 103 Pd brachytherapy. Four hundred ninety-four patients had supplemental external-beam radiation. The final downsized prostate volume was used for the 424 patients who had neoadjuvant hormone therapy. Retention was defined as reinsertion of a Foley catheter after the implant. Results: Retention developed in 7.4% of patients, with an average duration of 6.7 weeks. On univariate analysis, implant without supplemental external-beam radiation (10% vs. 5.6%; p = 0.02), neoadjuvant hormone therapy (9.4% vs. 5.4%; p = 0.02), baseline α-blocker use (12.5% vs. 6.3%; p = 0.008), and increased prostate volume (13.4% vs. 6.9% vs. 2.9%, >45 cm 3 , 25-45 cm 3 , 3 ; p = 0.0008) were significantly correlated with increased rates of retention. On multivariate analysis, implant without supplemental external-beam radiation, neoadjuvant hormone therapy, baseline α-blocker use, and increased prostate volume were correlated with retention. A novel SIRS was modeled as the combined score of these factors, ranging from 0 to 5. There was a significant correlation between the SIRS and retention (p < 0.0001). The rates of retention were 0, 4%, 5.6%, 9%, 20.9%, and 36.4% for SIRS of 0 to 5, respectively. Conclusions: The SIRS may identify patients who are at high risk for prolonged retention after prostate brachytherapy. A prospective validation study of the SIRS is planned.

  14. A method to combine three dimensional dose distributions for external beam and brachytherapy radiation treatments for gynecological neoplasms

    International Nuclear Information System (INIS)

    Narayana, V.; Sahijdak, W.M.; Orton, C.G.

    1997-01-01

    Purpose: Radiation treatment of gynecological neoplasms, such as cervical carcinoma, usually combines external radiation therapy with one or more intracavitary brachytherapy applications. Although the dose from external beam radiation therapy and brachytherapy can be calculated and displayed in 3D individually, the dose distributions are not combined. At most, combined point doses are calculated for select points using various time-dose models. In this study, we present a methodology to combine external beam and brachytherapy treatments for gynecological neoplasms. Material and Methods: Three dimensional bio-effect treatment planning to obtain complication probability has been outlined. CT scans of the patient's pelvis with the gynecological applicator in place are used to outline normal tissue and tumor volumes. 3D external beam and brachytherapy treatment plans are developed separately and an external beam dose matrix and a brachytherapy dose matrix was calculated. The dose in each voxel was assumed to be homogeneous. The physical dose in each voxel of the dose matrix was then converted into extrapolated response dose (ERD) based on the linear quadratic model that accounts for the dose per fraction, number of fractions, dose rate, and complete or incomplete repair of sublethal damage (time between fractions). The net biological dose delivered was obtained by summing the ERD grids from external beam and brachytherapy since there was complete repair of sublethal damage between external beam and brachytherapy treatments. The normal tissue complication probability and tumor control probability were obtained using the biological dose matrix based on the critical element model. Results: The outlined method of combining external beam and brachytherapy treatments was implemented on gynecological treatments using an applicator for brachytherapy treatments. Conclusion: Implementation of the biological dose calculation that combine different modalities is extremely useful

  15. Iodine-125 thin seeds decrease prostate swelling during transperineal interstitial permanent prostate brachytherapy

    International Nuclear Information System (INIS)

    Beydoun, Nadine; Bucci, Joseph A.; Chin, Yaw S.; Malouf, David

    2014-01-01

    Prostate swelling following seed implantation is a well-recognised phenomenon. The purpose of this intervention was to assess whether using thinner seeds reduces post-implant swelling with permanent prostate brachytherapy. Eighteen consecutive patients eligible for prostate seed brachytherapy underwent seed implantation using iodine-125 (I-125) thin seeds. Operative time, dosimetry, prostate swelling and toxicity were assessed and compared with standard I-125 stranded seed controls, sourced from the department's brachytherapy database. A learning curve was noted with the thin seeds in terms of greater bending and deviation of needles from their intended path. This translated into significantly longer total operative time (88 vs 103 minutes; P=0.009, 95% confidence interval (CI) 4.1-24.3) and time per needle insertion (2.6 vs 3.7 minutes; P<0.001, 95% CI 0.5-1.3) for the thin seeds. Day 30 prostate volumes were significantly smaller in the thin seed group compared with standard seeds (40.9cc vs 46.8cc; P=0.001, 95% CI 1.5-5.6). The ratio of preoperative transrectal ultrasound to day 30 post-implant CT volume was also smaller in the thin seed group (1.2±0.1 for standard seeds vs 1.1±0.1 for thin seeds). Post-implant dosimetric parameters were comparable for both groups. No significant differences were seen in acute urinary morbidity or quality of life between the two groups. I-125 thin seeds are associated with an initial learning curve, with longer operative time, even for experienced brachytherapists. The significant reduction in day 30 prostate volumes with the thin seeds has useful implications in terms of optimising dose coverage to the prostate in the early period post-implantation, as well as improving the accuracy of post-implant dosimetric assessments.

  16. CT-guided brachytherapy. A novel percutaneous technique for interstitial ablation of liver malignancies; CT-gesteuerte Brachytherapie. Eine neue perkutane Technik zur interstitiellen Ablation von Lebermetastasen

    Energy Technology Data Exchange (ETDEWEB)

    Ricke, J.; Wust, P.; Stohlmann, A.; Beck, A.; Cho, C.H.; Pech, M.; Wieners, G.; Spors, B.; Werk, M.; Rosner, C.; Haenninen, E.L.; Felix, R. [Klinik fuer Strahlenheilkunde, Charite Virchow-Klinikum, Humboldt-Univ. zu Berlin (Germany)

    2004-05-01

    Purpose: to assess safety and efficacy of CT-guided brachytherapy of liver malignancies. Patients and methods: 21 patients with 21 liver malignancies (19 metastases, two primary liver tumors) were treated with interstitial CT-guided brachytherapy applying a {sup 192}Ir source. In all patients, the use of image-guided thermal tumor ablation such as by radiofrequency or laser-induced thermotherapy (LITT) was impeded either by tumor size {>=} 5 cm in seven, adjacent portal or hepatic vein in ten, or adjacent bile duct bifurcation in four patients. Dosimetry was performed using three-dimensional CT data sets acquired after CT-guided positioning of the brachytherapy catheters. Results: the mean tumor diameter was 4.6 cm (2.5-11 cm). The mean minimal tumor dose inside the tumor margin amounted to 17 Gy (12-20 Gy). The proportion of the liver parenchyma exposed to > 5 gy was 18% (5-39%) of total liver parenchyma minus tumor volume. Nausea and vomiting were observed in six patients after brachytherapy (28%). One patient demonstrated obstructive jaundice due to tumor edema after irradiation of a metastasis adjacent to the bile duct bifurcation. We commonly encountered asymptomatic increases of liver enzymes. Local control rates after 6 and 12 months were 87% and 70%, respectively. Conclusion: CT-guided brachytherapy is safe and effective. This technique displays broader indications compared to image-guided thermal ablation by radiofrequency or LITT with respect to tumor size or localization. (orig.) [German] Ziel: Analyse der Sicherheit und Effektivitaet CT-gesteuerter Brachytherapie zur Ablation von Lebermalignomen. Patienten und Methodik: 21 Patienten mit 21 Lebermalignomen (19 Metastasen, zwei primaere Lebermalignome) wurden mit perkutaner, CT-gesteuerter interstitieller Brachytherapie mit {sup 192}Ir behandelt. Alle Patienten wiesen Umstaende auf, die eine bildgefuehrte thermische Ablation mit Radiofrequenz oder laserinduzierter Thermotherapie (LITT) einschraenkten

  17. Matched-pair analysis and dosimetric variations of two types of software for interstitial permanent brachytherapy for prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ishiyama, Hiromichi, E-mail: hishiyam@kitasato-u.ac.jp [Department of Radiology, Kitasato University School of Medicine, Sagamihara, Kanagawa (Japan); Nakamura, Ryuji [Department of Radiology, Iwate Medical University, Morioka, Iwate (Japan); Satoh, Takefumi [Department of Urology, Kitasato University School of Medicine, Sagamihara, Kanagawa (Japan); Tanji, Susumu [Department of Urology, Iwate Medical University, Morioka, Iwate (Japan); Teh, Bin S. [Department of Radiation Oncology, The Methodist Hospital, Houston, TX (United States); Uemae, Mineko [Division of Radiation Oncology, Kitasato University Hospital, Sagamihara, Kanagawa (Japan); Baba, Shiro [Department of Urology, Kitasato University School of Medicine, Sagamihara, Kanagawa (Japan); Hayakawa, Kazushige [Department of Radiology, Kitasato University School of Medicine, Sagamihara, Kanagawa (Japan)

    2012-04-01

    The purpose of this study was to determine whether identical dosimetric results could be achieved using different planning software for permanent interstitial brachytherapy for prostate cancer. Data from 492 patients treated with brachytherapy were used for matched-pair analysis. Interplant and Variseed were used as software for ultrasound-based treatment planning. Institution, neoadjuvant hormonal therapy, prostate volume, and source strength were used for factors to match the 2 groups. The study population comprised of 126 patients with treatment planning using Interplant software and 127 matched patients using Variseed software. Dosimetric results were compared between the 2 groups. The Variseed group showed significantly higher values for dose covering 90% of prostate volume (pD90), prostate volume covered by 150% of prescription dose (pV150), and dose covering 30% of the urethra (uD30) compared with the Interplant group. Our results showed that use of different software could lead to different dosimetric results, which might affect the clinical outcomes.

  18. Comparison of Real-Time Intraoperative Ultrasound-Based Dosimetry With Postoperative Computed Tomography-Based Dosimetry for Prostate Brachytherapy

    International Nuclear Information System (INIS)

    Nag, Subir; Shi Peipei; Liu Bingren; Gupta, Nilendu; Bahnson, Robert R.; Wang, Jian Z.

    2008-01-01

    Purpose: To evaluate whether real-time intraoperative ultrasound (US)-based dosimetry can replace conventional postoperative computed tomography (CT)-based dosimetry in prostate brachytherapy. Methods and Materials: Between December 2001 and November 2002, 82 patients underwent 103 Pd prostate brachytherapy. An interplant treatment planning system was used for real-time intraoperative transrectal US-guided treatment planning. The dose distribution was updated according to the estimated seed position to obtain the dose-volume histograms. Postoperative CT-based dosimetry was performed a few hours later using the Theraplan-Plus treatment planning system. The dosimetric parameters obtained from the two imaging modalities were compared. Results: The results of this study revealed correlations between the US- and CT-based dosimetry. However, large variations were found in the implant-quality parameters of the two modalities, including the doses covering 100%, 90%, and 80% of the prostate volume and prostate volumes covered by 100%, 150%, and 200% of the prescription dose. The mean relative difference was 38% and 16% for doses covering 100% and 90% of the prostate volume and 10% and 21% for prostate volumes covered by 100% and 150% of the prescription dose, respectively. The CT-based volume covered by 200% of the prescription dose was about 30% greater than the US-based one. Compared with CT-based dosimetry, US-based dosimetry significantly underestimated the dose to normal organs, especially for the rectum. The average US-based maximal dose and volume covered by 100% of the prescription dose for the rectum was 72 Gy and 0.01 cm 3 , respectively, much lower than the 159 Gy and 0.65 cm 3 obtained using CT-based dosimetry. Conclusion: Although dosimetry using intraoperative US-based planning provides preliminary real-time information, it does not accurately reflect the postoperative CT-based dosimetry. Until studies have determined whether US-based dosimetry or

  19. Adaptive brachytherapy of cervical cancer, comparison of conventional point A and CT based individual treatment planning

    International Nuclear Information System (INIS)

    Wanderaas, Anne D.; Langdal, Ingrid; Danielsen, Signe; Frykholm, Gunilla; Marthinsen, Anne B. L; Sundset, Marit

    2012-01-01

    Background. Locally advanced cervical cancer is commonly treated with external radiation therapy combined with local brachytherapy. The brachytherapy is traditionally given based on standard dose planning with prescription of dose to point A. Dosimetric aspects when changing from former standard treatment to individualized treatment plans based on computed tomography (CT) images are here investigated. Material and methods. Brachytherapy data from 19 patients with a total of 72 individual treatment fractions were retrospectively reviewed. Standard library plans were analyzed with respect to doses to organs at risk (OARs), and the result was compared to corresponding delivered individualized plans. The theoretical potential of further optimization based on prescription to target volumes was investigated. The treatments were performed with a Fletcher applicator. Results. For standard treatment planning, the tolerance dose limits were exceeded in the bladder, rectum and sigmoid in 26%, 4% and 15% of the plans, respectively. This was observed most often for the smallest target volumes. The individualized planning of the delivered treatment gave the possibility of controlling the dose to critical organs to below certain limits. The dose was still prescribed to point A. An increase in target dose coverage was achieved when additional individual optimization was performed, while still keeping the dose to the OARs below predefined limits. Relatively low average target coverage, especially for the largest volumes was however seen. Conclusion. The individualized delivered treatment plans ensured that doses to OARs were within acceptable limits. This was not the case in 42% of the corresponding standard plans. Further optimized treatment plans were found to give an overall better dose coverage. In lack of MR capacity, it may be favorable to use CT for planning due to possible protection of OARs. The CT based target volumes were, however, not equivalent to the volumes described

  20. Recommendations of the EVA GEC ESTRO Working Group: prescribing, recording, and reporting in endovascular brachytherapy. Quality assurance, equipment, personnel and education

    International Nuclear Information System (INIS)

    Poetter, Richard; Limbergen, Erik van; Dries, Wim; Popowski, Youri; Coen, Veronique; Fellner, Claudia; Georg, Dietmar; Kirisits, Christian; Levendag, Peter; Marijnissen, Hans; Marsiglia, Hugo; Mazeron, Jean-Jaques; Pokrajac, Boris; Scalliet, Pierre; Tamburini, Vittorio

    2001-01-01

    Endovascular brachytherapy is a new, rapidly growing field of interest in radiotherapy for the prevention of neointimal hyperplasia after angioplasty in both coronary and peripheral arteries. Many physics aspects of these treatments have already been addressed in the report of the American Association of Physicists in Medicine task group on 'Intravascular brachytherapy', but up to now there are no generally accepted recommendations for recording and reporting radiation doses and volumes. The terminology to be used by all individuals involved in such treatments (radiation oncologists, physicists, and interventionalists) is not clearly defined. The Endovascular Groupe Europeen de Curietherapie/European Society for Therapeutic Radiology and Oncology Working Group in this document presents recommendations for a common language for general use in endovascular brachytherapy. This proposal addresses general terms and concepts for target and dose specification as well as detailed recommendations for dose prescription, recording and reporting in endovascular brachytherapy for both peripheral and coronary arteries. Additionally, quality assurance and radiation safety aspects are briefly addressed, as are aspects related to equipment, personnel, and training and education related to endovascular brachytherapy

  1. Dose reduction in LDR brachytherapy by implanted prostate gold fiducial markers.

    Science.gov (United States)

    Landry, Guillaume; Reniers, Brigitte; Lutgens, Ludy; Murrer, Lars; Afsharpour, Hossein; de Haas-Kock, Danielle; Visser, Peter; van Gils, Francis; Verhaegen, Frank

    2012-03-01

    The dosimetric impact of gold fiducial markers (FM) implanted prior to external beam radiotherapy of prostate cancer on low dose rate (LDR) brachytherapy seed implants performed in the context of combined therapy was investigated. A virtual water phantom was designed containing a single FM. Single and multi source scenarios were investigated by performing Monte Carlo dose calculations, along with the influence of varying orientation and distance of the FM with respect to the sources. Three prostate cancer patients treated with LDR brachytherapy for a recurrence following external beam radiotherapy with implanted FM were studied as surrogate cases to combined therapy. FM and brachytherapy seeds were identified on post implant CT scans and Monte Carlo dose calculations were performed with and without FM. The dosimetric impact of the FM was evaluated by quantifying the amplitude of dose shadows and the volume of cold spots. D(90) was reported based on the post implant CT prostate contour. Large shadows are observed in the single source-FM scenarios. As expected from geometric considerations, the shadows are dependent on source-FM distance and orientation. Large dose reductions are observed at the distal side of FM, while at the proximal side a dose enhancement is observed. In multisource scenarios, the importance of shadows appears mitigated, although FM at the periphery of the seed distribution caused underdosage (LDR brachytherapy seed implant dose distributions. Therefore, reduced tumor control could be expected from FM implanted in tumors, although our results are too limited to draw conclusions regarding clinical significance.

  2. Comprehensive brachytherapy physical and clinical aspects

    CERN Document Server

    Baltas, Dimos; Meigooni, Ali S; Hoskin, Peter J

    2013-01-01

    Modern brachytherapy is one of the most important oncological treatment modalities requiring an integrated approach that utilizes new technologies, advanced clinical imaging facilities, and a thorough understanding of the radiobiological effects on different tissues, the principles of physics, dosimetry techniques and protocols, and clinical expertise. A complete overview of the field, Comprehensive Brachytherapy: Physical and Clinical Aspects is a landmark publication, presenting a detailed account of the underlying physics, design, and implementation of the techniques, along with practical guidance for practitioners. Bridging the gap between research and application, this single source brings together the technological basis, radiation dosimetry, quality assurance, and fundamentals of brachytherapy. In addition, it presents discussion of the most recent clinical practice in brachytherapy including prostate, gynecology, breast, and other clinical treatment sites. Along with exploring new clinical protocols, ...

  3. Paddle-based rotating-shield brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yunlong; Xu, Weiyu [Department of Electrical and Computer Engineering, University of Iowa, 4016 Seamans Center, Iowa City, Iowa 52242 (United States); Flynn, Ryan T.; Kim, Yusung; Bhatia, Sudershan K.; Buatti, John M. [Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 (United States); Dadkhah, Hossein [Department of Biomedical Engineering, University of Iowa, 1402 Seamans Center, Iowa City, Iowa 52242 (United States); Wu, Xiaodong, E-mail: xiaodong-wu@uiowa.edu [Department of Electrical and Computer Engineering, University of Iowa, 4016 Seamans Center, Iowa City, Iowa 52242 and Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 (United States)

    2015-10-15

    Purpose: The authors present a novel paddle-based rotating-shield brachytherapy (P-RSBT) method, whose radiation-attenuating shields are formed with a multileaf collimator (MLC), consisting of retractable paddles, to achieve intensity modulation in high-dose-rate brachytherapy. Methods: Five cervical cancer patients using an intrauterine tandem applicator were considered to assess the potential benefit of the P-RSBT method. The P-RSBT source used was a 50 kV electronic brachytherapy source (Xoft Axxent™). The paddles can be retracted independently to form multiple emission windows around the source for radiation delivery. The MLC was assumed to be rotatable. P-RSBT treatment plans were generated using the asymmetric dose–volume optimization with smoothness control method [Liu et al., Med. Phys. 41(11), 111709 (11pp.) (2014)] with a delivery time constraint, different paddle sizes, and different rotation strides. The number of treatment fractions (fx) was assumed to be five. As brachytherapy is delivered as a boost for cervical cancer, the dose distribution for each case includes the dose from external beam radiotherapy as well, which is 45 Gy in 25 fx. The high-risk clinical target volume (HR-CTV) doses were escalated until the minimum dose to the hottest 2 cm{sup 3} (D{sub 2cm{sup 3}}) of either the rectum, sigmoid colon, or bladder reached their tolerance doses of 75, 75, and 90 Gy{sub 3}, respectively, expressed as equivalent doses in 2 Gy fractions (EQD2 with α/β = 3 Gy). Results: P-RSBT outperformed the two other RSBT delivery techniques, single-shield RSBT (S-RSBT) and dynamic-shield RSBT (D-RSBT), with a properly selected paddle size. If the paddle size was angled at 60°, the average D{sub 90} increases for the delivery plans by P-RSBT on the five cases, compared to S-RSBT, were 2.2, 8.3, 12.6, 11.9, and 9.1 Gy{sub 10}, respectively, with delivery times of 10, 15, 20, 25, and 30 min/fx. The increases in HR-CTV D{sub 90}, compared to D-RSBT, were 16

  4. TU-C-201-02: Clinical Implementation of HDR: Afterloader and Applicator Selection

    Energy Technology Data Exchange (ETDEWEB)

    Esthappan, J. [Washington University School of Medicine (United States)

    2015-06-15

    Recent use of HDR has increased while planning has become more complex often necessitating 3D image-based planning. While many guidelines for the use of HDR exist, they have not kept pace with the increased complexity of 3D image-based planning. Furthermore, no comprehensive document exists to describe the wide variety of current HDR clinical indications. This educational session aims to summarize existing national and international guidelines for the safe implementation of an HDR program. A summary of HDR afterloaders available on the market and their existing applicators will be provided, with guidance on how to select the best fit for each institution’s needs. Finally, the use of checklists will be discussed as a means to implement a safe and efficient HDR program and as a method by which to verify the quality of an existing HDR program. This session will provide the perspective of expert HDR physicists as well as the perspective of a new HDR user. Learning Objectives: Summarize national and international safety and staffing guidelines for HDR implementation Discuss the process of afterloader and applicator selection for gynecologic, prostate, breast, interstitial, surface treatments Learn about the use of an audit checklist tool to measure of quality control of a new or existing HDR program Describe the evolving use of checklists within an HDR program.

  5. In vivo assessment of catheter positioning accuracy and prolonged irradiation time on liver tolerance dose after single-fraction 192Ir high-dose-rate brachytherapy

    Directory of Open Access Journals (Sweden)

    Kropf Siegfried

    2011-09-01

    Full Text Available Abstract Background To assess brachytherapy catheter positioning accuracy and to evaluate the effects of prolonged irradiation time on the tolerance dose of normal liver parenchyma following single-fraction irradiation with 192 Ir. Materials and methods Fifty patients with 76 malignant liver tumors treated by computed tomography (CT-guided high-dose-rate brachytherapy (HDR-BT were included in the study. The prescribed radiation dose was delivered by 1 - 11 catheters with exposure times in the range of 844 - 4432 seconds. Magnetic resonance imaging (MRI datasets for assessing irradiation effects on normal liver tissue, edema, and hepatocyte dysfunction, obtained 6 and 12 weeks after HDR-BT, were merged with 3D dosimetry data. The isodose of the treatment plan covering the same volume as the irradiation effect was taken as a surrogate for the liver tissue tolerance dose. Catheter positioning accuracy was assessed by calculating the shift between the 3D center coordinates of the irradiation effect volume and the tolerance dose volume for 38 irradiation effects in 30 patients induced by catheters implanted in nearly parallel arrangement. Effects of prolonged irradiation were assessed in areas where the irradiation effect volume and tolerance dose volume did not overlap (mismatch areas by using a catheter contribution index. This index was calculated for 48 irradiation effects induced by at least two catheters in 44 patients. Results Positioning accuracy of the brachytherapy catheters was 5-6 mm. The orthogonal and axial shifts between the center coordinates of the irradiation effect volume and the tolerance dose volume in relation to the direction vector of catheter implantation were highly correlated and in first approximation identically in the T1-w and T2-w MRI sequences (p = 0.003 and p p = 0.001 and p = 0.004, respectively. There was a significant shift of the irradiation effect towards the catheter entry site compared with the planned dose

  6. Dosimetry Modeling for Focal Low-Dose-Rate Prostate Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Al-Qaisieh, Bashar [Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds (United Kingdom); Mason, Josh, E-mail: joshua.mason@nhs.net [Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds (United Kingdom); Bownes, Peter; Henry, Ann [Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds (United Kingdom); Dickinson, Louise [Division of Surgery and Interventional Science, University College London, London (United Kingdom); Department of Radiology, Northwick Park Hospital, London North West NHS Trust, London (United Kingdom); Ahmed, Hashim U. [Division of Surgery and Interventional Science, University College London, London (United Kingdom); University College London Hospital, London (United Kingdom); Emberton, Mark [University College London Hospital, London (United Kingdom); Langley, Stephen [St Luke' s Cancer Centre, Guildford (United Kingdom)

    2015-07-15

    Purpose: Focal brachytherapy targeted to an individual lesion(s) within the prostate may reduce side effects experienced with whole-gland brachytherapy. The outcomes of a consensus meeting on focal prostate brachytherapy were used to investigate optimal dosimetry of focal low-dose-rate (LDR) prostate brachytherapy targeted using multiparametric magnetic resonance imaging (mp-MRI) and transperineal template prostate mapping (TPM) biopsy, including the effects of random and systematic seed displacements and interseed attenuation (ISA). Methods and Materials: Nine patients were selected according to clinical characteristics and concordance of TPM and mp-MRI. Retrospectively, 3 treatment plans were analyzed for each case: whole-gland (WG), hemi-gland (hemi), and ultra-focal (UF) plans, with 145-Gy prescription dose and identical dose constraints for each plan. Plan robustness to seed displacement and ISA were assessed using Monte Carlo simulations. Results: WG plans used a mean 28 needles and 81 seeds, hemi plans used 17 needles and 56 seeds, and UF plans used 12 needles and 25 seeds. Mean D90 (minimum dose received by 90% of the target) and V100 (percentage of the target that receives 100% dose) values were 181.3 Gy and 99.8% for the prostate in WG plans, 195.7 Gy and 97.8% for the hemi-prostate in hemi plans, and 218.3 Gy and 99.8% for the focal target in UF plans. Mean urethra D10 was 205.9 Gy, 191.4 Gy, and 92.4 Gy in WG, hemi, and UF plans, respectively. Mean rectum D2 cm{sup 3} was 107.5 Gy, 77.0 Gy, and 42.7 Gy in WG, hemi, and UF plans, respectively. Focal plans were more sensitive to seed displacement errors: random shifts with a standard deviation of 4 mm reduced mean target D90 by 14.0%, 20.5%, and 32.0% for WG, hemi, and UF plans, respectively. ISA has a similar impact on dose-volume histogram parameters for all plan types. Conclusions: Treatment planning for focal LDR brachytherapy is feasible. Dose constraints are easily met with a notable

  7. Intracavitary afterloading boost in anal canal carcinoma. Results, function and quality of life

    International Nuclear Information System (INIS)

    Vordermark, D.; Flentje, M.; Koelbl, O.; Sailer, M.

    2001-01-01

    Background: First clinical data on a new intracavitary afterloading boost method for anal canal carcinoma is reported. Patients and Methods: 20 consecutive patients (T1 5%, T2 70%, T3 20%, T4 5%; N0 75%, N1 10%, N2 15%; all M0) treated with external beam pelvic radiotherapy (median dose 56 Gy, range 46-64 Gy), simultaneous 5-FU and mitomycin (in 75%) and an intracavitary afterloading boost (one or two fractions of 5 Gy at 5 mm depth) were analyzed after a mean ±SD follow-up for living patients of 4.4±2.1 years. Quality of life (QoL) and anorectal manometry parameters were assessed in ten colostomy-free survivors. Results: Overall, recurrence-free and colostomy-free survival at 5 years were 84%, 79% and 69%, respectively. No death was tumorrelated. The only local failure was successfully salvaged by local excision. All three colostomies were performed for toxicity. Resting pressure and maximum squeeze pressure of the anal sphincter were reduced by 51% and 71%, as compared with control subjects, but quality of life was similar compared to healthy volunteers. Conclusion: the described regimen is highly effective but associated with increased toxicity. (orig.) [de

  8. Acute genitourinary toxicity after high dose rate (HDR) brachytherapy combined with hypofractionated external-beam radiation therapy for localized prostate cancer: Second analysis to determine the correlation between the urethral dose in HDR brachytherapy and the severity of acute genitourinary toxicity

    International Nuclear Information System (INIS)

    Akimoto, Tetsuo; Katoh, Hiroyuki; Noda, Shin-ei; Ito, Kazuto; Yamamoto, Takumi; Kashiwagi, Bunzo; Nakano, Takashi

    2005-01-01

    Purpose: We have been treating localized prostate cancer with high-dose-rate (HDR) brachytherapy combined with hypofractionated external beam radiation therapy (EBRT) at our institution. We recently reported the existence of a correlation between the severity of acute genitourinary (GU) toxicity and the urethral radiation dose in HDR brachytherapy by using different fractionation schema. The purpose of this study was to evaluate the role of the urethral dose in the development of acute GU toxicity more closely than in previous studies. For this purpose, we conducted an analysis of patients who had undergone HDR brachytherapy with a fixed fractionation schema combined with hypofractionated EBRT. Methods and Materials: Among the patients with localized prostate cancer who were treated by 192-iridium HDR brachytherapy combined with hypofractionated EBRT at Gunma University Hospital between August 2000 and November 2004, we analyzed 67 patients who were treated by HDR brachytherapy with the fractionation schema of 9 Gy x two times combined with hypofractionated EBRT. Hypofractionated EBRT was administered at a fraction dose of 3 Gy three times weekly, and a total dose of 51 Gy was delivered to the prostate gland and seminal vesicles using the four-field technique. No elective pelvic irradiation was performed. After the completion of EBRT, all the patients additionally received transrectal ultrasonography-guided HDR brachytherapy. The planning target volume was defined as the prostate gland with a 5-mm margin all around, and the planning was conducted based on computed tomography images. The tumor stage was T1c in 13 patients, T2 in 31 patients, and T3 in 23 patients. The Gleason score was 2-6 in 12 patients, 7 in 34 patients, and 8-10 in 21 patients. Androgen ablation was performed in all the patients. The median follow-up duration was 11 months (range 3-24 months). The toxicities were graded based on the Radiation Therapy Oncology Group and the European Organization

  9. Implementing MRI-based target delineation for cervical cancer treatment within a rapid workflow environment for image-guided brachytherapy: A practical approach for centers without in-room MRI.

    Science.gov (United States)

    Trifiletti, Daniel M; Libby, Bruce; Feuerlein, Sebastian; Kim, Taeho; Garda, Allison; Watkins, W Tyler; Erickson, Sarah; Ornan, Afshan; Showalter, Timothy N

    2015-01-01

    Magnetic resonance imaging (MRI)-based intracavitary brachytherapy offers several advantages over computed tomography (CT)-based brachytherapy, but many centers are unable to offer it at the time of brachytherapy because of logistic and/or financial considerations. We have implemented a method of integrating MRI into a CT-guided, high-dose-rate intracavitary brachytherapy workflow in clinics that do not have immediately available MRI capability. At our institution, patients receiving high-dose-rate intracavitary brachytherapy as a component of the definitive treatment of cervical cancer have a Smit sleeve placed during the first brachytherapy fraction in a dedicated suite with in-room CT-on-rails. After the first fraction of brachytherapy, an MRI is obtained with the Smit sleeve, but no applicator, in place. For each subsequent fraction, CT scans are coregistered to the MRI scan by the Smit sleeve. The gross target volume is defined by MRI and overlaid on the CT images for each brachytherapy treatment for dose optimization. This MRI-integrated workflow adds workflow is a feasible compromise to preserve an efficient workflow while integrating MRI target delineation, and it provides many of the advantages of both MRI- and CT-based brachytherapy. The future collection and analysis of clinical data will serve to compare the proposed approach to non-MRI containing techniques. Copyright © 2015 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  10. Rectal Bleeding After High-Dose-Rate Brachytherapy Combined With Hypofractionated External-Beam Radiotherapy for Localized Prostate Cancer: The Relationship Between Dose-Volume Histogram Parameters and the Occurrence Rate

    International Nuclear Information System (INIS)

    Okamoto, Masahiko; Ishikawa, Hitoshi; Ebara, Takeshi; Kato, Hiroyuki; Tamaki, Tomoaki; Akimoto, Tetsuo; Ito, Kazuto; Miyakubo, Mai; Yamamoto, Takumi; Suzuki, Kazuhiro; Takahashi, Takeo; Nakano, Takashi

    2012-01-01

    Purpose: To determine the predictive risk factors for Grade 2 or worse rectal bleeding after high-dose-rate brachytherapy (HDR-BT) combined with hypofractionated external-beam radiotherapy (EBRT) for prostate cancer using dose–volume histogram analysis. Methods and Materials: The records of 216 patients treated with HDR-BT combined with EBRT were analyzed. The treatment protocols for HDR-BT were 5 Gy × five times in 3 days or 7 Gy × three, 10.5 Gy × two, or 9 Gy × two in 2 days. The EBRT doses ranged from 45 to 51 Gy with a fractional dose of 3 Gy. Results: In 20 patients Grade 2 or worse rectal bleeding developed, and the cumulative incidence rate was 9% at 5 years. By converting the HDR-BT and EBRT radiation doses into biologic effective doses (BED), the BED 3 at rectal volumes of 5% and 10% in the patients who experienced bleeding were significantly higher than those in the remaining 196 patients. Univariate analysis showed that a higher rectal BED 3–5% and the use of fewer needles in brachytherapy were correlated with the incidence of bleeding, but BED 3–5% was found to be the only significant factor on multivariate analysis. Conclusions: The radiation dose delivered to small rectal lesions as 5% is important for predicting Grade 2 or worse rectal bleeding after HDR-BT combined with EBRT for prostate cancer.

  11. The case for focal brachytherapy for the management of low grade prostate cancer

    International Nuclear Information System (INIS)

    Allen, B.J.; Enari, E.

    2011-01-01

    Full text: Radical therapy of low to intermediate prostate cancer patients can cause substantial adverse events relating to genitourinary and rectal toxicity. Yet there is little evidence that such treatment results in increased life expectancy. On the other hand, watchful waiting is associated with active surveillance and the patient must accept that the cancer remains untreated and has a risk of progression. Focal therapy of low grade prostate cancer provides an intermediate approach to the management of this cancer. The approach is to treat only those positive segments on biopsy and so reduce the likelihood of adverse events. However, continued surveillance is required because of the increased risk of disease progression. Focal therapy needs to be evaluated using available ablative therapies. Recent studies of focal HIFU for 20 patients showed PSA reduced from 7.3 to 1.5 ng/mL at 12 months. 1/20 patients had inadequate erections and 2120 required pads. 17/19 had no histological evidence of cancer and none had evidence of high volume or Gleason = 7 cancer in the treated lobe. Seed brachytherapy is commonly used for radical prostate treatment of low volume disease. As the same template can be used for seed therapy as is used for biopsy, the technique is ideally suited for focal brachytherapy. As any treatment involving less than the entire gland involves the risk of leaving viable cancer cells outside the treatment zone, a phase 3 randomised clinical trial between radical and focal brachytherapy is advocated to demonstrate the efficacy and safety of the latter relative to radical therapy.

  12. Multihelix rotating shield brachytherapy for cervical cancer

    Energy Technology Data Exchange (ETDEWEB)

    Dadkhah, Hossein [Department of Biomedical Engineering, University of Iowa, 1402 Seamans Center for the Engineering Arts and Sciences, Iowa City, Iowa 52242 (United States); Kim, Yusung; Flynn, Ryan T., E-mail: ryan-flynn@uiowa.edu [Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 (United States); Wu, Xiaodong [Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 and Department of Electrical and Computer Engineering, University of Iowa, 4016 Seamans Center for the Engineering Arts and Sciences, Iowa City, Iowa 52242 (United States)

    2015-11-15

    Purpose: To present a novel brachytherapy technique, called multihelix rotating shield brachytherapy (H-RSBT), for the precise angular and linear positioning of a partial shield in a curved applicator. H-RSBT mechanically enables the dose delivery using only linear translational motion of the radiation source/shield combination. The previously proposed approach of serial rotating shield brachytherapy (S-RSBT), in which the partial shield is rotated to several angular positions at each source dwell position [W. Yang et al., “Rotating-shield brachytherapy for cervical cancer,” Phys. Med. Biol. 58, 3931–3941 (2013)], is mechanically challenging to implement in a curved applicator, and H-RSBT is proposed as a feasible solution. Methods: A Henschke-type applicator, designed for an electronic brachytherapy source (Xoft Axxent™) and a 0.5 mm thick tungsten partial shield with 180° or 45° azimuthal emission angles and 116° asymmetric zenith angle, is proposed. The interior wall of the applicator contains six evenly spaced helical keyways that rigidly define the emission direction of the partial radiation shield as a function of depth in the applicator. The shield contains three uniformly distributed protruding keys on its exterior wall and is attached to the source such that it rotates freely, thus longitudinal translational motion of the source is transferred to rotational motion of the shield. S-RSBT and H-RSBT treatment plans with 180° and 45° azimuthal emission angles were generated for five cervical cancer patients with a diverse range of high-risk target volume (HR-CTV) shapes and applicator positions. For each patient, the total number of emission angles was held nearly constant for S-RSBT and H-RSBT by using dwell positions separated by 5 and 1.7 mm, respectively, and emission directions separated by 22.5° and 60°, respectively. Treatment delivery time and tumor coverage (D{sub 90} of HR-CTV) were the two metrics used as the basis for evaluation and

  13. Preliminary results of a phase I/II study of HDR brachytherapy alone for T1/T2 breast cancer

    International Nuclear Information System (INIS)

    Wazer, David E.; Berle, Lisa; Graham, Roger; Chung, Maureen; Rothschild, Janice; Graves, Theresa; Cady, Blake; Ulin, Kenneth; Ruthazer, Robin; DiPetrillo, Thomas A.

    2002-01-01

    Purpose: To investigate the feasibility, toxicity, cosmetic outcome, and local control of high-dose-rate (HDR) brachytherapy alone without whole breast external beam irradiation for early-stage breast carcinoma. Methods and Materials: Between June 1997 and August 1999, 32 women diagnosed with a total of 33 AJCC Stage I/II breast carcinomas underwent surgical breast excision and postoperative irradiation using HDR brachytherapy interstitial implantation as part of a multi-institutional clinical Phase I/II protocol. Eligible patients included those with T1, T2, N0, N1 (≤3 nodes positive), and M0 tumors of nonlobular histologic features with negative surgical margins, no extracapsular lymph node extension, and a negative postexcision mammogram. Brachytherapy catheters were placed at the initial excision, reexcision, or either sentinel or full-axillary sampling. Direct visualization, surgical clips, and ultrasound and/or CT scan assisted in the delineation of the target volume, defined as the excision cavity plus a 2-cm margin. High-activity 192 Ir (3-10 Ci) was used to deliver 340 cGy/fraction, 2 fractions/d, for 5 consecutive days, to a total dose of 34 Gy to the target volume. Source position and dwell times were calculated using standard volume optimization techniques. Results: The median follow-up of all patients was 33 months, and the mean patient age was 63 years. The mean tumor size was 1.3 cm, and 55% had an extensive intraductal component. Three patients had positive axillary nodes. Two patients experienced moderate perioperative pain that required narcotic analgesics. No peri- or postoperative infections occurred. No wound healing problems and no significant skin reactions related to the implant developed. The Radiation Therapy Oncology Group late radiation morbidity scoring scheme was applied to the entire 33-case cohort. In the assessment of the skin, 30 cases were Grade 0-1 and 3 cases were Grade 2. Subcutaneous toxicity was scored as 11 patients with

  14. Postoperative radiotherapy for endometrial carcinoma. A retrospective analysis of 541 cases

    International Nuclear Information System (INIS)

    Haensgen, G.; Nagel, M.; Dunst, J.; Enke, H.

    1999-01-01

    Purpose: This retrospective study was designed to evaluate the role of adjuvant radiotherapy for surgically treated endometrial carcinoma. Patients and methods: From 1980 through 1988, 541 patients were treated with either intravaginal cuff irradiation with a high-dose-rate (HDR) Iridium-192 remote afterloading technique (n=294) or with combined HDR-brachytherapy and additional external pelvic irradiation to 54 Gy (n=247) after surgery for endometrical cancer. Afterloading irradiation was administered in 4 fractions 4 to 6 weeks after surgery. A dose of 30 Gy was delivered at a depth of 0,5 cm from the vaginal mucosa. Results: Patients with HDR-brachytherapy alone showed a 5-year survival of 94.3% for Stage I and 73.6% for Stage II (p=0.0007). Patients who received both brachytherapy and additional pelvic irradiation had a 5-year survival of 94.1% for Stage I, 81.1% for Stage II, 70.4% for Stage III and 46.9% for Stage IV (p=0.0001). The main predictors for survival in a multivariate analysis were stage and grading. Patients with combined readiotherapy had a local recurrence rate of 3.2%, whereas patients with brachytherapy alone who were better selected and had more favorable prognostic factors showed a recurrence rate of 2%. Low-risk patients (Stage I, Grade 1, low infiltration) in the HDR-brachytherapy group had 6 relapses, mainly caused by insufficient treatment on the basis of papillary histology. High-risk patients with poorly differential tumors, which infiltrate more than half the myometrial wall might benefit from additional external radiotherapy in terms of reduction of local recurrence and better survival. Five-year actuarial survival rate was 93.6% after combined radiotherapy vs 86.7% after brachytherapy alone. Complications were graded according to the RTOG scoring system. Severe late complications were fistulas of bladder and/or bowel, which occurred in 2.8% in the combined radiotherapy group, and 0.7% in the HDR brachytherapy group. (orig.) [de

  15. Dose and volume specification for reporting interstitial therapy

    International Nuclear Information System (INIS)

    1997-01-01

    The ICRU has previously published reports dealing with Dose Specification for Reporting External Beam Therapy with Photons and Electrons (ICRU Report 29, ICRU, 1978), Dose Specification for Reporting External Beam Therapy (ICRU Report 50, ICRU, 1993) and Dose and Volume Specification for Reporting Intracavitary Therapy in Gynecology (ICRU Report 38, ICRU, 1985). The present report addresses the problem of absorbed dose specification for report interstitial therapy. Although specific to interstitial therapy, many of the concepts developed in this report are also applicable to certain other kinds of brachytherapy applications. In particular, special cases of intraluminal brachytherapy and plesio-brachytherapy via surface molds employing x or gamma emitters are addressed in this report

  16. Comparative dosimetry in intracavitary balloon catheter brachytherapy with I-125 and in Cf-252 brachytherapy combined with BNCT for brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Brandao, Samia de Freitas, E-mail: samiabrandao@gmail.com [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Campos, Tarcisio Passos Ribeiro de [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil)

    2013-06-15

    Objective: comparative analysis of dosimetry in intracavitary balloon catheter brachytherapy with I-125 and in Cf-252 brachytherapy combined with BNCT for treatment of brain tumors. Materials and methods: simulations of intracavitary balloon catheter brachytherapy with I-125 and in Cf-252 brachytherapy combined with BNCT were performed with the MCNP5 code, modeling the treatment of a brain tumor on a voxel computational phantom representing a human head. Absorbed dose rates were converted into biologically weighted dose rates. Results: intracavitary balloon catheter brachytherapy with I-125 produced biologically weighted mean dose rates of 3.2E-11, 1.3E-10, 1.9E-11 and 6.9E-13 RBE.Gy.h{sup -1}.p{sup -1}.s, respectively, on the healthy tissue, on the balloon periphery and on the /{sub 1} and /{sub 2} tumor infiltration zones. On the other hand, Cf-252 brachytherapy combined with BNCT produced a biologically weighted mean dose rate of 5.2E-09, 2.3E-07, 8.7E-09 and 2.4E-09 RBE.Gy.h{sup -1}.p{sup -1}.s, respectively on the healthy tissue, on the target tumor and on the /{sub 1} and /{sub 2} infiltration zones. Conclusion: Cf-252 brachytherapy combined with BNCT delivered a selective irradiation to the target tumor and to infiltration zones, while intracavitary balloon catheter brachytherapy with I-125 delivered negligible doses on the tumor infiltration zones. (author)

  17. Comparative dosimetry in intracavitary balloon catheter brachytherapy with I-125 and in Cf-252 brachytherapy combined with BNCT for brain tumors

    Directory of Open Access Journals (Sweden)

    Samia de Freitas Brandao

    2013-07-01

    Full Text Available Objective Comparative analysis of dosimetry in intracavitary balloon catheter brachytherapy with I-125 and in Cf-252 brachytherapy combined with BNCT for treatment of brain tumors. Materials and Methods Simulations of intracavitary balloon catheter brachytherapy with I-125 and in Cf-252 brachytherapy combined with BNCT were performed with the MCNP5 code, modeling the treatment of a brain tumor on a voxel computational phantom representing a human head. Absorbed dose rates were converted into biologically weighted dose rates. Results Intracavitary balloon catheter brachytherapy with I-125 produced biologically weighted mean dose rates of 3.2E-11, 1.3E-10, 1.9E-11 and 6.9E-13 RBE.Gy.h-1.p-1.s, respectively, on the healthy tissue, on the balloon periphery and on the I 1 and I 2 tumor infiltration zones. On the other hand, Cf-252 brachytherapy combined with BNCT produced a biologically weighted mean dose rate of 5.2E-09, 2.3E-07, 8.7E-09 and 2.4E-09 RBE.Gy.h-1.p-1.s, respectively on the healthy tissue, on the target tumor and on the I 1 and I 2 infiltration zones. Conclusion Cf-252 brachytherapy combined with BNCT delivered a selective irradiation to the target tumor and to infiltration zones, while intracavitary balloon catheter brachytherapy with I-125 delivered negligible doses on the tumor infiltration zones.

  18. Definition of medical event is to be based on the total source strength for evaluation of permanent prostate brachytherapy: A report from the American Society for Radiation Oncology.

    Science.gov (United States)

    Nag, Subir; Demanes, D Jeffrey; Hagan, Michael; Rivard, Mark J; Thomadsen, Bruce R; Welsh, James S; Williamson, Jeffrey F

    2011-10-01

    The Nuclear Regulatory Commission deems it to be a medical event (ME) if the total dose delivered differs from the prescribed dose by 20% or more. A dose-based definition of ME is not appropriate for permanent prostate brachytherapy as it generates too many spurious MEs and thereby creates unnecessary apprehension in patients, and ties up regulatory bodies and the licensees in unnecessary and burdensome investigations. A more suitable definition of ME is required for permanent prostate brachytherapy. The American Society for Radiation Oncology (ASTRO) formed a working group of experienced clinicians to review the literature, assess the validity of current regulations, and make specific recommendations about the definition of an ME in permanent prostate brachytherapy. The working group found that the current definition of ME in §35.3045 as "the total dose delivered differs from the prescribed dose by 20 percent or more" was not suitable for permanent prostate brachytherapy since the prostate volume (and hence the resultant calculated prostate dose) is dependent on the timing of the imaging, the imaging modality used, the observer variability in prostate contouring, the planning margins used, inadequacies of brachytherapy treatment planning systems to calculate tissue doses, and seed migration within and outside the prostate. If a dose-based definition for permanent implants is applied strictly, many properly executed implants would be improperly classified as an ME leading to a detrimental effect on brachytherapy. The working group found that a source strength-based criterion, of >20% of source strength prescribed in the post-procedure written directive being implanted outside the planning target volume is more appropriate for defining ME in permanent prostate brachytherapy. ASTRO recommends that the definition of ME for permanent prostate brachytherapy should not be dose based but should be based upon the source strength (air-kerma strength) administered.

  19. Radioactive sources in brachytherapy:

    OpenAIRE

    Burger, Janez

    2003-01-01

    Background. In modern brachytherapy, a greast step forward was made in the 1960s in France with the introduction of new radioactive isotopes and new techniques. These innovations spread rapidly across Europe, though no single dosimetry standard had been set by then. In the new millennium, the advances in brachytherapy are further stimulated by the introduction of 3-D imaging techniques and the latest after loading irradiation equipment that use point sources. The international organiyation IC...

  20. Monte Carlo simulation of MOSFET dosimeter for brachytherapy sources

    International Nuclear Information System (INIS)

    Suchitra, G.; Bharanidharan, G.; Manigandan, D.; Aruna, P.; Ganesan, S.; Subbaiah, K.V.

    2008-01-01

    In vivo patient dose verification is considered to be an important part of quality assurance in radiotherapy, as there may be uncertainty between the prescribed dose and the dose actually delivered to the patients. A dose estimator method was used to calculate the dose in the extremely thin sensitive volume. This work shows the response of MOSFET detector for various brachytherapy sources at various experimental condition and the results were compared with the earlier published values. The details of computations and the results are discussed

  1. Validation of MRI to TRUS registration for high-dose-rate prostate brachytherapy.

    Science.gov (United States)

    Poulin, Eric; Boudam, Karim; Pinter, Csaba; Kadoury, Samuel; Lasso, Andras; Fichtinger, Gabor; Ménard, Cynthia

    The objective of this study was to develop and validate an open-source module for MRI to transrectal ultrasound (TRUS) registration to support tumor-targeted prostate brachytherapy. In this study, 15 patients with prostate cancer lesions visible on multiparametric MRI were selected for the validation. T2-weighted images with 1-mm isotropic voxel size and diffusion weighted images were acquired on a 1.5T Siemens imager. Three-dimensional (3D) TRUS images with 0.5-mm slice thickness were acquired. The investigated registration module was incorporated in the open-source 3D Slicer platform, which can compute rigid and deformable transformations. An extension of 3D Slicer, SlicerRT, allows import of and export to DICOM-RT formats. For validation, similarity indices, prostate volumes, and centroid positions were determined in addition to registration errors for common 3D points identified by an experienced radiation oncologist. The average time to compute the registration was 35 ± 3 s. For the rigid and deformable registration, respectively, Dice similarity coefficients were 0.87 ± 0.05 and 0.93 ± 0.01 while the 95% Hausdorff distances were 4.2 ± 1.0 and 2.2 ± 0.3 mm. MRI volumes obtained after the rigid and deformable registration were not statistically different (p > 0.05) from reference TRUS volumes. For the rigid and deformable registration, respectively, 3D distance errors between reference and registered centroid positions were 2.1 ± 1.0 and 0.4 ± 0.1 mm while registration errors between common points were 3.5 ± 3.2 and 2.3 ± 1.1 mm. Deformable registration was found significantly better (p < 0.05) than rigid registration for all parameters. An open-source MRI to TRUS registration platform was validated for integration in the brachytherapy workflow. Copyright © 2017 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  2. A workshop on developing risk assessment methods for medical use of radioactive material. Volume 1: Summary

    Energy Technology Data Exchange (ETDEWEB)

    Tortorelli, J.P. [ed.] [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

    1995-08-01

    A workshop was held at the Idaho National Engineering Laboratory, August 16--18, 1994 on the topic of risk assessment on medical devices that use radioactive isotopes. Its purpose was to review past efforts to develop a risk assessment methodology to evaluate these devices, and to develop a program plan and a scoping document for future methodology development. This report contains a summary of that workshop. Participants included experts in the fields of radiation oncology, medical physics, risk assessment, human-error analysis, and human factors. Staff from the US Nuclear Regulatory Commission (NRC) associated with the regulation of medical uses of radioactive materials and with research into risk-assessment methods participated in the workshop. The workshop participants concurred in NRC`s intended use of risk assessment as an important technology in the development of regulations for the medical use of radioactive material and encouraged the NRC to proceed rapidly with a pilot study. Specific recommendations are included in the executive summary and the body of this report. An appendix contains the 8 papers presented at the conference: NRC proposed policy statement on the use of probabilistic risk assessment methods in nuclear regulatory activities; NRC proposed agency-wide implementation plan for probabilistic risk assessment; Risk evaluation of high dose rate remote afterloading brachytherapy at a large research/teaching institution; The pros and cons of using human reliability analysis techniques to analyze misadministration events; Review of medical misadministration event summaries and comparison of human error modeling; Preliminary examples of the development of error influences and effects diagrams to analyze medical misadministration events; Brachytherapy risk assessment program plan; and Principles of brachytherapy quality assurance.

  3. A workshop on developing risk assessment methods for medical use of radioactive material. Volume 1: Summary

    International Nuclear Information System (INIS)

    Tortorelli, J.P.

    1995-08-01

    A workshop was held at the Idaho National Engineering Laboratory, August 16--18, 1994 on the topic of risk assessment on medical devices that use radioactive isotopes. Its purpose was to review past efforts to develop a risk assessment methodology to evaluate these devices, and to develop a program plan and a scoping document for future methodology development. This report contains a summary of that workshop. Participants included experts in the fields of radiation oncology, medical physics, risk assessment, human-error analysis, and human factors. Staff from the US Nuclear Regulatory Commission (NRC) associated with the regulation of medical uses of radioactive materials and with research into risk-assessment methods participated in the workshop. The workshop participants concurred in NRC's intended use of risk assessment as an important technology in the development of regulations for the medical use of radioactive material and encouraged the NRC to proceed rapidly with a pilot study. Specific recommendations are included in the executive summary and the body of this report. An appendix contains the 8 papers presented at the conference: NRC proposed policy statement on the use of probabilistic risk assessment methods in nuclear regulatory activities; NRC proposed agency-wide implementation plan for probabilistic risk assessment; Risk evaluation of high dose rate remote afterloading brachytherapy at a large research/teaching institution; The pros and cons of using human reliability analysis techniques to analyze misadministration events; Review of medical misadministration event summaries and comparison of human error modeling; Preliminary examples of the development of error influences and effects diagrams to analyze medical misadministration events; Brachytherapy risk assessment program plan; and Principles of brachytherapy quality assurance

  4. About brachytherapy for the handling of cancer

    International Nuclear Information System (INIS)

    Campos, Tarcisio P.R.; Silva, Nilton O.; Damaso, Renato S.; Costa, Helder R.; Borges, Paulo H.R.; Mendes, Bruno M.

    2000-01-01

    The technique of brachytherapy is argued in this article. The 'hardware' and 'necessary software' for the handling are summarily presented. Being the macro-dosimetry an important stage in the radiation therapy procedure, a simplified method of doses evaluation in conventional brachytherapy is presented. In an illustrative form, isodoses of a three-dimensional distribution of linear sources are drawn on a digitalized X-ray picture, exemplifying the handling of breast brachytherapy by sources of iridium

  5. Artificial neural network based gynaecological image-guided adaptive brachytherapy treatment planning correction of intra-fractional organs at risk dose variation.

    Science.gov (United States)

    Jaberi, Ramin; Siavashpour, Zahra; Aghamiri, Mahmoud Reza; Kirisits, Christian; Ghaderi, Reza

    2017-12-01

    Intra-fractional organs at risk (OARs) deformations can lead to dose variation during image-guided adaptive brachytherapy (IGABT). The aim of this study was to modify the final accepted brachytherapy treatment plan to dosimetrically compensate for these intra-fractional organs-applicators position variations and, at the same time, fulfilling the dosimetric criteria. Thirty patients with locally advanced cervical cancer, after external beam radiotherapy (EBRT) of 45-50 Gy over five to six weeks with concomitant weekly chemotherapy, and qualified for intracavitary high-dose-rate (HDR) brachytherapy with tandem-ovoid applicators were selected for this study. Second computed tomography scan was done for each patient after finishing brachytherapy treatment with applicators in situ. Artificial neural networks (ANNs) based models were used to predict intra-fractional OARs dose-volume histogram parameters variations and propose a new final plan. A model was developed to estimate the intra-fractional organs dose variations during gynaecological intracavitary brachytherapy. Also, ANNs were used to modify the final brachytherapy treatment plan to compensate dosimetrically for changes in 'organs-applicators', while maintaining target dose at the original level. There are semi-automatic and fast responding models that can be used in the routine clinical workflow to reduce individually IGABT uncertainties. These models can be more validated by more patients' plans to be able to serve as a clinical tool.

  6. Artificial neural network based gynaecological image-guided adaptive brachytherapy treatment planning correction of intra-fractional organs at risk dose variation

    Directory of Open Access Journals (Sweden)

    Ramin Jaberi

    2017-12-01

    Full Text Available Purpose : Intra-fractional organs at risk (OARs deformations can lead to dose variation during image-guided adaptive brachytherapy (IGABT. The aim of this study was to modify the final accepted brachytherapy treatment plan to dosimetrically compensate for these intra-fractional organs-applicators position variations and, at the same time, fulfilling the dosimetric criteria. Material and methods : Thirty patients with locally advanced cervical cancer, after external beam radiotherapy (EBRT of 45-50 Gy over five to six weeks with concomitant weekly chemotherapy, and qualified for intracavitary high-dose-rate (HDR brachytherapy with tandem-ovoid applicators were selected for this study. Second computed tomography scan was done for each patient after finishing brachytherapy treatment with applicators in situ. Artificial neural networks (ANNs based models were used to predict intra-fractional OARs dose-volume histogram parameters variations and propose a new final plan. Results : A model was developed to estimate the intra-fractional organs dose variations during gynaecological intracavitary brachytherapy. Also, ANNs were used to modify the final brachytherapy treatment plan to compensate dosimetrically for changes in ‘organs-applicators’, while maintaining target dose at the original level. Conclusions : There are semi-automatic and fast responding models that can be used in the routine clinical workflow to reduce individually IGABT uncertainties. These models can be more validated by more patients’ plans to be able to serve as a clinical tool.

  7. SU-F-T-420: Dosimetry Comparison of Advanced External Beam Radiation Treatment Modalities to Brachytherapy Treatments in Patients with Cervical Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Mwidu, U; Devic, S [McGill University, Montreal, QC (Canada); Shehadeh, M; AlKafi, M; Mahmood, R; Moftah, B [King Faisal Specialist Hospital & Research Center, Riyadh, Riyadh (Saudi Arabia)

    2016-06-15

    Purpose: A retrospective comparison of dose distributions achievable by High dose rate brachytherapy (HDRBT), Helical TomoTherapy (TOMO), CyberKnife (CK) and RapidArc (RA) in locally advanced inoperable cervical cancer patients is presented. Methods: Five patients with advanced stage cervical carcinoma were selected for this study after a full course of external beam radiotherapy (EBRT), chemotherapy and HDR Brachytherapy. To highlight any significant similarities/differences in dose distributions, high-risk clinical target volume (HRCTV) coverage, organs at risk (OAR) sparing, and machine specific delivery limitations, we used D90 (dose received by 90% of the volume) as the parameter for HRCTV coverage as recommended by the GEC-ESTRO Working Group. We also compared both integral and differential dose volume histograms (DVH) between different dose distributions treatment modalities for HRCTV and OAR. Results: TOMO and RA provided the most conformal dose distributions to HRCTV. Median doses (in Gy) to organs at risk were; for rectal wall: 1.7±0.6, 2.5±0.6,1.2±0.3, and 1.5±0.6, and for bladder wall: 1.6±0.1, 2.4±0.4, 0.8±0.6, and 1.5±0.5, for HDRBT, TOMO, CK, and RA, respectively. Conclusion: Contemporary EBRT modalities might be able to replace brachytherapy treatments for cervix cancer. While brachytherapy dose distributions feature high dose gradients, EBRT modalities provide highly conformal dose distributions to the target. However, it is still not clear whether a highly conformal dose or high gradient dose is more clinically relevant for the HRCTV in cervix cancer patients.

  8. Studies on 192Ir afterloading irradiation of the canine prostate with special consideration of thermoluminescent dosimetry

    International Nuclear Information System (INIS)

    Reuter, M.

    1986-01-01

    A method for high dose rate afterloading irradiation of the prostate with iridium 192 was developed. The isodoses of the urethra and rectum, which were measured by means of thermoluminescent dosimetry, showed deviations from the doses pre-calculated by computer (BRACHY), because this calculation is based on an anatomically ideal condition. (MBC) [de

  9. SU-F-T-06: Development of a Formalism for Practical Dose Measurements in Brachytherapy in the German Standard DIN 6803

    Energy Technology Data Exchange (ETDEWEB)

    Hensley, F [Ruprecht Karl University of Heidelberg, Heidelberg (Germany); Chofor, N [Carl von Ossietzky University of Oldenburg, Oldenburg (Germany); Schoenfeld, A [University of Oldenburg, Oldenburg (Germany); Harder, D [Georg-August University of Goettingen, Goettingen (Germany)

    2016-06-15

    Purpose: In the steep dose gradients in the vicinity of a radiation source and due to the properties of the changing photon spectra, dose measurements in Brachytherapy usually have large uncertainties. Working group DIN 6803-3 is presently discussing recommendations for practical brachytherapy dosimetry incorporating recent theoretical developments in the description of brachytherapy radiation fields as well as new detectors and phantom materials. The goal is to prepare methods and instruments to verify dose calculation algorithms and for clinical dose verification with reduced uncertainties. Methods: After analysis of the distance dependent spectral changes of the radiation field surrounding brachytherapy sources, the energy dependent response of typical brachytherapy detectors was examined with Monte Carlo simulations. A dosimetric formalism was developed allowing the correction of their energy dependence as function of source distance for a Co-60 calibrated detector. Water equivalent phantom materials were examined with Monte Carlo calculations for their influence on brachytherapy photon spectra and for their water equivalence in terms of generating equivalent distributions of photon spectra and absorbed dose to water. Results: The energy dependence of a detector in the vicinity of a brachytherapy source can be described by defining an energy correction factor kQ for brachytherapy in the same manner as in existing dosimetry protocols which incorporates volume averaging and radiation field distortion by the detector. Solid phantom materials were identified which allow precise positioning of a detector together with small correctable deviations from absorbed dose to water. Recommendations for the selection of detectors and phantom materials are being developed for different measurements in brachytherapy. Conclusion: The introduction of kQ for brachytherapy sources may allow more systematic and comparable dose measurements. In principle, the corrections can be

  10. Interstitial hyperthermia using 8 MHz radiofrequency and stereotaxic brachytherapy for brain tumors

    International Nuclear Information System (INIS)

    Nishimura, Satoshi

    1990-01-01

    As a preliminary study of the interstitial hyperthermia combined with interstitial irradiation (brachytherapy) for the treatment of malignant brain tumors, we performed an experiment of interstitial hyperthermia of brain tissue of dogs. Nine afterloading tubes, four for needle electrodes and five for thermisters, were inserted in the brain tissue of dogs. Rise and stability of temperature were ascertained, and clinical safety was confirmed. Thereafter this combined therapy was applied on seven cases, in which three were malignant gliomas and four were metastatic tumors. Through the guide tubes, 192 Ir thin wires were implanted stereotaxically, and interstitial irradiation was carried out. After removal of 192 Ir wires, needle electrodes were inserted through the same tubes, and also a thermister was guided at the center of electrodes. And interstitial hyperthermia using 8 MHz radiofrequency was carried out. The results of the treatment were evaluated with CT scan based on criteria of the Japan Neurological Society. In cases of malignant gliomas, 2 PRs (partial remission), and 1 NC (no change) were obtained. In cases of metastatic tumors, 1 CR (complete remission), 2 PRs, 1 NC were obtaind. In cases of NCs, progression of tumors have been suppressed for 10 and 17 months, and still alive. As complication, transient worsening of neurological symptoms were observed in four cases (increased paresis: two cases, nausea and vomiting: two cases). The author have had an impression that interstitial hyperthermia combined with interstitial irradiation might become an effective means of treatment of brain tumors. (author)

  11. Three-dimensional (3D) real-time conformal brachytherapy - a novel solution for prostate cancer treatment Part I. Rationale and method

    International Nuclear Information System (INIS)

    Fijalkowski, M.; Bialas, B.; Maciejewski, B.; Bystrzycka, J.; Slosarek, K.

    2005-01-01

    Recently, the system for conformal real-time high-dose-rate brachytherapy has been developed and dedicated in general for the treatment of prostate cancer. The aim of this paper is to present the 3D-conformal real-time brachytherapy technique introduced to clinical practice at the Institute of Oncology in Gliwice. Equipment and technique of 3D-conformal real time brachytherapy (3D-CBRT) is presented in detail and compared with conventional high-dose-rate brachytherapy. Step-by-step procedures of treatment planning are described, including own modifications. The 3D-CBRT offers the following advantages: (1) on-line continuous visualization of the prostate and acquisition of the series of NS images during the entire procedure of planning and treatment; (2) high precision of definition and contouring the target volume and the healthy organs at risk (urethra, rectum, bladder) based on 3D transrectal continuous ultrasound images; (3) interactive on-line dose optimization with real-time corrections of the dose-volume histograms (DVHs) till optimal dose distribution is achieved; (4) possibility to overcome internal prostate motion and set-up inaccuracies by stable positioning of the prostate with needles fixed to the template; (5) significant shortening of overall treatment time; (6) cost reduction - the treatment can be provided as an outpatient procedure. The 3D- real time CBRT can be advertised as an ideal conformal boost dose technique integrated or interdigitated with pelvic conformal external beam radiotherapy or as a monotherapy for prostate cancer. (author)

  12. MRI-assisted versus conventional treatment planning in brachytherapy of cervical and endometrial carcinoma: The impact of individual anatomy on dose distribution in target volume and organs at risk

    International Nuclear Information System (INIS)

    Wulf, Joern; Sauer, Otto A.; Herbolsheimer, Michael; Oppitz, Ulrich; Flentje, Michael

    1996-01-01

    Objective: Dose prescription and definition of target volume in brachytherapy of cervical and endometrial cancer are calculated to standard points as Manchester point A or point My(ometrium) in most centers. Calculation of doses to organs at risk mainly relies on ICRU-report 38. But standard dose prescription neglects individual patient anatomy. While MRI and CT had widespread impact on individual planning in external beam radiotherapy, there is still a minor influence on brachytherapy. The impact of individual anatomy on dose distribution in target volume and organs at risk demonstrates the objective of individual brachytherapy planning. Materials and Methods: 8 patients with cervical and 4 patients with endometrial carcinoma underwent MRI of the pelvis with in-situ applicators (ring-tandem applicators for cervical carcinoma and modified Heyman-capsules for endometrial carcinoma). T1w slices were angulated coronal and sagittal to get rectangular reproductions to applicator axis. Orthogonal or isocentric X-ray films for conventional treatment planning were done. MRI-information on target and organs at risk was transformed into coordinates relative to applicator axis and dose calculation on the database of conventional treatment planning was performed by Nucletron Planning System PLATO. Isodoses were projected into MRI slices. Prescribed dose to patients with cervical cancer was 8.5 Gy to point A resp. 10 Gy to point My (2cm below fundal myometrium and 2cm lateral applicator axis) in endometrial cancer. Results: Dose prescription to Manchester point A or point My represented in only 50% of cases uterine serosa. Instead of 2cm lateral of applicator axis, uterine surface ranged from 1.0 cm to 3.9 cm at the level of point A (mean 2.25 cm coronal and 1.77 cm sagittal) and from 1.5 cm to 4.4 cm at the level of point My (mean 2.7 cm coronal and 2.1 cm sagittal). Uterine volume ranged from 69 cc to 277 cc, mean volume was 150cc. Dose-volume histograms of patients with

  13. Dosimetric Consequences of Interobserver Variability in Delineating the Organs at Risk in Gynecologic Interstitial Brachytherapy

    International Nuclear Information System (INIS)

    Damato, Antonio L.; Townamchai, Kanopkis; Albert, Michele; Bair, Ryan J.; Cormack, Robert A.; Jang, Joanne; Kovacs, Arpad; Lee, Larissa J.; Mak, Kimberley S.; Mirabeau-Beale, Kristina L.; Mouw, Kent W.; Phillips, John G.; Pretz, Jennifer L.; Russo, Andrea L.; Lewis, John H.; Viswanathan, Akila N.

    2014-01-01

    Purpose: To investigate the dosimetric variability associated with interobserver organ-at-risk delineation differences on computed tomography in patients undergoing gynecologic interstitial brachytherapy. Methods and Materials: The rectum, bladder, and sigmoid of 14 patients treated with gynecologic interstitial brachytherapy were retrospectively contoured by 13 physicians. Geometric variability was calculated using κ statistics, conformity index (CI gen ), and coefficient of variation (CV) of volumes contoured across physicians. Dosimetric variability of the single-fraction D 0.1cc and D 2cc was assessed through CV across physicians, and the standard deviation of the total EQD2 (equivalent dose in 2 Gy per fraction) brachytherapy dose (SD TOT ) was calculated. Results: The population mean ± 1 standard deviation of κ, CI gen , and volume CV were, respectively: 0.77 ± 0.06, 0.70 ± 0.08, and 20% ± 6% for bladder; 0.74 ± 06, 0.67 ± 0.08, and 20% ± 5% for rectum; and 0.33 ± 0.20, 0.26 ± 0.17, and 82% ± 42% for sigmoid. Dosimetric variability was as follows: for bladder, CV = 31% ± 19% (SD TOT = 72 ± 64 Gy) for D 0.1cc and CV = 16% ± 10% (SD TOT = 9 ± 6 Gy) for D 2cc ; for rectum, CV = 11% ± 5% (SD TOT = 16 ± 17 Gy) for D 0.1cc and CV = 7% ± 2% (SD TOT = 4 ± 3 Gy) for D 2cc ; for sigmoid, CV = 39% ± 28% (SD TOT = 12 ± 18 Gy) for D 0.1cc and CV = 34% ± 19% (SD TOT = 4 ± 4 Gy) for D 2cc. Conclusions: Delineation of bladder and rectum by 13 physicians demonstrated substantial geometric agreement and resulted in good dosimetric agreement for all dose-volume histogram parameters except bladder D 0.1cc. Small delineation differences in high-dose regions by the posterior bladder wall may explain these results. The delineation of sigmoid showed fair geometric agreement. The higher dosimetric variability for sigmoid compared with rectum and bladder did not correlate with higher variability in the total brachytherapy dose but rather may be due to the

  14. Innovation in gynaecological brachytherapy: new technologies, pulse dose-rate brachytherapy, image, definition of new volumes of interest and their impact on dosimetry: application in a clinical research programme 'S.T.I.C.'

    International Nuclear Information System (INIS)

    Haie-Meder, C.; Peiffert, D.

    2006-01-01

    Brachytherapy plays a fundamental role in the therapeutic approach of patients with stage I-IV cervical carcinoma. Technical modalities have evolved during the last decades: stepping source technology, imaging modalities development, specially IMN, treatment planning system integrating 3D images. Images from CT-Scan and MRI have contributed to a better knowledge of tumoral extension and critical organs. CT and/or MRI compatible applicators allow a sectional image based approach with a better definition of tumour volume compared to traditional approaches. The introduction of 3D image based approach for GTV and CTV requires new definitions and a common language. In 2000, a working group within GEC-ESTRO was created to support 3D image based 3D treatment planning approach in cervix cancer BT. The task was to determine a common terminology enabling various groups to use a common language. Recommendations were described and proposed based on clinical experience and dosimetric concepts of different institutions. Two CTVs were described en relation to the risk for recurrence: high-risk CTV and intermediate risk CTV. In order to better define the role of such definitions and their potential impact on the complication incidence in patients with cervical cancer, a special French programme was developed. The aim of this programme is to study the incidence of the severe 2-year complication rate in two comparable patient populations: one population is treated using PDR brachytherapy with CT-Scan or MRI with the applicators in place allowing a 3D dosimetry with optimization, the second population is treated using standard X-rays radiographs, without any delineation of the target nor optimisation. Each population arm includes 425 patients. A medico-economic assessment is performed, allowing a real cost of the most sophisticated approach compared to a historical dosimetric system. (author)

  15. Reduction of rectal doses by removal of gas in the rectum during vaginal cuff brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Sabater, S.; Sevillano, M.M.; Andres, I.; Berenguer, R. [Complejo Hospitalario Univ. de Albacete (CHUA) (Spain). Dept. of Radiation Oncology; Machin-Hamalainen, S. [C.S. General Ricardos, Madrid (Spain); Mueller, K.; Arenas, M. [Hospital Univ. Sant Joan, Reus (Spain). Dept. of Radiation Oncology

    2013-11-15

    Objective: The goal of this work was to evaluate whether the volume reduction related to removal of gas in the rectum could be translated in lower doses to organs at risk (OAR) during vaginal cuff brachytherapy (VBT). Material and methods: Fourteen pairs of brachytherapy planning CT scans derived from 11 patients were re-segmented and re-planned using the same parameters. The only difference between pairs of CTs was the presence or lack of gas in the rectum. The first CT showed the basal status and the second was carried out after gas removal with a tube. A set of values derived from bladder and rectum dose-volume histograms (DVH) and dose-surface histograms (DSH) were extracted. Moreover the cylinder position related to the patient craniocaudal axis was recorded. Results: Rectum volume decreased significantly from 77.8 {+-} 45 to 55.43 {+-} 17.6 ml (p = 0.0052) after gas removal. Such volume diminution represented a significant reduction on all rectal DVH parameters analyzed except D{sub 25%} and D{sub 50%}. DSH parameter results were similar to previous ones. A nonsignificant increase of the bladder volume was observed and was associated with an increase of the DVH metrics analyzed. Conclusion: Removal of gas pockets is a simple and inexpensive maneuver that decreases rectal dose parameters on VBT, which can be translated as a better therapeutic ratio. It also suggests that other actions directed to empty the rectum could have a similar effect. (orig.)

  16. Preliminary results of a new workflow for MRI/CT-based image-guided brachytherapy in cervical carcinoma.

    Science.gov (United States)

    Nemoto, Miho Watanabe; Iwai, Yuma; Togasaki, Gentaro; Kurokawa, Marie; Harada, Rintarou; Kobayashi, Hiroki; Uno, Takashi

    2017-12-01

    We propose a method of image-guided brachytherapy (IGBT) that combines MRI-based target volume delineation for the first fraction with CT datasets of subsequent fractions, using an automatic, applicator-based co-registration, and report our preliminary experience. The MRI of the first fraction was used for the first brachytherapy planning. For each subsequent brachytherapy fraction, after the same applicator insertion, a new CT scan with the applicator in place was obtained. The MR image set was registered to the subsequent brachytherapy treatment planning CT using the applicator for rigid body registration. To demonstrate the registration quality, we used here the Dice index as a measurement of tandem delineation overlap between CT and MRI. The median Dice index was 0.879 (range 0.610-0.932), which indicated that the contours on CT and MRI fitted well. With this combination method, the median D90 of HR CTV and the calculated D2 cm 3 of the bladder, rectum, and sigmoid in each fraction were 7.2 (4.0-10.4), 5.9 (2.3-7.7), 4.0 (1.9-6.7), and 3.8 (0.6-7.2) Gy, respectively. Our described method of MRI-guided IGBT offers a practical option for the benefits of target delineation.

  17. Interstitial rotating shield brachytherapy for prostate cancer

    International Nuclear Information System (INIS)

    Adams, Quentin E.; Xu, Jinghzu; Breitbach, Elizabeth K.; Li, Xing; Rockey, William R.; Kim, Yusung; Wu, Xiaodong; Flynn, Ryan T.; Enger, Shirin A.

    2014-01-01

    Purpose: To present a novel needle, catheter, and radiation source system for interstitial rotating shield brachytherapy (I-RSBT) of the prostate. I-RSBT is a promising technique for reducing urethra, rectum, and bladder dose relative to conventional interstitial high-dose-rate brachytherapy (HDR-BT). Methods: A wire-mounted 62 GBq 153 Gd source is proposed with an encapsulated diameter of 0.59 mm, active diameter of 0.44 mm, and active length of 10 mm. A concept model I-RSBT needle/catheter pair was constructed using concentric 50 and 75 μm thick nickel-titanium alloy (nitinol) tubes. The needle is 16-gauge (1.651 mm) in outer diameter and the catheter contains a 535 μm thick platinum shield. I-RSBT and conventional HDR-BT treatment plans for a prostate cancer patient were generated based on Monte Carlo dose calculations. In order to minimize urethral dose, urethral dose gradient volumes within 0–5 mm of the urethra surface were allowed to receive doses less than the prescribed dose of 100%. Results: The platinum shield reduced the dose rate on the shielded side of the source at 1 cm off-axis to 6.4% of the dose rate on the unshielded side. For the case considered, for the same minimum dose to the hottest 98% of the clinical target volume (D 98% ), I-RSBT reduced urethral D 0.1cc below that of conventional HDR-BT by 29%, 33%, 38%, and 44% for urethral dose gradient volumes within 0, 1, 3, and 5 mm of the urethra surface, respectively. Percentages are expressed relative to the prescription dose of 100%. For the case considered, for the same urethral dose gradient volumes, rectum D 1cc was reduced by 7%, 6%, 6%, and 6%, respectively, and bladder D 1cc was reduced by 4%, 5%, 5%, and 6%, respectively. Treatment time to deliver 20 Gy with I-RSBT was 154 min with ten 62 GBq 153 Gd sources. Conclusions: For the case considered, the proposed 153 Gd-based I-RSBT system has the potential to lower the urethral dose relative to HDR-BT by 29%–44% if the clinician allows

  18. Problems of radiation protection and their solution in afterloading therapy performed in a X-ray deep therapy chamber of the Radiological Clinic of the Martin-Luther-University Halle

    International Nuclear Information System (INIS)

    Rauh, G.

    1982-01-01

    The Radiological Clinic of the Martin-Luther-University Halle got the first afterloading therapy unit DECATRON in December 1973. After preceding physical measurements the first patient was irradiated in August 1974. At this time there was no experience with the afterloading therapy in the GDR. The afterloading therapy was performed in a former X-ray deep therapy chamber. The occuring problems of radiation protection are considered and the ways of solution are described. Radiation protection calculations were carried out, values of local dose measurements are given, interpreted and compared with the values of personal dosimetry. Also the terms 'incorporated activity' and 'threading out activity' ('effective activity') are discussed, which led to differences in dose measurements formerly. The special situation required to discuss radiation protection problems of X-ray deep therapy simultaneously. (author)

  19. Comparison of CT-based volumetric dosimetry with traditional prescription points in the treatment of cervical cancer with PDR brachytherapy

    International Nuclear Information System (INIS)

    Lowrey, Nicola; Nilsson, Sanna; Moutrie, Zoe; Chan, Philip; Cheuk, Robyn

    2015-01-01

    The traditional use of two-dimensional geometric prescription points in intracavitary brachytherapy planning for locally advanced cervical cancer is increasingly being replaced by three-dimensional (3D) planning. This study aimed to directly compare the two planning methods to validate that CT planning provides superior dosimetry for both tumour and organs at risk (OARs) in our department. The CT planning data of 10 patients with locally advanced cervical cancer was audited. For each CT dataset, two new brachytherapy plans were created, comparing the dosimetry of conventional American Brachytherapy Society points and 3D-optimised volumes created for the high-risk clinical target volume (HR CTV) and OARs. Total biologically equivalent doses for these structures were calculated using the modified EQD2 formula and comparative dose-volume histogram (DVH) analysis performed. DVH analysis revealed that for the 3D-optimised plans, the prescription aim of D90 ≥ 100% was achieved for the HR CTV in all 10 patients. However, when prescribing to point A, only 50% of the plans achieved the minimum required dose to the HR CTV. Rectal and bladder dose constraints were met for all 3D-optimised plans but exceeded in two and one of the conventional plans, respectively. This study confirms that the regionally relevant practice of CT-based 3D-optimised planning results in improved tumour dose coverage compared with traditional points-based planning methods and also improves dose to the rectum and bladder.

  20. In vivo assessment of the gastric mucosal tolerance dose after single fraction, small volume irradiation of liver malignancies by computed tomography-guided, high-dose-rate brachytherapy

    International Nuclear Information System (INIS)

    Streitparth, Florian; Pech, Maciej; Boehmig, Michael; Ruehl, Ricarda; Peters, Nils; Wieners, Gero; Steinberg, Johannes; Lopez-Haenninen, Enrique; Felix, Roland; Wust, Peter; Ricke, Jens

    2006-01-01

    Purpose: The aim of this study was to assess the tolerance dose of gastric mucosa for single-fraction computed tomography (CT)-guided, high-dose-rate (HDR) brachytherapy of liver malignancies. Methods and Materials: A total of 33 patients treated by CT-guided HDR brachytherapy of liver malignancies in segments II and/or III were included. Dose planning was performed upon a three-dimensional CT data set acquired after percutaneous applicator positioning. All patients received gastric protection post-treatment. For further analysis, the contours of the gastric wall were defined in every CT slice using Brachyvision Software. Dose-volume histograms were calculated for each treatment and correlated with clinical data derived from questionnaires assessing Common Toxicity Criteria (CTC). All patients presenting symptoms of upper GI toxicity were examined endoscopically. Results: Summarizing all patients the minimum dose applied to 1 ml of the gastric wall (D 1ml ) ranged from 6.3 to 34.2 Gy; median, 14.3 Gy. Toxicity was present in 18 patients (55%). We found nausea in 16 (69%), emesis in 9 (27%), cramping in 13 (39%), weight loss in 12 (36%), gastritis in 4 (12%), and ulceration in 5 patients (15%). We found a threshold dose D 1ml of 11 Gy for general gastric toxicity and 15.5 Gy for gastric ulceration verified by an univariate analysis (p = 0.01). Conclusions: For a single fraction, small volume irradiation we found in the upper abdomen a threshold dose D 1ml of 15.5 Gy for the clinical endpoint ulceration of the gastric mucosa. This in vivo assessment is in accordance with previously published tolerance data

  1. The American brachytherapy society survey of brachytherapy practice for carcinoma of the cervix in the United States.

    Science.gov (United States)

    Nag, S; Orton, C; Young, D; Erickson, B

    1999-04-01

    The purpose of this study was to survey the brachytherapy practice for cervical cancer in the United States. The Clinical Research Committee of the American Brachytherapy Society (ABS) performed a retrospective survey of individual physicians of the ABS and American Society of Therapeutic Radiologists and Oncologists regarding the details of the brachytherapy techniques they personally used in the treatment of cervical cancer patients for the year 1995. The replies (some of which may have been an estimate only) were tabulated. The scope of this survey did not allow us to verify the data by chart audits. A total of about 3500 questionnaires were mailed out; 521 responses were received. Of these responders, 206 (40%) did not perform any brachytherapy for carcinoma of the cervix in 1995. Of the other 315 responders reporting a total of 4892 patients treated in 1995, 88% used low dose rate (LDR) while 24% used high dose rate (HDR). There was a wide variation in the doses used. For LDR treatments, the median total external beam radiation therapy (EBRT) dose was 45 and 50 Gy and the LDR dose was 42 and 45 Gy for early and advanced cancers, respectively. For HDR treatments, the median EBRT dose was 48 and 50 Gy and the median HDR dose was 29 and 30 Gy for early and advanced cancers, respectively. The median dose per fraction was 6 Gy for a median of five fractions. Interstitial brachytherapy was used as a component of the treatment in 6% of the patients by 21% of responders. Very few responders treated with pulsed or medium dose rates. This retrospective survey showed the current brachytherapy practice pattern in the treatment of cervical cancer in the United States and can serve as a basis for future prospective national brachytherapy data registry. There was wide variation in the practice pattern, emphasizing the urgent need for consensus on these issues. Copyright 1999 Academic Press.

  2. Accelerated partial breast irradiation utilizing balloon brachytherapy techniques

    International Nuclear Information System (INIS)

    Strauss, Jonathan B.; Dickler, Adam

    2009-01-01

    To overcome the barriers to BCT, methods of PBI in the setting of breast conservation have been explored. The method of PBI with the longest published follow-up is multi-catheter interstitial brachytherapy. Balloon-based brachytherapy with the MammoSite brachytherapy applicator was designed to simplify the brachytherapy procedure for PBI, enhance the reproducibility of the dosimetry, and improve patient comfort. The rates of local recurrence following PBI with the MammoSite applicator have been low, but there are few published reports and follow-up has been relatively short. The cosmetic outcomes and toxicity of MammoSite PBI are comparable to those seen after multicatheter-based PBI. Additional methods of balloon brachytherapy, including Xoft and SenoRx Contura have been developed. Finally, long-term follow-up after PBI is important for the welfare of individual patients and in order to establish the efficacy, late toxicity and cosmetic outcomes of this technique.

  3. Comparison of different application systems and CT- assisted treatment planning procedures in primary endometrium cancer: Is it technically possible to include the whole uterus volume in the volume treated by brachytherapy

    International Nuclear Information System (INIS)

    Mock, U.; Knocke, Th.; Fellner, C.; Poetter, R.

    1996-01-01

    Purpose: Brachytherapy is regarded as the definitive component of treatment for inoperable patients with endometrium cancer. In published series the whole uterus has been claimed to represent the target volume independently of the individual tumor spread. The purpose of this work is to compare different planning and application procedures and to analyze the target volumes (whole uterus), treatment volumes and their respective relation for the given various conditions. Material and Methods: In ten patients with primary endometrium cancer the correlation between target- and treatment volume was analysed based on standard one-channel applicators or individual Heyman applicators. A comparative analysis of target volumes resulting from two different planning procedures of Heyman applications was performed. CT was carried out after insertion of the Heyman ovoids. Target volume was estimated by measuring the uterus size at different cross sections of the CT images. Dose calculation was performed with (PLATO-system) or without (NPS-system) transferring these data directly to the planning system. We report on the differences in treatment volumes resulting from the two application and planning systems. Results: The mean value of the uterus volume was 180 ccm (range 57 ccm to 316 ccm). Four out of 10 patients had an asymmetric uterus configuration with a side-difference (in longitudinal or transversal direction) of more than 1 cm. On average 70% (range 48-95%) of the uterus volume was included by the treatment volume when Heymann applicators were used compared to 45 % (range 25-89%) when standard one channel applicators were used. This represents an improvement of 25% (range from 11%-35%). By utilizing the more sophisticated way of treatment planning a more adequate coverage of the uterus volume was achieved in five out of ten patients. The treated volume increased on the average by 20 % (range 11 %-32%). In three cases changes in the irradiation volume were less than 5%. In

  4. 10 CFR 35.2406 - Records of brachytherapy source accountability.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Records of brachytherapy source accountability. 35.2406... Records of brachytherapy source accountability. (a) A licensee shall maintain a record of brachytherapy source accountability required by § 35.406 for 3 years. (b) For temporary implants, the record must...

  5. MO-FG-BRA-01: Development of An Image-Guided Dosimetric Planning System for Injectable Brachytherapy Using ELP Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Lafata, K [Duke University, Durham, North Carolina (United States); Duke University Medical Center, Durham, NC (United States); Schaal, J; Liu, W [Duke University, Durham, North Carolina (United States); Cai, J [Duke University Medical Center, Durham, NC (United States)

    2015-06-15

    Purpose: To develop, validate, and evaluate a methodology for determining dosimetry for intratumoral injections of elastin-like-polypeptide (ELP) brachytherapy nanoparticles. These organic-polymer-based nanoparticles are injectable, biodegradable, and genetically tunable. We present a genetically encoded polymer-solution, composed of novel radiolabeled-ELP nanoparticles that are custom-designed to self-assemble into a local source upon intratumoral injection. Our preliminary results of a small animal study demonstrate 100% tumor response, effective radionuclide retention-rates, strong in vivo stability, and no polymer-induced toxicities. While our approach is therefore highly promising for improved brachytherapy, the current workflow lacks a dosimetry framework. Methods: We are developing a robust software framework that provides image-guided dosimetric-planning capabilities for ELP brachytherapy. The user graphically places ELP injection sites within a µCT-planning-image, and independently defines each injection volume, concentration, and radioisotope to be used. The resulting internal dosimetry is then pre-determined by first modeling post-injection ELP advection-diffusion, and then calculating the resulting dose distribution based on a point- dose-kernel-convolution algorithm. We have experimentally measured ELP steady-state concentrations via µSPECT acquisition, and validated our dose calculation algorithm against Monte Carlo simulations of several radioactivity distributions. Finally, we have investigated potential advantages and limitations of various ELP injection parameters. Results: The µSPECT results demonstrated inhomogeneous steady-state distributions of ELP in tissue, and Monte Carlo radioactivity distributions were designed accordingly. Our algorithm yielded a root-mean-square-error of less than 2% for each distribution tested (average root-mean-square-error was 0.73%). Dose-Volume-Histogram analysis of five different plans showed how strategic

  6. MO-B-BRC-01: Introduction [Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Prisciandaro, J. [University of Michigan (United States)

    2016-06-15

    Brachytherapy has proven to be an effective treatment option for prostate cancer. Initially, prostate brachytherapy was delivered through permanently implanted low dose rate (LDR) radioactive sources; however, high dose rate (HDR) temporary brachytherapy for prostate cancer is gaining popularity. Needle insertion during prostate brachytherapy is most commonly performed under ultrasound (U/S) guidance; however, treatment planning may be performed utilizing several imaging modalities either in an intra- or post-operative setting. During intra-operative prostate HDR, the needles are imaged during implantation, and planning may be performed in real time. At present, the most common imaging modality utilized for intra-operative prostate HDR is U/S. Alternatively, in the post-operative setting, following needle implantation, patients may be simulated with computed tomography (CT) or magnetic resonance imaging (MRI). Each imaging modality and workflow provides its share of benefits and limitations. Prostate HDR has been adopted in a number of cancer centers across the nation. In this educational session, we will explore the role of U/S, CT, and MRI in HDR prostate brachytherapy. Example workflows and operational details will be shared, and we will discuss how to establish a prostate HDR program in a clinical setting. Learning Objectives: Review prostate HDR techniques based on the imaging modality Discuss the challenges and pitfalls introduced by the three imagebased options for prostate HDR brachytherapy Review the QA process and learn about the development of clinical workflows for these imaging options at different institutions.

  7. Prostate brachytherapy - discharge

    Science.gov (United States)

    Implant therapy - prostate cancer - discharge; Radioactive seed placement - discharge ... You had a procedure called brachytherapy to treat prostate cancer. Your treatment lasted 30 minutes or more, ...

  8. Resolving the brachytherapy challenges with government funded hospital.

    Science.gov (United States)

    Nikam, D S; Jagtap, A S; Vinothraj, R

    2016-01-01

    The objective of this study is to rationalize the feasibility and cost-effectiveness of high dose rate (HDR) cobalt 60 (Co-60) source versus 192-Iridium (192-Ir) source brachytherapy in government funded hospitals and treatment interruption gap because of exchange of sources. A retrospective study of gynecological cancer patients, treated by radiotherapy with curative intent between April 2005 and September 2012 was conducted. We analyzed the total number of patients treated for external beam radiotherapy (EBRT) and brachytherapy (Intracavitary brachytherapy or cylindrical vaginal source). The dates for 192-Ir sources installation and the last date and first date of brachytherapy procedure before and after source installation respectively were also analyzed and calculated the gap in days for brachytherapy interruptions. The study was analyzed the records of 2005 to September 2012 year where eight 192-Ir sources were installed. The mean gap between treatment interruptions was 123.12 days (range 1-647 days). The Institutional incidence of gynecological cancer where radiotherapy was treatment modality (except ovary) is 34.9 percent. Around 52.25 percent of patients who received EBRT at this institute were referred to outside hospital for brachytherapy because of unavailability of Iridium source. The cost for 5 year duration for single cobalt source is approximately 20-22 lakhs while for 15 Iridium sources is approximately 52-53 lakhs. The combined HDR Co-60 brachytherapy and EBRT provide a useful modality in the treatment of gynecological cancer where radiotherapy is indicated, the treatment interruption because of source exchange is longer and can be minimized by using cobalt source as it is cost-effective and has 5 year working life. Thus, Co-60 source for brachytherapy is a feasible option for government funded hospitals in developing countries.

  9. Investigation of Anisotropy Caused by Cylinder Applicator on Dose Distribution around Cs-137 Brachytherapy Source using MCNP4C Code

    Directory of Open Access Journals (Sweden)

    Sedigheh Sina

    2011-06-01

    Full Text Available Introduction: Brachytherapy is a type of radiotherapy in which radioactive sources are used in proximity of tumors normally for treatment of malignancies in the head, prostate and cervix. Materials and Methods: The Cs-137 Selectron source is a low-dose-rate (LDR brachytherapy source used in a remote afterloading system for treatment of different cancers. This system uses active and inactive spherical sources of 2.5 mm diameter, which can be used in different configurations inside the applicator to obtain different dose distributions. In this study, first the dose distribution at different distances from the source was obtained around a single pellet inside the applicator in a water phantom using the MCNP4C Monte Carlo code. The simulations were then repeated for six active pellets in the applicator and for six point sources.  Results: The anisotropy of dose distribution due to the presence of the applicator was obtained by division of dose at each distance and angle to the dose at the same distance and angle of 90 degrees. According to the results, the doses decreased towards the applicator tips. For example, for points at the distances of 5 and 7 cm from the source and angle of 165 degrees, such discrepancies reached 5.8% and 5.1%, respectively.  By increasing the number of pellets to six, these values reached 30% for the angle of 5 degrees. Discussion and Conclusion: The results indicate that the presence of the applicator causes a significant dose decrease at the tip of the applicator compared with the dose in the transverse plane. However, the treatment planning systems consider an isotropic dose distribution around the source and this causes significant errors in treatment planning, which are not negligible, especially for a large number of sources inside the applicator.

  10. Guidelines for comprehensive quality assurance in brachytherapy

    International Nuclear Information System (INIS)

    Goldson, A.L.; Nibhanupudy, J.R.

    1984-01-01

    Brachytherapy treatment techniques can provide significant improvement in local control and overall survival, but only when quality assurance can be guaranteed. To establish brachytherapy quality assurance, basic requirements for three predetermined subdivisions of clinical institutions will be forwarded. These are: (1) centers having minimum requirements to provide brachytherapy, (2) intermediate centers such as regional or community hospitals, and (3) optimal centers such as university hospital and cancer centers. This presentation will highlight personnel needs, equipment requirements, academic activities, clinical experience with these systems and proposed quality assurance guidelines

  11. Caudal epidural anesthesia during intracavitary brachytherapy for cervical cancer

    International Nuclear Information System (INIS)

    Isoyama-Shirakawa, Yuko; Abe, Madoka; Nakamura, Katsumasa

    2015-01-01

    It has been suggested that pain control during intracavitary brachytherapy for cervical cancer is insufficient in most hospitals in Japan. Our hospital began using caudal epidural anesthesia during high-dose-rate (HDR) intracavitary brachytherapy in 2011. The purpose of the present study was to retrospectively investigate the effects of caudal epidural anesthesia during HDR intracavitary brachytherapy for cervical cancer patients. Caudal epidural anesthesia for 34 cervical cancer patients was performed during HDR intracavitary brachytherapy between October 2011 and August 2013. We used the patients' self-reported Numeric Rating Scale (NRS) score at the first session of HDR intracavitary brachytherapy as a subjective evaluation of pain. We compared NRS scores of the patients with anesthesia with those of 30 patients who underwent HDR intracavitary brachytherapy without sacral epidural anesthesia at our hospital between May 2010 and August 2011. Caudal epidural anesthesia succeeded in 33 patients (97%), and the NRS score was recorded in 30 patients. The mean NRS score of the anesthesia group was 5.17 ± 2.97, significantly lower than that of the control group's 6.80 ± 2.59 (P = 0.035). The caudal epidural block resulted in no side-effects. Caudal epidural anesthesia is an effective and safe anesthesia option during HDR intracavitary brachytherapy for cervical cancer. (author)

  12. Brachytherapy for cervix cancer: low-dose rate or high-dose rate brachytherapy – a meta-analysis of clinical trials

    Directory of Open Access Journals (Sweden)

    Stefano Eduardo J

    2009-04-01

    Full Text Available Abstract Background The literature supporting high-dose rate brachytherapy (HDR in the treatment of cervical carcinoma derives primarily from retrospective series. However, controversy still persists regarding the efficacy and safety of HDR brachytherapy compared to low-dose rate (LDR brachytherapy, in particular, due to inadequate tumor coverage for stage III patients. Whether LDR or HDR brachytherapy produces better results for these patients in terms of survival rate, local control rate and the treatment complications remain controversial. Methods A meta-analysis of RCT was performed comparing LDR to HDR brachytherapy for cervix cancer treated for radiotherapy alone. The MEDLINE, EMBASE, CANCERLIT and Cochrane Library databases, as well as abstracts published in the annual proceedings were systematically searched. We assessed methodological quality for each outcome by grading the quality of evidence using the Grading of Recommendations Assessment, Development and Evaluation (GRADE methodology. We used "recommend" for strong recommendations, and "suggest" for weak recommendations. Results Pooled results from five randomized trials (2,065 patients of HDR brachytherapy in cervix cancer showed no significant increase of mortality (p = 0.52, local recurrence (p = 0.68, or late complications (rectal; p = 0.7, bladder; p = 0.95 or small intestine; p = 0.06 rates as compared to LDR brachytherapy. In the subgroup analysis no difference was observed for overall mortality and local recurrence in patients with clinical stages I, II and III. The quality of evidence was low for mortality and local recurrence in patients with clinical stage I, and moderate for other clinical stages. Conclusion Our meta-analysis shows that there are no differences between HDR and LDR for overall survival, local recurrence and late complications for clinical stages I, II and III. By means of the GRADE system, we recommend the use of HDR for all clinical stages of cervix

  13. Brachytherapy for cervix cancer: low-dose rate or high-dose rate brachytherapy – a meta-analysis of clinical trials

    Science.gov (United States)

    Viani, Gustavo A; Manta, Gustavo B; Stefano, Eduardo J; de Fendi, Ligia I

    2009-01-01

    Background The literature supporting high-dose rate brachytherapy (HDR) in the treatment of cervical carcinoma derives primarily from retrospective series. However, controversy still persists regarding the efficacy and safety of HDR brachytherapy compared to low-dose rate (LDR) brachytherapy, in particular, due to inadequate tumor coverage for stage III patients. Whether LDR or HDR brachytherapy produces better results for these patients in terms of survival rate, local control rate and the treatment complications remain controversial. Methods A meta-analysis of RCT was performed comparing LDR to HDR brachytherapy for cervix cancer treated for radiotherapy alone. The MEDLINE, EMBASE, CANCERLIT and Cochrane Library databases, as well as abstracts published in the annual proceedings were systematically searched. We assessed methodological quality for each outcome by grading the quality of evidence using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) methodology. We used "recommend" for strong recommendations, and "suggest" for weak recommendations. Results Pooled results from five randomized trials (2,065 patients) of HDR brachytherapy in cervix cancer showed no significant increase of mortality (p = 0.52), local recurrence (p = 0.68), or late complications (rectal; p = 0.7, bladder; p = 0.95 or small intestine; p = 0.06) rates as compared to LDR brachytherapy. In the subgroup analysis no difference was observed for overall mortality and local recurrence in patients with clinical stages I, II and III. The quality of evidence was low for mortality and local recurrence in patients with clinical stage I, and moderate for other clinical stages. Conclusion Our meta-analysis shows that there are no differences between HDR and LDR for overall survival, local recurrence and late complications for clinical stages I, II and III. By means of the GRADE system, we recommend the use of HDR for all clinical stages of cervix cancer. PMID:19344527

  14. High-risk clinical target volume delineation in CT-guided cervical cancer brachytherapy - Impact of information from FIGO stage with or without systematic inclusion of 3D documentation of clinical gynecological examination

    Energy Technology Data Exchange (ETDEWEB)

    Hegazy, Neamat [Dept. of Radiotherapy, Comprehensive Cancer Centre Vienna, Medical Univ. of Vienna, Vienna (Austria); Dept. of Clinical Oncology, Medical Univ. of Alexandria, Alexandria (Egypt); Poetter Rickard; Kirisits, Christian [Dept. of Radiotherapy, Comprehensive Cancer Centre Vienna, Medical Univ. of Vienna, Vienna (Austria); Christian Doppler Lab. for Medical Radiation Research for Radiation Oncology, Medical Univ. Vienna (Austria); Berger, Daniel; Federico, Mario; Sturdza, Alina; Nesvacil, Nicole [Dept. of Radiotherapy, Comprehensive Cancer Centre Vienna, Medical Univ. of Vienna, Vienna (Austria)], e-mail: nicole.nesvacil@meduniwien.ac.at

    2013-10-15

    Purpose: The aim of the study was to improve computed tomography (CT)-based high-risk clinical target volume (HR CTV) delineation protocols for cervix cancer patients, in settings without any access to magnetic resonance imaging (MRI) at the time of brachytherapy. Therefore the value of a systematic integration of comprehensive three-dimensional (3D) documentation of repetitive gynecological examination for CT-based HR CTV delineation protocols, in addition to information from FIGO staging, was investigated. In addition to a comparison between reference MRI contours and two different CT-based contouring methods (using complementary information from FIGO staging with or without additional 3D clinical drawings), the use of standardized uterine heights was also investigated. Material and methods: Thirty-five cervix cancer patients with CT- and MR-images and 3D clinical drawings at time of diagnosis and brachytherapy were included. HR CTV{sub stage} was based on CT information and FIGO stage. HR CTV{sub stage} {sub +3Dclin} was contoured on CT using FIGO stage and 3D clinical drawing. Standardized HR CTV heights were: 1/1, 2/3 and 1/2 of uterine height. MRI-based HR CTV was delineated independently. Resulting widths, thicknesses, heights, and volumes of HR CTV{sub stage}, HR CTV{sub stage+3Dclin} and MRI-based HR CTV contours were compared. Results: The overall normalized volume ratios (mean{+-}SD of CT/MRI{sub ref} volume) of HR CTV{sub stage} and HR{sub stage+3Dclin} were 2.6 ({+-}0.6) and 2.1 ({+-}0.4) for 1/1 and 2.3 ({+-}0.5) and 1.8 ({+-}0.4), for 2/3, and 1.9 ({+-}0.5) and 1.5 ({+-}0.3), for 1/2 of uterine height. The mean normalized widths were 1.5{+-}0.2 and 1.2{+-}0.2 for HR CTV{sub stage} and HR CTV{sub stage+3Dclin}, respectively (p < 0.05). The mean normalized heights for HR CTV{sub stage} and HR CTV{sub stage+3Dclin} were both 1.7{+-}0.4 for 1/1 (p < 0.05.), 1.3{+-}0.3 for 2/3 (p < 0.05) and 1.1{+-}0.3 for 1/2 of uterine height. Conclusion: CT-based HR

  15. Current status of brachytherapy in Korea: a national survey of radiation oncologists.

    Science.gov (United States)

    Kim, Haeyoung; Kim, Joo Young; Kim, Juree; Park, Won; Kim, Young Seok; Kim, Hak Jae; Kim, Yong Bae

    2016-07-01

    The aim of the present study was to acquire information on brachytherapy resources in Korea through a national survey of radiation oncologists. Between October 2014 and January 2015, a questionnaire on the current status of brachytherapy was distributed to all 86 radiation oncology departments in Korea. The questionnaire was divided into sections querying general information on human resources, brachytherapy equipment, and suggestions for future directions of brachytherapy policy in Korea. The response rate of the survey was 88.3%. The average number of radiation oncologists per center was 2.3. At the time of survey, 28 centers (36.8%) provided brachytherapy to patients. Among the 28 brachytherapy centers, 15 (53.5%) were located in in the capital Seoul and its surrounding metropolitan areas. All brachytherapy centers had a high-dose rate system using (192)Ir (26 centers) or (60)Co (two centers). Among the 26 centers using (192)Ir sources, 11 treated fewer than 40 patients per year. In the two centers using (60)Co sources, the number of patients per year was 16 and 120, respectively. The most frequently cited difficulties in performing brachytherapy were cost related. A total of 21 centers had a plan to sustain the current brachytherapy system, and four centers noted plans to upgrade their brachytherapy system. Two centers stated that they were considering discontinuation of brachytherapy due to cost burdens of radioisotope source replacement. The present study illustrated the current status of brachytherapy in Korea. Financial difficulties were the major barriers to the practice of brachytherapy.

  16. High-dose rate brachytherapy in the treatment of prostate cancer: acute toxicity and biochemical behavior analysis

    International Nuclear Information System (INIS)

    Esteves, Sergio Carlos Barros; Oliveira, Antonio Carlos Zuliani de; Cardoso, Herbeni; Tagawa, Eduardo Komai; Castelo, Roberto; D'Imperio, Marcio

    2006-01-01

    Objective: this study focuses on the biochemical response of the following variables: prostate volume, prostate-specific antigen (PSA) value, Gleason scores, staging, the risk of the disease, and hormone therapy. Objective: in the period between February of 1998 and July of 2001, 46 patients with prostate cancer were treated with radiotherapy, in a combination of teletherapy and high-dose rate (HDR) brachytherapy. The age ranged from 51 to 79 years (averaging 66.4 years). T1c stage was the most frequent one: 30 (65%). The Gleason score was below 7 in 78% of the patients. PSA ranged from 3.4 to 33.3, being below 10 in 39% of the cases. The average prostatic volume was 32.3 cc. Twenty-eight percent of the patients received hormone therapy. Teletherapy dose ranged from 45 to 50.4 Gy, associated to four fractions of 4 Gy of HDR brachytherapy. Results: the follow-up period varied from 6 to 43 months. Four patients missed the follow-up and four died (one due to the disease). Out of the 39 patients that were analyzed, 76% presented a less than 1.5 PSA. None of the analyzed variables were found to be of statistical significance (p > 0.05) regarding biochemical control. Conclusion: the use of HDR brachytherapy was found to be effective in the treatment of prostate cancer and, in this study, the variables considered as prognostic factors did not interfere in the biochemical control. (author)

  17. Treatment of localized prostate cancer with brachytherapy: six years experience

    International Nuclear Information System (INIS)

    Martinez, Pablo; Dourado, Leandro; Giudice, Carlos; Villamil, Wenceslao; Palacios, Victor; Sardi, Mabel; Damia, Oscar

    2006-01-01

    The usage of ultrasound scan to perform prostate biopsy punctures, the new radiation therapies and the more accurate selection of patients has allowed brachytherapy to play an important role in the treatment of the localized pathology. The objective of this paper is to review the results obtained when treating the localized prostate cancer by using brachytherapy with mud 125. Materials and methods: Between December 1999 and July 2006, 100 prostate cancer patients were treated at the Hospital Italiano de Buenos Aires, using brachytherapy with mud 125. One of the patients was treated with a combined therapy (brachytherapy + external radiotherapy). For that reason, the patient was not taken into consideration for this paper. The average age was 65.95 (52-79). The tumoral stages were T1c in 81% of the patients and T2a in 19% of them. The PSA was always below 15 ng/ml, with an average of 8.92 ng/ml; inferior to 10 ng/ml in 72 patients and between 10 and 15 ng/m ml in 28 of them. The average prostate volume was 34.68 c.c. (18.70 c.c.-58.00 c.c.). The combined Gleason score was below 6 (except for three patients with Gleason 7 who had a PSA below 10, stage T1c). The dose used was 16,000 cGy as recommended by the TG43. The energy charge of each seed was between 0.28 and 0.40 mci. Thirty days later, a prostate axial computer tomography was carried out every 3 mm. with a scanning set every 5 mm. to perform a dosimetric control of the implant. Results: The average age was 65.95 (52-79). The control computer tomography showed an adequate dosimetric coverage for the entire prostate volume, with a maximum urethral dose not above 400 Gy and a maximum rectal dose below 100 Gy. The PSA of all patients decreased to a normal level 6 months after the treatment started. The average follow-up of the 71 patients able to be tested from an oncological perspective lasted 31.15 months, with a minimum of 18 and a maximum of 72 months. Currently, seven patients of those tested (9.86%) manifest

  18. High versus low-dose rate brachytherapy for cervical cancer.

    Science.gov (United States)

    Patankar, Sonali S; Tergas, Ana I; Deutsch, Israel; Burke, William M; Hou, June Y; Ananth, Cande V; Huang, Yongmei; Neugut, Alfred I; Hershman, Dawn L; Wright, Jason D

    2015-03-01

    Brachytherapy plays an important role in the treatment of cervical cancer. While small trials have shown comparable survival outcomes between high (HDR) and low-dose rate (LDR) brachytherapy, little data is available in the US. We examined the utilization of HDR brachytherapy and analyzed the impact of type of brachytherapy on survival for cervical cancer. Women with stages IB2-IVA cervical cancer treated with primary (external beam and brachytherapy) radiotherapy between 2003-2011 and recorded in the National Cancer Database (NCDB) were analyzed. Generalized linear mixed models and Cox proportional hazards regression were used to examine predictors of HDR brachytherapy use and the association between HDR use and survival. A total of 10,564 women including 2681 (25.4%) who received LDR and 7883 (74.6%) that received HDR were identified. Use of HDR increased from 50.2% in 2003 to 83.9% in 2011 (Puse of HDR. While patients in the Northeast were more likely to receive HDR therapy, there were no other clinical or socioeconomic characteristics associated with receipt of HDR. In a multivariable Cox model, survival was similar between the HDR and LDR groups (HR=0.93; 95% CI 0.83-1.03). Similar findings were noted in analyses stratified by stage and histology. Kaplan-Meier analyses demonstrated no difference in survival based on type of brachytherapy for stage IIB (P=0.68), IIIB (P=0.17), or IVA (P=0.16) tumors. The use of HDR therapy has increased rapidly. Overall survival is similar for LDR and HDR brachytherapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Safety handling manual for high dose rate remote afterloading system

    International Nuclear Information System (INIS)

    1999-01-01

    This manual is mainly for safety handling of 192 Ir-RALS (remote afterloading system) of high dose rate and followings were presented: Procedure and document format for the RALS therapy and for handling of its radiation source with the purpose of prevention of human errors and unexpected accidents, Procedure for preventing errors occurring in the treatment schedule and operation, and Procedure and format necessary for newly introducing the system into a facility. Consistency was intended in the description with the quality assurance guideline for therapy with small sealed radiation sources made by JASTRO (Japan Society for Therapeutic Radiology and Oncology). Use of the old type 60 Co-RALS was pointed out to be a serious problem remained and its safety handling procedure was also presented. (K.H.)

  20. Prostate CT segmentation method based on nonrigid registration in ultrasound-guided CT-based HDR prostate brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaofeng, E-mail: xyang43@emory.edu; Rossi, Peter; Ogunleye, Tomi; Marcus, David M.; Jani, Ashesh B.; Curran, Walter J.; Liu, Tian [Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia 30322 (United States); Mao, Hui [Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia 30322 (United States)

    2014-11-01

    Purpose: The technological advances in real-time ultrasound image guidance for high-dose-rate (HDR) prostate brachytherapy have placed this treatment modality at the forefront of innovation in cancer radiotherapy. Prostate HDR treatment often involves placing the HDR catheters (needles) into the prostate gland under the transrectal ultrasound (TRUS) guidance, then generating a radiation treatment plan based on CT prostate images, and subsequently delivering high dose of radiation through these catheters. The main challenge for this HDR procedure is to accurately segment the prostate volume in the CT images for the radiation treatment planning. In this study, the authors propose a novel approach that integrates the prostate volume from 3D TRUS images into the treatment planning CT images to provide an accurate prostate delineation for prostate HDR treatment. Methods: The authors’ approach requires acquisition of 3D TRUS prostate images in the operating room right after the HDR catheters are inserted, which takes 1–3 min. These TRUS images are used to create prostate contours. The HDR catheters are reconstructed from the intraoperative TRUS and postoperative CT images, and subsequently used as landmarks for the TRUS–CT image fusion. After TRUS–CT fusion, the TRUS-based prostate volume is deformed to the CT images for treatment planning. This method was first validated with a prostate-phantom study. In addition, a pilot study of ten patients undergoing HDR prostate brachytherapy was conducted to test its clinical feasibility. The accuracy of their approach was assessed through the locations of three implanted fiducial (gold) markers, as well as T2-weighted MR prostate images of patients. Results: For the phantom study, the target registration error (TRE) of gold-markers was 0.41 ± 0.11 mm. For the ten patients, the TRE of gold markers was 1.18 ± 0.26 mm; the prostate volume difference between the authors’ approach and the MRI-based volume was 7.28% ± 0

  1. Prostate CT segmentation method based on nonrigid registration in ultrasound-guided CT-based HDR prostate brachytherapy

    Science.gov (United States)

    Yang, Xiaofeng; Rossi, Peter; Ogunleye, Tomi; Marcus, David M.; Jani, Ashesh B.; Mao, Hui; Curran, Walter J.; Liu, Tian

    2014-01-01

    Purpose: The technological advances in real-time ultrasound image guidance for high-dose-rate (HDR) prostate brachytherapy have placed this treatment modality at the forefront of innovation in cancer radiotherapy. Prostate HDR treatment often involves placing the HDR catheters (needles) into the prostate gland under the transrectal ultrasound (TRUS) guidance, then generating a radiation treatment plan based on CT prostate images, and subsequently delivering high dose of radiation through these catheters. The main challenge for this HDR procedure is to accurately segment the prostate volume in the CT images for the radiation treatment planning. In this study, the authors propose a novel approach that integrates the prostate volume from 3D TRUS images into the treatment planning CT images to provide an accurate prostate delineation for prostate HDR treatment. Methods: The authors’ approach requires acquisition of 3D TRUS prostate images in the operating room right after the HDR catheters are inserted, which takes 1–3 min. These TRUS images are used to create prostate contours. The HDR catheters are reconstructed from the intraoperative TRUS and postoperative CT images, and subsequently used as landmarks for the TRUS–CT image fusion. After TRUS–CT fusion, the TRUS-based prostate volume is deformed to the CT images for treatment planning. This method was first validated with a prostate-phantom study. In addition, a pilot study of ten patients undergoing HDR prostate brachytherapy was conducted to test its clinical feasibility. The accuracy of their approach was assessed through the locations of three implanted fiducial (gold) markers, as well as T2-weighted MR prostate images of patients. Results: For the phantom study, the target registration error (TRE) of gold-markers was 0.41 ± 0.11 mm. For the ten patients, the TRE of gold markers was 1.18 ± 0.26 mm; the prostate volume difference between the authors’ approach and the MRI-based volume was 7.28% ± 0

  2. Sexual function after permanent prostate brachytherapy

    International Nuclear Information System (INIS)

    Galbreath, R.W.; Merrick, G.S.; Butler, W.M.; Stipetich, R.L.; Abel, L.J.; Lief, J.H.

    2001-01-01

    Purpose: To determine the incidence of potency preservation following permanent prostate brachytherapy and to evaluate the effect of multiple clinical and treatment parameters on penile erectile function. Materials and Methods: 425 patients underwent permanent prostate brachytherapy from April 1995 to October 1999. 209 patients who were potent prior to brachytherapy and currently not receiving hormonal manipulation were mailed an International Index of Erectile Function (IIEF) questionnaire with a pre-addressed stamped envelope. 180 patients completed and returned the questionnaire. Median patient follow-up was 39 months (range 18-74 months). Pre-implant erectile function was assigned using a three-tiered scoring system (2 = erections always or nearly always sufficient for vaginal penetration; 1 = erections sufficient for vaginal penetration but considered suboptimal; 0 = the inability to obtain erections and/or erections inadequate for vaginal penetration). Post-implant potency was defined as an IIEF score >11. Clinical parameters evaluated for sexual function included patient age, clinical T stage, elapsed time since implantation, hypertension, diabetes mellitus, and tobacco consumption. Evaluated treatment parameters included the utilization of neoadjuvant hormonal manipulation and the choice of isotope. The efficacy of sildenafil citrate in brachytherapy induced erectile dysfunction (ED) was also evaluated. Results: A pre-treatment erectile function score of 2 and 1 were assigned to 126 and 54 patients respectively. With 6 year follow up, 39% of patients maintained potency following prostate brachytherapy with a plateau on the curve. Post-implant preservation of potency (IIEF>11) correlated with pre-implant erectile function (50% versus 14% for pre-implant scores of 2 and 1 respectively, p≤0.0001), patient age (56%, 38%, and 23% for patients <60 years of age, 60-69 years of age, and ≥70 years of age respectively, p=0.012) and a history of diabetes mellitus

  3. Rapid emission angle selection for rotating-shield brachytherapy

    International Nuclear Information System (INIS)

    Liu, Yunlong; Flynn, Ryan T.; Kim, Yusung; Bhatia, Sudershan K.; Sun, Wenqing; Yang Wenjun; Wu Xiaodong

    2013-01-01

    Purpose: The authors present a rapid emission angle selection (REAS) method that enables the efficient selection of the azimuthal shield angle for rotating shield brachytherapy (RSBT). The REAS method produces a Pareto curve from which a potential RSBT user can select a treatment plan that balances the tradeoff between delivery time and tumor dose conformity. Methods: Two cervical cancer patients were considered as test cases for the REAS method. The RSBT source considered was a Xoft Axxent TM electronic brachytherapy source, partially shielded with 0.5 mm of tungsten, which traveled inside a tandem intrauterine applicator. Three anchor RSBT plans were generated for each case using dose-volume optimization, with azimuthal shield emission angles of 90°, 180°, and 270°. The REAS method converts the anchor plans to treatment plans for all possible emission angles by combining neighboring beamlets to form beamlets for larger emission angles. Treatment plans based on exhaustive dose-volume optimization (ERVO) and exhaustive surface optimization (ERSO) were also generated for both cases. Uniform dwell-time scaling was applied to all plans such that that high-risk clinical target volume D 90 was maximized without violating the D 2cc tolerances of the rectum, bladder, and sigmoid colon. Results: By choosing three azimuthal emission angles out of 32 potential angles, the REAS method performs about 10 times faster than the ERVO method. By setting D 90 to 85–100 Gy 10 , the delivery times used by REAS generated plans are 21.0% and 19.5% less than exhaustive surface optimized plans used by the two clinical cases. By setting the delivery time budget to 5–25 and 10–30 min/fx, respectively, for two the cases, the D 90 contributions for REAS are improved by 5.8% and 5.1% compared to the ERSO plans. The ranges used in this comparison were selected in order to keep both D 90 and the delivery time within acceptable limits. Conclusions: The REAS method enables efficient RSBT

  4. Treatment planning for multicatheter interstitial brachytherapy of breast cancer – from Paris system to anatomy-based inverse planning

    Directory of Open Access Journals (Sweden)

    Tibor Major

    2017-02-01

    Full Text Available In the last decades, treatment planning for multicatheter interstitial breast brachytherapy has evolved considerably from fluoroscopy-based 2D to anatomy-based 3D planning. To plan the right positions of the catheters, ultrasound or computed tomography (CT imaging can be used, but the treatment plan is always based on postimplant CT images. With CT imaging, the 3D target volume can be defined more precisely and delineation of the organs at risk volumes is also possible. Consequently, parameters calculated from dose-volume histogram can be used for quantitative plan evaluation. The catheter reconstruction is also easier and faster on CT images compared to X-ray films. In high dose rate brachytherapy, using a stepping source, a number of forward dose optimization methods (manual, geometrical, on dose points, graphical are available to shape the dose distribution to the target volume, and these influence dose homogeneities to different extent. Currently, inverse optimization algorithms offer new possibilities to improve dose distributions further considering the requirements for dose coverage, dose homogeneity, and dose to organs at risk simultaneously and automatically. In this article, the evolvement of treatment planning for interstitial breast implants is reviewed, different forward optimization methods are discussed, and dose-volume parameters used for quantitative plan evaluation are described. Finally, some questions of the inverse optimization method are investigated and initial experiences of the authors are presented.

  5. Prostate-specific antigen bounce after high-dose rate brachytherapy with external beam radiation therapy for prostate cancer patients

    International Nuclear Information System (INIS)

    Sakamoto, Naotaka; Kakinoki, Hiroaki; Tsutsui, Akio; Yoshikawa, Masahiro; Iguchi, Atsushi; Matsunobu, Toru; Uehara, Satoru

    2008-01-01

    Prostate-specific antigen (PSA) bounce after high-dose rate (HDR) brachytherapy with external beam radiation therapy (EBRT) for prostate cancer patients was evaluated. Sixty-one patients treated with HDR-brachytherapy followed by EBRT had a minimum follow-up of 12 months (median, 24 months) in our institute. A PSA bounce was defined as a rise of at least 0.1 ng/ml greater than a previous PSA level, with a subsequent decline equal to, or less than, the initial nadir. A PSA bounce was noted in 16 (26.2%) of 61 patients (one patient had a PSA bounce twice). Median time to develop a PSA bounce was 18 months, but 23.5% developed a PSA bounce after 24 months. Median duration of PSA bounce was 6 months and 11.8% had increased PSA within a period of 12 months. Median bounce height was 0.2 ng/ml (range, 0.1 to 3.39 ng/ml). A bounce height of gerater than 2 ng/ml was seen in 11.8%. Clinical characteristics (age, prostate volume, neoadjuvant endocrine therapy, risk classification, stage, pretreatment PSA, Gleason score) do not predict whether or not there will be a PSA bounce. In patients treated with HDR-brachytherapy followed by EBRT, the incidence and characteristics of PSA bounce were similar to those in patients treated with low-dose rate brachytherapy. Physicians should be aware of the possibility of PSA bounce following HDR-brachytherapy with EBRT. (author)

  6. Brachytherapy in the treatment of cervical cancer: a review

    Directory of Open Access Journals (Sweden)

    Banerjee R

    2014-05-01

    Full Text Available Robyn Banerjee,1 Mitchell Kamrava21Department of Radiation Oncology, Tom Baker Cancer Centre, Calgary, Alberta, Canada; 2Department of Radiation Oncology, University of California Los Angeles, Los Angeles, CA, USAAbstract: Dramatic advances have been made in brachytherapy for cervical cancer. Radiation treatment planning has evolved from two-dimensional to three-dimensional, incorporating magnetic resonance imaging and/or computed tomography into the treatment paradigm. This allows for better delineation and coverage of the tumor, as well as improved avoidance of surrounding organs. Consequently, advanced brachytherapy can achieve very high rates of local control with a reduction in morbidity, compared with historic approaches. This review provides an overview of state-of-the-art gynecologic brachytherapy, with a focus on recent advances and their implications for women with cervical cancer.Keywords: cervical cancer, brachytherapy, image-guided brachytherapy

  7. Investigation of source position uncertainties & balloon deformation in MammoSite brachytherapy on treatment effectiveness

    International Nuclear Information System (INIS)

    Bensaleh, S.

    2010-01-01

    The MammoSite ® breast high dose rate brachytherapy is used in treatment of early-stage breast cancer. The tumour bed volume is irradiated with high dose per fraction in a relatively small number of fractions. Uncertainties in the source positioning and MammoSite balloon deformation will alter the prescribed dose within the treated volume. They may also expose the normal tissues in balloon proximity to excessive dose. The purpose of this work is to explore the impact of these two uncertainties on the MammoSite dose distribution in the breast using dose volume histograms and Monte Carlo simulations. The Lyman–Kutcher and relative seriality models were employed to estimate the normal tissues complications associated with the MammoSite dose distributions. The tumour control probability was calculated using the Poisson model. This study gives low probabilities for developing heart and lung complications. The probability of complications of the skin and normal breast tissues depends on the location of the source inside the balloon and the volume receiving high dose. Incorrect source position and balloon deformation had significant effect on the prescribed dose within the treated volume. A 4 mm balloon deformation resulted in reduction of the tumour control probability by 24%. Monte Carlo calculations using EGSnrc showed that a deviation of the source by 1 mm caused approximately 7% dose reduction in the treated target volume at 1 cm from the balloon surface. In conclusion, accurate positioning of the 192 Ir source at the balloon centre and minimal balloon deformation are critical for proper dose delivery with the MammoSite brachytherapy applicator. On the basis of this study, we suggest that the MammoSite treatment protocols should allow for a balloon deformation of ≤2 mm and a maximum source deviation of ≤1 mm.

  8. Characterization of HDR Ir-192 source for 3D planning system

    International Nuclear Information System (INIS)

    Fonseca, Gabriel P.; Yoriyaz, Helio; Antunes, Paula C.G.; Siqueira, Paulo T.D.; Rubo, Rodrigo; Ferreira, Louise A.

    2011-01-01

    Brachytherapy treatment involves surgical or cavitary insertion of radioactive sources for diseases treatments, such as: lung, gynecologic or prostate cancer. This technique has great ability to administer high doses to the tumor, with adjacent normal tissue preservation equal or better than external beam radiation therapy. Several innovations have been incorporated in this treatment technique, such as, 3D treatment planning system and computer guided sources. In detriment to scientific advances there are no protocols that relate dose with tumor volume, organs or A point, established by ICRU38 and used to prescribe dose in treatment planning system. Several international studies, like as EMBRACE, the multicentre international study, has been trying to correlate the dose volume using 3D planning systems and medical images, as those obtained by CT or MRI, to establish treatment protocols. With the objective of analyzing the 3D dose distribution, a micro Selectron-HDR remote afterloading device for high dose-rate (HDR) was characterized in the present work. Through the data provided by the manufacturer the source was simulated, using the MCNP5 code to calculate American Association of Physicists in Medicine Task Group No. 43 report (AAPM TG43) specified parameters. The simulations have shown great agreement when compared to the ONCENTRA planning system results and those provided by literature. The micro Selectron-HDR remote afterloading device will be utilized to simulate 3D dose distribution through CT images processed by an auxiliary software which process DICOM images. (author)

  9. Characterization of HDR Ir-192 source for 3D planning system

    Energy Technology Data Exchange (ETDEWEB)

    Fonseca, Gabriel P.; Yoriyaz, Helio; Antunes, Paula C.G.; Siqueira, Paulo T.D., E-mail: gabriel.fonseca@usp.b, E-mail: hyoriyaz@ipen.b, E-mail: ptsiquei@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Rubo, Rodrigo [Universidade de Sao Paulo (HC/FMUSP), Sao Paulo, SP (Brazil). Hospital das Clinicas. Servico de Radioterapia; Minamisawa, Renato A., E-mail: renato.minamisawa@psi.c [Paul Scherrer Institut (PSI), Villigen (Switzerland); Ferreira, Louise A. [Universidade Estadual de Maringa (UEM), PR (Brazil). Fac. de Medicina

    2011-07-01

    Brachytherapy treatment involves surgical or cavitary insertion of radioactive sources for diseases treatments, such as: lung, gynecologic or prostate cancer. This technique has great ability to administer high doses to the tumor, with adjacent normal tissue preservation equal or better than external beam radiation therapy. Several innovations have been incorporated in this treatment technique, such as, 3D treatment planning system and computer guided sources. In detriment to scientific advances there are no protocols that relate dose with tumor volume, organs or A point, established by ICRU38 and used to prescribe dose in treatment planning system. Several international studies, like as EMBRACE, the multicentre international study, has been trying to correlate the dose volume using 3D planning systems and medical images, as those obtained by CT or MRI, to establish treatment protocols. With the objective of analyzing the 3D dose distribution, a micro Selectron-HDR remote afterloading device for high dose-rate (HDR) was characterized in the present work. Through the data provided by the manufacturer the source was simulated, using the MCNP5 code to calculate American Association of Physicists in Medicine Task Group No. 43 report (AAPM TG43) specified parameters. The simulations have shown great agreement when compared to the ONCENTRA planning system results and those provided by literature. The micro Selectron-HDR remote afterloading device will be utilized to simulate 3D dose distribution through CT images processed by an auxiliary software which process DICOM images. (author)

  10. Applications of tissue heterogeneity corrections and biologically effective dose volume histograms in assessing the doses for accelerated partial breast irradiation using an electronic brachytherapy source

    Science.gov (United States)

    Shi, Chengyu; Guo, Bingqi; Cheng, Chih-Yao; Eng, Tony; Papanikolaou, Nikos

    2010-09-01

    A low-energy electronic brachytherapy source (EBS), the model S700 Axxent™ x-ray device developed by Xoft Inc., has been used in high dose rate (HDR) intracavitary accelerated partial breast irradiation (APBI) as an alternative to an Ir-192 source. The prescription dose and delivery schema of the electronic brachytherapy APBI plan are the same as the Ir-192 plan. However, due to its lower mean energy than the Ir-192 source, an EBS plan has dosimetric and biological features different from an Ir-192 source plan. Current brachytherapy treatment planning methods may have large errors in treatment outcome prediction for an EBS plan. Two main factors contribute to the errors: the dosimetric influence of tissue heterogeneities and the enhancement of relative biological effectiveness (RBE) of electronic brachytherapy. This study quantified the effects of these two factors and revisited the plan quality of electronic brachytherapy APBI. The influence of tissue heterogeneities is studied by a Monte Carlo method and heterogeneous 'virtual patient' phantoms created from CT images and structure contours; the effect of RBE enhancement in the treatment outcome was estimated by biologically effective dose (BED) distribution. Ten electronic brachytherapy APBI cases were studied. The results showed that, for electronic brachytherapy cases, tissue heterogeneities and patient boundary effect decreased dose to the target and skin but increased dose to the bones. On average, the target dose coverage PTV V100 reduced from 95.0% in water phantoms (planned) to only 66.7% in virtual patient phantoms (actual). The actual maximum dose to the ribs is 3.3 times higher than the planned dose; the actual mean dose to the ipsilateral breast and maximum dose to the skin were reduced by 22% and 17%, respectively. Combining the effect of tissue heterogeneities and RBE enhancement, BED coverage of the target was 89.9% in virtual patient phantoms with RBE enhancement (actual BED) as compared to 95

  11. Applications of tissue heterogeneity corrections and biologically effective dose volume histograms in assessing the doses for accelerated partial breast irradiation using an electronic brachytherapy source

    Energy Technology Data Exchange (ETDEWEB)

    Shi Chengyu; Guo Bingqi; Eng, Tony; Papanikolaou, Nikos [Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, TX 78229 (United States); Cheng, Chih-Yao, E-mail: shic@uthscsa.ed [Radiation Oncology Department, Oklahoma University Health Science Center, Oklahoma, OK 73104 (United States)

    2010-09-21

    A low-energy electronic brachytherapy source (EBS), the model S700 Axxent(TM) x-ray device developed by Xoft Inc., has been used in high dose rate (HDR) intracavitary accelerated partial breast irradiation (APBI) as an alternative to an Ir-192 source. The prescription dose and delivery schema of the electronic brachytherapy APBI plan are the same as the Ir-192 plan. However, due to its lower mean energy than the Ir-192 source, an EBS plan has dosimetric and biological features different from an Ir-192 source plan. Current brachytherapy treatment planning methods may have large errors in treatment outcome prediction for an EBS plan. Two main factors contribute to the errors: the dosimetric influence of tissue heterogeneities and the enhancement of relative biological effectiveness (RBE) of electronic brachytherapy. This study quantified the effects of these two factors and revisited the plan quality of electronic brachytherapy APBI. The influence of tissue heterogeneities is studied by a Monte Carlo method and heterogeneous 'virtual patient' phantoms created from CT images and structure contours; the effect of RBE enhancement in the treatment outcome was estimated by biologically effective dose (BED) distribution. Ten electronic brachytherapy APBI cases were studied. The results showed that, for electronic brachytherapy cases, tissue heterogeneities and patient boundary effect decreased dose to the target and skin but increased dose to the bones. On average, the target dose coverage PTV V{sub 100} reduced from 95.0% in water phantoms (planned) to only 66.7% in virtual patient phantoms (actual). The actual maximum dose to the ribs is 3.3 times higher than the planned dose; the actual mean dose to the ipsilateral breast and maximum dose to the skin were reduced by 22% and 17%, respectively. Combining the effect of tissue heterogeneities and RBE enhancement, BED coverage of the target was 89.9% in virtual patient phantoms with RBE enhancement (actual BED) as

  12. Applications of tissue heterogeneity corrections and biologically effective dose volume histograms in assessing the doses for accelerated partial breast irradiation using an electronic brachytherapy source

    International Nuclear Information System (INIS)

    Shi Chengyu; Guo Bingqi; Eng, Tony; Papanikolaou, Nikos; Cheng, Chih-Yao

    2010-01-01

    A low-energy electronic brachytherapy source (EBS), the model S700 Axxent(TM) x-ray device developed by Xoft Inc., has been used in high dose rate (HDR) intracavitary accelerated partial breast irradiation (APBI) as an alternative to an Ir-192 source. The prescription dose and delivery schema of the electronic brachytherapy APBI plan are the same as the Ir-192 plan. However, due to its lower mean energy than the Ir-192 source, an EBS plan has dosimetric and biological features different from an Ir-192 source plan. Current brachytherapy treatment planning methods may have large errors in treatment outcome prediction for an EBS plan. Two main factors contribute to the errors: the dosimetric influence of tissue heterogeneities and the enhancement of relative biological effectiveness (RBE) of electronic brachytherapy. This study quantified the effects of these two factors and revisited the plan quality of electronic brachytherapy APBI. The influence of tissue heterogeneities is studied by a Monte Carlo method and heterogeneous 'virtual patient' phantoms created from CT images and structure contours; the effect of RBE enhancement in the treatment outcome was estimated by biologically effective dose (BED) distribution. Ten electronic brachytherapy APBI cases were studied. The results showed that, for electronic brachytherapy cases, tissue heterogeneities and patient boundary effect decreased dose to the target and skin but increased dose to the bones. On average, the target dose coverage PTV V 100 reduced from 95.0% in water phantoms (planned) to only 66.7% in virtual patient phantoms (actual). The actual maximum dose to the ribs is 3.3 times higher than the planned dose; the actual mean dose to the ipsilateral breast and maximum dose to the skin were reduced by 22% and 17%, respectively. Combining the effect of tissue heterogeneities and RBE enhancement, BED coverage of the target was 89.9% in virtual patient phantoms with RBE enhancement (actual BED) as compared to 95

  13. A comparative study of Manchester system and ABS system in intracavitary brachytherapy dose calculations

    International Nuclear Information System (INIS)

    Surendran, N.; Uma Maheswari, P.; Meenakshi, P.S.; Mallika, A.; Gandhimathi, S.

    2008-01-01

    The success of brachytherapy in the treatment of cancer of cervix depends on the delivery of high radiation dose to the tumour in the cervix, sparing the critical organs rectum and bladder. Ideally, the dose should be prescribed to the individual patient's target volume. But almost all the institutions follow the dose prescription at a point instead of target volume, since tumour localization is not possible in radiograph. There are different systems of dose specifications for Ca. cervix treatment: -Manchester system and American Brachytherapy Society system. In Manchester system, Point A and Point B were defined. Point A was defined to be 2 cm superior to the external cervical os (or cervical end of the tandem) and 2 cm lateral to the cervical canal, which represents the location where the uterine vessels cross the ureter. Point B was defined 3 cm lateral to point A, which represents the lymph nodes. The American Board of Brachytherapy (ABs) recommends prescribing the dose to the new point called point H and pelvic wall points. Point H is based on the mid-dwell position of the vaginal ovoids. Finding Point H begins with drawing a line connecting the mid-dwell positions of the ovoids. From the intersection of this line with the tandem, move superiorly along the tandem 2 cm plus the radius of the ovoids, and then 2 cm perpendicular to the tandem in the lateral direction. In selectron LDR machine, instead of the mid-dwell position, the center of the ovoid source is taken. The pelvic wall points are located at the intersection of a horizontal tangent to superior aspect of the acetabulum on the AP radiograph

  14. Three-dimensional tomosynthetic image restoration for brachytherapy source localization

    International Nuclear Information System (INIS)

    Persons, Timothy M.

    2001-01-01

    Tomosynthetic image reconstruction allows for the production of a virtually infinite number of slices from a finite number of projection views of a subject. If the reconstructed image volume is viewed in toto, and the three-dimensional (3D) impulse response is accurately known, then it is possible to solve the inverse problem (deconvolution) using canonical image restoration methods (such as Wiener filtering or solution by conjugate gradient least squares iteration) by extension to three dimensions in either the spatial or the frequency domains. This dissertation presents modified direct and iterative restoration methods for solving the inverse tomosynthetic imaging problem in 3D. The significant blur artifact that is common to tomosynthetic reconstructions is deconvolved by solving for the entire 3D image at once. The 3D impulse response is computed analytically using a fiducial reference schema as realized in a robust, self-calibrating solution to generalized tomosynthesis. 3D modulation transfer function analysis is used to characterize the tomosynthetic resolution of the 3D reconstructions. The relevant clinical application of these methods is 3D imaging for brachytherapy source localization. Conventional localization schemes for brachytherapy implants using orthogonal or stereoscopic projection radiographs suffer from scaling distortions and poor visibility of implanted seeds, resulting in compromised source tracking (reported errors: 2-4 mm) and dosimetric inaccuracy. 3D image reconstruction (using a well-chosen projection sampling scheme) and restoration of a prostate brachytherapy phantom is used for testing. The approaches presented in this work localize source centroids with submillimeter error in two Cartesian dimensions and just over one millimeter error in the third

  15. dose in cervical cancer intracavitary brachytherapy

    Directory of Open Access Journals (Sweden)

    Zahra Siavashpour

    2016-04-01

    Full Text Available Purpose: To analyze the optimum organ filling point for organs at risk (OARs dose in cervical cancer high-dose-rate (HDR brachytherapy. Material and methods : In a retrospective study, 32 locally advanced cervical cancer patients (97 insertions who were treated with 3D conformal external beam radiation therapy (EBRT and concurrent chemotherapy during 2010-2013 were included. Rotterdam HDR tandem-ovoid applicators were used and computed tomography (CT scanning was performed after each insertion. The OARs delineation and GEC-ESTRO-based clinical target volumes (CTVs contouring was followed by 3D forward planning. Then, dose volume histogram (DVH parameters of organs were recorded and patients were classified based on their OARs volumes, as well as their inserted tandem length. Results : The absorbed dose to point A ranged between 6.5-7.5 Gy. D 0.1cm ³ and D 2cm ³ of the bladder significantly increased with the bladder volume enlargement (p value < 0.05. By increasing the bladder volume up to about 140 cm3, the rectum dose was also increased. For the cases with bladder volumes higher than 140 cm3, the rectum dose decreased. For bladder volumes lower than 75 cm3, the sigmoid dose decreased; however, for bladder volumes higher than 75 cm3, the sigmoid dose increased. The D 2cm ³ of the bladder and rectum were higher for longer tandems than for shorter ones, respectively. The divergence of the obtained results for different tandem lengths became wider by the extension of the bladder volume. The rectum and sigmoid volume had a direct impact on increasing their D 0.1cm ³ and D 2cm ³, as well as decreasing their D 10 , D 30 , and D 50 . Conclusions : There is a relationship between the volumes of OARs and their received doses. Selecting a bladder with a volume of about 70 cm3 or less proved to be better with regards to the dose to the bladder, rectum, and sigmoid.

  16. Interstitial high-dose-rate brachytherapy boost: The feasibility and cosmetic outcome of a fractionated outpatient delivery scheme

    International Nuclear Information System (INIS)

    Manning, Matthew A.; Arthur, Douglas W.; Schmidt-Ullrich, Rupert K.; Arnfield, Mark R.; Amir, Cyrus; Zwicker, Robert D.

    2000-01-01

    Purpose: To evaluate the feasibility, potential toxicity, and cosmetic outcome of fractionated interstitial high dose rate (HDR) brachytherapy boost for the management of patients with breast cancer at increased risk for local recurrence. Methods and Materials: From 1994 to 1996, 18 women with early stage breast cancer underwent conventionally fractionated whole breast radiotherapy (50-50.4 Gy) followed by interstitial HDR brachytherapy boost. All were considered to be at high risk for local failure. Seventeen had pathologically confirmed final surgical margins of less than 2 mm or focally positive. Brachytherapy catheter placement and treatment delivery were conducted on an outpatient basis. Preplanning was used to determine optimal catheter positions to enhance dose homogeneity of dose delivery. The total HDR boost dose was 15 Gy delivered in 6 fractions of 2.5 Gy over 3 days. Local control, survival, late toxicities (LENT-SOMA), and cosmetic outcome were recorded in follow-up. In addition, factors potentially influencing cosmesis were analyzed by logistic regression analysis. Results: The minimum follow-up is 40 months with a median 50 months. Sixteen patients were alive without disease at last follow-up. There have been no in-breast failures observed. One patient died with brain metastases, and another died of unrelated causes without evidence of disease. Grade 1-2 late toxicities included 39% with hyperpigmentation, 56% with detectable fibrosis, 28% with occasional discomfort, and 11% with visible telangiectasias. Grade 3 toxicity was reported in one patient as persistent discomfort. Sixty-seven percent of patients were considered to have experienced good/excellent cosmetic outcomes. Factors with a direct relationship to adverse cosmetic outcome were extent of surgical defect (p = 0.00001), primary excision volume (p = 0.017), and total excision volume (p = 0.015). Conclusions: For high risk patients who may benefit from increased doses, interstitial HDR

  17. Emergency rescue in accidents with HDR afterloading units

    International Nuclear Information System (INIS)

    Kaulich, T.W.; Nuesslin, F.; Becker, G.; Lamprecht, U.; Bamberg, M.

    1999-01-01

    Problem: HDR brachyradiotherapy has minimized the exposure to radiation of the personnel working in this field. Nonetheless there are periodically reported troubles with afterloading units concerning the retraction of sources that require immediate action for the limitation of possible damage. Legal Principles according to the German Regulation Concerning Protection against Radiation (Strahlenschutzverordnung=StrlSchV): If in afterloading brachyradiotherapy the radiation source remains extended through malfunction we deal with an emergency according to the StrlSchV. The rescue personnel should be chosen in accordance with Paragraph 50 StrlSchV. Organization of the Rescue of the Patient: The quickest possible rescue of a patient in an emergency demands an unequivocal definition of responsibilities. Our recommendations in this instance: The physicist is responsible for the organization of the emergency rescue. The radiation oncologist in charge informs himself about the necessary emergency measures before starting the treatment and carries out the emergency rescue. If the physicist diagnoses a failure in the retraction of the source he tries to remove the failure. If he doesn't succeed in retracting the source the radiation oncologist carries out the rescue of the patient. The organizational structure of the clinic allowing, the emergency physician should invariably be the physician who placed the applicator. In the emergency rescue the radiation oncologist should be protected by a lead barrier and use manipulators. Dose Assessment in Personnel and Patient: The radiation exposure of the rescue personnel is calculated from the photon-equivalence dose H x with the help of the dose-rate constant of 192 Ir. According to the same procedure there can be evaluated the local radiation exposure of the patient concerned. Conclusions: Generally speaking, all considerations regarding the topic of emergency rescue should always start out from a worst-case scenario. Of all the

  18. Dosimetric Consequences of Interobserver Variability in Delineating the Organs at Risk in Gynecologic Interstitial Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Damato, Antonio L., E-mail: adamato@lroc.harvard.edu [Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women' s Hospital, Boston, Massachusetts (United States); Townamchai, Kanopkis [Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women' s Hospital, Boston, Massachusetts (United States); Albert, Michele [Department of Radiation Oncology, Saint Anne' s Hospital Regional Cancer Center, Fall River, Massachusetts (United States); Bair, Ryan J. [Department of Radiology, Brigham and Women' s Hospital, Boston, Massachusetts (United States); Cormack, Robert A. [Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women' s Hospital, Boston, Massachusetts (United States); Jang, Joanne [Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts (United States); Kovacs, Arpad [Department of Radiology, Brigham and Women' s Hospital, Boston, Massachusetts (United States); Lee, Larissa J. [Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women' s Hospital, Boston, Massachusetts (United States); Mak, Kimberley S.; Mirabeau-Beale, Kristina L.; Mouw, Kent W.; Phillips, John G.; Pretz, Jennifer L.; Russo, Andrea L. [Harvard Radiation Oncology Program, Harvard Medical School, Boston, Massachusetts (United States); Lewis, John H.; Viswanathan, Akila N. [Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women' s Hospital, Boston, Massachusetts (United States)

    2014-07-01

    Purpose: To investigate the dosimetric variability associated with interobserver organ-at-risk delineation differences on computed tomography in patients undergoing gynecologic interstitial brachytherapy. Methods and Materials: The rectum, bladder, and sigmoid of 14 patients treated with gynecologic interstitial brachytherapy were retrospectively contoured by 13 physicians. Geometric variability was calculated using κ statistics, conformity index (CI{sub gen}), and coefficient of variation (CV) of volumes contoured across physicians. Dosimetric variability of the single-fraction D{sub 0.1cc} and D{sub 2cc} was assessed through CV across physicians, and the standard deviation of the total EQD2 (equivalent dose in 2 Gy per fraction) brachytherapy dose (SD{sup TOT}) was calculated. Results: The population mean ± 1 standard deviation of κ, CI{sub gen}, and volume CV were, respectively: 0.77 ± 0.06, 0.70 ± 0.08, and 20% ± 6% for bladder; 0.74 ± 06, 0.67 ± 0.08, and 20% ± 5% for rectum; and 0.33 ± 0.20, 0.26 ± 0.17, and 82% ± 42% for sigmoid. Dosimetric variability was as follows: for bladder, CV = 31% ± 19% (SD{sup TOT} = 72 ± 64 Gy) for D{sub 0.1cc} and CV = 16% ± 10% (SD{sup TOT} = 9 ± 6 Gy) for D{sub 2cc}; for rectum, CV = 11% ± 5% (SD{sup TOT} = 16 ± 17 Gy) for D{sub 0.1cc} and CV = 7% ± 2% (SD{sup TOT} = 4 ± 3 Gy) for D{sub 2cc}; for sigmoid, CV = 39% ± 28% (SD{sup TOT} = 12 ± 18 Gy) for D{sub 0.1cc} and CV = 34% ± 19% (SD{sup TOT} = 4 ± 4 Gy) for D{sub 2cc.} Conclusions: Delineation of bladder and rectum by 13 physicians demonstrated substantial geometric agreement and resulted in good dosimetric agreement for all dose-volume histogram parameters except bladder D{sub 0.1cc.} Small delineation differences in high-dose regions by the posterior bladder wall may explain these results. The delineation of sigmoid showed fair geometric agreement. The higher dosimetric variability for sigmoid compared with rectum and bladder did not correlate with

  19. Evolution of brachytherapy for prostate carcinoma

    International Nuclear Information System (INIS)

    Qin Lan

    2005-01-01

    Brachytherapy is one of the most main management to prostate carcinoma. This method has been rapidly accepted in clinical application since it is a convenient, little-traumatic, and outpatient therapy. With the development of techniques of production of radio-seeds, imaging modality and three-dimensional radiotherapy plan system, brachytherapy has been made a virtually progress in improving curative-effect and reducing damage to surrounding normal tissue. (authors)

  20. Brachytherapy in the treatment of head and neck cancer

    International Nuclear Information System (INIS)

    Yoo, Seong Yul

    1999-01-01

    Brachytherapy has been proved to be an effective method for the purpose of increasing radiation dose to the tumor and reducing the dose to the surrounding normal tissue. In head and neck cancer, the rationale of brachytherapy is as follows; Firstly, early small lesion is radiocurative and the major cause of failure is local recurrence. Secondly, it can diminish evidently the dose to the normal tissue especially masseteric muscle and salivary gland. Thirdly, the anatomy of head and neck is suitable to various technique of brachytherapy. On background of accumulated experience of LDR iridium brachytherapy of head and neck cancer for the last 15 years, the author reviewed the history of radioisotope therapy, the characteristics of radionuclides, and some important things in the method, clinical technique and treatment planning. The author analyzed the clinical result of 185 cases of head and neck cancer treated in the Korea Cancer Center Hospital. Finally the future prospect of brachytherapy of head and neck cancer is discussed

  1. Methods for prostate stabilization during transperineal LDR brachytherapy.

    Science.gov (United States)

    Podder, Tarun; Sherman, Jason; Rubens, Deborah; Messing, Edward; Strang, John; Ng, Wan-Sing; Yu, Yan

    2008-03-21

    In traditional prostate brachytherapy procedures for a low-dose-rate (LDR) radiation seed implant, stabilizing needles are first inserted to provide some rigidity and support to the prostate. Ideally this will provide better seed placement and an overall improved treatment. However, there is much speculation regarding the effectiveness of using regular brachytherapy needles as stabilizers. In this study, we explored the efficacy of two types of needle geometries (regular brachytherapy needle and hooked needle) and several clinically feasible configurations of the stabilization needles. To understand and assess the prostate movement during seed implantation, we collected in vivo data from patients during actual brachytherapy procedures. In vitro experimentation with tissue-equivalent phantoms allowed us to further understand the mechanics behind prostate stabilization. We observed superior stabilization with the hooked needles compared to the regular brachytherapy needles (more than 40% in bilateral parallel needle configuration). Prostate movement was also reduced significantly when regular brachytherapy needles were in an angulated configuration as compared to the parallel configuration (more than 60%). When the hooked needles were angulated for stabilization, further reduction in prostate displacement was observed. In general, for convenience of dosimetric planning and to avoid needle collision, all needles are desired to be in a parallel configuration. In this configuration, hooked needles provide improved stabilization of the prostate. On the other hand, both regular and hooked needles appear to be equally effective in reducing prostate movement when they are in angulated configurations, which will be useful in seed implantation using a robotic system. We have developed nonlinear spring-damper model for the prostate movement which can be used for adapting dosimetric planning during brachytherapy as well as for developing more realistic haptic devices and

  2. Methods for prostate stabilization during transperineal LDR brachytherapy

    International Nuclear Information System (INIS)

    Podder, Tarun; Yu Yan; Sherman, Jason; Rubens, Deborah; Strang, John; Messing, Edward; Ng, Wan-Sing

    2008-01-01

    In traditional prostate brachytherapy procedures for a low-dose-rate (LDR) radiation seed implant, stabilizing needles are first inserted to provide some rigidity and support to the prostate. Ideally this will provide better seed placement and an overall improved treatment. However, there is much speculation regarding the effectiveness of using regular brachytherapy needles as stabilizers. In this study, we explored the efficacy of two types of needle geometries (regular brachytherapy needle and hooked needle) and several clinically feasible configurations of the stabilization needles. To understand and assess the prostate movement during seed implantation, we collected in vivo data from patients during actual brachytherapy procedures. In vitro experimentation with tissue-equivalent phantoms allowed us to further understand the mechanics behind prostate stabilization. We observed superior stabilization with the hooked needles compared to the regular brachytherapy needles (more than 40% in bilateral parallel needle configuration). Prostate movement was also reduced significantly when regular brachytherapy needles were in an angulated configuration as compared to the parallel configuration (more than 60%). When the hooked needles were angulated for stabilization, further reduction in prostate displacement was observed. In general, for convenience of dosimetric planning and to avoid needle collision, all needles are desired to be in a parallel configuration. In this configuration, hooked needles provide improved stabilization of the prostate. On the other hand, both regular and hooked needles appear to be equally effective in reducing prostate movement when they are in angulated configurations, which will be useful in seed implantation using a robotic system. We have developed nonlinear spring-damper model for the prostate movement which can be used for adapting dosimetric planning during brachytherapy as well as for developing more realistic haptic devices and

  3. Results of the intestitial brachytherapy and of the combination external radiation-brachytherapy in 150 patients with carcinoma of the oral tongue and floor of the mouth

    Energy Technology Data Exchange (ETDEWEB)

    Sannazzari, G L; Negri, G L; Ozzello, F

    1986-01-01

    The authors report their experience on the treatment of carcinoma of the oral tongue and floor of the mouth with interstitial brachytherapy, alone or in conbination with external irradiation. One hundred and fifty patients were treated; among these, 116 with brachytherapy alone, 34 with combined treatment. The five years local control in those patients treated with brachytherapy alone was 72.5% in T1, 61.2% in T2 and 35% in T3; in those patients treated with external irradiation and brachytherapy the global five years control was 42.5%. The global five years survival was 64% in the patients treated with brachytherapy alone 48% in the patients treated with combined therapy. 42 refs.

  4. Results of the intestitial brachytherapy and of the combination external radiation-brachytherapy in 150 patients with carcinoma of the oral tongue and floor of the mouth

    International Nuclear Information System (INIS)

    Sannazzari, G.L.; Negri, G.L.; Ozzello, F.

    1986-01-01

    The authors report their experience on the treatment of carcinoma of the oral tongue and floor of the mouth with interstitial brachytherapy, alone or in conbination with external irradiation. One hundred and fifty patients were treated; among these, 116 with brachytherapy alone, 34 with combined treatment. The five years local control in those patients treated with brachytherapy alone was 72.5% in T1, 61.2% in T2 and 35% in T3; in those patients treated with external irradiation and brachytherapy the global five years control was 42.5%. The global five years survival was 64% in the patients treated with brachytherapy alone 48% in the patients treated with combined therapy

  5. Accuracy Evaluation of Oncentra™ TPS in HDR Brachytherapy of Nasopharynx Cancer Using EGSnrc Monte Carlo Code

    Science.gov (United States)

    Hadad, K.; Zohrevand, M.; Faghihi, R.; Sedighi Pashaki, A.

    2015-01-01

    Background HDR brachytherapy is one of the commonest methods of nasopharyngeal cancer treatment. In this method, depending on how advanced one tumor is, 2 to 6 Gy dose as intracavitary brachytherapy is prescribed. Due to high dose rate and tumor location, accuracy evaluation of treatment planning system (TPS) is particularly important. Common methods used in TPS dosimetry are based on computations in a homogeneous phantom. Heterogeneous phantoms, especially patient-specific voxel phantoms can increase dosimetric accuracy. Materials and Methods In this study, using CT images taken from a patient and ctcreate-which is a part of the DOSXYZnrc computational code, patient-specific phantom was made. Dose distribution was plotted by DOSXYZnrc and compared with TPS one. Also, by extracting the voxels absorbed dose in treatment volume, dose-volume histograms (DVH) was plotted and compared with Oncentra™ TPS DVHs. Results The results from calculations were compared with data from Oncentra™ treatment planning system and it was observed that TPS calculation predicts lower dose in areas near the source, and higher dose in areas far from the source relative to MC code. Absorbed dose values in the voxels also showed that TPS reports D90 value is 40% higher than the Monte Carlo method. Conclusion Today, most treatment planning systems use TG-43 protocol. This protocol may results in errors such as neglecting tissue heterogeneity, scattered radiation as well as applicator attenuation. Due to these errors, AAPM emphasized departing from TG-43 protocol and approaching new brachytherapy protocol TG-186 in which patient-specific phantom is used and heterogeneities are affected in dosimetry. PMID:25973408

  6. Argon plasma coagulation for rectal bleeding after prostate brachytherapy

    International Nuclear Information System (INIS)

    Smith, Stephen; Wallner, Kent; Dominitz, Jason A.; Han, Ben; True, Lawrence; Sutlief, Steven; Billingsley, Kevin

    2001-01-01

    Purpose: To better define the efficacy and safety of argon plasma coagulation (APC), specifically for brachytherapy-related proctitis, we reviewed the clinical course of 7 patients treated for persistent rectal bleeding. Approximately 2-10% of prostate cancer patients treated with 125 I or 103 Pd brachytherapy will develop radiation proctitis. The optimum treatment for patients with persistent bleeding is unclear from the paucity of available data. Prior reports lack specific dosimetric information, and patients with widely divergent forms of radiation were grouped together in the analyses. Methods and Materials: Seven patients were treated with APC at the Veterans Affairs Puget Sound Health Care System and the University of Washington from 1997 to 1999 for persistent rectal bleeding due to prostate brachytherapy-related proctitis. Four patients received supplemental external beam radiation, delivered by a four-field technique. A single gastroenterologist at the Veterans Affairs Puget Sound Health Care System treated 6 of the 7 patients. If the degree of proctitis was limited, all sites of active bleeding were coagulated in symptomatic patients. An argon plasma coagulator electrosurgical system was used to administer treatments every 4-8 weeks as needed. The argon gas flow was set at 1.6 L/min, with an electrical power setting of 40-45 W. Results: The rectal V100 (the total rectal volume, including the lumen, receiving the prescription dose or greater) for the 7 patients ranged from 0.13 to 4.61 cc. Rectal bleeding was first noticed 3-18 months after implantation. APC (range 1-3 sessions) was performed 9-22 months after implantation. Five patients had complete resolution of their bleeding, usually within days of completing APC. Two patients had only partial relief from bleeding, but declined additional APC therapy. No patient developed clinically evident progressive rectal wall abnormalities after APC, (post-APC follow-up range 4-13 months). Conclusions: Most

  7. Image guided brachytherapy in locally advanced cervical cancer: Improved pelvic control and survival in RetroEMBRACE, a multicenter cohort study

    DEFF Research Database (Denmark)

    Sturdza, Alina; Pötter, Richard; Fokdal, Lars Ulrik

    2016-01-01

    Purpose Image guided brachytherapy (IGBT) for locally advanced cervical cancer allows dose escalation to the high-risk clinical target volume (HRCTV) while sparing organs at risk (OAR). This is the first comprehensive report on clinical outcome in a large multi-institutional cohort. Patients and ...

  8. Perioperative Interstitial High-Dose-Rate Brachytherapy for the Treatment of Recurrent Keloids: Feasibility and Early Results

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Ping, E-mail: ping.jiang@uksh.de [Department of Radiation Oncology, University Clinic Schleswig-Holstein, Campus Kiel, Kiel (Germany); Baumann, René [Department of Radiation Oncology, University Clinic Schleswig-Holstein, Campus Kiel, Kiel (Germany); Dunst, Juergen [Department of Radiation Oncology, University Clinic Schleswig-Holstein, Campus Kiel, Kiel (Germany); Department of Radiation Oncology, University of Copenhagen, Copenhagen (Denmark); Geenen, Matthias [Department of Reconstructive Surgery, Lubinus Clinic Kiel, Kiel (Germany); Siebert, Frank-André [Department of Radiation Oncology, University Clinic Schleswig-Holstein, Campus Kiel, Kiel (Germany); Niehoff, Peter [Department of Radiation Oncology, University Clinic Schleswig-Holstein, Campus Kiel, Kiel (Germany); Department of Radiation Oncology, Community Clinic Köln, Köln (Germany); Department of Radiation Oncology, University Witten/Herdecke, Witten (Germany); Bertolini, Julia; Druecke, Daniel [Department of Reconstructive Surgery, University Clinic Schleswig-Holstein, Campus Kiel, Kiel (Germany)

    2016-03-01

    Purpose: To prospectively evaluate high-dose-rate brachytherapy in the treatment of therapy-resistant keloids and report first results, with emphasis on feasibility and early treatment outcome. Methods and Materials: From 2009 to 2014, 24 patients with 32 recurrent keloids were treated with immediate perioperative high-dose-rate brachytherapy; 3 patients had been previously treated with adjuvant external beam radiation therapy and presented with recurrences in the pretreated areas. Two or more different treatment modalities had been tried in all patients and had failed to achieve remission. After (re-)excision of the keloids, a single brachytherapy tube was placed subcutaneously before closing the wound. The target volume covered the scar in total length. Brachytherapy was given in 3 fractions with a single dose of 6 Gy in 5 mm tissue depth. The first fraction was given within 6 hours after surgery, the other 2 fractions on the first postoperative day. Thus, a total dose of 18 Gy in 3 fractions was administered within 36 hours after the resection. Results: The treatment was feasible in all patients. No procedure-related complications (eg, secondary infections) occurred. Nineteen patients had keloid-related symptoms before treatment like pain and pruritus; disappearance of symptoms was noticed in all patients after treatment. After a median follow-up of 29.4 months (range, 7.9-72.4 months), 2 keloid recurrences and 2 mildly hypertrophied scars were observed. The local control rate was 94%. Pigmentary abnormalities were detected in 3 patients, and an additional 6 patients had a mild delay in the wound-healing process. Conclusions: The early results of this study prove the feasibility and the efficacy of brachytherapy for the prevention of keloids. The results also suggest that brachytherapy may be advantageous in the management of high-risk keloids or as salvage treatment for failure after external beam therapy.

  9. Dosimetric and radiobiological comparison of volumetric modulated arc therapy, high-dose rate brachytherapy, and low-dose rate permanent seeds implant for localized prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ruijie, E-mail: ruijyang@yahoo.com; Zhao, Nan; Liao, Anyan; Wang, Hao; Qu, Ang

    2016-10-01

    To investigate the dosimetric and radiobiological differences among volumetric modulated arc therapy (VMAT), high-dose rate (HDR) brachytherapy, and low-dose rate (LDR) permanent seeds implant for localized prostate cancer. A total of 10 patients with localized prostate cancer were selected for this study. VMAT, HDR brachytherapy, and LDR permanent seeds implant plans were created for each patient. For VMAT, planning target volume (PTV) was defined as the clinical target volume plus a margin of 5 mm. Rectum, bladder, urethra, and femoral heads were considered as organs at risk. A 78 Gy in 39 fractions were prescribed for PTV. For HDR and LDR plans, the dose prescription was D{sub 90} of 34 Gy in 8.5 Gy per fraction, and 145 Gy to clinical target volume, respectively. The dose and dose volume parameters were evaluated for target, organs at risk, and normal tissue. Physical dose was converted to dose based on 2-Gy fractions (equivalent dose in 2 Gy per fraction, EQD{sub 2}) for comparison of 3 techniques. HDR and LDR significantly reduced the dose to rectum and bladder compared with VMAT. The D{sub mean} (EQD{sub 2}) of rectum decreased 22.36 Gy in HDR and 17.01 Gy in LDR from 30.24 Gy in VMAT, respectively. The D{sub mean} (EQD{sub 2}) of bladder decreased 6.91 Gy in HDR and 2.53 Gy in LDR from 13.46 Gy in VMAT. For the femoral heads and normal tissue, the mean doses were also significantly reduced in both HDR and LDR compared with VMAT. For the urethra, the mean dose (EQD{sub 2}) was 80.26, 70.23, and 104.91 Gy in VMAT, HDR, and LDR brachytherapy, respectively. For localized prostate cancer, both HDR and LDR brachytherapy were clearly superior in the sparing of rectum, bladder, femoral heads, and normal tissue compared with VMAT. HDR provided the advantage in sparing of urethra compared with VMAT and LDR.

  10. Dosimetric and radiobiological comparison of volumetric modulated arc therapy, high-dose rate brachytherapy, and low-dose rate permanent seeds implant for localized prostate cancer

    International Nuclear Information System (INIS)

    Yang, Ruijie; Zhao, Nan; Liao, Anyan; Wang, Hao; Qu, Ang

    2016-01-01

    To investigate the dosimetric and radiobiological differences among volumetric modulated arc therapy (VMAT), high-dose rate (HDR) brachytherapy, and low-dose rate (LDR) permanent seeds implant for localized prostate cancer. A total of 10 patients with localized prostate cancer were selected for this study. VMAT, HDR brachytherapy, and LDR permanent seeds implant plans were created for each patient. For VMAT, planning target volume (PTV) was defined as the clinical target volume plus a margin of 5 mm. Rectum, bladder, urethra, and femoral heads were considered as organs at risk. A 78 Gy in 39 fractions were prescribed for PTV. For HDR and LDR plans, the dose prescription was D 90 of 34 Gy in 8.5 Gy per fraction, and 145 Gy to clinical target volume, respectively. The dose and dose volume parameters were evaluated for target, organs at risk, and normal tissue. Physical dose was converted to dose based on 2-Gy fractions (equivalent dose in 2 Gy per fraction, EQD 2 ) for comparison of 3 techniques. HDR and LDR significantly reduced the dose to rectum and bladder compared with VMAT. The D mean (EQD 2 ) of rectum decreased 22.36 Gy in HDR and 17.01 Gy in LDR from 30.24 Gy in VMAT, respectively. The D mean (EQD 2 ) of bladder decreased 6.91 Gy in HDR and 2.53 Gy in LDR from 13.46 Gy in VMAT. For the femoral heads and normal tissue, the mean doses were also significantly reduced in both HDR and LDR compared with VMAT. For the urethra, the mean dose (EQD 2 ) was 80.26, 70.23, and 104.91 Gy in VMAT, HDR, and LDR brachytherapy, respectively. For localized prostate cancer, both HDR and LDR brachytherapy were clearly superior in the sparing of rectum, bladder, femoral heads, and normal tissue compared with VMAT. HDR provided the advantage in sparing of urethra compared with VMAT and LDR.

  11. National audit of a system for rectal contact brachytherapy

    Directory of Open Access Journals (Sweden)

    Laia Humbert-Vidan

    2017-01-01

    Full Text Available Background and purpose: Contact brachytherapy is used for the treatment of early rectal cancer. An overview of the current status of quality assurance of the rectal contact brachytherapy systems in the UK, based on a national audit, was undertaken in order to assist users in optimising their own practices. Material and methods: Four UK centres using the Papillon 50 contact brachytherapy system were audited. Measurements included beam quality, output and radiation field size and uniformity. Test frequencies and tolerances were reviewed and compared to both existing recommendations and published reviews on other kV and electronic brachytherapy systems. External validation of dosimetric measurements was provided by the National Physical Laboratory. Results: The maximum host/audit discrepancy in beam quality determination was 6.5%; this resulted in absorbed dose variations of 0.2%. The host/audit agreement in absorbed dose determination was within 2.2%. The median of the radiation field uniformity measurements was 2.7% and the host/audit agreement in field size was within 1 mm. Test tolerances and frequencies were within the national recommendations for kV units. Conclusions: The dosimetric characterisation of the Papillon 50 was validated by the audit measurements for all participating centres, thus providing reassurance that the implementation had been performed within the standards stated in previously published audit work and recommendations for kV and electronic brachytherapy units. However, optimised and standardised quality assurance testing could be achieved by reducing some methodological differences observed. Keywords: Contact brachytherapy, Electronic brachytherapy, Audit

  12. Gold nanoparticle-aided brachytherapy with vascular dose painting: estimation of dose enhancement to the tumor endothelial cell nucleus.

    Science.gov (United States)

    Ngwa, Wilfred; Makrigiorgos, G Mike; Berbeco, Ross I

    2012-01-01

    Theoretical microdosimetry at the subcellular level is employed in this study to estimate the dose enhancement to tumor endothelial cell nuclei, caused by radiation-induced photo/Auger electrons originating from gold nanoparticles (AuNPs) targeting the tumor endothelium, during brachytherapy. A tumor vascular endothelial cell (EC) is modeled as a slab of 2 μm (thickness) × 10 μm (length) × 10 μm (width). The EC contains a nucleus of 5 μm diameter and thickness of 0.5-1 μm, corresponding to nucleus size 5%-10% of cellular volume, respectively. Analytic calculations based on the electron energy loss formula of Cole were carried out to estimate the dose enhancement to the nucleus caused by photo/Auger electrons from AuNPs attached to the exterior surface of the EC. The nucleus dose enhancement factor (nDEF), representing the ratio of the dose to the nucleus with and without the presence of gold nanoparticles was calculated for different AuNP local concentrations. The investigated concentration range considers the potential for significantly higher local concentration near the EC due to preferential accumulation of AuNP in the tumor vasculature. Four brachytherapy sources: I-125, Pd-103, Yb-169, and 50 kVp x-rays were investigated. For nucleus size of 10% of the cellular volume and AuNP concentrations ranging from 7 to 140 mg/g, brachytherapy sources Pd-103, I-125, 50 kVp, and Yb-169 yielded nDEF values of 5.6-73, 4.8-58.3, 4.7-56.6, and 3.2-25.8, respectively. Meanwhile, for nucleus size 5% of the cellular volume in the same concentration range, Pd-103, I-125, 50 kVp, and Yb-169 yielded nDEF values of 6.9-79.2, 5.1-63.2, 5.0-61.5, and 3.3-28.3, respectively. The results predict that a substantial dose boost to the nucleus of endothelial cells can be achieved by applying tumor vasculature-targeted AuNPs in combination with brachytherapy. Such vascular dose boosts could induce tumor vascular shutdown, prompting extensive tumor cell death.

  13. Gold nanoparticle-aided brachytherapy with vascular dose painting: Estimation of dose enhancement to the tumor endothelial cell nucleus

    Energy Technology Data Exchange (ETDEWEB)

    Ngwa, Wilfred; Makrigiorgos, G. Mike; Berbeco, Ross I. [Department of Radiation Oncology, Division of Medical Physics and Biophysics, Brigham and Women' s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115 (United States)

    2012-01-15

    Purpose: Theoretical microdosimetry at the subcellular level is employed in this study to estimate the dose enhancement to tumor endothelial cell nuclei, caused by radiation-induced photo/Auger electrons originating from gold nanoparticles (AuNPs) targeting the tumor endothelium, during brachytherapy. Methods: A tumor vascular endothelial cell (EC) is modeled as a slab of 2 {mu}m (thickness) x 10 {mu}m (length) x 10 {mu}m (width). The EC contains a nucleus of 5 {mu}m diameter and thickness of 0.5-1 {mu}m, corresponding to nucleus size 5%-10% of cellular volume, respectively. Analytic calculations based on the electron energy loss formula of Cole were carried out to estimate the dose enhancement to the nucleus caused by photo/Auger electrons from AuNPs attached to the exterior surface of the EC. The nucleus dose enhancement factor (nDEF), representing the ratio of the dose to the nucleus with and without the presence of gold nanoparticles was calculated for different AuNP local concentrations. The investigated concentration range considers the potential for significantly higher local concentration near the EC due to preferential accumulation of AuNP in the tumor vasculature. Four brachytherapy sources: I-125, Pd-103, Yb-169, and 50 kVp x-rays were investigated. Results: For nucleus size of 10% of the cellular volume and AuNP concentrations ranging from 7 to 140 mg/g, brachytherapy sources Pd-103, I-125, 50 kVp, and Yb-169 yielded nDEF values of 5.6-73, 4.8-58.3, 4.7-56.6, and 3.2-25.8, respectively. Meanwhile, for nucleus size 5% of the cellular volume in the same concentration range, Pd-103, I-125, 50 kVp, and Yb-169 yielded nDEF values of 6.9-79.2, 5.1-63.2, 5.0-61.5, and 3.3-28.3, respectively. Conclusions: The results predict that a substantial dose boost to the nucleus of endothelial cells can be achieved by applying tumor vasculature-targeted AuNPs in combination with brachytherapy. Such vascular dose boosts could induce tumor vascular shutdown, prompting

  14. Comparison of MRI-based and CT/MRI fusion-based postimplant dosimetric analysis of prostate brachytherapy

    International Nuclear Information System (INIS)

    Tanaka, Osamu; Hayashi, Shinya; Matsuo, Masayuki; Sakurai, Kota; Nakano, Masahiro; Maeda, Sunaho; Kajita, Kimihiro R.T.; Deguchi, Takashi; Hoshi, Hiroaki

    2006-01-01

    Purpose: The aim of this study was to compare the outcomes between magnetic resonance imaging (MRI)-based and computed tomography (CT)/MRI fusion-based postimplant dosimetry methods in permanent prostate brachytherapy. Methods and Materials: Between October 2004 and March 2006, a total of 52 consecutive patients with prostate cancer were treated by brachytherapy, and postimplant dosimetry was performed using CT/MRI fusion. The accuracy and reproducibility were prospectively compared between MRI-based dosimetry and CT/MRI fusion-based dosimetry based on the dose-volume histogram (DVH) related parameters as recommended by the American Brachytherapy Society. Results: The prostate volume was 15.97 ± 6.17 cc (mean ± SD) in MRI-based dosimetry, and 15.97 ± 6.02 cc in CT/MRI fusion-based dosimetry without statistical difference. The prostate V100 was 94.5% and 93.0% in MRI-based and CT/MRI fusion-based dosimetry, respectively, and the difference was statistically significant (p = 0.002). The prostate D90 was 119.4% and 114.4% in MRI-based and CT/MRI fusion-based dosimetry, respectively, and the difference was statistically significant (p = 0.004). Conclusion: Our current results suggested that, as with fusion images, MR images allowed accurate contouring of the organs, but they tended to overestimate the analysis of postimplant dosimetry in comparison to CT/MRI fusion images. Although this MRI-based dosimetric discrepancy was negligible, MRI-based dosimetry was acceptable and reproducible in comparison to CT-based dosimetry, because the difference between MRI-based and CT/MRI fusion-based results was smaller than that between CT-based and CT/MRI fusion-based results as previously reported

  15. Outcomes and toxicities in patients with intermediate-risk prostate cancer treated with brachytherapy alone or brachytherapy and supplemental external beam radiation therapy.

    Science.gov (United States)

    Schlussel Markovic, Emily; Buckstein, Michael; Stone, Nelson N; Stock, Richard G

    2018-05-01

    To evaluate the cancer control outcomes and long-term treatment-related morbidity of brachytherapy as well as combination brachytherapy and external beam radiation therapy (EBRT) in patients with intermediate-risk prostate cancer. A retrospective review was conducted in a prospectively collected database of patients with intermediate-risk prostate cancer who were treated either with brachytherapy or brachytherapy and EBRT, with or without androgen deprivation therapy (ADT), in the period 1990-2014. Urinary and erectile dysfunction symptoms were measured using the International Prostate Symptom Score (IPSS), the Mount Sinai erectile function scale and the Sexual Health Inventory for Men (SHIM). Cancer control endpoints included biochemical failure and development of distant metastases. All statistical analyses were carried out using the Statistical Package for Social Science (SPSS). Survival curves were calculated using Kaplan-Meier actuarial methods and compared using log-rank tests. Cox regression multivariate analyses were used to test the effect of multiple variables on treatment outcomes. A total of 902 patients were identified, with a median follow-up of 91 months. Of these, 390 received brachytherapy and 512 received combination therapy with EBRT. In patients with one intermediate-risk factor, the addition of EBRT did not significantly affect freedom from biochemical failure or distant metastases. Among patients with two or three intermediate-risk factors, added EBRT did not improve freedom from biochemical failure. Significant differences in late toxicity between patients treated with brachytherapy vs combination brachytherapy and EBRT were identified including urge incontinence (P actuarial methods showed that patients receiving combination therapy more frequently experienced loss of potency, as measured by the Mount Sinai erectile function scale (P = 0.040). Brachytherapy monotherapy results in equal biochemical and distant control in both patients with

  16. SU-E-T-564: Multi-Helix Rotating Shield Brachytherapy for Cervical Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Dadkhah, H; Wu, X [University of Iowa, Iowa City, IA (United States); Flynn, R; Kim, Y [University of Iowa Hospitals and Clinics, Iowa City, IA (United States)

    2015-06-15

    Purpose: To present a novel and practical brachytherapy technique, called multi-helix rotating shield brachytherapy (H-RSBT), for the precise positioning of a partial shield in a curved applicator. H-RSBT enables RSBT delivery using only translational motion of the radiation source/shield combination. H-RSBT overcomes the challenges associated with previously proposed RSBT approaches based on a serial (S-RSBT) step-and-shoot delivery technique, which required independent translational and rotational motion. Methods: A Fletcher-type applicator, compatible with the combination of a Xoft Axxent™ electronic brachytherapy source and a 0.5 mm thick tungsten shield, is proposed. The wall of the applicator contains six evenly-spaced helical keyways that rigidly define the emission direction of the shield as a function of depth. The shield contains three protruding keys and is attached to the source such that it rotates freely. S-RSBT and H-RSBT treatment plans with 180° and 45° azimuthal emission angles were generated for five cervical cancer patients representative of a wide range of high-risk clinical target volume (HR-CTV) shapes and applicator positions. The number of beamlets used in the treatment planning process was nearly constant for S-RSBT and H-RSBT by using dwell positions separated by 5 and 1.7 mm, respectively, and emission directions separated by 22.5° and 60°, respectively. For all the treatment plans the EQD2 of the HR-CTV was escalated until the EQD{sub 2cc} tolerance of either the bladder, rectum, or sigmoid colon was reached. Results: Treatment times for H-RSBT tended to be shorter than for S-RSBT, with changes of −38.47% to 1.12% with an average of −8.34%. The HR-CTV D{sub 90} changed by −8.81% to 2.08% with an average of −2.46%. Conclusion: H-RSBT is a mechanically feasible technique in the curved applicators needed for cervical cancer brachytherapy. S-RSBT and H-RSBT dose distributions were clinically equivalent for all patients

  17. Optimization in brachytherapy with the implementation of Radiobiology

    International Nuclear Information System (INIS)

    Duran, M.P.; Bourel, V.J.; Rodriguez, I.; Torre, M. de la; Caneva, S.

    1998-01-01

    In the brachytherapy planning treatments with High dose rates (HDR), the optimization algorithms used are based in dosimetric considerations and/or geometric ones, ignoring the radiobiological response of the tissue treated. In this work we wish to show the implementation of radiobiological concepts in the optimization. Assuming that the subtiles differences that result in the dose distribution among the different optimization models which are not visible in an isodose plane, it is studied how is classically make it , the quality implant through natural histograms about dose volumes and the resulting parameters. Also is studied the necrosis probability which may be caused by the choice of some optimization model, allowing with this the choice of the best implant. (Author)

  18. Utilization and Outcomes of Breast Brachytherapy in Younger Women

    International Nuclear Information System (INIS)

    Smith, Grace L.; Huo, Jinhai; Giordano, Sharon H.; Hunt, Kelly K.; Buchholz, Thomas A.; Smith, Benjamin D.

    2015-01-01

    Purpose: To directly compare (1) radiation treatment utilization patterns; (2) risks of subsequent mastectomy; and (3) costs of radiation treatment in patients treated with brachytherapy versus whole-breast irradiation (WBI), in a national, contemporary cohort of women with incident breast cancer, aged 64 years and younger. Methods and Materials: Using MarketScan health care claims data, we identified 45,884 invasive breast cancer patients (aged 18-64 years), treated from 2003 to 2010 with lumpectomy, followed by brachytherapy (n=3134) or whole-breast irradiation (n=42,750). We stratified patients into risk groups according to age (Age<50 vs Age≥50) and endocrine therapy status (Endocrine− vs Endocrine+). “Endocrine+” patients filled an endocrine therapy prescription within 1 year after lumpectomy. Pathologic hormone receptor status was not available in this dataset. In brachytherapy versus WBI patients, utilization trends and 5-year subsequent mastectomy risks were compared. Stratified, adjusted subsequent mastectomy risks were calculated using proportional hazards regression. Results: Brachytherapy utilization increased from 2003 to 2010: in patients Age<50, from 0.6% to 4.9%; patients Age≥50 from 2.2% to 11.3%; Endocrine− patients, 1.3% to 9.4%; Endocrine+ patients, 1.9% to 9.7%. Age influenced treatment selection more than endocrine status: 17% of brachytherapy patients were Age<50 versus 32% of WBI patients (P<.001); whereas 41% of brachytherapy patients were Endocrine–versus 44% of WBI patients (P=.003). Highest absolute 5-year subsequent mastectomy risks occurred in Endocrine−/Age<50 patients (24.4% after brachytherapy vs 9.0% after WBI (hazard ratio [HR] 2.18, 95% confidence interval [CI] 1.37-3.47); intermediate risks in Endocrine−/Age≥50 patients (8.6% vs 4.9%; HR 1.76, 95% CI 1.26-2.46); and lowest risks in Endocrine+ patients of any age: Endocrine+/Age<50 (5.5% vs 4.5%; HR 1.18, 95% CI 0.61-2.31); Endocrine+/Age≥50 (4.2% vs 2

  19. Utilization and Outcomes of Breast Brachytherapy in Younger Women

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Grace L. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Department of Health Services Research, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Huo, Jinhai [Department of Health Services Research, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Giordano, Sharon H. [Department of Health Services Research, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Hunt, Kelly K. [Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Buchholz, Thomas A. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Smith, Benjamin D., E-mail: bsmith3@mdanderson.org [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Department of Health Services Research, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2015-09-01

    Purpose: To directly compare (1) radiation treatment utilization patterns; (2) risks of subsequent mastectomy; and (3) costs of radiation treatment in patients treated with brachytherapy versus whole-breast irradiation (WBI), in a national, contemporary cohort of women with incident breast cancer, aged 64 years and younger. Methods and Materials: Using MarketScan health care claims data, we identified 45,884 invasive breast cancer patients (aged 18-64 years), treated from 2003 to 2010 with lumpectomy, followed by brachytherapy (n=3134) or whole-breast irradiation (n=42,750). We stratified patients into risk groups according to age (Age<50 vs Age≥50) and endocrine therapy status (Endocrine− vs Endocrine+). “Endocrine+” patients filled an endocrine therapy prescription within 1 year after lumpectomy. Pathologic hormone receptor status was not available in this dataset. In brachytherapy versus WBI patients, utilization trends and 5-year subsequent mastectomy risks were compared. Stratified, adjusted subsequent mastectomy risks were calculated using proportional hazards regression. Results: Brachytherapy utilization increased from 2003 to 2010: in patients Age<50, from 0.6% to 4.9%; patients Age≥50 from 2.2% to 11.3%; Endocrine− patients, 1.3% to 9.4%; Endocrine+ patients, 1.9% to 9.7%. Age influenced treatment selection more than endocrine status: 17% of brachytherapy patients were Age<50 versus 32% of WBI patients (P<.001); whereas 41% of brachytherapy patients were Endocrine–versus 44% of WBI patients (P=.003). Highest absolute 5-year subsequent mastectomy risks occurred in Endocrine−/Age<50 patients (24.4% after brachytherapy vs 9.0% after WBI (hazard ratio [HR] 2.18, 95% confidence interval [CI] 1.37-3.47); intermediate risks in Endocrine−/Age≥50 patients (8.6% vs 4.9%; HR 1.76, 95% CI 1.26-2.46); and lowest risks in Endocrine+ patients of any age: Endocrine+/Age<50 (5.5% vs 4.5%; HR 1.18, 95% CI 0.61-2.31); Endocrine+/Age≥50 (4.2% vs 2

  20. Novel treatment options for nonmelanoma skin cancer: focus on electronic brachytherapy

    Directory of Open Access Journals (Sweden)

    Kasper ME

    2015-11-01

    Full Text Available Michael E Kasper,1,2 Ahmed A Chaudhary3 1Department of Radiation Oncology, Lynn Cancer Institute at Boca Raton Regional Hospital, Boca Raton, 2Charles E. Schmidt College of Medicine, Florida Atlantic University, FL, 3North Main Radiation Oncology, Warren Alpert School of Medicine, Brown University, RI, USA Abstract: Nonmelanoma skin cancer (NMSC is an increasing health care issue in the United States, significantly affecting quality of life and impacting health care costs. Radiotherapy has a long history in the treatment of NMSC. Shortly after the discovery of X-rays and 226Radium, physicians cured patients with NMSC using these new treatments. Both X-ray therapy and brachytherapy have evolved over the years, ultimately delivering higher cure rates and lower toxicity. Electronic brachytherapy for NMSC is based on the technical and clinical data obtained from radionuclide skin surface brachytherapy and the small skin surface applicators developed over the past 25 years. The purpose of this review is to introduce electronic brachytherapy in the context of the history, data, and utilization of traditional radiotherapy and brachytherapy. Keywords: electronic brachytherapy, superficial radiotherapy, skin surface brachytherapy, electron beam therapy, nonmelanoma skin cancer, basal cell carcinoma, squamous cell carcinoma

  1. The effects of metallic implants on electroporation therapies: feasibility of irreversible electroporation for brachytherapy salvage.

    Science.gov (United States)

    Neal, Robert E; Smith, Ryan L; Kavnoudias, Helen; Rosenfeldt, Franklin; Ou, Ruchong; Mclean, Catriona A; Davalos, Rafael V; Thomson, Kenneth R

    2013-12-01

    Electroporation-based therapies deliver brief electric pulses into a targeted volume to destabilize cellular membranes. Nonthermal irreversible electroporation (IRE) provides focal ablation with effects dependent on the electric field distribution, which changes in heterogeneous environments. It should be determined if highly conductive metallic implants in targeted regions, such as radiotherapy brachytherapy seeds in prostate tissue, will alter treatment outcomes. Theoretical and experimental models determine the impact of prostate brachytherapy seeds on IRE treatments. This study delivered IRE pulses in nonanimal, as well as in ex vivo and in vivo tissue, with and in the absence of expired radiotherapy seeds. Electrical current was measured and lesion dimensions were examined macroscopically and with magnetic resonance imaging. Finite-element treatment simulations predicted the effects of brachytherapy seeds in the targeted region on electrical current, electric field, and temperature distributions. There was no significant difference in electrical behavior in tissue containing a grid of expired radiotherapy seeds relative to those without seeds for nonanimal, ex vivo, and in vivo experiments (all p > 0.1). Numerical simulations predict no significant alteration of electric field or thermal effects (all p > 0.1). Histology showed cellular necrosis in the region near the electrodes and seeds within the ablation region; however, there were no seeds beyond the ablation margins. This study suggests that electroporation therapies can be implemented in regions containing small metallic implants without significant changes to electrical and thermal effects relative to use in tissue without the implants. This supports the ability to use IRE as a salvage therapy option for brachytherapy.

  2. Perioperative high dose rate (HDR brachytherapy in unresectable locally advanced pancreatic tumors

    Directory of Open Access Journals (Sweden)

    Brygida Białas

    2011-07-01

    Full Text Available Purpose: The aim of the study was to present an original technique of catheter implantation for perioperative HDR-Ir192 brachytherapy in patients after palliative operations of unresectable locally advanced pancreatic tumors and to estimate the influence of perioperative HDR-Ir192 brachytherapy on pain relief in terminal pancreatic cancer patients. Material and methods: Eight patients with pancreatic tumors located in the head of pancreas underwent palliative operations with the use of HDR-Ir192 brachytherapy. All patients qualified for surgery reported pain of high intensity and had received narcotic painkillers prior to operation. During the last phase of the surgery, the Nucletron® catheters were implanted in patients to prepare them for later perioperative brachytherapy. Since the 6th day after surgery HDR brachytherapy was performed. Before each brachytherapy fraction the location of implants were checked using fluoroscopy. A fractional dose was 5 Gy and a total dose was 20 Gy in the area of radiation. A comparative study of two groups of patients (with and without brachytherapy with stage III pancreatic cancer according to the TNM scale was taken in consideration. Results and Conclusions: The authors claim that the modification of catheter implantation using specially designed cannula, facilitates the process of inserting the catheter into the tumor, shortens the time needed for the procedure, and reduces the risk of complications. Mean survival time was 5.7 months. In the group of performed brachytherapy, the mean survival time was 6.7 months, while in the group of no brachytherapy performed – 4.4 months. In the group of brachytherapy, only one patient increased the dose of painkillers in the last month of his life. Remaining patients took constant doses of medicines. Perioperative HDR-Ir192 brachytherapy could be considered as a practical application of adjuvant therapy for pain relief in patients with an advanced pancreatic cancer.

  3. Mucosal dose prescription in endobronchial brachytherapy: a study based on CT-dosimetry

    International Nuclear Information System (INIS)

    Lagerwaard, Frank J.; Murrer, Lars H.P.; Pan, Connie de; Roos, Martin; Senan, Suresh

    2000-01-01

    Purpose: To investigate the consequences of using different dose prescription methods for endobronchial brachytherapy (EB), both with and without the use of a centered applicator. Materials and Methods: A CT scan was performed during EB procedures in 13 patients after insertion of the lung applicator. A dosimetric analysis was subsequently performed in five of these patients using a 3D-brachytherapy treatment planning system (PLATO v13.3, Nucletron). Results: Dose prescription to the mucosa yields uniform dose distributions to the bronchial mucosa when a centrally positioned applicator is used. When non-centrally positioned applicators are used, mucosal dosing results in a significant underdosage to parts of the target volume. Due to the rapid dose fall-off in EB, dose prescription to the mucosa resulted in inadequate coverage of the outer portion of the bronchial wall and adjacent peribronchial space. When compared to mucosal dose prescription, prescription to the outer aspect of the bronchial wall appears to improve target coverage while limiting the hyperdose (i.e., 200%) volume. The diameters of the different bronchial segments, as determined by CT measurements in 13 patients, correlated well with calculated values based upon the tracheal diameter. Conclusions: Mucosal dose prescription should only be used in combination with centered EB applicators. Given the rapid dose fall-off in EB mucosal dose prescription should be used with caution in curative treatments where EB, without additional external radiotherapy, is used as the sole treatment modality. In curative EB, both improved target coverage and a limited hyperdose volume can be achieved by dose prescription to the outer aspect of the bronchial wall

  4. Role of brachytherapy in the treatment of localized prostate cancer

    Directory of Open Access Journals (Sweden)

    A. D. Kaprin

    2015-01-01

    Full Text Available The review is devoted to application of brachytherapy for treating the localized prostate cancer (PC. Statistics for incidence and detectability of this pathology and its dynamics for recent years are represented. Brief analysis of other methods which are conveniently used for treatment of PC, such as radical prostatectomy and external-beam radiotherapy, was performed. Advantages and disadvantages of these methods have been discussed. Brief history about the development of brachytherapy from first experience to wide-spread use in clinical practice is reported. The detailed review of series of large trials from Russia and other countries for efficiency and safety of brachytherapy in patients with prostate cancer for recent 15 years is also represented. Two types of brachytherapy in current clinical oncology i.e. low-dose technique with permanent implantation of microsources and high-dose temporary isotope implantation, specifics of its application in different groups of patients have been described. The procedure of brachytherapy and its three main steps i.e. planning, implantation and control assessment after implantation have been characterized in details. The conclusion about benefits of using of brachytherapy in the treatment of prostate cancer as minimally invasive and efficient method was made. 

  5. Calculated and measured brachytherapy dosimetry parameters in water for the Xoft Axxent X-Ray Source: an electronic brachytherapy source.

    Science.gov (United States)

    Rivard, Mark J; Davis, Stephen D; DeWerd, Larry A; Rusch, Thomas W; Axelrod, Steve

    2006-11-01

    A new x-ray source, the model S700 Axxent X-Ray Source (Source), has been developed by Xoft Inc. for electronic brachytherapy. Unlike brachytherapy sources containing radionuclides, this Source may be turned on and off at will and may be operated at variable currents and voltages to change the dose rate and penetration properties. The in-water dosimetry parameters for this electronic brachytherapy source have been determined from measurements and calculations at 40, 45, and 50 kV settings. Monte Carlo simulations of radiation transport utilized the MCNP5 code and the EPDL97-based mcplib04 cross-section library. Inter-tube consistency was assessed for 20 different Sources, measured with a PTW 34013 ionization chamber. As the Source is intended to be used for a maximum of ten treatment fractions, tube stability was also assessed. Photon spectra were measured using a high-purity germanium (HPGe) detector, and calculated using MCNP. Parameters used in the two-dimensional (2D) brachytherapy dosimetry formalism were determined. While the Source was characterized as a point due to the small anode size, S700 Source exhibited depth dose behavior similar to low-energy photon-emitting low dose rate sources 125I and l03Pd, yet with capability for variable and much higher dose rates and subsequently adjustable penetration capabilities. This paper presents the calculated and measured in-water brachytherapy dosimetry parameters for the model S700 Source at the aforementioned three operating voltages.

  6. Brachytherapy. High dose rate brachytherapy - Radiation protection: medical sheet ED 4287

    International Nuclear Information System (INIS)

    Celier, D.; Aubert, B.; Vidal, J.P.; Biau, A.; Lahaye, T.; Gauron, C.; Barret, C.; Boisserie, G.; Branchet, E.; Gambini, D.; Gondran, C.; Le Guen, B.; Guerin, C.; Nguyen, S.; Pierrat, N.; Sarrazin, T.; Donnarieix, D.

    2010-02-01

    After having indicated the required authorization to implement brachytherapy techniques, this document presents the various aspects and measures related to radiation protection when performing high-dose-rate brachytherapy treatments. It presents the concerned personnel, describes the operational process, indicates the associated hazards and the risk related to ionizing radiation, and describes how the risk is to be assessed and how exposure levels are to be determined (elements of risk assessment, delimitation of controlled and monitored areas, personnel classification, and choice of the dose monitoring method). It describes the various components of a risk management strategy (risk reduction, technical measures regarding the installation and the personnel, training and information, prevention and medical monitoring). It briefly presents how risk management is to be assessed, and mentions other related risks (biological risk, handling and posture, handling of heavy loads, mental workload, chemical risk)

  7. Brachytherapy. Pulsed dose rate brachytherapy - Radiation protection: medical sheet ED 4250

    International Nuclear Information System (INIS)

    Celier, D.; Aubert, B.; Vidal, J.P.; Biau, A.; Lahaye, T.; Gauron, C.; Barret, C.; Boisserie, G.; Branchet, E.; Gambini, D.; Gondran, C.; Le Guen, B.; Guerin, C.; Nguyen, S.; Pierrat, N.; Sarrazin, T.; Donnarieix, D.

    2009-06-01

    After having indicated the required authorization to implement brachytherapy techniques, this document presents the various aspects and measures related to radiation protection when performing pulsed-dose-rate brachytherapy treatments. It presents the concerned personnel, describes the operational process, indicates the associated hazards and the risk related to ionizing radiation, and describes how the risk is to be assessed and how exposure levels are to be determined (elements of risk assessment, delimitation of controlled and monitored areas, personnel classification, and choice of the dose monitoring method). It describes the various components of a risk management strategy (risk reduction, technical measures regarding the installation and the personnel, training and information, prevention and medical monitoring). It briefly presents how risk management is to be assessed, and mentions other related risks (biological risk, handling and posture, handling of heavy loads, mental workload, chemical risk)

  8. Long-Term Outcome for Clinically Localized Prostate Cancer Treated With Permanent Interstitial Brachytherapy

    International Nuclear Information System (INIS)

    Taira, Al V.; Merrick, Gregory S.; Butler, Wayne M.; Galbreath, Robert W.; Lief, Jonathan; Adamovich, Edward; Wallner, Kent E.

    2011-01-01

    Purpose: To present the largest series of prostate cancer brachytherapy patients treated with modern brachytherapy techniques and postimplant day 0 dosimetric evaluation. Methods and Materials: Between April 1995 and July 2006, 1,656 consecutive patients were treated with permanent interstitial brachytherapy. Risk group stratification was carried out according to the Mt. Sinai guidelines. Median follow-up was 7.0 years. The median day 0 minimum dose covering at least 90% of the target volume was 118.8% of the prescription dose. Cause of death was determined for each deceased patient. Multiple clinical, treatment, and dosimetric parameters were evaluated for impact on the evaluated survival parameters. Results: At 12 years, biochemical progression-free survival (bPFS), cause-specific survival (CSS), and overall survival (OS) for the entire cohort was 95.6%, 98.2%, and 72.6%, respectively. For low-, intermediate-, and high-risk patients, bPFS was 98.6%, 96.5%, and 90.5%; CSS was 99.8%, 99.3%, and 95.2%; and OS was 77.5%, 71.1%, and 69.2%, respectively. For biochemically controlled patients, the median posttreatment prostate-specific antigen (PSA) concentration was 0.02 ng/ml. bPFS was most closely related to percent positive biopsy specimens and risk group, while Gleason score was the strongest predictor of CSS. OS was best predicted by patient age, hypertension, diabetes, and tobacco use. At 12 years, biochemical failure and cause-specific mortality were 1.8% and 0.2%, 5.1% and 2.1%, and 10.4% and 7.1% for Gleason scores 5 to 6 and 7 and ≥8, respectively. Conclusions: Excellent long-term outcomes are achievable with high-quality brachytherapy for low-, intermediate-, and high-risk patients. These results compare favorably to alternative treatment modalities including radical prostatectomy.

  9. A robotic device for MRI-guided prostate brachytherapy

    NARCIS (Netherlands)

    Lagerburg, V.

    2008-01-01

    One of the treatment options for prostate cancer is brachytherapy with iodine-125 sources. In prostate brachytherapy a high radiation dose is delivered to the prostate with a steep dose fall off to critical surrounding organs. The implantation of the iodine sources is currently performed under

  10. Pelvic MRI application to the dosimetric analysis in Brachytherapy of Uterine Cervix Carcinoma

    International Nuclear Information System (INIS)

    Ahn, S. J.; Chung, W. K.; Nah, B. K.

    1997-01-01

    Before we report the results of curative radiotherapy in cervix cancer patients, we review the significance and safety of our dose specification methods in the brachytherapy system to have the insight of the potential predictive value of doses at specific points. We analyze the 45 cases of cervix cancer patients treated with intracavitary brachytherapy. In the lateral simulation film we draw the isodose curve and observe the absorbed dose rate of point A, the reference point of bladder(SBD) and rectum(SRD). In the sagittal view of pelvic MRI film we demarcate the tumor volume(TV) and determine whether the prescription dose curve of point A covers the tumor volume adequately by drawing the isodose curve as correctly as possible. Also we estimate the maximum point dose of bladder (MBD) and rectum (MRD) and calculate the inclusion area where the absorbed dose rate is higher than that of point A in the bladder (HBV) and rectum (HRV), respectively. Of forty-five cases, the isodose curve of point A seems to cover tumor volume optimally in only 24 (53%). The optimal tumor coverage seems to be associated not with the stage of the disease but with the tumor volume. There is no statistically significant association between SBD/SRD and MBD/MRD, respectively. SRD has statistically significant association with HBV and HRV. Our current treatment calculation methods seem to have the defect in the aspects of the nonoptimal coverage of the bulky tumor and the inappropriate estimation of bladder dose. We therefore need to modify the applicator geometry to optimize the dose distribution at the position of lower tandem source. Also it appears that the position of the bladder in relation to the applicators needs to be defined individually to define 'hot spots'. (author)

  11. Calculating of Dose Distribution in Tongue Brachytherapy by Different Radioisotopes using Monte Carlo Simulation and Comparing by Experimental Data

    Directory of Open Access Journals (Sweden)

    Banafsheh Zeinali Rafsanjani

    2011-06-01

    Full Text Available Introduction: Among different kinds of oral cavity cancers, the frequency of tongue cancer occurrence is more significant. Brachytherapy is the most common method to cure tongue cancers. Long sources are used in different techniques of tongue brachytherapy. The objective of this study is to asses the dose distribution around long sources, comparing different radioisotopes as brachytherapy sources, measuring the homogeneity of delivered dose to treatment volume and also comparing mandible dose and dose of tongue in the regions near the mandible with and without using shield. Material and Method: The Monte Carlo code MCNP4C was used for simulation. The accuracy of simulation was verified by comparing the results with experimental data. The sources like Ir-192, Cs-137, Ra-226, Au-198, In-111 and Ba-131 were simulated and the position of sources was determined by Paris system. Results: The percentage of mandible dose reduction with use of 2 mm Pb shield for the sources mentioned above were: 35.4%, 20.1%, 86.6%, 32.24%, 75.6%, and 36.8%. The tongue dose near the mandible with use of shied did not change significantly. The dose homogeneity from the most to least was obtained from these sources: Cs-137, Au-198, Ir-192, Ba-131, In-111 and Ra-226. Discussion and Conclusion: Ir-192 and Cs-137 were the best sources for tongue brachytherapy treatment but In-111 and Ra-226 were not suitable choices for tongue brachytherapy. The sources like Au-198 and Ba-131 had rather the same performance as Ir-192

  12. High Dose-Rate Versus Low Dose-Rate Brachytherapy for Lip Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ghadjar, Pirus, E-mail: pirus.ghadjar@insel.ch [Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern (Switzerland); Bojaxhiu, Beat [Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern (Switzerland); Simcock, Mathew [Swiss Group for Clinical Cancer Research Coordinating Center, Bern (Switzerland); Terribilini, Dario; Isaak, Bernhard [Division of Medical Radiation Physics, Inselspital, Bern University Hospital, and University of Bern, Bern (Switzerland); Gut, Philipp; Wolfensberger, Patrick; Broemme, Jens O.; Geretschlaeger, Andreas; Behrensmeier, Frank; Pica, Alessia; Aebersold, Daniel M. [Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern (Switzerland)

    2012-07-15

    Purpose: To analyze the outcome after low-dose-rate (LDR) or high-dose-rate (HDR) brachytherapy for lip cancer. Methods and Materials: One hundred and three patients with newly diagnosed squamous cell carcinoma of the lip were treated between March 1985 and June 2009 either by HDR (n = 33) or LDR brachytherapy (n = 70). Sixty-eight patients received brachytherapy alone, and 35 received tumor excision followed by brachytherapy because of positive resection margins. Acute and late toxicity was assessed according to the Common Terminology Criteria for Adverse Events 3.0. Results: Median follow-up was 3.1 years (range, 0.3-23 years). Clinical and pathological variables did not differ significantly between groups. At 5 years, local recurrence-free survival, regional recurrence-free survival, and overall survival rates were 93%, 90%, and 77%. There was no significant difference for these endpoints when HDR was compared with LDR brachytherapy. Forty-two of 103 patients (41%) experienced acute Grade 2 and 57 of 103 patients (55%) experienced acute Grade 3 toxicity. Late Grade 1 toxicity was experienced by 34 of 103 patients (33%), and 5 of 103 patients (5%) experienced late Grade 2 toxicity; no Grade 3 late toxicity was observed. Acute and late toxicity rates were not significantly different between HDR and LDR brachytherapy. Conclusions: As treatment for lip cancer, HDR and LDR brachytherapy have comparable locoregional control and acute and late toxicity rates. HDR brachytherapy for lip cancer seems to be an effective treatment with acceptable toxicity.

  13. How to optimize therapeutic ratio in brachytherapy of head and neck squamous cell carcinoma?

    International Nuclear Information System (INIS)

    Mazeron, J.J.; Simon, J.M.; Hardiman, C.; Gerbaulet, A.

    1998-01-01

    Considerable experience has been accumulated with low dose rate (LDR) brachytherapy in the treatment of squamous cell carcinoma of the oral cavity and oropharynx, 4 cm or less in diameter. Recent analysis of large clinical series provided data indicating that modalities of LDR brachytherapy should be optimized in treating these tumours for increasing therapeutic ratio. LDR brachytherapy is now challenged by high dose rate (HDR) brachytherapy and pulsed dose rate (PDR) brachytherapy. Preliminary results obtained with the last two modalities are discussed in comparison with those achieved with LDR brachytherapy. (orig.)

  14. Intra coronary brachytherapy

    International Nuclear Information System (INIS)

    Ghofourian, H.; Ghahremani, A.; Oliaie, A.; Taghizadeh Asl, M.

    2002-01-01

    Despite the initial promise of vasculopathy intervention restenosis- a consequence of the (normal) would healing process-has emerged as a major problem. Angiographic restenosis has been reported in 40-60% of patients after successful P TCA. The basic mechanism of restenosis, (acute recoil, negative remodeling and neo intimal hyperplasia), are only partially counteracted by endovascular prosthetic devices (s tents). The rate of in-s tent restenosis, which is primarily caused by neo intimal hyperplasia due to the (micro) trauma of the arterial wall by the s tent struts, has been reduced to 18-32%. Ionizing (beta or gamma) radiations has been established as a potent treatment for malignant disorders. In recent years, there has also been increasing interest among clinicians in the management of benign lesions with radiation. Over the past several years, there has been a growing body of evidence that endovascular brachytherapy has a major impact on the biology of the restenosis. It must be underlined that understanding the biology and pathophysiology of restenosis and assessing various treatment options should preferably be a team effort, with the three g races b eing interventional cardiologist, nuclear oncologist, and industrial partners. The vast amount of data in over 20000 patients from a wide range of randomized controlled trials, has shown that brachytherapy is the only effective treatment for in-s tent restenosis. We are learning more and more about how to improve brachytherapy. While the new coated s tents that we heard about today is fascinating and extremely promising, brachytherapy still has a very important place in difficult patients, such as those with total occlusions, osti al lesions, left main lesions, multivessel disease and diabetes. Regarding to above mentioned tips, we (a research team work, in the Nuclear Research Center Of the Atomic Energy Organization Of Iran), focused on synthesis and preparation of radioactive materials for use in I c-B T. We

  15. Protocol-based image-guided salvage brachytherapy. Early results in patients with local failure of prostate cancer after radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Lahmer, G.; Lotter, M.; Kreppner, S.; Fietkau, R.; Strnad, V. [University Hospital Erlangen (Germany). Dept. of Radiation Oncology

    2013-08-15

    Purpose: To assess the overall clinical outcome of protocol-based image-guided salvage pulsed-dose-rate brachytherapy for locally recurrent prostate cancer after radiotherapy failure particularly regarding feasibility and side effects. Patients and methods: Eighteen consecutive patients with locally recurrent prostate cancer (median age, 69 years) were treated during 2005-2011 with interstitial PDR brachytherapy (PDR-BT) as salvage brachytherapy after radiotherapy failure. The treatment schedule was PDR-BT two times with 30 Gy (pulse dose 0.6 Gy/h, 24 h per day) corresponding to a total dose of 60 Gy. Dose volume adaptation was performed with the aim of optimal coverage of the whole prostate (V{sub 100} > 95 %) simultaneously respecting the protocol-based dose volume constraints for the urethra (D{sub 0.1} {sub cc} < 130 %) and the rectum (D{sub 2} {sub cc} < 50-60 %) taking into account the previous radiation therapy. Local relapse after radiotherapy (external beam irradiation, brachytherapy with J-125 seeds or combination) was confirmed mostly via choline-PET and increased PSA levels. The primary endpoint was treatment-related late toxicities - particularly proctitis, anal incontinence, cystitis, urinary incontinence, urinary frequency/urgency, and urinary retention according to the Common Toxicity Criteria. The secondary endpoint was PSA-recurrence-free survival. Results: We registered urinary toxicities only. Grade 2 and grade 3 toxicities were observed in up to 11.1 % (2/18) and 16.7 % (3/18) of patients, respectively. The most frequent late-event grade 3 toxicity was urinary retention in 17 % (3/18) of patients. No late gastrointestinal side effects occurred. The biochemical PSA-recurrence-free survival probability at 3 years was 57.1 %. The overall survival at 3 years was 88.9 %; 22 % (4/18) of patients developed metastases. The median follow-up time for all patients after salvage BT was 21 months (range, 8-77 months). Conclusion: Salvage PDR-brachytherapy

  16. Endobronchial brachytherapy: the Saint-Louis Hospital experience

    International Nuclear Information System (INIS)

    Hennequin, C.; Durdux, C.; Housset, M.; Maylin, C.; Tredaniel, J.; Zalcman, G.; Hirsch, A.; Dray, M.; Manoux, D.; Perret, M.

    1997-01-01

    During the evolution of lung cancer, bronchial obstruction is often noticed and is sometimes responsible for serious symptoms. Several methods of des-obstruction can be proposed, including brachytherapy. Materials and methods: One hundred forty-nine patients, presenting with endobronchial brachytherapy were included into the study. Seventy-three were treated with curative intent, 47 with palliative intent and 29 with a combination of external irradiation and brachytherapy. We usually delivered a series of two 7-Gy fractions (1 cm from the catheter), the treatment being repeated one, two or three times. Results: When all symptoms were taken into account, respiratory function improvement was present in 79% of the patients. Among the 132 tumors that could be evaluated via a new endoscopy 2 months after treatment, 64 (48.5%) were in complete histological remission. The median survival was 14.4 months for the patients treated with curative intent. Eleven massive hemoptyses and 13 radiation bronchitides were observed. Conclusion: These results confirm the feasibility and good results related to endobronchial brachytherapy, though controlled studies are needed to better define its place in the therapeutic strategy of bronchial carcinomas. (authors)

  17. Effect and toxicity of endoluminal high-dose-rate (HDR) brachytherapy in centrally located tumors of the upper respiratory tract

    International Nuclear Information System (INIS)

    Harms, W.; Wannenmacher, M.; Becker, H.; Herth, F.; Fritz, P.

    2000-01-01

    Aim: To assess effect an toxicity of high-dose-rate afterloading (HDR) alone or in combination with external beam radiotherapy (EBRT) in centrally located tumors of the upper respiratory tract. Patients and Methods: From 1987 to 1996, 55 patients were treated. Twenty-one patients (group A1: 17 non-small-cell lung cancer [NSCLC], A2: 4 metastases from other malignancies) were treated using HDR alone due to a relapse after external beam irradiation. In 34 previously untreated and inoperable patients (group B1: 27 NSCLC, B2: 7 metastases from other malignancies) HDR was given as a boost after EBRT (30 to 60 Gy, median 50). HDR was carried out with a 192 Ir source (370 GBq). The brachytherapy dose (group A: 5 to 27 Gy, median 20; B: 10 to 20 Gy, median 15) was prescribed to 1 cm distance from the source axis. A distanciable applicator was used in 39/55 patients. Results: In group A1, a response rate (CR, PR) of 53% (group B1: 77%) was reached. The median survival (Kaplan-Meier) was 5 months in group A1 (B1: 20 months). The 1-, 3- and 5-year local progression free survival rates (Kaplan-Meier) were 66% (15%), 52% (0%), and 37% (0%) in group B1 (group A1). Prognostic favorable factors in group B1 were a tumor diameter 70. Grade-1 or 2 toxicity (RTOG/EORTC) occurred in 0% in group A and in 6% in group B. We observed no Grad-3 or 4 toxicity. Complications caused by persistent or progressive local disease occurred in 3 patients in goup A (fatal hemorrhage, tracheomediastinal fistula, hemoptysis) and in 2 patients in group B (fatal hemorrhage, hemoptysis). Conclusions: HDR brachytherapy is an effective treatment with moderate side effects. In combination with external beam irradiation long-term remissions can be reached in one third of the patients. (orig.) [de

  18. Using the computed tomography in comparison to the orthogonal radiography based treatment planning in high dose rate (HDR) brachytherapy in cervical uteri cancer patients; a single institution feasibility study.

    Science.gov (United States)

    Bahadur, Yasir A; El-Sayed, Mohamed E; El-Taher, Zeinab H; Zaza, Khaled O; Moftah, Belal A; Hassouna, Ashraf H; Ghassal, Noor M

    2008-03-01

    Brachytherapy is an integral part in the treatment of cervical uteri cancer patients. Orthogonal treatment planning is the standard mode of calculation based on reference points. Introduction of the innovative 3-D computer based treatment planning allows accurate calculation based on volumetric information as regards the target volume and organs at risk (OAR). Also provide dose volume histogram (DVH) for proper estimation of the dose in relation to the volume. To correlate and compare the information obtained from the two approaches for high dose rate brachytherapy of cervical uteri cancer; the orthogonal conventional method and the computerized tomography (CT) three dimensions (3D) based calculation method in relation to the target and organ at risk (OAR). From 6 patients of cervical uteri cancer, 21 applications with orthogonal planning using the Brachy Vision treatment planning system version 7.3.10 were performed. In 10 applications; comparison between orthogonal and CT based planning was done. In orthogonal planning; the dose to point A, rectum and bladder were defined according to the American Brachytherapy Society (ABS) recommendation. From the CT based planning the target volume and dose volume histogram lpar;DVH) were calculated for the clinical target volume (CTV), rectum and bladder. From these two sets, information was obtained and compared and mean values were derived. For dose prescription at point A, an average of 63.5% of CTV received the prescribed dose. The mean ICRU dose to the bladder point is 2.9 Gy+/-1.2 SD (Standard Deviation) and 17% of the bladder volume derived from CT was encompassed by 2.9 Gy isodose line. The mean ICRU dose at the rectum point is 3.4 Gy+/-1.2 SD and 21% of the rectum volume from CT was encompassed by 3.4 Gy isodose line. The maximum dose to the rectum and the bladder derived from the CT and compared to the maximal dose at ICRU is 1.7 and 2.8 times higher than the orthogonal reference points; with the corresponding p

  19. Using the Computed Tomography in Comparison to the Orthogonal Radiography Based Treatment Planning in High dose Rate (HDR) Brachytherapy in Cervical Uteri Cancer Patients; A Single Institution Feasibility Study

    International Nuclear Information System (INIS)

    BAHADUR, Y.A.; EL-SAYED, M.E.; HASSOUNA, A.H.; EL-TAHER, Z.H.; GHASSAL, N.M.; ZAZA, Kh.O.M.D.; OFTAH, B.A.

    2008-01-01

    Brachytherapy is an integral part in the treatment of cervical uteri cancer patients. Orthogonal treatment planning is the standard mode of calculation based on reference points. Introduction of the innovative 3-D computer based treatment planning allows accurate calculation based on volumetric information as regards the target volume and organs at risk (OAR). Also provide dose volume histogram (DVH) for proper estimation of the dose in relation to the volume. Aim: To correlate and compare the information obtained from the two approaches for high dose rate brachytherapy of cervical uteri cancer; the orthogonal conventional method and the computerized tomography (CT) three dimensions (3D) based calculation method in relation to the target and organ at risk (OAR). Methods: From 6 patients of cervical uteri cancer, 21 applications with orthogonal planning using the Brachy Vision treatment planning system version 7.3.10 were performed. In 10 applications; comparison between orthogonal and CT based planning was done. In orthogonal planning; the dose to point A, rectum and bladder were defined according to the American Brachytherapy Society (ABS) recommendation. From the CT based planning the target volume and dose volume histogram (DVH) were calculated for the clinical target volume (CTV), rectum and bladder. From these two sets, information was obtained and compared and mean values were derived. Results: For dose prescription at point A, an average of 63.5% of CTV received the prescribed dose. The mean ICRU dose to the bladder point is 2.9 Gy±l .2 SD (Standard Deviation) and 17% of the bladder volume derived from CT was encompassed by 2.9 Gy isodose line. The mean ICRU dose at the rectum point is 3.4 Gy±1.2 SD and 21% of the rectum volume from CT was encompassed by 3.4 Gy isodose line. The maximum dose to the rectum and the bladder derived from the CT and compared to the maximal dose at ICRU is 1.7 and 2.8 times higher than the orthogonal reference points; with the

  20. Automated intraoperative calibration for prostate cancer brachytherapy

    International Nuclear Information System (INIS)

    Kuiran Chen, Thomas; Heffter, Tamas; Lasso, Andras; Pinter, Csaba; Abolmaesumi, Purang; Burdette, E. Clif; Fichtinger, Gabor

    2011-01-01

    Purpose: Prostate cancer brachytherapy relies on an accurate spatial registration between the implant needles and the TRUS image, called ''calibration''. The authors propose a new device and a fast, automatic method to calibrate the brachytherapy system in the operating room, with instant error feedback. Methods: A device was CAD-designed and precision-engineered, which mechanically couples a calibration phantom with an exact replica of the standard brachytherapy template. From real-time TRUS images acquired from the calibration device and processed by the calibration system, the coordinate transformation between the brachytherapy template and the TRUS images was computed automatically. The system instantly generated a report of the target reconstruction accuracy based on the current calibration outcome. Results: Four types of validation tests were conducted. First, 50 independent, real-time calibration trials yielded an average of 0.57 ± 0.13 mm line reconstruction error (LRE) relative to ground truth. Second, the averaged LRE was 0.37 ± 0.25 mm relative to ground truth in tests with six different commercial TRUS scanners operating at similar imaging settings. Furthermore, testing with five different commercial stepper systems yielded an average of 0.29 ± 0.16 mm LRE relative to ground truth. Finally, the system achieved an average of 0.56 ± 0.27 mm target registration error (TRE) relative to ground truth in needle insertion tests through the template in a water tank. Conclusions: The proposed automatic, intraoperative calibration system for prostate cancer brachytherapy has achieved high accuracy, precision, and robustness.

  1. Brachytherapy in vulvar cancer: analysis of 18 patients

    International Nuclear Information System (INIS)

    Frezza, G.; Baldissera, A.; Bernardi, L.; Bunkheila, F.; Galuppi, A.; Salvi, F.

    1996-01-01

    INTRODUCTION: Vulvar cancer is a rather common neoplasm in elderly patients. Surgery, followed eventually by postoperative radiotherapy, is the treatment of choice. The results of exclusive radiotherapy (external beam irradiation and/or brachytherapy) are not well defined and in the recent literature only small series are reported. Radiotherapy however is the only therapeutic option in patients who are not fit for radical surgery. It is thus necessary to review its indications and its modalities. PATIENTS METHODS AND RESULTS: From 1990 to 1994 18 pts with a diagnosis of squamous cell carcinoma of the vulva have been submitted to brachytherapy. Age ranged from 60 to 92 years (mean age 76, 1 ys). 14 pts were treated at diagnosis (11 pts) or for recurrent disease after surgery (3 pts). In 8 of them brachytherapy (total dose 35-45 Gy, dose rate: 0,4-0,78 Gy/h) was preceded by external beam irradiation (Co60 or electron beam, 40-50 Gy to primary and inguinal nodes); 6 pts were treated with brachytherapy alone (58-60 Gy; dose rate 0,44-0,63 Gy/h). 4 pts underwent to brachytherapy alone for local recurrence after surgery and postoperative radiotherapy (total dose 45-60 Gy; dose rate 0,37-0,49 Gy/h). Brachytherapy was always performed with 192 Ir. Plastic tubes (2 to 5 lines) were used for single plane implantation of small exophytic lesions limited to the labia (8 cases); a perineal template (10 cases) was employed in lesions extended to the vaginal mucosa or involving the clitoris or the area of the perineum. (10(14)) pts treated at diagnosis are alive and free from local recurrence after 11-48 mos. 3 of them, treated with brachytherapy alone, have presented a nodal recurrence in the groin after 14, 15 and 27 mos. respectively. All of them are alive and free from disease after surgery and external radiotherapy. None of the pts treated for recurrent disease after surgery + external beam radiotherapy has achieved a local control. CONCLUSION: Brachytherapy alone or

  2. Conventional external beam radiation therapy and high dose rate afterloading brachytherapy as a boost for patients older than 70 years

    International Nuclear Information System (INIS)

    Pellizzon, Antonio Cassio Assis; Salvajoli, Joao Vitor; Fogaroli, Ricardo Cesar; Novaes, Paulo Eduardo R.S.; Maia, Maria Aparecida Conte; Ferrigno, Robson

    2005-01-01

    The treatment options for patients with non metastatic prostate cancer range from observation, radical prostatectomy, radiation therapy, hormonal therapy to various combination of some to all of them. Objective: we evaluated the impact on biochemical control of disease (bNED), acute and late intestinal (GI) and urological (GU) morbidity for a group of patients older than 70 years presenting initial or locally advanced prostate cancer treated with fractionated high dose rate brachytherapy (HDRB) as a boost to conventional external beam radiation therapy (RT) at the Department of Radiation Oncology from Hospital do Cancer A. C. Camargo, Sao Paulo, Brazil. Methods: a total of 56 patients older than 70 were treated from March, 1997 to June, 2002. All patients had prior to HDRB a course of RT to a median dose of 45 Gy. HDRB doses ranged from 16 Gy to 20 Gy, given in 4 fractions. Results: the median age of the patients was 74.4 years (range 70-83) and the median follow-up 33 months (range 24 to 60). The 5-year actuarial bNED rate was 77%. Acute GU and GI morbidity G1-2 were seen in 17.8% and 7.1% of patients, respectively. Late G1 or G2 GU morbidity was seen in 10.7% of the patients, while late G3 morbidity was observed in 7.1% of the patients, represented by urethral strictures. Conclusion: this group of patients had similar bNED rates when compared to literature, with acceptable morbidity rates. (author)

  3. Trends in the Utilization of Brachytherapy in Cervical Cancer in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Han, Kathy, E-mail: Kathy.Han@rmp.uhn.on.ca [Radiation Medicine Program, Princess Margaret Hospital, University Health Network, Toronto, Ontario (Canada); Milosevic, Michael; Fyles, Anthony [Radiation Medicine Program, Princess Margaret Hospital, University Health Network, Toronto, Ontario (Canada); Pintilie, Melania [Department of Biostatistics, Princess Margaret Hospital, Toronto, Ontario (Canada); Viswanathan, Akila N. [Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women' s Hospital, Boston, Massachusetts (United States)

    2013-09-01

    Purpose: To determine the trends in brachytherapy use in cervical cancer in the United States and to identify factors and survival benefits associated with brachytherapy treatment. Methods and Materials: Using the Surveillance, Epidemiology, and End Results (SEER) database, we identified 7359 patients with stages IB2-IVA cervical cancer treated with external beam radiation therapy (EBRT) between 1988 and 2009. Propensity score matching was used to adjust for differences between patients who received brachytherapy and those who did not from 2000 onward (after the National Cancer Institute alert recommending concurrent chemotherapy). Results: Sixty-three percent of the 7359 women received brachytherapy in combination with EBRT, and 37% received EBRT alone. The brachytherapy utilization rate has decreased from 83% in 1988 to 58% in 2009 (P<.001), with a sharp decline of 23% in 2003 to 43%. Factors associated with higher odds of brachytherapy use include younger age, married (vs single) patients, earlier years of diagnosis, earlier stage and certain SEER regions. In the propensity score-matched cohort, brachytherapy treatment was associated with higher 4-year cause-specific survival (CSS; 64.3% vs 51.5%, P<.001) and overall survival (OS; 58.2% vs 46.2%, P<.001). Brachytherapy treatment was independently associated with better CSS (hazard ratio [HR], 0.64; 95% confidence interval [CI], 0.57-0.71), and OS (HR 0.66; 95% CI, 0.60 to 0.74). Conclusions: This population-based analysis reveals a concerning decline in brachytherapy utilization and significant geographic disparities in the delivery of brachytherapy in the United States. Brachytherapy use is independently associated with significantly higher CSS and OS and should be implemented in all feasible cases.

  4. Construction balance analysis of dose rate medium brachytherapy TDS

    International Nuclear Information System (INIS)

    Sandi Parapak

    2011-01-01

    One of the most important part of brachytherapy instrument design activities is analyze by determining the centroid point of construction in order to maintain the balance of brachytherapy instrument, either during operation as well as when transported. Operation of brachytherapy is not only done in one place so it is necessary to balance the analysis of the forces at the time did not move, moved on the horizontal floor and sloping floor. Calculation approach who is done to calculate the weight of mechanical components on each module, and then calculate the centroid of each module, for the balance of forces analysis performed with the assumption at the time of brachytherapy in the position of not moving on a horizontal floor, moved from a place to another on the horizontal floor and on the floor with sloping angle 30°. Base on the results of this analysis are expected to balance the four wheels can move without slipping at the time of decline or incline. Also, results of analysis can be used in designing a mobile construction brachytherapy taking into consideration the aesthetic ideal, easy to operate, ensure the safety of equipment, operator and patient. (author)

  5. Prediction of PSA bounce after permanent prostate brachytherapy for localized prostate cancer

    International Nuclear Information System (INIS)

    Kanai, Kunimitsu; Nakashima, Jun; Sugawara, Akitomo

    2009-01-01

    We aimed to calculate the frequency and features of the development of a prostate-specific antigen (PSA) bounce after prostate brachytherapy alone, to correlate the bounce with clinical and dosimetric factors and to identify factors that predict PSA bounce. PSA bounce was evaluated in 86 patients with T1-T2 prostate cancer who underwent radioactive seed implantation using iodine-125 (I-125) without hormonal therapy or external-beam radiation therapy (EBRT) from September 2004 to December 2007. A PSA bounce was defined as a rise of at least 0.4 ng/ml greater than a previous PSA level with a subsequent decline equal to, or less than, the initial nadir. Calculated by the Kaplan-Meier method, the incidence of PSA bounce at a 2-year follow-up was 26%. Median time to the PSA bounce was 15 months. Univariate analysis demonstrated that age, dose received by 90% of the prostate gland (D90), volume of gland receiving 100% of the prescribed dose (V100), and V150 were significantly associated with the PSA bounce, while pretreatment PSA level, Gleason score, pretreatment prostate volume, clinical T stage, and V200 were not. In multivariate analysis, age 67 years or less and D90 more than 180 Gy were identified as independent factors for predicting the PSA bounce (P<0.05). PSA bounce is not a rare phenomenon after prostate brachytherapy. It is more common in younger patients and patients receiving higher doses of radiation. (author)

  6. Electronic brachytherapy management of atypical fibroxanthoma: report of 8 lesions

    Directory of Open Access Journals (Sweden)

    Stephen Doggett

    2017-01-01

    Full Text Available Purpose : To evaluate the suitability of treating atypical fibroxanthoma (AFX, an uncommon skin malignancy, with electronic brachytherapy. Material and methods : From Feb 2013 to Sep 2014, we were referred a total of 8 cases of AFX in 7 patients, all involving the scalp. All of them were treated with electronic brachytherapy 50 Kev radiations (Xoft Axxent®, Fremont, California. All lesions received 40 Gy in two fractions per week with 5mm margins. Results : At a median follow-up of 23.7 months, the local recurrence rate is 12.5%. The single lesion that failed was not debulked surgically prior to electronic brachytherapy. Conclusions : To our knowledge, this is the first report in the literature on the use of radiation therapy as curative primary treatment for AFX. No contraindication to the use of radiations is found in the literature, with surgery being the sole treatment for AFX noted. Our recurrence rate is 0% for debulked lesions. Risk of recurrence is mitigated with surgical debulking prior to brachytherapy. Electronic brachytherapy appears to be a safe and effective treatment for debulked AFX. Multiple excisions, skin grafting, and wound care can be avoided in elderly patients by the use of electronic brachytherapy.

  7. Sci—Fri PM: Topics — 08: The Role and Benefits of Electromagnetic Needle-Tracking Technologies in Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Beaulieu, L.; Racine, E.; Boutaleb, S.; Filion, O. [Département de Radio-Oncologie et Centre de Recherche du CHU de Québec, CHU de Québec, Québec (Québec), and Département de Physique, de Génie Physique et d' Optique et Centre de recherche en sur le Cancer, Université Laval, Québec (Québec) (Canada); Poulin, E.; Hautvast, G. [Biomedical Systems, Philips Group Innovation, High Tech Campus 34 (HTC 34), Eindhoven (Netherlands); Binnekamp, D. [Integrated Clinical Solutions and Marketing, Philips Healthcare, Veenpluis 4-6, Best (Netherlands)

    2014-08-15

    In modern brachytherapy, application of large doses of ionizing radiation in a limited number of fractions is frequent. Furthermore, as with any surgical procedures, brachytherapy is subject to learning curve effects. In this context, there could be advantages of integrating real-time tracking of needles/catheters to existing protocols given the recent prominent advances in tracking technologies. In this work, we review the use of an electromagnetic tracking system (EMTS) based on the second generation Aurora® Planar Field Generator (Northern Digital Inc) and custom design needles (Philips Healthcare) for brachytherapy applications. The position and orientation information is obtained from 5 degrees of freedom sensors. Basic system performance characterization is performed in well-controlled conditions to establish accuracy and reproducibility as well as potential interference from standard brachytherapy equipment. The results show that sensor locations can be tracked to within 0.04mm (la) when located within 26cm of the generator. Orientation accuracy of the needle remained within ±1° in the same region, but rose quickly at larger distances. The errors on position and orientation strongly dependent the sensor position in the characterization volume (500×500×500mm{sup 3}). The presence of an ultrasound probe was shown to have negligible effects on tracking accuracy. The use of EMTS for automatic catheter/applicator reconstruction was also explored. Reconstruction time was less than 10 sec/channel and tips identification was within 0.69±0.29mm of the reference values. Finally, we demonstrate that hollow needle designs with special EM adaptation also allow for real-time seed drop position estimation. In phantom experiments showed that drop positions were on average within 1.6±0.9mm of the reference position measured from μCT. Altogether, EMTS offer promising benefits in a wide range of brachytherapy applications.

  8. Sci—Fri PM: Topics — 08: The Role and Benefits of Electromagnetic Needle-Tracking Technologies in Brachytherapy

    International Nuclear Information System (INIS)

    Beaulieu, L.; Racine, E.; Boutaleb, S.; Filion, O.; Poulin, E.; Hautvast, G.; Binnekamp, D.

    2014-01-01

    In modern brachytherapy, application of large doses of ionizing radiation in a limited number of fractions is frequent. Furthermore, as with any surgical procedures, brachytherapy is subject to learning curve effects. In this context, there could be advantages of integrating real-time tracking of needles/catheters to existing protocols given the recent prominent advances in tracking technologies. In this work, we review the use of an electromagnetic tracking system (EMTS) based on the second generation Aurora® Planar Field Generator (Northern Digital Inc) and custom design needles (Philips Healthcare) for brachytherapy applications. The position and orientation information is obtained from 5 degrees of freedom sensors. Basic system performance characterization is performed in well-controlled conditions to establish accuracy and reproducibility as well as potential interference from standard brachytherapy equipment. The results show that sensor locations can be tracked to within 0.04mm (la) when located within 26cm of the generator. Orientation accuracy of the needle remained within ±1° in the same region, but rose quickly at larger distances. The errors on position and orientation strongly dependent the sensor position in the characterization volume (500×500×500mm 3 ). The presence of an ultrasound probe was shown to have negligible effects on tracking accuracy. The use of EMTS for automatic catheter/applicator reconstruction was also explored. Reconstruction time was less than 10 sec/channel and tips identification was within 0.69±0.29mm of the reference values. Finally, we demonstrate that hollow needle designs with special EM adaptation also allow for real-time seed drop position estimation. In phantom experiments showed that drop positions were on average within 1.6±0.9mm of the reference position measured from μCT. Altogether, EMTS offer promising benefits in a wide range of brachytherapy applications

  9. Magnetic resonance image-guided brachytherapy for cervical cancer. Prognostic factors for survival

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeon-Joo; Kim, Joo-Young [National Cancer Center, Proton Therapy Center, Goyang (Korea, Republic of); National Cancer Center, Center for Uterine Cancer, Goyang (Korea, Republic of); Kim, Youngkyong; Lim, Young Kyung; Jeong, Jonghwi [National Cancer Center, Proton Therapy Center, Goyang (Korea, Republic of); Jeong, Chiyoung [National Cancer Center, Proton Therapy Center, Goyang (Korea, Republic of); University of Ulsan College of Medicine, Department of Radiation Oncology, Asan Medical Center, Seoul (Korea, Republic of); Kim, Meyoung [National Cancer Center, Proton Therapy Center, Goyang (Korea, Republic of); Dongnam Inst. of Radiology and Medical Sciences, Research center, Busan (Korea, Republic of); Lim, Myong Cheol; Seo, Sang-Soo; Park, Sang-Yoon [National Cancer Center, Center for Uterine Cancer, Goyang (Korea, Republic of)

    2016-12-15

    The purpose of this work was to identify prognostic factors for survival after magnetic resonance image (MRI)-guided brachytherapy combined with external beam radiotherapy for cervical cancer. External beam radiotherapy of 45-50.4 Gy was delivered by either three-dimensional conformal radiotherapy or helical tomotherapy. Patients also received high-dose-rate MRI-guided brachytherapy of 5 Gy in 6 fractions. We analyzed 128 patients with International Federation of Gynecology and Obstetrics stage IB-IVB cervical cancer who underwent MRI-guided brachytherapy. Most patients (96 %) received concurrent chemotherapy. Pelvic lymph node metastases and para-aortic lymphadenopathies were found in 62 % and 14 % of patients, respectively. The median follow-up time was 44 months. Complete remission was achieved in 119 of 128 patients (93 %). The 5-year local recurrence-free, cancer-specific, and overall survival rates were 94, 89, and 85 %, respectively. Negative pelvic lymphadenopathy, gross tumor volume (GTV) dose covering 90 % of the target (GTV D90) of >110 Gy, and treatment duration ≤56 days were associated with better overall survival in univariate analyses. Multivariable analysis showed that GTV D90 of >110 Gy and treatment duration ≤56 days were possibly associated with overall survival with near-significant P-values of 0.062 and 0.073, respectively. The outcome of MRI-guided brachytherapy combined with external beam radiotherapy in patients with cervical cancer was excellent. GTV D90 of >110 Gy and treatment duration ≤56 days were potentially associated with overall survival. (orig.) [German] Ziel der Arbeit war es, prognostische Faktoren nach magnetresonanztomographisch (MRT-)gesteuerter Brachytherapie in Verbindung mit externer Strahlentherapie fuer Gebaermutterhalskrebs zu identifizieren. Externe Strahlentherapie von 45-50,4 Gy erfolgte entweder mittels dreidimensionaler konformaler Strahlentherapie oder helikaler Tomotherapie. Die Patientinnen erhielten auch

  10. High Dose-Rate Versus Low Dose-Rate Brachytherapy for Lip Cancer

    International Nuclear Information System (INIS)

    Ghadjar, Pirus; Bojaxhiu, Beat; Simcock, Mathew; Terribilini, Dario; Isaak, Bernhard; Gut, Philipp; Wolfensberger, Patrick; Brömme, Jens O.; Geretschläger, Andreas; Behrensmeier, Frank; Pica, Alessia; Aebersold, Daniel M.

    2012-01-01

    Purpose: To analyze the outcome after low-dose-rate (LDR) or high-dose-rate (HDR) brachytherapy for lip cancer. Methods and Materials: One hundred and three patients with newly diagnosed squamous cell carcinoma of the lip were treated between March 1985 and June 2009 either by HDR (n = 33) or LDR brachytherapy (n = 70). Sixty-eight patients received brachytherapy alone, and 35 received tumor excision followed by brachytherapy because of positive resection margins. Acute and late toxicity was assessed according to the Common Terminology Criteria for Adverse Events 3.0. Results: Median follow-up was 3.1 years (range, 0.3–23 years). Clinical and pathological variables did not differ significantly between groups. At 5 years, local recurrence-free survival, regional recurrence-free survival, and overall survival rates were 93%, 90%, and 77%. There was no significant difference for these endpoints when HDR was compared with LDR brachytherapy. Forty-two of 103 patients (41%) experienced acute Grade 2 and 57 of 103 patients (55%) experienced acute Grade 3 toxicity. Late Grade 1 toxicity was experienced by 34 of 103 patients (33%), and 5 of 103 patients (5%) experienced late Grade 2 toxicity; no Grade 3 late toxicity was observed. Acute and late toxicity rates were not significantly different between HDR and LDR brachytherapy. Conclusions: As treatment for lip cancer, HDR and LDR brachytherapy have comparable locoregional control and acute and late toxicity rates. HDR brachytherapy for lip cancer seems to be an effective treatment with acceptable toxicity.

  11. Calculated and measured brachytherapy dosimetry parameters in water for the Xoft Axxent X-Ray Source: An electronic brachytherapy source

    International Nuclear Information System (INIS)

    Rivard, Mark J.; Davis, Stephen D.; DeWerd, Larry A.; Rusch, Thomas W.; Axelrod, Steve

    2006-01-01

    A new x-ray source, the model S700 Axxent trade mark sign X-Ray Source (Source), has been developed by Xoft Inc. for electronic brachytherapy. Unlike brachytherapy sources containing radionuclides, this Source may be turned on and off at will and may be operated at variable currents and voltages to change the dose rate and penetration properties. The in-water dosimetry parameters for this electronic brachytherapy source have been determined from measurements and calculations at 40, 45, and 50 kV settings. Monte Carlo simulations of radiation transport utilized the MCNP5 code and the EPDL97-based mcplib04 cross-section library. Inter-tube consistency was assessed for 20 different Sources, measured with a PTW 34013 ionization chamber. As the Source is intended to be used for a maximum of ten treatment fractions, tube stability was also assessed. Photon spectra were measured using a high-purity germanium (HPGe) detector, and calculated using MCNP. Parameters used in the two-dimensional (2D) brachytherapy dosimetry formalism were determined. While the Source was characterized as a point due to the small anode size, P (5) were 0.20, 0.24, and 0.29 for the 40, 45, and 50 kV voltage settings, respectively. For 1 125 I and 103 Pd, yet with capability for variable and much higher dose rates and subsequently adjustable penetration capabilities. This paper presents the calculated and measured in-water brachytherapy dosimetry parameters for the model S700 Source at the aforementioned three operating voltages

  12. SU-G-TeP1-01: A Simulation Study to Investigate Maximum Allowable Deformations of Implant Geometry Before Plan Objectives Are Violated in Prostate HDR Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Babier, A [Department of Physics, Engineering Physics and Astronomy, Queens University, Kingston, Ontario (Canada); Joshi, C [Department of Physics, Engineering Physics and Astronomy, Queens University, Kingston, Ontario (Canada); Cancer Center of Southeastern Ontario, Kingston General Hospital, Kingston, Ontario (Canada)

    2016-06-15

    Purpose: In prostate HDR brachytherapy dose distributions are highly sensitive to changes in prostate volume and catheter displacements. We investigate the maximum deformations in implant geometry before planning objectives are violated. Methods: A typical prostate Ir-192 HDR brachytherapy reference plan was calculated on the Oncentra planning system, which used CT images from a tissue equivalent prostate phantom (CIRS Model 053S) embedded inside a pelvis wax phantom. The prostate was deformed and catheters were displaced in simulations using a code written in MATLAB. For each deformation dose distributions were calculated, based on TG43 methods, using the MATLAB code. The calculations were validated through comparison with Oncentra calculations for the reference plan, and agreed within 0.12%SD and 0.3%SD for dose and volume, respectively. Isotropic prostate volume deformations of up to +34% to −27% relative to its original volume, and longitudinal catheter displacements of 7.5 mm in superior and inferior directions were simulated. Planning objectives were based on American Brachytherapy Society guidelines for prostate and urethra volumes. A plan violated the planning objectives when less than 90% of the prostate volume received the prescribed dose or higher (V{sub 100}), or the urethral volume receiving 125% of prescribed dose or higher was more than 1 cc (U{sub 125}). Lastly, the dose homogeneity index (DHI=1-V{sub 150}/V{sub 100}) was evaluated; a plan was considered sub-optimal when the DHI fell below 0.62. Results and Conclusion: Planning objectives were violated when the prostate expanded by 10.7±0.5% or contracted by 11.0±0.2%; objectives were also violated when catheters were displaced by 4.15±0.15 mm and 3.70±0.15 mm in the superior and inferior directions, respectively. The DHI changes did not affect the plan optimality, except in the case of prostate compression. In general, catheter displacements have a significantly larger impact on plan

  13. Robustness of IPSA optimized high-dose-rate prostate brachytherapy treatment plans to catheter displacements.

    Science.gov (United States)

    Poder, Joel; Whitaker, May

    2016-06-01

    Inverse planning simulated annealing (IPSA) optimized brachytherapy treatment plans are characterized with large isolated dwell times at the first or last dwell position of each catheter. The potential of catheter shifts relative to the target and organs at risk in these plans may lead to a more significant change in delivered dose to the volumes of interest relative to plans with more uniform dwell times. This study aims to determine if the Nucletron Oncentra dwell time deviation constraint (DTDC) parameter can be optimized to improve the robustness of high-dose-rate (HDR) prostate brachytherapy plans to catheter displacements. A set of 10 clinically acceptable prostate plans were re-optimized with a DTDC parameter of 0 and 0.4. For each plan, catheter displacements of 3, 7, and 14 mm were retrospectively applied and the change in dose volume histogram (DVH) indices and conformity indices analyzed. The robustness of clinically acceptable prostate plans to catheter displacements in the caudal direction was found to be dependent on the DTDC parameter. A DTDC value of 0 improves the robustness of planning target volume (PTV) coverage to catheter displacements, whereas a DTDC value of 0.4 improves the robustness of the plans to changes in hotspots. The results indicate that if used in conjunction with a pre-treatment catheter displacement correction protocol and a tolerance of 3 mm, a DTDC value of 0.4 may produce clinically superior plans. However, the effect of the DTDC parameter in plan robustness was not observed to be as strong as initially suspected.

  14. Relevance of brachytherapy in the era of IMRT/IGRT in head and neck cancers

    International Nuclear Information System (INIS)

    Ghoshal, Sushmita

    2016-01-01

    Cancers arising in the head and neck area are predominantly squamous cell carcinoma that are only moderately sensitive to radiation. They also have a propensity for local and lymphatic spread that require adequate safety margins while planning radiation. As a result, the volume of normal tissue irradiated increases with a risk of increased radiation induced toxicity. Various attempts have been made to improve the therapeutic ratio but one of the best ways of achieving this is by brachytherapy

  15. Diabetes Mellitus Associates with Increased Right Ventricular Afterload and Remodeling in Pulmonary Arterial Hypertension.

    Science.gov (United States)

    Whitaker, Morgan E; Nair, Vineet; Sinari, Shripad; Dherange, Parinita A; Natarajan, Balaji; Trutter, Lindsey; Brittain, Evan L; Hemnes, Anna R; Austin, Eric D; Patel, Kumar; Black, Stephen M; Garcia, Joe G N; Yuan Md PhD, Jason X; Vanderpool, Rebecca R; Rischard, Franz; Makino, Ayako; Bedrick, Edward J; Desai, Ankit A

    2018-06-01

    Diabetes mellitus is associated with left ventricular hypertrophy and dysfunction. Parallel studies have also reported associations between diabetes mellitus and right ventricular dysfunction and reduced survival in patients with pulmonary arterial hypertension. However, the impact of diabetes mellitus on the pulmonary vasculature has not been well characterized. We hypothesized that diabetes mellitus and hyperglycemia could specifically influence right ventricular afterload and remodeling in patients with Group I pulmonary arterial hypertension, providing a link to their known susceptibility to right ventricular dysfunction. Using an adjusted model for age, sex, pulmonary vascular resistance, and medication use, associations of fasting blood glucose, glycated hemoglobin, and the presence of diabetes mellitus were evaluated with markers of disease severity in 162 patients with pulmonary arterial hypertension. A surrogate measure of increased pulmonary artery stiffness, elevated pulmonary arterial elastance (P = .012), along with reduced log(pulmonary artery capacitance) (P = .006) were significantly associated with the presence of diabetes mellitus in patients with pulmonary arterial hypertension in a fully adjusted model. Similar associations between pulmonary arterial elastance and capacitance were noted with both fasting blood glucose and glycated hemoglobin. Furthermore, right ventricular wall thickness on echocardiography was greater in pulmonary arterial hypertension patients with diabetes, supporting the link between right ventricular remodeling and diabetes. Cumulatively, these data demonstrate that an increase in right ventricular afterload, beyond pulmonary vascular resistance alone, may influence right ventricular remodeling and provide a mechanistic link between the susceptibility to right ventricular dysfunction in patients with both diabetes mellitus and pulmonary arterial hypertension. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Urethral toxicity after LDR brachytherapy: experience in Japan.

    Science.gov (United States)

    Tanaka, Nobumichi; Asakawa, Isao; Hasegawa, Masatoshi; Fujimoto, Kiyohide

    2015-01-01

    Urinary toxicity is common after low-dose-rate (LDR) brachytherapy, and the resolution of urinary toxicity is a concern. In particular, urinary frequency is the most common adverse event among the urinary toxicities. We have previously reported that approximately 70% of patients experience urinary frequency during the first 6 months after seed implantation. Most urinary adverse events were classified as Grade 1, and Grade 2 or higher adverse events were rare. The incidence of urinary retention was approximately 2-4%. A high International Prostate Symptom Score before seed implantation was an independent predictor of acute urinary toxicity of Grade 2 or higher. Several previous reports from the United States also supported this trend. In Japan, LDR brachytherapy was legally approved in 2003. A nationwide prospective cohort study entitled Japanese Prostate Cancer Outcome Study of Permanent Iodine-125 Seed Implantation was initiated in July 2005. It is an important issue to limit urinary toxicities in patients who undergo LDR brachytherapy. Copyright © 2015 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  17. SU-E-T-366: Clinical Implementation of MR-Guided Vaginal Cylinder Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Owrangi, A; Jolly, S; Balter, J; Cao, Y; Young, L; Zhu, T; Prisciandaro, J [University of Michigan, Ann Arbor, MI (United States)

    2014-06-01

    Purpose: To evaluate the accuracy of MR-based vaginal brachytherapy source localization using an in-house MR-visible marker versus the alignment of an applicator model to MR images. Methods: Three consecutive patients undergoing vaginal HDR brachytherapy with a plastic cylinder were scanned with both CT and MRI (including T1- and T2- weighted images). An MR-visible source localization marker, consisting of a sealed thin catheter filled with either water (for T2 contrast) or Gd-doped water (for T1 contrast), was assembled shortly before scanning. Clinically, the applicator channel was digitized on CT with an x-ray marker. To evaluate the efficacy of MR-based applicator reconstruction, each MR image volume was aligned locally to the CT images based on the region containing the cylinder. Applicator digitization was performed on the MR images using (1) the MR visible marker and (2) alignment of an applicator surface model from Varian's Brachytherapy Planning software to the MRI images. Resulting source positions were compared with the original CT digitization. Results: Although the source path was visualized by the MR marker, the applicator tip proved difficult to identify due to challenges in achieving a watertight seal. This resulted in observed displacements of the catheter tip, at times >1cm. Deviations between the central source positions identified via aligning the applicator surface model to MR and using the xray marker on CT ranged from 0.07 – 0.19 cm and 0.07 – 0.20 cm on T1- weighted and T2-weighted images, respectively. Conclusion: Based on the current study, aligning the applicator model to MRI provides a practical, current approach to perform MR-based brachytherapy planning. Further study is needed to produce catheters with reliably and reproducibly identifiable tips. Attempts are being made to improve catheter seals, as well as to increase the viscosity of the contrast material to decrease fluid mobility inside the catheter.

  18. SU-E-T-366: Clinical Implementation of MR-Guided Vaginal Cylinder Brachytherapy

    International Nuclear Information System (INIS)

    Owrangi, A; Jolly, S; Balter, J; Cao, Y; Young, L; Zhu, T; Prisciandaro, J

    2014-01-01

    Purpose: To evaluate the accuracy of MR-based vaginal brachytherapy source localization using an in-house MR-visible marker versus the alignment of an applicator model to MR images. Methods: Three consecutive patients undergoing vaginal HDR brachytherapy with a plastic cylinder were scanned with both CT and MRI (including T1- and T2- weighted images). An MR-visible source localization marker, consisting of a sealed thin catheter filled with either water (for T2 contrast) or Gd-doped water (for T1 contrast), was assembled shortly before scanning. Clinically, the applicator channel was digitized on CT with an x-ray marker. To evaluate the efficacy of MR-based applicator reconstruction, each MR image volume was aligned locally to the CT images based on the region containing the cylinder. Applicator digitization was performed on the MR images using (1) the MR visible marker and (2) alignment of an applicator surface model from Varian's Brachytherapy Planning software to the MRI images. Resulting source positions were compared with the original CT digitization. Results: Although the source path was visualized by the MR marker, the applicator tip proved difficult to identify due to challenges in achieving a watertight seal. This resulted in observed displacements of the catheter tip, at times >1cm. Deviations between the central source positions identified via aligning the applicator surface model to MR and using the xray marker on CT ranged from 0.07 – 0.19 cm and 0.07 – 0.20 cm on T1- weighted and T2-weighted images, respectively. Conclusion: Based on the current study, aligning the applicator model to MRI provides a practical, current approach to perform MR-based brachytherapy planning. Further study is needed to produce catheters with reliably and reproducibly identifiable tips. Attempts are being made to improve catheter seals, as well as to increase the viscosity of the contrast material to decrease fluid mobility inside the catheter

  19. CyberKnife Boost for Patients with Cervical Cancer Unable to Undergo Brachytherapy

    International Nuclear Information System (INIS)

    Haas, Jonathan Andrew; Witten, Matthew R.; Clancey, Owen; Episcopia, Karen; Accordino, Diane; Chalas, Eva

    2012-01-01

    Standard radiation therapy for patients undergoing primary chemosensitized radiation for carcinomas of the cervix usually consists of external beam radiation followed by an intracavitary brachytherapy boost. On occasion, the brachytherapy boost cannot be performed due to unfavorable anatomy or because of coexisting medical conditions. We examined the safety and efficacy of using CyberKnife stereotactic body radiotherapy (SBRT) as a boost to the cervix after external beam radiation in those patients unable to have brachytherapy to give a more effective dose to the cervix than with conventional external beam radiation alone. Six consecutive patients with anatomic or medical conditions precluding a tandem and ovoid boost were treated with combined external beam radiation and CyberKnife boost to the cervix. Five patients received 45 Gy to the pelvis with serial intensity-modulated radiation therapy boost to the uterus and cervix to a dose of 61.2 Gy. These five patients received an SBRT boost to the cervix to a dose of 20 Gy in five fractions of 4 Gy each. One patient was treated to the pelvis to a dose of 45 Gy with an external beam boost to the uterus and cervix to a dose of 50.4 Gy. This patient received an SBRT boost to the cervix to a dose of 19.5 Gy in three fractions of 6.5 Gy. Five percent volumes of the bladder and rectum were kept to ≤75 Gy in all patients (i.e., V75 Gy ≤ 5%). All of the patients remain locally controlled with no evidence of disease following treatment. Grade 1 diarrhea occurred in 4/6 patients during the conventional external beam radiation. There has been no grade 3 or 4 rectal or bladder toxicity. There were no toxicities observed following SBRT boost. At a median follow-up of 14 months, CyberKnife radiosurgical boost is well tolerated and efficacious in providing a boost to patients with cervix cancer who are unable to undergo brachytherapy boost. Further follow-up is required to see if these results remain durable.

  20. Study on interstitial brachytherapy using 103Pd seeds on tumor-bearing rats

    International Nuclear Information System (INIS)

    Feng Huiru; Zhang Jingming; Tian Jiahe; Ding Weimin; Bai Hongsheng; Jin Xiaohai

    2003-01-01

    The effects of low-dose-rate brachytherapy are investigated in tumor-bearing rat. Walker 256 cells are transplanted subcutaneously with a trocar in the left leg of rats (Wistar). Two weeks later, rats with a tumor of 10 mm in mean diameter are divided into three groups (10 per group). Two groups are given 1 seed and 2 seeds implantation of 103 Pd, respectively, the third group is as an untreated control. Tumor size is measured twice a week until the 25th day when the rats are killed. Tumor is monitored either by palpation or further confirmed by histopathology. Kaplan-Meier statistic method is performed for survival analysis. The results show that the average weight of rats in untreated group is lower than in radiation groups (P 0.05). Tumor volumes in all treatment groups increase more obviously than in control till 16 days post-implantation. Tumor regression rate in 1 seed group is higher than in control group and in 2 seeds group. Although survival analysis show that the median survival time in 1 seed, 2 seeds and control groups are 24±0, 21±2 and 19±2 days with survival rate of 80%, 60% and 50% respectively, no significant differences are seen in all groups. So, brachytherapy with 103 Pd seed is effective on tumor-bearing rats. The implantation of seed can cause tumor edema in a self-limited way. A reasonable doses chosen for brachytherapy may play a role in treatment success

  1. Impact of using linear optimization models in dose planning for HDR brachytherapy

    International Nuclear Information System (INIS)

    Holm, Aasa; Larsson, Torbjoern; Carlsson Tedgren, Aasa

    2012-01-01

    Purpose: Dose plans generated with optimization models hitherto used in high-dose-rate (HDR) brachytherapy have shown a tendency to yield longer dwell times than manually optimized plans. Concern has been raised for the corresponding undesired hot spots, and various methods to mitigate these have been developed. The hypotheses upon this work is based are (a) that one cause for the long dwell times is the use of objective functions comprising simple linear penalties and (b) that alternative penalties, as these are piecewise linear, would lead to reduced length of individual dwell times. Methods: The characteristics of the linear penalties and the piecewise linear penalties are analyzed mathematically. Experimental comparisons between the two types of penalties are carried out retrospectively for a set of prostate cancer patients. Results: When the two types of penalties are compared, significant changes can be seen in the dwell times, while most dose-volume parameters do not differ significantly. On average, total dwell times were reduced by 4.2%, with a reduction of maximum dwell times by 25%, when the alternative penalties were used. Conclusions: The use of linear penalties in optimization models for HDR brachytherapy is one cause for the undesired long dwell times that arise in mathematically optimized plans. By introducing alternative penalties, a significant reduction in dwell times can be achieved for HDR brachytherapy dose plans. Although various measures for mitigating the long dwell times are already available, the observation that linear penalties contribute to their appearance is of fundamental interest.

  2. Indication of brachytherapy of prostate with permanent implants

    International Nuclear Information System (INIS)

    Chauveinc, L.; Solignac, S.; Rosenwald, J.C.; Firmin, F.; Cosset, J.M.; Flam, T.; Thiounn, N.

    2002-01-01

    In the last decade, brachytherapy emerged as a particularly appealing new way of treating localized prostate cancer. Recently published 10-12 years biochemical control results appear to be superimposable to the best percentages achieved by surgery or conformal radiotherapy, with a small percentage of complications. This applied to severely patients. Only patients with T1/T2, PSA 60 g, hip mobility limitations, a urinary obstructive syndrome and previous trans-urethral resection lead to difficulties in technical implantation and therefore must be taken into account when discussing brachytherapy. In conclusion, for adequately selected patients, brachytherapy offers a particularly applied alternative to surgery and external radiotherapy, with satisfactory long term biochemical control rates and limited complications. (author)

  3. SU-E-T-447: Electronic Brachytherapy (EBT) Treatment of Cervical Cancer - First Clinical Experience

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D; Johnson, M; Thompson, J; Ahmad, S [University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (United States); Chan, L; Hausen, H [Xoft Inc., San Jose, CA (United States)

    2014-06-01

    Purpose: To study the first trial patient in which an electronic brachytherapy (EBT) x-ray source is utilized for treatment of cervical cancer. Methods: During patient treatment, a miniaturized x-ray source was used in combination with a customized titanium tandem and ovoid applicator set. The semi-specialized source was modeled with formalisms outlined by AAMP Task Group 43. Multiple models were used to compensate for variable attenuation conditions as a function of source positions. Varian Brachyvision treatment planning software was utilized on CT data sets for dose calculations prior to treatment delivery. The dose was prescribed to “point A” as defined by American Brachytherapy society. Additional treatments plans were created from those clinically utilized in patient care and were recalculated for an existing Ir-192 source model. Dose volume histograms (DVH) and point dose calculations were compared between the modalities for the clinical condition present in patients treated with EBT. Results: Clinical treatment times, though longer than those typically experienced by Ir-192 users, were manageable. Instantaneous dose rates at personal positions within the treatment vault were lower than those measured during intra operative radiation therapy and breast EBT treatments. Due to lower average photon energy in EBT, dose gradients within the treatment plans were as expected steeper than those observed in Ir-192 based brachytherapy. DVH comparisons between Ir-192 and EBT treatments showed an expected decrease in the integral dose to normal tissues of interest for EBT. In comparing plans created for EBT delivery with those calculated for Ir-192, average dose values for EBT were more than 4%, 11%, and 9% lower at predefined bladder, rectum and “point B” positions, respectively. Conclusion: For the first time, we have demonstrated that the utilizing electronic brachytherapy system for tandem and ovoid based treatment of cancer of the cervix is feasible, and

  4. Low dose rate Ir-192 interstitial brachytherapy for prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Oki, Yosuke; Dokiya, Takushi; Yorozu, Atsunori; Suzuki, Takayuki; Saito, Shiro; Monma, Tetsuo; Ohki, Takahiro [National Tokyo Medical Center (Japan); Murai, Masaru; Kubo, Atsushi

    2000-04-01

    From December 1997 through January 1999, fifteen prostatic cancer patients were treated with low dose rate Ir-192 interstitial brachytherapy using TRUS and perineal template guidance without external radiotherapy. Up to now, as no apparent side effects were found, the safety of this treatment is suggested. In the future, in order to treat prostatic cancer patients with interstitial brachytherapy using I-125 or Pd-103, more investigation for this low dose rate Ir-192 interstitial brachytherapy is needed. (author)

  5. First experiences with super fractionated skin irradiations using large afterloading molds

    International Nuclear Information System (INIS)

    Fritz, Peter; Hensley, Frank W.; Berns, Christiane; Schraube, Peter; Wannenmacher, Michael

    1996-01-01

    Purpose: Radiotherapy of cutaneous metastases of breast cancer requires large radiation fields and high doses. This report examines the effectiveness and sequelae of super fractionated irradiation of cutaneous metastases of breast cancer with afterloading molds on preirradiated and nonirradiated skin. Methods and Materials: A flexible reusable skin mold was developed for use with a pulsed (PDR) after loader. An array of 18 parallel catheters was sewn between two foam rubber slabs 5 mm in thickness to provide a defined constant distance to the skin. By selection of appropriate dwell positions, arbitrarily shaped skin areas can be irradiated up to a maximal field size of 17 x 23.5 cm 2 . Irradiations are performed with a nominal 37 GBq 192 Ir stepping source in pulses of 1 Gy/h at the skin surface. The dose distribution is geometrically optimized. The 80 and 50% dose levels lie 5 and 27 mm below the skin surface. Sixteen patients suffering from metastases at the thoracic wall were treated with 18 fields (78-798 cm 2 ) and total doses of 40-50 Gy applying two PDR split courses with a pause of 4-6 weeks. Eleven of the fields had been previously irradiated with external beam therapy to doses of 50-60 Gy at 7-22 months in advance. Results: For preirradiated fields (n = 10) the results were as follows: follow-up 4.5-28.5 months (median 17); local control (LC): 8 of 10; acute skin reactions: Grade 2 (moist desquamation) 2 of 10; intermediate/late skin reactions after minimum follow-up of 3 months: Grade 1 (atrophy/pigmentation): 2 of 10, Grade 2-3a (minimal/marked telangiectasia): 7 of 10, Grade 4 (ulcer): 1 of 10; recurrencies: 2 of 10. For newly irradiated fields (n = 7) results were: follow-up: 2-20 months (median 5); LC: 6 of 7; acute reactions: Grade 1:4 of 7, Grade 2:3 of 7; intermediate/late skin reactions after minimum follow-up of 3 months (n = 5): Grade 2-3a: 2 of 5; recurrencies: 0 of 7. Local control could be achieved in 82% of the mold fields. Geometric

  6. SU-F-T-633: Cyberknife Boost Versus Conventional Tandem and Ovoid Treatment for Cervical Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Santoro, J; Witten, M; Haas, J [Winthrop University Hospital, Lynbrook, NY (United States)

    2016-06-15

    Purpose: Brachytherapy has been the standard of care for cervical cancer for 100 years. The treatment can be administered using an HDR (high dose rate) remote afterloader with a {sup 192}Ir source in an outpatient setting, a PDR afterloader with a {sup 192}Ir source, or with LDR manually loaded or a remote afterloader utilizing {sup 192}Ir or {sup 137}Cs sources in an inpatient setting. The procedure involves the placement of a tandem and ovoid, tandem and ring, or tandem and cylinder applicator in an operating room setting with the patient under general anesthesia. Inaccuracies introduced into the process occurring between placement of the applicator and actual delivery can introduce uncertainty into the actual dose delivered to the tumor and critical organs. In this study we seek to investigate the dosimetric difference between an SBRT-based radiotherapy boost and conventional Brachytherapy in treating cervical cancer. Methods: Five HDR tandem and ovoid patients were planned using the Brachyvision treatment planning system and treated in four fractions using the Varian Varisource afterloader (Varian Medical Systems). For the same cohort, the patient planning CTs were imported into Multiplan (Accuray Inc) and a dose/fractionation-equivalent CyberKnife SBRT plan was retrospectively generated. Dosimetric quantities such as target/CTV D90, V90, D2cc for rectum, bladder, and bowel were measured and compared between the two modalities. Results: The CTV D90 for the tandem and ovoid was 2540cGy (90.7%) and 3009cGy (107.5%) for the CyberKnife plan. The D2cc for the rectum, bladder, and bowel were 1576cGy, 1641cGy, and 996cGy for the tandem and ovoid and 1374cGy, 1564cGy, and 1547cGy for CyberKnife. Conclusion: The D2cc doses to critical structures are comparable in both modalities. The CTV coverage is far superior for the CyberKnife plan. The dose distribution for CyberKnife has the advantage of increased conformality and lower maximum CTV dose.

  7. Anatomy-based inverse optimization in high-dose-rate brachytherapy combined with hypofractionated external beam radiotherapy for localized prostate cancer: Comparison of incidence of acute genitourinary toxicity between anatomy-based inverse optimization and geometric optimization

    International Nuclear Information System (INIS)

    Akimoto, Tetsuo; Katoh, Hiroyuki; Kitamoto, Yoshizumi; Shirai, Katsuyuki; Shioya, Mariko; Nakano, Takashi

    2006-01-01

    Purpose: To evaluate the advantages of anatomy-based inverse optimization (IO) in planning high-dose-rate (HDR) brachytherapy. Methods and Materials: A total of 114 patients who received HDR brachytherapy (9 Gy in two fractions) combined with hypofractionated external beam radiotherapy (EBRT) were analyzed. The dose distributions of HDR brachytherapy were optimized using geometric optimization (GO) in 70 patients and by anatomy-based IO in the remaining 44 patients. The correlation between the dose-volume histogram parameters, including the urethral dose and the incidence of acute genitourinary (GU) toxicity, was evaluated. Results: The averaged values of the percentage of volume receiving 80-150% of the prescribed minimal peripheral dose (V 8 -V 15 ) of the urethra generated by anatomy-based IO were significantly lower than the corresponding values generated by GO. Similarly, the averaged values of the minimal dose received by 5-50% of the target volume (D 5 -D 5 ) obtained using anatomy-based IO were significantly lower than those obtained using GO. Regarding acute toxicity, Grade 2 or worse acute GU toxicity developed in 23% of all patients, but was significantly lower in patients for whom anatomy-based IO (16%) was used than in those for whom GO was used (37%), consistent with the reduced urethral dose (p <0.01). Conclusion: The results of this study suggest that anatomy-based IO is superior to GO for dose optimization in HDR brachytherapy for prostate cancer

  8. Quantifying IOHDR brachytherapy underdosage resulting from an incomplete scatter environment

    International Nuclear Information System (INIS)

    Raina, Sanjay; Avadhani, Jaiteerth S.; Oh, Moonseong; Malhotra, Harish K.; Jaggernauth, Wainwright; Kuettel, Michael R.; Podgorsak, Matthew B.

    2005-01-01

    Purpose: Most brachytherapy planning systems are based on a dose calculation algorithm that assumes an infinite scatter environment surrounding the target volume and applicator. Dosimetric errors from this assumption are negligible. However, in intraoperative high-dose-rate brachytherapy (IOHDR) where treatment catheters are typically laid either directly on a tumor bed or within applicators that may have little or no scatter material above them, the lack of scatter from one side of the applicator can result in underdosage during treatment. This study was carried out to investigate the magnitude of this underdosage. Methods: IOHDR treatment geometries were simulated using a solid water phantom beneath an applicator with varying amounts of bolus material on the top and sides of the applicator to account for missing tissue. Treatment plans were developed for 3 different treatment surface areas (4 x 4, 7 x 7, 12 x 12 cm 2 ), each with prescription points located at 3 distances (0.5 cm, 1.0 cm, and 1.5 cm) from the source dwell positions. Ionization measurements were made with a liquid-filled ionization chamber linear array with a dedicated electrometer and data acquisition system. Results: Measurements showed that the magnitude of the underdosage varies from about 8% to 13% of the prescription dose as the prescription depth is increased from 0.5 cm to 1.5 cm. This treatment error was found to be independent of the irradiated area and strongly dependent on the prescription distance. Furthermore, for a given prescription depth, measurements in planes parallel to an applicator at distances up to 4.0 cm from the applicator plane showed that the dose delivery error is equal in magnitude throughout the target volume. Conclusion: This study demonstrates the magnitude of underdosage in IOHDR treatments delivered in a geometry that may not result in a full scatter environment around the applicator. This implies that the target volume and, specifically, the prescription depth

  9. Severe rectal complications after prostate brachytherapy

    International Nuclear Information System (INIS)

    Wallner, Kent; Sutlief, Stephen; Bergsagel, Carl; Merrick, Gregory S.

    2015-01-01

    Purpose: Some investigators have reported severe rectal complications after brachytherapy. Due to the low number of such events, their relationship to dosimetric parameters has not been well characterized. Methods and materials: A total of 3126 patients were treated with low dose rate brachytherapy from 1998 through 2010. 2464 had implant alone, and 313 had implant preceded by 44–46 Gy supplemental external beam radiation (EBRT). Post-implant dosimetry was based on a CT scan obtained on the day of implant, generally within 30 min of the procedure. Every patient’s record was reviewed for occurrence of rectal complications. Results: Eight of 2464 patients (0.32%) treated with brachytherapy alone developed a radiation-related rectal fistula. Average prostatic and rectal dose parameters were moderately higher for fistula patients than for patients without a severe rectal complication. For instance, the average R100 was 1.2 ± 0.75 cc for fistula patients, versus 0.37 ± 0.88 cc for non-fistula patients. However, the fistula patients’ values were well within the range of values for patients without a rectal complication. Four patients had some attempt at repair or reconstruction, but long-term functional outcomes were not favorable. Conclusions: Rectal fistulas are a very uncommon potential complication of prostate brachytherapy, which can occur even in the setting of acceptable day 0 rectal doses. Their occurrence is not easily explained by standard dosimetric or clinical factors

  10. Optimal application of the Contura multilumen balloon breast brachytherapy catheter vacuum port to deliver accelerated partial breast irradiation.

    Science.gov (United States)

    Tokita, Kenneth M; Cuttino, Laurie W; Vicini, Frank A; Arthur, Douglas W; Todor, Dorin A; Julian, Thomas B; Lyden, Maureen R

    2011-01-01

    The impact of using the Contura multilumen balloon (MLB) (SenoRx, Inc., Irvine, CA) breast brachytherapy catheter's vacuum port in patients treated with accelerated partial breast irradiation (APBI) was analyzed. Data from 32 patients at two sites were reviewed. Variables analyzed included the seroma fluid (SF):air volume around the MLB before and after vacuum port use and on its ability to improve (1) the eligibility of patients for APBI and (2) dose coverage of the planning target volume for evaluation (PTV_EVAL) in eligible patients. The median SF/air volume before vacuum removal was 6.8 cc vs. 0.8 cc after vacuum removal (median reduction in SF/air volume was 90.5%). Before vacuum port use, the median SF/air volume expressed as percentage of the PTV_EVAL was 7.8% (range, 1.9-26.6) in all patients. After application of the vacuum, this was reduced to 1.2%. Before vacuum port use, 10 (31.3%) patients were not considered acceptable candidates for APBI because the SF/air volume:PTV_EVAL ratio (SF:PTV) was greater than 10% (range, 10.1-26.6%; median, 15.2%). After vacuum port use, the median SF:PTV ratio was 1.6% for a median reduction of 91.5%. In addition, the percentage of the prescribed dose covering greater than or equal to 90% of the PTV_EVAL proportionally increased a median of 8% (range, 3-10%) in eligible patients. Use of the Contura MLB vacuum port significantly improved the conformity of the target tissue to the balloon surface, leading to reproducible dose delivery and increased target volume coverage. In addition, application of the vacuum allowed the safe treatment of unacceptable patients with APBI. Copyright © 2011 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  11. A study on applying Ra needle interstitial brachytherapy for oral cancer

    International Nuclear Information System (INIS)

    Yoshida, Shunichi; Komiya, Yoshiaki; Uchida, Ikuhiro; Tashiro, Kazuyoshi

    1999-01-01

    To investigate applicability of Ra needle interstitial brachytherapy, 93 cases of oral squamous carcinoma were examined. The patients underwent Ra needle interstitial brachytherapy as thorough therapy in our hospital. The criteria of applying Ra needle interstitial brachytherapy was diameter of within 5 cm and depth within 2 cm of tumor size. Ra needle interstitial brachytherapy was applied to 82 cases of tongue, 10 cases of oral floor and one case of lower lip carcinomas. The local control rate was 92.5%, and secondary neck metastasis was 32.3% in all cases applied Ra needle interstitial brachytherapy. The results were not bad compared with surgical treatment. However, the 5-year cumulative survival rate was 64.9%, which was not good enough at the result to obtain a good local control rate and secondary neck metastasis rate. The result was relative to low treatment result of local recurrence cases with Ra needle interstitial brachytherapy. To improve the result, it is important to distinguish local recurrence from radioinduced ulcer, and to start early secondary treatment. The cases in which cervical lymph node metastasis was found as the first examination underwent neck dessection after Ra needle interstitial brachytherapy. The 5-year cumulative survival rate was 83.3% in N1 cases and 40.6% in N2 cases, and the result of N2 cases was poorer than N1 cases with a significant difference. The results indicate that a needle having a diameter of within 5 cm, depth of within 2 cm and less than N1 can be applied during Ra needle interstitial brachytherapy for complete cure of cancer. (author)

  12. A survey of current clinical practice in permanent and temporary prostate brachytherapy: 2010 update.

    Science.gov (United States)

    Buyyounouski, Mark K; Davis, Brian J; Prestidge, Bradley R; Shanahan, Thomas G; Stock, Richard G; Grimm, Peter D; Demanes, D Jeffrey; Zaider, Marco; Horwitz, Eric M

    2012-01-01

    To help establish patterns of care and standards of care of interstitial permanent low-dose-rate (LDR) and temporary high-dose-rate brachytherapy for prostate cancer and to compare the results with a similar 1998 American Brachytherapy Society (ABS) survey. A comprehensive questionnaire intended to survey specific details of current clinical brachytherapy practice was provided to the participants of the seventh ABS Prostate Brachytherapy School. Responses were tabulated and descriptive statistics are reported. Sixty-five brachytherapy practitioners responded to the survey. Eighty-nine percent (89%) of respondents performed LDR and 49% perform high-dose-rate brachytherapy. The median number of years of experience for LDR brachytherapists increased from 5 to 10 years over the course of the 12 years since the preceding survey. Compared with the first ABS, a smaller proportion of respondents received formal brachytherapy residency training (43% vs. 56%) or formal "hands-on" brachytherapy training (15% vs. 63%). There has been a marked decline in the utilization of the Mick applicator (Mick Radio-Nuclear Instruments, Inc., Mount Vernon, NY, USA) (60% vs. 28%) and an increase in the use of stranded seeds (40% vs. 11%). Compliance with postimplant dosimetry was higher in the 2010 survey. This survey does suggest an evolution in the practice of LDR brachytherapy since 1998 and aids in identifying aspects that require further progress or investigation. ABS guidelines and other practice recommendations appear to impact the practice of brachytherapy. Copyright © 2012 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  13. Efficacy of prophylactic single-dose therapy using fluoroquinolone for prostate brachytherapy

    International Nuclear Information System (INIS)

    Nomura, Takeo; Hirai, Kenichi; Yamasaki, Mutsushi; Inoue, Toru; Takahashi, Mika; Kawashima, Takayuki; Sato, Fuminori; Mimata, Hiromitsu

    2012-01-01

    There is little definitive evidence to guide the use of prophylactic antibiotics for prostate brachytherapy. The purpose of this study is to evaluate the incidence of postimplant infections in patients who receive antimicrobial prophylaxis with pazufloxacin (PZFX). A total of 84 patients who underwent prostate brachytherapy received a single intravenous dose of PZFX at 500 mg perioperatively for 1 day. No postimplant antibiotic medication was prescribed. Urinalysis, plasma white blood cell (WBC) count, and C reactive protein (CRP) levels were evaluated before the implantation, on the day after implantation, and on the 7th and 28th days after brachytherapy. None of the 84 patients (0.0%) developed a symptomatic urinary tract infection or had febrile infectious complications after brachytherapy. There were statistically significant elevations in the levels of erythrocytes, leukocytes, bacteria in urine, plasma WBC and CRP postoperatively, but these values did not exceed the normal range or were only slightly elevated on the day after brachytherapy (day 1) and on day 7. All laboratory examinations had returned to the normal range on day 28. Single-dose therapy with fluoroquinolone helps to prevent infections after prostate brachytherapy. (author)

  14. The development of a human eye model for ophthalmic iodine-125 brachytherapy dosimetry

    International Nuclear Information System (INIS)

    Mourao, A.P.; Campos, T.P.R.

    2008-01-01

    Full text: Radiotherapy is used to treat malign tumors. Radiotherapy is an alternative to enucleation in ocular tumors. However, the irradiation of ocular region can bring damages due high doses, mainly in the crystalline lens and in the bone tissue in growth phase. Brachytherapy instead of teletherapy looks for reducing doses in the crystalline lens and the adjacent tissues of the ocular globe (orbital region), minimizing side effects. Herein, some encapsulated radioisotopes in radioactive seeds applied to the ocular brachytherapy are available. Thus, a three-dimensional computational voxel model of the ocular region with its heterogeneous tissues, globe and adjacent tissues is developed. This computational model is used to simulate orbital irradiation with radioactive seeds positioned on the sclera surface through the MCNP5 code. The computational simulation allows evaluating how doses are spatially distributed in the orbital volume in treatments with the radioactive seeds of iodine-125. Therefore, the results allow comparing the spatial doses distribution obtained through the MCNP5 simulation for those two distinct types of radioactive seeds. Bench markets from literature validates the proposed simulations. (author)

  15. Dosimetry on ocular brachytherapy with ROPE plaque with iodine125 and palladium-103

    International Nuclear Information System (INIS)

    Mourao, Arnaldo P.; Campos, Tarcisio

    2009-01-01

    Radiotherapy is an alternative to ocular enucleation. However, the irradiation of ocular region can bring deleterious effects due to the high doses, mainly in the lens, retina and in the bone structures in growth phase. Brachytherapy instead of teletherapy looks for departing absorbed doses in tumor minimizing doses in the lens and the adjacent tissues of the eyeball (orbital region), avoiding deleterious effects. Thus, a three-dimensional computational model of ocular area was developed to simulate orbital irradiation with ROPES ophthalmologic plaque placed on the sclera surface filled to ten iodine-125 seeds, and palladium-103 seeds. Simulations are performed on the MCNP5 code. The computational simulation allows evaluating how the dose rates are spatially distributed in the orbital volume. The results are normalized to 100% at the maximum dose on the tumor base, and by the applied source activity. The maximum dose is found onto the eyeball, in the vitreous. The present model represents an advance in simulating and predicting absorbed dose on ocular brachytherapy. (author)

  16. Generation of uniformly distributed dose points for anatomy-based three-dimensional dose optimization methods in brachytherapy.

    Science.gov (United States)

    Lahanas, M; Baltas, D; Giannouli, S; Milickovic, N; Zamboglou, N

    2000-05-01

    We have studied the accuracy of statistical parameters of dose distributions in brachytherapy using actual clinical implants. These include the mean, minimum and maximum dose values and the variance of the dose distribution inside the PTV (planning target volume), and on the surface of the PTV. These properties have been studied as a function of the number of uniformly distributed sampling points. These parameters, or the variants of these parameters, are used directly or indirectly in optimization procedures or for a description of the dose distribution. The accurate determination of these parameters depends on the sampling point distribution from which they have been obtained. Some optimization methods ignore catheters and critical structures surrounded by the PTV or alternatively consider as surface dose points only those on the contour lines of the PTV. D(min) and D(max) are extreme dose values which are either on the PTV surface or within the PTV. They must be avoided for specification and optimization purposes in brachytherapy. Using D(mean) and the variance of D which we have shown to be stable parameters, achieves a more reliable description of the dose distribution on the PTV surface and within the PTV volume than does D(min) and D(max). Generation of dose points on the real surface of the PTV is obligatory and the consideration of catheter volumes results in a realistic description of anatomical dose distributions.

  17. Historical review of radiotherapy

    International Nuclear Information System (INIS)

    Onai, Yoshio

    1993-01-01

    The techniques of radiotherapy have been improved by development of particle accelerators, radionuclides and computers. This paper presents a historical review of the physical and technical aspects of radiotherapy in Japan. Changes in the kinds of radiation, such as X-rays, gamma rays, electrons, neutrons and protons used for external radiotherapy, and the equipment involved are described chronologically, and historical changes in the quality of radiotherapy apparatus are outlined. Patient data acquisition equipment, such as X-ray simulator and X-ray CT, beam modifying devices, patient setup devices, and devices to verify treatment fields and patient doses are reviewed historically. Radiation sources for brachytherapy and internal radiotherapy, and remotely controlled afterloading systems are reviewed chronologically. Historical changes in methods to evaluate absorbed doses, dose monitor systems and beam data acquisition systems are outlined. Changes in methods of calculating dose distributions for external X-ray and electron therapy, brachytherapy and internal radiotherapy by unsealded radionuclides are described and calculation techniques for treatment planning system are reviewed. Annual figures in the numbers of radiotherapy equipment, such as telecobalt and telecesium units, linear accelerators, betatrons, microtrons, stereotactic gamma units, conformation radiotherapy units, remotely controlled afterloading systems, and associated equipment such as X-ray simulators and treatment planning systems are provided, as are changes in the number of accelerators by maximum X-ray energy and maximum electron energy, and in the number of licensed hospitals and clinics using small sealed sources. Changes in techniques of external radiotherapy and brachytherapy are described briefly from the point of view of dose distributions. (author)

  18. Microdosimetric evaluation of relative biological effectiveness for 103PD, 125I, 241AM, and 192IR brachytherapy sources

    International Nuclear Information System (INIS)

    Wuu, C.S.; Kliauga, P.; Zaider, M.; Amols, H.I.

    1996-01-01

    Purpose: To determine the microdosimetric-derived relative biological effectiveness (RBE) of 103 Pd, 125 I, 241 Am, and 192 Ir brachytherapy sources at low doses and/or low dose rates. Methods and Materials: The Theory of Dual Radiation Action can be used to predict expected RBE values based on the spatial distribution of energy deposition at microscopic levels from these sources. Single-event lineal energy spectra for these isotopes have been obtained both experimentally and theoretically. A grid-defined wall-less proportional counter was used to measure the lineal energy distributions. Unlike conventional Rossi proportional counters, the counter used in these measurements has a conducting nylon fiber as the central collecting anode and has no metal parts. Thus, the Z-dependence of the photoelectric effect is eliminated as a source of measurement error. Single-event spectra for these brachytherapy sources have been also calculated by: (a) the Monte Carlo code MCNP to generate the electron slowing down spectrum, (b) transport of monoenergetic electron tracks, event by event, with our Monte Carlo code DELTA, (c) using the concept of associated volume to obtain the lineal energy distribution f(y) for each monoenergetic electron, and (d) obtaining the composite lineal energy spectrum for a given brachytherapy source based on the electron spectrum calculated at step (a). Results: Relative to 60 Co, the RBE values obtained from this study are: 2.3 for 103 Pd, 2.1 for 125 I, 2.1 for 241 Am, and 1.3 for 192 Ir. Conclusions: These values are consistent with available data from in vitro cell survival experiments. We suggest that, at least for these brachytherapy sources, microdosimetry may be used as a credible alternative to time-consuming (and often uncertain) radiobiological experiments to obtain information on radition quality and make reliable predictions of RBE in low dose rate brachytherapy

  19. SU-E-J-232: Feasibility of MRI-Based Preplan On Low Dose Rate Prostate Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Y; Tward, J; Rassiah-Szegedi, P; Zhao, H; Sarkar, V; Huang, L; Szegedi, M; Kokeny, K; Salter, B [University of Utah Huntsman Cancer Institute, Salt Lake City, UT (United States)

    2015-06-15

    Purpose: To investigate the feasibility of using MRI-based preplan for low dose rate prostate brachytherapy. Methods: 12 patients who received transrectal ultrasound (TRUS) guided prostate brachytherapy with Pd-103 were retrospectively studied. Our care-standard of the TRUS-based preplan served as the control. One or more prostate T2-weighted wide and/or narrow-field of view MRIs obtained within the 3 months prior to the implant were imported into the MIM Symphony software v6.3 (MIM Software Inc., Cleveland, OH) for each patient. In total, 37 MRI preplans (10 different image sequences with average thickness of 4.8mm) were generated. The contoured prostate volume and the seed counts required to achieve adequate dosimetric coverage from TRUS and MRI preplans were compared for each patient. The effects of different MRI sequences and image thicknesses were also investigated statistically using Student’s t-test. Lastly, the nomogram from the MRI preplan and TRUS preplan from our historical treatment data were compared. Results: The average prostate volume contoured on the TRUS and MRI were 26.6cc (range: 12.6∼41.3cc), and 27.4 cc (range: 14.3∼50.0cc), respectively. Axial MRI thicknesses (range: 3.5∼8.1mm) did not significantly affect the contoured volume or the number of seeds required on the preplan (R2 = 0.0002 and 0.0012, respectively). Four of the MRI sequences (AX-T2, AX-T2-Whole-Pelvis, AX-T2-FSE, and AXIALT2- Hi-Res) showed statistically significant better prostate volume agreement with TRUS than the other seven sequences (P <0.01). Nomogram overlay between the MRI and TRUS preplans showed good agreement; indicating volumes contoured on MRI preplan scan reliably predict how many seeds are needed for implant. Conclusion: Although MRI does not allow for determination of the actual implant geometry, it can give reliable volumes for seed ordering purposes. Our future work will investigate if MRI is sufficient to reliably replace TRUS preplanning in patients

  20. HDR intralumenal brachytherapy in bronchial cancer: review of our experience

    International Nuclear Information System (INIS)

    Muto, P.; Ravo, V.; Muschera, R.

    1996-01-01

    The main indications for brachytherapy in the treatment of endobronchial cancer are dyspnea. postobstructive pneumonia and atelectasis, cough and hemoptysis resulting from broncus obstruction by exophytic intralumenal tumor growth. High Dose Rate intralumenal brachytherapy (HDRBT) may be combined with external beam radiotherapy (EBRT), in particular as almost all tumors are too large for HDRBT alone. From January 1992 to September 1995 we treated 268 patients affected by bronchial cancer, with EBRT combined with HDRBT. All patients were staged as IIIa-IIIb-IV but KPS was >60 and expectancy of life > than 3 months. After bronchoscopy and Tc simulation we found that almost 10% of patients were downstaged. Treatment was always realized delivering 60 Gy to the tumour volume and 50 Gy to the mediastinal structures with EBRT. Brachytherapy was performed during the radiotherapy course. In 38 patients HDRBT was realized just one time, at the beginning of EBRT, with a dose of 10 Gy calculated at 1cm from the central axis of the catheter. In 47 HDRBT was performed twice (at the beginning and at the end of EBRT) with a dose of 7 Gy calculated at 1 cm from the central axis. From 1994 we started a 3 fractions protocol (Timing: days 1.15.30) with a dose of 5 Gy calculated at 0.5 cm from the axis. Of the 183 patients introduced in the protocol 170 received the three fractions of HDRBT and 13 were excluded from the study for personal or clinical reasons. In 97% of cases the application did not need general anesthesia; local anesthesia has been sufficient supplemented by some drug for sedation and coughing. Anyway both bronchoscopy and HDRBT (with anterior-posterior and lateral chest X-ray) are performed in the same shielded room without the necessity of displacing the patient. In almost 60% of treatments we used just one endobronchial applicator. In case of tumor involvement of the carina, two applicators were introduced. By this a larger tumor volume can be treated with adequate

  1. High-dose-rate interstitial brachytherapy for the treatment of penile carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Petera, J.; Odrazka, K.; Zouhar, M.; Bedrosova, J.; Dolezel, M. [Dept. of Oncology and Radiotherapy, Charles Univ. Medical School and Teaching Hospital, Hradec Kralove (Czech Republic)

    2004-02-01

    Background: interstitial low-dose-rate (LDR) brachytherapy allows conservative treatment of T1-T2 penile carcinoma. High-dose-rate (HDR) is often considered to be dangerous for interstitial implants because of a higher risk of complications, but numerous reports suggest that results may be comparable to LDR. Nevertheless, there are no data in the literature available regarding HDR interstitial brachytherapy for carcinoma of the penis. Case report: a 64-year-old man with T1 NO MO epidermoid carcinoma of the glans is reported. Interstitial HDR brachytherapy was performed using the stainless hollow needle technique and a breast template for fixation and good geometry. The dose delivered was 18 x 3 Gy twice daily. Results: after 232 days from brachytherapy, the patient was without any evidence of the tumor, experienced no serious radiation-induced complications, and had a fully functional organ. Conclusion: HDR interstitial brachytherapy is feasible in selected case of penis carcinoma, when careful planning and small single fractions are used. (orig.)

  2. ENT COBRA (Consortium for Brachytherapy Data Analysis: interdisciplinary standardized data collection system for head and neck patients treated with interventional radiotherapy (brachytherapy

    Directory of Open Access Journals (Sweden)

    Luca Tagliaferri

    2016-08-01

    Full Text Available Purpose : Aim of the COBRA (Consortium for Brachytherapy Data Analysis project is to create a multicenter group (consortium and a web-based system for standardized data collection. Material and methods: GEC-ESTRO (Groupe Européen de Curiethérapie – European Society for Radiotherapy & Oncology Head and Neck (H&N Working Group participated in the project and in the implementation of the consortium agreement, the ontology (data-set and the necessary COBRA software services as well as the peer reviewing of the general anatomic site-specific COBRA protocol. The ontology was defined by a multicenter task-group. Results : Eleven centers from 6 countries signed an agreement and the consortium approved the ontology. We identified 3 tiers for the data set: Registry (epidemiology analysis, Procedures (prediction models and DSS, and Research (radiomics. The COBRA-Storage System (C-SS is not time-consuming as, thanks to the use of “brokers”, data can be extracted directly from the single center’s storage systems through a connection with “structured query language database” (SQL-DB, Microsoft Access®, FileMaker Pro®, or Microsoft Excel®. The system is also structured to perform automatic archiving directly from the treatment planning system or afterloading machine. The architecture is based on the concept of “on-purpose data projection”. The C-SS architecture is privacy protecting because it will never make visible data that could identify an individual patient. This C-SS can also benefit from the so called “distributed learning” approaches, in which data never leave the collecting institution, while learning algorithms and proposed predictive models are commonly shared. Conclusions : Setting up a consortium is a feasible and practicable tool in the creation of an international and multi-system data sharing system. COBRA C-SS seems to be well accepted by all involved parties, primarily because it does not influence the center’s own

  3. Suitability of point kernel dose calculation techniques in brachytherapy treatment planning

    Directory of Open Access Journals (Sweden)

    Lakshminarayanan Thilagam

    2010-01-01

    Full Text Available Brachytherapy treatment planning system (TPS is necessary to estimate the dose to target volume and organ at risk (OAR. TPS is always recommended to account for the effect of tissue, applicator and shielding material heterogeneities exist in applicators. However, most brachytherapy TPS software packages estimate the absorbed dose at a point, taking care of only the contributions of individual sources and the source distribution, neglecting the dose perturbations arising from the applicator design and construction. There are some degrees of uncertainties in dose rate estimations under realistic clinical conditions. In this regard, an attempt is made to explore the suitability of point kernels for brachytherapy dose rate calculations and develop new interactive brachytherapy package, named as BrachyTPS, to suit the clinical conditions. BrachyTPS is an interactive point kernel code package developed to perform independent dose rate calculations by taking into account the effect of these heterogeneities, using two regions build up factors, proposed by Kalos. The primary aim of this study is to validate the developed point kernel code package integrated with treatment planning computational systems against the Monte Carlo (MC results. In the present work, three brachytherapy applicators commonly used in the treatment of uterine cervical carcinoma, namely (i Board of Radiation Isotope and Technology (BRIT low dose rate (LDR applicator and (ii Fletcher Green type LDR applicator (iii Fletcher Williamson high dose rate (HDR applicator, are studied to test the accuracy of the software. Dose rates computed using the developed code are compared with the relevant results of the MC simulations. Further, attempts are also made to study the dose rate distribution around the commercially available shielded vaginal applicator set (Nucletron. The percentage deviations of BrachyTPS computed dose rate values from the MC results are observed to be within plus/minus 5

  4. Brachytherapy in childhood rhabdomyosarcoma treatment; Braquiterapia no tratamento do rabdomiossarcoma da infancia

    Energy Technology Data Exchange (ETDEWEB)

    Novaes, Paulo Eduardo Ribeiro dos Santos

    1995-07-01

    A retrospective study of 21 children with rhabdomyosarcoma treated by brachytherapy to the primary site of the tumor at the Radiotherapy Department of the A.C.Camargo Hospital between january/1980 to june/1993 was undertaken. The main objectives were to comprove the utility of brachytherapy in childhood rhabdomyosarcoma, to evaluate the local control and survival, in association with chemotherapy, to analyze the late effects of the treatment and to determinate the preferential technique to each clinical situation. All patients received brachytherapy to the tumor site. The radioactive isotopes employed were Gold{sup 198}, Cesium{sup 137} and Iridium{sup 192}. The brachytherapy techniques depended on the tumor site, period of treatment, availability of the radioactive material and stage of the disease. Patients treated exclusively by brachytherapy received 40 Gy to 60 Gy. When brachytherapy was associated with external radiotherapy the dose ranged from 20 Gy to 40 Gy. Local control was achieved in 18 of 20 patients (90%). The global survival and local control survival rates were 61.9% (13/21 patients) and 72,2% (13/18 patients) respectively. (author)

  5. Dosimetric intercomparison of permanent Ho-166 seed's implants and HDR Ir-192 brachytherapy in breast cancer.

    Science.gov (United States)

    de Campos, Tarcisio Passos Ribeiro; Nogueira, Luciana Batista; Trindade, Bruno; Cuperschmid, Ethel Mizrahy

    2016-01-01

    To provide a comparative dosimetric analysis of permanent implants of Ho(166)-seeds and temporary HDR Ir(192)-brachytherapy through computational simulation. Brachytherapy with Ir(192)-HDR or LDR based on temporary wires or permanent radioactive seed implants can be used as dose reinforcement for breast radiation therapy. Permanent breast implants have not been a practical clinical routine; although, I(125) and Pd(103)-seeds have already been reported. Biodegradable Ho(166)-ceramic-seeds have been addressed recently. Simulations of implants of nine Ho(166)-seeds and equivalent with HDR Ir(192)-brachytherapy were elaborated in MCNP5, shaped in a computational multivoxel simulator which reproduced a female thorax phantom. Spatial dose rate distributions and dose-volume histograms were generated. Protocol's analysis involving exposure time, seed's activities and dose were performed. Permanent Ho(166)-seed implants presented a maximum dose rate per unit of contained activity (MDR) of 1.1601 μGy h(-1) Bq(-1); and, a normalized MDR in standard points (8 mm, equidistant to 03-seeds - SP1, 10 mm - SP2) of 1.0% (SP1) and 0.5% (SP2), respectively. Ir(192)-brachytherapy presented MDR of 4.3945 × 10(-3) μGy h(-1) Bq(-1); and, 30% (SP1), and 20% (SP2). Therefore, seed's implant activities of 333 MBq (Ho(166)) and 259 GBq (Ir(192)) produced prescribed doses of 58 Gy (SP1; 5d) and 56 Gy (SP1, 5 fractions, 6 min), respectively. Breast Ho(166)-implants of 37-111 MBq are attractive due to the high dose rate near 6-10 mm from seeds, equivalent to Ir(192)-brachytherapy of 259 GBq (3 fractions, 6 min) providing similar dose in standard points at a week; however, with spatial dose distribution better confined. The seed positioning can be adjusted for controlling the breast tumor, in stages I and II, in flat and deep tumors, without any breast volumetric limitation.

  6. Radiation protection in brachytherapy

    International Nuclear Information System (INIS)

    Benitez, Manuel

    1996-02-01

    It covers technical procedures in medical applications for cancer treatment. Radiation protection principles in brachytherapy. Medical uses in therapy for Sr-90, Cs-137, Co-60, Ra-226, Ir-192, Au-198, Bi-214, Pb-214. (The author)

  7. Prostate brachytherapy in Ghana: our initial experience

    Directory of Open Access Journals (Sweden)

    James Edward Mensah

    2016-10-01

    Full Text Available Purpose: This study presents the experience of a brachytherapy team in Ghana with a focus on technology transfer and outcome. The team was initially proctored by experienced physicians from Europe and South Africa. Material and methods : A total of 90 consecutive patients underwent either brachytherapy alone or brachytherapy in combination with external beam radiotherapy for prostate carcinoma between July 2008 and February 2014 at Korle Bu Teaching Hospital, Accra, Ghana. Patients were classified as low-risk, intermediate, and high-risk according to the National Comprehensive Cancer Network (NCCN criteria. All low-risk and some intermediate risk group patients were treated with seed implantation alone. Some intermediate and all high-risk group patients received brachytherapy combined with external beam radiotherapy. Results: The median patient age was 64.0 years (range 46-78 years. The median follow-up was 58 months (range 18-74 months. Twelve patients experienced biochemical failure including one patient who had evidence of metastatic disease and died of prostate cancer. Freedom from biochemical failure rates for low, intermediate, and high-risk cases were 95.4%, 90.9%, and 70.8%, respectively. Clinical parameters predictive of biochemical outcome included: clinical stage, Gleason score, and risk group. Pre-treatment prostate specific antigen (PSA was not a statistically significant predictor of biochemical failure. Sixty-nine patients (76.6% experienced grade 1 urinary symptoms in the form of frequency, urgency, and poor stream. These symptoms were mostly self-limiting. Four patients needed catheterization for urinary retention (grade 2. One patient developed a recto urethral fistula (grade 3 following banding for hemorrhoids. Conclusions : Our results compare favorably with those reported by other institutions with more extensive experience. We believe therefore that, interstitial permanent brachytherapy can be safely and effectively

  8. Gross tumor volume and clinical target volume: soft-tissue sarcoma of the extremities

    International Nuclear Information System (INIS)

    Lartigau, E.; Kantor, G.; Lagarde, P.; Taieb, S.; Ceugnart, L.; Vilain, M.O.; Penel, N.; Depadt, G.

    2001-01-01

    Soft tissue sarcomas of the extremities are currently treated with more conservative and functional approaches, combining surgery, radiotherapy and chemotherapy. The role of external beam radiotherapy and brachytherapy has been defined through randomized studies performed in the 80's and 90's. However, the ubiquity of tumour location for these tumours makes difficult a systematic definition of local treatments. Tumour volume definition is based on pre and post surgical imaging (MRI) and on described pathological report. The clinical target volume will take into account quality of the resection and anatomical barriers and will be based on an anatomy and not only on safety margins around the tumour bed. General rules for this irradiation (doses, volumes) and principal results will be presented. (authors)

  9. SU-F-J-163: In Vivo Quantification of Sequence Parameter Effect On Geometric Distortion Caused by Implanted Titanium Brachytherapy Applicator

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, T; Diak, A; Surucu, M; Yacoub, J; Harkenrider, M; Shea, S [Loyola University Chicago, Maywood, IL (United States)

    2016-06-15

    Purpose: The use of MR to plan and evaluate brachytherapy treatment for cervical cancer is increasing given the availability of MR conditional or safe applicators and MRI’s proven superiority to CT for characterizing soft tissue lesions. The titanium applicators, however, cause geometric distortions or imaging artifacts, which reduce the utility of MRI for dosimetry. We sought to quantify the observed volume of the same applicator on a previously optimized T2 sequence in comparison to the conventional T2 sequence and CT obtained for brachytherapy planning. Methods: Prior work with testing in phantoms showed that increases in readout bandwidth yielded reductions in artifact area and distortion measurements even with voxel increases. Following IRB approval, nine patients with titanium tandem & ovoid applicator (Varian Medical Systems) in place were scanned with a standard periprocedural protocol which included sagittal T2 fast spin echo (FSE) acquisition (res 0.98×0.78×4.0 mm{sup 3}; BW 200Hz). An additional T2-weighted FSE sequence (res 0.98×0.98×3–4 mm{sup 3}; BW500Hz) with increased readout bandwidth, readout voxel size, and echo train length was added to the protocol. Volume measurements of the applicator (from tip to cervical stop) were hand-segmented in Velocity AI 3.1 (Velocity Medical Solutions) for the two T2 FSE sequences and a planning CT obtained shortly after MRI. Differences were analyzed using a paired t-test. Results: Average apparent volumes of the applicator on standard T2 sequence, decreased bandwidth T2 sequence and CT were 5.922±1.283 cm{sup 3}, 4.544±1.524 cm3, and 2.304±0.509 cm{sup 3} respectively. Conclusion: Apparent volumes of a brachytherapy applicator can be compared in vivo. The modified sequence results in decreased apparent size of the cervical applicator. Both MR sequence volumes were larger than the planning CT, which was expected. Future work will focus on the diagnostic quality of the new sequence and quantifying any

  10. Effect of brachytherapy technique and patient characteristics on cervical cancer implant dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Anker, Christopher J., E-mail: chris.anker@hci.utah.edu [Department of Radiation Oncology, Huntsman Cancer Hospital, University of Utah, Salt Lake City, UT (United States); O' Donnell, Kristen [Department of Radiation Oncology, The University of Arizona, Tucson, AZ (United States); Boucher, Kenneth M. [Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT (United States); Gaffney, David K. [Department of Radiation Oncology, Huntsman Cancer Hospital, University of Utah, Salt Lake City, UT (United States)

    2013-01-01

    Our purpose was to evaluate the relationship between brachytherapy technique and patient characteristics on dose to organs-at-risk (OARs) in patients undergoing high dose rate (HDR) brachytherapy for cervical cancer. From 1998 to 2008, 31 patients with cervical cancer with full dosimetric data were identified who received definitive external-beam radiation and HDR brachytherapy with tandem and ovoid applicators. Doses were recorded at point A, the International Commission on Radiation Units and Measurements (ICRU)-38 rectal point, the ICRU-38 bladder point, the vaginal surface, and the pelvic sidewall. Generalized estimating equations were used to determine the significance of changes in OAR to point A dose ratios with differences in brachytherapy technique or patient characteristics. Patients underwent a median of 5 brachytherapy procedures (range, 3 to 5), with a total of 179 procedures for 31 patients. For all brachytherapy treatments, the average ratios between the doses for the rectal, bladder, vaginal surface, and pelvic sidewall reference points to those at point A were 0.49, 0.59, 1.15, and 0.17, respectively. In general, decreased OAR dose was associated with a lower stage, younger age, increased ovoid size, increased tandem length, and earlier implant number. Increased tandem curvature significantly increased bladder dose and decreased rectal dose. Intravenous anesthesia usage was not correlated with improved dosimetry. This study allowed identification of patient and procedure characteristics influencing OAR dosing. Although the advent of 3-dimensional (3D) image-guided brachytherapy will bring new advances in treatment optimization, the actual technique involved at the time of the brachytherapy implant procedure will remain important.

  11. Selection of patients for re-irradiation with local implants in carcinomas of oropharynx and tongue

    International Nuclear Information System (INIS)

    Langlois, D.; Hoffstetter, S.; Pernot, M.

    1988-01-01

    Between 1972 and 1984, 123 patients with recurrent or new primary carcinomas in previously irradiated areas of soft palate, tonsil, base of tongue or mobile tongue were re-irradiated with iridium-192 afterloading techniques. The average re-irradiation dose was 62 Gy (31-84 Gy) and the total dose 131 Gy (92-162 Gy); only 28 cases of mucosal necrosis were observed (23%). Two and 5 years actuarial local control rates were 67% and 59% and survival rates 48% and 24% respectively. Death was related to local tumor in 48 cases, metastases in 8 cases and intercurrent disease in 39 cases. We analysed the effect on survival and local control of age, initial tumor site and volume, previous surgery, time between first irradiation and re-irradiation, doses, dose rate, and techniques of brachytherapy. With this analysis as background, we recommend the use of salvage brachytherapy for patients with a) small tumors of soft palate, tonsil or mobile tongue without synchronic lymph node metastases, b) long time interval between first irradiation and re-irradiation, c) new primary tumors (rather than recurrence of first tumor), and d) no previous local surgery. A high re-irradiation dose given with low dose rate is recommended. (orig.)

  12. Advantages of high-dose rate (HDR) brachytherapy in treatment of prostate cancer

    Science.gov (United States)

    Molokov, A. A.; Vanina, E. A.; Tseluyko, S. S.

    2017-09-01

    One of the modern methods of preserving organs radiation treatment is brachytherapy. This article analyzes the results of prostate brachytherapy. These studies of the advantages of high dose brachytherapy lead to the conclusion that this method of radiation treatment for prostate cancer has a favorable advantage in comparison with remote sensing methods, and is competitive, preserving organs in comparison to surgical methods of treatment. The use of the method of polyfocal transperineal biopsy during the brachytherapy session provides information on the volumetric spread of prostate cancer and adjust the dosimetry plan taking into account the obtained data.

  13. Implant strategies for endocervical and interstitial ultrasound hyperthermia adjunct to HDR brachytherapy for the treatment of cervical cancer

    International Nuclear Information System (INIS)

    Wootton, Jeffery H; Prakash, Punit; Hsu, I-Chow Joe; Diederich, Chris J

    2011-01-01

    Catheter-based ultrasound devices provide a method to deliver 3D conformable heating integrated with HDR brachytherapy delivery. Theoretical characterization of heating patterns was performed to identify implant strategies for these devices which can best be used to apply hyperthermia to cervical cancer. A constrained optimization-based hyperthermia treatment planning platform was used for the analysis. The proportion of tissue ≥41 deg. C in a hyperthermia treatment volume was maximized with constraints T max ≤ 47 deg. C, T rectum ≤ 41.5 deg. C, and T bladder ≤ 42.5 deg. C. Hyperthermia treatment was modeled for generalized implant configurations and complex configurations from a database of patients (n = 14) treated with HDR brachytherapy. Various combinations of endocervical (360 0 or 2 x 180 0 output; 6 mm OD) and interstitial (180 0 , 270 0 , or 360 0 output; 2.4 mm OD) applicators within catheter locations from brachytherapy implants were modeled, with perfusion constant (1 or 3 kg m -3 s -1 ) or varying with location or temperature. Device positioning, sectoring, active length and aiming were empirically optimized to maximize thermal coverage. Conformable heating of appreciable volumes (>200 cm 3 ) is possible using multiple sectored interstitial and endocervical ultrasound devices. The endocervical device can heat >41 deg. C to 4.6 cm diameter compared to 3.6 cm for the interstitial. Sectored applicators afford tight control of heating that is robust to perfusion changes in most regularly spaced configurations. T 90 in example patient cases was 40.5-42.7 deg. C (1.9-39.6 EM 43deg.C ) at 1 kg m -3 s -1 with 10/14 patients ≥41 deg. C. Guidelines are presented for positioning of implant catheters during the initial surgery, selection of ultrasound applicator configurations, and tailored power schemes for achieving T 90 ≥ 41 deg. C in clinically practical implant configurations. Catheter-based ultrasound devices, when adhering to the guidelines, show

  14. Androgen-deprivation therapy does not impact cause-specific or overall survival after permanent prostate brachytherapy

    International Nuclear Information System (INIS)

    Merrick, Gregory S.; Butler, Wayne M.; Wallner, Kent E.; Galbreath, Robert W.; Allen, Zachariah A. M.S.; Adamovich, Edward

    2006-01-01

    Purpose: To determine if androgen-deprivation therapy (ADT) has an impact on cause-specific, biochemical progression-free, or overall survival after prostate brachytherapy. Methods and Materials: From April 1995 through June 2002, 938 consecutive patients underwent brachytherapy for clinical Stage T1b to T3a (2002 AJCC) prostate cancer. All patients underwent brachytherapy more than 3 years before analysis. A total of 382 patients (40.7%) received ADT with a duration of 6 months or less in 277 and more than 6 months in 105. The median follow-up was 5.4 years. Multiple clinical, treatment, and dosimetric parameters were evaluated as predictors of cause-specific, biochemical progression-free, and overall survival. Results: The 10-year cause-specific, biochemical progression-free, and overall survival rates for the entire cohort were 96.4%, 95.9%, and 78.1%, respectively. Except for biochemical progression-free survival in high-risk patients, ADT did not statistically impact any of the three survival categories. A Cox linear-regression analysis demonstrated that Gleason score was the best predictor of cause-specific survival, whereas percent-positive biopsies, prostate volume, and risk group predicted for biochemical progression-free survival. Patient age and tobacco use were the strongest predictors of overall survival. One hundred two patients have died, with 80 of the deaths a result of cardiovascular disease (54) and second malignancies (26). To date, only 12 patients have died of metastatic prostate cancer. Conclusions: After brachytherapy, androgen-deprivation therapy did not have an impact on cause-specific or overall survival for any risk group; however, ADT had a beneficial effect on biochemical progression-free survival in high-risk patients. Cardiovascular disease and second malignancies far outweighed prostate cancer as competing causes of death

  15. Underuse of brachytherapy for the treatment of dysphagia owing to esophageal cancer. An Italian survey.

    Science.gov (United States)

    Fuccio, Lorenzo; Guido, Alessandra; Hassan, Cesare; Frazzoni, Leonardo; Arcelli, Alessandra; Farioli, Andrea; Giaccherini, Lucia; Galuppi, Andrea; Mandolesi, Daniele; Cellini, Francesco; Mantello, Giovanna; Macchia, Gabriella; de Bortoli, Nicola; Repici, Alessandro; Valentini, Vincenzo; Bazzoli, Franco; Morganti, Alessio Giuseppe

    2016-10-01

    International guidelines strongly recommend brachytherapy as valid alternative or in addition to stenting in patients with dysphagia owing to esophageal cancer. However, for not well understood reasons, brachytherapy is definitively underused for the palliative treatment of malignant dysphagia. Aim of the current survey was to investigate the use of brachytherapy for the treatment of malignant dysphagia in Italy. A structured questionnaire was submitted to the 1510 members of the Italian Association of Radiation Oncologists (AIRO). These members refer to 177 centres of radiotherapy across Italy and in 68 (38.4%) of them brachytherapy is routinely performed. Of the 1510 invited members, 178 completed the survey (11.7%). The answers provided by the 178 participants allowed to get information on 40 out of 68 brachytherapy centres (58.8%). Seven out of 40 (17.5%) centres perform brachytherapy of the oesophagus, in 3 out of 40 (7.5%) centres brachytherapy represents the first line of treatment. The main reason why brachytherapy is not routinely performed is the lack of experience. Despite the strong recommendations of the international guidelines and the wide diffusion of brachytherapy centres across Italy, only very few of them routinely considered brachytherapy for the treatment of dysphagia due to esophageal cancer. Copyright © 2016 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  16. Dose optimization of intra-operative high dose rate interstitial brachytherapy implants for soft tissue sarcoma

    Directory of Open Access Journals (Sweden)

    Jamema Swamidas

    2009-01-01

    Full Text Available Objective : A three dimensional (3D image-based dosimetric study to quantitatively compare geometric vs. dose-point optimization in combination with graphical optimization for interstitial brachytherapy of soft tissue sarcoma (STS. Materials and Methods : Fifteen consecutive STS patients, treated with intra-operative, interstitial Brachytherapy, were enrolled in this dosimetric study. Treatment plans were generated using dose points situated at the "central plane between the catheters", "between the catheters throughout the implanted volume", at "distances perpendicular to the implant axis" and "on the surface of the target volume" Geometrically optimized plans had dose points defined between the catheters, while dose-point optimized plans had dose points defined at a plane perpendicular to the implant axis and on the target surface. Each plan was graphically optimized and compared using dose volume indices. Results : Target coverage was suboptimal with coverage index (CI = 0.67 when dose points were defined at the central plane while it was superior when the dose points were defined at the target surface (CI=0.93. The coverage of graphically optimized plans (GrO was similar to non-GrO with dose points defined on surface or perpendicular to the implant axis. A similar pattern was noticed with conformity index (0.61 vs. 0.82. GrO were more conformal and less homogeneous compared to non-GrO. Sum index was superior for dose points defined on the surface of the target and relatively inferior for plans with dose points at other locations (1.35 vs. 1.27. Conclusions : Optimization with dose points defined away from the implant plane and on target results in superior target coverage with optimal values of other indices. GrO offer better target coverage for implants with non-uniform geometry and target volume.

  17. Image-robot coupling for the prostate brachytherapy

    International Nuclear Information System (INIS)

    Coelen, V.; Lartigau, E.; Merzouki, R.

    2009-01-01

    The results allows to contemplate a robot use in the prostate brachytherapy but equally in other applications such prostate biopsy. The tests to come are going to be directed towards on the use of a prostate phantom in order to calibrate the ultrasonography. thereafter, we contemplate the conception of an intelligent gripping system placed on the robot arm and allowing a good control in closed loop of the brachytherapy needle placement and allowing the setting up of an online monitoring. (N.C.)

  18. Brachytherapy for Buccal Cancer: From Conventional Low Dose Rate (LDR) or Mold Technique to High Dose Rate Interstitial Brachytherapy (HDR-ISBT).

    Science.gov (United States)

    Kotsuma, Tadayuki; Yamazaki, Hideya; Masui, Koji; Yoshida, Ken; Shimizutani, Kimishige; Akiyama, Hironori; Murakami, Shumei; Isohashi, Fumiaki; Yoshioka, Yasuo; Ogawa, Kazuhiko; Tanaka, Eiichi

    2017-12-01

    To examine the effectiveness of newly-installed high-dose-rate interstitial brachytherapy (HDR-ISBT) for buccal cancer. We retrospectively reviewed 36 patients (25 men and 11 women) with buccal cancer treated with curative brachytherapy with or without external radiotherapy with a median follow-up of 99 months. A total of 15 HDR-ISBT (median 48 Gy/ 8 fractions, range=24-60 Gy) patients were compared to conventional 15 cases LDR-ISBT (70 Gy, range=42.8-110 Gy) and 7 molds techniques (15 Gy, range=9-74 Gy). A total of 31 patients also underwent external radiotherapy (30 Gy, range=24-48 Gy). They comprised of 3T1, 23 T2, 8 T3, 3 T4 including 11 node positive cases. HDR-ISBT provided 82% of local control rate at 5 years, whereas conventional brachytherapy showed 72% [p=0.44; LDR-ISBT (65%), mold therapy (85.7%)]. Patients with early lesions (T1-2 or stage I-II) showed better local control rates than those with advanced lesions (T3-4 or stage III-IV). Severe late grade 3 complications developed in two patients treated with LDR-ISBT and EBRT. There is no significant difference in toxicity grade ≤2 between conventional brachytherapy (5/15=33%) and HDR-ISBT (7/32=32%, p=0.92). HDR-ISBT achieved good and comparable local control rates to conventional brachytherapy without elevating the toxicity. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  19. A fibre optic dosimeter customised for brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Suchowerska, N. [Department of Radiation Oncology, Royal Prince Alfred Hospital, Camperdown, NSW 2050 (Australia); School of Physics, University of Sydney, NSW 2006 (Australia)], E-mail: Natalka@email.cs.nsw.gov.au; Lambert, J.; Nakano, T. [Department of Radiation Oncology, Royal Prince Alfred Hospital, Camperdown, NSW 2050 (Australia); School of Physics, University of Sydney, NSW 2006 (Australia); Law, S. [School of Physics, University of Sydney, NSW 2006 (Australia); Optical Fibre Technology Centre, University of Sydney, 206 National Innovation Centre, Australian Technology Park, Eveleigh, NSW 1430 (Australia); Elsey, J. [Bandwidth Foundry Pty Ltd, Australian Technology Park, NSW, 1430 (Australia); McKenzie, D.R. [School of Physics, University of Sydney, NSW 2006 (Australia)

    2007-04-15

    In-vivo dosimetry for brachytherapy cancer treatment requires a small dosimeter with a real time readout capability that can be inserted into the patient to determine the dose to critical organs. Fibre optic scintillation dosimeters, consisting of a plastic scintillator coupled to an optical fibre, are a promising dosimeter for this application. We have implemented specific design features to optimise the performance of the dosimeter for specific in-vivo dosimetry during brachytherapy. Two sizes of the BrachyFOD{sup TM} scintillation dosimeter have been developed, with external diameters of approximately 2 and 1 mm. We have determined their important dosimetric characteristics (depth dose relation, angular dependence, energy dependence). We have shown that the background signal created by Cerenkov and fibre fluorescence does not significantly affect the performance in most clinical geometries. The dosimeter design enables readout at less than 0.5 s intervals. The clinical demands of real time in-vivo brachytherapy dosimetry can uniquely be satisfied by the BrachyFOD{sup TM}.

  20. Stereotactic intracavitary brachytherapy with P-32 for cystic craniopharyngiomas in children

    International Nuclear Information System (INIS)

    Maarouf, Mohammad; El Majdoub, Faycal; Fuetsch, Manuel; Hoevels, Mauritius; Lehrke, Ralph; Berthold, Frank; Voges, Juergen; Sturm, Volker

    2016-01-01

    Although microsurgery remains the first-line treatment, gross total resection of cystic craniopharyngeomas (CP) is associated with significant morbidity and mortality and the addition of external irradiation to subtotal resection proves to achieve similar tumor control. However, concern regarding long-term morbidity associated with external irradiation in children still remains. With this retrospective analysis, the authors emphasize intracavitary brachytherapy using phosphorus-32 (P-32) as a treatment option for children with cystic CP. Between 1992 and 2009, 17 children (median age 15.4 years; range 7-18 years) with cystic CP underwent intracavitary brachytherapy using P-32. Eleven patients were treated for recurrent tumor cysts; 6 patients were treated primarily. MR imaging revealed solitary cysts in 7 patients; 10 patients had mixed solid-cystic lesions (median tumor volume 11.1 ml; range 0.5-78.9 ml). The median follow-up time was 61.9 months (range 16.9-196.6 months). Local cyst control could be achieved in 14 patients (82 %). Three patients showed progression of the treated cystic formation (in-field progression) after a median time of 8.3 months (range 5.3-10.3 months), which led to subsequent interventions. The development of new, defined cysts and progression of solid tumor parts (out-of-field progression) occurred in 5 patients and led to additional interventions in 4 cases. There was neither surgery-related permanent morbidity nor mortality in this study. The overall progression-free survival was 75, 63, and 52 % after 1, 3, and 5 years, respectively. Intracavitary brachytherapy using P-32 represents a safe and effective treatment option for children harboring cystic CP, even as primary treatment. However, P-32 does not clearly affect growth of solid tumor parts or the development of new cystic formations. (orig.) [de