WorldWideScience

Sample records for afterburners

  1. Combined catalytic converter and afterburner

    Energy Technology Data Exchange (ETDEWEB)

    Ma, T.T.-H.

    1994-11-30

    This patent describes the combined use of a catalytic converter and afterburner. An afterburner chamber and a catalyst matrix are disposed in series within a casing. A combustible premixed charge is ignited in the afterburner chamber before it enters the catalyst matrix. This invention overcomes the problem encountered in previous designs of some of the premixed charge passing unreacted through the device unless a very long afterburner chamber is used. (UK)

  2. Flow Field Calculations for Afterburner

    Institute of Scientific and Technical Information of China (English)

    ZhaoJianxing; LiuQuanzhong; 等

    1995-01-01

    In this paper a calculation procedure for simulating the coimbustion flow in the afterburner with the heat shield,flame stabilizer and the contracting nozzle is described and evaluated by comparison with experimental data.The modified two-equation κ-ε model is employed to consider the turbulence effects,and the κ-ε-g turbulent combustion model is used to determine the reaction rate.To take into accunt the influence of heat radiation on gas temperature distribution,heat flux model is applied to predictions of heat flux distributions,The solution domain spanned the entire region between centerline and afterburner wall ,with the heat shield represented as a blockage to the mesh.The enthalpy equation and wall boundary of the heat shield require special handling for two passages in the afterburner,In order to make the computer program suitable to engineering applications,a subregional scheme is developed for calculating flow fields of complex geometries.The computational grids employed are 100×100 and 333×100(non-uniformly distributed).The numerical results are compared with experimental data,Agreement between predictions and measurements shows that the numerical method and the computational program used in the study are fairly reasonable and appopriate for primary design of the afterburner.

  3. Modeling TeV Class Plasma Afterburners

    CERN Document Server

    Huang Cheng Kun; Clayton, Chris; Decker, Franz Josef; Deng, Suzhi; Hogan, Mark; Iverson, Richard; Johnson, Devon K; Joshi, Chandrashekhar; Katsouleas, Thomas C; Lu, Wei; Mori, Warren; Muggli, Patric; Oz, Erdem; Zhou, Miaomiao

    2005-01-01

    Plasma wakefield acceleration can sustain acceleration gradients three orders of magnitude larger than conventional RF accelerator. In the recent E164X experiment, substantial energy gain of about 3Gev has been observed. Thus, a plasma afterburner, which has been proposed to double the incoming beam energy for a future linear collider, is now of great interest. In an afterburner, a particle beam drives a plasma wave and generates a strong wakefield which has a phase velocity equal to the velocity of the beam. This wakefield can then be used to accelerate part of the drive beam or a trailing beam. Several issues such as the efficient transfer of energy and the stable propagation of both the drive and trailing beams in the plasma are critical to the afterburner concept. We investigate the nonlinear beam-plasma interaction in such scenario using the 3D computer modeling code QuickPIC. We will report the latest simulation results of both 50 GeV and 1 TeV plasma afterburner stages for electrons including the beam-...

  4. Building an Efficient Model for Afterburn Energy Release

    Energy Technology Data Exchange (ETDEWEB)

    Alves, S; Kuhl, A; Najjar, F; Tringe, J; McMichael, L; Glascoe, L

    2012-02-03

    Many explosives will release additional energy after detonation as the detonation products mix with the ambient environment. This additional energy release, referred to as afterburn, is due to combustion of undetonated fuel with ambient oxygen. While the detonation energy release occurs on a time scale of microseconds, the afterburn energy release occurs on a time scale of milliseconds with a potentially varying energy release rate depending upon the local temperature and pressure. This afterburn energy release is not accounted for in typical equations of state, such as the Jones-Wilkins-Lee (JWL) model, used for modeling the detonation of explosives. Here we construct a straightforward and efficient approach, based on experiments and theory, to account for this additional energy release in a way that is tractable for large finite element fluid-structure problems. Barometric calorimeter experiments have been executed in both nitrogen and air environments to investigate the characteristics of afterburn for C-4 and other materials. These tests, which provide pressure time histories, along with theoretical and analytical solutions provide an engineering basis for modeling afterburn with numerical hydrocodes. It is toward this end that we have constructed a modified JWL equation of state to account for afterburn effects on the response of structures to blast. The modified equation of state includes a two phase afterburn energy release to represent variations in the energy release rate and an afterburn energy cutoff to account for partial reaction of the undetonated fuel.

  5. MUSIC with the UrQMD Afterburner

    CERN Document Server

    Ryu, Sangwook; Gale, Charles; Schenke, Bjoern; Young, Clint

    2012-01-01

    As RHIC is entering the precision measurement era and the LHC is producing a copious amount of new data, the role of 3+1D event-by-event viscous hydrodynamics is more important than ever to understand the bulk data as well as providing the background for hard probes. For more meaningful comparison with the experimental data, it is also important that hydrodynamics be coupled to the hadronic afterburner. In this proceeding we report on preliminary results of coupling MUSIC with UrQMD.

  6. MUSIC with the UrQMD Afterburner

    International Nuclear Information System (INIS)

    As RHIC is entering the precision measurement era and the LHC is producing a copious amount of new data, the role of 3+1D event-by-event viscous hydrodynamics is more important than ever to understand the bulk data as well as providing the background for hard probes. For more meaningful comparison with the experimental data, it is also important that hydrodynamics be coupled to the hadronic afterburner. In this proceeding we report on preliminary results of coupling MUSIC with UrQMD

  7. MUSIC with the UrQMD Afterburner

    Science.gov (United States)

    Ryu, Sangwook; Jeon, Sangyong; Gale, Charles; Schenke, Björn; Young, Clint

    2013-05-01

    As RHIC is entering the precision measurement era and the LHC is producing a copious amount of new data, the role of 3+1D event-by-event viscous hydrodynamics is more important than ever to understand the bulk data as well as providing the background for hard probes. For more meaningful comparison with the experimental data, it is also important that hydrodynamics be coupled to the hadronic afterburner. In this proceeding we report on preliminary results of coupling MUSIC with UrQMD.

  8. MUSIC with the UrQMD Afterburner

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Sangwook; Jeon, Sangyong; Gale, Charles [McGill University, Montreal, QC (Canada); Schenke, Björn [Brookhaven National Laboratory, Upton, NY (United States); Young, Clint [McGill University, Montreal, QC (Canada); University of Minnesota, Minneaplis, MN (United States)

    2013-05-02

    As RHIC is entering the precision measurement era and the LHC is producing a copious amount of new data, the role of 3+1D event-by-event viscous hydrodynamics is more important than ever to understand the bulk data as well as providing the background for hard probes. For more meaningful comparison with the experimental data, it is also important that hydrodynamics be coupled to the hadronic afterburner. In this proceeding we report on preliminary results of coupling MUSIC with UrQMD.

  9. Numerical models for afterburning of TNT detonation products in air

    Science.gov (United States)

    Donahue, L.; Zhang, F.; Ripley, R. C.

    2013-11-01

    Afterburning occurs when fuel-rich explosive detonation products react with oxygen in the surrounding atmosphere. This energy release can further contribute to the air blast, resulting in a more severe explosion hazard particularly in confined scenarios. The primary objective of this study was to investigate the influence of the products equation of state (EOS) on the prediction of the efficiency of trinitrotoluene (TNT) afterburning and the times of arrival of reverberating shock waves in a closed chamber. A new EOS is proposed, denoted the Afterburning (AB) EOS. This EOS employs the JWL EOS in the high pressure regime, transitioning to a Variable-Gamma (VG) EOS at lower pressures. Simulations of three TNT charges suspended in a explosion chamber were performed. When compared to numerical results using existing methods, it was determined that the Afterburning EOS delays the shock arrival times giving better agreement with the experimental measurements in the early to mid time. In the late time, the Afterburning EOS roughly halved the error between the experimental measurements and results obtained using existing methods. Use of the Afterburning EOS for products with the Variable-Gamma EOS for the surrounding air further significantly improved results, both in the transient solution and the quasi-static pressure. This final combination of EOS and mixture model is recommended for future studies involving afterburning explosives, particularly those in partial and full confinement.

  10. Exergetic analysis of an aircraft turbojet engine with an afterburner

    Directory of Open Access Journals (Sweden)

    Ehyaei M.A.

    2013-01-01

    Full Text Available An exergy analysis is reported of a J85-GE-21 turbojet engine and its components for two altitudes: sea level and 11,000 meters. The turbojet engine with afterburning operates on the Brayton cycle and includes six main parts: diffuser, compressor, combustion chamber, turbine, afterburner and nozzle. Aircraft data are utilized in the analysis with simulation data. The highest component exergy efficiency at sea level is observed to be for the compressor, at 96.7%, followed by the nozzle and turbine with exergy efficiencies of 93.7 and 92.3%, respectively. At both considered heights, reducing of engine intake air speed leads to a reduction in the exergy efficiencies of all engine components and overall engine. The exergy efficiency of the turbojet engine is found to decrease by 0.45% for every 1°C increase in inlet air temperature.

  11. A method for aircraft afterburner combustion without flameholders

    Science.gov (United States)

    Birmaher, Shai

    2009-12-01

    State of the art aircraft afterburners employ spray bars to inject fuel and flameholders to stabilize the combustion process. Such afterburner designs significantly increase the length (and thus weight), pressure losses, and observability of the engine. This thesis presents a feasibility study of a compact 'prime and trigger' (PAT) afterburner concept that eliminates the fuel spray bars and flameholders and, thus, eliminates the above-mentioned problems. In this concept, afterburner fuel is injected just upstream or in between the turbine stages. As the fuel travels through the turbine stages, it evaporates, mixes with the bulk flow, and undergoes some chemical reactions without any significant heat release, a process referred to as 'priming'. Downstream of the turbine stages, combustion could take place through autoignition. However, if fuel autoignition does not occur or if autoignition does not produce a combustion zone that is stable and highly efficient, then a low power pilot, or 'trigger', can be used to control the combustion process. The envisioned trigger for the PAT concept is a jet of product gas from ultra-rich hydrocarbon/air combustion that is injected through the afterburner liner. This 'partial oxidation' (POx) gas, which consists mostly of H2, CO, and diluents, rapidly produces radicals and heat that accelerate the autoignition of the primed mixture and, thus, provide an anchor point for the afterburner combustion process. The objective of this research was to demonstrate the feasibility of the PAT concept by showing that (1) combustion of fuel injected within or upstream of turbine stages can occur only downstream of the turbine stages, and (2) the combustion zone is compact, stable and efficient. This was accomplished using two experimental facilities, a developed theoretical model, and Chemkin simulations. The first facility, termed the Afterburner Facility (AF), simulated the bulk flow temperature, velocity and O2 content through a turbojet

  12. Noise of high-performance aircraft at afterburner

    Science.gov (United States)

    Tam, Christopher K. W.; Parrish, Sarah A.

    2015-09-01

    The noise from a high-performance aircraft at afterburner is investigated. The main objective is to determine whether the dominant noise components are the same or similar to those of a hot supersonic laboratory jet. For this purpose, measured noise data from F-22A Raptors are analyzed. It is found, based on both spectral and directivity data, that there is a new dominant noise component in addition to the usual turbulent mixing noise. The characteristic features of the new noise component are identified. Measured data indicates that the new noise component is observed only when the rate of fuel burn of the engine is increased significantly above that of the intermediate power setting. This suggests that the new noise component is combustion related. The possibility that it is indirect combustion noise generated by the passage of hot spots from the afterburner through the nozzle of the jet is investigated. Because flow and temperature data were not measured in the F-22A engine tests, to provide support to the proposition, numerical simulations of indirect combustion noise generation due to the passing of an entropy wave pulse (a hot spot) through a military-style nozzle are carried out. Sound generation is observed at the front and at the back of the pulse. This creates a fast and a slow acoustic wave as the sound radiates out from the nozzle exit. Quantitative estimates of the principal directions of acoustic radiation due to the emitted fast and slow acoustic waves are made. It is found that there are reasonably good agreements with measured data. To estimate the intensity level (IL) of the radiated indirect combustion noise, a time-periodic entropy wave train of 15 percent temperature fluctuation is used as a model of the hot spots coming out of the afterburner. This yields an IL of 175.5 dB. This is a fairly intense noise source, well capable of causing the radiation of the new jet noise component.

  13. Heavy ion acceleration in the Breakout Afterburner regime

    CERN Document Server

    Petrov, G M; Thomas, A G R; Krushelnick, K; Beg, F N

    2015-01-01

    Theoretical study of heavy ion acceleration from an ultrathin (20 nm) gold foil irradiated by sub-picosecond lasers is presented. Using two dimensional particle-in-cell simulations we identified two highly efficient ion acceleration schemes. By varying the laser pulse duration we observed a transition from Radiation Pressure Acceleration to the Breakout Afterburner regime akin to light ions. The underlying physics and ion acceleration regimes are similar to that of light ions, however, nuances of the acceleration process make the acceleration of heavy ions more challenging. Two laser systems are studied in detail: the Texas Petawatt Laser and the Trident laser, the former having pulse duration 180 fs, intermediate between very short femtosecond pulses and picosecond pulses. Both laser systems generated directional gold ions beams (~10 degrees half-angle) with fluxes in excess of 1011 ion/sr and normalized energy >10 MeV/nucleon.

  14. Measurement of Afterburning Effect of Underoxidized Explosives by Underwater Explosion Method

    Science.gov (United States)

    Cao, Wei; He, Zhongqi; Chen, Wanghua

    2015-04-01

    The afterburning effect of TNT and a desensitized hexogen RDX-Al explosive was studied in a defined gas volume under water. A double-layer container (DLC) filled with different gases (air, oxygen, and nitrogen) was used to control and distinguish the afterburning effect of explosives. After the charges in the DLC were initiated under water, the shock wave signals were collected and analyzed. It is shown that shock wave peak pressures are duly in compliance with explosion similarity law, pressure, and impulse histories for explosions in oxygen and air are greater than those recorded for explosions in nitrogen due to the afterburing reaction. Moreover, the afterburning energy was calculated. Results show that even though there is excess oxygen in the gas volume, the afterburning energy may not reach the theoretically maximum value. This result is different from that in confined explosion, where the presence of excess oxygen in the compressed gas filling a bomb leads to complete combustion of the detonation products.

  15. Modeling Self-Ionized Plasma Wakefield Acceleration for Afterburner Parameters Using QuickPIC

    CERN Document Server

    Zhou, Miaomiao; Decker, Franz Josef; Decyk, Viktor K; Deng, Suzhi; Huang Cheng Kun; Iverson, Richard; Johnson, Devon K; Joshi, Chandrashekhar; Katsouleas, Thomas C; Lu, Wei; Mori, Warren; Muggli, Patric; Oz, Erdem; Shih Yu Tsung, Frank; Walz, Dieter

    2005-01-01

    A plasma wakefield accelerator (PWFA) has been proposed as a way to double the energy of a future linear collider. This afterburner concept will require meter long uniform plasmas. For the parameters envisaged in possible afterburner stages, the self-fields of the particle beam are intense enough to tunnel ionize some neutral gases such as lithium. Tunnel ionization has been investigated as a way for the beam itself to create the plasma.* Furthermore, tunnel ionization in a neutral or partially pre-ionized gas may create new plasma electrons and alter the plasma wake.*,** Unfortunately, it is not possible to model a PWFA with afterburner parameters using the models described in Bruhwiler et al. and Deng et al. Here we describe the addition of a tunnel ionization package using the ADK model into QuickPIC, a highly efficient quasi-static particle in cell (PIC) code which can model a PWFA with afterburner parameters. There is excellent agreement between QuickPIC and OSIRIS(a full PIC code) for pre-ionized plasma...

  16. Turbulent Mixing and Afterburn in Post-Detonation Flow with Dense Particle Clouds

    Science.gov (United States)

    Menon, Suresh

    2015-06-01

    Reactive metal particles are used as additives in most explosives to enhance afterburn and augment the impact of the explosive. The afterburn is highly dependent on the particle dispersal and mixing in the post-detonation flow. The post-detonation flow is generally characterized by hydrodynamic instabilities emanating from the interaction of the blast waves with the detonation product gases and the ambient air. Further, influenced by the particles, the flow evolves and develops turbulent structures, which play vital role in determining mixing and combustion. Past studies in the field in open literature are reviewed along with some recent studies conducted using three dimensional numerical simulations of particle dispersal and combustion in the post-detonation flow. Spherical nitromethane charges enveloped by particle shells of varying thickness are considered along with dense loading effects. In dense flows, the particles block the flow of the gases and therefore, the role of the inter-particle interactions on particle dispersal cannot be ignored. Thus, both dense and dilute effects must be modeled simultaneously to simulate the post-detonation flow. A hybrid equation of state is employed to study the evolution of flow from detonation initiation till the late time mixing and afterburn. The particle dispersal pattern in each case is compared with the available experimental results. The burn rate and the energy release in each case is quantified and the effect of total mass of the particles and the particle size is analyzed in detail. Strengths and limitations of the various methods used for such studies as well as the uncertainties in the modeling strategies are also highlighted. Supported by Defense Threat Reduction Agency.

  17. Active chlorine and nitric oxide formation from chemical rocket plume afterburning

    Science.gov (United States)

    Leone, D. M.; Turns, S. R.

    1994-01-01

    Chlorine and oxides of nitrogen (NO(x)) released into the atmosphere contribute to acid rain (ground level or low-altitude sources) and ozone depletion from the stratosphere (high-altitude sources). Rocket engines have the potential for forming or activating these pollutants in the rocket plume. For instance, H2/O2 rockets can produce thermal NO(x) in their plumes. Emphasis, in the past, has been placed on determining the impact of chlorine release on the stratosphere. To date, very little, if any, information is available to understand what contribution NO(x) emissions from ground-based engine testing and actual rocket launches have on the atmosphere. The goal of this work is to estimate the afterburning emissions from chemical rocket plumes and determine their local stratospheric impact. Our study focuses on the space shuttle rocket motors, which include both the solid rocket boosters (SRB's) and the liquid propellant main engines (SSME's). Rocket plume afterburning is modeled employing a one-dimensional model incorporating two chemical kinetic systems: chemical and thermal equilibria with overlayed nitric oxide chemical kinetics (semi equilibrium) and full finite-rate chemical kinetics. Additionally, the local atmospheric impact immediately following a launch is modeled as the emissions diffuse and chemically react in the stratosphere.

  18. A computer simulation of the afterburning processes occurring within solid rocket motor plumes in the troposphere

    Science.gov (United States)

    Gomberg, R. I.; Stewart, R. B.

    1976-01-01

    As part of a continuing study of the environmental effects of solid rocket motor (SRM) operations in the troposphere, a numerical model was used to simulate the afterburning processes occurring in solid rocket motor plumes and to predict the quantities of potentially harmful chemical species which are created. The calculations include the effects of finite-rate chemistry and turbulent mixing. It is found that the amount of NO produced is much less than the amount of HCl present in the plume, that chlorine will appear predominantly in the form of HCl although some molecular chlorine is present, and that combustion is complete as is evident from the predominance of carbon dioxide over carbon monoxide.

  19. Helium-3 production from Pb+Pb collisions at SPS energies with the UrQMD model and the traditional coalescence afterburner

    CERN Document Server

    Li, Qingfeng; Wang, Xiaobao; Shen, Caiwan

    2016-01-01

    A potential version of the UrQMD (UrQMD/M) transport model and a traditional coalescence model are combined to calculate the production of $^3$He fragments in central Pb+Pb collisions at SPS energies 20-80 GeV/nucleon. It is found that the Lorentz transformation in the afterburner influences visibly the $^3$He yield and should be considered in calculations. The rapidity distribution of $^3$He multiplicities (including the concave shape) can be described well with UrQMD/M when it stops during t$_{\\rm cut}$=100$\\pm$25 fm$/c$ and the coalescence afterburner with one parameter set of ($R_0$,$P_0$)=(3.8 fm, 0.3 GeV$/$c) is taken into use afterwards.

  20. Helium-3 production from Pb+Pb collisions at SPS energies with the UrQMD model and the traditional coalescence afterburner

    Science.gov (United States)

    Li, QingFeng; Wang, YongJia; Wang, XiaoBao; Shen, CaiWan

    2016-03-01

    A potential version of the UrQMD (UrQMD/M) transport model and a traditional coalescence model are combined to calculate the production of 3He fragments in central Pb+Pb collisions at SPS energies 20-80 GeV/nucleon. It is found that the Lorentz transformation in the afterburner influences visibly the 3He yield and should be considered in calculations. The rapidity distribution of 3He multiplicities (including the concave shape) can be described well with UrQMD/M when it stops during t cut=(100±25) fm/c and the coalescence afterburner with one parameter set of ( R 0, P 0)=(3.8 fm, 0.3 GeV/c) is taken into use afterwards.

  1. Rapidity distribution of protons from the potential version of UrQMD model and the traditional coalescence afterburner

    CERN Document Server

    Li, Qingfeng; Wang, Xiaobao; Shen, Caiwan

    2016-01-01

    Rapidity distributions of both E895 proton data at AGS energies and NA49 net proton data at SPS energies can be described reasonably well with a potential version of the UrQMD in which mean-field potentials for both pre-formed hadrons and confined baryons are considered, with the help of a traditional coalescence afterburner in which one parameter set for both relative distance $R_0$ and relative momentum $P_0$, (3.8 fm, 0.3 GeV$/$c), is used. Because of the large cancellation between the expansion in $R_0$ and the shrinkage in $P_0$ through the Lorentz transformation, the relativistic effect in clusters has little effect on the rapidity distribution of free (net) protons. Using a Woods-Saxon-like function instead of a pure logarithmic function as seen by FOPI collaboration at SIS energies, one can fit well both the data at SIS energies and the UrQMD calculation results at AGS and SPS energies. Further, it is found that for central Au+Au or Pb+Pb collisions at top SIS, SPS and RHIC energies, the proton fracti...

  2. Rapidity distribution of protons from the potential version of UrQMD model and the traditional coalescence afterburner

    Science.gov (United States)

    Li, QingFeng; Wang, YongJia; Wang, XiaoBao; Shen, CaiWan

    2016-02-01

    Rapidity distributions of both E895 proton data at AGS energies and NA49 net proton data at SPS energies can be described reasonably well with a potential version of the UrQMD in which mean-field potentials for both pre-formed hadrons and confined baryons are considered, with the help of a traditional coalescence afterburner in which one parameter set for both relative distance R 0 and relative momentum P 0, (3.8 fm, 0.3 GeV/ c), is used. Because of the large cancellation between the expansion in R 0 and the shrinkage in P 0 through the Lorentz transformation, the relativistic effect in clusters has little effect on the rapidity distribution of free (net) protons. Using a Woods-Saxon-like function instead of a pure logarithmic function as seen by FOPI collaboration at SIS energies, one can fit well both the data at SIS energies and the UrQMD calculation results at AGS and SPS energies. Further, it is found that for central Au+Au or Pb+Pb collisions at top SIS, SPS and RHIC energies, the proton fractions in clusters are about 33%, 10%, and 0.7%, respectively.

  3. Development of integrated, zero-G pneumatic transporter/rotating paddle incinerator/catalytic afterburner subsystem for processing human wastes on board spacecraft

    Science.gov (United States)

    Fields, S. F.; Labak, L. J.; Honegger, R. J.

    1974-01-01

    A four component system was developed which consists of a particle size reduction mechanism, a pneumatic waste transport system, a rotating-paddle incinerator, and a catalytic afterburner to be integrated into a six-man, zero-g subsystem for processing human wastes on board spacecraft. The study included the development of different concepts or functions, the establishment of operational specifications, and a critical evaluation for each of the four components. A series of laboratory tests was run, and a baseline subsystem design was established. An operational specification was also written in preparation for detailed design and testing of this baseline subsystem.

  4. Increase in the efficiency of electric melting of pellets in an arc furnace with allowance for the energy effect of afterburning of carbon oxide in slag using fuel-oxygen burners

    Science.gov (United States)

    Stepanov, V. A.; Krakht, L. N.; Merker, E. E.; Sazonov, A. V.; Chermenev, E. A.

    2015-12-01

    The problems of increasing the efficiency of electric steelmaking using fuel-oxygen burners to supply oxygen for the afterburning of effluent gases in an arc furnace are considered. The application of a new energy-saving regime based on a proposed technology of electric melting is shown to intensify the processes of slag formation, heating, and metal decarburization.

  5. Position Proportional the Afterburner Compensation Electric Load Simulator Research%位置比例加力补偿电动负载模拟器的研究

    Institute of Scientific and Technical Information of China (English)

    顾文娟; 刘涛; 朱战霞; 孙力

    2013-01-01

    Through the servo loading system and the position synchronization afterburner compensate for load analysis,the proportion of a position to follow the force compensation loading system,and its MATLAB / SIMULINK modeling and simulation are presented.Finally,the position proportional follow the force compensating loading system simulation results,the results indicate that the system can effectively improve the system band.%通过对力伺服加载系统和位置同步加力补偿加载系统的分析,提出了一种位置比例跟随力补偿加载系统;并对其进行MATLAB/SIMULINK建模仿真.最后,对位置比例跟随力补偿加载系统的仿真结果进行了分析,结果说明该系统能够有效提高系统频带.

  6. Surface Temperature Measurements from a Stator Vane Doublet in a Turbine Engine Afterburner Flame using Ultra-Bright Cr-Doped GdAlO3 Thermographic Phosphor

    Science.gov (United States)

    Eldridge, Jeffrey I.; Jenkins, Thomas P.; Allison, Stephen W.; Wolfe, Douglas E.; Howard, Robert P.

    2013-01-01

    Luminescence-based surface temperature measurements from an ultra-bright Cr-doped GdAlO3 perovskite (GAP:Cr) coating were successfully conducted on an air-film-cooled stator vane doublet exposed to the afterburner flame of a J85 test engine at University of Tennessee Space Institute (UTSI). The objective of the testing at UTSI was to demonstrate that reliable thermal barrier coating (TBC) surface temperatures based on luminescence decay of a thermographic phosphor could be obtained from the surface of an actual engine component in an aggressive afterburner flame environment and to address the challenges of a highly radiant background and high velocity gases. A high-pressure turbine vane doublet from a Honeywell TECH7000 turbine engine was coated with a standard electron-beam physical vapor deposited (EB-PVD) 200-m-thick TBC composed of yttria-stabilized zirconia (YSZ) onto which a 25-m-thick GAP:Cr thermographic phosphor layer was deposited by EB-PVD. The ultra-bright broadband luminescence from the GAP:Cr thermographic phosphor is shown to offer the advantage of over an order-of-magnitude greater emission intensity compared to rare-earth-doped phosphors in the engine test environment. This higher emission intensity was shown to be very desirable for overcoming the necessarily restricted probe light collection solid angle and for achieving high signal-to-background levels. Luminescence-decay-based surface temperature measurements varied from 500 to over 1000C depending on engine operating conditions and level of air film cooling.

  7. "2001: A Space Odyssey" Revisited: The Feasibility of 24 Hour Commuter Flights to the Moon Using NTR Propulsion with LUNOX Afterburners. Revised

    Science.gov (United States)

    Borowski, Stanley K.; Dudzinski, Leonard A.

    2001-01-01

    The prospects for "24 hour" commuter flights to the Moon. similar to that portrayed in 2001: A Space Odyssey but on a more Spartan scale. are examined using two near term. "high leverage" technologies-liquid oxygen (LOX)-augmented nuclear thermal rocket (NTR) propulsion and "lunar-derived" oxygen (LUNOX) production. Iron-rich volcanic glass. or "orange soil," discovered during the Apollo 17 mission to Taurus-Littrow. has produced a 4% oxygen yield in recent NASA experiments using hydrogen reduction. LUNOX development and utilization would eliminate the need to transport oxygen supplies from Earth and is expected to dramatically reduce the size, cost and complexity of space transportation systems. The LOX-augmented NTR concept (LANTR) exploits the high performance capability of the conventional liquid hydrogen (LH2)-cooled NTR and the mission leverage provided by LUNOX in a unique way. LANTR utilizes the large divergent section of its nozzle as an "afterburner" into which oxygen is injected and supersonically combusted with nuclear preheated hydrogen emerging from the engine's choked sonic throat-essentially "scramjet propulsion in reverse." By varying the oxygen-to-hydrogen mixture ratio, the LANTR engine can operate over a wide range of thrust and specific impulse (Isp) values while the reactor core power level remains relatively constant. The thrust augmentation feature of LANTR means that "big engine" performance can be obtained using smaller. more affordable. easier to test NTR engines. The use of high-density LOX in place of low-density LH2 also reduces hydrogen mass and tank volume resulting in smaller space vehicles. An implementation strategy and evolutionary lunar mission architecture is outlined which requires only Shuttle C or "in-line" Shuttle-derived launch vehicles, and utilizes conventional NTR-powered lunar transfer vehicles (LTVs), operating in an "expendable mode" initially, to maximize delivered surface payload on each mission. The increased

  8. 2001: A Space Odyssey Revisited: The Feasibility of 24 Hour Commuter Flights to the Moon Using NTR Propulsion with LUNOX Afterburners. Revised

    Science.gov (United States)

    Borowski, Stanley; Dudzinski, Leonard A.

    2003-01-01

    The prospects for 24 hour commuter flights to the Moon, similar to that portrayed in 2001: A Space Odyssey but on a more Spartan scale, are examined using two near term, high leverage technologies: liquid oxygen (LOX)-augmented nuclear thermal rocket (NTR) propulsion and lunar-derived oxygen (LUNOX) production. Iron-rich volcanic glass, or orange soil, discovered during the Apollo 17 mission to Taurus-Littrow, has produced a 4 percent oxygen yield in recent NASA experiments using hydrogen reduction. LUNOX development and utilization would eliminate the need to transport oxygen supplies from Earth and is expected to dramatically reduce the size, cost and complexity of space transportation systems. The LOX-augmented NTR concept (LANTR) exploits the high performance capability of the conventional liquid hydrogen (LH2)-cooled NTR and the mission leverage provided by LUNOX in a unique way. LANTR utilizes the large divergent section of its nozzle as an afterburner into which oxygen is injected and supersonically combusted with nuclear preheated hydrogen emerging from the engine's choked sonic throat, essentially scramjet propulsion in reverse. By varying the oxygen-to-hydrogen mixture ratio, the LANTR engine can operate over a wide range of thrust and specific impulse (Isp) values while the reactor core power level remains relatively constant. The thrust augmentation feature of LANTR means that big engine performance can be obtained using smaller, more affordable, easier to test NTR engines. The use of high-density LOX in place of low density LH2 also reduces hydrogen mass and tank volume resulting in smaller space vehicles. An implementation strategy and evolutionary lunar mission architecture is outlined which requires only Shuttle C or in-line Shuttle-derived launch vehicles, and utilizes conventional NTR-powered lunar transfer vehicles (LTVs), operating in an expendable mode initially, to maximize delivered surface payload on each mission. The increased payload is

  9. "2001: A Space Odyssey" Revisited--The Feasibility of 24 Hour Commuter Flights to the Moon Using NTR Propulsion with LUNOX Afterburners

    Science.gov (United States)

    Borowski, Stanley K.; Dudzinski, Leonard A.

    1998-01-01

    The prospects for "24 hour" commuter flights to the Moon, similar to that portrayed in 2001: A Space Odyssey but on a more Spartan scale, are examined using two near term, "high leverage" technologies--liquid oxygen (LOX)-augmented nuclear thermal rocket (NTR) propulsion and "lunar-derived" oxygen (LUNOX) production. Ironrich volcanic glass, or "orange soil," discovered during the Apollo 17 mission to Taurus-Littrow, has produced a 4% oxygen yield in recent NASA experiments using hydrogen reduction. LUNOX development and utilization would eliminate the need to transport oxygen supplies from Earth and is expected to dramatically reduce the size, cost and complexity of space transportation systems. The LOX-augmented NTR concept (LANTR) exploits the high performance capability of the conventional liquid hydrogen (LH2)-cooled NTR and the mission leverage provided by LUNOX in a unique way, LANTR utilizes the large divergent section of its nozzle as an "afterburner" into which oxygen is injected and supersonically combusted with nuclear preheated hydrogen emerging front the engine's choked sonic throat--essentially "scramjet propulsion in reverse." By varying the oxygen-to-hydrogen mixture ratio, the LANTR engine can operate over a wide range of thrust and specific impulse (Isp) values while the reactor core power level remains relatively constant. The thrust augmentation feature of LANTR means that "big engine" performance can be obtained using smaller, more affordable, easier to test NTR engines. The use of high-density LOX in place of low-density LH2 also reduces hydrogen mass and tank volume resulting in smaller space vehicles. An implementation strategy and evolutionary lunar mission architecture is outlined which requires only Shuttle C or "in-line" Shuttle-derived launch vehicles, and utilizes conventional NTR-powered lunar transfer vehicles (LTVs), operating in an "expendable mode" initially, to maximize delivered surface payload on each mission. The increased

  10. Uso del Modelo Lineal de un Turboventilador al Análisis de su Funcionamiento con Poscombustión Application of the Turbofan Linear Model to the Analysis of its Functioning with Afterburner

    Directory of Open Access Journals (Sweden)

    Oleg A Khatchatourian

    2007-01-01

    Full Text Available El objetivo de este trabajo fue la comparación de eficacia de sistema de los sostenedores mecánicos y aerodinámicos de llama para el dispositivo de poscombustión de turboventilador. Se propone un modelo para comparar la eficacia de sistemas mecánicos y aerodinámicos de llama y se analiza la influencia de diversos parámetros en la eficacia. El sistema aerodinámico puede ser recomendado como unidad de aumento moderado de empuje para uso en operación de emergencia o en corto tiempo de operación.The purpose of the presented work was a comparison of an efficiency of Mechanical Flame Holders system and Aerodynamic Flame Holders system for turbofan engine afterburner. The linear mathema-tical model of the turbofan engine was developed to analyze an influence of air compressor-bleeding for Aerodynamic Flame Holders system on the turbofan engine characteristics. An evaluation criterion was proposed to compare an efficiency of Mechanical and Aerodynamic systems. An influence of dif-ferrent parameters on this criterion was analyzed. The factors that cause pressure loss accretion during afterburner down-time, increase the region where the use of Aerodynamic Flame Holders system is preferable in comparison with Mechanical Flame Holders system. It may be concluded that this system can be recommended as moderate thrust augmentation reserve unit for use in emergency operation (insufficient take-off distance, engine failure or in short- time operation (to break the sound barrier, to reach the most height, take-off.

  11. Fuel property effects on USAF gas turbine engine combustors and afterburners

    Science.gov (United States)

    Reeves, C. M.

    1984-01-01

    Since the early 1970s, the cost and availability of aircraft fuel have changed drastically. These problems prompted a program to evaluate the effects of broadened specification fuels on current and future aircraft engine combustors employed by the USAF. Phase 1 of this program was to test a set of fuels having a broad range of chemical and physical properties in a select group of gas turbine engine combustors currently in use by the USAF. The fuels ranged from JP4 to Diesel Fuel number two (DF2) with hydrogen content ranging from 14.5 percent down to 12 percent by weight, density ranging from 752 kg/sq m to 837 kg/sq m, and viscosity ranging from 0.830 sq mm/s to 3.245 sq mm/s. In addition, there was a broad range of aromatic content and physical properties attained by using Gulf Mineral Seal Oil, Xylene Bottoms, and 2040 Solvent as blending agents in JP4, JP5, JP8, and DF2. The objective of Phase 2 was to develop simple correlations and models of fuel effects on combustor performance and durability. The major variables of concern were fuel chemical and physical properties, combustor design factors, and combustor operating conditions.

  12. A Study on Emissions from Afterburning Chambers Included in Metallurgical Thermal Equipment

    OpenAIRE

    Gil S.; Rozpondek M.; Bialik W.

    2014-01-01

    Przedstawiono badania eksploatacyjne komór dopalania w hutniczych urządzeniach cieplnych. Przeanalizowano wpływ temperatury i działań modernizacyjnych w układzie opalania na stężenie tlenków azotu i tlenku węgla. Dla zapewnienia skuteczności dopalania gazów z procesów technologicznych i minimalizacji stężenia CO, należy zwiększyć temperaturę w komorze dopalania do ok. 1053-1973 K, przy zapewnieniu wyrównanego rozkładu temperatury w płomieniu. Może to spowodować nieznaczne podwyższenie stężeni...

  13. A Study on Emissions from Afterburning Chambers Included in Metallurgical Thermal Equipment

    Directory of Open Access Journals (Sweden)

    Gil S.

    2014-06-01

    Full Text Available Przedstawiono badania eksploatacyjne komór dopalania w hutniczych urządzeniach cieplnych. Przeanalizowano wpływ temperatury i działań modernizacyjnych w układzie opalania na stężenie tlenków azotu i tlenku węgla. Dla zapewnienia skuteczności dopalania gazów z procesów technologicznych i minimalizacji stężenia CO, należy zwiększyć temperaturę w komorze dopalania do ok. 1053-1973 K, przy zapewnieniu wyrównanego rozkładu temperatury w płomieniu. Może to spowodować nieznaczne podwyższenie stężenia NOx o ok. 20 mg/m3n.

  14. Modeling of Chemical Reactions in Afterburning for the Reduction of N2O

    DEFF Research Database (Denmark)

    Gustavsson, Lennart; Glarborg, Peter; Leckner, Bo

    1996-01-01

    Full scale tests in a 12 MW fluidized bed combustor on reduction of N2O by secondary fuel injection are analyzed in terms a model that involves a detailed reaction mechanism for the gas phase chemistry as well as a description of gas-solid reactions.......Full scale tests in a 12 MW fluidized bed combustor on reduction of N2O by secondary fuel injection are analyzed in terms a model that involves a detailed reaction mechanism for the gas phase chemistry as well as a description of gas-solid reactions....

  15. Between designer drugs and afterburners: A Lexicographic-Semantic Study of Equivalence Tussen designer drugs (ontwerpersdwelms en afterburners (naverbranders: 'n leksikografies-semantiese studie van ekwivalensie.

    Directory of Open Access Journals (Sweden)

    Arleta Adamska-Sałaciak

    2012-01-01

    Full Text Available

    The lexicons of natural languages are not isomorphic. Reasons for the anisomorphism can be sought on three interrelated planes: language structure, extralinguistic reality, and conceptualisation. Simply put, the relevant differences may reside in the language, the world, the mind, or any combination of these. As a result, what goes under the name of lexicographic equivalence is a rather heterogeneous category. Growing awareness of this fact has resulted over the years in the creation of several tentative typologies of equivalence, one of which is presented below, together with a brief discussion of some strategies for dealing with imperfect equivalence.

    The remaining part of the article comprises a detailed analysis of a single problem encountered while preparing a new edition of a bilingual dictionary for Polish learners of English. The task at hand involved choosing a viable counterpart for a (Polish semantic neologism from among a few (English equivalence candidates. In the discussion, reference is made both to the metalexicographic categories introduced earlier and to such concepts developed by lexical (especially cognitive semantics which may prove helpful in capturing the meaning differences between the source-language item and its competing target-language renditions.

    This micro-scale dissection of a single specimen demonstrates that we are still some way from being able to classify, let alone deal with, all the instances of imperfect interlingual correspondence that come our way. Persisting in the efforts to advance our understanding of the complex issues covered by the blanket term lexicographic equivalence thus seems crucial for improving the treatment of meaning in bilingual dictionaries.

    Die leksikons van natuurlike tale is nie isomorf nie. Redes vir die gebrek aan isomorfie kom op drie onderling verwante vlakke voor: taalstruktuur, die buitetalige realiteit, en konseptualisasie. Anders gestel kan die tersaaklike verskille in die taal, die wêreld, die verstand, of enige kombinasie hiervan aangetref word. Gevolglik is dit wat as leksikografiese ekwivalensie bekend staan 'n nogal heterogene kategorie. 'n Groeiende bewuswording van hierdie feit het oor die jare daartoe gelei dat verskeie tentatiewe tipologieë van ekwivalensie geskep is, waarvan een hieronder aangebied word, saam met 'n kort bespreking van sommige strategieë om onvolledige ekwivalensie te hanteer.

    Die oorblywende deel van die artikel bevat 'n uitvoerige ontleding van 'n enkele probleem wat teëgekom is toe 'n nuwe uitgawe van 'n tweetalige woordeboek vir Poolse aanleerders van Engels saamgestel is. Die betrokke taak het behels dat 'n lewensvatbare teenhanger vir 'n (Poolse semantiese neologisme uit 'n paar ekwivalente (Engelse alternatiewe gekies word. In die bespreking word verwys na sowel die metaleksikografiese kategorieë wat vroeër geopper is, as na konsepte in die leksikale (veral die kognitiewe semantiek wat sou kon help om die betekenisverskil tussen die brontaalitem en sy kompeterende doeltaalvertalings vas te vang.

    Hierdie ontleding van 'n enkele voorbeeld op mikroskaal demonstreer dat ons nog ver daarvan is om al die gevalle van onvolledige intertalige ooreenstemming wat ons teëkom te kan klassifiseer, wat nog te sê van te hanteer. Om vol te hou met ons pogings om die komplekse vraagstukke te verstaan wat deur die oorkoepelende term leksikografiese ekwivalensie gedek word, is dit dus uiters belangrik om die hantering van betekenis in tweetalige woordeboeke te verbeter.

  16. High-efficiency high-energy Ka source for the critically-required maximum illumination of x-ray optics on Z using Z-petawatt-driven laser-breakout-afterburner accelerated ultrarelativistic electrons LDRD .

    Energy Technology Data Exchange (ETDEWEB)

    Sefkow, Adam B.; Bennett, Guy R.

    2010-09-01

    Under the auspices of the Science of Extreme Environments LDRD program, a <2 year theoretical- and computational-physics study was performed (LDRD Project 130805) by Guy R Bennett (formally in Center-01600) and Adam B. Sefkow (Center-01600): To investigate novel target designs by which a short-pulse, PW-class beam could create a brighter K{alpha} x-ray source than by simple, direct-laser-irradiation of a flat foil; Direct-Foil-Irradiation (DFI). The computational studies - which are still ongoing at this writing - were performed primarily on the RedStorm supercomputer at Sandia National Laboratories Albuquerque site. The motivation for a higher efficiency K{alpha} emitter was very clear: as the backlighter flux for any x-ray imaging technique on the Z accelerator increases, the signal-to-noise and signal-to-background ratios improve. This ultimately allows the imaging system to reach its full quantitative potential as a diagnostic. Depending on the particular application/experiment this would imply, for example, that the system would have reached its full design spatial resolution and thus the capability to see features that might otherwise be indiscernible with a traditional DFI-like x-ray source. This LDRD began FY09 and ended FY10.

  17. Application of Filled Function Method to Specific Fuel Consumption Mode Control for Aeroengines in Afterburning Condition%填充函数法在发动机加力最小油耗模式控制中的应用

    Institute of Scientific and Technical Information of China (English)

    张海波; 孙健国

    2010-01-01

    主要研究了航空发动机性能寻优控制(PSC)算法问题.提出一种用于解决非线性约束优化问题的基于填充函数方法(FFM)的实时优化控制策略.通过构造填充函数,该算法可以在优化计算过程中能够不断跳出局部最优点,使得算法本身具备了全局寻优能力.详细介绍了其算法主要内容与实现途径,基于上述的填充函数优化算法,以某型涡扇发动机加力最小油耗优化控制模式为仿真算例,验证了该算法在解决航空发动机性能寻优控制问题时,相比传统的序列线性规划方法在全局寻优方面具有更好的效果.

  18. Design and testing of a combustor for a turbo-ramjet for UAV and missile applications

    OpenAIRE

    Piper, Ross H.

    2003-01-01

    Approved for public release, distribution unlimited An existing freejet facility was upgraded and its range of operation extended into the high subsonic regime for operation as a test rig for the development of a combined-cycle, turbo-ramjet engine. A combustor was designed, developed, and tested as the afterburner for the turbo-ramjet engine. At subsonic speeds with the afterburner running, an increase in thrust of 40% was measured over the baseline turbojet running at 80% spool speed. A ...

  19. Tentative design of beam focusing for the AHF linac and transport systems

    International Nuclear Information System (INIS)

    Proposals for an advanced hadron facility include building afterburner linacs for LAMPF. A first afterburner, Add-on Linac number 1, is proposed to accelerate the beam from 0.8 to 1.6 GeV. The output beam would then be fed to a compressor ring and to another afterburner, Add-on Linac number 2. We make a rough estimate of the transverse focusing strength needed in these linacs, and consider the transport line from the end of the LAMPF 805-MHz linac to the start of Add-on Linac number 1. A rebuncher is needed in this transport line for proper acceptance of the beam into the add-on linac. 2 refs., 4 figs

  20. 40 CFR 63.10885 - What are my management practices for metallic scrap and mercury switches?

    Science.gov (United States)

    2010-07-01

    ... furnace to be depleted (to the extent practicable) of the presence of used oil filters, chlorinated... to ensure the scrap materials are drained of free liquids. (ii) For scrap charged to a cupola metal melting furnace that is equipped with an afterburner, specifications for metallic scrap materials to...

  1. 40 CFR Table 2 to Subpart Rrr of... - Summary of Operating Requirements for New and Existing Affected Sources and Emission Units

    Science.gov (United States)

    2010-07-01

    ... scrap dryer/delacquering kiln/decoating kiln Labeling Identification, operating parameter ranges and... residence time requirements posted at scrap dryer/delacquering kiln/decoating kiln. Aluminum scrap shredder... VE and complete in accordance with the OM&M plan. b Thermal chip dryer with afterburner...

  2. 40 CFR 63.1516 - Reports.

    Science.gov (United States)

    2010-07-01

    ... injection rate or screw feeder setting, total reactive chlorine flux injection rate, afterburner operating... dryer: “Only unpainted aluminum chips were used as feedstock in any thermal chip dryer during this.... For the purpose of annual certifications of compliance required by 40 CFR part 70 or 71, the owner...

  3. 30 CFR 7.302 - Definitions.

    Science.gov (United States)

    2010-07-01

    ... MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Electric Motor Assemblies § 7.302 Definitions. The following definitions apply in this subpart: Afterburning. The combustion of any flammable mixture that is... motor. Essential parts include the parts that constitute the flame-arresting path and those necessary...

  4. Fluidized bed incinerator development

    International Nuclear Information System (INIS)

    A fluidized bed incinerator is being developed for burning rad contaminated solid and liquid waste materials. In situ neutralization of acid gases by the bed material, catalytic afterburning, and gas filtration are used to produce a clean flue gas without the use of aqueous scrubbing

  5. Static internal performance including thrust vectoring and reversing of two-dimensional convergent-divergent nozzles

    Science.gov (United States)

    Re, R. J.; Leavitt, L. D.

    1984-01-01

    The effects of geometric design parameters on two dimensional convergent-divergent nozzles were investigated at nozzle pressure ratios up to 12 in the static test facility. Forward flight (dry and afterburning power settings), vectored-thrust (afterburning power setting), and reverse-thrust (dry power setting) nozzles were investigated. The nozzles had thrust vector angles from 0 deg to 20.26 deg, throat aspect ratios of 3.696 to 7.612, throat radii from sharp to 2.738 cm, expansion ratios from 1.089 to 1.797, and various sidewall lengths. The results indicate that unvectored two dimensional convergent-divergent nozzles have static internal performance comparable to axisymmetric nozzles with similar expansion ratios.

  6. Investigation of convergent-divergent nozzles applicable to reduced-power supersonic cruise aircraft

    Science.gov (United States)

    Berrier, B. L.; Re, R. J.

    1980-01-01

    An investigation was conducted of isolated convergent-divergent nozzles to determine the effect of several design parameters on nozzle performance. Tests were conducted using high pressure air for propulsion simulation at Mach numbers from 0.60 to 2.86 at an angle of attack of 0 deg and at nozzle pressure ratios from jet off to 46.0. Three power settings (dry, partial afterburning, and maximum afterburning), three nozzle lengths, and nozzle expansion ratios from 1.22 to 2.24 were investigated. In addition, the effects of nozzle throat radius and a cusp in the external boattail geometry were studied. The results of this study indicate that, for nozzles operating near design conditions, increasing nozzle length increases nozzle thrust-minus-drag performance. Nozzle throat radius and an external boattail cusp had negligible effects on nozzle drag or internal performance.

  7. Simulation of underexpanded supersonic jet flows with chemical reactions

    Institute of Scientific and Technical Information of China (English)

    Fu Debin; Yu Yong; Niu Qinglin

    2014-01-01

    To achieve a detailed understanding of underexpanded supersonic jet structures influenced by afterburning and other flow conditions, the underexpanded turbulent supersonic jet with and without combustions are investigated by computational fluid dynamics (CFD) method. A program based on a total variation diminishing (TVD) methodology capable of predicting complex shocks is created to solve the axisymmetric expanded Navier-Stokes equations containing transport equations of species. The finite-rate ratio model is employed to handle species sources in chemical reactions. CFD solutions indicate that the structure of underexpanded jet is typically influenced by the pressure ratio and afterburning. The shock reflection distance and maximum value of Mach number in the first shock cell increase with pressure ratio. Chemical reactions for the rocket exhaust mostly exist in the mixing layer of supersonic jet flows. This tends to reduce the intensity of shocks existing in the jet, responding to the variation of thermal parameters.

  8. Improvement of the performance of a turbo-ramjet engine for UAV and missile applications

    OpenAIRE

    Krikellas, Dimitrios

    2003-01-01

    Approved for public release, distribution unlimited An existing turbo-ramjet engine was modified in order to increase the produced thrust and sustain combustion at increased freejet Mach numbers. The engine's afterburner fuel system was redesigned to improve the vaporization and atomization of the fuel. The engine performed satisfactorily at speeds up to Mach 0.3, producing 100% more thrust over the baseline turbojet. The data acquisition system of the turbo-ramjet engine's performance mea...

  9. Validation study of large-eddy simulations of wake stabilized reacting flows using artificial flame thickening approaches

    OpenAIRE

    Kewlani, G.; Vogiatzaki, K.; Shanbhogue, S.; Ghoniem, A. F.

    2013-01-01

    Wake flows are the preferred mode of flame stabilization in lean premixed combustion in gas turbine engines, low NOx burners, afterburners etc. These flows exhibit inherent unsteadiness and for their numerical modeling and simulations, large eddy simulation (LES) techniques with an appropriate combustion model and reaction mechanism afford a balance between computational complexity and predictive accuracy. Before using them in practical systems, these techniques must be validated against expe...

  10. Static internal performance of a thrust vectoring and reversing two-dimensional convergent-divergent nozzle with an aft flap

    Science.gov (United States)

    Re, R. J.; Leavitt, L. D.

    1986-01-01

    The static internal performance of a multifunction nozzle having some of the geometric characteristics of both two-dimensional convergent-divergent and single expansion ramp nozzles has been investigated in the static-test facility of the Langley 16-Foot Transonic Tunnel. The internal expansion portion of the nozzle consisted of two symmetrical flat surfaces of equal length, and the external expansion portion of the nozzle consisted of a single aft flap. The aft flap could be varied in angle independently of the upper internal expansion surface to which it was attached. The effects of internal expansion ratio, nozzle thrust-vector angle (-30 deg. to 30 deg., aft flap shape, aft flap angle, and sidewall containment were determined for dry and afterburning power settings. In addition, a partial afterburning power setting nozzle, a fully deployed thrust reverser, and four vertical takeoff or landing nozzle, configurations were investigated. Nozzle pressure ratio was varied up to 10 for the dry power nozzles and 7 for the afterburning power nozzles.

  11. Further Improvement and System Integration of High Temperature Polymer Electrolyte Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Li, Qingfeng; Jensen, Jens Oluf

    The strategic developments of the FURIM are in three steps: (1) further improvement of the high temperature polymer membranes and related materials; (2) development of technological units including fuel cell stack, hydrocarbon reformer and afterburner, that are compatible with the HT-PEMFC; and (3...... hydrocarbon reformer and a catalytic burner are to be developed and integrated with the stack. The key issue of the project is development and improvement of the temperature-resistant polymer membranes with respect to durability, conductivity, mechanical and other properties. For this purpose, basic polymers...

  12. Niobium alloy heat pipes for use in oxidizing environments

    International Nuclear Information System (INIS)

    Niobium alloys have been used for many years in rocket propulsion systems and afterburner sections of gas turbine engines. In these applications, adequate oxidation resistance is provided by protective silicide coatings. By utilizing these coatings and niobium powder metallurgy to produce porous wicks, it has been demonstrated that niobium alloy heat pipes can comfortably operate in flame temperatures exceeding 3000 K. Results of lithium corrosion tests on C-103 (Nb-10%Hf-1%Ti) up to 1477 K will be presented along with thermal performance data for specific heat pipe designs

  13. Niobium alloy heat pipes for use in oxidizing environments

    Science.gov (United States)

    Craig Wojcik, C.

    1991-01-01

    Niobium alloys have been used for many years in rocket propulsion systems and afterburner sections of gas turbine engines. In these applications, adequate oxidation resistance is provided by protective silicide coatings. By utilizing these coatings and niobium powder metallurgy to produce porous wicks, it has been demonstrated that niobium alloy heat pipes can comfortably operate in flame temperatures exceeding 3000 K. Results of lithium corrosion tests on C-103 (Nb-10%Hf-1%Ti) up to 1477 K will be presented along with thermal performance data for specific heat pipe designs.

  14. The development and flight test of an electronic integrated propulsion control system

    Science.gov (United States)

    Johnson, H. J.; Painter, W. D.

    1976-01-01

    Advanced technical features of the electronic integrated propulsion control system (IPCS) and flight evaluation tests of IPCS (F-111E with TF30-P-9 engines as test vehicle) are described. Nine baseline flight tests and 15 IPCS flight tests were conducted. Instrumentation, data acquisition and data processing systems, software maintenance procedures, flight test procedures, flight safety criteria, flight test results, and ground and flight testing of the aircraft system are described. Advantages conferred by IPCS include: faster accelerations (both gas generator and afterburner performance), better thrust and flight control, reduced flight idle thrust, reduced engine ground trim, extended service ceiling, automatic stall detection, and stall recovery detection.

  15. HBT Parameters and Space-Momentum Correlations in Relativistic Heavy-Ion Collisions

    Institute of Scientific and Technical Information of China (English)

    张景波; 霍雷; 张卫宁; 李新华; 许怒; 刘亦铭

    2001-01-01

    Using the relativistic quantum molecular dynamics approach, with a correlation after-burner, the physics of the transverse momentum dependence of the Hanbury-Brown and Twiss parameters is studied for Au t Au, Si + Si and p + p collisions at the centre-of-mass energy v s = 200 AGeV. The results indicate that the space-momentum correlations would affect such dependence in both heavy-ion and elementary collisions. The size parameters as a function of the transverse mass mt are sensitive to the degree of space-momentum correlations.

  16. Transient Two-Dimensional Analysis of Side Load in Liquid Rocket Engine Nozzles

    Science.gov (United States)

    Wang, Ten-See

    2004-01-01

    Two-dimensional planar and axisymmetric numerical investigations on the nozzle start-up side load physics were performed. The objective of this study is to develop a computational methodology to identify nozzle side load physics using simplified two-dimensional geometries, in order to come up with a computational strategy to eventually predict the three-dimensional side loads. The computational methodology is based on a multidimensional, finite-volume, viscous, chemically reacting, unstructured-grid, and pressure-based computational fluid dynamics formulation, and a transient inlet condition based on an engine system modeling. The side load physics captured in the low aspect-ratio, two-dimensional planar nozzle include the Coanda effect, afterburning wave, and the associated lip free-shock oscillation. Results of parametric studies indicate that equivalence ratio, combustion and ramp rate affect the side load physics. The side load physics inferred in the high aspect-ratio, axisymmetric nozzle study include the afterburning wave; transition from free-shock to restricted-shock separation, reverting back to free-shock separation, and transforming to restricted-shock separation again; and lip restricted-shock oscillation. The Mach disk loci and wall pressure history studies reconfirm that combustion and the associated thermodynamic properties affect the formation and duration of the asymmetric flow.

  17. Simulation and material testing of jet engines

    International Nuclear Information System (INIS)

    The NASA software engine simulator version U 1.7a beta has been used for simulation and material testing of jet engines. Specifications of Modem Jet Engines are stated, and then engine simulator is applied on these specifications. This simulator can simulate turbojet, afterburner, turbofan and ram jet. The material of many components of engine may be varied. Conventional and advanced materials for jet engines can be simulated and tested. These materials can be actively cooled to increase the operating temperature limit. As soon as temperature of any engine component exceeds the temperature limit of material, a warning message flashes across screen. Temperature Limits Exceeded. This flashing message remainst here until necessaryc hangesa re carried out in engine operationp rocedure. Selection Criteria of Engines is stated for piston prop, turboprop, turbofan, turbojet, and turbojet with afterburner and Ramjet. Several standard engines are modeled in Engine Simulator. These engines can. be compared by several engineering specifications. The design, modeling, simulation and testing of engines helps to better understand different types of materials used in jet engines. (author)

  18. Incineration of animal by-products--The impact of selected parameters on the flux of flue gas enthalpy.

    Science.gov (United States)

    Bujak, Janusz; Sitarz, Piotr

    2016-04-01

    This paper presents model analyses and tests of animal by-product waste thermal treatment plants. A schedule of tests was prepared, and 62,024 cases of system operation were analysed. A map/work field of the tested plant was drawn up on the basis thereof. Calculations were made following an algorithm described by Bujak (2015a) written in the VBA (Visual Basic for Application) language. The tests showed that when incinerating animal waste, the flux of physical enthalpy of the flue gas from the afterburner chamber depends on numerous design and operating parameters. The most important include the following: humidity and flux of the waste, concentration of oxygen in the flue gas in the afterburner chamber and loss of heat flux to the atmosphere through the external surfaces of the plant. Individual design and operating parameters can be selected so that the process of incineration is ensured without additional fuel. The performed analyses were verified against the actual object at the industrial scale using a meat plant that manufactures ham and processes beef, pork and poultry with a capacity of 150 tonnes/day. The production process waste included mainly bones and - in much smaller quantities - meat and bone meal, at 17 tonnes/day. The performed tests and analyses can be used to optimise the operation of the waste thermal treatment plant at the stages of design and operation.

  19. Method of generating electricity using an endothermic coal gasifier and MHD generator

    Science.gov (United States)

    Marchant, David D.; Lytle, John M.

    1982-01-01

    A system and method of generating electrical power wherein a mixture of carbonaceous material and water is heated to initiate and sustain the endothermic reaction of carbon and water thereby providing a gasified stream containing carbon monoxide, hydrogen and nitrogen and waste streams of hydrogen sulfide and ash. The gasified stream and an ionizing seed material and pressurized air from a preheater go to a burner for producing ionized combustion gases having a temperature of about 5000.degree. to about 6000.degree. F. which are accelerated to a velocity of about 1000 meters per second and passed through an MHD generator to generate DC power and thereafter through a diffuser to reduce the velocity. The gases from the diffuser go to an afterburner and from there in heat exchange relationship with the gasifier to provide heat to sustain the endothermic reaction of carbon and water and with the preheater to preheat the air prior to combustion with the gasified stream. Energy from the afterburner can also be used to energize other parts of the system.

  20. Minimum fuel mode evaluation

    Science.gov (United States)

    Orme, John S.; Nobbs, Steven G.

    1995-01-01

    The minimum fuel mode of the NASA F-15 research aircraft is designed to minimize fuel flow while maintaining constant net propulsive force (FNP), effectively reducing thrust specific fuel consumption (TSFC), during cruise flight conditions. The test maneuvers were at stabilized flight conditions. The aircraft test engine was allowed to stabilize at the cruise conditions before data collection initiated; data were then recorded with performance seeking control (PSC) not-engaged, then data were recorded with the PSC system engaged. The maneuvers were flown back-to-back to allow for direct comparisons by minimizing the effects of variations in the test day conditions. The minimum fuel mode was evaluated at subsonic and supersonic Mach numbers and focused on three altitudes: 15,000; 30,000; and 45,000 feet. Flight data were collected for part, military, partial, and maximum afterburning power conditions. The TSFC savings at supersonic Mach numbers, ranging from approximately 4% to nearly 10%, are in general much larger than at subsonic Mach numbers because of PSC trims to the afterburner.

  1. Burnout control at the Albright coal-waste-bank fire. Rept. of investigations/1991

    International Nuclear Information System (INIS)

    Burnout Control is a process developed by the U.S. Bureau of Mines for accelerating the burning of wasted coal fires in situ, while at the same time controlling the heat and fumes produced. The Albright fire project is a first field trial of Burnout Control as applied to a coal waste bank. An exhaust ventilation system was designed and constructed and then operated over a 1-year period at the site of an existing abandoned mine land fire near the town of Albright, W.V. While predicted exhaust gas temperatures of 900 C and thermal power levels of 5 MW were achieved at 20- to 30-in H2O vacuum levels, problems were encountered with engineering designs, equipment breakdown, and fuel-rich combustion that curtailed the time period of satisfactory operation. Effective afterburning of the exhaust gases (as they were drawn from the bank) corrected the problems associated with combustion stoichiometry and led to high thermal outputs. It is believed that with (1) improvements in engineering design and construction, (2) better control of the afterburning process, and (3) the use of conventional stack gas air-pollution controls, Burnout Control can be applied successfully to a coal waste bank fire

  2. Industrial burners with compact burner management system on industrial applications; Industriebrenner mit kompaktem Brenner-Management-System in verschiedenen industriellen Anwendungen

    Energy Technology Data Exchange (ETDEWEB)

    Saenger, P.; Bloess, H. [CRONE Waermetechnik GmbH (Germany)

    2008-07-15

    Industrial burners are the heart of every thermal process-based production line. The quality of the final product depends largely on the burner's reliability and performance. Small maintenance effort and maximum availability, high energy efficiency and seamless integration into existing automation systems are the key requirements placed on advanced industrial firing systems. Whether thermal after-burning, drying or assisted firing, the scope of industrial applications demands an extensive range of solutions. Depending on individual requirements, the LMV family of burner management systems from Siemens Building Technologies (SBT) offers complete high-end solutions for the control of thermal process-based production lines reaching from metalworking to the production of glass wool, ceramics or automobiles, textiles, paper, plastics and rubber. This paper describes various burner management systems that are used on a number of different applications. (orig.)

  3. Chemical aspects of incinerating highly chlorinated and actinide α contaminated organic waste: application to the Iris process

    International Nuclear Information System (INIS)

    A fraction of the waste produced by nuclear activities is combustible, and thus suitable for incineration to produce gases, ash and fines. A typical composition representative of actual organic waste mixtures was defined for the purpose of investigating possible heat treatment processes; the composition is identified according to components Table 1 and elements Table II. The high polyvinyl chloride (PVC) content is responsible for the high chlorine potential in the process equipment. The quantity and quality of the resulting solid residue depends entirely on the inorganic load of the organic waste, whose behavior is entirely conditioned by the process conditions. For example, pure polyethylene is totally converted to gases (water and carbon dioxide), while the composition shown in Table II produces a range of oxides and chlorides. The high chlorine content results in partial chlorination of the inorganic compounds, but can also lead to interactions with the process equipment. The temperature dependent variation of the chlorination equilibrium constants of various metals clearly shows that all the elements of technological alloys may be subject to active corrosion by hydrochloric acid. However, the corresponding oxides-notably alumina-are much less sensitive to corrosion; aluminum-based alloys are therefore preferred for incinerator construction and to limit corrosion by hydrochloric acid. Thermodynamic and kinetic studies led to the development of the IRIS three-step process. Gas emissions occurring during processing of solid materials are completely oxidized in the after-burning step at 1100 deg C, and are then ducted to a HERA filtration system capable of retaining all the actinide α radionuclides. Although corrosion-related problems are attenuated in the two-step process chlorine can combine with the inorganic waste material to form chlorides with potentially damaging effects on the system; this is the case for zinc chloride and for volatile chlorides in

  4. Raising i.c. engine catalytic converter temperature

    Energy Technology Data Exchange (ETDEWEB)

    Bowman, T.J.

    1994-10-19

    The engine when cold has delayed completion of combustion and advance of the exhaust event. Combustion of the exhaust gases is completed within the exhaust system in order to raise the temperature of the catalytic convertor. An ECV receives engine speed, load and temperature inputs and controls ignition timing, and/or the injection timing of part or all the fuel, and/or exhaust recirculation, and/or the number of inlet valves per cylinder and/or the number of spark plugs per cylinder which are operative and the timing of exhaust valve closure or the complete exhaust event in a four-stroke engine or the exhaust port geometry in a two-stroke engine. An afterburner may be provided upstream of the convertor. (UK)

  5. Generation and transport of laser accelerated ion beams

    International Nuclear Information System (INIS)

    Currently the LIGHT- Project (Laser Ion Generation, Handling and Transport) is performed at the GSI Helmholtzzentrum fuer Schwerionenforschung GmbH Darmstadt. Within this project, intense proton beams are generated by laser acceleration, using the TNSA mechanism. After the laser acceleration the protons are transported through the beam pipe by a pulsed power solenoid. To study the transport a VORPAL 3D simulation is compared with CST simulation. A criterion as a function of beam parameters was worked out, to rate the importance of space charge. Furthermore, an exemplary comparison of the solenoid with a magnetic quadrupole-triplet was carried out. In the further course of the LIGHT-Project, it is planned to generate ion beams with higher kinetic energies, using ultra-thin targets. The acceleration processes that can appear are: RPA (Radiation Pressure Acceleration) and BOA (Break-Out Afterburner). Therefore the transport of an ion distribution will be studied, as it emerges from a RPA acceleration.

  6. Characterization of short-pulse laser driven neutron source

    Science.gov (United States)

    Falk, Katerina; Jung, Daniel; Guler, Nevzat; Deppert, Oliver; Devlin, Matthew; Fernandez, J. C.; Gautier, D. C.; Geissel, M.; Haight, R. C.; Hegelich, B. M.; Henzlova, Daniela; Ianakiev, K. D.; Iliev, Metodi; Johnson, R. P.; Merrill, F. E.; Schaumann, G.; Schoenberg, K.; Shimada, T.; Taddeucci, T. N.; Tybo, J. L.; Wagner, F.; Wender, S. A.; Wurden, G. A.; Favalli, Andrea; Roth, Markus

    2014-10-01

    We present a full spectral characterization of a novel laser driven neutron source, which employed the Break Out Afterburner ion acceleration mechanism. Neutrons were produced by nuclear reactions of the ions deposited on Be or Cu converters. We observed neutrons at energies up to 150 MeV. The neutron spectra were measured by five neutron time-of-flight detectors at various positions and distances from the source. The nTOF detectors observed that emission of neutrons is a superposition of an isotropic component peaking at 3.5--5 MeV resulting from nuclear reactions in the converter and a directional component at 25--70 MeV, which was a product of break-up reaction of the forward moving deuterons. Energy shifts due to geometrical effects in BOA were also observed.

  7. Influence of clustering and hadron potentials on the rapidity distribution of protons from the UrQMD model

    CERN Document Server

    Li, Qingfeng; Wang, Xiaobao; Shen, Caiwan; Bleicher, Marcus

    2015-01-01

    The Ultra-relativistic Quantum Molecular Dynamics (UrQMD) model supplemented by potentials for both pre-formed hadrons and confined baryons (called UrQMD/M) are used to describe rapidity distributions of both the E895 proton data at AGS energies and the NA49 net proton data at SPS energies. With the help of a coalescence afterburner using only one parameter set of ($R_0$, $P_0$)=(3.8 fm, 0.3 GeV$/$c), both sets of experimental data can be described fairly well except for a small discrepancy seen for the net protons at mid-rapidity from heavy ion collisions (HICs) at high SPS energies. Furthermore, in contrast to the logarithmic dependence with beam energy at SIS energies there are still about 10$\\%$ of protons in clusters from central HICs at the beam energy of $80$ GeV$/$nucleon.

  8. Hadronic observables in hydrokinetic picture of A+A collisions at RHIC and LHC

    Science.gov (United States)

    Sinyukov, Yuriy; Karpenko, Iurii

    2014-04-01

    The simultaneous description of the hadronic yields, pion, kaon and proton spectra, elliptic flows and femtoscopy scales in hydrokinetic model of A+A collisions is presented at different centralities for the top RHIC and LHC energies. The hydrokinetic model is used in its hybrid version that allows one to switch correctly to the UrQMD cascade at the isochronic hypersurface which separates the cascade stage and decaying hydrodynamic one. The results are compared with pure hybrid model where hydrodynamics and hadronic cascade are matching just at the non-space-like hypersurface of chemical freeze-out. The initial conditions are based on both Glauber- and KLN- Monte-Carlo simulations and results are compared. It seems that the observables, especially femtoscopy data, prefer the Glauber initial conditions. The modification of the particle number ratios caused, in particular, by the particle annihilations at the afterburn stage is analyzed.

  9. Hadronic observables in hydrokinetic picture of A+A collisions at RHIC and LHC

    Directory of Open Access Journals (Sweden)

    Sinyukov Yuriy

    2014-04-01

    Full Text Available The simultaneous description of the hadronic yields, pion, kaon and proton spectra, elliptic flows and femtoscopy scales in hydrokinetic model of A+A collisions is presented at different centralities for the top RHIC and LHC energies. The hydrokinetic model is used in its hybrid version that allows one to switch correctly to the UrQMD cascade at the isochronic hypersurface which separates the cascade stage and decaying hydrodynamic one. The results are compared with pure hybrid model where hydrodynamics and hadronic cascade are matching just at the non-space-like hypersurface of chemical freeze-out. The initial conditions are based on both Glauber- and KLN- Monte-Carlo simulations and results are compared. It seems that the observables, especially femtoscopy data, prefer the Glauber initial conditions. The modification of the particle number ratios caused, in particular, by the particle annihilations at the afterburn stage is analyzed.

  10. Design and development of major balance of plant components in solid oxide fuel cell system

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Wen-Tang; Huang, Cheng-Nan; Tan, Hsueh-I; Chao, Yu [Institute of Nuclear Energy Research Atomic Energy Council, Taoyuan County 32546 (Taiwan, Province of China); Yen, Tzu-Hsiang [Green Technology Research Institute, CPC Corporation, Chia-Yi City 60036 (Taiwan, Province of China)

    2013-07-01

    The balance of plant (BOP) of a Solid Oxide Fuel Cell (SOFC) system with a 2 kW stack and an electric efficiency of 40% is optimized using commercial GCTool software. The simulation results provide a detailed understanding of the optimal operating temperature, pressure and mass flow rate in all of the major BOP components, i.e., the gas distributor, the afterburner, the reformer and the heat exchanger. A series of experimental trials are performed to validate the simulation results. Overall, the results presented in this study not only indicate an appropriate set of operating conditions for the SOFC power system, but also suggest potential design improvements for several of the BOP components.

  11. Circular polarization opportunities at the SASE3 undulator line of the European XFEL

    CERN Document Server

    Serkez, Svitozar; Kocharyan, Vitali; Saldin, Evgeni

    2016-01-01

    XFELs provide X-ray pulses with unprecedented peak brightness and ultrashort duration. They are usually driven by planar undulators, meaning that the output radiation is linearly polarized. For many experimental applications, however, polarization control is critical: besides the ability to produce linearly polarized radiation, one often needs the possibility of generating circularly polarized radiation with a high, stable degree of polarization. This may be achieved by using a first part of the XFEL undulator to produce bunching and then, by propagating the the bunched beam through an "afterburner" - a short undulator with tunable polarization, where only limited gain takes place. One of the issues that one needs to consider in this case is the separation of the circularly polarized radiation obtained in the radiator from the linearly polarized background produced in the first part of the FEL. In this article we review several methods to do so, including the inverse tapering technique. In particular, we use ...

  12. An Electron Bunch Compression Scheme for a Superconducting Radio Frequency Linear Accelerator Driven Light Source

    Energy Technology Data Exchange (ETDEWEB)

    C. Tennant, S.V. Benson, D. Douglas, P. Evtushenko, R.A. Legg

    2011-09-01

    We describe an electron bunch compression scheme suitable for use in a light source driven by a superconducting radio frequency (SRF) linac. The key feature is the use of a recirculating linac to perform the initial bunch compression. Phasing of the second pass beam through the linac is chosen to de-chirp the electron bunch prior to acceleration to the final energy in an SRF linac ('afterburner'). The final bunch compression is then done at maximum energy. This scheme has the potential to circumvent some of the most technically challenging aspects of current longitudinal matches; namely transporting a fully compressed, high peak current electron bunch through an extended SRF environment, the need for a RF harmonic linearizer and the need for a laser heater. Additional benefits include a substantial savings in capital and operational costs by efficiently using the available SRF gradient.

  13. Hollow screw like drill in plasma using an intense Laguerre Gaussian laser

    CERN Document Server

    Wang, Wenpeng; Zhang, Xiaomei; Zhang, Lingang; Shi, Yin; Xu, Zhizhan

    2014-01-01

    With the development of ultra intense laser technology, MeV ions from the laser foil interaction have been obtained by different mechanisms, such as target normal sheath acceleration, radiation pressure acceleration, collisionless shock acceleration, breakout afterburner, and a combination of different mechanisms. These energetic ion beams can be applied in fast ignition for inertial confinement fusion, medical therapy, and proton imaging. However, these ions are mainly accelerated in the laser propagation direction, and the ion acceleration in an azimuthal orientation is scarcely mentioned. Here, a doughnut Laguerre Gaussian LG laser is used for the first time to study the laser plasma interaction in the relativistic intensity regime in three dimensional particle in cell simulations. Studies have shown that a novel rotation of the plasma is produced from the hollow screw like drill of a LG mode laser. The angular momentum of the protons in the longitudinal direction produced by the LG laser is remarkably enh...

  14. Process for production of wood charcoal from fine-particle lignocellulose wastes and installation for its accomplishment

    Energy Technology Data Exchange (ETDEWEB)

    Babicki, R.; Perzynski, B.

    1979-05-15

    For producing wood charcoal from sawdust, shells of nuts, and other lignin-containing wastes by drying, roasting, and cooling the obtainable carbon, a multizone kiln is used, consisting of zones for drying (DZ), low-temperature carbonization (SCZ), and cooling (CZ), each of which is divided by racks into two parts. Between the zones racks having openings for feedstock charging are also arranged. In the SCZ, air nozzles are mounted, above which there is a ceramic screen. Waste gases from the SCZ and CZ pass through the heat exchanger-afterburner and are admitted into the condenser, whence they are released into the atmosphere. The temperature in the DZ is 120-60/sup 0/, and in the SCZ -- 400-600/sup 0/.

  15. Flight testing the Digital Electronic Engine Control (DEEC) A unique management experience

    Science.gov (United States)

    Putnam, T. W.; Burcham, F. W., Jr.; Kock, B. M.

    1983-01-01

    The concept for the DEEC had its origin in the early 1970s. At that time it was recognized that the F100 engine performance, operability, reliability, and cost could be substantially improved by replacing the original mechanical/supervisory electronic control system with a full-authority digital control system. By 1978, the engine manufacturer had designed and initiated the procurement of flight-qualified control system hardware. As a precursor to an integrated controls program, a flight evaluation of the DEEC system on the F-15 aircraft was proposed. Questions regarding the management of the DEEC flight evaluation program are discussed along with the program elements, the technical results of the F-15 evaluation, and the impact of the flight evaluation on after-burning turbofan controls technology and its use in and application to military aircraft. The lessons learned through the conduct of the program are discussed.

  16. Sludge incineration: good practice and environmental aspects

    Energy Technology Data Exchange (ETDEWEB)

    Braguglia, C.M.; Mininni, G.; Marani, D.; Lotito, V.

    2003-07-01

    Growing difficulties in the sludge utilization in agriculture or landfill make incineration an attractive alternative for sludge disposal. Capital and operating costs and concern about gaseous emissions may however limit convenience and acceptance. In this paper a model is presented for optimisation of the cake concentration before the furnace, allowing an autogenous operation with a minimization of exhaust gas production. As far as emissions of heavy metals and organic micropollutants at the stack is concerned, results of tests on a demonstrative plant, including a fluidised bed and a rotary kiln furnace, are presented. The tests were carried out in different feeding (sludge alone or spiked with chlorinated hydrocarbons) and operating conditions (temperature of the afterburning chamber). (author)

  17. Investigation of a process for the pyrolysis of plutonium contaminated combustible solid waste

    International Nuclear Information System (INIS)

    Pyrolysis offers an attractive first-stage alternative to incineration as a means of weight and volume reduction of solide combustible waste P.C.M, if it is required to recover plutonium from the final product. The avoidance of turbulent conditions associated with incineration should lead to less carry-over of particulates, and the lower operating temperature approximately 7000C should be most advantageous to the choice of constructional materials and to plant life. The char product from pyrolysis may be oxidised to a final ash at similarly acceptable low temperatures by passing air over a stirred bed of materials. The recently received draft designs for a cyclone after-burner (plus associated scrubbers and filters etc) offer an attractive method of dispensing of the volatile products of pyrolysis

  18. Auxiliary power unit based on a solid oxide fuel cell and fuelled with diesel

    Science.gov (United States)

    Lawrence, Jeremy; Boltze, Matthias

    An auxiliary power unit (APU) is presented that is fuelled with diesel, thermally self-sustaining, and based on a solid oxide fuel cell (SOFC). The APU is rated at 1 kW electrical, and can generate electrical power after a 3 h warm-up phase. System features include a "dry" catalytic partial oxidation (CPOX) diesel reformer, a 30 cell SOFC stack with an open cathode, and a porous-media afterburner. The APU does not require a supply of external water. The SOFC stack is an outcome of a development partnership with H.C. Starck GmbH and Fraunhofer IKTS, and is discussed in detail in an accompanying paper.

  19. Turbofan gas turbine engine with variable fan outlet guide vanes

    Science.gov (United States)

    Wood, Peter John (Inventor); Zenon, Ruby Lasandra (Inventor); LaChapelle, Donald George (Inventor); Mielke, Mark Joseph (Inventor); Grant, Carl (Inventor)

    2010-01-01

    A turbofan gas turbine engine includes a forward fan section with a row of fan rotor blades, a core engine, and a fan bypass duct downstream of the forward fan section and radially outwardly of the core engine. The forward fan section has only a single stage of variable fan guide vanes which are variable fan outlet guide vanes downstream of the forward fan rotor blades. An exemplary embodiment of the engine includes an afterburner downstream of the fan bypass duct between the core engine and an exhaust nozzle. The variable fan outlet guide vanes are operable to pivot from a nominal OGV position at take-off to an open OGV position at a high flight Mach Number which may be in a range of between about 2.5-4+. Struts extend radially across a radially inwardly curved portion of a flowpath of the engine between the forward fan section and the core engine.

  20. Sodium sulfite-gypsum method of Tohoku Denryoku (Kawasaki-Kureha)

    Energy Technology Data Exchange (ETDEWEB)

    Shigemitsu, H.

    1974-12-01

    A description is given of exhaust gas desulfurization by the Kawasaki-Kureha sodium sulfite-gypsum method, put into operation at the Shin Sendai Thermal Power Plant, Japan, by Tohoku Denryoku KK in March 1974. This process, also known as the double alkali method, is composed of three procedures: (1) absorption of sulfur dioxide gas in sodium sulfite solution to form sodium bisulfite and passage of the remainder of the exhaust into the atmosphere; (2) regeneration of liquid absorbent (secondary decomposition of sodium bisulfite by calcium carbonate into sodium sulfite, calcium sulfite, water and carbon dioxide) and of sodium sulfate, formed by oxidation of sodium sulfite in other processes, back to sodium bisulfite, by reaction with calcium sulfite and sulfuric acid; and (3) oxidation of calcium sulfite to calcium sulfate (gypsum). Calcium sulfate obtained as a reaction product in procedure (2) is combined with gypsum formed in procedure (3). During 6 months of operation, desulfurization was effected on an exhaust gas load of 420,000 N cu m/hr, where sulfur dioxide gas content varied from 400--800 ppm. At the absorption tower outflow before the afterburner, SO/sub 2/ concentrations ranged from 2--10 ppM, and never more than 15 ppM during short-term peaks. As by-product, 88 tons/day of gypsum (CaSO/sub 4/2H/sub 2/O) were obtained. Operational problems have been encountered in all parts of the process. These include: sodium sulfate formation; scaling-up problems from test plant operations; difficulties in automatic ignition of the after-burner, meandering of the filter cloth belt in the secondary decomposition equipment; plugging of oxidation tower; problems in centrifugal separation of water and gypsum.

  1. Theoretical and experimental studies on emissions from wood combustion

    Energy Technology Data Exchange (ETDEWEB)

    Skreiberg, Oeyvind

    1997-12-31

    This thesis discusses experiments on emissions from wood log combustion and single wood particle combustion, both caused by incomplete combustion and emissions of nitric and nitrous oxide, together with empirical and kinetic NO{sub x} modelling. Experiments were performed in three different wood stoves: a traditional stove, a staged air stove and a stove equipped with a catalytic afterburner. Ideally, biomass fuel does not give a net contribution to the greenhouse effect. However, incomplete combustion was found to result in significant greenhouse gas emissions. Empirical modelling showed the excess air ratio and the combustion chamber temperature to be the most important input variables controlling the total fuel-N to NO{sub x} conversion factor. As the result of an international round robin test of a wood stove equipped with a catalytic afterburner, particle emission measurements were found to be the best method to evaluate the environmental acceptability of the tested stove, since the particle emission level was least dependent of the national standards, test procedures and calculation procedures used. In batch single wood particle combustion experiments on an electrically heated small-scale fixed bed reactor the fuel-N to NO conversion factor varied between 0.11-0.86 depending on wood species and operating conditions. A parameter study and homogeneous kinetic modelling on a plug flow reactor showed that, depending on the combustion compliance in question, there is an optimum combination of primary excess air ratio, temperature and residence time that gives a maximum conversion of fuel-N to N{sub 2}. 70 refs., 100 figs., 26 tabs.

  2. Computational Analyses in Support of Sub-scale Diffuser Testing for the A-3 Facility. Part 2; Unsteady Analyses and Risk Assessment

    Science.gov (United States)

    Ahuja, Vineet; Hosangadi, Ashvin; Allgood, Daniel

    2008-01-01

    Simulation technology can play an important role in rocket engine test facility design and development by assessing risks, providing analysis of dynamic pressure and thermal loads, identifying failure modes and predicting anomalous behavior of critical systems. This is especially true for facilities such as the proposed A-3 facility at NASA SSC because of a challenging operating envelope linked to variable throttle conditions at relatively low chamber pressures. Design Support of the feasibility of operating conditions and procedures is critical in such cases due to the possibility of startup/shutdown transients, moving shock structures, unsteady shock-boundary layer interactions and engine and diffuser unstart modes that can result in catastrophic failure. Analyses of such systems is difficult due to resolution requirements needed to accurately capture moving shock structures, shock-boundary layer interactions, two-phase flow regimes and engine unstart modes. In a companion paper, we will demonstrate with the use of CFD, steady analyses advanced capability to evaluate supersonic diffuser and steam ejector performance in the sub-scale A-3 facility. In this paper we will address transient issues with the operation of the facility especially at startup and shutdown, and assess risks related to afterburning due to the interaction of a fuel rich plume with oxygen that is a by-product of the steam ejectors. The primary areas that will be addressed in this paper are: (1) analyses of unstart modes due to flow transients especially during startup/ignition, (2) engine safety during the shutdown process (3) interaction of steam ejectors with the primary plume i.e. flow transients as well as probability of afterburning. In this abstract we discuss unsteady analyses of the engine shutdown process. However, the final paper will include analyses of a staged startup, drawdown of the engine test cell pressure, and risk assessment of potential afterburning in the facility. Unsteady

  3. Effect of LiF Coating on the Thermal Oxidation Characteristics for Boron Powder%LiF包覆对硼粉热氧化特性的影响

    Institute of Scientific and Technical Information of China (English)

    陈涛; 张先瑞; 王园园; 黄凌; 肖金武

    2013-01-01

    In order to investigate the effect of LiF coating on the thermal oxidation characteristics for amorphous boron powder,the thermal analysis experiment of boron coated with LiF (BLiF) was conducted by DSC-TC. Propellant samples containing BLif were prepared. The heat of detonation and heat of combustion were determined by an oxygen bomb calorimeter. The effects of BLif on the energy release features in primary combustion and after-burning processes of the propellant were discussed. The results indicate that in comparison with amorphous boron, BLiF shows a fast oxidation reaction at 599 XL ,and a 39. 9% higher percentage of boron participated in B/O reaction. The propellant containing BLiF makes primary combustion and after-burning energy release efficiencies (ηc1 and ηc2) increased and combustion efficiencies of B enhanced significantly from 65.48% to 81 .57%. This is due to the consumption of B2O3 layer on the boron particle surface via endothermic reaction of LiF and B2O3 at high temperature and the acceleration of B/O reaction.%为考察LiF包覆对硼粉热氧化特性的影响,采用DSC-TG技术对LiF包覆硼(BLiF)进行热分析试验.制备了含BLiF的推进剂样品.采用氧弹量热计测试其爆热和热值.考察了BLiF对推进剂一次、二次燃烧过程中能量释放特性的影响.结果表明:与无定形硼相比,BLiF在599℃存在快速氧化反应,有39.9%(质量百分数)的B参与了B/O反应.含BLiF的推进剂使一次能量释放效率和二次能量释放效率明显提高,硼的燃烧效率从65.48%提高到81.57%.这是由高温下LiF通过吸热反应消耗硼粉表面B2O3氧化层,加速B/O反应所引起的.

  4. 进气道结构对含硼固冲发动机二次燃烧性能影响分析%Analyzing the Performance of Boron﹣Based Propellant Ducted Engine with Different Air Inlet Structure

    Institute of Scientific and Technical Information of China (English)

    胡旭; 徐义华; 王洪远; 曾卓雄

    2014-01-01

    The numerical simulation of three﹣dimensional two﹣Phase flow in the boron﹣based ProPellant ducted rocket motor with the different inlet structure are carried out by the standard k -εturbulence mod﹣el ,one﹣steP eddy﹣dissiPation combustion model and the ignition and combustion of boron Particles of KING in high﹣sPeed flow. The ignition and combustion of boron Particles and the combustion efficiency of com﹣bustion gas in afterburning chamber of motor with six tyPes of air﹣inlet structures are analyzed. Combustion efficiency of gas is the highest under the inlet structure of bilateral 180 ° and it is the lowest at the case of inlet structure of 90° on both down side. The combustion efficiency of boron Particles is the highest at the case of inlet structure of bilateral 180° and it is the lowest under the center air intake structure. The total combustion efficiency in afterburning chamber is the highest when the inlet structure for bilateral 180 ° is a﹣doPted and it is the lowest under the structure of center air intake.%采用标准k-ε湍流模型,单步涡团耗散燃烧模型以及高速气流作用下KING硼粒子点火燃烧模型,开展了不同进气道结构下冲压发动机补燃室内含硼颗粒三维两相燃烧流动数值模拟;分析了在6种进气道结构对硼颗粒点火燃烧以及燃气燃烧效率的影响;研究结果表明:在相同的边界条件下,进气道结构形式对硼颗粒点火影响不大;燃气燃烧效率在双侧180°的进气结构下最高,双下侧90°进气结构的燃气燃烧效率最低;硼颗粒燃烧效率在双侧180°时燃烧效率最高,在中心进气结构下硼燃烧效率最低;补燃室内总燃烧效率在双侧180°进气道结构时最高,在中心进气结构下最低。

  5. High-Flux Femtosecond X-Ray Emission from Controlled Generation of Annular Electron Beams in a Laser Wakefield Accelerator.

    Science.gov (United States)

    Zhao, T Z; Behm, K; Dong, C F; Davoine, X; Kalmykov, S Y; Petrov, V; Chvykov, V; Cummings, P; Hou, B; Maksimchuk, A; Nees, J A; Yanovsky, V; Thomas, A G R; Krushelnick, K

    2016-08-26

    Annular quasimonoenergetic electron beams with a mean energy in the range 200-400 MeV and charge on the order of several picocoulombs were generated in a laser wakefield accelerator and subsequently accelerated using a plasma afterburner in a two-stage gas cell. Generation of these beams is associated with injection occurring on the density down ramp between the stages. This well-localized injection produces a bunch of electrons performing coherent betatron oscillations in the wakefield, resulting in a significant increase in the x-ray yield. Annular electron distributions are detected in 40% of shots under optimal conditions. Simultaneous control of the pulse duration and frequency chirp enables optimization of both the energy and the energy spread of the annular beam and boosts the radiant energy per unit charge by almost an order of magnitude. These well-defined annular distributions of electrons are a promising source of high-brightness laser plasma-based x rays. PMID:27610860

  6. Static investigation of two STOL nozzle concepts with pitch thrust-vectoring capability

    Science.gov (United States)

    Mason, M. L.; Burley, J. R., II

    1986-01-01

    A static investigation of the internal performance of two short take-off and landing (STOL) nozzle concepts with pitch thrust-vectoring capability has been conducted. An axisymmetric nozzle concept and a nonaxisymmetric nozzle concept were tested at dry and afterburning power settings. The axisymmetric concept consisted of a circular approach duct with a convergent-divergent nozzle. Pitch thrust vectoring was accomplished by vectoring the approach duct without changing the nozzle geometry. The nonaxisymmetric concept consisted of a two dimensional convergent-divergent nozzle. Pitch thrust vectoring was implemented by blocking the nozzle exit and deflecting a door in the lower nozzle flap. The test nozzle pressure ratio was varied up to 10.0, depending on model geometry. Results indicate that both pitch vectoring concepts produced resultant pitch vector angles which were nearly equal to the geometric pitch deflection angles. The axisymmetric nozzle concept had only small thrust losses at the largest pitch deflection angle of 70 deg., but the two-dimensional convergent-divergent nozzle concept had large performance losses at both of the two pitch deflection angles tested, 60 deg. and 70 deg.

  7. Static Thrust and Vectoring Performance of a Spherical Convergent Flap Nozzle with a Nonrectangular Divergent Duct

    Science.gov (United States)

    Wing, David J.

    1998-01-01

    The static internal performance of a multiaxis-thrust-vectoring, spherical convergent flap (SCF) nozzle with a non-rectangular divergent duct was obtained in the model preparation area of the Langley 16-Foot Transonic Tunnel. Duct cross sections of hexagonal and bowtie shapes were tested. Additional geometric parameters included throat area (power setting), pitch flap deflection angle, and yaw gimbal angle. Nozzle pressure ratio was varied from 2 to 12 for dry power configurations and from 2 to 6 for afterburning power configurations. Approximately a 1-percent loss in thrust efficiency from SCF nozzles with a rectangular divergent duct was incurred as a result of internal oblique shocks in the flow field. The internal oblique shocks were the result of cross flow generated by the vee-shaped geometric throat. The hexagonal and bowtie nozzles had mirror-imaged flow fields and therefore similar thrust performance. Thrust vectoring was not hampered by the three-dimensional internal geometry of the nozzles. Flow visualization indicates pitch thrust-vector angles larger than 10' may be achievable with minimal adverse effect on or a possible gain in resultant thrust efficiency as compared with the performance at a pitch thrust-vector angle of 10 deg.

  8. Static thrust-vectoring performance of nonaxisymmetric convergent-divergent nozzles with post-exit yaw vanes. M.S. Thesis - George Washington Univ., Aug. 1988

    Science.gov (United States)

    Foley, Robert J.; Pendergraft, Odis C., Jr.

    1991-01-01

    A static (wind-off) test was conducted in the Static Test Facility of the 16-ft transonic tunnel to determine the performance and turning effectiveness of post-exit yaw vanes installed on two-dimensional convergent-divergent nozzles. One nozzle design that was previously tested was used as a baseline, simulating dry power and afterburning power nozzles at both 0 and 20 degree pitch vectoring conditions. Vanes were installed on these four nozzle configurations to study the effects of vane deflection angle, longitudinal and lateral location, size, and camber. All vanes were hinged at the nozzle sidewall exit, and in addition, some were also hinged at the vane quarter chord (double-hinged). The vane concepts tested generally produced yaw thrust vectoring angles much less than the geometric vane angles, for (up to 8 percent) resultant thrust losses. When the nozzles were pitch vectored, yawing effectiveness decreased as the vanes were moved downstream. Thrust penalties and yawing effectiveness both decreased rapidly as the vanes were moved outboard (laterally). Vane length and height changes increased yawing effectiveness and thrust ratio losses, while using vane camber, and double-hinged vanes increased resultant yaw angles by 50 to 100 percent.

  9. Effect of nozzle lateral spacing on afterbody drag and performance of twin-jet afterbody models with convergent-divergent nozzles at Mach numbers up to 2.2

    Science.gov (United States)

    Pendergraft, O. C., Jr.; Schmeer, J. W.

    1972-01-01

    Twin-jet afterbody models were investigated by using two balances to measure the thrust-minus-total drag and the afterbody drag, separately, at static conditions and at Mach numbers up to 2.2 for an angle of attack of 0 deg. Hinged-flap convergent-divergent nozzles were tested at subsonic-cruise- and maximum-afterburning-power settings with a high-pressure air system used to provide jet-total-pressure ratios up to 20. Two nozzle lateral spacings were studied, using afterbodies with similar interfairing shapes but with different longitudinal cross-sectional area distributions. Alternate, blunter, interfairings with different shapes for the two spacings, which produced afterbodies having identical cross-sectional area progressions corresponding to an axisymmetric minimum wave-drag configuration, were also tested. The results indicate that the wide-spaced configurations improved the flow field around the nozzles, thereby reducing drag on the cruise nozzles; however, the increased surface and projected cross-sectional areas caused an increase in afterbody drag. Except for a slight advantage with cruise nozzles at subsonic speeds, the wide-spaced configurations had the higher total drag at all other test conditions.

  10. Plume radiation

    Science.gov (United States)

    Dirscherl, R.

    1993-06-01

    The electromagnetic radiation originating from the exhaust plume of tactical missile motors is of outstanding importance for military system designers. Both missile- and countermeasure engineer rely on the knowledge of plume radiation properties, be it for guidance/interference control or for passive detection of adversary missiles. To allow access to plume radiation properties, they are characterized with respect to the radiation producing mechanisms like afterburning, its chemical constituents, and reactions as well as particle radiation. A classification of plume spectral emissivity regions is given due to the constraints imposed by available sensor technology and atmospheric propagation windows. Additionally assessment methods are presented that allow a common and general grouping of rocket motor properties into various categories. These methods describe state of the art experimental evaluation techniques as well as calculation codes that are most commonly used by developers of NATO countries. Dominant aspects influencing plume radiation are discussed and a standardized test technique is proposed for the assessment of plume radiation properties that include prediction procedures. These recommendations on terminology and assessment methods should be common to all employers of plume radiation. Special emphasis is put on the omnipresent need for self-protection by the passive detection of plume radiation in the ultraviolet (UV) and infrared (IR) spectral band.

  11. A micro-solid oxide fuel cell system as battery replacement

    Science.gov (United States)

    Bieberle-Hütter, Anja; Beckel, Daniel; Infortuna, Anna; Muecke, Ulrich P.; Rupp, Jennifer L. M.; Gauckler, Ludwig J.; Rey-Mermet, Samuel; Muralt, Paul; Bieri, Nicole R.; Hotz, Nico; Stutz, Michael J.; Poulikakos, Dimos; Heeb, Peter; Müller, Patrik; Bernard, André; Gmür, Roman; Hocker, Thomas

    The concept and the design of a micro-solid oxide fuel cell system is described and discussed. The system in this study is called the ONEBAT system and consists of the fuel cell PEN (positive electrode - electrolyte - negative electrode) element, a gas processing unit, and a thermal system. PEN elements of free-standing multi-layer membranes are fabricated on Foturan ® and on Si substrates using thin film deposition and microfabrication techniques. Open circuit voltages of up to 1.06 V and power of 150 mW cm -2 are achieved at 550 °C. The membranes are stable up to 600 °C. The gas processing unit allows butane conversion of 95% and hydrogen selectivity of 83% at 550 °C in the reformer and efficient after-burning of hydrogen, carbon monoxide, and lower hydrocarbons in the post-combustor. Thermal system simulations prove that a large thermal gradient of more than 500 °C between the hot module and its exterior are feasible. The correlation between electrical power output - system size and thermal conductivity - heat-transfer coefficient of the thermal insulation material are shown. The system design studies show that the single sub-systems can be integrated into a complete system and that the requirements for portable electronic devices can be achieved with a base unit of 2.5 W and a modular approach.

  12. A unique approach to municipal waste management in Chianti, Italy

    International Nuclear Information System (INIS)

    Innovative solutions are required to manage the growing problem of disposal of municipal waste throughout the world. Recovery of energy by combustion of municipal waste has become an acceptable approach in many communities. A unique system with a capacity of 200 tons of waste per day with simultaneous production of electric power and fuel gas is currently under construction in Greve located in the famous wine region of Chianti, Italy. The refuse-derived fuel will be treated in a fluidized bed gasifier. A portion of the gas produced by the gasifier will be used to produce 6.7 MW of electric power; the remaining gas will be used as a fuel in the neighboring cement plant. The plant will be equipped with a state-of-the-art emission control system including an afterburner, a quench reactor, dry venturi and a fabric filter to minimize emissions to the atmosphere. This is the first plant in Europe to employ the fluidized bed gasifier technology on refuse-derived fuel. Design highlights of the overall plant including the air quality control system are presented in this paper

  13. The QCD Phase Diagram, Equation of State, and Heavy Ion Collisions

    CERN Document Server

    Shuryak, E V

    2002-01-01

    After some historic remarks and a brief summary of recent theoretical news about the QCD phases, we turn to the issue of $freeze-out$ in heavy ion collisions. We argue that the chemical freeze-out line should actually consists of two crossing lines of different nature. We also consider some inelatic reactions which occure $after$ chemical freeze-out, emphasizing the role of overpopulation of pions. The $hydrodynamics$ (with or without hadronic afterburner) explaines SPS/RHIC data on radial and elliptic flow in unexpected details,for different particles, collision energies, and impact parameters. Apart of Equation of State (EoS), it has basically no free parameters. The EoS which describe these data best agrees quite well with the lattice predictions, with the QGP latent heat $\\Delta\\epsilon\\approx 800 Mev/fm^3$. Other phenomena at RHIC, such as ``jet quenching'' and huge ellipticity at large $p_t$, also point toward very rapid entropy production. Its mechanism remains an outstanding open problem: at the end w...

  14. Beyond injection: Trojan horse underdense photocathode plasma wakefield acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Hidding, B.; Rosenzweig, J. B.; Xi, Y.; O' Shea, B.; Andonian, G.; Schiller, D.; Barber, S.; Williams, O.; Pretzler, G.; Koenigstein, T.; Kleeschulte, F.; Hogan, M. J.; Litos, M.; Corde, S.; White, W. W.; Muggli, P.; Bruhwiler, D. L.; Lotov, K. [Institut fuer Laser- und Plasmaphysik, Heinrich-Heine-Universitaet Duesseldorf 40225 Duesseldorf (Germany) and Particle Beam Physics Laboratory, Department for Physics and Astronomy, UCLA (United States); Particle Beam Physics Laboratory, Department for Physics and Astronomy, UCLA (United States); Institut fuer Laser- und Plasmaphysik, Heinrich-Heine-Universitaet Duesseldorf 40225 Duesseldorf (Germany); Stanford Linear Accelerator Center (United States); Max-Planck-Institut fuer Physik, Muenchen (Germany); Tech-X Corporation, Boulder, Colorado (United States) and 1348 Redwood Ave., Boulder, Colorado 80304 (United States); Budker Institute of Nuclear Physics SB RAS, 630090, Novosibirsk (Russian Federation) and Novosibirsk State University, 630090, Novosibirsk (Russian Federation)

    2012-12-21

    An overview on the underlying principles of the hybrid plasma wakefield acceleration scheme dubbed 'Trojan Horse' acceleration is given. The concept is based on laser-controlled release of electrons directly into a particle-beam-driven plasma blowout, paving the way for controlled, shapeable electron bunches with ultralow emittance and ultrahigh brightness. Combining the virtues of a low-ionization-threshold underdense photocathode with the GV/m-scale electric fields of a practically dephasing-free beam-driven plasma blowout, this constitutes a 4th generation electron acceleration scheme. It is applicable as a beam brightness transformer for electron bunches from LWFA and PWFA systems alike. At FACET, the proof-of-concept experiment 'E-210: Trojan Horse Plasma Wakefield Acceleration' has recently been approved and is in preparation. At the same time, various LWFA facilities are currently considered to host experiments aiming at stabilizing and boosting the electron bunch output quality via a trojan horse afterburner stage. Since normalized emittance and brightness can be improved by many orders of magnitude, the scheme is an ideal candidate for light sources such as free-electron-lasers and those based on Thomson scattering and betatron radiation alike.

  15. High performance SOFC/GT combined power generation system with CO2 recovery by oxygen combustion method

    International Nuclear Information System (INIS)

    The authors newly propose and investigate two types of carbon dioxide recovering SOFC/GT combined power generation systems in which a gas turbine with carbon dioxide recycle or water vapor injection is adopted as the bottoming cycle. In these systems, fuel gas is first introduced to a SOFC, and its exhaust fuel gas is afterburned by pure oxygen. Carbon dioxide or water vapor is also injected into the combustor to reduce the combustion gas temperature. The obtained combustion gas, which is composed of only carbon dioxide and water vapor, is introduced to a gas turbine in the bottoming cycle. The exhaust gas of the gas turbine preheats the injection gas, and then, carbon dioxide is separated by only cooling and water condensation. It is made clear that the overall efficiency of the system with carbon dioxide recycle reaches 63.87% (HHV) or 70.88% (LHV), and that of the system with water vapor injection reaches 65.00% (HHV) or 72.13% (LHV). These values are sufficiently high, indicating that the proposed systems are worth further research and development

  16. 正畸力作用下炎性牙周组织中白介素-8的表达%Effect of orthodontic force on interleukin-8 expression in the inflammatory periodontal tissues

    Institute of Scientific and Technical Information of China (English)

    米丛波; 潘旭; 钱雅婧; 胡明华; 刘红; 聂晶

    2011-01-01

    Objective To investigate interleukin -8 (IL -8) under the condition of participation in the inflammatory periodontal condition expression changes of tooth movement and periodontal tissue remodeling mechanism. Methods Selected 35 male SD rats.control group 5,and remaining 30 rats with experimental periodontitis model established after 4 weeks after removal of periodontal stimuli were randomly divided into 6 groups.respectively the control group were inflammation.inflammation afterburner 1,3,5,7,14d group, n =5.Afterburner rats maxillary first molar and the maxillary incisors on one side between the placement of orthodontic divices.and applied to the orthodontic force 0.49N past. 1,3,5,7,14d after the afterburner derived,organized morphological analysis.immunohistochemistry detected IL -8 expression in periodontal tissues in the face of positive cell density (area density.AD). Results The periodontal tissue expression of IL-8 in control group was weakly positive, and the periodontal tissue inflammation control expression of IL-8.Compression of the periodontal inflammation afterburner 1,3,5,7d,the first molar in the pressure side of periodontal tissue expression of IL -8 in the control group with periodontitis in rats.the expression of strength.the difference statistically significant, and the expression of IL-8 in the 5d density reached the peak value.When the IL-8 expression in periodontal tissues continued to decline at 14d,but the strength is higher than the normal control group. Conclusion IL -8 participate in the periodontal tissue remodeling, and the expression was a certain time rule.The degree of periodontal tissue inflammation increased by inflammation irritation and orthodontic force.but it does not cause serious damage to the periodontal tissue.%目的:探讨白介素-8(IL-8)在炎性牙周组织条件下参与牙移动表达的变化规律及牙周组织改建的机制.方法:选用35只雄性sD大鼠,空白对照组5只,其余30只大鼠

  17. Dioxin and furan emissions from landfill gas-fired combustion units

    International Nuclear Information System (INIS)

    The 1990 Federal Clean Air Act Amendments require the development of maximum achievable control technology standards (MACT) for sources of hazardous air pollutants, including landfill gas-fired combustion sources. The Industrial Combustion Coordinated Rulemaking (ICCR) Federal Advisory Committee is a group of stakeholders from the public and private sector whose charge is to develop recommendations for a unified set of federal toxic air emissions regulations. Specifically, the group will establish MACT standards for industrial-commercial-institutional combustion sources. The ICCR proceedings have given rise to considerable interest in potential dioxin and furan emissions from landfill gas-fired combustion units. In order to establish the potential of dioxin and furan emissions from this group of combustion sources, a world-wide literature search was conducted. A total of 22 references were evaluated. The references covered a wide range of test programs, testing methodologies and combustion equipment type. The most abundant data were for landfill gas-fired flares (shrouded and afterburners) and I.C. engines. Because of limitations in obtaining actual test reports with complete lab data and QA/QC results, and a lack of knowledge as to the exact types of waste received at the European landfills, the test data from these sources, for the purposes of this paper, are considered qualitative. The conclusion reached from review of the test data is that there is a potential for dioxin and furan emissions from landfill gas-fired combustion units, but at very low levels for well operated systems

  18. Concept development of a Mach 4 high-speed civil transport

    Science.gov (United States)

    Domack, Christopher S.; Dollyhigh, Samuel M.; Beissner, Fred L., Jr.; Geiselhart, Karl A.; Mcgraw, Marvin E., Jr.; Shields, Elwood W.; Swanson, Edward E.

    1990-01-01

    A study was conducted to configure and analyze a 250 passenger, Mach 4 High Speed Civil Transport with a design range of 6500 n.mi. The design mission assumed an all-supersonic cruise segment and no community noise or sonic boom constraints. The study airplane was developed in order to examine the technology requirements for such a vehicle and to provide an unconstrained baseline from which to assess changes in technology levels, sonic boom limits, or community noise constraints in future studies. The propulsion, structure, and materials technologies utilized in the sizing of the study aircraft were assumed to represent a technology availability date of 2015. The study airplane was a derivative of a previously developed Mach 3 concept and utilized advanced afterburning turbojet engines and passive airframe thermal protection. Details of the configuration development, aerodynamic design, propulsion system, mass properties, and mission performance are presented. The study airplane was estimated to weigh approx. 866,000 lbs. Although an aircraft of this size is a marginally acceptable candidate to fit into the world airport infrastructure, it was concluded that the inclusion of community noise or sonic boom constraints would quickly cause the aircraft to grow beyond acceptable limits using the assumed technology levels.

  19. Performance evaluation of a proof-of-concept 70 W internal reforming methanol fuel cell system

    Science.gov (United States)

    Avgouropoulos, G.; Schlicker, S.; Schelhaas, K.-P.; Papavasiliou, J.; Papadimitriou, K. D.; Theodorakopoulou, E.; Gourdoupi, N.; Machocki, A.; Ioannides, T.; Kallitsis, J. K.; Kolb, G.; Neophytides, S.

    2016-03-01

    A proof-of-concept 70 W Internal Reforming Methanol Fuel Cell (IRMFC) stack including Balance-of-Plant (BoP) was designed, assembled and tested. Advent TPS® high-temperature, polymer electrolyte membrane electrode assemblies were employed for fuel cell operation at 200 °C. In order to avoid phosphoric acid poisoning of the reformer, the anode electrocatalyst of each cell was indirectly adjoined, via a separation plate, to a highly active CuMnAlOx catalyst coated onto copper foam, which served as methanol reforming layer. The reformer was in-situ converting the methanol/steam feed to the required hydrogen (internal reforming concept) at 200 °C, which was readily oxidized at the anode electrodes. The operation of the IRMFC was supported through a number of BoP components consisting of a start-up subsystem (air blower, evaporator and monolithic burner), a combined afterburner/evaporator device, methanol/water supply and data acquisition units (reactants/products analysis, temperature control, flow control, system load/output control). Depending on the composition of the liquid MeOH/H2O feed streams, current densities up to 0.18 A cm-2 and power output up to 70 W could be obtained with remarkable repeatability. Specific targets for improvement of the efficiency were identified.

  20. Large-Eddy Simulations of Noise Generation in Supersonic Jets at Realistic Engine Temperatures

    Science.gov (United States)

    Liu, Junhui; Corrigan, Andrew; Kailasanath, K.; Taylor, Brian

    2015-11-01

    Large-eddy simulations (LES) have been carried out to investigate the noise generation in highly heated supersonic jets at temperatures similar to those observed in high-performance jet engine exhausts. It is found that the exhaust temperature of high-performance jet engines can range from 1000K at an intermediate power to above 2000K at a maximum afterburning power. In low-temperature jets, the effects of the variation of the specific heat ratio as well as the radial temperature profile near the nozzle exit are small and are ignored, but it is not clear whether those effects can be also ignored in highly heated jets. The impact of the variation of the specific heat ratio is assessed by comparing LES results using a variable specific heat ratio with those using a constant specific heat ratio. The impact on both the flow field and the noise distributions are investigated. Because the total temperature near the nozzle wall can be substantially lower than the nozzle total temperature either due to the heating loss through the nozzle wall or due to the cooling applied near the wall, this lower wall temperature may impact the temperature in the shear layer, and thus impact the noise generation. The impact of the radial temperature profile on the jet noise generation is investigated by comparing results of lower nozzle wall temperatures with those of the adiabatic wall condition.

  1. Modelling and Simulation of a Hybrid Solid Oxide Fuel Cell Coupled with a Gas Turbine Power Plant

    Directory of Open Access Journals (Sweden)

    Luca Andreassi

    2009-09-01

    Full Text Available

    The paper presents a simulation of a hybrid solid oxide fuel cell-gas turbine (SOFC-GT power generation system fueled by natural gas. In the system considered, the unreacted fuel from a topping solid oxide fuel cell is burnt in an afterburner to feed a bottoming gas turbine and produce additional power. Combustion gas expands in the gas turbine after having preheated the inlet air and fuel and it is used to generate steam required by the reforming reactions. A novel thermodynamic model has been developed for the fuel cell and implemented into the library of a modular object-oriented Process Simulator, CAMELPro™. The relevant plant performance indicators have been analyzed to evaluate the incremental increase in efficiency brought about by the introduction of the gas turbine and heat regeneration system. Simulations were performed for different values of the main plant parameters.

    • This paper is an updated version of a paper published in the ECOS'08 proceedings. 

  2. Femtoscopic scales in $p+p$ and $p+Pb$ collisions in view of the uncertainty principle

    CERN Document Server

    Shapoval, V M; Karpenko, Iu A; Sinyukov, Yu M

    2013-01-01

    The method of quantum corrections of the femtoscopic scales produced by semi-classical event generators is proposed. These corrections account for the basic indistinguishability and mutual coherence of the closely located emitters caused by the uncertainty principle. The detailed analysis is presented for the pion interferometry of $p+p$ collisions at LHC $\\sqrt{s}=7$ TeV energy. The estimates of the pion femtoscopic scales is presented also for $p+Pb$ collisions at $\\sqrt{s}=5.02$ TeV as a prediction. The hydrodynamic/hydrokinetic model with UrQMD cascade at the afterburn stage is utilized for this aim. It is found that the quantum corrections to the interferometry radii obtained improve essentially the event generator results which typically overestimate the experimental femtoscopy scales of small systems. A successful description of the femtoscopy structure of $p+p$ collisions within the corrected hydrodynamic model extends the problem of thermalisation mechanism, that is the fundamental issue for ultrarel...

  3. On mT dependence of femtoscopy scales for meson and baryon pairs

    Science.gov (United States)

    Sinyukov, Yu. M.; Shapoval, V. M.; Naboka, V. Yu.

    2016-02-01

    The mT-dependencies of the femto-scales, the so-called interferometry and source radii, are investigated within the hydrokinetic model for different types of particle pairs - pion-pion, kaon-kaon, proton-proton and proton-lambda, - produced in Pb+Pb and p + p collisions at the LHC. In particular, such property of the femto-scales momentum behavior as mT-scaling is studied for the systems with (w) and without (w/o) intensive transverse flow, and also w and w/o re-scattering at the final afterburner stage of the matter evolution. The detailed spatiotemporal description obtained within hydrokinetic model is compared with the simple analytical results for the spectra and longitudinal interferometry radii depending on the effective temperature on the hypersurface of maximal emission, proper time of such emission, and intensity of transverse flow. The derivation of the corresponding analytical formulas and discussion about a possibility for their utilization by the experimentalists for the simple femtoscopy data analysis is the main aim of this theoretical investigation.

  4. Uniform description of bulk observables in the hydrokinetic model of A+A collisions at the BNL Relativistic Heavy Ion Collider and the CERN Large Hadron Collider

    Science.gov (United States)

    Karpenko, Iu. A.; Sinyukov, Yu. M.; Werner, K.

    2013-02-01

    A simultaneous description of hadronic yields; pion, kaon, and proton spectra; elliptic flows; and femtoscopy scales in the hydrokinetic model of A+A collisions is presented at different centralities for the top BNL Relativistic Heavy Ion Collider (RHIC) and CERN Large Hadron Collider (LHC) 2.76-TeV energies. The initial conditions are based on the Monte Carlo Glauber simulations. When going from RHIC to LHC energy in the model, the only parameters changed are the normalization of the initial entropy defined by the number of all charged particles in most central collisions, contribution to entropy from binary collisions, and barionic chemical potential. The hydrokinetic model is used in its hybrid version, which provides the correct match (at the isochronic hypersurface) of the decaying hadron matter evolution with hadronic ultrarelativistic quantum molecular dynamics cascade. The results are compared with the standard hybrid models where hydrodynamics and hadronic cascade are matching just at the non-space-like hypersurface of chemical freeze-out or on the isochronic hypersurface. The modification of the particle-number ratios at LHC caused, in particular, by the particle annihilations at the afterburn stage is also analyzed.

  5. On $m_T$ dependence of femtoscopy scales for meson and baryon pairs

    CERN Document Server

    Sinyukov, Yu M; Naboka, V Yu

    2015-01-01

    The $m_T$-dependencies of the femto-scales, the so-called interferometry and source radii, are investigated within the hydrokinetic model for different types of particle pairs - pion-pion, kaon-kaon, proton-proton and proton-lambda, - produced in Pb+Pb and $p+p$ collisions at the LHC. In particular, such property of the femto-scales momentum behavior as $m_T$-scaling is studied for the systems with (w) and without (w/o) intensive transverse flow, and also w and w/o re-scattering at the final afterburner stage of the matter evolution. The detail spatiotemporal description obtained within hydrokinetic model is compared with the simple analytical results for the spectra and longitudinal interferometry radii depending on the effective temperature on the hypersurface of maximal emission, proper time of such emission, and intensity of transverse flow. The derivation of the corresponding analytical formulas and discussion about a possibility for their utilization by the experimentalists for the simple femtoscopy dat...

  6. Control of laser absorbing efficiency and proton quality by a specific double target

    Science.gov (United States)

    Yu, Q.; Gu, Y. J.; Li, X. F.; Qu, J. F.; Kong, Q.; Kawata, S.

    2016-08-01

    The micro-structured double-layer target is an efficient method to improve proton quality. However, the laser absorption efficiency is low due to strong reflection at the front surface of such targets. Moreover, the proton charge is limited by the driving laser radius. To overcome these shortcomings, a specific double-layer (SDL) target with a vacuum gap in the center of the heavy ion layer is proposed in this paper. In this specified target, the laser reflection effect is significantly weakened and the absorption and penetration efficiencies are greatly enhanced. The high-energy electrons from Breakout afterburner regime efficiently transfer their energy to the protons. Both the energy of the spectral peaks and maximum proton energy are greatly increased. The periodic structure of the longitudinal electric field makes the force applied on the protons becomes homogeneous in time average and therefore reduce the energy spread. In these SDL targets, the proton layer radius and the accelerated proton charge are not limited by the laser radius. With a larger-radius proton layer, the protons can be accelerated to high energy with small energy spread. When the proton layer radius is reduced to the laser radius, the SDL target is still an effective structure to improve the proton quality. The mechanism is proved by a series of particle-in-cell simulations.

  7. Infrared radiation signature of exhaust plume from solid propellants with different energy characteristics

    Institute of Scientific and Technical Information of China (English)

    Wang Weichen; Li Shipeng; Zhang Qiao; Wang Ningfei

    2013-01-01

    The infrared radiation signature of the plume from solid propellants with different energy characteristics is not the same.Three kinds of double-base propellants of different energy characteristics are chosen to measure the infrared spectral radiance from 1000cm-1 to 4500 cm-1 of their plumes.The radiative spectrum is obtained in the tests.The experimental results indicate that the infrared radiation of the plume is determined by the energy characteristics of the propellant.The radiative transfer calculation models of the exhaust plume for the solid propellants are established.By including the chemical reaction source term and the radiation source term into the energy equation,the plume field and the radiative transfer are solved in a coupled way.The calculated results are consistent with the experimental data,so the reliability of the models is confirmed.The temperature distribution and the extent of the afterburning of the plume are distinct for the propellants of different energy characteristics,therefore the plume radiation varies for different propellants.The temperature of the fluid cell in the plume will increase or decrease to some extent by the influence of the radiation term.

  8. Integrated Turbine-Based Combined Cycle Dynamic Simulation Model

    Science.gov (United States)

    Haid, Daniel A.; Gamble, Eric J.

    2011-01-01

    A Turbine-Based Combined Cycle (TBCC) dynamic simulation model has been developed to demonstrate all modes of operation, including mode transition, for a turbine-based combined cycle propulsion system. The High Mach Transient Engine Cycle Code (HiTECC) is a highly integrated tool comprised of modules for modeling each of the TBCC systems whose interactions and controllability affect the TBCC propulsion system thrust and operability during its modes of operation. By structuring the simulation modeling tools around the major TBCC functional modes of operation (Dry Turbojet, Afterburning Turbojet, Transition, and Dual Mode Scramjet) the TBCC mode transition and all necessary intermediate events over its entire mission may be developed, modeled, and validated. The reported work details the use of the completed model to simulate a TBCC propulsion system as it accelerates from Mach 2.5, through mode transition, to Mach 7. The completion of this model and its subsequent use to simulate TBCC mode transition significantly extends the state-of-the-art for all TBCC modes of operation by providing a numerical simulation of the systems, interactions, and transient responses affecting the ability of the propulsion system to transition from turbine-based to ramjet/scramjet-based propulsion while maintaining constant thrust.

  9. Removal of Unpleasant Odorous Substances from Smoke Produced by Smoke Curing Houses

    Directory of Open Access Journals (Sweden)

    Zygmunt Kowalski

    2010-01-01

    Full Text Available Problem statement: For purification of smoke in PPHU Duda-Bis Plant water washers, placed in the outlet channel of smoke chamber, have been applied, but the amount of the substances remaining in the air after passing through the washer were not acceptable by the standards and caused repulsive odor emitted into the atmosphere. Approach: To eliminate discomfort, caused by smoke emission unto the environment, PPHU Duda-Bis has been introduced a simple and effective method of thermal utilization of post-curing smoke by using heated with natural gas boiler. Before the smoke enters the boiler, water vapors undergo condensation and the water drops obtained are separated in steam drier. The smoke introduced into the boiler brings some excess of air. Results: After the new method of curing smoke after-burning had been put into practice in PPHU Duda-Bis, the unpleasant odorous and harmful to the environment compounds were eliminated. The content of the emitted components per year, after thermal utilization of the smoke, was 100 times lower in comparison to the wet-method. Conclusion: The thermal methods belong to the most efficient BAT techniques enabling removal of the unpleasant odorous substances from the gases generated by meat industry.

  10. DRAGON: Monte Carlo Generator of Particle Production from a Fragmented Fireball in Ultrarelativistic Nuclear Collisions

    Science.gov (United States)

    Tomasik, Boris

    2010-11-01

    A Monte Carlo generator of the final state of hadrons emitted from an ultrarelativistic nuclear collision is introduced. An important feature of the generator is a possible fragmentation of the fireball and emission of the hadrons from fragments. Phase space distribution of the fragments is based on the blast wave model extended to azimuthally non-symmetric fireballs. Parameters of the model can be tuned and this allows to generate final states from various kinds of fireballs. A facultative output in the OSCAR1999A format allows for a comprehensive analysis of phase-space distributions and/or use as an input for an afterburner. DRAGON's purpose is to produce artificial data sets which resemble those coming from real nuclear collisions provided fragmentation occurs at hadronisation and hadrons are emitted from fragments without any further scattering. Its name, DRAGON, stands for DRoplet and hAdron GeneratOr for Nuclear collisions. In a way, the model is similar to THERMINATOR, with the crucial difference that emission from fragments is included.

  11. Turbulent Combustion in SDF Explosions

    Energy Technology Data Exchange (ETDEWEB)

    Kuhl, A L; Bell, J B; Beckner, V E

    2009-11-12

    A heterogeneous continuum model is proposed to describe the dispersion and combustion of an aluminum particle cloud in an explosion. It combines the gas-dynamic conservation laws for the gas phase with a continuum model for the dispersed phase, as formulated by Nigmatulin. Inter-phase mass, momentum and energy exchange are prescribed by phenomenological models. It incorporates a combustion model based on the mass conservation laws for fuel, air and products; source/sink terms are treated in the fast-chemistry limit appropriate for such gasdynamic fields, along with a model for mass transfer from the particle phase to the gas. The model takes into account both the afterburning of the detonation products of the C-4 booster with air, and the combustion of the Al particles with air. The model equations were integrated by high-order Godunov schemes for both the gas and particle phases. Numerical simulations of the explosion fields from 1.5-g Shock-Dispersed-Fuel (SDF) charge in a 6.6 liter calorimeter were used to validate the combustion model. Then the model was applied to 10-kg Al-SDF explosions in a an unconfined height-of-burst explosion. Computed pressure histories are compared with measured waveforms. Differences are caused by physical-chemical kinetic effects of particle combustion which induce ignition delays in the initial reactive blast wave and quenching of reactions at late times. Current simulations give initial insights into such modeling issues.

  12. Disentangling flow and nonflow correlations via Bayesian unfolding of the event-by-event distributions of harmonic coefficients in ultrarelativistic heavy-ion collisions

    CERN Document Server

    Jia, Jiangyong

    2013-01-01

    The performance of the Bayesian unfolding method in extracting the event-by-event (EbyE) distributions of harmonic flow coefficients v_n is investigated using a toy model simulation, as well as simulations based on the HIJING and AMPT models. The unfolding method is shown to recover the input v_2-v_4 distributions for multiplicities similar to those observed in Pb+Pb collisions at the LHC. The effects of the nonflow are evaluated using HIJING simulation with and without a flow afterburner. The probability distribution of v_n resulting only from nonflow in HIJING is nearly a Gaussian and can be largely suppressed in the data-driven unfolding method used by the ATLAS Collaboration. The residual nonflow effects have no appreciable impact on the v_3 distributions, but are found to affect the tails of the v_2 and v_4 distributions; these effects manifest as a small simultaneous change in the mean and standard deviation of the $v_n$ distributions. For the AMPT model, which contains both flow fluctuations and nonflo...

  13. Influence of coalescence parameters on the production of protons and Helium-3 fragments

    CERN Document Server

    Li, Qingfeng; Wang, Xiaobao; Shen, Caiwan

    2016-01-01

    The time evolution of protons and $^3$He fragments from Au+Au/Pb+Pb reactions at 0.25, 2, and 20 GeV$/$nucleon is investigated with the potential version of the Ultrarelativistic Quantum Molecular Dynamics (UrQMD) model combined with the traditional coalescence afterburner. In the coalescence process, the relative distance $R_0$ and relative momentum $P_0$ are surveyed in the range of 3-4 fm and 0.25-0.35 GeV$/$c, respectively. For both clusters, a strong reversed correlation between $R_0$ and $P_0$ is seen and it is time-dependent as well. For protons, the accepted ($R_0$, $P_0$) bands lie in the time interval 30-60 fm$/$c, while for $^3$He, a longer time evolution (at about 60-90 fm$/$c) is needed. Otherwise, much smaller $R_0$ and $P_0$ values should be chosen. If we further look at the rapidity distributions from both central and semi-central collisions, it is found that the accepted [$t_{\\rm cut}, (R_0, P_0$)] assemble can provide consistent results for proton yield and collective flows especially at mid...

  14. Influence of coalescence parameters on the production of protons and Helium-3 fragments

    Science.gov (United States)

    Li, QingFeng; Wang, YongJia; Wang, XiaoBao; Shen, CaiWan

    2016-07-01

    The time evolution of protons and 3He fragments from Au+Au/Pb+Pb reactions at 0.25, 2, and 20 GeV/nucleon is investigated with the potential version of the Ultrarelativistic Quantum Molecular Dynamics (UrQMD) model combined with the traditional coalescence afterburner. In the coalescence process, the relative distance R 0 and relative momentum P 0 are surveyed in the range of 3-4 fm and 0.25-0.35 GeV/c, respectively. For both clusters, a strong reversed correlation between R 0 and P 0 is seen and it is time-dependent as well. For protons, the accepted ( R 0, P 0) bands lie in the time interval 30-60 fm/c, while for 3He, a longer time evolution (at about 60-90 fm/c) is needed. Otherwise, much smaller R 0 and P 0 values should be chosen. If we further look at the rapidity distributions from both central and semi-central collisions, it is found that the accepted [ t cut, ( R 0, P 0)] assemble can provide consistent results for proton yield and collective flows especially at mid-rapdities, while for 3He, the consistency is destroyed at both middle and projectile-target rapidities.

  15. Studying the characteristics of a 5 kW power installation on solid-oxide fuel cells with steam reforming of natural gas

    Science.gov (United States)

    Munts, V. A.; Volkova, Yu. V.; Plotnikov, N. S.; Dubinin, A. M.; Tuponogov, V. G.; Chernishev, V. A.

    2015-11-01

    The results from tests of a 5 kW power plant on solid-oxide fuel cells (SOFCs), in which natural gas is used as fuel, are presented. The installation's process circuit, the test procedure, and the analysis of the obtained results are described. The characteristics of the power plant developed by the Ural Industrial Company are investigated in four steady-state modes of its operation: with the SOFC nominal power capacity utilized by 40% (2 kW), 60% (3 kW), 90% (4.5 kW) and 110% (5.4 kW) (the peaking mode). The electrical and thermodynamic efficiencies are calculated for all operating modes, and the most efficient mode, in which the electrical efficiency reached almost 70%, is determined. The air excess coefficient and heat loss with flue gases q 2 are determined, and it is revealed that the heat loss q 5 decreases from 40 to 25% with increasing the load. Thermal balances are drawn up for the following components of the system the reformer, the SOFC battery, the catalytic burner for afterburning anode gases, the heat exchanger for heating the cathode air and the mixture of natural gas and steam, and the actual fuel utilization rates in the electrochemical generator are calculated. An equation for the resulting natural gas steam reforming reaction was obtained based on the results from calculating the equilibrium composition of reforming products for the achieved temperatures at the reformer outlet t 3.

  16. Ultrasound assessed thickness of burn scars in association with laser Doppler imaging determined depth of burns in paediatric patients.

    Science.gov (United States)

    Wang, Xue-Qing; Mill, Julie; Kravchuk, Olena; Kimble, Roy M

    2010-12-01

    This study describes the ultrasound assessment of burn scars in paediatric patients and the association of these scar thickness with laser Doppler imaging (LDI) determined burn depth. A total of 60 ultrasound scar assessments were conducted on 33 scars from 21 paediatric burn patients at 3, 6 and 9 months after-burn. The mean of peak scar thickness was 0.39±0.032 cm, with the thickest at 6 months (0.40±0.036 cm). There were 17 scald burn scars (0.34±0.045 cm), 4 contact burn scars (0.61±0.092 cm), and 10 flame burn scars (0.42±0.058 cm). Each group of scars followed normal distributions. Twenty-three scars had original burns successfully scanned by LDI and various depths of burns were presented by different colours according to blood perfusion units (PU), with dark blue burns, with the thinnest scars for green coloured burns and the thickest for dark blue coloured burns. Within light blue burns, grafted burns healed with significantly thinner scars than non-grafted burns. This study indicates that LDI can be used for predicting the risk of hypertrophic scarring and for guiding burn care. To our knowledge, this is the first study to correlate the thickness of burns scars by ultrasound scan with burn depth determined by LDI.

  17. Cold start dynamics and temperature sliding observer design of an automotive SOFC APU

    Science.gov (United States)

    Lin, Po-Hsu; Hong, Che-Wun

    This paper presents a dynamic model for studying the cold start dynamics and observer design of an auxiliary power unit (APU) for automotive applications. The APU is embedded with a solid oxide fuel cell (SOFC) stack which is a quiet and pollutant-free electric generator; however, it suffers from slow start problem from ambient conditions. The SOFC APU system equips with an after-burner to accelerate the start-up transient in this research. The combustion chamber burns the residual fuel (and air) left from the SOFC to raise the exhaust temperature to preheat the SOFC stack through an energy recovery unit. Since thermal effect is the dominant factor that influences the SOFC transient and steady performance, a nonlinear real-time sliding observer for stack temperature was implemented into the system dynamics to monitor the temperature variation for future controller design. The simulation results show that a 100 W APU system in this research takes about 2 min (in theory) for start-up without considering the thermal limitation of the cell fracture.

  18. Wind-Tunnel Investigation of Subsonic Longitudinal Aerodynamic Characteristics of a Tiltable-Wing Vertical-Take-Off-and-Landing Supersonic Bomber Configuration Including Turbojet Power Effects

    Science.gov (United States)

    Thompson, Robert F.; Vogler, Raymond D.; Moseley, William C., Jr.

    1959-01-01

    Jet-powered model tests were made to determine the low-speed longitudinal aerodynamic characteristics of a vertical-take-off and-landing supersonic bomber configuration. The configuration has an unique engine-wing arrangement wherein six large turbojet engines (three on each side of the fuselage) are buried in a low-aspect-ratio wing which is tilted into the vertical plane for take-off. An essentially two-dimensional variable inlet, spanning the leading edge of each wing semispan, provides air for the engines. Jet flow conditions were simulated for a range of military (nonafterburner) and afterburner turbojet-powered flight at subsonic speeds. Three horizontal tails were tested at a station down-stream of the jet exit and at three heights above the jet axes. A semi-span model was used and test parameters covered wing-fuselage incidence angles from 0 deg to 15 deg, wing angles of attack from -4 deg to 36 deg, a variable range of horizontal-tail incidence angles, and some variations in power simulation conditions. Results show that, with all horizontal tails tested, there were large variations in static stability throughout the lift range. When the wing and fuselage were alined, the model was statically stable throughout the test range only with the largest tail tested (tail span of 1.25 wing span) and only when the tail was located in the low test position which placed the tail nearest to the undeflected jet. For transition flight conditions, none of the tail configurations provided satisfactory longitudinal stability or trim throughout the lift range. Jet flow was destabilizing for most of the test conditions, and varying the jet-exit flow conditions at a constant thrust coefficient had little effect on the stability of this model. Wing leading-edge simulation had some important effects on the longitudinal aerodynamic characteristics.

  19. Advanced air staging techniques to improve fuel flexibility, reliability and emissions in fluidized bed co-combustion

    Energy Technology Data Exchange (ETDEWEB)

    Aamand, Lars-Erik; Leckner, Bo [Chalmers Technical Univ., Goeteborg (Sweden); Luecke, Karsten; Werther, Joachim [Technical Univ. of Hamburg-Harburg (Germany)

    2001-12-01

    A joint research project between the Technical University of Hamburg-Harburg and Chalmers Technical University. For operation under co-combustion the following results should be considered: The high ash content of the sewage sludge results in significantly increased ash flows. Although high alkali metal concentrations are found in the sewage sludge ash, no critical concentrations were reached and tendencies to fouling were not observed. The trace metal input rises with increased sludge fraction. However, emissions of metal compounds were well below legal limits. The trace metals tend to accumulate on the fly ash. In general, very low fuel nitrogen conversions to NO and N{sub 2}O of 2 - 4 % are achievable. With coal as a base fuel alternative air staging with secondary air supply after solids separation attains even lower NO emissions than normal staging without strongly affecting CO and SO{sub 2} emissions. Alternative staging also reduces N{sub 2}O emissions. An optimum for the excess air ratio in the riser of 1.05 was found for a total excess air ratio of 1.2. The higher the volatile content of the fuel is, the less effective the NO reduction due to air staging becomes. The measurements suggest that the optimum gas residence time regarding the emissions in CFB combustors is around 6 to 7 s. These times are achieved in commercial scale plants due to their large cyclones that perhaps partly can replace a large afterburner chamber. The circulating fluidized bed boiler can be operated in a very flexible way with various fuel mixtures up to an energy fraction of sludge of 25% without exceeding legal emission limits.

  20. Experimental assessment of film cooling performance of short cylindrical holes on a flat surface

    Science.gov (United States)

    Singh, Kuldeep; Premachandran, B.; Ravi, M. R.

    2016-03-01

    The present study is an experimental investigation of film-cooling over a flat surface from the short cylindrical holes. The film cooling holes used in the combustion chamber and the afterburner liner of an aero engine has length-to-diameter (L/D) typically in the range 1-2, while the cooling holes used in turbine blades has L/D > 3. Based on the classification given in the literature, cooling holes with L/D ≤ 3 are named as short holes and cooling holes with L/D > 3 are named as long holes. Short film cooling holes cause jetting of the secondary fluid whereas the secondary fluid emerging from long holes has characteristics similar to fully developed turbulent flow in pipe. In order to understand the difference in the film cooling performance of long and short cooling holes, experimental study is carried out for five values of L/D in the range 1-5, five injection angles, α = 15°-90° and five mainstream Reynolds number 1.25 × 105-6.25 × 105 and two blowing ratios, M = 0.5-1.0. The surface temperature of the test plate is monitored using infrared thermography. The results obtained from the present study showed that the film-cooling effectiveness is higher for the longest holes (L/D = 5) investigated in the present work in comparison to that for the shorter holes. Short holes are found to give better effectiveness at the lowest investigated injection angle i.e. α = 15° in the near cooling hole region, whereas film cooling effectiveness obtained at injection angle, α = 45° is found to be better than other injection angles for longest investigated holes, i.e. L/D = 5.

  1. MOA: Magnetic Field Oscillating Amplified Thruster and its Application for Nuclear Electric and Thermal Propulsion

    International Nuclear Information System (INIS)

    More than 60 years after the later Nobel laureate Hannes Alfven had published a letter stating that oscillating magnetic fields can accelerate ionised matter via magneto-hydrodynamic interactions in a wave like fashion, the technical implementation of Alfven waves for propulsive purposes has been proposed, patented and examined for the first time by a group of inventors. The name of the concept, utilising Alfven waves to accelerate ionised matter for propulsive purposes, is MOA - Magnetic field Oscillating Amplified thruster. Alfven waves are generated by making use of two coils, one being permanently powered and serving also as magnetic nozzle, the other one being switched on and off in a cyclic way, deforming the field lines of the overall system. It is this deformation that generates Alfven waves, which are in the next step used to transport and compress the propulsive medium, in theory leading to a propulsion system with a much higher performance than any other electric propulsion system. Based on computer simulations, which were conducted to get a first estimate on the performance of the system, MOA is a highly flexible propulsion system, whose performance parameters might easily be adapted, by changing the mass flow and/or the power level. As such the system is capable to deliver a maximum specific impulse of 13116 s (12.87 mN) at a power level of 11.16 kW, using Xe as propellant, but can also be attuned to provide a thrust of 236.5 mN (2411 s) at 6.15 kW of power. While space propulsion is expected to be the prime application for MOA and is supported by numerous applications such as Solar and/or Nuclear Electric Propulsion or even as an 'afterburner system' for Nuclear Thermal Propulsion, other terrestrial applications can be thought of as well, making the system highly suited for a common space-terrestrial application research and utilisation strategy. (authors)

  2. Treatment of low-level radioactive waste by plasma. A proven technology?

    International Nuclear Information System (INIS)

    Large amounts of actual and historical low level radioactive waste, with varying characteristics, are stored and generated from the operation and maintenance of nuclear power plants, the nuclear fuel cycle, research laboratories, pharmaceutical and medical facilities. Virtual all of these waste streams can be treated by the plasma technology resulting in a final product free of organics, liquids and moisture, and meeting without a doubt the acceptance criteria for safe storage and disposal. The plasma is a highly desirable heat source. Its high temperature of up to 10.000degC can treat the radioactive waste as is. The inorganic materials are melted into a glassy slag, containing most of the radioactive isotopes, while the organic material is vaporized into a syngas and subsequently oxidized in an afterburner. This technology is very suitable for historical waste containing mixtures of inorganic, organic, liquids, sludge, etc, with almost no waste preparation and with minimal risk for radioactive contamination and exposure. Plasma technology offers a high volume waste reduction factor (VRF) that minimizes the volume and overall costs of waste storage and disposal. In addition, as plasma technology can recondition previously conditioned waste packages that no longer meet the present acceptance criteria for final disposal, it offers a solution to the growing demand for improved quality of final waste forms. As such, plasma technology is of great value, not just to waste producers but to future generations as well. This paper describes further the principles of plasma, the different waste feed systems, off-gas treatment, operational experience and future plasma plants. (author)

  3. The correlation of in vivo burn scar contraction with the level of α-smooth muscle actin expression.

    Science.gov (United States)

    Wang, Xue-Qing; Kravchuk, Olena; Winterford, Clay; Kimble, Roy M

    2011-12-01

    This study describes the direct association of in vivo burn scar contraction with the level of α-smooth muscle actin (α-SMA) in scar tissue, in a porcine burn model. The expression of α-SMA was investigated in 100 biopsies from 44 6-week old burn scars and in 85 biopsies from 16 2-week old burn wounds. Statistical analysis showed that the levels of α-SMA in 6-week old scars were significantly negatively correlated to scar size (r=-0.68) and the higher levels of α-SMA were observed in smaller scars. Moreover, α-SMA was also found to be significantly positively correlated to re-epithelialisation time (r=0.57) and scar thickness (r=0.58) and higher levels of α-SMA were detected in thicker scars with delayed wound closure. Further statistical analysis revealed that scar contraction can be explained best by the level of α-SMA expression and partially by scar thickness. Other variables, such as different dressings and individual pig, may also partly contribute to scar contraction. At week 2 after-burn, the level of α-SMA expression in 16 burn wounds was significantly related to the depth of burns and wound healing outcome. To our knowledge, this is the first study to provide in vivo evidence of the association of α-SMA expression with scar contraction, scar thickness, re-epithelialisation time and the depth of burn in a large animal burn model with scars similar to human hypertrophic scar.

  4. 含呋咱衍生物富燃料推进剂的能量性能%The Energy Properties of Fuel-rich Propellants Comprising Furazan Derivatives

    Institute of Scientific and Technical Information of China (English)

    张君启; 张炜; 朱慧; 张兴高

    2006-01-01

    Furazan is a kind of novel high energy material and has a good future application in propellants and explosives. This work studies the energy properties of Al/Mg/HTPB/AP fuel-rich propellants comprising furazan derivatives. The results reveal that the specific impulse (Is) of propellant comprising DAAzF is the largest with propellant comprising CL-20 at the same mass fraction(w). The mean relative molecular mass(Mg) of propellants comprising furazans is about 29, the flame temperature in after-burning chamber(Tc) is about 2200K, and the values of (-M)g and Tc increase with increasing the mass fraction of furazans.%采用最小自由能法,研究了含呋咱衍生物的Al/Mg/HTPB/AP富燃料推进剂的能量性能,结果表明,随着呋咱衍生物含量的增加,富燃料推进剂比冲明显增加,其中含质量分数为25%的DAAzF(4,4'-二氨基-3,3'-偶氮呋咱)的富燃料推进剂比冲可达7 522.9 N·s·kg-1,比相同质量含量下含CL-20富燃料推进剂比冲高260N·s·kg-1.含呋咱衍生物富燃料推进剂气相平均相对分子质量((-M)g)约为29,补燃室火焰温度(Tc)约为2 200K,且二者随着呋咱衍生物含量增加而略有增加.

  5. Possible operation of the European XFEL with ultra-low emittance beams

    International Nuclear Information System (INIS)

    Recent successful lasing of the Linac Coherent Light Source (LCLS) in the hard x-ray regime and the experimental demonstration of a possibility to produce low-charge bunches with ultra-small normalized emittance have lead to the discussions on optimistic scenarios of operation of the European XFEL. In this paper we consider new options that make use of low-emittance beams, a relatively high beam energy, tunable-gap undulators, and a multibunch capability of this facility. We study the possibility of operation of a spontaneous radiator (combining two of them, U1 and U2, in one beamline) in the SASE mode in the designed photon energy range 20-90 keV and show that it becomes possible with ultra-low emittance electron beams similar to those generated in LCLS. As an additional attractive option we consider the generation of powerful soft X-ray and VUV radiation by the same electron bunch for pump-probe experiments, making use of recently invented compact afterburner scheme. We also propose a betatron switcher as a simple, cheap, and robust solution for multi-color operation of SASE1 and SASE2 undulators, allowing to generate 2 to 5 X-ray beams of different independent colors from each of these undulators for simultaneous multi-user operation. We describe a scheme for pump-probe experiments, based on a production of two different colors by two closely spaced electron bunches (produced in photoinjector) with the help of a very fast betatron switcher. Finally, we discuss how without significant modifications of the layout the European XFEL can become a unique facility that continuously covers with powerful, coherent radiation a part of the electromagnetic spectrum from far infrared to gamma-rays. (orig.)

  6. Remediation of a 115,000-gallon petroleum pipeline leak

    International Nuclear Information System (INIS)

    A rupture in a buried petroleum pipeline in June, 1988 released 115,000 gallons of diesel fuel, contaminating soil and ground water at a site in Milwaukee, Wisconsin. Emergency and interim response actions resulted in the recovery of over 70,000 gallons of product from the ground surface, a nearby creek, and recovery trenches. Based on the results of a contamination assessment, the most cost effective and technically feasible remedial alternative included low temperature thermal desorption for treatment of the impacted soils, and recovery of impacted ground water with discharge to a sanitary sewer. The implementation of the thermal desorption process was the first application of its type in the State of Wisconsin. Approximately 10,000 cubic yards of soil, with a total petroleum hydrocarbon (TPH) concentration of up to 24,000 parts per million (ppm), was treated at the site using the thermal desorption system. Using a feed rate of approximately 20 tons per hour, the impacted unconsolidated materials, varying in composition from gravelly sand to silty clay, were heated to 400 to 500 degrees F in a propane-fired rotary kiln. In the process, petroleum was vaporized off the soils and then completely oxidized at 1450 degrees F in an afterburner. After processing, the soil was replaced in the excavation with a TPH concentration of less than 10 ppm. Impacted ground water is still being treated at the site using a 225-foot long interception trench. An automated pumping system recovers slightly impacted ground water which is subsequently discharged to the sanitary sewer. Residual free product is collected from the water surface manually using oil skimming devices. Dissolved volatile organic compounds (VOCs) total less than 5 ppm; therefore no treatment is required prior to discharge to the sewer. Pending approval of a permit application, discharge will be to a nearby stream

  7. INVESTIGATION OF FUEL CHEMISTRY AND BED PERFORMANCE IN A FLUIDIZED BED BLACK LIQUOR STEAM REFORMER

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Whitty

    2003-12-01

    The University of Utah project ''Investigation of Fuel Chemistry and Bed Performance in a Fluidized Bed Black Liquor Steam Reformer'' (DOE award number DE-FC26-02NT41490) was developed in response to a solicitation for projects to provide technical support for black liquor and biomass gasification. The primary focus of the project is to provide support for a DOE-sponsored demonstration of MTCI's black liquor steam reforming technology at Georgia-Pacific's paper mill in Big Island, Virginia. A more overarching goal is to improve the understanding of phenomena that take place during low temperature black liquor gasification. This is achieved through five complementary technical tasks: (1) construction of a fluidized bed black liquor gasification test system, (2) investigation of bed performance, (3) evaluation of product gas quality, (4) black liquor conversion analysis and modeling and (5) computational modeling of the Big Island gasifier. Four experimental devices have been constructed under this project. The largest facility, which is the heart of the experimental effort, is a pressurized fluidized bed gasification test system. The system is designed to be able to reproduce conditions near the black liquor injectors in the Big Island steam reformer, so the behavior of black liquor pyrolysis and char gasification can be quantified in a representative environment. The gasification test system comprises five subsystems: steam generation and superheating, black liquor feed, fluidized bed reactor, afterburner for syngas combustion and a flue gas cooler/condenser. The three-story system is located at University of Utah's Industrial Combustion and Gasification Research Facility, and all resources there are available to support the research.

  8. Development of nuclear fuel cycle technologies - bases of long-term provision of fuel and environmental safety of nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Solonin, M.I.; Polyakov, A.S.; Zakharkin, B.S.; Smelov, V.S.; Nenarokomov, E.A.; Mukhin, I.V. [SSC, RF, A.A. Bochvar ALL-Russia Research Institute of Inorganic Materials, Moscow (Russian Federation)

    2000-07-01

    To-day nuclear power is one of the options, however, to-morrow it may become the main source of the energy, thus, providing for the stable economic development for the long time to come. The availability of the large-scale nuclear power in the foreseeable future is governed by not only the safe operation of nuclear power plants (NPP) but also by the environmentally safe management of spent nuclear fuel, radioactive waste conditioning and long-term storage. More emphasis is to be placed to the closing of the fuel cycle in view of substantial quantities of spent nuclear fuel arisings. The once-through fuel cycle that is cost effective at the moment cannot be considered to be environmentally safe even for the middle term since the substantial build-up of spent nuclear fuel containing thousands of tons Pu will require the resolution of the safe management problem in the nearest future and is absolutely unjustified in terms of moral ethics as a transfer of the responsibility to future generations. The minimization of radioactive waste arisings and its radioactivity is only feasible with the closed fuel cycle put into practice and some actinides and long-lived fission radionuclides burnt out. The key issues in providing the environmentally safe fuel cycle are efficient processes of producing fuel for NPP, radionuclide after-burning included, a long-term spent nuclear fuel storage and reprocessing as well as radioactive waste management. The paper deals with the problems inherent in producing fuel for NPP with a view for the closed fuel cycle. Also discussed are options of the fuel cycle, its effectiveness and environmental safety with improvements in technologies of spent nuclear fuel reprocessing and long-lived radionuclide partitioning. (authors)

  9. Recent developments of the MOA thruster, a high performance plasma accelerator for nuclear power and propulsion applications

    International Nuclear Information System (INIS)

    More than 60 years after the late Nobel laureate Hannes Alfven had published a letter stating that oscillating magnetic fields can accelerate ionised matter via magneto-hydrodynamic interactions in a wave like fashion, the technical implementation of Alfven waves for propulsive purposes has been proposed, patented and examined for the first time by a group of inventors. The name of the concept, utilising Alfven waves to accelerate ionised matter for propulsive purposes, is MOA -Magnetic field Oscillating Amplified thruster. Alfven waves are generated by making use of two coils, one being permanently powered and serving also as magnetic nozzle, the other one being switched on and off in a cyclic way, deforming the field lines of the overall system. It is this deformation that generates Alfven waves, which are in the next step used to transport and compress the propulsive medium, in theory leading to a propulsion system with a much higher performance than any other electric propulsion system. Based on computer simulations, which were conducted to get a first estimate on the performance of the system, MOA is a highly flexible propulsion system, whose performance parameters might easily be adapted, by changing the mass flow and/or the power level. As such the system is capable to deliver a maximum specific impulse of 13116 s (12.87 mN) at a power level of 11.16 kW, using Xe as propellant, but can also be attuned to provide a thrust of 236.5 mN (2411 s) at 6.15 kW of power. While space propulsion is expected to be the prime application for MOA and is supported by numerous applications such as Solar and/or Nuclear Electric Propulsion or even as an 'afterburner system' for Nuclear Thermal Propulsion, other terrestrial applications can be thought of as well, making the system highly suited for a common space-terrestrial application research and utilization strategy. This paper presents the recent developments of the MOA Thruster R and D activities at QASAR, the company in

  10. Ion acceleration from relativistic laser nano-target

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Daniel

    2012-01-06

    Laser-ion acceleration has been of particular interest over the last decade for fundamental as well as applied sciences. Remarkable progress has been made in realizing laser-driven accelerators that are cheap and very compact compared with conventional rf-accelerators. Proton and ion beams have been produced with particle energies of up to 50 MeV and several MeV/u, respectively, with outstanding properties in terms of transverse emittance and current. These beams typically exhibit an exponentially decaying energy distribution, but almost all advanced applications, such as oncology, proton imaging or fast ignition, require quasimonoenergetic beams with a low energy spread. The majority of the experiments investigated ion acceleration in the target normal sheath acceleration (TNSA) regime with comparably thick targets in the {mu}m range. In this thesis ion acceleration is investigated from nm-scaled targets, which are partially produced at the University of Munich with thickness as low as 3 nm. Experiments have been carried out at LANL's Trident high-power and high-contrast laser (80 J, 500 fs, {lambda}=1054 nm), where ion acceleration with these nano-targets occurs during the relativistic transparency of the target, in the so-called Breakout afterburner (BOA) regime. With a novel high resolution and high dispersion Thomson parabola and ion wide angle spectrometer, thickness dependencies of the ions angular distribution, particle number, average and maximum energy have been measured. Carbon C{sup 6+} energies reached 650 MeV and 1 GeV for unheated and heated targets, respectively, and proton energies peaked at 75 MeV and 120 MeV for diamond and CH{sub 2} targets. Experimental data is presented, where the conversion efficiency into carbon C{sup 6+} (protons) is investigated and found to have an up to 10fold (5fold) increase over the TNSA regime. With circularly polarized laser light, quasi-monoenergetic carbon ions have been generated from the same nm-scaled foil

  11. New photon science and extreme field physics: volumetric interaction of ultra-intense laser pulses with over-dense targets

    Energy Technology Data Exchange (ETDEWEB)

    Hegelich, Bjorn M [Los Alamos National Laboratory

    2010-11-24

    The constantly improving capabilities of ultra-high power lasers are enabling interactions of matter with ever extremer fields. As both the on target intensity and the laser contrast are increasing, new physics regimes are becoming accessible and new effects materialize, which in turn enable a host of applications. A first example is the realization of interactions in the transparent-overdense regime (TOR), which is reached by interacting a highly relativistic (a{sub 0} > 10), ultra high contrast laser pulse with a solid density, nanometer target. Here, a still overdense target is turned transparent to the laser by the relativistic mass increase of the electrons, increasing the skin depth beyond the target thickness and thus enabling volumetric interaction of the laser with the entire target instead of only a small interaction region at the critical density surface. This increases the energy coupling, enabling a range of effects, including relativistic optics and pulse shaping, mono-energetic electron acceleration, highly efficient ion acceleration in the break-out afterburner regime, the generation of relativistic and forward directed surface harmonics. In this talk we will show the theoretical framework for this regime, explored by multi-D, high resolution and high density PIC simulations as well as analytic theory and present measurements and experimental demonstrations of direct relativistic optics, relativistic HHG, electron acceleration, and BOA ion acceleration in the transparent overdense regime. These effects can in turn be used in a host of applications including laser pulse shaping, ICF diagnostics, coherent x-ray sources, and ion sources for fast ignition (IFI), homeland security applications and medical therapy. This host of applications already makes transparent-overdense regime one of general interest, a situation reinforced by the fact that the TOR target undergoes an extremely wide HEDP parameter space during interaction ranging from WDM conditions

  12. Numerical simulation of the unsteady heat-transfer in a turbine-rotor in consideration of hot-spot effects. Final report; AG-Turbo-Vorhaben 1.324: Numerische Simulation des instationaeren Waermeuebergangs an einem Turbinenrotor unter Einschluss von Heissstellen. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Nuernberger, D.

    2001-07-01

    In this research project the influence of hot-gas effects, so called hot-spots, to the thermal load of high pressure turbine rotors was investigated in. Generally the total process efficiency can massively be improved by an increase of the temperature level at turbine entrance. However the temperatures of modern gas turbines can only be realized by efficient cooling techniques of the turbine blade materials. Furthermore the turbine stages close to the combustion chamber are exposed to an additional thermal loading due to the so called hot-spots. These streaks of unburned fuel entering the first turbine passages can cause a dramatic increase of local temperature in their afterburning process. For an optimized thermal design a detailed knowledge of these hot-streaks and their interaction with the unsteady flow through the turbomachinery flow is necessary. With this research program time accurate numerical investigations were performed to analyze the interaction process between the occurring hot gases and the high loaded turbine rotors. The numerical simulations started with fundamental investigation of the hot-spot and heat transfer modeling. Based on these developements threedimensional time accurate simulations for a realistic high pressure turbine configuration were performed. Herein the unsteady mechanisms of the hot gases and their influence on the heat transfer of the blade material was analyzed. In total the hot-streaks lead to a massiv increase of the thermal loading mainly on the pressure sides. (orig.) [German] Im Rahmen dieses Forschungsvorhabens wurden der Einfluss von Heissgaseffekten, sogenannten Hot-Spots auf die thermische Belastung von Turbinenrotoren numerisch untersucht. Gemeinhin sind die sehr hohen Turbineneintrittstemperaturen, deren Erhoehung einen wesentlichen Beitrag zur Verbesserung des gesamten Prozesswirkungsgrades leisten, nur durch effektive Kuehlungsmassnahmen der Schaufelwerkstoffe realisierbar. Zudem erfahren diese unmittelbar dem

  13. Combustion instability and active control: Alternative fuels, augmentors, and modeling heat release

    Science.gov (United States)

    Park, Sammy Ace

    Experimental and analytical studies were conducted to explore thermo-acoustic coupling during the onset of combustion instability in various air-breathing combustor configurations. These include a laboratory-scale 200-kW dump combustor and a 100-kW augmentor featuring a v-gutter flame holder. They were used to simulate main combustion chambers and afterburners in aero engines, respectively. The three primary themes of this work includes: 1) modeling heat release fluctuations for stability analysis, 2) conducting active combustion control with alternative fuels, and 3) demonstrating practical active control for augmentor instability suppression. The phenomenon of combustion instabilities remains an unsolved problem in propulsion engines, mainly because of the difficulty in predicting the fluctuating component of heat release without extensive testing. A hybrid model was developed to describe both the temporal and spatial variations in dynamic heat release, using a separation of variables approach that requires only a limited amount of experimental data. The use of sinusoidal basis functions further reduced the amount of data required. When the mean heat release behavior is known, the only experimental data needed for detailed stability analysis is one instantaneous picture of heat release at the peak pressure phase. This model was successfully tested in the dump combustor experiments, reproducing the correct sign of the overall Rayleigh index as well as the remarkably accurate spatial distribution pattern of fluctuating heat release. Active combustion control was explored for fuel-flexible combustor operation using twelve different jet fuels including bio-synthetic and Fischer-Tropsch types. Analysis done using an actuated spray combustion model revealed that the combustion response times of these fuels were similar. Combined with experimental spray characterizations, this suggested that controller performance should remain effective with various alternative fuels

  14. Way to increase the user access at the LCLS baseline

    International Nuclear Information System (INIS)

    Although the LCLS photon beam is meant for a single user, the baseline undulator is long enough to serve two users simultaneously. To this end, we propose a setup composed of two simple elements: an X-ray mirror pair for X-ray beam deflection, and a short (4 m-long) magnetic chicane, which creates an offset for mirror pair installation in the middle of the baseline undulator. The insertable mirror pair can be used for spatial separation of the X-ray beams generated in the first and in the second half of the baseline undulator. The method of deactivating one half and activating another half of the undulator is based on the rapid switching of the FEL amplification process. As proposed elsewhere, using a kicker installed upstream of the LCLS baseline undulator and an already existing corrector in the first half of the undulator, it is possible to rapidly switch the X-ray beam from one user to another, thus providing two active beamlines at any time. We present simulation results dealing with the LCLS baseline, and show that it is possible to generate two saturated SASE X-ray beams in the whole 0.8-8 keV photon energy range in the same baseline undulator. These can be exploited to serve two users. Implementation of the proposed technique does not perturb the baseline mode of operation of the LCLS undulator. Moreover, the magnetic chicane setup is very flexible, and can be used as a self-seeding setup too. We present simulation results for the LCLS baseline undulator with SHAB (second harmonic afterburner) and show that one can produce monochromatic radiation at the 2nd harmonic as well as at the 1st. We describe an efficient way for obtaining multi-user operation at the LCLS hard X-ray FEL. To this end, a photon beam distribution system based on the use of crystals in the Bragg reflection geometry is proposed. The reflectivity of crystal deflectors can be switched fast enough by flipping the crystals with piezoelectric devices similar to those for X-ray phase retarders

  15. Nuclear Thermal Rocket (Ntr) Propulsion: A Proven Game-Changing Technology for Future Human Exploration Missions

    Science.gov (United States)

    Borowski, Stanley K.; McCurdy, David R.; Packard, Thomas W.

    2012-01-01

    The NTR represents the next evolutionary step in high performance rocket propulsion. It generates high thrust and has a specific impulse (Isp) of approx.900 seconds (s) or more V twice that of today s best chemical rockets. The technology is also proven. During the previous Rover and NERVA (Nuclear Engine for Rocket Vehicle Applications) nuclear rocket programs, 20 rocket reactors were designed, built and ground tested. These tests demonstrated: (1) a wide range of thrust; (2) high temperature carbide-based nuclear fuel; (3) sustained engine operation; (4) accumulated lifetime; and (5) restart capability V all the requirements needed for a human mission to Mars. Ceramic metal cermet fuel was also pursued, as a backup option. The NTR also has significant growth and evolution potential. Configured as a bimodal system, it can generate electrical power for the spacecraft. Adding an oxygen afterburner nozzle introduces a variable thrust and Isp capability and allows bipropellant operation. In NASA s recent Mars Design Reference Architecture (DRA) 5.0 study, the NTR was selected as the preferred propulsion option because of its proven technology, higher performance, lower launch mass, simple assembly and mission operations. In contrast to other advanced propulsion options, NTP requires no large technology scale-ups. In fact, the smallest engine tested during the Rover program V the 25,000 lbf (25 klbf) Pewee engine is sufficient for human Mars missions when used in a clustered engine arrangement. The Copernicus crewed spacecraft design developed in DRA 5.0 has significant capability and a human exploration strategy is outlined here that uses Copernicus and its key components for precursor near Earth asteroid (NEA) and Mars orbital missions prior to a Mars landing mission. Initially, the basic Copernicus vehicle can enable reusable 1-year round trip human missions to candidate NEAs like 1991 JW and Apophis in the late 2020 s to check out vehicle systems. Afterwards, the

  16. Nuclear Thermal Propulsion (NTP): A Proven Growth Technology for Human NEO/Mars Exploration Missions

    Science.gov (United States)

    Borowski, Stanley K.; McCurdy, David R.; Packard, Thomas W.

    2012-01-01

    The nuclear thermal rocket (NTR) represents the next "evolutionary step" in high performance rocket propulsion. Unlike conventional chemical rockets that produce their energy through combustion, the NTR derives its energy from fission of Uranium-235 atoms contained within fuel elements that comprise the engine s reactor core. Using an "expander" cycle for turbopump drive power, hydrogen propellant is raised to a high pressure and pumped through coolant channels in the fuel elements where it is superheated then expanded out a supersonic nozzle to generate high thrust. By using hydrogen for both the reactor coolant and propellant, the NTR can achieve specific impulse (Isp) values of 900 seconds (s) or more - twice that of today s best chemical rockets. From 1955 - 1972, twenty rocket reactors were designed, built and ground tested in the Rover and NERVA (Nuclear Engine for Rocket Vehicle Applications) programs. These programs demonstrated: (1) high temperature carbide-based nuclear fuels; (2) a wide range of thrust levels; (3) sustained engine operation; (4) accumulated lifetime at full power; and (5) restart capability - all the requirements needed for a human Mars mission. Ceramic metal "cermet" fuel was pursued as well, as a backup option. The NTR also has significant "evolution and growth" capability. Configured as a "bimodal" system, it can generate its own electrical power to support spacecraft operational needs. Adding an oxygen "afterburner" nozzle introduces a variable thrust and Isp capability and allows bipropellant operation. In NASA s recent Mars Design Reference Architecture (DRA) 5.0 study, the NTR was selected as the preferred propulsion option because of its proven technology, higher performance, lower launch mass, versatile vehicle design, simple assembly, and growth potential. In contrast to other advanced propulsion options, no large technology scale-ups are required for NTP either. In fact, the smallest engine tested during the Rover program

  17. Ion acceleration from relativistic laser nano-target interaction

    International Nuclear Information System (INIS)

    Laser-ion acceleration has been of particular interest over the last decade for fundamental as well as applied sciences. Remarkable progress has been made in realizing laser-driven accelerators that are cheap and very compact compared with conventional rf-accelerators. Proton and ion beams have been produced with particle energies of up to 50 MeV and several MeV/u, respectively, with outstanding properties in terms of transverse emittance and current. These beams typically exhibit an exponentially decaying energy distribution, but almost all advanced applications, such as oncology, proton imaging or fast ignition, require quasimonoenergetic beams with a low energy spread. The majority of the experiments investigated ion acceleration in the target normal sheath acceleration (TNSA) regime with comparably thick targets in the μm range. In this thesis ion acceleration is investigated from nm-scaled targets, which are partially produced at the University of Munich with thickness as low as 3 nm. Experiments have been carried out at LANL's Trident high-power and high-contrast laser (80 J, 500 fs, λ=1054 nm), where ion acceleration with these nano-targets occurs during the relativistic transparency of the target, in the so-called Breakout afterburner (BOA) regime. With a novel high resolution and high dispersion Thomson parabola and ion wide angle spectrometer, thickness dependencies of the ions angular distribution, particle number, average and maximum energy have been measured. Carbon C6+ energies reached 650 MeV and 1 GeV for unheated and heated targets, respectively, and proton energies peaked at 75 MeV and 120 MeV for diamond and CH2 targets. Experimental data is presented, where the conversion efficiency into carbon C6+ (protons) is investigated and found to have an up to 10fold (5fold) increase over the TNSA regime. With circularly polarized laser light, quasi-monoenergetic carbon ions have been generated from the same nm-scaled foil targets at Trident with an

  18. Clinical study of stability of micro implant used as orthodontic anchorage%正畸微型种植体的临床应用研究

    Institute of Scientific and Technical Information of China (English)

    招惠珍; 殷慧; 黄纪美

    2012-01-01

    目的 微型种植体承受正畸力后的稳定性研究.方法 回顾2008年3月至2011年3月在佛山市禅城区中心医院口腔科确诊的安氏Ⅱ类错颌畸形患者26例,在上颌第二前磨牙与第一磨前牙之间的牙槽骨上植入微型种植体,用以支抗内收的上前牙.并于植入种植体后2周、6个月时摄X线头颅定位侧位片,比较加力前后变化,测量微型种植体的移位情况.结果 6个月后水平位移约为0.5mm,垂直位移平均约为0.4mm,与植入时相比具有统计学意义(P<0.05),其中微型种植体伸长者7例,占26.9%.结论 微型种植体是一种相对稳定的支抗,在承受正畸力后,会出现位置移动以及自体伸长,所以在微型种植体植入时要注意避开血管、神经丰富的区域,植入后要定期复诊.%Objective To study the stability of micro implant anchorage after orthodontic force. Methods Totally 26 patients with micro implants as the maxillary anchorage from March 2008 to March 2011 to in our hospital were included in this study. Micro implants were inserted on the maxillary alveolar between the second premolar and the first molar as a direct anchorage for anterior teeth retraction. And at 2 weeks after implant placement, 6 months, X ray skull lateral positioning, comparing changes before and after the afterburner, measuring micro - implant shifting. Results After 6 months the horizontal displacement of approximately 0. 5 mm, the average vertical displacement of approximately 0. 4mm, with statistically significant when compared to implants (P < 0. 05 ) , which mini - implant elongation in 7 cases, 26.9%. Conclusions Micro implants is a relatively stable anchorage to withstand orthodontic force, the position will be mobile and self - body stretch, so the mini - implant should pay attention to avoid the blood vessels, nerve - rich are-a, regular follow - up after implantation.

  19. Comparaison de la performance environnementale de la production thermique d'electricite avec et sans sequestration geologique du dioxyde de carbone

    Science.gov (United States)

    Bellerive, Nathalie

    The research project hypothesis is that CO2 capture and sequestration technologies (CSC) leads to a significant decrease in global warming, but increases the impact of all other aspects of the study. This is because other processes used for CO2 capture and sequestration require additional quantities of raw materials and energy. Two other objectives are described in this project. The first is the modeling of an Integrated Gasification Combined Cycle power plant for which there is no known generic data. The second is to select the right hypothesis regarding electrical production technologies, CO2 capture, compression and transportation by pipeline and finally sequestration. "Life Cycle Assessment" (LCA) analyses were chosen for this research project. LCA is an exhaustive quantitative method used to evaluate potential environmental impacts associated with a product, a service or an activity from resource extraction to waste elimination. This tool is governed by ISO 14 040 through ISO 14 049 and is sustained by the Society of Environmental Toxicology and Chemistry (SETAC) and the United Nations Environment Program (UNEP). Two power plants were studied, the Integrated Gasification Combined Cycle (IGCC) power plant and the Natural Gas Combined Cycle (NGCC) power plant. In order to sequester CO2 in geological formation, it is necessary to extract CO2from emission flows. For the IGCC power plant, CO 2 was captured before the burning phase. For the NGCC power plant, the capture was done during the afterburning phase. Once the CO2 was isolated, it was compressed and directed through a transportation pipe 1 000 km in length on the ground surface and in the sea. It is hypothesized that the power plant is 300 km from the shore and the sequestration platform 700 km from France's shore, in the North Sea. The IGCC power plant modeling and data selection regarding CO2 capture and sequestration were done by using primary data from the industry and the Ecoinvent generic database

  20. 水/一氧化二氮组合式SteamJet发动机性能研究%Research on Performance of SteamJet with Water/Nitrous Oxide

    Institute of Scientific and Technical Information of China (English)

    王永文; 陈玉春; 周新新; 李舶; 徐杰

    2012-01-01

    为研究水/一氧化二氮组合式射流预冷却涡轮(SteamJet)发动机性能,在建立了射流预冷却的热交换系统计算、物性修正计算、发动机部件特性修正计算和含一氧化二氮的燃烧室计算的数学模型的基础上,建立了基于双轴混排加力式涡扇发动机的水/一氧化二氮组合式SteamJet发动机性能计算模型。在最大加力状态控制规律下,计算分析了SteamJet发动机在水与一氧化二氮不同配比下沿飞行轨道的特性,以及水/一氧化二氮组合式SteamJet发动机的高度速度特性;计算分析了进气系统特性对SteamJet发动机特性的影响。结果表明:与单喷水预冷却的SteamJet发动机相比,水/一氧化二氮组合式SteamJet发动机具有更好的燃烧稳定性和推力特性,能够满足高超声速飞行的需求。%For studying the turbine engine performance of SteamJet with Water/Nitrous Oxide,the mathematical models of the water injection precooling device,the corrected method of physical property,the engine component characteristics computation,and the model of combustion chamber with Nitrous Oxide are built.Based on the models above,the computation model of SteamJet with Water/Nitrous Oxide on basis of the two-spool mix-exhausted turbofan engine with afterburner is built.On the law of the maximum power of SteamJet,the engine characteristics of SteamJet with different proportion of Water/Nitrous Oxide when following flight-trace are calculated.The altitude and velocity characteristics of SteamJet with Water/Nitrous Oxide,and the effect of the inlet characteristics on the engine characteristics are calculated and analyzed as well.Compared with SteamJet without injected oxidizer,SteamJet with injected Water/Nitrous Oxide is of better combustion stability and thrust characteristics,and it can meet the needs of hypersonic flight.

  1. Russian Tu-144LL SST Flying Laboratory Landing at Zhukovsky Air Development Center

    Science.gov (United States)

    1997-01-01

    were proposed for the program and eight were selected, including six flight and two ground (engine) tests. The flight experiments included studies of the aircraft's exterior surface, internal structure, engine temperatures, boundary-layer airflow, the wing's ground-effect characteristics, interior and exterior noise, handling qualities in various flight profiles, and in-flight structural flexibility. The ground tests studied the effect of air inlet structures on airflow entering the engine and the effect on engine performance when supersonic shock waves rapidly change position in the engine air inlet. A second phase of testing further studied the original six in-flight experiments with additional instrumentation installed to assist in data acquisition and analysis. A new experiment aimed at measuring the in-flight deflections of the wing and fuselage was also conducted. American-supplied transducers and sensors were installed to measure nose boom pressures, angle of attack, and sideslip angles with increased accuracy. Two NASA pilots, Robert Rivers of Langley Research Center, Hampton, Virginia, and Gordon Fullerton from Dryden Flight Research Center, Edwards, California, assessed the aircraft's handling at subsonic and supersonic speeds during three flight tests in September 1998. The program concluded after four more data-collection flights in the spring of 1999. The Tu-144LL model had new Kuznetsov NK-321 turbofan engines rated at more than 55,000 pounds of thrust in full afterburner. The aircraft is 215 feet, 6 inches long and 42 feet, 2 inches high with a wingspan of 94 feet, 6 inches. The aircraft is constructed mostly of light aluminum alloy with titanium and stainless steel on the leading edges, elevons, rudder, and the under-surface of the rear fuselage.

  2. Russian Tu-144LL SST Flying Laboratory Takeoff at Zhukovsky Air Development Center

    Science.gov (United States)

    1997-01-01

    -model aircraft. Fifty experiments were proposed for the program and eight were selected, including six flight and two ground (engine) tests. The flight experiments included studies of the aircraft's exterior surface, internal structure, engine temperatures, boundary-layer airflow, the wing's ground-effect characteristics, interior and exterior noise, handling qualities in various flight profiles, and in-flight structural flexibility. The ground tests studied the effect of air inlet structures on airflow entering the engine and the effect on engine performance when supersonic shock waves rapidly change position in the engine air inlet. A second phase of testing further studied the original six in-flight experiments with additional instrumentation installed to assist in data acquisition and analysis. A new experiment aimed at measuring the in-flight deflections of the wing and fuselage was also conducted. American-supplied transducers and sensors were installed to measure nose boom pressures, angle of attack, and sideslip angles with increased accuracy. Two NASA pilots, Robert Rivers of Langley Research Center, Hampton, Virginia, and Gordon Fullerton from Dryden Flight Research Center, Edwards, California, assessed the aircraft's handling at subsonic and supersonic speeds during three flight tests in September 1998. The program concluded after four more data-collection flights in the spring of 1999. The Tu-144LL model had new Kuznetsov NK-321 turbofan engines rated at more than 55,000 pounds of thrust in full afterburner. The aircraft is 215 feet, 6 inches long and 42 feet, 2 inches high with a wingspan of 94 feet, 6 inches. The aircraft is constructed mostly of light aluminum alloy with titanium and stainless steel on the leading edges, elevons, rudder, and the under-surface of the rear fuselage.

  3. Tu-144LL SST Flying Laboratory on Taxiway at Zhukovsky Air Development Center near Moscow, Russia

    Science.gov (United States)

    1998-01-01

    for the program and eight were selected, including six flight and two ground (engine) tests. The flight experiments included studies of the aircraft's exterior surface, internal structure, engine temperatures, boundary-layer airflow, the wing's ground-effect characteristics, interior and exterior noise, handling qualities in various flight profiles, and in-flight structural flexibility. The ground tests studied the effect of air inlet structures on airflow entering the engine and the effect on engine performance when supersonic shock waves rapidly change position in the engine air inlet. A second phase of testing further studied the original six in-flight experiments with additional instrumentation installed to assist in data acquisition and analysis. A new experiment aimed at measuring the in-flight deflections of the wing and fuselage was also conducted. American-supplied transducers and sensors were installed to measure nose boom pressures, angle of attack, and sideslip angles with increased accuracy. Two NASA pilots, Robert Rivers of Langley Research Center, Hampton, Virginia, and Gordon Fullerton from Dryden Flight Research Center, Edwards, California, assessed the aircraft's handling at subsonic and supersonic speeds during three flight tests in September 1998. The program concluded after four more data-collection flights in the spring of 1999. The Tu-144LL model had new Kuznetsov NK-321 turbofan engines rated at more than 55,000 pounds of thrust in full afterburner. The aircraft is 215 feet, 6 inches long and 42 feet, 2 inches high with a wingspan of 94 feet, 6 inches. The aircraft is constructed mostly of light aluminum alloy with titanium and stainless steel on the leading edges, elevons, rudder, and the under-surface of the rear fuselage.

  4. Tu-144LL SST Flying Laboratory Landing on Runway at Zhukovsky Air Development Center near Moscow, Ru

    Science.gov (United States)

    1998-01-01

    were proposed for the program and eight were selected, including six flight and two ground (engine) tests. The flight experiments included studies of the aircraft's exterior surface, internal structure, engine temperatures, boundary-layer airflow, the wing's ground-effect characteristics, interior and exterior noise, handling qualities in various flight profiles, and in-flight structural flexibility. The ground tests studied the effect of air inlet structures on airflow entering the engine and the effect on engine performance when supersonic shock waves rapidly change position in the engine air inlet. A second phase of testing further studied the original six in-flight experiments with additional instrumentation installed to assist in data acquisition and analysis. A new experiment aimed at measuring the in-flight deflections of the wing and fuselage was also conducted. American-supplied transducers and sensors were installed to measure nose boom pressures, angle of attack, and sideslip angles with increased accuracy. Two NASA pilots, Robert Rivers of Langley Research Center, Hampton, Virginia, and Gordon Fullerton from Dryden Flight Research Center, Edwards, California, assessed the aircraft's handling at subsonic and supersonic speeds during three flight tests in September 1998. The program concluded after four more data-collection flights in the spring of 1999. The Tu-144LL model had new Kuznetsov NK-321 turbofan engines rated at more than 55,000 pounds of thrust in full afterburner. The aircraft is 215 feet, 6 inches long and 42 feet, 2 inches high with a wingspan of 94 feet, 6 inches. The aircraft is constructed mostly of light aluminum alloy with titanium and stainless steel on the leading edges, elevons, rudder, and the under-surface of the rear fuselage.

  5. Russian Tu-144LL SST Flying Laboratory Landing with Drag Chutes at Zhukovsky Air Development Center

    Science.gov (United States)

    1997-01-01

    in production-model aircraft. Fifty experiments were proposed for the program and eight were selected, including six flight and two ground (engine) tests. The flight experiments included studies of the aircraft's exterior surface, internal structure, engine temperatures, boundary-layer airflow, the wing's ground-effect characteristics, interior and exterior noise, handling qualities in various flight profiles, and in-flight structural flexibility. The ground tests studied the effect of air inlet structures on airflow entering the engine and the effect on engine performance when supersonic shock waves rapidly change position in the engine air inlet. A second phase of testing further studied the original six in-flight experiments with additional instrumentation installed to assist in data acquisition and analysis. A new experiment aimed at measuring the in-flight deflections of the wing and fuselage was also conducted. American-supplied transducers and sensors were installed to measure nose boom pressures, angle of attack, and sideslip angles with increased accuracy. Two NASA pilots, Robert Rivers of Langley Research Center, Hampton, Virginia, and Gordon Fullerton from Dryden Flight Research Center, Edwards, California, assessed the aircraft's handling at subsonic and supersonic speeds during three flight tests in September 1998. The program concluded after four more data-collection flights in the spring of 1999. The Tu-144LL model had new Kuznetsov NK-321 turbofan engines rated at more than 55,000 pounds of thrust in full afterburner. The aircraft is 215 feet, 6 inches long and 42 feet, 2 inches high with a wingspan of 94 feet, 6 inches. The aircraft is constructed mostly of light aluminum alloy with titanium and stainless steel on the leading edges, elevons, rudder, and the under-surface of the rear fuselage.

  6. Source, Managemnt and Quantification of Unintentional POPs (PCDDD/Fs) in Nepal

    Science.gov (United States)

    Charitra Sah, Ram

    2010-05-01

    production, power generation and cooking using biomass, production of mineral products, transportation, uncontrolled combustion processes production of chemicals and consumer goods, disposal and land filling and miscellaneous. However, it does not account all the sources of the unintentional POPs emission. There are increasing amount of PCDD/Fs emission from other unidentified and/or under estimate sources. An another estimates just for medical waste incineration amount to be 57.37 g TEQ / year based on the current rate of medical waste generation, incineration proportion and considering small box-type batch incinerator with no afterburner as it is mostly adopted in all individual health care institutions. Toward management of POPs, earlier government is not found to be serious as there is still provision of waste incineration in its waste management guidelines including medical waste and has also given Environment Impact Assessment (EIA) clearance to some of the project with waste incineration components. It is important to make the highlight here that the waste incinerator no matter of its art of standards is the indentified major source of unintentional POPs such as PCDD/Fs the known human carcinogen. However, in the recent years, there was increasing concerned of the government as it has come up with the National Implementation Plan (NIP) for Stockholm Convention on Persistent Organic Pollutants with clear identification, prioritization as well as developed program of action linked with monitoring and reporting mechanism. Some of the recent development projects with FAO and GTZ towards realization of the few prioritized plan of action about the sound management of obsolete pesticides including POPs can be considered as remarkable positive progress towards overall development in this field which upon successful implementation will help to improve the country situation. Key words: unintentional POPs, source, management

  7. MOA2—an R&D paradigm buster enabling space propulsion by commercial applications

    Science.gov (United States)

    Frischauf, Norbert; Hettmer, Manfred; Koudelka, Otto; Löb, Horst

    2012-04-01

    More than 60 years after the late Nobel laureate Hannes Alfvén had published a letter stating that oscillating magnetic fields can accelerate ionised matter via magneto-hydrodynamic interactions in a wave like fashion, the technical implementation of Alfvén waves for propulsive purposes has been proposed, patented and examined for the first time by a group of inventors. Consequently improved since then, the name of the latest concept, relying on magneto-acoustic waves to accelerate electric conductive matter, is MOA2—Magnetic field Oscillating Amplified Accelerator. Based on computer simulations, which were undertaken to get a first estimate on the performance of the system, MOA2 is a corrosion free and highly flexible propulsion system, whose performance parameters might easily be adapted in operation, by changing the mass flow and/or the power level. As such the system is capable of delivering a maximum specific impulse of 13116 s (12.87 mN) at a power level of 11.16 kW, using Xe as propellant, but can also be attuned to provide a thrust of 236.5 mN (2411 s) at 6.15 kW of power. First tests—that are further described in this paper—have been conducted successfully with a 400 W prototype system at an ambient pressure of 0.20 Pa, delivered 9.24 mN of thrust at 1472 s ISP, thereby underlining the feasibility of the concept. Based on these results, space propulsion is expected to be a prime application for MOA2—a claim that is supported by numerous applications such as Solar and/or Nuclear Electric Propulsion or even as an 'afterburner system' for Nuclear Thermal Propulsion. However, MOA2 has so far seen most of its R&D impetus from terrestrial applications, like coating, semiconductor implantation and manufacturing as well as steel cutting. Based on this observation, MOA2 resembles an R&D paradigm buster, as it is the first space propulsion system, whose R&D is driven primarily by its terrestrial applications. Different terrestrial applications exist, but

  8. Breakup characteristics of a liquid jet in subsonic crossflow

    Science.gov (United States)

    Gopala, Yogish

    This thesis describes an experimental investigation of the breakup processes involved in the formation of a spray created by a liquid jet injected into a gaseous crossflow. This work is motivated by the utilization of this method to inject fuel in combustors and afterburners of airplane engines. This study aims to develop a better understanding of the spray breakup processes and to provide better experimental inputs to improve the fidelity of numerical models. A review of the literature in this field identified the fundamental physical processes involved in the breakup of the spray and the dependence of spray properties on operating conditions. The time taken for the liquid column to break up into ligaments and droplets, the primary breakup time and the effect of injector geometry on the spray formation processes and spray properties as the key research areas in which research done so far has been inadequate. Determination of the location where the liquid column broke up was made difficult by the presence of a large number of droplets surrounding it. This study utilizes the liquid jet light guiding technique that enables accurate measurements of this location for a wide range of operating conditions. Prior to this study, the primary breakup time was thought to be a function the density ratio of the liquid and the gas, the diameter of the orifice and the air velocity. This study found that the time to breakup of the liquid column depends on the Reynolds number of the liquid jet. This suggests that the breakup of a turbulent liquid jet is influenced by both the aerodynamic breakup processes and the turbulent breakup processes. Observations of the phenomenon of the liquid jet splitting up into two or more jets were made at some operating conditions with the aid of the new visualization technique. Finally, this thesis investigates the effect of injector geometry on spray characteristics. One injector was a round edged orifice with a length to diameter ratio of 1 and a

  9. 设置富氨蒸气回热器的固体氧化物燃料电池/燃气轮机/卡琳娜联合循环系统的热力性能分析%Thermodynamic Analysis of SOFC/GT/KCS Integrated Power Generation System With Reheater of Concentrated Ammonia Vapor

    Institute of Scientific and Technical Information of China (English)

    岳秀艳; 韩吉田; 于泽庭; 岳炜莉

    2014-01-01

    ABSTRACT:A newsolid oxide fuel cell/gas turbine/ Kalina cycle system (SOFC/GT/KCS) integrated power generation system was proposed. The new system was simulated by using the EES software based on the developed mathematical models, and the system performance was evaluated by the first and second laws of thermodynamics.The parametric study was also conducted to investigate the influenceof the main parameters, such as the flowrate, thefuel utilization factor, thecompressor pressure ratio and the steam-to-carbon ratio on the system performance in detail. The results indicate thattheSOFC electrical, the system overall electricaland the exergy efficiencies reach about 49.2%,67.6% and68.16%, respectively, underthe ratedconditions. It is also found that the largest exergy loss occurs in the waste heat boiler followed by the SOFC, the gas turbine, the HR3, and the after-burner in the system. In addition,there is an optimalfuel utilizationfactor (0.85)to reachthe maximum overall electrical, exergy and the SOFC electrical efficiencies. And the overall electrical and exergy efficiencies can be improved by decreasing the air flow rate, fuel flow rate, andthe steam-to-carbon ratio within the range of parameters studied.%提出了一种新的SOFC/GT/KCS联合循环发电系统,建立了该系统热力性能的数学模型,根据热力学第一定律和第二定律,利用EES软件仿真模拟对系统进行了能量分析、㶲分析,并研究了空气流率、燃料利用率、燃料流率、压气机压比、水蒸气碳比的变化对联合循环热力性能的影响。研究结果表明,在设定工况下,SOFC的发电效率为49.2%,系统总发电效率为67.6%,系统总火用效率为68.16%;系统的各部件中,火用损失较大的部件依次为SOFC、后燃烧室、燃气轮机、预热器3和余热锅炉;当燃料利用率为0.85时联合循环系统的性能最佳;在一定范围内,随着空气流率、燃料流率或水蒸汽碳比的增加

  10. 烧伤后不同类型胶原在增生性瘢痕发生中的作用研究%The function of different collogens in hypertrophic scars

    Institute of Scientific and Technical Information of China (English)

    刘策励; 赵雄飞; 黎鳌; 李世荣

    2001-01-01

    Objective The aim of this study was toinvestigate the dynamic changes of collagen Ⅰ and Ⅲ in the formation of hypertrophic scar afterbum. Method The sirius red and polarizationmicroscopy was used to detected the collagen Ⅰ and Ⅲ fibers in scar tissues in vary periods. Radial immunology assay methods were used to evaluatethe contents of procollagen Ⅰ and Ⅲ in vary periodsin HS tissue. Result Collagen Ⅲ fiber is the main collagen in normalskin. There were no collagen fibers been found in granulation tissue. Collagen Ⅰ increased significantly in scar tissue 1 month after burn, increased much more in 3 months than in 1 month. The collagen were nearly thick collagen Iin HS tissue 1.5 year afterburn and only a little collagen Ⅲ were found. The RIA result showed that the ratio of procollagen Ⅰ/Ⅲ were increased gradually but the contents of collagen Ⅲ were much higher than normal skin. Conclusion In the process of HS forming after burn collagen Ⅰ increase and collagen Ⅲ decrease gradually and at last the collagens in HS were almost collagen Ⅰ. The zchanges of procollagcn can not reflect the changes of collagen fibers.%目的观察烧伤后瘢痕形成过程中Ⅰ、Ⅲ型胶原纤维的动态变化。方法采用苦味酸天狼猩红染色法对不同时期的瘢痕组织进行Ⅰ、Ⅲ型胶原纤维观察,RIA法对瘢痕组织中的Ⅰ、Ⅲ型前胶原进行检测。结果偏光观察正常皮肤中以Ⅲ型纤维为主,1月以后Ⅰ型纤维明显增加,1年以后的瘢痕组织中几乎全部为粗大的Ⅰ型纤维,极少Ⅲ型纤维。放免结果:Ⅰ/Ⅲ型前胶原比例逐渐增加,但Ⅲ型前胶原的含量仍然较高;晚期瘢痕中Ⅰ、Ⅲ型前胶原含量均显著降低。结论烧伤后瘢痕形成过程中Ⅰ型胶原逐渐增加,Ⅲ型胶原逐渐减少,后期几乎完全为Ⅰ型胶原纤维取代,前胶原的变化与胶原纤维的变化不吻合,不能反映胶原纤维的实际情况。

  11. Dynamic modelling and characterisation of a solid oxide fuel cell integrated in a gas turbine cycle

    Energy Technology Data Exchange (ETDEWEB)

    Thorud, Bjoern

    2005-07-01

    This thesis focuses on three main areas within the field of SOFC/GT-technology: 1) Development of a dynamic SOFC/GT model. 2) Model calibration and sensitivity study. 3) Assessment of the dynamic properties of a SOFC/GT power plant. The SOFC/GT model developed in this thesis describes a pressurised tubular Siemens Westinghouse-type SOFC, which is integrated in a gas turbine cycle. The process further includes a plate-fin recuperator for stack air preheating, a prereformer, an anode exhaust gas recycling loop for steam/carbon-ratio control, an afterburner and a shell-tube heat exchanger for air preheating. The fuel cell tube, the recuperator and the shell-tube heat exchanger are spatially distributed models. The SOFC model is further thermally integrated with the prereformer. The compressor and turbine models are based on performance maps as a general representation of the characteristics. In addition, a shaft model which incorporates moment of inertia is included to account for gas turbine transients. The SOFC model is calibrated against experimentally obtained data from a single-cell experiment performed on a Siemens Westinghouse tubular SOFC. The agreement between the model and the experimental results is good. The sensitivity study revealed that the degree of prereforming is of great importance with respect to the axial temperature distribution of the fuel cell. Types of malfunctions are discussed prior to the dynamic behaviour study. The dynamic study of the SOFC/GT process is performed by simulating small and large load changes according to three different strategies; 1) Load change at constant mean fuel cell temperature. 2) Load change at constant turbine inlet temperature. 3) Load change at constant shaft speed. Of these three strategies, the constant mean fuel cell temperature strategy appears to be the most rapid load change method. Furthermore, this strategy implies the lowest degree of thermal cycling, the smoothest fuel cell temperature distribution and

  12. A Collaborative Analysis Tool for Integrated Hypersonic Aerodynamics, Thermal Protection Systems, and RBCC Engine Performance for Single Stage to Orbit Vehicles

    Science.gov (United States)

    Stanley, Thomas Troy; Alexander, Reginald; Landrum, Brian

    2000-01-01

    the process may be repeated altering the trajectory or some other input to reduce the TPS mass. E-PSURBCC is an "engine performance" model and requires the specification of inlet air static temperature and pressure as well as Mach number (which it pulls from the HYFIM and POST trajectory files), and calculates the corresponding stagnation properties. The engine air flow path geometry includes inlet, a constant area section where the rocket is positioned, a subsonic diffuser, a constant area afterburner, and either a converging nozzle or a converging-diverging nozzle. The current capabilities of E-PSURBCC ejector and ramjet mode treatment indicated that various complex flow phenomena including multiple choking and internal shocks can occur for combinations of geometry/flow conditions. For a given input deck defining geometry/flow conditions, the program first goes through a series of checks to establish whether the input parameters are sound in terms of a solution path. If the vehicle/engine performance fails mission goals, the engineer is able to collaboratively alter the vehicle moldline to change aerodynamics, or trajectory, or some other input to achieve orbit. The problem described is an example of the need for collaborative design and analysis. RECIPE is a cross-platform application capable of hosting a number of engineers and designers across the Internet for distributed and collaborative engineering environments. Such integrated system design environments allow for collaborative team design analysis for performing individual or reduced team studies. To facilitate the larger number of potential runs that may need to be made, RECIPE connects the computer codes that calculate the trajectory data, aerodynamic data based on vehicle geometry, heat rate data, TPS masses, and vehicle and engine performance, so that the output from each tool is easily transferred to the model input files that need it.

  13. Current Ground Test Options for Nuclear Thermal Propulsion (NTP)

    Science.gov (United States)

    Gerrish, Harold P., Jr.

    2014-01-01

    (approximately 1 GW) with a maximum burn time of 1 hour. The concept utilized lessons learned from NF-1. The strategy breaks down the exhaust into parallel paths to allow flexibility with engine size and mass flow of exhaust. Similar to NF-1, the exhaust is slowed down, cooled, filtered of particulates, filtered of noble gases, and then the clean hydrogen is flared to open air. Another concept proposed by Steve Howe (currently Director of the Center for Space Nuclear Research) to simplify the NTP exhaust filtering is to run the hydrogen exhaust into boreholes underground to filter the exhaust. The two borehole site locations proposed are at the NTS and at the Idaho National Laboratory (INL). At NTS, the boreholes are 8' diameter and 1200' deep. The permeability of hydrogen through the soil and its buoyancy will allow it to rise up through the soil and allow the filtering of noble gases and radioactive particulates. The exhaust needs to be cooled to 600C before entering the borehole to avoid soil glazing. Preliminary analysis shows a small buildup of back pressure with time which depends on permeability. Noble gases entering the borehole walls deep can take a long time before reaching the surface. Other factors affecting permeability include borehole pressure, water saturation, and turbulence. Also, a possible need to pump out contaminated water collected at the bottom of the borehole. At INL, the borehole concept is slightly different. The underground borehole has openings to the soil at special depths which have impermeable interbeds above the water table and below the surface to allow the exhaust to travel horizontal between the impermeable layers. Preliminary results indicate better permeability than at NTS. The last option is total containment of the exhaust during the test run. The concept involves slowing down the flow to subsonic in a water cooled diffuser. The hydrogen is burned off in an oxygen rich afterburner with the only products being steam, oxygen, and some noble

  14. 硒化壳聚糖促创面愈合作用的体内研究%Effect of Selenium chitosan on wound healing in vivo

    Institute of Scientific and Technical Information of China (English)

    邓守恒; 柯贤柱; 杨敬宁; 李芳; 喻雄杰; 陈萍

    2012-01-01

    markly lower than those in ground substance group at 12h and 1d afterburn (P<0.05). ?The hydroxyproline content in the wound tissue in Selenium chitosan cream group on days 5,7,9 after burn was higher than that in ground substance group (P<0.05)and in JingWanHong group (P<0.05). Conclusion Selenium chitosan cream can accelerate wound healing by decreasing wound tissue NO and TNF-a release^enhancing collagen synthesis and lessening permeability and edema.%目的:研究硒化壳聚糖软膏促浅Ⅱ度烫伤小鼠创面愈合的作用.方法:147只昆明种小鼠随机 分为硒化壳聚糖软膏治疗组、基质治疗组和京万红治疗组,每组49只,采用将脱毛区置于70℃恒温水浴中6s的方法制成10%体表面积浅Ⅱ 度烫伤模型,伤情经病理切片证实.各组创面分别用硒化壳聚糖软膏纱布(1ml/cm2)、基质纱布(1ml/cm2)、京万红纱 布(1ml/cm2)覆盖包扎固定后放回笼中饲养,换药1次/天,观察愈合时间,于伤后12h,第1、3、5、7和9天,分别处死各组小鼠7只,检 测含水量、羟脯氨酸、TNF、NO、ALT,另取7只做为正常对照.结果:①创面愈合时间:硒化壳聚糖软膏组为(12.9±2.9)天、基 质组为(16.3±2.1)天、京万红组为(11.8±2.4)天,硒化壳聚糖软膏组比基质组明显缩短(P<0.05);②创面含水量:伤后第1、3、5天 硒化壳聚糖软膏组[(86.3±3.5)%、(77.8±3.9)%、(72.3±2.7)%]创面含水量显著低于基质组[(92.8±3.2)%、(84.9±4.2)%、(77.2±2.8)%,(P<0.05)],伤后7~9天,各组均基本恢复到正常水平;③创面TNF-α水平:伤后12h至1天达高峰,随后逐渐下降,至伤后第5天仍高于正常对照组(P<0.05);伤后12h、1天、3天、5天,硒化壳聚糖软膏组和京万红组TNF水平明显低于基 质组(P<0.05);④创面组织NO含量:伤后12h各烫伤组NO含量达高峰,随后下降,至伤后第9天仍高于正常对照组(P<0.05);伤后 12h、1天,硒化壳聚糖软膏组和京万红组NO