WorldWideScience

Sample records for afterloading brachytherapy human

  1. Human error in remote Afterloading Brachytherapy

    International Nuclear Information System (INIS)

    Quinn, M.L.; Callan, J.; Schoenfeld, I.; Serig, D.

    1994-01-01

    Remote Afterloading Brachytherapy (RAB) is a medical process used in the treatment of cancer. RAB uses a computer-controlled device to remotely insert and remove radioactive sources close to a target (or tumor) in the body. Some RAB problems affecting the radiation dose to the patient have been reported and attributed to human error. To determine the root cause of human error in the RAB system, a human factors team visited 23 RAB treatment sites in the US. The team observed RAB treatment planning and delivery, interviewed RAB personnel, and performed walk-throughs, during which staff demonstrated the procedures and practices used in performing RAB tasks. Factors leading to human error in the RAB system were identified. The impact of those factors on the performance of RAB was then evaluated and prioritized in terms of safety significance. Finally, the project identified and evaluated alternative approaches for resolving the safety significant problems related to human error

  2. Afterloading techniques in brachytherapy

    International Nuclear Information System (INIS)

    Kirsch, M.; Orban, R.; Lorenz, B.

    1981-01-01

    The advantages of applying modern afterloading methods in brachytherapie of malignant diseases are outlined. They include, among other things, a considerable reduction in radiation exposure to staff involved. Furthermore, the radiation protection requirements imposed by the licensing authority on the construction, equipment and operation of remote controlled afterloading installations with gamma sources of up to 4 TBq (108 Ci) have been compiled. (author)

  3. Radiation Exposure Reduction to Brachytherapy Staff By Using Remote Afterloading

    International Nuclear Information System (INIS)

    Attalla, E.M.

    2005-01-01

    The radiation exposures to the personnel staff from patients with brachytherapy implants in a brachytherapy service were reviewed. Exposures to the brachytherapy personnel, as determined by Thermoluminescence Dosimeter (TLD) monitors, indicates a four-fold reduction in exposures after the implantation of the use of remote afterloading devices. Quarterly TLD monitor data for seven quarters prior to the use of remote afterloading devices demonstrate an average projected annual dose equivalent to the brachytherapy staff of 2543 Μ Sv. After the implantation of the remote afterloading devices, the quarterly TLD monitor data indicate an average dose equivalent per person of 153 Μ Sv. This is 76% reduction in exposure to brachytherapy personnel with the use of these devices

  4. Human factors evaluation of remote afterloading brachytherapy. Volume 2, Function and task analysis

    Energy Technology Data Exchange (ETDEWEB)

    Callan, J.R.; Gwynne, J.W. III; Kelly, T.T.; Muckler, F.A. [Pacific Science and Engineering Group, San Diego, CA (United States); Saunders, W.M.; Lepage, R.P.; Chin, E. [University of California San Diego Medical Center, CA (United States). Div. of Radiation Oncology; Schoenfeld, I.; Serig, D.I. [Nuclear Regulatory Commission, Washington, DC (United States). Div. of Systems Technology

    1995-05-01

    A human factors project on the use of nuclear by-product material to treat cancer using remotely operated afterloaders was undertaken by the Nuclear Regulatory Commission. The purpose of the project was to identify factors that contribute to human error in the system for remote afterloading brachytherapy (RAB). This report documents the findings from the first phase of the project, which involved an extensive function and task analysis of RAB. This analysis identified the functions and tasks in RAB, made preliminary estimates of the likelihood of human error in each task, and determined the skills needed to perform each RAB task. The findings of the function and task analysis served as the foundation for the remainder of the project, which evaluated four major aspects of the RAB system linked to human error: human-system interfaces; procedures and practices; training and qualifications of RAB staff; and organizational practices and policies. At its completion, the project identified and prioritized areas for recommended NRC and industry attention based on all of the evaluations and analyses.

  5. Human factors evaluation of remote afterloading brachytherapy. Volume 2, Function and task analysis

    International Nuclear Information System (INIS)

    Callan, J.R.; Gwynne, J.W. III; Kelly, T.T.; Muckler, F.A.; Saunders, W.M.; Lepage, R.P.; Chin, E.; Schoenfeld, I.; Serig, D.I.

    1995-05-01

    A human factors project on the use of nuclear by-product material to treat cancer using remotely operated afterloaders was undertaken by the Nuclear Regulatory Commission. The purpose of the project was to identify factors that contribute to human error in the system for remote afterloading brachytherapy (RAB). This report documents the findings from the first phase of the project, which involved an extensive function and task analysis of RAB. This analysis identified the functions and tasks in RAB, made preliminary estimates of the likelihood of human error in each task, and determined the skills needed to perform each RAB task. The findings of the function and task analysis served as the foundation for the remainder of the project, which evaluated four major aspects of the RAB system linked to human error: human-system interfaces; procedures and practices; training and qualifications of RAB staff; and organizational practices and policies. At its completion, the project identified and prioritized areas for recommended NRC and industry attention based on all of the evaluations and analyses

  6. Human factors evaluation of remote afterloading brachytherapy: Human error and critical tasks in remote afterloading brachytherapy and approaches for improved system performance. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Callan, J.R.; Kelly, R.T.; Quinn, M.L. [Pacific Science and Engineering Group, San Diego, CA (United States)] [and others

    1995-05-01

    Remote Afterloading Brachytherapy (RAB) is a medical process used in the treatment of cancer. RAB uses a computer-controlled device to remotely insert and remove radioactive sources close to a target (or tumor) in the body. Some RAB problems affecting the radiation dose to the patient have been reported and attributed to human error. To determine the root cause of human error in the RAB system, a human factors team visited 23 RAB treatment sites in the US The team observed RAB treatment planning and delivery, interviewed RAB personnel, and performed walk-throughs, during which staff demonstrated the procedures and practices used in performing RAB tasks. Factors leading to human error in the RAB system were identified. The impact of those factors on the performance of RAB was then evaluated and prioritized in terms of safety significance. Finally, the project identified and evaluated alternative approaches for resolving the safety significant problems related to human error.

  7. Human factors evaluation of remote afterloading brachytherapy: Human error and critical tasks in remote afterloading brachytherapy and approaches for improved system performance. Volume 1

    International Nuclear Information System (INIS)

    Callan, J.R.; Kelly, R.T.; Quinn, M.L.

    1995-05-01

    Remote Afterloading Brachytherapy (RAB) is a medical process used in the treatment of cancer. RAB uses a computer-controlled device to remotely insert and remove radioactive sources close to a target (or tumor) in the body. Some RAB problems affecting the radiation dose to the patient have been reported and attributed to human error. To determine the root cause of human error in the RAB system, a human factors team visited 23 RAB treatment sites in the US The team observed RAB treatment planning and delivery, interviewed RAB personnel, and performed walk-throughs, during which staff demonstrated the procedures and practices used in performing RAB tasks. Factors leading to human error in the RAB system were identified. The impact of those factors on the performance of RAB was then evaluated and prioritized in terms of safety significance. Finally, the project identified and evaluated alternative approaches for resolving the safety significant problems related to human error

  8. An afterloading brachytherapy device utilizing thermoplastic material

    International Nuclear Information System (INIS)

    Kim, T.H.; Gerbi, J.B.; Deibel, F.C.; Khan, F.M.; Priest, J.R.

    1989-01-01

    An afterloading brachytherapy device for treatment of residual cancer in an enucleated orbit with two cesium-137 sources was designed using a thermoplastic material, Aquaplast. The device consists of a face-mask support held in place with elastic bands around the head and an acrylic afterloading applicator. The device is very easy to make, holds the sources firmly in place, allows full mobility of the patient, and gives excellent dose distribution to the target area. It was easily tolerated by a 7-year-old child during the 50 h of treatment. (author). 3 refs.; 4 figs

  9. Human factors evaluation of remote afterloading brachytherapy. Supporting analyses of human-system interfaces, procedures and practices, training and organizational practices and policies. Volume 3

    International Nuclear Information System (INIS)

    Callan, J.R.; Kelly, R.T.; Quinn, M.L.

    1995-07-01

    A human factors project on the use of nuclear by-product material to treat cancer using remotely operated afterloaders was undertaken by the Nuclear Regulatory Commission. The purpose of the project was to identify factors that contribute to human error in the system for remote afterloading brachytherapy (RAB). This report documents the findings from the second, third, fourth, and fifth phases of the project, which involved detailed analyses of four major aspects of the RAB system linked to human error: human-system interfaces; procedures and practices; training practices and policies; and organizational practices and policies, respectively. Findings based on these analyses provided factual and conceptual support for the final phase of this project, which identified factors leading to human error in RAB. The impact of those factors on RAB performance was then evaluated and prioritized in terms of safety significance, and alternative approaches for resolving safety significant problems were identified and evaluated

  10. Human factors evaluation of remote afterloading brachytherapy. Supporting analyses of human-system interfaces, procedures and practices, training and organizational practices and policies. Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    Callan, J.R.; Kelly, R.T.; Quinn, M.L. [Pacific Science & Engineering Group, San Diego, CA (United States)] [and others

    1995-07-01

    A human factors project on the use of nuclear by-product material to treat cancer using remotely operated afterloaders was undertaken by the Nuclear Regulatory Commission. The purpose of the project was to identify factors that contribute to human error in the system for remote afterloading brachytherapy (RAB). This report documents the findings from the second, third, fourth, and fifth phases of the project, which involved detailed analyses of four major aspects of the RAB system linked to human error: human-system interfaces; procedures and practices; training practices and policies; and organizational practices and policies, respectively. Findings based on these analyses provided factual and conceptual support for the final phase of this project, which identified factors leading to human error in RAB. The impact of those factors on RAB performance was then evaluated and prioritized in terms of safety significance, and alternative approaches for resolving safety significant problems were identified and evaluated.

  11. A compilation of current regulations, standards and guidelines in remote afterloading brachytherapy

    International Nuclear Information System (INIS)

    Tortorelli, J.P.; Simion, G.P.; Kozlowski, S.D.

    1994-10-01

    Over a dozen government and professional organizations in the United States and Europe have issued regulations and guidance concerning quality management in the practice of remote afterloading brachytherapy. Information from the publications of these organizations was collected and collated for this report. This report provides the brachytherapy licensee access to a broad field of quality management information in a single, topically organized document

  12. A compilation of current regulations, standards and guidelines in remote afterloading brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Tortorelli, J.P.; Simion, G.P.; Kozlowski, S.D. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1994-10-01

    Over a dozen government and professional organizations in the United States and Europe have issued regulations and guidance concerning quality management in the practice of remote afterloading brachytherapy. Information from the publications of these organizations was collected and collated for this report. This report provides the brachytherapy licensee access to a broad field of quality management information in a single, topically organized document.

  13. Reduction in radiation exposure to nursing personnel with the use of remote afterloading brachytherapy devices

    International Nuclear Information System (INIS)

    Grigsby, P.W.; Perez, C.A.; Eichling, J.; Purdy, J.; Slessinger, E.

    1991-01-01

    The radiation exposure to nursing personnel from patients with brachytherapy implants on a large brachytherapy service were reviewed. Exposure to nurses, as determined by TLD monitors, indicates a 7-fold reduction in exposure after the implementation of the use of remote afterloading devices. Quarterly TLD monitor data for six quarters prior to the use of remote afterloading devices demonstrate an average projected annual dose equivalent to the nurses of 152 and 154 mrem (1.5 mSv). After the implementation of the remote afterloading devices, the quarterly TLD monitor data indicate an average dose equivalent per nurse of 23 and 19 mrem (0.2 mSv). This is an 87% reduction in exposure to nurses with the use of these devices (p less than 0.01)

  14. Experiences with alanine dosimetry in afterloading brachytherapy

    International Nuclear Information System (INIS)

    Eberhardt, H.-J.; Gohs, U.

    1996-01-01

    At the present, the most commonly used dosimetry for radiotherapy applications are ionisation chambers and thermoluminescent dosimeters (TLD). However, there are some undesirable characteristics of these dosimetry systems, such as large detection volume (ionisation chamber) as well as fading of the radiation induced signal with time and destructive readout (TLG). The present study is an investigation into the use of the alanine/ESR dosimetry in fractionated afterloading brachytherapy during the whole radiotherapy course. There are some qualities which make alanine dosimetry attractive. These are the linear energy response, low fading under standard conditions, and the nondestructive readout. Thus the alanine dosimetry makes possible cumulative dose measurements during the radiotherapy course and an archival storage. By ionizing radiation (gamma, e, n, p, charged particles) free radicals (unpaired electrons) are produced in the amino acid alanine. The continuous wave electron spin resonance (ESR) spectroscopy is used to determine the number of free radicals, which is proportional to the absorbed dose and the alanine content of the dosimeter. The ESR measurements were made at room temperature using a Bruker EPR analyzer EMS-104. The dosimeters used in the test are alanine pellets (23.72 mg weight, 4.9 mm diameter, 1 mm height) as well as flexible alanine film dosimeters (thickness about 500 μm). The dosimeters consist of a blend of L-alpha-alanine and a binder. The alanine content of the pellets and the film dosimeters is about 88 % and 50 % by weight, respectively. The dosimeters for the calculation of the dose-effect-relationship were irradiated at the Physical-Technical Bundesanstalt in Braunschweig by a standard 60Co source. The maximum deviation from the calculated linear function is about 0.12 Gy in the dose range up to 80 Gy. The goal of medical applications was the superficial dose measurement in afterloading brachytherapy during the radiotherapy course in

  15. Intraluminal brachytherapy in carcinoma of the oesophagus: comparison of afterloading techniques

    International Nuclear Information System (INIS)

    Udaya Kumar, M.; Supe, S.S.; Swamy, Kumara; Keshava, S.L.; Anantha, N.

    1993-01-01

    For improved local control or palliation of oesophageal cancers, intra-luminal brachytherapy (ILB) has emerged as an increasingly popular treatment modality of therapy in recent years. In combination with external radiotherapy, after-loaded ILB can increase local control rates and may prolong survival of these patients. In this paper two techniques of ILB viz., manual and low dose-rate remote after loading methods, using caesium-137 tubes and pellets respectively, are described in detail. On comparison of these two techniques it was found that both of them were similar with respect to their physical characteristic (dose rate, dose fall-off, maximum spinal cord dose, total reference air kerma, etc.). Clinically, the manual after-loaded ILB technique was found to be easier to use when compared with the low-dose rate remote after-loader. In addition, the number of patients with uterine cancers being high in a developing country, it was found that it was inappropriate to use the low dose remote after-loaders, designed for use in gynaecological cancers, for ILB of oesophageal cancers. Therefore, in the absence of high dose rate after-loaders, which can be utilized for intracavitary treatments of both uterine and oesophageal malignancies effectively, the manual after-loading ILB system as described in this paper could be a practical alternative. (author). 19 refs., 4 figs., 2 tabs

  16. A new afterloading applicator for primary brachytherapy of endometrial cancer

    International Nuclear Information System (INIS)

    Bauer, M.; Schulz-Wendtland, R.

    1993-01-01

    The authors describe and have used a new afterloading applicator in six patients for primary radiation therapy of endometrial cancer. The first introduction of the applicator was done under general anaesthesia. Dilating the cervical canal to Heger 9 made insertion easier. Prior to application it is advisable to probe the lumen of the uterine cavity with a tube or curette to estimate how far the applicator must be spread open. For brachytherapy it is advantageous to remove necrotic tumour portions. This requires experienced hands to avoid perforation of the uterus. The new afterloading applicator is easy to use, and permits direct contact between the six tubes and the tumour. In conjunction with careful planning with the help of MRI, it provides an optimal system for the treatment of endometrial cancer. (Author)

  17. Remote Afterloading High Dose Rate (HDR) Endobronchial Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Hyesook; Choi, Eun Kyung; Yi, Byong Yong; Kim, Won Dong; Kim, Woo Sung; Koh, Youn Suck [Ulsan University College of Medicine, Seoul (Korea, Republic of)

    1991-12-15

    Authors described the remote afterloading endobronchial brachytherapy (EBBT) technique using the microSelectron HDR Ir-192 and the Asan Medical Center experience. Total 28 EBBT in 9 patients were performed since November 1989 and 24 EBBT in 8 patients were employed for palliation and 3 EBBT in 1 patient was treated curatively. Authors observed a significant relief of obstructive symptom with tumor regression in 7 patients out of 8 who were treated palliatively but one of them died of pulmonary congestion in 3 weeks after EBBT. One patient with prior therapy of extensive electrocautery expired within 1 day after 2nd EBBT procedure with massive hemorrhage from the lesion. EBBT procedure has been tolerable and can be performed as an outpatient.

  18. Remote Afterloading High Dose Rate (HDR) Endobronchial Brachytherapy

    International Nuclear Information System (INIS)

    Chang, Hyesook; Choi, Eun Kyung; Yi, Byong Yong; Kim, Won Dong; Kim, Woo Sung; Koh, Youn Suck

    1991-01-01

    Authors described the remote afterloading endobronchial brachytherapy (EBBT) technique using the microSelectron HDR Ir-192 and the Asan Medical Center experience. Total 28 EBBT in 9 patients were performed since November 1989 and 24 EBBT in 8 patients were employed for palliation and 3 EBBT in 1 patient was treated curatively. Authors observed a significant relief of obstructive symptom with tumor regression in 7 patients out of 8 who were treated palliatively but one of them died of pulmonary congestion in 3 weeks after EBBT. One patient with prior therapy of extensive electrocautery expired within 1 day after 2nd EBBT procedure with massive hemorrhage from the lesion. EBBT procedure has been tolerable and can be performed as an outpatient

  19. Radiological safety problems in intracavitary brachytherapy using the manual afterloading in Venezuela

    International Nuclear Information System (INIS)

    Lea, D.; Gonzales, E.; Gallardo, J.; Diaz, M.

    1996-01-01

    In three venezuelan public hospitals it was detected radioactive contamination for Cs-137 during inspection with the wipe test technique in areas where is applied intracavitary brachytherapy using manual afterloading. This caused a condition of great stress in the personal engaged the treatments. In each Cs-137 source in these hospitals was tested leakage. The source plastic holder was analysed. The authors were able to demonstrate: a) The radioactive contamination found in the treatment area had its origin in the Cs-137 capsule corrosion and b) The corrosion in the source capsule was produced by the radiolytic degradation of the PVC tube used as source-holder in the intracavitary treatments. (authors). 3 refs., 1 tab

  20. Human reliability in high dose rate afterloading radiotherapy based on FMECA

    International Nuclear Information System (INIS)

    Deng Jun; Fan Yaohua; Yue Baorong; Wei Kedao; Ren Fuli

    2012-01-01

    Objective: To put forward reasonable and feasible recommendations against the procedure with relative high risk during the high dose rate (HDR) afterloading radiotherapy, so as to enhance its clinical application safety, through studying the human reliability in the process of carrying out the HDR afterloading radiotherapy. Methods: Basic data were collected by on-site investigation and process analysis as well as expert evaluation. Failure mode, effect and criticality analysis (FMECA) employed to study the human reliability in the execution of HDR afterloading radiotherapy. Results: The FMECA model of human reliability for HDR afterloading radiotherapy was established, through which 25 procedures with relative high risk index were found,accounting for 14.1% of total 177 procedures. Conclusions: FMECA method in human reliability study for HDR afterloading radiotherapy is feasible. The countermeasures are put forward to reduce the human error, so as to provide important basis for enhancing clinical application safety of HDR afterloading radiotherapy. (authors)

  1. Tolerance of human skin applying pulsed brachytherapy with large afterloading moulds

    International Nuclear Information System (INIS)

    Fritz, Peter; Hensley, Frank W.; Berns, Christiane; Schraube, Peter; Wannenmacher, Michael

    1995-01-01

    Purpose: The concept of pulsed brachytherapy suggested by Brenner and Hall requires an unusual fractionation scheme. The effectiveness and sequelae of this new irradiation method was observed on patients with disseminated cutaneous metastases of breast cancer. Materials and Methods: A flexible, re-usable skin mould (weight 110 g) was developed for use with a PDR afterload. An array of 18 parallel catheters (2 mm diameter) at equal distances of 10 mm was constructed by fixation of the catheters in a plastic wire mesh. The array is sewn between two foam rubber slabs of 5 mm thickness to provide a defined constant distance to the skin. Irradiations are performed up to a maximum field size of 17 x 23,5 cm 2 with a nominal 37 GBq Ir-192 source in pulses of 1 Gy per hour at the skin surface. The dose distribution is geometrically optimized to provide a homogeneous skin dose (100±10%). The 80% dose level lies at 5 mm below the skin surface. 20 patients suffering from cutaneous metastases at the thoracic wall were treated with 22 fields (area irradiated: 100-919 cm 2 ) at total doses of 40 to 50 Gy applying two PDR courses with a pause of 4 to 6 weeks. 12 of the fields were previously irradiated with external beam therapy to doses of 40 to 60 Gy at 7 to 22 months in advance. Results: Complete remissions (CR) were achieved in 21 out of 22 fields. (18(20)) patients were free of relapse at the time of death or evaluation. Pre-irradiated fields (n=12): follow-up times 6-21,5 months (median: 11,5 months). CR: (11(12)) fields. Recurrencies:(2(12)) fields. Maximum degree of early skin reactions: marked erythema: (8(12)) fields; epitheliolysis (>50% field size): (4(12)) fields. Intermediate skin reactions after minimum follow-up of 6 months: pigmentation/atrophy: (8(12)) fields; marked teleangiectasia: (3(12)) fields; small skin necrosis:(1(12)) fields. Newly irradiated fields (n=11): follow-up: 6-13,5 months (median:8 month). CR: (11(11)) fields. Recurrencies:(0(11)) fields

  2. SU-E-T-242: Design of a Novel Afterloader Clearance QA Device for Biliary HDR Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Mullins, JP; Deufel, CL [Mayo Clinic, Rochester, MN (United States)

    2015-06-15

    Purpose: Bile duct cancer affects 2–3 thousand people annually in the United States. Radiation therapy has been shown to double median survival, with combined external beam and intraluminal high dose-rate (HDR) brachytherapy being most effective. Endoscopic retrograde cholangiopancreatography (ERCP) biliary HDR, a less-invasive alternative to trans-hepatic brachytherapy, is delivered through a catheter that travels a tortuous path from nose to bile duct, requiring wire drive force and dexterity beyond typical afterloader performance specifications. Thus, specific afterloader quality assurance(QA) is recommended for this procedure. Our aim was to create a device and process for Varisource afterloader clearance QA with objectives that it be quantitative and can monitor afterloader performance over time, compare performance between two distinct afterloaders and potentially Result in a predictive nomogram for patient-specific clearance. Methods: Based on retrospective reconstruction of 20 ERCP patient anatomies, we designed a phantom to test afterloader ability to drive the source wire along an intended treatment path. The ability of the afterloader to fully extend the intended treatment path is a function of number and diameters of turns. We have determined experimentally that relative position of the turns does not impact performance. Results: Both patient and QA paths involve three common turns/loops: a large turn representing the stomach(10.8cm±2.0cm), an elliptical loop representing the duodenum(7.3cm±1.5cmx4.8cm±0.7cm), and a final turn at the end of the bile duct that may be tight for some patient-specific anatomies and absent in others(3.7cm±0.7cm, where present). Our phantom design uses anatomical average turn diameters for the stomach and duodenum then terminates in a turn of quantitatively selectable diameter. The smallest final turn diameter that an afterloader can pass is recorded as the QA parameter. Conclusion: With this device and QA process, we

  3. Clinical result of high-dose rate intraluminal brachytherapy for esophageal carcinoma with a remote afterloading system

    International Nuclear Information System (INIS)

    Fukuda, Haruyuki; Nakajima, Toshifumi; Tada, Takuhito; Tanaka, Masahiro; Tsumura, Masashi; Onoyama, Yasuto

    1992-01-01

    During the period from 1977 through 1987, 105 patients with esophageal carcinoma were radically treated by radiotherapy. Forty-six patients receiving therapy before August 1982 were all treated by external beam therapy alone (Group 1). Since September 1982, 26 patients were treated by external beam therapy alone (Group 2) and 33 patients were treated by high-dose-rate intraluminal brachytherapy with a remote afterloading system combined with external beam therapy (Group 3). Dose of external beam therapy for Group 1, Group 2 and Group 3 patients were 66.7 Gy, 68.7 Gy and 55.9 Gy on the average. The intraluminal brachytherapy was performed with a total dose of 12 Gy consisting of 3 Gy twice a week. Ten of 72 patients (14%) treated by external beam therapy alone achieved complete response, whereas 14 of 33 patients (42%) treated by high-dose-rate intraluminal brachytherapy combined with external beam therapy had complete response. One-, and 3-year survival rates were 36% and 10% in the Group 1, 32% and 12% in the Group 2 and 56% and 36% in the Group 3. For Group 3, good survival rate was obtained in tumorous type and serrated type. Patients with tumor of less than 5 cm in Group 3 had good survival. The data suggest that the high-dose-rate intraluminal bracytherapy prescribed as a boost therapy following external beam therapy is an effective therapy modality for esophageal carcinoma which is of non-circumferential tumor or less than 5 cm. (author)

  4. Physical optimization of afterloading techniques

    International Nuclear Information System (INIS)

    Anderson, L.L.

    1985-01-01

    Physical optimization in brachytherapy refers to the process of determining the radioactive-source configuration which yields a desired dose distribution. In manually afterloaded intracavitary therapy for cervix cancer, discrete source strengths are selected iteratively to minimize the sum of squares of differences between trial and target doses. For remote afterloading with a stepping-source device, optimized (continuously variable) dwell times are obtained, either iteratively or analytically, to give least squares approximations to dose at an arbitrary number of points; in vaginal irradiation for endometrial cancer, the objective has included dose uniformity at applicator surface points in addition to a tapered contour of target dose at depth. For template-guided interstitial implants, seed placement at rectangular-grid mesh points may be least squares optimized within target volumes defined by computerized tomography; effective optimization is possible only for (uniform) seed strength high enough that the desired average peripheral dose is achieved with a significant fraction of empty seed locations. (orig.) [de

  5. High-dose rate brachytherapy in the treatment of carcinoma of uterine cervix: twenty-year experience with cobalt after-loading system.

    Science.gov (United States)

    Mosalaei, A; Mohammadianpanah, M; Omidvari, S; Ahmadloo, N

    2006-01-01

    This retrospective analysis aims to report results of patients with cancer of uterine cervix treated with external-beam radiotherapy (EBR) and high-dose rate (HDR) brachytherapy, using manual treatment planning. From 1975 to 1995, 237 patients with FIGO stages IIB-IVA and mean age of 54.31 years were treated. EBR dose to the whole pelvis was 50 Gy in 25 fractions. Brachytherapy with HDR after-loading cobalt source (Cathetron) was performed following EBR completion with a dose of 30 Gy in three weekly fractions of 10 Gy to point A. Survival, local control, and genitourinary and gastrointestinal complications were assessed. In a median follow-up of 60.2 months, the 10-year overall and disease-free survival rate was 62.4%. Local recurrence was seen in 12.2% of patients. Distant metastases to the lymph nodes, peritoneum, lung, liver, and bone occurred in 25.3% of patients. Less than 6% of patients experienced severe genitourinary and/or gastrointestinal toxicity that were relieved by surgical intervention. No treatment-related mortality was seen. This series suggests that 50 Gy to the whole pelvis together with three fractions of 10 Gy to point A with HDR brachytherapy is an effective fractionation schedule in the treatment of locally advanced cancer of cervix. To decrease the complications, newer devices and treatment planning may be beneficial.

  6. Quality audits of the remote-controlled automatically-driven gamma ray afterloading equipment used in brachytherapy in the Czech Republic

    International Nuclear Information System (INIS)

    Zackova, H.; Horakova, I.

    2001-01-01

    To reach safety and precise application of ionisation radiation to patients Atomic act declares, in its Article no. 7, requirements for medical exposure. There are also given -among others -the demands to i nstall the quality assurance programmes (QA) for medical actions and functions . Since 1997, when the act has been adopted, a set of five Recommendations of State Office for Nuclear Safety (SONS ) for radiotherapy has been prepared to instruct users how to prepare quality control system (i.e. system of tests required by of the regulation no.184/1997 Sb. -acceptance, status and constancy tests) for main types of sources used in radiotherapy for treatment of the patients. Among them also the Recommendation on QA in brachytherapy has been issued by SONS in 1998. National Radiation Protection Institute (NRPI) has been performing the regular in situ quality audits in which the chosen parameters (which could seriously influence the dose to the patients -i.e. absorbed dose, main geometrical and radiation parameters etc ) are independently checked by the NRPI experts. System of Quality Audits on the sources used in teletherapy has been introduced in 1997 and at present time they are smoothly carried out according the SONS's demands. This work describes the process of installing of the Quality Audit system on brachytherapy. The work described here forms the only part of the activities, which have been carrying out by the department of dosimetry gamma and X-rays of NRPI to support supervisions of SONS in the field of radiation protection in radiotherapy .Quality audits in brachytherapy will extend the possibilities of NRPI. The Methods NRPI 43-01.30 prepared by NRPI could be used as documentation for all types of test which are at present time required by Czech legislation for the remote-controlled automatically-driven gamma-ray afterloading equipment used in brachytherapy. (authors)

  7. MRI-guided brachytherapy for cancer of the oesophagus

    International Nuclear Information System (INIS)

    Aydin, H.; Bachmann, G.; Lieven, H. von; Sens, M.

    1993-01-01

    A method of brachytherapy treatment planning using MRI is presented. In 13 patients with inoperable squamous cell cancer of the thoracic oesophagus an intraluminal afterloading boost with MRI assistance was performed. A new type of flexible catheter was filled with 1/100 diluted Gd-DTPA and introduced into the oesophagus before performing MRI in the sagittal, coronal and transverse planes. One sagittal or coronal picture which showed the catheter tip and the residual cancer was magnified to ''life size''. The position of the catheter was corrected if necessary and the treatment volume decided. The contrast medium was then aspirated out of the catheter and a thinner afterloading catheter pushed into the outer catheter. The patient was moved immediately to the afterloading room and received the first dose of boost irradiation. This method allows much more precise brachytherapy planning since it shows the cancer and the catheter together. It is superior to localising the cancer with a barium swallow or endoscopy because MRI visualises the whole extent of the residual cancer, which can then be covered with the necessary dose. (orig.)

  8. Remote-controlled afterloading for intracavitary brachytherapy in gynecological carcinomas

    International Nuclear Information System (INIS)

    Rotte, K.

    1983-01-01

    Classical radiotherapy is gradually being replaced by remote-controlled afterloading procedures in the intracavitary treatment of tumors found during gynecological examination. These new procedures practically eliminate the exposure of the clinic staff to radiation. The possibilities of this new method are discussed with regard to the physics and biology of radiation. Our own results with this new method are reported. (orig.)

  9. A new applicator design for endocavitary brachytherapy of cancer in the nasopharynx

    International Nuclear Information System (INIS)

    Levendag, Peter C.; Peters, Rob; Meeuwis, Cees A.; Visch, Leo L.; Sipkema, Dick; Pan, Connie de; Schmitz, Paul I.M.

    1997-01-01

    Introduction: In attempting to improve local tumor control by higher doses of radiation, there has been a resurgence of interest in the implementation of brachytherapy in the management of primary and recurrent cancers of the nasopharynx. Brachytherapy with its steep dose fall-off is of particular interest because of the proximity of critical dose limiting structures. Recent developments in brachytherapy, such as the introduction of pulsed-dose-rate and high-dose-rate computerized afterloaders, have encouraged further evolution of brachytherapy techniques. Materials and methods: We have designed an inexpensive, re-usable and flexible silicone applicator, tailored to the shape of the soft tissues of the nasopharynx, which can be used with either low-dose-rate brachytherapy or high (pulsed)-dose-rate remote controlled afterloaders. Results and conclusions: This Rotterdam nasopharynx applicator proved to be easy to introduce, patient friendly and can remain in situ for the duration of the treatment (2-6 days). The design, technique of application and the first consecutive 5 years of clinical experience in using this applicator are presented

  10. A new applicator system for afterloading brachytherapy of the uterine cervix

    International Nuclear Information System (INIS)

    Duehmke, E.; Busch, M. II; Kirschner, H.

    1990-01-01

    We developed a new application system for the intracavitary afterloading therapy of the cervix carcinoma. With this system special problems of the application as the possible perforation of the cervix uteri are prevented. (orig.) [de

  11. Tumor hypoxia - A confounding or exploitable factor in interstitial brachytherapy? Effects of tissue trauma in an experimental rat tumor model

    NARCIS (Netherlands)

    van den Berg, AP; van Geel, CAJF; van Hooije, CMC; van der Kleij, AJ; Visser, AG

    2000-01-01

    Purpose: To evaluate the potential effects of tumor hypoxia induced by afterloading catheter implantation on the effectiveness of brachytherapy in a rat tumor model. Methods and Materials: Afterloading catheters (4) Here implanted in subcutaneously growing R1M rhabdomyosarcoma in female Wag/Rij

  12. Afterloading

    Energy Technology Data Exchange (ETDEWEB)

    Watson, E R [Glasgow Western Infirmary (UK)

    1981-12-01

    In view of the likely revision of the Code of Practice for radiation safety for radiotherapy departments, a review of existing safety precautions is undertaken. Most of the dose to radiographers comes from unsealed sources (e.g. /sup 131/I) and the use of small sealed sources in the form of intracavitory insertions, implants and moulds. Small sealed sources are dealt with in particular. Factors considered in minimising the dose to operational personnel are shielding, distance, time and manual or automatic afterloading of the radiation source. A detailed discussion is given on various commercial afterloading devices and operational experience of treating carcinoma of the cervix at Glasgow is reported. It is concluded that manual afterloading does not protect the staff at greatest risk (usually nurses) and that automatic afterloading machines appear to be the ideal solution.

  13. In-phantom dosimetric measurements as quality control for brachytherapy. System check and constancy check; Messungen im Festkoerperphantom als Qualitaetskontrolle in der Brachytherapie. Systempruefung und Konstanzpruefung

    Energy Technology Data Exchange (ETDEWEB)

    Kollefrath, Michael; Bruggmoser, Gregor; Nanko, Norbert; Gainey, Mark [Universitaetsklinik Freiburg (Germany). Klinik fuer Strahlenheilkunde

    2015-09-01

    In brachytherapy dosimetric measurements are difficult due to the inherent dose-inhomogeneities. Typically in routine clinical practice only the nominal dose rate is determined for computer controlled afterloading systems. The region of interest lies close to the source when measuring the spatial dose distribution. In this region small errors in the positioning of the detector, and its finite size, lead to large measurement uncertainties that exacerbate the routine dosimetric control of the system in the clinic. The size of the measurement chamber, its energy dependence, and the directional dependence of the measurement apparatus are the factors which have a significant influence on dosimetry. Although ionisation chambers are relatively large, they are employed since similar chambers are commonly found on clinical brachytherapy units. The dose is determined using DIN 6800 [11] since DIN 6809-2 [12], which deals with dosimetry in brachytherapy, is antiquated and is currently in the process of revision. Further information regarding dosimetry for brachytherapy can be found in textbooks [1] and [2]. The measurements for this work were performed with a HDR (High-Dose-Rate) {sup 192}Ir source, type mHDR V2, and a Microselectron Afterloader V2 both from Nucletron/Elekta. In this work two dosimetric procedures are presented which, despite the aforemention difficulties, should assist in performing checks of the proper operation of the system. The first is a system check that measures the dose distribution along a line and is to be performed when first bringing the afterloader into operation, or after significant changes to the system. The other is a dosimetric constancy check, which with little effort can be performed monthly or weekly. It simultaneously verifies the positioning of the source at two positions, the functionality of the system clock and the automatic re-calculation of the source activity.

  14. Inverse planning in brachytherapy from radium to high rate 192 iridium afterloading

    International Nuclear Information System (INIS)

    Lahanas, M.; Mould, R.F.; Baltas, D.; Karauzakis, K.; Giannouli, S.; Baltas, D.

    2004-01-01

    We consider the inverse planning problem in brachytherapy, i.e. the problem to determine an optimal number of catheters, number of sources for low-dose rate brachytherapy (LDR) and the optimal dwell times for high-dose rate brachytherapy (HDR) necessary to obtain an optimal as possible dose distribution. Starting from the 1930s, inverse planning for LDR brachytherapy used geometrically derived rules to determine the optimal placement of sources in order to achieve a uniform dose distribution of a specific level in planes, spheres and cylinders. Rules and nomograms were derived which still are widely used. With the rapid development of 3D imaging technologies and the rapidly increasing computer power we have now entered the new era of computer-based inverse planning in brachytherapy. The inverse planning is now an optimisation process adapted to the individual geometry of the patient. New inverse planning optimisation algorithms are anatomy-based that consider the real anatomy of the tumour and the organs at risk (OAR). Computer-based inverse planning considers various effects such as stability of solutions for seed misplacements which cannot ever be solved analytically without gross simplifications. In the last few years multiobjective (MO) inverse planning algorithms have been developed which recognise the MO optimisation problem which is inherent in inverse planning in brachytherapy. Previous methods used a trial and error method to obtain a satisfactory solution. MO optimisation replaces this trial and error process by presenting a representative set of dose distributions that can be obtained. With MO optimisation it is possible to obtain information that can be used to obtain the optimum number of catheters, their position and the optimum distribution of dwell times for HDR brachytherapy. For LDR brachytherapy also the stability of solutions due to seed migration can also be improved. A spectrum of alternative solutions is available and the treatment planner

  15. BRIT manual after loading brachytherapy kit for intracavitary: initial experience

    International Nuclear Information System (INIS)

    Aggarwal, Lalit M.; Mandal, Abhijit; Asthana, Anupam K.; Shahi, Uday P.; Pradhan, Satyajit

    2007-01-01

    Brachytherapy continues to serve as an important and rapidly evolving tool in the management of cancer. Technological developments in the last two decades have dramatic impact on the safe practice of brachytherapy. A wide range of brachytherapy sources and equipment are available for new therapeutic possibilities. However, decision making with regard to new brachytherapy facilities are need based and depend on the patient load, socioeconomic status of the patients, and funds available with the institution. Remote afterloading equipments are fast replacing the Manual After Loading (MAL) systems. However, keeping in view the large number of patients, who can not afford expensive treatment, the utility of manual after loading system which is inexpensive, cannot be ignored

  16. Radiobiological considerations in gynaecological HDR and LDR brachytherapy

    International Nuclear Information System (INIS)

    Bauer, M.; Schulz-Wendtland, R.

    1989-01-01

    In brachytherapy the advantages of high dose rate over low dose rate afterloading therapy were obvious. Out-patient treatment becomes possible, the position of the sources is reproducible and can be observed during the treatment and the patients have to be immobilised for only a short time, giving less psychological stress and a decreased risk of thrombosis and embolism. When changing from LDR to HDR afterloading therapy we are not yet able to evaluate its biological impact. Radiobiological considerations and our experimental data, however, give us the following clinical consequences by using HDR brachytherapy: There is a need for about 15 fractions or more and each increase in dose rate requires higher fractioning. Due to the steep dose rate decline and the inhomogeneous dose distribution, multiple equivalence factors are necessary when fractioning is not sufficiently high. Correction factors to reduce the dose close to the source are low, with increasing distance from the source they increase. If HDR radiation therapy is used, the percutaneous dose in the pelvic wall region should be reduced. The reduction of the dose in HDR brachytherapy is a compromise to limit the side effects caused by the radiation. The drawback is a small therapeutic range and reduced therapeutic effectivity at the tumour. (orig.) [de

  17. Quality control of 192Ir high dose rate after loading brachytherapy dose veracity

    International Nuclear Information System (INIS)

    Feng Zhongsu; Xu Xiao; Liu Fen

    2008-01-01

    Recently, 192 Ir high dose rate (HDR) afterloading are widely used in brachytherapy. The advantage of using HDR systems over low dose rate systems are shorter treatment time and higher fraction dose. To guarantee the veracity of the delivery dose, several quality control methods are deseribed in this work. With these we can improve the position precision, time precision and dose precision of the brachytherapy. (authors)

  18. Volume and dose rate dependent (MDR-LDR Ir-192 afterloading interstitial brachytherapy) treatment optimisation, for squamouscell carcinoma of the lip

    International Nuclear Information System (INIS)

    Stas, Nathalie; Goncalves, Julieta; Pinho, Eliana; Trigo, Lurdes; Fernandes, Tome; Vieira, Elio

    1996-01-01

    Introduction: From 1/1/90 to 1/1/95, 53 patients with squamouscell carcinoma of the lip were treated by MDR or LDR Ir-192 afterloading interstitital brachytherapy. We compare the oncological and aesthetical results and sequelae depending on the volume and the dose rate. Material and methods: 53 patients, 41 men and 12 women, median age = 66y; 48 primary tumors (T1 = 26; T2 = 16; T3 = 6; N0 = 47; N1 = 1; M0 = 48) and 5 recurrencies; squamouscell carcinoma (grade 1 =45, g2 =6, g3 =2); clinical extension: buccal comissure=3, check =2, muscular =15, skin =7, lower and upper lip =1. Before radiotherapy, 28 biopsies and 25 excisional surgeries (19 with positive margins, 6 with negative margins) were performed. Brachytherapy was performed alone (dose 60-75 Gy BD85%) or as a boost (dose 10-30 Gy BD85%) associated with external beam (dose 46-50 Gy). MDR or LDR microselectron's afterloading was done after a computerised dosimetry (Paris System): treatment mean time = 30, 98 hours; mean volume = 10,2 cc (T1-T2 8, 61cc); Ir - 192 activity = range 0,7 - 4,792 mCi/cm; reference dose rate 45,6 - 290, 1 cGy/h. Results: 46 patients are alive without cancer, 1 died without responding, 6 died from non oncological diseases; 8 patients had recurrences (5 local, 3 nodal) but are alive. Mean follow-up 30,83 months (range 3-60m), mean DFS = 22,49 m (range 5-57m). Acute secondary effects: 30 radioepithelyties (grade 1 = 7, g2=23, g3=14), and 39 radiomucitis (g1=3; g2=23; g3=13); mean time for complete healing = 21, 66 days. Sequelae: moderate sclerosis of the skin =11, skin retraction = 1, hyperpigmentation2, depigmentation= 10, edema= 6, gingivitis= 7. Aesthetical results: good32; moderate= 18; bad= 2, very bad= 1 (uncontrolled tumor). Conclusions: The sequelae and aesthetical results are closely dependent on the treated volume and the dose rate, less dependent on the total dose, and independent on the Iridium activity. Complete healing time does not influence the late aesthetical results

  19. Relocation of a nucletron microselectron-HDR brachytherapy system

    Energy Technology Data Exchange (ETDEWEB)

    Bartrum, T; Tran, T; Freeman, N; Morales, J [St Vincents Hospital, Darlinghurst, NSW (Australia)

    2004-12-15

    Full text: For a period of four weeks, our clinical Nucletron microSelectron high dose rate (HDR) brachytherapy system was pulled out of clinical use and relocated to a new building. During this period decommission tests, de-wiring of the treatment unit and its associated safety system (such as radiation detector, emergency off circuits and door interlocks), transportation of all equipment, re-wiring of this equipment in the new location and recommission tests were carried out. The decommission and recommission test program was designed upon consultation with the manufacturer's (Nucletron) acceptance test procedures and work carried out by others. The ACPSEM tolerances for remote afterloaders was used as a guideline. In addition to mandatory dosimetry, positional, workstation database and safety tests, two Australian Standard compliance tests were carried out. The compliance tests involved one for remote afterloaders and another for treatment room design. This testing program was designed and implemented with the aim of ensuring ongoing safe delivery of brachytherapy doses to the patient. The testing program consisted of two parts. The first involved a series of decommissioning tests that consisted of dosimetry tests such as source and check cable positional accuracy and source calibration tests. In addition to these tests an inventory of standard plans, patient records and system configuration information was catalogued. The second part involved a series of recommission tests and involved carrying out dosimetry tests on the brachytherapy system (positional accuracy and calibration tests), simulating common treatment scenarios (prostate, cervical, vaginal and bile duct) and checking standard plans; patient records and system configuration had remained unchanged. During this period, other tests were carried out. These included Nucletron acceptance and preventative maintenance tests, Australian Standards compliance testing and integrity of network transfer of

  20. Relocation of a nucletron microselectron-HDR brachytherapy system

    International Nuclear Information System (INIS)

    Bartrum, T.; Tran, T.; Freeman, N.; Morales, J.

    2004-01-01

    Full text: For a period of four weeks, our clinical Nucletron microSelectron high dose rate (HDR) brachytherapy system was pulled out of clinical use and relocated to a new building. During this period decommission tests, de-wiring of the treatment unit and its associated safety system (such as radiation detector, emergency off circuits and door interlocks), transportation of all equipment, re-wiring of this equipment in the new location and recommission tests were carried out. The decommission and recommission test program was designed upon consultation with the manufacturer's (Nucletron) acceptance test procedures and work carried out by others. The ACPSEM tolerances for remote afterloaders was used as a guideline. In addition to mandatory dosimetry, positional, workstation database and safety tests, two Australian Standard compliance tests were carried out. The compliance tests involved one for remote afterloaders and another for treatment room design. This testing program was designed and implemented with the aim of ensuring ongoing safe delivery of brachytherapy doses to the patient. The testing program consisted of two parts. The first involved a series of decommissioning tests that consisted of dosimetry tests such as source and check cable positional accuracy and source calibration tests. In addition to these tests an inventory of standard plans, patient records and system configuration information was catalogued. The second part involved a series of recommission tests and involved carrying out dosimetry tests on the brachytherapy system (positional accuracy and calibration tests), simulating common treatment scenarios (prostate, cervical, vaginal and bile duct) and checking standard plans; patient records and system configuration had remained unchanged. During this period, other tests were carried out. These included Nucletron acceptance and preventative maintenance tests, Australian Standards compliance testing and integrity of network transfer of

  1. Brachytherapy of endometrial cancers

    International Nuclear Information System (INIS)

    Peiffert, D.; Hoffstetter, S.; Charra-Brunaud, C.

    2003-01-01

    Endometrial adenocarcinomas rank third as tumoral sites en France. The tumors are confined to the uterus in 80% of the cases. Brachytherapy has a large place in the therapeutic strategy. The gold standard treatment remains extra-fascial hysterectomy with bilateral annexiectomy and bilateral internal iliac lymph node dissection. However, after surgery alone, the rate of locoregional relapses reaches 4-20%, which is reduced to 0-5% after postoperative brachytherapy of the vaginal cuff. This postoperative brachytherapy is delivered as outpatients treatment, by 3 or 4 fractions, at high dose rate. The utero-vaginal preoperative brachytherapy remains well adapted to the tumors which involve the uterine cervix. Patients presenting a localized tumor but not operable for general reasons (< 10%) can be treated with success by exclusive irradiation, which associates a pelvic irradiation followed by an utero-vaginal brachytherapy. A high local control of about 80-90% is obtained, a little lower than surgery, with a higher risk of late complications. Last but not least, local relapses in the vaginal cuff, or in the perimeatic area, can be treated by interstitial salvage brachytherapy, associated if possible with external beam irradiation. The local control is reached in half of the patients, but metastatic dissemination is frequent. We conclude that brachytherapy has a major role in the treatment of endometrial adenocarcinomas, in combination with surgery, or with external beam irradiation for not operable patients or in case of local relapses. It should use new technologies now available including computerized after-loaders and 3D dose calculation. (authors)

  2. Procedures for calibration of brachytherapy sources

    International Nuclear Information System (INIS)

    Alfonso Laguardia, R.; Alonso Samper, J.L.; Morales Lopez, J.L.; Saez Nunez, D.G.

    1997-01-01

    Brachytherapy source strength verification is a responsibility of the user of these source, in fact of the Medical Physicists in charge of this issue in a Radiotherapy Service. The calibration procedures in the users conditions are shown. Specifics methods for source strength determination are recommended, both for High Dose Rate (HDR) sources with Remote Afterloading equipment and for Low Dose Rate sources. The The results of the calibration of HDR Remote After loaders are indicated

  3. Dosimetric advancement of high-dose-rate after-loading 192Ir source

    International Nuclear Information System (INIS)

    Zhang Shuxu; Li Wenhua; Xu Hairong

    2004-01-01

    High-dose-rate (HDR) 192 Ir source is a nuclide commonly used in the brachytherapy system. The basic dosimetry data of the near source area is usually measured by pin ion chambers or TLD techniques, but these methods have a lower spatial resolution than Electron spin resonance (ESR) dosimetry which has a spatial resolution of 156 μm, and the Monte Carlo photon transport simulations are taken as the golden standard of those measures. The precision in two-dimensional dose distribution measured by GafChromic film is reported to be 1.0%. In vivo dosimetry using TLD during HDR intracavitary after-loading brachytherapy is a good predictor of late rectal complications. The accuracy of magnetic resonance imaging (MRI) Fricke-gel dosimetry for three-dimensional dose distribution is about 2.5% with a spatial resolution of 1.56 mm. The optical computed tomography polymer gel dosimetry has a unique advance than MRI gel dosimetry

  4. 1251 seed calibration using afterloading equipment SeedSelectron. Practical solution to meet the recommendations of the AAPM

    International Nuclear Information System (INIS)

    Perez-Calatayud, J.; Richart, J.; Perez-Garcia, J.; Guirado, D.; Ballester, F.; Rodriguez, S.; Santos, M.; Depiaggio, M.; Carmona, V.; Lliso, F.; Camacho, C.; Pujades, M. C.

    2011-01-01

    SeedSelectron is a system used in the afterloader permanent implant brachytherapy seeds 1-125 interstitial prostate. Two aspects are critical when you can meet the recommendations of the AAPM: a practical difficulty to check the quantity of seed required, and the great uncertainty of all measured diodes. The purpose of this paper is to present a practical solution that has been adopted to implement the recommendations of the AAPM

  5. Experience with LDR and MDR brachytherapy for cervical cancer

    International Nuclear Information System (INIS)

    Okawa, Tomohiko; Okawa, Midori-Kita; Kaneyasu, Yuko; Karasawa, Kumiko; Fukuhara, Noboru

    1996-01-01

    As the brachytherapy dose-rate increases, it is necessary to reduce the total dose or to increase the fraction number with reducing the fraction dose in order not to increase the incidence of the late effect. With the introduction to the Tokyo Women's Medical College, Hospital of a remote afterloading system of Selectron - MDR, delivering dose-rate to point A became approximately twice of that with our classical cesium LDR manual afterloading technique. Material and Methods: Between 1987 to 1993 a total of, previously untreated 74 patients with cervical cancer received MDR brachytherapy using a Selection - MDR. This analysis is therefore of those patients series who underwent radical radioradiotherapy with MDR, 1987-1993, in comparison with the 347 cases who were treated with classical manual LDR afterloading machine, 1969-1986. The treatment was a brachytherapy during external radiotherapy and dos-rate at point A was 160-180 cGy/hour with MDR and 80-90 cGy/hour with LDR. The mean fraction dose was 800-1000 cGy by MDR and 1000-1200 cGy by LDR and fraction number was increased 1-2times in the MDR group with no change of a total dose at point A. Results: The mean age was 63.3 years in the MDR group and 60.2 in the LDR group. In the MDR group, 4 patients were at stage I, 16 stage II, 32 stage III, and 22 stage IV. In the LDR group, 32 were at stage I, 83 stage II, 183 stage III, and 49 stage IV. The medical rate was not significantly different between two groups. The tumor response by manual examination one month after radiotherapy showed no significant difference. The 5-year survival rate for the MDR and LDR groups were 100% : 78% at stage I, 61% : 71% at stage II and 52% : 53% at stage III, with no significant differences. Late complications by severity with grade II-III according to Kottureire's classification were not significantly different in the rectum or bladder. These results suggested that MDR brachytherapy was useful for the patients' QOL as it reduced the

  6. Pulsed dose rate (PDR) brachytherapy as salvage treatment of locally advanced or recurrent gynecologic cancer

    DEFF Research Database (Denmark)

    Jensen, P T; Roed, H; Engelholm, S A

    1998-01-01

    PURPOSE: Pulsed dose rate (PDR) brachytherapy is a new treatment option permitting dose distribution optimization in interstitial implants. It possesses the advantage of equipment simplification and radiation protection to the staff, compared to the manually afterloading technique. This study pre...

  7. [Developments in brachytherapy].

    Science.gov (United States)

    Ikeda, H

    1995-09-01

    Brachytherapy is one of the ideal methods of radiotherapy because of the concentration of a high dose on the target. Recent developments, including induction of afterloading method, utilization of small-sized high-activity sources such as Iridium-192, and induction of high technology and computerization, have made for shortening of irradiation time and source handling, which has led to easier management of the patient during treatment. Dose distribution at high dose rate (HDR) is at least as good as that of low dose rate (LDR), and selection of fractionation and treatment time assures even greater biological effects on hypoxic tumor cells than LDR. Experience with HDR brachytherapy in uterine cervix cancer using Cobalt-60 during the past 20 years in this country has gradually been evaluated in U.S. and Europe. The indications for HDR treatment have extended to esophagus, bronchus, bile duct, brain, intraoperative placement of source guide, and perineal region using templates, as well as the conventional use for uterus, tongue and so on.

  8. Oncentra brachytherapy planning system.

    Science.gov (United States)

    Yang, Jack

    2018-03-27

    In modern cancer management, treatment planning has progressed as a contemporary tool with all the advances in computing power in recent years. One of the advanced planning tools uses 3-dimensional (3D) data sets for accurate dose distributions in patient prescription. Among these planning processes, brachytherapy has been a very important part of a successful cancer management program, offering clinical benefits with specific or combined treatments with external beam therapy. In this chapter, we mainly discussed the Elekta Oncentra planning system, which is the main treatment planning tool for high-dose rate (HDR) modality in our facility and in many other facilities in the United States. HDR is a technically advanced form of brachytherapy; a high-intensity radiation source (3.6 mm in length) is delivered with step motor in submillimeter precision under computer guidance directly into the tumor areas while minimizing injury to surrounding normal healthy tissue. Oncentra planning is the key component to generate a deliverable brachytherapy procedure, which is executed on the microSelectron V3 remote afterloader treatment system. Creating a highly conformal plan can be a time-consuming task. The development of Oncentra software (version 4.5.3) offers a variety of useful tools that facilitate many of the clinical challenging tasks for planning, such as contouring and image reconstruction, as well as rapid planning calculations with dose and dose volume histogram analysis. Oncentra Brachy module creates workflow and optimizes the planning accuracy for wide varieties of clinical HDR treatments, such as skin, gynecologic (GYN), breast, prostate, and many other applications. The treatment file can also be transferred to the afterloader control station for speedy delivery. The design concept, calculation algorithms, and optimization modules presented some key characteristics to plan and treat the patients effectively and accurately. The dose distribution and accuracy of

  9. Reirradiation of nasopharyngeal carcinoma with intracavitary mold brachytherapy: an effective means of local salvage

    International Nuclear Information System (INIS)

    Law, Stephen C.K.; Lam, W.-K.; Ng, M.-F.; Au, S.-K.; Mak, W.-T.; Lau, W.-H.

    2002-01-01

    Purpose: To assess the role of intracavitary mold brachytherapy in salvaging local failure of nasopharyngeal carcinoma (NPC). Methods and Materials: The outcomes of 118 consecutive NPC patients with local failure treated with mold brachytherapy between 1989 and 1996 were retrospectively reviewed. Eleven patients received additional external radiotherapy. Results: All molds were tailor-made, and the whole procedure was performed under local anesthesia. Pharyngeal recess dissection was routinely performed to allow direct contact of the radioactive source with the pharyngeal recess, a common site of local failure. Initially, the molds were preloaded with 192 Ir wires, but since 1992, the sources have been manually afterloaded; the mold has also been redesigned for better conformity, ease of insertion, and radiation safety. Using brachytherapy alone, 50-55 Gy was given for recurrence in 4-7 days; for persistence, 40 Gy was administered. The overall complete remission rate was 97%. The rates of 5-year local control, relapse-free survival, disease-specific survival, overall survival, and major complication were 85%, 68.3%, 74.8%, 61.3%, and 46.9%, respectively. Major complications included nasopharyngeal necrosis with headache, necrosis of cervical vertebrae with atlantoaxial instability, temporal lobe necrosis, and palsy of the cranial nerves. The afterloaded mold was as effective as the preloaded version, but with fewer complications. Conclusions: Intracavitary mold brachytherapy was effective in salvaging NPC with early-stage local persistence or first recurrence

  10. Brachytherapy for carcinoma of the cervix: A Canadian survey of practice patterns in a changing era

    International Nuclear Information System (INIS)

    Pearce, Andrew; Craighead, Peter; Kay, Ian; Traptow, Laurel; Doll, Corinne

    2009-01-01

    Background and purpose: This survey aimed to document practices of Canadian radiation oncologists performing gynecologic brachytherapy for carcinoma of the cervix and to determine what the effect of the phasing-out of LDR after-loading systems from the commercial market is having on practice. Materials and methods: A 26-item questionnaire was developed to survey various aspects of brachytherapy practice to include: number of patients treated, prescription points/volume, dose and fractionation, timing, critical structure delineation, expected changes due to the phasing-out of support for low dose rate systems, and support for the development of national guidelines. A link to a web-based survey collection instrument was emailed to each radiation oncologist in Canada practicing gynecologic brachytherapy. Results: A 67% response rate was achieved in this web-based survey. Radiation oncologists currently using HDR brachytherapy are most commonly delivering 5 fractions of 6 Gy in addition to an EBRT dose of 45 Gy in 25 fractions. The median total dose equivalents to Point A was 82.9 Gy for both early and advanced disease. In response to the announcement by a major vendor that they would be phasing-out service for a popular LDR after-loader, 49% of Canadian radiation oncologists who practice brachytherapy for cervix cancer are changing to an HDR technique with a further 9% changing to a PDR technique. Eighty-six percent of respondents would support the development of national guidelines for cervix brachytherapy in Canada. Conclusions: Variation in practice exists in Canada in brachytherapy for cervix cancer. Many centers are in the process of phasing-out LDR techniques in response to the withdrawal of commercial support for these systems. Support for the development of Canadian national guidelines is high.

  11. Ultrasonography-guided cobalt-60 brachytherapy for malignant glioma

    International Nuclear Information System (INIS)

    Sakai, Noboru; Takenaka, Katsunobu; Ueda, Tatsuya

    1989-01-01

    Brachytherapy with cobalt-60 source is reported. In this method it is characterized that the source is inserted interstitially with remote control system by after-loading method via outer catheter (using tandem tube), which was established in the center of residual tumor, using ultrasonography guide with trepanation, or intraoperatively put within the dead space after tumor resection. Six cases of deep-seated and recurrent malignant glioma, were treated with this method. A total dose of 20 to 45 Gy (10 to 15 Gy/day for 2 to 3 days) was delivered to the target. Additionally conventional external irradiation was followed. The effect of cobalt-60 brachytherapy on such tumors were favorable especially for well-circumscribed glioma less than 3 cm on CT scan. (author)

  12. Afterloading

    Energy Technology Data Exchange (ETDEWEB)

    Watson, E R [Glasgow Western Infirmary (UK)

    1981-12-01

    The protection of personnel, particularly nurses, looking after patients being treated with small sealed radioactive sources in the form of intracavitary insertions is one of the main outstanding radiation protection problems. Automatic afterloading machines would seem to be an ideal solution as manual afterloading does not protect the staff at greatest risk. High and low dose rate machines each have their own followers. The use of the low dose rate Selectron unit at Glasgow in the treatment of 35 patients mostly with carcinoma of the cervix is discussed. The Selectron unit has presented certain problems but these are gradually being overcome. The patients have accepted the machine fairly well but it is too early to give a meaningful assessment of the results.

  13. Brachytherapy source calibration, reviews, and consistency of 192Ir high-dose rate afterloading sources supplied over the period of 10 years: a retrospective analysis

    International Nuclear Information System (INIS)

    Nagappan, Balasubramanian; Kumar, Yogesh; Patel, Narayan P.; Dhull, Anil Kumar; Kaushal, Vivek

    2015-01-01

    Measurement and verification of strength of monomodal high-dose rate (mHDR) 192 Ir source supplied by the vendor is a major part of quality assurance program. Reference air kerma rate (RAKR) or air kerma strength (AKS) is the recommended quantity to specify the strength of gamma emitting brachytherapy sources. Physicist in our institution performed the source calibration as soon as each 192 Ir new source was loaded on the mHDR afterloading machine. The AKS accurately measured using a physikalisch technische werkstatten (PTW) re-entrant chamber-electrometer system in a scatter-free geometry was used to compute the air kerma rate (AKR) at one-meter distance in the air. To ensure accurate dose delivery to brachytherapy patients, measured AKS or RAKR should be entered correctly in both HDR treatment console station (TCS) as well as treatment planning system (TPS) associated with it. The clinical outcome mainly depends not only on the accuracy of the source strength measurement in the hospital but also on the correct source strength entered into both TCS and TPS software. A retrospective study on 22 mHDR V2 sources supplied by the vendor for the period of 10 years was taken up to access the accuracy of source strength supplied to the Radiotherapy department. The results are analyzed and reported. The accuracy in measured RAKR of all 22 sources supplied by vendor was well within the tolerance limits set by the national regulatory body and international recommendations. The deviations observed between measured RAKR versus manufacturer's quoted RAKR were in the range from -1.71% to +1.15%. In conclusion, the measured RAKR have good agreement with vendor quoted RAKR values. (author)

  14. Preliminary results of interstitial [sup 192]Ir brachytherapy for malignant gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Kengo; Nakagawa, Minoru; Higashi, Hisato [Okayama Univ. (Japan). School of Medicine; and others

    1992-09-01

    Twenty-six patients with recurrent or unremovable malignant gliomas were treated by interstitial brachytherapy with iridium-192 seeds. Stereotactic implantation of the afterloading catheters using the Brown-Roberts-Wells computed tomography (CT)-guided stereotactic system was performed in 24 patients and surgical CT, magnetic resonance imaging, and clinical examination. Tumor regression was seen in 17 patients 1-3 months after implantation. Tumor progression was seen in only three patients. After interstitial brachytherapy, the most commonly observed CT finding was central low density. Median survival time was 18 months after implantation. Autopsies in five patients revealed the delayed effects of radiation injury such as typical vascular changes, microcalcification, and coagulative necrosis in the implant area and tumor recurrence at the periphery. The results suggest that brachytherapy is not curative but prolonged the median survival time by 6 months. (author).

  15. Physics and quality assurance for high dose rate brachytherapy

    International Nuclear Information System (INIS)

    Anderson, Lowell L.

    1995-01-01

    Purpose: To review the physical aspects of high dose rate (HDR) brachytherapy, including commissioning and quality assurance, source calibration and dose distribution measurements, and treatment planning methods. Following the introduction of afterloading in brachytherapy, development efforts to make it 'remote' culminated in 1964 with the near-simultaneous appearance of remote afterloaders in five major medical centers. Four of these machines were 'high dose rate', three employing 60Co and one (the GammaMed) using a single, cable-mounted 192Ir source. Stepping-motor source control was added to the GammaMed in 1974, making it the precursor of modern remote afterloaders, which are now suitable for interstitial as well as intracavitary brachytherapy by virtue of small source-diameter and indexer-accessed multiple channels. Because the 192Ir sources currently used in HDR remote afterloaders are supplied at a nominal air-kerma strength of 11.4 cGy cm2 s-1 (10 Ci), are not collimated in clinical use, and emit a significant fraction (15%) of photons at energies greater than 600 keV, shielding and facility design must be undertaken as carefully and thoroughly as for external beam installations. Licensing requirements of regulatory agencies must be met with respect both to maximum permissible dose limits and to the existence and functionality of safety devices (door interlocks, radiation monitors, etc.). Commissioning and quality assurance procedures that must be documented for HDR remote afterloading relate to (1) machine, applicator, guide-tube, and facility functionality checks, (2) source calibration, (3) emergency response readiness, (4) planning software evaluation, and (5) independent checks of clinical dose calculations. Source calibration checks must be performed locally, either by in-air measurement of air kerma strength or with a well ionization chamber calibrated (by an accredited standards laboratory) against an in-air measurement of air kerma strength for the

  16. High dose rate afterloading intraluminal brachytherapy for advanced inoperable rectal carcinoma

    International Nuclear Information System (INIS)

    Hoskin, Peter J.; Canha, Sandra M. de; Bownes, Peter; Bryant, Linda; Jones, Rob Glynne

    2004-01-01

    Background and purpose: High dose rate intraluminal brachytherapy for tumours of the rectal and anal canal which were inoperable either because of the age and frailty of the patient or because of advanced disease has been evaluated. Patients and methods: In a retrospective review of 50 consecutive patients the two main indications for brachytherapy were as part of a radical radiation programme in those unfit for major surgery (26 patients) or as palliation for advanced or metastatic disease (22 patients). Radical treatment was either sole treatment delivering 6 Gy fraction 2 to 3 times weekly up to 36 Gy or as a boost of 12 Gy after 45 Gy in 25 fractions external beam chemoradiation. Palliative treatments were given predominantly as a single dose of 10 Gy. Results: This was predominantly a group of frail elderly patients with a median age of 82 years (range 35-91). Local tumour response was seen in 21/25 assessable patients with 14 complete responses. Median survival for the entire population was 6 months (range 1-54 months); in patients treated with 'radical' intent this was 25 months (range 1.5-54) and in the palliative group 7.2 months (range 1-37). The most common presenting symptom was bleeding per rectum for which a 64% response rate was obtained with 57% complete responses. Mucous discharge responded in 64% with 28% complete responses. The median duration of response was 7 months. Conclusion: Intraluminal HDR brachytherapy is an effective local treatment for patients otherwise unfit for radical surgery both as a component of radical treatment, or as a simple single palliative procedure

  17. Patterns of care for brachytherapy in Europe. Results in Spain.

    Science.gov (United States)

    López Torrecilla, J; Guedea, F; Heeren, G; Nissin, R; Ellison, T; Cottier, B

    2006-05-01

    In 2003 ESTRO began a project whose primary objective, was to make a map in the European area of infrastructures in technology and personnel for brachytherapy. A survey and a web site were elaborated. The survey was sent to the 76 Spanish Radiation Oncology departments in May 2003. By the end of 2003, 66 (86.8%) services had responded, 40 (71.4%) of which had brachytherapy. The services with brachytherapy treated 73.5% of the total patients, an average of 1,199 patients. The mean number of patients treated with brachytherapy by department was 135.5 and the number of applications was 265 annually. The average number of specialists was 7, 4 of them trained in brachytherapy. The average weekly work load of the radiation oncologists, physicists, and technicians was 22.6 h, 13.8 h and 21.0 h, respectively. The mean time dedicated to each patient by radiation oncologists, physicists and technicians was 9.2 h; 6.19 h; 7.2 h, respectively. The total number of afterloaders was 43 (22 HDR, 18 LDR, 3 PDR). The tumours most frequently treated with brachytherapy were gynaecological (56.24%), breast (14.2%) and prostate (11.7%). High dose rate was used in 47.46% of the patients and low dose rate in 47.24%. Between 1997 and 2002 there was an increase of 50.53% in patients treated with brachytherapy. The survey shows the brachytherapy resources and activity in Spain up to 2003. Increased use of brachytherapy in prostate tumours, prevalence of gynaecology brachytherapy and similar number of treatments with HDR and LDR are demonstrated in the Patterns of Care of Brachytherapy in Europe (PCBE) study in Spain.

  18. Application of the Monte Carlo integration method in calculations of dose distributions in HDR-Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Baltas, D; Geramani, K N; Ioannidis, G T; Kolotas, C; Zamboglou, N [Strahlenklinik, Stadtische Kliniken Offenbach, Offenbach (Germany); Giannouli, S [Department of Electrical and Computer Engineering, National Technical University of Athens, Athens (Greece)

    1999-12-31

    Source anisotropy is a very important factor in brachytherapy quality assurance of high dose rate HDR Ir 192 afterloading stepping sources. If anisotropy is not taken into account then doses received by a brachytherapy patient in certain directions can be in error by a clinically significant amount. Experimental measurements of anisotropy are very labour intensive. We have shown that within acceptable limits of accuracy, Monte Carlo integration (MCI) of a modified Sievert integral (3D generalisation) can provide the necessary data within a much shorter time scale than can experiments. Hence MCI can be used for routine quality assurance schedules whenever a new design of HDR or PDR Ir 192 is used for brachytherapy afterloading. Our MCI calculation results are comparable with published experimental data and Monte Carlo simulation data for microSelectron and VariSource Ir 192 sources. We have shown not only that MCI offers advantages over alternative numerical integration methods, but also that treating filtration coefficients as radial distance-dependent functions improves Sievert integral accuracy at low energies. This paper also provides anisotropy data for three new Ir 192 sources, one for microSelectron-HDR and two for the microSelectron-PDR, for which data currently is not available. The information we have obtained in this study can be incorporated into clinical practice.

  19. Procedures for brachytherapy sources lost in a radiotherapy department; Protocolo para fontes de braquiterapia extraviadas no ambiente hospitalar

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Adelaide de [Sao Paulo Univ., Ribeirao Preto, SP (Brazil). Faculdade de Filosofia, Ciencias e Letras

    1997-12-31

    Brachytherapy sources are easily lost in a Radiotherapy Department owing to unexpected behaviour of the patient and/or inattention of the people in charge of the sources. This work reports a protocol to be used when brachytherapy sources are lost and it was based on the search of three sealed sources of Cesium 137 with activity of 37 x 10{sup 7} Bq, removed by a patient from a conventional afterloading intra-uterine system (Henscke). (author) 5 refs., 3 figs.; e-mail: dalmeida at biomag.ffclrp.usp.br

  20. Introduction of a hybrid treatment delivery system used for quality assurance in multi-catheter interstitial brachytherapy

    Science.gov (United States)

    Kallis, Karoline; Kreppner, Stephan; Lotter, Michael; Fietkau, Rainer; Strnad, Vratislav; Bert, Christoph

    2018-05-01

    Multi-catheter interstitial brachytherapy (iBT) is a treatment option for breast cancer patients after breast conserving surgery. Typically, only a few additional quality interventions after the first irradiation have been introduced to ensure the planned treatment delivery. Therefore, the purpose of this study is to show the possibilities of an electromagnetic tracking (EMT) system integrated into the afterloader for quality assurance (QA) in high-dose rate (HDR) iBT of patients with breast cancer. The hybrid afterloader system equipped with an electromagnetic sensor was used for all phantom and patient measurements. Phantom measurements were conducted to estimate the quality of different evaluation schemes. After a coherent point drift registration of the EMT traces to the reconstructed catheters based on computed tomograms the dwell positions (DP) were defined. Different fitting and interpolation methods were analyzed for the reconstruction of DPs. All estimated DPs were compared to the DPs defined in treatment planning. Until now, the implant geometry of 20 patients treated with HDR brachytherapy was acquired and explored. Regarding the reconstruction techniques, both fitting and interpolation were able to detect manually introduced shifts and swaps. Nonetheless, interpolation showed superior results (RMSE  =  1.27 mm), whereas fitting seemed to be more stable to distortion and motion. The EMT system proved to be beneficial for QA in brachytherapy and furthermore, clinical feasibility was proven.

  1. Pulsed dose rate brachytherapy – is it the right way?

    Directory of Open Access Journals (Sweden)

    Janusz Skowronek

    2010-10-01

    Full Text Available Pulsed dose rate (PDR-BT treatment is a brachytherapy modality that combines physical advantages of high-doserate (HDR-BT technology (isodose optimization, radiation safety with the radiobiological advantages of low-dose-rate (LDR-BT brachytherapy. Pulsed brachytherapy consists of using stronger radiation source than for LDR-BT and producing series of short exposures of 10 to 30 minutes in every hour to approximately the same total dose in the sameoverall time as with the LDR-BT. Modern afterloading equipment offers certain advantages over interstitial or intracavitaryinsertion of separate needles, tubes, seeds or wires. Isodose volumes in tissues can be created flexibly by a combinationof careful placement of the catheter and the adjustment of the dwell times of the computerized stepping source.Automatic removal of the radiation sources into a shielded safe eliminates radiation exposures to staff and visitors.Radiation exposure is also eliminated to the staff who formerly loaded and unloaded multiplicity of radioactive sources into the catheters, ovoids, tubes etc. This review based on summarized clinical investigations, analyses the feasibility and the background to introduce this brachytherapy technique and chosen clinical applications of PDR-BT.

  2. Radiation safety program in high dose rate brachytherapy facility at INHS Asvini

    Directory of Open Access Journals (Sweden)

    Kirti Tyagi

    2014-01-01

    Full Text Available Brachytherapy concerns primarily the use of radioactive sealed sources which are inserted into catheters or applicators and placed directly into tissue either inside or very close to the target volume. The use of radiation in treatment of patients involves both benefits and risks. It has been reported that early radiation workers had developed radiation induced cancers. These incidents lead to continuous work for the improvement of radiation safety of patients and personnel The use of remote afterloading equipment has been developed to improve radiation safety in the delivery of treatment in brachytherapy. The widespread adoption of high dose rate brachytherapy needs appropriate quality assurance measures to minimize the risks to both patients and medical staff. The radiation safety program covers five major aspects: quality control, quality assurance, radiation monitoring, preventive maintenance, administrative measures and quality audit. This paper will discuss the radiation safety program developedfor a high dose rate brachytherapy facility at our centre which may serve as a guideline for other centres intending to install a similar facility.

  3. Reconstruction of MRI/CT compatible ring and tandem applicators in CT or MRI images used for treatment planning in brachytherapy

    International Nuclear Information System (INIS)

    Surendran, N.; Kim, Hayeon; Beriwal, Sushil; Saiful Huq, M.

    2008-01-01

    Brachytherapy (BT) plays a crucial role in the management of invasive cervix cancer from stage I to IV. Intracavitary techniques are based on afterloading devices, with different types of applicators. CT and/or MRI compatible applicators allow a sectional image based approach with a better assessment of gross tumour volume (GTV) and definition and delineation of target volume (CTV) compared to traditional approaches. To evaluate reconstruction of MRI/CT compatible ring and tandem applicators in 3D CT or MRI images used for treatment planning in Brachytherapy

  4. Physics and quality assurance for brachytherapy - Part I: High dose rates

    International Nuclear Information System (INIS)

    Anderson, Lowell L.

    1997-01-01

    Purpose: To review the physical aspects of high dose rate (HDR) brachytherapy, including commissioning and quality assurance, source calibration and dose distribution measurements, and treatment planning methods. Following the introduction of afterloading in brachytherapy, development efforts to make it 'remote' culminated in 1964 with the near-simultaneous appearance of remote afterloaders in five major medical centers. Four of these machines were 'high dose rate', three employing 60Co and one (the GammaMed) using a single, cable-mounted 192Ir source. Stepping-motor source control was added to the GammaMed in 1974, making it the precursor of modern remote afterloaders, which are now suitable for interstitial, well as intracavitary brachytherapy by virtue of small source-diameter and indexer-accessed multiple channels. Because the 192Ir sources currently used in HDR remote afterloaders are supplied at a nominal air-kerma strength of 11.4 cGy cm2 s-1 (10 Ci), are not collimated in clinical use, and emit a significant fraction (15%) of photons at energies greater than 600 keV, shielding and facility design must be undertaken as carefully and thoroughly as for external beam installations. Licensing requirements of regulatory agencies must be met with respect both to maximum permissible dose limits and to the existence and functionality of safety devices (door interlocks, radiation monitors, etc.). Commissioning and quality assurance procedures that must be documented for HDR remote afterloading relate to (1) machine, applicator, guide-tube, and facility functionality checks, (2) source calibration, (3) emergency response readiness, (4) planning software evaluation, and (5) independent checks of clinical dose calculations. Source calibration checks must be performed locally, either by in-air measurement of air kerma strength or with a well ionization chamber calibrated (by an accredited standards laboratory) against an in-air measurement of air kerma strength for the

  5. WE-F-BRD-01: HDR Brachytherapy II: Integrating Imaging with HDR

    International Nuclear Information System (INIS)

    Craciunescu, O; Todor, D; Leeuw, A de

    2014-01-01

    In recent years, with the advent of high/pulsed dose rate afterloading technology, advanced treatment planning systems, CT/MRI compatible applicators, and advanced imaging platforms, image-guided adaptive brachytherapy treatments (IGABT) have started to play an ever increasing role in modern radiation therapy. The most accurate way to approach IGABT treatment is to provide the infrastructure that combines in a single setting an appropriate imaging device, a treatment planning system, and a treatment unit. The Brachytherapy Suite is not a new concept, yet the modern suites are incorporating state-of-the-art imaging (MRI, CBCT equipped simulators, CT, and /or US) that require correct integration with each other and with the treatment planning and delivery systems. Arguably, an MRI-equipped Brachytherapy Suite is the ideal setup for real-time adaptive brachytherapy treatments. The main impediment to MRI-IGABT adoption is access to MRI scanners. Very few radiation oncology departments currently house MRI scanners, and even fewer in a dedicated Brachytherapy Suite. CBCT equipped simulators are increasingly offered by manufacturers as part of a Brachytherapy Suite installation. If optimized, images acquired can be used for treatment planning, or can be registered with other imaging modalities. This infrastructure is relevant for all forms of brachytherapy, especially those utilizing multi-fractionated courses of treatment such as prostate and cervix. Moreover, for prostate brachytherapy, US imaging systems can be part of the suite to allow for real-time HDR/LDR treatments. Learning Objectives: Understand the adaptive workflow of MR-based IGBT for cervical cancer. Familiarize with commissioning aspects of a CBCT equipped simulator with emphasis on brachytherapy applications Learn about the current status and future developments in US-based prostate brachytherapy

  6. WE-F-BRD-01: HDR Brachytherapy II: Integrating Imaging with HDR

    Energy Technology Data Exchange (ETDEWEB)

    Craciunescu, O [Duke University Medical Center, Durham, NC (United States); Todor, D [Virginia Commonwealth University, Richmond, VA (United States); Leeuw, A de

    2014-06-15

    In recent years, with the advent of high/pulsed dose rate afterloading technology, advanced treatment planning systems, CT/MRI compatible applicators, and advanced imaging platforms, image-guided adaptive brachytherapy treatments (IGABT) have started to play an ever increasing role in modern radiation therapy. The most accurate way to approach IGABT treatment is to provide the infrastructure that combines in a single setting an appropriate imaging device, a treatment planning system, and a treatment unit. The Brachytherapy Suite is not a new concept, yet the modern suites are incorporating state-of-the-art imaging (MRI, CBCT equipped simulators, CT, and /or US) that require correct integration with each other and with the treatment planning and delivery systems. Arguably, an MRI-equipped Brachytherapy Suite is the ideal setup for real-time adaptive brachytherapy treatments. The main impediment to MRI-IGABT adoption is access to MRI scanners. Very few radiation oncology departments currently house MRI scanners, and even fewer in a dedicated Brachytherapy Suite. CBCT equipped simulators are increasingly offered by manufacturers as part of a Brachytherapy Suite installation. If optimized, images acquired can be used for treatment planning, or can be registered with other imaging modalities. This infrastructure is relevant for all forms of brachytherapy, especially those utilizing multi-fractionated courses of treatment such as prostate and cervix. Moreover, for prostate brachytherapy, US imaging systems can be part of the suite to allow for real-time HDR/LDR treatments. Learning Objectives: Understand the adaptive workflow of MR-based IGBT for cervical cancer. Familiarize with commissioning aspects of a CBCT equipped simulator with emphasis on brachytherapy applications Learn about the current status and future developments in US-based prostate brachytherapy.

  7. Definitive Brachytherapy for Kaposi's Sarcoma

    International Nuclear Information System (INIS)

    Williams, A.; Ezzell, G.; Zalupski, M.; Fontanesi, J.

    1996-01-01

    Purpose: To assess the efficacy and possible complications in patients diagnosed with Kaposi's sarcoma and treated with definitive brachytherapy. Methods and Materials: Between January, 1995 and December, 1995, four patients with Kaposi's sarcoma (KS) were treated with brachytherapy. Three patients, all with positive HIV status were treated using Iridium 192 (Ir-192) sources via a high-dose rate remote afterloader. One patient with endemic KS was treated using the application of catheters loaded with Californium 252. Eight sites were treated and included scalp, feet, nose, penis, hand, neck, and back. Dose rate for Ir-192 was 330cGy/fx to a total dose of 990cGy. The Californium was delivered as 100nGy/b.i.d. to a total dose of 900nGy. Follow-up as ranged from 2-6 months. Results: All four patients remain alive. Seven of eight sites have had complete clinical response and each patient has reported durable pain relief that has not subsided through last follow-up of 1/96. Two of eight sites, both treated with surface mold technique with Californium 252 developed moist desquamation. The remaining six sites did not demonstrate significant toxicity. Conclusion: Brachytherapy can offer Kaposi's sarcoma patients results that are equivalent to external beam radiation therapy, with minimal complications, a shorter treatment time and potential cost effectiveness

  8. High-dose-rate brachytherapy using molds for oral cavity cancer. The technique and its limitations

    International Nuclear Information System (INIS)

    Nishimura, Yasumasa; Yokoe, Yoshihiko; Nagata, Yasushi; Okajima, Kaoru; Nishida, Mitsuo; Hiraoka, Masahiro

    1998-01-01

    With the availability of a high-dose-rate (HDR) remote afterloading device, a Phase I/II protocol was initiated at our institution to assess the toxicity and efficacy of HDR intracavitary brachytherapy, using molds, in the treatment of squamous cell carcinomas of the oral cavity. Eight patients with squamous cell carcinoma of the oral cavity were treated by the technique. The primary sites of the tumors were the buccal mucosa, oral floor, and gingiva. Two of the buccal mucosal cancers were located in the retromolar trigon. For each patient, a customized mold was fabricated, in which two to four afterloading catheters were placed for an 192 Ir HDR source. Four to seven fractions of 3-4 Gy, 5 mm below the mold surface, were given following external radiation therapy of 40-60 Gy/ 2 Gy. The total dose of HDR brachytherapy ranged from 16 to 28Gy. Although a good initial complete response rate of 7/8 (88%) was achieved, there was local recurrence in four of these seven patients. Both of the retromolar trigon tumors showed marginal recurrence. No serious (e.g., ulcer or bone exposure) late radiation damage has been observed thus far in the follow up period of 15-57 months. High-dose-rate brachytherapy using the mold technique seems a safe and useful method for selected early and superficial oral cavity cancer. However, it is not indicated for thick tumors and/or tumors located in the retromolar trigon. (author)

  9. Impact of 'optimized' treatment planning for tandem and ring, and tandem and ovoids, using high dose rate brachytherapy for cervical cancer

    International Nuclear Information System (INIS)

    Noyes, William R.; Peters, Nancy E.; Thomadsen, Bruce R.; Fowler, Jack F.; Buchler, Dolores A.; Stitt, Judith A.; Kinsella, Timothy J.

    1995-01-01

    Purpose: Different treatment techniques are used in high dose rate (HDR) remote afterloading intracavitary brachytherapy for uterine cervical cancer. We have investigated the differences between 'optimized' and 'nonoptimized' therapy using both a tandem and ring (T/R) applicator, and a tandem and ovoids (T/O), applicator. Methods and Materials: HDR afterloading brachytherapy using the Madison System for Stage IB cervical cancer was simulated for 10 different patients using both a T/R applicator and a T/O applicator. A treatment course consists of external beam irradiation and five insertions of HDR afterloading brachytherapy. Full dosimetry calculations were performed at the initial insertion for both applicators and used as a reference for the following four insertions of the appropriate applicator. Forty dosimetry calculations were performed to determine the dose delivered to Point M (similar to Point A), Point E (obturator lymph nodes), vaginal surface, bladder, and rectum. 'Optimized' doses were specified to Point M and to the vaginal surface. 'Nonoptimized' doses were specified to Point M only. Using the linear-quadratic equation, calculations have been performed to convert the delivered dose using HDR to the biologically equivalent doses at the conventional low dose rate (LDR) at 0.60 Gy/h. Results: Major differences between 'optimized' and 'nonoptimized' LDR equivalent doses were found at the vaginal surface, bladder, and rectum. Overdoses at the vaginal surface, bladder, and rectum were calculated to be 208%, nil, and 42%, respectively, for the T/R applicator with 'nonoptimization'. However, for the T/O applicator, the overdoses were smaller, being nil, 32%, and 27%, respectively, with 'nonoptimization'. Conclusion: Doses given in high dose rate intracavitary brachytherapy border on tissue tolerance. 'Optimization' of either applicator decreases the risk of a dose that may have potential for complications. Optimization of a tandem and ovoids best ensures

  10. Current status of brachytherapy in cancer treatment – short overview

    Directory of Open Access Journals (Sweden)

    Janusz Skowronek

    2017-12-01

    Full Text Available Cancer incidence and mortality depend on a number of factors, including age, socio-economic status and geographical location, and its prevalence is growing around the world. Most of cancer treatments include external beam radiotherapy or brachytherapy. Brachytherapy, a type of radiotherapy with energy from radionuclides inserted directly into the tumor, is increasingly used in cancer treatment. For cervical and skin cancers, it has become a standard therapy for more than 100 years as well as an important part of the treatment guidelines for other malignancies, including head and neck, skin, breast, and prostate cancers. Compared to external beam radiotherapy, brachytherapy has the potential to deliver an ablative radiation dose over a short period of time directly to the altered tissue area with the advantage of a rapid fall-off in dose, and consequently, sparing of adjacent organs. As a result, the patient is able to complete the treatment earlier, and the risks of occurrence of another cancer are lower than in conventional radiotherapy treatment. Brachytherapy has increased its use as a radical or palliative treatment, and become more advanced with the spread of pulsed-dose-rate and high-dose-rate afterloading machines; the use of new 3D/4D planning systems has additionally improved the quality of the treatment. The aim of the present study was to present short summaries of current studies on brachytherapy for the most frequently diagnosed tumors. Data presented in this manuscript should help especially young physicians or physicists to explore and introduce brachytherapy in cancer treatments.

  11. Risk analysis of brachytherapy events

    International Nuclear Information System (INIS)

    Buricova, P.; Zackova, H.; Hobzova, L.; Novotny, J.; Kindlova, A.

    2005-01-01

    For prevention radiological events it is necessary to identify hazardous situation and to analyse the nature of committed errors. Though the recommendation on the classification and prevention of radiological events: Radiological accidents has been prepared in the framework of Czech Society of Radiation Oncology, Biology and Physics and it was approved by Czech regulatory body (SONS) in 1999, only a few reports have been submitted up to now from brachytherapy practice. At the radiotherapy departments attention has been paid more likely to the problems of dominant teletherapy treatments. But in the two last decades the usage of brachytherapy methods has gradually increased because .nature of this treatment well as the possibilities of operating facility have been completely changed: new radionuclides of high activity are introduced and sophisticate afterloading systems controlled by computers are used. Consequently also the nature of errors, which can occurred in the clinical practice, has been changing. To determine the potentially hazardous parts of procedure the so-called 'process tree', which follows the flow of entire treatment process, has been created for most frequent type of applications. Marking the location of errors on the process tree indicates where failures occurred and accumulation of marks along branches show weak points in the process. Analysed data provide useful information to prevent medical events in brachytherapy .The results strength the requirements given in Recommendations of SONS and revealed the need for its amendment. They call especially for systematic registration of the events. (authors)

  12. Comparison of 60Cobalt and 192Iridium sources in high dose rate afterloading brachytherapy

    International Nuclear Information System (INIS)

    Richter, J.; Baier, K.; Flentje, M.

    2008-01-01

    Purpose: 60 Co sources with dimensions identical to those of 192 Ir have recently been made available in clinical brachytherapy. A longer half time reduces demands on logistics and quality assurance and perhaps costs. Material and Methods: Comparison of the physical properties of 60 Co and 192 Ir with regard to brachytherapy. Results: Required activities for the same air kerma rate are lower by a factor of 2.8 for 60 Co. Differential absorption in tissues of different densities can be neglected. Monte Carlo calculations demonstrate that integral dose due to radial dose fall off is higher for 192 Ir in comparison to 60 Co within the first 22 cm from the source (normalization at 1 cm). At larger distances this relationship is reversed. Conclusion: Clinical examples for intracavitary and interstitial applications however, show practically identical dose distributions in the treatment volume. (orig.)

  13. Survey of brachytherapy practice in France in 1995. Definitive results

    International Nuclear Information System (INIS)

    Peiffert, D.; Simon, J.M.; Baillet, F.

    1998-01-01

    A survey questionnaire was sent to the 189 French departments of radiation Oncology and 166 responded (88%). Ninety-nine departments declared treating patients by brachytherapy and 358 shielded rooms were available. In Low Dose Rate (LDR) 81 departments used Cesium sources (159 after-loaders, 1,060 sources); Iridium wires were used by 84 departments (673 meters used). Only six departments used other elements. Twenty-six departments were equipped with high dose rate after loaders (HDR) all of them also using LDR techniques for most of the patients. A total of 9,160 patients were treated: 7,868 with LDR and 1,292 with HDR. The common sites treated by LDR were utero-vagina (4,300), breast (1,415), head and neck (1,409), skin (610), anorectal (220) and urologic (70). HDR was used for vaginal cuff (628), bronchi (371), oesophagus (232). PDR just started (33 patients) for a feasibility trial. The rate of patients treated by brachytherapy is around 6-8% of the irradiated patients, but the indications vary is each department. The diffusion of the techniques, and new indications should increase the number of patients being treated by brachytherapy. (authors)

  14. An analysis of personnel dose records which justifies the application of cost-benefit analysis techniques in the design of an afterloading facility and the use of controlled areas and systems of work within suite to control occupational exposure

    Energy Technology Data Exchange (ETDEWEB)

    Gifford, D; Kear, D [Bristol General Hospital (UK); Godden, T J [Bristol Radiotherapy and Oncology Centre (UK)

    1990-03-01

    The sealed source operational policies employed at the Bristol Radiotherapy and Oncology Centre are reviewed. On the basis of the cost-benefit analysis, it was decided not to provide additional shielding but rather to introduce administrative controls based on local rules which contained systems of work and the operational policies for the afterloading systems. After using the MDR afterloading systems for 2 years, a period in which there has also been a marked increase in interstitial brachytherapy, an analysis was made of the doses received by nursing staff over the past 8 years. This has shown that, in spite of higher dose rates in the corridor areas because of the use of an MDR system and the increase in interstitial techniques, the doses to ward nurses have been significantly reduced by encouraging staff to comply with the ALARA principle and the introduction of afterloading systems. (author).

  15. Monte Carlo Simulation of stepping source in afterloading intracavitary brachytherapy for GZP6 unit

    International Nuclear Information System (INIS)

    Toossi, M.T.B.; Abdollahi, M.; Ghorbani, M.

    2010-01-01

    Full text: Stepping source in brachytherapy systems is used to treat a target lesion longer than the effective treatment length of the source. Dose calculation accuracy plays a vital role in the outcome of brachytherapy treatment. In this study, the stepping source (channel 6) of GZP6 brachytherapy unit was simulated by Monte Carlo simulation and matrix shift method. The stepping source of GZP6 was simulated by Monte Carlo MCNPX code. The Mesh tally (type I) was employed for absorbed dose calculation in a cylindrical water phantom. 5 x 108 photon histories were scored and a 0.2% statistical uncertainty was obtained by Monte Carlo calculations. Dose distributions were obtained by our matrix shift method for esophageal cancer tumor lengths of 8 and 10 cm. Isodose curves produced by simulation and TPS were superimposed to estimate the differences. Results Comparison of Monte Carlo and TPS dose distributions show that in longitudinal direction (source movement direction) Monte Carlo and TPS dose distributions are comparable. [n transverse direction, the dose differences of 7 and 5% were observed for esophageal tumor lengths of 8 and 10 cm respectively. Conclusions Although, the results show that the maximum difference between Monte Carlo and TPS calculations is about 7%, but considering that the certified activity is given with ± I 0%, uncertainty, then an error of the order of 20% for Monte Carlo calculation would be reasonable. It can be suggested that accuracy of the dose distribution produced by TPS is acceptable for clinical applications. (author)

  16. Intracavitary mould brachytherapy in malignant tumors of the maxilla

    International Nuclear Information System (INIS)

    Rosenblatt, Edward; Blumenfeld, Israel; Cederbaum, Martin; Kuten, Abraham

    1996-01-01

    Purpose: To integrate brachytherapy in the combined modality management of malignant tumors of the maxilla, as a means of increasing the radiotherapy dose to the tumor bed while avoiding high doses to the orbital contents. Materials and methods: Following a partial or total maxillectomy, a duplication of the interim surgical obturator was created using a wash of vinyl polysiloxane. This mould was used as a carrier for afterloading nylon catheters through which 192-Iridium seed-ribbons were inserted. Following brachytherapy, selected patients also received external beam irradiation. Results and discussion: After a median follow-up of 36 months, 9 out of 11 patients are alive and disease-free; 1 developed a local recurrence and another relapsed at another site in the oral cavity. Transient grade 1 - 2 mucositis at the implant site was observed in all patients. The review of computer isodose distributions showed that the average dose received by the homolateral eyeball was 10% (range 9,2 - 10.0) of the prescribed surface dose to the surgical cavity. Conclusions: Brachytherapy can be integrated in the management of patients with malignant tumors of the maxilla in the form of a custom-made intracavitary mould carrying 192-Iridium sources. We found this technique particularly useful in cases with close or positive surgical margins

  17. Radiation safety program in a high dose rate brachytherapy facility

    International Nuclear Information System (INIS)

    Rodriguez, L.V.; Hermoso, T.M.; Solis, R.C.

    2001-01-01

    The use of remote afterloading equipment has been developed to improve radiation safety in the delivery of treatment in brachytherapy. Several accidents, however, have been reported involving high dose-rate brachytherapy system. These events, together with the desire to address the concerns of radiation workers, and the anticipated adoption of the International Basic Safety Standards for Protection Against Ionizing Radiation (IAEA, 1996), led to the development of the radiation safety program at the Department of Radiotherapy, Jose R. Reyes Memorial Medical Center and at the Division of Radiation Oncology, St. Luke's Medical Center. The radiation safety program covers five major aspects: quality control/quality assurance, radiation monitoring, preventive maintenance, administrative measures and quality audit. Measures for evaluation of effectiveness of the program include decreased unnecessary exposures of patients and staff, improved accuracy in treatment delivery and increased department efficiency due to the development of staff vigilance and decreased anxiety. The success in the implementation required the participation and cooperation of all the personnel involved in the procedures and strong management support. This paper will discuss the radiation safety program for a high dose rate brachytherapy facility developed at these two institutes which may serve as a guideline for other hospitals intending to install a similar facility. (author)

  18. Review of the afterloading techniques in gynecologic radiation therapy

    International Nuclear Information System (INIS)

    Rotte, K.

    1975-01-01

    A review of clinically used afterloading techniques - remote controlled and manually operated ones - is given by tables. The advantages of afterloading techniques are discussed with regard to radiation protection as well as to the therapy of gynecologic carcinomas. (orig.) [de

  19. Surface applicators for high dose rate brachytherapy in AIDS-related kaposi's sarcoma

    International Nuclear Information System (INIS)

    Evans, Michael D.C.; Yassa, Mariam; Podgorsak, Ervin B.; Roman, Ted N.; Schreiner, L. John; Souhami, Luis

    1997-01-01

    Purpose: The development of commercially available surface applicators using high dose rate remote afterloading devices has enabled radiotherapy centers to treat selected superficial lesions using a remote afterloading brachytherapy unit. The dosimetric parameters of these applicators, the clinical implementation of this technique, and a review of the initial patient treatment regimes are presented. Methods and Materials: A set of six fixed-diameter (1, 2, and 3 cm), tungsten/steel surface applicators is available for use with a single stepping-source (Ir-192, 370 GBq) high dose rate afterloader. The source can be positioned either in a parallel or perpendicular orientation to the treatment plane at the center of a conical aperture that sits at an SSD of approximately 15 mm and is used with a 1-mm thick removable plastic cap. The surface dose rates, percent depth dose, and off-axis ratios were measured. A custom-built, ceiling-mounted immobilization device secures the applicator on the surface of the patient's lesion during treatment. Results: Between November 1994, and September 1996, 16 AIDS-related Kaposi's sarcoma patients having a total of 120 lesions have been treated with palliative intent. Treatment sites were distributed between the head and neck, extremity, and torso. Doses ranged from 8 to 20 Gy, with a median dose of 10 Gy delivered in a single fraction. Treatments were well tolerated with minimal skin reaction, except for patients with lesions treated to 20 Gy who developed moderate/severe desquamation. Conclusion: Radiotherapy centers equipped with a high dose rate remote afterloading unit may treat small selected surface lesions with commercially available surface applicators. These surface applicators must be used with a protective cap to eliminate electron contamination. The optimal surface dose appears to be either 10 or 15 Gy depending upon the height of the lesion

  20. Development of computerized dose planning system and applicator for high dose rate remote afterloading irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Choi, T. J. [Keimyung Univ., Taegu (Korea); Kim, S. W. [Fatima Hospital, Taegu (Korea); Kim, O. B.; Lee, H. J.; Won, C. H. [Keimyung Univ., Taegu (Korea); Yoon, S. M. [Dong-a Univ., Pusan (Korea)

    2000-04-01

    To design and fabricate of the high dose rate source and applicators which are tandem, ovoids and colpostat for OB/Gyn brachytherapy includes the computerized dose planning system. Designed the high dose rate Ir-192 source with nuclide atomic power irradiation and investigated the dose characteristics of fabricated brachysource. We performed the effect of self-absorption and determining the gamma constant and output factor and determined the apparent activity of designed source. he automated computer planning system provided the 2D distribution and 3D includes analysis programs. Created the high dose rate source Ir-192, 10 Ci(370GBq). The effective attenuation factor from the self-absorption and source wall was examined to 0.55 of the activity of bare source and this factor is useful for determination of the apparent activity and gamma constant 4.69 Rcm{sup 2}/mCi-hr. Fabricated the colpostat was investigated the dose distributions of frontal, axial and sagittal plane in intra-cavitary radiation therapy for cervical cancer. The reduce dose at bladder and rectum area was found about 20 % of original dose. The computerized brachytherapy planning system provides the 2-dimensional isodose and 3-D include the dose-volume histogram(DVH) with graphic-user-interface mode. emoted afterloading device was built for experiment of created Ir-192 source with film dosimetry within {+-}1 mm discrepancy. 34 refs., 25 figs., 11 tabs. (Author)

  1. High-dose-rate afterloading brachytherapy in carcinoma of the cervix: an experience of 1992 patients

    International Nuclear Information System (INIS)

    Lorvidhaya, Vicharn; Tonusin, Anun; Changwiwit, Witit; Chitapanarux, Imjai; Srisomboon, Jatupol; Wanwilairat, Somsak; Chawapun, Nisa; Sukthomya, Vimol

    2000-01-01

    Purpose: To report the results of radiation therapy in carcinoma of the cervix treated by external irradiation and high-dose-rate (HDR) intracavitary brachytherapy. Methods and Materials: This is a retrospective analysis of 2063 patients with histologically proven carcinoma of the cervix treated by external irradiation and HDR intracavitary brachytherapy between March 1985-December 1991. The Kaplan-Meier method was used for survival and disease-free survival analysis. Late complications in the bowel and bladder were calculated actuarially. Results: There were 71 patients who did not complete the course of irradiation so only 1992 patients were retrospectively analyzed for survival. There were 2 patients (0.1%) in Stage IA, 211 (10.2%) Stage IB, 225 (10.9%) in Stage IIA, 902 (43.7%) in Stage IIB, 14 (0.7%) in Stage IIIA, 675 (32.7%) in Stage IIIB, 16 (0.8%) in Stage IVA, and 16 (0.8%) in Stage IVB. The median follow-up time was 96 months. The actuarial 5-year disease-free survival rate was 79.5%, 70.0%, 59.4%, 46.1%, 32.3%, 7.8%, and 23.1% for Stage IB, IIA, IIB, IIIA, IIIB, IVA, and IVB respectively. The actuarial 5-year disease-free survival rate for Stage IB 1 and IB 2 squamous cell carcinoma was 88.7% and 67.0%. The actuarial 5-year overall survival rate was 86.3%, 81.1%, 73.0%, 50.3%, 47.8%, 7.8%, and 30.8% for Stage IB, IIA, IIB, IIIA, IIIB, IVA, and IVB respectively. Pattern of failure revealed 20.8% local recurrence, 18.7% distant metastases, and 4% in both. The late complication rate Grade 3 and 4 (RTOG) for bowel and bladder combined was 7.0% with 1.9% Grade 4. Conclusion: HDR brachytherapy used in this series produced pelvic control and survival rates comparable to other LDR series

  2. Implementation of microsource high dose rate (mHDR) brachytherapy in developing countries

    International Nuclear Information System (INIS)

    2001-11-01

    Brachytherapy using remote afterloading of a single high dose rate 192 Ir microsource was developed in the 1970s. After its introduction to clinics, this system has spread rapidly among developed Member States and has become a highly desirable modality in cancer treatment. This technique is now gradually being introduced to the developing Member States. The 192 Ir sources are produced with a high specific activity. This results in a high dose rate (HDR) to the tumour and shorter treatment times. The high specific activity simultaneously results in a much smaller source (so-called micro source, around I mm in diameter) which may be easily inserted into tissue through a thin delivery tube, the so-called interstitial treatment, as well as easily inserted into body cavities, the so-called intracavitary or endoluminal treatment. Another advantage is the ability to change dwell time (the time a source remains in one position) of the stepping source which allows dose distribution to match the target volume more closely. The purpose of this TECDOC is to advise radiation oncologists, medical physicists and hospital administrators in hospitals which are planning to introduce 192 Ir microsource HDR (mHDR) remote afterloading systems. The document supplements IAEA-TECDOC-1040, Design and Implementation of a Radiotherapy Programme: Clinical, Medical Physics, Radiation Protection and Safety Aspects, and will facilitate implementation of this new brachytherapy technology, especially in developing countries. The operation of the system, 'how to use the system', is not within the scope of this document. This TECDOC is based on the recommendations of an Advisory Group meeting held in Vienna in April 1999

  3. Three-dimensional brachytherapy optimization techniques in the treatment of patients with cervix cancer

    International Nuclear Information System (INIS)

    Haie-Meder, C.; Mazeron, R.; Verezesan, O.; Monnier, L.; Vieillot, S.; Dumas, I.; Lhomme, C.; Morice, P.; Barillot, I.

    2009-01-01

    Traditionally, prescription and treatment planning in intracavitary brachytherapy for cervix cancer have used either reference points (mainly points A and B) or reference isodoses (60 Gy according to ICRU recommendations) to report doses to the target volume. Doses to critical organs were reported at bladder and rectum ICRU points. This practice has been supported by a long-standing clinical experience that has yielded an acceptable therapeutic ratio. The recent development of imaging has contributed to the improvement in target and organs at risk knowledge. In 2005 and 2006, the European group of brachytherapy -European Society for therapeutic radiology and oncology (GEC-E.S.T.R.O.) recommendations publications on 3-D based image brachytherapy have defined the different volumes of interest. These recommendations have been validated with intercomparison delineation studies. With the concomitant development of remote after-loading projectors, provided with miniaturized sources, it is now possible to plan radiation doses by adjusting dwell positions and relative dwell time values. These procedures allow better coverage of the targets while sparing O.A.R.. The recent literature data evidence a significant improvement in local control with no increase in complications. Further studies are needed to better define the dose recommended in both tumour and organs at risk. This is one of the goals of the European study on MRI-guided brachytherapy in locally advanced cervical cancer (E.M.B.R.A.C.E.) protocol (meaning of acronym: an international study on MRI-guided brachytherapy in locally advanced cervical cancer). (authors)

  4. Re-evaluation of a radiation protection cost benefit analysis study in brachytherapy

    International Nuclear Information System (INIS)

    Broek, J.G. van den; Weatherburn, H.

    1994-01-01

    This study investigates changes in the NRPB advice concerning cost benefit analysis over the last 10 years by correcting all figures for inflation and applying them to a particular radiation protection example, a previously published case of the introduction of afterloading brachytherapy equipment at the Christie Hospital, Manchester. It has been shown that for this example NRPB advice at one time led to a large cost benefit, at another time led to a large cost deficit and later still it again gives a large cost benefit. Application of cost benefit analysis to decision making in radiation protection is therefore shown to be in need of further investigation and clarification. (author)

  5. Current Brachytherapy Quality Assurance Guidance: Does It Meet the Challenges of Emerging Image-Guided Technologies?

    International Nuclear Information System (INIS)

    Williamson, Jeffrey F.

    2008-01-01

    In the past decade, brachytherapy has shifted from the traditional surgical paradigm to more modern three-dimensional image-based planning and delivery approaches. The role of intraoperative and multimodality image-based planning is growing. Published American Association of Physicists in Medicine, American College of Radiology, European Society for Therapeutic Radiology and Oncology, and International Atomic Energy Agency quality assurance (QA) guidelines largely emphasize the QA of planning and delivery devices rather than processes. These protocols have been designed to verify compliance with major performance specifications and are not risk based. With some exceptions, complete and clinically practical guidance exists for sources, QA instrumentation, non-image-based planning systems, applicators, remote afterloading systems, dosimetry, and calibration. Updated guidance is needed for intraoperative imaging systems and image-based planning systems. For non-image-based brachytherapy, the American Association of Physicists in Medicine Task Group reports 56 and 59 provide reasonable guidance on procedure-specific process flow and QA. However, improved guidance is needed even for established procedures such as ultrasound-guided prostate implants. Adaptive replanning in brachytherapy faces unsolved problems similar to that of image-guided adaptive external beam radiotherapy

  6. Endobronchial and endoesophageal high dose rate brachytherapy for malignant airway and digestive tract obstructions

    International Nuclear Information System (INIS)

    Mehta, Minesh P.

    1996-01-01

    With an annual incidence of more than 160,000 cases and a local failure rate between 30-50%, endobronchial occlusion seen with lung cancer is a common and potentially life-threatening complication. Several methods of managing this exist and recently endobronchial brachytherapy has been used extensively as a consequence of the development of fiberoptic bronchoscopy and high dose rate remote afterloading technology. Procedurally, one or more afterloading catheters are inserted in the involved portions of the tracheobronchial tree through fiberoptic guidance. Treatment techniques range from 1-4 applications fractionated over several weeks or given over 2 days with a single insertion procedure. Almost all procedures are currently performed in the outpatient setting. The major application of this technology is in the palliation of occlusive symptomatology. Clinical improvement ranges from 50-100%, radiographic reaeration ranges from 46-88% and bronchoscopic responses ranges from 59-100%. Symptomatic relief is usually quite durable with more than 70% of the patients' remaining life-time rendered symptom-free and symptom-improved. Recently, this modality has been explored for its curative potential as a boost following external beam radiotherapy. It is clear from these series, that in selected patients, endobronchial boost produces significant reaeration and sparing of lung volume from subsequent external radiation, and a few cases may even become resectable. Demonstration of the survival advantage will, however, require larger clinical trials with adequate controls. Some reports have suggested an unacceptably high rate of fatal hemoptysis following HDR endobronchial brachytherapy. Review of the world literature suggests that fatal hemoptysis rates range from 0-50% with an average of about 8%, comparable to an average of 5% with low dose rate brachytherapy. Other recognized complications include fistulae and radiation bronchitis. Because the majority of patients with

  7. Fricke gel-layer dosimetry in HDR brachytherapy

    International Nuclear Information System (INIS)

    Gambarini, G.; Negri, A.; Carrara, M.; Marchesini, R.

    2008-01-01

    Full text: In the last decade, technological improvements in radiotherapy have been significant and consequently the use and importance of radiotherapy in cancer treatment have increased greatly. In brachytherapy, new possibilities have been opened by the impressive progresses in 3D imaging, by the development of sophisticated techniques for modern afterloaders and by the constantly increasing speed and capacity of computers. However, these methodological improvements require corresponding improvements in the dosimetry methods, in order to ensure that the values calculated with computer treatment planning systems, adopted in the clinical praxis, agree with the delivered dose distributions. Fricke gel-layer dosimeters (FGLD) are under study by our group as a reliable alternative to films, semiconductors arrays or thermoluminescent dosimeters (TLDs). In the last years, we have significantly improved this technique by defining the FGLD best chemical composition, by optimizing the image acquisition assessment and by developing a dedicated software for image analysis. In this study, experimental measurements of planar dose distributions of a clinical 192 Ir source (Microselectron HDR, Nucletron) obtained by irradiating a series of piled-up FGL dosimeters in a tissue-equivalent phantom are presented. The obtained results were in accordance to TLD measurements and to treatment planning system (Plato, Nucletron) calculations. FGLD have proven to be a reliable tool to achieve HDR brachytherapy dose distribution measurements

  8. Stem signal suppression in fiber-coupled Al2O3:C dosimetry for 192Ir brachytherapy

    DEFF Research Database (Denmark)

    Kertzscher Schwencke, Gustavo Adolfo Vladimir; Andersen, Claus Erik; Edmund, J.M.

    2011-01-01

    was adapted for on-line in-vivo dosimetry using fiber-coupled carbon doped aluminum oxide (Al2O3:C). The technique involved a two-channel optical filtration of the radioluminescence (RL) emitted from a pre-irradiated Al2O3:C crystal with enhanced sensitivity. The system responded linearly in the absorbed dose......The stem signal, composed of fluorescence and Čerenkov light, becomes a significant source of uncertainty in fiber-coupled afterloaded brachytherapy dosimetry when the source dwells near the fiber cable but far from the detector. A stem suppression technique originally developed for scintillators...

  9. Gynecological brachytherapy - from low-dose-rate to high-tech. Gynaekologische Brachytherapie - von Low-dose-rate zu High-tech

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, T. (Abt. Strahlenthgerapie, Klinik und Poliklinik fuer Radiologie, Medizinische Akademie ' Carl Gustav Carus' , Dresden (Germany)); Christen, N. (Abt. Strahlenthgerapie, Klinik und Poliklinik fuer Radiologie, Medizinische Akademie ' Carl Gustav Carus' , Dresden (Germany)); Alheit, H.D. (Abt. Strahlenthgerapie, Klinik und Poliklinik fuer Radiologie, Medizinische Akademie ' Carl Gustav Carus' , Dresden (Germany))

    1993-03-01

    The transition from low-dose-rate (LDR) brachytherapy to high-dose-rate (HDR) afterloading treatment is in progress in most centres of radiation therapy. First reports of studies comparing HDR and LDR treatment in cervix cancer demonstrate nearly equal local control. In our own investigations on 319 patients with primary irradiated carcinoma of the cervix (125 HDR/194 LDR) we found the following control rates: Stage FIGO I 95.4%/82.9% (HDR versus LDR), stage FIGO II 71.4%/73.7%, stage FIGO III 57.9%/38.5%. The results are not significant. The side effects - scored after EORT/RTOG criteria - showed no significant differences between both therapies for serious radiogenic late effects on intestine, bladder and vagina. The study and findings from the literature confirm the advantage of the HDR-procedure for patient and radiooncologist and for radiation protection showing at least the same results as in the LDR-area. As for radiobiolgical point of view it is important to consider that the use of fractionation in the HDR-treatment is essential for the sparing of normal tissues and therefore a greater number of small fractionation doses in the brachytherapy should be desirable too. On the other hand the rules, which are true for fractionated percutaneous irradiation therapy (overall treatment time as short as possible to avoid reppopulation of tumor cells) should be taken into consideration in combined brachy-teletherapy regime in gynecologic tumors. The first step in this direction may be accelerated regime with a daily application of both treatment procedures. The central blocking of the brachytherapy region from the whole percutaneous treatment target volume should be critically reflected, especially in the case of advanced tumors. (orig.)

  10. Investigations concerning the application of PDR-afterloading-therapy

    International Nuclear Information System (INIS)

    Pohlmann, S.; Brock, A.; Prager, W.; Friedrich, K.

    1995-01-01

    Introduction: Despite the gain in experiences concerning the PDR-afterloading technology there are still some important questions about its application: Questions: 1. Are the radiation reactions of PDR with Ir-192 and LDR with Co-60 nearly the same? 2. In which way the PDR-regimen has to be modified in case of tumor volume 3 , e.g. brachytherapy in the head and neck region? 3. Is it possible to interrupt the PDR-therapy during the night? Material and methods: We compared the radiation reactions of LDR-technique and two PDR-regimens by means of the guinea pig skin model (20 female animals) The following regimens are used: 1. continuos LDR-regimen 30 Gy in 60 hours 2. PDR-regimen 0,5 Gy hourly pulse length 10 minutes, 30 Gy in 60 hours 3. PDR-regimen with 9 hours night break 30 Gy/60 hours The isodose distribution patterns of the LDR-source (Co-60 source with an activity of 2 GBq) and the PDR-source (Ir-192 source with an activity of nearly 15 GBq) are the same. We implanted an interstitial applicator on the right hand side of the animal back with a Co-60 source and on the left hand side an interstitial applicator for a PDR-irradiation. The radiation reactions were controlled by the help of an evaluation table in which the criteria of radiation reaction - exsudation, hair growth and atrophy - were classified according to the degree of seriousness. The observation time is maximal 21 months. The degrees of seriousness are presented graphically in diagrams which we analysed by means of the cross-correlation-function. Results and conclusions: 1. Generally, it is possible to compare the radiation reactions of PDR irradiation and the classic continuos LDR brachytherapy with Co-60-sources. Calculations with the aid of the Monte-Carlo-method resulted in the fact that the gamma dose is the same in a distance of 2 mm from the source. 2. The activity of the source corresponds to the volume of tumor: the smaller the volume of the tumor the lower the dose rate (activity) of the

  11. Interstitial brachytherapy in carcinoma of the penis

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhary, A.J.; Ghosh, S.; Bhalavat, R.L. [Tata Memorial Hospital, Mumbai (India). Dept. of Radiation Oncology; Kulkarni, J.N. [Tata Memorial Hospital, Mumbai (India). Dept. of Surgery; Sequeira, B.V.E. [Tata Memorial Hospital, Mumbai (India). Dept. of Medical Physics

    1999-01-01

    Aim: Keeping in line with the increasing emphasis on organ preservation, we at the Tata Memorial Hospital have evaluated the role of Ir-192 interstitial implant as regards local control, functional and cosmetic outcome in early as well as locally recurrent carcinoma of the distal penis. Patients and Methods: From October 1988 to December 1996, 23 patients with histopathologically proven cancer of the penis were treated with radical radiation therapy using Ir-192 temporary interstitial implant. Our patients were in the age group of 20 to 60 years. The primary lesions were T1 and 7, T2 in 7 and recurrent in 9 patients. Only 7 patients had palpable groin nodes at presentation, all of which were pathologically negative. The median dose of implant was 50 Gy (range 40 to 60 Gy), using the LDR afterloading system and the Paris system of implant rules for dosimetry. Follow-up ranged from 4 to 117 months (median 24 months). Results: At last follow-up 18 of the 23 patients remained locally controlled with implant alone. Three patients failed only locally, 2 locoregionally and 1 only at the groin. Of the 5 patients who failed locally, 4 were successfully salvaged with partial penectomy and remained controlled when last seen. Local control with implant alone at 8 years was 70% by life table analysis. The patients had excellent functional and cosmetic outcome. We did not record any case of skin or softtissue necrosis. Only 2 patients developed meatal stenosis, both of which were treated endoscopically. Conclusion: Our results lead us to interpret that interstitial brachytherapy with Ir-192 offers excellent local control rates with preservation of organ and function. Penectomy can be reserved as a means for effective salvage. (orig.) [Deutsch] Ziel: Das Prinzip des Organerhalts gewinnt in der Onkologie zunehmend an Bedeutung. Ziel dieser Untersuchung war es, die Rolle der interstitiellen Brachytherapie mit Ir-192 zur Behandlung des fruehen und rezidivierten Peniskarzinoms zu

  12. Mechanism of remote controlled after-loading radiotherapy unit

    International Nuclear Information System (INIS)

    Morimoto, Masaki

    1980-01-01

    Employing a small amount of Radium-226 or Cesium-137 source was to be used hitherto for the treatment of carcinoma of the uterine cervix in used After-loading techniques. It involved, however, radiation risk to the staff and patient. The long treatment time are also a pain (strain) on the patient. In recent years, we have developed a remote control after-loading unit, which was named as RALSTRON, which was complete eliminated the disadvantage of conventional radium therapy. This unit also has disadvantage, however, that the design for the remote after-loader for intracavitary applicators present considerable difficulties, because many sources of different active lengths and loading patterns are required. A solution to this problem was carried out by using small point source, placed in Tandem applicator, of high activity and moving them back slowly during the treatment. Recently, this unit was installed many hospitals about 80 units in Japan, and are used. In this paper are given about a mechanism and safety deviced of this unit. (author)

  13. Movement of the cervix in after-loading brachytherapy: implications for designing external-beam radiotherapy boost fields.

    Science.gov (United States)

    Hombaiah, U; Blake, P; Bidmead, M

    2006-05-01

    Women with invasive carcinoma of the cervix treated by chemo-radiotherapy and brachytherapy may also receive a pelvic sidewall boost using a midline shield (MLS). The purpose of this study was to assess the usefulness of implanted gold grains in detecting the movement of the cervix caused by the insertion of low-dose-rate brachytherapy applicators, and its implications in designing the MLS. The medical records of 42 women with various stages of cervical carcinoma, who were treated by radical chemo-radiotherapy, were reviewed. All of these women underwent examination under anaesthesia (EUA) and a gold-grain insertion to demarcate the vaginal tumour extent, in the antero-posterior and lateral planes, before starting external-beam radiotherapy. The isocentric orthogonal films (simulator films) of external radiotherapy and brachytherapy were compared to assess the change in position of the gold grains and the consequences for the design of the MLS for parametrial and pelvic sidewall boosts. A significant shift in the position of the gold grains was noted in both the x (lateral) and the y (cranial/caudal) axes. The median shift of the midline, right and left lateral gold grains was 4.5, 5 and 7 mm in the x axis, whereas it was 10, 8 and 9.5 mm in the y axis, respectively. The median shift in the x and y axes was 5.5 and 9 mm, ranging from 1 to 40 mm and 1 to 45 mm, respectively. The gold grains were shifted cranially in 34 (80%) and laterally in 29 (69%) women. Thirty-two women (76.2%) received parametrial boost radiotherapy, of which 25 (59.5%) women had a customised, pear-shaped shield, and the remaining seven (16.7%) had a straight-sided, rectangular MLS. Four women (9.5%) relapsed locally, and three of them had been treated using a customised shield. In two of these four women, there was an absolute under-dosage of the central pelvis at the tip of the intra-uterine tube by 50% of the parametrial boost dose (5.4 Gy/3 fractions/3 days). Insertion of the gold grains

  14. Identifying afterloading PDR and HDR brachytherapy errors using real-time fiber-coupled Al2O3:C dosimetry and a novel statistical error decision criterion

    International Nuclear Information System (INIS)

    Kertzscher, Gustavo; Andersen, Claus E.; Siebert, Frank-Andre; Nielsen, Soren Kynde; Lindegaard, Jacob C.; Tanderup, Kari

    2011-01-01

    Background and purpose: The feasibility of a real-time in vivo dosimeter to detect errors has previously been demonstrated. The purpose of this study was to: (1) quantify the sensitivity of the dosimeter to detect imposed treatment errors under well controlled and clinically relevant experimental conditions, and (2) test a new statistical error decision concept based on full uncertainty analysis. Materials and methods: Phantom studies of two gynecological cancer PDR and one prostate cancer HDR patient treatment plans were performed using tandem ring applicators or interstitial needles. Imposed treatment errors, including interchanged pairs of afterloader guide tubes and 2-20 mm source displacements, were monitored using a real-time fiber-coupled carbon doped aluminum oxide (Al 2 O 3 :C) crystal dosimeter that was positioned in the reconstructed tumor region. The error detection capacity was evaluated at three dose levels: dwell position, source channel, and fraction. The error criterion incorporated the correlated source position uncertainties and other sources of uncertainty, and it was applied both for the specific phantom patient plans and for a general case (source-detector distance 5-90 mm and position uncertainty 1-4 mm). Results: Out of 20 interchanged guide tube errors, time-resolved analysis identified 17 while fraction level analysis identified two. Channel and fraction level comparisons could leave 10 mm dosimeter displacement errors unidentified. Dwell position dose rate comparisons correctly identified displacements ≥5 mm. Conclusion: This phantom study demonstrates that Al 2 O 3 :C real-time dosimetry can identify applicator displacements ≥5 mm and interchanged guide tube errors during PDR and HDR brachytherapy. The study demonstrates the shortcoming of a constant error criterion and the advantage of a statistical error criterion.

  15. Implementation of 'early alert system' area detector at patient from entrance in afterloading brachytherapy

    International Nuclear Information System (INIS)

    Videla Valdebenito, R.

    2001-01-01

    A system of area monitors to detect the involuntary exit of the radiation sources used in low dose rate deferred brachytherapy treatment is being implemented in all facilities in Chile. The first implementation of this system, named 'Early Alert', was 5 years ago as a complement to the administrative procedures and verification measures by the medical physics carried out through visual verifications and by means of portable radiation detectors. This detector of the system should be located preferentially at the exit of the treatment room at a height not smaller than two meters. This has resulted in an increase of facilities safety in this practice. (author) [es

  16. Survey of brachytherapy practice in the United States: a report of the Clinical Research Committee of the American Endocurietherapy Society.

    Science.gov (United States)

    Nag, S; Owen, J B; Farnan, N; Pajak, T F; Martinez, A; Porter, A; Blasko, J; Harrison, L B

    1995-01-01

    To obtain reliable data on the extent of the brachytherapy practice in the United States by conducting a comprehensive survey of all facilities. The Clinical Research Committee of the AES surveyed all 1321 radiation oncology facilities identified in the Patterns of Care Study (PCS) of the American College of Radiology (ACR). Multiple mailings and follow-up were made to obtain a high response rate. Survey responders and nonresponders were compared using chi-square tests. Summary statistics were reported. Of the 1321 facilities, 1054 responded (80%). Hospital-based and larger facilities had a statistically significant higher rate of response. Brachytherapy was being performed at 819 facilities (the median number of procedures = 21-50). Two hundred and two facilities did no brachytherapy. The common isotopes used were 137Cs (705 facilities), 192Ir (585 facilities), 125I (236 facilities), and 131I (194 facilities). The common brachytherapy techniques used were intracavitary (751 facilities), interstitial (536 facilities), intraluminal (310 facilities), and plaques (148 facilities). Remote afterloaded brachytherapy was used at 205 centers as follows: high dose rate (HDR) (164), medium dose rate (MDR) (5), and low dose rate (LDR) (36). Computerized dosimetry was most commonly used (790 facilities), followed by Patterson-Parker (104 facilities) and Quimby (72 facilities). The common sites treated were cervix (701 facilities), endometrium (565 facilities), head and neck (354 facilities), and lung (344 facilities). Data regarding brachytherapy practice has been obtained from a large percentage (80%) of all facilities in the United States. The majority (78-81%) of radiation oncology facilities perform brachytherapy; however, its use is restricted to gynecological implants in many of these centers. The results from this survey will be used to develop a pattern of care study and data registry in brachytherapy.

  17. 10 CFR 35.647 - Additional technical requirements for mobile remote afterloader units.

    Science.gov (United States)

    2010-01-01

    ... on the remote afterloader unit, on the control console, and in the facility; (3) Viewing and intercom... 10 Energy 1 2010-01-01 2010-01-01 false Additional technical requirements for mobile remote... MATERIAL Photon Emitting Remote Afterloader Units, Teletherapy Units, and Gamma Stereotactic Radiosurgery...

  18. Postoperative vaginal cuff irradiation using high dose rate remote afterloading: a Phase II clinical protocol

    International Nuclear Information System (INIS)

    Noyes, William R.; Bastin, Kenneth; Edwards, Scott A.; Buchler, Dolores A.; Stitt, Judith A.; Thomadsen, Bruce R.; Fowler, Jack F.; Kinsella, Timothy J.

    1995-01-01

    Purpose: In September 1989, a postoperative Phase II high dose rate (HDR) brachytherapy protocol was started for International Federation of Gynecology and Obstetrics (FIGO) Stage I endometrial adenocarcinoma. This review reports the overall survival, local control, and complication rates for the initial 63 patients treated in this Phase II study. Methods and Materials: High dose rate brachytherapy was delivered using an Iridium-192 HDR remote afterloader. Sixty-three patients were entered into the Phase II protocol, each receiving two vaginal cuff treatments 1 week apart (range 4-12 days) with vaginal ovoids (diameter 2.0-3.0 cm). No patient received adjuvant external beam radiation. A dose of 32.4 Gy in two fractions was prescribed to the ovoid surface in 63 patients. The first three patients treated at our institution received 15, 16.2, and 29 Gy, respectively, to determine acute effects. Results: At a median follow-up of 1.6 years (range 0.75-4.3 years) no patient has developed a vaginal cuff recurrence. One regional recurrence (1.6%) occurred at 1.2 years at the pelvic side wall. This patient is alive and without evidence of disease 7 months after completion of salvage irradiation, which resulted in the only vaginal stenosis (1.6%). Fourteen patients (22%) experienced vaginal apex fibrosis by physical exam, which was clinically symptomatic in four patients. Two patients reported stress incontinence; however, these symptoms were noted prior to their HDR therapy. One patient died 2.4 years after HDR therapy due to cardiovascular disease without evidence of cancer at autopsy. Conclusion: Preliminary results of our phase II HDR vaginal cuff protocol for postoperative FIGO Stage IA, Grade 3 or Stage IB, Grade 1-2 patients demonstrate that 32.4 Gy in two fractions is well tolerated by the vaginal cuff mucosa. Local control appears comparable to our prior experience and others with low dose rate (LDR) brachytherapy. Additional patient accrual and further follow

  19. Impact of afterload on the assessment of severity of aortic stenosis.

    Science.gov (United States)

    Chang, Sung-A; Kim, Hyung-Kwan; Sohn, Dae-Won

    2012-06-01

    Aortic stenosis (AS) is increasingly diagnosed in current aging society. Echocardiography is the most important tool in the assessment of AS and its severity. However, load-dependency of Doppler measurement could affect the accuracy of AS severity assessment. We tried to evaluate the impact of afterload on the assessment of AS severity by modification of afterload using pneumatic compression (Pcom). Forty patients diagnosed as moderate or severe AS [effective orifice area of aortic valve (EOA(AV)) by continuity equation of < 1.5 cm(2)] were consecutively enrolled. Patients with severely uncontrolled hypertension, severe left ventricular (LV) dysfunction, and other significant valve disease were excluded. Comprehensive echocardiography was performed at baseline to assess AS severity. Then, pneumatic compression of the lower extremities by 100 mmHg was applied to increase LV afterload. After 3 minutes, echocardiography was repeated to assess AS severity. Mean blood pressure was significantly increased under Pcom (p < 0.001), while heart rate remained unchanged. Peak aortic valve velocity (V(max)) was slightly, but significantly decreased under Pcom (p = 0.03). However, Doppler velocity index and EOA(AV) by continuity equation were not affected by Pcom. AS severity assessment by echocardiography was not dependent on the change of LV afterload imposed by Pcom. AV V(max) was slightly decreased with LV afterload increment, but these changes were too small to alter treatment plan of AS patients. EOA(AV) and Doppler velocity index are more stable parameters for AS severity assessment.

  20. Clinical outcome of high-dose-rate interstitial brachytherapy in patients with oral cavity cancer

    International Nuclear Information System (INIS)

    Lee, Sung Uk; Cho, Kwan Ho; Moon, Sung Ho; Choi, Sung Weon; Park, Joo Yong; Yun, Tak; Lee, Sang Hyun; Lim, Young Kyung; Jeong, Chi Young

    2014-01-01

    To evaluate the clinical outcome of high-dose-rate (HDR) interstitial brachytherapy (IBT) in patients with oral cavity cancer. Sixteen patients with oral cavity cancer treated with HDR remote-control afterloading brachytherapy using 192Ir between 2001 and 2013 were analyzed retrospectively. Brachytherapy was administered in 11 patients as the primary treatment and in five patients as salvage treatment for recurrence after the initial surgery. In 12 patients, external beam radiotherapy (50-55 Gy/25 fractions) was combined with IBT of 21 Gy/7 fractions. In addition, IBT was administered as the sole treatment in three patients with a total dose of 50 Gy/10 fractions and as postoperative adjuvant treatment in one patient with a total of 35 Gy/7 fractions. The 5-year overall survival of the entire group was 70%. The actuarial local control rate after 3 years was 84%. All five recurrent cases after initial surgery were successfully salvaged using IBT +/- external beam radiotherapy. Two patients developed local recurrence at 3 and 5 months, respectively, after IBT. The acute complications were acceptable (< or =grade 2). Three patients developed major late complications, such as radio-osteonecrosis, in which one patient was treated by conservative therapy and two required surgical intervention. HDR IBT for oral cavity cancer was effective and acceptable in diverse clinical settings, such as in the cases of primary or salvage treatment.

  1. THYROID HORMONE REVERSES AGING-INDUCED MYOCARDIAL FATTY ACID OXIDATION DEFECTS AND IMPROVES THE RESPONSE TO ACUTELY INCREASED AFTERLOAD

    Energy Technology Data Exchange (ETDEWEB)

    Ledee, Dolena; Portman, Michael A.; Kajimoto, Masaki; Isern, Nancy G.; Olson, Aaron

    2013-06-07

    Background: Subclinical hypothyroidism occurs during aging in humans and mice and may contribute to development of heart failure. Aging also impairs myocardial fatty acid oxidation, causing increased reliance on flux through pyruvate dehydrogenase (PDH) to maintain function. We hypothesize that the metabolic changes in aged hearts make them less tolerant to acutely increased work and that thyroid hormone reverses these defects. Methods: Studies were performed on young (Young, 4-6 months) and aged (Old, 22-24 months) C57/BL6 mice at standard (50 mmHg) and high afterload (80 mmHg). Another aged group received thyroid hormone for 3 weeks (Old-TH, high afterload only). Function was measured in isolated working hearts along with substrate fractional contributions (Fc) to the citric acid cycle (CAC) using perfusate with 13C labeled lactate, pyruvate, glucose and unlabeled palmitate and insulin. Results: Cardiac function was similar between Young and Old mice at standard afterload. Palmitate Fc was reduced but no individual carbohydrate contributions differed. CAC and individual substrate fluxes decreased in aged. At high afterload, -dP/dT was decreased in Old versus Young. Similar to low afterload, palmitate Fc was decreased in Old. Thyroid hormone reversed aging-induced changes in palmitate Fc and flux while significantly improving cardiac function. Conclusion: The aged heart shows diminished ability to increase cardiac work due to substrate limitations, primarily impaired fatty acid oxidation. The heart accommodates slightly by increasing efficiency through oxidation of carbohydrate substrates. Thyroid hormone supplementation in aged mice significantly improves cardiac function potentially through restoration of fatty acid oxidation.

  2. Identifying afterloading PDR and HDR brachytherapy errors using real-time fiber-coupled Al2O3:C dosimetry and a novel statistical error decision criterion

    DEFF Research Database (Denmark)

    Kertzscher, Gustavo; Andersen, Claus Erik; Siebert, Frank-André

    2011-01-01

    treatment errors, including interchanged pairs of afterloader guide tubes and 2–20mm source displacements, were monitored using a real-time fiber-coupled carbon doped aluminum oxide (Al2O3:C) crystal dosimeter that was positioned in the reconstructed tumor region. The error detection capacity was evaluated...

  3. Calibration of {sup 192}Ir high dose rate brachytherapy sources

    Energy Technology Data Exchange (ETDEWEB)

    Marechal, M H [Instituto de Radioprotecao e Dozimetria, Rio de Jainero (Brazil); Almeida, C.E. de [Laboratorio de Ciencias Radiologicas, UERL, Rio de Janeiro (Brazil); Sibata, C H [Roswell Park Cancer Inst., Buffalo, NY (United States)

    1996-08-01

    A method for calibration of high dose rate sources used in afterloading brachytherapy systems is described. The calibration for {sup 192}Ir is determined by interpolating {sup 60}Co gamma-rays and 250 kV x-rays calibration factors. All measurements were done using the same build up caps as described by Goetsch et al and recommended by AAPM. The attenuation correction factors were determined to be 0.9903, 0.9928 and 0.9993 for {sup 192}Ir, {sup 60}Co and 250 kV x-ray, respectively. A wall + cap thickness of 0.421 g.cm{sup -2} is recommended for all measurements to ensure electronic equilibrium for {sup 60}Co and {sup 192}Ir gamma-ray beams. A mathematical formalism is described for determination of (N{sub x}){sub Ir}. (author). 5 refs, 1 fig.

  4. Physics and quality assurance for brachytherapy - Part II: Low dose rate and pulsed dose rate

    International Nuclear Information System (INIS)

    Williamson, Jeffrey F.

    1997-01-01

    Purpose: A number of recent developments have revitalized brachytherapy including remote afterloading, implant optimization, increasing use of 3D imaging, and advances in dose specification and basic dosimetry. However, the core physical principles underlying the classical methods of dose calculation and arrangement of multiple sources remain unchanged. The purpose of this course is to review these principles and their applications to low dose-rate interstitial and intracavitary brachytherapy. Emphasis will be placed upon the classical implant systems along with classical and modern methods of dose specification. The level of presentation is designed for radiation oncology residents and beginning clinical physicists. A. Basic Principles (1) Radium-substitute vs. low-energy sealed sources (2) Dose calculation principles (3) The mysteries of source strength specification revealed: mgRaEq, mCi and air-kerma strength B. Interstitial Brachytherapy (1) Target volume, implanted volume, dose specification in implants and implant optimization criteria (2) Classical implant systems: Manchester Quimby and Paris a) Application of the Manchester system to modern brachytherapy b) Comparison of classical systems (3) Permanent interstitial implants a) Photon energy and half life b) Dose specification and pre-operative planning (4) The alphabet soup of dose specification: MCD (mean central dose), minimum dose, MPD (matched peripheral dose), MPD' (minimum peripheral dose) and DVH (dose-volume histogram) quality indices C. Intracavitary Brachytherapy for Carcinoma of the Cervix (1) Basic principles a) Manchester System: historical foundation of U.S. practice patterns b) Principles of applicator design (2) Dose specification and treatment prescription a) mg-hrs, reference points, ICRU Report 38 reference volume -- Point A dose vs mg-hrs and IRAK (Integrated Reference Air Kerma) -- Tissue volume treated vs mg-hrs and IRAK b) Practical methods of treatment specification and prescription

  5. Physics and quality assurance for brachytherapy - Part II: Low dose rate and pulsed dose rate

    International Nuclear Information System (INIS)

    Williamson, Jeffrey F.

    1996-01-01

    Purpose: A number of recent developments have revitalized brachytherapy including remote afterloading, implant optimization, increasing use of 3D imaging, and advances in dose specification and basic dosimetry. However, the core physical principles underlying the classical methods of dose calculation and arrangement of multiple sources remain unchanged. The purpose of this course is to review these principles and their applications to low dose-rate interstitial and intracavitary brachytherapy. Emphasis will be placed upon the classical implant systems along with classical and modern methods of dose specification. The level of presentation is designed for radiation oncology residents and beginning clinical physicists. A. Basic Principles (1) Radium-substitute vs. low-energy sealed sources (2) Dose calculation principles (3) The mysteries of source strength specification revealed: mgRaEq, mCi and air-kerma strength B. Interstitial Brachytherapy (1) Target volume, implanted volume, dose specification in implants and implant optimization criteria (2) Classical implant systems: Manchester Quimby and Paris a) Application of the Manchester system to modern brachytherapy b) Comparison of classical systems (3) Permanent interstitial implants a) Photon energy and half life b) Dose specification and pre-operative planning (4) The alphabet soup of dose specification: MCD (mean central dose), minimum dose, MPD (matched peripheral dose), MPD' (minimum peripheral dose) and DVH (dose-volume histogram) quality indices C. Intracavitary Brachytherapy for Carcinoma of the Cervix (1) Basic principles a) Manchester System: historical foundation of U.S. practice patterns b) Principles of applicator design (2) Dose specification and treatment prescription a) mg-hrs, reference points, ICRU Report 38 reference volume --Point A dose vs mg-hrs and IRAK (Integrated Reference Air Kerma) --Tissue volume treated vs mg-hrs and IRAK b) Practical methods of treatment specification and prescription

  6. Brachytherapy in the conservative treatment of soft tissue sarcomas extending to neurovascular structures: an analysis of 38 cases

    International Nuclear Information System (INIS)

    Thomas, L.; Delannes, M.; Stoeckle, E.; Martel, P.; Pigneux, J.; Daly-Schveitzer, N.; Bui, B.N.; Chevreau, C.; Kantor, G.

    1996-01-01

    To evaluate the tolerance of neurovascular structures to brachytherapy, a retrospective review of our series was undertaken. Between May 1986 and January 1994, 85 patients with soft tissue sarcomas underwent conservative surgery and low-dose rate interstitial irradiation. Thirty-eight patients had tumors extending to neurovascular structures. Brachytherapy was part of initial treatment in 30 patients and was done in 7 cases for recurrent sarcomas. Afterloading catethers for brachytherapy were inserted intraoperatively and placed direct upon or under the neurovascular structures in the tumor bed. A mean dose of 20 Gy was delivered to the target volume. Thirty patients received 45 to 50 Gy of postoperative external irradiation. With a median follow-up of 39 months, the 3-year actuarial survival was 82.9%, the 3-year disease-free survival was 71.9% and the 3-year actuarial local control was 91%. The 3-year actuarial incidence of distant metastase was 28%. Acute side effects occurred in 12 patients requiring conservative surgical procedures in 6 cases. Significant late toxicity occurred in 8 patients : 2 lymphoedemas interfering with normal activity, 1 partial artery stenosis, 5 peripheral neuropathy (2 grade 2, 3 grade 3). Late toxicity has led to significant impairment of mobility in 4 patients. Limb preservation was achieved in every patient, no amputation was required. We conclude that integration of brachytherapy in the conservative treatment of soft tissue sarcomas extending to neurovascular structures can provide excellent local control with an acceptable level of toxicity

  7. Radiobiological equivalent of low/high dose rate brachytherapy and evaluation of tumor and normal responses to the dose.

    Science.gov (United States)

    Manimaran, S

    2007-06-01

    The aim of this study was to compare the biological equivalent of low-dose-rate (LDR) and high-dose-rate (HDR) brachytherapy in terms of the more recent linear quadratic (LQ) model, which leads to theoretical estimation of biological equivalence. One of the key features of the LQ model is that it allows a more systematic radiobiological comparison between different types of treatment because the main parameters alpha/beta and micro are tissue-specific. Such comparisons also allow assessment of the likely change in the therapeutic ratio when switching between LDR and HDR treatments. The main application of LQ methodology, which focuses on by increasing the availability of remote afterloading units, has been to design fractionated HDR treatments that can replace existing LDR techniques. In this study, with LDR treatments (39 Gy in 48 h) equivalent to 11 fractions of HDR irradiation at the experimental level, there are increasing reports of reproducible animal models that may be used to investigate the biological basis of brachytherapy and to help confirm theoretical predictions. This is a timely development owing to the nonavailability of sufficient retrospective patient data analysis. It appears that HDR brachytherapy is likely to be a viable alternative to LDR only if it is delivered without a prohibitively large number of fractions (e.g., fewer than 11). With increased scientific understanding and technological capability, the prospect of a dose equivalent to HDR brachytherapy will allow greater utilization of the concepts discussed in this article.

  8. Fast neutron therapy with high intensity Cf-252 sources by remotely controlled afterloading and clinical experiences in the treatment of gynaecological cancers

    International Nuclear Information System (INIS)

    Yamashita, H.; Hashimoto, S.; Wada, M.; Dokiya, T.

    1986-01-01

    Cf-252 fast neutron therapy with high intensity Cf-252 sources was tested for the treatment of advanced gynaecological cancers using a remotely controlled afterloading machine designed by the author and manufactured by Toshiba. Using high intensity sources and short treatment times in a special treatment room, personnel or environment exposure to radiation was at a safe level, i.e. almost nil. During 1978-1983 18 stage III cases of cancer of the uterine cervix were treated with complete response in 78% and 44% 5 year survivals. The types of acute and delayed effects of Cf-252 were the same as Co-60 or Cs-137 but the rectum was found sensitive in this system of brachytherapy. A dose of 1,000-1,500 cGy/6-10 F in 10-22 days of Cf-252 radiation was tolerated and produced tumor cure

  9. Phantom study of radiation doses outside the target volume brachytherapy versus external radiotherapy of early breast cancer

    International Nuclear Information System (INIS)

    Johansson, Bengt; Persson, Essie; Westman, Gunnar; Persliden, Jan

    2003-01-01

    Background and purpose: Brachytherapy is sometimes suggested as an adjuvant treatment after surgery of some tumours. When introducing this, it would be useful to have an estimate of the dose distribution to different body sites, both near and distant to target, comparing conventional external irradiation to brachytherapy. The aim of the present study was to determine radiation doses with both methods at different body sites, near and distant to target, in an experimental situation on an operated left sided breast cancer on a female Alderson phantom. Methods: Five external beam treatments with isocentric tangential fields were given by a linear accelerator. A specified dose of 1.0 Gy was given to the whole left sided breast volume. Five interstitial brachytherapy treatments were given to the upper, lateral quadrant of the left breast by a two plane, 10 needles implant. A dose of 1.0 Gy specified according to the Paris system was administered by a pulsed dose rate afterloading machine. Absorbed dose in different fixed dose points were measured by thermoluminescence dosimeters. Results: Both methods yielded an absorbed dose of the same size to the bone marrow and internal organs distant to target, 1.0-1.4% of the prescribed dose. There was a trend of lower doses to the lower half of the trunk and higher doses to the upper half of the trunk, respectively, by brachytherapy. A 90% reduction of absorbed dose with brachytherapy compared to external irradiation was found in the near-target region within 5 cm from target boundary where parts of the left lung and the heart are situated. If an adjuvant dose of 50 Gy is given with the external radiotherapy and brachytherapy, the absorbed dose in a part of the myocardium could be reduced from 31.8 to 2.1 Gy. Conclusions: Near target, brachytherapy yielded a considerably lower absorbed dose which is of special importance when considering radiation effects on the myocard and lungs. We could not demonstrate any difference of

  10. Outcome of treatment of upper third vaginal recurrences of cervical and endometrial carcinomas with interstitial brachytherapy

    International Nuclear Information System (INIS)

    Charra, C.; Roy, P.; Coquard, R.; Romestaing, P.; Ardiet, J.M.; Gerard, J.P.

    1998-01-01

    Purpose: To describe an original brachytherapy technique using a dedicated intravaginal template for the treatment of vaginal vault recurrences and to evaluate the results of such a treatment. Methods and Materials: Between 1978 and 1993, 78 patients with isolated recurrence of cervical or endometrial carcinoma located in the vaginal vault have been treated in Lyon. Initial treatment was surgery alone in 49 cases and irradiation with surgery in 37 cases. Treatment of the vaginal recurrence was performed with interstitial Iridium 192 brachytherapy combined with pelvic external beam radiation therapy in 34 patients. The tumor was implanted with a dedicated intravaginal plastic template. Six parallel metallic needles were implanted in the vaginal vault and afterloaded with Iridium 192 wires of 4 to 6 cm long. The mucosa of the upper half of the vagina received the same dose as the one encompassing the tumor on the 85% isodose of the Paris system. Results: At 5 years the local control rate was 70% and the overall survival rate 56%. Grade 3 complications occurred in 10% of the cases and only in patients who had received irradiation during the initial treatment of the primary tumor. Conclusions: This brachytherapy technique makes it possible to perform Iridium 192 implants in a difficult situation with a favorable long-term control rate and an acceptable rate of complications

  11. Radiological protection of patients in brachytherapy

    International Nuclear Information System (INIS)

    Sacc, Ricardo; Herrero, Flavia

    2008-01-01

    Full text: The prefix 'brachy' means short-range, so brachytherapy is the administration of radiation therapy using small radioactive sources in the form of needles, tubes, wires or seeds, which are placed within the tumor -interstitial form- or very near of it, superficially or in an endo-cavity form. This technique, which was limited by the size of the primary tumor, has the advantage, that the radiation, can be adjusted to the size and shape of the tumor volume and the radioisotope used, - short range -, is selected with the criteria of getting the dose in the organs at risk, as low as possible, making what it is known as conformal radiotherapy. Radioactive sources may be permanent or temporary implants. The application of radioactive material, can be manually or automatically. In the first case, a major breakthrough from the radioprotection point of view, was the use of afterloading devices, methodology highly recommended to reduce the radiation exposure to staff. With the development of technology, remotely controlled afterloading devices were introduced, which in addition to complying with the above requirement, allow the source to move in different positions along catheters housed in one or more channels, making therapeutic brachytherapy treatments in tumor volumes possible, that due to its length, decades ago would have been an unthinkable deal. In all cases, sources, which may vary from the 3 mm in length, 125 Iodine or 198 Gold seeds, to extensive wires of 192 Iridium, are encapsulated for two main purposes: preventing leakage of radioactive material and absorption of unwanted radiation, alpha and beta, produced by the radioactive decay. Consequently, it should be highly unlikely that the radioactive material, could be lost or located in the patient, in a different place of the one that was planned. However, history shows us the opposite. Its is known the kind of deterministic effect that radiation is going to produce in the tumor, where the severity of

  12. WE-DE-201-08: Multi-Source Rotating Shield Brachytherapy Apparatus for Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Dadkhah, H; Wu, X [University of Iowa, Iowa City, Iowa (United States); Kim, Y; Flynn, R [University of Iowa Hospitals and Clinics, Iowa City, IA (United States)

    2016-06-15

    Purpose: To introduce a novel multi-source rotating shield brachytherapy (RSBT) apparatus for the precise simultaneous angular and linear positioning of all partially-shielded 153Gd radiation sources in interstitial needles for treating prostate cancer. The mechanism is designed to lower the detrimental dose to healthy tissues, the urethra in particular, relative to conventional high-dose-rate brachytherapy (HDR-BT) techniques. Methods: Following needle implantation, the delivery system is docked to the patient template. Each needle is coupled to a multi-source afterloader catheter by a connector passing through a shaft. The shafts are rotated by translating a moving template between two stationary templates. Shaft walls as well as moving template holes are threaded such that the resistive friction produced between the two parts exerts enough force on the shafts to bring about the rotation. Rotation of the shaft is then transmitted to the shielded source via several keys. Thus, shaft angular position is fully correlated with the position of the moving template. The catheter angles are simultaneously incremented throughout treatment as needed, and only a single 360° rotation of all catheters is needed for a full treatment. For each rotation angle, source depth in each needle is controlled by a multi-source afterloader, which is proposed as an array of belt-driven linear actuators, each of which drives a source wire. Results: Optimized treatment plans based on Monte Carlo dose calculations demonstrated RSBT with the proposed apparatus reduced urethral D{sub 1cc} below that of conventional HDR-BT by 35% for urethral dose gradient volume within 3 mm of the urethra surface. Treatment time to deliver 20 Gy with multi-source RSBT apparatus using nineteen 62.4 GBq {sup 153}Gd sources is 117 min. Conclusions: The proposed RSBT delivery apparatus in conjunction with multiple nitinol catheter-mounted platinum-shielded {sup 153}Gd sources enables a mechanically feasible

  13. Biological effective dose evaluation in gynaecological brachytherapy: LDR and HDR treatments, dependence on radiobiological parameters, and treatment optimisation.

    Science.gov (United States)

    Bianchi, C; Botta, F; Conte, L; Vanoli, P; Cerizza, L

    2008-10-01

    This study was undertaken to compare the biological efficacy of different high-dose-rate (HDR) and low-dose-rate (LDR) treatments of gynaecological lesions, to identify the causes of possible nonuniformity and to optimise treatment through customised calculation. The study considered 110 patients treated between 2001 and 2006 with external beam radiation therapy and/or brachytherapy with either LDR (afterloader Selectron, (137)Cs) or HDR (afterloader microSelectron Classic, (192)Ir). The treatments were compared in terms of biologically effective dose (BED) to the tumour and to the rectum (linear-quadratic model) by using statistical tests for comparisons between independent samples. The difference between the two treatments was statistically significant in one case only. However, within each technique, we identified considerable nonuniformity in therapeutic efficacy due to differences in fractionation schemes and overall treatment time. To solve this problem, we created a Microsoft Excel spreadsheet allowing calculation of the optimal treatment for each patient: best efficacy (BED(tumour)) without exceeding toxicity threshold (BED(rectum)). The efficacy of a treatment may vary as a result of several factors. Customised radiobiological evaluation is a useful adjunct to clinical evaluation in planning equivalent treatments that satisfy all dosimetric constraints.

  14. Radiotherapy of Teikyo University. Second report. Experience and the current status at Itabashi Hospital. Brachytherapy

    International Nuclear Information System (INIS)

    Ogata, Hitoshi; Yokokawa, Tokuzo; Shirai, Tatsuo; Furui, Shigeru

    2005-01-01

    To answer the big trend of information disclosure, we are trying to report the experience and the current status of Radiotherapy in Teikyo University. Since 1974, Teikyo University has installed a High-Dose-Rate Remote Afterloading System (HDR RALS) at Itabashi Hospital for brachytherapy. We analyzed the total cases comprehensively in this paper. There were 421 cases treated by Ralstron (Shimazu Co.) between 1974 and 1995 and 128 cases treated additionally between the renewal by Microselectron (Nucletron Co.) and the end of 2002. For several years from the beginning, the number of cases treated by Ralstron had been 30-35 cases annually, but since 1987, the number decreased markedly to fewer than 10 cases per year. After the installation of Microselectron, the number increased gradually to 15 cases per year. Gynecologic tumors accounted for 88.5% of the total cases, namely 96.9% by Ralstron and 60.1% by Microselectron. The others treated by Microselectron were 27 cases with Head and Neck tumors, and 21 cases with digestive tract tumors. To increase the number of the patients for brachytherapy, we should continue to open our current status, and make close relationships between the neighbor hospitals and Teikyo Hospital. (author)

  15. Implementation of a High-Dose-Rate Brachytherapy Program for Carcinoma of the Cervix in Senegal: A Pragmatic Model for the Developing World

    International Nuclear Information System (INIS)

    Einck, John P.; Hudson, Alana; Shulman, Adam C.; Yashar, Catheryn M.; Dieng, Mamadou M.; Diagne, Magatte; Gueye, Latifatou; Gningue, Fama; Gaye, Pape M.; Fisher, Brandon J.; Mundt, Arno J.; Brown, Derek W.

    2014-01-01

    West Africa has one of the highest incidence rates of carcinoma of the cervix in the world. The vast majority of women do not have access to screening or disease treatment, leading to presentation at advanced stages and to high mortality rates. Compounding this problem is the lack of radiation treatment facilities in Senegal and many other parts of the African continent. Senegal, a country of 13 million people, had a single 60 Co teletherapy unit before our involvement and no brachytherapy capabilities. Radiating Hope, a nonprofit organization whose mission is to provide radiation therapy equipment to countries in the developing world, provided a high-dose-rate afterloading unit to the cancer center for curative cervical cancer treatment. Here we describe the implementation of high-dose-rate brachytherapy in Senegal requiring a nonstandard fractionation schedule and a novel treatment planning approach as a possible blueprint to providing this technology to other developing countries

  16. Implementation of a High-Dose-Rate Brachytherapy Program for Carcinoma of the Cervix in Senegal: A Pragmatic Model for the Developing World

    Energy Technology Data Exchange (ETDEWEB)

    Einck, John P., E-mail: jeinck@ucsd.edu [Department of Radiation Medicine and Applied Sciences, University of California San Diego, San Diego, California (United States); Hudson, Alana [Department of Oncology, Tom Baker Cancer Centre, University of Calgary, Calgary, Alberta (Canada); Shulman, Adam C. [Overlook Medical Center, Summit, New Jersey (United States); Yashar, Catheryn M. [Department of Radiation Medicine and Applied Sciences, University of California San Diego, San Diego, California (United States); Dieng, Mamadou M.; Diagne, Magatte; Gueye, Latifatou; Gningue, Fama; Gaye, Pape M. [Départemént de Radiothérapie, Institut Joliot-Curie, Hôpital Aristide Le Dantec, Dakar (Senegal); Fisher, Brandon J. [GammaWest Cancer Services, Salt Lake City, Utah (United States); Mundt, Arno J. [Department of Radiation Medicine and Applied Sciences, University of California San Diego, San Diego, California (United States); Brown, Derek W. [Department of Oncology, Tom Baker Cancer Centre, University of Calgary, Calgary, Alberta (Canada)

    2014-07-01

    West Africa has one of the highest incidence rates of carcinoma of the cervix in the world. The vast majority of women do not have access to screening or disease treatment, leading to presentation at advanced stages and to high mortality rates. Compounding this problem is the lack of radiation treatment facilities in Senegal and many other parts of the African continent. Senegal, a country of 13 million people, had a single {sup 60}Co teletherapy unit before our involvement and no brachytherapy capabilities. Radiating Hope, a nonprofit organization whose mission is to provide radiation therapy equipment to countries in the developing world, provided a high-dose-rate afterloading unit to the cancer center for curative cervical cancer treatment. Here we describe the implementation of high-dose-rate brachytherapy in Senegal requiring a nonstandard fractionation schedule and a novel treatment planning approach as a possible blueprint to providing this technology to other developing countries.

  17. Influence of trace elements in human tissue in low-energy photon brachytherapy dosimetry

    International Nuclear Information System (INIS)

    White, Shane A; Landry, Guillaume; Van Gils, Francis; Verhaegen, Frank; Reniers, Brigitte

    2012-01-01

    The aim of this paper is to determine the dosimetric impact of trace elements in human tissues for low-energy photon sources used in brachytherapy. Monte Carlo dose calculations were used to investigate the dosimetric effect of trace elements present in normal or cancerous human tissues. The effect of individual traces (atomic number Z = 11–30) was studied in soft tissue irradiated by low-energy brachytherapy sources. Three other tissue types (prostate, adipose and mammary gland) were also simulated with varying trace concentrations to quantify the contribution of each trace to the dose distribution. The dose differences between cancerous and healthy prostate tissues were calculated in single- and multi-source geometries. The presence of traces in a tissue produces a difference in the dose distribution that is dependent on Z and the concentration of the trace. Low-Z traces (Na) have a negligible effect ( 3%). There is a potentially significant difference in the dose distribution between cancerous and healthy prostate tissues (4%) and even larger if compared to the trace-free composition (15%) in both single- and multi-sourced geometries. Trace elements have a non-negligible (up to 8% in prostate D 90 ) effect on the dose in tissues irradiated with low-energy photon sources. This study underlines the need for further investigation into accurate determination of the trace composition of tissues associated with low-energy brachytherapy. Alternatively, trace elements could be incorporated as a source of uncertainty in dose calculations. (paper)

  18. Estimation of Filling and Afterload Conditions by Pump Intrinsic Parameters in a Pulsatile Total Artificial Heart.

    Science.gov (United States)

    Cuenca-Navalon, Elena; Laumen, Marco; Finocchiaro, Thomas; Steinseifer, Ulrich

    2016-07-01

    A physiological control algorithm is being developed to ensure an optimal physiological interaction between the ReinHeart total artificial heart (TAH) and the circulatory system. A key factor for that is the long-term, accurate determination of the hemodynamic state of the cardiovascular system. This study presents a method to determine estimation models for predicting hemodynamic parameters (pump chamber filling and afterload) from both left and right cardiovascular circulations. The estimation models are based on linear regression models that correlate filling and afterload values with pump intrinsic parameters derived from measured values of motor current and piston position. Predictions for filling lie in average within 5% from actual values, predictions for systemic afterload (AoPmean , AoPsys ) and mean pulmonary afterload (PAPmean ) lie in average within 9% from actual values. Predictions for systolic pulmonary afterload (PAPsys ) present an average deviation of 14%. The estimation models show satisfactory prediction and confidence intervals and are thus suitable to estimate hemodynamic parameters. This method and derived estimation models are a valuable alternative to implanted sensors and are an essential step for the development of a physiological control algorithm for a fully implantable TAH. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  19. Feasibility of combined operation and perioperative intensity-modulated brachytherapy of advanced/recurrent malignancies involving the skull base

    Energy Technology Data Exchange (ETDEWEB)

    Strege, R.J.; Eichmann, T.; Mehdorn, H.M. [University Hospital Schleswig-Holstein, Kiel (Germany). Dept. of Neurosurgery; Kovacs, G.; Niehoff, P. [University Hospital Schleswig-Holstein, Kiel (Germany). Interdisciplinary Brachytherapy Center; Maune, S. [University Hospital Schleswig-Holstein, Kiel (Germany). Dept. of Otolaryngology; Holland, D. [University Hospital Schleswig-Holstein, Kiel (Germany). Dept. of Ophthalmology

    2005-02-01

    Purpose: To assess the technical feasibility and toxicity of combined operation and perioperative intensity-modulated fractionated interstitial brachytherapy (IMBT) in advanced-stage malignancies involving the skull base with the goal of preserving the patients' senses of sight. Patients and Methods: This series consisted of 18 consecutive cases: ten patients with paranasal sinus carcinomas, five with sarcomas, two with primitive neuroectodermal tumors (PNETs), and one with parotid gland carcinoma. After, in most cases, subtotal surgical resection (R1-R2: carried out so that the patients' senses of sight were preserved), two to twelve (mean five) afterloading plastic tubes were placed into the tumor bed. IMBT was performed with an iridium-192 stepping source in pulsed-dose-rate/high-dose-rate (PDR/HDR) afterloading technique. The total IMBT dose, ranging from 10 to 30 Gy, was administered in a fractionated manner (3-5 Gy/day, 5 days/week). Results: Perioperative fractionated IMBT was performed in 15 out of 18 patients and was well tolerated. Complications that partially prevented or delayed IMBT in some cases included cerebrospinal fluid leakage (twice), meningitis (twice), frontal brain syndrome (twice), afterloading tube displacement (twice), seizure (once), and general morbidity (once). No surgery- or radiation-induced injuries to the cranial nerves or eyes occurred. Median survival times were 33 months after diagnosis and 16 months after combined operation and IMBT. Conclusion: Perioperative fractionated IMBT after extensive but vision-preserving tumor resection seems to be a safe and well-tolerated treatment of advanced/recurrent malignancies involving the skull base. These preliminary state suggest that combined operation and perioperative fractionated IMBT is a palliative therapeutic option in the management of fatal malignancies involving the base of the skull, a strategy which leaves the patients' visual acuity intact. (orig.)

  20. Modeling volume effects of experimental brachytherapy in the rat rectum: uncovering the limitations of a radiobiologic concept

    International Nuclear Information System (INIS)

    Johannessen, Hans-Olaf; Dale, Einar; Hellebust, Taran P.; Olsen, Dag R.; Nesland, Jahn M.; Giercksky, Karl-Erik

    2002-01-01

    Purpose: To analyze the significance of volume effects in experimental brachytherapy, based on modeling normal tissue complication probability. Methods and Materials: Experimental brachytherapy in the rat rectum was based on an eight-step 2.5-mm step size source configuration for 192 Ir, afterloaded into an unshielded polystyrene applicator. Volume effects were studied using a half-circumferential lead-shielded applicator and a shorter (two-step) source configuration. The main end point was rectal stenosis. Results: Rectal stenosis was always caused by a radiation ulcer. With the shielded configuration, single-dose ED 50 (50% incidence of rectal stenosis) increased from 23 Gy to 36.5 Gy. Single-dose ED 50 for the short configuration was 77.9 Gy. The data showed a reasonable fit to a three-parameter version of the biophysical model described by Jackson et al. (1995). This model assumes that organs consist of a large number of radiobiologically independent subunits and that radiation causes a complication if the fraction of the organ damaged is greater than its functional reserve. The fraction of the organ damaged is calculated summing over fractions of the organ damaged at each dose level. The calculated mean functional reserve (ν 50 ) of the rat rectum, assuming a cumulative functional reserve distribution in the group of experimental rats, was 0.53. Conclusions: The volume effect observed within small brachytherapy volumes agreed well with clinical experience of large tolerance doses in contact X-ray therapy. However, the ν 50 value was comparable to the high functional reserve value reported for liver. Experimental volume effects probably reflect repair processes originating in the areas adjacent to small radiation fields of brachytherapy more than the radiobiologic characteristics of the cells in the irradiated volume

  1. Implementation of 3D-virtual brachytherapy in the management of breast cancer: a description of a new method of interstitial brachytherapy

    International Nuclear Information System (INIS)

    Vicini, Frank A.; Jaffray, David A.; Horwitz, Eric M.; Edmundson, Gregory K.; DeBiose, David A.; Kini, Vijay R.; Martinez, Alvaro A.

    1998-01-01

    preoperatively. Results: Intraoperative ultrasound was used to check the real-time position of the afterloading needles in reference to the chest wall and posterior border of the target volume. No adjustment of needles was required in any of the 11 patients. Assessment of target volume coverage between the virtual implant and the actual CT image of the implant showed excellent agreement. In each case, all target volume boundaries specified by the physician were adequately covered. The total number of implant planes, intertemplate separation, and template orientation were identical between the virtual and real implant. Conclusion: We conclude that 3D virtual brachytherapy may offer an improved technique for accurately performing interstitial implants of the breast with a closed lumpectomy cavity in selected patients. Although preliminary results show excellent coverage of the desired target volume, additional patients will be required to establish the reproducibility of this technique and its practical limitations

  2. A multicenter study to quantify systematic variations and associated uncertainties in source positioning with commonly used HDR afterloaders and ring applicators for the treatment of cervical carcinomas

    Energy Technology Data Exchange (ETDEWEB)

    Awunor, O., E-mail: onuora.awunor@stees.nhs.uk [The Medical Physics Department, The James Cook University Hospital, Marton Road, Middlesbrough TS4 3BW, England (United Kingdom); Berger, D. [Department of Radiotherapy, General Hospital of Vienna, Vienna A-1090 (Austria); Kirisits, C. [Department of Radiotherapy, Comprehensive Cancer Center, Medical University of Vienna, Vienna A-1090 (Austria)

    2015-08-15

    Purpose: The reconstruction of radiation source position in the treatment planning system is a key part of the applicator reconstruction process in high dose rate (HDR) brachytherapy treatment of cervical carcinomas. The steep dose gradients, of as much as 12%/mm, associated with typical cervix treatments emphasize the importance of accurate and precise determination of source positions. However, a variety of methodologies with a range in associated measurement uncertainties, of up to ±2.5 mm, are currently employed by various centers to do this. In addition, a recent pilot study by Awunor et al. [“Direct reconstruction and associated uncertainties of {sup 192}Ir source dwell positions in ring applicators using gafchromic film in the treatment planning of HDR brachytherapy cervix patients,” Phys. Med. Biol. 58, 3207–3225 (2013)] reported source positional differences of up to 2.6 mm between ring sets of the same type and geometry. This suggests a need for a comprehensive study to assess and quantify systematic source position variations between commonly used ring applicators and HDR afterloaders across multiple centers. Methods: Eighty-six rings from 20 European brachytherapy centers were audited in the form of a postal audit with each center collecting the data independently. The data were collected by setting up the rings using a bespoke jig and irradiating gafchromic films at predetermined dwell positions using four afterloader types, MicroSelectron, Flexitron, GammaMed, and MultiSource, from three manufacturers, Nucletron, Varian, and Eckert & Ziegler BEBIG. Five different ring types in six sizes (Ø25–Ø35 mm) and two angles (45° and 60°) were used. Coordinates of irradiated positions relative to the ring center were determined and collated, and source position differences quantified by ring type, size, and angle. Results: The mean expanded measurement uncertainty (k = 2) along the direction of source travel was ±1.4 mm. The standard deviation

  3. Pelvic interstitial brachytherapy - improving the therapeutic ratio with magnetic resonance imaging and optimization

    International Nuclear Information System (INIS)

    Swift, Patrick S.; Hricak, Hedvig; Forstner, Rosemary; Powell, C. Bethan; Purser, Phil; Weaver, Keith; Phillips, Theodore L.

    1996-01-01

    Introduction Interstitial brachytherapy in the pelvic region is often hampered by the radiation oncologist's inability to precisely differentiate tumor versus normal tissue during the planning and implantation procedures, often resulting in either excessive or incomplete coverage of tumor volume. The marked improvement in pelvic imaging seen with magnetic resonance, in conjunction with isodose optimization programs for remote-afterloading units, has created an opportunity to significantly improve the therapeutic ratio. Methods From 1992-1995, 23 interstitial perineal templates were performed in 22 patients with pelvic malignancies, using the pulsed low-dose-rate Selectron with dose optimization. MR imaging was performed immediately prior to the implant, with a MUPIT placed against the perineum and a vaginal obturator in place. These images were used for tumor volume measurements, determination of the number, depth and angle of needles required for the implant, and identification of position of normal tissues (rectum, small bowel, bladder) relative to the tumor. After implantation of stainless steel needles, orthogonal radiographs were obtained for isodose calculation, and planning carried out with isodose optimization. Patients were followed closely on a routine schedule, until time of last visit or until death. Every effort possible was made to assess local disease status at time of death. Results Sixteen patients with primary disease (14 cervix, 1 vulva, 1 vagina) and 6 with recurrent (2 with prior radiation) were implanted, all but 3 with curative intent. Nine patients with advanced cervix or vulvar cancer received concomitant chemotherapy (5FU + platinum or mitomycin-C) with the external beam therapy. At a median follow-up of 18.1 months for all cases, only three patients have failed locally for an actuarial local control of 85% at 1.5 years. Nine patients are alive and free of disease, 8 are alive with distant disease only (mean follow-up of 19.1 months), 2

  4. The relative efficacy of HDR and LDR interstitial brachytherapy in squamous cell carcinoma of vagina

    International Nuclear Information System (INIS)

    Demanes, D. J.; Hsu, I-C.; Lin, S.; Ewing, T.; Rodriguez, R.

    1996-01-01

    Introduction: Beginning in 1982 we performed low dose rate (LDR) interstitial template brachytherapy (ISTB) for carcinoma of the vagina. High dose rate (HDR) remote afterloading has been used exclusively since 1991. We compare the results LDR and HDR brachytherapy. Material and Methods: Between 1982 and 1994, 30 patients with primary squamous cell carcinoma of vagina received external beam radiotherapy (EBRT) and brachytherapy. The AJCC stage distribution was 3 stage I, 25 stage II, and 2 stage III. The average central pelvic EBRT dose was 35 Gy. Pelvic side wall EBRT doses ranged from 45 to 50.4 Gy. Nineteen patients had LDR treatment; 3 intracavitary brachytherapy (ICB) and 16 ISTB. Eleven patients had HDR treatment; 2 ICB and 9 ISB. The average dose delivered by LDR was 41.2 Gy usually in 2 fractions, and by HDR 32.5 Gy in 6 fractions of 500-550 cGy. Local failures were confirmed pathologically. The absolute survival (AS) and relapse-free survival (RFS) were calculated using Kaplan-Meier method and compared with logrank statistics. Results: The mean follow-up was 77 months for LDR and 23 months for HDR. Local and regional control was achieved in 90% (27/30) of the patients. Three year AS was 84% and RFS was 87%. There was no significant difference between LDR and HDR in AS, RFS or local-regional control, (log rank p=0.85, p=0.12 and p=0.35 respectively). The single HDR local failure presented in a patient with extensive stage II disease who declined ISTB. There were fewer complications following HDR. The 1 case of extensive vaginal necrosis and the 3 cases of rectovaginal fistula that required surgery occurred only with LDR brachytherapy. Discussion: Excellent local and regional control of carcinoma of the vagina can be achieved by administering limited doses of external radiation and brachytherapy. Interstitial template implants are the best means of encompassing paravaginal disease while sparing the adjacent uninvolved normal tissues from high doses of

  5. Safety handling manual for high dose rate remote afterloading system

    International Nuclear Information System (INIS)

    1999-01-01

    This manual is mainly for safety handling of 192 Ir-RALS (remote afterloading system) of high dose rate and followings were presented: Procedure and document format for the RALS therapy and for handling of its radiation source with the purpose of prevention of human errors and unexpected accidents, Procedure for preventing errors occurring in the treatment schedule and operation, and Procedure and format necessary for newly introducing the system into a facility. Consistency was intended in the description with the quality assurance guideline for therapy with small sealed radiation sources made by JASTRO (Japan Society for Therapeutic Radiology and Oncology). Use of the old type 60 Co-RALS was pointed out to be a serious problem remained and its safety handling procedure was also presented. (K.H.)

  6. Gold nanoparticle-based brachytherapy enhancement in choroidal melanoma using a full Monte Carlo model of the human eye.

    Science.gov (United States)

    Asadi, Somayeh; Vaez-zadeh, Mehdi; Masoudi, S Farhad; Rahmani, Faezeh; Knaup, Courtney; Meigooni, Ali S

    2015-09-08

    The effects of gold nanoparticles (GNPs) in 125I brachytherapy dose enhancement on choroidal melanoma are examined using the Monte Carlo simulation technique. Usually, Monte Carlo ophthalmic brachytherapy dosimetry is performed in a water phantom. However, here, the compositions of human eye have been considered instead of water. Both human eye and water phantoms have been simulated with MCNP5 code. These simulations were performed for a fully loaded 16 mm COMS eye plaque containing 13 125I seeds. The dose delivered to the tumor and normal tissues have been calculated in both phantoms with and without GNPs. Normally, the radiation therapy of cancer patients is designed to deliver a required dose to the tumor while sparing the surrounding normal tissues. However, as the normal and cancerous cells absorbed dose in an almost identical fashion, the normal tissue absorbed radiation dose during the treatment time. The use of GNPs in combination with radiotherapy in the treatment of tumor decreases the absorbed dose by normal tissues. The results indicate that the dose to the tumor in an eyeball implanted with COMS plaque increases with increasing GNPs concentration inside the target. Therefore, the required irradiation time for the tumors in the eye is decreased by adding the GNPs prior to treatment. As a result, the dose to normal tissues decreases when the irradiation time is reduced. Furthermore, a comparison between the simulated data in an eye phantom made of water and eye phantom made of human eye composition, in the presence of GNPs, shows the significance of utilizing the composition of eye in ophthalmic brachytherapy dosimetry Also, defining the eye composition instead of water leads to more accurate calculations of GNPs radiation effects in ophthalmic brachytherapy dosimetry.

  7. Estimation of frequency, population doses and stochastic risks in brachytherapy in Japan, 1983

    International Nuclear Information System (INIS)

    Maruyama, Takashi; Kumamoto, Yoshikazu; Noda, Yutaka; Nishizawa, Kanae; Furuya, Yoshiro; Iwai, Kazuo.

    1988-01-01

    Based on the replies to a questionnaire distributed throughout Japan in 1983, genetically significant dose (GSD), per Caput mean bone marrow dose (CMD), leukemogenically significant dose (LSD), malignantly significant dose (MSD), and per Caput effective dose equivalent (EDE) from using small sealed radiation sources for radiotherapy were estimated. Annual frequencies of brachytherapy were estimated to be 2.6 x 10 3 for men and 36.3 x 10 3 for women, with a total of 38.9 x 10 3 . The annual frequencies of using afterloading technique were 0.3 x 10 3 for men and 18.8 x 10 3 for women, with a total of 19.1 x 10 3 . The annual population doses per person were 7.9 nGy for GSD, 118 μGy for CMD, 19.3 μGy for LSD, 172 μGy for MSD, and 428 μGy for EDE. The annual collective effective dose equivalent was estimated to be 5.13 x 10 4 man Sv. (Namekawa, K.)

  8. New after-loading intrauterine packing device: ten years experience

    International Nuclear Information System (INIS)

    Sklaroff, D.M.; Baker, A.S.; Tasbas, M.

    1985-01-01

    A new variation of the uterine packing device for the treatment of endometrial carcinoma is described. It combines the advantages of the Holter technique with the after-loading method described by Simon. This device has been in use for more than 10 years and has been found most satisfactory

  9. Contractility-afterload mismatch in patients with protein-losing enteropathy after the Fontan operation.

    Science.gov (United States)

    Ozawa, Hideto; Ueno, Takayoshi; Iwai, Shigemitsu; Kawata, Hiroaki; Nishigaki, Kyouichi; Kishimoto, Hidefumi; Sawa, Yoshiki

    2014-10-01

    This study aimed to clarify the relationship between onset of protein-losing enteropathy (PLE) and Fontan circulation, with special reference to the development of contractility-afterload mismatch. The PLE group comprised 9 patients who experienced PLE after undergoing the Fontan operation, and the control group consisted of 32 patients had did not experienced PLE more than 10 years after the Fontan operation. The study compared the pre- and postoperative values of arterial elastance (Ea), end-systolic elastance (Ees), and contractility-afterload mismatch (Ea/Ees). Furthermore, the variations in the values were examined during the preoperative, postoperative, and midterm postoperative periods in seven PLE patients who underwent cardiac catheterization at the onset of PLE and during the pre- and postintervention periods in three PLE patients who underwent surgical intervention to improve the Fontan circulation after the onset of PLE. Comparison of the values obtained before and after Fontan operations showed that the Ea values increased significantly in the PLE group. However, the pre- and postoperative Ees values did not differ in the two groups. During the postoperative period, Ea/Ees increased significantly, and the Ea and Ea/Ees values increased continuously until the onset of PLE in the PLE group. In the patients who underwent surgical intervention to improve the Fontan circulation after the onset of PLE, the Ea/Ees decreased significantly, and the serum albumin levels improved after the intervention. Contractility-afterload mismatch, mainly caused by the increase in the afterload of the systemic ventricle, may have an important role in the development of PLE after the Fontan operation.

  10. Dosimetry audit on the accuracy of 192Ir brachytherapy source strength determinations in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson Tedgren, Aasa

    2007-11-15

    The absorbed dose delivered to the patient in brachytherapy is directly proportional to the source strength in terms of the reference air-kerma rate (RAKR). Verification of this quantity by the hospitals is widely recognized as an important part of a quality assurance program. An external audit was performed on behalf of the Secondary Standard Dosimetry Laboratory at the Swedish Radiation Protection Authority (SSI). The aim was to investigate how accurately the source-strength in 192Ir brachytherapy is determined at Swedish hospitals. The SSI reference well-type ion chamber and calibrated equipment were used to measure the RAKR of an 192Ir source in each of the 14 Swedish afterloading units. Comparisons with values determined by vendors and hospitals were made. Agreement in values of RAKR as determined by SSI, hospitals and vendors were in all cases within the +-3% uncertainty (at a coverage factor of k=2), typically guaranteed by the vendors. The good agreement reflects the robustness and easy handling of well-type chambers designed for brachytherapy in use by all Swedish hospitals. The 192Ir calibration service planned at SSI will solve the hospitals current problem with recalibration of equipment. SSI can also advise hospitals to follow the IAEA recommendations for measurement techniques and maintenance of equipment. It is worthwhile for the hospitals to establish their own ratio (or deviation) with the vendor and follow it as function of time. Such a mean-ratio embeds systematic differences of various origins and have a lower uncertainty than has the RAKR alone, making it useful for early detection of problems with equipment or routines. SSI could also define requirements for the agreement between source strengths as determined by hospitals and vendors and couple this to an action plan, dependent on level of disagreement, and some kind of reporting to SSI

  11. Dosimetry audit on the accuracy of 192Ir brachytherapy source strength determinations in Sweden

    International Nuclear Information System (INIS)

    Carlsson Tedgren, Aasa

    2007-11-01

    The absorbed dose delivered to the patient in brachytherapy is directly proportional to the source strength in terms of the reference air-kerma rate (RAKR). Verification of this quantity by the hospitals is widely recognized as an important part of a quality assurance program. An external audit was performed on behalf of the Secondary Standard Dosimetry Laboratory at the Swedish Radiation Protection Authority (SSI). The aim was to investigate how accurately the source-strength in 192 Ir brachytherapy is determined at Swedish hospitals. The SSI reference well-type ion chamber and calibrated equipment were used to measure the RAKR of an 192 Ir source in each of the 14 Swedish afterloading units. Comparisons with values determined by vendors and hospitals were made. Agreement in values of RAKR as determined by SSI, hospitals and vendors were in all cases within the ±3% uncertainty (at a coverage factor of k=2), typically guaranteed by the vendors. The good agreement reflects the robustness and easy handling of well-type chambers designed for brachytherapy in use by all Swedish hospitals. The 192 Ir calibration service planned at SSI will solve the hospitals current problem with recalibration of equipment. SSI can also advise hospitals to follow the IAEA recommendations for measurement techniques and maintenance of equipment. It is worthwhile for the hospitals to establish their own ratio (or deviation) with the vendor and follow it as function of time. Such a mean-ratio embeds systematic differences of various origins and have a lower uncertainty than has the RAKR alone, making it useful for early detection of problems with equipment or routines. SSI could also define requirements for the agreement between source strengths as determined by hospitals and vendors and couple this to an action plan, dependent on level of disagreement, and some kind of reporting to SSI

  12. Dose mapping of the rectal wall during brachytherapy with an array of scintillation dosimeters

    International Nuclear Information System (INIS)

    Cartwright, L. E.; Suchowerska, N.; Yin, Y.; Lambert, J.; Haque, M.; McKenzie, D. R.

    2010-01-01

    Purpose: In pelvic brachytherapy treatments, the rectum is an organ at risk. The authors have developed an array of scintillation dosimeters suitable for in vivo use that enables quality assurance of the treatment delivery and provides an alert to potential radiation accidents. Ultimately, this will provide evidence to direct treatment planning and dose escalation and correlate dose with the rectal response. Methods: An array of 16 scintillation dosimeters in an insertable applicator has been developed. The dosimeters were calibrated simultaneously in a custom designed circular jig before use. Each dosimeter is optically interfaced to a set of pixels on a CCD camera located outside the treatment bunker. A customized software converts pixel values into dose rate and accumulates dose for presentation during treatment delivery. The performance of the array is tested by simulating brachytherapy treatments in a water phantom. The treatment plans were designed to deliver a known dose distribution on the surface of the rectal applicator, assumed to represent the dose to the rectal wall. Results: The measured doses were compared to those predicted by the treatment plan and found to be in agreement to within the uncertainty in measurement, usually within 3%. The array was also used to track the progression of the source as it moved along the catheter. The measured position was found to agree with the position reported by the afterloader to within the measurement uncertainty, usually within 2 mm. Conclusions: This array is capable of measuring the actual dose received by each region of the rectal wall during brachytherapy treatments. It will provide real time monitoring of treatment delivery and raise an alert to a potential radiation accident. Real time dose mapping in the clinical environment will give the clinician additional confidence to carry out dose escalation to the tumor volume while avoiding rectal side effects.

  13. NOTE: Monte Carlo evaluation of kerma in an HDR brachytherapy bunker

    Science.gov (United States)

    Pérez-Calatayud, J.; Granero, D.; Ballester, F.; Casal, E.; Crispin, V.; Puchades, V.; León, A.; Verdú, G.

    2004-12-01

    In recent years, the use of high dose rate (HDR) after-loader machines has greatly increased due to the shift from traditional Cs-137/Ir-192 low dose rate (LDR) to HDR brachytherapy. The method used to calculate the required concrete and, where appropriate, lead shielding in the door is based on analytical methods provided by documents published by the ICRP, the IAEA and the NCRP. The purpose of this study is to perform a more realistic kerma evaluation at the entrance maze door of an HDR bunker using the Monte Carlo code GEANT4. The Monte Carlo results were validated experimentally. The spectrum at the maze entrance door, obtained with Monte Carlo, has an average energy of about 110 keV, maintaining a similar value along the length of the maze. The comparison of results from the aforementioned values with the Monte Carlo ones shows that results obtained using the albedo coefficient from the ICRP document more closely match those given by the Monte Carlo method, although the maximum value given by MC calculations is 30% greater.

  14. Comparative dosimetry in intracavitary balloon catheter brachytherapy with I-125 and in Cf-252 brachytherapy combined with BNCT for brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Brandao, Samia de Freitas, E-mail: samiabrandao@gmail.com [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Campos, Tarcisio Passos Ribeiro de [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil)

    2013-06-15

    Objective: comparative analysis of dosimetry in intracavitary balloon catheter brachytherapy with I-125 and in Cf-252 brachytherapy combined with BNCT for treatment of brain tumors. Materials and methods: simulations of intracavitary balloon catheter brachytherapy with I-125 and in Cf-252 brachytherapy combined with BNCT were performed with the MCNP5 code, modeling the treatment of a brain tumor on a voxel computational phantom representing a human head. Absorbed dose rates were converted into biologically weighted dose rates. Results: intracavitary balloon catheter brachytherapy with I-125 produced biologically weighted mean dose rates of 3.2E-11, 1.3E-10, 1.9E-11 and 6.9E-13 RBE.Gy.h{sup -1}.p{sup -1}.s, respectively, on the healthy tissue, on the balloon periphery and on the /{sub 1} and /{sub 2} tumor infiltration zones. On the other hand, Cf-252 brachytherapy combined with BNCT produced a biologically weighted mean dose rate of 5.2E-09, 2.3E-07, 8.7E-09 and 2.4E-09 RBE.Gy.h{sup -1}.p{sup -1}.s, respectively on the healthy tissue, on the target tumor and on the /{sub 1} and /{sub 2} infiltration zones. Conclusion: Cf-252 brachytherapy combined with BNCT delivered a selective irradiation to the target tumor and to infiltration zones, while intracavitary balloon catheter brachytherapy with I-125 delivered negligible doses on the tumor infiltration zones. (author)

  15. Comparative dosimetry in intracavitary balloon catheter brachytherapy with I-125 and in Cf-252 brachytherapy combined with BNCT for brain tumors

    Directory of Open Access Journals (Sweden)

    Samia de Freitas Brandao

    2013-07-01

    Full Text Available Objective Comparative analysis of dosimetry in intracavitary balloon catheter brachytherapy with I-125 and in Cf-252 brachytherapy combined with BNCT for treatment of brain tumors. Materials and Methods Simulations of intracavitary balloon catheter brachytherapy with I-125 and in Cf-252 brachytherapy combined with BNCT were performed with the MCNP5 code, modeling the treatment of a brain tumor on a voxel computational phantom representing a human head. Absorbed dose rates were converted into biologically weighted dose rates. Results Intracavitary balloon catheter brachytherapy with I-125 produced biologically weighted mean dose rates of 3.2E-11, 1.3E-10, 1.9E-11 and 6.9E-13 RBE.Gy.h-1.p-1.s, respectively, on the healthy tissue, on the balloon periphery and on the I 1 and I 2 tumor infiltration zones. On the other hand, Cf-252 brachytherapy combined with BNCT produced a biologically weighted mean dose rate of 5.2E-09, 2.3E-07, 8.7E-09 and 2.4E-09 RBE.Gy.h-1.p-1.s, respectively on the healthy tissue, on the target tumor and on the I 1 and I 2 infiltration zones. Conclusion Cf-252 brachytherapy combined with BNCT delivered a selective irradiation to the target tumor and to infiltration zones, while intracavitary balloon catheter brachytherapy with I-125 delivered negligible doses on the tumor infiltration zones.

  16. Dosimetry experience of 192IR sources used In HDR brachytherapy for cervical cancer

    International Nuclear Information System (INIS)

    Daci, Lulzime; Myrku, Rodina Cela

    2013-01-01

    Purpose/Objective: The 192IR Sources are the most commonly used in radiotherapy treatments HDR worldwide. According to international recommendations on quality assurance in HDR brachytherapy, an acceptance test based on the determination of the source strength of any new source shall be carried out before first application to verify the manufacturer’s calibration data. The present paper gives the experimental determination of the source strength for our brachytherapy sources used until now in brachytherapy treatments. Materials/Methods: At Mother Teresa University Hospital we have a cost-effective gynecological brachytherapy unit from Eckert & Ziegler BEBIG named GyneSource® that is a five channel HDR after loader equipped with an 192IR source. The software used is HDR plus™ 2.5 that delivers an optimized treatment plan and makes the process especially fast and we use intracavitary BEBIG applicators. From April 2009 up to December 2012, we have imported nine HDR 192IR Sources. The exchange of the source and acceptance test is done by the physicist of the clinic once the source is imported. The measurements are done with a Well-type ionization chamber HDR1000 Plus and the electrometer used is MAX4000. Only seven sources are compared as we miss the dosimetry data of the first source, and the forth source was not measured and not used because the machine was not working in that time. Results/Conclusions: Eight sources were accepted for clinically use as the measurement were within the tolerance. The source number four with e deviation of -1.92% has been double checked compared with a free in-air measurement with farmer type chamber that gave a deviation to source certificate of 4% that is still inside the tolerance to accept a source for clinical use. The deviations of measured Air Kerma rate to the value of the sources certificates of all our used 192IR sources are less than 2%, which are within the tolerance. The checked value of updated source strength in

  17. Is there any advantage of CT based 3-dimensional conformal planning over conventional orthogonal x-ray based planning in HDR brachytherapy in breast cancer

    International Nuclear Information System (INIS)

    Biswal, B.M.; Idris, N.R.; Zakaria, A.B.; Khairul, N.

    2003-01-01

    The conventional brachytherapy dose calculation is based on a particular brachytherapy rule or individual dosimetry based on the reconstruction of the sources from the orthogonal films. In the recent years many centers are using CT based 3D conformal brachytherapy in order to improve the dosimetric outcome of a given plan. Here we would like to present our experience on the use of both techniques to deliver HDR interstitial brachytherapy as boost in early breast cancer. From January 2001 to January 2003, we treated 4 breast cancer patients using conventional orthogonal x-rays and CT scan in 3 cases for the treatment plan. All patients received an external beam radiotherapy dose of 46 Gy in 23 fractions over 4.5 weeks to the whole breast using 6 MV photon beam. Subsequently the primary lesion was supplimented with HDR brachytherapy to a dose of 2.5 Gy BID for 3 consecutive days using a (192)Ir microSelectronHDR. The dose prescription was individualized to encompass the tumor volume with a 10 mm margin. The differences of the dosimetric outcome were compared. All patients completed above schedule of radiotherapy. The primary was implanted with single plane in 3 patients and multiplane implant in 4 patients. Orthogonal x-ray based localization was performed in 4 patients and CT scan based localization in 3 cases. Three patients were implanted single plane and 4 patients with multiplane implants with a median catheter number of 9 (range 6-14). The 3D conformal dose optimization was performed using Nucletron planning system (Plato). The mean 100% and 150% isodose volume was 67.3 cm 3 and 31.25cm 3 respectively. The identification of primary tumor volume, organ at risk, and identification of afterloading catheters were superior in CT based plan than conventional planning. CT scan based 3D conformal brachytherapy planning give better identification of tumor volume and its curvature, decrease the time to identify the sources and evaluate the radiation dose to organs at

  18. Pulsed dose rate and fractionated high dose rate brachytherapy: choice of brachytherapy schedules to replace low dose rate treatments

    International Nuclear Information System (INIS)

    Visser, Andries G.; Aardweg, Gerard J.M.J. van den; Levendag, Peter C.

    1996-01-01

    Purpose: Pulsed dose rate (PDR) brachytherapy is a new type of afterloading brachytherapy (BT) in which a continuous low dose rate (LDR) treatment is simulated by a series of 'pulses,' i.e., fractions of short duration (less than 0.5 h) with intervals between fractions of 1 to a few hours. At the Dr. Daniel den Hoed Cancer Center, the term 'PDR brachytherapy' is used for treatment schedules with a large number of fractions (at least four per day), while the term 'fractionated high dose rate (HDR) brachytherapy' is used for treatment schedules with just one or two brachytherapy fractions per day. Both treatments can be applied as alternatives for LDR BT. This article deals with the choice between PDR and fractionated HDR schedules and proposes possible fractionation schedules. Methods and Materials: To calculate HDR and PDR fractionation schedules with the intention of being equivalent to LDR BT, the linear-quadratic (LQ) model has been used in an incomplete repair formulation as given by Brenner and Hall, and by Thames. In contrast to earlier applications of this model, both the total physical dose and the overall time were not kept identical for LDR and HDR/PDR schedules. A range of possible PDR treatment schedules is presented, both for booster applications (in combination with external radiotherapy (ERT) and for BT applications as a single treatment. Because the knowledge of both α/β values and the half time for repair of sublethal damage (T (1(2)) ), which are required for these calculations, is quite limited, calculations regarding the equivalence of LDR and PDR treatments have been performed for a wide range of values of α/β and T (1(2)) . The results are presented graphically as PDR/LDR dose ratios and as ratios of the PDR/LDR tumor control probabilities. Results: If the condition that total physical dose and overall time of a PDR treatment must be exactly identical to the values for the corresponding LDR treatment regimen is not applied, there appears

  19. Dosimetry audit on the accuracy of {sup 192}Ir brachytherapy source strength determinations in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson Tedgren, Aasa

    2007-11-15

    The absorbed dose delivered to the patient in brachytherapy is directly proportional to the source strength in terms of the reference air-kerma rate (RAKR). Verification of this quantity by the hospitals is widely recognized as an important part of a quality assurance program. An external audit was performed on behalf of the Secondary Standard Dosimetry Laboratory at the Swedish Radiation Protection Authority (SSI). The aim was to investigate how accurately the source-strength in {sup 192}Ir brachytherapy is determined at Swedish hospitals. The SSI reference well-type ion chamber and calibrated equipment were used to measure the RAKR of an {sup 192}Ir source in each of the 14 Swedish afterloading units. Comparisons with values determined by vendors and hospitals were made. Agreement in values of RAKR as determined by SSI, hospitals and vendors were in all cases within the {+-}3% uncertainty (at a coverage factor of k=2), typically guaranteed by the vendors. The good agreement reflects the robustness and easy handling of well-type chambers designed for brachytherapy in use by all Swedish hospitals. The {sup 192}Ir calibration service planned at SSI will solve the hospitals current problem with recalibration of equipment. SSI can also advise hospitals to follow the IAEA recommendations for measurement techniques and maintenance of equipment. It is worthwhile for the hospitals to establish their own ratio (or deviation) with the vendor and follow it as function of time. Such a mean-ratio embeds systematic differences of various origins and have a lower uncertainty than has the RAKR alone, making it useful for early detection of problems with equipment or routines. SSI could also define requirements for the agreement between source strengths as determined by hospitals and vendors and couple this to an action plan, dependent on level of disagreement, and some kind of reporting to SSI.

  20. Flushing-free film test of "1"9"2Ir accuracy of position and step distance for afterloading systems

    International Nuclear Information System (INIS)

    Lu Feng; Chen Rui; Shang Yunying; Chen Yue; Min Nan; Chen Yingmin; Deng Daping

    2014-01-01

    Objective: To study the method of measuring the position accuracy and the step distance accuracy of afterloading system with "1"9"2Ir source by using flushing-free film. Methods: The position accuracy and the step distance accuracy of a China-made afterloading system with "1"9"2Ir source was measured by using GAFCHROMIC"® EBT"3 flushing-free film. The film was scanned to proper image format, required by dose analysis software, by EPSON PREFACTION V700 PHOTO scanner. Then images are analyzed by using film dose analysis software in SNC Patient 5.2. Results: With focus on the center of active section of source, the position accuracy of this afterloading system with "1"9"2Ir source was -0.75 mm. Using film analysis could make the step point to tell apart if the step distance was 5 mm away by the method of film analysis, but couldnot make it to tell apart if the step distance was 2.5 mm away. The 2.5 mm step distance accuracy could be judged if the distance between the 1"s"t point and the 3"r"d point was 5 mm, then the 2.5 mm step distance could be deemed to no deviation. The 5 mm step distance of this afterloading system had no deviation in continuous 9 step points measured by flushing-free film. The indirect measuring results of the 2.5 mm step distance had no deviation as well. The position accuracy of this afterloading system measured with the flushing-free film accorded with the national standards. Conclusions: The method of measuring the position accuracy and the step distance accuracy of the afterloading system with "1"9"2Ir source by using flushing-free film is technically feasible. (authors)

  1. Assessment of right ventricular afterload in mitral valve diseases with radionuclide angiography

    International Nuclear Information System (INIS)

    Shimizu, Mitsuharu; Nakagawa, Tomio; Kohno, Yoshihiro; Kuroda, Masahiro; Takeda, Yoshihiro; Hiraki, Yoshio; Nagaya, Isao; Senoh, Yoshimasa; Teramoto, Shigeru

    1991-01-01

    Right ventricular function at rest and during exercise was studied in 33 patients with mitral valve disease by equilibrium gated radionuclide angiography using 99m Tc in vivo labeled red blood cells. Radionuclide measurements of right ventricular ejection fraction (RVEF) were correlated with mean pulmonary arterial pressure (mPAP). RVEF decreased significantly with exercise. There was no significant correlation between RVEF at rest and mPAP. However, mPAP showed significant negative correlation with RVEF during exercise and with the changes of RVEF from rest to exercise. It is concluded that RVEF during exercise in mitral valve disease is affected by right ventricular afterload, and the measurements of RVEF at rest and during exercise by equilibrium gated radionuclide angiography is useful to assess right ventricular afterload. (author)

  2. A new after-loading intrauterine packing device: ten years experience.

    Science.gov (United States)

    Sklaroff, D M; Baker, A S; Tasbas, M

    1985-12-01

    A new variation of the uterine packing device for the treatment of endometrial carcinoma is described. It combines the advantages of the Holter technique with the after-loading method described by Simon. This device has been in use for more than 10 years and has been found most satisfactory.

  3. American brachytherapy society (ABS) consensus guidelines for brachytherapy of esophageal cancer

    International Nuclear Information System (INIS)

    Gaspar, Laurie E.; Nag, Subir; Herskovic, Arnold; Mantravadi, Rao; Speiser, Burton

    1997-01-01

    Introduction: There is wide variation in the indications, treatment regimens, and dosimetry for brachytherapy in the treatment of cancer of the esophagus. No guidelines for optimal therapy currently exist. Methods and Materials: Utilizing published reports and clinical experience, representatives of the Clinical Research Committee of the American Brachytherapy Society (ABS) formulated guidelines for brachytherapy in esophageal cancer. Results: Recommendations were made for brachytherapy in the definitive and palliative treatment of esophageal cancer. (A) Definitive treatment: Good candidates for brachytherapy include patients with unifocal thoracic adeno- or squamous cancers ≤ 10 cm in length, with no evidence of intra-abdominal or metastatic disease. Contraindications include tracheal or bronchial involvement, cervical esophagus location, or stenosis that cannot be bypassed. The esophageal brachytherapy applicator should have an external diameter of 6-10 mm. If 5FU-based chemotherapy and 45-50-Gy external beam are used, recommended brachytherapy is either: (i) HDR 10 Gy in two weekly fractions of 5 Gy each; or (ii) LDR 20 Gy in a single course at 0.4-1 Gy/hr. All doses are specified 1 cm from the midsource or middwell position. Brachytherapy should follow external beam radiation therapy and should not be given concurrently with chemotherapy. (B) Palliative treatment: Patients with adeno- or squamous cancers of the thoracic esophagus with distant metastases or unresectable local disease progression/recurrence after definitive radiation treatment should be considered for brachytherapy with palliative intent. After limited dose (30 Gy) EBRT, the recommended brachytherapy is either: (i) HDR 10-14 Gy in one or two fractions; or (ii) LDR 20-25 Gy in a single course at 0.4-1 Gy/hr. The need for external beam radiation in newly diagnosed patients with a life expectancy of less than 3 months is controversial. In these cases, HDR of 15-20 Gy in two to four fractions or

  4. Current status of brachytherapy in Korea: a national survey of radiation oncologists.

    Science.gov (United States)

    Kim, Haeyoung; Kim, Joo Young; Kim, Juree; Park, Won; Kim, Young Seok; Kim, Hak Jae; Kim, Yong Bae

    2016-07-01

    The aim of the present study was to acquire information on brachytherapy resources in Korea through a national survey of radiation oncologists. Between October 2014 and January 2015, a questionnaire on the current status of brachytherapy was distributed to all 86 radiation oncology departments in Korea. The questionnaire was divided into sections querying general information on human resources, brachytherapy equipment, and suggestions for future directions of brachytherapy policy in Korea. The response rate of the survey was 88.3%. The average number of radiation oncologists per center was 2.3. At the time of survey, 28 centers (36.8%) provided brachytherapy to patients. Among the 28 brachytherapy centers, 15 (53.5%) were located in in the capital Seoul and its surrounding metropolitan areas. All brachytherapy centers had a high-dose rate system using (192)Ir (26 centers) or (60)Co (two centers). Among the 26 centers using (192)Ir sources, 11 treated fewer than 40 patients per year. In the two centers using (60)Co sources, the number of patients per year was 16 and 120, respectively. The most frequently cited difficulties in performing brachytherapy were cost related. A total of 21 centers had a plan to sustain the current brachytherapy system, and four centers noted plans to upgrade their brachytherapy system. Two centers stated that they were considering discontinuation of brachytherapy due to cost burdens of radioisotope source replacement. The present study illustrated the current status of brachytherapy in Korea. Financial difficulties were the major barriers to the practice of brachytherapy.

  5. Long duration mild temperature hyperthermia and brachytherapy.

    Science.gov (United States)

    Armour, E P; Raaphorst, G P

    2004-03-01

    Combining long duration mild temperature hyperthermia (LDMH) and low dose-rate (LDR) brachytherapy to enhance therapeutic killing of cancer cells was proposed many years ago. The cellular and tumour research that supports this hypothesis is presented in this review. Research describing LDMH interaction with pulsed brachytherapy and high dose-rate brachytherapy using clinically relevant parameters are compared with LDMH/LDR brachytherapy. The mechanism by which LDMH sensitizes LDR has been established as the inhibition of sublethal damage repair. The molecular mechanisms have been shown to involve DNA repair enzymes, but the exact nature of these processes is still under investigation. The relative differences between LDMH interactions with human and rodent cells are presented to help in the understanding of possible roles of LDMH in clinical application. The role of LDMH in modifying tumour blood flow and its possible role in LDR sensitization of tumours is also presented. The positive aspects of LDMH-brachytherapy for clinical application are sixfold; (1) the thermal goals (temperature, time and volume) are achievable with currently available technology, (2) the hyperthermia by itself has no detectable toxic effects, (3) thermotolerance appears to play a minor if any role in radiation sensitization, (4) TER of around 2 can be expected, (5) hypoxic fraction may be decreased due to blood flow modification and (6) simultaneous chemotherapy may also be sensitized. Combined LDMH and brachytherapy is a cancer therapy that has established biological rationale and sufficient technical and clinical advancements to be appropriately applied. This modality is ripe for clinical testing.

  6. American brachytherapy society (ABS) guidelines for brachytherapy of esophageal cancer

    International Nuclear Information System (INIS)

    Nag, Subir; Gaspar, Laurie; Herskovic, Arnold; Mantravadi, Prasad; Speiser, Burton

    1996-01-01

    Introduction: There is wide variation in the indications, techniques, treatment regimens and dosimetry being used to treat cancer of the esophagus and no guidelines exist for optimal therapy. Methods: The Clinical Research Committee of the ABS met to formulate consensus guidelines for brachytherapy in esophageal cancer. Results: Good candidates for brachytherapy include patients with unifocal disease, with thoracic tumor 10 cm primary regional lymph adenopathy or tumor located in the gastro-esophageal junction or cervical esophagus. Contraindications include tracheo-esophageal fistula or stenosis that cannot be by-passed. The esophageal or nasogastric tube inserted should have a diameter of 6-10 mm whenever possible. If 5FU-based chemotherapy and 50 Gy external beam (EBRT) are used, it is suggested that the low dose rate brachytherapy (LDR) dose be 20 Gy at 0.4-1 Gy/hr, prescribed at 1 cm from the source. If high dose rate (HDR) is used, the dose recommended is 10 Gy in 2 weekly fractions of 5 Gy each, given after EBRT. Chemotherapy is not usually given concurrently with brachytherapy, and when it is, the brachytherapy dose is reduced. The length of esophagus treated by brachytherapy includes the post-EBRT involved area and a 1-2 cm margin proximally and distally. Supportive care, given during EBRT includes an antifungal agent (e.g., diflucan) and carafate. Gradual dilatation of the esophagus is required post-treatment for esophageal strictures. Conclusion: Guidelines were developed for brachytherapy in esophageal cancer. As more clinical data becomes available, these guidelines will be updated by the ABS

  7. Esthesioneuroblastoma - treatment of recurrences by means of remote-controlled afterloading-technique

    International Nuclear Information System (INIS)

    Schulz-Wendtland, R.; Bauer, M.; Wilhelm, K.R.; Mende, U.; Dreyer, M.

    1990-01-01

    At the Radiological Hospital of the Heidelberg University, one patient with a local recurrence of an esthesioneuroblastoma situated on the left-hand side of the skull base was treated between February 11 and March 18, 1986, by an afterloading contact therapy with curative intent. After preceding surgery and percutaneous radiotherapy, repeated local recurrences and locoregional lymph node metastases had occured. The contact therapy was performed after adjusting an individual face mask in which the afterloading probe was placed and brought into its position in the tumor region. The irradiation scheme was based on the transformation of the source coordinates from the stereoscopic X-ray localization system into the coordinate system of the computed tomogram by means of X-ray right reference points. The irradiation planning by computed tomography allows to optimize the arrangement of sources within the tumor region. The principles of the method as well as the treatment result are presented. (orig.) [de

  8. The Real-Time Dose Measurement Scintillating Fiber Array for Brachytherapy Procedures

    Science.gov (United States)

    Tynes, Lawrence

    2007-03-01

    Brachytherapy is a treatment modality that uses tiny radioactive sources (few mm in length) by delivering enough doses to kill cancer tumors or plaque build-up. The type of sources used in hospitals include both gamma and beta emitters. Presently, the technique suffers from not having a single detector with the capability of providing accurate dose distribution information within sub-mm accuracy. The current standard is based primarily on well chambers and film dosimetry. The Center for Advanced Medical Instrumentation (CAMI) at Hampton University is developing a Scintillating Fiber Based Beta Detector prototype in collaboration with the National Institute for Standards and Technology (NIST) to address this problem. The device is composed of an array of 1x1 mm^2 scintillating fibers optically coupled to photo-multiplier tubes for photon-to-current conversion. A CAMAC LabView based data acquisition system is used for real time data collection and histogramming, data analysis. A set of data were collected at the nearby Bon Secours DePaul Medical Center using a GammaMed 12i HDR after-loader housing a 6.62 mCi Ir-192 source. Preliminary comparison between our device and film dosimetry will be discussed.

  9. Afterloading intracavitary irradiation and expanding stent for malignant biliary obstruction

    Energy Technology Data Exchange (ETDEWEB)

    Yoshimura, Hitoshi; Sakaguchi, Hiroshi; Yoshioka, Tetsuya and others

    1989-02-01

    A double lumen catheter was developed as an apllicator for the remote afterloading (RALS) of /sup 60/Co source for the intracavitary irradiation of an obstructed common bile duct caused by carcinoma of the gallbladder. This was followed by the placement of nylon-covered expandable metallic stents to maintain patency. This combination effectively provided palliation. (author).

  10. A dosimetric intercomparison of brachytherapy facilities in Ireland, Scotland and the North of England

    International Nuclear Information System (INIS)

    Heeney, Conor; McClean, Brendan; Kelly, Colin

    2005-01-01

    Background and purpose: A dosimetric intercomparison of brachytherapy remote afterloading units in Ireland, Scotland and the North of England has been carried out involving 9 radiotherapy centres, and sampling 5 HDR and 6 LDR units. Materials and methods: Absolute calibrations have been performed in air on both HDR and LDR sources. The results are expressed in terms of a ratio of local to calibrated value. Frequency distributions were obtained for the multi-source LDR units by individually measuring each source. Using these distributions the effect of non-uniform source strength on the dose rate at Manchester point A was assessed for a typical clinical brachytherapy insertion for carcinoma of the cervix. Both frequency and dose rate distribution curves were modeled using normal statistics and characterised in terms of the mean (μ) and standard deviation (σ). Results: Evaluation of the HDR units indicated a mean ratio of 1.008 (±0.01) while for LDR the mean ratio was 0.997 (±0.02). The LDR frequency distributions demonstrated a variation of σ values extending from 1.4 to 3.0% of μ. It was shown that this non-uniformity in source strength introduced an uncertainty in the treatment planning process of between 0.8 and 1.8% when compared to the assumption of uniform source strength. Conclusions: The results of this intercomparison indicate dosimetric consistency between centres for both LDR and HDR units. The distribution of LDR source strengths were within expected limits and the resultant dose rate distributions were considered clinically acceptable

  11. The American Brachytherapy Society recommendations for low-dose-rate brachytherapy for carcinoma of the cervix

    International Nuclear Information System (INIS)

    Nag, Subir; Chao, Clifford; Erickson, Beth; Fowler, Jeffery; Gupta, Nilendu; Martinez, Alvaro; Thomadsen, Bruce

    2002-01-01

    Purpose: This report presents guidelines for using low-dose-rate (LDR) brachytherapy in the management of patients with cervical cancer. Methods: Members of the American Brachytherapy Society (ABS) with expertise in LDR brachytherapy for cervical cancer performed a literature review, supplemented by their clinical experience, to formulate guidelines for LDR brachytherapy of cervical cancer. Results: The ABS strongly recommends that radiation treatment for cervical carcinoma (with or without chemotherapy) should include brachytherapy as a component. Precise applicator placement is essential for improved local control and reduced morbidity. The outcome of brachytherapy depends, in part, on the skill of the brachytherapist. Doses given by external beam radiotherapy and brachytherapy depend upon the initial volume of disease, the ability to displace the bladder and rectum, the degree of tumor regression during pelvic irradiation, and institutional practice. The ABS recognizes that intracavitary brachytherapy is the standard technique for brachytherapy for cervical carcinoma. Interstitial brachytherapy should be considered for patients with disease that cannot be optimally encompassed by intracavitary brachytherapy. The ABS recommends completion of treatment within 8 weeks, when possible. Prolonging total treatment duration can adversely affect local control and survival. Recommendations are made for definitive and postoperative therapy after hysterectomy. Although recognizing that many efficacious LDR dose schedules exist, the ABS presents suggested dose and fractionation schemes for combining external beam radiotherapy with LDR brachytherapy for each stage of disease. The dose prescription point (point A) is defined for intracavitary insertions. Dose rates of 0.50 to 0.65 Gy/h are suggested for intracavitary brachytherapy. Dose rates of 0.50 to 0.70 Gy/h to the periphery of the implant are suggested for interstitial implant. Use of differential source activity or

  12. Frequency of afterload homocysteinemia in normal population of Southern Iran: a pilot study.

    Science.gov (United States)

    Akbari, A; Dehbozorgian, J; Afrasibi, A R; Gafari, H; Gerdabi, J; Karimi, M

    2010-04-01

    The objectives of the present pilot study were to investigate the effect of an oral methionine load on plasma homocysteine in healthy subjects southern Iran. We studied 50 peoples (10 men, 40 women, median age 27.5, range 20-37) referred to screening center for marriage since different part of southern Iran. Methionine (0.1 g kg(-1) b.wt.) was immediately administrated orally in 200 mL of orange juice and a second blood was obtained 4 h later. Plasma level of homocysteine was carried out by high performance liquid chromatography and flumetric detection. A homocysteine level above 15 mmol L(-1) was considered high. The mean fasting and afterload homocysteine were 15.28 and 31.29 micromol L(-1), respectively. Fasting hyperhomocysteinemia (>15 micromol L(-1)) was detected in 12% of male and 8% in female which significantly higher in men than women (p homocysteine levels (> 31 micromol L(-1)) was detected in 16% of male and 14%in female which higher in men than women. Notably 80% of participants had normal total homocystein concentration (homocystein levels (p = 0.000), in 8% of those normal homocystein level, methionine afterload homocystein levels became abnormal. In conclusion, based on results, we recommend the methionine afterload homocystein levels in high risk cases with normal fasting level in order to unmissed some cases with normal basal homocystein level.

  13. Combined transperineal radiofrequency (RF) interstitial hyperthermia and brachytherapy for localized prostate cancer (PC)

    International Nuclear Information System (INIS)

    Urakami, Shinji; Gonda, Nobuko; Kikuno, Nobuyuki

    2001-01-01

    Hyperthermia has been used effectively as a radiation sensitizer. Interstitial hyperthermoradiotherapy has been therefore utilized as a minimal invasive therapy in attempts to improve local tumor control for various cancers, but not for urological cancer. The purpose of this study was to investigate the safety and feasibility of transperineal hyperthermoradiotherapy for localized PC. Based on our basic study of hyperthermoradiotherapy, we devised the procedure of combined transperineal RF interstitial hyperthermia and brachytherapy for localized prostate cancer. Two patients with localized PC underwent transperineal RF interstitial hyperthermia combined with brachytherapy operation the 192-Ir remote after-loading system (RALS). Under transrectal ultrasound guidance, a total number of 12-18 stainless steel needles for 192-Ir RALS were implanted into the prostatic gland and seminal vesicles (SV) in an optimized pattern. Eight of the needles were used as electrodes for hyperthermia, and were electrically insultated using the vinyl catheter along the length of the subdermal fatty tissue to protect from overheating. Three other needles were utilized for continuous temperature mapping in the prostate. Rectal temperature was also monitored. Total radiation doses of 70 Gy to the prostate and SV were planned as a combination of brachytherapy (24 Gy/4 fraction) and external irradiation using a four-field box technique (46 Gy/23 fraction). Hyperthermic treatment (goal of 42 to 43 deg C for 60 minutes) was performed twice following the 1st and 4th brachytherapy at an interval of more than 48 hours for the recovery of cancer cells from thermotolerance. Both patients reached the treatment goal of all intraprostatic temperatures >43.0 deg C, which was considered favorable for hyperthermia, and the rectal temperatures of both patients remained <38 deg C during hyperthermia. In serial PSA measurements of both patients, serum PSA was less than 1.0 ng/ml within 3 months and has since

  14. Prostate cancer brachytherapy

    International Nuclear Information System (INIS)

    Abreu, Carlos Eduardo Vita; Silva, Joao L. F.; Srougi, Miguel; Nesrallah, Adriano

    1999-01-01

    The transperineal brachytherapy with 125 I/Pd 103 seed implantation guided by transurethral ultrasound must be presented as therapeutical option of low urinary morbidity in patients with localized prostate cancer. The combined clinical staging - including Gleason and initial PSA - must be encouraged, for definition of a group of low risk and indication of exclusive brachytherapy. Random prospective studies are necessary in order to define the best role of brachytherapy, surgery and external beam radiation therapy

  15. Three-dimensional brachytherapy optimization techniques in the treatment of patients with cervix cancer; Apport des techniques de curietherapie optimisee grace a l'imagerie tridimensionnelle dans la prise en charge des patientes atteintes d'un cancer du col uterin

    Energy Technology Data Exchange (ETDEWEB)

    Haie-Meder, C.; Mazeron, R.; Verezesan, O.; Monnier, L.; Vieillot, S. [Institut Gustave-Roussy, Service de Curietherapie, 94 - Villejuif (France); Dumas, I. [Institut Gustave-Roussy, Service de Physique, 94 - Villejuif (France); Lhomme, C. [Institut Gustave-Roussy, Service d' Ooncologie Gynecologique, 94 - Villejuif (France); Morice, P. [Institut Gustave-Roussy, Service de Chirurgie Oncologique, 94 - Villejuif (France); Barillot, I. [Centre Regional Universitaire de Cancerologie Henry-S.-Kaplan, Hopital Bretonneau, CHU de Tours, 37 - Tours (France); Universite Francois-Rabelais, 37 - Tours (France)

    2009-10-15

    Traditionally, prescription and treatment planning in intracavitary brachytherapy for cervix cancer have used either reference points (mainly points A and B) or reference isodoses (60 Gy according to ICRU recommendations) to report doses to the target volume. Doses to critical organs were reported at bladder and rectum ICRU points. This practice has been supported by a long-standing clinical experience that has yielded an acceptable therapeutic ratio. The recent development of imaging has contributed to the improvement in target and organs at risk knowledge. In 2005 and 2006, the European group of brachytherapy -European Society for therapeutic radiology and oncology (GEC-E.S.T.R.O.) recommendations publications on 3-D based image brachytherapy have defined the different volumes of interest. These recommendations have been validated with intercomparison delineation studies. With the concomitant development of remote after-loading projectors, provided with miniaturized sources, it is now possible to plan radiation doses by adjusting dwell positions and relative dwell time values. These procedures allow better coverage of the targets while sparing O.A.R.. The recent literature data evidence a significant improvement in local control with no increase in complications. Further studies are needed to better define the dose recommended in both tumour and organs at risk. This is one of the goals of the European study on MRI-guided brachytherapy in locally advanced cervical cancer (E.M.B.R.A.C.E.) protocol (meaning of acronym: an international study on MRI-guided brachytherapy in locally advanced cervical cancer). (authors)

  16. The feasibility study and characterization of a two-dimensional diode array in “magic phantom” for high dose rate brachytherapy quality assurance

    International Nuclear Information System (INIS)

    Espinoza, A.; Beeksma, B.; Petasecca, M.; Fuduli, I.; Porumb, C.; Cutajar, D.; Lerch, M. L. F.; Rosenfeld, A. B.; Corde, S.; Jackson, M.

    2013-01-01

    Purpose: High dose rate (HDR) brachytherapy is a radiation treatment technique capable of delivering large dose rates to the tumor. Radiation is delivered using remote afterloaders to drive highly active sources (commonly 192 Ir with an air KERMA strength range between 20 000 and 40 000 U, where 1 U = 1 μGy m 2 /h in air) through applicators directly into the patient's prescribed region of treatment. Due to the obvious ramifications of incorrect treatment while using such an active source, it is essential that there are methods for quality assurance (QA) that can directly and accurately verify the treatment plan and the functionality of the remote afterloader. This paper describes the feasibility study of a QA system for HDR brachytherapy using a phantom based two-dimensional 11 × 11 epitaxial diode array, named “magic phantom.”Methods: The HDR brachytherapy treatment plan is translated to the phantom with two rows of 10 (20 in total) HDR source flexible catheters, arranged above and below the diode array “magic plate” (MP). Four-dimensional source tracking in each catheter is based upon a developed fast iterative algorithm, utilizing the response of the diodes in close proximity to the 192 Ir source, sampled at 100 ms intervals by a fast data acquisition (DAQ) system. Using a 192 Ir source in a solid water phantom, the angular response of the developed epitaxial diodes utilized in the MP and also the variation of the MP response as a function of the source-to-detector distance (SDD) were investigated. These response data are then used by an iterative algorithm for source dwelling position determination. A measurement of the average transit speed between dwell positions was performed using the diodes and a fast DAQ.Results: The angular response of the epitaxial diode showed a variation of 15% within 360°, with two flat regions above and below the detector face with less than 5% variation. For SDD distances of between 5 and 30 mm the relative response of

  17. Acceptance testing and commissioning of a new model HDR afterloader

    International Nuclear Information System (INIS)

    McDermott, Patrick N.; Somnay, Archana R.; Alecu, Rodica

    1996-01-01

    We have recently performed acceptance testing procedures and have commissioned a new model HDR afterloader, the Varian VariSource with ''Intelligent Drive.'' Our site was one of the first installations worldwide. It is our intent to describe our tests and the results of the tests particularly as they may differ from other afterloaders. The Ir-192 source is unique among afterloaders marketed in the US in that it is very slender (OD of source wire is 0.59 mm) and relatively long (two 0.5 cm sources for a total active length of 1.0 cm). A check of source homogeneity by autoradiograph as urged by the US Nuclear Regulatory Commission demonstrates no detectable source inhomogeneity. Reentrant well ionization chambers are calibrated in the US with a 3.5 mm long source at Accredited Dosimetry Calibration Laboratories. Therefore calibration needs to be considered with some care. Calibration of the first delivered source with a well ionization chamber indicated agreement with the manufacturer's stated activity to within 0.5%. Source positioning is checked with a device called a 'cam scale'. Tests have been carried out on this system and it has been found to accurately indicate source position to within ±0.5 mm. Timer accuracy has been found to be better than 0.1% for dwell times of several hundred seconds. The intelligent drive system and the small source diameter allow the source wire to negotiate paths with small radius of curvature. A series of tests have been made in which the source is forced to negotiate 'U' turns of decreasing radius of curvature. A 4.7 F, 100 cm long catheter was used for these tests and the 'U' turn was positioned at approximately 90 cm. Under these conditions, the VariSource was consistently able to traverse a 1.25 cm radius of curvature, which is better than the manufacturer's stated limit of 1.5 cm

  18. Cardiovascular radiotherapy. A multi-disciplinary textbook. 2. rev. and enl. ed.

    International Nuclear Information System (INIS)

    Hehrlein, C.

    2002-01-01

    Cardiovascular radiotherapy has made rapid progress over the past few years, thus necessitating a revision and re-edition of this textbook. The structure of the first edition has been largely retained, but there have nevertheless been some important new additions, including chapters on ''New insights on vessel thrombosis and the edge effect following vascular brachytherapy'', ''Catheter-based intracoronary brachytherapy using the β emitter phosphorus 32'', ''Intracoronary afterloading using the Novoste trademark system'' and ''Catheter-based γ-HDR brachytherapy of the peripheral vessels''. The contributions contained in the first edition have also been thoroughly revised

  19. Clinical experience with the MammoSite[reg] radiation therapy system for brachytherapy of breast cancer: Results from an international phase II trial

    International Nuclear Information System (INIS)

    Niehoff, Peter; Polgar, Csaba; Ostertag, Horst; Major, Tibor; Sulyok, Zoltan; Kimmig, Bernhard; Kovacs, Gyoergy

    2006-01-01

    Background and purpose: In a prospective multi-center phase II trial, we investigated the MammoSite[reg] Radiation Therapy System, a new device for delivering intracavitary brachytherapy following breast conserving surgery. The MammoSite[reg] is a dual lumen, closed ended catheter with a small, spherical inflatable balloon and a port for connecting a remote afterloader to the central lumen. We analyzed the surgical procedure and placement of the MammoSite[reg], treatment planning and radiation delivery complications and cosmesis, as well the comfort for the patients. Patients and methods: Between 2002 and 2004 a total of 32 patients (pts) were implanted using the MammoSite[reg]. The reference isodose was defined 1 cm from the balloon surface. We analyzed the post-implant anatomic position of the applicator and the geometric form of the balloon via ultrasound, CT and X-ray, related side effects, cosmetic outcome and patient quality of life. Results: Twenty-three out of 32 patients (72%) were eligible for MammoSite[reg] intracavitary brachytherapy. Twenty-eight percentage had to be excluded because of different reasons. Eleven patients were treated with primary brachytherapy with a total dose of 34 Gy (2x3.4 Gy) and 12 had a boost with a mean dose of 13.3 Gy (range: 7.5-15 Gy; 2x2.5 Gy) combined with EBRT and doses ranged between 46 and 50 Gy. In three cases a balloon rupture occurred. We observed two abscesses within 3 months of implantation and serious seroma development in 10 patients (39%). Skin related side effects were erythema in 21 patients (91%), hyperpigmentation in 13 patients (56%) and teleangiectasia in six patients (26%) after mean follow-up 20 months. Conclusions: The MammoSite[reg] Radiation Therapy System is a feasible treatment modality for intracavitary brachytherapy of breast cancer after breast conserving surgery. The advantage of the system is only one applicator is necessary for the delivery of a fractionated radiotherapy. In addition, patient

  20. Intravascular brachytherapy for peripheral vascular disease

    Directory of Open Access Journals (Sweden)

    Hagen, Anja

    2008-09-01

    Full Text Available Scientific background: Percutaneous transluminal angioplasties (PTA through balloon dilatation with or without stenting, i.e. vessel expansion through balloons with or without of implantation of small tubes, called stents, are used in the treatment of peripheral artery occlusive disease (PAOD. The intravascular vessel irradiation, called intravascular brachytherapy, promises a reduction in the rate of repeated stenosis (rate of restenosis after PTA. Research questions: The evaluation addresses questions on medical efficacy, cost-effectiveness as well as ethic, social and legal implications in the use of brachytherapy in PAOD patients. Methods: A systematic literature search was conducted in August 2007 in the most important medical electronic databases for publications beginning from 2002. The medical evaluation included randomized controlled trials (RCT. The information synthesis was performed using meta-analysis. Health economic modeling was performed with clinical assumptions derived from the meta-analysis and economical assumptions derived from the German Diagnosis Related Groups (G-DRG-2007. Results: Medical evaluation: Twelve publications about seven RCT on brachytherapy vs. no brachytherapy were included in the medical evaluation. Two RCT showed a significant reduction in the rate of restenosis at six and/or twelve months for brachytherapy vs. no brachytherapy after successful balloon dilatation, the relative risk in the meta-analysis was 0.62 (95% CI: 0.46 to 0.84. At five years, time to recurrence of restenosis was significantly delayed after brachytherapy. One RCT showed a significant reduction in the rate of restenosis at six months for brachytherapy vs. no brachytherapy after PTA with optional stenting, the relative risk in the meta-analysis was 0.76 (95% CI: 0.61 to 0.95. One RCT observed a significantly higher rate of late thrombotic occlusions after brachytherapy in the subgroup of stented patients. A single RCT for brachytherapy

  1. Design and construction of a holder to the safety handling of Cs-137 to be used in cervix cancer treatments using intracavitary brachytherapy by afterloading

    International Nuclear Information System (INIS)

    Gonzales, E.; Lea, D.

    1996-01-01

    In venezuelan public hospitals where cervix cancer treatments are performed by means of Cs-137 manual afterloading systems, the handling of the sources is done with two type of holders, metallic and plastic, the plastic holders are pieces of induced serious radio-sanitary problem such as loser of the Cs-137 source and radioactive contamination in the treatment area, this has caused the interruption of the treatments in many hospitals. This interruption had a high social cost because of the thousands women waiting for intracavitary therapy. To start again with the treatments, the metallic holders were required but there were not enough funds in the budget, because of this problem in a short time IVIS'S health physics drew and made a low price source holder. (authors). 2 figs., 2 tabs

  2. Image Guided Cervical Brachytherapy: 2014 Survey of the American Brachytherapy Society

    Energy Technology Data Exchange (ETDEWEB)

    Grover, Surbhi, E-mail: Surbhi.grover@uphs.upenn.edu [Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Harkenrider, Matthew M. [Department of Radiation Oncology, Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois (United States); Cho, Linda P. [Department of Radiation Oncology, Brigham & Women' s Hospital/Dana-Farber Cancer Institute, Boston, Massachusetts (United States); Erickson, Beth [Department Radiation Oncology, Froedtert Hospital and Medical College of Wisconsin, Milwaukee, Wisconsin (United States); Small, Christina [Department of Public Health Sciences, Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois (United States); Small, William [Department of Radiation Oncology, Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois (United States); Viswanathan, Akila N. [Department of Radiation Oncology, Brigham & Women' s Hospital/Dana-Farber Cancer Institute, Boston, Massachusetts (United States)

    2016-03-01

    Purpose: To provide an update of the 2007 American brachytherapy survey on image-based brachytherapy, which showed that in the setting of treatment planning for gynecologic brachytherapy, although computed tomography (CT) was often used for treatment planning, most brachytherapists used point A for dose specification. Methods and Materials: A 45-question electronic survey on cervical cancer brachytherapy practice patterns was sent to all American Brachytherapy Society members and additional radiation oncologists and physicists based in the United States between January and September 2014. Responses from the 2007 survey and the present survey were compared using the χ{sup 2} test. Results: There were 370 respondents. Of those, only respondents, not in training, who treat more than 1 cervical cancer patient per year and practice in the United States, were included in the analysis (219). For dose specification to the target (cervix and tumor), 95% always use CT, and 34% always use MRI. However, 46% use point A only for dose specification to the target. There was a lot of variation in parameters used for dose evaluation of target volume and normal tissues. Compared with the 2007 survey, use of MRI has increased from 2% to 34% (P<.0001) for dose specification to the target. Use of volume-based dose delineation to the target has increased from 14% to 52% (P<.0001). Conclusion: Although use of image-based brachytherapy has increased in the United States since the 2007 survey, there is room for further growth, particularly with the use of MRI. This increase may be in part due to educational initiatives. However, there is still significant heterogeneity in brachytherapy practice in the United States, and future efforts should be geared toward standardizing treatment.

  3. ALGEBRA: ALgorithm for the heterogeneous dosimetry based on GEANT4 for BRAchytherapy.

    Science.gov (United States)

    Afsharpour, H; Landry, G; D'Amours, M; Enger, S; Reniers, B; Poon, E; Carrier, J-F; Verhaegen, F; Beaulieu, L

    2012-06-07

    Task group 43 (TG43)-based dosimetry algorithms are efficient for brachytherapy dose calculation in water. However, human tissues have chemical compositions and densities different than water. Moreover, the mutual shielding effect of seeds on each other (interseed attenuation) is neglected in the TG43-based dosimetry platforms. The scientific community has expressed the need for an accurate dosimetry platform in brachytherapy. The purpose of this paper is to present ALGEBRA, a Monte Carlo platform for dosimetry in brachytherapy which is sufficiently fast and accurate for clinical and research purposes. ALGEBRA is based on the GEANT4 Monte Carlo code and is capable of handling the DICOM RT standard to recreate a virtual model of the treated site. Here, the performance of ALGEBRA is presented for the special case of LDR brachytherapy in permanent prostate and breast seed implants. However, the algorithm is also capable of handling other treatments such as HDR brachytherapy.

  4. Clinical results in carcinoma of the cervix: radium compared to caesium using remote afterloading

    International Nuclear Information System (INIS)

    Jackson, S.M.; Fairey, R.N.; Kornelsen, R.O.; Young, M.E.J.; Wong, F.L.

    1989-01-01

    In 1979 the Cancer Control Agency of British Columbia changed from radium to remote controlled afterloaded caesium in the treatment of carcinoma of the cervix. In 3 years prior to the change, 139 patients received radium as part of their treatment and in the 3 years after the change, 158 patients received caesium. Overall referral patterns, patient and cancer demographics, and treatment policies were stable throughout the 6-year period. Radiotherapy technique, dose, dose distribution and dose rate were comparable for both radium and caesium treated patients. The results of treatment in the two time periods showed no difference in survival, local tumour control or complications. The use of afterloading has not compromised treatment results and has allowed better nursing care for patients and protection from radiation for all staff. (author)

  5. Intracavitary afterloading boost in anal canal carcinoma. Results, function and quality of life

    Energy Technology Data Exchange (ETDEWEB)

    Vordermark, D.; Flentje, M.; Koelbl, O. [Wuerzburg Univ. (Germany). Klinik und Poliklinik fuer Strahlentherapie; Sailer, M. [Wuerzburg Univ. (Germany). Klinik fuer Chirurgie

    2001-05-01

    Background: First clinical data on a new intracavitary afterloading boost method for anal canal carcinoma is reported. Patients and Methods: 20 consecutive patients (T1 5%, T2 70%, T3 20%, T4 5%; N0 75%, N1 10%, N2 15%; all M0) treated with external beam pelvic radiotherapy (median dose 56 Gy, range 46-64 Gy), simultaneous 5-FU and mitomycin (in 75%) and an intracavitary afterloading boost (one or two fractions of 5 Gy at 5 mm depth) were analyzed after a mean {+-}SD follow-up for living patients of 4.4{+-}2.1 years. Quality of life (QoL) and anorectal manometry parameters were assessed in ten colostomy-free survivors. Results: Overall, recurrence-free and colostomy-free survival at 5 years were 84%, 79% and 69%, respectively. No death was tumorrelated. The only local failure was successfully salvaged by local excision. All three colostomies were performed for toxicity. Resting pressure and maximum squeeze pressure of the anal sphincter were reduced by 51% and 71%, as compared with control subjects, but quality of life was similar compared to healthy volunteers. Conclusion: the described regimen is highly effective but associated with increased toxicity. (orig.) [German] Hintergrund: Erste klinische Ergebnisse einer neuen Methode zur intrakavitaeren Afterloading-Boost-Bestrahlung des Analkanalkarzinoms werden vorgestellt. Patienten und Methoden: 20 in Folge behandelte Patienten (T1 5%, T2 70%, T3 20%, T4 5%, N0 75%, N1 10%, N2 15 %; alle M0) erhielten eine perkutane Bestrahlung (mediane Dosis 56 Gy, 46-64 Gy), simultan 5-FU und Mitomycin (75%) und einen intrakavitaeren Afterloading-Boost (eine oder zwei Fraktionen mit je 5 Gy in 5 mm Tiefe). Der mittlere Nachbeobachtungszeitraum lebender Patienten betrug 4,4{+-}2,1 Jahre. Zehn kolostomiefrei Ueberlebende wurden bezueglich Lebensqualitaet und anorektaler Manometriewerte untersucht. Ergebnisse: Gesamtueberleben, rezidivfreies und kolostomiefreies Ueberleben nach 5 Jahren betrugen 84%, 79% und 69%. Kein Todesfall war

  6. Glass microspheres for brachytherapy

    International Nuclear Information System (INIS)

    Prado, Miguel O.; Prastalo, Simon; Blaumann, Herman; Longhino, Juan M.; Repetto Llamazares, A.H.V.

    2007-01-01

    We developed the capacity to produce glass microspheres containing in their structure one or more radioactive isotopes useful for brachytherapy. We studied the various facts related with their production: (Rare earth) alumino silicate glass making, glass characterization, microspheres production, nuclear activation through (n,γ) nuclear reactions, mechanical characterization before and after irradiation. Corrosion tests in simulated human plasma and mechanical properties characterization were done before and after irradiation. (author) [es

  7. Advancements in brachytherapy

    DEFF Research Database (Denmark)

    Tanderup, Kari; Ménard, Cynthia; Polgar, Csaba

    2017-01-01

    Brachytherapy is a radiotherapy modality associated with a highly focal dose distribution. Brachytherapy treats the cancer tissue from the inside, and the radiation does not travel through healthy tissue to reach the target as with external beam radiotherapy techniques. The nature of brachytherap...

  8. Brachytherapy in childhood rhabdomyosarcoma treatment

    International Nuclear Information System (INIS)

    Novaes, Paulo Eduardo Ribeiro dos Santos

    1995-01-01

    A retrospective study of 21 children with rhabdomyosarcoma treated by brachytherapy to the primary site of the tumor at the Radiotherapy Department of the A.C.Camargo Hospital between january/1980 to june/1993 was undertaken. The main objectives were to comprove the utility of brachytherapy in childhood rhabdomyosarcoma, to evaluate the local control and survival, in association with chemotherapy, to analyze the late effects of the treatment and to determinate the preferential technique to each clinical situation. All patients received brachytherapy to the tumor site. The radioactive isotopes employed were Gold 198 , Cesium 137 and Iridium 192 . The brachytherapy techniques depended on the tumor site, period of treatment, availability of the radioactive material and stage of the disease. Patients treated exclusively by brachytherapy received 40 Gy to 60 Gy. When brachytherapy was associated with external radiotherapy the dose ranged from 20 Gy to 40 Gy. Local control was achieved in 18 of 20 patients (90%). The global survival and local control survival rates were 61.9% (13/21 patients) and 72,2% (13/18 patients) respectively. (author)

  9. Monte Carlo model for a prototype CT-compatible, anatomically adaptive, shielded intracavitary brachytherapy applicator for the treatment of cervical cancer

    Energy Technology Data Exchange (ETDEWEB)

    Price, Michael J.; Gifford, Kent A.; Horton, John L. Jr.; Eifel, Patricia J.; Gillin, Michael T.; Lawyer, Ann A.; Mourtada, Firas [Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, 1220 Holcombe Boulevard, Houston, Texas 77030 and Graduate School of Biomedical Sciences, University of Texas-Houston, 6767 Bertner Avenue, Houston, Texas 77030 (United States); Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, 1220 Holcombe Boulevard, Houston, Texas 77030 (United States); Division of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, 1220 Holcombe Boulevard, Houston, Texas 77030 and Graduate School of Biomedical Sciences, University of Texas-Houston, 6767 Bertner Avenue, Houston, Texas 77030 (United States); Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, 1220 Holcombe Boulevard, Houston, Texas 77030 and Graduate School of Biomedical Sciences, University of Texas-Houston, 6767 Bertner Avenue, Houston, Texas 77030 (United States); Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, 1220 Holcombe Boulevard, Houston, Texas 77030 (United States); Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, 1220 Holcombe Boulevard, Houston, Texas 77030 and Graduate School of Biomedical Sciences, University of Texas-Houston, 6767 Bertner Avenue, Houston, Texas 77030 (United States)

    2009-09-15

    Purpose: Current, clinically applicable intracavitary brachytherapy applicators that utilize shielded ovoids contain a pair of tungsten-alloy shields which serve to reduce dose delivered to the rectum and bladder during source afterloading. After applicator insertion, these fixed shields are not necessarily positioned to provide optimal shielding of these critical structures due to variations in patient anatomies. The authors present a dosimetric evaluation of a novel prototype intracavitary brachytherapy ovoid [anatomically adaptive applicator (A{sup 3})], featuring a single shield whose position can be adjusted with two degrees of freedom: Rotation about and translation along the long axis of the ovoid. Methods: The dosimetry of the device for a HDR {sup 192}Ir was characterized using radiochromic film measurements for various shield orientations. A MCNPX Monte Carlo model was developed of the prototype ovoid and integrated with a previously validated model of a v2 mHDR {sup 192}Ir source (Nucletron Co.). The model was validated for three distinct shield orientations using film measurements. Results: For the most complex case, 91% of the absolute simulated and measured dose points agreed within 2% or 2 mm and 96% agreed within 10% or 2 mm. Conclusions: Validation of the Monte Carlo model facilitates future investigations into any dosimetric advantages the use of the A{sup 3} may have over the current state of art with respect to optimization and customization of dose delivery as a function of patient anatomical geometries.

  10. Monte Carlo model for a prototype CT-compatible, anatomically adaptive, shielded intracavitary brachytherapy applicator for the treatment of cervical cancer

    International Nuclear Information System (INIS)

    Price, Michael J.; Gifford, Kent A.; Horton, John L. Jr.; Eifel, Patricia J.; Gillin, Michael T.; Lawyer, Ann A.; Mourtada, Firas

    2009-01-01

    Purpose: Current, clinically applicable intracavitary brachytherapy applicators that utilize shielded ovoids contain a pair of tungsten-alloy shields which serve to reduce dose delivered to the rectum and bladder during source afterloading. After applicator insertion, these fixed shields are not necessarily positioned to provide optimal shielding of these critical structures due to variations in patient anatomies. The authors present a dosimetric evaluation of a novel prototype intracavitary brachytherapy ovoid [anatomically adaptive applicator (A 3 )], featuring a single shield whose position can be adjusted with two degrees of freedom: Rotation about and translation along the long axis of the ovoid. Methods: The dosimetry of the device for a HDR 192 Ir was characterized using radiochromic film measurements for various shield orientations. A MCNPX Monte Carlo model was developed of the prototype ovoid and integrated with a previously validated model of a v2 mHDR 192 Ir source (Nucletron Co.). The model was validated for three distinct shield orientations using film measurements. Results: For the most complex case, 91% of the absolute simulated and measured dose points agreed within 2% or 2 mm and 96% agreed within 10% or 2 mm. Conclusions: Validation of the Monte Carlo model facilitates future investigations into any dosimetric advantages the use of the A 3 may have over the current state of art with respect to optimization and customization of dose delivery as a function of patient anatomical geometries.

  11. Experience from long-term monitoring of RAKR ratios in 192Ir brachytherapy

    International Nuclear Information System (INIS)

    Carlsson Tedgren, Asa; Bengtsson, Emil; Hedtjaern, Hakan; Johansson, Asa; Karlsson, Leif; Lamm, Inger-Lena; Lundell, Marie; Mejaddem, Younes; Munck af Rosenschoeld, Per; Nilsson, Josef; Wieslander, Elinore; Wolke, Jeanette

    2008-01-01

    Background: Ratios of values of brachytherapy source strengths, as measured by hospitals and vendors, comprise constant differences as, e.g., systematic errors in ion chamber calibration factors and measurement setup. Such ratios therefore have the potential to reveal the systematic changes in routines or calibration services at either the hospital or the vendor laboratory, which could otherwise be hidden by the uncertainty in the source strength values. Methods: The RAKR of each new source in 13 afterloading units at five hospitals were measured by well-type ion chambers and compared to values for the same source stated on vendor certificates. Results: Differences from unity in the ratios of RAKR values determined by hospitals and vendors are most often small and stable around their mean values to within ±1.5%. Larger deviations are rare but occur. A decreasing ratio, seen at two hospitals for the same source, was useful in detecting an erroneous pressure gauge at the vendor's site. Conclusions: Establishing a mean ratio of RAKR values, as measured at the hospital and supplied on the vendor certificate, and monitoring this as a function of time are an easy way for the early detection of problems with equipment or routines at either the hospital or the vendor site

  12. Interstitial prostate brachytherapy. LDR-PDR-HDR

    International Nuclear Information System (INIS)

    Kovacs, Gyoergy; Hoskin, Peter

    2013-01-01

    The first comprehensive overview of interstitial brachytherapy for the management of local or locally advanced prostate cancer. Written by an interdisciplinary team who have been responsible for the successful GEC-ESTRO/EAU Teaching Course. Discusses in detail patient selection, the results of different methods, the role of imaging, and medical physics issues. Prostate brachytherapy has been the subject of heated debate among surgeons and the proponents of the various brachytherapy methods. This very first interdisciplinary book on the subject provides a comprehensive overview of innovations in low dose rate (LDR), high dose rate (HDR), and pulsed dose rate (PDR) interstitial brachytherapy for the management of local or locally advanced prostate cancer. In addition to detailed chapters on patient selection and the use of imaging in diagnostics, treatment guidance, and implantation control, background chapters are included on related medical physics issues such as treatment planning and quality assurance. The results obtained with the different treatment options and the difficult task of salvage treatment are fully discussed. All chapters have been written by internationally recognized experts in their fields who for more than a decade have formed the teaching staff responsible for the successful GEC-ESTRO/EAU Prostate Brachytherapy Teaching Course. This book will be invaluable in informing residents and others of the scientific background and potential of modern prostate brachytherapy. It will also prove a useful source of up-to-date information for those who specialize in prostate brachytherapy or intend to start an interstitial brachytherapy service.

  13. Postoperative HDR afterloading brachytherapy: Vaginal tumor recurrence rates in patients with endometrial carcinoma dependent on treatment volumes

    International Nuclear Information System (INIS)

    Kloetzer, K.H.; Guenther, R.; Wendt, T.

    1997-01-01

    Patients and Method: At Jena University, Department of Radiotherapy, from 1981 to 1990 108 patients with endometrical carcinoma were postoperatively treated with high dose radiation brachytherapy of the vagina without additional percutaneous radiotherapy. Histology showed more or less differenciated adenocarcinoma in 90% of all patients, all patients were postoperatively stage I or II without proven lymphatic metastases. Dependent on individual figures patients were distributed to 3 different gorups: group A: 4 x 10 Gy, tissue-thickness of 1 cm (vaginal apex) respectively 0.5 cm (lower vaginal walls); group B: 4 x 10 Gy, tissue thickness of 1 cm (upper vaginal wall); group C: 4 x 10 Gy, tissue-thickness of 0.5 cm (both excluding the lower vaginal walls). Results: Both 3-year survival rates (group A: 96.6%, group B: 96.9%, group C: 97.7%) and tumor relapse rates of the vaginal apex (group A: 0, group B: 3.1%, group C: 2.2%) don't show significant differences. No case of local tumor recurrence was seen in the upper 2/3 of the vagina and the pelvic walls. Late side effects concerning bladder and rectum (grade III to IV, EORTC/RTOG) could be minimized by reducing the treatment volume (group A: 6.8%/12.6%, group B: 6,2%/3.1%, group C: 2.2%/0). (orig./AJ) [de

  14. A comparison of complications between ultrasound-guided prostate brachytherapy and open prostate brachytherapy

    International Nuclear Information System (INIS)

    Benoit, Ronald M.; Naslund, Michael J.; Cohen, Jeffrey K.

    2000-01-01

    Purpose: Prostate brachytherapy has reemerged during the 1990s as a treatment for clinically localized prostate cancer. The renewed popularity of prostate brachytherapy is largely due to the use of transrectal ultrasound of the prostate, which allows for more accurate isotope placement within the prostate when compared to the open approach. The present study investigates whether this improved cancer control is at the expense of increased morbidity by comparing the morbidity after transrectal ultrasound-guided prostate brachytherapy to the morbidity after prostate brachytherapy performed via an open approach. Methods and Materials: All men in the Medicare population who underwent prostate brachytherapy in the year 1991 were identified. These men were further stratified into those men who underwent prostate brachytherapy via an open approach and the men who underwent prostate brachytherapy with ultrasound guidance. All subsequent inpatient, outpatient, and physician (Part B) Medicare claims for these men from the years 1991-1993 were then analyzed to determine outcomes. Results: In the year 1991, 2124 men in the Medicare population underwent prostate brachytherapy. An open approach was used in 715 men (33.7%), and ultrasound guidance was used in 1409 men (66.3%). Mean age for both cohorts was 73.7 years with a range of 50.7-92.8 years for the ultrasound group and 60.6-92.1 years for the open group. A surgical procedure for the relief of bladder outlet obstruction was performed in 122 men (8.6%) in the ultrasound group and in 54 men (7.6%) in the open group. An artificial urinary sphincter was placed in 2 men (0.14%) in the ultrasound group and in 2 men (0.28%) in the open group. A penile prosthesis was implanted in 10 men (0.71%) in the ultrasound group and in 4 men (0.56%) in the open group. A diagnosis code for urinary incontinence was carried by 95 men (6.7%) in the ultrasound group and by 45 men (6.3%) in the open group. A diagnosis code for erectile dysfunction

  15. Sensitivity of low energy brachytherapy Monte Carlo dose calculations to uncertainties in human tissue composition

    Energy Technology Data Exchange (ETDEWEB)

    Landry, Guillaume; Reniers, Brigitte; Murrer, Lars; Lutgens, Ludy; Bloemen-Van Gurp, Esther; Pignol, Jean-Philippe; Keller, Brian; Beaulieu, Luc; Verhaegen, Frank [Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht 6201 BN (Netherlands); Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario M4N 3M5 (Canada); Departement de Radio-Oncologie et Centre de Recherche en Cancerologie, de l' Universite Laval, CHUQ, Pavillon L' Hotel-Dieu de Quebec, Quebec G1R 2J6 (Canada) and Departement de Physique, de Genie Physique et d' Optique, Universite Laval, Quebec G1K 7P4 (Canada); Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht 6201 BN (Netherlands) and Medical Physics Unit, McGill University, Montreal General Hospital, Montreal, Quebec H3G 1A4 (Canada)

    2010-10-15

    Purpose: The objective of this work is to assess the sensitivity of Monte Carlo (MC) dose calculations to uncertainties in human tissue composition for a range of low photon energy brachytherapy sources: {sup 125}I, {sup 103}Pd, {sup 131}Cs, and an electronic brachytherapy source (EBS). The low energy photons emitted by these sources make the dosimetry sensitive to variations in tissue atomic number due to the dominance of the photoelectric effect. This work reports dose to a small mass of water in medium D{sub w,m} as opposed to dose to a small mass of medium in medium D{sub m,m}. Methods: Mean adipose, mammary gland, and breast tissues (as uniform mixture of the aforementioned tissues) are investigated as well as compositions corresponding to one standard deviation from the mean. Prostate mean compositions from three different literature sources are also investigated. Three sets of MC simulations are performed with the GEANT4 code: (1) Dose calculations for idealized TG-43-like spherical geometries using point sources. Radial dose profiles obtained in different media are compared to assess the influence of compositional uncertainties. (2) Dose calculations for four clinical prostate LDR brachytherapy permanent seed implants using {sup 125}I seeds (Model 2301, Best Medical, Springfield, VA). The effect of varying the prostate composition in the planning target volume (PTV) is investigated by comparing PTV D{sub 90} values. (3) Dose calculations for four clinical breast LDR brachytherapy permanent seed implants using {sup 103}Pd seeds (Model 2335, Best Medical). The effects of varying the adipose/gland ratio in the PTV and of varying the elemental composition of adipose and gland within one standard deviation of the assumed mean composition are investigated by comparing PTV D{sub 90} values. For (2) and (3), the influence of using the mass density from CT scans instead of unit mass density is also assessed. Results: Results from simulation (1) show that variations

  16. Dwell time modulation restrictions do not necessarily improve treatment plan quality for prostate HDR brachytherapy

    International Nuclear Information System (INIS)

    Balvert, Marleen; Gorissen, Bram L; Den Hertog, Dick; Hoffmann, Aswin L

    2015-01-01

    Inverse planning algorithms for dwell time optimisation in interstitial high-dose-rate (HDR) brachytherapy may produce solutions with large dwell time variations within catheters, which may result in undesirable selective high-dose subvolumes. Extending the dwell time optimisation model with a dwell time modulation restriction (DTMR) that limits dwell time differences between neighboring dwell positions has been suggested to eliminate this problem. DTMRs may additionally reduce the sensitivity for uncertainties in dwell positions that inevitably result from catheter reconstruction errors and afterloader source positioning inaccuracies. This study quantifies the reduction of high-dose subvolumes and the robustness against these uncertainties by applying a DTMR to template-based prostate HDR brachytherapy implants. Three different DTMRs were consecutively applied to a linear dose-based penalty model (LD) and a dose-volume based model (LDV), both obtained from literature. The models were solved with DTMR levels ranging from no restriction to uniform dwell times within catheters in discrete steps. Uncertainties were simulated on clinical cases using in-house developed software, and dose-volume metrics were calculated in each simulation. For the assessment of high-dose subvolumes, the dose homogeneity index (DHI) and the contiguous dose volume histogram were analysed. Robustness was measured by the improvement of the lowest D 90% of the planning target volume (PTV) observed in the simulations. For (LD), a DTMR yields an increase in DHI of approximately 30% and reduces the size of the largest high-dose volume by 2–5 cc. However, this comes at a cost of a reduction in D 90% of the PTV of 10%, which often implies that it drops below the desired minimum of 100%. For (LDV), none of the DTMRs were able to improve high-dose volume measures. DTMRs were not capable of improving robustness of PTV D 90% against uncertainty in dwell positions for both models. (paper)

  17. High dose rate brachytherapy for oral cancer.

    Science.gov (United States)

    Yamazaki, Hideya; Yoshida, Ken; Yoshioka, Yasuo; Shimizutani, Kimishige; Furukawa, Souhei; Koizumi, Masahiko; Ogawa, Kazuhiko

    2013-01-01

    Brachytherapy results in better dose distribution compared with other treatments because of steep dose reduction in the surrounding normal tissues. Excellent local control rates and acceptable side effects have been demonstrated with brachytherapy as a sole treatment modality, a postoperative method, and a method of reirradiation. Low-dose-rate (LDR) brachytherapy has been employed worldwide for its superior outcome. With the advent of technology, high-dose-rate (HDR) brachytherapy has enabled health care providers to avoid radiation exposure. This therapy has been used for treating many types of cancer such as gynecological cancer, breast cancer, and prostate cancer. However, LDR and pulsed-dose-rate interstitial brachytherapies have been mainstays for head and neck cancer. HDR brachytherapy has not become widely used in the radiotherapy community for treating head and neck cancer because of lack of experience and biological concerns. On the other hand, because HDR brachytherapy is less time-consuming, treatment can occasionally be administered on an outpatient basis. For the convenience and safety of patients and medical staff, HDR brachytherapy should be explored. To enhance the role of this therapy in treatment of head and neck lesions, we have reviewed its outcomes with oral cancer, including Phase I/II to Phase III studies, evaluating this technique in terms of safety and efficacy. In particular, our studies have shown that superficial tumors can be treated using a non-invasive mold technique on an outpatient basis without adverse reactions. The next generation of image-guided brachytherapy using HDR has been discussed. In conclusion, although concrete evidence is yet to be produced with a sophisticated study in a reproducible manner, HDR brachytherapy remains an important option for treatment of oral cancer.

  18. The monetary value of the man.rem and optimization in radiation therapy (brachytherapy)

    International Nuclear Information System (INIS)

    Ennow, K.R.; Jessen, K.A.

    1979-01-01

    The personnel exposed by sources used for intracavitary radiation therapy in Denmark receive more than 40% of the collective dose recorded by personal dosemeters in Denmark. As the application of after-loading technique has become generally accepted by the medical profession in Denmark as a replacement to a considerable degree for manual radium therapy, the most promising suggestion for reduction of radiation doses is the introduction of after-loading facilities in all radiation therapy centres. Such facilities are now being planned in Denmark but their realization will entail great expense and therefore the financial aspects of these plans will be very important. At present the advantage of after-loading cannot be simply demonstrated to the politicians holding the purse strings, i.e. in terms of improved therapeutical gain, e.g. increased survival, although the incidence of complications has been shown to be lower, but the reduction in personnel radiation doses by the change to after-loading will be evident and be an important part of the cost-benefit analysis. By detailed investigation of all expenditures and savings, cost-benefit analysis has been carried out in order to isolate the relationship between expense and the collective dose reduction. If after-loading facilities are established in Denmark today with the intention of reducing the risk for employees and without any expectation of improvements in treatment, the monetary value of the man.rem implied is 10,000 kr. or 2000 US dollars. (author)

  19. High dose rate brachytherapy for oral cancer

    International Nuclear Information System (INIS)

    Yamazaki, Hideya; Yoshida, Ken; Yoshioka, Yasuo; Shimizutani, Kimishige; Koizumi, Masahiko; Ogawa, Kazuhiko; Furukawa, Souhei

    2013-01-01

    Brachytherapy results in better dose distribution compared with other treatments because of steep dose reduction in the surrounding normal tissues. Excellent local control rates and acceptable side effects have been demonstrated with brachytherapy as a sole treatment modality, a postoperative method, and a method of reirradiation. Low-dose-rate (LDR) brachytherapy has been employed worldwide for its superior outcome. With the advent of technology, high-dose-rate (HDR) brachytherapy has enabled health care providers to avoid radiation exposure. This therapy has been used for treating many types of cancer such as gynecological cancer, breast cancer, and prostate cancer. However, LDR and pulsed-dose-rate interstitial brachytherapies have been mainstays for head and neck cancer. HDR brachytherapy has not become widely used in the radiotherapy community for treating head and neck cancer because of lack of experience and biological concerns. On the other hand, because HDR brachytherapy is less time-consuming, treatment can occasionally be administered on an outpatient basis. For the convenience and safety of patients and medical staff, HDR brachytherapy should be explored. To enhance the role of this therapy in treatment of head and neck lesions, we have reviewed its outcomes with oral cancer, including Phase I/II to Phase III studies, evaluating this technique in terms of safety and efficacy. In particular, our studies have shown that superficial tumors can be treated using a non-invasive mold technique on an outpatient basis without adverse reactions. The next generation of image-guided brachytherapy using HDR has been discussed. In conclusion, although concrete evidence is yet to be produced with a sophisticated study in a reproducible manner, HDR brachytherapy remains an important option for treatment of oral cancer. (author)

  20. Methodology, results and experience of independent brachytherapy plan verifications based on DICOM standard; Implementacion, resultados y experiencia de una verificacion independiente de tratamientos de braquiterapia basada en el estandar DICOM

    Energy Technology Data Exchange (ETDEWEB)

    Ferrando Sanchez, A.; Pardo Perez, E.; Castro Novals, J.; Casa de Julian, M. A. de la; Cabello Murillo, E.; Diaz Fuentes, R.; Molina Lopez, M. Y.

    2013-09-01

    The use of a high dose rate source together with an afterloading treatment delivery in brachytherapy plans allows for dose modulation minimizing dose to staff. An independent verification of the exported data to the treatment station is required by local regulations (being also a widely accepted recommendation on the international literature). We have developed a methodology under home brew code to import DICOM treatment data onto an Excel spreadsheet that is able to calculate dose on given reference points using the TG-43 formalism of the AAPM3-5. It employs analytic fits of anisotropy factor and radial dose function for different sources. The end point implementations we present here allow merging in one step an independent verification and a treatment printout. The use of DICOM standard makes our code versatile and provides greater compatibility with respect to current treatment planning systems. (Author)

  1. 10 CFR 35.406 - Brachytherapy sources accountability.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Brachytherapy sources accountability. 35.406 Section 35....406 Brachytherapy sources accountability. (a) A licensee shall maintain accountability at all times... area. (c) A licensee shall maintain a record of the brachytherapy source accountability in accordance...

  2. Acute vasculitis after endovascular brachytherapy

    International Nuclear Information System (INIS)

    Fajardo L-G, Luis F.; Prionas, Stavros D.; Kaluza, Grzegorz L.; Raizner, Albert E.

    2002-01-01

    Purpose: Angioplasty effectively relieves coronary artery stenosis but is often followed by restenosis. Endovascular radiation (β or γ) at the time of angioplasty prevents restenosis in a large proportion of vessels in swine (short term) and humans (short and long term). Little information is available about the effects of this radiation exposure beyond the wall of the coronary arteries. Methods and Materials: Samples were obtained from 76 minipigs in the course of several experiments designed to evaluate endovascular brachytherapy: 76 of 114 coronary arteries and 6 of 12 iliac arteries were exposed to endovascular radiation from 32 P sources (35 Gy at 0.5 mm from the intima). Two-thirds of the vessels had angioplasty or stenting. The vessels were systematically examined either at 28 days or at 6 months after radiation. Results: We found an unexpected lesion: acute necrotizing vasculitis in arterioles located ≤2.05 mm from the target artery. It was characterized by fibrinoid necrosis of the wall, often associated with lymphocytic exudates or thrombosis. Based on the review of perpendicular sections of tissue samples, the arterioles had received between 6 and 40 Gy. This arteriolar vasculitis occurred at 28 days in samples from 51% of irradiated coronary arteries and 100% of irradiated iliac arteries. By 6 months, the incidence of acute vasculitis decreased to 24% around the coronary arteries. However, at that time, healing vasculitis was evident, often with luminal narrowing, in 46% of samples. Vasculitis was not seen in any of 44 samples from unirradiated vessels (0%) and had no relation to angioplasty, stenting, or their sequelae. This radiation-associated vasculitis in the swine resembles the localized lymphocytic vasculitis that we have reported in tissues of humans exposed to external radiation. On the other hand, it is quite different from the various types of systemic vasculitis that occur in nonirradiated humans. Conclusion: Endoarterial brachytherapy

  3. Construction and use of an applicator of the afterloading type for treatment of the uterine cervix

    International Nuclear Information System (INIS)

    Miola, U.J.; Vizeu, D.M.; Moura, A.M.S.; Petito, J.W.

    The construction of an afterloading type applicator for treatment of cancer of the uterine cervix is described. The technique of intercavitary treatment of cancer of the uterine cervix used in the Osvaldo Cruz Institute of Radiotherapy (Brazil) is also discribed [pt

  4. Precision of RL/OSL medical dosimetry with fiber-coupled Al2O3:C: Influence of readout delay and temperature variations

    DEFF Research Database (Denmark)

    Andersen, Claus Erik; Morgenthaler Edmund, Jens; Damkjær, Sidsel Marie Skov

    2010-01-01

    Carbon-doped aluminum oxide (Al2O3:C) crystals attached to 15 m optical fiber cables can be used for online in vivo dosimetry during, for example, remotely afterloaded brachytherapy. Radioluminescence (RL) is generated spontaneously in Al2O3:C during irradiation, and this scintillator-like signal...

  5. MO-AB-BRA-03: Development of Novel Real Time in Vivo EPID Treatment Verification for Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Fonseca, G; Podesta, M [Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht 6201 BN (Netherlands); Reniers, B [Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht 6201 BN (Netherlands); Research Group NuTeC, CMK, Hasselt University, Agoralaan Gebouw H, Diepenbeek B-3590 (Belgium); Verhaegen, F [Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht 6201 BN (Netherlands); Medical Physics Unit, Department of Oncology, McGill University, Montreal, Quebec H3G 1A4 (Canada)

    2016-06-15

    Purpose: High Dose Rate (HDR) brachytherapy treatments are employed worldwide to treat a wide variety of cancers. However, in vivo dose verification remains a challenge with no commercial dosimetry system available to verify the treatment dose delivered to the patient. We propose a novel dosimetry system that couples an independent Monte Carlo (MC) simulation platform and an amorphous silicon Electronic Portal Imaging Device (EPID) to provide real time treatment verification. Methods: MC calculations predict the EPID response to the photon fluence emitted by the HDR source by simulating the patient, the source dwell positions and times, and treatment complexities such as tissue compositions/densities and different applicators. Simulated results are then compared against EPID measurements acquired with ∼0.14s time resolution which allows dose measurements for each dwell position. The EPID has been calibrated using an Ir-192 HDR source and experiments were performed using different phantoms, including tissue equivalent materials (PMMA, lung and bone). A source positioning accuracy of 0.2 mm, without including the afterloader uncertainty, was ensured using a robotic arm moving the source. Results: An EPID can acquire 3D Cartesian source positions and its response varies significantly due to differences in the material composition/density of the irradiated object, allowing detection of changes in patient geometry. The panel time resolution allows dose rate and dwell time measurements. Moreover, predicted EPID images obtained from clinical treatment plans provide anatomical information that can be related to the patient anatomy, mostly bone and air cavities, localizing the source inside of the patient using its anatomy as reference. Conclusion: Results obtained show the feasibility of the proposed dose verification system that is capable to verify all the brachytherapy treatment steps in real time providing data about treatment delivery quality and also applicator

  6. Overview of brachytherapy resources in Europe: A survey of patterns of care study for brachytherapy in Europe

    International Nuclear Information System (INIS)

    Guedea, Ferran; Ellison, Tracey; Venselaar, Jack; Borras, Josep Maria; Hoskin, Peter; Poetter, Richard; Heeren, Germaine; Nisin, Roselinne; Francois, Guy; Mazeron, Jean Jacques; Limbergen, Erik Van; Ventura, Montserrat; Taillet, Michel; Cottier, Brian

    2007-01-01

    Background and purpose: The Patterns of Care for Brachytherapy in Europe (PCBE) study is aimed at establishing a detailed information system on brachytherapy throughout Europe. Materials and methods: The questionnaire was web-based and the analysis used data from each radiotherapy department with brachytherapy. There were three groups: Group I with 19 countries (15 initial European Community (EC) countries plus Iceland, Monaco, Norway and Switzerland -EC+4-), Group II with 10 countries (New European Community countries -NEC-) and Group III with 14 countries (Other European Countries -OEC-). Results: In the European area there are 36 of 43 countries (85%) which achieved data collection from at least 50% of centres, and were included in the analysis. The tumour site that had the largest number of treated patients was gynaecological tumours. Several variations have been found in the mean number of patients treated per consultant radiation oncologist and physicist; and in the proportion of brachytherapy patients with gynaecology, prostate and breast tumours, by country and by European area. The provided data showed that the average number of brachytherapy patients per centre increased by 10% between 1997 and 2002. Conclusions: A European wide evaluation of brachytherapy practice using a web-based questionnaire is feasible and that there is considerable variation in both patterns of practice and available resources

  7. Development of brachytherapy medium doserate

    International Nuclear Information System (INIS)

    Atang Susila; Ari Satmoko; Ahmad Rifai; Kristiyanti

    2010-01-01

    Brachytherapy has proven to be an effective treatment for different types of cancers and it become a common treatment modality in most radiotherapy clinics. PRPN has had experience in development of Low Dose Rate Brachytherapy for cervix cancer treatment. However the treatment process using LDR device needs 5 hours in time that the patient feel uncomfort. Therefore PRPN develops Medium Dose Rate Brachytherapy with radiation activity not more than 5 Currie. The project is divided into two stages. Purchasing of TPS software and TDS design are held in 2010, and the construction will be in 2011. (author)

  8. Brachytherapy

    Science.gov (United States)

    ... the use of a type of energy, called ionizing radiation, to kill cancer cells and shrink tumors. External ... In all cases of brachytherapy, the source of radiation is encapsulated ... non-radioactive metallic capsule. This prevents the radioactive materials ...

  9. Erectile function after prostate brachytherapy

    International Nuclear Information System (INIS)

    Merrick, Gregory S.; Butler, Wayne M.; Wallner, Kent E.; Galbreath, Robert W.; Anderson, Richard L.; Kurko, Brian S.; Lief, Jonathan H.; Allen, Zachariah A.

    2005-01-01

    Purpose: To evaluate erectile function after permanent prostate brachytherapy using a validated patient-administered questionnaire and to determine the effect of multiple clinical, treatment, and dosimetric parameters on penile erectile function. Methods and materials: A total of 226 patients with preimplant erectile function determined by the International Index of Erectile Function (IIEF) questionnaire underwent permanent prostate brachytherapy in two prospective randomized trials between February 2001 and January 2003 for clinical Stage T1c-T2c (2002 American Joint Committee on Cancer) prostate cancer. Of the 226 patients, 132 were potent before treatment and, of those, 128 (97%) completed and returned the IIEF questionnaire after brachytherapy. The median follow-up was 29.1 months. Potency was defined as an IIEF score of ≥13. The clinical, treatment, and dosimetric parameters evaluated included patient age; preimplant IIEF score; clinical T stage; pretreatment prostate-specific antigen level; Gleason score; elapsed time after implantation; preimplant nocturnal erections; body mass index; presence of hypertension or diabetes mellitus; tobacco consumption; the volume of the prostate gland receiving 100%, 150%, and 200% of the prescribed dose (V 100/150/200 ); the dose delivered to 90% of the prostate gland (D 90 ); androgen deprivation therapy; supplemental external beam radiotherapy (EBRT); isotope; prostate volume; planning volume; and radiation dose to the proximal penis. Results: The 3-year actuarial rate of potency preservation was 50.5%. For patients who maintained adequate posttreatment erectile function, the preimplant IIEF score was 29, and in patients with brachytherapy-related ED, the preimplant IIEF score was 25. The median time to the onset of ED was 5.4 months. After brachytherapy, the median IIEF score was 20 in potent patients and 3 in impotent patients. On univariate analysis, the preimplant IIEF score, patient age, presence of nocturnal

  10. A Cs-137 afterloading device. Preliminary results of cell kinetic effects of low dose-rate irradiation in an experimental tumour

    International Nuclear Information System (INIS)

    Rutgers, D.H.

    1988-01-01

    A Cs-137 afterloading technique is described which can be used in experimental tumours. Preliminary results, obtained with the human cervical carcinoma ME-180 xenografted to nude athymic mice, demonstrated that 20 Gy of low dose-rate irradiation induced an important redistribution of cells over cell cycle. The proportion of cells in G2-phase increased from 14.4% to 44.2% at 140 hours after irradiation. This method allows an accurate calculation of the dose-rate distribution in the tumour. Investigations of the cell kinetic effects of low dose-rate irradiation, at different dose-rates and different total doses, are therefore facilitated by the technique. (orig.) [de

  11. Comprehensive brachytherapy physical and clinical aspects

    CERN Document Server

    Baltas, Dimos; Meigooni, Ali S; Hoskin, Peter J

    2013-01-01

    Modern brachytherapy is one of the most important oncological treatment modalities requiring an integrated approach that utilizes new technologies, advanced clinical imaging facilities, and a thorough understanding of the radiobiological effects on different tissues, the principles of physics, dosimetry techniques and protocols, and clinical expertise. A complete overview of the field, Comprehensive Brachytherapy: Physical and Clinical Aspects is a landmark publication, presenting a detailed account of the underlying physics, design, and implementation of the techniques, along with practical guidance for practitioners. Bridging the gap between research and application, this single source brings together the technological basis, radiation dosimetry, quality assurance, and fundamentals of brachytherapy. In addition, it presents discussion of the most recent clinical practice in brachytherapy including prostate, gynecology, breast, and other clinical treatment sites. Along with exploring new clinical protocols, ...

  12. TU-C-201-02: Clinical Implementation of HDR: Afterloader and Applicator Selection

    Energy Technology Data Exchange (ETDEWEB)

    Esthappan, J. [Washington University School of Medicine (United States)

    2015-06-15

    Recent use of HDR has increased while planning has become more complex often necessitating 3D image-based planning. While many guidelines for the use of HDR exist, they have not kept pace with the increased complexity of 3D image-based planning. Furthermore, no comprehensive document exists to describe the wide variety of current HDR clinical indications. This educational session aims to summarize existing national and international guidelines for the safe implementation of an HDR program. A summary of HDR afterloaders available on the market and their existing applicators will be provided, with guidance on how to select the best fit for each institution’s needs. Finally, the use of checklists will be discussed as a means to implement a safe and efficient HDR program and as a method by which to verify the quality of an existing HDR program. This session will provide the perspective of expert HDR physicists as well as the perspective of a new HDR user. Learning Objectives: Summarize national and international safety and staffing guidelines for HDR implementation Discuss the process of afterloader and applicator selection for gynecologic, prostate, breast, interstitial, surface treatments Learn about the use of an audit checklist tool to measure of quality control of a new or existing HDR program Describe the evolving use of checklists within an HDR program.

  13. The american brachytherapy society recommendations for permanent prostate brachytherapy postimplant dosimetric analysis

    International Nuclear Information System (INIS)

    Nag, Subir; Bice, William; Wyngaert, Keith de; Prestidge, Bradley; Stock, Richard; Yu Yan

    2000-01-01

    Purpose: The purpose of this report is to establish guidelines for postimplant dosimetric analysis of permanent prostate brachytherapy. Methods: Members of the American Brachytherapy Society (ABS) with expertise in prostate dosimetry evaluation performed a literature review and supplemented with their clinical experience formulated guidelines for performing and analyzing postimplant dosimetry of permanent prostate brachytherapy. Results: The ABS recommends that postimplant dosimetry should be performed on all patients undergoing permanent prostate brachytherapy for optimal patient care. At present, computed tomography (CT)-based dosimetry is recommended, based on availability cost and the ability to image the prostate as well as the seeds. Additional plane radiographs should be obtained to verify the seed count. Until the ideal postoperative interval for CT scanning has been determined, each center should perform dosimetric evaluation of prostate implants at a consistent postoperative interval. This interval should be reported. Isodose displays should be obtained at 50%, 80%, 90%, 100%, 150%, and 200% of the prescription dose and displayed on multiple cross-sectional images of the prostate. A dose-volume histogram (DVH) of the prostate should be performed and the D 90 (dose to 90% of the prostate gland) reported by all centers. Additionally, the D 80, D 100, the fractional V 80, V 90, V 100, V 150, and V 200, (i.e., the percentage of prostate volume receiving 80%, 90%, 100%, 150%, and 200% of the prescribed dose, respectively), the rectal, and urethral doses should be reported and ultimately correlated with clinical outcome in the research environment. On-line real-time dosimetry, the effects of dose heterogeneity, and the effects of tissue heterogeneity need further investigation. Conclusion: It is essential that postimplant dosimetry should be performed on all patients undergoing permanent prostate brachytherapy. Guidelines were established for the performance

  14. [Brachytherapy of brainstem tumors].

    Science.gov (United States)

    Julow, Jenö; Viola, Arpád; Major, Tibor; Valálik, István; Sági, Sarolta; Mangel, László; Kovács, Rita Beáta; Repa, Imre; Bajzik, Gábor; Németh, György

    2004-01-20

    The optimal therapy of brain stem tumours of different histopathology determines the expected length of survival. Authors report 125Iodine interstitial irradiation of brain stem tumours with stereotactic brachytherapy. Two patients having brain stem tumours were suffering from glioma or from metastases of a carcinoma. In Case 1 the tumour volume was 1.98 cm3 at the time of planning interstitial irradiation. The control MRI examination performed at 42 months post-op showed a postirradiation cyst size of 5.73 cm3 indicating 65.5% shrinkage. In Case 2 the shrinkage was more apparent as the tumour volume measured on the control MRI at 8 months post-op was only 0.16 cm3 indicating 97.4% shrinkage of the 6.05 cm3 target volume at the time of brachytherapy with the metastasis practically disappearing. Quick access to histopathological results of the stereotactic intraoperative biopsy made it possible to carry out the 125Iodine stereotactic brachytherapy immediately after the biopsy, resulting in less inconvenience for patients of a second possible intervention. The control MRI scans show significant shrinkage of tumours in both patients. The procedure can be performed as a biopsy. The CT and image fusion guided 125Iodine stereotactic brachytherapy can be well planned dosimetrically and is surgically precise.

  15. Intracavitary afterloading boost in anal canal carcinoma. Results, function and quality of life

    International Nuclear Information System (INIS)

    Vordermark, D.; Flentje, M.; Koelbl, O.; Sailer, M.

    2001-01-01

    Background: First clinical data on a new intracavitary afterloading boost method for anal canal carcinoma is reported. Patients and Methods: 20 consecutive patients (T1 5%, T2 70%, T3 20%, T4 5%; N0 75%, N1 10%, N2 15%; all M0) treated with external beam pelvic radiotherapy (median dose 56 Gy, range 46-64 Gy), simultaneous 5-FU and mitomycin (in 75%) and an intracavitary afterloading boost (one or two fractions of 5 Gy at 5 mm depth) were analyzed after a mean ±SD follow-up for living patients of 4.4±2.1 years. Quality of life (QoL) and anorectal manometry parameters were assessed in ten colostomy-free survivors. Results: Overall, recurrence-free and colostomy-free survival at 5 years were 84%, 79% and 69%, respectively. No death was tumorrelated. The only local failure was successfully salvaged by local excision. All three colostomies were performed for toxicity. Resting pressure and maximum squeeze pressure of the anal sphincter were reduced by 51% and 71%, as compared with control subjects, but quality of life was similar compared to healthy volunteers. Conclusion: the described regimen is highly effective but associated with increased toxicity. (orig.) [de

  16. Postoperative radiotherapy for endometrial carcinoma. A retrospective analysis of 541 cases

    International Nuclear Information System (INIS)

    Haensgen, G.; Nagel, M.; Dunst, J.; Enke, H.

    1999-01-01

    Purpose: This retrospective study was designed to evaluate the role of adjuvant radiotherapy for surgically treated endometrial carcinoma. Patients and methods: From 1980 through 1988, 541 patients were treated with either intravaginal cuff irradiation with a high-dose-rate (HDR) Iridium-192 remote afterloading technique (n=294) or with combined HDR-brachytherapy and additional external pelvic irradiation to 54 Gy (n=247) after surgery for endometrical cancer. Afterloading irradiation was administered in 4 fractions 4 to 6 weeks after surgery. A dose of 30 Gy was delivered at a depth of 0,5 cm from the vaginal mucosa. Results: Patients with HDR-brachytherapy alone showed a 5-year survival of 94.3% for Stage I and 73.6% for Stage II (p=0.0007). Patients who received both brachytherapy and additional pelvic irradiation had a 5-year survival of 94.1% for Stage I, 81.1% for Stage II, 70.4% for Stage III and 46.9% for Stage IV (p=0.0001). The main predictors for survival in a multivariate analysis were stage and grading. Patients with combined readiotherapy had a local recurrence rate of 3.2%, whereas patients with brachytherapy alone who were better selected and had more favorable prognostic factors showed a recurrence rate of 2%. Low-risk patients (Stage I, Grade 1, low infiltration) in the HDR-brachytherapy group had 6 relapses, mainly caused by insufficient treatment on the basis of papillary histology. High-risk patients with poorly differential tumors, which infiltrate more than half the myometrial wall might benefit from additional external radiotherapy in terms of reduction of local recurrence and better survival. Five-year actuarial survival rate was 93.6% after combined radiotherapy vs 86.7% after brachytherapy alone. Complications were graded according to the RTOG scoring system. Severe late complications were fistulas of bladder and/or bowel, which occurred in 2.8% in the combined radiotherapy group, and 0.7% in the HDR brachytherapy group. (orig.) [de

  17. Radioactive sources in brachytherapy:

    OpenAIRE

    Burger, Janez

    2003-01-01

    Background. In modern brachytherapy, a greast step forward was made in the 1960s in France with the introduction of new radioactive isotopes and new techniques. These innovations spread rapidly across Europe, though no single dosimetry standard had been set by then. In the new millennium, the advances in brachytherapy are further stimulated by the introduction of 3-D imaging techniques and the latest after loading irradiation equipment that use point sources. The international organiyation IC...

  18. About brachytherapy for the handling of cancer

    International Nuclear Information System (INIS)

    Campos, Tarcisio P.R.; Silva, Nilton O.; Damaso, Renato S.; Costa, Helder R.; Borges, Paulo H.R.; Mendes, Bruno M.

    2000-01-01

    The technique of brachytherapy is argued in this article. The 'hardware' and 'necessary software' for the handling are summarily presented. Being the macro-dosimetry an important stage in the radiation therapy procedure, a simplified method of doses evaluation in conventional brachytherapy is presented. In an illustrative form, isodoses of a three-dimensional distribution of linear sources are drawn on a digitalized X-ray picture, exemplifying the handling of breast brachytherapy by sources of iridium

  19. Studies on 192Ir afterloading irradiation of the canine prostate with special consideration of thermoluminescent dosimetry

    International Nuclear Information System (INIS)

    Reuter, M.

    1986-01-01

    A method for high dose rate afterloading irradiation of the prostate with iridium 192 was developed. The isodoses of the urethra and rectum, which were measured by means of thermoluminescent dosimetry, showed deviations from the doses pre-calculated by computer (BRACHY), because this calculation is based on an anatomically ideal condition. (MBC) [de

  20. Interstitial hyperthermia using 8 MHz radiofrequency and stereotaxic brachytherapy for brain tumors

    International Nuclear Information System (INIS)

    Nishimura, Satoshi

    1990-01-01

    As a preliminary study of the interstitial hyperthermia combined with interstitial irradiation (brachytherapy) for the treatment of malignant brain tumors, we performed an experiment of interstitial hyperthermia of brain tissue of dogs. Nine afterloading tubes, four for needle electrodes and five for thermisters, were inserted in the brain tissue of dogs. Rise and stability of temperature were ascertained, and clinical safety was confirmed. Thereafter this combined therapy was applied on seven cases, in which three were malignant gliomas and four were metastatic tumors. Through the guide tubes, 192 Ir thin wires were implanted stereotaxically, and interstitial irradiation was carried out. After removal of 192 Ir wires, needle electrodes were inserted through the same tubes, and also a thermister was guided at the center of electrodes. And interstitial hyperthermia using 8 MHz radiofrequency was carried out. The results of the treatment were evaluated with CT scan based on criteria of the Japan Neurological Society. In cases of malignant gliomas, 2 PRs (partial remission), and 1 NC (no change) were obtained. In cases of metastatic tumors, 1 CR (complete remission), 2 PRs, 1 NC were obtaind. In cases of NCs, progression of tumors have been suppressed for 10 and 17 months, and still alive. As complication, transient worsening of neurological symptoms were observed in four cases (increased paresis: two cases, nausea and vomiting: two cases). The author have had an impression that interstitial hyperthermia combined with interstitial irradiation might become an effective means of treatment of brain tumors. (author)

  1. Impact of aortic root size on left ventricular afterload and stroke volume.

    Science.gov (United States)

    Sahlén, Anders; Hamid, Nadira; Amanullah, Mohammed Rizwan; Fam, Jiang Ming; Yeo, Khung Keong; Lau, Yee How; Lam, Carolyn S P; Ding, Zee Pin

    2016-07-01

    The left ventricle (LV) ejects blood into the proximal aorta. Age and hypertension are associated with stiffening and dilation of the aortic root, typically viewed as indicative of adverse remodeling. Based on analytical considerations, we hypothesized that a larger aortic root should be associated with lower global afterload (effective arterial elastance, EA) and larger stroke volume (SV). Moreover, as antihypertensive drugs differ in their effect on central blood pressure, we examined the role of antihypertensive drugs for the relation between aortic root size and afterload. We studied a large group of patients (n = 1250; 61 ± 12 years; 78 % males; 64 % hypertensives) from a single-center registry with known or suspected coronary artery disease. Aortic root size was measured by echocardiography as the diameter of the tubular portion of the ascending aorta. LV outflow tract Doppler was used to record SV. In the population as a whole, after adjusting for key covariates in separate regression models, aortic root size was an independent determinant of both SV and EA. This association was found to be heterogeneous and stronger in patients taking a calcium channel blocker (CCB; 10.6 % of entire population; aortic root size accounted for 8 % of the explained variance of EA). Larger aortic root size is an independent determinant of EA and SV. This association was heterogeneous and stronger in patients on CCB therapy.

  2. SU-G-201-07: Dosimetric Verification of a 3D Printed HDR Skin Brachytherapy Applicator

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, K; Stanley, D; Eng, T; Kirby, N; Gutierrez, A; Stathakis, S; Papanikolaou, N [University of Texas HSC SA, San Antonio, TX (United States); Baumgarten, A; Pelletier, C; Jung, J; Feng, Y; Huang, Z; Ju, A [East Carolina University, Greenville, NC (United States); Corbett, M [Greenville Health System, Greenville, SC (United States)

    2016-06-15

    Purpose: The use of radiation as a treatment modality for skin cancer has increased significantly over the last decade with standardized applicators. Utilizing 3D printing, the ability to make applicators specifically designed for each patient’s anatomy has become economically feasible. With this in mind it was the aim of this study to determine the dosimetric accuracy of a 3-D printed HDR brachytherapy applicator for the skin. Methods: A CT reference image was used to generate a custom applicator based on an anthropomorphic head and neck phantom. To create the applicator a 1cm expansion anteriorly with 0.5cmX0.5cm trenches on the outer surface that were spaced 1cm sup-inf to accommodate standard 6F flexible catheters. The applicator was printed using PLA material using a printrbot simple printer. A treatment plan optimized to deliver a clinically representative volume was created in Oncentra and delivered with a nucletron afterloader. Measurements were made using TLDs and EBT3 gafchromic film that were placed between the applicator and the phantom’s forehead. An additional piece of film was also used to qualitatively asses the dose distribution in the transverse plane. Using a standard vaginal cylinder and bolus, a standardized curve correlating TLD and film exposure-to-radiation dose was established by irradiating film to known doses (200,500,700 cGy) at a 3.5 cm radius distance. Results: Evaluated TLDs showed the absolute dose delivered to the skin surface using the 3-D printed bolus was 615cGy±6%, with a mean predicted TPS value in the measured area of 617.5±7%. Additionally, planar dose distributions had good qualitative agreement with calculated TPS isodoses. Conclusion: This work demonstrates patient specific 3-D printed HDR brachytherapy applicators for skin cancer treatments are practical and accurate in TPS calculations but additional measurements are needed to verify additional sites and dose at depth.

  3. SU-G-201-07: Dosimetric Verification of a 3D Printed HDR Skin Brachytherapy Applicator

    International Nuclear Information System (INIS)

    Rasmussen, K; Stanley, D; Eng, T; Kirby, N; Gutierrez, A; Stathakis, S; Papanikolaou, N; Baumgarten, A; Pelletier, C; Jung, J; Feng, Y; Huang, Z; Ju, A; Corbett, M

    2016-01-01

    Purpose: The use of radiation as a treatment modality for skin cancer has increased significantly over the last decade with standardized applicators. Utilizing 3D printing, the ability to make applicators specifically designed for each patient’s anatomy has become economically feasible. With this in mind it was the aim of this study to determine the dosimetric accuracy of a 3-D printed HDR brachytherapy applicator for the skin. Methods: A CT reference image was used to generate a custom applicator based on an anthropomorphic head and neck phantom. To create the applicator a 1cm expansion anteriorly with 0.5cmX0.5cm trenches on the outer surface that were spaced 1cm sup-inf to accommodate standard 6F flexible catheters. The applicator was printed using PLA material using a printrbot simple printer. A treatment plan optimized to deliver a clinically representative volume was created in Oncentra and delivered with a nucletron afterloader. Measurements were made using TLDs and EBT3 gafchromic film that were placed between the applicator and the phantom’s forehead. An additional piece of film was also used to qualitatively asses the dose distribution in the transverse plane. Using a standard vaginal cylinder and bolus, a standardized curve correlating TLD and film exposure-to-radiation dose was established by irradiating film to known doses (200,500,700 cGy) at a 3.5 cm radius distance. Results: Evaluated TLDs showed the absolute dose delivered to the skin surface using the 3-D printed bolus was 615cGy±6%, with a mean predicted TPS value in the measured area of 617.5±7%. Additionally, planar dose distributions had good qualitative agreement with calculated TPS isodoses. Conclusion: This work demonstrates patient specific 3-D printed HDR brachytherapy applicators for skin cancer treatments are practical and accurate in TPS calculations but additional measurements are needed to verify additional sites and dose at depth.

  4. Problems of radiation protection and their solution in afterloading therapy performed in a X-ray deep therapy chamber of the Radiological Clinic of the Martin-Luther-University Halle

    International Nuclear Information System (INIS)

    Rauh, G.

    1982-01-01

    The Radiological Clinic of the Martin-Luther-University Halle got the first afterloading therapy unit DECATRON in December 1973. After preceding physical measurements the first patient was irradiated in August 1974. At this time there was no experience with the afterloading therapy in the GDR. The afterloading therapy was performed in a former X-ray deep therapy chamber. The occuring problems of radiation protection are considered and the ways of solution are described. Radiation protection calculations were carried out, values of local dose measurements are given, interpreted and compared with the values of personal dosimetry. Also the terms 'incorporated activity' and 'threading out activity' ('effective activity') are discussed, which led to differences in dose measurements formerly. The special situation required to discuss radiation protection problems of X-ray deep therapy simultaneously. (author)

  5. The American brachytherapy society survey of brachytherapy practice for carcinoma of the cervix in the United States.

    Science.gov (United States)

    Nag, S; Orton, C; Young, D; Erickson, B

    1999-04-01

    The purpose of this study was to survey the brachytherapy practice for cervical cancer in the United States. The Clinical Research Committee of the American Brachytherapy Society (ABS) performed a retrospective survey of individual physicians of the ABS and American Society of Therapeutic Radiologists and Oncologists regarding the details of the brachytherapy techniques they personally used in the treatment of cervical cancer patients for the year 1995. The replies (some of which may have been an estimate only) were tabulated. The scope of this survey did not allow us to verify the data by chart audits. A total of about 3500 questionnaires were mailed out; 521 responses were received. Of these responders, 206 (40%) did not perform any brachytherapy for carcinoma of the cervix in 1995. Of the other 315 responders reporting a total of 4892 patients treated in 1995, 88% used low dose rate (LDR) while 24% used high dose rate (HDR). There was a wide variation in the doses used. For LDR treatments, the median total external beam radiation therapy (EBRT) dose was 45 and 50 Gy and the LDR dose was 42 and 45 Gy for early and advanced cancers, respectively. For HDR treatments, the median EBRT dose was 48 and 50 Gy and the median HDR dose was 29 and 30 Gy for early and advanced cancers, respectively. The median dose per fraction was 6 Gy for a median of five fractions. Interstitial brachytherapy was used as a component of the treatment in 6% of the patients by 21% of responders. Very few responders treated with pulsed or medium dose rates. This retrospective survey showed the current brachytherapy practice pattern in the treatment of cervical cancer in the United States and can serve as a basis for future prospective national brachytherapy data registry. There was wide variation in the practice pattern, emphasizing the urgent need for consensus on these issues. Copyright 1999 Academic Press.

  6. Accelerated partial breast irradiation utilizing balloon brachytherapy techniques

    International Nuclear Information System (INIS)

    Strauss, Jonathan B.; Dickler, Adam

    2009-01-01

    To overcome the barriers to BCT, methods of PBI in the setting of breast conservation have been explored. The method of PBI with the longest published follow-up is multi-catheter interstitial brachytherapy. Balloon-based brachytherapy with the MammoSite brachytherapy applicator was designed to simplify the brachytherapy procedure for PBI, enhance the reproducibility of the dosimetry, and improve patient comfort. The rates of local recurrence following PBI with the MammoSite applicator have been low, but there are few published reports and follow-up has been relatively short. The cosmetic outcomes and toxicity of MammoSite PBI are comparable to those seen after multicatheter-based PBI. Additional methods of balloon brachytherapy, including Xoft and SenoRx Contura have been developed. Finally, long-term follow-up after PBI is important for the welfare of individual patients and in order to establish the efficacy, late toxicity and cosmetic outcomes of this technique.

  7. 10 CFR 35.2406 - Records of brachytherapy source accountability.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Records of brachytherapy source accountability. 35.2406... Records of brachytherapy source accountability. (a) A licensee shall maintain a record of brachytherapy source accountability required by § 35.406 for 3 years. (b) For temporary implants, the record must...

  8. A study of Brachytherapy for Intraocular Tumor

    International Nuclear Information System (INIS)

    Ji, Kwang Soo; Yoo, Dae Hyun; Lee, Sung Goo; Kim, Jae Hu; Ji, Young Hun

    1996-01-01

    The eye enucleation or external-beam radiation therapy that has been commonly used for the treatment of intraocular tumor have demerits of visual loss and in deficiency of effective tumor dose. Recently, brachytherapy using the plaques containing radioisotope-now treatment method that decrease the demerits of the above mentioned treatment methods and increase the treatment effect-is introduced and performed in the countries, Our purpose of this research is to design suitable shape of plaque for the ophthalmic brachytherapy, and to measure absorbed doses of Ir-192 ophthalmic plaque and thereby calculate the exact radiation dose of tumor and it's adjacent normal tissue. In order to brachytherapy for intraocular tumor, 1. to determine the eye model and selected suitable radioisotope 2. to design the suitable shape of plaque 3. to measure transmission factor and dose distribution for custom made plaques 4. to compare with the these data and results of computer dose calculation models. The result were as followed. 1. Eye model was determined as a 25 mm diameter sphere, Ir-192 was considered the most appropriate as radioisotope for brachytherapy, because of the size, half, energy and availability. 2. Considering the biological response with human tissue and protection of exposed dose, we made the plaques with gold, of which size were 15 mm, 17 mm and 20 mm in diameter, and 1.5 mm in thickness. 3. Transmission factor of plaques are all 0.71 with TLD and film dosimetry at the surface of plaques and 0.45, 0.49 at 1.5 mm distance of surface, respectively. 4. As compared the measured data for the plaque with Ir-192 seeds to results of computer dose calculation model by Gary Luxton et al. and CAP-PLAN (Radiation Treatment Planning System), absorbed doses are within ±10% and distance deviations are within 0.4 mm Maximum error is -11.3% and 0.8 mm, respectively. As a result of it, we can treat the intraocular tumor more effectively by using custom made gold plaque and Ir-192

  9. Photon energy-fluence correction factor in low energy brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Antunes, Paula C.G.; Yoriyaz, Hélio [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Vijande, Javier; Giménez-Alventosa, Vicent; Ballester, Facundo, E-mail: pacrisguian@gmail.com [Department of Atomic, Molecular, and Nuclear Physics and Instituto de Física Corpuscular (UV-CSIC), University of Valencia (Spain)

    2017-07-01

    The AAPM TG-43 brachytherapy dosimetry formalism has become a standard for brachytherapy dosimetry worldwide; it implicitly assumes that charged-particle equilibrium (CPE) exists for the determination of absorbed dose to water at different locations. At the time of relating dose to tissue and dose to water, or vice versa, it is usually assumed that the photon fluence in water and in tissues are practically identical, so that the absorbed dose in the two media can be related by their ratio of mass energy-absorption coefficients. The purpose of this work is to study the influence of photon energy-fluence in different media and to evaluate a proposal for energy-fluence correction factors for the conversion between dose-to-tissue (D{sub tis}) and dose-to-water (D{sub w}). State-of-the art Monte Carlo (MC) calculations are used to score photon fluence differential in energy in water and in various human tissues (muscle, adipose and bone) in two different codes, MCNP and PENELOPE, which in all cases include a realistic modeling of the {sup 125}I low-energy brachytherapy seed in order to benchmark the formalism proposed. A correction is introduced that is based on the ratio of the water-to-tissue photon energy-fluences using the large-cavity theory. In this work, an efficient way to correlate absorbed dose to water and absorbed dose to tissue in brachytherapy calculations at clinically relevant distances for low-energy photon emitting seed is proposed. The energy-fluence based corrections given in this work are able to correlate absorbed dose to tissue and absorbed dose to water with an accuracy better than 0.5% in the most critical cases. (author)

  10. Photon energy-fluence correction factor in low energy brachytherapy

    International Nuclear Information System (INIS)

    Antunes, Paula C.G.; Yoriyaz, Hélio; Vijande, Javier; Giménez-Alventosa, Vicent; Ballester, Facundo

    2017-01-01

    The AAPM TG-43 brachytherapy dosimetry formalism has become a standard for brachytherapy dosimetry worldwide; it implicitly assumes that charged-particle equilibrium (CPE) exists for the determination of absorbed dose to water at different locations. At the time of relating dose to tissue and dose to water, or vice versa, it is usually assumed that the photon fluence in water and in tissues are practically identical, so that the absorbed dose in the two media can be related by their ratio of mass energy-absorption coefficients. The purpose of this work is to study the influence of photon energy-fluence in different media and to evaluate a proposal for energy-fluence correction factors for the conversion between dose-to-tissue (D tis ) and dose-to-water (D w ). State-of-the art Monte Carlo (MC) calculations are used to score photon fluence differential in energy in water and in various human tissues (muscle, adipose and bone) in two different codes, MCNP and PENELOPE, which in all cases include a realistic modeling of the 125 I low-energy brachytherapy seed in order to benchmark the formalism proposed. A correction is introduced that is based on the ratio of the water-to-tissue photon energy-fluences using the large-cavity theory. In this work, an efficient way to correlate absorbed dose to water and absorbed dose to tissue in brachytherapy calculations at clinically relevant distances for low-energy photon emitting seed is proposed. The energy-fluence based corrections given in this work are able to correlate absorbed dose to tissue and absorbed dose to water with an accuracy better than 0.5% in the most critical cases. (author)

  11. MO-B-BRC-01: Introduction [Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Prisciandaro, J. [University of Michigan (United States)

    2016-06-15

    Brachytherapy has proven to be an effective treatment option for prostate cancer. Initially, prostate brachytherapy was delivered through permanently implanted low dose rate (LDR) radioactive sources; however, high dose rate (HDR) temporary brachytherapy for prostate cancer is gaining popularity. Needle insertion during prostate brachytherapy is most commonly performed under ultrasound (U/S) guidance; however, treatment planning may be performed utilizing several imaging modalities either in an intra- or post-operative setting. During intra-operative prostate HDR, the needles are imaged during implantation, and planning may be performed in real time. At present, the most common imaging modality utilized for intra-operative prostate HDR is U/S. Alternatively, in the post-operative setting, following needle implantation, patients may be simulated with computed tomography (CT) or magnetic resonance imaging (MRI). Each imaging modality and workflow provides its share of benefits and limitations. Prostate HDR has been adopted in a number of cancer centers across the nation. In this educational session, we will explore the role of U/S, CT, and MRI in HDR prostate brachytherapy. Example workflows and operational details will be shared, and we will discuss how to establish a prostate HDR program in a clinical setting. Learning Objectives: Review prostate HDR techniques based on the imaging modality Discuss the challenges and pitfalls introduced by the three imagebased options for prostate HDR brachytherapy Review the QA process and learn about the development of clinical workflows for these imaging options at different institutions.

  12. Prostate brachytherapy - discharge

    Science.gov (United States)

    Implant therapy - prostate cancer - discharge; Radioactive seed placement - discharge ... You had a procedure called brachytherapy to treat prostate cancer. Your treatment lasted 30 minutes or more, ...

  13. Resolving the brachytherapy challenges with government funded hospital.

    Science.gov (United States)

    Nikam, D S; Jagtap, A S; Vinothraj, R

    2016-01-01

    The objective of this study is to rationalize the feasibility and cost-effectiveness of high dose rate (HDR) cobalt 60 (Co-60) source versus 192-Iridium (192-Ir) source brachytherapy in government funded hospitals and treatment interruption gap because of exchange of sources. A retrospective study of gynecological cancer patients, treated by radiotherapy with curative intent between April 2005 and September 2012 was conducted. We analyzed the total number of patients treated for external beam radiotherapy (EBRT) and brachytherapy (Intracavitary brachytherapy or cylindrical vaginal source). The dates for 192-Ir sources installation and the last date and first date of brachytherapy procedure before and after source installation respectively were also analyzed and calculated the gap in days for brachytherapy interruptions. The study was analyzed the records of 2005 to September 2012 year where eight 192-Ir sources were installed. The mean gap between treatment interruptions was 123.12 days (range 1-647 days). The Institutional incidence of gynecological cancer where radiotherapy was treatment modality (except ovary) is 34.9 percent. Around 52.25 percent of patients who received EBRT at this institute were referred to outside hospital for brachytherapy because of unavailability of Iridium source. The cost for 5 year duration for single cobalt source is approximately 20-22 lakhs while for 15 Iridium sources is approximately 52-53 lakhs. The combined HDR Co-60 brachytherapy and EBRT provide a useful modality in the treatment of gynecological cancer where radiotherapy is indicated, the treatment interruption because of source exchange is longer and can be minimized by using cobalt source as it is cost-effective and has 5 year working life. Thus, Co-60 source for brachytherapy is a feasible option for government funded hospitals in developing countries.

  14. Investigation of Anisotropy Caused by Cylinder Applicator on Dose Distribution around Cs-137 Brachytherapy Source using MCNP4C Code

    Directory of Open Access Journals (Sweden)

    Sedigheh Sina

    2011-06-01

    Full Text Available Introduction: Brachytherapy is a type of radiotherapy in which radioactive sources are used in proximity of tumors normally for treatment of malignancies in the head, prostate and cervix. Materials and Methods: The Cs-137 Selectron source is a low-dose-rate (LDR brachytherapy source used in a remote afterloading system for treatment of different cancers. This system uses active and inactive spherical sources of 2.5 mm diameter, which can be used in different configurations inside the applicator to obtain different dose distributions. In this study, first the dose distribution at different distances from the source was obtained around a single pellet inside the applicator in a water phantom using the MCNP4C Monte Carlo code. The simulations were then repeated for six active pellets in the applicator and for six point sources.  Results: The anisotropy of dose distribution due to the presence of the applicator was obtained by division of dose at each distance and angle to the dose at the same distance and angle of 90 degrees. According to the results, the doses decreased towards the applicator tips. For example, for points at the distances of 5 and 7 cm from the source and angle of 165 degrees, such discrepancies reached 5.8% and 5.1%, respectively.  By increasing the number of pellets to six, these values reached 30% for the angle of 5 degrees. Discussion and Conclusion: The results indicate that the presence of the applicator causes a significant dose decrease at the tip of the applicator compared with the dose in the transverse plane. However, the treatment planning systems consider an isotropic dose distribution around the source and this causes significant errors in treatment planning, which are not negligible, especially for a large number of sources inside the applicator.

  15. Guidelines for comprehensive quality assurance in brachytherapy

    International Nuclear Information System (INIS)

    Goldson, A.L.; Nibhanupudy, J.R.

    1984-01-01

    Brachytherapy treatment techniques can provide significant improvement in local control and overall survival, but only when quality assurance can be guaranteed. To establish brachytherapy quality assurance, basic requirements for three predetermined subdivisions of clinical institutions will be forwarded. These are: (1) centers having minimum requirements to provide brachytherapy, (2) intermediate centers such as regional or community hospitals, and (3) optimal centers such as university hospital and cancer centers. This presentation will highlight personnel needs, equipment requirements, academic activities, clinical experience with these systems and proposed quality assurance guidelines

  16. Caudal epidural anesthesia during intracavitary brachytherapy for cervical cancer

    International Nuclear Information System (INIS)

    Isoyama-Shirakawa, Yuko; Abe, Madoka; Nakamura, Katsumasa

    2015-01-01

    It has been suggested that pain control during intracavitary brachytherapy for cervical cancer is insufficient in most hospitals in Japan. Our hospital began using caudal epidural anesthesia during high-dose-rate (HDR) intracavitary brachytherapy in 2011. The purpose of the present study was to retrospectively investigate the effects of caudal epidural anesthesia during HDR intracavitary brachytherapy for cervical cancer patients. Caudal epidural anesthesia for 34 cervical cancer patients was performed during HDR intracavitary brachytherapy between October 2011 and August 2013. We used the patients' self-reported Numeric Rating Scale (NRS) score at the first session of HDR intracavitary brachytherapy as a subjective evaluation of pain. We compared NRS scores of the patients with anesthesia with those of 30 patients who underwent HDR intracavitary brachytherapy without sacral epidural anesthesia at our hospital between May 2010 and August 2011. Caudal epidural anesthesia succeeded in 33 patients (97%), and the NRS score was recorded in 30 patients. The mean NRS score of the anesthesia group was 5.17 ± 2.97, significantly lower than that of the control group's 6.80 ± 2.59 (P = 0.035). The caudal epidural block resulted in no side-effects. Caudal epidural anesthesia is an effective and safe anesthesia option during HDR intracavitary brachytherapy for cervical cancer. (author)

  17. A study of brachytherapy for intraocular tumor

    International Nuclear Information System (INIS)

    Ji, Yung Hoon; Lee, Dong Han; Ko, Kyung Hwan; Lee, Tae Won; Lee, Sung Koo; Choi, Moon Sik

    1994-12-01

    Our purpose of this study is to perform brachytherapy for intraocular tumor. The result were as followed. 1. Eye model was determined as a 25 mm diameter sphere. Ir-192 was considered the most appropriate as radioisotope for brachytherapy, because of the size, half, energy and availability. 2. Considering the biological response with human tissue and protection of exposed dose, we made the plaques with gold, of which size were 15 mm, 17 mm and 20 mm in diameter, and 1.5 mm in thickness. 3. Transmission factor of plaques are all 0.71 with TLD and film dosimetry at the surface of plaques and 0.45, 0.49 at 1.5 mm distance of surface, respectively. 4. As compared the measured data for the plaque with Ir-192 seeds to results of computer dose calculation model by Gary Luxton et al. and CAP-PLAN (Radiation Treatment Planning System), absorbed doses are within ±10% and distance deviations are within 0.4 mm. Maximum error is -11.3% and 0.8 mm, respectively. 7 figs, 2 tabs, 28 refs. (Author)

  18. Brachytherapy for cervix cancer: low-dose rate or high-dose rate brachytherapy – a meta-analysis of clinical trials

    Directory of Open Access Journals (Sweden)

    Stefano Eduardo J

    2009-04-01

    Full Text Available Abstract Background The literature supporting high-dose rate brachytherapy (HDR in the treatment of cervical carcinoma derives primarily from retrospective series. However, controversy still persists regarding the efficacy and safety of HDR brachytherapy compared to low-dose rate (LDR brachytherapy, in particular, due to inadequate tumor coverage for stage III patients. Whether LDR or HDR brachytherapy produces better results for these patients in terms of survival rate, local control rate and the treatment complications remain controversial. Methods A meta-analysis of RCT was performed comparing LDR to HDR brachytherapy for cervix cancer treated for radiotherapy alone. The MEDLINE, EMBASE, CANCERLIT and Cochrane Library databases, as well as abstracts published in the annual proceedings were systematically searched. We assessed methodological quality for each outcome by grading the quality of evidence using the Grading of Recommendations Assessment, Development and Evaluation (GRADE methodology. We used "recommend" for strong recommendations, and "suggest" for weak recommendations. Results Pooled results from five randomized trials (2,065 patients of HDR brachytherapy in cervix cancer showed no significant increase of mortality (p = 0.52, local recurrence (p = 0.68, or late complications (rectal; p = 0.7, bladder; p = 0.95 or small intestine; p = 0.06 rates as compared to LDR brachytherapy. In the subgroup analysis no difference was observed for overall mortality and local recurrence in patients with clinical stages I, II and III. The quality of evidence was low for mortality and local recurrence in patients with clinical stage I, and moderate for other clinical stages. Conclusion Our meta-analysis shows that there are no differences between HDR and LDR for overall survival, local recurrence and late complications for clinical stages I, II and III. By means of the GRADE system, we recommend the use of HDR for all clinical stages of cervix

  19. Brachytherapy for cervix cancer: low-dose rate or high-dose rate brachytherapy – a meta-analysis of clinical trials

    Science.gov (United States)

    Viani, Gustavo A; Manta, Gustavo B; Stefano, Eduardo J; de Fendi, Ligia I

    2009-01-01

    Background The literature supporting high-dose rate brachytherapy (HDR) in the treatment of cervical carcinoma derives primarily from retrospective series. However, controversy still persists regarding the efficacy and safety of HDR brachytherapy compared to low-dose rate (LDR) brachytherapy, in particular, due to inadequate tumor coverage for stage III patients. Whether LDR or HDR brachytherapy produces better results for these patients in terms of survival rate, local control rate and the treatment complications remain controversial. Methods A meta-analysis of RCT was performed comparing LDR to HDR brachytherapy for cervix cancer treated for radiotherapy alone. The MEDLINE, EMBASE, CANCERLIT and Cochrane Library databases, as well as abstracts published in the annual proceedings were systematically searched. We assessed methodological quality for each outcome by grading the quality of evidence using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) methodology. We used "recommend" for strong recommendations, and "suggest" for weak recommendations. Results Pooled results from five randomized trials (2,065 patients) of HDR brachytherapy in cervix cancer showed no significant increase of mortality (p = 0.52), local recurrence (p = 0.68), or late complications (rectal; p = 0.7, bladder; p = 0.95 or small intestine; p = 0.06) rates as compared to LDR brachytherapy. In the subgroup analysis no difference was observed for overall mortality and local recurrence in patients with clinical stages I, II and III. The quality of evidence was low for mortality and local recurrence in patients with clinical stage I, and moderate for other clinical stages. Conclusion Our meta-analysis shows that there are no differences between HDR and LDR for overall survival, local recurrence and late complications for clinical stages I, II and III. By means of the GRADE system, we recommend the use of HDR for all clinical stages of cervix cancer. PMID:19344527

  20. High versus low-dose rate brachytherapy for cervical cancer.

    Science.gov (United States)

    Patankar, Sonali S; Tergas, Ana I; Deutsch, Israel; Burke, William M; Hou, June Y; Ananth, Cande V; Huang, Yongmei; Neugut, Alfred I; Hershman, Dawn L; Wright, Jason D

    2015-03-01

    Brachytherapy plays an important role in the treatment of cervical cancer. While small trials have shown comparable survival outcomes between high (HDR) and low-dose rate (LDR) brachytherapy, little data is available in the US. We examined the utilization of HDR brachytherapy and analyzed the impact of type of brachytherapy on survival for cervical cancer. Women with stages IB2-IVA cervical cancer treated with primary (external beam and brachytherapy) radiotherapy between 2003-2011 and recorded in the National Cancer Database (NCDB) were analyzed. Generalized linear mixed models and Cox proportional hazards regression were used to examine predictors of HDR brachytherapy use and the association between HDR use and survival. A total of 10,564 women including 2681 (25.4%) who received LDR and 7883 (74.6%) that received HDR were identified. Use of HDR increased from 50.2% in 2003 to 83.9% in 2011 (Puse of HDR. While patients in the Northeast were more likely to receive HDR therapy, there were no other clinical or socioeconomic characteristics associated with receipt of HDR. In a multivariable Cox model, survival was similar between the HDR and LDR groups (HR=0.93; 95% CI 0.83-1.03). Similar findings were noted in analyses stratified by stage and histology. Kaplan-Meier analyses demonstrated no difference in survival based on type of brachytherapy for stage IIB (P=0.68), IIIB (P=0.17), or IVA (P=0.16) tumors. The use of HDR therapy has increased rapidly. Overall survival is similar for LDR and HDR brachytherapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. American Brachytherapy Society recommendations for reporting morbidity after prostate brachytherapy

    International Nuclear Information System (INIS)

    Nag, Subir; Ellis, Rodney J.; Merrick, Gregory S.; Bahnson, Robert; Wallner, Kent; Stock, Richard

    2002-01-01

    Purpose: To standardize the reporting of brachytherapy-related prostate morbidity to guide ongoing clinical practice and future investigations. Methods: Members of the American Brachytherapy Society (ABS) with expertise in prostate brachytherapy performed a literature review and, guided by their clinical experience, formulated specific recommendations for reporting on morbidity related to prostate brachytherapy. Results: The ABS recommends using validated, patient-administered health-related quality-of-life instruments for the determination of baseline and follow-up data regarding bowel, urinary, and sexual function. Both actuarial and crude incidences should be reported, along with the temporal resolution of specific complications, and correlated with the doses to the normal tissues. The International Prostate Symptom Score is recommended to assess urinary morbidity, and any dysuria, gross hematuria, urinary retention, incontinence, or medication use should be quantified. Likewise, the ''Sexual Health Inventory for Men,'' which includes the specific erectile questions of the International Index of Erectile Function, is the preferred instrument for reporting sexual function, and the loss of sexual desire, incidence of hematospermia, painful orgasm (orgasmalgia), altered orgasm intensity, decreased ejaculatory volume, use of erectile aids, and use of hormones for androgen deprivation should be quantified. The ABS recommends adoption of the Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer acute and late radiation morbidity scoring scheme for reporting rectal morbidity and noting the incidence of rectal steroid, laser, or antidiarrheal use. Conclusion: It is important to focus on health-related quality-of-life issues in the treatment of prostate cancer, because the control rates are very similar between appropriate treatment modalities. The ABS recommends using the International Prostate Symptom Score, International Index of

  2. Sexual function after permanent prostate brachytherapy

    International Nuclear Information System (INIS)

    Galbreath, R.W.; Merrick, G.S.; Butler, W.M.; Stipetich, R.L.; Abel, L.J.; Lief, J.H.

    2001-01-01

    Purpose: To determine the incidence of potency preservation following permanent prostate brachytherapy and to evaluate the effect of multiple clinical and treatment parameters on penile erectile function. Materials and Methods: 425 patients underwent permanent prostate brachytherapy from April 1995 to October 1999. 209 patients who were potent prior to brachytherapy and currently not receiving hormonal manipulation were mailed an International Index of Erectile Function (IIEF) questionnaire with a pre-addressed stamped envelope. 180 patients completed and returned the questionnaire. Median patient follow-up was 39 months (range 18-74 months). Pre-implant erectile function was assigned using a three-tiered scoring system (2 = erections always or nearly always sufficient for vaginal penetration; 1 = erections sufficient for vaginal penetration but considered suboptimal; 0 = the inability to obtain erections and/or erections inadequate for vaginal penetration). Post-implant potency was defined as an IIEF score >11. Clinical parameters evaluated for sexual function included patient age, clinical T stage, elapsed time since implantation, hypertension, diabetes mellitus, and tobacco consumption. Evaluated treatment parameters included the utilization of neoadjuvant hormonal manipulation and the choice of isotope. The efficacy of sildenafil citrate in brachytherapy induced erectile dysfunction (ED) was also evaluated. Results: A pre-treatment erectile function score of 2 and 1 were assigned to 126 and 54 patients respectively. With 6 year follow up, 39% of patients maintained potency following prostate brachytherapy with a plateau on the curve. Post-implant preservation of potency (IIEF>11) correlated with pre-implant erectile function (50% versus 14% for pre-implant scores of 2 and 1 respectively, p≤0.0001), patient age (56%, 38%, and 23% for patients <60 years of age, 60-69 years of age, and ≥70 years of age respectively, p=0.012) and a history of diabetes mellitus

  3. High dose rate brachytherapy for superficial cancer of the esophagus

    International Nuclear Information System (INIS)

    Maingon, Philippe; D'Hombres, Anne; Truc, Gilles; Barillot, Isabelle; Michiels, Christophe; Bedenne, Laurent; Horiot, Jean Claude

    2000-01-01

    Purpose: We analyzed our experience with external radiotherapy, combined modality treatment, or HDR brachytherapy alone to limited esophageal cancers. Methods and Materials: From 1991 to 1996, 25 patients with limited superficial esophagus carcinomas were treated by high dose rate brachytherapy. The mean age was 63 years (43-86 years). Five patients showed superficial local recurrence after external radiotherapy. Eleven patients without invasion of the basal membrane were staged as Tis. Fourteen patients with tumors involving the submucosa without spreading to the muscle were staged as T1. Treatment consisted of HDR brachytherapy alone in 13 patients, external radiotherapy and brachytherapy in 8 cases, and concomitant chemo- and radiotherapy in 4 cases. External beam radiation was administered to a total dose of 50 Gy using 2 Gy daily fractions in 5 weeks. In cases of HDR brachytherapy alone (13 patients), 6 applications were performed once a week. Results: The mean follow-up is 31 months (range 24-96 months). Twelve patients received 2 applications and 13 patients received 6 applications. Twelve patients experienced a failure (48%), 11/12 located in the esophagus, all of them in the treated volume. One patient presented an isolated distant metastasis. In the patients treated for superficial recurrence, 4/5 were locally controlled (80%) by brachytherapy alone. After brachytherapy alone, 8/13 patients were controlled (61%). The mean disease-free survival is 14 months (1-36 months). Overall survival is 76% at 1 year, 37% at 2 years, and 14% at 3 years. Overall survival for Tis patients is 24% vs. 20% for T1 (p 0.83). Overall survival for patients treated by HDR brachytherapy alone is 43%. One patient presented with a fistula with local failure after external radiotherapy and brachytherapy. Four stenosis were registered, two were diagnosed on barium swallowing without symptoms, and two required dilatations. Conclusion: High dose rate brachytherapy permits the treating

  4. Brachytherapy in the treatment of cervical cancer: a review

    Directory of Open Access Journals (Sweden)

    Banerjee R

    2014-05-01

    Full Text Available Robyn Banerjee,1 Mitchell Kamrava21Department of Radiation Oncology, Tom Baker Cancer Centre, Calgary, Alberta, Canada; 2Department of Radiation Oncology, University of California Los Angeles, Los Angeles, CA, USAAbstract: Dramatic advances have been made in brachytherapy for cervical cancer. Radiation treatment planning has evolved from two-dimensional to three-dimensional, incorporating magnetic resonance imaging and/or computed tomography into the treatment paradigm. This allows for better delineation and coverage of the tumor, as well as improved avoidance of surrounding organs. Consequently, advanced brachytherapy can achieve very high rates of local control with a reduction in morbidity, compared with historic approaches. This review provides an overview of state-of-the-art gynecologic brachytherapy, with a focus on recent advances and their implications for women with cervical cancer.Keywords: cervical cancer, brachytherapy, image-guided brachytherapy

  5. Calculation of integrated biological response in brachytherapy

    International Nuclear Information System (INIS)

    Dale, Roger G.; Coles, Ian P.; Deehan, Charles; O'Donoghue, Joseph A.

    1997-01-01

    Purpose: To present analytical methods for calculating or estimating the integrated biological response in brachytherapy applications, and which allow for the presence of dose gradients. Methods and Materials: The approach uses linear-quadratic (LQ) formulations to identify an equivalent biologically effective dose (BED eq ) which, if applied to a specified tissue volume, would produce the same biological effect as that achieved by a given brachytherapy application. For simple geometrical cases, BED multiplying factors have been derived which allow the equivalent BED for tumors to be estimated from a single BED value calculated at a dose reference point. For more complex brachytherapy applications a voxel-by-voxel determination of the equivalent BED will be more accurate. Equations are derived which when incorporated into brachytherapy software would facilitate such a process. Results: At both high and low dose rates, the BEDs calculated at the dose reference point are shown to be lower than the true values by an amount which depends primarily on the magnitude of the prescribed dose; the BED multiplying factors are higher for smaller prescribed doses. The multiplying factors are less dependent on the assumed radiobiological parameters. In most clinical applications involving multiple sources, particularly those in multiplanar arrays, the multiplying factors are likely to be smaller than those derived here for single sources. The overall suggestion is that the radiobiological consequences of dose gradients in well-designed brachytherapy treatments, although important, may be less significant than is sometimes supposed. The modeling exercise also demonstrates that the integrated biological effect associated with fractionated high-dose-rate (FHDR) brachytherapy will usually be different from that for an 'equivalent' continuous low-dose-rate (CLDR) regime. For practical FHDR regimes involving relatively small numbers of fractions, the integrated biological effect to

  6. Emergency rescue in accidents with HDR afterloading units

    International Nuclear Information System (INIS)

    Kaulich, T.W.; Nuesslin, F.; Becker, G.; Lamprecht, U.; Bamberg, M.

    1999-01-01

    Problem: HDR brachyradiotherapy has minimized the exposure to radiation of the personnel working in this field. Nonetheless there are periodically reported troubles with afterloading units concerning the retraction of sources that require immediate action for the limitation of possible damage. Legal Principles according to the German Regulation Concerning Protection against Radiation (Strahlenschutzverordnung=StrlSchV): If in afterloading brachyradiotherapy the radiation source remains extended through malfunction we deal with an emergency according to the StrlSchV. The rescue personnel should be chosen in accordance with Paragraph 50 StrlSchV. Organization of the Rescue of the Patient: The quickest possible rescue of a patient in an emergency demands an unequivocal definition of responsibilities. Our recommendations in this instance: The physicist is responsible for the organization of the emergency rescue. The radiation oncologist in charge informs himself about the necessary emergency measures before starting the treatment and carries out the emergency rescue. If the physicist diagnoses a failure in the retraction of the source he tries to remove the failure. If he doesn't succeed in retracting the source the radiation oncologist carries out the rescue of the patient. The organizational structure of the clinic allowing, the emergency physician should invariably be the physician who placed the applicator. In the emergency rescue the radiation oncologist should be protected by a lead barrier and use manipulators. Dose Assessment in Personnel and Patient: The radiation exposure of the rescue personnel is calculated from the photon-equivalence dose H x with the help of the dose-rate constant of 192 Ir. According to the same procedure there can be evaluated the local radiation exposure of the patient concerned. Conclusions: Generally speaking, all considerations regarding the topic of emergency rescue should always start out from a worst-case scenario. Of all the

  7. Quality assurance in breast cancer brachytherapy: geographic miss in the interstitial boost treatment of the tumor bed.

    Science.gov (United States)

    Sedlmayer, F; Rahim, H B; Kogelnik, H D; Menzel, C; Merz, F; Deutschmann, H; Kranzinger, M

    1996-03-15

    To assess the role of geographic misses in the interstitial boost treatment of breast cancer patients and to evaluate methods of optimizing breast implants in design, performance, and dosimetry. During lumpectomy, the tumor excision sites of 89 patients were marked by five hemoclips. Postoperative radiographs demonstrated the clips' positions with respect to the extension of the surgical cavity, which was demarcated by air and hematoseroma. Twenty-seven selected patients received interstitial boosts to the tumor bed. The implant was first designed according to the clinical assumptions of the tumor bed's topography and then compared with the radiological findings. Prior to brachytherapy, the planning of the implant's dimension and the needle guidance was performed under simulator control. Dose distributions were first calculated following the Paris System and then electively optimized for the target volume by changing source positions and dwell times. Compared to clinical estimations, the radiological determination of the tumor bed's location revealed an overall potential of topographic errors of 51.8% (14 out of 27 patients), rising up to 78.5% in patients with large adipose breasts (11 out of 13 patients). This observation was due to a high mobility of the tissue, leading to varying tumor site projections at the time of mammography, surgery, and brachytherapy. In all patients, the presimulation of the implant resulted in an adequate coverage of the target volume. In 17 of the 27 treated patients, dose distributions were modified to achieve a higher dose delivery in zones where a higher residual tumor load was expected (boost-in-boost). Breast implants have a high potential of geographic misses that can be avoided by intraoperative clip demarcation. The delineation of the tumor bed allows for dose reports actually referring to the target volume and not to the implant system to be obtained. In addition, modern afterloading techniques offer possibilities of

  8. Quality assurance in breast cancer brachytherapy: geographic miss in the interstitial boost treatment of the tumor bed

    International Nuclear Information System (INIS)

    Sedlmayer, Felix; Rahim, Hassan B. K.; Kogelnik, H. Dieter; Menzel, Christian; Merz, Florian; Deutschmann, Heinz; Kranzinger, Manfred

    1996-01-01

    Purpose: To assess the role of geographic misses in the interstitial boost treatment of breast cancer patients and to evaluate methods of optimizing breast implants in design, performance, and dosimetry. Methods and Materials: During lumpectomy, the tumor excision sites of 89 patients were marked by five hemoclips. Postoperative radiographs demonstrated the clips' positions with respect to the extension of the surgical cavity, which was demarcated by air and hematoseroma. Twenty-seven selected patients received interstitial boosts to the tumor bed. The implant was first designed according to the clinical assumptions of the tumor bed's topography and then compared with the radiological findings. Prior to brachytherapy, the planning of the implant's dimension and the needle guidance was performed under simulator control. Dose distributions were first calculated following the Paris System and then electively optimized for the target volume by changing source positions and dwell times. Results: Compared to clinical estimations, the radiological determination of the tumor bed's location revealed an overall potential of topographic errors of 51.8% (14 out of 27 patients), rising up to 78.5% in patients with large adipose breasts (11 out of 13 patients). This observation was due to a high mobility of the tissue, leading to varying tumor site projections at the time of mammography, surgery, and brachytherapy. In all patients, the presimulation of the implant resulted in an adequate coverage of the target volume. In 17 of the 27 treated patients, dose distributions were modified to achieve a higher dose delivery in zones where a higher residual tumor load was expected (boost-in-boost). Conclusion: Breast implants have a high potential of geographic misses that can be avoided by intraoperative clip demarcation. The delineation of the tumor bed allows for dose reports actually referring to the target volume and not to the implant system to be obtained. In addition, modern

  9. Evolution of brachytherapy for prostate carcinoma

    International Nuclear Information System (INIS)

    Qin Lan

    2005-01-01

    Brachytherapy is one of the most main management to prostate carcinoma. This method has been rapidly accepted in clinical application since it is a convenient, little-traumatic, and outpatient therapy. With the development of techniques of production of radio-seeds, imaging modality and three-dimensional radiotherapy plan system, brachytherapy has been made a virtually progress in improving curative-effect and reducing damage to surrounding normal tissue. (authors)

  10. Proficiency-based cervical cancer brachytherapy training.

    Science.gov (United States)

    Zhao, Sherry; Francis, Louise; Todor, Dorin; Fields, Emma C

    2018-04-25

    Although brachytherapy increases the local control rate for cervical cancer, there has been a progressive decline in its use. Furthermore, the training among residency programs for gynecologic brachytherapy varies considerably, with some residents receiving little to no training. This trend is especially concerning given the association between poor applicator placement and decline in local control. Considering the success of proficiency-based training in other procedural specialties, we developed and implemented a proficiency-based cervical brachytherapy training curriculum for our residents. Each resident placed tandem and ovoid applicators with attending guidance and again alone 2 weeks later using a pelvic model that was modified to allow for cervical brachytherapy. Plain films were taken of the pelvic model, and applicator placement quality was evaluated. Other evaluated metrics included retention of key procedural details, the time taken for each procedure and presession and postsession surveys to assess confidence. During the initial session, residents on average met 4.5 of 5 placement criteria, which improved to 5 the second session. On average, residents were able to remember 7.6 of the 8 key procedural steps. Execution time decreased by an average of 10.5%. Resident confidence with the procedure improved dramatically, from 2.6 to 4.6 of 5. Residents who had previously never performed a tandem and ovoid procedure showed greater improvements in these criteria than those who had. All residents strongly agreed that the training was helpful and wanted to participate again the following year. Residents participating in this simulation training had measurable improvements in the time to perform the procedure, applicator placement quality, and confidence. This curriculum is easy to implement and is of great value for training residents, and would be particularly beneficial in programs with low volume of cervical brachytherapy cases. Simulation programs could

  11. The development of a human eye model for ophthalmic iodine-125 brachytherapy dosimetry

    International Nuclear Information System (INIS)

    Mourao, A.P.; Campos, T.P.R.

    2008-01-01

    Full text: Radiotherapy is used to treat malign tumors. Radiotherapy is an alternative to enucleation in ocular tumors. However, the irradiation of ocular region can bring damages due high doses, mainly in the crystalline lens and in the bone tissue in growth phase. Brachytherapy instead of teletherapy looks for reducing doses in the crystalline lens and the adjacent tissues of the ocular globe (orbital region), minimizing side effects. Herein, some encapsulated radioisotopes in radioactive seeds applied to the ocular brachytherapy are available. Thus, a three-dimensional computational voxel model of the ocular region with its heterogeneous tissues, globe and adjacent tissues is developed. This computational model is used to simulate orbital irradiation with radioactive seeds positioned on the sclera surface through the MCNP5 code. The computational simulation allows evaluating how doses are spatially distributed in the orbital volume in treatments with the radioactive seeds of iodine-125. Therefore, the results allow comparing the spatial doses distribution obtained through the MCNP5 simulation for those two distinct types of radioactive seeds. Bench markets from literature validates the proposed simulations. (author)

  12. Computed tomography in brachytherapy

    International Nuclear Information System (INIS)

    Mansfield, C.M.; Lee, K.R.; Dwyer, S.; Zellmer, D.; Cook, P.

    1983-01-01

    CT scanning adds to the ability to evaluate brachytherapy techniques. It provides an additional method in the assessment of patients who are candidates for or who are being treated by brachytherapy. The CT scan can give information regarding the position of the sources and their relation to the tumor and normal structures with greater ease than do orthogonal views. This makes it possible to accurately calculate areas of high or low dose. Potential areas of overdose can be recognized, thereby decreasing the chances of postbrachytherapy complications. CT scanning can be used at various levels of complexity in dosimetry evaluation. Adequate brachytherapy dosimetry information is obtainable from CT slices through one or more levels of the implanted volume. In some instances it is possible to obtain additional information by reconstructing the scans in other planes, e.g., coronal or sagittal. Three-dimensional viewing of the implant is desirable, but it should be pointed out that this approach is time-consuming and beyond the capabilities of most institutions at present. It will be necessary to continue work on three-dimensional treatment planning to make it readily available

  13. Brachytherapy in the treatment of head and neck cancer

    International Nuclear Information System (INIS)

    Yoo, Seong Yul

    1999-01-01

    Brachytherapy has been proved to be an effective method for the purpose of increasing radiation dose to the tumor and reducing the dose to the surrounding normal tissue. In head and neck cancer, the rationale of brachytherapy is as follows; Firstly, early small lesion is radiocurative and the major cause of failure is local recurrence. Secondly, it can diminish evidently the dose to the normal tissue especially masseteric muscle and salivary gland. Thirdly, the anatomy of head and neck is suitable to various technique of brachytherapy. On background of accumulated experience of LDR iridium brachytherapy of head and neck cancer for the last 15 years, the author reviewed the history of radioisotope therapy, the characteristics of radionuclides, and some important things in the method, clinical technique and treatment planning. The author analyzed the clinical result of 185 cases of head and neck cancer treated in the Korea Cancer Center Hospital. Finally the future prospect of brachytherapy of head and neck cancer is discussed

  14. Methods for prostate stabilization during transperineal LDR brachytherapy.

    Science.gov (United States)

    Podder, Tarun; Sherman, Jason; Rubens, Deborah; Messing, Edward; Strang, John; Ng, Wan-Sing; Yu, Yan

    2008-03-21

    In traditional prostate brachytherapy procedures for a low-dose-rate (LDR) radiation seed implant, stabilizing needles are first inserted to provide some rigidity and support to the prostate. Ideally this will provide better seed placement and an overall improved treatment. However, there is much speculation regarding the effectiveness of using regular brachytherapy needles as stabilizers. In this study, we explored the efficacy of two types of needle geometries (regular brachytherapy needle and hooked needle) and several clinically feasible configurations of the stabilization needles. To understand and assess the prostate movement during seed implantation, we collected in vivo data from patients during actual brachytherapy procedures. In vitro experimentation with tissue-equivalent phantoms allowed us to further understand the mechanics behind prostate stabilization. We observed superior stabilization with the hooked needles compared to the regular brachytherapy needles (more than 40% in bilateral parallel needle configuration). Prostate movement was also reduced significantly when regular brachytherapy needles were in an angulated configuration as compared to the parallel configuration (more than 60%). When the hooked needles were angulated for stabilization, further reduction in prostate displacement was observed. In general, for convenience of dosimetric planning and to avoid needle collision, all needles are desired to be in a parallel configuration. In this configuration, hooked needles provide improved stabilization of the prostate. On the other hand, both regular and hooked needles appear to be equally effective in reducing prostate movement when they are in angulated configurations, which will be useful in seed implantation using a robotic system. We have developed nonlinear spring-damper model for the prostate movement which can be used for adapting dosimetric planning during brachytherapy as well as for developing more realistic haptic devices and

  15. Methods for prostate stabilization during transperineal LDR brachytherapy

    International Nuclear Information System (INIS)

    Podder, Tarun; Yu Yan; Sherman, Jason; Rubens, Deborah; Strang, John; Messing, Edward; Ng, Wan-Sing

    2008-01-01

    In traditional prostate brachytherapy procedures for a low-dose-rate (LDR) radiation seed implant, stabilizing needles are first inserted to provide some rigidity and support to the prostate. Ideally this will provide better seed placement and an overall improved treatment. However, there is much speculation regarding the effectiveness of using regular brachytherapy needles as stabilizers. In this study, we explored the efficacy of two types of needle geometries (regular brachytherapy needle and hooked needle) and several clinically feasible configurations of the stabilization needles. To understand and assess the prostate movement during seed implantation, we collected in vivo data from patients during actual brachytherapy procedures. In vitro experimentation with tissue-equivalent phantoms allowed us to further understand the mechanics behind prostate stabilization. We observed superior stabilization with the hooked needles compared to the regular brachytherapy needles (more than 40% in bilateral parallel needle configuration). Prostate movement was also reduced significantly when regular brachytherapy needles were in an angulated configuration as compared to the parallel configuration (more than 60%). When the hooked needles were angulated for stabilization, further reduction in prostate displacement was observed. In general, for convenience of dosimetric planning and to avoid needle collision, all needles are desired to be in a parallel configuration. In this configuration, hooked needles provide improved stabilization of the prostate. On the other hand, both regular and hooked needles appear to be equally effective in reducing prostate movement when they are in angulated configurations, which will be useful in seed implantation using a robotic system. We have developed nonlinear spring-damper model for the prostate movement which can be used for adapting dosimetric planning during brachytherapy as well as for developing more realistic haptic devices and

  16. Results of the intestitial brachytherapy and of the combination external radiation-brachytherapy in 150 patients with carcinoma of the oral tongue and floor of the mouth

    Energy Technology Data Exchange (ETDEWEB)

    Sannazzari, G L; Negri, G L; Ozzello, F

    1986-01-01

    The authors report their experience on the treatment of carcinoma of the oral tongue and floor of the mouth with interstitial brachytherapy, alone or in conbination with external irradiation. One hundred and fifty patients were treated; among these, 116 with brachytherapy alone, 34 with combined treatment. The five years local control in those patients treated with brachytherapy alone was 72.5% in T1, 61.2% in T2 and 35% in T3; in those patients treated with external irradiation and brachytherapy the global five years control was 42.5%. The global five years survival was 64% in the patients treated with brachytherapy alone 48% in the patients treated with combined therapy. 42 refs.

  17. Results of the intestitial brachytherapy and of the combination external radiation-brachytherapy in 150 patients with carcinoma of the oral tongue and floor of the mouth

    International Nuclear Information System (INIS)

    Sannazzari, G.L.; Negri, G.L.; Ozzello, F.

    1986-01-01

    The authors report their experience on the treatment of carcinoma of the oral tongue and floor of the mouth with interstitial brachytherapy, alone or in conbination with external irradiation. One hundred and fifty patients were treated; among these, 116 with brachytherapy alone, 34 with combined treatment. The five years local control in those patients treated with brachytherapy alone was 72.5% in T1, 61.2% in T2 and 35% in T3; in those patients treated with external irradiation and brachytherapy the global five years control was 42.5%. The global five years survival was 64% in the patients treated with brachytherapy alone 48% in the patients treated with combined therapy

  18. National audit of a system for rectal contact brachytherapy

    Directory of Open Access Journals (Sweden)

    Laia Humbert-Vidan

    2017-01-01

    Full Text Available Background and purpose: Contact brachytherapy is used for the treatment of early rectal cancer. An overview of the current status of quality assurance of the rectal contact brachytherapy systems in the UK, based on a national audit, was undertaken in order to assist users in optimising their own practices. Material and methods: Four UK centres using the Papillon 50 contact brachytherapy system were audited. Measurements included beam quality, output and radiation field size and uniformity. Test frequencies and tolerances were reviewed and compared to both existing recommendations and published reviews on other kV and electronic brachytherapy systems. External validation of dosimetric measurements was provided by the National Physical Laboratory. Results: The maximum host/audit discrepancy in beam quality determination was 6.5%; this resulted in absorbed dose variations of 0.2%. The host/audit agreement in absorbed dose determination was within 2.2%. The median of the radiation field uniformity measurements was 2.7% and the host/audit agreement in field size was within 1 mm. Test tolerances and frequencies were within the national recommendations for kV units. Conclusions: The dosimetric characterisation of the Papillon 50 was validated by the audit measurements for all participating centres, thus providing reassurance that the implementation had been performed within the standards stated in previously published audit work and recommendations for kV and electronic brachytherapy units. However, optimised and standardised quality assurance testing could be achieved by reducing some methodological differences observed. Keywords: Contact brachytherapy, Electronic brachytherapy, Audit

  19. Outcomes and toxicities in patients with intermediate-risk prostate cancer treated with brachytherapy alone or brachytherapy and supplemental external beam radiation therapy.

    Science.gov (United States)

    Schlussel Markovic, Emily; Buckstein, Michael; Stone, Nelson N; Stock, Richard G

    2018-05-01

    To evaluate the cancer control outcomes and long-term treatment-related morbidity of brachytherapy as well as combination brachytherapy and external beam radiation therapy (EBRT) in patients with intermediate-risk prostate cancer. A retrospective review was conducted in a prospectively collected database of patients with intermediate-risk prostate cancer who were treated either with brachytherapy or brachytherapy and EBRT, with or without androgen deprivation therapy (ADT), in the period 1990-2014. Urinary and erectile dysfunction symptoms were measured using the International Prostate Symptom Score (IPSS), the Mount Sinai erectile function scale and the Sexual Health Inventory for Men (SHIM). Cancer control endpoints included biochemical failure and development of distant metastases. All statistical analyses were carried out using the Statistical Package for Social Science (SPSS). Survival curves were calculated using Kaplan-Meier actuarial methods and compared using log-rank tests. Cox regression multivariate analyses were used to test the effect of multiple variables on treatment outcomes. A total of 902 patients were identified, with a median follow-up of 91 months. Of these, 390 received brachytherapy and 512 received combination therapy with EBRT. In patients with one intermediate-risk factor, the addition of EBRT did not significantly affect freedom from biochemical failure or distant metastases. Among patients with two or three intermediate-risk factors, added EBRT did not improve freedom from biochemical failure. Significant differences in late toxicity between patients treated with brachytherapy vs combination brachytherapy and EBRT were identified including urge incontinence (P actuarial methods showed that patients receiving combination therapy more frequently experienced loss of potency, as measured by the Mount Sinai erectile function scale (P = 0.040). Brachytherapy monotherapy results in equal biochemical and distant control in both patients with

  20. Utilization and Outcomes of Breast Brachytherapy in Younger Women

    International Nuclear Information System (INIS)

    Smith, Grace L.; Huo, Jinhai; Giordano, Sharon H.; Hunt, Kelly K.; Buchholz, Thomas A.; Smith, Benjamin D.

    2015-01-01

    Purpose: To directly compare (1) radiation treatment utilization patterns; (2) risks of subsequent mastectomy; and (3) costs of radiation treatment in patients treated with brachytherapy versus whole-breast irradiation (WBI), in a national, contemporary cohort of women with incident breast cancer, aged 64 years and younger. Methods and Materials: Using MarketScan health care claims data, we identified 45,884 invasive breast cancer patients (aged 18-64 years), treated from 2003 to 2010 with lumpectomy, followed by brachytherapy (n=3134) or whole-breast irradiation (n=42,750). We stratified patients into risk groups according to age (Age<50 vs Age≥50) and endocrine therapy status (Endocrine− vs Endocrine+). “Endocrine+” patients filled an endocrine therapy prescription within 1 year after lumpectomy. Pathologic hormone receptor status was not available in this dataset. In brachytherapy versus WBI patients, utilization trends and 5-year subsequent mastectomy risks were compared. Stratified, adjusted subsequent mastectomy risks were calculated using proportional hazards regression. Results: Brachytherapy utilization increased from 2003 to 2010: in patients Age<50, from 0.6% to 4.9%; patients Age≥50 from 2.2% to 11.3%; Endocrine− patients, 1.3% to 9.4%; Endocrine+ patients, 1.9% to 9.7%. Age influenced treatment selection more than endocrine status: 17% of brachytherapy patients were Age<50 versus 32% of WBI patients (P<.001); whereas 41% of brachytherapy patients were Endocrine–versus 44% of WBI patients (P=.003). Highest absolute 5-year subsequent mastectomy risks occurred in Endocrine−/Age<50 patients (24.4% after brachytherapy vs 9.0% after WBI (hazard ratio [HR] 2.18, 95% confidence interval [CI] 1.37-3.47); intermediate risks in Endocrine−/Age≥50 patients (8.6% vs 4.9%; HR 1.76, 95% CI 1.26-2.46); and lowest risks in Endocrine+ patients of any age: Endocrine+/Age<50 (5.5% vs 4.5%; HR 1.18, 95% CI 0.61-2.31); Endocrine+/Age≥50 (4.2% vs 2

  1. Utilization and Outcomes of Breast Brachytherapy in Younger Women

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Grace L. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Department of Health Services Research, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Huo, Jinhai [Department of Health Services Research, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Giordano, Sharon H. [Department of Health Services Research, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Hunt, Kelly K. [Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Buchholz, Thomas A. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Smith, Benjamin D., E-mail: bsmith3@mdanderson.org [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Department of Health Services Research, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2015-09-01

    Purpose: To directly compare (1) radiation treatment utilization patterns; (2) risks of subsequent mastectomy; and (3) costs of radiation treatment in patients treated with brachytherapy versus whole-breast irradiation (WBI), in a national, contemporary cohort of women with incident breast cancer, aged 64 years and younger. Methods and Materials: Using MarketScan health care claims data, we identified 45,884 invasive breast cancer patients (aged 18-64 years), treated from 2003 to 2010 with lumpectomy, followed by brachytherapy (n=3134) or whole-breast irradiation (n=42,750). We stratified patients into risk groups according to age (Age<50 vs Age≥50) and endocrine therapy status (Endocrine− vs Endocrine+). “Endocrine+” patients filled an endocrine therapy prescription within 1 year after lumpectomy. Pathologic hormone receptor status was not available in this dataset. In brachytherapy versus WBI patients, utilization trends and 5-year subsequent mastectomy risks were compared. Stratified, adjusted subsequent mastectomy risks were calculated using proportional hazards regression. Results: Brachytherapy utilization increased from 2003 to 2010: in patients Age<50, from 0.6% to 4.9%; patients Age≥50 from 2.2% to 11.3%; Endocrine− patients, 1.3% to 9.4%; Endocrine+ patients, 1.9% to 9.7%. Age influenced treatment selection more than endocrine status: 17% of brachytherapy patients were Age<50 versus 32% of WBI patients (P<.001); whereas 41% of brachytherapy patients were Endocrine–versus 44% of WBI patients (P=.003). Highest absolute 5-year subsequent mastectomy risks occurred in Endocrine−/Age<50 patients (24.4% after brachytherapy vs 9.0% after WBI (hazard ratio [HR] 2.18, 95% confidence interval [CI] 1.37-3.47); intermediate risks in Endocrine−/Age≥50 patients (8.6% vs 4.9%; HR 1.76, 95% CI 1.26-2.46); and lowest risks in Endocrine+ patients of any age: Endocrine+/Age<50 (5.5% vs 4.5%; HR 1.18, 95% CI 0.61-2.31); Endocrine+/Age≥50 (4.2% vs 2

  2. Novel treatment options for nonmelanoma skin cancer: focus on electronic brachytherapy

    Directory of Open Access Journals (Sweden)

    Kasper ME

    2015-11-01

    Full Text Available Michael E Kasper,1,2 Ahmed A Chaudhary3 1Department of Radiation Oncology, Lynn Cancer Institute at Boca Raton Regional Hospital, Boca Raton, 2Charles E. Schmidt College of Medicine, Florida Atlantic University, FL, 3North Main Radiation Oncology, Warren Alpert School of Medicine, Brown University, RI, USA Abstract: Nonmelanoma skin cancer (NMSC is an increasing health care issue in the United States, significantly affecting quality of life and impacting health care costs. Radiotherapy has a long history in the treatment of NMSC. Shortly after the discovery of X-rays and 226Radium, physicians cured patients with NMSC using these new treatments. Both X-ray therapy and brachytherapy have evolved over the years, ultimately delivering higher cure rates and lower toxicity. Electronic brachytherapy for NMSC is based on the technical and clinical data obtained from radionuclide skin surface brachytherapy and the small skin surface applicators developed over the past 25 years. The purpose of this review is to introduce electronic brachytherapy in the context of the history, data, and utilization of traditional radiotherapy and brachytherapy. Keywords: electronic brachytherapy, superficial radiotherapy, skin surface brachytherapy, electron beam therapy, nonmelanoma skin cancer, basal cell carcinoma, squamous cell carcinoma

  3. SU-F-T-50: Evaluation of Monte Carlo Simulations Performance for Pediatric Brachytherapy Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Chatzipapas, C; Kagadis, G [University Patras, Rion, Ahaia (Greece); Papadimitroulas, P [BET Solutions, Athens, Attiki (Greece); Loudos, G [Technological Educational Institute of Athens, Egaleo, Attiki (Greece); Papanikolaou, N [University of Texas HSC SA, San Antonio, TX (United States)

    2016-06-15

    Purpose: Pediatric tumors are generally treated with multi-modal procedures. Brachytherapy can be used with pediatric tumors, especially given that in this patient population low toxicity on normal tissues is critical as is the suppression of the probability for late malignancies. Our goal is to validate the GATE toolkit on realistic brachytherapy applications, and evaluate brachytherapy plans on pediatrics for accurate dosimetry on sensitive and critical organs of interest. Methods: The GATE Monte Carlo (MC) toolkit was used. Two High Dose Rate (HDR) 192Ir brachytherapy sources were simulated (Nucletron mHDR-v1 and Varian VS2000), and fully validated using the AAPM and ESTRO protocols. A realistic brachytherapy plan was also simulated using the XCAT anthropomorphic computational model .The simulated data were compared to the clinical dose points. Finally, a 14 years old girl with vaginal rhabdomyosarcoma was modelled based on clinical procedures for the calculation of the absorbed dose per organ. Results: The MC simulations resulted in accurate dosimetry in terms of dose rate constant (Λ), radial dose gL(r) and anisotropy function F(r,θ) for both sources.The simulations were executed using ∼1010 number of primaries resulting in statistical uncertainties lower than 2%.The differences between the theoretical values and the simulated ones ranged from 0.01% up to 3.3%, with the largest discrepancy (6%) being observed in the dose rate constant calculation.The simulated DVH using an adult female XCAT model was also compared to a clinical one resulting in differences smaller than 5%. Finally, a realistic pediatric brachytherapy simulation was performed to evaluate the absorbed dose per organ and to calculate DVH with respect to heterogeneities of the human anatomy. Conclusion: GATE is a reliable tool for brachytherapy simulations both for source modeling and for dosimetry in anthropomorphic voxelized models. Our project aims to evaluate a variety of pediatric

  4. Perioperative high dose rate (HDR brachytherapy in unresectable locally advanced pancreatic tumors

    Directory of Open Access Journals (Sweden)

    Brygida Białas

    2011-07-01

    Full Text Available Purpose: The aim of the study was to present an original technique of catheter implantation for perioperative HDR-Ir192 brachytherapy in patients after palliative operations of unresectable locally advanced pancreatic tumors and to estimate the influence of perioperative HDR-Ir192 brachytherapy on pain relief in terminal pancreatic cancer patients. Material and methods: Eight patients with pancreatic tumors located in the head of pancreas underwent palliative operations with the use of HDR-Ir192 brachytherapy. All patients qualified for surgery reported pain of high intensity and had received narcotic painkillers prior to operation. During the last phase of the surgery, the Nucletron® catheters were implanted in patients to prepare them for later perioperative brachytherapy. Since the 6th day after surgery HDR brachytherapy was performed. Before each brachytherapy fraction the location of implants were checked using fluoroscopy. A fractional dose was 5 Gy and a total dose was 20 Gy in the area of radiation. A comparative study of two groups of patients (with and without brachytherapy with stage III pancreatic cancer according to the TNM scale was taken in consideration. Results and Conclusions: The authors claim that the modification of catheter implantation using specially designed cannula, facilitates the process of inserting the catheter into the tumor, shortens the time needed for the procedure, and reduces the risk of complications. Mean survival time was 5.7 months. In the group of performed brachytherapy, the mean survival time was 6.7 months, while in the group of no brachytherapy performed – 4.4 months. In the group of brachytherapy, only one patient increased the dose of painkillers in the last month of his life. Remaining patients took constant doses of medicines. Perioperative HDR-Ir192 brachytherapy could be considered as a practical application of adjuvant therapy for pain relief in patients with an advanced pancreatic cancer.

  5. Altered Right Ventricular Mechanical Properties Are Afterload Dependent in a Rodent Model of Bronchopulmonary Dysplasia

    Directory of Open Access Journals (Sweden)

    Jitandrakumar R. Patel

    2017-10-01

    hyperoxia-induced changes in contractile properties are reversible and accompany the resolution of PH with further developmental age, underscoring the importance of reducing RV afterload to allow for normalization of RV function in both animal models and humans with BPD.

  6. Role of brachytherapy in the treatment of localized prostate cancer

    Directory of Open Access Journals (Sweden)

    A. D. Kaprin

    2015-01-01

    Full Text Available The review is devoted to application of brachytherapy for treating the localized prostate cancer (PC. Statistics for incidence and detectability of this pathology and its dynamics for recent years are represented. Brief analysis of other methods which are conveniently used for treatment of PC, such as radical prostatectomy and external-beam radiotherapy, was performed. Advantages and disadvantages of these methods have been discussed. Brief history about the development of brachytherapy from first experience to wide-spread use in clinical practice is reported. The detailed review of series of large trials from Russia and other countries for efficiency and safety of brachytherapy in patients with prostate cancer for recent 15 years is also represented. Two types of brachytherapy in current clinical oncology i.e. low-dose technique with permanent implantation of microsources and high-dose temporary isotope implantation, specifics of its application in different groups of patients have been described. The procedure of brachytherapy and its three main steps i.e. planning, implantation and control assessment after implantation have been characterized in details. The conclusion about benefits of using of brachytherapy in the treatment of prostate cancer as minimally invasive and efficient method was made. 

  7. Calculated and measured brachytherapy dosimetry parameters in water for the Xoft Axxent X-Ray Source: an electronic brachytherapy source.

    Science.gov (United States)

    Rivard, Mark J; Davis, Stephen D; DeWerd, Larry A; Rusch, Thomas W; Axelrod, Steve

    2006-11-01

    A new x-ray source, the model S700 Axxent X-Ray Source (Source), has been developed by Xoft Inc. for electronic brachytherapy. Unlike brachytherapy sources containing radionuclides, this Source may be turned on and off at will and may be operated at variable currents and voltages to change the dose rate and penetration properties. The in-water dosimetry parameters for this electronic brachytherapy source have been determined from measurements and calculations at 40, 45, and 50 kV settings. Monte Carlo simulations of radiation transport utilized the MCNP5 code and the EPDL97-based mcplib04 cross-section library. Inter-tube consistency was assessed for 20 different Sources, measured with a PTW 34013 ionization chamber. As the Source is intended to be used for a maximum of ten treatment fractions, tube stability was also assessed. Photon spectra were measured using a high-purity germanium (HPGe) detector, and calculated using MCNP. Parameters used in the two-dimensional (2D) brachytherapy dosimetry formalism were determined. While the Source was characterized as a point due to the small anode size, S700 Source exhibited depth dose behavior similar to low-energy photon-emitting low dose rate sources 125I and l03Pd, yet with capability for variable and much higher dose rates and subsequently adjustable penetration capabilities. This paper presents the calculated and measured in-water brachytherapy dosimetry parameters for the model S700 Source at the aforementioned three operating voltages.

  8. Brachytherapy. High dose rate brachytherapy - Radiation protection: medical sheet ED 4287

    International Nuclear Information System (INIS)

    Celier, D.; Aubert, B.; Vidal, J.P.; Biau, A.; Lahaye, T.; Gauron, C.; Barret, C.; Boisserie, G.; Branchet, E.; Gambini, D.; Gondran, C.; Le Guen, B.; Guerin, C.; Nguyen, S.; Pierrat, N.; Sarrazin, T.; Donnarieix, D.

    2010-02-01

    After having indicated the required authorization to implement brachytherapy techniques, this document presents the various aspects and measures related to radiation protection when performing high-dose-rate brachytherapy treatments. It presents the concerned personnel, describes the operational process, indicates the associated hazards and the risk related to ionizing radiation, and describes how the risk is to be assessed and how exposure levels are to be determined (elements of risk assessment, delimitation of controlled and monitored areas, personnel classification, and choice of the dose monitoring method). It describes the various components of a risk management strategy (risk reduction, technical measures regarding the installation and the personnel, training and information, prevention and medical monitoring). It briefly presents how risk management is to be assessed, and mentions other related risks (biological risk, handling and posture, handling of heavy loads, mental workload, chemical risk)

  9. Brachytherapy. Pulsed dose rate brachytherapy - Radiation protection: medical sheet ED 4250

    International Nuclear Information System (INIS)

    Celier, D.; Aubert, B.; Vidal, J.P.; Biau, A.; Lahaye, T.; Gauron, C.; Barret, C.; Boisserie, G.; Branchet, E.; Gambini, D.; Gondran, C.; Le Guen, B.; Guerin, C.; Nguyen, S.; Pierrat, N.; Sarrazin, T.; Donnarieix, D.

    2009-06-01

    After having indicated the required authorization to implement brachytherapy techniques, this document presents the various aspects and measures related to radiation protection when performing pulsed-dose-rate brachytherapy treatments. It presents the concerned personnel, describes the operational process, indicates the associated hazards and the risk related to ionizing radiation, and describes how the risk is to be assessed and how exposure levels are to be determined (elements of risk assessment, delimitation of controlled and monitored areas, personnel classification, and choice of the dose monitoring method). It describes the various components of a risk management strategy (risk reduction, technical measures regarding the installation and the personnel, training and information, prevention and medical monitoring). It briefly presents how risk management is to be assessed, and mentions other related risks (biological risk, handling and posture, handling of heavy loads, mental workload, chemical risk)

  10. Fractionated afterloading therapy in inoperable malignant tumours of the brain

    International Nuclear Information System (INIS)

    Sparenberg, A.

    1987-01-01

    With the advent of the method of afterloading the range of uses for fractionated interstitial brady-therapy could be broadened to include malignant cerebral tumours. The mean survival time of 33 female patients was calculated to be 8.3 months for the entire group and 11.3 months for cases not otherwise pretreated. Even though the age, tumour volume, target dose and Karnofsky index obviously tended to influence the survival time, such relationships could not be confirmed statistically. Using the method by Kaplan-Meier it was determined that 65% of the total study group were likely to survive beyond six months and 32% to survive for one year. A separate analysis of patients receiving no previous treatment showed these chances to be 75% and 44%, respectively. The advantages of this therapy are discussed on a comparative basis. (VHE) [de

  11. A robotic device for MRI-guided prostate brachytherapy

    NARCIS (Netherlands)

    Lagerburg, V.

    2008-01-01

    One of the treatment options for prostate cancer is brachytherapy with iodine-125 sources. In prostate brachytherapy a high radiation dose is delivered to the prostate with a steep dose fall off to critical surrounding organs. The implantation of the iodine sources is currently performed under

  12. High Dose-Rate Versus Low Dose-Rate Brachytherapy for Lip Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ghadjar, Pirus, E-mail: pirus.ghadjar@insel.ch [Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern (Switzerland); Bojaxhiu, Beat [Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern (Switzerland); Simcock, Mathew [Swiss Group for Clinical Cancer Research Coordinating Center, Bern (Switzerland); Terribilini, Dario; Isaak, Bernhard [Division of Medical Radiation Physics, Inselspital, Bern University Hospital, and University of Bern, Bern (Switzerland); Gut, Philipp; Wolfensberger, Patrick; Broemme, Jens O.; Geretschlaeger, Andreas; Behrensmeier, Frank; Pica, Alessia; Aebersold, Daniel M. [Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern (Switzerland)

    2012-07-15

    Purpose: To analyze the outcome after low-dose-rate (LDR) or high-dose-rate (HDR) brachytherapy for lip cancer. Methods and Materials: One hundred and three patients with newly diagnosed squamous cell carcinoma of the lip were treated between March 1985 and June 2009 either by HDR (n = 33) or LDR brachytherapy (n = 70). Sixty-eight patients received brachytherapy alone, and 35 received tumor excision followed by brachytherapy because of positive resection margins. Acute and late toxicity was assessed according to the Common Terminology Criteria for Adverse Events 3.0. Results: Median follow-up was 3.1 years (range, 0.3-23 years). Clinical and pathological variables did not differ significantly between groups. At 5 years, local recurrence-free survival, regional recurrence-free survival, and overall survival rates were 93%, 90%, and 77%. There was no significant difference for these endpoints when HDR was compared with LDR brachytherapy. Forty-two of 103 patients (41%) experienced acute Grade 2 and 57 of 103 patients (55%) experienced acute Grade 3 toxicity. Late Grade 1 toxicity was experienced by 34 of 103 patients (33%), and 5 of 103 patients (5%) experienced late Grade 2 toxicity; no Grade 3 late toxicity was observed. Acute and late toxicity rates were not significantly different between HDR and LDR brachytherapy. Conclusions: As treatment for lip cancer, HDR and LDR brachytherapy have comparable locoregional control and acute and late toxicity rates. HDR brachytherapy for lip cancer seems to be an effective treatment with acceptable toxicity.

  13. How to optimize therapeutic ratio in brachytherapy of head and neck squamous cell carcinoma?

    International Nuclear Information System (INIS)

    Mazeron, J.J.; Simon, J.M.; Hardiman, C.; Gerbaulet, A.

    1998-01-01

    Considerable experience has been accumulated with low dose rate (LDR) brachytherapy in the treatment of squamous cell carcinoma of the oral cavity and oropharynx, 4 cm or less in diameter. Recent analysis of large clinical series provided data indicating that modalities of LDR brachytherapy should be optimized in treating these tumours for increasing therapeutic ratio. LDR brachytherapy is now challenged by high dose rate (HDR) brachytherapy and pulsed dose rate (PDR) brachytherapy. Preliminary results obtained with the last two modalities are discussed in comparison with those achieved with LDR brachytherapy. (orig.)

  14. Intra coronary brachytherapy

    International Nuclear Information System (INIS)

    Ghofourian, H.; Ghahremani, A.; Oliaie, A.; Taghizadeh Asl, M.

    2002-01-01

    Despite the initial promise of vasculopathy intervention restenosis- a consequence of the (normal) would healing process-has emerged as a major problem. Angiographic restenosis has been reported in 40-60% of patients after successful P TCA. The basic mechanism of restenosis, (acute recoil, negative remodeling and neo intimal hyperplasia), are only partially counteracted by endovascular prosthetic devices (s tents). The rate of in-s tent restenosis, which is primarily caused by neo intimal hyperplasia due to the (micro) trauma of the arterial wall by the s tent struts, has been reduced to 18-32%. Ionizing (beta or gamma) radiations has been established as a potent treatment for malignant disorders. In recent years, there has also been increasing interest among clinicians in the management of benign lesions with radiation. Over the past several years, there has been a growing body of evidence that endovascular brachytherapy has a major impact on the biology of the restenosis. It must be underlined that understanding the biology and pathophysiology of restenosis and assessing various treatment options should preferably be a team effort, with the three g races b eing interventional cardiologist, nuclear oncologist, and industrial partners. The vast amount of data in over 20000 patients from a wide range of randomized controlled trials, has shown that brachytherapy is the only effective treatment for in-s tent restenosis. We are learning more and more about how to improve brachytherapy. While the new coated s tents that we heard about today is fascinating and extremely promising, brachytherapy still has a very important place in difficult patients, such as those with total occlusions, osti al lesions, left main lesions, multivessel disease and diabetes. Regarding to above mentioned tips, we (a research team work, in the Nuclear Research Center Of the Atomic Energy Organization Of Iran), focused on synthesis and preparation of radioactive materials for use in I c-B T. We

  15. A new human eye model for ophthalmic brachytherapy dosimetry

    International Nuclear Information System (INIS)

    Yoriyaz, H.; Sanchez, A.; Dos Santos, A.

    2005-01-01

    The present work proposes a new mathematical eye model for ophthalmic brachytherapy dosimetry. This new model includes detailed description of internal structures that were not treated in previous works, allowing dose determination in different regions of the eye for a more adequate clinical analysis. Dose calculations were determined with the MCNP-4C Monte Carlo particle transport code running n parallel environment using PVM. The Amersham CKA4 ophthalmic applicator has been chosen and the depth dose distribution has been determined and compared to those provide by the manufacturer. The results have shown excellent agreement. Besides, absorbed dose values due to both 125 I seeds and 60 Co plaques were obtained for each one of the different structures which compose the eye model and can give relevant information in eventual clinical analyses. (authors)

  16. Endobronchial brachytherapy: the Saint-Louis Hospital experience

    International Nuclear Information System (INIS)

    Hennequin, C.; Durdux, C.; Housset, M.; Maylin, C.; Tredaniel, J.; Zalcman, G.; Hirsch, A.; Dray, M.; Manoux, D.; Perret, M.

    1997-01-01

    During the evolution of lung cancer, bronchial obstruction is often noticed and is sometimes responsible for serious symptoms. Several methods of des-obstruction can be proposed, including brachytherapy. Materials and methods: One hundred forty-nine patients, presenting with endobronchial brachytherapy were included into the study. Seventy-three were treated with curative intent, 47 with palliative intent and 29 with a combination of external irradiation and brachytherapy. We usually delivered a series of two 7-Gy fractions (1 cm from the catheter), the treatment being repeated one, two or three times. Results: When all symptoms were taken into account, respiratory function improvement was present in 79% of the patients. Among the 132 tumors that could be evaluated via a new endoscopy 2 months after treatment, 64 (48.5%) were in complete histological remission. The median survival was 14.4 months for the patients treated with curative intent. Eleven massive hemoptyses and 13 radiation bronchitides were observed. Conclusion: These results confirm the feasibility and good results related to endobronchial brachytherapy, though controlled studies are needed to better define its place in the therapeutic strategy of bronchial carcinomas. (authors)

  17. Effect and toxicity of endoluminal high-dose-rate (HDR) brachytherapy in centrally located tumors of the upper respiratory tract

    International Nuclear Information System (INIS)

    Harms, W.; Wannenmacher, M.; Becker, H.; Herth, F.; Fritz, P.

    2000-01-01

    Aim: To assess effect an toxicity of high-dose-rate afterloading (HDR) alone or in combination with external beam radiotherapy (EBRT) in centrally located tumors of the upper respiratory tract. Patients and Methods: From 1987 to 1996, 55 patients were treated. Twenty-one patients (group A1: 17 non-small-cell lung cancer [NSCLC], A2: 4 metastases from other malignancies) were treated using HDR alone due to a relapse after external beam irradiation. In 34 previously untreated and inoperable patients (group B1: 27 NSCLC, B2: 7 metastases from other malignancies) HDR was given as a boost after EBRT (30 to 60 Gy, median 50). HDR was carried out with a 192 Ir source (370 GBq). The brachytherapy dose (group A: 5 to 27 Gy, median 20; B: 10 to 20 Gy, median 15) was prescribed to 1 cm distance from the source axis. A distanciable applicator was used in 39/55 patients. Results: In group A1, a response rate (CR, PR) of 53% (group B1: 77%) was reached. The median survival (Kaplan-Meier) was 5 months in group A1 (B1: 20 months). The 1-, 3- and 5-year local progression free survival rates (Kaplan-Meier) were 66% (15%), 52% (0%), and 37% (0%) in group B1 (group A1). Prognostic favorable factors in group B1 were a tumor diameter 70. Grade-1 or 2 toxicity (RTOG/EORTC) occurred in 0% in group A and in 6% in group B. We observed no Grad-3 or 4 toxicity. Complications caused by persistent or progressive local disease occurred in 3 patients in goup A (fatal hemorrhage, tracheomediastinal fistula, hemoptysis) and in 2 patients in group B (fatal hemorrhage, hemoptysis). Conclusions: HDR brachytherapy is an effective treatment with moderate side effects. In combination with external beam irradiation long-term remissions can be reached in one third of the patients. (orig.) [de

  18. Demonstration of brachytherapy boost dose-response relationships in glioblastoma multiforme

    International Nuclear Information System (INIS)

    Sneed, Penny K.; Lamborn, Kathleen R.; Larson, David A.; Prados, Michael D.; Malec, Mary K.; McDermott, Michael W.; Weaver, Keith A.; Phillips, Theodore L.; Wara, William M.; Gutin, Philip H.

    1996-01-01

    Purpose: To evaluate brachytherapy dose-response relationships in adults with glioblastoma undergoing temporary 125 I implant boost after external beam radiotherapy. Methods and Materials: Since June 1987, orthogonal radiographs using a fiducial marker box have been used to verify brain implant source positions and generate dose-volume histograms at the University of California, San Francisco. For adults who underwent brachytherapy boost for glioblastoma from June 1987 through December 1992, tumor volumes were reoutlined to ensure consistency and dose-volume histograms were recalculated. Univariate and multivariate analyses of various patient and treatment parameters were performed evaluating for influence of dose on freedom from local failure (FFLF) and actuarial survival. Results: Of 102 implant boosts, 5 were excluded because computer plans were unavailable. For the remaining 97 patients, analyses with adjustment for known prognostic factors (age, KPS, extent of initial surgical resection) and prognostic factors identified on univariate testing (adjuvant chemotherapy) showed that higher minimum brachytherapy tumor dose was strongly associated with improved FFLF (p = 0.001). A quadratic relationship was found between total biological effective dose and survival, with a trend toward optimal survival probability at 47 Gy minimum brachytherapy tumor dose (corresponding to about 65 Gy to 95% of the tumor volume); survival decreased with lower or higher doses. Two patients expired and one requires hospice care because of brain necrosis after brachytherapy doses > 63 Gy to 95% of the tumor volume with 60 Gy to > 18 cm 3 of normal brain. Conclusion: Although higher minimum brachytherapy tumor dose was strongly associated with better local control, a brachytherapy boost dose > 50-60 Gy may result in life-threatening necrosis. We recommend careful conformation of the prescription isodose line to the contrast enhancing tumor volume, delivery of a minimum brachytherapy

  19. A workshop on developing risk assessment methods for medical use of radioactive material. Volume 1: Summary

    Energy Technology Data Exchange (ETDEWEB)

    Tortorelli, J.P. [ed.] [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

    1995-08-01

    A workshop was held at the Idaho National Engineering Laboratory, August 16--18, 1994 on the topic of risk assessment on medical devices that use radioactive isotopes. Its purpose was to review past efforts to develop a risk assessment methodology to evaluate these devices, and to develop a program plan and a scoping document for future methodology development. This report contains a summary of that workshop. Participants included experts in the fields of radiation oncology, medical physics, risk assessment, human-error analysis, and human factors. Staff from the US Nuclear Regulatory Commission (NRC) associated with the regulation of medical uses of radioactive materials and with research into risk-assessment methods participated in the workshop. The workshop participants concurred in NRC`s intended use of risk assessment as an important technology in the development of regulations for the medical use of radioactive material and encouraged the NRC to proceed rapidly with a pilot study. Specific recommendations are included in the executive summary and the body of this report. An appendix contains the 8 papers presented at the conference: NRC proposed policy statement on the use of probabilistic risk assessment methods in nuclear regulatory activities; NRC proposed agency-wide implementation plan for probabilistic risk assessment; Risk evaluation of high dose rate remote afterloading brachytherapy at a large research/teaching institution; The pros and cons of using human reliability analysis techniques to analyze misadministration events; Review of medical misadministration event summaries and comparison of human error modeling; Preliminary examples of the development of error influences and effects diagrams to analyze medical misadministration events; Brachytherapy risk assessment program plan; and Principles of brachytherapy quality assurance.

  20. A workshop on developing risk assessment methods for medical use of radioactive material. Volume 1: Summary

    International Nuclear Information System (INIS)

    Tortorelli, J.P.

    1995-08-01

    A workshop was held at the Idaho National Engineering Laboratory, August 16--18, 1994 on the topic of risk assessment on medical devices that use radioactive isotopes. Its purpose was to review past efforts to develop a risk assessment methodology to evaluate these devices, and to develop a program plan and a scoping document for future methodology development. This report contains a summary of that workshop. Participants included experts in the fields of radiation oncology, medical physics, risk assessment, human-error analysis, and human factors. Staff from the US Nuclear Regulatory Commission (NRC) associated with the regulation of medical uses of radioactive materials and with research into risk-assessment methods participated in the workshop. The workshop participants concurred in NRC's intended use of risk assessment as an important technology in the development of regulations for the medical use of radioactive material and encouraged the NRC to proceed rapidly with a pilot study. Specific recommendations are included in the executive summary and the body of this report. An appendix contains the 8 papers presented at the conference: NRC proposed policy statement on the use of probabilistic risk assessment methods in nuclear regulatory activities; NRC proposed agency-wide implementation plan for probabilistic risk assessment; Risk evaluation of high dose rate remote afterloading brachytherapy at a large research/teaching institution; The pros and cons of using human reliability analysis techniques to analyze misadministration events; Review of medical misadministration event summaries and comparison of human error modeling; Preliminary examples of the development of error influences and effects diagrams to analyze medical misadministration events; Brachytherapy risk assessment program plan; and Principles of brachytherapy quality assurance

  1. Automated intraoperative calibration for prostate cancer brachytherapy

    International Nuclear Information System (INIS)

    Kuiran Chen, Thomas; Heffter, Tamas; Lasso, Andras; Pinter, Csaba; Abolmaesumi, Purang; Burdette, E. Clif; Fichtinger, Gabor

    2011-01-01

    Purpose: Prostate cancer brachytherapy relies on an accurate spatial registration between the implant needles and the TRUS image, called ''calibration''. The authors propose a new device and a fast, automatic method to calibrate the brachytherapy system in the operating room, with instant error feedback. Methods: A device was CAD-designed and precision-engineered, which mechanically couples a calibration phantom with an exact replica of the standard brachytherapy template. From real-time TRUS images acquired from the calibration device and processed by the calibration system, the coordinate transformation between the brachytherapy template and the TRUS images was computed automatically. The system instantly generated a report of the target reconstruction accuracy based on the current calibration outcome. Results: Four types of validation tests were conducted. First, 50 independent, real-time calibration trials yielded an average of 0.57 ± 0.13 mm line reconstruction error (LRE) relative to ground truth. Second, the averaged LRE was 0.37 ± 0.25 mm relative to ground truth in tests with six different commercial TRUS scanners operating at similar imaging settings. Furthermore, testing with five different commercial stepper systems yielded an average of 0.29 ± 0.16 mm LRE relative to ground truth. Finally, the system achieved an average of 0.56 ± 0.27 mm target registration error (TRE) relative to ground truth in needle insertion tests through the template in a water tank. Conclusions: The proposed automatic, intraoperative calibration system for prostate cancer brachytherapy has achieved high accuracy, precision, and robustness.

  2. Brachytherapy in vulvar cancer: analysis of 18 patients

    International Nuclear Information System (INIS)

    Frezza, G.; Baldissera, A.; Bernardi, L.; Bunkheila, F.; Galuppi, A.; Salvi, F.

    1996-01-01

    INTRODUCTION: Vulvar cancer is a rather common neoplasm in elderly patients. Surgery, followed eventually by postoperative radiotherapy, is the treatment of choice. The results of exclusive radiotherapy (external beam irradiation and/or brachytherapy) are not well defined and in the recent literature only small series are reported. Radiotherapy however is the only therapeutic option in patients who are not fit for radical surgery. It is thus necessary to review its indications and its modalities. PATIENTS METHODS AND RESULTS: From 1990 to 1994 18 pts with a diagnosis of squamous cell carcinoma of the vulva have been submitted to brachytherapy. Age ranged from 60 to 92 years (mean age 76, 1 ys). 14 pts were treated at diagnosis (11 pts) or for recurrent disease after surgery (3 pts). In 8 of them brachytherapy (total dose 35-45 Gy, dose rate: 0,4-0,78 Gy/h) was preceded by external beam irradiation (Co60 or electron beam, 40-50 Gy to primary and inguinal nodes); 6 pts were treated with brachytherapy alone (58-60 Gy; dose rate 0,44-0,63 Gy/h). 4 pts underwent to brachytherapy alone for local recurrence after surgery and postoperative radiotherapy (total dose 45-60 Gy; dose rate 0,37-0,49 Gy/h). Brachytherapy was always performed with 192 Ir. Plastic tubes (2 to 5 lines) were used for single plane implantation of small exophytic lesions limited to the labia (8 cases); a perineal template (10 cases) was employed in lesions extended to the vaginal mucosa or involving the clitoris or the area of the perineum. (10(14)) pts treated at diagnosis are alive and free from local recurrence after 11-48 mos. 3 of them, treated with brachytherapy alone, have presented a nodal recurrence in the groin after 14, 15 and 27 mos. respectively. All of them are alive and free from disease after surgery and external radiotherapy. None of the pts treated for recurrent disease after surgery + external beam radiotherapy has achieved a local control. CONCLUSION: Brachytherapy alone or

  3. Conventional external beam radiation therapy and high dose rate afterloading brachytherapy as a boost for patients older than 70 years

    International Nuclear Information System (INIS)

    Pellizzon, Antonio Cassio Assis; Salvajoli, Joao Vitor; Fogaroli, Ricardo Cesar; Novaes, Paulo Eduardo R.S.; Maia, Maria Aparecida Conte; Ferrigno, Robson

    2005-01-01

    The treatment options for patients with non metastatic prostate cancer range from observation, radical prostatectomy, radiation therapy, hormonal therapy to various combination of some to all of them. Objective: we evaluated the impact on biochemical control of disease (bNED), acute and late intestinal (GI) and urological (GU) morbidity for a group of patients older than 70 years presenting initial or locally advanced prostate cancer treated with fractionated high dose rate brachytherapy (HDRB) as a boost to conventional external beam radiation therapy (RT) at the Department of Radiation Oncology from Hospital do Cancer A. C. Camargo, Sao Paulo, Brazil. Methods: a total of 56 patients older than 70 were treated from March, 1997 to June, 2002. All patients had prior to HDRB a course of RT to a median dose of 45 Gy. HDRB doses ranged from 16 Gy to 20 Gy, given in 4 fractions. Results: the median age of the patients was 74.4 years (range 70-83) and the median follow-up 33 months (range 24 to 60). The 5-year actuarial bNED rate was 77%. Acute GU and GI morbidity G1-2 were seen in 17.8% and 7.1% of patients, respectively. Late G1 or G2 GU morbidity was seen in 10.7% of the patients, while late G3 morbidity was observed in 7.1% of the patients, represented by urethral strictures. Conclusion: this group of patients had similar bNED rates when compared to literature, with acceptable morbidity rates. (author)

  4. Trends in the Utilization of Brachytherapy in Cervical Cancer in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Han, Kathy, E-mail: Kathy.Han@rmp.uhn.on.ca [Radiation Medicine Program, Princess Margaret Hospital, University Health Network, Toronto, Ontario (Canada); Milosevic, Michael; Fyles, Anthony [Radiation Medicine Program, Princess Margaret Hospital, University Health Network, Toronto, Ontario (Canada); Pintilie, Melania [Department of Biostatistics, Princess Margaret Hospital, Toronto, Ontario (Canada); Viswanathan, Akila N. [Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women' s Hospital, Boston, Massachusetts (United States)

    2013-09-01

    Purpose: To determine the trends in brachytherapy use in cervical cancer in the United States and to identify factors and survival benefits associated with brachytherapy treatment. Methods and Materials: Using the Surveillance, Epidemiology, and End Results (SEER) database, we identified 7359 patients with stages IB2-IVA cervical cancer treated with external beam radiation therapy (EBRT) between 1988 and 2009. Propensity score matching was used to adjust for differences between patients who received brachytherapy and those who did not from 2000 onward (after the National Cancer Institute alert recommending concurrent chemotherapy). Results: Sixty-three percent of the 7359 women received brachytherapy in combination with EBRT, and 37% received EBRT alone. The brachytherapy utilization rate has decreased from 83% in 1988 to 58% in 2009 (P<.001), with a sharp decline of 23% in 2003 to 43%. Factors associated with higher odds of brachytherapy use include younger age, married (vs single) patients, earlier years of diagnosis, earlier stage and certain SEER regions. In the propensity score-matched cohort, brachytherapy treatment was associated with higher 4-year cause-specific survival (CSS; 64.3% vs 51.5%, P<.001) and overall survival (OS; 58.2% vs 46.2%, P<.001). Brachytherapy treatment was independently associated with better CSS (hazard ratio [HR], 0.64; 95% confidence interval [CI], 0.57-0.71), and OS (HR 0.66; 95% CI, 0.60 to 0.74). Conclusions: This population-based analysis reveals a concerning decline in brachytherapy utilization and significant geographic disparities in the delivery of brachytherapy in the United States. Brachytherapy use is independently associated with significantly higher CSS and OS and should be implemented in all feasible cases.

  5. Construction balance analysis of dose rate medium brachytherapy TDS

    International Nuclear Information System (INIS)

    Sandi Parapak

    2011-01-01

    One of the most important part of brachytherapy instrument design activities is analyze by determining the centroid point of construction in order to maintain the balance of brachytherapy instrument, either during operation as well as when transported. Operation of brachytherapy is not only done in one place so it is necessary to balance the analysis of the forces at the time did not move, moved on the horizontal floor and sloping floor. Calculation approach who is done to calculate the weight of mechanical components on each module, and then calculate the centroid of each module, for the balance of forces analysis performed with the assumption at the time of brachytherapy in the position of not moving on a horizontal floor, moved from a place to another on the horizontal floor and on the floor with sloping angle 30°. Base on the results of this analysis are expected to balance the four wheels can move without slipping at the time of decline or incline. Also, results of analysis can be used in designing a mobile construction brachytherapy taking into consideration the aesthetic ideal, easy to operate, ensure the safety of equipment, operator and patient. (author)

  6. Electronic brachytherapy management of atypical fibroxanthoma: report of 8 lesions

    Directory of Open Access Journals (Sweden)

    Stephen Doggett

    2017-01-01

    Full Text Available Purpose : To evaluate the suitability of treating atypical fibroxanthoma (AFX, an uncommon skin malignancy, with electronic brachytherapy. Material and methods : From Feb 2013 to Sep 2014, we were referred a total of 8 cases of AFX in 7 patients, all involving the scalp. All of them were treated with electronic brachytherapy 50 Kev radiations (Xoft Axxent®, Fremont, California. All lesions received 40 Gy in two fractions per week with 5mm margins. Results : At a median follow-up of 23.7 months, the local recurrence rate is 12.5%. The single lesion that failed was not debulked surgically prior to electronic brachytherapy. Conclusions : To our knowledge, this is the first report in the literature on the use of radiation therapy as curative primary treatment for AFX. No contraindication to the use of radiations is found in the literature, with surgery being the sole treatment for AFX noted. Our recurrence rate is 0% for debulked lesions. Risk of recurrence is mitigated with surgical debulking prior to brachytherapy. Electronic brachytherapy appears to be a safe and effective treatment for debulked AFX. Multiple excisions, skin grafting, and wound care can be avoided in elderly patients by the use of electronic brachytherapy.

  7. High Dose-Rate Versus Low Dose-Rate Brachytherapy for Lip Cancer

    International Nuclear Information System (INIS)

    Ghadjar, Pirus; Bojaxhiu, Beat; Simcock, Mathew; Terribilini, Dario; Isaak, Bernhard; Gut, Philipp; Wolfensberger, Patrick; Brömme, Jens O.; Geretschläger, Andreas; Behrensmeier, Frank; Pica, Alessia; Aebersold, Daniel M.

    2012-01-01

    Purpose: To analyze the outcome after low-dose-rate (LDR) or high-dose-rate (HDR) brachytherapy for lip cancer. Methods and Materials: One hundred and three patients with newly diagnosed squamous cell carcinoma of the lip were treated between March 1985 and June 2009 either by HDR (n = 33) or LDR brachytherapy (n = 70). Sixty-eight patients received brachytherapy alone, and 35 received tumor excision followed by brachytherapy because of positive resection margins. Acute and late toxicity was assessed according to the Common Terminology Criteria for Adverse Events 3.0. Results: Median follow-up was 3.1 years (range, 0.3–23 years). Clinical and pathological variables did not differ significantly between groups. At 5 years, local recurrence-free survival, regional recurrence-free survival, and overall survival rates were 93%, 90%, and 77%. There was no significant difference for these endpoints when HDR was compared with LDR brachytherapy. Forty-two of 103 patients (41%) experienced acute Grade 2 and 57 of 103 patients (55%) experienced acute Grade 3 toxicity. Late Grade 1 toxicity was experienced by 34 of 103 patients (33%), and 5 of 103 patients (5%) experienced late Grade 2 toxicity; no Grade 3 late toxicity was observed. Acute and late toxicity rates were not significantly different between HDR and LDR brachytherapy. Conclusions: As treatment for lip cancer, HDR and LDR brachytherapy have comparable locoregional control and acute and late toxicity rates. HDR brachytherapy for lip cancer seems to be an effective treatment with acceptable toxicity.

  8. Calculated and measured brachytherapy dosimetry parameters in water for the Xoft Axxent X-Ray Source: An electronic brachytherapy source

    International Nuclear Information System (INIS)

    Rivard, Mark J.; Davis, Stephen D.; DeWerd, Larry A.; Rusch, Thomas W.; Axelrod, Steve

    2006-01-01

    A new x-ray source, the model S700 Axxent trade mark sign X-Ray Source (Source), has been developed by Xoft Inc. for electronic brachytherapy. Unlike brachytherapy sources containing radionuclides, this Source may be turned on and off at will and may be operated at variable currents and voltages to change the dose rate and penetration properties. The in-water dosimetry parameters for this electronic brachytherapy source have been determined from measurements and calculations at 40, 45, and 50 kV settings. Monte Carlo simulations of radiation transport utilized the MCNP5 code and the EPDL97-based mcplib04 cross-section library. Inter-tube consistency was assessed for 20 different Sources, measured with a PTW 34013 ionization chamber. As the Source is intended to be used for a maximum of ten treatment fractions, tube stability was also assessed. Photon spectra were measured using a high-purity germanium (HPGe) detector, and calculated using MCNP. Parameters used in the two-dimensional (2D) brachytherapy dosimetry formalism were determined. While the Source was characterized as a point due to the small anode size, P (5) were 0.20, 0.24, and 0.29 for the 40, 45, and 50 kV voltage settings, respectively. For 1 125 I and 103 Pd, yet with capability for variable and much higher dose rates and subsequently adjustable penetration capabilities. This paper presents the calculated and measured in-water brachytherapy dosimetry parameters for the model S700 Source at the aforementioned three operating voltages

  9. Quality control of the breast cancer treatments on Hdr brachytherapy with TLD-100

    Energy Technology Data Exchange (ETDEWEB)

    Torres H, F. [Universidad de Cordoba, Materials and Applied Physics Group, 230002 Monteria, Cordoba (Colombia); De la Espriella V, N. [Universidad de Cordoba, Grupo Avanzado de Materiales y Sistemas Complejos, 230002 Monteria, Cordoba (Colombia); Sanchez C, A., E-mail: franciscotorreshoyos@yahoo.com [Universidad de Cordoba, Departamento de Enfermeria, 230002 Monteria, Cordoba (Colombia)

    2014-07-01

    An anthropomorphic Phantom, a female trunk, was built with a natural bone structure and experimental material coated, glycerin and water-based material called JJT to build soft tissue equivalent to the muscle of human tissue, and a polymer (styrofoam) to build the lung as critical organ to simulate the treatment of breast cancer, with high dose rate brachytherapy (Hdr) and sources of Ir-192. The treatments were planned and calculated for the critical organ: Lung, and injury of 2 cm in diameter in breast with Micro Selectron Hdr system and the software Plato Brachytherapy V 14.1 of the Nucletron (Netherlands) which uses the standard protocol of radiotherapy for brachytherapy treatments. The dose experimentally measured with dosimeters TLD-100 LiF: Mg; Ti, which were previously calibrated, were placed in the same positions and bodies mentioned above, with less than 5% uncertainty. The reading dosimeters was carried out in a Harshaw TLD 4500. The results obtained for calculated treatments, using the standard simulator, and the experimental with TLD-100, show a high concordance, as they are on average a ± 1.1% making process becomes in a quality control of this type of treatments. (Author)

  10. Cf-252 neutron brachytherapy: an advance for bulky localized cancer therapy

    International Nuclear Information System (INIS)

    Maruyama, Y.

    1984-01-01

    The physical and radiobiogical basis as well as the rationale for neutron brachytherapy, using Cf-252, in human cancer therapy is reviewed. Cf-252 brachytherapy represents an economical and effective form of neutron radiotherapy that is readily and safely applied clinically. It can be used anywhere in the world without unusual personnel, equipment or facilities, or prohibitive expenses or maintenance costs. Used on bulky head and neck, thoracic, abdominal, pelvic, brain and appendage cancers, it overcomes hypoxic radioresistance and produces remarkable rates of tumor clearance. It is easily combined with photon radiotherapy and in proper schedules and doses, it can control advanced but still localized regional cancers to produce tumor cure. It will clear the local manifestations of recurrent or metastatic tumors or advanced stages of primary tumors and therefore in conjunction with other adjuvant therapies offers much more effective tumor control and palliation than present conventional therapy. (Auth.)

  11. American Brachytherapy Society consensus report for accelerated partial breast irradiation using interstitial multicatheter brachytherapy.

    Science.gov (United States)

    Hepel, Jaroslaw T; Arthur, Douglas; Shaitelman, Simona; Polgár, Csaba; Todor, Dorin; Zoberi, Imran; Kamrava, Mitchell; Major, Tibor; Yashar, Catheryn; Wazer, David E

    To develop a consensus report for the quality practice of accelerated partial breast irradiation (APBI) using interstitial multicatheter brachytherapy (IMB). The American Brachytherapy Society Board appointed an expert panel with clinical and research experience with breast brachytherapy to provide guidance for the current practice of IMB. This report is based on a comprehensive literature review with emphasis on randomized data and expertise of the panel. Randomized trials have demonstrated equivalent efficacy of APBI using IMB compared with whole breast irradiation for select patients with early-stage breast cancer. Several techniques for placement of interstitial catheters are described, and importance of three-dimensional planning with appropriate optimization is reviewed. Optimal target definition is outlined. Commonly used dosing schemas include 50 Gy delivered in pulses of 0.6-0.8 Gy/h using pulsed-dose-rate technique and 34 Gy in 10 fractions, 32 Gy in eight fractions, or 30 Gy in seven fractions using high-dose-rate technique. Potential toxicities and strategies for toxicity avoidance are described in detail. Dosimetric constraints include limiting whole breast volume that receives ≥50% of prescription dose to 0.75 (>0.85 preferred), V 150  < 45 cc, and V 200  < 14 cc. Using an optimal implant technique coupled with optimal planning and appropriate dose constraints, a low rate of toxicity and a good-to-excellent cosmetic outcome of ≥90% is expected. IMB is an effective technique to deliver APBI for appropriately selected women with early-stage breast cancer. This consensus report has been created to assist clinicians in the appropriate practice of APBI using IMB. Copyright © 2017 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  12. Diabetes Mellitus Associates with Increased Right Ventricular Afterload and Remodeling in Pulmonary Arterial Hypertension.

    Science.gov (United States)

    Whitaker, Morgan E; Nair, Vineet; Sinari, Shripad; Dherange, Parinita A; Natarajan, Balaji; Trutter, Lindsey; Brittain, Evan L; Hemnes, Anna R; Austin, Eric D; Patel, Kumar; Black, Stephen M; Garcia, Joe G N; Yuan Md PhD, Jason X; Vanderpool, Rebecca R; Rischard, Franz; Makino, Ayako; Bedrick, Edward J; Desai, Ankit A

    2018-06-01

    Diabetes mellitus is associated with left ventricular hypertrophy and dysfunction. Parallel studies have also reported associations between diabetes mellitus and right ventricular dysfunction and reduced survival in patients with pulmonary arterial hypertension. However, the impact of diabetes mellitus on the pulmonary vasculature has not been well characterized. We hypothesized that diabetes mellitus and hyperglycemia could specifically influence right ventricular afterload and remodeling in patients with Group I pulmonary arterial hypertension, providing a link to their known susceptibility to right ventricular dysfunction. Using an adjusted model for age, sex, pulmonary vascular resistance, and medication use, associations of fasting blood glucose, glycated hemoglobin, and the presence of diabetes mellitus were evaluated with markers of disease severity in 162 patients with pulmonary arterial hypertension. A surrogate measure of increased pulmonary artery stiffness, elevated pulmonary arterial elastance (P = .012), along with reduced log(pulmonary artery capacitance) (P = .006) were significantly associated with the presence of diabetes mellitus in patients with pulmonary arterial hypertension in a fully adjusted model. Similar associations between pulmonary arterial elastance and capacitance were noted with both fasting blood glucose and glycated hemoglobin. Furthermore, right ventricular wall thickness on echocardiography was greater in pulmonary arterial hypertension patients with diabetes, supporting the link between right ventricular remodeling and diabetes. Cumulatively, these data demonstrate that an increase in right ventricular afterload, beyond pulmonary vascular resistance alone, may influence right ventricular remodeling and provide a mechanistic link between the susceptibility to right ventricular dysfunction in patients with both diabetes mellitus and pulmonary arterial hypertension. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Urethral toxicity after LDR brachytherapy: experience in Japan.

    Science.gov (United States)

    Tanaka, Nobumichi; Asakawa, Isao; Hasegawa, Masatoshi; Fujimoto, Kiyohide

    2015-01-01

    Urinary toxicity is common after low-dose-rate (LDR) brachytherapy, and the resolution of urinary toxicity is a concern. In particular, urinary frequency is the most common adverse event among the urinary toxicities. We have previously reported that approximately 70% of patients experience urinary frequency during the first 6 months after seed implantation. Most urinary adverse events were classified as Grade 1, and Grade 2 or higher adverse events were rare. The incidence of urinary retention was approximately 2-4%. A high International Prostate Symptom Score before seed implantation was an independent predictor of acute urinary toxicity of Grade 2 or higher. Several previous reports from the United States also supported this trend. In Japan, LDR brachytherapy was legally approved in 2003. A nationwide prospective cohort study entitled Japanese Prostate Cancer Outcome Study of Permanent Iodine-125 Seed Implantation was initiated in July 2005. It is an important issue to limit urinary toxicities in patients who undergo LDR brachytherapy. Copyright © 2015 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  14. Indication of brachytherapy of prostate with permanent implants

    International Nuclear Information System (INIS)

    Chauveinc, L.; Solignac, S.; Rosenwald, J.C.; Firmin, F.; Cosset, J.M.; Flam, T.; Thiounn, N.

    2002-01-01

    In the last decade, brachytherapy emerged as a particularly appealing new way of treating localized prostate cancer. Recently published 10-12 years biochemical control results appear to be superimposable to the best percentages achieved by surgery or conformal radiotherapy, with a small percentage of complications. This applied to severely patients. Only patients with T1/T2, PSA 60 g, hip mobility limitations, a urinary obstructive syndrome and previous trans-urethral resection lead to difficulties in technical implantation and therefore must be taken into account when discussing brachytherapy. In conclusion, for adequately selected patients, brachytherapy offers a particularly applied alternative to surgery and external radiotherapy, with satisfactory long term biochemical control rates and limited complications. (author)

  15. Low dose rate Ir-192 interstitial brachytherapy for prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Oki, Yosuke; Dokiya, Takushi; Yorozu, Atsunori; Suzuki, Takayuki; Saito, Shiro; Monma, Tetsuo; Ohki, Takahiro [National Tokyo Medical Center (Japan); Murai, Masaru; Kubo, Atsushi

    2000-04-01

    From December 1997 through January 1999, fifteen prostatic cancer patients were treated with low dose rate Ir-192 interstitial brachytherapy using TRUS and perineal template guidance without external radiotherapy. Up to now, as no apparent side effects were found, the safety of this treatment is suggested. In the future, in order to treat prostatic cancer patients with interstitial brachytherapy using I-125 or Pd-103, more investigation for this low dose rate Ir-192 interstitial brachytherapy is needed. (author)

  16. First experiences with super fractionated skin irradiations using large afterloading molds

    International Nuclear Information System (INIS)

    Fritz, Peter; Hensley, Frank W.; Berns, Christiane; Schraube, Peter; Wannenmacher, Michael

    1996-01-01

    Purpose: Radiotherapy of cutaneous metastases of breast cancer requires large radiation fields and high doses. This report examines the effectiveness and sequelae of super fractionated irradiation of cutaneous metastases of breast cancer with afterloading molds on preirradiated and nonirradiated skin. Methods and Materials: A flexible reusable skin mold was developed for use with a pulsed (PDR) after loader. An array of 18 parallel catheters was sewn between two foam rubber slabs 5 mm in thickness to provide a defined constant distance to the skin. By selection of appropriate dwell positions, arbitrarily shaped skin areas can be irradiated up to a maximal field size of 17 x 23.5 cm 2 . Irradiations are performed with a nominal 37 GBq 192 Ir stepping source in pulses of 1 Gy/h at the skin surface. The dose distribution is geometrically optimized. The 80 and 50% dose levels lie 5 and 27 mm below the skin surface. Sixteen patients suffering from metastases at the thoracic wall were treated with 18 fields (78-798 cm 2 ) and total doses of 40-50 Gy applying two PDR split courses with a pause of 4-6 weeks. Eleven of the fields had been previously irradiated with external beam therapy to doses of 50-60 Gy at 7-22 months in advance. Results: For preirradiated fields (n = 10) the results were as follows: follow-up 4.5-28.5 months (median 17); local control (LC): 8 of 10; acute skin reactions: Grade 2 (moist desquamation) 2 of 10; intermediate/late skin reactions after minimum follow-up of 3 months: Grade 1 (atrophy/pigmentation): 2 of 10, Grade 2-3a (minimal/marked telangiectasia): 7 of 10, Grade 4 (ulcer): 1 of 10; recurrencies: 2 of 10. For newly irradiated fields (n = 7) results were: follow-up: 2-20 months (median 5); LC: 6 of 7; acute reactions: Grade 1:4 of 7, Grade 2:3 of 7; intermediate/late skin reactions after minimum follow-up of 3 months (n = 5): Grade 2-3a: 2 of 5; recurrencies: 0 of 7. Local control could be achieved in 82% of the mold fields. Geometric

  17. SU-F-T-633: Cyberknife Boost Versus Conventional Tandem and Ovoid Treatment for Cervical Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Santoro, J; Witten, M; Haas, J [Winthrop University Hospital, Lynbrook, NY (United States)

    2016-06-15

    Purpose: Brachytherapy has been the standard of care for cervical cancer for 100 years. The treatment can be administered using an HDR (high dose rate) remote afterloader with a {sup 192}Ir source in an outpatient setting, a PDR afterloader with a {sup 192}Ir source, or with LDR manually loaded or a remote afterloader utilizing {sup 192}Ir or {sup 137}Cs sources in an inpatient setting. The procedure involves the placement of a tandem and ovoid, tandem and ring, or tandem and cylinder applicator in an operating room setting with the patient under general anesthesia. Inaccuracies introduced into the process occurring between placement of the applicator and actual delivery can introduce uncertainty into the actual dose delivered to the tumor and critical organs. In this study we seek to investigate the dosimetric difference between an SBRT-based radiotherapy boost and conventional Brachytherapy in treating cervical cancer. Methods: Five HDR tandem and ovoid patients were planned using the Brachyvision treatment planning system and treated in four fractions using the Varian Varisource afterloader (Varian Medical Systems). For the same cohort, the patient planning CTs were imported into Multiplan (Accuray Inc) and a dose/fractionation-equivalent CyberKnife SBRT plan was retrospectively generated. Dosimetric quantities such as target/CTV D90, V90, D2cc for rectum, bladder, and bowel were measured and compared between the two modalities. Results: The CTV D90 for the tandem and ovoid was 2540cGy (90.7%) and 3009cGy (107.5%) for the CyberKnife plan. The D2cc for the rectum, bladder, and bowel were 1576cGy, 1641cGy, and 996cGy for the tandem and ovoid and 1374cGy, 1564cGy, and 1547cGy for CyberKnife. Conclusion: The D2cc doses to critical structures are comparable in both modalities. The CTV coverage is far superior for the CyberKnife plan. The dose distribution for CyberKnife has the advantage of increased conformality and lower maximum CTV dose.

  18. Severe rectal complications after prostate brachytherapy

    International Nuclear Information System (INIS)

    Wallner, Kent; Sutlief, Stephen; Bergsagel, Carl; Merrick, Gregory S.

    2015-01-01

    Purpose: Some investigators have reported severe rectal complications after brachytherapy. Due to the low number of such events, their relationship to dosimetric parameters has not been well characterized. Methods and materials: A total of 3126 patients were treated with low dose rate brachytherapy from 1998 through 2010. 2464 had implant alone, and 313 had implant preceded by 44–46 Gy supplemental external beam radiation (EBRT). Post-implant dosimetry was based on a CT scan obtained on the day of implant, generally within 30 min of the procedure. Every patient’s record was reviewed for occurrence of rectal complications. Results: Eight of 2464 patients (0.32%) treated with brachytherapy alone developed a radiation-related rectal fistula. Average prostatic and rectal dose parameters were moderately higher for fistula patients than for patients without a severe rectal complication. For instance, the average R100 was 1.2 ± 0.75 cc for fistula patients, versus 0.37 ± 0.88 cc for non-fistula patients. However, the fistula patients’ values were well within the range of values for patients without a rectal complication. Four patients had some attempt at repair or reconstruction, but long-term functional outcomes were not favorable. Conclusions: Rectal fistulas are a very uncommon potential complication of prostate brachytherapy, which can occur even in the setting of acceptable day 0 rectal doses. Their occurrence is not easily explained by standard dosimetric or clinical factors

  19. A study on applying Ra needle interstitial brachytherapy for oral cancer

    International Nuclear Information System (INIS)

    Yoshida, Shunichi; Komiya, Yoshiaki; Uchida, Ikuhiro; Tashiro, Kazuyoshi

    1999-01-01

    To investigate applicability of Ra needle interstitial brachytherapy, 93 cases of oral squamous carcinoma were examined. The patients underwent Ra needle interstitial brachytherapy as thorough therapy in our hospital. The criteria of applying Ra needle interstitial brachytherapy was diameter of within 5 cm and depth within 2 cm of tumor size. Ra needle interstitial brachytherapy was applied to 82 cases of tongue, 10 cases of oral floor and one case of lower lip carcinomas. The local control rate was 92.5%, and secondary neck metastasis was 32.3% in all cases applied Ra needle interstitial brachytherapy. The results were not bad compared with surgical treatment. However, the 5-year cumulative survival rate was 64.9%, which was not good enough at the result to obtain a good local control rate and secondary neck metastasis rate. The result was relative to low treatment result of local recurrence cases with Ra needle interstitial brachytherapy. To improve the result, it is important to distinguish local recurrence from radioinduced ulcer, and to start early secondary treatment. The cases in which cervical lymph node metastasis was found as the first examination underwent neck dessection after Ra needle interstitial brachytherapy. The 5-year cumulative survival rate was 83.3% in N1 cases and 40.6% in N2 cases, and the result of N2 cases was poorer than N1 cases with a significant difference. The results indicate that a needle having a diameter of within 5 cm, depth of within 2 cm and less than N1 can be applied during Ra needle interstitial brachytherapy for complete cure of cancer. (author)

  20. A survey of current clinical practice in permanent and temporary prostate brachytherapy: 2010 update.

    Science.gov (United States)

    Buyyounouski, Mark K; Davis, Brian J; Prestidge, Bradley R; Shanahan, Thomas G; Stock, Richard G; Grimm, Peter D; Demanes, D Jeffrey; Zaider, Marco; Horwitz, Eric M

    2012-01-01

    To help establish patterns of care and standards of care of interstitial permanent low-dose-rate (LDR) and temporary high-dose-rate brachytherapy for prostate cancer and to compare the results with a similar 1998 American Brachytherapy Society (ABS) survey. A comprehensive questionnaire intended to survey specific details of current clinical brachytherapy practice was provided to the participants of the seventh ABS Prostate Brachytherapy School. Responses were tabulated and descriptive statistics are reported. Sixty-five brachytherapy practitioners responded to the survey. Eighty-nine percent (89%) of respondents performed LDR and 49% perform high-dose-rate brachytherapy. The median number of years of experience for LDR brachytherapists increased from 5 to 10 years over the course of the 12 years since the preceding survey. Compared with the first ABS, a smaller proportion of respondents received formal brachytherapy residency training (43% vs. 56%) or formal "hands-on" brachytherapy training (15% vs. 63%). There has been a marked decline in the utilization of the Mick applicator (Mick Radio-Nuclear Instruments, Inc., Mount Vernon, NY, USA) (60% vs. 28%) and an increase in the use of stranded seeds (40% vs. 11%). Compliance with postimplant dosimetry was higher in the 2010 survey. This survey does suggest an evolution in the practice of LDR brachytherapy since 1998 and aids in identifying aspects that require further progress or investigation. ABS guidelines and other practice recommendations appear to impact the practice of brachytherapy. Copyright © 2012 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  1. Efficacy of prophylactic single-dose therapy using fluoroquinolone for prostate brachytherapy

    International Nuclear Information System (INIS)

    Nomura, Takeo; Hirai, Kenichi; Yamasaki, Mutsushi; Inoue, Toru; Takahashi, Mika; Kawashima, Takayuki; Sato, Fuminori; Mimata, Hiromitsu

    2012-01-01

    There is little definitive evidence to guide the use of prophylactic antibiotics for prostate brachytherapy. The purpose of this study is to evaluate the incidence of postimplant infections in patients who receive antimicrobial prophylaxis with pazufloxacin (PZFX). A total of 84 patients who underwent prostate brachytherapy received a single intravenous dose of PZFX at 500 mg perioperatively for 1 day. No postimplant antibiotic medication was prescribed. Urinalysis, plasma white blood cell (WBC) count, and C reactive protein (CRP) levels were evaluated before the implantation, on the day after implantation, and on the 7th and 28th days after brachytherapy. None of the 84 patients (0.0%) developed a symptomatic urinary tract infection or had febrile infectious complications after brachytherapy. There were statistically significant elevations in the levels of erythrocytes, leukocytes, bacteria in urine, plasma WBC and CRP postoperatively, but these values did not exceed the normal range or were only slightly elevated on the day after brachytherapy (day 1) and on day 7. All laboratory examinations had returned to the normal range on day 28. Single-dose therapy with fluoroquinolone helps to prevent infections after prostate brachytherapy. (author)

  2. A Fully Actuated Robotic Assistant for MRI-Guided Prostate Biopsy and Brachytherapy

    Science.gov (United States)

    Li, Gang; Su, Hao; Shang, Weijian; Tokuda, Junichi; Hata, Nobuhiko; Tempany, Clare M.; Fischer, Gregory S.

    2014-01-01

    Intra-operative medical imaging enables incorporation of human experience and intelligence in a controlled, closed-loop fashion. Magnetic resonance imaging (MRI) is an ideal modality for surgical guidance of diagnostic and therapeutic procedures, with its ability to perform high resolution, real-time, high soft tissue contrast imaging without ionizing radiation. However, for most current image-guided approaches only static pre-operative images are accessible for guidance, which are unable to provide updated information during a surgical procedure. The high magnetic field, electrical interference, and limited access of closed-bore MRI render great challenges to developing robotic systems that can perform inside a diagnostic high-field MRI while obtaining interactively updated MR images. To overcome these limitations, we are developing a piezoelectrically actuated robotic assistant for actuated percutaneous prostate interventions under real-time MRI guidance. Utilizing a modular design, the system enables coherent and straight forward workflow for various percutaneous interventions, including prostate biopsy sampling and brachytherapy seed placement, using various needle driver configurations. The unified workflow compromises: 1) system hardware and software initialization, 2) fiducial frame registration, 3) target selection and motion planning, 4) moving to the target and performing the intervention (e.g. taking a biopsy sample) under live imaging, and 5) visualization and verification. Phantom experiments of prostate biopsy and brachytherapy were executed under MRI-guidance to evaluate the feasibility of the workflow. The robot successfully performed fully actuated biopsy sampling and delivery of simulated brachytherapy seeds under live MR imaging, as well as precise delivery of a prostate brachytherapy seed distribution with an RMS accuracy of 0.98mm. PMID:25076821

  3. Historical review of radiotherapy

    International Nuclear Information System (INIS)

    Onai, Yoshio

    1993-01-01

    The techniques of radiotherapy have been improved by development of particle accelerators, radionuclides and computers. This paper presents a historical review of the physical and technical aspects of radiotherapy in Japan. Changes in the kinds of radiation, such as X-rays, gamma rays, electrons, neutrons and protons used for external radiotherapy, and the equipment involved are described chronologically, and historical changes in the quality of radiotherapy apparatus are outlined. Patient data acquisition equipment, such as X-ray simulator and X-ray CT, beam modifying devices, patient setup devices, and devices to verify treatment fields and patient doses are reviewed historically. Radiation sources for brachytherapy and internal radiotherapy, and remotely controlled afterloading systems are reviewed chronologically. Historical changes in methods to evaluate absorbed doses, dose monitor systems and beam data acquisition systems are outlined. Changes in methods of calculating dose distributions for external X-ray and electron therapy, brachytherapy and internal radiotherapy by unsealded radionuclides are described and calculation techniques for treatment planning system are reviewed. Annual figures in the numbers of radiotherapy equipment, such as telecobalt and telecesium units, linear accelerators, betatrons, microtrons, stereotactic gamma units, conformation radiotherapy units, remotely controlled afterloading systems, and associated equipment such as X-ray simulators and treatment planning systems are provided, as are changes in the number of accelerators by maximum X-ray energy and maximum electron energy, and in the number of licensed hospitals and clinics using small sealed sources. Changes in techniques of external radiotherapy and brachytherapy are described briefly from the point of view of dose distributions. (author)

  4. Source position verification and dosimetry in HDR brachytherapy using an EPID

    International Nuclear Information System (INIS)

    Smith, R. L.; Taylor, M. L.; McDermott, L. N.; Franich, R. D.; Haworth, A.; Millar, J. L.

    2013-01-01

    Purpose: Accurate treatment delivery in high dose rate (HDR) brachytherapy requires correct source dwell positions and dwell times to be administered relative to each other and to the surrounding anatomy. Treatment delivery inaccuracies predominantly occur for two reasons: (i) anatomical movement or (ii) as a result of human errors that are usually related to incorrect implementation of the planned treatment. Electronic portal imaging devices (EPIDs) were originally developed for patient position verification in external beam radiotherapy and their application has been extended to provide dosimetric information. The authors have characterized the response of an EPID for use with an 192 Ir brachytherapy source to demonstrate its use as a verification device, providing both source position and dosimetric information.Methods: Characterization of the EPID response using an 192 Ir brachytherapy source included investigations of reproducibility, linearity with dose rate, photon energy dependence, and charge build-up effects associated with exposure time and image acquisition time. Source position resolution in three dimensions was determined. To illustrate treatment verification, a simple treatment plan was delivered to a phantom and the measured EPID dose distribution compared with the planned dose.Results: The mean absolute source position error in the plane parallel to the EPID, for dwells measured at 50, 100, and 150 mm source to detector distances (SDD), was determined to be 0.26 mm. The resolution of the z coordinate (perpendicular distance from detector plane) is SDD dependent with 95% confidence intervals of ±0.1, ±0.5, and ±2.0 mm at SDDs of 50, 100, and 150 mm, respectively. The response of the EPID is highly linear to dose rate. The EPID exhibits an over-response to low energy incident photons and this nonlinearity is incorporated into the dose calibration procedure. A distance (spectral) dependent dose rate calibration procedure has been developed. The

  5. Neutron therapy coupling brachytherapy and boron neutron capture therapy (BNCT) techniques

    International Nuclear Information System (INIS)

    Chaves, Iara Ferreira.

    1994-12-01

    In the present dissertation, neutron radiation techniques applied into organs of the human body are investigated as oncologic radiation therapy. The proposal treatment consists on connecting two distinct techniques: Boron Neutron Capture Therapy (BNCT) and irradiation by discrete sources of neutrons, through the brachytherapy conception. Biological and radio-dosimetrical aspects of the two techniques are considered. Nuclear aspects are discussed, presenting the nuclear reactions occurred in tumoral region, and describing the forms of evaluating the dose curves. Methods for estimating radiation transmission are reviewed through the solution of the neutron transport equation, Monte Carlo methodology, and simplified analytical calculation based on diffusion equation and numerical integration. The last is computational developed and presented as a quickly way to neutron transport evaluation in homogeneous medium. The computational evaluation of the doses for distinct hypothetical situations is presented, applying the coupled techniques BNTC and brachytherapy as an possible oncologic treatment. (author). 78 refs., 61 figs., 21 tabs

  6. High-dose-rate interstitial brachytherapy for the treatment of penile carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Petera, J.; Odrazka, K.; Zouhar, M.; Bedrosova, J.; Dolezel, M. [Dept. of Oncology and Radiotherapy, Charles Univ. Medical School and Teaching Hospital, Hradec Kralove (Czech Republic)

    2004-02-01

    Background: interstitial low-dose-rate (LDR) brachytherapy allows conservative treatment of T1-T2 penile carcinoma. High-dose-rate (HDR) is often considered to be dangerous for interstitial implants because of a higher risk of complications, but numerous reports suggest that results may be comparable to LDR. Nevertheless, there are no data in the literature available regarding HDR interstitial brachytherapy for carcinoma of the penis. Case report: a 64-year-old man with T1 NO MO epidermoid carcinoma of the glans is reported. Interstitial HDR brachytherapy was performed using the stainless hollow needle technique and a breast template for fixation and good geometry. The dose delivered was 18 x 3 Gy twice daily. Results: after 232 days from brachytherapy, the patient was without any evidence of the tumor, experienced no serious radiation-induced complications, and had a fully functional organ. Conclusion: HDR interstitial brachytherapy is feasible in selected case of penis carcinoma, when careful planning and small single fractions are used. (orig.)

  7. ENT COBRA (Consortium for Brachytherapy Data Analysis: interdisciplinary standardized data collection system for head and neck patients treated with interventional radiotherapy (brachytherapy

    Directory of Open Access Journals (Sweden)

    Luca Tagliaferri

    2016-08-01

    Full Text Available Purpose : Aim of the COBRA (Consortium for Brachytherapy Data Analysis project is to create a multicenter group (consortium and a web-based system for standardized data collection. Material and methods: GEC-ESTRO (Groupe Européen de Curiethérapie – European Society for Radiotherapy & Oncology Head and Neck (H&N Working Group participated in the project and in the implementation of the consortium agreement, the ontology (data-set and the necessary COBRA software services as well as the peer reviewing of the general anatomic site-specific COBRA protocol. The ontology was defined by a multicenter task-group. Results : Eleven centers from 6 countries signed an agreement and the consortium approved the ontology. We identified 3 tiers for the data set: Registry (epidemiology analysis, Procedures (prediction models and DSS, and Research (radiomics. The COBRA-Storage System (C-SS is not time-consuming as, thanks to the use of “brokers”, data can be extracted directly from the single center’s storage systems through a connection with “structured query language database” (SQL-DB, Microsoft Access®, FileMaker Pro®, or Microsoft Excel®. The system is also structured to perform automatic archiving directly from the treatment planning system or afterloading machine. The architecture is based on the concept of “on-purpose data projection”. The C-SS architecture is privacy protecting because it will never make visible data that could identify an individual patient. This C-SS can also benefit from the so called “distributed learning” approaches, in which data never leave the collecting institution, while learning algorithms and proposed predictive models are commonly shared. Conclusions : Setting up a consortium is a feasible and practicable tool in the creation of an international and multi-system data sharing system. COBRA C-SS seems to be well accepted by all involved parties, primarily because it does not influence the center’s own

  8. Temporal relationship between prostate brachytherapy and the diagnosis of colorectal cancer

    International Nuclear Information System (INIS)

    Gutman, Sarah A.; Merrick, Gregory S.; Butler, Wayne M.; Wallner, Kent E.; Allen, Zachariah A.; Galbreath, Robert W.; Adamovich, Edward

    2006-01-01

    Purpose: To identify the location of pretreatment and posttreatment colorectal malignancies and posttreatment colorectal polyps in patients with clinically localized prostate cancer managed with brachytherapy. Methods and Materials: From April 1995 through July 2004, 1,351 consecutive patients underwent brachytherapy for clinical stage T1b-T3a (American Joint Committee on Cancer, 2002) prostate cancer. Supplemental external beam radiotherapy (XRT) was administered to 699 patients. The median follow-up was 4.6 years. Operative and pathology reports were reviewed for all patients with pretreatment and posttreatment colorectal cancer and posttreatment colorectal polyps. Multiple parameters were evaluated for the development of colorectal cancer or colorectal polyps. Results: Colorectal cancer was diagnosed in 23 and 25 patients before and after prostate brachytherapy, respectively. No differences were identified in the distribution of colorectal cancers either before or after treatment (3 and 4 rectal cancers in the pre- and postbrachytherapy cohorts). Thirty-five of the 48 colorectal cancers (73%) were diagnosed within 5 years of brachytherapy with a peak incidence 1 year after brachytherapy. One hundred ninety-two colorectal polyps were diagnosed after brachytherapy, 160 (83%) occurred within 4 years of brachytherapy, and only 27 (14%) were located in the rectum. In multivariate Cox regression analysis, prostate D 9 (minimum percentage of the dose covering 90% of the target volume) predicted for posttreatment colorectal cancer. Rectal polyps were most closely related to patient age and percent positive biopsies, whereas sigmoid/colon polyps were best predicted by patient age, planning volume, and supplemental XRT. Conclusions: Colorectal cancer was diagnosed with equal frequency before and after brachytherapy with comparable geographic distributions. In addition, the vast majority of postbrachytherapy colorectal polyps were located beyond the confines of the rectum

  9. LDR vs. HDR brachytherapy for localized prostate cancer: the view from radiobiological models.

    Science.gov (United States)

    King, Christopher R

    2002-01-01

    Permanent LDR brachytherapy and temporary HDR brachytherapy are competitive techniques for clinically localized prostate radiotherapy. Although a randomized trial will likely never be conducted comparing these two forms of brachytherapy, a comparative radiobiological modeling analysis proves useful in understanding some of their intrinsic differences, several of which could be exploited to improve outcomes. Radiobiological models based upon the linear quadratic equations are presented for fractionated external beam, fractionated (192)Ir HDR brachytherapy, and (125)I and (103)Pd LDR brachytherapy. These models incorporate the dose heterogeneities present in brachytherapy based upon patient-derived dose volume histograms (DVH) as well as tumor doubling times and repair kinetics. Radiobiological parameters are normalized to correspond to three accepted clinical risk factors based upon T-stage, PSA, and Gleason score to compare models with clinical series. Tumor control probabilities (TCP) for LDR and HDR brachytherapy (as monotherapy or combined with external beam) are compared with clinical bNED survival rates. Predictions are made for dose escalation with HDR brachytherapy regimens. Model predictions for dose escalation with external beam agree with clinical data and validate the models and their underlying assumptions. Both LDR and HDR brachytherapy achieve superior tumor control when compared with external beam at conventional doses (LDR brachytherapy as boost achieves superior tumor control than when used as monotherapy. Stage for stage, both LDR and current HDR regimens achieve similar tumor control rates, in agreement with current clinical data. HDR monotherapy with large-dose fraction sizes might achieve superior tumor control compared with LDR, especially if prostate cancer possesses a high sensitivity to dose fractionation (i.e., if the alpha/beta ratio is low). Radiobiological models support the current clinical evidence for equivalent outcomes in localized

  10. Brachytherapy in childhood rhabdomyosarcoma treatment; Braquiterapia no tratamento do rabdomiossarcoma da infancia

    Energy Technology Data Exchange (ETDEWEB)

    Novaes, Paulo Eduardo Ribeiro dos Santos

    1995-07-01

    A retrospective study of 21 children with rhabdomyosarcoma treated by brachytherapy to the primary site of the tumor at the Radiotherapy Department of the A.C.Camargo Hospital between january/1980 to june/1993 was undertaken. The main objectives were to comprove the utility of brachytherapy in childhood rhabdomyosarcoma, to evaluate the local control and survival, in association with chemotherapy, to analyze the late effects of the treatment and to determinate the preferential technique to each clinical situation. All patients received brachytherapy to the tumor site. The radioactive isotopes employed were Gold{sup 198}, Cesium{sup 137} and Iridium{sup 192}. The brachytherapy techniques depended on the tumor site, period of treatment, availability of the radioactive material and stage of the disease. Patients treated exclusively by brachytherapy received 40 Gy to 60 Gy. When brachytherapy was associated with external radiotherapy the dose ranged from 20 Gy to 40 Gy. Local control was achieved in 18 of 20 patients (90%). The global survival and local control survival rates were 61.9% (13/21 patients) and 72,2% (13/18 patients) respectively. (author)

  11. Radiation protection in brachytherapy

    International Nuclear Information System (INIS)

    Benitez, Manuel

    1996-02-01

    It covers technical procedures in medical applications for cancer treatment. Radiation protection principles in brachytherapy. Medical uses in therapy for Sr-90, Cs-137, Co-60, Ra-226, Ir-192, Au-198, Bi-214, Pb-214. (The author)

  12. Prostate brachytherapy in Ghana: our initial experience

    Directory of Open Access Journals (Sweden)

    James Edward Mensah

    2016-10-01

    Full Text Available Purpose: This study presents the experience of a brachytherapy team in Ghana with a focus on technology transfer and outcome. The team was initially proctored by experienced physicians from Europe and South Africa. Material and methods : A total of 90 consecutive patients underwent either brachytherapy alone or brachytherapy in combination with external beam radiotherapy for prostate carcinoma between July 2008 and February 2014 at Korle Bu Teaching Hospital, Accra, Ghana. Patients were classified as low-risk, intermediate, and high-risk according to the National Comprehensive Cancer Network (NCCN criteria. All low-risk and some intermediate risk group patients were treated with seed implantation alone. Some intermediate and all high-risk group patients received brachytherapy combined with external beam radiotherapy. Results: The median patient age was 64.0 years (range 46-78 years. The median follow-up was 58 months (range 18-74 months. Twelve patients experienced biochemical failure including one patient who had evidence of metastatic disease and died of prostate cancer. Freedom from biochemical failure rates for low, intermediate, and high-risk cases were 95.4%, 90.9%, and 70.8%, respectively. Clinical parameters predictive of biochemical outcome included: clinical stage, Gleason score, and risk group. Pre-treatment prostate specific antigen (PSA was not a statistically significant predictor of biochemical failure. Sixty-nine patients (76.6% experienced grade 1 urinary symptoms in the form of frequency, urgency, and poor stream. These symptoms were mostly self-limiting. Four patients needed catheterization for urinary retention (grade 2. One patient developed a recto urethral fistula (grade 3 following banding for hemorrhoids. Conclusions : Our results compare favorably with those reported by other institutions with more extensive experience. We believe therefore that, interstitial permanent brachytherapy can be safely and effectively

  13. Effect of brachytherapy technique and patient characteristics on cervical cancer implant dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Anker, Christopher J., E-mail: chris.anker@hci.utah.edu [Department of Radiation Oncology, Huntsman Cancer Hospital, University of Utah, Salt Lake City, UT (United States); O' Donnell, Kristen [Department of Radiation Oncology, The University of Arizona, Tucson, AZ (United States); Boucher, Kenneth M. [Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT (United States); Gaffney, David K. [Department of Radiation Oncology, Huntsman Cancer Hospital, University of Utah, Salt Lake City, UT (United States)

    2013-01-01

    Our purpose was to evaluate the relationship between brachytherapy technique and patient characteristics on dose to organs-at-risk (OARs) in patients undergoing high dose rate (HDR) brachytherapy for cervical cancer. From 1998 to 2008, 31 patients with cervical cancer with full dosimetric data were identified who received definitive external-beam radiation and HDR brachytherapy with tandem and ovoid applicators. Doses were recorded at point A, the International Commission on Radiation Units and Measurements (ICRU)-38 rectal point, the ICRU-38 bladder point, the vaginal surface, and the pelvic sidewall. Generalized estimating equations were used to determine the significance of changes in OAR to point A dose ratios with differences in brachytherapy technique or patient characteristics. Patients underwent a median of 5 brachytherapy procedures (range, 3 to 5), with a total of 179 procedures for 31 patients. For all brachytherapy treatments, the average ratios between the doses for the rectal, bladder, vaginal surface, and pelvic sidewall reference points to those at point A were 0.49, 0.59, 1.15, and 0.17, respectively. In general, decreased OAR dose was associated with a lower stage, younger age, increased ovoid size, increased tandem length, and earlier implant number. Increased tandem curvature significantly increased bladder dose and decreased rectal dose. Intravenous anesthesia usage was not correlated with improved dosimetry. This study allowed identification of patient and procedure characteristics influencing OAR dosing. Although the advent of 3-dimensional (3D) image-guided brachytherapy will bring new advances in treatment optimization, the actual technique involved at the time of the brachytherapy implant procedure will remain important.

  14. Brachytherapy in cervix cancers: techniques and concepts evolution

    International Nuclear Information System (INIS)

    Haie-Meder, C.; Crevoisier, R. de; Petrow, P.; Fromm, S.; Delapierre, M.; Albano, M.; Petit, C.; Briot, E.

    2003-01-01

    Brachytherapy plays an important role in the treatment of patients with cervical carcinoma. Technical modalities have evolved during the last years and have benefited from imaging modalities development, specially MRI. Imaging modalities contribute to a better knowledge of tumoral extension and critical organs. Ultrasound during brachytherapy has led to the almost complete eradication of uterine perforation. In the future, a more systematic use of systems allowing optimization may induce a better dose distribution in the tumor as well as in the critical organs. Recent data provided information in favor of a better analysis in the relative role of dose-rate, total dose and treated volume and their influence on the local control and complication incidence. Concomitant radio-chemotherapy represents a standard in the treatment of patients with tumoral size exceeding 4 cm. Some questions still remain: is concomitant chemotherapy of benefit during brachytherapy? Is there any place for complementary surgery, specially in patients with complete response after external irradiation with concomitant chemotherapy and brachytherapy? In order to answer the former question, a phase III randomized trial is going to start, with the Federation Nationale des Centres de Lutte Contre le Cancer as a promoter. (authors)

  15. Advantages of high-dose rate (HDR) brachytherapy in treatment of prostate cancer

    Science.gov (United States)

    Molokov, A. A.; Vanina, E. A.; Tseluyko, S. S.

    2017-09-01

    One of the modern methods of preserving organs radiation treatment is brachytherapy. This article analyzes the results of prostate brachytherapy. These studies of the advantages of high dose brachytherapy lead to the conclusion that this method of radiation treatment for prostate cancer has a favorable advantage in comparison with remote sensing methods, and is competitive, preserving organs in comparison to surgical methods of treatment. The use of the method of polyfocal transperineal biopsy during the brachytherapy session provides information on the volumetric spread of prostate cancer and adjust the dosimetry plan taking into account the obtained data.

  16. Underuse of brachytherapy for the treatment of dysphagia owing to esophageal cancer. An Italian survey.

    Science.gov (United States)

    Fuccio, Lorenzo; Guido, Alessandra; Hassan, Cesare; Frazzoni, Leonardo; Arcelli, Alessandra; Farioli, Andrea; Giaccherini, Lucia; Galuppi, Andrea; Mandolesi, Daniele; Cellini, Francesco; Mantello, Giovanna; Macchia, Gabriella; de Bortoli, Nicola; Repici, Alessandro; Valentini, Vincenzo; Bazzoli, Franco; Morganti, Alessio Giuseppe

    2016-10-01

    International guidelines strongly recommend brachytherapy as valid alternative or in addition to stenting in patients with dysphagia owing to esophageal cancer. However, for not well understood reasons, brachytherapy is definitively underused for the palliative treatment of malignant dysphagia. Aim of the current survey was to investigate the use of brachytherapy for the treatment of malignant dysphagia in Italy. A structured questionnaire was submitted to the 1510 members of the Italian Association of Radiation Oncologists (AIRO). These members refer to 177 centres of radiotherapy across Italy and in 68 (38.4%) of them brachytherapy is routinely performed. Of the 1510 invited members, 178 completed the survey (11.7%). The answers provided by the 178 participants allowed to get information on 40 out of 68 brachytherapy centres (58.8%). Seven out of 40 (17.5%) centres perform brachytherapy of the oesophagus, in 3 out of 40 (7.5%) centres brachytherapy represents the first line of treatment. The main reason why brachytherapy is not routinely performed is the lack of experience. Despite the strong recommendations of the international guidelines and the wide diffusion of brachytherapy centres across Italy, only very few of them routinely considered brachytherapy for the treatment of dysphagia due to esophageal cancer. Copyright © 2016 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  17. Brachytherapy in head and neck cancers; Curietherapie des cancers de la sphere ORL

    Energy Technology Data Exchange (ETDEWEB)

    Mazeron, J.J.; Noel, G.; Simon, J.M.; Racadot, S.; Jauffret, E. [Groupe Hospitalier la Pitie-Salpetriere, Centre des Tumeurs, 75 - Paris (France)

    2003-02-01

    Experience accumulated over several decades with radiation of Head and Neck tumours by irradiation has demonstrated the need for a high tumour dose to achieve local control. With external beam irradiation alone, it is difficult to spare adjacent normal tissues, resulting in undesirable late effects on the salivary glands; mandible, and muscles of mastication. Interstitial implantation is ideally suited to deliver a high dose limited to the volume of the primary tumor, thus minimizing sequels. A large experience has been accumulated with low dose rate (LDR) brachytherapy in treatment of carcinoma of oral cavity, oropharynx, and nasopharynx. Recent analysis of large clinical series provided data indicating that modalities of low dose rate brachytherapy should be optimized in treating these tumors for increasing therapeutic ratio. Low dose rate brachytherapy is now challenged by high dose rate (HDR) brachytherapy and pulsed dose rate (PDR) brachytherapy. Preliminary results obtained with these two last modalities are discussed regarding to those of low dose rate brachytherapy. (authors)

  18. Image-robot coupling for the prostate brachytherapy

    International Nuclear Information System (INIS)

    Coelen, V.; Lartigau, E.; Merzouki, R.

    2009-01-01

    The results allows to contemplate a robot use in the prostate brachytherapy but equally in other applications such prostate biopsy. The tests to come are going to be directed towards on the use of a prostate phantom in order to calibrate the ultrasonography. thereafter, we contemplate the conception of an intelligent gripping system placed on the robot arm and allowing a good control in closed loop of the brachytherapy needle placement and allowing the setting up of an online monitoring. (N.C.)

  19. Brachytherapy for Buccal Cancer: From Conventional Low Dose Rate (LDR) or Mold Technique to High Dose Rate Interstitial Brachytherapy (HDR-ISBT).

    Science.gov (United States)

    Kotsuma, Tadayuki; Yamazaki, Hideya; Masui, Koji; Yoshida, Ken; Shimizutani, Kimishige; Akiyama, Hironori; Murakami, Shumei; Isohashi, Fumiaki; Yoshioka, Yasuo; Ogawa, Kazuhiko; Tanaka, Eiichi

    2017-12-01

    To examine the effectiveness of newly-installed high-dose-rate interstitial brachytherapy (HDR-ISBT) for buccal cancer. We retrospectively reviewed 36 patients (25 men and 11 women) with buccal cancer treated with curative brachytherapy with or without external radiotherapy with a median follow-up of 99 months. A total of 15 HDR-ISBT (median 48 Gy/ 8 fractions, range=24-60 Gy) patients were compared to conventional 15 cases LDR-ISBT (70 Gy, range=42.8-110 Gy) and 7 molds techniques (15 Gy, range=9-74 Gy). A total of 31 patients also underwent external radiotherapy (30 Gy, range=24-48 Gy). They comprised of 3T1, 23 T2, 8 T3, 3 T4 including 11 node positive cases. HDR-ISBT provided 82% of local control rate at 5 years, whereas conventional brachytherapy showed 72% [p=0.44; LDR-ISBT (65%), mold therapy (85.7%)]. Patients with early lesions (T1-2 or stage I-II) showed better local control rates than those with advanced lesions (T3-4 or stage III-IV). Severe late grade 3 complications developed in two patients treated with LDR-ISBT and EBRT. There is no significant difference in toxicity grade ≤2 between conventional brachytherapy (5/15=33%) and HDR-ISBT (7/32=32%, p=0.92). HDR-ISBT achieved good and comparable local control rates to conventional brachytherapy without elevating the toxicity. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  20. A fibre optic dosimeter customised for brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Suchowerska, N. [Department of Radiation Oncology, Royal Prince Alfred Hospital, Camperdown, NSW 2050 (Australia); School of Physics, University of Sydney, NSW 2006 (Australia)], E-mail: Natalka@email.cs.nsw.gov.au; Lambert, J.; Nakano, T. [Department of Radiation Oncology, Royal Prince Alfred Hospital, Camperdown, NSW 2050 (Australia); School of Physics, University of Sydney, NSW 2006 (Australia); Law, S. [School of Physics, University of Sydney, NSW 2006 (Australia); Optical Fibre Technology Centre, University of Sydney, 206 National Innovation Centre, Australian Technology Park, Eveleigh, NSW 1430 (Australia); Elsey, J. [Bandwidth Foundry Pty Ltd, Australian Technology Park, NSW, 1430 (Australia); McKenzie, D.R. [School of Physics, University of Sydney, NSW 2006 (Australia)

    2007-04-15

    In-vivo dosimetry for brachytherapy cancer treatment requires a small dosimeter with a real time readout capability that can be inserted into the patient to determine the dose to critical organs. Fibre optic scintillation dosimeters, consisting of a plastic scintillator coupled to an optical fibre, are a promising dosimeter for this application. We have implemented specific design features to optimise the performance of the dosimeter for specific in-vivo dosimetry during brachytherapy. Two sizes of the BrachyFOD{sup TM} scintillation dosimeter have been developed, with external diameters of approximately 2 and 1 mm. We have determined their important dosimetric characteristics (depth dose relation, angular dependence, energy dependence). We have shown that the background signal created by Cerenkov and fibre fluorescence does not significantly affect the performance in most clinical geometries. The dosimeter design enables readout at less than 0.5 s intervals. The clinical demands of real time in-vivo brachytherapy dosimetry can uniquely be satisfied by the BrachyFOD{sup TM}.

  1. Brachytherapy for elderly patients with stage II tongue cancer

    International Nuclear Information System (INIS)

    Kimura, Tomoki; Hirokawa, Yutaka; Fujita, Minoru; Murakami, Yuji; Kenjo, Masahiro; Kaneyasu, Yuko; Ito, Katsuhide

    2003-01-01

    In treatment choices of stage II (T2N0M0) tongue cancer, brachytherapy is less invasive and superior in function preservation, therefore its role is more important in elderly patients. The aim of this study was to evaluate treatment results and morbidity of brachytherapy for elderly patients with stage II tongue cancer. Between 1980 and 2001, 198 patients with stage II tongue cancer were treated with brachytherapy at Hiroshima University Hospital. Patient ages ranged from 21 to 89 years old (median: 62 years old). Patients were divided into three groups as follows: 119 patients younger than 65 years old (Non-Elderly group), 53 patients between 65 and 75 years old (Junior Elderly group), and 26 patients 75 years or older (Senior Elderly group). Radiotherapy was performed in 101 patients with brachytherapy alone, and in 97 patients with brachytherapy and external radiotherapy. Chemotherapy was also performed in 77 patients. Follow-up period ranged from 4 to 243 months (median: 55 months). The 5-year local control rate was 85% in the Non-Elderly group, 85% in the Junior Elderly group and 81% in the Senior Elderly group. There was no significant difference among these groups. The 5-year cause-specific survival rate was 85%, 81% and 70% respectively. The Senior Elderly group showed poorer cause-specific survival rate than the other two groups (p=0.03). There was also a tendency of higher incidence of neck metastasis and low salvage rate by neck dissection in the Senior Elderly group. Although the Senior Elderly group showed poorer cause-specific survival rate, the local control rate was similar to those of the other two groups. Brachytherapy is an effective treatment option for elderly patients with stage II tongue cancer. (author)

  2. Image guided, adaptive, accelerated, high dose brachytherapy as model for advanced small volume radiotherapy

    International Nuclear Information System (INIS)

    Haie-Meder, Christine; Siebert, Frank-Andre; Poetter, Richard

    2011-01-01

    Brachytherapy has consistently provided a very conformal radiation therapy modality. Over the last two decades this has been associated with significant improvements in imaging for brachytherapy applications (prostate, gynecology), resulting in many positive advances in treatment planning, application techniques and clinical outcome. This is emphasized by the increased use of brachytherapy in Europe with gynecology as continuous basis and prostate and breast as more recently growing fields. Image guidance enables exact knowledge of the applicator together with improved visualization of tumor and target volumes as well as of organs at risk providing the basis for very individualized 3D and 4D treatment planning. In this commentary the most important recent developments in prostate, gynecological and breast brachytherapy are reviewed, with a focus on European recent and current research aiming at the definition of areas for important future research. Moreover the positive impact of GEC-ESTRO recommendations and the highlights of brachytherapy physics are discussed what altogether presents a full overview of modern image guided brachytherapy. An overview is finally provided on past and current international brachytherapy publications focusing on 'Radiotherapy and Oncology'. These data show tremendous increase in almost all research areas over the last three decades strongly influenced recently by translational research in regard to imaging and technology. In order to provide high level clinical evidence for future brachytherapy practice the strong need for comprehensive prospective clinical research addressing brachytherapy issues is high-lighted.

  3. Citron - the first indigenous remote afterloading intracavitary brachytherapy unit

    International Nuclear Information System (INIS)

    Bhaskar, B.K.; Balakrishnan, I.S.; Vivekanandan, N.; Lakshmanan, A.V.

    2000-01-01

    In keeping with its tradition of pioneering cancer patient cure and care, the Cancer Institute embarked on a project funded by DAE in 1994 to develop an economical import substitute. The prototype unit named CITRON promises to be a suitable import substitute satisfying a long standing need in the country

  4. SU-F-T-11: Scintillator Based Quality Assurance Device for HDR Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Jozsef, G [New York University Medical Center, New York, NY (United States)

    2016-06-15

    Purpose: To build a test device for HDR afterloaders capable of checking source positions, times at positions and estimate the activity of the source. Methods: A catheter is taped on a plastic scintillation sheet. When a source travels through the catheter, the scintillator sheet lights up around the source. The sheet is monitored with a video camera, and records the movement of the light spot. The center of the spot on each image on the video provides the source location, and the time stamps of the images can provide the dwell time the source spend in each location. Finally, the brightness of the light spot is related to the activity of the source. A code was developed for noise removal, calibrate the scale of the image to centimeters, eliminate the distortion caused by the oblique view angle, identifying the boundaries of the light spot, transforming the image into binary and detect and calculate the source motion, positions and times. The images are much less noisy if the camera is shielded. That requires that the light spot is monitored in a mirror, rather than directly. The whole assembly is covered from external light and has a size of approximately 17×35×25cm (H×L×W) Results: A cheap camera in BW mode proved to be sufficient with a plastic scintillator sheet. The best images were resulted by a 3mm thick sheet with ZnS:Ag surface coating. The shielding of the camera decreased the noise, but could not eliminate it. A test run even in noisy condition resulted in approximately 1 mm and 1 sec difference from the planned positions and dwell times. Activity tests are in progress. Conclusion: The proposed method is feasible. It might simplify the monthly QA process of HDR Brachytherapy units.

  5. Surgery and postoperative brachytherapy for treatment of small volume uterine cervix cancer: an alternative to the standard association of utero vaginal brachytherapy + surgery

    International Nuclear Information System (INIS)

    Gallocher, O.; Thomas, L.; Pigneux, J.; Stocke, E.; Bussieres, E.; Avril, A.; Floquet, A.

    2002-01-01

    Purpose. -Evaluate the results of the treatment of small uterine cervix cancer with the association of surgery and postoperative vaginal brachytherapy, without unfavourable prognostic factors. Patients and methods. -After radical hysterectomy with lymphadenectomy, 29 women (mean age: 44 years) with carcinoma < 25 mm (26 stage IB1, 3 IIA, mean size: 15 mm) were treated by post-operative prophylactic vaginal brachytherapy using low dose rate. Ovarian transposition was performed at the surgical time in 14 young women (mean age 35 years). Results. - The actuarial specific survival rates at 5 and 10 years were 100% and 90% respectively, with a mean follow-up 75 months. Only one local recurrence was observed. The rate of grade 1 post-operative complication was 7%. The conservation rate of the ovarian function was 85% for young women. Conclusion. -Treatment of small volume uterine cervix cancer using first surgery and post-operative vaginal brachytherapy is a reliable therapeutic option. The results in terms of specific survival and complications are the same with those after standard association of preoperative utero-vaginal brachytherapy and surgery. (authors)

  6. Interstitial high-dose-rate brachytherapy in the treatment of base of tongue carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Takacsi-Nagy, Z.; Polgar, C.; Somogyi, A.; Major, T.; Fodor, J.; Nemeth, G. [Dept. of Radiotherapy, National Inst. of Oncology, Budapest (Hungary); Oberna, F. [Dept. of Maxillofacial Surgery, St. Rokus Hospital, Budapest (Hungary); Remenar, E.; Kasler, M. [Dept. of Head and Neck, Maxillofacial and Reconstructive Plastic Surgery, National Inst. of Oncology, Budapest (Hungary)

    2004-12-01

    Background and purpose: to date none of the studies examined the feasibility and efficacy of interstitial high-dose-rate (HDR) brachytherapy in the treatment of carcinoma of the tongue base. Therefore the aim of this study was to contribute to this issue. Patients and methods: between 1992 and 2000 37 patients (mean age 55 years) with T1-4 and NO-3 carcinoma of the base of tongue were presented. Neck dissection was carried out in twelve cases (32%). 30 patients with advanced stage received brachytherapy boost after 50-66.5 Gy (mean, 60 Gy) locoregional external beam irradiation (EBI) and 7 patients with early stage (T1-2, NO) were managed locally with wide tumor excision and sole brachytherapy. 4 of them underwent neck dissection and the others were subjected to 50 Gy regional EBI. The mean dose of boost and sole brachytherapy was 18 Gy and 28 Gy, respectively. Results: the median follow-up time for surviving patients was 51 months. The 7 sole brachytherapy patients are living with no evidence of disease. For patients treated with EBI and brachytherapy boost, the 5-year actuarial rate of local, locoregional recurrence-free and overall survival was 60%, 52% and 46%, respectively. For all patients in univariate analysis larger tumor size (T4 vs. T1-3) was significant negative predictor of local (RR: 7.23) and locoregional control (RR: 3.87), but nodal involvement was not. Delayed soft tissue ulceration and osteoradionecrosis occurred in 4 (13%) EBI and brachytherapy treated patients. None of the sole brachytherapy patients experienced severe late radiation toxicity. Conclusion: EBI combined with interstitial HDR brachytherapy boost result in acceptable local tumor control with low incidence of late side effects in patients with advanced disease. Fractionated sole HDR brachytherapy following tumor excision is a feasible treatment option for patients with early stage cancer and gives excellent local results. (orig.)

  7. High dose rate brachytherapy for the palliation of malignant dysphagia

    International Nuclear Information System (INIS)

    Homs, Marjolein Y.V.; Eijkenboom, Wilhelmina M.H.; Coen, Veronique L.M.A.; Haringsma, Jelle; Blankenstein, Mark van; Kuipers, Ernst J.; Siersema, Peter D.

    2003-01-01

    Background and purpose: High dose rate (HDR) brachytherapy is a commonly used palliative treatment for esophageal carcinoma. We evaluated the outcome of HDR brachytherapy in patients with malignant dysphagia. Material and methods: A retrospective analysis over a 10-year period was performed of 149 patients treated with HDR brachytherapy, administered in one or two sessions, at a median dose of 15 Gy. Patients were evaluated for functional outcome, complications, recurrent dysphagia, and survival. Results: At 6 weeks after HDR brachytherapy, dysphagia scores had improved from a median of 3 to 2 (n=104; P<0.001), however, dysphagia had not improved in 51 (49%) patients. Procedure-related complications occurred in seven (5%) patients. Late complications, including fistula formation or bleeding, occurred in 11 (7%) patients. Twelve (8%) patients experienced minor retrosternal pain. Median survival of the patients was 160 days with a 1-year survival rate of 15%. Procedure-related mortality was 2%. At follow-up, 55 (37%) patients experienced recurrent dysphagia. In 34 (23%) patients a metal stent was placed to relieve persistent or recurrent dysphagia. Conclusion: HDR brachytherapy is a moderately effective treatment for the palliation of malignant dysphagia. The incidence of early major complications is low, however, persistent and recurrent dysphagia occur frequently, and require often additional treatment

  8. Afterloading technique for interstitial irradiation of lesions in deep-seated organs

    International Nuclear Information System (INIS)

    Kitagawa, T.; Kakehi, M.; Kunieda, T.; Tsukiyama, I.; Hamada, M.; Inakoshi, H.; Sakudo, M.; Suemasu, K.; Matsumoto, K.; Yoneyama, T.; Iizuka, T.; Nomura, K.; Kawachi, K.

    1982-01-01

    An afterloading procedure using 192 Ir seeds was developed for the control of both localized primary lesions that are difficult to remove and superficial residual lesions that remain after the partial removal of tumors in relatively inaccessible, deep-seated organs. This technique makes possible the delivery of a minimal radiation dose to lesions in deep-seated organs. Fewer complications result, the seeds can be adjusted at appropriate intervals in proportion to the amount of radioactivity desired, and radiation exposure to personnel can be reduced. This paper describes the techniques and apparatus used to place the seeds in the tubing. Primary lesions of the urinary bladder, the prostate gland, and the esophagus, residual lesions in the brain and lung, and metastases in intrapelvic lymph nodes were treated. No technical difficulties or complications were encountered. Radiation exposures to personnel were minimized. The results indicate that the procedure has practical applications

  9. Brachytherapy treatment with high dose rate

    International Nuclear Information System (INIS)

    Santana Rodriguez, Sergio Marcelino; Rodriguez Rodriguez, Lissi Lisbet; Ciscal Chiclana, Onelio Alberto

    2009-01-01

    Retrospectively analyze results and prognostic factors of cervical cancer patients treated with radio concomitant cisplatin-based chemotherapy, radiation therapy combined modality. Methods: From January 2003 to December 2007, 198 patients with invasive cervical cancer were treated at the Oncology Department of Hospital Robau Celestino Hernandez (brachytherapy performed at INOR). The most common age group was 31 to 40 years. The histology in squamous cell carcinoma accounted for 84.3% of cases. The treatment consisted of external pelvic irradiation and vaginal brachytherapy, high dose rate. Concomitant chemotherapy consisted of cisplatin 40 mg/m2 weekly with a maximum of 70 mg for 5 weeks. Results: 66.2% of patients completed 5 cycles of chemotherapy. The median overall survival was 39 months, overall survival, disease-free survival and survival free of locoregional recurrence at 5 years of 78%, 76% and 78.6% respectively .. We found that clinical stage, histological type (adenocarcinoma worst outcome) were statistically related to level of response. Conclusions: Treatment with external pelvic radiation, brachytherapy and concurrent weekly cisplatin in patients with stage IIIB cervical cancer is feasible in the Chilean public health system, well tolerated and results comparable to international literature. (Author)

  10. Biomaterial characteristics and application of silicone rubber and PVA hydrogels mimicked in organ groups for prostate brachytherapy.

    Science.gov (United States)

    Li, Pan; Jiang, Shan; Yu, Yan; Yang, Jun; Yang, Zhiyong

    2015-09-01

    It is definite that transparent material with similar structural characteristics and mechanical properties to human tissue is favorable for experimental study of prostate brachytherapy. In this paper, a kind of transparent polyvinyl alcohol (PVA) hydrogel and silicone rubber are developed as suitable substitutions for human soft tissue. Segmentation and 3D reconstruction of medical image are performed to manufacture the mould of organ groups through rapid prototyping technology. Micro-structure observation, force test and CCD deformation test have been conducted to investigate the structure and mechanical properties of PVA hydrogel used in organ group mockup. Scanning electron microscope (SEM) image comparison results show that PVA hydrogel consisting of 3 g PVA, 17 g de-ionized water, 80 g dimethyl-sulfoxide (DMSO), 4 g NaCl, 1.5 g NaOH, 3 g epichlorohydrin (ECH) and 7 freeze/thaw cycles reveals similar micro-structure to human prostate tissue. Through the insertion force comparison between organ group mockup and clinical prostate brachytherapy, PVA hydrogel and silicone rubber are found to have the same mechanical properties as prostate tissue and muscle. CCD deformation test results show that insertion force suffers a sharp decrease and a relaxation of tissue deformation appears when needle punctures the capsule of prostate model. The results exhibit that organ group mockup consisting of PVA hydrogel, silicone rubber, membrane and agarose satisfies the needs of prostate brachytherapy simulation in general and can be used to mimic the soft tissues in pelvic structure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. MO-E-BRD-02: Accelerated Partial Breast Irradiation in Brachytherapy: Is Shorter Better?

    International Nuclear Information System (INIS)

    Todor, D.

    2015-01-01

    Is Non-invasive Image-Guided Breast Brachytherapy Good? – Jess Hiatt, MS Non-invasive Image-Guided Breast Brachytherapy (NIBB) is an emerging therapy for breast boost treatments as well as Accelerated Partial Breast Irradiation (APBI) using HDR surface breast brachytherapy. NIBB allows for smaller treatment volumes while maintaining optimal target coverage. Considering the real-time image-guidance and immobilization provided by the NIBB modality, minimal margins around the target tissue are necessary. Accelerated Partial Breast Irradiation in brachytherapy: is shorter better? - Dorin Todor, PhD VCU A review of balloon and strut devices will be provided together with the origins of APBI: the interstitial multi-catheter implant. A dosimetric and radiobiological perspective will help point out the evolution in breast brachytherapy, both in terms of devices and the protocols/clinical trials under which these devices are used. Improvements in imaging, delivery modalities and convenience are among the factors driving the ultrashort fractionation schedules but our understanding of both local control and toxicities associated with various treatments is lagging. A comparison between various schedules, from a radiobiological perspective, will be given together with a critical analysis of the issues. to review and understand the evolution and development of APBI using brachytherapy methods to understand the basis and limitations of radio-biological ‘equivalence’ between fractionation schedules to review commonly used and proposed fractionation schedules Intra-operative breast brachytherapy: Is one stop shopping best?- Bruce Libby, PhD. University of Virginia A review of intraoperative breast brachytherapy will be presented, including the Targit-A and other trials that have used electronic brachytherapy. More modern approaches, in which the lumpectomy procedure is integrated into an APBI workflow, will also be discussed. Learning Objectives: To review past and current

  12. MO-E-BRD-02: Accelerated Partial Breast Irradiation in Brachytherapy: Is Shorter Better?

    Energy Technology Data Exchange (ETDEWEB)

    Todor, D. [Virginia Commonwealth University (United States)

    2015-06-15

    Is Non-invasive Image-Guided Breast Brachytherapy Good? – Jess Hiatt, MS Non-invasive Image-Guided Breast Brachytherapy (NIBB) is an emerging therapy for breast boost treatments as well as Accelerated Partial Breast Irradiation (APBI) using HDR surface breast brachytherapy. NIBB allows for smaller treatment volumes while maintaining optimal target coverage. Considering the real-time image-guidance and immobilization provided by the NIBB modality, minimal margins around the target tissue are necessary. Accelerated Partial Breast Irradiation in brachytherapy: is shorter better? - Dorin Todor, PhD VCU A review of balloon and strut devices will be provided together with the origins of APBI: the interstitial multi-catheter implant. A dosimetric and radiobiological perspective will help point out the evolution in breast brachytherapy, both in terms of devices and the protocols/clinical trials under which these devices are used. Improvements in imaging, delivery modalities and convenience are among the factors driving the ultrashort fractionation schedules but our understanding of both local control and toxicities associated with various treatments is lagging. A comparison between various schedules, from a radiobiological perspective, will be given together with a critical analysis of the issues. to review and understand the evolution and development of APBI using brachytherapy methods to understand the basis and limitations of radio-biological ‘equivalence’ between fractionation schedules to review commonly used and proposed fractionation schedules Intra-operative breast brachytherapy: Is one stop shopping best?- Bruce Libby, PhD. University of Virginia A review of intraoperative breast brachytherapy will be presented, including the Targit-A and other trials that have used electronic brachytherapy. More modern approaches, in which the lumpectomy procedure is integrated into an APBI workflow, will also be discussed. Learning Objectives: To review past and current

  13. MO-E-BRD-03: Intra-Operative Breast Brachytherapy: Is One Stop Shopping Best?

    International Nuclear Information System (INIS)

    Libby, B.

    2015-01-01

    Is Non-invasive Image-Guided Breast Brachytherapy Good? – Jess Hiatt, MS Non-invasive Image-Guided Breast Brachytherapy (NIBB) is an emerging therapy for breast boost treatments as well as Accelerated Partial Breast Irradiation (APBI) using HDR surface breast brachytherapy. NIBB allows for smaller treatment volumes while maintaining optimal target coverage. Considering the real-time image-guidance and immobilization provided by the NIBB modality, minimal margins around the target tissue are necessary. Accelerated Partial Breast Irradiation in brachytherapy: is shorter better? - Dorin Todor, PhD VCU A review of balloon and strut devices will be provided together with the origins of APBI: the interstitial multi-catheter implant. A dosimetric and radiobiological perspective will help point out the evolution in breast brachytherapy, both in terms of devices and the protocols/clinical trials under which these devices are used. Improvements in imaging, delivery modalities and convenience are among the factors driving the ultrashort fractionation schedules but our understanding of both local control and toxicities associated with various treatments is lagging. A comparison between various schedules, from a radiobiological perspective, will be given together with a critical analysis of the issues. to review and understand the evolution and development of APBI using brachytherapy methods to understand the basis and limitations of radio-biological ‘equivalence’ between fractionation schedules to review commonly used and proposed fractionation schedules Intra-operative breast brachytherapy: Is one stop shopping best?- Bruce Libby, PhD. University of Virginia A review of intraoperative breast brachytherapy will be presented, including the Targit-A and other trials that have used electronic brachytherapy. More modern approaches, in which the lumpectomy procedure is integrated into an APBI workflow, will also be discussed. Learning Objectives: To review past and current

  14. Risk assessment of component failure modes and human errors using a new FMECA approach: application in the safety analysis of HDR brachytherapy

    International Nuclear Information System (INIS)

    Giardina, M; Castiglia, F; Tomarchio, E

    2014-01-01

    Failure mode, effects and criticality analysis (FMECA) is a safety technique extensively used in many different industrial fields to identify and prevent potential failures. In the application of traditional FMECA, the risk priority number (RPN) is determined to rank the failure modes; however, the method has been criticised for having several weaknesses. Moreover, it is unable to adequately deal with human errors or negligence. In this paper, a new versatile fuzzy rule-based assessment model is proposed to evaluate the RPN index to rank both component failure and human error. The proposed methodology is applied to potential radiological over-exposure of patients during high-dose-rate brachytherapy treatments. The critical analysis of the results can provide recommendations and suggestions regarding safety provisions for the equipment and procedures required to reduce the occurrence of accidental events. (paper)

  15. Management of a HDR brachytherapy system in the Hospital Juarez of Mexico

    International Nuclear Information System (INIS)

    Serrano F, A.G.; Ramirez R, G.; Gil G, R.; Azorin N, J.; Rivera M, T.

    2007-01-01

    Full text: In the Hospital Juarez of Mexico, it is carried out a project to implement a Brachytherapy system with high dose rate (HDR) through a Management quality program. In our work center this treatment modality in patients with cervicouterine cancer is used (CaCu), and constantly it is necessary to carry out improvements in the procedures, with the purpose of optimizing them and in consequence to complete the principles of the Radiological Protection, guaranteeing this way, an attention with the quality and safety, such that allow to diminish the risks to the patients and to assure that the received dose in critical organs it finds inside the permitted therapeutic limits, without commit the radiosensitive response of healthy organs. In this work an analysis of the implementation of this system is presented, detailing the procedures so much in the technological infrastructure like human and indicating the necessary technical and operative requirements to reach an adequate practice in HDR brachytherapy. (Author)

  16. Comparison between Japanese and French interstitial brachytherapy for head and neck cancer

    International Nuclear Information System (INIS)

    Nose, Takayuki; Koizumi, Masahiko; Nishiyama, Kinji; Inoue, Toshihiko

    2001-01-01

    Interstitial brachytherapy is the optimal radiotherapy modality for head and neck cancer because the highest dose conformity can be achieved, and implanted tubes can move synchronously with the tumor movement. Compared with radical surgery, interstitial brachytherapy can achieve equivalent local control with less morbidity and less functional deficit. In Japan, because of technical limitations, interstitial brachytherapy has been confined to treatment of small tongue cancers. To improve our head and neck cancer treatment, technical limitations should be eliminated and a wider indication for interstitial brachytherapy should be achieved. In France, interstitial brachytherapy has been technically more developed and widely indicated than in Japan. We analyzed the differences between Japanese (Osaka) and French (Lyon and Nancy) techniques, to improve our interstitial brachytherapy. Implant devices and techniques: French applicators (Longcip 1) are more flexible and more suitable for loop techniques of the soft palate, the base of the tongue, and the vallecula, than applicators available in Japan. Various implant techniques are established especially for the oropharynx in France. Mandibular protection: Lead blocks used in France can more effectively shield the mandible than our silicone spacers. We showed the dosimetric results in an experimental treatment setting. Dose specification: The five-mm dose specification method used in Japan can work only for easy cases, such as small oral tongue cancers and mouth floor cancers. For complicated implants, such as for the oropharynx, the CTV-based dose specification method used in France is essential for sufficient irradiation. Indications: The indication for head and neck interstitial brachytherapy in Japan is limited mostly to small oral tongue cancers. The indication in France is wider, including the oral cavity, the oropharynx, and postoperative cases. We can refine our head and neck cancer treatment if we combine French

  17. 137Cs - Brachytherapy sources : a technology scenario

    International Nuclear Information System (INIS)

    Varma, R.N.

    2001-01-01

    Cancer has emerged as one of the major cause of morbidity and mortality all over the world. India houses world's second largest population and registers 4-5 lakhs new cancer cases every year. Cancer of cervix is most common form of malignancy among Indian women. Radiation therapy, especially intracavity brachytherapy in conjunction with other modalities like surgery, chemotherapy has been found to be highly effective for the management and control of cervical carcinoma at all stages. A technology has been developed indigenously for the fabrication of 137 Cs sources for brachytherapy applications

  18. Patient effective dose from endovascular brachytherapy with 192Ir Sources

    International Nuclear Information System (INIS)

    Perna, L.; Bianchi, C.; Novario, R.; Nicolini, G.; Tanzi, F.; Conte, L.

    2002-01-01

    The growing use of endovascular brachytherapy has been accompanied by the publication of a large number of studies in several fields, but few studies on patient dose have been found in the literature. Moreover, these studies were carried out on the basis of Monte Carlo simulation. The aim of the present study was to estimate the effective dose to the patient undergoing endovascular brachytherapy treatment with 192 Ir sources, by means of experimental measurements. Two standard treatments were taken into account: an endovascular brachytherapy of the coronary artery corresponding to the activity x time product of 184 GBq.min and an endovascular brachytherapy of the renal artery (898 GBq.min). Experimental assessment was accomplished by thermoluminescence dosemeters positioned in more than 300 measurement points in a properly adapted Rando phantom. A method has been developed to estimate the mean organ doses for all tissues and organs concerned in order to calculate the effective dose associated with intravascular brachytherapy. The normalised organ doses resulting from coronary treatment were 2.4x10 -2 mSv.GBq -1 .min -1 for lung, 0.9x10 -2 mSv.GBq -1 .min -1 for oesophagus and 0.48x10 -2 mSv.GBq -1 .min -1 for bone marrow. During brachytherapy of the renal artery, the corresponding normalised doses were 4.2x10 -2 mSv.GBq -1 .min -1 for colon, 7.8x10 -2 mSv.GBq -1 .min -1 for stomach and 1.7x10 -2 mSv.GBq -1 .min -1 for liver. Coronary treatment involved an effective dose of 0.046 mSv.GBq -1 .min -1 , whereas the treatment of the renal artery resulted in an effective dose of 0.15 mSv.GBq -1 .min -1 ; there were many similarities with data from former studies. Based on these results it can be concluded that the dose level of patients exposed during brachytherapy treatment is low. (author)

  19. Monte Carlo Dosimetry of the 60Co BEBIG High Dose Rate for Brachytherapy.

    Directory of Open Access Journals (Sweden)

    Luciana Tourinho Campos

    Full Text Available The use of high-dose-rate brachytherapy is currently a widespread practice worldwide. The most common isotope source is 192Ir, but 60Co is also becoming available for HDR. One of main advantages of 60Co compared to 192Ir is the economic and practical benefit because of its longer half-live, which is 5.27 years. Recently, Eckert & Ziegler BEBIG, Germany, introduced a new afterloading brachytherapy machine (MultiSource®; it has the option to use either the 60Co or 192Ir HDR source. The source for the Monte Carlo calculations is the new 60Co source (model Co0.A86, which is referred to as the new BEBIG 60Co HDR source and is a modified version of the 60Co source (model GK60M21, which is also from BEBIG.The purpose of this work is to obtain the dosimetry parameters in accordance with the AAPM TG-43U1 formalism with Monte Carlo calculations regarding the BEBIG 60Co high-dose-rate brachytherapy to investigate the required treatment-planning parameters. The geometric design and material details of the source was provided by the manufacturer and was used to define the Monte Carlo geometry. To validate the source geometry, a few dosimetry parameters had to be calculated according to the AAPM TG-43U1 formalism. The dosimetry studies included the calculation of the air kerma strength Sk, collision kerma in water along the transverse axis with an unbounded phantom, dose rate constant and radial dose function. The Monte Carlo code system that was used was EGSnrc with a new cavity code, which is a part of EGS++ that allows calculating the radial dose function around the source. The spectrum to simulate 60Co was composed of two photon energies, 1.17 and 1.33 MeV. Only the gamma part of the spectrum was used; the contribution of the electrons to the dose is negligible because of the full absorption by the stainless-steel wall around the metallic 60Co. The XCOM photon cross-section library was used in subsequent simulations, and the photoelectric effect, pair

  20. Californium-252 radiotherapy sources for interstitial afterloading

    International Nuclear Information System (INIS)

    Permar, P.H.; Walker, V.W.

    1976-01-01

    Californium-252 neutron sources for interstitial afterloading were developed to investigate the value of this radionuclide in cancer therapy. Californium-252 seed assemblies contain essentially point sources of 252 Cf permanently sealed on 1-cm centers within a flexible plastic tube. The seed assemblies are fabricated with remotely operated, specially designed machines. The fabrication process involves the production of a Pt-10 percent Ir-clad wire with a 252 Cf 2 O 3 -Pd cermet core. The wire is swaged and drawn to size, cut to length, and welded in a Pt-10 percent Ir capsule 0.8 mm in diameter and 6 mm long. Each seed capsule contains approximately 0.5 microgram of 252 Cf. Because the effective half-life of 252 Cf is 2.6 years, the seed assemblies are not disposable and must be reused until their activities have decreased to unsuitable levels. The flexible plastic components must therefore have sufficient resistance to radiation damage to survive the neutron-plus-gamma radiation from 252 Cf. On the basis of accelerated irradiation tests with a large 252 Cf source, a recently developed fluoropolymer, ''Tefzel'' (trademark of E. I. du Pont de Nemours and Company) has adequate radiation resistance for this application. Californium-252 seed assembly systems are loaned by the United States Energy Research and Development Administration for clinical investigations under a protocol of the Radiation Therapy Oncology Group, U.S. National Cancer Institute

  1. Directional interstitial brachytherapy from simulation to application

    Science.gov (United States)

    Lin, Liyong

    Organs at risk (OAR) are sometimes adjacent to or embedded in or overlap with the clinical target volume (CTV) to be treated. The purpose of this PhD study is to develop directionally low energy gamma-emitting interstitial brachytherapy sources. These sources can be applied between OAR to selectively reduce hot spots in the OARs and normal tissues. The reduction of dose over undesired regions can expand patient eligibility or reduce toxicities for the treatment by conventional interstitial brachytherapy. This study covers the development of a directional source from design optimization to construction of the first prototype source. The Monte Carlo code MCNP was used to simulate the radiation transport for the designs of directional sources. We have made a special construction kit to assemble radioactive and gold-shield components precisely into D-shaped titanium containers of the first directional source. Directional sources have a similar dose distribution as conventional sources on the treated side but greatly reduced dose on the shielded side, with a sharp dose gradient between them. A three-dimensional dose deposition kernel for the 125I directional source has been calculated. Treatment plans can use both directional and conventional 125I sources at the same source strength for low-dose-rate (LDR) implants to optimize the dose distributions. For prostate tumors, directional 125I LDR brachytherapy can potentially reduce genitourinary and gastrointestinal toxicities and improve potency preservation for low risk patients. The combination of better dose distribution of directional implants and better therapeutic ratio between tumor response and late reactions enables a novel temporary LDR treatment, as opposed to permanent or high-dose-rate (HDR) brachytherapy for the intermediate risk T2b and high risk T2c tumors. Supplemental external-beam treatments can be shortened with a better brachytherapy boost for T3 tumors. In conclusion, we have successfully finished the

  2. Contemporary Toxicity Profile of Breast Brachytherapy Versus External Beam Radiation After Lumpectomy for Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Huo, Jinhai [Department of Health Services Research, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Giordano, Sharon H. [Department of Health Services Research, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Smith, Benjamin D. [Department of Health Services Research, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Shaitelman, Simona F. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Smith, Grace L., E-mail: glsmith@mdanderson.org [Department of Health Services Research, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2016-03-15

    Purpose: We compared toxicities after brachytherapy versus external beam radiation therapy (EBRT) in contemporary breast cancer patients. Methods and Materials: Using MarketScan healthcare claims, we identified 64,112 women treated from 2003 to 2012 with lumpectomy followed by radiation (brachytherapy vs EBRT). Brachytherapy was further classified by multichannel versus single-channel applicator approach. We identified the risks and predictors of 1-year infectious and noninfectious postoperative adverse events using logistic regression and temporal trends using Cochran-Armitage tests. We estimated the 5-year Kaplan-Meier cumulative incidence of radiation-associated adverse events. Results: A total of 4522 (7.1%) patients received brachytherapy (50.2% multichannel vs 48.7% single-channel applicator). The overall risk of infectious adverse events was higher after brachytherapy than after EBRT (odds ratio [OR] = 1.21; 95% confidence interval [CI] 1.09-1.34, P<.001). However, over time, the frequency of infectious adverse events after brachytherapy decreased, from 17.3% in 2003 to 11.6% in 2012, and was stable after EBRT at 9.7%. Beyond 2007, there were no longer excess infections with brachytherapy (P=.97). The overall risk of noninfectious adverse events was higher after brachytherapy than after EBRT (OR=2.27; 95% CI 2.09-2.47, P<.0001). Over time, the frequency of noninfectious adverse events detected increased: after multichannel brachytherapy, from 9.1% in 2004 to 18.9% in 2012 (Ptrend = .64); single-channel brachytherapy, from 12.8% to 29.8% (Ptrend<.001); and EBRT, from 6.1% to 10.3% (Ptrend<.0001). The risk was significantly higher with single-channel than with multichannel brachytherapy (hazard ratio = 1.32; 95% CI 1.03-1.69, P=.03). Of noninfectious adverse events, 70.9% were seroma. Seroma significantly increased breast pain risk (P<.0001). Patients with underlying diabetes, cardiovascular disease, and treatment with chemotherapy had increased

  3. Contemporary Toxicity Profile of Breast Brachytherapy Versus External Beam Radiation After Lumpectomy for Breast Cancer

    International Nuclear Information System (INIS)

    Huo, Jinhai; Giordano, Sharon H.; Smith, Benjamin D.; Shaitelman, Simona F.; Smith, Grace L.

    2016-01-01

    Purpose: We compared toxicities after brachytherapy versus external beam radiation therapy (EBRT) in contemporary breast cancer patients. Methods and Materials: Using MarketScan healthcare claims, we identified 64,112 women treated from 2003 to 2012 with lumpectomy followed by radiation (brachytherapy vs EBRT). Brachytherapy was further classified by multichannel versus single-channel applicator approach. We identified the risks and predictors of 1-year infectious and noninfectious postoperative adverse events using logistic regression and temporal trends using Cochran-Armitage tests. We estimated the 5-year Kaplan-Meier cumulative incidence of radiation-associated adverse events. Results: A total of 4522 (7.1%) patients received brachytherapy (50.2% multichannel vs 48.7% single-channel applicator). The overall risk of infectious adverse events was higher after brachytherapy than after EBRT (odds ratio [OR] = 1.21; 95% confidence interval [CI] 1.09-1.34, P<.001). However, over time, the frequency of infectious adverse events after brachytherapy decreased, from 17.3% in 2003 to 11.6% in 2012, and was stable after EBRT at 9.7%. Beyond 2007, there were no longer excess infections with brachytherapy (P=.97). The overall risk of noninfectious adverse events was higher after brachytherapy than after EBRT (OR=2.27; 95% CI 2.09-2.47, P<.0001). Over time, the frequency of noninfectious adverse events detected increased: after multichannel brachytherapy, from 9.1% in 2004 to 18.9% in 2012 (Ptrend = .64); single-channel brachytherapy, from 12.8% to 29.8% (Ptrend<.001); and EBRT, from 6.1% to 10.3% (Ptrend<.0001). The risk was significantly higher with single-channel than with multichannel brachytherapy (hazard ratio = 1.32; 95% CI 1.03-1.69, P=.03). Of noninfectious adverse events, 70.9% were seroma. Seroma significantly increased breast pain risk (P<.0001). Patients with underlying diabetes, cardiovascular disease, and treatment with chemotherapy had increased

  4. Biology of dose rate in brachytherapy

    International Nuclear Information System (INIS)

    Brenner, David J.

    1995-01-01

    Purpose: This course is designed for practitioners and beginners in brachytherapy. The aim is to review biological principles underlying brachytherapy, to understand why current treatment regimes are the way they are, and to discuss what the future may hold in store. Brachytherapy has a long history. It was suggested as long ago as 1903 by Alexander Graham Bell, and the optimal application of this technique has been a subject of debate ever since. 'Brachy' means 'short', and the essential features of conventional brachytherapy are: positioning of the source a short distance from, or in, the tumor, allowing good dose distributions; short overall treatment times, to counter tumor repopulation; low dose rate, enabling a good therapeutic advantage between tumor control and damage to late-responding tissue. The advantages of good dose distributions speak for themselves; in some situations, as we shall see, computer-based dose optimization can be used to improve them still further. The advantages of short overall times stem from the fact that accelerated repopulation of the tumor typically begins a few weeks after the start of a radiation treatment. If all the radiation can be crammed in before that time, the risks of tumor repopulation can be considerably reduced. In fact even external-beam radiotherapy is moving in this direction, with the use of highly accelerated protocols. The advantages of low dose rate stem from the differential response to fractionation of early- and late-responding tissues. Essentially, lowering the dose rate spares late-responding tissue more than it does early-responding tissue such as tumors. We shall also discuss some recent innovations in the context of the general principles that have been outlined. For example, High dose rate brachytherapy, particularly for the uterine cervix: Does it work? If so, when and why? Use of Ir-192 sources, with a half life of 70 days: Should corrections be made for changing biological effectiveness as the dose

  5. Interstitial high-dose rate brachytherapy as boost for anal canal cancer

    International Nuclear Information System (INIS)

    Falk, Alexander Tuan; Claren, Audrey; Benezery, Karen; François, Eric; Gautier, Mathieu; Gerard, Jean-Pierre; Hannoun-Levi, Jean-Michel

    2014-01-01

    To assess clinical outcomes of patients treated with a high-dose rate brachytherapy boost for anal canal cancer (ACC). From August 2005 to February 2013, 28 patients presenting an ACC treated by split-course external beam radiotherapy (EBRT) and HDR brachytherapy with or without chemotherapy in a French regional cancer center in Nice were retrospectively analyzed. Median age was 60.6 years [34 – 83], 25 patients presented a squamous cell carcinoma and 3 an adenocarcinoma; 21 received chemotherapy. Median dose of EBRT was 45 Gy [43.2 – 52]. Median dose of HDR brachytherapy was 12 Gy [10 - 15] with a median duration of 2 days. Median overall treatment time was 63 days and median delay between EBRT and brachytherapy was 20 days. Two-year local relapse free, metastatic free, disease free and overall survivals were 83%, 81.9%, 71.8% and 87.7% respectively. Acute toxicities were frequent but not severe with mostly grade 1 toxicities: 37% of genito-urinary, 40.7% of gastro-intestinal and 3.7% of cutaneous toxicities. Late toxicities were mainly G1 (43.1%) and G2 (22%). Two-year colostomy-free survival was 75.1%, one patient had a definitive sphincter amputation. High-dose rate brachytherapy for anal canal carcinoma as boost represents a feasible technique compared to low or pulsed-dose rate brachytherapy. This technique remains an excellent approach to precisely boost the tumor in reducing the overall treatment time

  6. Dosimetric characterization of model Cs-1 Rev2 cesium-131 brachytherapy source in water phantoms and human tissues with MCNP5 Monte Carlo simulation

    International Nuclear Information System (INIS)

    Wang Jianhua; Zhang Hualin

    2008-01-01

    A recently developed alternative brachytherapy seed, Cs-1 Rev2 cesium-131, has begun to be used in clinical practice. The dosimetric characteristics of this source in various media, particularly in human tissues, have not been fully evaluated. The aim of this study was to calculate the dosimetric parameters for the Cs-1 Rev2 cesium-131 seed following the recommendations of the AAPM TG-43U1 report [Rivard et al., Med. Phys. 31, 633-674 (2004)] for new sources in brachytherapy applications. Dose rate constants, radial dose functions, and anisotropy functions of the source in water, Virtual Water, and relevant human soft tissues were calculated using MCNP5 Monte Carlo simulations following the TG-43U1 formalism. The results yielded dose rate constants of 1.048, 1.024, 1.041, and 1.044 cGy h -1 U -1 in water, Virtual Water, muscle, and prostate tissue, respectively. The conversion factor for this new source between water and Virtual Water was 1.02, between muscle and water was 1.006, and between prostate and water was 1.004. The authors' calculation of anisotropy functions in a Virtual Water phantom agreed closely with Murphy's measurements [Murphy et al., Med. Phys. 31, 1529-1538 (2004)]. Our calculations of the radial dose function in water and Virtual Water have good agreement with those in previous experimental and Monte Carlo studies. The TG-43U1 parameters for clinical applications in water, muscle, and prostate tissue are presented in this work

  7. Quality assurance of Vari-source high dose rate (HDR) brachytherapy- remote after loader and cost effectiveness of Vari-source HDR- brachytherapy: NORI, Islamabad experience

    International Nuclear Information System (INIS)

    Ahmad, N.; Mahmood, H.; Jafri, S.R.A.

    2004-01-01

    A quality control of Vari-Source high dose rate (HDR) remote after loading brachytherapy machine was carried out and the cost effectiveness of HDR brachytherapy machine was also evaluated considering the cost of ten Iridium-192 wire sources at Nuclear Medicine, Oncology and Radiotherapy Institute (NORI), Islamabad, Pakistan. A total number of 253 intracavitary insertions were done in 98 patients from October 1996 to May 2001. The results of the quality control tests performed during 1996 to 2001 were within the acceptable limits. The cost effectiveness of Vari-Source HDR brachytherapy machine was also evaluated. The average cost per patient was calculated as US$ 491. Small number of patients was treated as the machine was used for gynecologic malignancies only. The objective was to assess the quality control status of HDR brachytherapy machine on patient treatment day, source exchange day and periodic day (monthly basis). It was found that the cost per patient can be minimized if other type of cancer patients are also treated on Vari-Source HDR machine. (author)

  8. Brachytherapy needle deflection evaluation and correction

    International Nuclear Information System (INIS)

    Wan Gang; Wei Zhouping; Gardi, Lori; Downey, Donal B.; Fenster, Aaron

    2005-01-01

    In prostate brachytherapy, an 18-gauge needle is used to implant radioactive seeds. This thin needle can be deflected from the preplanned trajectory in the prostate, potentially resulting in a suboptimum dose pattern and at times requiring repeated needle insertion to achieve optimal dosimetry. In this paper, we report on the evaluation of brachytherapy needle deflection and bending in test phantoms and two approaches to overcome the problem. First we tested the relationship between needle deflection and insertion depth as well as whether needle bending occurred. Targeting accuracy was tested by inserting a brachytherapy needle to target 16 points in chicken tissue phantoms. By implanting dummy seeds into chicken tissue phantoms under 3D ultrasound guidance, the overall accuracy of seed implantation was determined. We evaluated methods to overcome brachytherapy needle deflection with three different insertion methods: constant orientation, constant rotation, and orientation reversal at half of the insertion depth. Our results showed that needle deflection is linear with needle insertion depth, and that no noticeable bending occurs with needle insertion into the tissue and agar phantoms. A 3D principal component analysis was performed to obtain the population distribution of needle tip and seed position relative to the target positions. Our results showed that with the constant orientation insertion method, the mean needle targeting error was 2.8 mm and the mean seed implantation error was 2.9 mm. Using the constant rotation and orientation reversal at half insertion depth methods, the deflection error was reduced. The mean needle targeting errors were 0.8 and 1.2 mm for the constant rotation and orientation reversal methods, respectively, and the seed implantation errors were 0.9 and 1.5 mm for constant rotation insertion and orientation reversal methods, respectively

  9. Erectile function after permanent prostate brachytherapy

    International Nuclear Information System (INIS)

    Merrick, Gregory S.; Butler, Wayne M.; Galbreath, Robert W.; Stipetich, Robin L.; Abel, Laurie J.; Lief, Jonathan H.

    2002-01-01

    Purpose: To determine the incidence of potency preservation after permanent prostate brachytherapy using a validated patient-administered questionnaire and to evaluate the effect of multiple clinical and treatment parameters on penile erectile function. Methods and Materials: Four hundred twenty-five patients underwent permanent prostate brachytherapy from April 1995 to October 1999. Two hundred nine patients who were potent before brachytherapy and who at the time of the survey were not receiving hormonal therapy were mailed the specific erectile questions of the International Index of Erectile Function (IIEF) questionnaire with a self-addressed stamped envelope. The questionnaire consisted of 5 questions, with a maximal score of 25. Of the 209 patients, 181 (87%) completed and returned the questionnaire. The mean and median follow-up was 40.4±14.9 and 40.6 months, respectively (range 19-75). Preimplant erectile function was assigned using a three-tiered scoring system (2 = erections always or nearly always sufficient for vaginal penetration; 1 = erections sufficient for vaginal penetration but considered suboptimal; 0 = the inability to obtain erections and/or erections inadequate for vaginal penetration). Postimplant potency was defined as an IIEF score ≥11. The clinical parameters evaluated for erectile function included patient age, preimplant potency, clinical T-stage, pretreatment prostate-specific antigen level, Gleason score, elapsed time after implantation, hypertension, diabetes mellitus, and tobacco consumption. Treatment parameters included radiation dose to the prostate gland, use of hormonal manipulation, use of supplemental external beam radiotherapy (EBRT), choice of isotope, prostate volume, and planning volume. The efficacy of sildenafil citrate in brachytherapy-induced erectile dysfunction (ED) was also evaluated. Results: Pretreatment erectile function scores of 2 and 1 were assigned to 125 and 56 patients, respectively. With a 6-year follow

  10. Low-Dose-Rate Brachytherapy Versus Cryotherapy in Low- and Intermediate-Risk Prostate Cancer

    International Nuclear Information System (INIS)

    Gestaut, Matthew M.; Cai, Wendi; Vyas, Shilpa; Patel, Belur J.; Hasan, Salman A.; MunozMaldonado, Yolanda; Deb, Niloyjyoti; Swanson, Gregory

    2017-01-01

    Purpose: Cryotherapy and brachytherapy are definitive local treatment options for low- to intermediate-risk prostate cancer. There are both prospective and retrospective data for brachytherapy, but the use of cryotherapy has been limited primarily to single-institution retrospective studies. Currently, no published evidence has compared low-dose-rate brachytherapy versus cryotherapy. Methods and Materials: Institutional review board approval was obtained to conduct a retrospective chart review of consecutive patients treated at our institution from 1990 to 2012. For inclusion, patients must have received a prostate cancer diagnosis and have been considered to have low- to intermediate-risk disease according to the National Comprehensive Cancer Network criteria. All patients received brachytherapy or cryotherapy treatment. Disease specifics and failure details were collected for all patients. Failure was defined as prostate-specific antigen nadir +2 ng/mL. Results: A total of 359 patients were analyzed. The groups comprised 50 low-risk cryotherapy (LRC), 92 intermediate-risk cryotherapy (IRC), 133 low-risk brachytherapy (LRB), and 84 intermediate-risk brachytherapy (IRB) patients. The median prostate-specific antigen follow-up periods were 85.6 months (LRC), 59.2 months (IRC), 74.9 months (LRB), and 59.8 months (IRB). The 5-year biochemical progression–free survival (bPFS) rate was 57.9% in the cryotherapy group versus 89.6% in the brachytherapy group (P<.0001). The 5-year bPFS rate was 70.0% (LRC), 51.4% (IRC), 89.4% (LRB), and 89.7% (IRB). The bPFS rate was significantly different between brachytherapy and cryotherapy for low- and intermediate-risk groups (P<.05). The mean nadir temperature reached for cryotherapy patients was −35°C (range, −96°C to −6°C). Cryotherapy used a median of 2 freeze-thaw cycles (range, 2-4 freeze-thaw cycles). Conclusions: Results from this study suggest that cryotherapy is inferior to brachytherapy for patients with

  11. Low-Dose-Rate Brachytherapy Versus Cryotherapy in Low- and Intermediate-Risk Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Gestaut, Matthew M., E-mail: Matthew.Gestaut@BSWHealth.org [Department of Radiation Oncology, Baylor Scott and White Memorial Hospital, Texas A& M University School of Medicine, Temple, Texas (United States); Cai, Wendi [Department of Biostatistics, Baylor Scott and White Health, Temple, Texas (United States); Vyas, Shilpa [Department of Radiation Oncology, Swedish Cancer Institute, Seattle, Washington (United States); Patel, Belur J. [Department of Urology, Baylor Scott and White Memorial Hospital, Texas A& M University School of Medicine, Temple, Texas (United States); Hasan, Salman A. [Department of Radiation Oncology, Baylor Scott and White Memorial Hospital, Texas A& M University School of Medicine, Temple, Texas (United States); MunozMaldonado, Yolanda [Department of Biostatistics, Baylor Scott and White Health, Temple, Texas (United States); Deb, Niloyjyoti; Swanson, Gregory [Department of Radiation Oncology, Baylor Scott and White Memorial Hospital, Texas A& M University School of Medicine, Temple, Texas (United States)

    2017-05-01

    Purpose: Cryotherapy and brachytherapy are definitive local treatment options for low- to intermediate-risk prostate cancer. There are both prospective and retrospective data for brachytherapy, but the use of cryotherapy has been limited primarily to single-institution retrospective studies. Currently, no published evidence has compared low-dose-rate brachytherapy versus cryotherapy. Methods and Materials: Institutional review board approval was obtained to conduct a retrospective chart review of consecutive patients treated at our institution from 1990 to 2012. For inclusion, patients must have received a prostate cancer diagnosis and have been considered to have low- to intermediate-risk disease according to the National Comprehensive Cancer Network criteria. All patients received brachytherapy or cryotherapy treatment. Disease specifics and failure details were collected for all patients. Failure was defined as prostate-specific antigen nadir +2 ng/mL. Results: A total of 359 patients were analyzed. The groups comprised 50 low-risk cryotherapy (LRC), 92 intermediate-risk cryotherapy (IRC), 133 low-risk brachytherapy (LRB), and 84 intermediate-risk brachytherapy (IRB) patients. The median prostate-specific antigen follow-up periods were 85.6 months (LRC), 59.2 months (IRC), 74.9 months (LRB), and 59.8 months (IRB). The 5-year biochemical progression–free survival (bPFS) rate was 57.9% in the cryotherapy group versus 89.6% in the brachytherapy group (P<.0001). The 5-year bPFS rate was 70.0% (LRC), 51.4% (IRC), 89.4% (LRB), and 89.7% (IRB). The bPFS rate was significantly different between brachytherapy and cryotherapy for low- and intermediate-risk groups (P<.05). The mean nadir temperature reached for cryotherapy patients was −35°C (range, −96°C to −6°C). Cryotherapy used a median of 2 freeze-thaw cycles (range, 2-4 freeze-thaw cycles). Conclusions: Results from this study suggest that cryotherapy is inferior to brachytherapy for patients with

  12. Utilization of prostate brachytherapy for low risk prostate cancer: Is the decline overstated?

    Science.gov (United States)

    Safdieh, Joseph; Wong, Andrew; Weiner, Joseph P; Schwartz, David; Schreiber, David

    2016-08-01

    Several prior studies have suggested that brachytherapy utilization has markedly decreased, coinciding with the recent increased utilization of intensity modulated radiation therapy, as well as an increase in urologist-owned centers. We sought to investigate the brachytherapy utilization in a large, hospital-based registry. Men with prostate cancer diagnosed between 2004-2012 and treated with either external beam radiation and/or prostate brachytherapy were abstracted from the National Cancer Database. In order to be included, men had to be clinically staged as T1c-T2aNx-0Mx-0, Gleason 6, PSA ≤ 10.0 ng/ml. Descriptive statistics were used to analyze brachytherapy utilization over time and were compared via χ(2). Multivariate logistic regression was used to assess for covariables associated with increased brachytherapy usage. There were 89,413 men included in this study, of which 37,054 (41.6%) received only external beam radiation, and 52,089 (58.4%) received prostate brachytherapy. The use of brachytherapy declined over time from 62.9% in 2004 to 51.3% in 2012 (p facilities (60.8% in 2004 to 47.0% in 2012, p facilities (63.7% in 2004 to 53.0% in 2012, p facilities than those who lived further. The use of intensity modulated radiation therapy increased during this same time period from 18.4% in 2004 to 38.2% in 2012 (p usage. In this hospital-based registry, prostate brachytherapy usage has declined for low risk prostate cancer as intensity modulated radiation therapy usage has increased. However, it still remains the treatment of choice for 51.3% of patients as of 2012.

  13. The brachytherapy with low dose-rate iridium for prostate cancer

    International Nuclear Information System (INIS)

    Momma, Tetsuo; Saito, Shiro; Ohki, Takahiro; Satoh, Hiroyuki; Toya, Kazuhito; Dokiya, Takushi; Murai, Masaru

    2000-01-01

    Brachytherapy as an option for the treatment of prostate cancer has been commonly performed in USA. As the permanent seeding of the radioactive materials is strictly restricted by the law in Japan, brachytherapy must be performed by the temporary implant. This treatment has been performed at a few facilities in Japan mostly using high dose-rate iridium. Only our facility has been using low dose-rate iridium (LDR-Ir) for prostate cancer. This study evaluates the clinical results of the treatment. Since December 1997 to December 1999, 26 patients with histologically diagnosed as prostate cancer (Stage B, 92%; Stage C, 8%) underwent brachytherapy. Twenty-two patients received brachytherapy alone, three were treated with a combination of brachytherapy and external beam radiotherapy (ERT) and one was treated with a combination of brachytherapy and neoadjuvant endocrine therapy. Patients ranged in age from 61 to 84 (median 76) years old. Treatment was initiated with perineal needle placement. From 10 to 14 needles were placed through the holes on the template which was fixed to the stabilizer of the transrectal ultrasound probe. After the needle placement, CT scan was performed to draw distribution curves for the treatment planning. LDR-Ir wires were introduced to the sheath and indwelled during the time calculated from dosimetry. Peripheral dose was 70 Gy for the monotherapy of brachytherapy. For the combination therapy, 40 Gy was given by brachytherapy and 36 Gy with ERT afterwards. LDR-Ir wires were removed after completion of the radiation and patients were followed with serum PSA level and annual biopsy. During 2 to 26 (median 12) months follow-up, 8 out of 9 patients with initial PSA level above 20 ng/ml showed PSA failure. All 13 patients with initial PSA level lower than 20 ng/ml were free from PSA failure. Eight out of 11 patients with Gleason's score 7 or higher showed PSA failure, and all 14 patients (including three patients with combined therapy) with

  14. Utilization of prostate brachytherapy for low risk prostate cancer: Is the decline overstated?

    OpenAIRE

    Joseph Safdieh; Andrew Wong; Joseph P. Weiner; David Schwartz; David Schreiber

    2016-01-01

    Purpose : Several prior studies have suggested that brachytherapy utilization has markedly decreased, coinciding with the recent increased utilization of intensity modulated radiation therapy, as well as an increase in urologist-owned centers. We sought to investigate the brachytherapy utilization in a large, hospital-based registry. Material and methods: Men with prostate cancer diagnosed between 2004-2012 and treated with either external beam radiation and/or prostate brachytherapy ...

  15. Utilization of prostate brachytherapy for low risk prostate cancer: Is the decline overstated?

    Directory of Open Access Journals (Sweden)

    Joseph Safdieh

    2016-08-01

    Full Text Available Purpose : Several prior studies have suggested that brachytherapy utilization has markedly decreased, coinciding with the recent increased utilization of intensity modulated radiation therapy, as well as an increase in urologist-owned centers. We sought to investigate the brachytherapy utilization in a large, hospital-based registry. Material and methods: Men with prostate cancer diagnosed between 2004-2012 and treated with either external beam radiation and/or prostate brachytherapy were abstracted from the National Cancer Database. In order to be included, men had to be clinically staged as T1c-T2aNx-0Mx-0, Gleason 6, PSA ≤ 10.0 ng/ml. Descriptive statistics were used to analyze brachytherapy utilization over time and were compared via χ2. Multivariate logistic regression was used to assess for covariables associated with increased brachytherapy usage. Results : There were 89,413 men included in this study, of which 37,054 (41.6% received only external beam radiation, and 52,089 (58.4% received prostate brachytherapy. The use of brachytherapy declined over time from 62.9% in 2004 to 51.3% in 2012 (p < 0.001. This decline was noted in both academic facilities (60.8% in 2004 to 47.0% in 2012, p < 0.001 as well as in non-academic facilities (63.7% in 2004 to 53.0% in 2012, p < 0.001. The decline was more pronounced in patients who lived closer to treatment facilities than those who lived further. The use of intensity modulated radiation therapy increased during this same time period from 18.4% in 2004 to 38.2% in 2012 (p < 0.001. On multivariate analysis, treatment at an academic center, increasing age, decreasing distance from the treatment center, and years of diagnosis from 2006-2012 were significantly associated with reduced brachytherapy usage. Conclusions : In this hospital-based registry, prostate brachytherapy usage has declined for low risk prostate cancer as intensity modulated radiation therapy usage has increased. However, it still

  16. Low-Dose-Rate Brachytherapy Versus Cryotherapy in Low- and Intermediate-Risk Prostate Cancer.

    Science.gov (United States)

    Gestaut, Matthew M; Cai, Wendi; Vyas, Shilpa; Patel, Belur J; Hasan, Salman A; MunozMaldonado, Yolanda; Deb, Niloyjyoti; Swanson, Gregory

    2017-05-01

    Cryotherapy and brachytherapy are definitive local treatment options for low- to intermediate-risk prostate cancer. There are both prospective and retrospective data for brachytherapy, but the use of cryotherapy has been limited primarily to single-institution retrospective studies. Currently, no published evidence has compared low-dose-rate brachytherapy versus cryotherapy. Institutional review board approval was obtained to conduct a retrospective chart review of consecutive patients treated at our institution from 1990 to 2012. For inclusion, patients must have received a prostate cancer diagnosis and have been considered to have low- to intermediate-risk disease according to the National Comprehensive Cancer Network criteria. All patients received brachytherapy or cryotherapy treatment. Disease specifics and failure details were collected for all patients. Failure was defined as prostate-specific antigen nadir +2 ng/mL. A total of 359 patients were analyzed. The groups comprised 50 low-risk cryotherapy (LRC), 92 intermediate-risk cryotherapy (IRC), 133 low-risk brachytherapy (LRB), and 84 intermediate-risk brachytherapy (IRB) patients. The median prostate-specific antigen follow-up periods were 85.6 months (LRC), 59.2 months (IRC), 74.9 months (LRB), and 59.8 months (IRB). The 5-year biochemical progression-free survival (bPFS) rate was 57.9% in the cryotherapy group versus 89.6% in the brachytherapy group (Pcryotherapy for low- and intermediate-risk groups (Pcryotherapy patients was -35°C (range, -96°C to -6°C). Cryotherapy used a median of 2 freeze-thaw cycles (range, 2-4 freeze-thaw cycles). Results from this study suggest that cryotherapy is inferior to brachytherapy for patients with low- to intermediate-risk prostate cancer. Patient selection criteria for consideration of cryotherapy and brachytherapy are similar in terms of anesthesia candidacy. Therefore, cryotherapy would not be recommended as a first-line local therapy for this particular

  17. A comparison study on various low energy sources in interstitial prostate brachytherapy.

    Science.gov (United States)

    Bakhshabadi, Mahdi; Ghorbani, Mahdi; Khosroabadi, Mohsen; Knaup, Courtney; Meigooni, Ali S

    2016-02-01

    Low energy sources are routinely used in prostate brachytherapy. (125)I is one of the most commonly used sources. Low energy (131)Cs source was introduced recently as a brachytherapy source. The aim of this study is to compare dose distributions of (125)I, (103)Pd, and (131)Cs sources in interstitial brachytherapy of prostate. ProstaSeed (125)I brachytherapy source was simulated using MCNPX Monte Carlo code. Additionally, two hypothetical sources of (103)Pd and (131)Cs were simulated with the same geometry as the ProstaSeed (125)I source, while having their specific emitted gamma spectra. These brachytherapy sources were simulated with distribution of forty-eight seeds in a phantom including prostate. The prostate was considered as a sphere with radius of 1.5 cm. Absolute and relative dose rates were obtained in various distances from the source along the transverse and longitudinal axes inside and outside the tumor. Furthermore, isodose curves were plotted around the sources. Analyzing the initial dose profiles for various sources indicated that with the same time duration and air kerma strength, (131)Cs delivers higher dose to tumor. However, relative dose rate inside the tumor is higher and outside the tumor is lower for the (103)Pd source. The higher initial absolute dose in cGy/(h.U) of (131)Cs brachytherapy source is an advantage of this source over the others. The higher relative dose inside the tumor and lower relative dose outside the tumor for the (103)Pd source are advantages of this later brachytherapy source. Based on the total dose the (125)I source has advantage over the others due to its longer half-life.

  18. Image based brachytherapy planning with special reference to gynaecological cancers

    International Nuclear Information System (INIS)

    Kirisits, C.

    2008-01-01

    Cervical cancer is the most common cancer among women in India and one of the most frequent malignancies in Europe and in North America. In addition endometrium, vagina and vulva cancer are treated with brachytherapy. Especially for locally advanced cervix cancer the integration of image based brachytherapy planning into clinical routine is becoming a new standard for the future

  19. Minimal percentage of dose received by 90% of the urethra (%UD90) is the most significant predictor of PSA bounce in patients who underwent low-dose-rate brachytherapy (LDR-brachytherapy) for prostate cancer.

    Science.gov (United States)

    Tanaka, Nobumichi; Asakawa, Isao; Fujimoto, Kiyohide; Anai, Satoshi; Hirayama, Akihide; Hasegawa, Masatoshi; Konishi, Noboru; Hirao, Yoshihiko

    2012-09-14

    To clarify the significant clinicopathological and postdosimetric parameters to predict PSA bounce in patients who underwent low-dose-rate brachytherapy (LDR-brachytherapy) for prostate cancer. We studied 200 consecutive patients who received LDR-brachytherapy between July 2004 and November 2008. Of them, 137 patients did not receive neoadjuvant or adjuvant androgen deprivation therapy. One hundred and forty-two patients were treated with LDR-brachytherapy alone, and 58 were treated with LDR-brachytherapy in combination with external beam radiation therapy. The cut-off value of PSA bounce was 0.1 ng/mL. The incidence, time, height, and duration of PSA bounce were investigated. Clinicopathological and postdosimetric parameters were evaluated to elucidate independent factors to predict PSA bounce in hormone-naïve patients who underwent LDR-brachytherapy alone. Fifty patients (25%) showed PSA bounce and 10 patients (5%) showed PSA failure. The median time, height, and duration of PSA bounce were 17 months, 0.29 ng/mL, and 7.0 months, respectively. In 103 hormone-naïve patients treated with LDR-brachytherapy alone, and univariate Cox proportional regression hazard model indicated that age and minimal percentage of the dose received by 30% and 90% of the urethra were independent predictors of PSA bounce. With a multivariate Cox proportional regression hazard model, minimal percentage of the dose received by 90% of the urethra was the most significant parameter of PSA bounce. Minimal percentage of the dose received by 90% of the urethra was the most significant predictor of PSA bounce in hormone-naïve patients treated with LDR-brachytherapy alone.

  20. A comprehensive study on HDR brachytherapy treatments of cervical cancers: using the first Co-60 BEBIG Multisource Unit in Bangladesh

    Directory of Open Access Journals (Sweden)

    Naheed Rukhsana

    2011-07-01

    Full Text Available Purpose: The report presents an extraordinary synthesis of customer acceptance procedures (CAP, quality assurance tests (QA in the treatment of cervical cancer patients, using the first Co-60 Multisource Unit® in Bangladesh. The QA and commissioning required measurements and emergency tests verifying the functional limits of parameters acceptable for the new HDR afterloader. Acceptable limits were: 1 the deviation between specified and measured source strength: ± 3%; 2 the positional accuracy and uniformity: ± 1 mm; 3 the temporal accuracy (i.e. timer error and linearity and end error: ± 1% or 30 sec.; 4 treatment planning system (digitizer and localization software: ± 3% or 1 mm; 5 the distance from line to first dwell position and all the others: 5 mm and 10 mm (± 1 mm. Material and methods: Till February 2011, 47 patients were treated with HDR with more than 140 insertions applied. Amongst them, 12 patients were in stage IIB and IIIB, 22 were postoperative (IA and IB while the remaining 13 patients were with unknown stage. All the cases with stage IIB and IIIB received concurrent chemo-radiation and brachytherapy. Postoperative patients received EBRT (50 Gy and HDR according to the institutional protocol. CT scans were completed before HDR-plus planning with a good reproducibility (± 2% and were documented in repeating the plan for the same set up of a patient. Absorbed dose (Gy to a point P, at a distance of “r” in centimeters from a source of the Reference Air Kerma Rate (RAKR has been utilized for the QA of the source, where source strength measurement was accomplished. Results: All methods and analysis applicable to the QA and commissioning of Co-60 have been investigated and systematically analyzed, measured and documented before the treatment of a patient. Studies and safety requirements of this HDR remote afterloader were carried out. Acceptance and the QA were imperative to justify functionality and dependability in

  1. A comprehensive study on HDR brachytherapy treatments of cervical cancers: using the first Co-60 BEBIG Multisource Unit in Bangladesh.

    Science.gov (United States)

    Malik, Sadiq R; Banu, Parvin A; Rukhsana, Naheed

    2011-06-01

    The report presents an extraordinary synthesis of customer acceptance procedures (CAP), quality assurance tests (QA) in the treatment of cervical cancer patients, using the first Co-60 Multisource Unit ® in Bangladesh. The QA and commissioning required measurements and emergency tests verifying the functional limits of parameters acceptable for the new HDR afterloader. Acceptable limits were: 1) the deviation between specified and measured source strength: ± 3%; 2) the positional accuracy and uniformity: ± 1 mm; 3) the temporal accuracy (i.e. timer error and linearity and end error): ± 1% or 30 sec.; 4) treatment planning system (digitizer and localization software): ± 3% or 1 mm; 5) the distance from line to first dwell position and all the others: 5 mm and 10 mm (± 1 mm). Till February 2011, 47 patients were treated with HDR with more than 140 insertions applied. Amongst them, 12 patients were in stage IIB and IIIB, 22 were postoperative (IA and IB) while the remaining 13 patients were with unknown stage. All the cases with stage IIB and IIIB received concurrent chemo-radiation and brachytherapy. Postoperative patients received EBRT (50 Gy and HDR) according to the institutional protocol. CT scans were completed before HDR-plus planning with a good reproducibility (± 2%) and were documented in repeating the plan for the same set up of a patient. Absorbed dose (Gy) to a point P, at a distance of "r" in centimeters from a source of the Reference Air Kerma Rate (RAKR) has been utilized for the QA of the source, where source strength measurement was accomplished. All methods and analysis applicable to the QA and commissioning of Co-60 have been investigated and systematically analyzed, measured and documented before the treatment of a patient. Studies and safety requirements of this HDR remote afterloader were carried out. Acceptance and the QA were imperative to justify functionality and dependability in delivering the treatment. Implications of these studies

  2. Clinical experiences with Curietron after-loading apparatus in patients with gynecological carcinomas

    International Nuclear Information System (INIS)

    Vigvary, Zoltan; Csoemoer, Sandor; Feher, Laszlo; Hintalan, Albert; Semmelweis Orvostudomanyi Egyetem, Budapest

    1985-01-01

    On the basis of experiences the afterloading method using sup(137)Cs source with activities between 15 and 19.2 mCi seems to be effective in a large number of cervix-corpus carcinomas, when the parameters are identified exactly, and correspond with the admissible dose. By the individual dose planning a tumour dose under the threshold limit on the wall of the bladder and rectum can be achieved. According to calculations it is between 5-30 Gy on the posterior wall of the bladder, and 15-35 Gy on the anterior wall of rectum. The patients tolerate well the relatively long duration of treatment (48-60 hs) with the help of mild sedatives. The small intestines are considerably safe by this low R/min protracted method. These explain the lack of complications in the intestines. The application, the localization and the nursing can be performed in radiation-free environment. (author)

  3. Erectile Function Durability Following Permanent Prostate Brachytherapy

    International Nuclear Information System (INIS)

    Taira, Al V.; Merrick, Gregory S.; Galbreath, Robert W.; Butler, Wayne M.; Wallner, Kent E.; Kurko, Brian S.; Anderson, Richard; Lief, Jonathan H.

    2009-01-01

    Purpose: To evaluate long-term changes in erectile function following prostate brachytherapy. Methods and Materials: This study included 226 patients with prostate cancer and preimplant erectile function assessed by the International Index of Erectile Function-6 (IIEF-6) who underwent brachytherapy in two prospective randomized trials between February 2001 and January 2003. Median follow-up was 6.4 years. Pre- and postbrachytherapy potency was defined as IIEF-6 ≥ 13 without pharmacologic or mechanical support. The relationship among clinical, treatment, and dosimetric parameters and erectile function was examined. Results: The 7-year actuarial rate of potency preservation was 55.6% with median postimplant IIEF of 22 in potent patients. Potent patients were statistically younger (p = 0.014), had a higher preimplant IIEF (p < 0.001), were less likely to be diabetic (p = 0.002), and were more likely to report nocturnal erections (p = 0.008). Potency preservation in men with baseline IIEF scores of 29-30, 24-28, 18-23, and 13-17 were 75.5% vs. 73.6%, 51.7% vs. 44.8%, 48.0% vs. 40.0%, and 23.5% vs. 23.5% in 2004 vs. 2008. In multivariate Cox regression analysis, preimplant IIEF, hypertension, diabetes, prostate size, and brachytherapy dose to proximal penis strongly predicted for potency preservation. Impact of proximal penile dose was most pronounced for men with IIEF of 18-23 and aged 60-69. A significant minority of men who developed postimplant impotence ultimately regained erectile function. Conclusion: Potency preservation and median IIEF scores following brachytherapy are durable. Thoughtful dose sparing of proximal penile structures and early penile rehabilitation may further improve these results.

  4. Brachytherapy in Lip Carcinoma: Long-Term Results

    Energy Technology Data Exchange (ETDEWEB)

    Guibert, Mireille, E-mail: mireilleguib@voila.fr [Department of Head and Neck Surgery, Larrey Hospital, Toulouse (France); David, Isabelle [Department of Radiation Oncology, Claudius Regaud Institut, Toulouse (France); Vergez, Sebastien [Department of Head and Neck Surgery, Larrey Hospital, Toulouse (France); Rives, Michel [Department of Radiation Oncology, Claudius Regaud Institut, Toulouse (France); Filleron, Thomas [Department of Epidemiology, Claudius Regaud Institut, Toulouse (France); Bonnet, Jacques; Delannes, Martine [Department of Radiation Oncology, Claudius Regaud Institut, Toulouse (France)

    2011-12-01

    Purpose: The aim of this study was to evaluate the effectiveness of low-dose-rate brachytherapy for local control and relapse-free survival in squamous cell and basal cell carcinomas of the lips. We compared two groups: one with tumors on the skin and the other with tumors on the lip. Patients and methods: All patients had been treated at Claudius Regaud Cancer Centre from 1990 to 2008 for squamous cell or basal cell carcinoma. Low-dose-rate brachytherapy was performed with iridium 192 wires according to the Paris system rules. On average, the dose delivered was 65 Gy. Results: 172 consecutive patients were included in our study; 69 had skin carcinoma (squamous cell or basal cell), and 92 had squamous cell mucosal carcinoma. The average follow-up time was 5.4 years. In the skin cancer group, there were five local recurrences and one lymph node recurrence. In the mucosal cancer group, there were ten local recurrences and five lymph node recurrences. The 8-year relapse-free survival for the entire population was 80%. The 8-year relapse-free survival was 85% for skin carcinoma 75% for mucosal carcinoma, with no significant difference between groups. The functional results were satisfactory for 99% of patients, and the cosmetic results were satisfactory for 92%. Maximal toxicity observed was Grade 2. Conclusions: Low-dose-rate brachytherapy can be used to treat lip carcinomas at Stages T1 and T2 as the only treatment with excellent results for local control and relapse-free survival. The benefits of brachytherapy are also cosmetic and functional, with 91% of patients having no side effects.

  5. Local vaginal anesthesia during high-dose-rate intracavitary brachytherapy for cervical cancer

    International Nuclear Information System (INIS)

    Chen, H.-C.; Wan Leung, Stephen; Wang, C.-J.; Sun, L.-M.; Fang, F.-M.; Huang, E.-Y.; Wang, S.-J.; Yang, C.-W.

    1998-01-01

    Purpose: To evaluate the clinical efficacy of local vaginal lidocaine application for pain relief during high-dose-rate (HDR) intracavitary brachytherapy for patients with cervical cancer, and to investigate sequential changes in serum levels of lidocaine during the procedures. Methods and Materials: This prospective study was designed to examine the analgesic effect, physical response, and side effects of local anesthesia during HDR intracavitary brachytherapy. Forty patients were enrolled. All patients received 10-15 MV X-rays to the pelvis with a total dose of 45-59.4 Gy 5-6 weeks before undergoing HDR intracavitary brachytherapy. All patients underwent first intracavitary brachytherapy under general anesthesia. These patients were randomly allocated to receive one of two different treatment protocols as follows: (1) treatment session - control session - treatment session - control session; or (2) control session - treatment session- control session - treatment session. In the treatment sessions, topical anesthesia was administered using 4 ml of 10% lidocaine solution sprayed liberally on the cervix and vagina during intracavitary brachytherapy. In the control sessions, a placebo was administered in the same manner during brachytherapy. The Hensche's applicators for brachytherapy were inserted into the cervix and vagina 5 min after lidocaine application. The visual analogue scale (VAS) was used to assess pain and discomfort during brachytherapy. Blood pressure and heart rates were measured to evaluate the physiological response. Another prospective study was then performed to investigate the sequential changes of serum lidocaine levels during the anesthetic procedure. Eleven additional patients with similar disease state and demographic characteristics were enrolled and blood samples were obtained before, and 5, 15, 30, and 45 min after the initiation of lidocaine application. Results: The mean VAS values recorded during the treatment sessions and control

  6. GGEMS-Brachy: GPU GEant4-based Monte Carlo simulation for brachytherapy applications

    Science.gov (United States)

    Lemaréchal, Yannick; Bert, Julien; Falconnet, Claire; Després, Philippe; Valeri, Antoine; Schick, Ulrike; Pradier, Olivier; Garcia, Marie-Paule; Boussion, Nicolas; Visvikis, Dimitris

    2015-07-01

    In brachytherapy, plans are routinely calculated using the AAPM TG43 formalism which considers the patient as a simple water object. An accurate modeling of the physical processes considering patient heterogeneity using Monte Carlo simulation (MCS) methods is currently too time-consuming and computationally demanding to be routinely used. In this work we implemented and evaluated an accurate and fast MCS on Graphics Processing Units (GPU) for brachytherapy low dose rate (LDR) applications. A previously proposed Geant4 based MCS framework implemented on GPU (GGEMS) was extended to include a hybrid GPU navigator, allowing navigation within voxelized patient specific images and analytically modeled 125I seeds used in LDR brachytherapy. In addition, dose scoring based on track length estimator including uncertainty calculations was incorporated. The implemented GGEMS-brachy platform was validated using a comparison with Geant4 simulations and reference datasets. Finally, a comparative dosimetry study based on the current clinical standard (TG43) and the proposed platform was performed on twelve prostate cancer patients undergoing LDR brachytherapy. Considering patient 3D CT volumes of 400  × 250  × 65 voxels and an average of 58 implanted seeds, the mean patient dosimetry study run time for a 2% dose uncertainty was 9.35 s (≈500 ms 10-6 simulated particles) and 2.5 s when using one and four GPUs, respectively. The performance of the proposed GGEMS-brachy platform allows envisaging the use of Monte Carlo simulation based dosimetry studies in brachytherapy compatible with clinical practice. Although the proposed platform was evaluated for prostate cancer, it is equally applicable to other LDR brachytherapy clinical applications. Future extensions will allow its application in high dose rate brachytherapy applications.

  7. GGEMS-Brachy: GPU GEant4-based Monte Carlo simulation for brachytherapy applications

    International Nuclear Information System (INIS)

    Lemaréchal, Yannick; Bert, Julien; Schick, Ulrike; Pradier, Olivier; Garcia, Marie-Paule; Boussion, Nicolas; Visvikis, Dimitris; Falconnet, Claire; Després, Philippe; Valeri, Antoine

    2015-01-01

    In brachytherapy, plans are routinely calculated using the AAPM TG43 formalism which considers the patient as a simple water object. An accurate modeling of the physical processes considering patient heterogeneity using Monte Carlo simulation (MCS) methods is currently too time-consuming and computationally demanding to be routinely used. In this work we implemented and evaluated an accurate and fast MCS on Graphics Processing Units (GPU) for brachytherapy low dose rate (LDR) applications. A previously proposed Geant4 based MCS framework implemented on GPU (GGEMS) was extended to include a hybrid GPU navigator, allowing navigation within voxelized patient specific images and analytically modeled 125 I seeds used in LDR brachytherapy. In addition, dose scoring based on track length estimator including uncertainty calculations was incorporated. The implemented GGEMS-brachy platform was validated using a comparison with Geant4 simulations and reference datasets. Finally, a comparative dosimetry study based on the current clinical standard (TG43) and the proposed platform was performed on twelve prostate cancer patients undergoing LDR brachytherapy. Considering patient 3D CT volumes of 400  × 250  × 65 voxels and an average of 58 implanted seeds, the mean patient dosimetry study run time for a 2% dose uncertainty was 9.35 s (≈500 ms 10 −6 simulated particles) and 2.5 s when using one and four GPUs, respectively. The performance of the proposed GGEMS-brachy platform allows envisaging the use of Monte Carlo simulation based dosimetry studies in brachytherapy compatible with clinical practice. Although the proposed platform was evaluated for prostate cancer, it is equally applicable to other LDR brachytherapy clinical applications. Future extensions will allow its application in high dose rate brachytherapy applications. (paper)

  8. A comparison study on various low energy sources in interstitial prostate brachytherapy

    Directory of Open Access Journals (Sweden)

    Mahdi Bakhshabadi

    2016-02-01

    Full Text Available Purpose: Low energy sources are routinely used in prostate brachytherapy. 125 I is one of the most commonly used sources. Low energy 131 Cs source was introduced recently as a brachytherapy source. The aim of this study is to compare dose distributions of 125 I, 103 Pd, and 131 Cs sources in interstitial brachytherapy of prostate. Material and methods: ProstaSeed 125 I brachytherapy source was simulated using MCNPX Monte Carlo code. Additionally, two hypothetical sources of 103 Pd and 131 Cs were simulated with the same geometry as the ProstaSeed 125 I source, while having their specific emitted gamma spectra. These brachytherapy sources were simulated with distribution of forty-eight seeds in a phantom including prostate. The prostate was considered as a sphere with radius of 1.5 cm. Absolute and relative dose rates were obtained in various distances from the source along the transverse and longitudinal axes inside and outside the tumor. Furthermore, isodose curves were plotted around the sources. Results : Analyzing the initial dose profiles for various sources indicated that with the same time duration and air kerma strength, 131 Cs delivers higher dose to tumor. However, relative dose rate inside the tumor is higher and outside the tumor is lower for the 103 Pd source. Conclusions : The higher initial absolute dose in cGy/(h.U of 131 Cs brachytherapy source is an advantage of this source over the others. The higher relative dose inside the tumor and lower relative dose outside the tumor for the 103 Pd source are advantages of this later brachytherapy source. Based on the total dose the 125 I source has advantage over the others due to its longer half-life.

  9. Adherence to Vaginal Dilation Following High Dose Rate Brachytherapy for Endometrial Cancer

    International Nuclear Information System (INIS)

    Friedman, Lois C.; Abdallah, Rita; Schluchter, Mark; Panneerselvam, Ashok; Kunos, Charles A.

    2011-01-01

    Purpose: We report demographic, clinical, and psychosocial factors associated with adherence to vaginal dilation and describe the sexual and marital or nonmarital dyadic functioning of women following high dose rate (HDR) brachytherapy for endometrial cancer. Methods and Materials: We retrospectively evaluated women aged 18 years or older in whom early-stage endometrial (IAgr3-IIB) cancers were treated by HDR intravaginal brachytherapy within the past 3.5 years. Women with or without a sexual partner were eligible. Patients completed questionnaires by mail or by telephone assessing demographic and clinical variables, adherence to vaginal dilation, dyadic satisfaction, sexual functioning, and health beliefs. Results: Seventy-eight of 89 (88%) eligible women with early-stage endometrial cancer treated with HDR brachytherapy completed questionnaires. Only 33% of patients were adherers, based on reporting having used a dilator more than two times per week in the first month following radiation. Nonadherers who reported a perceived change in vaginal dimension following radiation reported that their vaginas were subjectively smaller after brachytherapy (p = 0.013). Adherers reported more worry about their sex lives or lack thereof than nonadherers (p = 0.047). Patients reported considerable sexual dysfunction following completion of HDR brachytherapy. Conclusions: Adherence to recommendations for vaginal dilator use following HDR brachytherapy for endometrial cancer is poor. Interventions designed to educate women about dilator use benefit may increase adherence. Although sexual functioning was compromised, it is likely that this existed before having cancer for many women in our study.

  10. Radioactive seed immobilization techniques for interstitial brachytherapy

    International Nuclear Information System (INIS)

    Yan, K.; Podder, T.; Buzurovic, I.; Hu, Y.; Dicker, A.; Valicenti, R.; Yu, Y.; Messing, E.; Rubens, D.; Sarkar, N.; Ng, W.

    2008-01-01

    In prostate brachytherapy, seeds can detach from their deposited sites and move locally in the pelvis or migrate to distant sites including the pulmonary and cardiac regions. Undesirable consequences of seed migration include inadequate dose coverage of the prostate and tissue irradiation effects at the site of migration. Thus, it is clinically important to develop seed immobilization techniques. We first analyze the possible causes for seed movement, and propose three potential techniques for seed immobilization: (1) surgical glue, (2) laser coagulation and (3) diathermy coagulation. The feasibility of each method is explored. Experiments were carried out using fresh bovine livers to investigate the efficacy of seed immobilization using surgical glue. Results have shown that the surgical glue can effectively immobilize the seeds. Evaluation of the radiation dose distribution revealed that the non-immobilized seed movement would change the planned isodose distribution considerably; while by using surgical glue method to immobilize the seeds, the changes were negligible. Prostate brachytherapy seed immobilization is necessary and three alternative mechanisms are promising for addressing this issue. Experiments for exploring the efficacy of the other two proposed methods are ongoing. Devices compatible with the brachytherapy procedure will be designed in future. (orig.)

  11. Endovascular brachytherapy prevents restenosis after femoropopliteal angioplasty: results of the Vienna-3 randomised multicenter study

    International Nuclear Information System (INIS)

    Pokrajac, Boris; Poetter, Richard; Wolfram, Roswitha M.; Budinsky, Alexandra C.; Kirisits, Christian; Lileg, Brigitte; Mendel, Helmuth; Sabeti, Schila; Schmid, Rainer; Minar, Erich

    2005-01-01

    Background and purpose: The aim of the trial was to investigate the effect of Iridium-192 gamma endovascular brachytherapy on reduction of restenosis after femoropopliteal angioplasty. Patients and methods: Between Oct, 1998 and Jul, 2001 a total of 134 patients have been randomized after successful angioplasty to brachytherapy or sham irradiation in a prospective, randomized, multicenter, double blind controlled trial. Patients with de novo lesion of at least 5 cm or recurrent lesion of any length after prior angioplasty have been enrolled. Brachytherapy was performed with 7 F centering catheter. Mean lesion length was 9.1 cm (1.5-25 cm) and mean intervention length 13.6 cm (4-27.5 cm) in brachytherapy cohort. Results: In placebo cohort mean lesion length was 10.3 cm (2-25 cm) and mean intervention length 14.1 cm (2-29 cm). A dose of 18 Gy was prescribed 2 mm from the surface of centering balloons. Analyzed (based on angiography) on intention to treat basis the binary restenosis rate at 12 months was 41.7% (28/67) in brachytherapy cohort and 67.1% (45/67) in placebo cohort (χ 2 test, P 30% residual stenosis after angioplasty) have been 23.4% in the brachytherapy and 53.3% in the placebo group (P<0.05), respectively. The cumulative patency rates after 24 months on intention to treat analysis were 54% in the brachytherapy and 27% in the placebo group (P<0.005). Corresponding data for as treated analysis were 77% in the brachytherapy and 39% in the placebo group (P<0.001). Late thrombosis was not seen. Conclusions: Significant reduction of restenosis rate was obtained with endovascular gamma brachytherapy after femoropopliteal angioplasty

  12. Inverse planning and class solutions for brachytherapy treatment planning

    International Nuclear Information System (INIS)

    Trnkova, P.

    2010-01-01

    Brachytherapy or interventional radiooncology is a method of radiation therapy. It is a method, where a small encapsulated radioactive source is placed near to / in the tumour and therefore delivers high doses directly to the target volume. Organs at risk (OARs) are spared due to the inverse square dose fall-off. In the past years there was a slight stagnation in the development of techniques for brachytherapy treatment. While external beam radiotherapy became more and more sophisticated, in brachytherapy traditional methods have been still used. Recently, 3D imaging was considered also as the modality for brachytherapy and more precise brachytherapy could expand. Nowadays, an image guided brachytherapy is state-of-art in many centres. Integration of imaging methods lead to the dose distribution individually tailored for each patient. Treatment plan optimization is mostly performed manually as an adaptation of a standard loading pattern. Recently, inverse planning approaches have been introduced into brachytherapy. The aim of this doctoral thesis was to analyze inverse planning and to develop concepts how to integrate inverse planning into cervical cancer brachytherapy. First part of the thesis analyzes the Hybrid Inverse treatment Planning and Optimization (HIPO) algorithm and proposes a workflow how to safely work with this algorithm. The problem of inverse planning generally is that only the dose and volume parameters are taken into account and spatial dose distribution is neglected. This fact can lead to unwanted high dose regions in a normal tissue. A unique implementation of HIPO into the treatment planning system using additional features enabled to create treatment plans similar to the plans resulting from manual optimization and to shape the high dose regions inside the CTV. In the second part the HIPO algorithm is compared to the Inverse Planning Simulated Annealing (IPSA) algorithm. IPSA is implemented into the commercial treatment planning system. It

  13. American Brachytherapy Society Task Group Report: Combination of brachytherapy and external beam radiation for high-risk prostate cancer.

    Science.gov (United States)

    Spratt, Daniel E; Soni, Payal D; McLaughlin, Patrick W; Merrick, Gregory S; Stock, Richard G; Blasko, John C; Zelefsky, Michael J

    To review outcomes for high-risk prostate cancer treated with combined modality radiation therapy (CMRT) utilizing external beam radiation therapy (EBRT) with a brachytherapy boost. The available literature for high-risk prostate cancer treated with combined modality radiation therapy was reviewed and summarized. At this time, the literature suggests that the majority of high-risk cancers are curable with multimodal treatment. Several large retrospective studies and three prospective randomized trials comparing CMRT to dose-escalated EBRT have demonstrated superior biochemical control with CMRT. Longer followup of the randomized trials will be required to determine if this will translate to a benefit in metastasis-free survival, disease-specific survival, and overall survival. Although greater toxicity has been associated with CMRT compared to EBRT, recent studies suggest that technological advances that allow better definition and sparing of critical adjacent structures as well as increasing experience with brachytherapy have improved implant quality and the toxicity profile of brachytherapy. The role of androgen deprivation therapy is well established in the external beam literature for high-risk disease, but there is controversy regarding the applicability of these data in the setting of dose escalation. At this time, there is not sufficient evidence for the omission of androgen deprivation therapy with dose escalation in this population. Comparisons with surgery remain limited by differences in patient selection, but the evidence would suggest better disease control with CMRT compared to surgery alone. Due to a series of technological advances, modern combination series have demonstrated unparalleled rates of disease control in the high-risk population. Given the evidence from recent randomized trials, combination therapy may become the standard of care for high-risk cancers. Copyright © 2016 American Brachytherapy Society. Published by Elsevier Inc. All

  14. Effects of brachytherapy on gene expressions of elastin and elastase

    International Nuclear Information System (INIS)

    Li Junming; Zhou Jingqun; Hu Bin; Li Shuguo

    2004-01-01

    Objective: To study the effects of brachytherapy on the gene expressions of elastin and elastase in cultured rat vascular smooth muscle cells (VSMCs). Methods: Rat VSMCs cultured in DMEM containing 10% FBS were irradiated by 60 Co γ-rays at 0, 7, 14, 28 Gy respectively. Then mRNA levels of elastin and elastase were determined by reverse transcription competitive PCR(RT-PCR). Results: Brachytherapy inhibited the expressions of elastase. Elastase mRNA decreased 25.3% and 50.1% in VSMC irradiated with 14, 28 Gy, respectively (P<0.05). The elastin mRNA level increased 80.7% and 102.3% in VSMC irradiated with 14, 25 Gy, respectively (P<0.05). Conclusion: Brachytherapy inhabits the expressions of elastase and increased elastin in VSMC cells

  15. The needs for brachytherapy source calibrations in the United States

    International Nuclear Information System (INIS)

    Coursey, B.M.; Goodman, L.J.; Hoppes, D.D.; Loevinger, R.; McLaughlin, W.L.; Soares, C.G.; Weaver, J.T.

    1992-01-01

    Brachytherapy sources of beta and gamma radiation ('brachy' is from the Greek, meaning 'near') have a long history of use in interstitial, intracavitary, intraluminal, and ocular radiation therapy. In the past the US national standards for these sources were often specified in activity or milligram radium equivalent. With the introduction of new radionuclide sources to replace radium, source strength calibrations are now expressed as air kerma rate at a meter. In this paper, we review the NIST standards for brachytherapy sources, list some of the common radionuclides and source encapsulations in use in the US radiology community, and describe the latest NIST work, in collaboration with several US medical institutions, on a method of two- and three-dimensional dose mapping of brachytherapy sources using radiochromic films. (orig.)

  16. High dose rate 192Ir calibration: Indonesia experiences

    International Nuclear Information System (INIS)

    Nasukha; Tjiptanto, D.; Darmasyah, R.; Kurniawan, B.

    2002-01-01

    Indonesia with a population of more than 200 Million people which spread on about 5000 islands, up to now only has 23 radiotherapy centers and some not active anymore. As mention by Parkin et al that Cervix/Utery and breast cancer are the most estimated numbers of new cases of cancers in women for developing countries, stomach and lung cancers in men. Indonesia as a developing country is likely similar to other developing countries on numbers of new cases of cancers in women. But quite different in men, in Indonesia the most common cancers are nasopharynx and thyroid cancers. The use of lr-192 sources in high dose-rate (HDR) remotely afterloaded brachytherapy treatments have greatly increased in recent years and variety of such sources are commercially available. Nine radiotherapy centers in Indonesia installed Nucletron microSelectron HDR remote afterloader. Based on the data of CiptoMangunkusurno Hospital, Jakarta that the most common cancers are the cervix, breast, nasopharynx and thyroid cancers which of percentage are about 31%, 25 %, 13%, and 6 % respectively. It means that the use of HDR 192 Ir brachytherapy has to be an effective tool in the treatments. Two methods have been studied and applied to calibrate HDR 192 Ir brachytherapy in Indonesia, especially for Nucletron microSelectron HDR 192 lr remote afterloader brachytherapy. Calibration of HDR 192 Ir brachytherapy source has been done by Cavity lonization Chamber and with Well Type lonization Chamber. First, 0.6 cc of NE Farmer type dosimeter that was calibrated to 60 Co and 250 kV of x-rays in air kerma was used in this experiment. Position of measurement (detector and source) at the center of the room and about 1 meter from the floor. Eight variation of distances from 10 cm to 40 cms have been carried out measurement as recommended by IAEA-TECDOC-1079. Correction have been given for scatters, non-uniformity, and attenuation. To solve the problem of scatter correction factor was used Matlab programming

  17. Complications of esophageal stenting after radiotherapy and brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Yorozu, Atsunori; Dokiya, Takushi; Ogita, Mikio; Kutuki, Shoji; Oki, Yosuke [National Second Hospital of Tokyo (Japan)

    1997-11-01

    The purpose of our study was to evaluate safety and complications of stenting after radiotherapy and brachytherapy. Fifteen of 21 patients showed improvement of dysphagia by stenting. But 6 of 21 patients had perforation or massive bleeding relating to stents. The risk for perforation or hemorrhage appears to be even higher in patients who have previously undergone radical radiotherapy and brachytherapy within one month before stenting. Stenting at 6 months or more after radical radiotherapy seems to be an effective and safe method of long-lasting palliation for severe dysphagia with recurrent esophageal cancer. (author)

  18. Assessing patient characteristics and radiation-induced non-targeted effects in vivo for high dose-rate (HDR) brachytherapy.

    Science.gov (United States)

    Pinho, Christine; Timotin, Emilia; Wong, Raimond; Sur, Ranjan K; Hayward, Joseph E; Farrell, Thomas J; Seymour, Colin; Mothersill, Carmel

    2015-01-01

    To test whether blood, urine, and tissue based colony-forming assays are a useful clinical detection tool for assessing fractionated treatment responses and non-targeted radiation effects in bystander cells. To assess patients' responses to radiation treatments, blood serum, urine, and an esophagus explant-based in vivo colony-forming assay were used from oesophageal carcinoma patients. These patients underwent three fractions of high dose rate (HDR) intraluminal brachytherapy (ILBT). Human keratinocyte reporters exposed to blood sera taken after the third fraction of brachytherapy had a significant increase in cloning efficiency compared to baseline samples (p fractions for the blood sera data only. Patient characteristics such as gender had no statistically significant effect (p > 0.05). Large variability was observed among the patients' tissue samples, these colony-forming assays showed no significant changes throughout fractionated brachytherapy (p > 0.05). Large inter-patient variability was found in the urine and tissue based assays, so these techniques were discontinued. However, the simple blood-based assay had much less variability. This technique may have future applications as a biological dosimeter to predict treatment outcome and assess non-targeted radiation effects.

  19. Performance profiling for brachytherapy applications

    Science.gov (United States)

    Choi, Wonqook; Cho, Kihyeon; Yeo, Insung

    2018-05-01

    In many physics applications, a significant amount of software (e.g. R, ROOT and Geant4) is developed on novel computing architectures, and much effort is expended to ensure the software is efficient in terms of central processing unit (CPU) time and memory usage. Profiling tools are used during the evaluation process to evaluate the efficiency; however, few such tools are able to accommodate low-energy physics regions. To address this limitation, we developed a low-energy physics profiling system in Geant4 to profile the CPU time and memory of software applications in brachytherapy applications. This paper describes and evaluates specific models that are applied to brachytherapy applications in Geant4, such as QGSP_BIC_LIV, QGSP_BIC_EMZ, and QGSP_BIC_EMY. The physics range in this tool allows it to be used to generate low energy profiles in brachytherapy applications. This was a limitation in previous studies, which caused us to develop a new profiling tool that supports profiling in the MeV range, in contrast to the TeV range that is supported by existing high-energy profiling tools. In order to easily compare the profiling results between low-energy and high-energy modes, we employed the same software architecture as that in the SimpliCarlo tool developed at the Fermilab National Accelerator Laboratory (FNAL) for the Large Hadron Collider (LHC). The results show that the newly developed profiling system for low-energy physics (less than MeV) complements the current profiling system used for high-energy physics (greater than TeV) applications.

  20. Results in patients treated with high-dose-rate interstitial brachytherapy for oral tongue cancer

    International Nuclear Information System (INIS)

    Yamamoto, Michinori; Shirane, Makoto; Ueda, Tsutomu; Miyahara, Nobuyuki

    2006-01-01

    Eight patients were treated with high-dose-rate interstitial brachytherapy for oral tongue cancer between September 2000 and August 2004. The patient distribution was 1 T1, 5 T2, 1 T3, and 1 T4a. Patients received 50-60 Gy in 10 fractions over seven days with high-dose-rate brachytherapy. Six of the eight patients were treated with a combination of external beam radiotherapy (20-30 Gy) and interstitial brachytherapy. The two-year primary local control rate was 83% for initial case. High-dose-rate brachytherapy was performed safely even for an aged person, and was a useful treatment modality for oral tongue cancer. (author)

  1. High dose rate brachytherapy for the treatment of soft tissue sarcoma of the extremity

    International Nuclear Information System (INIS)

    Speight, J.L.; Streeter, O.E.; Chawla, S.; Menendez, L.E.

    1996-01-01

    Purpose: we examined the role of preoperative neoadjuvant chemoradiation and adjuvant high-dose rate brachytherapy on the management of prognostically unfavorable soft tissue sarcomas of the extremities. Our goal was to examine the effect of high dose rate interstitial brachytherapy (HDR IBT) on reducing the risk of local recurrence following limb-sparing resection, as well as shortening treatment duration. Materials and methods: eleven patients, ranging in age from 31 to 73 years old, with soft tissue sarcoma of the extremity were treated at USC/Norris Comprehensive Cancer Center during 1994 and 1995. All patients had biopsy proven soft tissue sarcoma, and all were suitable candidates for limb-sparing surgery. All lesions were greater than 5cm in size and were primarily high grade. Tumor histologies included malignant fibrous histiocytoma (45%), liposarcoma (18%) and leiomyosarcoma, synovial cell sarcoma and spindle cell sarcoma (36%). Sites of tumor origin were the lower extremity (55%), upper extremity (18%) and buttock (9%), 1 patient (9%) had lesions in both the upper and lower extremity. Patients received HDR IBT following combined chemotherapy and external beam irradiation (EBRT) and en bloc resection of the sarcoma. Neoadjuvant chemotherapy consisted of three to four cycles of either Ifosfamide/Mesna with or without Adriamycin, or Mesna, Adriamycin, Ifosfamide and Dacarbazine. One patient received Cis-platin in addition to Ifos/Adr. A minimum of two cycles of chemotherapy were administered prior to EBRT. Additional cycles of chemotherapy were completed concurrently with EBRT but prior to HDR IBT. Preoperative EBRT doses ranging from 40 to 59.4 Gy were given in daily fractions of 180 to 200cGy. Following en bloc resection, HDR IBT was administered using the Omnitron tm 2000 remote afterloading system. Doses ranging from 13 to 30 Gy were delivered to the surgical tumor bed at depths of 0.5mm to 0.75mm from the radioactive source. Results: median follow-up was

  2. Iodine-125 seed implantation (permanent brachytherapy) for clinically localized prostate cancer

    International Nuclear Information System (INIS)

    Ebara, Shin; Katayama, Yoshihisa; Tanimoto, Ryuta

    2008-01-01

    From January 2004 to March 2007, 308 patients with clinically localized prostate cancer were treated using iodine-125 ( 125 I) seed implantation (permanent brachytherapy) at Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences. We evaluated the treatment's efficacy and morbidity in 300 prostate cancer patients who were followed up for more than 1 month after brachytherapy. Based on the National Comprehensive Cancer Network (NCCN) guidelines, patients with a prostate volume of less than 40 ml in transrectal ultrasound imaging were classified as low or intermediate risk. The median patient age was 67 years (range 50 to 79 years), the median prostate-specific antigen (PSA) value before biopsy was 6.95 ng/ml (range 1.13 to 24.7 ng/ml), and the median prostate volume was 24.33 ml (range 9.3 to 41.76 ml). The median follow-up was 18 months (range 1 to 36 months) and the PSA levels decreased in almost all patients after brachytherapy. Although 194 of 300 patients (64.7%) complained of difficulty in urination, pollakisuria/urgency, miction pain, and/or urinary incontinence, all of which might be associated with radiation prostatitis during the first month after brachytherapy, these symptoms gradually improved. 125 I seed implantation brachytherapy is safe and effective for localized prostate cancer within short-term follow up. (author)

  3. Poster - 07: Investigations of the Advanced Collapsed-cone Engine for HDR Brachytherapy Scalp Treatments

    Energy Technology Data Exchange (ETDEWEB)

    Cawston-Grant, Brie; Morrison, Hali; Sloboda, Ron; Menon, Geetha [Cross Cancer Institute, University of Alberta, Edmonton (Canada)

    2016-08-15

    Purpose: To present an investigation of the Advanced Collapsed-cone Engine (ACE) in Oncentraê Brachy (OcB) v4.5 using a tissue equivalent phantom modeling scalp brachytherapy (BT) treatments. Methods: A slab phantom modeling the skin, skull, brain and mold was used. A dose of 400cGy was prescribed to just above the skull layer using TG-43 and was delivered using an HDR afterloader. Measurements were made using Gafchromic™ EBT3 film at four depths within the phantom. The TG-43 planned and film measured doses were compared to the standard (sACE) and high (hACE) accuracy ACE options in OcB between the surface and below the skull. Results: The average difference between the TG-43 calculated and film measured doses was −11.25±3.38% when there was no air gap between the mold and skin; sACE and hACE doses were on average lower than TG-43 calculated doses by 3.41±0.03% and 2.45±0.03%, respectively. With a 3mm air gap between the mold and skin, the difference between the TG-43 calculated and measured doses was −8.28±5.76%; sACE and hACE calculations yielded average doses 1.87±0.03% and 1.78±0.04% greater than TG-43, respectively. Conclusions: TG-43, sACE, and hACE were found to overestimate doses below the skull layer compared to film. With a 3mm air gap between the mold and skin, sACE and hACE more accurately predicted the film dose to the skin surface than TG-43. More clinical variations and their implications are currently being investigated.

  4. Poster - 07: Investigations of the Advanced Collapsed-cone Engine for HDR Brachytherapy Scalp Treatments

    International Nuclear Information System (INIS)

    Cawston-Grant, Brie; Morrison, Hali; Sloboda, Ron; Menon, Geetha

    2016-01-01

    Purpose: To present an investigation of the Advanced Collapsed-cone Engine (ACE) in Oncentraê Brachy (OcB) v4.5 using a tissue equivalent phantom modeling scalp brachytherapy (BT) treatments. Methods: A slab phantom modeling the skin, skull, brain and mold was used. A dose of 400cGy was prescribed to just above the skull layer using TG-43 and was delivered using an HDR afterloader. Measurements were made using Gafchromic™ EBT3 film at four depths within the phantom. The TG-43 planned and film measured doses were compared to the standard (sACE) and high (hACE) accuracy ACE options in OcB between the surface and below the skull. Results: The average difference between the TG-43 calculated and film measured doses was −11.25±3.38% when there was no air gap between the mold and skin; sACE and hACE doses were on average lower than TG-43 calculated doses by 3.41±0.03% and 2.45±0.03%, respectively. With a 3mm air gap between the mold and skin, the difference between the TG-43 calculated and measured doses was −8.28±5.76%; sACE and hACE calculations yielded average doses 1.87±0.03% and 1.78±0.04% greater than TG-43, respectively. Conclusions: TG-43, sACE, and hACE were found to overestimate doses below the skull layer compared to film. With a 3mm air gap between the mold and skin, sACE and hACE more accurately predicted the film dose to the skin surface than TG-43. More clinical variations and their implications are currently being investigated.

  5. Penile brachytherapy: Results for 49 patients

    International Nuclear Information System (INIS)

    Crook, Juanita M.; Jezioranski, John; Grimard, Laval; Esche, Bernd; Pond, G.

    2005-01-01

    Purpose: To report results for 49 men with squamous cell carcinoma (SCC) of the penis treated with primary penile interstitial brachytherapy at one of two institutions: the Ottawa Regional Cancer Center, Ottawa, and the Princess Margaret Hospital, Toronto, Ontario, Canada. Methods and Materials: From September 1989 to September 2003, 49 men (mean age, 58 years; range, 22-93 years) had brachytherapy for penile SCC. Fifty-one percent of tumors were T1, 33% T2, and 8% T3; 4% were in situ and 4% Tx. Grade was well differentiated in 31%, moderate in 45%, and poor in 2%; grade was unspecified for 20%. One tumor was verrucous. All tumors in Toronto had pulsed dose rate (PDR) brachytherapy (n = 23), whereas those in Ottawa had either Iridium wire (n 22) or seeds (n = 4). Four patients had a single plane implant with a plastic tube technique, and all others had a volume implant with predrilled acrylic templates and two or three parallel planes of needles (median, six needles). Mean needle spacing was 13.5 mm (range, 10-18 mm), mean dose rate was 65 cGy/h (range, 33-160 cGy/h), and mean duration was 98.8 h (range, 36-188 h). Dose rates for PDR brachytherapy were 50-61.2 cGy/h, with no correction in total dose, which was 60 Gy in all cases. Results: Median follow-up was 33.4 months (range, 4-140 months). At 5 years, actuarial overall survival was 78.3% and cause-specific survival 90.0%. Four men died of penile cancer, and 6 died of other causes with no evidence of recurrence. The cumulative incidence rate for never having experienced any type of failure at 5 years was 64.4% and for local failure was 85.3%. All 5 patients with local failure were successfully salvaged by surgery; 2 other men required penectomy for necrosis. The soft tissue necrosis rate was 16% and the urethral stenosis rate 12%. Of 8 men with regional failure, 5 were salvaged by lymph node dissection with or without external radiation. All 4 men with distant failure died of disease. Of 49 men, 42 had an intact

  6. The evolution of brachytherapy treatment planning

    International Nuclear Information System (INIS)

    Rivard, Mark J.; Venselaar, Jack L. M.; Beaulieu, Luc

    2009-01-01

    Brachytherapy is a mature treatment modality that has benefited from technological advances. Treatment planning has advanced from simple lookup tables to complex, computer-based dose-calculation algorithms. The current approach is based on the AAPM TG-43 formalism with recent advances in acquiring single-source dose distributions. However, this formalism has clinically relevant limitations for calculating patient dose. Dose-calculation algorithms are being developed based on Monte Carlo methods, collapsed cone, and solving the linear Boltzmann transport equation. In addition to improved dose-calculation tools, planning systems and brachytherapy treatment planning will account for material heterogeneities, scatter conditions, radiobiology, and image guidance. The AAPM, ESTRO, and other professional societies are working to coordinate clinical integration of these advancements. This Vision 20/20 article provides insight into these endeavors.

  7. Two years experience with a computer-assisted monitoring and recording system used in gynecological afterloading therapy

    International Nuclear Information System (INIS)

    Kaulich, T.W.; Boedi, R.; Nuesslin, F.; Hirnle, P.

    1990-01-01

    A computer program running on a simple desk-calculator has been developed for monitoring and recording gynecological high-dose afterloading therapy. For treatment monitoring the multiple-probe AM6-system (PTW-Freiburg) is used which allows for dose measurements in the urinary bladder and the rectum. The probe signals are processed on line in order to indicate the actual dose at the measuring points. After completing the irradiation the treatment is documented. Performing fractionated treatment the measuring data are stored in the computer memory for calculating total accumulated dose. The above-described monitoring- and protocolling system has proven its usefulness during two years of clinical work. (orig.) [de

  8. SU-F-BRA-04: Prostate HDR Brachytherapy with Multichannel Robotic System

    International Nuclear Information System (INIS)

    Joseph, F Maria; Podder, T; Yu, Y

    2015-01-01

    Purpose: High-dose-rate (HDR) brachytherapy is gradually becoming popular in treating patients with prostate cancers. However, placement of the HDR needles at desired locations into the patient is challenging. Application of robotic system may improve the accuracy of the clinical procedure. This experimental study is to evaluate the feasibility of using a multichannel robotic system for prostate HDR brachytherapy. Methods: In this experimental study, the robotic system employed was a 6-DOF Multichannel Image-guided Robotic Assistant for Brachytherapy (MIRAB), which was designed and fabricated for prostate seed implantation. The MIRAB has the provision of rotating 16 needles while inserting them. Ten prostate HDR brachytherapy needles were simultaneously inserted using MIRAB into a commercially available prostate phantom. After inserting the needles into the prostate phantom at desired locations, 2mm thick CT slices were obtained for dosimetric planning. HDR plan was generated using Oncetra planning system with a total prescription dose of 34Gy in 4 fractions. Plan quality was evaluated considering dose coverage to prostate and planning target volume (PTV), with 3mm margin around prostate, as well as the dose limit to the organs at risk (OARs) following the American Brachytherapy Society (ABS) guidelines. Results: From the CT scan, it is observed that the needles were inserted straight into the desired locations and they were adequately spaced and distributed for a clinically acceptable HDR plan. Coverage to PTV and prostate were about 91% (V100= 91%) and 96% (V100=96%), respectively. Dose to 1cc of urethra, rectum, and bladder were within the ABS specified limits. Conclusion: The MIRAB was able to insert multiple needles simultaneously into the prostate precisely. By controlling the MIRAB to insert all the ten utilized needles into the prostate phantom, we could achieve the robotic HDR brachytherapy successfully. Further study for assessing the system

  9. Design and optimization of a brachytherapy robot

    Science.gov (United States)

    Meltsner, Michael A.

    Trans-rectal ultrasound guided (TRUS) low dose rate (LDR) interstitial brachytherapy has become a popular procedure for the treatment of prostate cancer, the most common type of non-skin cancer among men. The current TRUS technique of LDR implantation may result in less than ideal coverage of the tumor with increased risk of negative response such as rectal toxicity and urinary retention. This technique is limited by the skill of the physician performing the implant, the accuracy of needle localization, and the inherent weaknesses of the procedure itself. The treatment may require 100 or more sources and 25 needles, compounding the inaccuracy of the needle localization procedure. A robot designed for prostate brachytherapy may increase the accuracy of needle placement while minimizing the effect of physician technique in the TRUS procedure. Furthermore, a robot may improve associated toxicities by utilizing angled insertions and freeing implantations from constraints applied by the 0.5 cm-spaced template used in the TRUS method. Within our group, Lin et al. have designed a new type of LDR source. The "directional" source is a seed designed to be partially shielded. Thus, a directional, or anisotropic, source does not emit radiation in all directions. The source can be oriented to irradiate cancerous tissues while sparing normal ones. This type of source necessitates a new, highly accurate method for localization in 6 degrees of freedom. A robot is the best way to accomplish this task accurately. The following presentation of work describes the invention and optimization of a new prostate brachytherapy robot that fulfills these goals. Furthermore, some research has been dedicated to the use of the robot to perform needle insertion tasks (brachytherapy, biopsy, RF ablation, etc.) in nearly any other soft tissue in the body. This can be accomplished with the robot combined with automatic, magnetic tracking.

  10. Palliative brachytherapy with or without primary stent placement in patients with oesophageal cancer, a randomised phase III trial

    International Nuclear Information System (INIS)

    Amdal, Cecilie Delphin; Jacobsen, Anne-Birgitte; Sandstad, Berit; Warloe, Trond; Bjordal, Kristin

    2013-01-01

    Purpose: To investigate whether a combination of self-expanding metal stent (SEMS) and brachytherapy provided more rapid and prolonged effect on dysphagia without increased pain compared to brachytherapy alone in patients with incurable oesophageal cancer. Methods: 41 Patients were randomised to SEMS followed by brachytherapy, 8 Gy × 3 (n = 21) or brachytherapy alone, 8 Gy × 3 (n = 20). Change in dysphagia and pain three and seven weeks after randomisation (FU1 and FU2) was assessed by patient-reported outcome. Dysphagia, other symptoms and health-related quality of life were assessed every four weeks thereafter. The study was closed before the estimated patient-number was reached due to slow recruitment. Results: Patients receiving SEMS followed by brachytherapy had significantly improved dysphagia at FU1 compared to patients receiving brachytherapy alone (n = 35). Difference in pain was not observed. At FU2, patients in both arms (n = 21) had less dysphagia. Four patients in the combined treatment arm experienced manageable complications, no complications occurred after brachytherapy alone. Conclusion: For the relief of dysphagia, SEMS followed by brachytherapy is preferable and safe for patients in need of immediate alleviation, while brachytherapy with or without preceding SEMS provides relief within a few weeks after treatment

  11. HDR brachytherapy for superficial non-melanoma skin cancers

    International Nuclear Information System (INIS)

    Gauden, Ruth; Pracy, Martin; Avery, Anne-Marie; Hodgetts, Ian; Gauden, Stan

    2013-01-01

    Our initial experience using recommended high dose per fraction skin brachytherapy (BT) treatment schedules, resulted in poor cosmesis. This study aimed to assess in a prospective group of patients the use of Leipzig surface applicators for High Dose Rate (HDR) brachytherapy, for the treatment of small non-melanoma skin cancers (NMSC) using a protracted treatment schedule. Treatment was delivered by HDR brachytherapy with Leipzig applicators. 36Gy, prescribed to between 3 to 4mm, was given in daily 3Gy fractions. Acute skin toxicity was evaluated weekly during irradiation using the Radiation Therapy Oncology Group criteria. Local response, late skin effects and cosmetic results were monitored at periodic intervals after treatment completion. From March 2002, 200 patients with 236 lesions were treated. Median follow-up was 66 months (range 25–121 months). A total of 162 lesions were macroscopic, while in 74 cases, BT was given after resection because of positive microscopic margins. There were 121 lesions that were basal cell carcinomas, and 115 were squamous cell carcinomas. Lesions were located on the head and neck (198), the extremities (26) and trunk (12). Local control was 232/236 (98%). Four patients required further surgery to treat recurrence. Grade 1 acute skin toxicity was detected in 168 treated lesions (71%) and grade 2 in 81 (34%). Cosmesis was good or excellent in 208 cases (88%). Late skin hypopigmentation changes were observed in 13 cases (5.5%). Delivering 36Gy over 2 weeks to superficial NMSC using HDR brachytherapy is well tolerated and provides a high local control rate without significant toxicity.

  12. Focal low-dose rate brachytherapy for the treatment of prostate cancer

    Directory of Open Access Journals (Sweden)

    Tong WY

    2013-09-01

    Full Text Available William Y Tong, Gilad Cohen, Yoshiya Yamada Memorial Sloan-Kettering Cancer Center, Department of Radiation Oncology, New York, NY, USA Abstract: Whole-gland low-dose rate (LDR brachytherapy has been a well-established modality of treating low-risk prostate cancer. Treatment in a focal manner has the advantages of reduced toxicity to surrounding organs. Focal treatment using LDR brachytherapy has been relatively unexplored, but it may offer advantages over other modalities that have established experiences with a focal approach. This is particularly true as prostate cancer is being detected at an earlier and more localized stage with the advent of better detection methods and newer imaging modalities. Keywords: prostate cancer, focal, low dose rate, brachytherapy

  13. Brachytherapy for oral cancer

    International Nuclear Information System (INIS)

    Monzen, Yoshio; Ajimu, Akira; Morikawa, Minoru; Hayashi, Nobuyuki; Yoshida, Shintarou; Ashizawa, Kazuto; Hayashi, Kuniaki; Ikenaga, Kouji; Sakamoto, Ichirou.

    1988-01-01

    13 cases with oral cancer were treated using brachytherapy at the Department of Radiology, Nagasaki University Hospital from September 1985 to February 1988. Among 11 cases of tongue cancer, T1 and T2 cases were well controlled by radiation therapy using 226 Ra needles. Cancer of oral floor and buccal mucosa were controlled by the use of 192 Au grains. (author)

  14. CT-guided brachytherapy. A novel percutaneous technique for interstitial ablation of liver malignancies; CT-gesteuerte Brachytherapie. Eine neue perkutane Technik zur interstitiellen Ablation von Lebermetastasen

    Energy Technology Data Exchange (ETDEWEB)

    Ricke, J.; Wust, P.; Stohlmann, A.; Beck, A.; Cho, C.H.; Pech, M.; Wieners, G.; Spors, B.; Werk, M.; Rosner, C.; Haenninen, E.L.; Felix, R. [Klinik fuer Strahlenheilkunde, Charite Virchow-Klinikum, Humboldt-Univ. zu Berlin (Germany)

    2004-05-01

    Purpose: to assess safety and efficacy of CT-guided brachytherapy of liver malignancies. Patients and methods: 21 patients with 21 liver malignancies (19 metastases, two primary liver tumors) were treated with interstitial CT-guided brachytherapy applying a {sup 192}Ir source. In all patients, the use of image-guided thermal tumor ablation such as by radiofrequency or laser-induced thermotherapy (LITT) was impeded either by tumor size {>=} 5 cm in seven, adjacent portal or hepatic vein in ten, or adjacent bile duct bifurcation in four patients. Dosimetry was performed using three-dimensional CT data sets acquired after CT-guided positioning of the brachytherapy catheters. Results: the mean tumor diameter was 4.6 cm (2.5-11 cm). The mean minimal tumor dose inside the tumor margin amounted to 17 Gy (12-20 Gy). The proportion of the liver parenchyma exposed to > 5 gy was 18% (5-39%) of total liver parenchyma minus tumor volume. Nausea and vomiting were observed in six patients after brachytherapy (28%). One patient demonstrated obstructive jaundice due to tumor edema after irradiation of a metastasis adjacent to the bile duct bifurcation. We commonly encountered asymptomatic increases of liver enzymes. Local control rates after 6 and 12 months were 87% and 70%, respectively. Conclusion: CT-guided brachytherapy is safe and effective. This technique displays broader indications compared to image-guided thermal ablation by radiofrequency or LITT with respect to tumor size or localization. (orig.) [German] Ziel: Analyse der Sicherheit und Effektivitaet CT-gesteuerter Brachytherapie zur Ablation von Lebermalignomen. Patienten und Methodik: 21 Patienten mit 21 Lebermalignomen (19 Metastasen, zwei primaere Lebermalignome) wurden mit perkutaner, CT-gesteuerter interstitieller Brachytherapie mit {sup 192}Ir behandelt. Alle Patienten wiesen Umstaende auf, die eine bildgefuehrte thermische Ablation mit Radiofrequenz oder laserinduzierter Thermotherapie (LITT) einschraenkten

  15. Patient effective dose from endovascular brachytherapy with {sup 192}Ir Sources

    Energy Technology Data Exchange (ETDEWEB)

    Perna, L.; Bianchi, C.; Novario, R.; Nicolini, G.; Tanzi, F.; Conte, L

    2002-07-01

    The growing use of endovascular brachytherapy has been accompanied by the publication of a large number of studies in several fields, but few studies on patient dose have been found in the literature. Moreover, these studies were carried out on the basis of Monte Carlo simulation. The aim of the present study was to estimate the effective dose to the patient undergoing endovascular brachytherapy treatment with {sup 192}Ir sources, by means of experimental measurements. Two standard treatments were taken into account: an endovascular brachytherapy of the coronary artery corresponding to the activity x time product of 184 GBq.min and an endovascular brachytherapy of the renal artery (898 GBq.min). Experimental assessment was accomplished by thermoluminescence dosemeters positioned in more than 300 measurement points in a properly adapted Rando phantom. A method has been developed to estimate the mean organ doses for all tissues and organs concerned in order to calculate the effective dose associated with intravascular brachytherapy. The normalised organ doses resulting from coronary treatment were 2.4x10{sup -2} mSv.GBq{sup -1}.min{sup -1} for lung, 0.9x10{sup -2} mSv.GBq{sup -1}.min{sup -1} for oesophagus and 0.48x10{sup -2} mSv.GBq{sup -1}.min{sup -1} for bone marrow. During brachytherapy of the renal artery, the corresponding normalised doses were 4.2x10{sup -2} mSv.GBq{sup -1}.min{sup -1} for colon, 7.8x10{sup -2} mSv.GBq{sup -1}.min{sup -1} for stomach and 1.7x10{sup -2} mSv.GBq{sup -1}.min{sup -1} for liver. Coronary treatment involved an effective dose of 0.046 mSv.GBq{sup -1}.min{sup -1}, whereas the treatment of the renal artery resulted in an effective dose of 0.15 mSv.GBq{sup -1}.min{sup -1}; there were many similarities with data from former studies. Based on these results it can be concluded that the dose level of patients exposed during brachytherapy treatment is low. (author)

  16. Review of advanced catheter technologies in radiation oncology brachytherapy procedures

    OpenAIRE

    Zhou J; Zamdborg L; Sebastian E

    2015-01-01

    Jun Zhou,1,2 Leonid Zamdborg,1 Evelyn Sebastian1 1Department of Radiation Oncology, Beaumont Health System, 2Oakland University William Beaumont School of Medicine, Royal Oak, MI, USA Abstract: The development of new catheter and applicator technologies in recent years has significantly improved treatment accuracy, efficiency, and outcomes in brachytherapy. In this paper, we review these advances, focusing on the performance of catheter imaging and reconstruction techniques in brachytherapy ...

  17. Algorithms for the process management of sealed source brachytherapy

    International Nuclear Information System (INIS)

    Engler, M.J.; Ulin, K.; Sternick, E.S.

    1996-01-01

    Incidents and misadministrations suggest that brachytherapy may benefit form clarification of the quality management program and other mandates of the US Nuclear Regulatory Commission. To that end, flowcharts of step by step subprocesses were developed and formatted with dedicated software. The overall process was similarly organized in a complex flowchart termed a general process map. Procedural and structural indicators associated with each flowchart and map were critiqued and pre-existing documentation was revised. open-quotes Step-regulation tablesclose quotes were created to refer steps and subprocesses to Nuclear Regulatory Commission rules and recommendations in their sequences of applicability. Brachytherapy algorithms were specified as programmable, recursive processes, including therapeutic dose determination and monitoring doses to the public. These algorithms are embodied in flowcharts and step-regulation tables. A general algorithm is suggested as a template form which other facilities may derive tools to facilitate process management of sealed source brachytherapy. 11 refs., 9 figs., 2 tabs

  18. Dosimetry in high dose rate endoluminal brachytherapy

    International Nuclear Information System (INIS)

    Uno, Takashi; Kotaka, Kikuo; Itami, Jun

    1994-01-01

    In endoluminal brachytherapy for the tracheobronchial tree, esophagus, and bile duct, a reference point for dose calculation has been often settled at 1 cm outside from the middle of source travel path. In the current study, a change in the ratio of the reference point dose on the convex to concave side (Dq/Dp) was calculated, provided the source travel path bends as is the case in most endoluminal brachytherapies. Point source was presumed to move stepwise at 1 cm interval from 4 to 13 locations. Retention time at each location was calculated by personal computer so as to deliver equal dose at 1 cm from the linear travel path. With the retention time remaining constant, the change of Dq/Dp was assessed by bending the source travel path. Results indicated that the length of the source travel path and radius of its curve influenced the pattern of change in Dq/Dp. Therefore, it was concluded that the difference in reference dose on the convex and concave side of the curved path is not negligible under certain conditions in endoluminal brachytherapy. In order to maintain the ratio more than 0.9, relatively greater radius was required when the source travel path was decreased. (author)

  19. Brachytherapy Application With In Situ Dose Painting Administered by Gold Nanoparticle Eluters

    International Nuclear Information System (INIS)

    Sinha, Neeharika; Cifter, Gizem; Sajo, Erno; Kumar, Rajiv; Sridhar, Srinivas; Nguyen, Paul L.; Cormack, Robert A.; Makrigiorgos, G. Mike; Ngwa, Wilfred

    2015-01-01

    Purpose: Recent studies show promise that administering gold nanoparticles (GNP) to tumor cells during brachytherapy could significantly enhance radiation damage to the tumor. A new strategy proposed for sustained administration of the GNP in prostate tumors is to load them into routinely used brachytherapy spacers for customizable in situ release after implantation. This in silico study investigated the intratumor biodistribution and corresponding dose enhancement over time due to GNP released from such GNP-loaded brachytherapy spacers (GBS). Method and Materials: An experimentally determined intratumoral diffusion coefficient (D) for 10-nm nanoparticles was used to estimate D for other sizes by using the Stokes-Einstein equation. GNP concentration profiles, obtained using D, were then used to calculate the corresponding dose enhancement factor (DEF) for each tumor voxel, using dose painting-by-numbers approach, for times relevant to the considered brachytherapy sources' lifetimes. The investigation was carried out as a function of GNP size for the clinically applicable low-dose-rate brachytherapy sources iodine-125 (I-125), palladium-103 (Pd-103), and cesium-131 (Cs-131). Results: Results showed that dose enhancement to tumor voxels and subvolumes during brachytherapy can be customized by varying the size of GNP released or eluted from the GBS. For example, using a concentration of 7 mg/g GNP, significant DEF (>20%) could be achieved 5 mm from a GBS after 5, 12, 25, 46, 72, 120, and 195 days, respectively, for GNP sizes of 2, 5, 10, 20, 30, and 50 nm and for 80 nm when treating with I-125. Conclusions: Analyses showed that using Cs-131 provides the highest dose enhancement to tumor voxels. However, given its relatively longer half-life, I-125 presents the most flexibility for customizing the dose enhancement as a function of GNP size. These findings provide a useful reference for further work toward development of potential new brachytherapy application

  20. Brachytherapy Application With In Situ Dose Painting Administered by Gold Nanoparticle Eluters

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Neeharika [Department of Sciences, Wentworth Institute of Technology, Boston, Massachusetts (United States); Cifter, Gizem [Department of Physics and Applied Physics, University of Massachusetts, Lowell, Massachusetts (United States); Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women' s Hospital and Harvard Medical School, Boston, Massachusetts (United States); Sajo, Erno [Department of Physics and Applied Physics, University of Massachusetts, Lowell, Massachusetts (United States); Kumar, Rajiv; Sridhar, Srinivas [Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women' s Hospital and Harvard Medical School, Boston, Massachusetts (United States); Electronic Materials Research Institute and Department of Physics, Northeastern University, Boston, Massachusetts (United States); Nguyen, Paul L.; Cormack, Robert A.; Makrigiorgos, G. Mike [Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women' s Hospital and Harvard Medical School, Boston, Massachusetts (United States); Ngwa, Wilfred, E-mail: wngwa@lroc.harvard.edu [Department of Physics and Applied Physics, University of Massachusetts, Lowell, Massachusetts (United States); Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women' s Hospital and Harvard Medical School, Boston, Massachusetts (United States)

    2015-02-01

    Purpose: Recent studies show promise that administering gold nanoparticles (GNP) to tumor cells during brachytherapy could significantly enhance radiation damage to the tumor. A new strategy proposed for sustained administration of the GNP in prostate tumors is to load them into routinely used brachytherapy spacers for customizable in situ release after implantation. This in silico study investigated the intratumor biodistribution and corresponding dose enhancement over time due to GNP released from such GNP-loaded brachytherapy spacers (GBS). Method and Materials: An experimentally determined intratumoral diffusion coefficient (D) for 10-nm nanoparticles was used to estimate D for other sizes by using the Stokes-Einstein equation. GNP concentration profiles, obtained using D, were then used to calculate the corresponding dose enhancement factor (DEF) for each tumor voxel, using dose painting-by-numbers approach, for times relevant to the considered brachytherapy sources' lifetimes. The investigation was carried out as a function of GNP size for the clinically applicable low-dose-rate brachytherapy sources iodine-125 (I-125), palladium-103 (Pd-103), and cesium-131 (Cs-131). Results: Results showed that dose enhancement to tumor voxels and subvolumes during brachytherapy can be customized by varying the size of GNP released or eluted from the GBS. For example, using a concentration of 7 mg/g GNP, significant DEF (>20%) could be achieved 5 mm from a GBS after 5, 12, 25, 46, 72, 120, and 195 days, respectively, for GNP sizes of 2, 5, 10, 20, 30, and 50 nm and for 80 nm when treating with I-125. Conclusions: Analyses showed that using Cs-131 provides the highest dose enhancement to tumor voxels. However, given its relatively longer half-life, I-125 presents the most flexibility for customizing the dose enhancement as a function of GNP size. These findings provide a useful reference for further work toward development of potential new brachytherapy application

  1. TU-C-201-00: Clinical Implementation of HDR Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-06-15

    Recent use of HDR has increased while planning has become more complex often necessitating 3D image-based planning. While many guidelines for the use of HDR exist, they have not kept pace with the increased complexity of 3D image-based planning. Furthermore, no comprehensive document exists to describe the wide variety of current HDR clinical indications. This educational session aims to summarize existing national and international guidelines for the safe implementation of an HDR program. A summary of HDR afterloaders available on the market and their existing applicators will be provided, with guidance on how to select the best fit for each institution’s needs. Finally, the use of checklists will be discussed as a means to implement a safe and efficient HDR program and as a method by which to verify the quality of an existing HDR program. This session will provide the perspective of expert HDR physicists as well as the perspective of a new HDR user. Learning Objectives: Summarize national and international safety and staffing guidelines for HDR implementation Discuss the process of afterloader and applicator selection for gynecologic, prostate, breast, interstitial, surface treatments Learn about the use of an audit checklist tool to measure of quality control of a new or existing HDR program Describe the evolving use of checklists within an HDR program.

  2. High-dose-rate brachytherapy alone post-hysterectomy for endometrial cancer

    International Nuclear Information System (INIS)

    MacLeod, Craig; Fowler, Allan; Duval, Peter; D'Costa, Ieta; Dalrymple, Chris; Firth, Ian; Elliott, Peter; Atkinson, Ken; Carter, Jonathan

    1998-01-01

    Purpose: To evaluate the outcome of post-hysterectomy adjuvant vaginal high-dose-rate (HDR) brachytherapy. Methods and Materials: A retrospective analysis was performed on a series of 143 patients with endometrial cancer treated with HDR brachytherapy alone post-hysterectomy from 1985 to June 1993. Of these patients, 141 received 34 Gy in four fractions prescribed to the vaginal mucosa in a 2-week period. The median follow-up was 6.9 years. Patients were analyzed for treatment parameters, survival, local recurrence, distant relapse, and toxicity. Results: Five-year relapse free survival and overall survival was 100% and 88% for Stage 1A, 98% and 94% for Stage IB, 100% and 86% for Stage IC, and 92% and 92% for Stage IIA. The overall vaginal recurrence rate was 1.4%. The overall late-toxicity rate was low, and no RTOG grade 3, 4, or 5 complications were recorded. Conclusion: These results are similar to reported international series that have used either low-dose-rate or HDR brachytherapy. The biological effective dose was low for both acute and late responding tissues compared with some of the HDR brachytherapy series, and supports using this lower dose and possibly decreasing late side-effects with no apparent increased risk of vaginal recurrence

  3. Radiotherapy and Brachytherapy : Proceedings of the NATO Advanced Study Institute on Physics of Modern Radiotherapy & Brachytherapy

    CERN Document Server

    Lemoigne, Yves

    2009-01-01

    This volume collects a series of lectures presented at the tenth ESI School held at Archamps (FR) in November 2007 and dedicated to radiotherapy and brachytherapy. The lectures focus on the multiple facets of radiotherapy in general, including external radiotherapy (often called teletherapy) as well as internal radiotherapy (called brachytherapy). Radiotherapy strategy and dose management as well as the decisive role of digital imaging in the associated clinical practice are developed in several articles. Grouped under the discipline of Conformal Radiotherapy (CRT), numerous modern techniques, from Multi-Leaf Collimators (MLC) to Intensity Modulated RadioTherapy (IMRT), are explained in detail. The importance of treatment planning based upon patient data from digital imaging (Computed Tomography) is also underlined. Finally, despite the quasi- totality of patients being presently treated with gamma and X-rays, novel powerful tools are emerging using proton and light ions (like carbon ions) beams, bound to bec...

  4. How one institution overcame the challenges to start an MRI-based brachytherapy program for cervical cancer

    Directory of Open Access Journals (Sweden)

    Matthew M. Harkenrider

    2017-03-01

    Full Text Available Purpose : Adaptive magnetic resonance imaging (MRI-based brachytherapy results in improved local control and decreased high-grade toxicities compared to historical controls. Incorporating MRI into the workflow of a department can be a major challenge when initiating an MRI-based brachytherapy program. This project aims to describe the goals, challenges, and solutions when initiating an MRI-based cervical cancer brachytherapy program at our institution. Material and methods : We describe the 6-month multi-disciplinary planning phase to initiate an MRI-based brachytherapy program. We describe the specific challenges that were encountered prior to treating our first patient. Results : We describe the solutions that were realized and executed to solve the challenges that we faced to establish our MRI-based brachytherapy program. We emphasize detailed coordination of care, planning, and communication to make the workflow feasible. We detail the imaging and radiation physics solutions to safely deliver MRI-based brachytherapy. The focus of these efforts is always on the delivery of optimal, state of the art patient care and treatment delivery within the context of our available institutional resources. Conclusions : Previous publications have supported a transition to MRI-based brachytherapy, and this can be safely and efficiently accomplished as described in this manuscript.

  5. Applicability and dosimetric impact of ultrasound-based preplanning in high-dose-rate brachytherapy of prostate cancer

    International Nuclear Information System (INIS)

    Aebersold, D.M.; Isaak, B.; Behrensmeier, F.; Kolotas, C.; Mini, R.; Greiner, R.H.; Thalmann, G.; Kranzbuehler, H.

    2004-01-01

    Background and purpose: analyses of permanent brachytherapy seed implants of the prostate have demonstrated that the use of a preplan may lead to a considerable decrease of dosimetric implant quality. The authors aimed to determine whether the same drawbacks of preplanning also apply to high-dose-rate (HDR) brachytherapy. Patients and methods: 15 patients who underwent two separate HDR brachytherapy implants in addition to external-beam radiation therapy for advanced prostate cancer were analyzed. A pretherapeutic transrectal ultrasound was performed in all patients to generate a preplan for the first brachytherapy implant. For the second brachytherapy, a subset of patients were treated by preplans based on the ultrasound from the first brachytherapy implant. Preplans were compared with the respective postplans assessing the following parameters: coverage index, minimum target dose, homogeneity index, and dose exposure of organs at risk. The prostate geometries (volume, width, height, length) were compared as well. Results: at the first brachytherapy, the matching between the preplan and actual implant geometry was sufficient in 47% of the patients, and the preplan could be applied. The dosimetric implant quality decreased considerably: the mean coverage differed by -0.11, the mean minimum target dose by -0.15, the mean homogeneity index by -0.09. The exposure of organs at risk was not substantially altered. At the second brachytherapy, all patients could be treated by the preplan; the differences between the implant quality parameters were less pronounced. The changes of prostate geometry between preplans and postplans were considerable, the differences in volume ranging from -8.0 to 13.8 cm 3 and in dimensions (width, height, length) from -1.1 to 1.0 cm. Conclusion: preplanning in HDR brachytherapy of the prostate is associated with a substantial decrease of dosimetric implant quality, when the preplan is based on a pretherapeutic ultrasound. The implant quality

  6. Multihelix rotating shield brachytherapy for cervical cancer

    Energy Technology Data Exchange (ETDEWEB)

    Dadkhah, Hossein [Department of Biomedical Engineering, University of Iowa, 1402 Seamans Center for the Engineering Arts and Sciences, Iowa City, Iowa 52242 (United States); Kim, Yusung; Flynn, Ryan T., E-mail: ryan-flynn@uiowa.edu [Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 (United States); Wu, Xiaodong [Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 and Department of Electrical and Computer Engineering, University of Iowa, 4016 Seamans Center for the Engineering Arts and Sciences, Iowa City, Iowa 52242 (United States)

    2015-11-15

    Purpose: To present a novel brachytherapy technique, called multihelix rotating shield brachytherapy (H-RSBT), for the precise angular and linear positioning of a partial shield in a curved applicator. H-RSBT mechanically enables the dose delivery using only linear translational motion of the radiation source/shield combination. The previously proposed approach of serial rotating shield brachytherapy (S-RSBT), in which the partial shield is rotated to several angular positions at each source dwell position [W. Yang et al., “Rotating-shield brachytherapy for cervical cancer,” Phys. Med. Biol. 58, 3931–3941 (2013)], is mechanically challenging to implement in a curved applicator, and H-RSBT is proposed as a feasible solution. Methods: A Henschke-type applicator, designed for an electronic brachytherapy source (Xoft Axxent™) and a 0.5 mm thick tungsten partial shield with 180° or 45° azimuthal emission angles and 116° asymmetric zenith angle, is proposed. The interior wall of the applicator contains six evenly spaced helical keyways that rigidly define the emission direction of the partial radiation shield as a function of depth in the applicator. The shield contains three uniformly distributed protruding keys on its exterior wall and is attached to the source such that it rotates freely, thus longitudinal translational motion of the source is transferred to rotational motion of the shield. S-RSBT and H-RSBT treatment plans with 180° and 45° azimuthal emission angles were generated for five cervical cancer patients with a diverse range of high-risk target volume (HR-CTV) shapes and applicator positions. For each patient, the total number of emission angles was held nearly constant for S-RSBT and H-RSBT by using dwell positions separated by 5 and 1.7 mm, respectively, and emission directions separated by 22.5° and 60°, respectively. Treatment delivery time and tumor coverage (D{sub 90} of HR-CTV) were the two metrics used as the basis for evaluation and

  7. In phantom calibration of a high dose rate remote afterloading device

    International Nuclear Information System (INIS)

    Alfonso, R.; Tolede, P.; Pich, V.

    1995-01-01

    The high dose-rate (HDR) brachytherapy in Cuba is based on soviet made devices type AGAT-V. In order to calibration one of these for clinical use a method based of the different measurement of absorbed dose at the reference point B in a paraffin phantom was developed. The results of the calibration are shown. From these results an analysis was made of the effective doses to prescription point a considering the Lineal-Quadratic model. The clinical results by using the AGAT-V device are displayed in a comparative way

  8. High-dose-rate afterloading intracavitary irradiation and expandable metallic biliary endoprosthesis for malignant biliary obstruction

    Energy Technology Data Exchange (ETDEWEB)

    Yoshimura, Hitoshi; Ohishi, Hajime; Yoshioka, Tetsuya [Nara Medical Univ., Kashihara (Japan); and others

    1989-04-01

    A double lumen catheter was developed as an applicator for the remote afterloading system (RALS) of {sup 60}Co for the intracavitary irradiation of an obstructed common bile duct due to gallbladder cancer in 1 case and by cholangiocarcinoma in 7 cases. This was followed by the biliary endoprosthesis with expandable metallic stents to maintain patency. The mean survival period after treatment was not long (14 weeks). However, removal of the external drainage tube was possible in 7 of the 8 cases, and none of the 8 cases showed dislodgement or deformity of the stent, or obstruction of the bile duct in the stent-inserted area. This combination effectively provided palliation, and has considerable potential for malignant biliary obstruction. (author).

  9. Brachytherapy in Europe: philosophies, current practice and future directions

    International Nuclear Information System (INIS)

    Haworth, A.

    2000-01-01

    Full text: Five months sabbatical leave provided an opportunity to visit six radiotherapy centres in France, Holland and England. While brachytherapy philosophies and practices within each country were similar, there were considerable differences in attitudes between countries. The Institute Gustave Roussy, home of the Paris System and host for the French sector confirmed that the Paris System is still very much the preferred dosimetry method in this part of the world. Though their preference for low dose rate brachytherapy is still evident, high dose rate brachytherapy has found some applications but the rules of the Paris System are never far away and the words 'what about the hyperdose sleeve' are firmly implanted into this visitor's brain. The use of real time dosimetry for I-125 prostate brachytherapy at the Institute Curie (Paris) provided an interesting contrast to the standard pre and post implant dosimetry techniques commonly employed elsewhere. The two Dutch centres on the itinerary, in stark contrast to the traditional techniques seen in France, have applied the power of computers to investigate optimisation of the classic dosimetry systems and called on the analysis techniques (DVH, NTCP, TCP etc) now familiar to us all in external beam therapy. The Cookridge Hospital in England fitted somewhere between the French and Dutch centres. This centre showed how both modern and traditional techniques could be applied in an efficient way for a large variety of treatment sites. Copyright (2000) Australasian College of Physical Scientists and Engineers in Medicine

  10. Interventional Radiation Oncology (IRO): Transition of a magnetic resonance simulator to a brachytherapy suite.

    Science.gov (United States)

    Anderson, Roberta; Armour, Elwood; Beeckler, Courtney; Briner, Valerie; Choflet, Amanda; Cox, Andrea; Fader, Amanda N; Hannah, Marie N; Hobbs, Robert; Huang, Ellen; Kiely, Marilyn; Lee, Junghoon; Morcos, Marc; McMillan, Paige E; Miller, Dave; Ng, Sook Kien; Prasad, Rashmi; Souranis, Annette; Thomsen, Robert; DeWeese, Theodore L; Viswanathan, Akila N

    2018-03-13

    As a core component of a new gynecologic cancer radiation program, we envisioned, structured, and implemented a novel Interventional Radiation Oncology (IRO) unit and magnetic resonance (MR)-brachytherapy environment in an existing MR simulator. We describe the external and internal processes required over a 6-8 month time frame to develop a clinical and research program for gynecologic brachytherapy and to successfully convert an MR simulator into an IRO unit. Support of the institution and department resulted in conversion of an MR simulator to a procedural suite. Development of the MR gynecologic brachytherapy program required novel equipment, staffing, infrastructural development, and cooperative team development with anesthetists, nurses, therapists, physicists, and physicians to ensure a safe and functional environment. Creation of a separate IRO unit permitted a novel billing structure. The creation of an MR-brachytherapy environment in an MR simulator is feasible. Developing infrastructure includes several collaborative elements. Unique to the field of radiation oncology, formalizing the space as an Interventional Radiation Oncology unit permits a sustainable financial structure. Copyright © 2018 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  11. High dose rate intracavitary afterloading irradiation in malignant inoperable obturation of bile ducts

    Energy Technology Data Exchange (ETDEWEB)

    Itami, J.; Saegusa, K.; Mamiya, T.; Miyoshi, T.; Arimizu, N.; Tsuchiya, Y.; Ohto, M.

    1986-02-01

    After decompression of the bile duct with PTCD, seven patients with carcinomas of the bile ducts were submitted to an intracavitary Ir-afterloading irradiation performed according to the high-dose-rate method with a Buchler device. Most of the patients were irradiated with 30 Gy in two fractions. Five patients were also exposed to percutaneous radiation with 40 to 50 Gy. Local control was achieved in six patients. One patient developed a locoregional recurrence which was possibly due to a so-called 'geographic miss'. In one patient a benign fibrotic stenosis of the bile duct was found at the site of most intensive irradiation. Intracavitary irradiation is very important in the treatment of malignant of bile ducts. However, there is an urgent need of research with regard to the combined method with percutaneous irradiation and to the optimum fractionation of intracavitary high dose rate irradiation.

  12. The Meaning and Experience of Patients Undergoing Rectal High-Dose-Rate Brachytherapy.

    Science.gov (United States)

    Perez, Samara; Néron, Sylvain; Benc, Renata; Rosberger, Zeev; Vuong, Té

    2016-01-01

    High-dose-rate (HDR) brachytherapy is a precise form of radiation therapy that targets cancerous tumors by directly applying the radiation source at the site or directly next to the tumor. Patients often experience but underreport pain and anxiety related to cancer treatments. At present, there is no research available concerning the pervasiveness and intensity of patients' pain and anxiety during rectal brachytherapy. The aim of this study was to examine patients' thoughts, emotions, coping strategies, physical sensations, and needs during rectal HDR brachytherapy treatment. Twenty-five patients with rectal cancer were interviewed using a semi-structured qualitative interview following the completion of their brachytherapy treatment delivered at a Montreal-based hospital in Quebec, Canada. The experiences of pain and discomfort varied greatly between patients and were linked to the meaning patients attributed to the treatment itself, sense of time, the body's lithotomic position, insertion of the treatment applicator, and the patients' sense of agency and empowerment during the procedure. Patients drew upon a variety of internal and external resources to help them cope with discomfort. Staff need to know about the variation in the physical and emotional experiences of patients undergoing this treatment. Clinical teams can tailor their procedural behavior (eg, using certain language, psychosocial interventions) according to patients' needs to increase patients' comfort and ultimately improve their experience of HDR rectal brachytherapy.

  13. Fully automated MRI-guided robotics for prostate brachytherapy

    International Nuclear Information System (INIS)

    Stoianovici, D.; Vigaru, B.; Petrisor, D.; Muntener, M.; Patriciu, A.; Song, D.

    2008-01-01

    The uncertainties encountered in the deployment of brachytherapy seeds are related to the commonly used ultrasound imager and the basic instrumentation used for the implant. An alternative solution is under development in which a fully automated robot is used to place the seeds according to the dosimetry plan under direct MRI-guidance. Incorporation of MRI-guidance creates potential for physiological and molecular image-guided therapies. Moreover, MRI-guided brachytherapy is also enabling for re-estimating dosimetry during the procedure, because with the MRI the seeds already implanted can be localised. An MRI compatible robot (MrBot) was developed. The robot is designed for transperineal percutaneous prostate interventions, and customised for fully automated MRI-guided brachytherapy. With different end-effectors, the robot applies to other image-guided interventions of the prostate. The robot is constructed of non-magnetic and dielectric materials and is electricity free using pneumatic actuation and optic sensing. A new motor (PneuStep) was purposely developed to set this robot in motion. The robot fits alongside the patient in closed-bore MRI scanners. It is able to stay fully operational during MR imaging without deteriorating the quality of the scan. In vitro, cadaver, and animal tests showed millimetre needle targeting accuracy, and very precise seed placement. The robot tested without any interference up to 7T. The robot is the first fully automated robot to function in MRI scanners. Its first application is MRI-guided seed brachytherapy. It is capable of automated, highly accurate needle placement. Extensive testing is in progress prior to clinical trials. Preliminary results show that the robot may become a useful image-guided intervention instrument. (author)

  14. Ocular brachytherapy with a holmium-166 irradiator device

    International Nuclear Information System (INIS)

    Mourao, Arnaldo P.; Campos, Tarcisio P.R.

    2009-01-01

    The ocular brachytherapy is a method that allows controlling ocular tumors. However, the irradiation of the ocular area in high doses can bring damages mainly to the surrounding healthy tissue, such as lens, retina and bone tissue of the orbital area in growth phase. Brachytherapy in comparison to teletherapy allows a large reduction of the absorbed doses in the adjacent tissues avoiding deleterious effects. Various types of radionuclides can be applied to ocular brachytherapy. Those radionuclides shall be encapsulated and placed juxtaposed to the sclera, back to the tumor. Herein, a new device was developed to encapsulate the radioactive material. It can easily place back of the eyeball. A computational model of the ocular area was developed in order to simulate the spatial dose distribution promoted by the holmium-166 nuclide distributed inside the irradiator device. The simulations addressed a device placed on the surface of the sclera, rotated 90 deg taken at the normal axis forward to the lens. The simulation was carried on the code Monte Carlo MCNP5. The computational simulation generates the spatial dose distribution in the treated volume. All continuous beta and the discrete gamma and X-ray spectra emitted by the holmium-166 were incorporated on simulations. The results allow comparing the space dose distribution to other types of sources used for the same end. The sclera absorbed dose, the maximum apical tumor dose, as well as on the tumor base were investigated. Indeed, the tumor thickness defines the conditions of irradiation. The holmium-166 dose distribution provides a tool to propose a better and optimized protocol for ocular brachytherapy. (author)

  15. Primary calibration of coiled 103Pd brachytherapy sources

    International Nuclear Information System (INIS)

    Paxton, Adam B.; Culberson, Wesley S.; DeWerd, Larry A.; Micka, John A.

    2008-01-01

    Coiled 103 Pd brachytherapy sources have been developed by RadioMed Corporation for use as low-dose-rate (LDR) interstitial implants. The coiled sources are provided in integer lengths from 1 to 6 cm and address many common issues seen with traditional LDR brachytherapy sources. The current standard for determining the air-kerma strength (S K ) of low-energy LDR brachytherapy sources is the National Institute of Standards and Technology's Wide-Angle Free-Air Chamber (NIST WAFAC). Due to geometric limitations, however, the NIST WAFAC is unable to determine the S K of sources longer than 1 cm. This project utilized the University of Wisconsin's Variable-Aperture Free-Air Chamber (UW VAFAC) to determine the S K of the longer coiled sources. The UW VAFAC has shown agreement in S K values of 1 cm length coils to within 1% of those determined with the NIST WAFAC, but the UW VAFAC does not share the same geometric limitations as the NIST WAFAC. A new source holder was constructed to hold the coiled sources in place during measurements with the UW VAFAC. Correction factors for the increased length of the sources have been determined and applied to the measurements. Using the new source holder and corrections, the S K of 3 and 6 cm coiled sources has been determined. Corrected UW VAFAC data and ionization current measurements from well chambers have been used to determine calibration coefficients for use in the measurement of 3 and 6 cm coiled sources in well chambers. Thus, the UW VAFAC has provided the first transferable, primary measurement of low-energy LDR brachytherapy sources with lengths greater than 1 cm

  16. Ocular brachytherapy with a holmium-166 irradiator device

    Energy Technology Data Exchange (ETDEWEB)

    Mourao, Arnaldo P. [Centro Federal de Educacao Tecnoloica de Minas Gerais (CEFET-MG), Belo Horizonte, MG (Brazil). Nucleo de Engenharia Hospitalar], e-mail: aprata@des.cefetmg.br; Campos, Tarcisio P.R. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Programa de Pos-graduacao em Ciencias e Tecnicas Nucleares], e-mail: campos@nuclear.ufmg.br

    2009-07-01

    The ocular brachytherapy is a method that allows controlling ocular tumors. However, the irradiation of the ocular area in high doses can bring damages mainly to the surrounding healthy tissue, such as lens, retina and bone tissue of the orbital area in growth phase. Brachytherapy in comparison to teletherapy allows a large reduction of the absorbed doses in the adjacent tissues avoiding deleterious effects. Various types of radionuclides can be applied to ocular brachytherapy. Those radionuclides shall be encapsulated and placed juxtaposed to the sclera, back to the tumor. Herein, a new device was developed to encapsulate the radioactive material. It can easily place back of the eyeball. A computational model of the ocular area was developed in order to simulate the spatial dose distribution promoted by the holmium-166 nuclide distributed inside the irradiator device. The simulations addressed a device placed on the surface of the sclera, rotated 90 deg taken at the normal axis forward to the lens. The simulation was carried on the code Monte Carlo MCNP5. The computational simulation generates the spatial dose distribution in the treated volume. All continuous beta and the discrete gamma and X-ray spectra emitted by the holmium-166 were incorporated on simulations. The results allow comparing the space dose distribution to other types of sources used for the same end. The sclera absorbed dose, the maximum apical tumor dose, as well as on the tumor base were investigated. Indeed, the tumor thickness defines the conditions of irradiation. The holmium-166 dose distribution provides a tool to propose a better and optimized protocol for ocular brachytherapy. (author)

  17. Homogeneous Ir-192 afterloading-flab-irradiation of plane surfaces

    International Nuclear Information System (INIS)

    Bratengeier, K.; Krieger, T.

    2002-01-01

    Homogeneous irradiation of plane targets bt Ir-192 afterloading flabs made by a parallel series of linear applicators can be time-consuming even with modern planning systems. The aim of the present study was to develop an algorithm that supplies homogeneous dose distributions in an arbitrary given plane in parallel to the equipped plane of a flab. The edge and corner positions of the flab are of particular importance. The identity of the dose in the optimisation distance above the flab centre, corners, and middle of the flab edges, leads to a strict relation of the respective dwell weights. Formulas can be derived that allow the calculation of the dwell times. The dimensioning of the flab can be rapidly adapted to new conditions. A comparison with the results of Nucletron PLATO-BPS for applicator-applicator distances and step sizes of 1 cm at optimisation distances of 10, 20, 30, and 40 mm and various flab sizes (3 x 3, 9 x 9, and 15 x 15 cm 2 ) shows the following results: The standard deviation of the proposed algorithm is sometimes slightly higher than the results of the commercial planning system, whereas the underdosage at the flab edges is usually smaller. The effort for planning and preparation of the irradiation, for example using a Nucletron HDR, is below 5 minutes - a considerable reduction of planning time. (orig.) [de

  18. A Monte Carlo dosimetry study using Henschke applicator for cervical brachytherapy

    International Nuclear Information System (INIS)

    Yu, Pei-Chieh; Chao, Tsi-Chian; Lee, Chung-Chi; Wu, Ching-Jung; Tung, Chuan-Jong

    2010-01-01

    In recent years the Henschke applicator has been widely used for gynecologic patients treated by brachytherapy in Taiwan. However, the commercial brachytherapy planning system did not properly evaluate the dose perturbation caused by the Henschke applicator. Since the European Society for Therapeutic Radiology and Oncology advised that the effect of source shielding should be incorporated into the brachytherapy planning system, it required calculation and comparison of the dose distribution around the applicator. This study used the Monte Carlo MCNP code to simulate the dose distribution in a water phantom that contained the Henschke applicator with one tandem and two ovoids. Three dwell positions of a high dose rate 192 Ir source were simulated by including and excluding the applicator. The mesh tally option of the MCNP was applied to facilitate the calculation of a large number of tallies in the phantom. The voxel size effect and the charge particle equilibrium were studied by comparing the results calculated with different tally options. The calculated results showed that the brachytherapy planning system overestimated the rectal dose and that the shielding material in the applicator contributed more than 40% to the rectal dose.

  19. Efficacy and safety of iodine-125 radioactive seeds brachytherapy for advanced non-small cell lung cancer-A meta-analysis.

    Science.gov (United States)

    Zhang, Wenchao; Li, Jiawei; Li, Ran; Zhang, Ying; Han, Mingyong; Ma, Wei

    This meta-analysis was conducted to investigate the efficacy and safety of 125 I brachytherapy for locally advanced non-small cell lung cancer (NSCLC). Trials comparing 125 I brachytherapy with chemotherapy in NSCLC were identified. Meta-analysis was performed to obtain pooled risk ratios for an overall response rate (ORR), disease control rate (DCR) and complications, and pooled hazard ratio for overall survival (OS). Fifteen studies including 1188 cases were included. The pooled result indicated that there were significant differences in ORR, DCR, and OS between 125 I brachytherapy combined with chemotherapy and chemotherapy alone, but no statistic differences in gastrointestinal symptoms, leukopenia, myelosuppression, and hemoglobin reduction. Patients treated with 125 I brachytherapy combined with chemotherapy have a higher relative risk of pneumothorax, bloody sputum, and pneumorrhagia compared with chemotherapy alone. Seeds migration only occurred in the group treated with 125 I brachytherapy. There were significant differences in ORR, DCR, and myelosuppression between 125 I brachytherapy alone and chemotherapy. 125 I brachytherapy combined with chemotherapy can significantly enhance the clinical efficacy and improve the OS of patients with advanced NSCLC without increasing the incidence of complications of chemotherapy. 125 I brachytherapy alone can significantly enhance the clinical efficacy and reduce the incidence of myelosuppression compared with chemotherapy. However, 125 I brachytherapy may cause lung injury. Large sample and higher-quality randomized controlled trials are needed to confirm the pooled results of complications. Copyright © 2017 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  20. A rectum shield for the circular applicator system of a selectron unit (HDR and LDR afterloading)

    International Nuclear Information System (INIS)

    Hetzel, H.; McCoy, M.; Kamleitner, H.; Frommhold, H.

    1987-01-01

    In order to decrease the morbidity rate after combined radiotherapy of the cervix carcinoma, a tungsten shield 3 and 5 mm thick for the rectum has been developed by the authors which is applied with the ring and pin applicator of the selectron unit (LDR and HDR afterloading). The isodose curves were measured in a plexiglas phantom, and the radiation dose at the reference points was determined by means of a ionization dosemeter. The phantom measurements were performed with the same arrangement of sources as applied in radiotherapy. The measurements showed a dose reduction at point Rmax of 33% (HDR) and 44% (LDR) with the tungsten shield 5 mm thick. (orig.) [de

  1. Toward a 'all high rate' brachytherapy: organisation, biology and perspectives after treatment of 192 patients

    International Nuclear Information System (INIS)

    Hannoun-Levi, J.M.; Ferre, M.; Gautier, M.; Marcie, S.

    2007-01-01

    As a result of radiation protection regulations aimed at reducing the exposure to ionizing radiation from care-givers, low dose rate brachytherapy is usually replaced by a pulsed rate brachytherapy. The center Antoine Lacassagne has directed the outset to the use of a high-dose rate brachytherapy. The implications in terms of organization, biology and the prospects for such a change are the principal questions studied. (N.C.)

  2. Occupational exposure in prostate permanent implants with I-125 seeds

    Energy Technology Data Exchange (ETDEWEB)

    Fdez Garcia, J.; Luna, V.; Sancho, J. M. g.; Martinez, J.; Galiano, P. S.; Jimenez, I.; Prada, P.; Juan, G.; Vivanco, J.

    2002-07-01

    Prostate brachytherapy is one of the techniques increasing faster in the environment of the radiotherapy and will probably go on increasing in the future. There are two forms in their use; by means of remote afterloading high dose rate (HDR) with Ir-192 radioactive sources or by means of permanent implant by manual/automatic afterloading of low dose rate (LDR) with seeds of I-125 or Pd-103. Iodine-125 has a half life of 59.4 days and it decays by electron capture with emissions of characteristic photons and electrons. The electrons are absorbed by the titanium wall of the I-125 seed. The principal photon emissions are 27.4 and 31.4 keV X-rays and a 35.5 keV gamma ray. Besides 22.1 and 25.2 keV fluorescent X-rays are also emitted resulting from interactions of the iodine-125 photons with the silver rod. The resulting average photon energy is approximately 27.4 keV. (Author)

  3. Role of TPS in 125I brachytherapy for orbital tumors

    International Nuclear Information System (INIS)

    Ren Ling; Dai Haojie; Li Quan

    2012-01-01

    Objective: To investigate the role of TPS in 125 I brachytherapy for orbital tumors. Methods: Sixty-six patients with orbital tumor treated with 125 I seeds from 2005 to 2009 were retrospectively analyzed. Forty-three patients were treated using TPS guided brachytherapy and the prescribed dose was 140 Gy. Other 23 patients were treated without TPS but simply implanted with 125 I seeds at 1 cm intervals in parallel with each other intraoperatively. CT and TPS quality verification were performed postoperatively in all patients. Also, CT and (or) MRI examination were performed at 3, 6, 12 and 24 months after brachytherapy for follow-up. χ 2 test and Kaplan-Meier survival analysis with log-rank significance test were used with SPSS 17.0. Results: A total of 1070 125 I seeds were implanted in 66 cases, on average, (16.2 ± 7.3) seeds for each patient. The satisfaction rates of postoperative quality verification in patients with and without TPS pre-plans were 79.07% (34/43) and 43.48% (10/23) respectively (χ 2 =8.542, P=0.003). Ten patients were lost in follow-up. Local recurrence rates in patients with favorable postoperative quality verification were 0 (0/37) in 3 months, 6.25% (2/32) in 6 months, 13.64% (3/22) in 12 months and 3/9 in 24 months respectively, which were significantly different from those (5.26% (1/19), 16.67% (3/18), 30.77% (4/13), 6/6) in the patients with inferior postoperative quality verification (χ 2 =9.017, P=0.0003). Conclusions: TPS plays an important role in 125 I brachytherapy for orbital tumors. Also, postoperative quality verification by TPS may help predict the local recurrence after brachytherapy. (authors)

  4. Installations for radiation therapy with remote controlled afterloading technique. Ferngesteuerte Applikationsanlagen zur Therapie mit umschlossenen radioaktiven Stoffen

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    Installations for radiation therapy with remote controlled afterloading technique; radiation protection rules for fabrication and construction; amendment 1 to draft standard (DIN) 6853. Compared to the draft standard of Semptember 1980, the following modifications are planned as amendment 1: a. Paragraph no. 1: In the title, the word ''scope'' is changed into ''field of application''. The words ''by moving the radiation source electromecanically'' are deleted. b. Paragraph no. 2'' Standards also applicable'' and the list of ''Additional standards'' are summarized under the heading ''Standards and supporting documents'' (without any paragraph number). c. Paragraph no. 3 ''Terms'' is completed by additional terms and their definitions.

  5. Physical aspects of endovascular brachytherapy

    International Nuclear Information System (INIS)

    Kirisits, C.

    2001-11-01

    Restenosis is severely limiting the outcome of vascular interventions. In several clinical trials endovascular brachytherapy has shown to reduce the restenosis rate. Local radiotherapy to the injured vessel wall is a promising new type of treatment in order to inhibit a complex wound healing process resulting in cell proliferation and re-obstruction of the treated vessel. Treatment planning has to be based on the dose distribution in the vicinity of the sources used. Source strength was determined in terms of air kerma rate for gamma nuclides (Iridium-192) and absorbed dose to water at reference distance of 2 mm for beta nuclides (Strontium-90/Yttrium-90, Phosphor-32), respectively. Radial dose profiles and the Reference Isodose Length (RIL) were determined using the EGSnrc code and GafChromic film. Good agreement was found between both methods. In order to treat the entire clinical target length, the (RIL) is an essential value during treatment planning. Examples are described for different levels of treatment planing including recommendations for optimal choice and positioning of the radioactive devices inside the artery. IVUS based treatment planning is illustrated with superposition of isodoses on cross-sectional images. A calculation model for radioactive stents is presented in order to determine dose volume histograms in a retrospective analysis. Radiation protection issues for endovascular brachytherapy are discussed in detail. Personal dose for the involved personnel is estimated based on calculations and measurements. Beta ray dosimetry is performed with suitable detectors. In order to estimate the exposure to the patient the dose to organs at risk is calculated and compared to the dose from angiography. There is an additional radiation exposure to patients and personnel caused by endovascular brachytherapy, but the values are much smaller than those caused by diagnostic angiography. (author)

  6. Importance of brachytherapy technique in the management of primary carcinoma of the vagina

    International Nuclear Information System (INIS)

    Stock, R.G.; Mychalczak, B.; Armstrong, J.G.; Hoskins, W.; Harrison, L.B.

    1991-01-01

    Primary vaginal carcinoma is a rare malignancy. There is little information regarding the optimal treatment. Management has primarily been with external-beam radiation therapy and brachytherapy. This paper examines the importance of brachytherapy and the significance of its techniques in the treatment of this disease. Brachytherapy plays an important part in the management of primary vaginal carcinoma. External-beam radiation therapy alone is not an adequate treatment for this disease. For stages II and III disease, there is a trend toward improved disease-free survival with the use of a temporary interstitial implant compared to an intracavitary application

  7. Evaluation of Wall Correction Factor of INER's Air-Kerma Primary Standard Chamber and Dose Variation by Source Displacement for HDR 192Ir Brachytherapy

    Directory of Open Access Journals (Sweden)

    J. H. Lee

    2013-01-01

    Full Text Available The aim of the present study was to estimate the wall effect of the self-made spherical graphite-walled cavity chamber with the Monte Carlo method for establishing the air-kerma primary standard of high-dose-rate (HDR 192Ir brachytherapy sources at the Institute of Nuclear Energy Research (INER, Taiwan. The Monte Carlo method established in this paper was also employed to respectively simulate wall correction factors of the 192Ir air-kerma standard chambers used at the National Institute of Standards and Technology (NIST, USA and the National Physical Laboratory (NPL, UK for comparisons and verification. The chamber wall correction calculation results will be incorporated into INER's HDR 192Ir primary standard in the future. For the brachytherapy treatment in the esophagus or in the bronchi, the position of the isotope may have displacement in the cavity. Thus the delivered dose would differ from the prescribed dose in the treatment plan. We also tried assessing dose distribution due to the position displacement of HDR 192Ir brachytherapy source in a phantom with a central cavity by the Monte Carlo method. The calculated results could offer a clinical reference for the brachytherapy within the human organs with cavity.

  8. Current situation of high-dose-rate brachytherapy for cervical cancer in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Rogerio Matias Vidal da; Souza, Divanizia do Nascimento, E-mail: rmv.fisica@gmail.com [Universidade Federal de Sergipe (UFS), Sao Cristovao, SE (Brazil); Pinezi, Juliana Castro Dourado [Pontificia Universidade Catolica de Goias (PUC-Goias), Goiania, GO (Brazil); Macedo, Luiz Eduardo Andrade [Hospital Chama, Arapiraca, AL (Brazil)

    2014-05-15

    To assess the current situation of high-dose-rate (HDR) brachytherapy for cancer of the cervix in Brazil, regarding apparatuses, planning methods, prescription, fractionation schedule and evaluation of dose in organs at risk. Materials and methods: in the period between March/2012 and May/2013, a multiple choice questionnaire was developed and sent to 89 Brazilian hospitals which perform HDR brachytherapy. Results: sixty-one services answered the questionnaire. All regions of the country experienced a sharp increase in the number of HDR brachytherapy services in the period from 2001 to 2013. As regards planning, although a three-dimensional planning software was available in 91% of the centers, conventional radiography was mentioned by 92% of the respondents as their routine imaging method for such a purpose. Approximately 35% of respondents said that brachytherapy sessions are performed after teletherapy. The scheme of four 7 Gy intracavitary insertions was mentioned as the most frequently practiced. Conclusion: the authors observed that professionals have difficulty accessing adjuvant three-dimensional planning tools such as computed tomography and magnetic resonance imaging. (author)

  9. Permanent Prostate Brachytherapy in Prostate Glands 3

    International Nuclear Information System (INIS)

    Mayadev, Jyoti; Merrick, Gregory S.; Reed, Joshua R.; Butler, Wayne M.; Galbreath, Robert W.; Allen, Zachariah A.; Wallner, Kent E.

    2010-01-01

    Purpose: To investigate the dosimetry, treatment-related morbidity, and biochemical outcomes for brachytherapy in patients with prostate glands 3 . Methods and Materials: From November 1996 to October 2006, 104 patients with prostate glands 3 underwent brachytherapy. Multiple prostate, urethral, and rectal dosimetric parameters were evaluated. Treatment-related urinary and rectal morbidity were assessed from patient questionnaires. Cause-specific survival, biochemical progression-free survival, and overall survival were recorded. Results: The median patient age, follow up, and pre-treatment ultrasound volume was 64 years, 5.0 years and 17.6cm 3 , respectively. Median day 0 dosimetry was significant for the following: V100 98.5%, D90 126.1% and R100 <0.5% of prescription dose. The mean urethral and maximum urethral doses were 119.6% and 133.8% of prescription. The median time to International Prostate Symptom Score resolution was 4 months. There were no RTOG grade III or IV rectal complications. The cause-specific survival, biochemical progression-free survival, and overall survival rates were 100%, 92.5%, and 77.8% at 9 years. For biochemically disease-free patients, the median most recent postbrachytherapy PSA value was 0.02 ng/mL. Conclusion: Our results demonstrate that brachytherapy for small prostate glands is highly effective, with an acceptable morbidity profile, excellent postimplant dosimetry, acceptable treatment-related morbidity, and favorable biochemical outcomes.

  10. Curative high dose rate vaginal apex brachytherapy in stage I papillary serous carcinoma of the endometrium

    International Nuclear Information System (INIS)

    Turner, B.C.; Kacinski, B.M.; Gumbs, A.; Peschel, R.E.; Haffty, B.G.; Wilson, L.D.

    1996-01-01

    Introduction: Uterine papillary serous carcinoma (UPSC) is a morphologically distinct variant of endometrial carcinoma that is associated with a poor prognosis, high recurrence rate, clinical understaging, and poor response to salvage treatment. We describe the presentation, local and distant control, survival, salvage rate, and complications for patients undergoing whole abdominal radiation therapy (WART), low dose rate (LDR) intracavitary brachytherapy, or high dose rate (HDR) vaginal brachytherapy in patients with stage I UPSC. Methods: Between 1976 and 1994 more than 1700 patients with endometrial carcinoma were treated with radiation therapy, 30 patients with stage I UPSC (1.8%) were treated with radiation before or following TAH/BSO. All patients underwent either preoperative Simon's packing or tandem and plaque which delivered 30-40 Gy to the serosa, WART, or HDR Ir-192 vaginal apex brachytherapy to a total dose of 21 Gy in 3 fractions at 0.5 cm from the vaginal mucosa. A total of 14 patients received HDR vaginal brachytherapy and (5(14)) patients received systemic chemotherapy. All patients presented with vaginal bleeding at a median age of 67 years (range 34-88). The group of 30 patients underwent TAH/BSO, 17 patients were completely staged pathologically (pelvic and para-aortic lymph nodes, omentectomy, and pelvic washings), and 2 patients underwent omental biopsy and pelvic washings only. All specimens revealed UPSC, nuclear grade 3, and lymphovascular invasion (23%). The pathologic stage was IA: 23% (7), IB: 67% (20), and IC: 10% (3). The median follow-up for all patients was 49 months (range 13-187 months). For the patients receiving postoperative HDR vaginal brachytherapy the median time from surgery to radiation was 42 days (range 29-91). Results: The 5-year actuarial disease free survival for Figo stage I UPSC patients treated with postoperative HDR vaginal brachytherapy and systemic chemotherapy was 100% compared to 74% for stage I UPSC patient

  11. High-dose-rate brachytherapy in uterine cervical carcinoma

    International Nuclear Information System (INIS)

    Patel, Firuza D.; Rai, Bhavana; Mallick, Indranil; Sharma, Suresh C.

    2005-01-01

    Purpose: High-dose-rate (HDR) brachytherapy is in wide use for curative treatment of cervical cancer. The American Brachytherapy Society has recommended that the individual fraction size be <7.5 Gy and the range of fractions should be four to eight; however, many fractionation schedules, varying from institution to institution, are in use. We use 9 Gy/fraction of HDR in two to five fractions in patients with carcinoma of the uterine cervix. We found that our results and toxicity were comparable to those reported in the literature and hereby present our experience with this fractionation schedule. Methods and Materials: A total of 121 patients with Stage I-III carcinoma of the uterine cervix were treated with HDR brachytherapy between 1996 and 2000. The total number of patients analyzed was 113. The median patient age was 53 years, and the histopathologic type was squamous cell carcinoma in 93% of patients. The patients were subdivided into Groups 1 and 2. In Group 1, 18 patients with Stage Ib-IIb disease, tumor size <4 cm, and preserved cervical anatomy underwent simultaneous external beam radiotherapy to the pelvis to a dose of 40 Gy in 20 fractions within 4 weeks with central shielding and HDR brachytherapy of 9 Gy/fraction, given weekly, and interdigitated with external beam radiotherapy. The 95 patients in Group 2, who had Stage IIb-IIIb disease underwent external beam radiotherapy to the pelvis to a dose of 46 Gy in 23 fractions within 4.5 weeks followed by two sessions of HDR intracavitary brachytherapy of 9 Gy each given 1 week apart. The follow-up range was 3-7 years (median, 36.4 months). Late toxicity was graded according to the Radiation Therapy Oncology Group criteria. Results: The 5-year actuarial local control and disease-free survival rate was 74.5% and 62.0%, respectively. The actuarial local control rate at 5 years was 100% for Stage I, 80% for Stage II, and 67.2% for Stage III patients. The 5-year actuarial disease-free survival rate was 88.8% for

  12. Concomitant chemoradiotherapy with high dose rate brachytherapy ...

    African Journals Online (AJOL)

    Concomitant chemoradiotherapy with high dose rate brachytherapy as a definitive treatment modality for locally advanced cervical cancer. T Refaat, A Elsaid, N Lotfy, K Kiel, W Small Jr, P Nickers, E Lartigau ...

  13. Interactive multiobjective optimization for anatomy-based three-dimensional HDR brachytherapy

    Science.gov (United States)

    Ruotsalainen, Henri; Miettinen, Kaisa; Palmgren, Jan-Erik; Lahtinen, Tapani

    2010-08-01

    In this paper, we present an anatomy-based three-dimensional dose optimization approach for HDR brachytherapy using interactive multiobjective optimization (IMOO). In brachytherapy, the goals are to irradiate a tumor without causing damage to healthy tissue. These goals are often conflicting, i.e. when one target is optimized the other will suffer, and the solution is a compromise between them. IMOO is capable of handling multiple and strongly conflicting objectives in a convenient way. With the IMOO approach, a treatment planner's knowledge is used to direct the optimization process. Thus, the weaknesses of widely used optimization techniques (e.g. defining weights, computational burden and trial-and-error planning) can be avoided, planning times can be shortened and the number of solutions to be calculated is small. Further, plan quality can be improved by finding advantageous trade-offs between the solutions. In addition, our approach offers an easy way to navigate among the obtained Pareto optimal solutions (i.e. different treatment plans). When considering a simulation model of clinical 3D HDR brachytherapy, the number of variables is significantly smaller compared to IMRT, for example. Thus, when solving the model, the CPU time is relatively short. This makes it possible to exploit IMOO to solve a 3D HDR brachytherapy optimization problem. To demonstrate the advantages of IMOO, two clinical examples of optimizing a gynecologic cervix cancer treatment plan are presented.

  14. Interactive multiobjective optimization for anatomy-based three-dimensional HDR brachytherapy

    International Nuclear Information System (INIS)

    Ruotsalainen, Henri; Miettinen, Kaisa; Palmgren, Jan-Erik; Lahtinen, Tapani

    2010-01-01

    In this paper, we present an anatomy-based three-dimensional dose optimization approach for HDR brachytherapy using interactive multiobjective optimization (IMOO). In brachytherapy, the goals are to irradiate a tumor without causing damage to healthy tissue. These goals are often conflicting, i.e. when one target is optimized the other will suffer, and the solution is a compromise between them. IMOO is capable of handling multiple and strongly conflicting objectives in a convenient way. With the IMOO approach, a treatment planner's knowledge is used to direct the optimization process. Thus, the weaknesses of widely used optimization techniques (e.g. defining weights, computational burden and trial-and-error planning) can be avoided, planning times can be shortened and the number of solutions to be calculated is small. Further, plan quality can be improved by finding advantageous trade-offs between the solutions. In addition, our approach offers an easy way to navigate among the obtained Pareto optimal solutions (i.e. different treatment plans). When considering a simulation model of clinical 3D HDR brachytherapy, the number of variables is significantly smaller compared to IMRT, for example. Thus, when solving the model, the CPU time is relatively short. This makes it possible to exploit IMOO to solve a 3D HDR brachytherapy optimization problem. To demonstrate the advantages of IMOO, two clinical examples of optimizing a gynecologic cervix cancer treatment plan are presented.

  15. SU-F-T-28: Evaluation of BEBIG HDR Co-60 After-Loading System for Skin Cancer Treatment Using Conical Surface Applicator

    Energy Technology Data Exchange (ETDEWEB)

    Safigholi, H; Soliman, A; Song, W Y [Department of Medical Physics, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON (Canada); Meigooni, A S [Department of Radiation Therapy, Comprehensive Cancer Center of Nevada, Las Vegas, NV (United States); Han, D [Departemt of Radiation Oncology, University of California San Francisco, San Francisco, CA (United States)

    2016-06-15

    Purpose: To evaluate the possibility of utilizing the BEBIG HDR 60Co remote after-loading system for malignant skin surface treatment using Monte Carlo (MC) simulation technique. Methods: First TG-43 parameters of BEBIG-Co-60 and Nucletron Ir-192-mHDR-V2 brachytherapy sources were simulated using MCNP6 code to benchmark the sources against the literature. Second a conical tungsten-alloy with 3-cm diameter of Planning-Target-Volume (PTV) at surface for use with a single stepping HDR source is designed. The HDR source is modeled parallel to treatment plane at the center of the conical applicator with a source surface distance (SSD) of 1.5-cm and a removable plastic end-cap with a 1-mm thickness. Third, MC calculated dose distributions from HDR Co-60 for conical surface applicator were compared with the simulated data using HDR Ir-192 source. The initial calculations were made with the same conical surface applicator (standard-applicator) dimensions as the ones used with the Ir-192 system. Fourth, the applicator wall-thickness for the Co-60 system was increased (doubled) to diminish leakage dose to levels received when using the Ir-192 system. With this geometry, percentage depth dose (PDD), and relative 2D-dose profiles in transverse/coronal planes were normalized at 3-mm prescription-depth evaluated along the central axis. Results: PDD for Ir-192 and Co-60 were similar with standard and thick-walled applicator. 2D-relative dose distribution of Co-60, inside the standard-conical-applicator, generated higher penumbra (7.6%). For thick-walled applicator, it created smaller penumbra (<4%) compared to Ir-192 source in the standard-conicalapplicator. Dose leakage outside of thick-walled applicator with Co-60 source was approximately equal (≤3%) with standard applicator using Ir-192 source. Conclusion: Skin cancer treatment with equal quality can be performed with Co-60 source and thick-walled conical applicators instead of Ir-192 with standard applicators. These conical

  16. Orbital rhabdomyosarcoma of the child: the role of PDR brachytherapy in eye preservation

    International Nuclear Information System (INIS)

    Kovacs, G.; Rochels, R.; Mehdorn, H.M.; Werner, J.; Wilhelm, R.; Kohr, P.; Kimmig, B. N.

    1996-01-01

    Material and Methods: There were four children (8-7-5 years and(15(12)) months old) with recurrent/primary embryonal rhabdomyosarcoma treated with curative intention by peroperative PDR boost brachytherapy in combination with radio-chemotherapy and/or surgery. PDR brachytherapy according to the Kiel protocol: daily five pulses, two hours each, with 1 Gy on the reference isodose which is usually 2-3 mm close to the applicator surface. CT simulation based conformal treatment planning was carried out in each case. The implant was done intraoperatively using the free-hand plastic tube method, after a macroscopically complete excision of the tumor. Due to treatment planning individual target volume, eye with N, opticus and bone structures, as well as the applicators and other regions of interest were visualized. Manual volume optimisation was practiced and natural volumen-dose histograms were analysed in 'classic' graphic mode as well as in a special colour coded three-dimensional visualization in cine mode on the screen. One child received, three months before the recurrence was operated, 50 Gy hyperfractionated external beam radiation (2 Gy fractions) and was irradiated with 20 Gy brachytherapy in four days. The second patient received ten days after 20 Gy brachytherapy 32 Gy hyperfractionated external beam radiation. The third child (external beam treatment outside of our clinic), received conventional fractionated irradiation with 1.6 Gy fraction dose instead of a prescribed hyperfractionated external beam therapy and her brachytherapy dose was 25 Gy. At the (15(12)) months old child with primary embryonal rhabdomyosarcoma we applied 20 Gy brachytherapy and 24 Gy hyperfractionated external beam irradiation. All patients received multidrug chemotherapy according to the German Study Protocol (CWS-91). Results: Follow-up is 34, 28, 22, and 6 months for recurrent embryonal rhabdomyosarcoma patients (stand February 96). We observed at 9 months one rhabdomyosarcoma

  17. Evaluation of time, attendance of medical staff, and resources during interstitial brachytherapy for prostate cancer. DEGRO-QUIRO trial

    International Nuclear Information System (INIS)

    Tselis, N.; Zamboglou, N.; Maurer, U.; Popp, W.; Sack, H.

    2014-01-01

    The German Society of Radiation Oncology initiated a multicenter trial to evaluate core processes and subprocesses of radiotherapy by prospective evaluation of all important procedures in the most frequent malignancies treated by radiation therapy. The aim of this analysis was to assess the required resources for interstitial high-dose-rate (HDR) and low-dose-rate (LDR) prostate brachytherapy (BRT) based on actual time measurements regarding allocation of personnel and room occupation needed for specific procedures. Two radiotherapy centers (community hospital of Offenbach am Main and community hospital of Eschweiler) participated in this prospective study. Working time of the different occupational groups and room occupancies for the workflow of prostate BRT were recorded and methodically assessed during a 3-month period. For HDR and LDR BRT, a total of 560 and 92 measurements, respectively, were documented. The time needed for treatment preplanning was median 24 min for HDR (n=112 measurements) and 6 min for LDR BRT (n=21). Catheter implantation with intraoperative HDR real-time planning (n=112), postimplantation HDR treatment planning (n=112), and remotely controlled HDR afterloading irradiation (n=112) required median 25, 39, and 50 min, respectively. For LDR real-time planning (n=39) and LDR treatment postplanning (n=32), the assessed median duration was 91 and 11 min, respectively. Room occupancy and overall mean medical staff times were 194 and 910 min respectively, for HDR, and 113 and 371 min, respectively, for LDR BRT. In this prospective analysis, the resource requirements for the application of HDR and LDR BRT of prostate cancer were assessed methodically and are presented for first time. (orig.)

  18. Evaluation of time, attendance of medical staff, and resources during interstitial brachytherapy for prostate cancer. DEGRO-QUIRO trial

    Energy Technology Data Exchange (ETDEWEB)

    Tselis, N.; Zamboglou, N. [Sana Klinikum Offenbach, Department of Radiation Oncology, Offenbach am Main (Germany); Maurer, U. [St.-Antonius-Hospital, Strahlentherapie, Eschweiler (Germany); Popp, W. [Prime Networks AG, Basel (Switzerland); Sack, H. [University of Essen, Department of Radiation Oncology, Essen (Germany)

    2014-04-15

    The German Society of Radiation Oncology initiated a multicenter trial to evaluate core processes and subprocesses of radiotherapy by prospective evaluation of all important procedures in the most frequent malignancies treated by radiation therapy. The aim of this analysis was to assess the required resources for interstitial high-dose-rate (HDR) and low-dose-rate (LDR) prostate brachytherapy (BRT) based on actual time measurements regarding allocation of personnel and room occupation needed for specific procedures. Two radiotherapy centers (community hospital of Offenbach am Main and community hospital of Eschweiler) participated in this prospective study. Working time of the different occupational groups and room occupancies for the workflow of prostate BRT were recorded and methodically assessed during a 3-month period. For HDR and LDR BRT, a total of 560 and 92 measurements, respectively, were documented. The time needed for treatment preplanning was median 24 min for HDR (n=112 measurements) and 6 min for LDR BRT (n=21). Catheter implantation with intraoperative HDR real-time planning (n=112), postimplantation HDR treatment planning (n=112), and remotely controlled HDR afterloading irradiation (n=112) required median 25, 39, and 50 min, respectively. For LDR real-time planning (n=39) and LDR treatment postplanning (n=32), the assessed median duration was 91 and 11 min, respectively. Room occupancy and overall mean medical staff times were 194 and 910 min respectively, for HDR, and 113 and 371 min, respectively, for LDR BRT. In this prospective analysis, the resource requirements for the application of HDR and LDR BRT of prostate cancer were assessed methodically and are presented for first time. (orig.)

  19. Intracavitary radiotherapy of cervix carcinoma with flexible applicators after vesicovaginal interposition operation of the uterus

    International Nuclear Information System (INIS)

    Busch, M. II; Burmester, U.; Matthaei, D.; Duehmke, E.; Meden, H.; Kuhn, K.

    1991-01-01

    Advantages of new flexible intracervical applicators treating cervical cancer with high dose rate afterloading brachytherapy are reported: The insertion of the flexible applicator is usually possible without anesthesia and dilatation of the cervix. Therefore the treatment can be performed on an outpatient basis. The risks of perforation and infection are minimal. Dosimetry and documentation of the applicator geometry are possible, if the planning system allows the definition of individual curves of an individual applicator. We now prefer flexible applicators instead of rigid steel applicators treating cervix carcinoma. (orig.) [de

  20. Implication for QOL after I-125 brachytherapy for prostate cancer

    International Nuclear Information System (INIS)

    Teishima, Jun; Yasumoto, Hiroaki; Inoue, Syogo; Masumoto, Hiroshi; Hasegawa, Yasuhisa; Matsubara, Akio

    2009-01-01

    The aim of this study is to evaluate the quality of life (QOL) of patients following prostate brachytherapy. Between July 2004 and May 2008, 139 patients underwent I-125 permanent brachytherapy. Among those patients, 69 who were followed up for more than one year using the Expanded Prostate Index Composite (EPIC), Japanese version v1 TM , were enrolled in this study. Urinary summary scores became worse temporarily at 1 month after the end of treatment, but then recovered gradually to the level before treatment. Sexual summary scores before treatment were 42.2±16.3. They became worse temporarily at 1 month after treatment but then recovered gradually in patients whose sexual summary scores were more than 40. Urinary morbidity scores after prostate brachytherapy were not so severe and recovered within a short period. Further long-term observation is thought to be required in the future. Sexual function scores of patients before treatment in the present study were lower compared with those recorded in previous studies. (author)

  1. For-profit hospital ownership status and use of brachytherapy after breast-conserving surgery.

    Science.gov (United States)

    Sen, Sounok; Soulos, Pamela R; Herrin, Jeph; Roberts, Kenneth B; Yu, James B; Lesnikoski, Beth-Ann; Ross, Joseph S; Krumholz, Harlan M; Gross, Cary P

    2014-05-01

    Little is known about the relationship between operative care for breast cancer at for-profit hospitals and subsequent use of adjuvant radiation therapy (RT). Among Medicare beneficiaries, we examined whether hospital ownership status is associated with the use of breast brachytherapy--a newer and more expensive modality--as well as overall RT. We conducted a retrospective study of female Medicare beneficiaries who received breast-conserving surgery for invasive breast cancer in 2008 and 2009. We assessed the relationship between hospital ownership and receipt of brachytherapy or overall RT by using hierarchical generalized linear models. The sample consisted of 35,118 women, 8.0% of whom had breast-conserving operations at for-profit hospitals. Among patients who received RT, those who underwent operation at for-profit hospitals were more likely to receive brachytherapy (20.2%) than patients treated at not-for-profit hospitals (15.2%; odds ratio [OR] for for-profit versus not-for-profit: 1.50; 95% confidence interval [95% CI] 1.23-1.84; P profit hospital was associated with greater overall use of RT (OR 1.22; 95% CI 1.03-1.45, P = .03) and brachytherapy use (OR 1.66; 95% CI 1.18-2.34, P = .003). Operative care at for-profit hospitals was associated with increased use of the newer and more expensive RT modality, brachytherapy. Among the oldest women who are least likely to benefit from RT, operative care at a for-profit hospital was associated with greater overall use of RT, with this difference largely driven by the use of brachytherapy. Copyright © 2014 Mosby, Inc. All rights reserved.

  2. Brachytherapy for early oral tongue cancer. Low dose rate to high dose rate

    International Nuclear Information System (INIS)

    Yamazaki, Hideya; Inoue, Takehiro; Yoshida, Ken; Yoshioka, Yasuo; Shimizutani, Kimishige; Inoue, Toshihiko; Furukawa, Souhei; Kakimoto, Naoya

    2003-01-01

    To examine the compatibility of low dose rate (LDR) with high dose rate (HDR) brachytherapy, we reviewed 399 patients with early oral tongue cancer (T1-2N0M0) treated solely by brachytherapy at Osaka University Hospital between 1967 and 1999. For patients in the LDR group (n=341), the treatment sources consisted of Ir-192 pin for 227 patients (1973-1996; irradiated dose, 61-85 Gy; median, 70 Gy), Ra-226 needle for 113 patients (1967-1986; 55-93 Gy; median, 70 Gy). Ra-226 and Ir-192 were combined for one patient. Ir-192 HDR (microSelectron-HDR) was used for 58 patients in the HDR group (1991-present; 48-60 Gy; median, 60 Gy). LDR implantations were performed via oral and HDR via a submental/submandibular approach. The dose rates at the reference point for the LDR group were 0.30 to 0.8 Gy/h, and for the HDR group 1.0 to 3.4 Gy/min. The patients in the HDR group received a total dose of 48-60 Gy (8-10 fractions) during one week. Two fractions were administered per day (at least a 6-h interval). The 3- and 5-year local control rates for patients in the LDR group were 85% and 80%, respectively, and those in the HDR group were both 84%. HDR brachytherapy showed the same lymph-node control rate as did LDR brachytherapy (67% at 5 years). HDR brachytherapy achieved the same locoregional result as did LDR brachytherapy. A converting factor of 0.86 is applicable for HDR in the treatment of early oral tongue cancer. (author)

  3. Dose calculation and isodose curves determination in brachytherapy

    International Nuclear Information System (INIS)

    Maranhao, Frederico B.; Lima, Fernando R.A.; Khoury, Helen J.

    2000-01-01

    Brachytherapy is a form of cancer treatment in which small radioactive sources are placed inside of, or close to small tumors, in order to cause tissue necrosis and, consequently, to interrupt the tumor growth process. A very important aspect to the planning of this therapy is the calculation of dose distributions in the tumor and nearby tissues, to avoid the unnecessary irradiation of healthy tissue. The objective of this work is to develop a computer program that will permit treatment planning for brachytherapy at low dose rates, minimizing the possible errors introduced when such calculations are done manually. Results obtained showed good agreement with those from programs such as BRA, which is widely used in medical practice. (author)

  4. Bronchoscopic brachytherapy in roentgenologically occult cancer of the trachea and bronchus

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Ryosuke; Hirano, Hiroshi (National Cancer Center, Tokyo (Japan). Central Hospital)

    1994-12-01

    Bronchoscopic brachytherapy is a new technique presently being investigated for the treatment of cancer involving the tracheobronchial tree. This paper reports on the potential application of bronchoscopic brachytherapy to the local treatment of cancer of the respiratory tract. Bronchoscopic brachytherapy was performed on 8 patients with roentgenographically occult lung cancer after biopsies proved malignant lesions of the trachea and bronchus in each case. These patients came to the National Cancer Center Hospital during the period from September 1992 to December 1992. Among these 8 cases of malignant lesions of the trachea and bronchus, 5 malignant lesions of the bronchus were diagnosed by bronchoscopic ultrasonography prior to the bronchoscopic brachytherapy, and these 5 patients have completed at least three courses of this therapy carried out by means of a videobronchoscope. Among the 8 cases of malignant lesions of the trachea and bronchus, complete remission was obtained in 7 cases. Of the 8 patients, the death of one patient was caused by amyotrophic lateral sclerosis, while the remaining 7 patients have survived for 13-15 months (14.1 months on average) to date, without showing recurrence or metastasis. As for the complications involved in this treatment, only a light degree of excessive secretions was observed, and there was no abscess formation in any of the cases. (author).

  5. Bronchoscopic brachytherapy in roentgenologically occult cancer of the trachea and bronchus

    International Nuclear Information System (INIS)

    Ono, Ryosuke; Hirano, Hiroshi

    1994-01-01

    Bronchoscopic brachytherapy is a new technique presently being investigated for the treatment of cancer involving the tracheobronchial tree. This paper reports on the potential application of bronchoscopic brachytherapy to the local treatment of cancer of the respiratory tract. Bronchoscopic brachytherapy was performed on 8 patients with roentgenographically occult lung cancer after biopsies proved malignant lesions of the trachea and bronchus in each case. These patients came to the National Cancer Center Hospital during the period from September 1992 to December 1992. Among these 8 cases of malignant lesions of the trachea and bronchus, 5 malignant lesions of the bronchus were diagnosed by bronchoscopic ultrasonography prior to the bronchoscopic brachytherapy, and these 5 patients have completed at least three courses of this therapy carried out by means of a videobronchoscope. Among the 8 cases of malignant lesions of the trachea and bronchus, complete remission was obtained in 7 cases. Of the 8 patients, the death of one patient was caused by amyotrophic lateral sclerosis, while the remaining 7 patients have survived for 13-15 months (14.1 months on average) to date, without showing recurrence or metastasis. As for the complications involved in this treatment, only a light degree of excessive secretions was observed, and there was no abscess formation in any of the cases. (author)

  6. Development of the Dutch primary standard for beta-emitting brachytherapy sources

    International Nuclear Information System (INIS)

    Marel, J. an der; Dijk, E. van

    2002-01-01

    The application of β-radiation emitting radioactive sources in medicine is rapidly expanding. An important new application is the use of β-radiation emitting radioactive sources in endovascular brachytherapy to avoid restenosis. Another well-known application is the use of the ophthalmic applicator (flat or concave surface source) for the treatment of tumors in the eye. Dose and dose distributions are very important characteristics of brachytherapy sources. The absorbed dose in the treated tissue should be known accurately to assure a good quality of the treatment and to develop new treatment methods and source configurations. At the Nederland s Meetinstituut (NMi) a project is going on for the development of a primary standard for betadosimetry. With this standard, dose and dose distributions of β-sources as used in brachytherapy can be measured in terms of absorbed dose to water. The primary standard is based on an extrapolation chamber. The extrapolation chamber will become part of a quality assurance system in Dutch hospitals for endovascular brachytherapy sources. The quality assurance system will further consist of transfer standards like well-type ionisation chambers, plastic scintillator systems and radiochromic film dosimetry. Apart from the endovascular sources the extrapolation chamber will be used to characterize ophthalmic applicators

  7. Dose calculation in brachytherapy with microcomputers

    International Nuclear Information System (INIS)

    Elbern, A.W.

    1989-01-01

    The computer algorithms, that allow the calculation of brachytherapy doses and its graphic representation for implants, using programs developed for Pc microcomputers are presented. These algorithms allow to localized the sources in space, from their projection in radiographics images and trace isodose counter. (C.G.C.) [pt

  8. Brachytherapy for treatment of cervix cancer in Madagascar

    International Nuclear Information System (INIS)

    Pignon, T.; Ratovonarivo, H.; Rafaramino, F.; Ruggieri, S.

    1993-01-01

    From March 1986 to June 1988, 60 patients with carcinoma of the uterine cervix were treated by radiotherapy alone or combined radiotherapy and surgery at the only radiotherapy-oncology department of Madagascar in Antananarivo. There were 20 stage IB, 28 stage II, 5 stage III and 7 cases where initial stage before surgery was unknown. After a limited pre-therapeutic investigation, treatment for stage IB consisted of utero-vaginal brachytherapy followed by a colpo-hysterectomy and external iliac lymphadenectomy. Others received combined external radiotherapy and brachytherapy according to the Fletcher guidelines, although 30 patients also received surgery. An obsolete and inefficient cobalt unit with lack of computerized dosimetry made the management of therapeutic schemas difficult. Nineteen patients (31.6%) were not available for follow-up immediately after the end of the treatment and one patient died from intestinal occlusion during brachytherapy. The overall rate of severe complications was 4.8%. There were 12 recurrences which occurred in stage II or in patients with unknown initial staging. At the time of analysis, 25 patients were alive: 15 stage I and 10 stage II. In this country, cervical carcinomas are the most frequent tumors: only the rehabilitation of radiotherapy facilities will allow results to be improved

  9. Quality control of brachytherapy equipment in the Netherlands and Belgium: current practice and minimum requirements

    International Nuclear Information System (INIS)

    Elfrink, Robert J.M.; Kolkman-Deurloo, Inger-Karine K.; Kleffens, Herman J. van; Rijnders, Alex; Schaeken, Bob; Aalbers, Tony H.L.; Dries, Wim J.F.; Venselaar, Jack L.M.

    2002-01-01

    Background and purpose: Brachytherapy is applied in 39 radiotherapy institutions in The Netherlands and Belgium. Each institution has its own quality control (QC) programme to ensure safe and accurate dose delivery to the patient. The main goal of this work is to gain insight into the current practice of QC of brachytherapy in The Netherlands and Belgium and to reduce possible variations in test frequencies and tolerances by formulating a set of minimum QC-requirements. Materials and methods: An extensive questionnaire about QC of brachytherapy was distributed to and completed by the 39 radiotherapy institutions. A separate smaller questionnaire was sent to nine institutions performing intracoronary brachytherapy. The questions were related to safety systems, physical irradiation parameters and total time spent on QC. The results of the questionnaires were compared with recommendations given in international brachytherapy QC reports. Results: The answers to the questionnaires showed large variations in test frequencies and test methods. Furthermore, large variations in time spent on QC exist, which is mainly due to differences in QC-philosophy and differences in the available resources. Conclusions: Based on the results of the questionnaires and the comparison with the international recommendations, a set of minimum requirements for QC of brachytherapy has been formulated. These guidelines will be implemented in the radiotherapy institutions in The Netherlands and Belgium

  10. Predictive factors for acute and late urinary toxicity after permanent interstitial brachytherapy in Japanese patients

    International Nuclear Information System (INIS)

    Tanimoto, Ryuta; Bekku, Kensuke; Katayama, Norihisa

    2013-01-01

    The objectives of this study were to describe the frequency of and to determine predictive factors associated with Radiation Therapy Oncology Group urinary toxicity in prostate brachytherapy patients. From January 2004 to April 2011, 466 consecutive Japanese patients underwent permanent iodine-125-seed brachytherapy (median follow up 48 months). International Prostate Symptom Score and Radiation Therapy Oncology Group toxicity data were prospectively collected. Prostate volume, International Prostate Symptom Score before and after brachytherapy, and postimplant analysis were examined for an association with urinary toxicity, defined as Radiation Therapy Oncology Group urinary toxicity of Grade 1 or higher. Logistic regression analysis was used to examine the factors associated with urinary toxicity. The rate of Radiation Therapy Oncology Group urinary toxicity grade 1 or higher at 1, 6, 12, 24, 36 and 48 months was 67%, 40%, 21%, 31%, 27% and 28%, respectively. Grade 2 or higher urinary toxicity was less than 1% at each time-point. International Prostate Symptom Score was highest at 3 months and returned to normal 12 months after brachytherapy. On multivariate analysis, patients with a larger prostate size, greater baseline International Prostate Symptom Score, higher prostate V100, higher prostate V150, higher prostate D90 and a greater number of seeds had more acute urinary toxicities at 1 month and 12 months after brachytherapy. On multivariate analysis, significant predictors for urinary toxicity at 1 month and 12 months were a greater baseline International Prostate Symptom Score and prostate V100. Most urinary symptoms are tolerated and resolved within 12 months after prostate brachytherapy. Acute and late urinary toxicity after brachytherapy is strongly related to the baseline International Prostate Symptom Score and prostate V100. (author)

  11. Dosimetric analysis of BNCT - Boron Neutron Capture Therapy - coupled to 252Cf brachytherapy

    International Nuclear Information System (INIS)

    Brandao, Samia F.; Campos, Tarcisio P.R.

    2009-01-01

    The incidence of brain tumors is increasing in world population; however, the treatments employed in this type of tumor have a high rate of failure and in some cases have been considered palliative, depending on histology and staging of tumor. Its necessary to achieve the control tumor dose without the spread irradiation cause damage in the brain, affecting patient neurological function. Stereotactic radiosurgery is a technique that achieves this; nevertheless, other techniques that can be used on the brain tumor control must be developed, in order to guarantee lower dose on health surroundings tissues other techniques must be developing. The 252 Cf brachytherapy applied to brain tumors has already been suggested, showing promising results in comparison to photon source, since the active source is placed into the tumor, providing greater dose deposition, while more distant regions are spared. BNCT - Boron Neutron Capture Therapy - is another technique that is in developing to brain tumors control, showing theoretical superiority on the rules of conventional treatments, due to a selective irradiation of neoplasics cells, after the patient receives a borate compound infusion and be subjected to a epithermal neutrons beam. This work presents dosimetric studies of the coupling techniques: BNCT with 252 Cf brachytherapy, conducted through computer simulation in MCNP5 code, using a precise and well discretized voxel model of human head, which was incorporated a representative Glioblastoma Multiform tumor. The dosimetric results from MCNP5 code were exported to SISCODES program, which generated isodose curves representing absorbed dose rate in the brain. Isodose curves, neutron fluency, and dose components from BNCT and 252 Cf brachytherapy are presented in this paper. (author)

  12. Patterns of brachytherapy practice for patients with carcinoma of the cervix (1996-1999): A Patterns of Care Study

    International Nuclear Information System (INIS)

    Erickson, Beth; Eifel, Patricia; Moughan, Jennifer; Rownd, Jason M.S.; Iarocci, Thomas; Owen, Jean

    2005-01-01

    Purpose/Objective: To analyze the details of brachytherapy practice in patients treated for carcinoma of the cervix in the United States between 1996 and 1999. Methods and Materials: Radiation facilities were selected from a stratified random sample. Patients were randomly selected from lists of eligible patients treated at each facility. A total of 442 patients' records were reviewed in 59 facilities to obtain data about patients' characteristics, evaluation, tumor extent, and treatment. National estimates were made using weights that reflected the relative contribution of each institution and of each patient within the sampled institutions. From our survey we estimate that 16,375 patients were treated in the United States during this study period. Unless otherwise specified, brachytherapy practice was based on the 408 patients who had their brachytherapy or all their treatment at the surveyed facility. Results: A total of 91.5% of patients underwent brachytherapy at the initial treating institution; 8.5% were referred to a second site for brachytherapy. Forty-two percent of U.S. facilities referred at least some patients to a second facility for brachytherapy. Of U.S. facilities that treated ≤2 eligible patients per year, 61% referred all of their patients to a second facility for brachytherapy or treated with external RT alone; none of the U.S. facilities with larger experience (>2 eligible patients per year) referred all their patients to a second facility for brachytherapy treatment, but 28% referred some patients to an outside facility for brachytherapy. Overall, 94% of patients who completed treatment with curative intent received brachytherapy. Of these patients who had brachytherapy, 77.8%, 13.3%, and 0.9%, respectively, were treated with low-dose-rate (LDR), high-dose-rate (HDR), or a combination of HDR and LDR brachytherapy; 7.9% had interstitial brachytherapy (5.7% LDR and 1.9% HDR, 0.3% mixed). In facilities that treated >2 patients per year, 15

  13. Clinical Practice and Quality Assurance Challenges in Modern Brachytherapy Sources and Dosimetry

    International Nuclear Information System (INIS)

    Butler, Wayne M.; Merrick, Gregory S.

    2008-01-01

    Modern brachytherapy has led to effective treatments through the establishment of broadly applicable dosimetric thresholds for maximizing survival with minimal morbidity. Proper implementation of recent dosimetric consensus statements and quality assurance procedures is necessary to maintain the established level of safety and efficacy. This review classifies issues as either 'systematic' or 'stochastic' in terms of their impact on large groups or individual patients, respectively. Systematic changes affecting large numbers of patients occur infrequently and include changes in source dosimetric parameters, prescribing practice, dose calculation formalism, and improvements in calculation algorithms. The physicist must be aware of how incipient changes accord with previous experience. Stochastic issues involve procedures that are applied to each patient individually. Although ample guidance for quality assurance of brachytherapy sources exists, some ambiguities remain. The latest American Association of Physicists in Medicine guidance clarifies what is meant by independent assay, changes source sampling recommendations, particularly for sources in sterile strands and sterile preassembled needles, and modifies action level thresholds. The changing environment of brachytherapy has not changed the fact that the prime responsibility for quality assurance in brachytherapy lies with the institutional medical physicist

  14. Salvage/Adjuvant Brachytherapy After Ophthalmic Artery Chemosurgery for Intraocular Retinoblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Francis, Jasmine H., E-mail: francij1@mskcc.org [Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Barker, Christopher A.; Wolden, Suzanne L.; McCormick, Beryl; Segal, Kira; Cohen, Gil [Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Gobin, Y. Pierre; Marr, Brian P. [Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Weill-Cornell Medical College, New York-Presbyterian Hospital, New York, New York (United States); Brodie, Scott E. [Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Mount Sinai School of Medicine, New York, New York (United States); Dunkel, Ira J.; Abramson, David H. [Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Weill-Cornell Medical College, New York-Presbyterian Hospital, New York, New York (United States)

    2013-11-01

    Purpose: To evaluate the efficacy and toxicity of brachytherapy after ophthalmic artery chemosurgery (OAC) for retinoblastoma. Methods and Materials: This was a single-arm, retrospective study of 15 eyes in 15 patients treated with OAC followed by brachytherapy at (blinded institution) between May 1, 2006, and December 31, 2012, with a median 19 months' follow-up from plaque insertion. Outcome measurements included patient and ocular survival, visual function, and retinal toxicity measured by electroretinogram (ERG). Results: Brachytherapy was used as adjuvant treatment in 2 eyes and as salvage therapy in 13 eyes of which 12 had localized vitreous seeding. No patients developed metastasis or died of retinoblastoma. The Kaplan-Meier estimate of ocular survival was 79.4% (95% confidence interval 48.7%-92.8%) at 18 months. Three eyes were enucleated, and an additional 6 eyes developed out-of-target volume recurrences, which were controlled with additional treatments. Patients with an ocular complication had a mean interval between last OAC and plaque of 2.5 months (SD 2.3 months), which was statistically less (P=.045) than patients without ocular complication who had a mean interval between last OAC and plaque of 6.5 months (SD 4.4 months). ERG responses from pre- versus postplaque were unchanged or improved in more than half the eyes. Conclusions: Brachytherapy following OAC is effective, even in the presence of vitreous seeding; the majority of eyes maintained stable or improved retinal function following treatment, as assessed by ERG.

  15. Salvage/Adjuvant Brachytherapy After Ophthalmic Artery Chemosurgery for Intraocular Retinoblastoma

    International Nuclear Information System (INIS)

    Francis, Jasmine H.; Barker, Christopher A.; Wolden, Suzanne L.; McCormick, Beryl; Segal, Kira; Cohen, Gil; Gobin, Y. Pierre; Marr, Brian P.; Brodie, Scott E.; Dunkel, Ira J.; Abramson, David H.

    2013-01-01

    Purpose: To evaluate the efficacy and toxicity of brachytherapy after ophthalmic artery chemosurgery (OAC) for retinoblastoma. Methods and Materials: This was a single-arm, retrospective study of 15 eyes in 15 patients treated with OAC followed by brachytherapy at (blinded institution) between May 1, 2006, and December 31, 2012, with a median 19 months' follow-up from plaque insertion. Outcome measurements included patient and ocular survival, visual function, and retinal toxicity measured by electroretinogram (ERG). Results: Brachytherapy was used as adjuvant treatment in 2 eyes and as salvage therapy in 13 eyes of which 12 had localized vitreous seeding. No patients developed metastasis or died of retinoblastoma. The Kaplan-Meier estimate of ocular survival was 79.4% (95% confidence interval 48.7%-92.8%) at 18 months. Three eyes were enucleated, and an additional 6 eyes developed out-of-target volume recurrences, which were controlled with additional treatments. Patients with an ocular complication had a mean interval between last OAC and plaque of 2.5 months (SD 2.3 months), which was statistically less (P=.045) than patients without ocular complication who had a mean interval between last OAC and plaque of 6.5 months (SD 4.4 months). ERG responses from pre- versus postplaque were unchanged or improved in more than half the eyes. Conclusions: Brachytherapy following OAC is effective, even in the presence of vitreous seeding; the majority of eyes maintained stable or improved retinal function following treatment, as assessed by ERG

  16. Braquiterapia de alta taxa de dose no Brasil High-dose rate brachytherapy in Brazil

    Directory of Open Access Journals (Sweden)

    Sérgio Carlos Barros Esteves

    2004-10-01

    Full Text Available A braquiterapia de alta taxa de dose foi introduzida em nosso meio em janeiro de 1991. Desde então, houve uma mudança significativa na abordagem das neoplasias malignas em relação às vantagens do novo método, e também resolução da demanda reprimida de braquiterapia para as neoplasias ginecológicas. Nos primeiros dez anos de atividade, o Brasil tratou, em 31 serviços, 26.436 pacientes com braquiterapia, sendo mais de 50% das pacientes portadoras de neoplasias do colo uterino. Este estudo mostra o número e o perfil de pacientes tratados com esse método e a sua distribuição no território nacional, deixando explícito o benefício da braquiterapia de alta taxa de dose para o Brasil.High-dose rate brachytherapy was first introduced in Brazil in January 1991. Significant changes in the management of malignant neoplasms were observed since utilization of high-dose rate brachytherapy. The high number of gynecological patients awaiting for brachytherapy also decreased during this period. In the first ten years 26,436 patients were treated with high-dose rate brachytherapy. More than 50% of these patients presented neoplasms of the uterine cervix. In this study we present the number and profile of the patients treated with high-dose rate brachytherapy as well as the distribution of these patients in the Brazilian territory, proving the benefit of the use of high-dose rate brachytherapy in Brazil.

  17. The effectiveness of 125I seed interstitial brachytherapy for transplantation tumor of human pancreatic carcinoma in nude mice: an experiment in vivo

    International Nuclear Information System (INIS)

    Song Qi; Liu Yu; Wang Zhongmin; Huang Wei; Lu Jian; Chen Kemin

    2010-01-01

    Objective: To discuss the effectiveness and therapeutic mechanism of 125 I interstitial brachytherapy for transplantation tumor of human pancreatic carcinoma in nude mice. Methods: The human pancreatic cell line Sw1990 was subcutaneously injected into the right lower limb partially dorsal area next to the groin of the immunodeficient BABL /c nude mice. The tumor was removed and cut into small pieces after it was formed,then the tumor pieces were inoculated in nude mice. The tumor developed to 8-10 mm in size after six weeks. A total of 16 nude mice with the suitable tumor size were used in this study. The 16 experimental mice were randomly and equally divided into two groups. The mice in study group (n = 8) were implanted with 125 I seeds, while the mice in control group (n = 8) were implanted with ghost seeds. After the implantation both the long and short diameter of the tumors as well as the mouse body weight were measured every 4 days. The tumor weight was measured when the mouse was sacrificed. The paraffin-embedded samples were sent for histopathological examination. Apoptotic cells were checked with terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) method. Expression of proliferating cell nuclear antigen (PCNA) was detected with immuno-histochemical staining. Results: The tumor grew slowly in the study group, but rapidly in the control group. The tumor weight in the study group and the control group was (2.68 ± 0.70)g and (4.68 ± 1.45)g, respectively, the difference between two groups was statistically significant (P = 0.021). The tumor inhibition rate was about 42.66%. No significant difference in body weight of nude mice existed between two groups both before and after the treatment (P > 0.05). Marked tumor necrosis was seen in study group, but no obvious, or only a little, tumor necrosis could be observed in the control group. The apoptotic index checked with the TUENL method in the study group and control group was (23.2 ± 1.9)% and

  18. A comparison between tandem and ovoids and interstitial gynecologic template brachytherapy dosimetry using a hypothetical computer model

    International Nuclear Information System (INIS)

    Hsu, I-Chow J.; Speight, Joycelyn; Hai, Jenny; Vigneault, Eric; Phillips, Theodore; Pouliot, Jean

    2002-01-01

    Purpose: To evaluate the dose distribution within the clinical target volume between two gynecologic brachytherapy systems - the tandem and ovoids and the Syed-Neblett gynecologic template - using a hypothetical computer model. Methods and Materials: Source positions of an intracavitary system (tandem and ovoids) and an interstitial system (GYN template) were digitized into the Nucletron Brachytherapy Planning System. The GYN template is composed of a 13-catheter implant (12 catheters plus a tandem) based on the Syed-Neblett gynecologic template. For the tandem and ovoids, the dwell times of all sources were evenly weighted to produce a pear-shaped isodose distribution. For the GYN template, the dwell times were determined using volume optimization. The prescribed dose was then normalized to point A in the intracavitary system and to a selected isodose line in the interstitial system. The treated volume in the two systems was kept approximately the same, and a cumulative dose-volume histogram of the treated volume was then generated with the Nucletron Brachytherapy Planning System to use for comparison. To evaluate the dose to a hypothetical target, in this case the cervix, a 2-cm-long, 3-cm-diameter cylinder centered along the tandem was digitized as the clinical target volume. The location of this hypothetical cervix was based on the optimal application of the brachytherapy system. A visual comparison of clinical target coverage by the treated volume on three different orthogonal planes through the treated volume was performed. The percentage dose-volume histograms of the target were generated for comparison. Multiple midline points were also placed at 5-mm intervals away from the tandem in the plane of the cervix to simulate the location of potential bladder and rectal dose points. Doses to these normal structures were calculated for comparison. Results: Although both systems covered the hypothetical cervix adequately, the interstitial system had a better

  19. The role of brachytherapy in the definitive management of prostate cancer; Place de la curietherapie dans le traitement du cancer prostatique localise

    Energy Technology Data Exchange (ETDEWEB)

    Crook, J. [British Columbia Cancer Agency, Center for the Southern Interior, 399, Royal Avenue, Kelowna, British Columbia, V1Y 5L33 (Canada)

    2011-06-15

    Over the past two decades, brachytherapy has played an ever expanding role in the definitive radiotherapy of prostate cancer. Brachytherapy surpasses external beam radiotherapy in its ability to deliver intense intra-prostatic dose escalation. Although initially low dose rate permanent seed brachytherapy was favored for favorable risk prostate cancers, and high dose rate temporary brachytherapy for intermediate and advanced disease, both types of brachytherapy now have a place across all the risk groups of localized prostate cancer. This article will review indications and patient selection, planning and technical aspects, toxicity and efficacy for both low and high dose rate prostate brachytherapy. (author)

  20. Verification of the calculation program for brachytherapy planning system of high dose rate (PLATO)

    International Nuclear Information System (INIS)

    Almansa, J.; Alaman, C.; Perez-Alija, J.; Herrero, C.; Real, R. del; Ososrio, J. L.

    2011-01-01

    In our treatments are performed brachytherapy high dose rate since 2007. The procedures performed include gynecological intracavitary treatment and interstitial. The treatments are performed with a source of Ir-192 activity between 5 and 10 Ci such that small variations in treatment times can cause damage to the patient. In addition the Royal Decree 1566/1998 on Quality Criteria in radiotherapy establishes the need to verify the monitor units or treatment time in radiotherapy and brachytherapy. All this justifies the existence of a redundant system for brachytherapy dose calculation that can reveal any abnormality is present.

  1. Dosimetry Modeling for Focal Low-Dose-Rate Prostate Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Al-Qaisieh, Bashar [Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds (United Kingdom); Mason, Josh, E-mail: joshua.mason@nhs.net [Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds (United Kingdom); Bownes, Peter; Henry, Ann [Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds (United Kingdom); Dickinson, Louise [Division of Surgery and Interventional Science, University College London, London (United Kingdom); Department of Radiology, Northwick Park Hospital, London North West NHS Trust, London (United Kingdom); Ahmed, Hashim U. [Division of Surgery and Interventional Science, University College London, London (United Kingdom); University College London Hospital, London (United Kingdom); Emberton, Mark [University College London Hospital, London (United Kingdom); Langley, Stephen [St Luke' s Cancer Centre, Guildford (United Kingdom)

    2015-07-15

    Purpose: Focal brachytherapy targeted to an individual lesion(s) within the prostate may reduce side effects experienced with whole-gland brachytherapy. The outcomes of a consensus meeting on focal prostate brachytherapy were used to investigate optimal dosimetry of focal low-dose-rate (LDR) prostate brachytherapy targeted using multiparametric magnetic resonance imaging (mp-MRI) and transperineal template prostate mapping (TPM) biopsy, including the effects of random and systematic seed displacements and interseed attenuation (ISA). Methods and Materials: Nine patients were selected according to clinical characteristics and concordance of TPM and mp-MRI. Retrospectively, 3 treatment plans were analyzed for each case: whole-gland (WG), hemi-gland (hemi), and ultra-focal (UF) plans, with 145-Gy prescription dose and identical dose constraints for each plan. Plan robustness to seed displacement and ISA were assessed using Monte Carlo simulations. Results: WG plans used a mean 28 needles and 81 seeds, hemi plans used 17 needles and 56 seeds, and UF plans used 12 needles and 25 seeds. Mean D90 (minimum dose received by 90% of the target) and V100 (percentage of the target that receives 100% dose) values were 181.3 Gy and 99.8% for the prostate in WG plans, 195.7 Gy and 97.8% for the hemi-prostate in hemi plans, and 218.3 Gy and 99.8% for the focal target in UF plans. Mean urethra D10 was 205.9 Gy, 191.4 Gy, and 92.4 Gy in WG, hemi, and UF plans, respectively. Mean rectum D2 cm{sup 3} was 107.5 Gy, 77.0 Gy, and 42.7 Gy in WG, hemi, and UF plans, respectively. Focal plans were more sensitive to seed displacement errors: random shifts with a standard deviation of 4 mm reduced mean target D90 by 14.0%, 20.5%, and 32.0% for WG, hemi, and UF plans, respectively. ISA has a similar impact on dose-volume histogram parameters for all plan types. Conclusions: Treatment planning for focal LDR brachytherapy is feasible. Dose constraints are easily met with a notable

  2. HDR brachytherapy. An option for preventing nonmalignant obstruction in patients after lung transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, A.; Karstens, J.H.; Christiansen, H. [Medical School Hannover (Germany). Dept. of Radiation Oncology; Warszawski-Baumann, A.; Baumann, R. [Medical School Hannover (Germany). Dept. of Radiation Oncology; Medical Practice for Radiotherapy and Radiation Oncology, Hannover (Germany); Gottlieb, J.; Welte, T. [Medical School Hannover (Germany). Dept. of Respiratory Medicine

    2012-12-15

    Purpose: Interventional bronchoscopy is the main treatment modality in managing benign airway obstructions following lung transplantation. We analyzed the effect of intraluminal brachytherapy on preventing recurrence of hyperplastic tissue. Patients and methods: From September 2002 to September 2004, a total of 24 intraluminal brachytherapy applications were carried out on 12 lung transplant patients in 15 different locations. A single dose of 3 Gy was calculated at a 5-mm distance from the catheter surface; the target volume included a stenosis plus safety interval of 0.5-1.0 cm. Results: All patients had a mean 10.6 local interventions (Argon plasma coagulation, balloon dilatations, stenting) over 4.4 months before the first application of endobronchial brachytherapy, with a mean amount of 2.4 applications per month. The mean forced expiratory volume in 1 s (FEV1) was 2,219 ml in the 3 months before application of brachytherapy. After endobronchial brachytherapy, all patients experienced improvement in clinical status and respiratory function. The mean level of FEV1 in the 3 months after application was 2,435 ml (p = 0.02), and the number of invasive interventions dropped to a mean rate of 5.2 interventions in the 5.1 months after the first intervention, with an amount of 1 application per month. No treatment-related complications were seen. Four patients were treated twice, 1 patient three times, and 1 patient four times at the same localization. Conclusions: Recurrent symptomatic benign airway obstruction from hyperplastic tissue in the bronchus after lung transplantation can be successfully treated with intraluminal high-dose-rate brachytherapy with a dose of 3 Gy at a 5-mm distance from the catheter surface and a longitudinal safety margin of 1 cm. (orig.)

  3. HDR brachytherapy. An option for preventing nonmalignant obstruction in patients after lung transplantation

    International Nuclear Information System (INIS)

    Meyer, A.; Karstens, J.H.; Christiansen, H.; Gottlieb, J.; Welte, T.

    2012-01-01

    Purpose: Interventional bronchoscopy is the main treatment modality in managing benign airway obstructions following lung transplantation. We analyzed the effect of intraluminal brachytherapy on preventing recurrence of hyperplastic tissue. Patients and methods: From September 2002 to September 2004, a total of 24 intraluminal brachytherapy applications were carried out on 12 lung transplant patients in 15 different locations. A single dose of 3 Gy was calculated at a 5-mm distance from the catheter surface; the target volume included a stenosis plus safety interval of 0.5-1.0 cm. Results: All patients had a mean 10.6 local interventions (Argon plasma coagulation, balloon dilatations, stenting) over 4.4 months before the first application of endobronchial brachytherapy, with a mean amount of 2.4 applications per month. The mean forced expiratory volume in 1 s (FEV1) was 2,219 ml in the 3 months before application of brachytherapy. After endobronchial brachytherapy, all patients experienced improvement in clinical status and respiratory function. The mean level of FEV1 in the 3 months after application was 2,435 ml (p = 0.02), and the number of invasive interventions dropped to a mean rate of 5.2 interventions in the 5.1 months after the first intervention, with an amount of 1 application per month. No treatment-related complications were seen. Four patients were treated twice, 1 patient three times, and 1 patient four times at the same localization. Conclusions: Recurrent symptomatic benign airway obstruction from hyperplastic tissue in the bronchus after lung transplantation can be successfully treated with intraluminal high-dose-rate brachytherapy with a dose of 3 Gy at a 5-mm distance from the catheter surface and a longitudinal safety margin of 1 cm. (orig.)

  4. The difference of scoring dose to water or tissues in Monte Carlo dose calculations for low energy brachytherapy photon sources.

    Science.gov (United States)

    Landry, Guillaume; Reniers, Brigitte; Pignol, Jean-Philippe; Beaulieu, Luc; Verhaegen, Frank

    2011-03-01

    The goal of this work is to compare D(m,m) (radiation transported in medium; dose scored in medium) and D(w,m) (radiation transported in medium; dose scored in water) obtained from Monte Carlo (MC) simulations for a subset of human tissues of interest in low energy photon brachytherapy. Using low dose rate seeds and an electronic brachytherapy source (EBS), the authors quantify the large cavity theory conversion factors required. The authors also assess whether ap plying large cavity theory utilizing the sources' initial photon spectra and average photon energy induces errors related to spatial spectral variations. First, ideal spherical geometries were investigated, followed by clinical brachytherapy LDR seed implants for breast and prostate cancer patients. Two types of dose calculations are performed with the GEANT4 MC code. (1) For several human tissues, dose profiles are obtained in spherical geometries centered on four types of low energy brachytherapy sources: 125I, 103Pd, and 131Cs seeds, as well as an EBS operating at 50 kV. Ratios of D(w,m) over D(m,m) are evaluated in the 0-6 cm range. In addition to mean tissue composition, compositions corresponding to one standard deviation from the mean are also studied. (2) Four clinical breast (using 103Pd) and prostate (using 125I) brachytherapy seed implants are considered. MC dose calculations are performed based on postimplant CT scans using prostate and breast tissue compositions. PTV D90 values are compared for D(w,m) and D(m,m). (1) Differences (D(w,m)/D(m,m)-1) of -3% to 70% are observed for the investigated tissues. For a given tissue, D(w,m)/D(m,m) is similar for all sources within 4% and does not vary more than 2% with distance due to very moderate spectral shifts. Variations of tissue composition about the assumed mean composition influence the conversion factors up to 38%. (2) The ratio of D90(w,m) over D90(m,m) for clinical implants matches D(w,m)/D(m,m) at 1 cm from the single point sources, Given

  5. Intra-luminal brachytherapy of bile duct tumors

    International Nuclear Information System (INIS)

    Udaya Kumar Maiya, M.; Bhat, Naresh; Praveen, L.S.

    2000-01-01

    The objective of this study has been to assess the feasibility of intraluminal brachytherapy of the biliary ductal system. The technique of the procedure with its attendant problems and how to overcome the same will be discussed in detail

  6. International Brachytherapy Practice Patterns: A Survey of the Gynecologic Cancer Intergroup (GCIG)

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, Akila N., E-mail: aviswanathan@lroc.harvard.edu [Department of Radiation Oncology, Brigham and Women' s Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA (United States); Creutzberg, Carien L. [Department of Clinical Oncology, Leiden University Medical Center, Leiden (Netherlands); Craighead, Peter [Tom Baker Cancer Centre, Calgary, Alberta (Canada); McCormack, Mary [Department of Oncology, University College London Hospital, London (United Kingdom); Toita, Takafumi [Department of Radiology, Graduate School of Medical Science, University of the Ryukyus, Okinawa (Japan); Narayan, Kailash [Division of Radiation Oncology, Peter MacCallum Cancer Centre and Department of Obstetrics and Gynecology, University of Melbourne, Melbourne (Australia); Reed, Nicholas [Beatson Oncology Centre, Glasgow, Scotland (United Kingdom); Long, Harry [Division of Medical Oncology, Department of Oncology, Mayo Clinic College of Medicine, Rochester, MN (United States); Kim, Hak-Jae [Department of Oncology, Seoul National University Hospital, Seoul (Korea, Republic of); Marth, Christian [Medical University Innsbruck, Innsbruck (Austria); Lindegaard, Jacob C. [Aarhus University Hospital, Aarhus (Denmark); Cerrotta, Annmarie [Department of Radiation Therapy, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano (Italy); Small, William [The Robert H. Lurie Comprehensive Cancer of Northwestern University, Chicago, IL (United States); Trimble, Edward [National Cancer Institute, Bethesda, MD (United States)

    2012-01-01

    Purpose: To determine current practice patterns with regard to gynecologic high-dose-rate (HDR) brachytherapy among international members of the Gynecologic Cancer Intergroup (GCIG) in Japan/Korea (Asia), Australia/New Zealand (ANZ), Europe (E), and North America (NAm). Methods and Materials: A 32-item survey was developed requesting information on brachytherapy practice patterns and standard management for Stage IB-IVA cervical cancer. The chair of each GCIG member cooperative group selected radiation oncology members to receive the survey. Results: A total of 72 responses were analyzed; 61 respondents (85%) used HDR. The three most common HDR brachytherapy fractionation regimens for Stage IB-IIA patients were 6 Gy for five fractions (18%), 6 Gy for four fractions (15%), and 7 Gy for three fractions (11%); for Stage IIB-IVA patients they were 6 Gy for five fractions (19%), 7 Gy for four fractions (8%), and 7 Gy for three fractions (8%). Overall, the mean combined external-beam and brachytherapy equivalent dose (EQD2) was 81.1 (standard deviation [SD] 10.16). The mean EQD2 recommended for Stage IB-IIA patients was 78.9 Gy (SD 10.7) and for Stage IIB-IVA was 83.3 Gy (SD 11.2) (p = 0.02). By region, the mean combined EQD2 was as follows: Asia, 71.2 Gy (SD 12.65); ANZ, 81.18 (SD 4.96); E, 83.24 (SD 10.75); and NAm, 81.66 (SD, 6.05; p = 0.02 for Asia vs. other regions).The ratio of brachytherapy to total prescribed dose was significantly higher for Japan (p = 0.0002). Conclusion: Although fractionation patterns may vary, the overall mean doses administered for cervical cancer are similar in Australia/New Zealand, Europe, and North America, with practitioners in Japan administering a significantly lower external-beam dose but higher brachytherapy dose to the cervix. Given common goals, standardization should be possible in future clinical trials.

  7. A method to combine three dimensional dose distributions for external beam and brachytherapy radiation treatments for gynecological neoplasms

    International Nuclear Information System (INIS)

    Narayana, V.; Sahijdak, W.M.; Orton, C.G.

    1997-01-01

    Purpose: Radiation treatment of gynecological neoplasms, such as cervical carcinoma, usually combines external radiation therapy with one or more intracavitary brachytherapy applications. Although the dose from external beam radiation therapy and brachytherapy can be calculated and displayed in 3D individually, the dose distributions are not combined. At most, combined point doses are calculated for select points using various time-dose models. In this study, we present a methodology to combine external beam and brachytherapy treatments for gynecological neoplasms. Material and Methods: Three dimensional bio-effect treatment planning to obtain complication probability has been outlined. CT scans of the patient's pelvis with the gynecological applicator in place are used to outline normal tissue and tumor volumes. 3D external beam and brachytherapy treatment plans are developed separately and an external beam dose matrix and a brachytherapy dose matrix was calculated. The dose in each voxel was assumed to be homogeneous. The physical dose in each voxel of the dose matrix was then converted into extrapolated response dose (ERD) based on the linear quadratic model that accounts for the dose per fraction, number of fractions, dose rate, and complete or incomplete repair of sublethal damage (time between fractions). The net biological dose delivered was obtained by summing the ERD grids from external beam and brachytherapy since there was complete repair of sublethal damage between external beam and brachytherapy treatments. The normal tissue complication probability and tumor control probability were obtained using the biological dose matrix based on the critical element model. Results: The outlined method of combining external beam and brachytherapy treatments was implemented on gynecological treatments using an applicator for brachytherapy treatments. Conclusion: Implementation of the biological dose calculation that combine different modalities is extremely useful

  8. Visual acuity after Ruthenium106 brachytherapy of choroidal melanomas

    International Nuclear Information System (INIS)

    Damato, Bertil; Patel, Imran M.; Campbell, Ian R.; Mayles, Helen M.; Errington, R. Douglas

    2005-01-01

    Purpose: To report on conservation of visual acuity after Ruthenium 106 (Ru-106) brachytherapy of choroidal melanoma. Methods and materials: This study was a noncomparative interventional case series of 458 patients with choroidal melanoma treated at a single center between January 1993 and December 2001. The intervention consisted of Ru-106 brachytherapy delivering minimum scleral and apex doses of 300 Gy and 80 Gy, respectively, using a 15-mm or 20-mm plaque. For discrete, posterior tumors, the plaque was positioned eccentrically with its posterior edge aligned with the posterior tumor margin. To ensure correct plaque positioning, any overlying extraocular muscles were dis-inserted, and the locations of both tumor and plaque edges were confirmed by transillumination and indentation. The main outcome measures were conservation of vision of 20/40 or better, 20/200 or better, and Counting Fingers or better, according to baseline variables. Results: The actuarial rate of conservation of 20/40 or better was 55% at 9 years, loss of such vision correlating with posterior tumor extension (p 106 brachytherapy of posterior choroidal melanoma achieves good conservation of vision if the tumor does not extend close to the optic nerve or fovea

  9. Third-party brachytherapy source calibrations and physicist responsibilities: Report of the AAPM Low Energy Brachytherapy Source Calibration Working Group

    International Nuclear Information System (INIS)

    Butler, Wayne M.; Bice, William S. Jr.; DeWerd, Larry A.; Hevezi, James M.; Huq, M. Saiful; Ibbott, Geoffrey S.; Palta, Jatinder R.; Rivard, Mark J.; Seuntjens, Jan P.; Thomadsen, Bruce R.

    2008-01-01

    The AAPM Low Energy Brachytherapy Source Calibration Working Group was formed to investigate and recommend quality control and quality assurance procedures for brachytherapy sources prior to clinical use. Compiling and clarifying recommendations established by previous AAPM Task Groups 40, 56, and 64 were among the working group's charges, which also included the role of third-party handlers to perform loading and assay of sources. This document presents the findings of the working group on the responsibilities of the institutional medical physicist and a clarification of the existing AAPM recommendations in the assay of brachytherapy sources. Responsibility for the performance and attestation of source assays rests with the institutional medical physicist, who must use calibration equipment appropriate for each source type used at the institution. Such equipment and calibration procedures shall ensure secondary traceability to a national standard. For each multi-source implant, 10% of the sources or ten sources, whichever is greater, are to be assayed. Procedures for presterilized source packaging are outlined. The mean source strength of the assayed sources must agree with the manufacturer's stated strength to within 3%, or action must be taken to resolve the difference. Third party assays do not absolve the institutional physicist from the responsibility to perform the institutional measurement and attest to the strength of the implanted sources. The AAPM leaves it to the discretion of the institutional medical physicist whether the manufacturer's or institutional physicist's measured value should be used in performing dosimetry calculations

  10. The need for international standardization in clinical beta dosimetry for brachytherapy

    International Nuclear Information System (INIS)

    Quast, U.; Boehm, J.; Kaulich, T.W.

    2002-01-01

    Beta radiation has found increasing interest in radiotherapy. Besides the curative treatment of small and medium-sized intraocular tumors by means of ophthalmic beta radiation plaques, intravascular brachytherapy has proven to successfully overcome the severe problem of restenosis after interventional treatment of arterial stenosis in coronaries and peripheral vessels in many clinical trials with a large number of patients. Prior to initiating procedures applying beta radiation in radiotherapy, however, there is a common need to specify methods for the determination and specification of the absorbed dose to water or tissue and their spatial distributions. The IAEA-TECDOC-1274 Calibration of photon and beta ray sources used in brachytherapy (2002) is a help for photon brachytherapy calibration. But, for beta seed and line sources, IAEA recommends well type ionization chambers as working standards which are far from measuring absorbed dose to water of the radiation clinically used. Although the application of such working standards seems to be more precise, large errors can occur when the medical physicist has to convert the calibration data to absorbed dose to water of the beta radiation emitted. The user must believe that the source is equally activated and that the manufacturer did not change the design and construction of the source encapsulation. With the DGMP Report 16 (2001) Guidelines for medical physical aspects of intravascular brachytherapy a very detailed code of practice is given, especially for the calibration and clinical dosimetry of intravascular beta radiation sources. As there is a global need for standardization in clinical dosimetry for intravascular brachytherapy utilizing beta radiation, the DIN-NAR, the German committee on standardization in radiology, task group dosimetry, has initiated an international adhoc working group for a new ISO work item proposal on the standardization of procedures in clinical dosimetry to guarantee reliable

  11. Developing A Directional High-Dose Rate (d-HDR) Brachytherapy Source

    Science.gov (United States)

    Heredia, Athena Yvonne

    Conventional sources used in brachytherapy provide nearly isotropic or radially symmetric dose distributions. Optimizations of dose distributions have been limited to varied dwell times at specified locations within a given treatment volume, or manipulations in source position for seed implantation techniques. In years past, intensity modulated brachytherapy (IMBT) has been used to reduce the amount of radiation to surrounding sensitive structures in select intracavitary cases by adding space or partial shields. Previous work done by Lin et al., at the University of Wisconsin-Madison, has shown potential improvements in conformality for brachytherapy treatments using a directionally shielded low dose rate (LDR) source for treatments in breast and prostate. Directional brachytherapy sources irradiate approximately half of the radial angles around the source, and adequately shield a quarter of the radial angles on the opposite side, with sharp gradient zones between the treated half and shielded quarter. With internally shielded sources, the radiation can be preferentially emitted in such a way as to reduce toxicities in surrounding critical organs. The objective of this work is to present findings obtained in the development of a new directional high dose rate (d-HDR) source. To this goal, 103Pd (Z = 46) is reintroduced as a potential radionuclide for use in HDR brachytherapy. 103Pd has a low average photon energy (21 keV) and relatively short half -life (17 days), which is why it has historically been used in low dose rate applications and implantation techniques. Pd-103 has a carrier-free specific activity of 75000 Ci/g. Using cyclotron produced 103Pd, near carrier-free specific activities can be achieved, providing suitability for high dose rate applications. The evolution of the d-HDR source using Monte Carlo simulations is presented, along with dosimetric parameters used to fully characterize the source. In addition, a discussion on how to obtain elemental

  12. Fractionated high dose rate intraluminal brachytherapy in palliation of advanced esophageal cancer

    International Nuclear Information System (INIS)

    Sur, Ranjan K.; Donde, Bernard; Levin, Victor C.; Mannell, Aylwyn

    1998-01-01

    Purpose: To optimize the dose of fractionated brachytherapy for palliation of advanced esophageal cancer. Methods and Materials: One hundred and seventy-two patients with advanced esophageal cancer were randomized to receive 12 Gy/2 fractions (group A); 16 Gy/2 fractions (group B), and 18 Gy/3 fractions (group C) by high dose rate intraluminal brachytherapy (HDRILBT). Treatment was given weekly and dose prescribed at 1 cm from the source axis. Patients were followed up monthly and assessed for dysphagia relief and development of complications. Results: Twenty-two patients died before completing treatment due to advanced disease and poor general condition. The overall survival was 19.4% at the end of 12 months for the whole group (A--9.8%, B--22.46%, C--35.32%; p > 0.05). The dysphagia-free survival was 28.9% at 12 months for the whole group (A--10.8%, B--25.43%, C--38.95%; p > 0.05). Forty-three patients developed fibrotic strictures needing dilatation (A--5 of 35, B--15 of 60, C--23 of 55; p = 0.032). Twenty-seven patients had persistent luminal disease (A--11, B--6, C--10), 15 of which progressed to fistulae (A--7, B--2, C--6; p = 0.032). There was no effect of age, sex, race, histology, performance status, previous dilation, presenting dysphagia score, presenting weight, grade, tumor length, and stage on overall survival, dysphagia-free, and complication-free survival (p > 0.05). On a multivariate analysis, brachytherapy dose (p = 0.002) and tumor length (p = 0.0209) were found to have a significant effect on overall survival; brachytherapy dose was the only factor that had an impact on local tumor control (p = 0.0005), while tumor length was the only factor that had an effect on dysphagia-free survival (p = 0.0475). When compared to other forms of palliation currently available (bypass surgery, laser, chemotherapy, intubation, external radiotherapy), fractionated brachytherapy gave the best results with a median survival of 6.2 months. Conclusions: Fractionated

  13. MO-D-BRD-03: Radiobiology and Commissioning of Electronic Brachytherapy for IORT

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J. [Oregon Health & Science Univ (United States)

    2015-06-15

    Electronic brachytherapy (eBT) has seen an insurgence of manufacturers entering the US market for use in radiation therapy. In addition to the established interstitial, intraluminary, and intracavitary applications of eBT, many centers are now using eBT to treat skin lesions. It is important for medical physicists working with electronic brachytherapy sources to understand the basic physics principles of the sources themselves as well as the variety of applications for which they are being used. The calibration of the sources is different from vendor to vendor and the traceability of calibrations has evolved as new sources came to market. In 2014, a new air-kerma based standard was introduced by the National Institute of Standards and Technology (NIST) to measure the output of an eBT source. Eventually commercial treatment planning systems should accommodate this new standard and provide NIST traceability to the end user. The calibration and commissioning of an eBT system is unique to its application and typically entails a list of procedural recommendations by the manufacturer. Commissioning measurements are performed using a variety of methods, some of which are modifications of existing AAPM Task Group protocols. A medical physicist should be familiar with the different AAPM Task Group recommendations for applicability to eBT and how to properly adapt them to their needs. In addition to the physical characteristics of an eBT source, the photon energy is substantially lower than from HDR Ir-192 sources. Consequently, tissue-specific dosimetry and radiobiological considerations are necessary when comparing these brachytherapy modalities and when making clinical decisions as a radiation therapy team. In this session, the physical characteristics and calibration methodologies of eBt sources will be presented as well as radiobiology considerations and other important clinical considerations. Learning Objectives: To understand the basic principles of electronic

  14. Australian high-dose-rate brachytherapy protocols for gynaecological malignancy

    International Nuclear Information System (INIS)

    MacLeod, C.; Dally, M.; Stevens, M.; Thornton, D.; Carruthers, S.; Jeal, P.

    2001-01-01

    There is no consensus over the optimal dose fractionation schedules for high-dose-rate (HDR) brachytherapy used for gynaecological malignancy. In Australian public hospital departments of radiation oncology, HDR brachytherapy for gynaecological cancer is being more commonly used. A survey of public departments that are using this technology, or that plan to introduce this technology, was performed. Their current protocols are presented. In general, protocols are similar biologically; however, the practical aspects such as the number of fractions given do vary and may reflect resource restrictions or, alternatively, differences in interpretations of the literature and of the best protocols by clinicians. Copyright (2001) Blackwell Science Pty Ltd

  15. Volume correction factor in time dose relationships in brachytherapy

    International Nuclear Information System (INIS)

    Supe, S.J.; Sasane, J.B.

    1987-01-01

    Paterson's clinical data about the maximum tolerance doses for various volumes of interstitial implants with Ra-226 delivered in seven days was made use of in deriving volume correction factors for TDF and CRE concepts respectively for brachytherapy. The derived volume correction factors for TDF and for CRE differ fromthe one assumed for CRE by Kirk et al. and implied for TDF by Goitein. A normalising volume of 70 cc has been suggested for both CRE and TDF concepts for brachytherapy. A table showing the volume corrected TDF is presented for various volumes and dose rates for continuous irradiation. The use of this table is illustrated with examples. (orig.) [de

  16. Clinical evaluation based on cost-effectiveness

    International Nuclear Information System (INIS)

    Inoue, Takehiro; Inoue, Toshihiko

    1998-01-01

    We carried out two Phase III clinical trials using high dose rate (HDR) remote afterloading brachytherapy unit. We evaluated the clinical results based not only on the medical but also the economical standpoint. The first trial is the Phase III trial for cervical cancer treated with HDR or medium dose rate (MDR) intracavitary radiotherapy. The second one is the Phase III trial for tongue cancer treated with HDR or low dose rate (LDR) interstitial radiation. For cervical cancer, the survival rate of patients treated with HDR brachytherapy is the some as for LDR brachytherapy. The average total cost of treatment for the HDR group was 1.47 million yen, while that for the MDR group was 1.58 million yen. The average total admission days was 63. For tongue cancer, the local control rate of the HDR group is almost the same as that of the LDR groups. The average total cost for the HDR group was 780 thousand yen, and that for the LDR group was 830 thousand yen. The average total admission days was 34. According to the cost-effectiveness, HDR brachytherapy for cervical cancer has the same result as MDR, and HDR brachytherapy for tongue cancer has the same result as LDR. However, HDR can be treated without admission for patients who live near the hospital. HDR can be applied for these patients with less expense. We must be aware of not only the medical results but also the cost-effectiveness. (author)

  17. Radiotherapy and brachytherapy

    International Nuclear Information System (INIS)

    2007-02-01

    This presentation first defines the radiotherapy and brachytherapy techniques, indicates the used ionizing radiations (electromagnetic and particles), describes the mechanisms and processes of action of ionizing radiations: they can be physical by photon-matter interactions (Compton effect and photoelectric effect) or due to electron-matter interactions (excitation, ionization), physical-chemical by direct or indirect action (DNA damage), cellular (mitotic or apoptotic death), tissue (sane and tumorous tissues and differential effect). It discusses the biological efficiency of these treatments which depends on different parameters: intrinsic radio-sensitivity, time (session fractioning and organisation in time), oxygen, radiation quality, cellular cycle, dose rate, temperature. It presents the different types of radiotherapy: external radiotherapy (general sequence, delineation, dosimetry, protection of critical organs, treatment session, quality control, monitoring consultation) and briefly presents some specific techniques (total body irradiation, total cutaneous electron therapy, pre-operation radiotherapy, radio-surgery, hadron-therapy). It proposes an overview of the main indications for this treatment: brain tumours, upper aero digestive tract tumours, bronchial tumours, oesophagus, stomach and pancreas tumours, breast tumours, cervix cancer, rectum tumour, and so on, and indicates the possible associated treatments. The next part addresses brachytherapy. It presents the principles and comments the differences with radiotherapy. It indicates the used radio-elements (Caesium 137, Iridium 192, Iodine 125), describes the implementation techniques (plastic tubes, use of iodine 125, intracavitary and endo-luminal radiation therapy). It proposes an overview of the different treated tumours (skin, breast, prostates, bronchial, oesophagus, ENT) and indicates possible early and late secondary effects for different organs

  18. Brachytherapy - not pulsed and low rate brachytherapy. Medical radiation protection - ED 4248

    International Nuclear Information System (INIS)

    2008-06-01

    After an indication of authorizations required to perform brachytherapy, this sheet indicates the concerned personnel, indicates the different treatment steps, briefly describes the risk related to ionizing radiations, indicates the various aspects of risk assessment and of determination of exposure levels (definition of controlled and monitored areas, personnel classification, possible methods for dose monitoring), presents the strategy for risk management (rules regarding risk reduction, technical measures regarding the installation, individual technical measures, training and information, prevention and medical monitoring) and how this risk management can be assessed

  19. Novel Use of the Contura for High Dose Rate Cranial Brachytherapy

    International Nuclear Information System (INIS)

    Scanderbeg, Daniel J.; Alksne, John F.; Lawson, Joshua D.; Murphy, Kevin T.

    2011-01-01

    A popular choice for treatment of recurrent gliomas was cranial brachytherapy using the GliaSite Radiation Therapy System. However, this device was taken off the market in late 2008, thus leaving a treatment void. This case study presents our experience treating a cranial lesion for the first time using a Contura multilumen, high-dose-rate (HDR) brachytherapy balloon applicator. The patient was a 47-year-old male who was diagnosed with a recurrent right frontal anaplastic oligodendroglioma. Previous radiosurgery made him a good candidate for brachytherapy. An intracavitary HDR balloon brachytherapy device (Contura) was placed in the resection cavity and treated with a single fraction of 20 Gy. The implant, treatment, and removal of the device were all completed without incident. Dosimetry of the device was excellent because the dose conformed very well to the target. V90, V100, V150, and V200 were 98.9%, 95.7%, 27.2, and 8.8 cc, respectively. This patient was treated successfully using the Contura multilumen balloon. Contura was originally designed for deployment in a postlumpectomy breast for treatment by accelerated partial breast irradiation. Being an intracavitary balloon device, its similarity to the GliaSite system makes it a viable replacement candidate. Multiple lumens in the device also make it possible to shape the dose delivered to the target, something not possible before with the GliaSite applicator.

  20. Effect of photon energy spectrum on dosimetric parameters of brachytherapy sources.

    Science.gov (United States)

    Ghorbani, Mahdi; Mehrpouyan, Mohammad; Davenport, David; Ahmadi Moghaddas, Toktam

    2016-06-01

    The aim of this study is to quantify the influence of the photon energy spectrum of brachytherapy sources on task group No. 43 (TG-43) dosimetric parameters. Different photon spectra are used for a specific radionuclide in Monte Carlo simulations of brachytherapy sources. MCNPX code was used to simulate 125I, 103Pd, 169Yb, and 192Ir brachytherapy sources. Air kerma strength per activity, dose rate constant, radial dose function, and two dimensional (2D) anisotropy functions were calculated and isodose curves were plotted for three different photon energy spectra. The references for photon energy spectra were: published papers, Lawrence Berkeley National Laboratory (LBNL), and National Nuclear Data Center (NNDC). The data calculated by these photon energy spectra were compared. Dose rate constant values showed a maximum difference of 24.07% for 103Pd source with different photon energy spectra. Radial dose function values based on different spectra were relatively the same. 2D anisotropy function values showed minor differences in most of distances and angles. There was not any detectable difference between the isodose contours. Dosimetric parameters obtained with different photon spectra were relatively the same, however it is suggested that more accurate and updated photon energy spectra be used in Monte Carlo simulations. This would allow for calculation of reliable dosimetric data for source modeling and calculation in brachytherapy treatment planning systems.

  1. Rectourethral fistula following LDR brachytherapy.

    Science.gov (United States)

    Borchers, Holger; Pinkawa, Michael; Donner, Andreas; Wolter, Timm P; Pallua, Norbert; Eble, Michael J; Jakse, Gerhard

    2009-01-01

    Modern LDR brachytherapy has drastically reduced rectal toxicity and decreased the occurrence of rectourethral fistulas to <0.5% of patients. Therefore, symptoms of late-onset sequelae are often ignored initially. These fistulas cause severe patient morbidity and require interdisciplinary treatment. We report on the occurrence and management of a rectourethral fistula which occurred 4 years after (125)I seed implantation. Copyright 2009 S. Karger AG, Basel.

  2. Indications, techniques and results of postoperative brachytherapy in cancer of the oral cavity

    International Nuclear Information System (INIS)

    Pernot, M.; Aletti, P.; Carolus, J.M.; Marquis, I.; Hoffstetter, S.; Maaloul, F.; Peiffert, D.; Lapeyre, M.; Luporsi, E.; Marchal, C.; Noeel, A.; Bey, P.

    1995-01-01

    Purpose/objective: We tried to reduce the number of local recurrences after surgery and external beam irradiation (EBI) in carcinoma of the oral cavity, when margins were positive or close. Material and methods: From 1980 to 1992, we treated 97 cases of carcinomas of the oral cavity by postoperative brachytherapy. Surgery was combined with EBI+brachytherapy in 51 cases and with brachytherapy alone in 46 cases. We treated 29 T1, 34 T2, 30 T3T4 and four Tx (73% were N0 at first examination and 23% had positive nodes). The type of surgery is analysed. Brachytherapy was performed in one or two planes along the surgical scar. If the mandibular rim was resected, especially when the tongue or the remaining floor were sutured to the internal face of the inferior lip or to the buccal mucosa, the bridge technique was used. To decrease the dose to the inferior part of the mandible, the bridge was modified thanks to experimental dosimetry. Results: At 5 years, the local control (LC) is 89%, the locoregional control (LRC) 82%, the specific survival (SS) 74% and the overall survival (OS) 67%. Complications: We noted 19% of grade 1 (minor), 12% of grade 2 (moderate) and 6% of grade 3 (major) complications. Conclusion: Compared with the results of the literature, we think that postoperative brachytherapy can improve classical radiosurgical results in selected cases with a risk of local recurrence

  3. Invited review, recent developments in brachytherapy source dosimetry

    International Nuclear Information System (INIS)

    Meigooni, A.S.

    2004-01-01

    Application of radioactive isotopes is the treatment of choice around the globe for many cancer sites. In this technique, the accuracy of the radiation delivery is highly dependent on the accuracy of radiation dosimetry around individual brachytherapy sources. Moreover, in order to have compatible clinical results, an identical method of source dosimetry must be employed across the world. This problem has been recently addressed by task group 43 from the American Association of Medical Physics with a protocol for dosimetric characterization of brachytherapy sources. This new protocol has been further updated using published data from international sources, by a new Task Group from the American Association of Medical Physics. This has resulted in an updated protocol known as TG43U1 that has been published in March 2004 issue of Medical Physics. The goal of this presentation is to review the original Task Group 43 protocol and associated algorithms for brachytherapy source dosimetry. In addition, the shortcomings of the original protocol that has been resolved in the updated recommendation will be highlighted. I am sure that this is not the end of the line and more work is needed to complete this task. I invite the scientists to join this task and complete the project, with the hope of much better clinical results for cancer patients

  4. Audits in high dose rate brachytherapy in Brazil

    International Nuclear Information System (INIS)

    Marechal, M.H.; Rosa, L.A.; Velasco, A.; Paiva, E. de; Goncalves, M.; Castelo, L.C.

    2002-01-01

    The lack of well established dosimetry protocols for HDR sources is a point of great concern regarding the uniformity of procedures within a particular country. The main objective of this paper is to report the results of an implementation of the audit program in dosimetry of high dose rate brachytherapy sources used by the radiation therapy centers in Brazil. In Brazil, among 169 radiotherapy centers, 35 have HDR brachytherapy systems. This program started in August 2001 and until now eight radiotherapy services were audited. The audit program consists of the visit in loco to each center and the evaluation of the intensity of the source with a well type chamber specially design for HDR 192 Ir sources. The measurements was carried out with a HDR1000PLUS Brachytherapy Well Type Chamber and a MAX 4000 Electrometer, both manufactured by Standard Imaging Inc. The chamber was calibrated in air kerma strength by the Accredited Dosimetry Calibration Laboratory, Department of Medical Physics, University of Wisconsin in the USA. The same chamber was calibrated in Brazil using a 192 lr high dose rate source whose intensity was determined by 60 Co gamma rays and 250 kV x rays interpolation methodology. The Nk of 60 Co and 250 kV x rays were provided by the Brazilian National Standard Laboratory for Ionizing Radiation (LMNRI)

  5. Assessment of Absorbed Dose in Persons close to the Patients during 192Ir brachytherapy for Cervical Cancer

    International Nuclear Information System (INIS)

    Jung, Joo Young; Kang, Se Sik

    2010-01-01

    According to the 2007 Annual Report of the National Cancer Registry, cervical cancer showed an occurring frequency of 7th in female cancers and 4rd in females with an age of 35-64 years. Both radiotherapy and chemotherapy are mainly used for the treatment of cervical cancer. In case of radiotherapy, brachytherapy using radioisotopes in conjunction with external-beam radiation therapy (EBRT) using a linear accelerator is used in most cases to improve the outcome of cancer treatment. Brachytherapy, one of the cervical cancer radiotherapies, is a method that can minimize the damage of normal tissues restricting absorbed dose to uterus. It is, however, necessary to conduct a quantitative assessment on brachytherapy because it may cause radiation exposure to medical care providers during the radiotherapy. Therefore, the study provides the basic research data regarding brachytherapy for cervical cancer, estimating the absorbed dose in persons close to the patients using a mathematical phantom during 192Ir brachytherapy for cervical cancer

  6. Perioperative Search for Circulating Tumor Cells in Patients Undergoing Prostate Brachytherapy for Clinically Nonmetastatic Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Hideyasu Tsumura

    2017-01-01

    Full Text Available Despite the absence of local prostate cancer recurrence, some patients develop distant metastases after prostate brachytherapy. We evaluate whether prostate brachytherapy procedures have a potential risk for hematogenous spillage of prostate cancer cells. Fifty-nine patients who were undergoing high-dose-rate (HDR or low-dose-rate (LDR brachytherapy participated in this prospective study. Thirty patients with high-risk or locally advanced cancer were treated with HDR brachytherapy after neoadjuvant androgen deprivation therapy (ADT. Twenty-nine patients with clinically localized cancer were treated with LDR brachytherapy without neoadjuvant ADT. Samples of peripheral blood were drawn in the operating room before insertion of needles (preoperative and again immediately after the surgical manipulation (intraoperative. Blood samples of 7.5 mL were analyzed for circulating tumor cells (CTCs using the CellSearch System. While no preoperative samples showed CTCs (0%, they were detected in intraoperative samples in 7 of the 59 patients (11.8%; preoperative vs. intraoperative, p = 0.012. Positive CTC status did not correlate with perioperative variables, including prostate-specific antigen (PSA at diagnosis, use of neoadjuvant ADT, type of brachytherapy, Gleason score, and biopsy positive core rate. We detected CTCs from samples immediately after the surgical manipulation. Further study is needed to evaluate whether those CTCs actually can survive and proliferate at distant sites.

  7. Radiochromic dye film studies for brachytherapy applications

    International Nuclear Information System (INIS)

    Martinez-Davalos, A.; Rodriguez-Villafuerte, M.; Diaz-Perches, R.; Arzamendi-Perez, S.

    2002-01-01

    Commercial radiochromic dye films have been used in recent years to quantify absorbed dose in several medical applications. In this study we present the characterisation of the GafChromic MD-55-2 dye film, a double sensitive layer film suitable for photon irradiation in brachytherapy applications. Dose measurements were carried out with a low dose rate 137 Cs brachytherapy source, which produces very steep dose gradients in its vicinity, and therefore requires the capability of producing high spatial resolution isodose curves. Quantification of the dose rate in water per unit air kerma strength was obtained using a high-resolution transmission commercial scanner (Agfa DuoScan T1200) with the capability of digitising up to 600 x 1200 pixels per inch using 36 bits per pixel, together with optical density measurements. The Monte Carlo calculations and experimental measurements compared well in the 0-50 Gy dose interval used in this study. (author)

  8. Sci-Thur PM – Brachytherapy 04: Commissioning and Implementation of a Cobalt-60 High Dose Rate Brachytherapy Source

    Energy Technology Data Exchange (ETDEWEB)

    Dysart, Jonathan [Horizon Health Network (Canada)

    2016-08-15

    An Eckert & Ziegler Bebig Co0.A86 cobalt 60 high dose rate (HDR) brachytherapy source was commissioned for clinical use. Long-lived Co-60 HDR sources offer potential logistical and economic advantages over Ir-192 sources, and should be considered for low to medium workload brachytherapy departments where modest increases in treatment times are not a factor. In optimized plans, the Co-60 source provides a similar dose distribution to Ir-192 despite the difference in radiation energy. By switching to Co-60, source exchange frequency can be reduced by a factor of 20, resulting in overall financial savings of more than 50% compared to Ir-192 sources. In addition, a reduction in Physicist QA workload of roughly 200 hours over the 5 year life of the Co-60 source is also expected. These benefits should be considered against the modest increases in average treatment time compared to those of Ir-192 sources, as well as the centre-specific needs for operating room shielding modification.

  9. Brachytherapy for head and neck cancer. Treatment results and future prospect

    International Nuclear Information System (INIS)

    Shibuya, Hitoshi; Yoshimura, Ro-ichi; Miura, Masahiko; Ayukawa, Fumio; Watanabe, Hiroshi

    2005-01-01

    Following the increasing desire of many patients to keep the form and function of speech and swallowing, interstitial brachytherapy has become the main treatment for head and neck cancer. In addition, aged and physically handicapped patients who are refused general anesthesia have come to be referred to our clinic to receive less invasive and curative treatment. In the field of brachytherapy for head and neck cancers, less complicated and more superior treatment results have been achieved following the introduction of spacers, computer dosimetry and so on. As a result of these efforts, treatment results have come to fulfill the desire of patients and their families. During the past 43 years from 1962 to 2005, we have treated over 2, 100 patients of head and neck cancer including 850 with stage I·II oral tongue carcinoma by brachytherapy and acquired a lot of important and precious data including the treatment results, multiple primary cancers as well as radiation-induced cancers. (author)

  10. Endoscope-guided interstitial intensity-modulated brachytherapy and intracavitary brachytherapy as boost radiation for primary early T stage nasopharyngeal carcinoma.

    Directory of Open Access Journals (Sweden)

    Xiang-Bo Wan

    Full Text Available BACKGROUND: Intracavitary brachytherapy (ICBT is usually applied as boost radiotherapy for superficial residual of nasopharyngeal carcinoma (NPC after primary extern-beam radiptherapy (ERT. Here, we evaluated the outcome of endoscope-guided interstitial intensity-modulated brachytherapy (IMBT boost radiation for deep-seated residual NPC. METHODOLOGY/PRINCIPAL FINDINGS: Two hundred and thirteen patients with residual NPC who were salvaged with brachytherapy boost radiation during 2005-2009 were analyzed retrospectively. Among these patients, 171 patients had superficial residual NPC (≤1 cm below the nasopharyngeal epithelium were treated with ICBT boost radiation, and interstitial IMBT boost radiation was delivered to 42 patients with deep-seated residual NPC (>1 cm below the nasopharyngeal epithelium. We found that IMBT boost subgroup had a higher ratio of T2b (81.0% VS 34.5%, P<0.001 and stage II (90.5% VS 61.4%, P = 0.001 than that of ICBT boost subgroup. The dosage of external-beam radiotherapy in the nasopharyngeal (63.0±3.8 VS 62.6±4.3 Gray (Gy, P = 0.67 and regional lymph nodes (55.8±5.0 VS 57.5±5.7 Gy, P = 0.11 was comparable in both groups. For brachytherapy, IMBT subgroup had a lower boost radiation dosage than ICBT subgroup (11.0±2.9 VS 14.8±3.2 Gy, P<0.01. Though the IMBT group had deeper residual tumors and received lower boost radiation dosages, both subgroups had the similar 5-year actuarial overall survival rate (IMBT VS ICBT group: 96.8% VS 93.6%, P = 0.87, progression-free survival rate (92.4% VS 86.5%, P = 0.41 and distant metastasis-free survival rate (94.9% VS 92.7%, P = 0.64. Moreover, IMBT boost radiation subgroup had a similar local (97.4% VS 94.4%, P = 0.57 and regional (95.0% VS 97.2%, P = 0.34 control to ICBT subgroup. The acute and late toxicities rates were comparable between the both subgroups. CONCLUSIONS/SIGNIFICANCE: IMBT boost radiation may be a promising therapeutic

  11. External beam techniques to boost cervical cancer when brachytherapy is not an option—theories and applications

    Science.gov (United States)

    Kilic, Sarah; Khan, Atif J.; Beriwal, Sushil; Small, William

    2017-01-01

    The management of locally advanced cervical cancer relies on brachytherapy (BT) as an integral part of the radiotherapy delivery armamentarium. Occasionally, intracavitary BT is neither possible nor available. In these circumstances, post-external beam radiotherapy (EBRT) interstitial brachytherapy and/or hysterectomy may represent viable options that must be adequately executed in a timely manner. However, if these options are not applicable due to patient related or facility related reasons, a formal contingency plan should be in place. Innovative EBRT techniques such as intensity modulated and stereotactic radiotherapy may be considered for patients unable to undergo brachytherapy. Relying on provocative arguments and recent data, this review explores the rationale for and limitations of non-brachytherapy substitutes in that setting aiming to establish a formal process for the optimal execution of this alternative plan. PMID:28603722

  12. Multilayer conformal applicator for microwave heating and brachytherapy treatment of superficial tissue disease.

    Science.gov (United States)

    Juang, T; Stauffer, P R; Neuman, D G; Schlorff, J L

    2006-11-01

    The purpose of this study was to construct and perform preliminary functionality evaluations of a multilayer conformal applicator with provisions for thermal monitoring, tight conformity and simultaneous microwave heating and brachytherapy treatment of large-area contoured surfaces. The multilayer conformal applicator consists of thermal monitoring catheters for fibre-optic monitoring of skin temperatures, a waterbolus, a PCB microwave antenna array, a dielectric spacer for brachytherapy considerations, brachytherapy catheters for delivering HDR radiation and an inflatable air bladder for improving conformity to contoured surfaces. The applicator also includes an elastic attachment structure to hold the applicator securely in place on the patient. The conformity of the applicator to irregular surfaces was evaluated through CT imaging of the applicator fitted onto a life-sized human torso phantom. The fluid flow dynamics of the waterbolus, which impact the effectiveness of temperature control, were evaluated with thermometry during a 19 degrees C step change temperature of the circulating water. CT imaging showed improved conformity to the torso phantom surface following the application of gentle inward pressure from inflating the outer air bladder. Only a small number of 1-5 mm sized air gaps separated the conformal applicator and tissue surface. Thermometry testing of the bolus fluid flow dynamics demonstrated temperature uniformity within +/-0.82 degrees C across a 19 x 34 x 0.6 cm area bolus and +/-0.85 degrees C across a large 42 x 32 x 0.6 cm area bolus. CT scans of the applicator confirmed that the applicator conforms well to complex body contours and should maintain good conformity and positional stability even when worn on a mobile patient. Thermometry testing of two different waterbolus geometries demonstrated that uniform circulation and temperature control can be maintained throughout large, complex bolus shapes.

  13. The Activity Check of Brachytherapy Isotope

    International Nuclear Information System (INIS)

    Kim, Gun Oh; Lee, Byung Koo; Kwon, Young Ho

    2004-01-01

    An isotope Ir-192, which is used in brachytherapy depends on import in whole quantities. There are a few ways for its activity. measurement using Welltype chamber or the way to rely on authentic decay table of manufacturer. In-air dosimetry using Farmer Chamber, etc. In this paper, let me introduce the way using Farmer chamber which is easier and simple. With the Farmer chamber and source calibration jig, take a measurement the activity of an isotope Ir-192 and compare the value with the value from decay table of manufacturer and check the activity of source. The result of measurement, compared the value from decay table, by ±2.1. (which belongs to recommendable value for AAPM ±5% as difference of error range). It is possible to use on clinical medicine. With the increase in use of brachytherapy, the increase of import is essential. And an accurate activity check of source is compulsory. For the activity check of source, it was possible to use Farmer chamber and source calibration jig without additional purchase of Well type chamber.

  14. Comparison of radiation shielding requirements for HDR brachytherapy using 169Yb and 192Ir sources

    International Nuclear Information System (INIS)

    Lymperopoulou, G.; Papagiannis, P.; Sakelliou, L.; Georgiou, E.; Hourdakis, C. J.; Baltas, D.

    2006-01-01

    169 Yb has received a renewed focus lately as an alternative to 192 Ir sources for high dose rate (HDR) brachytherapy. Following the results of a recent work by our group which proved 169 Yb to be a good candidate for HDR prostate brachytherapy, this work seeks to quantify the radiation shielding requirements for 169 Yb HDR brachytherapy applications in comparison to the corresponding requirements for the current 192 Ir HDR brachytherapy standard. Monte Carlo simulation (MC) is used to obtain 169 Yb and 192 Ir broad beam transmission data through lead and concrete. Results are fitted to an analytical equation which can be used to readily calculate the barrier thickness required to achieve a given dose rate reduction. Shielding requirements for a HDR brachytherapy treatment room facility are presented as a function of distance, occupancy, dose limit, and facility workload, using analytical calculations for both 169 Yb and 192 Ir HDR sources. The barrier thickness required for 169 Yb is lower than that for 192 Ir by a factor of 4-5 for lead and 1.5-2 for concrete. Regarding 169 Yb HDR brachytherapy applications, the lead shielding requirements do not exceed 15 mm, even in highly conservative case scenarios. This allows for the construction of a lead door in most cases, thus avoiding the construction of a space consuming, specially designed maze. The effects of source structure, attenuation by the patient, and scatter conditions within an actual treatment room on the above-noted findings are also discussed using corresponding MC simulation results

  15. Cost minimization analysis of high-dose-rate versus low-dose-rate brachytherapy in endometrial cancer

    International Nuclear Information System (INIS)

    Pinilla, James

    1998-01-01

    Purpose: Endometrial cancer is a common, usually curable malignancy whose treatment frequently involves low-dose-rate (LDR) or high-dose-rate (HDR) brachytherapy. These treatments involve substantial resource commitments and this is increasingly important. This paper presents a cost minimization analysis of HDR versus LDR brachytherapy in the treatment of endometrial cancer. Methods and Materials: The perspective of the analysis is that of the payor, in this case the Ministry of Health. One course of LDR treatment is compared to two courses of HDR treatment. The two alternatives are considered to be comparable with respect to local control, survival, and toxicities. Labor, overhead, and capital costs are accounted for and carefully measured. A 5% inflation rate is used where applicable. A univariate sensitivity analysis is performed. Results: The HDR regime is 22% less expensive compared to the LDR regime. This is $991.66 per patient or, based on the current workload of this department (30 patients per year) over the useful lifetime of the after loader, $297,498 over 10 years in 1997 dollars. Conclusion: HDR brachytherapy minimizes costs in the treatment of endometrial cancer relative to LDR brachytherapy. These results may be used by other centers to make rational decisions regarding brachytherapy equipment replacement or acquisition

  16. Postoperative irradiation of endometrial cancer by iridium afterloading technique

    International Nuclear Information System (INIS)

    Kucera, H.; Weghaupt, K.

    1988-01-01

    From 1981 to 1986 708 patients were operated and postoperativly treated by total hysterectomy, bilateral salpingo-oophorectomy and postoperative vaginal irradiation with high-dose-afterloading (iridium 192). A percutaneous irradiation (cobalt 60) was done in stage I cases only when myometrial infiltration was deep. Highly differentiated tumors with infiltration of the first and second thirth of the myometrium were treated by vaginal irradiation alone. Poorly differentiated tumors with infiltration of the second and third thirth of the myometrium were treated by vaginal and percutaneous irradiation. A group of 125 cases with good prognosis and with postoperative vaginal irradiation alone had the same five-year-survival of 83% as a group of 152 cases with bad prognosis treated by vaginal and percutaneous irrradiation. This result shows clearly the importance of additional irradiation of the pelvis in cases with bad prognosis factors. The incidence of radiation side effect in all 708 cases was: cystitis 4.6%, proctitis 5.2%, vaginal or rectal ulcera 1.4% and fistulas 0.2%. Cases with vaginal irradiation alone and with the optimal intravaginal fraction dose of 700 cGy (twice) had the lowest level of side effects: cystitis 3.8% proctitis 2.1%, vaginal necrosis 0.7%, no further severe complications. None of the patients with postoperative vaginal irradiation alone had a vaginal recurrence. The incidence of recurrences in 708 patients was 1.6%. All recurrence cases in stage I (0.7%) had bad prognosis factors and were treated with vaginal and percutaneous irradiation. (orig./MG) [de

  17. Intracavitary irradiation of prostatic carcinoma by a high dose-rate afterloading technique

    Energy Technology Data Exchange (ETDEWEB)

    Odelberg-Johnson, O.; Underskog, I.; Johansson, J.E.; Bernshaw, D.; Sorbe, B.; Persson, J.E. (Oerebro Medical Center Hospital (Sweden). Dept. of Oncology Oerebro Medical Center Hospital (Sweden). Dept. of Urology Oerebro Medical Center Hospital (Sweden). Dept. of Gynecologic Oncology Oerebro Medical Center Hospital (Sweden). Dept. of Radiation Physics)

    1991-01-01

    A high dose-rate ({sup 60}Co) afterloading technique was evaluated in a series of 73 patients with prostatic carcinoma stages I-IV. The intraurethral irradiation was combined with external pelvic radiotherapy. A minimum total dose of 78 Gy was delivered to the target volume. In a subgroup of patients extramustine (Estracyt) was given as adjuvant chemohormonal therapy during irradiation. The median follow-up for the whole group was 63 months. The crude 5-year survival rate was 60% and the corrected survival rate 90%. Survival was related to the tumor grade. Local pelvic recurrences were recorded in 17.8%. 'Viable cells' in posttherapy aspiration biopsy were not associated with tumor recurrences or survival. Four patients (5%) had grade 3 late radiation reactions with urethral structure or bladder fibrosis. Urinary tract infections and prior transurethral resections were not associated with a higher frequency of reactions. Concurrent estramustine therapy seemed to increase the frequency of both acute and chronic radiation reactions. Local control, recurrence, and survival were not affected by chemohormonal therapy. The use of tomography, magnetic resonance, and ultrasound as aids to computerized dosimetry may improve local dose distribution and reduce the irradiated volume. (orig.).

  18. Novel use of the Contura for high dose rate cranial brachytherapy.

    Science.gov (United States)

    Scanderbeg, Daniel J; Alksne, John F; Lawson, Joshua D; Murphy, Kevin T

    2011-01-01

    A popular choice for treatment of recurrent gliomas was cranial brachytherapy using the GliaSite Radiation Therapy System. However, this device was taken off the market in late 2008, thus leaving a treatment void. This case study presents our experience treating a cranial lesion for the first time using a Contura multilumen, high-dose-rate (HDR) brachytherapy balloon applicator. The patient was a 47-year-old male who was diagnosed with a recurrent right frontal anaplastic oligodendroglioma. Previous radiosurgery made him a good candidate for brachytherapy. An intracavitary HDR balloon brachytherapy device (Contura) was placed in the resection cavity and treated with a single fraction of 20 Gy. The implant, treatment, and removal of the device were all completed without incident. Dosimetry of the device was excellent because the dose conformed very well to the target. V90, V100, V150, and V200 were 98.9%, 95.7%, 27.2, and 8.8 cc, respectively. This patient was treated successfully using the Contura multilumen balloon. Contura was originally designed for deployment in a postlumpectomy breast for treatment by accelerated partial breast irradiation. Being an intracavitary balloon device, its similarity to the GliaSite system makes it a viable replacement candidate. Multiple lumens in the device also make it possible to shape the dose delivered to the target, something not possible before with the GliaSite applicator. Copyright © 2011 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  19. Transition from LDR to HDR brachytherapy for cervical cancer: Evaluation of tumor control, survival, and toxicity.

    Science.gov (United States)

    Romano, K D; Pugh, K J; Trifiletti, D M; Libby, B; Showalter, T N

    In 2012, our institution transitioned from low-dose-rate (LDR) brachytherapy to high dose-rate (HDR) brachytherapy. We report clinical outcomes after brachytherapy for cervical cancer at our institution over a continuous 10-year period. From 2004 to 2014, 258 women (184 LDR and 74 HDR) were treated with tandem and ovoid brachytherapy in the multidisciplinary management of International Federation of Gynecology and Obstetrics Stages IA-IVB cervical cancer. Clinical and treatment-related prognostic factors including age, stage, smoking status, relevant doses, and toxicity data were recorded. Median followup for the LDR and HDR groups was 46 months and 12 months, respectively. The majority of patients (92%) received external beam radiotherapy as well as concurrent chemotherapy (83%) before the start of brachytherapy. For all stages, the 1-year local control and overall survival (OS) rates were comparable between the LDR and HDR groups (87% vs. 81%, p = 0.12; and 75% vs. 85%, p = 0.16), respectively. Factors associated with OS on multivariate analysis include age, stage, and nodal involvement. On multivariate analysis, severe toxicity (acute or chronic) was higher with HDR than LDR (24% vs. 10%, p = 0.04). Additional prognostic factors associated with increased severe toxicity include former/current smokers and total dose to lymph nodes. This comparative retrospective analysis of a large cohort of women treated with brachytherapy demonstrates no significant difference in OS or local control between the LDR and HDR. Acute and chronic toxicity increased shortly after the implementation of HDR, highlighting the importance of continued refinement of HDR methods, including integrating advanced imaging. Copyright © 2016 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  20. 6th Annual Conference of Indian Brachytherapy Society 2016 (IBSCON 2016) Proceedings

    OpenAIRE

    Srinivasan, Venkatesan; Kuppusamy, Thayalan; Bhalavat, Rajendra L.; Mahantshetty, Umesh; Yathiraj, Prahlad H.; Kumar, Uday P.; Sharan, Krishna; Singh, Anshul; Reddy, Anusha; Fernandes, Donald; Vidyasagar, M.S.; Kumar, Rishabh; Kala, Prachi; Narayanan, Geeta S.; Mandal, Sanjeet

    2016-01-01

    Purpose To report the incidence, severity, and time of onset of late toxicities in patients of endometrial adenocarcinoma (EA) treated with external beam radiotherapy (EBRT) + brachytherapy (BT), or vaginal brachytherapy (VBT) alone. Material and methods Archives of a single institution from 2008-2015 were studied. The indications for EBRT and VBT were based on standard recommendations. EBRT was planned to 50 Gy/25 fractions/5 weeks/3DCRT with 4-field ?box? technique on a dual energy linear a...

  1. High dose-rate brachytherapy source position quality assurance using radiochromic film

    International Nuclear Information System (INIS)

    Evans, M.D.C.; Devic, S.; Podgorsak, E.B.

    2007-01-01

    Traditionally, radiographic film has been used to verify high-dose-rate brachytherapy source position accuracy by co-registering autoradiographic and diagnostic images of the associated applicator. Filmless PACS-based clinics that do not have access to radiographic film and wet developers may have trouble performing this quality assurance test in a simple and practical manner. We describe an alternative method for quality assurance using radiochromic-type film. In addition to being easy and practical to use, radiochromic film has some advantages in comparison with traditional radiographic film when used for HDR brachytherapy quality assurance

  2. Evaluation of radiation dose on people adjacent to implant patients during brachytherapy for prostate cancer using {sup 192}Ir

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Hoon; Ko, Seong Jin; Kang, Se Sik; Kim, Chang Soo [Catholic University, Busan (Korea, Republic of)

    2009-10-15

    The incidence of prostate cancer is rapidly increasing due to aging of the population and westernization of dietary habits, etc. As a result, the frequency of prostate cancer has become the fifth highest among all male cancers and the first among urological cancers. Brachytherapy is commonly used for locally progressing prostate cancers. Since the mid 1980s, therapies using radio-isotopes, such as low-invasive {sup 125}I, {sup 103}Pd and {sup 192}Ir, have been widely performed in the U.S. and Europe. However, brachytherapy involves implanting radio-isotopes into the human body which is of concern because it may expose the health care professionals administering the therapy to unnecessary radiation. Accordingly, this study intends to predict the radiation dose that people adjacent to patients implanted with a radio-isotope are exposed to during prostate cancer radiation therapy by using a mathematical anthropomorphic phantom and {sup 192}Ir.

  3. Prostate brachytherapy seed migration to the heart seen on cardiovascular computed tomographic angiography

    Directory of Open Access Journals (Sweden)

    Shilpa Sachdeva, MD

    2017-03-01

    Full Text Available Brachytherapy consists of placing radioactive sources into or adjacent to tumors, to deliver conformal radiation treatment. The technique is used for treatment of primary malignancies and for salvage in recurrent disease. Permanent prostate brachytherapy seeds are small metal implants containing radioactive sources of I-125, Pd-103, or Cs-131 encased in a titanium shell. They can embolize through the venous system to the lungs or heart and subsequently be detected by cardiovascular computed tomography. Cardiovascular imagers should be aware of the appearance of migrated seeds, as their presence in the chest is generally benign, so that unnecessary worry and testing are avoided. We report a case of a patient who underwent brachytherapy for prostate cancer and developed a therapeutic seeds embolus to the right ventricle.

  4. Characteristics of the radiochromic film Gafchromictm EBT3 model for use in brachytherapy

    International Nuclear Information System (INIS)

    Luvizotto, Jessica

    2015-01-01

    Brachytherapy is a radiotherapy treatment modality using radioactive sealed sources within walking distance of the tumor, reducing the risk of applying an unwanted dose to adjacent healthy tissues. For brachytherapy is reliable, it is necessary to establish a dosimetric practices program aimed at determining the optimal dose of radiation for this radiotherapy practice. This paper presents the application of two methodologies for the dosimetry using radiochromic films. Experimental measurements were performed with EBT3 films in phantoms consisting of homogeneous and heterogeneous material (lung, bone and soft tissue) built especially for dose measurements in brachytherapy. The processing and analysis of the resulting images of the experimental procedure were performed with ImageJ software and MATLAB. The results were evaluated from comparisons dose of experimental measurements and simulations obtained by the Monte Carlo method. (author)

  5. Place of the brachytherapy in the therapeutic strategy of rhabdomyosarcomas of the nasogenian groove of children

    International Nuclear Information System (INIS)

    Breton-Callu, C.; Haie-Meder, C.; Oberlin, O.; Delapierre, M.; Gerbaulet, A.

    2000-01-01

    The brachytherapy in the treatment of rhabdomyosarcomas of the nasogenian groove has to be discussed when it exists a residual tumor after an initial chemotherapy and leads to good results, in term of local control. An advantage of the brachytherapy in comparison with external irradiation, in the treatment of children tumors, is the small size of the treated volume, that allows to decrease the aftereffects incidence. The brachytherapy comes in the frame of a therapeutic needing a multidisciplinary approach and a cooperation between surgeons, brachy-therapists and onco-pediatricians. (N.C.)

  6. LDR brachytherapy: can low dose rate hypersensitivity from the "inverse" dose rate effect cause excessive cell killing to peripherial connective tissues and organs?

    Science.gov (United States)

    Leonard, B E; Lucas, A C

    2009-02-01

    Examined here are the possible effects of the "inverse" dose rate effect (IDRE) on low dose rate (LDR) brachytherapy. The hyper-radiosensitivity and induced radioresistance (HRS/IRR) effect benefits cell killing in radiotherapy, and IDRE and HRS/IRR seem to be generated from the same radioprotective mechanisms. We have computed the IDRE excess cell killing experienced in LDR brachytherapy using permanent seed implants. We conclude, firstly, that IDRE is a dose rate-dependent manifestation of HRS/IRR. Secondly, the presence of HRS/IRR or IDRE in a cell species or tissue must be determined by direct dose-response measurements. Thirdly, a reasonable estimate is that 50-80% of human adjoining connective and organ tissues experience IDRE from permanent implanted LDR brachytherapy. If IDRE occurs for tissues at point A for cervical cancer, the excess cell killing will be about a factor of 3.5-4.0 if the initial dose rate is 50-70 cGy h(-1). It is greater for adjacent tissues at lower dose rates and higher for lower initial dose rates at point A. Finally, higher post-treatment complications are observed in LDR brachytherapy, often for unknown reasons. Some of these are probably a result of IDRE excess cell killing. Measurements of IDRE need be performed for connective and adjacent organ tissues, i.e. bladder, rectum, urinary tract and small bowels. The measured dose rate-dependent dose responses should extended to tissues and organs remain above IDRE thresholds).

  7. Ejaculatory Function After Permanent 125I Prostate Brachytherapy for Localized Prostate Cancer

    International Nuclear Information System (INIS)

    Huyghe, Eric; Delannes, Martine; Wagner, Fabien M.; Delaunay, Boris; Nohra, Joe; Thoulouzan, Matthieu; Shut-Yee, J. Yeung; Plante, Pierre; Soulie, Michel; Thonneau, Patrick; Bachaud, Jean Marc

    2009-01-01

    Purpose: Ejaculatory function is an underreported aspect of male sexuality in men treated for prostate cancer. We conducted the first detailed analysis of ejaculatory function in patients treated with permanent 125 I prostate brachytherapy for localized prostate cancer. Patients and Methods: Of 270 sexually active men with localized prostate cancer treated with permanent 125 I prostate brachytherapy, 241 (89%), with a mean age of 65 years (range, 43-80), responded to a mailed questionnaire derived from the Male Sexual Health Questionnaire regarding ejaculatory function. Five aspects of ejaculatory function were examined: frequency, volume, dry ejaculation, pleasure, and pain. Results: Of the 241 sexually active men, 81.3% had conserved ejaculatory function after prostate brachytherapy; however, the number of patients with rare/absent ejaculatory function was double the pretreatment number (p < .0001). The latter finding was correlated with age (p < .001) and the preimplant International Index of Erectile Function score (p < .001). However, 84.9% of patients with maintained ejaculatory function after implantation reported a reduced volume of ejaculate compared with 26.9% before (p < .001), with dry ejaculation accounting for 18.7% of these cases. After treatment, 30.3% of the patients experienced painful ejaculation compared with 12.9% before (p = .0001), and this was associated with a greater number of implanted needles (p = .021) and the existence of painful ejaculation before implantation (p < .0001). After implantation, 10% of patients who continued to be sexually active experienced no orgasm compared with only 1% before treatment. in addition, more patients experienced late/difficult or weak orgasms (p = .001). Conclusion: Most men treated with brachytherapy have conserved ejaculatory function after prostate brachytherapy. However, most of these men experience a reduction in volume and a deterioration in orgasm.

  8. Palliative interstitial HDR brachytherapy for recurrent rectal cancer. Implantation techniques and results

    International Nuclear Information System (INIS)

    Kolotas, C.; Roeddiger, S.; Martin, T.; Tselis, N.; Baltas, D.; Zamboglou, N.; Strassmann, G.; Aebersold, D.M.

    2003-01-01

    Purpose: To report the methods and clinical results of CT-based interstitial high-dose-rate (HDR) brachytherapy procedures for the palliative treatment of recurrent rectal cancer. Patients and Methods: A total of 44 brachytherapy implants were performed in 38 patients. CT-guided catheter implants were performed in 34 patients under local anesthesia and sedation, and four patients were implanted intraoperatively. Of 40 CT-guided implants, 20 were done using metallic needles introduced via the sacrum and 20 were transperineal implants of plastic tubes in the presacral region. Postimplant CT scans were used for three-dimensional (3-D) conformal brachytherapy planning. Patients implanted with metallic needles were given a single fraction of 10-15 Gy using HDR 192 Ir, and those who received transperineal implants of plastic catheters were given fractionated brachytherapy, 5 Gy twice daily to a total dose of 30-40 Gy. The median tumor volume was 225 cm 3 with a range of 41-2,103 cm 3 . Results: After a median follow-up of 23.4 months, a total of 13/38 patients were alive. The median postbrachytherapy survival was 15 months with 18 of the 25 deaths due to distant metastases. Tumor response was as follows: 6/38 partial remission, 28/38 stable disease, and 4/38 local progression. A planning target volume (PTV) coverage > 85% was achieved in 42/44 implants. The treatment was well tolerated, and no acute complications were observed. One patient developed a fistula after 8 months. Pain relief was recorded in 34 patients (89.5%), and the median duration of this palliative effect was 5 months with a range of 1-13 months. Conclusions: Interstitial HDR brachytherapy is a valuable tool for the delivery of high doses and achieves effective palliation in recurrent rectal carcinoma. (orig.)

  9. Palliative interstitial HDR brachytherapy for recurrent rectal cancer. Implantation techniques and results

    Energy Technology Data Exchange (ETDEWEB)

    Kolotas, C. [Dept. of Radiation Oncology, Offenbach Hospital, Offenbach (Germany); Dept. of Radio-Oncology, Univ. of Bern, Inselspital, Bern (Switzerland); Roeddiger, S.; Martin, T.; Tselis, N.; Baltas, D.; Zamboglou, N. [Dept. of Radiation Oncology, Offenbach Hospital, Offenbach (Germany); Strassmann, G. [Dept. of Radiotherapy, Univ. Hospital, Philipps Univ., Marburg (Germany); Aebersold, D.M. [Dept. of Radio-Oncology, Univ. of Bern, Inselspital, Bern (Switzerland)

    2003-07-01

    Purpose: To report the methods and clinical results of CT-based interstitial high-dose-rate (HDR) brachytherapy procedures for the palliative treatment of recurrent rectal cancer. Patients and Methods: A total of 44 brachytherapy implants were performed in 38 patients. CT-guided catheter implants were performed in 34 patients under local anesthesia and sedation, and four patients were implanted intraoperatively. Of 40 CT-guided implants, 20 were done using metallic needles introduced via the sacrum and 20 were transperineal implants of plastic tubes in the presacral region. Postimplant CT scans were used for three-dimensional (3-D) conformal brachytherapy planning. Patients implanted with metallic needles were given a single fraction of 10-15 Gy using HDR {sup 192}Ir, and those who received transperineal implants of plastic catheters were given fractionated brachytherapy, 5 Gy twice daily to a total dose of 30-40 Gy. The median tumor volume was 225 cm{sup 3} with a range of 41-2,103 cm{sup 3}. Results: After a median follow-up of 23.4 months, a total of 13/38 patients were alive. The median postbrachytherapy survival was 15 months with 18 of the 25 deaths due to distant metastases. Tumor response was as follows: 6/38 partial remission, 28/38 stable disease, and 4/38 local progression. A planning target volume (PTV) coverage > 85% was achieved in 42/44 implants. The treatment was well tolerated, and no acute complications were observed. One patient developed a fistula after 8 months. Pain relief was recorded in 34 patients (89.5%), and the median duration of this palliative effect was 5 months with a range of 1-13 months. Conclusions: Interstitial HDR brachytherapy is a valuable tool for the delivery of high doses and achieves effective palliation in recurrent rectal carcinoma. (orig.)

  10. Reirradiation for recurrent head and neck cancer with salvage interstitial pulsed-dose-rate brachytherapy. Long-term results

    Energy Technology Data Exchange (ETDEWEB)

    Strnad, Vratislav; Lotter, Michael; Kreppner, Stephan; Fietkau, Rainer [University Hospital Erlangen, Dept. of Radiation Oncology, Erlangen (Germany)

    2015-01-10

    To assess the long-term results of protocol-based interstitial pulsed-dose-rate (PDR) brachytherapy as reirradiation combined with simultaneous chemotherapy and interstitial hyperthermia in selected patients with recurrent head and neck tumors. A total of 104 patients with biopsy-proven recurrent head and neck cancer were treated with interstitial PDR brachytherapy. Salvage surgery had also been undergone by 53/104 (51 %) patients (R1 or R2 resection in > 80 % of patients). Salvage brachytherapy alone was administered in 81 patients (78 %), with a median total dose of 56.7 Gy. Salvage brachytherapy in combination with external beam radiotherapy (EBRT) was performed in 23/104 patients (32 %), using a median total dose of D{sub REF} = 24 Gy. Simultaneously to PDR brachytherapy, concomitant chemotherapy was administered in 58/104 (55.8 %) patients. A single session of interstitial hyperthermia was also used to treat 33/104 (31.7 %) patients. The analysis was performed after a median follow-up of 60 months. Calculated according to Kaplan-Meier, local tumor control rates after 2, 5, and 10 years were 92.5, 82.4, and 58.9 %, respectively. Comparing results of salvage PDR brachytherapy with or without simultaneous chemotherapy, the 10-year local control rates were 76 vs. 39 % (p= 0014), respectively. No other patient- or treatment-related parameters had a significant influence on treatment results. Soft tissue necrosis or bone necrosis developed in 18/104 (17.3 %) and 11/104 (9.6 %) patients, respectively, but only 3 % of patients required surgical treatment. PDR interstitial brachytherapy with simultaneous chemotherapy is a very effective and, in experienced hands, also a safe treatment modality in selected patients with head and neck cancer in previously irradiated areas. (orig.) [German] Es erfolgte die Analyse der Langzeitergebnisse einer protokollbasierten interstitiellen Brachytherapie (Re-Bestrahlung) mit simultaner Chemotherapie und interstitieller Hyperthermie

  11. MO-A-BRB-00: Electronic Charting in EBRT and Brachytherapy

    International Nuclear Information System (INIS)

    2015-01-01

    The process of converting to an electronic chart for radiation therapy can be daunting. It requires a dedicated committee to first research and choose appropriate software, to review the entire documentation policy and flow of the clinic, to convert this system to electronic form or if necessary, redesign the system to more easily conform to the electronic process. Those making the conversion and those who already use electronic charting would benefit from the shared experience of those who have been through the process in the past. Therefore TG262 was convened to provide guidance on electronic charting for external beam radiation therapy and brachytherapy. This course will present the results of an internal survey of task group members on EMR practices in External Beam Radiation Therapy as well as discuss important issues in EMR development and structure for both EBRT and brachytherapy. Learning Objectives: Be familiarized with common practices and pitfalls in development and maintenance of an electronic chart in Radiation Oncology Be familiarized with important issues related to electronic charting in External Beam Radiation Therapy Be familiarized with important issues related to electronic charting in Brachytherapy

  12. Prostate Brachytherapy Case Volumes by Academic and Nonacademic Practices: Implications for Future Residency Training

    International Nuclear Information System (INIS)

    Orio, Peter F.; Nguyen, Paul L.; Buzurovic, Ivan; Cail, Daniel W.; Chen, Yu-Wei

    2016-01-01

    Purpose: The use of prostate brachytherapy has continued to decline in the United States. We examined the national practice patterns of both academic and nonacademic practices performing prostate brachytherapy by case volume per year to further characterize the decline and postulate the effect this trend might have on training the next generation of residents. Methods and Materials: Men diagnosed with prostate cancer who had undergone radiation therapy in 2004 to 2012 were identified. The annual brachytherapy case volume at each facility was determined and further categorized into ≤12 cases per year (ie, an average of ≤1 cases per month), 13 to 52 cases per year, and ≥53 cases per year (ie, an average of ≥1 cases per week) in academic practices versus nonacademic practices. Results: In 2004 to 2012, academic practices performing an average of ≤1 brachytherapy cases per month increased from 56.4% to 73.7%. In nonacademic practices, this percentage increased from 60.2% to 77.4% (P<.0001 for both). Practices performing an average of ≥1 cases per week decreased among both academic practices (from 6.7% to 1.5%) and nonacademic practices (from 4.5% to 2.7%). Conclusions: Both academic and nonacademic radiation oncology practices have demonstrated a significant reduction in the use of prostate brachytherapy from 2004 to 2012. With the case volume continuing to decline, it is unclear whether we are prepared to train the next generation of residents in this critical modality.

  13. Iridium-192 sources production for brachytherapy use

    International Nuclear Information System (INIS)

    Rostelato, Maria Elisa Chuery Martins

    1997-01-01

    The incidence of cancer increases every year in Brazil and turns out to be one of the most important causes of mortality. Some of the patients are treated with brachytherapy, a form of lesion treatment which is based on the insertion of sources into tumors, in this particular case, activated iridium wires. During this process, the ionizing radiation efficiently destroys the malignant cells. These iridium wires have a nucleus made out of an iridium-platinum alloy 20-30/70-80 of 0,1 mm in diameter either coated by platinum or encased in a platinum tube. The technique consists in irradiating the wire in the reactor neutron flux in order to produce iridium-192. The linear activity goes from 1 mCi/cm to 4 mCi/cm and the basic characteristic, which is required, is the homogeneity of the activation along the wire. It should not present a dispersion exceeding 5% on a wire measuring 50 cm in length, 0.5 mm or 0.3 mm in diameter. Several experiments were carried out in order to define the activation parameters. Wires from different origins were analyzed. It was concluded that United States of America and France wires were found to be perfectly adequate for brachytherapy purposes and have therefore been sent to specialized hospitals and successfully applied to cancer patients. Considering that the major purpose of this work is to make this product more accessible in Brazil, at a cost reflecting the Brazilian reality, the IPEN is promoting the preparation of iridium-192 sources to be used in brachytherapy, on a national level. (author)

  14. SU-F-T-06: Development of a Formalism for Practical Dose Measurements in Brachytherapy in the German Standard DIN 6803

    Energy Technology Data Exchange (ETDEWEB)

    Hensley, F [Ruprecht Karl University of Heidelberg, Heidelberg (Germany); Chofor, N [Carl von Ossietzky University of Oldenburg, Oldenburg (Germany); Schoenfeld, A [University of Oldenburg, Oldenburg (Germany); Harder, D [Georg-August University of Goettingen, Goettingen (Germany)

    2016-06-15

    Purpose: In the steep dose gradients in the vicinity of a radiation source and due to the properties of the changing photon spectra, dose measurements in Brachytherapy usually have large uncertainties. Working group DIN 6803-3 is presently discussing recommendations for practical brachytherapy dosimetry incorporating recent theoretical developments in the description of brachytherapy radiation fields as well as new detectors and phantom materials. The goal is to prepare methods and instruments to verify dose calculation algorithms and for clinical dose verification with reduced uncertainties. Methods: After analysis of the distance dependent spectral changes of the radiation field surrounding brachytherapy sources, the energy dependent response of typical brachytherapy detectors was examined with Monte Carlo simulations. A dosimetric formalism was developed allowing the correction of their energy dependence as function of source distance for a Co-60 calibrated detector. Water equivalent phantom materials were examined with Monte Carlo calculations for their influence on brachytherapy photon spectra and for their water equivalence in terms of generating equivalent distributions of photon spectra and absorbed dose to water. Results: The energy dependence of a detector in the vicinity of a brachytherapy source can be described by defining an energy correction factor kQ for brachytherapy in the same manner as in existing dosimetry protocols which incorporates volume averaging and radiation field distortion by the detector. Solid phantom materials were identified which allow precise positioning of a detector together with small correctable deviations from absorbed dose to water. Recommendations for the selection of detectors and phantom materials are being developed for different measurements in brachytherapy. Conclusion: The introduction of kQ for brachytherapy sources may allow more systematic and comparable dose measurements. In principle, the corrections can be

  15. Electromagnetic tracking for treatment verification in interstitial brachytherapy

    DEFF Research Database (Denmark)

    Bert, Christoph; Kellermeier, Markus; Tanderup, Kari

    2016-01-01

    Electromagnetic tracking (EMT) is used in several medical fields to determine the position and orientation of dedicated sensors, e.g., attached to surgical tools. Recently, EMT has been introduced to brachytherapy for implant reconstruction and error detection. The manuscript briefly summarizes...

  16. Use of MRI in interventions in head and neck surgery

    International Nuclear Information System (INIS)

    Schulz, T.; Schneider, J.P.; Schmidt, F.; Kahn, T.; Bootz, F.; Weber, A.; Weidenbach, H.; Heinke, W.; Koehler-Brock, A.

    2001-01-01

    Presentation of new concepts and applications of MR-guided head and neck surgery are presented. Examples of diagnostic and therapeutic procedures such as evaluation of transseptal tumor biopsies, placement of afterloading catheters for brachytherapy, and microscopic surgery of paranasal sinuses in the open MRI are discussed. Material and Methods: 24 MRI-guided ENT-procedures (14 transsphenoidal biopsies, one transnasal biopsy, 6 placements of brachytherapy catheters, and 3 operations of the paranasal sinuses) were performed in an open 0.5 T MR system. Results: localisation and/or extension of all lesions as well as the placement of biopsy needles or catheters were determined with great precision during the interventions. Conclusions: surgical risk and postoperative morbidity are significantly reduced in MR-guided surgery of the petroclival region and the region of head and neck compared to other, conventional methods. Thus, interventional MRI-guidance optimizes minimal invasive surgery and catheter placement in difficult anatomical regions like the petroclival region. (orig.) [de

  17. Radiobiological modelling of dose-gradient effects in low dose rate, high dose rate and pulsed brachytherapy

    International Nuclear Information System (INIS)

    Armpilia, C; Dale, R G; Sandilos, P; Vlachos, L

    2006-01-01

    This paper presents a generalization of a previously published methodology which quantified the radiobiological consequences of dose-gradient effects in brachytherapy applications. The methodology uses the linear-quadratic (LQ) formulation to identify an equivalent biologically effective dose (BED eq ) which, if applied uniformly to a specified tissue volume, would produce the same net cell survival as that achieved by a given non-uniform brachytherapy application. Multiplying factors (MFs), which enable the equivalent BED for an enclosed volume to be estimated from the BED calculated at the dose reference surface, have been calculated and tabulated for both spherical and cylindrical geometries. The main types of brachytherapy (high dose rate (HDR), low dose rate (LDR) and pulsed (PB)) have been examined for a range of radiobiological parameters/dimensions. Equivalent BEDs are consistently higher than the BEDs calculated at the reference surface by an amount which depends on the treatment prescription (magnitude of the prescribed dose) at the reference point. MFs are closely related to the numerical BED values, irrespective of how the original BED was attained (e.g., via HDR, LDR or PB). Thus, an average MF can be used for a given prescribed BED as it will be largely independent of the assumed radiobiological parameters (radiosensitivity and α/β) and standardized look-up tables may be applicable to all types of brachytherapy treatment. This analysis opens the way to more systematic approaches for correlating physical and biological effects in several types of brachytherapy and for the improved quantitative assessment and ranking of clinical treatments which involve a brachytherapy component

  18. Combination of high-dose rate brachytherapy and external beam radiotherapy for the treatment of advanced scalp angiosarcoma - case report

    International Nuclear Information System (INIS)

    Gentil, Andre Cavalcanti; Lima Junior, Carlos Genesio Bezerra; Soboll, Danyel Scheidegger; Novaes, Paulo Eduardo R.S.; Pereira, Adelino Jose; Pellizon, Antonio Carlos Assis

    2001-01-01

    The authors report a case of a patient with an extensive angiosarcoma of the scalp that was submitted only to radiotherapy with a combination of orthovoltage roentgentherapy and high-dose rate brachytherapy, using a mould. The clinical and technical features as well as the therapeutic outcome are presented, and the usefulness and peculiarities of high-dose rate brachytherapy for this particular indication is discussed. A comparative analysis of the difficulties and limitations of employing low-dose rate brachytherapy is also presented. The authors concluded that high-dose rate brachytherapy might be an useful, practical and safe option to treat neoplastic lesions of the scalp, and an alternative treatment to electrontherapy. (author)

  19. Dose reduction in LDR brachytherapy by implanted prostate gold fiducial markers.

    Science.gov (United States)

    Landry, Guillaume; Reniers, Brigitte; Lutgens, Ludy; Murrer, Lars; Afsharpour, Hossein; de Haas-Kock, Danielle; Visser, Peter; van Gils, Francis; Verhaegen, Frank

    2012-03-01

    The dosimetric impact of gold fiducial markers (FM) implanted prior to external beam radiotherapy of prostate cancer on low dose rate (LDR) brachytherapy seed implants performed in the context of combined therapy was investigated. A virtual water phantom was designed containing a single FM. Single and multi source scenarios were investigated by performing Monte Carlo dose calculations, along with the influence of varying orientation and distance of the FM with respect to the sources. Three prostate cancer patients treated with LDR brachytherapy for a recurrence following external beam radiotherapy with implanted FM were studied as surrogate cases to combined therapy. FM and brachytherapy seeds were identified on post implant CT scans and Monte Carlo dose calculations were performed with and without FM. The dosimetric impact of the FM was evaluated by quantifying the amplitude of dose shadows and the volume of cold spots. D(90) was reported based on the post implant CT prostate contour. Large shadows are observed in the single source-FM scenarios. As expected from geometric considerations, the shadows are dependent on source-FM distance and orientation. Large dose reductions are observed at the distal side of FM, while at the proximal side a dose enhancement is observed. In multisource scenarios, the importance of shadows appears mitigated, although FM at the periphery of the seed distribution caused underdosage (LDR brachytherapy seed implant dose distributions. Therefore, reduced tumor control could be expected from FM implanted in tumors, although our results are too limited to draw conclusions regarding clinical significance.

  20. Pulsed Dose Rate (PDR - BT) brachytherapy in treatment of breast cancer

    International Nuclear Information System (INIS)

    Skowronek, J.

    2007-01-01

    Breast conserving surgery (BCS) and radiotherapy (EBRT) of the conserved breast became widely accepted in the last decades for the treatment of early invasive breast cancer. The standard technique of RT after breast conservation is to treat the whole breast up to a total dose of 45 to 50 Gy. Initially brachytherapy for breast cancer was used in addition of external radiation to boost a portion of the breast to higher doses. However, over the past 10 years, the application of brachytherapy in breast cancer has changed. In early stage breast cancer, research has shown that the area that requires radiation treatment to prevent the cancer from returning is the breast tissue that surrounds the area where the initial cancer was removed. Because this typically includes only a part of the breast, brachytherapy is now being used to treat the targeted portion of the breast and as a result allows accelerated delivery of the radiation dose so that treatment is completed in four to five days. Another indications for PDR - BT as a part of treatment in locally advanced breast cancer or as a palliative treatment are discussed in the paper, too. Preliminary results with PDR - BT boost technique are promising. However, more experience and longer follow-up are required to define whether these methods might improve local tumor control for breast cancer patients. In this article the current status, indications, technical aspects and published results of PDR brachytherapy (PDR - BT) in breast cancer treatment are reviewed. (author)