WorldWideScience

Sample records for afm

  1. AFM study of montmorillonite

    Energy Technology Data Exchange (ETDEWEB)

    Pettersson, Torbjoern; Thormann, Esben; Claesson, Per (Dept. of Chemistry, Surface Chemistry, Royal Inst. of Technology, Stockholm (Sweden))

    2010-02-15

    Na-montmorillonite and Ca-montmorillonite particles have been attached to molecularly flat mica surfaces using simple evaporation of montmorillonite solutions. The particles stick to the surface by strong van der Waals forces. The homogeneity of the montmorillonite particle surfaces has been evaluated by AFM imaging and by AFM force raster measurements. As a control, molecularly smooth mica surfaces were used, and the data obtained for montmorillonite was compared with the data obtained for mica. In images of the size 100x100 nm we can identify variations on the Na-montmorillonite particle surfaces. This variation is attributed to inhomogeneities of the montmorillonite particles. The inhomogeneous nature of the montmorillonite surface is also clearly demonstrated by the force raster measurement, in particular the force raster adhesion maps show larger variations and a more patterned structure for montmorillonite than for mica. Thus, any attempt to model the interaction between montmorillonite particles using a model of ideally flat surfaces with a homogeneous charge distribution is an oversimplification. We suggest that this explains the differences between measured swelling pressures and modelling results

  2. AFM's path to atomic resolution

    OpenAIRE

    2005-01-01

    We review progress in improving the spatial resolution of atomic force microscopy (AFM) under vacuum. After an introduction to the basic imaging principle and a conceptual comparison to scanning tunneling microscopy (STM), we outline the main challenges of AFM as well as the solutions that have evolved in the first 20 years of its existence. Some crucial steps along AFM's path toward higher resolution are discussed, followed by an outlook on current and future applications.

  3. PREFACE: Non-contact AFM Non-contact AFM

    Science.gov (United States)

    Giessibl, Franz J.; Morita, Seizo

    2012-02-01

    This special issue is focussed on high resolution non-contact atomic force microscopy (AFM). Non-contact atomic force microscopy was established approximately 15 years ago as a tool to image conducting and insulating surfaces with atomic resolution. Since 1998, an annual international conference has taken place, and although the proceedings of these conferences are a useful source of information, several key developments warrant devoting a special issue to this subject. In the theoretic field, the possibility of supplementing established techniques such as scanning tunneling microscopy (STM) and Kelvin probe microscopy with atomically resolved force micrsoscopy poses many challenges in the calculation of contrast and contrast reversal. The surface science of insulators, self-assembled monolayers and adsorbates on insulators is a fruitful field for the application of non-contact AFM: several articles in this issue are devoted to these subjects. Atomic imaging and manipulation have been pioneered using STM, but because AFM allows the measurement of forces, AFM has had a profound impact in this field as well. Three-dimensional force spectroscopy has allowed many important insights into surface science. In this issue a combined 3D tunneling and force microscopy is introduced. Non-contact AFM typically uses frequency modulation to measure force gradients and was initially used mainly in a vacuum. As can be seen in this issue, frequency modulation is now also used in ambient conditions, allowing better spatial and force resolution. We thank all of the contributors for their time and efforts in making this special issue possible. We are also very grateful to the staff of IOP Publishing for handling the administrative aspects and for steering the refereeing process. Non-contact AFM contents Relation between the chemical force and the tunnelling current in atomic point contacts: a simple model Pavel Jelínek, Martin Ondrácek and Fernando Flores Theoretical simulation of

  4. Dicty_cDB: AFM658 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available iol.tsukuba.ac.jp/CSM/AF/AFM6-C/AFM658Q.Seq.d/ Representative seq. ID - (Link to Original site) Representa...tive DNA sequence >AFM658 (AFM658Q) /CSM/AF/AFM6-C/AFM658Q.Seq.d/ XXXXXXXXXXTTACANG

  5. Dicty_cDB: AFM665 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM665 (Link to dictyBase) - - - - - (Link to Original site) AFM...665F 165 - - - - - - Show AFM665 Library AF (Link to library) Clone ID AFM665 (Link to dictyBase) Atlas ID... - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM6-C/AFM...665Q.Seq.d/ Representative seq. ID - (Link to Original site) Representative DNA sequence >AFM...665 (AFM665Q) /CSM/AF/AFM6-C/AFM665Q.Seq.d/ ATTTTCAATTTTTCTAATTTTTAATTTTTTTATATATATACATAA

  6. Dicty_cDB: AFM685 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM685 (Link to dictyBase) - - - - - (Link to Original site) - - AFM...685Z 532 - - - - Show AFM685 Library AF (Link to library) Clone ID AFM685 (Link to dictyBase) Atlas ID... - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM6-D/AFM...685Q.Seq.d/ Representative seq. ID - (Link to Original site) Representative DNA sequence >AFM...685 (AFM685Q) /CSM/AF/AFM6-D/AFM685Q.Seq.d/ XXXXXXXXXXATCACCACAATCANCAATATCAACAACATCAACAA

  7. Dicty_cDB: AFM503 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM503 (Link to dictyBase) - - - - - (Link to Original site) - - AFM...503Z 790 - - - - Show AFM503 Library AF (Link to library) Clone ID AFM503 (Link to dictyBase) Atlas ID... - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM5-A/AFM...503Q.Seq.d/ Representative seq. ID - (Link to Original site) Representative DNA sequence >AFM...503 (AFM503Q) /CSM/AF/AFM5-A/AFM503Q.Seq.d/ XXXXXXXXXXGGTAAGNCTNTTNCNTNGGAGGTGAAGGTAGGGGC

  8. Dicty_cDB: AFM504 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM504 (Link to dictyBase) - - - - - (Link to Original site) - - AFM...504Z 623 - - - - Show AFM504 Library AF (Link to library) Clone ID AFM504 (Link to dictyBase) Atlas ID... - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM5-A/AFM...504Q.Seq.d/ Representative seq. ID - (Link to Original site) Representative DNA sequence >AFM...504 (AFM504Q) /CSM/AF/AFM5-A/AFM504Q.Seq.d/ XXXXXXXXXXTGANCAAAATTTAGTTGATTGCTCTGGTCCAGAAG

  9. Dicty_cDB: AFM307 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM307 (Link to dictyBase) - - - - - (Link to Original site) - - AFM...307Z 314 - - - - Show AFM307 Library AF (Link to library) Clone ID AFM307 (Link to dictyBase) Atlas ID... - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM3-A/AFM...307Q.Seq.d/ Representative seq. ID - (Link to Original site) Representative DNA sequence >AFM...307 (AFM307Q) /CSM/AF/AFM3-A/AFM307Q.Seq.d/ XXXXXXXXXXCGTCATGAAAGAAGATGCCATCGTTTGTAACATTG

  10. Dicty_cDB: AFM579 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM579 (Link to dictyBase) - - - - - (Link to Original site) AFM...579F 522 - - - - - - Show AFM579 Library AF (Link to library) Clone ID AFM579 (Link to dictyBase) Atlas ID... - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM5-D/AFM...579Q.Seq.d/ Representative seq. ID - (Link to Original site) Representative DNA sequence >AFM...579 (AFM579Q) /CSM/AF/AFM5-D/AFM579Q.Seq.d/ ATTCATCACCCTACAATTTAATTACATACATATATATATATAAAC

  11. Dicty_cDB: AFM826 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM826 (Link to dictyBase) - - - - - (Link to Original site) - - AFM...826Z 165 - - - - Show AFM826 Library AF (Link to library) Clone ID AFM826 (Link to dictyBase) Atlas ID... - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM8-B/AFM...826Q.Seq.d/ Representative seq. ID - (Link to Original site) Representative DNA sequence >AFM...826 (AFM826Q) /CSM/AF/AFM8-B/AFM826Q.Seq.d/ XXXXXXXXXXTAAATCAATTCCAGATTTATTGGAATTGGATCATC

  12. Dicty_cDB: AFM586 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM586 (Link to dictyBase) - - - - - (Link to Original site) - - AFM...586Z 766 - - - - Show AFM586 Library AF (Link to library) Clone ID AFM586 (Link to dictyBase) Atlas ID... - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM5-D/AFM...586Q.Seq.d/ Representative seq. ID - (Link to Original site) Representative DNA sequence >AFM...586 (AFM586Q) /CSM/AF/AFM5-D/AFM586Q.Seq.d/ XXXXXXXXXXGTCGCTTCAGATCCATTATCAAATATCACCGAACC

  13. Dicty_cDB: AFM607 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM607 (Link to dictyBase) - - - - - (Link to Original site) - - AFM...607Z 617 - - - - Show AFM607 Library AF (Link to library) Clone ID AFM607 (Link to dictyBase) Atlas ID... - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM6-A/AFM...607Q.Seq.d/ Representative seq. ID - (Link to Original site) Representative DNA sequence >AFM...607 (AFM607Q) /CSM/AF/AFM6-A/AFM607Q.Seq.d/ XXXXXXXXXXANNACAAGAAATAAANCAAGANCAATTGAGTCNAC

  14. Dicty_cDB: AFM818 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM818 (Link to dictyBase) - - - - - (Link to Original site) AFM...818F 156 - - - - - - Show AFM818 Library AF (Link to library) Clone ID AFM818 (Link to dictyBase) Atlas ID... - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM8-A/AFM...818Q.Seq.d/ Representative seq. ID - (Link to Original site) Representative DNA sequence >AFM...818 (AFM818Q) /CSM/AF/AFM8-A/AFM818Q.Seq.d/ GGAAGTTAGAGCAGCAGTAGTAGTAGTAGCAGTAGTAGTAGTTAG

  15. Dicty_cDB: AFM279 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM279 (Link to dictyBase) - - - - - (Link to Original site) - - AFM...279Z 657 - - - - Show AFM279 Library AF (Link to library) Clone ID AFM279 (Link to dictyBase) Atlas ID... - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM2-D/AFM...279Q.Seq.d/ Representative seq. ID - (Link to Original site) Representative DNA sequence >AFM...279 (AFM279Q) /CSM/AF/AFM2-D/AFM279Q.Seq.d/ XXXXXXXXXXTCCAAACTATGGAAGAATTAGTACTACCAACAAGA

  16. Dicty_cDB: AFM692 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM692 (Link to dictyBase) - - - - - (Link to Original site) - - AFM...692Z 739 - - - - Show AFM692 Library AF (Link to library) Clone ID AFM692 (Link to dictyBase) Atlas ID... - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM6-D/AFM...692Q.Seq.d/ Representative seq. ID - (Link to Original site) Representative DNA sequence >AFM...692 (AFM692Q) /CSM/AF/AFM6-D/AFM692Q.Seq.d/ XXXXXXXXXXATGGCAAAACAGTTGGGGTTTAACCACTCGTACCA

  17. Dicty_cDB: AFM861 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM861 (Link to dictyBase) - - - - - (Link to Original site) - - AFM...861Z 711 - - - - Show AFM861 Library AF (Link to library) Clone ID AFM861 (Link to dictyBase) Atlas ID... - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM8-C/AFM...861Q.Seq.d/ Representative seq. ID - (Link to Original site) Representative DNA sequence >AFM...861 (AFM861Q) /CSM/AF/AFM8-C/AFM861Q.Seq.d/ XXXXXXXXXXTCGAAGATGTAAAGAAAATCGCTACCTCACAAAAA

  18. Dicty_cDB: AFM360 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM360 (Link to dictyBase) - - - - - (Link to Original site) AFM...360F 630 - - - - - - Show AFM360 Library AF (Link to library) Clone ID AFM360 (Link to dictyBase) Atlas ID... - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM3-C/AFM...360Q.Seq.d/ Representative seq. ID - (Link to Original site) Representative DNA sequence >AFM...360 (AFM360Q) /CSM/AF/AFM3-C/AFM360Q.Seq.d/ ATCTATAGCTTTATATTAAAAAGATAATTTAAAAATGTTTAAAAG

  19. Dicty_cDB: AFM562 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM562 (Link to dictyBase) - - - - - (Link to Original site) - - AFM...562Z 759 - - - - Show AFM562 Library AF (Link to library) Clone ID AFM562 (Link to dictyBase) Atlas ID... - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM5-C/AFM...562Q.Seq.d/ Representative seq. ID - (Link to Original site) Representative DNA sequence >AFM...562 (AFM562Q) /CSM/AF/AFM5-C/AFM562Q.Seq.d/ XXXXXXXXXXCAATAATTGATCTTCAGGGTATTAAATCATATTCA

  20. Dicty_cDB: AFM246 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM246 (Link to dictyBase) - - - - - (Link to Original site) - - AFM...246Z 559 - - - - Show AFM246 Library AF (Link to library) Clone ID AFM246 (Link to dictyBase) Atlas ID... - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM2-B/AFM...246Q.Seq.d/ Representative seq. ID - (Link to Original site) Representative DNA sequence >AFM...246 (AFM246Q) /CSM/AF/AFM2-B/AFM246Q.Seq.d/ XXXXXXXXXXAGATTAAACAATTCATTCTTGATGAATGTGATACC

  1. Dicty_cDB: AFM321 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM321 (Link to dictyBase) - - - - - (Link to Original site) AFM...321F 684 - - - - - - Show AFM321 Library AF (Link to library) Clone ID AFM321 (Link to dictyBase) Atlas ID... - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM3-A/AFM...321Q.Seq.d/ Representative seq. ID - (Link to Original site) Representative DNA sequence >AFM...321 (AFM321Q) /CSM/AF/AFM3-A/AFM321Q.Seq.d/ AATTATAACAATTATTAAAAACAAAAAGATATTTTGTTTTTTCTT

  2. Dicty_cDB: AFM359 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM359 (Link to dictyBase) - - - - - (Link to Original site) - - AFM...359Z 711 - - - - Show AFM359 Library AF (Link to library) Clone ID AFM359 (Link to dictyBase) Atlas ID... - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM3-C/AFM...359Q.Seq.d/ Representative seq. ID - (Link to Original site) Representative DNA sequence >AFM...359 (AFM359Q) /CSM/AF/AFM3-C/AFM359Q.Seq.d/ XXXXXXXXXXGATCCAGACGTTGAAAGAGATTTACTTGATATTTT

  3. Dicty_cDB: AFM642 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM642 (Link to dictyBase) - - - - - (Link to Original site) - - AFM...642Z 645 - - - - Show AFM642 Library AF (Link to library) Clone ID AFM642 (Link to dictyBase) Atlas ID... - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM6-B/AFM...642Q.Seq.d/ Representative seq. ID - (Link to Original site) Representative DNA sequence >AFM...642 (AFM642Q) /CSM/AF/AFM6-B/AFM642Q.Seq.d/ XXXXXXXXXXAATTATGTAAGAAATATAACTGTTTATTGATGGTT

  4. Dicty_cDB: AFM168 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM168 (Link to dictyBase) - - - - - (Link to Original site) AFM...168F 592 - - - - - - Show AFM168 Library AF (Link to library) Clone ID AFM168 (Link to dictyBase) Atlas ID... - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM1-C/AFM...168Q.Seq.d/ Representative seq. ID - (Link to Original site) Representative DNA sequence >AFM...168 (AFM168Q) /CSM/AF/AFM1-C/AFM168Q.Seq.d/ ATTAAACTTTTTGTCACATATATAATTAAATAAAATGTCAGAAAG

  5. Dicty_cDB: AFM880 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM880 (Link to dictyBase) - - - - - (Link to Original site) AFM...880F 569 - - - - - - Show AFM880 Library AF (Link to library) Clone ID AFM880 (Link to dictyBase) Atlas ID... - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM8-D/AFM...880Q.Seq.d/ Representative seq. ID - (Link to Original site) Representative DNA sequence >AFM...880 (AFM880Q) /CSM/AF/AFM8-D/AFM880Q.Seq.d/ ACTTTTACTTAAATAATTTCCAAAATGTCAGAAACTACACCAGTT

  6. Dicty_cDB: AFM247 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM247 (Link to dictyBase) - - - - - (Link to Original site) - - AFM...247Z 829 - - - - Show AFM247 Library AF (Link to library) Clone ID AFM247 (Link to dictyBase) Atlas ID... - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM2-B/AFM...247Q.Seq.d/ Representative seq. ID - (Link to Original site) Representative DNA sequence >AFM...247 (AFM247Q) /CSM/AF/AFM2-B/AFM247Q.Seq.d/ XXXXXXXXXXTCCCTTTAGTCCTANATAANAGGTGGTACCAATTT

  7. Dicty_cDB: AFM446 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM446 (Link to dictyBase) - - - - - (Link to Original site) - - AFM...446Z 724 - - - - Show AFM446 Library AF (Link to library) Clone ID AFM446 (Link to dictyBase) Atlas ID... - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM4-B/AFM...446Q.Seq.d/ Representative seq. ID - (Link to Original site) Representative DNA sequence >AFM...446 (AFM446Q) /CSM/AF/AFM4-B/AFM446Q.Seq.d/ XXXXXXXXXXCCATTAGATGCAAGAGGTGAAGTTGATGAATGTGC

  8. Dicty_cDB: AFM419 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM419 (Link to dictyBase) - - - - - (Link to Original site) - - AFM...419Z 552 - - - - Show AFM419 Library AF (Link to library) Clone ID AFM419 (Link to dictyBase) Atlas ID... - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM4-A/AFM...419Q.Seq.d/ Representative seq. ID - (Link to Original site) Representative DNA sequence >AFM...419 (AFM419Q) /CSM/AF/AFM4-A/AFM419Q.Seq.d/ XXXXXXXXXXGTGAACAAAGAACTCACATCAGACATTACAGTTTA

  9. Dicty_cDB: AFM361 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM361 (Link to dictyBase) - - - - - (Link to Original site) - - AFM...361Z 702 - - - - Show AFM361 Library AF (Link to library) Clone ID AFM361 (Link to dictyBase) Atlas ID... - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM3-C/AFM...361Q.Seq.d/ Representative seq. ID - (Link to Original site) Representative DNA sequence >AFM...361 (AFM361Q) /CSM/AF/AFM3-C/AFM361Q.Seq.d/ XXXXXXXXXXAGTTATCAGATTCCTGTTTTGTTATCTCTTCAACT

  10. Dicty_cDB: AFM190 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM190 (Link to dictyBase) - - - - - (Link to Original site) AFM...190F 158 - - - - - - Show AFM190 Library AF (Link to library) Clone ID AFM190 (Link to dictyBase) Atlas ID... - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM1-D/AFM...190Q.Seq.d/ Representative seq. ID - (Link to Original site) Representative DNA sequence >AFM...190 (AFM190Q) /CSM/AF/AFM1-D/AFM190Q.Seq.d/ ATTCAAAAAAAAAAATATTAAATCATTGTAGTATTTTGTTCNTAT

  11. Dicty_cDB: AFM447 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM447 (Link to dictyBase) - - - - - (Link to Original site) - - AFM...447Z 647 - - - - Show AFM447 Library AF (Link to library) Clone ID AFM447 (Link to dictyBase) Atlas ID... - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM4-B/AFM...447Q.Seq.d/ Representative seq. ID - (Link to Original site) Representative DNA sequence >AFM...447 (AFM447Q) /CSM/AF/AFM4-B/AFM447Q.Seq.d/ XXXXXXXXXXATATGCTTAATAAACCAATTGAAAATATTGTTTTC

  12. Dicty_cDB: AFM842 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM842 (Link to dictyBase) - - - - - (Link to Original site) - - AFM...842Z 358 - - - - Show AFM842 Library AF (Link to library) Clone ID AFM842 (Link to dictyBase) Atlas ID... - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM8-B/AFM...842Q.Seq.d/ Representative seq. ID - (Link to Original site) Representative DNA sequence >AFM...842 (AFM842Q) /CSM/AF/AFM8-B/AFM842Q.Seq.d/ XXXXXXXXXXTGTTGGTGCTGGTCGTGTTGAACAACTCGATACTA

  13. Dicty_cDB: AFM519 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM519 (Link to dictyBase) - - - - - (Link to Original site) - - AFM...519Z 820 - - - - Show AFM519 Library AF (Link to library) Clone ID AFM519 (Link to dictyBase) Atlas ID... - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM5-A/AFM...519Q.Seq.d/ Representative seq. ID - (Link to Original site) Representative DNA sequence >AFM...519 (AFM519Q) /CSM/AF/AFM5-A/AFM519Q.Seq.d/ XXXXXXXXXXTTTAAAAATAAAAGGTGTATGCAAATTTTGTAAAC

  14. Dicty_cDB: AFM105 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM105 (Link to dictyBase) - - - - - (Link to Original site) - - AFM...105Z 742 - - - - Show AFM105 Library AF (Link to library) Clone ID AFM105 (Link to dictyBase) Atlas ID... - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM1-A/AFM...105Q.Seq.d/ Representative seq. ID - (Link to Original site) Representative DNA sequence >AFM...105 (AFM105Q) /CSM/AF/AFM1-A/AFM105Q.Seq.d/ XXXXXXXXXXATCAATATAGTTTATAACTCAACCCAACGTTATGA

  15. Dicty_cDB: AFM563 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM563 (Link to dictyBase) - - - - - (Link to Original site) AFM...563F 592 - - - - - - Show AFM563 Library AF (Link to library) Clone ID AFM563 (Link to dictyBase) Atlas ID... - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM5-C/AFM...563Q.Seq.d/ Representative seq. ID - (Link to Original site) Representative DNA sequence >AFM...563 (AFM563Q) /CSM/AF/AFM5-C/AFM563Q.Seq.d/ ATTTAAACAACTAAACAGATAAATTTAAAAAAATGGGATTCGATT

  16. Dicty_cDB: AFM379 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM379 (Link to dictyBase) - - - - - (Link to Original site) - - AFM...379Z 655 - - - - Show AFM379 Library AF (Link to library) Clone ID AFM379 (Link to dictyBase) Atlas ID... - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM3-D/AFM...379Q.Seq.d/ Representative seq. ID - (Link to Original site) Representative DNA sequence >AFM...379 (AFM379Q) /CSM/AF/AFM3-D/AFM379Q.Seq.d/ XXXXXXXXXXACGTGCCGTTGGTAATATTGTCACTGGTGAATCTA

  17. Dicty_cDB: AFM283 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM283 (Link to dictyBase) - - - - AFM283P (Link to Original site) AFM283F 572 AFM...283Z 658 AFM283P 1210 - - Show AFM283 Library AF (Link to library) Clone ID AFM283 (Link... to dictyBase) Atlas ID - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM...2-D/AFM283Q.Seq.d/ Representative seq. ID AFM283P (Link to... Original site) Representative DNA sequence >AFM283 (AFM283Q) /CSM/AF/AFM2-D/AFM283Q.Seq.d/ TTGCAATTGTTTCCCA

  18. Dicty_cDB: AFM378 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM378 (Link to dictyBase) - - - - AFM378P (Link to Original site) AFM378F 580 AFM...378Z 726 AFM378P 1286 - - Show AFM378 Library AF (Link to library) Clone ID AFM378 (Link... to dictyBase) Atlas ID - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM...3-D/AFM378Q.Seq.d/ Representative seq. ID AFM378P (Link to... Original site) Representative DNA sequence >AFM378 (AFM378Q) /CSM/AF/AFM3-D/AFM378Q.Seq.d/ GAATTAAAAATAATAC

  19. Dicty_cDB: AFM388 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM388 (Link to dictyBase) - - - - AFM388P (Link to Original site) AFM388F 137 AFM...388Z 260 AFM388P 377 - - Show AFM388 Library AF (Link to library) Clone ID AFM388 (Link ...to dictyBase) Atlas ID - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM...3-D/AFM388Q.Seq.d/ Representative seq. ID AFM388P (Link to ...Original site) Representative DNA sequence >AFM388 (AFM388Q) /CSM/AF/AFM3-D/AFM388Q.Seq.d/ ATTTTTTTTTTCCTAAC

  20. Dicty_cDB: AFM241 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM241 (Link to dictyBase) - - - - AFM241P (Link to Original site) AFM241F 620 AFM...241Z 717 AFM241P 1317 - - Show AFM241 Library AF (Link to library) Clone ID AFM241 (Link... to dictyBase) Atlas ID - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM...2-B/AFM241Q.Seq.d/ Representative seq. ID AFM241P (Link to... Original site) Representative DNA sequence >AFM241 (AFM241Q) /CSM/AF/AFM2-B/AFM241Q.Seq.d/ ATTGTCATAATAATAT

  1. Dicty_cDB: AFM380 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM380 (Link to dictyBase) - - - - AFM380P (Link to Original site) AFM380F 573 AFM...380Z 180 AFM380P 733 - - Show AFM380 Library AF (Link to library) Clone ID AFM380 (Link ...to dictyBase) Atlas ID - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM...3-D/AFM380Q.Seq.d/ Representative seq. ID AFM380P (Link to ...Original site) Representative DNA sequence >AFM380 (AFM380Q) /CSM/AF/AFM3-D/AFM380Q.Seq.d/ AAAATTATTTCCCACCC

  2. Dicty_cDB: AFM744 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM744 (Link to dictyBase) - - - - AFM744P (Link to Original site) AFM744F 591 AFM...744Z 685 AFM744P 1256 - - Show AFM744 Library AF (Link to library) Clone ID AFM744 (Link... to dictyBase) Atlas ID - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM...7-B/AFM744Q.Seq.d/ Representative seq. ID AFM744P (Link to... Original site) Representative DNA sequence >AFM744 (AFM744Q) /CSM/AF/AFM7-B/AFM744Q.Seq.d/ ATATATATAAAAAATG

  3. Dicty_cDB: AFM445 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM445 (Link to dictyBase) - - - - AFM445P (Link to Original site) AFM445F 595 AFM...445Z 725 AFM445P 1300 - - Show AFM445 Library AF (Link to library) Clone ID AFM445 (Link... to dictyBase) Atlas ID - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM...4-B/AFM445Q.Seq.d/ Representative seq. ID AFM445P (Link to... Original site) Representative DNA sequence >AFM445 (AFM445Q) /CSM/AF/AFM4-B/AFM445Q.Seq.d/ ATGGGTAATGAAATTT

  4. Dicty_cDB: AFM628 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM628 (Link to dictyBase) - - - - AFM628P (Link to Original site) AFM628F 615 AFM...628Z 714 AFM628P 1309 - - Show AFM628 Library AF (Link to library) Clone ID AFM628 (Link... to dictyBase) Atlas ID - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM...6-B/AFM628Q.Seq.d/ Representative seq. ID AFM628P (Link to... Original site) Representative DNA sequence >AFM628 (AFM628Q) /CSM/AF/AFM6-B/AFM628Q.Seq.d/ ACCCAAGTGAATTCAT

  5. Dicty_cDB: AFM221 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM221 (Link to dictyBase) - - - - AFM221P (Link to Original site) AFM221F 624 AFM...221Z 732 AFM221P 1336 - - Show AFM221 Library AF (Link to library) Clone ID AFM221 (Link... to dictyBase) Atlas ID - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM...2-A/AFM221Q.Seq.d/ Representative seq. ID AFM221P (Link to... Original site) Representative DNA sequence >AFM221 (AFM221Q) /CSM/AF/AFM2-A/AFM221Q.Seq.d/ ACACAACAATTTATAA

  6. Dicty_cDB: AFM713 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM713 (Link to dictyBase) - - - - AFM713P (Link to Original site) AFM713F 511 AFM...713Z 676 AFM713P 1167 - - Show AFM713 Library AF (Link to library) Clone ID AFM713 (Link... to dictyBase) Atlas ID - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM...7-A/AFM713Q.Seq.d/ Representative seq. ID AFM713P (Link to... Original site) Representative DNA sequence >AFM713 (AFM713Q) /CSM/AF/AFM7-A/AFM713Q.Seq.d/ TCAATATTGCGAGACG

  7. Dicty_cDB: AFM173 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM173 (Link to dictyBase) - - - - AFM173P (Link to Original site) AFM173F 595 AFM...173Z 662 AFM173P 1237 - - Show AFM173 Library AF (Link to library) Clone ID AFM173 (Link... to dictyBase) Atlas ID - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM...1-D/AFM173Q.Seq.d/ Representative seq. ID AFM173P (Link to... Original site) Representative DNA sequence >AFM173 (AFM173Q) /CSM/AF/AFM1-D/AFM173Q.Seq.d/ ATTTTCCAATTGATAA

  8. Dicty_cDB: AFM302 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM302 (Link to dictyBase) - - - - AFM302P (Link to Original site) AFM302F 518 AFM...302Z 768 AFM302P 1266 - - Show AFM302 Library AF (Link to library) Clone ID AFM302 (Link... to dictyBase) Atlas ID - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM...3-A/AFM302Q.Seq.d/ Representative seq. ID AFM302P (Link to... Original site) Representative DNA sequence >AFM302 (AFM302Q) /CSM/AF/AFM3-A/AFM302Q.Seq.d/ AATTGATAAAATTAAA

  9. Dicty_cDB: AFM362 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM362 (Link to dictyBase) - - - - AFM362P (Link to Original site) AFM362F 524 AFM...362Z 752 AFM362P 1256 - - Show AFM362 Library AF (Link to library) Clone ID AFM362 (Link... to dictyBase) Atlas ID - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM...3-C/AFM362Q.Seq.d/ Representative seq. ID AFM362P (Link to... Original site) Representative DNA sequence >AFM362 (AFM362Q) /CSM/AF/AFM3-C/AFM362Q.Seq.d/ TGGAATATTTTTTTTT

  10. Dicty_cDB: AFM425 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM425 (Link to dictyBase) - - - - AFM425P (Link to Original site) AFM425F 539 AFM...425Z 724 AFM425P 1243 - - Show AFM425 Library AF (Link to library) Clone ID AFM425 (Link... to dictyBase) Atlas ID - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM...4-B/AFM425Q.Seq.d/ Representative seq. ID AFM425P (Link to... Original site) Representative DNA sequence >AFM425 (AFM425Q) /CSM/AF/AFM4-B/AFM425Q.Seq.d/ AAAAAAATAATGATCA

  11. Dicty_cDB: AFM104 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM104 (Link to dictyBase) - - - - AFM104P (Link to Original site) AFM104F 547 AFM...104Z 579 AFM104P 1106 - - Show AFM104 Library AF (Link to library) Clone ID AFM104 (Link... to dictyBase) Atlas ID - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM...1-A/AFM104Q.Seq.d/ Representative seq. ID AFM104P (Link to... Original site) Representative DNA sequence >AFM104 (AFM104Q) /CSM/AF/AFM1-A/AFM104Q.Seq.d/ TTCAGCAACAACAAAA

  12. Dicty_cDB: AFM606 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM606 (Link to dictyBase) - - - - AFM606P (Link to Original site) AFM606F 607 AFM...606Z 742 AFM606P 1329 - - Show AFM606 Library AF (Link to library) Clone ID AFM606 (Link... to dictyBase) Atlas ID - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM...6-A/AFM606Q.Seq.d/ Representative seq. ID AFM606P (Link to... Original site) Representative DNA sequence >AFM606 (AFM606Q) /CSM/AF/AFM6-A/AFM606Q.Seq.d/ AAGTTTAGAATTAGAA

  13. Dicty_cDB: AFM609 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM609 (Link to dictyBase) - - - - AFM609P (Link to Original site) AFM609F 641 AFM...609Z 705 AFM609P 1326 - - Show AFM609 Library AF (Link to library) Clone ID AFM609 (Link... to dictyBase) Atlas ID - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM...6-A/AFM609Q.Seq.d/ Representative seq. ID AFM609P (Link to... Original site) Representative DNA sequence >AFM609 (AFM609Q) /CSM/AF/AFM6-A/AFM609Q.Seq.d/ CAGATGTAATACCAAC

  14. Dicty_cDB: AFM803 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM803 (Link to dictyBase) - - - - AFM803P (Link to Original site) AFM803F 608 AFM...803Z 750 AFM803P 1338 - - Show AFM803 Library AF (Link to library) Clone ID AFM803 (Link... to dictyBase) Atlas ID - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM...8-A/AFM803Q.Seq.d/ Representative seq. ID AFM803P (Link to... Original site) Representative DNA sequence >AFM803 (AFM803Q) /CSM/AF/AFM8-A/AFM803Q.Seq.d/ AATCTATTTTATTTTT

  15. Dicty_cDB: AFM537 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM537 (Link to dictyBase) - - - - AFM537P (Link to Original site) AFM537F 220 AFM...537Z 668 AFM537P 868 - - Show AFM537 Library AF (Link to library) Clone ID AFM537 (Link ...to dictyBase) Atlas ID - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM...5-B/AFM537Q.Seq.d/ Representative seq. ID AFM537P (Link to ...Original site) Representative DNA sequence >AFM537 (AFM537Q) /CSM/AF/AFM5-B/AFM537Q.Seq.d/ ATTAAATTCCATCATTG

  16. Dicty_cDB: AFM426 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM426 (Link to dictyBase) - - - - AFM426P (Link to Original site) AFM426F 579 AFM...426Z 658 AFM426P 1217 - - Show AFM426 Library AF (Link to library) Clone ID AFM426 (Link... to dictyBase) Atlas ID - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM...4-B/AFM426Q.Seq.d/ Representative seq. ID AFM426P (Link to... Original site) Representative DNA sequence >AFM426 (AFM426Q) /CSM/AF/AFM4-B/AFM426Q.Seq.d/ GAAAAATAAATTTATT

  17. Dicty_cDB: AFM715 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM715 (Link to dictyBase) - - - - AFM715P (Link to Original site) AFM715F 169 AFM...715Z 265 AFM715P 414 - - Show AFM715 Library AF (Link to library) Clone ID AFM715 (Link ...to dictyBase) Atlas ID - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM...7-A/AFM715Q.Seq.d/ Representative seq. ID AFM715P (Link to ...Original site) Representative DNA sequence >AFM715 (AFM715Q) /CSM/AF/AFM7-A/AFM715Q.Seq.d/ AATTTATTTTTTTTCAT

  18. Dicty_cDB: AFM659 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM659 (Link to dictyBase) - - - - AFM659P (Link to Original site) AFM659F 686 AFM...659Z 742 AFM659P 1408 - - Show AFM659 Library AF (Link to library) Clone ID AFM659 (Link... to dictyBase) Atlas ID - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM...6-C/AFM659Q.Seq.d/ Representative seq. ID AFM659P (Link to... Original site) Representative DNA sequence >AFM659 (AFM659Q) /CSM/AF/AFM6-C/AFM659Q.Seq.d/ GTTAAAAAGGAAGTGA

  19. Dicty_cDB: AFM134 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM134 (Link to dictyBase) - - - - AFM134P (Link to Original site) AFM134F 542 AFM...134Z 759 AFM134P 1281 - - Show AFM134 Library AF (Link to library) Clone ID AFM134 (Link... to dictyBase) Atlas ID - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM...1-B/AFM134Q.Seq.d/ Representative seq. ID AFM134P (Link to... Original site) Representative DNA sequence >AFM134 (AFM134Q) /CSM/AF/AFM1-B/AFM134Q.Seq.d/ AATTTTATTTTTAATC

  20. Dicty_cDB: AFM627 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM627 (Link to dictyBase) - - - - AFM627P (Link to Original site) AFM627F 484 AFM...627Z 523 AFM627P 987 - - Show AFM627 Library AF (Link to library) Clone ID AFM627 (Link ...to dictyBase) Atlas ID - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM...6-B/AFM627Q.Seq.d/ Representative seq. ID AFM627P (Link to ...Original site) Representative DNA sequence >AFM627 (AFM627Q) /CSM/AF/AFM6-B/AFM627Q.Seq.d/ TNTGGNCAAGGTTGTAG

  1. Dicty_cDB: AFM194 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM194 (Link to dictyBase) - - - - AFM194P (Link to Original site) AFM194F 623 AFM...194Z 703 AFM194P 1306 - - Show AFM194 Library AF (Link to library) Clone ID AFM194 (Link... to dictyBase) Atlas ID - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM...1-D/AFM194Q.Seq.d/ Representative seq. ID AFM194P (Link to... Original site) Representative DNA sequence >AFM194 (AFM194Q) /CSM/AF/AFM1-D/AFM194Q.Seq.d/ ATTTTATAATCACTGT

  2. Dicty_cDB: AFM471 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM471 (Link to dictyBase) - - - - AFM471P (Link to Original site) AFM471F 537 AFM...471Z 694 AFM471P 1211 - - Show AFM471 Library AF (Link to library) Clone ID AFM471 (Link... to dictyBase) Atlas ID - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM...4-C/AFM471Q.Seq.d/ Representative seq. ID AFM471P (Link to... Original site) Representative DNA sequence >AFM471 (AFM471Q) /CSM/AF/AFM4-C/AFM471Q.Seq.d/ ATATAAAAAATGGCAT

  3. Dicty_cDB: AFM191 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM191 (Link to dictyBase) - - - - AFM191P (Link to Original site) AFM191F 623 AFM...191Z 747 AFM191P 1350 - - Show AFM191 Library AF (Link to library) Clone ID AFM191 (Link... to dictyBase) Atlas ID - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM...1-D/AFM191Q.Seq.d/ Representative seq. ID AFM191P (Link to... Original site) Representative DNA sequence >AFM191 (AFM191Q) /CSM/AF/AFM1-D/AFM191Q.Seq.d/ ATTTTCTATTTTCTTT

  4. Dicty_cDB: AFM536 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM536 (Link to dictyBase) - - - - AFM536P (Link to Original site) AFM536F 144 AFM...536Z 443 AFM536P 567 - - Show AFM536 Library AF (Link to library) Clone ID AFM536 (Link ...to dictyBase) Atlas ID - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM...5-B/AFM536Q.Seq.d/ Representative seq. ID AFM536P (Link to ...Original site) Representative DNA sequence >AFM536 (AFM536Q) /CSM/AF/AFM5-B/AFM536Q.Seq.d/ ATTTATTTATCTGTTTA

  5. Dicty_cDB: AFM473 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM473 (Link to dictyBase) - - - - AFM473P (Link to Original site) AFM473F 580 AFM...473Z 725 AFM473P 1285 - - Show AFM473 Library AF (Link to library) Clone ID AFM473 (Link... to dictyBase) Atlas ID - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM...4-D/AFM473Q.Seq.d/ Representative seq. ID AFM473P (Link to... Original site) Representative DNA sequence >AFM473 (AFM473Q) /CSM/AF/AFM4-D/AFM473Q.Seq.d/ AATTTCATCATTTTCC

  6. Dicty_cDB: AFM825 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM825 (Link to dictyBase) - - - - AFM825P (Link to Original site) AFM825F 551 AFM...825Z 684 AFM825P 1215 - - Show AFM825 Library AF (Link to library) Clone ID AFM825 (Link... to dictyBase) Atlas ID - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM...8-B/AFM825Q.Seq.d/ Representative seq. ID AFM825P (Link to... Original site) Representative DNA sequence >AFM825 (AFM825Q) /CSM/AF/AFM8-B/AFM825Q.Seq.d/ AACTAAATTAAATAAA

  7. Dicty_cDB: AFM133 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM133 (Link to dictyBase) - - - - AFM133P (Link to Original site) AFM133F 638 AFM...133Z 647 AFM133P 1265 - - Show AFM133 Library AF (Link to library) Clone ID AFM133 (Link... to dictyBase) Atlas ID - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM...1-B/AFM133Q.Seq.d/ Representative seq. ID AFM133P (Link to... Original site) Representative DNA sequence >AFM133 (AFM133Q) /CSM/AF/AFM1-B/AFM133Q.Seq.d/ AAAACATCTCTATTTT

  8. Dicty_cDB: AFM794 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM794 (Link to dictyBase) - - - - AFM794P (Link to Original site) AFM794F 623 AFM...794Z 698 AFM794P 1301 - - Show AFM794 Library AF (Link to library) Clone ID AFM794 (Link... to dictyBase) Atlas ID - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM...7-D/AFM794Q.Seq.d/ Representative seq. ID AFM794P (Link to... Original site) Representative DNA sequence >AFM794 (AFM794Q) /CSM/AF/AFM7-D/AFM794Q.Seq.d/ TAATAATAATTATTAT

  9. Dicty_cDB: AFM166 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM166 (Link to dictyBase) - - - - AFM166P (Link to Original site) AFM166F 580 AFM...166Z 741 AFM166P 1301 - - Show AFM166 Library AF (Link to library) Clone ID AFM166 (Link... to dictyBase) Atlas ID - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM...1-C/AFM166Q.Seq.d/ Representative seq. ID AFM166P (Link to... Original site) Representative DNA sequence >AFM166 (AFM166Q) /CSM/AF/AFM1-C/AFM166Q.Seq.d/ ATCACACATAAAAAAT

  10. Dicty_cDB: AFM817 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM817 (Link to dictyBase) - - - - AFM817P (Link to Original site) AFM817F 138 AFM...817Z 521 AFM817P 639 - - Show AFM817 Library AF (Link to library) Clone ID AFM817 (Link ...to dictyBase) Atlas ID - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM...8-A/AFM817Q.Seq.d/ Representative seq. ID AFM817P (Link to ...Original site) Representative DNA sequence >AFM817 (AFM817Q) /CSM/AF/AFM8-A/AFM817Q.Seq.d/ AATTATTTAGACCACAC

  11. Dicty_cDB: AFM558 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM558 (Link to dictyBase) - - - - AFM558P (Link to Original site) AFM558F 578 AFM...558Z 737 AFM558P 1295 - - Show AFM558 Library AF (Link to library) Clone ID AFM558 (Link... to dictyBase) Atlas ID - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM...5-C/AFM558Q.Seq.d/ Representative seq. ID AFM558P (Link to... Original site) Representative DNA sequence >AFM558 (AFM558Q) /CSM/AF/AFM5-C/AFM558Q.Seq.d/ GCATATACATATACAT

  12. Dicty_cDB: AFM474 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM474 (Link to dictyBase) - - - - AFM474P (Link to Original site) AFM474F 537 AFM...474Z 755 AFM474P 1272 - - Show AFM474 Library AF (Link to library) Clone ID AFM474 (Link... to dictyBase) Atlas ID - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM...4-D/AFM474Q.Seq.d/ Representative seq. ID AFM474P (Link to... Original site) Representative DNA sequence >AFM474 (AFM474Q) /CSM/AF/AFM4-D/AFM474Q.Seq.d/ CAACATGTTCAAAATT

  13. Dicty_cDB: AFM712 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM712 (Link to dictyBase) - - - - AFM712P (Link to Original site) AFM712F 557 AFM...712Z 696 AFM712P 1233 - - Show AFM712 Library AF (Link to library) Clone ID AFM712 (Link... to dictyBase) Atlas ID - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM...7-A/AFM712Q.Seq.d/ Representative seq. ID AFM712P (Link to... Original site) Representative DNA sequence >AFM712 (AFM712Q) /CSM/AF/AFM7-A/AFM712Q.Seq.d/ ATATCAGCAGCTAAAA

  14. Dicty_cDB: AFM520 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM520 (Link to dictyBase) - - - - AFM520P (Link to Original site) AFM520F 612 AFM...520Z 731 AFM520P 1323 - - Show AFM520 Library AF (Link to library) Clone ID AFM520 (Link... to dictyBase) Atlas ID - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM...5-A/AFM520Q.Seq.d/ Representative seq. ID AFM520P (Link to... Original site) Representative DNA sequence >AFM520 (AFM520Q) /CSM/AF/AFM5-A/AFM520Q.Seq.d/ ATTCATTCAATTTTGT

  15. Dicty_cDB: AFM843 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM843 (Link to dictyBase) - - - - AFM843P (Link to Original site) AFM843F 553 AFM...843Z 735 AFM843P 1268 - - Show AFM843 Library AF (Link to library) Clone ID AFM843 (Link... to dictyBase) Atlas ID - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM...8-B/AFM843Q.Seq.d/ Representative seq. ID AFM843P (Link to... Original site) Representative DNA sequence >AFM843 (AFM843Q) /CSM/AF/AFM8-B/AFM843Q.Seq.d/ ATTAAACAACTCAAAA

  16. Dicty_cDB: AFM240 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM240 (Link to dictyBase) - - - - AFM240P (Link to Original site) AFM240F 638 AFM...240Z 291 AFM240P 909 - - Show AFM240 Library AF (Link to library) Clone ID AFM240 (Link ...to dictyBase) Atlas ID - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM...2-B/AFM240Q.Seq.d/ Representative seq. ID AFM240P (Link to ...Original site) Representative DNA sequence >AFM240 (AFM240Q) /CSM/AF/AFM2-B/AFM240Q.Seq.d/ TATTAAAAAAATGTACT

  17. Dicty_cDB: AFM855 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM855 (Link to dictyBase) - - - - AFM855P (Link to Original site) AFM855F 541 AFM...855Z 649 AFM855P 1170 - - Show AFM855 Library AF (Link to library) Clone ID AFM855 (Link... to dictyBase) Atlas ID - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM...8-C/AFM855Q.Seq.d/ Representative seq. ID AFM855P (Link to... Original site) Representative DNA sequence >AFM855 (AFM855Q) /CSM/AF/AFM8-C/AFM855Q.Seq.d/ ANATTAAAAGTTAACT

  18. Dicty_cDB: AFM418 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM418 (Link to dictyBase) - - - - AFM418P (Link to Original site) AFM418F 125 AFM...418Z 150 AFM418P 255 - - Show AFM418 Library AF (Link to library) Clone ID AFM418 (Link ...to dictyBase) Atlas ID - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM...4-A/AFM418Q.Seq.d/ Representative seq. ID AFM418P (Link to ...Original site) Representative DNA sequence >AFM418 (AFM418Q) /CSM/AF/AFM4-A/AFM418Q.Seq.d/ ACACACATACTTTCATT

  19. Dicty_cDB: AFM427 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM427 (Link to dictyBase) - - - - AFM427P (Link to Original site) AFM427F 553 AFM...427Z 609 AFM427P 1142 - - Show AFM427 Library AF (Link to library) Clone ID AFM427 (Link... to dictyBase) Atlas ID - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM...4-B/AFM427Q.Seq.d/ Representative seq. ID AFM427P (Link to... Original site) Representative DNA sequence >AFM427 (AFM427Q) /CSM/AF/AFM4-B/AFM427Q.Seq.d/ ATTCATTCAATTTTGT

  20. Dicty_cDB: AFM746 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM746 (Link to dictyBase) - - - - AFM746P (Link to Original site) AFM746F 621 AFM...746Z 733 AFM746P 1334 - - Show AFM746 Library AF (Link to library) Clone ID AFM746 (Link... to dictyBase) Atlas ID - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM...7-B/AFM746Q.Seq.d/ Representative seq. ID AFM746P (Link to... Original site) Representative DNA sequence >AFM746 (AFM746Q) /CSM/AF/AFM7-B/AFM746Q.Seq.d/ ATTTACAGTTACTGAA

  1. Dicty_cDB: AFM174 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM174 (Link to dictyBase) - - - - AFM174P (Link to Original site) AFM174F 544 AFM...174Z 566 AFM174P 1090 - - Show AFM174 Library AF (Link to library) Clone ID AFM174 (Link... to dictyBase) Atlas ID - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM...1-D/AFM174Q.Seq.d/ Representative seq. ID AFM174P (Link to... Original site) Representative DNA sequence >AFM174 (AFM174Q) /CSM/AF/AFM1-D/AFM174Q.Seq.d/ ATTCAATTTTGTAATT

  2. Dicty_cDB: AFM386 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM386 (Link to dictyBase) - - - - AFM386P (Link to Original site) AFM386F 618 AFM...386Z 757 AFM386P 1355 - - Show AFM386 Library AF (Link to library) Clone ID AFM386 (Link... to dictyBase) Atlas ID - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM...3-D/AFM386Q.Seq.d/ Representative seq. ID AFM386P (Link to... Original site) Representative DNA sequence >AFM386 (AFM386Q) /CSM/AF/AFM3-D/AFM386Q.Seq.d/ AGAACTGTTACAGCAG

  3. Dicty_cDB: AFM106 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM106 (Link to dictyBase) - - - - AFM106P (Link to Original site) AFM106F 527 AFM...106Z 527 AFM106P 1034 - - Show AFM106 Library AF (Link to library) Clone ID AFM106 (Link... to dictyBase) Atlas ID - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM...1-A/AFM106Q.Seq.d/ Representative seq. ID AFM106P (Link to... Original site) Representative DNA sequence >AFM106 (AFM106Q) /CSM/AF/AFM1-A/AFM106Q.Seq.d/ AATTTTTTTTCTTTTC

  4. Dicty_cDB: AFM862 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM862 (Link to dictyBase) - - - - AFM862P (Link to Original site) AFM862F 837 AFM...862Z 612 AFM862P 1429 - - Show AFM862 Library AF (Link to library) Clone ID AFM862 (Link... to dictyBase) Atlas ID - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM...8-C/AFM862Q.Seq.d/ Representative seq. ID AFM862P (Link to... Original site) Representative DNA sequence >AFM862 (AFM862Q) /CSM/AF/AFM8-C/AFM862Q.Seq.d/ AAGGTAGTGACAACAT

  5. Dicty_cDB: AFM802 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM802 (Link to dictyBase) - - - - AFM802P (Link to Original site) AFM802F 128 AFM...802Z 117 AFM802P 225 - - Show AFM802 Library AF (Link to library) Clone ID AFM802 (Link ...to dictyBase) Atlas ID - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM...8-A/AFM802Q.Seq.d/ Representative seq. ID AFM802P (Link to ...Original site) Representative DNA sequence >AFM802 (AFM802Q) /CSM/AF/AFM8-A/AFM802Q.Seq.d/ ATAAATATAAATAATAA

  6. Dicty_cDB: AFM325 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM325 (Link to dictyBase) - - - - AFM325P (Link to Original site) AFM325F 457 AFM...325Z 563 AFM325P 1000 - - Show AFM325 Library AF (Link to library) Clone ID AFM325 (Link... to dictyBase) Atlas ID - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM...3-B/AFM325Q.Seq.d/ Representative seq. ID AFM325P (Link to... Original site) Representative DNA sequence >AFM325 (AFM325Q) /CSM/AF/AFM3-B/AFM325Q.Seq.d/ CAAAAAGTTTTTTCAC

  7. Dicty_cDB: AFM771 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM771 (Link to dictyBase) - - - - AFM771P (Link to Original site) AFM771F 695 AFM...771Z 862 AFM771P 1537 - - Show AFM771 Library AF (Link to library) Clone ID AFM771 (Link... to dictyBase) Atlas ID - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM...7-C/AFM771Q.Seq.d/ Representative seq. ID AFM771P (Link to... Original site) Representative DNA sequence >AFM771 (AFM771Q) /CSM/AF/AFM7-C/AFM771Q.Seq.d/ GAGGGCAACGGGATAT

  8. Dicty_cDB: AFM585 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM585 (Link to dictyBase) - - - - AFM585P (Link to Original site) AFM585F 600 AFM...585Z 768 AFM585P 1348 - - Show AFM585 Library AF (Link to library) Clone ID AFM585 (Link... to dictyBase) Atlas ID - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM...5-D/AFM585Q.Seq.d/ Representative seq. ID AFM585P (Link to... Original site) Representative DNA sequence >AFM585 (AFM585Q) /CSM/AF/AFM5-D/AFM585Q.Seq.d/ AATTTTGTAATTATAA

  9. Dicty_cDB: AFM453 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM453 (Link to dictyBase) - - - - AFM453P (Link to Original site) AFM453F 422 AFM...453Z 720 AFM453P 1122 - - Show AFM453 Library AF (Link to library) Clone ID AFM453 (Link... to dictyBase) Atlas ID - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM...4-C/AFM453Q.Seq.d/ Representative seq. ID AFM453P (Link to... Original site) Representative DNA sequence >AFM453 (AFM453Q) /CSM/AF/AFM4-C/AFM453Q.Seq.d/ AAATTAAAAAAATAAA

  10. Dicty_cDB: AFM578 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM578 (Link to dictyBase) - - - - AFM578P (Link to Original site) AFM578F 727 AFM...578Z 447 AFM578P 1154 - - Show AFM578 Library AF (Link to library) Clone ID AFM578 (Link... to dictyBase) Atlas ID - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM...5-D/AFM578Q.Seq.d/ Representative seq. ID AFM578P (Link to... Original site) Representative DNA sequence >AFM578 (AFM578Q) /CSM/AF/AFM5-D/AFM578Q.Seq.d/ ATCGCCTCACTTTTTA

  11. Dicty_cDB: AFM103 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM103 (Link to dictyBase) - - - - AFM103P (Link to Original site) AFM103F 125 AFM...103Z 666 AFM103P 771 - - Show AFM103 Library AF (Link to library) Clone ID AFM103 (Link ...to dictyBase) Atlas ID - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM...1-A/AFM103Q.Seq.d/ Representative seq. ID AFM103P (Link to ...Original site) Representative DNA sequence >AFM103 (AFM103Q) /CSM/AF/AFM1-A/AFM103Q.Seq.d/ AATATTTTAGTTTTAGG

  12. Dicty_cDB: AFM220 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM220 (Link to dictyBase) - - - - AFM220P (Link to Original site) AFM220F 634 AFM...220Z 697 AFM220P 1311 - - Show AFM220 Library AF (Link to library) Clone ID AFM220 (Link... to dictyBase) Atlas ID - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM...2-A/AFM220Q.Seq.d/ Representative seq. ID AFM220P (Link to... Original site) Representative DNA sequence >AFM220 (AFM220Q) /CSM/AF/AFM2-A/AFM220Q.Seq.d/ ATTATTTTTTATTTTA

  13. Dicty_cDB: AFM856 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM856 (Link to dictyBase) - - - - AFM856P (Link to Original site) AFM856F 505 AFM...856Z 554 AFM856P 1039 - - Show AFM856 Library AF (Link to library) Clone ID AFM856 (Link... to dictyBase) Atlas ID - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM...8-C/AFM856Q.Seq.d/ Representative seq. ID AFM856P (Link to... Original site) Representative DNA sequence >AFM856 (AFM856Q) /CSM/AF/AFM8-C/AFM856Q.Seq.d/ ATTCAATTTTGTAATT

  14. Dicty_cDB: AFM472 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM472 (Link to dictyBase) - - - - AFM472P (Link to Original site) AFM472F 693 AFM...472Z 695 AFM472P 1368 - - Show AFM472 Library AF (Link to library) Clone ID AFM472 (Link... to dictyBase) Atlas ID - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM...4-C/AFM472Q.Seq.d/ Representative seq. ID AFM472P (Link to... Original site) Representative DNA sequence >AFM472 (AFM472Q) /CSM/AF/AFM4-C/AFM472Q.Seq.d/ ATTTCAAGTTTAACTA

  15. Dicty_cDB: AFM691 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM691 (Link to dictyBase) - - - - AFM691P (Link to Original site) AFM691F 606 AFM...691Z 709 AFM691P 1295 - - Show AFM691 Library AF (Link to library) Clone ID AFM691 (Link... to dictyBase) Atlas ID - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM...6-D/AFM691Q.Seq.d/ Representative seq. ID AFM691P (Link to... Original site) Representative DNA sequence >AFM691 (AFM691Q) /CSM/AF/AFM6-D/AFM691Q.Seq.d/ AATAATAATAATAATA

  16. Dicty_cDB: AFM686 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM686 (Link to dictyBase) - - - - AFM686P (Link to Original site) AFM686F 655 AFM...686Z 688 AFM686P 1323 - - Show AFM686 Library AF (Link to library) Clone ID AFM686 (Link... to dictyBase) Atlas ID - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM...6-D/AFM686Q.Seq.d/ Representative seq. ID AFM686P (Link to... Original site) Representative DNA sequence >AFM686 (AFM686Q) /CSM/AF/AFM6-D/AFM686Q.Seq.d/ ACACCTTATTTATTAT

  17. Dicty_cDB: AFM610 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM610 (Link to dictyBase) - - - - AFM610P (Link to Original site) AFM610F 134 AFM...610Z 234 AFM610P 348 - - Show AFM610 Library AF (Link to library) Clone ID AFM610 (Link ...to dictyBase) Atlas ID - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM...6-A/AFM610Q.Seq.d/ Representative seq. ID AFM610P (Link to ...Original site) Representative DNA sequence >AFM610 (AFM610Q) /CSM/AF/AFM6-A/AFM610Q.Seq.d/ ATTGTAGTATTTTGTTC

  18. Dicty_cDB: AFM881 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM881 (Link to dictyBase) - - - - AFM881P (Link to Original site) AFM881F 604 AFM...881Z 557 AFM881P 1141 - - Show AFM881 Library AF (Link to library) Clone ID AFM881 (Link... to dictyBase) Atlas ID - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM...8-D/AFM881Q.Seq.d/ Representative seq. ID AFM881P (Link to... Original site) Representative DNA sequence >AFM881 (AFM881Q) /CSM/AF/AFM8-D/AFM881Q.Seq.d/ ATTTTCTCCATCATCA

  19. Dicty_cDB: AFM452 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM452 (Link to dictyBase) - - - - AFM452P (Link to Original site) AFM452F 126 AFM...452Z 412 AFM452P 518 - - Show AFM452 Library AF (Link to library) Clone ID AFM452 (Link ...to dictyBase) Atlas ID - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM...4-C/AFM452Q.Seq.d/ Representative seq. ID AFM452P (Link to ...Original site) Representative DNA sequence >AFM452 (AFM452Q) /CSM/AF/AFM4-C/AFM452Q.Seq.d/ AATAAACAATCAAATAA

  20. Dicty_cDB: AFM666 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM666 (Link to dictyBase) - - - - AFM666P (Link to Original site) AFM666F 624 AFM...666Z 657 AFM666P 1261 - - Show AFM666 Library AF (Link to library) Clone ID AFM666 (Link... to dictyBase) Atlas ID - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM...6-C/AFM666Q.Seq.d/ Representative seq. ID AFM666P (Link to... Original site) Representative DNA sequence >AFM666 (AFM666Q) /CSM/AF/AFM6-C/AFM666Q.Seq.d/ ATAAAATATTTTAATA

  1. Dicty_cDB: AFM772 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM772 (Link to dictyBase) - - - - AFM772P (Link to Original site) AFM772F 609 AFM...772Z 754 AFM772P 1343 - - Show AFM772 Library AF (Link to library) Clone ID AFM772 (Link... to dictyBase) Atlas ID - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM...7-C/AFM772Q.Seq.d/ Representative seq. ID AFM772P (Link to... Original site) Representative DNA sequence >AFM772 (AFM772Q) /CSM/AF/AFM7-C/AFM772Q.Seq.d/ ATTTAATAATACACAT

  2. Dicty_cDB: AFM747 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM747 (Link to dictyBase) - - - - AFM747P (Link to Original site) AFM747F 585 AFM...747Z 743 AFM747P 1308 - - Show AFM747 Library AF (Link to library) Clone ID AFM747 (Link... to dictyBase) Atlas ID - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM...7-B/AFM747Q.Seq.d/ Representative seq. ID AFM747P (Link to... Original site) Representative DNA sequence >AFM747 (AFM747Q) /CSM/AF/AFM7-B/AFM747Q.Seq.d/ ATTTAGGTCCTATATT

  3. Dicty_cDB: AFM643 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM643 (Link to dictyBase) - - - - AFM643P (Link to Original site) AFM643F 581 AFM...643Z 599 AFM643P 1160 - - Show AFM643 Library AF (Link to library) Clone ID AFM643 (Link... to dictyBase) Atlas ID - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM...6-B/AFM643Q.Seq.d/ Representative seq. ID AFM643P (Link to... Original site) Representative DNA sequence >AFM643 (AFM643Q) /CSM/AF/AFM6-B/AFM643Q.Seq.d/ ATAGTAATTATTTTTT

  4. High accuracy FIONA-AFM hybrid imaging.

    Science.gov (United States)

    Fronczek, D N; Quammen, C; Wang, H; Kisker, C; Superfine, R; Taylor, R; Erie, D A; Tessmer, I

    2011-04-01

    Multi-protein complexes are ubiquitous and play essential roles in many biological mechanisms. Single molecule imaging techniques such as electron microscopy (EM) and atomic force microscopy (AFM) are powerful methods for characterizing the structural properties of multi-protein and multi-protein-DNA complexes. However, a significant limitation to these techniques is the ability to distinguish different proteins from one another. Here, we combine high resolution fluorescence microscopy and AFM (FIONA-AFM) to allow the identification of different proteins in such complexes. Using quantum dots as fiducial markers in addition to fluorescently labeled proteins, we are able to align fluorescence and AFM information to ≥8nm accuracy. This accuracy is sufficient to identify individual fluorescently labeled proteins in most multi-protein complexes. We investigate the limitations of localization precision and accuracy in fluorescence and AFM images separately and their effects on the overall registration accuracy of FIONA-AFM hybrid images. This combination of the two orthogonal techniques (FIONA and AFM) opens a wide spectrum of possible applications to the study of protein interactions, because AFM can yield high resolution (5-10nm) information about the conformational properties of multi-protein complexes and the fluorescence can indicate spatial relationships of the proteins in the complexes.

  5. Measuring bacterial cells size with AFM.

    Science.gov (United States)

    Osiro, Denise; Filho, Rubens Bernardes; Assis, Odilio Benedito Garrido; Jorge, Lúcio André de Castro; Colnago, Luiz Alberto

    2012-01-01

    Atomic Force Microscopy (AFM) can be used to obtain high-resolution topographical images of bacteria revealing surface details and cell integrity. During scanning however, the interactions between the AFM probe and the membrane results in distortion of the images. Such distortions or artifacts are the result of geometrical effects related to bacterial cell height, specimen curvature and the AFM probe geometry. The most common artifact in imaging is surface broadening, what can lead to errors in bacterial sizing. Several methods of correction have been proposed to compensate for these artifacts and in this study we describe a simple geometric model for the interaction between the tip (a pyramidal shaped AFM probe) and the bacterium (Escherichia coli JM-109 strain) to minimize the enlarging effect. Approaches to bacteria immobilization and examples of AFM images analysis are also described.

  6. Surface analysis with STM and AFM

    CERN Document Server

    Magonov, Sergi N

    1996-01-01

    Scanning tunneling microscopy (STM) and atomic force microscopy (AFM) are powerful tools for surface examination. In the past, many STM and AFM studies led to erroneous conclusions due to lack of proper theoretical considerations and of an understanding of how image patterns are affected by measurement conditions. For this book, two world experts, one on theoretical analysis and the other on experimental characterization, have joined forces to bring together essential components of STM and AFM studies: The practical aspects of STM, the image simulation by surface electron density plot calculat

  7. An AFM Observation on Fossil Cytoplasm

    Institute of Scientific and Technical Information of China (English)

    WANG Xin; YU Junping; FANG Xiaohong

    2008-01-01

    Fossil cytoplasm is a new research topic of interest in paleobotany. Atomic force microscope (AFM) is a new technology applied widely in physics and biology; however, it is rarely used in paleontology. Here we applied AFM for the first time to study fossil cytoplasm. The results indicate that the fossil cytoplasm is heterogeneous and full of ultrastructures, just like extant cytoplasm, and that the application of AFM, especially in combination with other techniques, can reveal the subcellular details of fossil plants with more confidence.

  8. Robust Repetitive Controller for Fast AFM Imaging

    CERN Document Server

    Necipoglu, Serkan; Has, Yunus; Guvenc, Levent; Basdogan, Cagatay

    2012-01-01

    Currently, Atomic Force Microscopy (AFM) is the most preferred Scanning Probe Microscopy (SPM) method due to its numerous advantages. However, increasing the scanning speed and reducing the interaction forces between the probe's tip and the sample surface are still the two main challenges in AFM. To meet these challenges, we take advantage of the fact that the lateral movements performed during an AFM scan is a repetitive motion and propose a Repetitive Controller (RC) for the z-axis movements of the piezo-scanner. The RC utilizes the profile of the previous scan line while scanning the current line to achieve a better scan performance. The results of the scanning experiments performed with our AFM set-up show that the proposed RC significantly outperforms a conventional PI controller that is typically used for the same task. The scan error and the average tapping forces are reduced by 66% and 58%, respectively when the scan speed is increased by 7-fold.

  9. Conductive-AFM Patterning of Organic Semiconductors.

    Science.gov (United States)

    Brown, Benjamin P; Picco, Loren; Miles, Mervyn J; Faul, Charl F J

    2015-10-01

    Using a conductive atomic force microscope (c-AFM) redox-writing technique, it is shown that it is possible to locally, and reversibly, pattern conducting, and nonconducting features on the surface of a low molecular weight aniline-based organic (semi)-conductor thin film using a commercial c-AFM. It is shown that application of a voltage between the tip and sample causes localized redox reactions at the surface without damage.

  10. Error-corrected AFM: a simple and broadly applicable approach for substantially improving AFM image accuracy.

    Science.gov (United States)

    Bosse, James L; Huey, Bryan D

    2014-04-18

    Atomic force microscopy (AFM) has become an indispensable tool for imaging the topography and properties of surfaces at the nanoscale. A ubiquitous problem, however, is that optimal accuracy demands smooth surfaces, slow scanning, and expert users, contrary to many AFM applications and practical use patterns. Accordingly, a simple correction to AFM topographic images is implemented, incorporating error signals such as deflection and/or amplitude data that have long been available but quantitatively underexploited. This is demonstrated to substantially improve both height and lateral accuracy for expert users, with a corresponding 3-5 fold decrease in image error. Common image artifacts due to inexperienced AFM use, generally poorly scanned surfaces, or high speed images acquired in as fast as 7 s, are also shown to be effectively rectified, returning results equivalent to standard 'expert-user' images. This concept is proven for contact mode AFM, AC-mode, and high speed imaging, as well as property mapping such as phase contrast, with obvious extensions to many specialized AFM variations as well. Conveniently, as this correction procedure is based on either real time or post-processing, it is easily employed for future as well as legacy AFM systems and data. Such error-corrected AFM therefore offers a simple, broadly applicable approach for more accurate, more efficient, and more user-friendly implementation of AFM for nanoscale topography and property mapping.

  11. Dicty_cDB: AFM648 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available AF (Link to library) AFM648 (Link to dictyBase) - - - - - (Link to Original site) A...FM648F 626 - - - - - - Show AFM648 Library AF (Link to library) Clone ID AFM648 (Link to dictyBase) Atlas ID - NBRP ID - dict...yBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM...QQAQSASD ILGPPEISETEITTESILGDGSFGTVYKGRCRLKDVAVKVMLKQVDQKTLTDFRKEVAIM SKIFHPNIVLFLGACTSTPGKLMICTELMKGNLESLLL...IQIQQAQSASD ILGPPEISETEITTESILGDGSFGTVYKGRCRLKDVAVKVMLKQVDQKTLTDFRKEVAIM SKIFHPNIVLFLGACTSTPGKLMICT

  12. Hydration states of AFm cement phases

    Energy Technology Data Exchange (ETDEWEB)

    Baquerizo, Luis G., E-mail: luis.baquerizoibarra@holcim.com [Innovation, Holcim Technology Ltd., CH-5113 Holderbank (Switzerland); Matschei, Thomas [Innovation, Holcim Technology Ltd., CH-5113 Holderbank (Switzerland); Scrivener, Karen L. [Laboratory of Construction Materials, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland); Saeidpour, Mahsa; Wadsö, Lars [Building Materials, Lund University, Box 124, 221 000 Lund (Sweden)

    2015-07-15

    The AFm phase, one of the main products formed during the hydration of Portland and calcium aluminate cement based systems, belongs to the layered double hydrate (LDH) family having positively charged layers and water plus charge-balancing anions in the interlayer. It is known that these phases present different hydration states (i.e. varying water content) depending on the relative humidity (RH), temperature and anion type, which might be linked to volume changes (swelling and shrinkage). Unfortunately the stability conditions of these phases are insufficiently reported. This paper presents novel experimental results on the different hydration states of the most important AFm phases: monocarboaluminate, hemicarboaluminate, strätlingite, hydroxy-AFm and monosulfoaluminate, and the thermodynamic properties associated with changes in their water content during absorption/desorption. This data opens the possibility to model the response of cementitious systems during drying and wetting and to engineer systems more resistant to harsh external conditions.

  13. Graphene MEMS: AFM probe performance improvement.

    Science.gov (United States)

    Martin-Olmos, Cristina; Rasool, Haider Imad; Weiller, Bruce H; Gimzewski, James K

    2013-05-28

    We explore the feasibility of growing a continuous layer of graphene in prepatterned substrates, like an engineered silicon wafer, and we apply this as a mold for the fabrication of AFM probes. This fabrication method proves the fabrication of SU-8 devices coated with graphene in a full-wafer parallel technology and with high yield. It also demonstrates that graphene coating enhances the functionality of SU-8 probes, turning them conductive and more resistant to wear. Furthermore, it opens new experimental possibilities such as studying graphene-graphene interaction at the nanoscale with the precision of an AFM or the exploration of properties in nonplanar graphene layers.

  14. Reconstruction Algorithms in Undersampled AFM Imaging

    DEFF Research Database (Denmark)

    Arildsen, Thomas; Oxvig, Christian Schou; Pedersen, Patrick Steffen

    2016-01-01

    This paper provides a study of spatial undersampling in atomic force microscopy (AFM) imaging followed by different image reconstruction techniques based on sparse approximation as well as interpolation. The main reasons for using undersampling is that it reduces the path length and thereby the s...

  15. Contact nanomechanical measurements with the AFM

    Science.gov (United States)

    Geisse, Nicholas

    2013-03-01

    The atomic force microscope (AFM) has found broad use in the biological sciences largely due to its ability to make measurements on unfixed and unstained samples under liquid. In addition to imaging at multiple spatial scales ranging from micro- to nanometer, AFMs are commonly used as nanomechanical probes. This is pertinent for cell biology, as it has been demonstrated that the geometrical and mechanical properties of the extracellular microenvironment are important in such processes as cancer, cardiovascular disease, muscular dystrophy, and even the control of cell life and death. Indeed, the ability to control and quantify these external geometrical and mechanical parameters arises as a key issue in the field. Because AFM can quantitatively measure the mechanical properties of various biological samples, novel insights to cell function and to cell-substrate interactions are now possible. As the application of AFM to these types of problems is widened, it is important to understand the performance envelope of the technique and its associated data analyses. This talk will discuss the important issues that must be considered when mechanical models are applied to real-world data. Examples of the effect of different model assumptions on our understanding of the measured material properties will be shown. Furthermore, specific examples of the importance of mechanical stimuli and the micromechanical environment to the structure and function of biological materials will be presented.

  16. AFM-CMM integrated instrument user manual

    DEFF Research Database (Denmark)

    Marinello, Francesco; Bariani, Paolo

    This manual gives general important guidelines for a proper use of the integrated AFM-CMM instrument. More information can be collected reading: • N. Kofod Ph.D thesis [1]; • P. Bariani Ph.D thesis [2]; • Dualscope DME 95-200 operation manuals [3]; • SPIP help [4] • Stitching software user manual...

  17. Conductance of AFM Deformed Carbon Nanotubes

    Science.gov (United States)

    Svizhenko, Alexei; Maiti, Amitesh; Anatram, M. P.; Biegel, Bryan (Technical Monitor)

    2002-01-01

    This viewgraph presentation provides information on the electrical conductivity of carbon nanotubes upon deformation by atomic force microscopy (AFM). The density of states and conductance were computed using four orbital tight-binding method with various parameterizations. Different chiralities develop bandgap that varies with chirality.

  18. Dr. A.F.M. Reijnders, centenarian

    NARCIS (Netherlands)

    Bas, C.

    1999-01-01

    A few weeks ago a reprint was distributed of an interesting paper on the formation of spores by metamorphosis of basidia in fruiting bodies of Mycocalia and Scleroderma. That in itself was not so remarkable. But it is really a small miracle that this paper was written by Dr. A.F.M. Reijnders at the

  19. Dicty_cDB: AFM873 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available uences producing significant alignments: (bits) Value AFM873 (AFM873Q) /CSM/AF/AFM8-D/AFM873Q.Seq.d/ 258 2e-...49 own update 2009. 4. 3 Homology vs DNA Score E Sequences producing significant alignments: (bits) Value... update 2009. 4.15 Homology vs Protein Score E Sequences producing significant alignments: (bits) Value ( P5

  20. A microfluidic AFM cantilever based dispensing and aspiration platform

    NARCIS (Netherlands)

    Van Oorschot, R.; Perez Garza, H.H.; Derks, R.J.S.; Staufer, U.; Ghatkesar, M.K.

    2015-01-01

    We present the development of a microfluidic AFM (atomic force microscope) cantilever-based platform to enable the local dispensing and aspiration of liquid with volumes in the pico-to-femtoliter range. The platform consists of a basic AFM measurement system, microfluidic AFM chip, fluidic interface

  1. BOREAS AFM-6 Surface Meteorological Data

    Science.gov (United States)

    Wilczak, James; Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-6 team from the National Oceanic and Atmospheric Adminsitration/Environment Technology Laboratory (NOAA/ETL) collected surface meteorological data from 21 May to 20 Sep 1994 near the Southern Study Area-Old Jack Pine (SSA-OJP) tower site. The data are in tabular ASCII files. The surface meteorological data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  2. Structural insight into iodide uptake by AFm phases.

    Science.gov (United States)

    Aimoz, Laure; Wieland, Erich; Taviot-Guého, Christine; Dähn, Rainer; Vespa, Marika; Churakov, Sergey V

    2012-04-03

    The ability of cement phases carrying positively charged surfaces to retard the mobility of (129)I, present as iodide (I(-)) in groundwater, was investigated in the context of safe disposal of radioactive waste. (125)I sorption experiments on ettringite, hydrotalcite, chloride-, carbonate- and sulfate-containing AFm phases indicated that calcium-monosulfate (AFm-SO(4)) is the only phase that takes up trace levels of iodide. The structures of AFm phases prepared by coprecipitating iodide with other anions were investigated in order to understand this preferential uptake mechanism. X-ray diffraction (XRD) investigations showed a segregation of monoiodide (AFm-I(2)) and Friedel's salt (AFm-Cl(2)) for I-Cl mixtures, whereas interstratifications of AFm-I(2) and hemicarboaluminate (AFm-OH-(CO(3))(0.5)) were observed for the I-CO(3) systems. In contrast, XRD measurements indicated the formation of a solid solution between AFm-I(2) and AFm-SO(4) for the I-SO(4) mixtures. Extended X-ray absorption fine structure spectroscopy showed a modification of the coordination environment of iodine in I-CO(3) and in I-SO(4) samples compared to pure AFm-I(2). This is assumed to be due to the introduction of stacking faults in I-CO(3) samples on one hand and due to the presence of sulfate and associated space-filling water molecules as close neighbors in I-SO(4) samples on the other hand. The formation of a solid solution between AFm-I(2) and AFm-SO(4), with a short-range mixing of iodide and sulfate, implies that AFm-SO(4) bears the potential to retard (129)I.

  3. [AFM fishing of proteins under impulse electric field].

    Science.gov (United States)

    Ivanov, Yu D; Pleshakova, T O; Malsagova, K A; Kaysheva, A L; Kopylov, A T; Izotov, A A; Tatur, V Yu; Vesnin, S G; Ivanova, N D; Ziborov, V S; Archakov, A I

    2016-05-01

    A combination of (atomic force microscopy)-based fishing (AFM-fishing) and mass spectrometry allows to capture protein molecules from solutions, concentrate and visualize them on an atomically flat surface of the AFM chip and identify by subsequent mass spectrometric analysis. In order to increase the AFM-fishing efficiency we have applied pulsed voltage with the rise time of the front of about 1 ns to the AFM chip. The AFM-chip was made using a conductive material, highly oriented pyrolytic graphite (HOPG). The increased efficiency of AFM-fishing has been demonstrated using detection of cytochrome b5 protein. Selection of the stimulating pulse with a rise time of 1 ns, corresponding to the GHz frequency range, by the effect of intrinsic emission from water observed in this frequency range during water injection into the cell.

  4. Single molecule transcription profiling with AFM

    Energy Technology Data Exchange (ETDEWEB)

    Reed, Jason [Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095 (United States); Mishra, Bud [Departments of Computer Science and Mathematics, Courant Institute of Mathematical Sciences, New York University, New York, NY 10012 (United States); Pittenger, Bede [Veeco Instruments, Santa Barbara, CA 93117 (United States); Magonov, Sergei [Veeco Instruments, Santa Barbara, CA 93117 (United States); Troke, Joshua [Department of Pathology and Center for Cell Control, an NIH Nanomedicine Development Center, UCLA, Los Angeles, CA 90095 (United States); Teitell, Michael A [Department of Pathology and Center for Cell Control, an NIH Nanomedicine Development Center, UCLA, Los Angeles, CA 90095 (United States); Gimzewski, James K [Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095 (United States)

    2007-01-31

    Established techniques for global gene expression profiling, such as microarrays, face fundamental sensitivity constraints. Due to greatly increasing interest in examining minute samples from micro-dissected tissues, including single cells, unorthodox approaches, including molecular nanotechnologies, are being explored in this application. Here, we examine the use of single molecule, ordered restriction mapping, combined with AFM, to measure gene transcription levels from very low abundance samples. We frame the problem mathematically, using coding theory, and present an analysis of the critical error sources that may serve as a guide to designing future studies. We follow with experiments detailing the construction of high density, single molecule, ordered restriction maps from plasmids and from cDNA molecules, using two different enzymes, a result not previously reported. We discuss these results in the context of our calculations.

  5. Cryogenic AFM-STM for mesoscopic physics

    Science.gov (United States)

    Le Sueur, H.

    Electronic spectroscopy based on electron tunneling gives access to the electronic density of states (DOS) in conductive materials, and thus provides detailed information about their electronic properties. During this thesis work, we have developed a microscope in order to perform spatially resolved (10 nm) tunneling spectroscopy, with an unprecedented energy resolution (10 μeV), on individual nanocircuits. This machine combines an Atomic Force Microscope (AFM mode) together with a Scanning Tunneling Spectroscope (STS mode) and functions at very low temperatures (30 mK). In the AFM mode, the sample topography is recorded using a piezoelectric quartz tuning fork, which allows us to locate and image nanocircuits. Tunneling can then be performed on conductive areas of the circuit. With this microscope, we have measured the local DOS in a hybrid Superconductor-Normal metal-Superconductor (S-N-S) structure. In such circuit, the electronic properties of N and S are modified by the superconducting proximity effect. In particular, for short N wires, we have observed a minigap independent of position in the DOS of the N wire, as was previously predicted. Moreover, when varying the superconducting phase difference between the S electrodes, we have measured the modification of the minigap and its disappearance when the phase difference equals π. Our experimental results for the DOS, and its dependences (on phase, position, N length), are quantitatively accounted for by the quasiclassical theory of superconductivity. Some predictions of this theory are observed for the first time. La spectroscopie électronique basée sur l'effet tunnel donne accès à la densité d'états des électrons (DOS) dans les matériaux conducteurs, et renseigne ainsi en détail sur leurs propriétés électroniques. Au cours de cette thèse, nous avons développé un microscope permettant d'effectuer la spectroscopie tunnel résolue spatialement (10 nm) de nanocircuits individuels, avec une r

  6. BOREAS AFM-06 Mean Wind Profile Data

    Science.gov (United States)

    Wilczak, James; Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-6 team from the National Oceanic and Atmospheric Administration/Environment Technology Laboratory (NOAA/ETL) operated a 915-MHz wind/Radio Acoustic Sounding System (RASS) profiler system in the Southern Study Area (SSA) near the Old Jack Pine (OJP) tower from 21 May 1994 to 20 Sep 1994. The data set provides wind profiles at 38 heights, containing the variables of wind speed; wind direction; and the u-, v-, and w-components of the total wind. The data are stored in tabular ASCII files. The mean wind profile data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  7. BOREAS AFM-6 Boundary Layer Height Data

    Science.gov (United States)

    Wilczak, James; Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-6 team from National Oceanic and Atmospheric Adminsitration/Environment Technology Laboratory (NOAA/ETL) operated a 915-MHz wind/Radio Acoustic Sounding System (RASS) profiler system in the Southern Study Area (SSA) near the Old Jack Pine (OJP) site. This data set provides boundary layer height information over the site. The data were collected from 21 May 1994 to 20 Sep 1994 and are stored in tabular ASCII files. The boundary layer height data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  8. BOREAS AFM-06 Mean Temperature Profile Data

    Science.gov (United States)

    Wilczak, James; Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-6 team from the National Oceanic and Atmospheric Adminsitration/Environment Technology Laboratory (NOAA/ETL) operated a 915-MHz wind/Radio Acoustic Sounding System (RASS) profiler system in the Southern Study Area (SSA) near the Old Jack Pine (OJP) tower from 21 May 1994 to 20 Sep 1994. The data set provides temperature profiles at 15 heights, containing the variables of virtual temperature, vertical velocity, the speed of sound, and w-bar. The data are stored in tabular ASCII files. The mean temperature profile data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  9. Spin-3/2 Ising model AFM/AFM two-layer lattice with crystal field

    Institute of Scientific and Technical Information of China (English)

    Erhan Albayrak; Ali Yigit

    2009-01-01

    The spin-3/2 Ising model is investigated for the case of antiferromagnetic (AFM/AFM) interactions on the two-layer Bethe lattice by using the exact recursion relations in the pairwise approach for given coordination numbers q = 3, 4 and 6 when the layers are under the influences of equal external magnetic and equal crystal fields. The ground state, (GS) phase diagrams are obtained on the different planes in detail and then the temperature-dependent phase diagrams of the system are calculated accordingly. It is observed that the system presents both second- and first-order phase transitions for all q, therefore, tricritical points. It is also found that the system exhibits double-critical end points and isolated points. The model aiso presents two Néel temperatures, T_N, and the existence of which leads to the reentrant behaviour.

  10. Structure Assisted Compressed Sensing Reconstruction of Undersampled AFM Images

    DEFF Research Database (Denmark)

    Oxvig, Christian Schou; Arildsen, Thomas; Larsen, Torben

    2017-01-01

    The use of compressed sensing in atomic force microscopy (AFM) can potentially speed-up image acquisition, lower probe-specimen interaction, or enable super resolution imaging. The idea in compressed sensing for AFM is to spatially undersample the specimen, i.e. only acquire a small fraction...

  11. Helium ion beam induced growth of hammerhead AFM probes

    NARCIS (Netherlands)

    Nanda, G.; Veldhoven, E. van; Maas, D.J.; Sadeghian Marnani, H.; Alkemade, P.F.A.

    2015-01-01

    The authors report the direct-write growth of hammerhead atomic force microscope (AFM) probes by He+ beam induced deposition of platinum-carbon. In order to grow a thin nanoneedle on top of a conventional AFM probe, the authors move a focused He+ beam during exposure to a PtC precursor gas. In the f

  12. Dicty_cDB: AFM354 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available entative seq. ID - (Link to Original site) Representative... - NBRP ID - dictyBase ID - Link to Contig - Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/AF/AFM3-C/AFM354Q.Seq.d/ Repres

  13. Simultaneous AFM nano-patterning and imaging for photomask repair

    NARCIS (Netherlands)

    Keyvani, A.; Tamer, M.S.; Es, M.H. van; Sadeghian Marnani, H.

    2016-01-01

    In this paper we present a new AFM based nano-patterning technique that can be used for fast defect repairing of high resolution photomasks and possibly other high-speed nano-patterning applications. The proposed method works based on hammering the sample with tapping mode AFM followed by wet cleani

  14. Application of AFM from microbial cell to biofilm.

    Science.gov (United States)

    Wright, Chris J; Shah, Maia Kierann; Powell, Lydia C; Armstrong, Ian

    2010-01-01

    Atomic Force Microscopy (AFM) has proven itself over recent years as an essential tool for the analysis of microbial systems. This article will review how AFM has been used to study microbial systems to provide unique insight into their behavior and relationship with their environment. Immobilization of live cells has enabled AFM imaging and force measurement to provide understanding of the structure and function of numerous microbial cells. At the macromolecular level AFM investigation into the properties of surface macromolecules and the energies associated with their mechanical conformation and functionality has helped unravel the complex interactions of microbial cells. At the level of the whole cell AFM has provided an integrated analysis of how the microbial cell exploits its environment through its selective, adaptable interface, the cell surface. In addition to these areas of study the AFM investigation of microbial biofilms has been vital for industrial and medical process analysis. There exists a tremendous potential for the future application of AFM to microbial systems and this has been strengthened by the trend to use AFM in combination with other characterization methods, such as confocal microscopy and Raman spectroscopy, to elucidate dynamic cellular processes.

  15. Fabrication and analysis of cylindrical resin AFM microcantilevers

    Energy Technology Data Exchange (ETDEWEB)

    Cheneler, D., E-mail: D.Cheneler@bham.ac.uk [School of Mechanical Engineering, The University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Bowen, J. [School of Chemical Engineering, The University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Leigh, S.J.; Purssell, C.P.; Billson, D.R.; Hutchins, D.A. [School of Engineering, University of Warwick, Coventry CV4 7AL (United Kingdom); Ward, M.C.L. [School of Mechanical Engineering, The University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom)

    2011-07-15

    In this paper a new method of fabricating cylindrical resin microcantilevers using the Direct Digital Manufacturing (DDM) technique of Micro-stereolithography (MSL) is described. The method is rapid and commercially viable, allowing the fabrication of atomic force microscope (AFM) cantilevers which exhibit much larger spring constants than those currently commercial available. This allows for experimentation in a force regime orders of magnitude higher than currently possible using the AFM. This makes these cantilevers ideally suited for AFM-based depth sensing indentation. Due to their geometry, the assumptions used in the standard Euler-Bernoulli beam theory usually used to analyse AFM cantilevers may no longer be valid. Therefore approximate analytical solutions based on Timoshenko beam theory have been derived for the stiffness and resonant frequency of these cantilevers. Prototypes of the cantilevers have been fabricated and tested. Results show good agreement between experiment and theory. -- Highlights: {yields} Direct Digital Manufacturing (DDM) has been used to make commercially viable AFM cantilevers. {yields} Analytical expressions for resonant frequency of Timoshenko beams has been derived. {yields} Dynamics of cylindrical AFM cantilevers has been discussed. {yields} Expressions for dynamic properties of conical AFM cantilevers has been derived. {yields} Effect of metallisation of cylindrical AFM cantilevers has been discussed.

  16. BOREAS AFM-07 SRC Surface Meteorological Data

    Science.gov (United States)

    Osborne, Heather; Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Young, Kim; Wittrock, Virginia; Shewchuck, Stan; Smith, David E. (Technical Monitor)

    2000-01-01

    The Saskatchewan Research Council (SRC) collected surface meteorological and radiation data from December 1993 until December 1996. The data set comprises Suite A (meteorological and energy balance measurements) and Suite B (diffuse solar and longwave measurements) components. Suite A measurements were taken at each of ten sites, and Suite B measurements were made at five of the Suite A sites. The data cover an approximate area of 500 km (North-South) by 1000 km (East-West) (a large portion of northern Manitoba and northern Saskatchewan). The measurement network was designed to provide researchers with a sufficient record of near-surface meteorological and radiation measurements. The data are provided in tabular ASCII files, and were collected by Aircraft Flux and Meteorology (AFM)-7. The surface meteorological and radiation data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  17. Tobacco mosaic virus as an AFM tip calibrator.

    Science.gov (United States)

    Trinh, Minh-Hieu; Odorico, Michael; Bellanger, Laurent; Jacquemond, Mireille; Parot, Pierre; Pellequer, Jean-Luc

    2011-01-01

    The study of high-resolution topographic surfaces of isolated single molecules is one of the applications of atomic force microscopy (AFM). Since tip-induced distortions are significant in topographic images the exact AFM tip shape must be known in order to correct dilated AFM height images using mathematical morphology operators. In this work, we present a protocol to estimate the AFM tip apex radius using tobacco mosaic virus (TMV) particles. Among the many advantages of TMV, are its non-abrasivity, thermal stability, bio-compatibility with other isolated single molecules and stability when deposited on divalent ion pretreated mica. Compared to previous calibration systems, the advantage of using TMV resides in our detailed knowledge of the atomic structure of the entire rod-shaped particle. This property makes it possible to interpret AFM height images in term of the three-dimensional structure of TMV. Results obtained in this study show that when a low imaging force is used, the tip is sensing viral protein loops whereas at higher imaging force the tip is sensing the TMV particle core. The known size of the TMV particle allowed us to develop a tip-size estimation protocol which permits the successful erosion of tip-convoluted AFM height images. Our data shows that the TMV particle is a well-adapted calibrator for AFM tips for imaging single isolated biomolecules. The procedure developed in this study is easily applicable to any other spherical viral particles.

  18. [Application of atomic force microscopy (AFM) in ophthalmology].

    Science.gov (United States)

    Milka, Michał; Mróz, Iwona; Jastrzebska, Maria; Wrzalik, Roman; Dobrowolski, Dariusz; Roszkowska, Anna M; Moćko, Lucyna; Wylegała, Edward

    2012-01-01

    Atomic force microscopy (AFM) allows to examine surface of different biological objects in the nearly physiological conditions at the nanoscale. The purpose of this work is to present the history of introduction and the potential applications of the AFM in ophthalmology research and clinical practice. In 1986 Binnig built the AFM as a next generation of the scanning tunnelling microscope (STM). The functional principle of AFM is based on the measurement of the forces between atoms on the sample surface and the probe. As a result, the three-dimensional image of the surface with the resolution on the order of nanometres can be obtained. Yamamoto used as the first the AFM on a wide scale in ophthalmology. The first investigations used the AFM method to study structure of collagen fibres of the cornea and of the sclera. Our research involves the analysis of artificial intraocular lenses (IOLs). According to earlier investigations, e.g. Lombardo et al., the AFM was used to study only native IOLs. Contrary to the earlier investigations, we focused our measurements on lenses explanted from human eyes. The surface of such lenses is exposed to the influence of the intraocular aqueous environment, and to the related impacts of biochemical processes. We hereby present the preliminary results of our work in the form of AFM images depicting IOL surface at the nanoscale. The images allowed us to observe early stages of the dye deposit formation as well as local calcinosis. We believe that AFM is a very promising tool for studying the structure of IOL surface and that further observations will make it possible to explain the pathomechanism of artificial intraocular lens opacity formation.

  19. AFM imaging of fenestrated liver sinusoidal endothelial cells.

    Science.gov (United States)

    Braet, F; Wisse, E

    2012-12-01

    Each microscope with its dedicated sample preparation technique provides the investigator with a specific set of data giving an instrument-determined (or restricted) insight into the structure and function of a tissue, a cell or parts thereof. Stepwise improvements in existing techniques, both instrumental and preparative, can sometimes cross barriers in resolution and image quality. Of course, investigators get really excited when completely new principles of microscopy and imaging are offered in promising new instruments, such as the AFM. The present paper summarizes a first phase of studies on the thin endothelial cells of the liver. It describes the preparation-dependent differences in AFM imaging of these cells after isolation. Special point of interest concerned the dynamics of the fenestrae, thought to filter lipid-carrying particles during their transport from the blood to the liver cells. It also describes the attempts to image the details of these cells when alive in cell cultures. It explains what physical conditions, mainly contributed to the scanning stylus, are thought to play a part in the limitations in imaging these cells. The AFM also offers promising specifications to those interested in cell surface details, such as membrane-associated structures, receptors, coated pits, cellular junctions and molecular aggregations or domains. The AFM also offers nano-manipulation possibilities, strengths and elasticity measurements, force interactions, affinity measurements, stiffness and other physical aspects of membranes and cytoskeleton. The potential for molecular approaches is there. New developments in cantilever construction and computer software promise to bring real time video imaging to the AFM. Home made accessories for the first generation of AFM are now commodities in commercial instruments and make the life of the AFM microscopist easier. Also, the combination of different microscopies, such as AFM and TEM, or AFM and SEM find their way to the

  20. Nonlinear Dynamical analysis of an AFM tapping mode microcantilever beam

    Directory of Open Access Journals (Sweden)

    Choura S.

    2012-07-01

    Full Text Available We focus in this paper on the modeling and dynamical analysis of a tapping mode atomic force microscopy (AFM microcantilever beam. This latter is subjected to a harmonic excitation of its base displacement and to Van der Waals and DMT contact forces at its free end. For AFM design purposes, we derive a mathematical model for accurate description of the AFM microbeam dynamics. We solve the resulting equations of motions and associated boundary conditions using the Galerkin method. We find that using one-mode approximation in tapping mode operating in the neighborhood of the contact region one-mode approximation may lead to erroneous results.

  1. Raman and AFM study of gamma irradiated plastic bottle sheets

    Science.gov (United States)

    Ali, Yasir; Kumar, Vijay; Sonkawade, R. G.; Dhaliwal, A. S.

    2013-02-01

    In this investigation, the effects of gamma irradiation on the structural properties of plastic bottle sheet are studied. The Plastic sheets were exposed with 1.25MeV 60Co gamma rays source at various dose levels within the range from 0-670 kGy. The induced modifications were followed by micro-Raman and atomic force microscopy (AFM). The Raman spectrum shows the decrease in Raman intensity and formation of unsaturated bonds with an increase in the gamma dose. AFM image displays rough surface morphology after irradiation. The detailed Raman analysis of plastic bottle sheets is presented here, and the results are correlated with the AFM observations.

  2. High-speed AFM of human chromosomes in liquid

    Science.gov (United States)

    Picco, L. M.; Dunton, P. G.; Ulcinas, A.; Engledew, D. J.; Hoshi, O.; Ushiki, T.; Miles, M. J.

    2008-09-01

    Further developments of the previously reported high-speed contact-mode AFM are described. The technique is applied to the imaging of human chromosomes at video rate both in air and in water. These are the largest structures to have been imaged with high-speed AFM and the first imaging in liquid to be reported. A possible mechanism that allows such high-speed contact-mode imaging without significant damage to the sample is discussed in the context of the velocity dependence of the measured lateral force on the AFM tip.

  3. Nanoscale structural features determined by AFM for single virus particles.

    Science.gov (United States)

    Chen, Shu-wen W; Odorico, Michael; Meillan, Matthieu; Vellutini, Luc; Teulon, Jean-Marie; Parot, Pierre; Bennetau, Bernard; Pellequer, Jean-Luc

    2013-11-21

    In this work, we propose "single-image analysis", as opposed to multi-image averaging, for extracting valuable information from AFM images of single bio-particles. This approach allows us to study molecular systems imaged by AFM under general circumstances without restrictions on their structural forms. As feature exhibition is a resolution correlation, we have performed AFM imaging on surfaces of tobacco mosaic virus (TMV) to demonstrate variations of structural patterns with probing resolution. Two AFM images were acquired with the same tip at different probing resolutions in terms of pixel width, i.e., 1.95 and 0.49 nm per pixel. For assessment, we have constructed an in silico topograph based on the three-dimensional crystal structure of TMV as a reference. The prominent artifacts observed in the AFM-determined shape of TMV were attributed to tip convolutions. The width of TMV rod was systematically overestimated by ~10 nm at both probing resolutions of AFM. Nevertheless, the effects of tip convolution were less severe in vertical orientation so that the estimated height of TMV by AFM imaging was in close agreement with the in silico X-ray topograph. Using dedicated image processing algorithms, we found that at low resolution (i.e., 1.95 nm per pixel), the extracted surface features of TMV can be interpreted as a partial or full helical repeat (three complete turns with ~7.0 nm in length), while individual protein subunits (~2.5 nm) were perceivable only at high resolution. The present study shows that the scales of revealed structural features in AFM images are subject to both probing resolution and processing algorithms for image analysis.

  4. Roughness measurements with an AFM-CMM instrument

    DEFF Research Database (Denmark)

    Marinello, Francesco; Bariani, Paolo; De Chiffre, Leonardo;

    2005-01-01

    In this paper, application of a Large Range AFM to roughness analyses is presented: measurements on different calibration standards covering a range of 4.8×0.1 mm2 were performed. Upon extraction of single profiles from the three-dimensional data set, roughness can be evaluated in compliance...... with ISO standards. Profiles from the Large range AFM were directly compared with those obtained by a traceable stylus instrument, resulting from probing the same surface region....

  5. Characterization of the interaction between AFM tips and surface nanobubbles.

    Science.gov (United States)

    Walczyk, Wiktoria; Schönherr, Holger

    2014-06-24

    While the presence of gaseous enclosures observed at various solid-water interfaces, the so-called "surface nanobubles", has been confirmed by many groups in recent years, their formation, properties, and stability have not been convincingly and exhaustively explained. Here we report on an atomic force microscopy (AFM) study of argon nanobubbles on highly oriented pyrolitic graphite (HOPG) in water to elucidate the properties of nanobubble surfaces and the mechanism of AFM tip-nanobubble interaction. In particular, the deformation of the nanobubble-water interface by the AFM tip and the question whether the AFM tip penetrates the nanobubble during scanning were addressed by this combined intermittent contact (tapping) mode and force volume AFM study. We found that the stiffness of nanobubbles was smaller than the cantilever spring constant and comparable with the surface tension of water. The interaction with the AFM tip resulted in severe quasi-linear deformation of the bubbles; however, in the case of tip-bubble attraction, the interface deformed toward the tip. We tested two models of tip-bubble interaction, namely, the capillary force and the dynamic interaction model, and found, depending on the tip properties, good agreement with experimental data. The results showed that the tip-bubble interaction strength and the magnitude of the bubble deformation depend strongly on tip and bubble geometry and on tip and substrate material, and are very sensitive to the presence of contaminations that alter the interfacial tension. In particular, nanobubbles interacted differently with hydrophilic and hydrophobic AFM tips, which resulted in qualitatively and quantitatively different force curves measured on the bubbles in the experiments. To minimize bubble deformation and obtain reliable AFM results, nanobubbles must be measured with a sharp hydrophilic tip and with a cantilever having a very low spring constant in a contamination-free system.

  6. The Conductance of Nanotubes Deformed by the AFM Tip

    Science.gov (United States)

    Svizhenko, Alexei; Maiti, Amitesh; Anantram, M. P.

    2003-01-01

    The conductance drop under AFM-tip deformation can be explained by stretching of the tube length. NT sensors can be built utilizing uniform stretching. Single sp3 bond cross section cannot block electrons, because another conducting path may exist. AFM tip which forms sp3 bonds with the tube will decrease conductance. In the "table experiment" a conductance drop of 2 orders of magnitude happened only after some bonds were broken.

  7. Modeling the Interaction between AFM Tips and Pinned Surface Nanobubbles.

    Science.gov (United States)

    Guo, Zhenjiang; Liu, Yawei; Xiao, Qianxiang; Schönherr, Holger; Zhang, Xianren

    2016-01-26

    Although the morphology of surface nanobubbles has been studied widely with different AFM modes, AFM images may not reflect the real shapes of the nanobubbles due to AFM tip-nanobubble interactions. In addition, the interplay between surface nanobubble deformation and induced capillary force has not been well understood in this context. In our work we used constraint lattice density functional theory to investigate the interaction between AFM tips and pinned surface nanobubbles systematically, especially concentrating on the effects of tip hydrophilicity and shape. For a hydrophilic tip contacting a nanobubble, its hydrophilic nature facilitates its departure from the bubble surface, displaying a weak and intermediate-range attraction. However, when the tip squeezes the nanobubble during the approach process, the nanobubble shows an elastic effect that prevents the tip from penetrating the bubble, leading to a strong nanobubble deformation and repulsive interactions. On the contrary, a hydrophobic tip can easily pierce the vapor-liquid interface of the nanobubble during the approach process, leading to the disappearance of the repulsive force. In the retraction process, however, the adhesion between the tip and the nanobubble leads to a much stronger lengthening effect on nanobubble deformation and a strong long-range attractive force. The trends of force evolution from our simulations agree qualitatively well with recent experimental AFM observations. This favorable agreement demonstrates that our model catches the main intergradient of tip-nanobubble interactions for pinned surface nanobubbles and may therefore provide important insight into how to design minimally invasive AFM experiments.

  8. Processing outcomes of the AFM probe-based machining approach with different feed directions

    OpenAIRE

    2016-01-01

    We present experimental and theoretical results to describe and explain processing outcomes when producing nanochannels that are a few times wider than the atomic force microscope (AFM) probe using an AFM. This is achieved when AFM tip-based machining is performed with reciprocating motion of the tip of the AFM probe. In this case, different feed directions with respect to the orientation of the AFM probe can be used. The machining outputs of interest are the chip formation process, obtained ...

  9. Sub-diffraction nano manipulation using STED AFM.

    Science.gov (United States)

    Chacko, Jenu Varghese; Canale, Claudio; Harke, Benjamin; Diaspro, Alberto

    2013-01-01

    In the last two decades, nano manipulation has been recognized as a potential tool of scientific interest especially in nanotechnology and nano-robotics. Contemporary optical microscopy (super resolution) techniques have also reached the nanometer scale resolution to visualize this and hence a combination of super resolution aided nano manipulation ineluctably gives a new perspective to the scenario. Here we demonstrate how specificity and rapid determination of structures provided by stimulated emission depletion (STED) microscope can aid another microscopic tool with capability of mechanical manoeuvring, like an atomic force microscope (AFM) to get topological information or to target nano scaled materials. We also give proof of principle on how high-resolution real time visualization can improve nano manipulation capability within a dense sample, and how STED-AFM is an optimal combination for this job. With these evidences, this article points to future precise nano dissections and maybe even to a nano-snooker game with an AFM tip and fluorospheres.

  10. Image auto-zoom technology for AFM automation

    Institute of Scientific and Technical Information of China (English)

    LIU Wen-liang; QIAN Jian-qiang; LI Yuan

    2009-01-01

    For the case of atomic force microscope (AFM) automation, we extract the most valuable sub-region of a given AFM image automatically for succeeding scanning to get the higher resolution of interesting region. Two objective functions are sum-marized based on the analysis of evaluation of the information of a sub-region, and corresponding algorithm principles based on standard deviation and Discrete Cosine Transform (DCT) compression are determined from math. Algorithm realizations are analyzed and two select patterns of sub-region: fixed grid mode and sub-region walk mode are compared. To speed up the algorithm of DCT compression which is too slow to practical applied, a new algorithm is proposed based on analysis of DCT's block computing feature, and it can perform hundreds times faster than original. Implementation result of the algorithms proves that this technology can be applied to the AFM automatic operation. Finally the difference between the two objective functions is discussed with detail computations.

  11. Optimization of phase contrast in bimodal amplitude modulation AFM

    Directory of Open Access Journals (Sweden)

    Mehrnoosh Damircheli

    2015-04-01

    Full Text Available Bimodal force microscopy has expanded the capabilities of atomic force microscopy (AFM by providing high spatial resolution images, compositional contrast and quantitative mapping of material properties without compromising the data acquisition speed. In the first bimodal AFM configuration, an amplitude feedback loop keeps constant the amplitude of the first mode while the observables of the second mode have not feedback restrictions (bimodal AM. Here we study the conditions to enhance the compositional contrast in bimodal AM while imaging heterogeneous materials. The contrast has a maximum by decreasing the amplitude of the second mode. We demonstrate that the roles of the excited modes are asymmetric. The operational range of bimodal AM is maximized when the second mode is free to follow changes in the force. We also study the contrast in trimodal AFM by analyzing the kinetic energy ratios. The phase contrast improves by decreasing the energy of second mode relative to those of the first and third modes.

  12. Imaging resolution of AFM with probes modified with FIB.

    Science.gov (United States)

    Skibinski, J; Rebis, J; Wejrzanowski, T; Rozniatowski, K; Pressard, K; Kurzydlowski, K J

    2014-11-01

    This study concerns imaging of the structure of materials using AFM tapping (TM) and phase imaging (PI) mode, using probes modified with focused ion beam (FIB). Three kinds of modifications were applied - thinning of the cantilever, sharpening of the tip and combination of these two modifications. Probes shaped in that way were used for AFM investigations with Bruker AFM Nanoscope 8. As a testing material, titanium roughness standard supplied by Bruker was used. The results show that performed modifications influence the oscillation of the probes. In particular thinning of the cantilever enables one to acquire higher self-resonant frequencies, which can be advantageous for improving the quality of imaging in PI mode. It was found that sharpening the tip improves imaging resolution in tapping mode, which is consistent with existing knowledge, but lowered the quality of high frequency topography images. In this paper the Finite Element Method (FEM) was used to explain the results obtained experimentally.

  13. Optimization of phase contrast in bimodal amplitude modulation AFM.

    Science.gov (United States)

    Damircheli, Mehrnoosh; Payam, Amir F; Garcia, Ricardo

    2015-01-01

    Bimodal force microscopy has expanded the capabilities of atomic force microscopy (AFM) by providing high spatial resolution images, compositional contrast and quantitative mapping of material properties without compromising the data acquisition speed. In the first bimodal AFM configuration, an amplitude feedback loop keeps constant the amplitude of the first mode while the observables of the second mode have not feedback restrictions (bimodal AM). Here we study the conditions to enhance the compositional contrast in bimodal AM while imaging heterogeneous materials. The contrast has a maximum by decreasing the amplitude of the second mode. We demonstrate that the roles of the excited modes are asymmetric. The operational range of bimodal AM is maximized when the second mode is free to follow changes in the force. We also study the contrast in trimodal AFM by analyzing the kinetic energy ratios. The phase contrast improves by decreasing the energy of second mode relative to those of the first and third modes.

  14. Modular design of AFM probe with sputtered silicon tip

    DEFF Research Database (Denmark)

    Rasmussen, Peter; Thaysen, Jacob; Bouwstra, Siebe

    2001-01-01

    We present an atomic force microscopy (AFM) probe with integrated piezoresistive read-out. The probe consists of a micromachined cantilever with a tip at the end. The cantilever is a multilayer structure with its thickness defined by etch-stop and the bending controlled by fitting the thicknesses...... of the thin films constituting the cantilever. The AFM probe has an integrated tip made of a thick sputtered silicon layer, which is deposited after the probe has been defined and just before the cantilevers are released. The tips are so-called rocket tips made by reactive ion etching. We present probes...... with polysilicon resistors for demonstrating the fabrication principle. The probes have been characterised with respect to noise and deflection sensitivity and have been applied in AFM imaging....

  15. BOREAS AFM-04 Twin Otter Aircraft Flux Data

    Science.gov (United States)

    MacPherson, J. Ian; Hall, Forrest G. (Editor); Knapp, David E. (Editor); Desjardins, Raymond L.; Smith, David E. (Technical Monitor)

    2000-01-01

    The BOREAS AFM-5 team collected and processed data from the numerous radiosonde flights during the project. The goals of the AFM-05 team were to provide large-scale definition of the atmosphere by supplementing the existing AES aerological network, both temporally and spatially. This data set includes basic upper-air parameters collected from the network of upper-air stations during the 1993, 1994, and 1996 field campaigns over the entire study region. The data are contained in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884) or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  16. Resonant Response of Rectangular AFM Cantilever in Liquid

    Institute of Scientific and Technical Information of China (English)

    CHEN Yu-Hang; HUANG Wen-Hao

    2007-01-01

    Dynamic characteristics of atomic force microscopy (AFM) cantilevers can be influenced by their working media.We perform an experimental study on the resonant responses of rectangular AFM cantilevers with different sizes immersed in various viscous fluids. The measured resonance frequencies in liquids are used to validate several theoretical models. Comparison shows the analytical model proposed by Sader [J. Appl. Phys. 84 (1998) 64] can give the best agreement with the experimental results with the maximum relative error nearly 16% for all the cantilevers in different liquids. The ratio between the resonant frequencies in air and water is almost independent of the cantilever length, which is consistent with the theoretical analyses.

  17. AFM reconstruction of complex-shaped chiral plasmonic nanostructures

    CERN Document Server

    Kondratov, Alexey V; Gainutdinov, Radmir V

    2016-01-01

    A significant part of the optical metamaterial phenomena has the plasmonic nature and their investigation requires very accurate knowledge of the fabricated structures shape with a focus on the periodical features. We describe a consistent approach to the shape reconstruction of the plasmonic nanostructures. This includes vertical and tilted spike AFM probes fabrication, AFM imaging and specific post-processing. We studied a complex-shaped chiral metamaterial and conclude that the described post-processing routine extends possibilities of the existing deconvolution algorithms in the case of periodical structures with known rotational symmetry, by providing valuable information about periodical features.

  18. AFM Study of Structure Influence on Butterfly Wings Coloration

    Directory of Open Access Journals (Sweden)

    Dinara Sultanovna Dallaeva

    2012-01-01

    Full Text Available This study describes the structural coloration of the butterfly Vanessa Atalanta wings and shows how the atomic force microscopy (AFM can be applied to the study of wings morphology and wings surface behavior under the temperature. The role of the wings morphology in colors was investigated. Different colors of wings have different topology and can be identified by them. AFM in semi-contact mode was used to study the wings surface. The wing surface area, which is close to the butterfly body, has shiny brown color and the peak of surface roughness is about 600 nm. The changing of morphology at different temperatures is shown.

  19. AFM-IR: Technology and Applications in Nanoscale Infrared Spectroscopy and Chemical Imaging.

    Science.gov (United States)

    Dazzi, Alexandre; Prater, Craig B

    2016-12-13

    Atomic force microscopy-based infrared spectroscopy (AFM-IR) is a rapidly emerging technique that provides chemical analysis and compositional mapping with spatial resolution far below conventional optical diffraction limits. AFM-IR works by using the tip of an AFM probe to locally detect thermal expansion in a sample resulting from absorption of infrared radiation. AFM-IR thus can provide the spatial resolution of AFM in combination with the chemical analysis and compositional imaging capabilities of infrared spectroscopy. This article briefly reviews the development and underlying technology of AFM-IR, including recent advances, and then surveys a wide range of applications and investigations using AFM-IR. AFM-IR applications that will be discussed include those in polymers, life sciences, photonics, solar cells, semiconductors, pharmaceuticals, and cultural heritage. In the Supporting Information , the authors provide a theoretical section that reviews the physics underlying the AFM-IR measurement and detection mechanisms.

  20. AFM Structural Characterization of Drinking Water Biofilm under Physiological Conditions

    Science.gov (United States)

    Due to the complexity of mixed culture drinking water biofilm, direct visual observation under in situ conditions has been challenging. In this study, atomic force microscopy (AFM) revealed the three dimensional morphology and arrangement of drinking water relevant biofilm in air...

  1. Characterization of large area nanostructured surfaces using AFM measurements

    DEFF Research Database (Denmark)

    Calaon, Matteo; Hansen, Hans Nørgaard; Tosello, Guido;

    2012-01-01

    magnitude of the 3D surface amplitude parameters chosen for the analysis, when increasing the Al purity from 99,5% to 99,999%. AFM was then employed to evaluate the periodical arrangements of the nano structured cells. Image processing was used to estimate the average areas value, the height variation...

  2. AFM lithography of aluminum for fabrication of nanomechanical systems

    DEFF Research Database (Denmark)

    Davis, Zachary James; Abadal, G.; Hansen, Ole

    2003-01-01

    Nanolithography by local anodic oxidation of surfaces using atomic force microscopy (AFM) has proven to be more reproducible when using dynamic, non-contact mode. Hereby, the tip/sample interaction forces are reduced dramatically compared to contact mode, and thus tip wear is greatly reduced...

  3. 3D Color Digital Elevation Map of AFM Sample

    Science.gov (United States)

    2008-01-01

    This color image is a three dimensional (3D) view of a digital elevation map of a sample collected by NASA's Phoenix Mars Lander's Atomic Force Microscope (AFM). The image shows four round pits, only 5 microns in depth, that were micromachined into the silicon substrate, which is the background plane shown in red. This image has been processed to reflect the levelness of the substrate. A Martian particle only one micrometer, or one millionth of a meter, across is held in the upper left pit. The rounded particle shown at the highest magnification ever seen from another world is a particle of the dust that cloaks Mars. Such dust particles color the Martian sky pink, feed storms that regularly envelop the planet and produce Mars' distinctive red soil. The particle was part of a sample informally called 'Sorceress' delivered to the AFM on the 38th Martian day, or sol, of the mission (July 2, 2008). The AFM is part of Phoenix's microscopic station called MECA, or the Microscopy, Electrochemistry, and Conductivity Analyzer. The AFM was developed by a Swiss-led consortium, with Imperial College London producing the silicon substrate that holds sampled particles. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  4. Dicty_cDB: AFM127 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available qrfpxxksixxxf Homology vs CSM-cDNA Score E Sequences producing significant alignments: (bits) Value AFM127 (...ducing significant alignments: (bits) Value N ( BJ346853 ) Dictyostelium discoide...cing significant alignments: (bits) Value (Q54HY4) RecName: Full=Putative uncharacterized protein DDB_G028..

  5. AFM cantilever with in situ renewable mercury microelectrode

    NARCIS (Netherlands)

    Schön, Peter; Geerlings, Joël; Tas, Niels; Sarajlic, Edin

    2013-01-01

    We report here first results obtained on a novel, in situ renewable mercury microelectrode integrated into an atomic force microscopy (AFM) cantilever. Our approach is based on a fountain pen probe with appropriate dimensions enabling reversible filling with(nonwetting) mercury under changing the ap

  6. Interlaboratory round robin on cantilever calibration for AFM force spectroscopy.

    NARCIS (Netherlands)

    Riet, J. te; Katan, A.J.; Rankl, C.; Stahl, S.W.; Buul, A.M. van; Phang, I.Y.; Gomez-Casado, A.; Schon, P.; Gerritsen, J.W.; Cambi, A.; Rowan, A.E.; Vancso, G.J.; Jonkheijm, P.; Huskens, J.; Oosterkamp, T.H.; Gaub, H.; Hinterdorfer, P.; Figdor, C.G.; Speller, S.

    2011-01-01

    Single-molecule force spectroscopy studies performed by Atomic Force Microscopes (AFMs) strongly rely on accurately determined cantilever spring constants. Hence, to calibrate cantilevers, a reliable calibration protocol is essential. Although the thermal noise method and the direct Sader method are

  7. Photonic wires sidewall roughness measures using AFM capabilities

    DEFF Research Database (Denmark)

    Malureanu, Radu; Frandsen, Lars Hagedorn

    2008-01-01

    in roughness leads to loss increase thus limiting the propagation length and postponing the commercialization of such structures. In this paper we present a new algorithm for measuring the sidewall roughness of our devices based on atomic force microscope (AFM) approach. Using this algorithm, the roughness can...

  8. Introduction to Atomic Force Microscopy (AFM) in Biology.

    Science.gov (United States)

    Kreplak, Laurent

    2016-08-01

    The atomic force microscope (AFM) has the unique capability of imaging biological samples with molecular resolution in buffer solution over a wide range of time scales from milliseconds to hours. In addition to providing topographical images of surfaces with nanometer- to angstrom-scale resolution, forces between single molecules and mechanical properties of biological samples can be investigated from the nano-scale to the micro-scale. Importantly, the measurements are made in buffer solutions, allowing biological samples to "stay alive" within a physiological-like environment while temporal changes in structure are measured-e.g., before and after addition of chemical reagents. These qualities distinguish AFM from conventional imaging techniques of comparable resolution, e.g., electron microscopy (EM). This unit provides an introduction to AFM on biological systems and describes specific examples of AFM on proteins, cells, and tissues. The physical principles of the technique and methodological aspects of its practical use and applications are also described. © 2016 by John Wiley & Sons, Inc.

  9. Weibull analyses of bacterial interaction forces measured using AFM

    NARCIS (Netherlands)

    van der Mei, Henderina; de Vries, Jacob; Busscher, Hendrik

    2010-01-01

    Statistically significant conclusions from interaction forces obtained by AFM are difficult to draw because of large data spreads. Weibull analysis, common in macroscopic bond-strength analyses, takes advantage of this spread to derive a Weibull distribution, yielding the probability of occurrence o

  10. Vergelijkend AFM Onderzoek: microstructuur van bitumen in relatie tot healing

    NARCIS (Netherlands)

    Schmets, A.J.M.; Nahar, S.N.; Dillingh, B.; Fischer, H.; Scarpas, A.; Erkens, S.

    2012-01-01

    In this report we present the background, the scientific and experimental approach and the results of AFM experiments performed on two different batches of bitumen. The specific bitumen researched in this project has also been studied in the context of the InfraQuest project ‘Pragmatisch Healing On

  11. Immobilizing live Escherichia coli for AFM studies of surface dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Lonergan, N.E.; Britt, L.D.; Sullivan, C.J., E-mail: sullivcj@evms.edu

    2014-02-01

    Atomic force microscopy (AFM) is a probe-based technique that permits high resolution imaging of live bacterial cells. However, stably immobilizing cells to withstand the probe-based lateral forces remains an obstacle in AFM mediated studies, especially those of live, rod shaped bacteria in nutrient media. Consequently, AFM has been under-utilized in the research of bacterial surface dynamics. The aim of the current study was to immobilize a less adherent Escherichia coli strain in a method that both facilitates AFM imaging in nutrient broth and preserves overall cell viability. Immobilization reagents and buffers were systematically evaluated and the cell membrane integrity was monitored in all sample preparations. As expected, the biocompatible gelatin coated surfaces facilitated stable cell attachment in lower ionic strength buffers, yet poorly immobilized cells in higher ionic strength buffers. In comparison, poly-L-lysine surfaces bound cells in both low and high ionic strength buffers. The benefit of the poly-L-lysine binding capacity was offset by the compromised membrane integrity exhibited by cells on poly-L-lysine surfaces. However, the addition of divalent cations and glucose to the immobilization buffer was found to mitigate this unfavorable effect. Ultimately, immobilization of E. coli cells on poly-L-lysine surfaces in a lower ionic strength buffer supplemented with Mg{sup 2+} and Ca{sup 2+} was determined to provide optimal cell attachment without compromising the overall cell viability. Cells immobilized in this method were stably imaged in media through multiple division cycles. Furthermore, permeability assays indicated that E. coli cells recover from the hypoosmotic stress caused by immobilization in low ionic strength buffers. Taken together, this data suggests that stable immobilization of viable cells on poly-L-lysine surfaces can be accomplished in lower ionic strength buffers that are supplemented with divalent cations for membrane

  12. Insights into Epoxy Network Nanostructural Heterogeneity Using AFM-IR.

    Science.gov (United States)

    Morsch, Suzanne; Liu, Yanwen; Lyon, Stuart B; Gibbon, Simon R

    2016-01-13

    The first direct observation of a chemically heterogeneous nanostructure within an epoxy resin is reported. Epoxy resins comprise the matrix component of many high performance composites, coatings and adhesives, yet the molecular network structure that underpins the performance of these industrially essential materials is not well understood. Internal nodular morphologies have repeatedly been reported for epoxy resins analyzed using SEM or AFM, yet the origin of these features remains a contentious subject, and epoxies are still commonly assumed to be chemically homogeneous. Uniquely, in this contribution we use the recently developed AFM-IR technique to eliminate previous differences in interpretation, and establish that nodule features correspond to heterogeneous network connectivity within an epoxy phenolic formulation.

  13. AFM STUDY ON THE MORPHOLOGICAL CHANGE OF Zn ELECTRODEPOSIT

    Institute of Scientific and Technical Information of China (English)

    A.L. Fan; W.H. Tian; M. Kurosaki

    2003-01-01

    Nano-sized growth of zinc electrodeposit on the ferrite substrate has been studied by means of in situ scanning tunnel microscopy (STM) and atomic force micoscopy (AFM). It is found that the morphology of zinc electrodeposit varies from initial about 30nm granular crystals to layered platelet crystals with increasing deposition time by using in situ STM. With AFM, the results show that the platelet crystals ave hexagonal in shape and the hexagonal platelet crystals form steps perpendicular to the growth direction by side-by-side stacking along the (0001), surface. The mechanism of morphological change is discussed in details. It is proposed that these steps grow laterally as a result of the embedment of zinc ion clusters.

  14. Nano-Bio-Mechanics of Neuroblastoma Cells Using AFM

    Science.gov (United States)

    Bastatas, Lyndon; Matthews, James; Kang, Min; Park, Soyeun

    2011-10-01

    We have conducted an in vitro study to determine the elastic moduli of neurobalstoma cell lines using atomic force microscopy. Using a panel of cell lines established from neuroblastoma patients at different stages of disease progress and treatment, we have investigated the differences in elastic moduli during a course of cancer progression and chemotherapy. The cells were grown on the hard substrates that are chemically functionalized to enhance adhesion. We have performed the AFM indentation experiments with different applied forces from the AFM probe. For the purpose of the comparison between cell lines, the indentations were performed only on cell centers. The obtained force-distance curves were analyzed using the Hertz model in order to extract the elastic moduli. We have found that the elastic moduli of human neuroblastoma cells significantly varied during the disease progression. We postulate that the observed difference might be affected by the treatment and chemotherapy.

  15. BOREAS AFM-5 Level-1 Upper Air Network Data

    Science.gov (United States)

    Barr, Alan; Hrynkiw, Charmaine; Newcomer, Jeffrey A. (Editor); Hall, Forrest G. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-5 team collected and processed data from the numerous radiosonde flights during the project. The goals of the AFM-05 team were to provide large-scale definition of the atmosphere by supplementing the existing Atmospheric Environment Service (AES) aerological network, both temporally and spatially. This data set includes basic upper-air parameters collected from the network of upper-air stations during the 1993, 1994, and 1996 field campaigns over the entire study region. The data are contained in tabular ASCII files. The level-1 upper-air network data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files also are available on a CD-ROM (see document number 20010000884).

  16. Cellular transfer and AFM imaging of cancer cells using Bioimprint

    Directory of Open Access Journals (Sweden)

    Melville DOS

    2006-01-01

    Full Text Available Abstract A technique for permanently capturing a replica impression of biological cells has been developed to facilitate analysis using nanometer resolution imaging tools, namely the atomic force microscope (AFM. The method, termed Bioimprint™, creates a permanent cell 'footprint' in a non-biohazardous Poly (dimethylsiloxane (PDMS polymer composite. The transfer of nanometer scale biological information is presented as an alternative imaging technique at a resolution beyond that of optical microscopy. By transferring cell topology into a rigid medium more suited for AFM imaging, many of the limitations associated with scanning of biological specimens can be overcome. Potential for this technique is demonstrated by analyzing Bioimprint™ replicas created from human endometrial cancer cells. The high resolution transfer of this process is further detailed by imaging membrane morphological structures consistent with exocytosis. The integration of soft lithography to replicate biological materials presents an enhanced method for the study of biological systems at the nanoscale.

  17. Sharing my fifteen years experiences in the research field of Atomic Force Microscopy (AFM)

    OpenAIRE

    Guha T

    2014-01-01

    Atomic Force Microscope (AFM) was developed by Binnig and his coworkers in the year 1986. He was awarded Nobel Prize in physics for this work in 1986 in sharing with Rohrer and Ruska. Rationale to develop AFM: Scanning Tunneling Microscope (STM), the precursor to AFM is efficient in imaging electrically conducting specimen at atomic resolution. The impetus for development of AFM came to Binnig’s mind because of relatively poor efficiency of STM to image electrically non-conducting bi...

  18. Nano-Wilhelmy investigation of dynamic wetting properties of AFM tips through tip-nanobubble interaction

    OpenAIRE

    2016-01-01

    The dynamic wetting properties of atomic force microscopy (AFM) tips are of much concern in many AFM-related measurement, fabrication, and manipulation applications. In this study, the wetting properties of silicon and silicon nitride AFM tips are investigated through dynamic contact angle measurement using a nano-Wilhelmy balance based method. This is done by capillary force measurement during extension and retraction motion of AFM tips relative to interfacial nanobubbles. The working princi...

  19. AFM studies of nonspecific binding of enzyme on DNA

    Institute of Scientific and Technical Information of China (English)

    张益; 谢恒月; 等

    1996-01-01

    Atomic force microscope(AFM) is used to study restriction endonuclease digestion of plasmid DNA,pWRr plasmid DNA is digested by Hind Ⅲ,and the specific and the nonspecific binding of the restriction endonuclease are imaged,and the biological function of the enzyme binding to nonspecific sites is discussed.In addition,it is found that nonspecific binding of Hind ǚ could not induce the DNA characteristic bending angle.

  20. Investigation of biopolymer networks by means of AFM

    Science.gov (United States)

    Keresztes, Z.; Rigó, T.; Telegdi, J.; Kálmán, E.

    Natural hydrogel alginate was investigated by means of atomic force microscopy (AFM) to gain microscale information on the morphological and rheological properties of the biopolymer network cross-linked by various cations. Local rheological properties of the gels measured by force spectroscopy gave correlation between increasing ion selectivity and increasing polymer elasticity. Adhesive forces acting between the surface of the gel and the probe, and also the intrinsic rheological properties of bulk polymers affect the microscopical image formation.

  1. Confocal Raman-AFM, A New Tool for Materials Research

    Science.gov (United States)

    Schmidt, Ute

    2005-03-01

    Characterization of heterogeneous systems, e.g. polymers, on the nanometer scale continues to grow in importance and to impact key applications in the field of materials science, nanotechnology and catalysis. The development of advanced polymeric materials for such applications requires detailed information about the physical and chemical properties of these materials on the nanometer scale. However, some details about the phase-separation process in polymers are difficult to study with conventional characterization techniques due to the inability of these methods to chemically differentiate materials with good spatial resolution, without damage, staining or preferential solvent washing. The CR-AFM is a breakthrough in microscopy. It combines three measuring techniques in one instrument: a high resolution confocal optical microscope, an extremely sensitive Raman spectroscopy system, and an Atomic Force Microscope. Using this instrument, the high spatial and topographical resolution obtained with an AFM can be directly linked to the chemical information gained by Confocal Raman spectroscopy. To demonstrate the capabilities of this unique combination of measuring techniques, polymer blend films, spin coated on glass substrates, have been characterized. AFM measurements reveal the structural and mechanical properties of the films, whereas Raman spectral images show the chemical composition of the blends.

  2. Interlaboratory round robin on cantilever calibration for AFM force spectroscopy.

    Science.gov (United States)

    te Riet, Joost; Katan, Allard J; Rankl, Christian; Stahl, Stefan W; van Buul, Arend M; Phang, In Yee; Gomez-Casado, Alberto; Schön, Peter; Gerritsen, Jan W; Cambi, Alessandra; Rowan, Alan E; Vancso, G Julius; Jonkheijm, Pascal; Huskens, Jurriaan; Oosterkamp, Tjerk H; Gaub, Hermann; Hinterdorfer, Peter; Figdor, Carl G; Speller, Sylvia

    2011-12-01

    Single-molecule force spectroscopy studies performed by Atomic Force Microscopes (AFMs) strongly rely on accurately determined cantilever spring constants. Hence, to calibrate cantilevers, a reliable calibration protocol is essential. Although the thermal noise method and the direct Sader method are frequently used for cantilever calibration, there is no consensus on the optimal calibration of soft and V-shaped cantilevers, especially those used in force spectroscopy. Therefore, in this study we aimed at establishing a commonly accepted approach to accurately calibrate compliant and V-shaped cantilevers. In a round robin experiment involving eight different laboratories we compared the thermal noise and the Sader method on ten commercial and custom-built AFMs. We found that spring constants of both rectangular and V-shaped cantilevers can accurately be determined with both methods, although the Sader method proved to be superior. Furthermore, we observed that simultaneous application of both methods on an AFM proved an accurate consistency check of the instrument and thus provides optimal and highly reproducible calibration. To illustrate the importance of optimal calibration, we show that for biological force spectroscopy studies, an erroneously calibrated cantilever can significantly affect the derived (bio)physical parameters. Taken together, our findings demonstrated that with the pre-established protocol described reliable spring constants can be obtained for different types of cantilevers.

  3. Sub-diffraction nano manipulation using STED AFM.

    Directory of Open Access Journals (Sweden)

    Jenu Varghese Chacko

    Full Text Available In the last two decades, nano manipulation has been recognized as a potential tool of scientific interest especially in nanotechnology and nano-robotics. Contemporary optical microscopy (super resolution techniques have also reached the nanometer scale resolution to visualize this and hence a combination of super resolution aided nano manipulation ineluctably gives a new perspective to the scenario. Here we demonstrate how specificity and rapid determination of structures provided by stimulated emission depletion (STED microscope can aid another microscopic tool with capability of mechanical manoeuvring, like an atomic force microscope (AFM to get topological information or to target nano scaled materials. We also give proof of principle on how high-resolution real time visualization can improve nano manipulation capability within a dense sample, and how STED-AFM is an optimal combination for this job. With these evidences, this article points to future precise nano dissections and maybe even to a nano-snooker game with an AFM tip and fluorospheres.

  4. Nanoscale rippling on polymer surfaces induced by AFM manipulation.

    Science.gov (United States)

    D'Acunto, Mario; Dinelli, Franco; Pingue, Pasqualantonio

    2015-01-01

    Nanoscale rippling induced by an atomic force microscope (AFM) tip can be observed after performing one or many scans over the same area on a range of materials, namely ionic salts, metals, and semiconductors. However, it is for the case of polymer films that this phenomenon has been widely explored and studied. Due to the possibility of varying and controlling various parameters, this phenomenon has recently gained a great interest for some technological applications. The advent of AFM cantilevers with integrated heaters has promoted further advances in the field. An alternative method to heating up the tip is based on solvent-assisted viscoplastic deformations, where the ripples develop upon the application of a relatively low force to a solvent-rich film. An ensemble of AFM-based procedures can thus produce nanoripples on polymeric surfaces quickly, efficiently, and with an unprecedented order and control. However, even if nanorippling has been observed in various distinct modes and many theoretical models have been since proposed, a full understanding of this phenomenon is still far from being achieved. This review aims at summarizing the current state of the art in the perspective of achieving control over the rippling process on polymers at a nanoscale level.

  5. Near-Field Spectroscopy with Nanoparticles Deposited by AFM

    Science.gov (United States)

    Anderson, Mark S.

    2008-01-01

    An alternative approach to apertureless near-field optical spectroscopy involving an atomic-force microscope (AFM) entails less complexity of equipment than does a prior approach. The alternative approach has been demonstrated to be applicable to apertureless near-field optical spectroscopy of the type using an AFM and surface enhanced Raman scattering (SERS), and is expected to be equally applicable in cases in which infrared or fluorescence spectroscopy is used. Apertureless near-field optical spectroscopy is a means of performing spatially resolved analyses of chemical compositions of surface regions of nanostructured materials. In apertureless near-field spectroscopy, it is common practice to utilize nanostructured probe tips or nanoparticles (usually of gold) having shapes and dimensions chosen to exploit plasmon resonances so as to increase spectroscopic-signal strengths. To implement the particular prior approach to which the present approach is an alternative, it is necessary to integrate a Raman spectrometer with an AFM and to utilize a special SERS-active probe tip. The resulting instrumentation system is complex, and the tasks of designing and constructing the system and using the system to acquire spectro-chemical information from nanometer-scale regions on a surface are correspondingly demanding.

  6. Stiffness of cancer cells measured with an AFM indentation method.

    Science.gov (United States)

    Hayashi, Kozaburo; Iwata, Mayumi

    2015-09-01

    The stiffness of cancer cells and its changes during metastasis are very important for understanding the pathophysiology of cancer cells and the mechanisms of metastasis of cancer. As the first step of the studies on the mechanics of cancer cells during metastasis, we determined the elasticity and stiffness of cancer cells with an indentation method using an atomic force microscope (AFM), and compared with those of normal cells. In most of the past AFM studies, Young׳s elastic moduli of cells have been calculated from force-indentation data using Hertzian model. As this model is based on several important assumptions including infinitesimal strain and Hooke׳s linear stress-strain law, in the exact sense it cannot be applied to cells that deform very largely and nonlinearly. To overcome this problem, we previously proposed an equation F=a[exp(bδ)-1] to describe relations between force (F) and indentation (δ), where a and b are parameters relating with cellular stiffness. In the present study, we applied this method to cancer cells instead of Young׳s elastic modulus. The conclusions obtained are: 1) AFM indentation test data of cancer cells can be very well described by the above equation, 2) cancer cells are softer than normal cells, and 3) there are no significant locational differences in the stiffness of cancer cells between the central and the peripheral regions. These methods and results are useful for studying the mechanics of cancer cells and the mechanisms of metastasis.

  7. Tissue section AFM: In situ ultrastructural imaging of native biomolecules

    Science.gov (United States)

    Graham, Helen K.; Hodson, Nigel W.; Hoyland, Judith A.; Millward-Sadler, Sarah J.; Garrod, David; Scothern, Anthea; Griffiths, Christopher E.M.; Watson, Rachel E.B.; Cox, Thomas R.; Erler, Janine T.; Trafford, Andrew W.; Sherratt, Michael J.

    2010-01-01

    Conventional approaches for ultrastructural high-resolution imaging of biological specimens induce profound changes in bio-molecular structures. By combining tissue cryo-sectioning with non-destructive atomic force microscopy (AFM) imaging we have developed a methodology that may be applied by the non-specialist to both preserve and visualize bio-molecular structures (in particular extracellular matrix assemblies) in situ. This tissue section AFM technique is capable of: i) resolving nm–µm scale features of intra- and extracellular structures in tissue cryo-sections; ii) imaging the same tissue region before and after experimental interventions; iii) combining ultrastructural imaging with complimentary microscopical and micromechanical methods. Here, we employ this technique to: i) visualize the macro-molecular structures of unstained and unfixed fibrillar collagens (in skin, cartilage and intervertebral disc), elastic fibres (in aorta and lung), desmosomes (in nasal epithelium) and mitochondria (in heart); ii) quantify the ultrastructural effects of sequential collagenase digestion on a single elastic fibre; iii) correlate optical (auto fluorescent) with ultrastructural (AFM) images of aortic elastic lamellae. PMID:20144712

  8. Noncontact AFM Imaging of Atomic Defects on the Rutile TiO2 (110) Surface

    DEFF Research Database (Denmark)

    Lauritsen, Jeppe Vang

    2015-01-01

    The atomic force microscope (AFM) operated in the noncontact mode (nc-AFM) offers a unique tool for real space, atomic-scale characterisation of point defects and molecules on surfaces, irrespective of the substrate being electrically conducting or non-conducting. The nc-AFM has therefore in recent...

  9. Immobilizing live Escherichia coli for AFM studies of surface dynamics.

    Science.gov (United States)

    Lonergan, N E; Britt, L D; Sullivan, C J

    2014-02-01

    Atomic force microscopy (AFM) is a probe-based technique that permits high resolution imaging of live bacterial cells. However, stably immobilizing cells to withstand the probe-based lateral forces remains an obstacle in AFM mediated studies, especially those of live, rod shaped bacteria in nutrient media. Consequently, AFM has been under-utilized in the research of bacterial surface dynamics. The aim of the current study was to immobilize a less adherent Escherichia coli strain in a method that both facilitates AFM imaging in nutrient broth and preserves overall cell viability. Immobilization reagents and buffers were systematically evaluated and the cell membrane integrity was monitored in all sample preparations. As expected, the biocompatible gelatin coated surfaces facilitated stable cell attachment in lower ionic strength buffers, yet poorly immobilized cells in higher ionic strength buffers. In comparison, poly-l-lysine surfaces bound cells in both low and high ionic strength buffers. The benefit of the poly-l-lysine binding capacity was offset by the compromised membrane integrity exhibited by cells on poly-l-lysine surfaces. However, the addition of divalent cations and glucose to the immobilization buffer was found to mitigate this unfavorable effect. Ultimately, immobilization of E. coli cells on poly-l-lysine surfaces in a lower ionic strength buffer supplemented with Mg(2+) and Ca(2+) was determined to provide optimal cell attachment without compromising the overall cell viability. Cells immobilized in this method were stably imaged in media through multiple division cycles. Furthermore, permeability assays indicated that E. coli cells recover from the hypoosmotic stress caused by immobilization in low ionic strength buffers. Taken together, this data suggests that stable immobilization of viable cells on poly-l-lysine surfaces can be accomplished in lower ionic strength buffers that are supplemented with divalent cations for membrane stabilization

  10. A review of the application of atomic force microscopy (AFM) in food science and technology.

    Science.gov (United States)

    Liu, Shaoyang; Wang, Yifen

    2011-01-01

    Atomic force microscopy (AFM) is a powerful nanoscale analysis technique used in food area. This versatile technique can be used to acquire high-resolution sample images and investigate local interactions in air or liquid surroundings. In this chapter, we explain the principles of AFM and review representative applications of AFM in gelatin, casein micelle, carrageenan, gellan gum, starch, and interface. We elucidate new knowledge revealed with AFM as well as ways to use AFM to obtain morphology and rheology information in different food fields.

  11. Estimation of AFM tip shape and status in linewidth and profile measurement.

    Science.gov (United States)

    Han, Guoqiang; Jiang, Zhuangde; Jing, Weixuan; Prewett, Philip D; Jiang, Kyle

    2011-12-01

    An atomic force microscopy image is a dilation of the specimen surface with the probe tip. Tips wear or are damaged as they are used. And AFM tip shape and position status make AFM images distorted. So it is necessary to characterize AFM tip shape and position parameters so as to reconstruct AFM images. A geometric model-based approach is presented to estimate AFM tip shape and position status by AFM images of test specimens and scanning electron microscope (SEM) images of AFM tip. In this model, the AFM tip is characterized by using a dynamic cone model. The geometric relationship between AFM tip and the sample structure is revealed in linewidth and profile measurement. The method can easily calculate the tip parameters including half-cone angle, installation angle, scanning tilting angle and curvature radius, and easily estimate the position status of AFM tip when AFM tip moves on the specimen. The results of linewidth and profile measurement are amended accurately through this approach.

  12. Solvent-mediated repair and patterning of surfaces by AFM

    Energy Technology Data Exchange (ETDEWEB)

    Elhadj, S; Chernov, A; De Yoreo, J

    2007-10-30

    A tip-based approach to shaping surfaces of soluble materials with nanometer-scale control is reported. The proposed method can be used, for example, to eliminate defects and inhomogeneities in surface shape, repair mechanical or laser-induced damage to surfaces, or perform 3D lithography on the length scale of an AFM tip. The phenomenon that enables smoothing and repair of surfaces is based on the transport of material from regions of high- to low-curvature within the solution meniscus formed in a solvent-containing atmosphere between the surface in question and an AFM tip scanned over the surface. Using in situ AFM measurements of the kinetics of surface remodeling on KDP (KH{sub 2}PO{sub 4}) crystals in humid air, we show that redistribution of solute material during relaxation of grooves and mounds is driven by a reduction in surface free energy as described by the Gibbs-Thomson law. We find that the perturbation from a flat interface evolves according to the diffusion equation where the effective diffusivity is determined by the product of the surface stiffness and the step kinetic coefficient. We also show that, surprisingly, if the tip is instead scanned over or kept stationary above an atomically flat area of the surface, a convex structure is formed with a diameter that is controlled by the dimensions of the meniscus, indicating that the presence of the tip and meniscus reduces the substrate chemical potential beneath that of the free surface. This allows one to create nanometer-scale 3D structures of arbitrary shape without the removal of substrate material or the use of extrinsic masks or chemical compounds. Potential applications of these tip-based phenomena are discussed.

  13. Nanoscale thermal AFM of polymers: transient heat flow effects.

    Science.gov (United States)

    Duvigneau, Joost; Schönherr, Holger; Vancso, G Julius

    2010-11-23

    Thermal transport around the nanoscale contact area between the heated atomic force microscopy (AFM) probe tip and the specimen under investigation is a central issue in scanning thermal microscopy (SThM). Polarized light microscopy and AFM imaging of the temperature-induced crystallization of poly(ethylene terephthalate) (PET) films in the region near the tip were used in this study to unveil the lateral heat transport. The radius of the observed lateral surface isotherm at 133 °C ranged from 2.2 ± 0.5 to 18.7 ± 0.5 μm for tip-polymer interface temperatures between 200 and 300 °C with contact times varying from 20 to 120 s, respectively. In addition, the heat transport into polymer films was assessed by measurements of the thermal expansion of poly(dimethyl siloxane) (PDMS) films with variable thickness on silicon supports. Our data showed that heat transport in the specimen normal (z) direction occurred to depths exceeding 1000 μm using representative non-steady-state SThM conditions (i.e., heating from 40 to 180 °C at a rate of 10 °C s(-1)). On the basis of the experimental results, a 1D steady-state model for heat transport was developed, which shows the temperature profile close to the tip-polymer contact. The model also indicates that ≤1% of the total power generated in the heater area, which is embedded in the cantilever end, is transported into the polymer through the tip-polymer contact interface. Our results complement recent efforts in the evaluation and improvement of existing theoretical models for thermal AFM, as well as advance further developments of SThM for nanoscale thermal materials characterization and/or manipulation via scanning thermal lithography (SThL).

  14. Single microparticles mass measurement using an AFM cantilever resonator

    CERN Document Server

    Mauro, Marco; Ferrini, Gianluca; Puglisi, Roberto; Balduzzi, Donatella; Galli, Andrea

    2014-01-01

    In this work is presented a microbalance for single microparticle sensing based on resonating AFM cantilever. The variation of the resonator eigenfrequency is related to the particle mass positioned at the free apex of the cantilever. An all-digital phase locked loop (PLL) control system is developed to detect the variations in cantilever eigenfrequency. Two particle populations of different materials are used in the experimental test, demonstrating a mass sensitivity of 15 Hz/pg in ambient conditions. Thereby it is validated the possibility of developing an inexpensive, portable and sensitive microbalance for point-mass sensing.

  15. Tip-enhanced Raman mapping with top-illumination AFM.

    Science.gov (United States)

    Chan, K L Andrew; Kazarian, Sergei G

    2011-04-29

    Tip-enhanced Raman mapping is a powerful, emerging technique that offers rich chemical information and high spatial resolution. Currently, most of the successes in tip-enhanced Raman scattering (TERS) measurements are based on the inverted configuration where tips and laser are approaching the sample from opposite sides. This results in the limitation of measurement for transparent samples only. Several approaches have been developed to obtain tip-enhanced Raman mapping in reflection mode, many of which involve certain customisations of the system. We have demonstrated in this work that it is also possible to obtain TERS nano-images using an upright microscope (top-illumination) with a gold-coated Si atomic force microscope (AFM) cantilever without significant modification to the existing integrated AFM/Raman system. A TERS image of a single-walled carbon nanotube has been achieved with a spatial resolution of ∼ 20-50 nm, demonstrating the potential of this technique for studying non-transparent nanoscale materials.

  16. Tip-enhanced Raman mapping with top-illumination AFM

    Energy Technology Data Exchange (ETDEWEB)

    Chan, K L Andrew; Kazarian, Sergei G, E-mail: s.kazarian@imperial.ac.uk [Department of Chemical Engineering, Imperial College London, SW7 2AZ (United Kingdom)

    2011-04-29

    Tip-enhanced Raman mapping is a powerful, emerging technique that offers rich chemical information and high spatial resolution. Currently, most of the successes in tip-enhanced Raman scattering (TERS) measurements are based on the inverted configuration where tips and laser are approaching the sample from opposite sides. This results in the limitation of measurement for transparent samples only. Several approaches have been developed to obtain tip-enhanced Raman mapping in reflection mode, many of which involve certain customisations of the system. We have demonstrated in this work that it is also possible to obtain TERS nano-images using an upright microscope (top-illumination) with a gold-coated Si atomic force microscope (AFM) cantilever without significant modification to the existing integrated AFM/Raman system. A TERS image of a single-walled carbon nanotube has been achieved with a spatial resolution of {approx} 20-50 nm, demonstrating the potential of this technique for studying non-transparent nanoscale materials.

  17. Tip-enhanced Raman mapping with top-illumination AFM

    Science.gov (United States)

    Chan, K. L. Andrew; Kazarian, Sergei G.

    2011-04-01

    Tip-enhanced Raman mapping is a powerful, emerging technique that offers rich chemical information and high spatial resolution. Currently, most of the successes in tip-enhanced Raman scattering (TERS) measurements are based on the inverted configuration where tips and laser are approaching the sample from opposite sides. This results in the limitation of measurement for transparent samples only. Several approaches have been developed to obtain tip-enhanced Raman mapping in reflection mode, many of which involve certain customisations of the system. We have demonstrated in this work that it is also possible to obtain TERS nano-images using an upright microscope (top-illumination) with a gold-coated Si atomic force microscope (AFM) cantilever without significant modification to the existing integrated AFM/Raman system. A TERS image of a single-walled carbon nanotube has been achieved with a spatial resolution of ~ 20-50 nm, demonstrating the potential of this technique for studying non-transparent nanoscale materials.

  18. Comparison of particle sizes determined with impactor, AFM and SEM

    Science.gov (United States)

    Gwaze, Patience; Annegarn, Harold J.; Huth, Joachim; Helas, Günter

    2007-11-01

    Particles size comparisons were made between conventional aerodynamic and mobility sizing techniques and physical geometric sizes measured by high resolution microscopes. Atmospheric particles were collected during the wet and dry seasons in the Amazonian ecosystems. Individual particles deposited on four stages of the MOUDI (Micro-Orifice Uniform Deposition Impactor) were characterised for particle volumes, projected surface diameters and morphologies with an Atomic Force Microscope (AFM) and a Scanning Electron Microscope (SEM). AFM and SEM size distributions were verified against distributions derived from response functions of individual MOUDI stages as specified by Winklmayr et al. [Winklmayr, W., Wang, H.-C., John, W., 1990. Adaptation of the Twomey algorithm to the inversion of cascade impactor data. Aerosol Science and Technology 13, 322-331.]. Particles indicated inherent discrepancies in sizing techniques. Particle volumes were systematically lower than expected by factors of up to 3.6. Differences were attributed to loss of mass, presumably water adsorbed on particles. Losses were high and could not be accounted for by measured humidity growth factors suggesting significant losses of other volatile compounds as well, particularly on particles that were collected during the wet season. Microscopy results showed that for hygroscopic particles, microscopy sizes depend on the relative humidity history of particles before and after sampling. Changes in relative humidity significantly altered particle morphologies. Depending on when changes occur, such losses will bias not only microscopy particle sizes but also impactor mass distributions and number concentrations derived from collected particles.

  19. A wide-range metrology AFM and its applications

    Science.gov (United States)

    Lin, Xiaofeng; Zhang, Haijun; Zhang, Dongxian

    2005-02-01

    In view of the fact that the application field of a dual tunneling-unit scanning tunneling microscope (DTU-STM) was strongly limited by sample conductivity, a dual imaging unit atomic force microscope (DIU-AFM) was developed for wide-range nano-metrology. A periodic grating is employed as a reference sample. The DIU-AFM simultaneously scans the grating and a test sample by using one single XY scanner. Their images thus have the same lateral size, and the length of the test sample image can be precisely measured by counting the number of periodic features of the reference grating. We further developed a new method of implementing wide-range nano-metrology. By alternatively moving the XY scanner in the X direction using a step motor, a series of pairs of images are obtained and can be spliced into two wide-range reference and test ones, respectively. Again, the two spliced images are of the same size, and the length of test image can be measured based on the reference grating features. In this way, wide-range metrology with nanometer order accuracy is successfully realized.

  20. AFM analysis of bleaching effects on dental enamel microtopography

    Science.gov (United States)

    Pedreira de Freitas, Ana Carolina; Espejo, Luciana Cardoso; Botta, Sergio Brossi; Teixeira, Fernanda de Sa; Luz, Maria Aparecida A. Cerqueira; Garone-Netto, Narciso; Matos, Adriana Bona; Salvadori, Maria Cecilia Barbosa da Silveira

    2010-02-01

    The purpose of this in vitro study was to test a new methodology to evaluate the effects of 35% hydrogen peroxide agent on the microtopography of sound enamel using an atomic force microscope (AFM). The buccal sound surfaces of three extracted human lower incisors were used, without polishing the surfaces to maintain them with natural morphology. These unpolished surfaces were subjected to bleaching procedure with 35% hydrogen peroxide that consisted of 4 applications of the bleaching agent on enamel surfaces for 10 min each application. Surface images were obtained in a 15 μm × 15 μm area using an AFM. The roughness (Ra and RMS) and the power spectral density (PSD) were obtained before and after the bleaching treatment. As results we could inquire that the PSD analyses were very suitable to identifying the morphological changes on the surfaces, while the Ra and RMS parameters were insufficient to represent the morphological alterations promoted by bleaching procedure on enamel. The morphological wavelength in the range of visible light spectrum (380-750 nm) was analyzed, showing a considerable increase of the PSD with the bleaching treatment.

  1. AFM analysis of bleaching effects on dental enamel microtopography

    Energy Technology Data Exchange (ETDEWEB)

    Pedreira de Freitas, Ana Carolina, E-mail: anacarolfreitas@usp.br [Departamento de Dentistica, Faculdade de Odontologia da Universidade de Sao Paulo, Av. Prof. Lineu Prestes, 2227 - Cidade Universitaria, CEP 05508-000, Sao Paulo (Brazil); Cardoso Espejo, Luciana, E-mail: luespejo@hotmail.com [Departamento de Dentistica, Faculdade de Odontologia da Universidade de Sao Paulo, Av. Prof. Lineu Prestes, 2227 - Cidade Universitaria, CEP 05508-000, Sao Paulo (Brazil); Brossi Botta, Sergio, E-mail: sbbotta@usp.br [Departamento de Dentistica, Faculdade de Odontologia da Universidade de Sao Paulo, Av. Prof. Lineu Prestes, 2227 - Cidade Universitaria, CEP 05508-000, Sao Paulo (Brazil); Sa Teixeira, Fernanda de, E-mail: nandast@if.usp.br [Laboratorio de Filmes Finos, Instituto de Fisica da Universidade de Sao Paulo, Rua do Matao, Travessa R, 187 - Cidade Universitaria, CEP 05314-970, Sao Paulo (Brazil); Cerqueira, Luz Maria Aparecida A., E-mail: maacluz@usp.br [Departamento de Dentistica, Faculdade de Odontologia da Universidade de Sao Paulo, Av. Prof. Lineu Prestes, 2227 - Cidade Universitaria, CEP 05508-000, Sao Paulo (Brazil); Garone-Netto, Narciso, E-mail: ngarone@usp.br [Departamento de Dentistica, Faculdade de Odontologia da Universidade de Sao Paulo, Av. Prof. Lineu Prestes, 2227 - Cidade Universitaria, CEP 05508-000, Sao Paulo (Brazil); Bona Matos, Adriana, E-mail: bona@usp.br [Departamento de Dentistica, Faculdade de Odontologia da Universidade de Sao Paulo, Av. Prof. Lineu Prestes, 2227 - Cidade Universitaria, CEP 05508-000, Sao Paulo (Brazil); Barbosa da Silveira Salvadori, Maria Cecilia, E-mail: mcsalva@if.usp.br [Laboratorio de Filmes Finos, Instituto de Fisica da Universidade de Sao Paulo, Rua do Matao, Travessa R, 187 - Cidade Universitaria, CEP 05314-970, Sao Paulo (Brazil)

    2010-02-15

    The purpose of this in vitro study was to test a new methodology to evaluate the effects of 35% hydrogen peroxide agent on the microtopography of sound enamel using an atomic force microscope (AFM). The buccal sound surfaces of three extracted human lower incisors were used, without polishing the surfaces to maintain them with natural morphology. These unpolished surfaces were subjected to bleaching procedure with 35% hydrogen peroxide that consisted of 4 applications of the bleaching agent on enamel surfaces for 10 min each application. Surface images were obtained in a 15 {mu}m x 15 {mu}m area using an AFM. The roughness (Ra and RMS) and the power spectral density (PSD) were obtained before and after the bleaching treatment. As results we could inquire that the PSD analyses were very suitable to identifying the morphological changes on the surfaces, while the Ra and RMS parameters were insufficient to represent the morphological alterations promoted by bleaching procedure on enamel. The morphological wavelength in the range of visible light spectrum (380-750 nm) was analyzed, showing a considerable increase of the PSD with the bleaching treatment.

  2. Interactions between chitosan and cells measured by AFM

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao, Sheng-Wen; Thien, Doan Van Hong; Ho, Ming-Hua [Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10617, Taiwan (China); Hsieh, Hsyue-Jen [Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Li, Chung-Hsing [Division of Orthodontics and Pediatric Dentistry, Department of Dentistry, Tri-Service General Hospital, Taipei, Taiwan (China); Hung, Chang-Hsiang [Department of Dentistry, Kinmen Hospital Department of Health, Taiwan (China); Li, Hsi-Hsin, E-mail: mhho@mail.ntust.edu.t [Deputy Superintendent, Kinmen Hospital Department of Health, Taiwan (China)

    2010-10-01

    Chitosan, a biocompatible material that has been widely used in bone tissue engineering, is believed to have a high affinity to osteoblastic cells. This research is the first to prove this hypothesis. By using atomic force microscopy (AFM) with a chitosan-modified cantilever, quantitative evaluation of the interforce between chitosan and cells was carried out. A chitosan tip functionalized with Arg-Gly-Asp (RGD) was also used to measure the interforce between RGD-chitosan and osteoblastic cells. This research concluded by examining cell adhesion and spreading of chitosan substrates as further characterization of the interactions between cells and chitosan. The force measured by AFM showed that the interforce between chitosan and osteoblasts was the highest (209 nN). The smallest adhesion force (61.8 nN) appeared between chitosan and muscle fibroblasts, which did not demonstrate any osteoblastic properties. This result proved that there was a significant interaction between chitosan and bone cells, and correlated with the observations of cell attachment and spreading. The technique developed in this research directly quantified the adhesion between chitosan and cells. This is the first study to demonstrate that specific interaction exists between chitosan and osteoblasts.

  3. The importance of correcting for variable probe-sample interactions in AFM-IR spectroscopy: AFM-IR of dried bacteria on a polyurethane film.

    Science.gov (United States)

    Barlow, Daniel E; Biffinger, Justin C; Cockrell-Zugell, Allison L; Lo, Michael; Kjoller, Kevin; Cook, Debra; Lee, Woo Kyung; Pehrsson, Pehr E; Crookes-Goodson, Wendy J; Hung, Chia-Suei; Nadeau, Lloyd J; Russell, John N

    2016-08-02

    AFM-IR is a combined atomic force microscopy-infrared spectroscopy method that shows promise for nanoscale chemical characterization of biological-materials interactions. In an effort to apply this method to quantitatively probe mechanisms of microbiologically induced polyurethane degradation, we have investigated monolayer clusters of ∼200 nm thick Pseudomonas protegens Pf-5 bacteria (Pf) on a 300 nm thick polyether-polyurethane (PU) film. Here, the impact of the different biological and polymer mechanical properties on the thermomechanical AFM-IR detection mechanism was first assessed without the additional complication of polymer degradation. AFM-IR spectra of Pf and PU were compared with FTIR and showed good agreement. Local AFM-IR spectra of Pf on PU (Pf-PU) exhibited bands from both constituents, showing that AFM-IR is sensitive to chemical composition both at and below the surface. One distinct difference in local AFM-IR spectra on Pf-PU was an anomalous ∼4× increase in IR peak intensities for the probe in contact with Pf versus PU. This was attributed to differences in probe-sample interactions. In particular, significantly higher cantilever damping was observed for probe contact with PU, with a ∼10× smaller Q factor. AFM-IR chemical mapping at single wavelengths was also affected. We demonstrate ratioing of mapping data for chemical analysis as a simple method to cancel the extreme effects of the variable probe-sample interactions.

  4. Effect of tip mass on frequency response and sensitivity of AFM cantilever in liquid.

    Science.gov (United States)

    Farokh Payam, Amir; Fathipour, Morteza

    2015-03-01

    The effect of tip mass on the frequency response and sensitivity of atomic force microscope (AFM) cantilever in the liquid environment is investigated. For this purpose, using Euler-Bernoulli beam theory and considering tip mass and hydrodynamic functions in a liquid environment, an expression for the resonance frequencies of AFM cantilever in liquid is derived. Then, based on this expression, the effect of the surface contact stiffness on the flexural mode of a rectangular AFM cantilever in fluid is investigated and compared with the case where the AFM cantilever operates in the air. The results show that in contrast with an air environment, the tip mass has no significant impact on the resonance frequency and sensitivity of the AFM cantilever in the liquid. Hence, analysis of AFM behaviour in liquid environment by neglecting the tip mass is logical.

  5. Intrinsically high-Q dynamic AFM imaging in liquid with a significantly extended needle tip.

    Science.gov (United States)

    Minary-Jolandan, Majid; Tajik, Arash; Wang, Ning; Yu, Min-Feng

    2012-06-15

    Atomic force microscope (AFM) probe with a long and rigid needle tip was fabricated and studied for high Q factor dynamic (tapping mode) AFM imaging of samples submersed in liquid. The extended needle tip over a regular commercially available tapping-mode AFM cantilever was sufficiently long to keep the AFM cantilever from submersed in liquid, which significantly minimized the hydrodynamic damping involved in dynamic AFM imaging of samples in liquid. Dynamic AFM imaging of samples in liquid at an intrinsic Q factor of over 100 and an operational frequency of over 200 kHz was demonstrated. The method has the potential to be extended to acquire viscoelastic material properties and provide truly gentle imaging of soft biological samples in physiological environments.

  6. An AFM study of calcite dissolution in concentrated electrolyte solutions

    Science.gov (United States)

    Ruiz Agudo, E.; Putnis, C. V.; Putnis, A.; Rodriguez-Navarro, C.

    2009-04-01

    Calcite-solution interactions are of a paramount importance in a range of processes such as the removal of heavy metals, carbon dioxide sequestration, landscape modeling, weathering of building stone and biomineralization. Water in contact with minerals often carries significant amounts of solutes; additionally, their concentration may vary due to evaporation and condensation. It is well known that calcite dissolution is affected dramatically by the presence of such solutes. Here we present investigations on the dissolution of calcite in the presence of different electrolytes. Both bulk (batch reactors) experiments and nanoscale (in situ AFM) techniques are used to study the dissolution of calcite in a range of solutions containing alkaly cations balanced by halide anions. Previous works have indicated that the ionic strength has little influence in calcite dissolution rates measured from bulk experiments (Pokrovsky et al. 2005; Glendhill and Morse, 2004). Contrary to these results, our quantitative analyses of AFM observations show an enhancement of the calcite dissolution rate with increasing electrolyte concentration. Such an effect is concentration-dependent and it is most evident in concentrated solutions. AFM experiments have been carried out in a fluid cell using calcite cleavage surfaces in contact with solutions of simple salts of the alkaly metals and halides at different undersaturations with respect to calcite to try to specify the effect of the ionic strength on etch pit spreading rate and calcite dissolution rate. These results show that the presence of soluble salts may critically affect the weathering of carbonate rocks in nature as well as the decay of carbonate stone in built cultural heritage. References: Pokrosky, O.S.; Golubev, S.V.; Schott, J. Dissolution kinetics of calcite, dolomite and magnesite at 25°C and 0 to 50 atm pCO2. Chemical Geology, 2005, 217 (3-4) 239-255. Glendhill, D.K.; Morse, J.W. Dissolution kinetics of calcite in Na

  7. Ultra-high aspect ratio replaceable AFM tips using deformation-suppressed focused ion beam milling

    DEFF Research Database (Denmark)

    Savenko, Alexey; Yildiz, Izzet; Petersen, Dirch Hjorth;

    2013-01-01

    Fabrication of ultra-high aspect ratio exchangeable and customizable tips for atomic force microscopy (AFM) using lateral focused ion beam (FIB) milling is presented. While on-axis FIB milling does allow high aspect ratio (HAR) AFM tips to be defined, lateral milling gives far better flexibility...... FIB milling strategies for obtaining sharper tips are discussed. Finally, assembly of the HAR tips on a custom-designed probe as well as the first AFM scanning is shown....

  8. Acquisition of a Modular, Multi-laser, Raman-AFM Instrument for Multdisciplinary Research

    Science.gov (United States)

    2015-04-28

    Acquisition of a Modular, Multi-laser, Raman- AFM Instrument for Multdisciplinary Research A four-laser, confocal Raman/Atomic Force Scanning...microscope (Raman- AFM ) (priced at ~ $496,000) has been acquired From Horiba Scientific. Acquisition of this instrument has enhanced the research and...capabilities as well as provides high resolution topographical and depth imaging capabilities through the AFM . The views, opinions and/or findings

  9. Modelling and Measurement Uncertainty Estimation for Integrated AFM-CMM Instrument

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard; Bariani, Paolo; De Chiffre, Leonardo

    2005-01-01

    This paper describes modelling of an integrated AFM - CMM instrument, its calibration, and estimation of measurement uncertainty. Positioning errors were seen to limit the instrument performance. Software for off-line stitching of single AFM scans was developed and verified, which allows...... compensation of such errors. A geometrical model of the instrument was produced, describing the interaction between AFM and CMM systematic errors. The model parameters were quantified through calibration, and the model used for establishing an optimised measurement procedure for surface mapping. A maximum...... uncertainty of 0.8% was achieved for the case of surface mapping of 1.2*1.2 mm2 consisting of 49 single AFM scanned areas....

  10. Multiple regimes of operation in bimodal AFM: understanding the energy of cantilever eigenmodes.

    Science.gov (United States)

    Kiracofe, Daniel; Raman, Arvind; Yablon, Dalia

    2013-01-01

    One of the key goals in atomic force microscopy (AFM) imaging is to enhance material property contrast with high resolution. Bimodal AFM, where two eigenmodes are simultaneously excited, confers significant advantages over conventional single-frequency tapping mode AFM due to its ability to provide contrast between regions with different material properties under gentle imaging conditions. Bimodal AFM traditionally uses the first two eigenmodes of the AFM cantilever. In this work, the authors explore the use of higher eigenmodes in bimodal AFM (e.g., exciting the first and fourth eigenmodes). It is found that such operation leads to interesting contrast reversals compared to traditional bimodal AFM. A series of experiments and numerical simulations shows that the primary cause of the contrast reversals is not the choice of eigenmode itself (e.g., second versus fourth), but rather the relative kinetic energy between the higher eigenmode and the first eigenmode. This leads to the identification of three distinct imaging regimes in bimodal AFM. This result, which is applicable even to traditional bimodal AFM, should allow researchers to choose cantilever and operating parameters in a more rational manner in order to optimize resolution and contrast during nanoscale imaging of materials.

  11. Compensation of motion error in a high accuracy AFM

    Science.gov (United States)

    Cui, Yuguo; Arai, Yoshikazu; He, Gaofa; Asai, Takemi; Gao, Wei

    2008-10-01

    An atomic force microscope (AFM) system is used for large-area measurement with a spiral scanning strategy, which is composed of an air slide, an air spindle and a probe unit. The motion error which is brought from the air slide and the air spindle will increase with the increasing of the measurement area. Then the measurement accuracy will decrease. In order to achieve a high speed and high accuracy measurement, the probe scans along X-direction with constant height mode driven by the air slide, and at the same time, based on the change way of the motion error, it moves along Zdirection conducted by piezoactuator. According to the above method of error compensation, the profile measurement experiment of a micro-structured surface has been carried out. The experimental result shows that this method is effective for eliminating motion error, and it can achieve high speed and precision measurement of micro-structured surface.

  12. Bubble colloidal AFM probes formed from ultrasonically generated bubbles.

    Science.gov (United States)

    Vakarelski, Ivan U; Lee, Judy; Dagastine, Raymond R; Chan, Derek Y C; Stevens, Geoffrey W; Grieser, Franz

    2008-02-05

    Here we introduce a simple and effective experimental approach to measuring the interaction forces between two small bubbles (approximately 80-140 microm) in aqueous solution during controlled collisions on the scale of micrometers to nanometers. The colloidal probe technique using atomic force microscopy (AFM) was extended to measure interaction forces between a cantilever-attached bubble and surface-attached bubbles of various sizes. By using an ultrasonic source, we generated numerous small bubbles on a mildly hydrophobic surface of a glass slide. A single bubble picked up with a strongly hydrophobized V-shaped cantilever was used as the colloidal probe. Sample force measurements were used to evaluate the pure water bubble cleanliness and the general consistency of the measurements.

  13. Mapping water uptake in organic coatings using AFM-IR.

    Science.gov (United States)

    Morsch, S; Lyon, S; Greensmith, P; Smith, S D; Gibbon, S R

    2015-01-01

    The long-term failure of seemingly intact corrosion resistant organic coatings is thought to occur via the development of ionic transport channels, which spontaneously evolve from hydrophilic regions on immersion, i.e., as a result of localized water uptake. To this end, we investigate water uptake characteristics for industrial epoxy-phenolic can coatings after immersion in deionized water and drying. Moisture sorption and the changing nature of polymer-water interactions are assessed using FTIR for dry and pre-soaked films. More water is found to be absorbed by the pre-soaked coatings on exposure to a humid environment, with a greater degree of hydrogen-bonding between the polymer and water. Furthermore, morphological changes are then correlated to localized water uptake using the AFM-IR technique. Nanoscale softened regions develop on soaking, and these are found to absorb a greater proportion of water from a humid environment.

  14. Optimization of functionalization conditions for protein analysis by AFM

    Energy Technology Data Exchange (ETDEWEB)

    Arroyo-Hernández, María, E-mail: maria.arroyo@ctb.upm.es [Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid (Spain); Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid (Spain); Daza, Rafael; Pérez-Rigueiro, Jose; Elices, Manuel; Nieto-Márquez, Jorge; Guinea, Gustavo V. [Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid (Spain); Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid (Spain)

    2014-10-30

    Highlights: • Highest fluorescence is obtained for central conditions. • Largest primary amine contribution is obtained for central conditions. • RMS roughness is smaller than 1 nm for all functional films. • Selected deposition conditions lead to proper RMS and functionality values. • LDH proteins adsorbed on AVS-films were observed by AFM. - Abstract: Activated vapor silanization (AVS) is used to functionalize silicon surfaces through deposition of amine-containing thin films. AVS combines vapor silanization and chemical vapor deposition techniques and allows the properties of the functionalized layers (thickness, amine concentration and topography) to be controlled by tuning the deposition conditions. An accurate characterization is performed to correlate the deposition conditions and functional-film properties. In particular, it is shown that smooth surfaces with a sufficient surface density of amine groups may be obtained with this technique. These surfaces are suitable for the study of proteins with atomic force microscopy.

  15. BOREAS AFM-04 Twin Otter Aircraft Sounding Data

    Science.gov (United States)

    MacPherson, J. Ian; Desjardins, Raymond L.; Hall, Forrest G. (Editor); Knapp, David E. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-4 team used the National Research Council, Canada (NRC) Twin Otter aircraft to make sounding measurements through the boundary layer. These measurements included concentrations of carbon dioxide and ozone, atmospheric pressure, dry bulb temperature, potential temperature, dewpoint temperature, calculated mixing ratio, and wind speed and direction. Aircraft position, heading, and altitude were also recorded. Data were collected at both the Northern Study Area (NSA) and the Southern Study Area (SSA) in 1994 and 1996. These data are stored in tabular ASCII files. The Twin Otter aircraft sounding data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files also are available on a CD-ROM (see document number 20010000884).

  16. AFM research on Fe-based nanocrystal crystallization mechanism

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The cross-section pattern of Fe-based alloy ribbon (Fe73.5Cu1Nb3Si13.5B9) annealed at different temperatures was investigated by AFM (atomic force microscope), and the effect mechanism of Nb and Cu in Fe-based alloy ribbon annealing was analyzed with XRD diffraction crystal analysis technique and other research results. New concepts of encapsulated grain, Nb vacancy cluster, Nb-B atom cluster and so on were proposed and used to describe the formation mechanism of α-Fe (Si) nanocrystal. Finally, a three-phase (separation phase, encapsulated phase and nanocrystalline phase) interconnected structure model in Fe-based nanocrystalline alloy was established.

  17. Optical cavity back action on an AFM microlever

    CERN Document Server

    Jourdan, Guillaume; Chevrier, Joël

    2008-01-01

    Two back action processes generated by an optical cavity based detection device can deeply transform the dynamical behavior of an AFM microlever: the photothermal force or the radiation pressure. Whereas noise damping or amplifying depends only on the detuning inside the cavity for radiation pressure back action, we present experimental results carried out under vacuum and at room temperature on the photothermal back action process which appears to be much more complex. We show for the first time that it can simultaneously act on two vibration modes in opposite direction: noise on one mode is amplified whereas it is damped on another mode. Modelisation of this effect leads us to conclude that indeed it is specific to photothermal back action and cannot be observed in case of radiation pressure back action.

  18. AFM, SEM and TEM Studies on Porous Anodic Alumina

    Science.gov (United States)

    Zhu, Yuan Yuan; Ding, Gu Qiao; Ding, Jian Ning; Yuan, Ning Yi

    2010-04-01

    Porous anodic alumina (PAA) has been intensively studied in past decade due to its applications for fabricating nanostructured materials. Since PAA’s pore diameter, thickness and shape vary too much, a systematical study on the methods of morphology characterization is meaningful and essential for its proper development and utilization. In this paper, we present detailed AFM, SEM and TEM studies on PAA and its evolvements with abundant microstructures, and discuss the advantages and disadvantages of each method. The sample preparation, testing skills and morphology analysis are discussed, especially on the differentiation during characterizing complex cross-sections and ultrasmall nanopores. The versatility of PAAs is also demonstrated by the diversity of PAAs’ microstructure.

  19. AFM, SEM and TEM Studies on Porous Anodic Alumina

    Directory of Open Access Journals (Sweden)

    Zhu YuanYuan

    2010-01-01

    Full Text Available Abstract Porous anodic alumina (PAA has been intensively studied in past decade due to its applications for fabricating nanostructured materials. Since PAA’s pore diameter, thickness and shape vary too much, a systematical study on the methods of morphology characterization is meaningful and essential for its proper development and utilization. In this paper, we present detailed AFM, SEM and TEM studies on PAA and its evolvements with abundant microstructures, and discuss the advantages and disadvantages of each method. The sample preparation, testing skills and morphology analysis are discussed, especially on the differentiation during characterizing complex cross-sections and ultrasmall nanopores. The versatility of PAAs is also demonstrated by the diversity of PAAs’ microstructure.

  20. In Situ STM and AFM of the Copper Protein Pseudomonas Aeruginosa Azurin

    DEFF Research Database (Denmark)

    Friis, Esben P.; Andersen, Jens Enevold Thaulov; Madsen, L.L.;

    1997-01-01

    Scanning tunnel (STM) and atomic force microscopy (AFM) in the in situ mode under potentiostatic control have opened new perspectives for mapping the two-dimensional organization of surface adsorbates in aqueous solution. In situ STM and AFM, however, also raise recognized problems. In the contex...

  1. Nano-Wilhelmy investigation of dynamic wetting properties of AFM tips through tip-nanobubble interaction.

    Science.gov (United States)

    Wang, Yuliang; Wang, Huimin; Bi, Shusheng; Guo, Bin

    2016-07-25

    The dynamic wetting properties of atomic force microscopy (AFM) tips are of much concern in many AFM-related measurement, fabrication, and manipulation applications. In this study, the wetting properties of silicon and silicon nitride AFM tips are investigated through dynamic contact angle measurement using a nano-Wilhelmy balance based method. This is done by capillary force measurement during extension and retraction motion of AFM tips relative to interfacial nanobubbles. The working principle of the proposed method and mathematic models for dynamic contact angle measurement are presented. Geometric models of AFM tips were constructed using scanning electronic microscopy (SEM) images taken from different view directions. The detailed process of tip-nanobubble interaction was investigated using force-distance curves of AFM on nanobubbles. Several parameters including nanobubble height, adhesion and capillary force between tip and nanobubbles are extracted. The variation of these parameters was studied over nanobubble surfaces. The dynamic contact angles of the AFM tips were calculated from the capillary force measurements. The proposed method provides direct measurement of dynamic contact angles for AFM tips and can also be taken as a general approach for nanoscale dynamic wetting property investigation.

  2. A Semi-Automated Positioning System for contact-mode Atomic Force Microscopy (AFM).

    Science.gov (United States)

    Roy, Rajarshi; Chen, Wenjin; Cong, Lei; Goodell, Lauri A; Foran, David J; Desai, Jaydev P

    2013-04-01

    Contact mode Atomic Force Microscopy (CM-AFM) is popularly used by the biophysics community to study mechanical properties of cells cultured in petri dishes, or tissue sections fixed on microscope slides. While cells are fairly easy to locate, sampling in spatially heterogeneous tissue specimens is laborious and time-consuming at higher magnifications. Furthermore, tissue registration across multiple magnifications for AFM-based experiments is a challenging problem, suggesting the need to automate the process of AFM indentation on tissue. In this work, we have developed an image-guided micropositioning system to align the AFM probe and human breast-tissue cores in an automated manner across multiple magnifications. Our setup improves efficiency of the AFM indentation experiments considerably. Note to Practitioners: Human breast tissue is by nature heterogeneous, and in the samples we studied, epithelial tissue is formed by groups of functional breast epithelial cells that are surrounded by stromal tissue in a complex intertwined way. Therefore sampling a specific cell type on an unstained specimen is very difficult. To aid us, we use digital stained images of the same tissue annotated by a certified pathologist to identify the region of interest (ROI) at a coarse magnification and an image-guided positioning system to place the unstained tissue near the AFM probe tip. Using our setup, we could considerably reduce AFM operating time and we believe that our setup is a viable supplement to commercial AFM stages with limited X-Y range.

  3. Investigation of Amyloid Structures at Nanoscale via AFM based Dynamic Nanomechncial Microscopy

    DEFF Research Database (Denmark)

    Zhang, Shuai

    2014-01-01

    and material research. Among kinds of techniques, Atomic force microscopy (AFM) has the advantages in amyloid study, due to the real-space nano-resolution, the possibilities to characterize in physiological condition, and easy operation without staining requirement. The recent developed AFM based dynamic...

  4. In situ, controlled and reproducible attachment of carbon nanotubes onto conductive AFM tips

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jianxun [International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Chinese Academy of Science Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafty, National Center for Nanoscience and Technology of China, No. 11, Bei yi tiao, Zhong Guan Cun, Beijing 100190 (China); Shingaya, Yoshitaka [International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Zhao, Yuliang [Chinese Academy of Science Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafty, National Center for Nanoscience and Technology of China, No. 11, Bei yi tiao, Zhong Guan Cun, Beijing 100190 (China); Nakayama, Tomonobu, E-mail: NAKAYAMA.Tomonobu@nims.go.jp [International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

    2015-04-30

    Graphical abstract: - Highlights: • An effective and controllable method was developed to fabricate CNT AFM probes in-situ. • Individual carbon nanotube was assembled. • The alignment angle and protruding length of as-produced CNT probes are excellent. - Abstract: Owing to the small diameter, wear resistance, high aspect ratio of their cylindrical structure and outstanding young's modulus, carbon nanotubes are regarded as excellent probes for atomic force microscope (AFM) imaging and various applications. To take the best out of carbon nanotubes’ potentials as AFM probes, we present a facile and reliable method to attach a single carbon nanotube onto an AFM probe covered with conductive Au layer. The method involves the following steps: positioning the AFM probe exactly onto a designated multiple-walled carbon nanotube growing vertically on a conductive substrate, establishing physical contact of the probe apex to the carbon nanotube with an appropriate force, and finally flowing a DC current of typically 100 μA from the AFM probe to the substrate through the carbon nanotube. The current flow results in the fracture and attachment of the carbon nanotube onto the AFM probe. Our method is similar to that reported in previous studies to cut and assemble carbon nanotubes by flowing current under SEM, but by our method we succeed to achieve superior control of protruding length and reproducible attachment angle of the carbon nanotube in one step. Moreover, it is now possible to reliably prepare carbon nanotube probes in-situ during AFM experiments.

  5. BOREAS AFM-12 1-km AVHRR Seasonal Land Cover Classification

    Science.gov (United States)

    Steyaert, Lou; Hall, Forrest G.; Newcomer, Jeffrey A. (Editor); Knapp, David E. (Editor); Loveland, Thomas R.; Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-12 team's efforts focused on regional scale Surface Vegetation and Atmosphere (SVAT) modeling to improve parameterization of the heterogeneous BOREAS landscape for use in larger scale Global Circulation Models (GCMs). This regional land cover data set was developed as part of a multitemporal one-kilometer Advanced Very High Resolution Radiometer (AVHRR) land cover analysis approach that was used as the basis for regional land cover mapping, fire disturbance-regeneration, and multiresolution land cover scaling studies in the boreal forest ecosystem of central Canada. This land cover classification was derived by using regional field observations from ground and low-level aircraft transits to analyze spectral-temporal clusters that were derived from an unsupervised cluster analysis of monthly Normalized Difference Vegetation Index (NDVI) image composites (April-September 1992). This regional data set was developed for use by BOREAS investigators, especially those involved in simulation modeling, remote sensing algorithm development, and aircraft flux studies. Based on regional field data verification, this multitemporal one-kilometer AVHRR land cover mapping approach was effective in characterizing the biome-level land cover structure, embedded spatially heterogeneous landscape patterns, and other types of key land cover information of interest to BOREAS modelers.The land cover mosaics in this classification include: (1) wet conifer mosaic (low, medium, and high tree stand density), (2) mixed coniferous-deciduous forest (80% coniferous, codominant, and 80% deciduous), (3) recent visible bum, vegetation regeneration, or rock outcrops-bare ground-sparsely vegetated slow regeneration bum (four classes), (4) open water and grassland marshes, and (5) general agricultural land use/ grasslands (three classes). This land cover mapping approach did not detect small subpixel-scale landscape

  6. Implementing atomic force microscopy (AFM) for studying kinetics of gold nanoparticle's growth

    DEFF Research Database (Denmark)

    Georgiev, P.; Bojinova, A.; Kostova, B.

    2013-01-01

    In a novel experimental approach Atomic Force Microscopy (AFM) was applied as a tool for studying the kinetics of gold nanoparticle growth. The gold nanoparticles were obtained by classical Turkevich citrate synthesis at two different temperatures. From the analysis of AFM images during the synth......In a novel experimental approach Atomic Force Microscopy (AFM) was applied as a tool for studying the kinetics of gold nanoparticle growth. The gold nanoparticles were obtained by classical Turkevich citrate synthesis at two different temperatures. From the analysis of AFM images during...... approach. We also compared AFM experimental data with Dynamic Light Scattering (DLS) and with Transmission Electron Microscopy (TEM) data. The experimental data from all the applied methods were fitted with two step Finke-Watzky kinetics model and the corresponding kinetics constants were obtained...

  7. Fabrication and buckling dynamics of nanoneedle AFM probes

    Energy Technology Data Exchange (ETDEWEB)

    Beard, J D; Gordeev, S N, E-mail: jdb28@bath.ac.uk [Department of Physics, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom)

    2011-04-29

    A new method for the fabrication of high-aspect-ratio probes by electron beam induced deposition is described. This technique allows the fabrication of cylindrical 'nanoneedle' structures on the atomic force microscope (AFM) probe tip which can be used for accurate imaging of surfaces with high steep features. Scanning electron microscope (SEM) imaging showed that needles with diameters in the range of 18-100 nm could be obtained by this technique. The needles were shown to undergo buckling deformation under large tip-sample forces. The deformation was observed to recover elastically under vertical deformations of up to {approx} 60% of the needle length, preventing damage to the needle. A technique of stabilizing the needle against buckling by coating it with additional electron beam deposited carbon was also investigated; it was shown that coated needles of 75 nm or greater total diameter did not buckle even under tip-sample forces of {approx} 1.5 {mu}N.

  8. Investigation of pyrite surface state by DFT and AFM

    Institute of Scientific and Technical Information of China (English)

    先永骏; 聂琪; 文书明; 刘建; 邓久帅

    2015-01-01

    The surface states of pyrite (FeS2) were theoretically investigated using first principle calculation based on the density functional theory (DFT). The results indicate that both the (200) and (311) surfaces of pyrite undergo significant surface atom relaxation after geometry optimization, which results in a considerable distortion of the surface region. In the normal direction, i.e., perpendicular to the surface, S atoms in the first surface layer move outward from the bulk, while Fe atoms move toward the bulk, forming an S-rich surface. The surface relaxation processes are driven by electrostatic interaction, which is evidenced by a relative decrease in the surface energy after surface relaxation. Such a relaxation process is visually interpreted through the qualitative analysis of molecular mechanics. Atomic force microscopy (AFM) analysis reveals that only sulfur atom is visible on the pyrite surface. This result is consistent with the DFT data. Such S-rich surface has important influence on the flotation properties of pyrite.

  9. BOREAS AFM-2 Wyoming King Air 1994 Aircraft Sounding Data

    Science.gov (United States)

    Kelly, Robert D.; Hall, Forrest G. (Editor); Knapp, David E. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The BOREAS AFM-2 team used the University of Wyoming King Air aircraft during IFCs 1, 2, and 3 in 1994 to collected pass-by-pass fluxes (and many other statistics) for the large number of level (constant altitude), straight-line passes used in a variety of flight patterns over the SSA and NSA and areas along the transect between these study areas. The data described here form a second set, namely soundings that were incorporated into nearly every research flight by the King Air in 1994. These soundings generally went from near the surface to above the inversion layer. Most were flown immediately after takeoff or immediately after finishing the last flux pattern of that particular day's flights. The parameters that were measured include wind direction, wind speed, west wind component (u), south wind component (v), static pressure, air dry bulb temperature, potential temperature, dewpoint, temperature, water vapor mixing ratio, and CO2 concentration. Data on the aircraft's location, attitude, and altitude during data collection are also provided. These data are stored in tabular ASCH files. The data files are available on a CD-ROM (see document number 20010000884) or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  10. BOREAS AFM-03-NCAR Electra 1994 Aircraft Sounding Data

    Science.gov (United States)

    Lenschow, Donald H.; Oncley, Steven P.; Hall, Forrest G. (Editor); Knapp, David E. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-3 team used the National Center for Atmospheric Research's (NCAR) Electra aircraft to make sounding measurements to study the planetary boundary layer using in situ and remote-sensing measurements. Measurements were made of wind speed and direction, air pressure and temperature, potential temperature, dewpoint, mixing ratio of H, O, CO, concentration, and ozone concentration. Twenty-five research missions were flown over the Northern Study Area (NSA), Southern Study Area (SSA), and the transect during BOREAS Intensive Field Campaigns (IFCs) 1, 2, and 3 during 1994. All missions had from four to ten soundings through the top of the planetary boundary layer. This sounding data set contains all of the in situ vertical profiles through the boundary layer top that were made (with the exception of 'porpoise' maneuvers). Data were recorded in one-second time intervals. These data are stored in tabular ASCII files. The NCAR Electra 1994 aircraft sounding data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  11. Tip characterization method using multi-feature characterizer for CD-AFM.

    Science.gov (United States)

    Orji, Ndubuisi G; Itoh, Hiroshi; Wang, Chumei; Dixson, Ronald G; Walecki, Peter S; Schmidt, Sebastian W; Irmer, Bernd

    2016-03-01

    In atomic force microscopy (AFM) metrology, the tip is a key source of uncertainty. Images taken with an AFM show a change in feature width and shape that depends on tip geometry. This geometric dilation is more pronounced when measuring features with high aspect ratios, and makes it difficult to obtain absolute dimensions. In order to accurately measure nanoscale features using an AFM, the tip dimensions should be known with a high degree of precision. We evaluate a new AFM tip characterizer, and apply it to critical dimension AFM (CD-AFM) tips used for high aspect ratio features. The characterizer is made up of comb-shaped lines and spaces, and includes a series of gratings that could be used as an integrated nanoscale length reference. We also demonstrate a simulation method that could be used to specify what range of tip sizes and shapes the characterizer can measure. Our experiments show that for non re-entrant features, the results obtained with this characterizer are consistent to 1nm with the results obtained by using widely accepted but slower methods that are common practice in CD-AFM metrology. A validation of the integrated length standard using displacement interferometry indicates a uniformity of better than 0.75%, suggesting that the sample could be used as highly accurate and SI traceable lateral scale for the whole evaluation process.

  12. Probing Ternary Solvent Effect in High V(oc) Polymer Solar Cells Using Advanced AFM Techniques.

    Science.gov (United States)

    Li, Chao; Ding, Yi; Soliman, Mikhael; Lorenzo, Josie; Dhasmana, Nitesh; Chantharasupawong, Panit; Ievlev, Anton V; Gesquiere, Andre J; Tetard, Laurene; Thomas, Jayan

    2016-02-01

    This work describes a simple method to develop a high V(oc) low band gap PSCs. In addition, two new atomic force microscopy (AFM)-based nanoscale characterization techniques to study the surface morphology and physical properties of the structured active layer are introduced. With the help of ternary solvent processing of the active layer and C60 buffer layer, a bulk heterojunction PSC with V(oc) more than 0.9 V and conversion efficiency 7.5% is developed. In order to understand the fundamental properties of the materials ruling the performance of the PSCs tested, AFM-based nanoscale characterization techniques including Pulsed-Force-Mode AFM (PFM-AFM) and Mode-Synthesizing AFM (MSAFM) are introduced. Interestingly, MSAFM exhibits high sensitivity for direct visualization of the donor-acceptor phases in the active layer of the PSCs. Finally, conductive-AFM (cAFM) studies reveal local variations in conductivity in the donor and acceptor phases as well as a significant increase in photocurrent in the PTB7:ICBA sample obtained with the ternary solvent processing.

  13. Wetting properties of AFM probes by means of contact angle measurement

    Science.gov (United States)

    Tao, Zhenhua; Bhushan, Bharat

    2006-09-01

    An atomic force microscopy (AFM) based technique was developed to measure the wetting properties of probe tips. By advancing and receding the AFM tip across the water surface, the meniscus force between the tip and the liquid was measured at the tip-water separation. The water contact angle was determined from the meniscus force. The obtained contact angle results were compared with that by the sessile drop method. It was found that the AFM based technique provided higher contact angle values than the sessile drop method. The mechanisms responsible for the difference are discussed.

  14. Probing cytoskeletal structures by coupling optical superresolution and AFM techniques for a correlative approach.

    Science.gov (United States)

    Chacko, Jenu Varghese; Zanacchi, Francesca Cella; Diaspro, Alberto

    2013-11-01

    In this article, we describe and show the application of some of the most advanced fluorescence superresolution techniques, STED AFM and STORM AFM microscopy towards imaging of cytoskeletal structures, such as microtubule filaments. Mechanical and structural properties can play a relevant role in the investigation of cytoskeletal structures of interest, such as microtubules, that provide support to the cell structure. In fact, the mechanical properties, such as the local stiffness and the elasticity, can be investigated by AFM force spectroscopy with tens of nanometers resolution. Force curves can be analyzed in order to obtain the local elasticity (and the Young's modulus calculation by fitting the force curves from every pixel of interest), and the combination with STED/STORM microscopy integrates the measurement with high specificity and yields superresolution structural information. This hybrid modality of superresolution-AFM working is a clear example of correlative multimodal microscopy.

  15. Functional extension of high-speed AFM for wider biological applications.

    Science.gov (United States)

    Uchihashi, Takayuki; Watanabe, Hiroki; Fukuda, Shingo; Shibata, Mikihiro; Ando, Toshio

    2016-01-01

    High-speed atomic force microscopy (HS-AFM) has been established and used, which can visualize biomolecules in dynamic action at high spatiotemporal resolution without disturbing their function. Various studies conducted in the past few years have demonstrated that the dynamic structure and action of biomolecules revealed with HS-AFM can provide greater insights than ever before into how the molecules function. However, this microscopy has still limitations in some regards. Recently, efforts have been carried out to overcome some of the limitations. As a result, it has now become possible to visualize dynamic processes occurring even on live cells and perform simultaneous observations of topographic and fluorescent images at a high rate. In this review, we focus on technical developments for expanding the range of objects and phenomena observable by HS-AFM as well as for granting multiple functionalities to HS-AFM.

  16. Restoration of defects generated on the DAST crystal surface by scanning with AFM cantilever tip

    Energy Technology Data Exchange (ETDEWEB)

    Nanjo, Hiroshi; Komatsu, Kyoji; Suzuki, Toshishige M

    2004-10-01

    We have developed a simple method to restore the defects and holes generated on the (001) surface of 4-(4-Dimethylaminostyryl)-1-methylpyridinium tosylate (DAST) crystal by scanning the crystal with a cantilever tip of an atomic force microscope (AFM). The change in the surface morphology upon repeated scan process was followed by AFM observation at appropriate intervals. By adjustment of applied force on the cantilever, molecular-scale flatness on the crystal surface was restored. We proposed the following mechanism for the restoration: AFM tip carries the small fragment of DAST near step-edge and fills the holes or defects on the surface. After several times scanning of the AFM tip with the fragment, the defect-free surface was restored on the DAST crystal by filling the fragment in satisfying the ionic interaction around the holes.

  17. Surface features on Sahara soil dust particles made visible by atomic force microscope (AFM) phase images

    OpenAIRE

    Andreae, M. O.; G. Helas

    2008-01-01

    We show that atomic force microscopy (AFM) phase images can reveal surface features of soil dust particles, which are not evident using other microscopic methods. The non-contact AFM method is able to resolve topographical structures in the nanometer range as well as to uncover repulsive atomic forces and attractive van der Waals' forces, and thus gives insight to surface properties. Though the method does not allow quantitative assignment in terms of chemical compound description, it clearly...

  18. A Multifunctional Frontloading Approach for Repeated Recycling of a Pressure-Controlled AFM Micropipette.

    Directory of Open Access Journals (Sweden)

    Phillip Roder

    Full Text Available Fluid force microscopy combines the positional accuracy and force sensitivity of an atomic force microscope (AFM with nanofluidics via a microchanneled cantilever. However, adequate loading and cleaning procedures for such AFM micropipettes are required for various application situations. Here, a new frontloading procedure is described for an AFM micropipette functioning as a force- and pressure-controlled microscale liquid dispenser. This frontloading procedure seems especially attractive when using target substances featuring high costs or low available amounts. Here, the AFM micropipette could be filled from the tip side with liquid from a previously applied droplet with a volume of only a few μL using a short low-pressure pulse. The liquid-loaded AFM micropipettes could be then applied for experiments in air or liquid environments. AFM micropipette frontloading was evaluated with the well-known organic fluorescent dye rhodamine 6G and the AlexaFluor647-labeled antibody goat anti-rat IgG as an example of a larger biological compound. After micropipette usage, specific cleaning procedures were tested. Furthermore, a storage method is described, at which the AFM micropipettes could be stored for a few hours up to several days without drying out or clogging of the microchannel. In summary, the rapid, versatile and cost-efficient frontloading and cleaning procedure for the repeated usage of a single AFM micropipette is beneficial for various application situations from specific surface modifications through to local manipulation of living cells, and provides a simplified and faster handling for already known experiments with fluid force microscopy.

  19. Surface Microstructure of Mo(C)N Coatings Investigated by AFM

    Science.gov (United States)

    Kuznetsova, T.; Zubar, T.; Chizhik, S.; Gilewicz, A.; Lupicka, O.; Warcholinski, B.

    2016-12-01

    MoCN coatings have been formed by cathodic arc evaporation using the mixture of acetylene and nitrogen and pure molybdenum target. The surface structure, in conjunction with x-ray data, was analyzed by atomic force microscopy (AFM). The AFM results show differently shaped grain forms on the surface of coatings investigated. The increase in carbon in chemical coatings composition results in the reduction in surface grain size and the increase in roughness of the coatings.

  20. A Multifunctional Frontloading Approach for Repeated Recycling of a Pressure-Controlled AFM Micropipette.

    Science.gov (United States)

    Roder, Phillip; Hille, Carsten

    2015-01-01

    Fluid force microscopy combines the positional accuracy and force sensitivity of an atomic force microscope (AFM) with nanofluidics via a microchanneled cantilever. However, adequate loading and cleaning procedures for such AFM micropipettes are required for various application situations. Here, a new frontloading procedure is described for an AFM micropipette functioning as a force- and pressure-controlled microscale liquid dispenser. This frontloading procedure seems especially attractive when using target substances featuring high costs or low available amounts. Here, the AFM micropipette could be filled from the tip side with liquid from a previously applied droplet with a volume of only a few μL using a short low-pressure pulse. The liquid-loaded AFM micropipettes could be then applied for experiments in air or liquid environments. AFM micropipette frontloading was evaluated with the well-known organic fluorescent dye rhodamine 6G and the AlexaFluor647-labeled antibody goat anti-rat IgG as an example of a larger biological compound. After micropipette usage, specific cleaning procedures were tested. Furthermore, a storage method is described, at which the AFM micropipettes could be stored for a few hours up to several days without drying out or clogging of the microchannel. In summary, the rapid, versatile and cost-efficient frontloading and cleaning procedure for the repeated usage of a single AFM micropipette is beneficial for various application situations from specific surface modifications through to local manipulation of living cells, and provides a simplified and faster handling for already known experiments with fluid force microscopy.

  1. Controlled nanodot fabrication by rippling polycarbonate surface using an AFM diamond tip

    OpenAIRE

    2014-01-01

    The single scratching test of polymer polycarbonate (PC) sample surface using an atomic force microscope (AFM) diamond tip for fabricating ripple patterns has been studied with the focus on the evaluation of the effect of the tip scratching angle on the pattern formation. The experimental results indicated that the different oriented ripples can be easily machined by controlling the scratching angles of the AFM. And, the effects of the normal load and the feed on the ripples formation and the...

  2. Influence of the surface chemistry on the nanotribological behaviour of (AFM tip/graphite) couples

    Energy Technology Data Exchange (ETDEWEB)

    Jradi, Khalil [Universite du Quebec a Trois Rivieres, Centre Integre en pates et papiers, 3351 boulevard des forges, Trois Rivieres, Quebec G9A 5H7 (Canada); Schmitt, Marjorie, E-mail: Marjorie.Schmitt@uha.fr [Laboratoire de Chimie Organique et Bioorganique, Ecole Nationale Superieure de Chimie de Mulhouse - CNRS, 3, rue Alfred Werner, 68093 Mulhouse Cedex (France); Bistac, Sophie [Laboratoire de Photochimie et d' Ingenierie Macromoleculaires, 3, rue Alfred Werner, 68093 Mulhouse Cedex (France)

    2012-03-01

    The development of the nanotechnology has made essential the knowledge of the tribological behaviour of carbonaceous materials, and more particularly of graphite. Atomic force microscopy (AFM) is thus used to study the friction properties at this nanoscopic scale. In this work, results concerning the friction of AFM tips against graphite pins are presented, with a particular emphasis on the effect of the chemical modification of these tips on the tribological behaviour of graphite.

  3. Insight into mechanics of AFM tip-based nanomachining: bending of cantilevers and machined grooves.

    Science.gov (United States)

    Al-Musawi, R S J; Brousseau, E B; Geng, Y; Borodich, F M

    2016-09-23

    Atomic force microscope (AFM) tip-based nanomachining is currently the object of intense research investigations. Values of the load applied to the tip at the free end of the AFM cantilever probe used for nanomachining are always large enough to induce plastic deformation on the specimen surface contrary to the small load values used for the conventional contact mode AFM imaging. This study describes an important phenomenon specific for AFM nanomachining in the forward direction: under certain processing conditions, the deformed shape of the cantilever probe may change from a convex to a concave orientation. The phenomenon can principally change the depth and width of grooves machined, e.g. the grooves machined on a single crystal copper specimen may increase by 50% on average following such a change in the deformed shape of the cantilever. It is argued that this phenomenon can take place even when the AFM-based tool is operated in the so-called force-controlled mode. The study involves the refined theoretical analysis of cantilever probe bending, the analysis of experimental signals monitored during the backward and forward AFM tip-based machining and the inspection of the topography of produced grooves.

  4. Closer look at the effect of AFM imaging conditions on the apparent dimensions of surface nanobubbles.

    Science.gov (United States)

    Walczyk, Wiktoria; Schönherr, Holger

    2013-01-15

    To date, TM AFM (tapping mode or intermittent contact mode atomic force microscopy) is the most frequently applied direct imaging technique to visualize surface nanobubbles at the solid-aqueous interface. On one hand, AFM is the only profilometric technique that provides estimates of the bubbles' nanoscopic dimensions. On the other hand, the nanoscopic contact angles of surface nanobubbles estimated from their apparent dimensions that are deduced from AFM "height" images of nanobubbles differ markedly from the macrocopic water contact angles on the identical substrates. Here we show in detail how the apparent bubble height and width of surface nanobubbles on highly oriented pyrolytic graphite (HOPG) depend on the free amplitude of the cantilever oscillations and the amplitude setpoint ratio. (The role of these two AFM imaging parameters and their interdependence has not been studied so far for nanobubbles in a systematic way.) In all experiments, even with optimal scanning parameters, nanobubbles at the HOPG-water interface appeared to be smaller in the AFM images than their true size, which was estimated using a method presented herein. It was also observed that the severity of the underestimate increased with increasing bubble height and radius of curvature. The nanoscopic contact angle of >130° for nanobubbles on HOPG extrapolated to zero interaction force was only slightly overestimated and hence significantly higher than the macroscopic contact angle of water on HOPG (63 ± 2°). Thus, the widely reported contact angle discrepancy cannot be solely attributed to inappropriate AFM imaging conditions.

  5. [Study of the Raman-AFM system for simultaneous measurements of Raman spectrum and micro/nano-structures].

    Science.gov (United States)

    Shi, Bin; Zhang, Hai-jun; Wu, Lan; Zhang, Dong-xian

    2012-04-01

    This paper proposes a novel technique of Raman-atomic force microscopy (AFM) combining micro region Raman spectroscopy and AFM imaging. An in-situ probe unit which can simultaneously realize the detection of Raman spectrum and the measurement of AFM image was designed, and a related Raman-AFM system was constructed. Using this system, some experiments were carried out to acquire micro region Raman spectra and AFM images of ZnO nano-particle and TiO2 film. The results show that the Raman spectra of both samples are in agreement with theoretical vaues, and the AFM images represent their micro/nano-structures quite well. These researches prove the feasibility of the Raman-AFM technique which has the potential of being widely applied in the fields of Raman spectroscopy and micro/nano-technology.

  6. A rapid and automated relocation method of an AFM probe for high-resolution imaging

    Science.gov (United States)

    Zhou, Peilin; Yu, Haibo; Shi, Jialin; Jiao, Niandong; Wang, Zhidong; Wang, Yuechao; Liu, Lianqing

    2016-09-01

    The atomic force microscope (AFM) is one of the most powerful tools for high-resolution imaging and high-precision positioning for nanomanipulation. The selection of the scanning area of the AFM depends on the use of the optical microscope. However, the resolution of an optical microscope is generally no larger than 200 nm owing to wavelength limitations of visible light. Taking into consideration the two determinants of relocation—relative angular rotation and positional offset between the AFM probe and nano target—it is therefore extremely challenging to precisely relocate the AFM probe to the initial scan/manipulation area for the same nano target after the AFM probe has been replaced, or after the sample has been moved. In this paper, we investigate a rapid automated relocation method for the nano target of an AFM using a coordinate transformation. The relocation process is both simple and rapid; moreover, multiple nano targets can be relocated by only identifying a pair of reference points. It possesses a centimeter-scale location range and nano-scale precision. The main advantages of this method are that it overcomes the limitations associated with the resolution of optical microscopes, and that it is label-free on the target areas, which means that it does not require the use of special artificial markers on the target sample areas. Relocation experiments using nanospheres, DNA, SWCNTs, and nano patterns amply demonstrate the practicality and efficiency of the proposed method, which provides technical support for mass nanomanipulation and detection based on AFM for multiple nano targets that are widely distributed in a large area.

  7. A rapid and automated relocation method of an AFM probe for high-resolution imaging.

    Science.gov (United States)

    Zhou, Peilin; Yu, Haibo; Shi, Jialin; Jiao, Niandong; Wang, Zhidong; Wang, Yuechao; Liu, Lianqing

    2016-09-30

    The atomic force microscope (AFM) is one of the most powerful tools for high-resolution imaging and high-precision positioning for nanomanipulation. The selection of the scanning area of the AFM depends on the use of the optical microscope. However, the resolution of an optical microscope is generally no larger than 200 nm owing to wavelength limitations of visible light. Taking into consideration the two determinants of relocation-relative angular rotation and positional offset between the AFM probe and nano target-it is therefore extremely challenging to precisely relocate the AFM probe to the initial scan/manipulation area for the same nano target after the AFM probe has been replaced, or after the sample has been moved. In this paper, we investigate a rapid automated relocation method for the nano target of an AFM using a coordinate transformation. The relocation process is both simple and rapid; moreover, multiple nano targets can be relocated by only identifying a pair of reference points. It possesses a centimeter-scale location range and nano-scale precision. The main advantages of this method are that it overcomes the limitations associated with the resolution of optical microscopes, and that it is label-free on the target areas, which means that it does not require the use of special artificial markers on the target sample areas. Relocation experiments using nanospheres, DNA, SWCNTs, and nano patterns amply demonstrate the practicality and efficiency of the proposed method, which provides technical support for mass nanomanipulation and detection based on AFM for multiple nano targets that are widely distributed in a large area.

  8. An AFM-based stiffness clamp for dynamic control of rigidity.

    Science.gov (United States)

    Webster, Kevin D; Crow, Ailey; Fletcher, Daniel A

    2011-03-08

    Atomic force microscopy (AFM) has become a powerful tool for measuring material properties in biology and imposing mechanical boundary conditions on samples from single molecules to cells and tissues. Constant force or constant height can be maintained in an AFM experiment through feedback control of cantilever deflection, known respectively as a 'force clamp' or 'position clamp'. However, stiffness, the third variable in the Hookean relation F = kx that describes AFM cantilever deflection, has not been dynamically controllable in the same way. Here we present and demonstrate a 'stiffness clamp' that can vary the apparent stiffness of an AFM cantilever. This method, employable on any AFM system by modifying feedback control of the cantilever, allows rapid and reversible tuning of the stiffness exposed to the sample in a way that can decouple the role of stiffness from force and deformation. We demonstrated the AFM stiffness clamp on two different samples: a contracting fibroblast cell and an expanding polyacrylamide hydrogel. We found that the fibroblast, a cell type that secretes and organizes the extracellular matrix, exhibited a rapid, sub-second change in traction rate (dF/dt) and contraction velocity (dx/dt) in response to step changes in stiffness between 1-100 nN/µm. This response was independent of the absolute contractile force and cell height, demonstrating that cells can react directly to changes in stiffness alone. In contrast, the hydrogel used in our experiment maintained a constant expansion velocity (dx/dt) over this range of stiffness, while the traction rate (dF/dt) changed with stiffness, showing that passive materials can also behave differently in different stiffness environments. The AFM stiffness clamp presented here, which is applicable to mechanical measurements on both biological and non-biological samples, may be used to investigate cellular mechanotransduction under a wide range of controlled mechanical boundary conditions.

  9. Comparison of different aminofunctionalization strategies for attachment of single antibodies to AFM cantilevers

    Energy Technology Data Exchange (ETDEWEB)

    Ebner, Andreas [Institute of Biophysics, University of Linz, 4040 Linz (Austria)], E-mail: andreas.ebner@jku.at; Hinterdorfer, Peter; Gruber, Hermann J. [Institute of Biophysics, University of Linz, 4040 Linz (Austria)

    2007-10-15

    Atomic force microscopy (AFM) has developed into a key technique for elucidation of biological systems on the single molecular level. In particular, molecular recognition force microscopy has proven to be a powerful tool for the investigation of biological interactions under near physiological conditions. For this purpose, ligands are tethered to AFM tips and the interaction forces with cognate receptors on the sample surface are measured with pico-Newton accuracy. In the first step of tip functionalization, amino groups are typically introduced on the initially inert AFM tip. Several methods have been developed to reproducibly adjust the desired low density of amino groups on the tip surface, i.e. esterification with ethanolamine, gas-phase silanization with aminopropyl-triethoxysilane (APTES), or treatment with aminophenyl-trimethoxysilane (APhS) in toluene solution. In the present study, the usefulness of these methods for attachments of antibodies to AFM tips was characterized by a standardized test system, in which biotinylated IgG was bound to the tip and a dense monolayer of avidin on mica served as test sample. All three methods of aminofunctionalization were found fully satisfactory for attachment of single antibodies to AFM tips, only in a parallel macroscopic assay on silicon nitride chips a minor difference was found in that APTES appeared to yield a slightly lower surface density of amino groups.

  10. Fractal analysis of AFM images of the surface of Bowman's membrane of the human cornea.

    Science.gov (United States)

    Ţălu, Ştefan; Stach, Sebastian; Sueiras, Vivian; Ziebarth, Noël Marysa

    2015-04-01

    The objective of this study is to further investigate the ultrastructural details of the surface of Bowman's membrane of the human cornea, using atomic force microscopy (AFM) images. One representative image acquired of Bowman's membrane of a human cornea was investigated. The three-dimensional (3-D) surface of the sample was imaged using AFM in contact mode, while the sample was completely submerged in optisol solution. Height and deflection images were acquired at multiple scan lengths using the MFP-3D AFM system software (Asylum Research, Santa Barbara, CA), based in IGOR Pro (WaveMetrics, Lake Oswego, OR). A novel approach, based on computational algorithms for fractal analysis of surfaces applied for AFM data, was utilized to analyze the surface structure. The surfaces revealed a fractal structure at the nanometer scale. The fractal dimension, D, provided quantitative values that characterize the scale properties of surface geometry. Detailed characterization of the surface topography was obtained using statistical parameters, in accordance with ISO 25178-2: 2012. Results obtained by fractal analysis confirm the relationship between the value of the fractal dimension and the statistical surface roughness parameters. The surface structure of Bowman's membrane of the human cornea is complex. The analyzed AFM images confirm a fractal nature of the surface, which is not taken into account by classical surface statistical parameters. Surface fractal dimension could be useful in ophthalmology to quantify corneal architectural changes associated with different disease states to further our understanding of disease evolution.

  11. A semi-automated AFM photomask repair process for manufacturing application using SPR6300

    Science.gov (United States)

    Dellagiovanna, Mario; Yoshioka, Hidenori; Miyashita, Hiroyuki; Murai, Shiaki; Nakaue, Takuya; Takaoka, Osamu; Uemoto, Atsushi; Kikuchi, Syuichi; Hagiwara, Ryoji; Benard, Stephane

    2007-10-01

    For almost a decade Nanomachining application has been studied and developed to repair next generation of photomasks. This technique, based on Atomic Force Microscopy (AFM), applies a mechanical removing of the defects with almost negligible quartz-damage, high accuracy of the edge-placement and without spurious depositions (stain, implanted elements, etc.) that may affect the optical transmission. SII NanoTechnology Inc. (SIINT) is carrying out a joint-development project with DNP Photomask Europe S.p.A. (DPE) that has allowed the installation in DPE of the next generation state-of-the-art AFM based system SPR6300 to meet the repair specifications for the 65 nm Node. Drift phenomena of the AFM probe represent one of the major obstacles for whichever kind of nano-manipulation (imaging and material or pattern modification). AFM drift undermines the repeatability and accuracy performances of the process. The repair methodology, called NewDLock, implemented on SPR6300, is a semi-automated procedure by which the drift amount, regardless of its origin, is estimated in advance and compensated during the process. Now AFM Nanomachining approach is going to reveal properties of repeatability and user-friendly utilization that make it suitable for the production environment.

  12. A Study of Moisture Damage in Plastomeric Polymer Modified Asphalt Binder Using Functionalized AFM Tips

    Directory of Open Access Journals (Sweden)

    Rafiqul Tarefder

    2011-12-01

    Full Text Available In this study, moisture damage in plastomeric polymer modified asphalt binder is investigated using Atomic Force Microscopy (AFM with chemically functionalized AFM tips. Four different percentages of plastomeric polymers and two antistripping agents such as Kling Beta and Lime are used to modify a base asphalt binder. Chemical functional groups such as -COOH, -CH3, -NH3, and –OH, that are commonly present in plastomeric polymer modified asphalt system, are used to functionalize the AFM tips. The force distance mode of AFM is used to measure the adhesion forces between a modified asphalt sample surface and the functionalized AFM tips. This enables the measurement of adhesion within an asphalt binder system. It is shown that the adhesion force values in dry sample changed substantially from that in wet conditioned samples. It is evident from this study that plastomeric modification does not help reduce moisture damage in asphalt. The percentage change in adhesion forces due to moisture is about 20 nN for the lime modified samples, and about 50 nN for the Kling Beta modified samples. This indicates that lime is more effective than Kling Beta for reducing moisture damage in plastomeric polymer modified asphalt.

  13. Optical Beam Deflection Based AFM with Integrated Hardware and Software Platform for an Undergraduate Engineering Laboratory

    Directory of Open Access Journals (Sweden)

    Siu Hong Loh

    2017-02-01

    Full Text Available Atomic force microscopy (AFM has been used extensively in nanoscience research since its invention. Recently, many teaching laboratories in colleges, undergraduate institutions, and even high schools incorporate AFM as an effective teaching tool for nanoscience education. This paper presents an optical beam deflection (OBD based atomic force microscope, designed specifically for the undergraduate engineering laboratory as a teaching instrument. An electronic module for signal conditioning was built with components that are commonly available in an undergraduate electronic laboratory. In addition to off-the-shelf mechanical parts and optics, the design of custom-built mechanical parts waskept as simple as possible. Hence, the overall cost for the setup is greatly reduced. The AFM controller was developed using National Instruments Educational Laboratory Virtual Instrumentation Suite (NI ELVIS, an integrated hardware and software platform which can be programmed in LabVIEW. A simple yet effective control algorithm for scanning and feedback control was developed. Despite the use of an educational platform and low-cost components from the undergraduate laboratory, the developed AFM is capable of performing imaging in constant-force mode with submicron resolution and at reasonable scanning speed (approximately 18 min per image. Therefore, the AFM is suitable to be used as an educational tool for nanoscience. Moreover, the construction of the system can be a valuable educational experience for electronic and mechanical engineering students.

  14. AFM Bio-Mechanical Investigation of the Taxol Treatment of Breast Cancer Cells

    Science.gov (United States)

    Smith, Dylan; Patel, Dipika; Monjaraz, Fernando; Park, Soyeun

    2009-10-01

    Cancerous cells are known to be softer and easier to deform than normal cells. Changes in mechanical properties originate from the alteration of the actin cytoskeleton. The mechanism of cancer treatment using Taxol is related to the stabilization of microtubules. It has been shown that Taxol binds to polymerized tublin, stabilizes it against disassembly, and consequently inhibits cell division. An accurate quantitative study still lacks to relate the microtubule stabilizing effect with the cellular mechanical properties. We utilized our AFM to study changes in elastic properties of treated breast cancer cells. The AFM has several advantages for precise force measurements on a localized region with nanometer lateral dimension. In previous AFM studies, measurable contributions from the underlying hard substrate have been an obstacle to accurately determine the properties on thin samples. We modified our AFM tip to obtain the exact deformation profile as well as reducing the high stresses produced. We have probed depth profiles of mechanical properties of the taxol-treated and untreated cells by varying the indentation depth of the AFM-nanoindenting experiments.

  15. Noise in NC-AFM measurements with significant tip–sample interaction

    Science.gov (United States)

    Lübbe, Jannis; Temmen, Matthias

    2016-01-01

    Summary The frequency shift noise in non-contact atomic force microscopy (NC-AFM) imaging and spectroscopy consists of thermal noise and detection system noise with an additional contribution from amplitude noise if there are significant tip–sample interactions. The total noise power spectral density D Δ f(f m) is, however, not just the sum of these noise contributions. Instead its magnitude and spectral characteristics are determined by the strongly non-linear tip–sample interaction, by the coupling between the amplitude and tip–sample distance control loops of the NC-AFM system as well as by the characteristics of the phase locked loop (PLL) detector used for frequency demodulation. Here, we measure D Δ f(f m) for various NC-AFM parameter settings representing realistic measurement conditions and compare experimental data to simulations based on a model of the NC-AFM system that includes the tip–sample interaction. The good agreement between predicted and measured noise spectra confirms that the model covers the relevant noise contributions and interactions. Results yield a general understanding of noise generation and propagation in the NC-AFM and provide a quantitative prediction of noise for given experimental parameters. We derive strategies for noise-optimised imaging and spectroscopy and outline a full optimisation procedure for the instrumentation and control loops.

  16. Effect of AFM probe geometry on visco-hyperelastic characterization of soft materials.

    Science.gov (United States)

    Boccaccio, Antonio; Lamberti, Luciano; Papi, Massimiliano; De Spirito, Marco; Pappalettere, Carmine

    2015-08-14

    Atomic force microscopy (AFM) nanoindentation is very suited for nano- and microscale mechanical characterization of soft materials. Although the structural response of polymeric networks that form soft matter depends on viscous effects caused by the relative slippage of polymeric chains, the usual assumption made in the AFM-based characterization is that the specimen behaves as a purely elastic material and viscous forces are negligible. However, for each geometric configuration of the AFM tip, there will be a limit indentation rate above which viscous effects must be taken into account to correctly determine mechanical properties. A parametric finite element study conducted on 12 geometric configurations of a blunt cone AFM tip (overall, the study included about 200 finite element analyses) allowed us to determine the limit indentation rate for each configuration. The selected tip dimensions cover commercially available products and account for changes in tip geometry caused by serial measurements. Nanoindentation rates cover typical experimental conditions set in AFM bio-measurements on soft matter. Viscous effects appear to be more significant in the case of sharper tips. This implies that, if quantitative data on sample viscosity are not available, using a rounded indenter and carrying out experiments below the limit indentation rate will allow errors in the determination of mechanical properties to be minimized.

  17. AFM as an analysis tool for high-capacity sulfur cathodes for Li-S batteries.

    Science.gov (United States)

    Hiesgen, Renate; Sörgel, Seniz; Costa, Rémi; Carlé, Linus; Galm, Ines; Cañas, Natalia; Pascucci, Brigitta; Friedrich, K Andreas

    2013-01-01

    In this work, material-sensitive atomic force microscopy (AFM) techniques were used to analyse the cathodes of lithium-sulfur batteries. A comparison of their nanoscale electrical, electrochemical, and morphological properties was performed with samples prepared by either suspension-spraying or doctor-blade coating with different binders. Morphological studies of the cathodes before and after the electrochemical tests were performed by using AFM and scanning electron microscopy (SEM). The cathodes that contained polyvinylidene fluoride (PVDF) and were prepared by spray-coating exhibited a superior stability of the morphology and the electric network associated with the capacity and cycling stability of these batteries. A reduction of the conductive area determined by conductive AFM was found to correlate to the battery capacity loss for all cathodes. X-ray diffraction (XRD) measurements of Li2S exposed to ambient air showed that insulating Li2S hydrolyses to insulating LiOH. This validates the significance of electrical ex-situ AFM analysis after cycling. Conductive tapping mode AFM indicated the existence of large carbon-coated sulfur particles. Based on the analytical findings, the first results of an optimized cathode showed a much improved discharge capacity of 800 mA·g(sulfur)(-1) after 43 cycles.

  18. Quantitating membrane bleb stiffness using AFM force spectroscopy and an optical sideview setup.

    Science.gov (United States)

    Gonnermann, Carina; Huang, Chaolie; Becker, Sarah F; Stamov, Dimitar R; Wedlich, Doris; Kashef, Jubin; Franz, Clemens M

    2015-03-01

    AFM-based force spectroscopy in combination with optical microscopy is a powerful tool for investigating cell mechanics and adhesion on the single cell level. However, standard setups featuring an AFM mounted on an inverted light microscope only provide a bottom view of cell and AFM cantilever but cannot visualize vertical cell shape changes, for instance occurring during motile membrane blebbing. Here, we have integrated a mirror-based sideview system to monitor cell shape changes resulting from motile bleb behavior of Xenopus cranial neural crest (CNC) cells during AFM elasticity and adhesion measurements. Using the sideview setup, we quantitatively investigate mechanical changes associated with bleb formation and compared cell elasticity values recorded during membrane bleb and non-bleb events. Bleb protrusions displayed significantly lower stiffness compared to the non-blebbing membrane in the same cell. Bleb stiffness values were comparable to values obtained from blebbistatin-treated cells, consistent with the absence of a functional actomyosin network in bleb protrusions. Furthermore, we show that membrane blebs forming within the cell-cell contact zone have a detrimental effect on cell-cell adhesion forces, suggesting that mechanical changes associated with bleb protrusions promote cell-cell detachment or prevent adhesion reinforcement. Incorporating a sideview setup into an AFM platform therefore provides a new tool to correlate changes in cell morphology with results from force spectroscopy experiments.

  19. Combined force spectroscopy, AFM and calorimetric studies to reveal the nanostructural organization of biomimetic membranes.

    Science.gov (United States)

    Suárez-Germà, C; Morros, A; Montero, M T; Hernández-Borrell, J; Domènech, Ò

    2014-10-01

    In this work we studied a binary lipid matrix of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (POPG), a composition that mimics the inner membrane of Escherichia coli. More specifically, liposomes with varying fractions of POPG were analysed by differential scanning calorimetry (DSC) and a binary phase diagram of the system was created. Additionally, we performed atomic force microscopy (AFM) imaging of supported lipid bilayers (SLBs) of similar compositions at different temperatures, in order to create a pseudo-binary phase diagram specific to this membrane model. AFM study of SLBs is of particular interest, as it is conceived as the most adequate technique not only for studying lipid bilayer systems but also for imaging and even nanomanipulating inserted membrane proteins. The construction of the above-mentioned phase diagram enabled us to grasp better the thermodynamics of the thermal lipid transition from a gel-like POPE:POPG phase system to a more fluid phase system. Finally, AFM force spectroscopy (FS) was used to determine the nanomechanics of these two lipid phases at 27°C and at different POPG fractions. The resulting data correlated with the specific composition of each phase was calculated from the AFM phase diagram obtained. All the experiments were done in the presence of 10 mM of Ca(2+), as this ion is commonly used when performing AFM with negatively charged phospholipids.

  20. Sub-surface imaging of carbon nanotube-polymer composites using dynamic AFM methods.

    Science.gov (United States)

    Cadena, Maria J; Misiego, Rocio; Smith, Kyle C; Avila, Alba; Pipes, Byron; Reifenberger, Ron; Raman, Arvind

    2013-04-05

    High-resolution sub-surface imaging of carbon nanotube (CNT) networks within polymer nanocomposites is demonstrated through electrical characterization techniques based on dynamic atomic force microscopy (AFM). We compare three techniques implemented in the single-pass configuration: DC-biased amplitude modulated AFM (AM-AFM), electrostatic force microscopy (EFM) and Kelvin probe force microscopy (KPFM) in terms of the physics of sub-surface image formation and experimental robustness. The methods were applied to study the dispersion of sub-surface networks of single-walled nanotubes (SWNTs) in a polyimide (PI) matrix. We conclude that among these methods, the KPFM channel, which measures the capacitance gradient (∂C/∂d) at the second harmonic of electrical excitation, is the best channel to obtain high-contrast images of the CNT network embedded in the polymer matrix, without the influence of surface conditions. Additionally, we propose an analysis of the ∂C/∂d images as a tool to characterize the dispersion and connectivity of the CNTs. Through the analysis we demonstrate that these AFM-based sub-surface methods probe sufficiently deep within the SWNT composites, to resolve clustered networks that likely play a role in conductivity percolation. This opens up the possibility of dynamic AFM-based characterization of sub-surface dispersion and connectivity in nanostructured composites, two critical parameters for nanocomposite applications in sensors and energy storage devices.

  1. Accelerated design and quality control of impact modifiers for plastics through atomic force microscopy (AFM) analysis

    Science.gov (United States)

    Moeller, Gunter

    2011-03-01

    Standard polymer resins are often too brittle or do not meet other mechanical property requirements for typical polymer applications. To achieve desired properties it is common to disperse so called ``impact modifiers'', which are spherical latex particles with diameters of much less than one micrometer, into the pure resin. Understanding and control of the entire process from latex particle formation to subsequent dispersion into polymer resins are necessary to accelerate the development of new materials that meet specific application requirements. In this work AFM imaging and nanoindentation techniques in combination with AFM-based spectroscopic techniques were applied to assess latex formation and dispersion. The size and size distribution of the latex particles can be measured based on AFM amplitude modulation images. AFM phase images provide information about the chemical homogeneity of individual particles. Nanoindentation may be used to estimate their elastic and viscoelastic properties. Proprietary creep and nanoscale Dynamic Mechanical Analysis (DMA) tests that we have developed were used to measure these mechanical properties. The small size of dispersed latex inclusions requires local mechanical and spectroscopic analysis techniques with high lateral and spatial resolution. We applied the CRAVE AFM method, developed at NIST, to perform mechanical analysis of individual latex inclusions and compared results with those obtained using nanoscale DMA. NanoIR, developed by Anasys Inc., and principal component confocal Raman were used for spectroscopic analysis and results from both techniques compared.

  2. Micro contact and stick-slip number between AFM probe tip and sample surface

    Institute of Scientific and Technical Information of China (English)

    张向军; 孟永钢; 温诗铸

    2003-01-01

    In an atomic force microscope (AFM), the cantilever probe, probe tip and sample surface form a micro system in which micro contact, elastic deformation, relative sliding and friction occur during scanning with the contact mode. In this paper, the energy conversion and dissipation during scanning process in the micro system is investigated based on the Mauges-Daules contact model. A dimensionless stick-slip number(η=( )) is defined to describe the micro stick-slip behavior under AFM. Through numerical simulation of the dynamics of the probe tip, it is shown that AFM lateral force is dependent on the defined stick-slip number. If η 1, the tip moves off the sticking points with an adhesion hysteresis, resulting in an energy dissipation. Therefore, the stick-slip number can serve as a characteristic parameter. Numerical simulation of AFM lateral force with different stick-slip numbers is in agreement with experimental results. Finally a method to extract frictional force from the AFM lateral force signal is proposed.

  3. John Deere's Newest 6090AFM75 Marine Diesel Engine%约翰迪尔推出6090AFM75型船机

    Institute of Scientific and Technical Information of China (English)

    柳莺

    2011-01-01

    @@ 美国约翰迪尔公司船舶动力系统部门(JDPS)近期宣布.在2月17日举办的美国迈阿密国际船艇展上,该公司将展出其最新产品--PowerTech 6090AFM75型船用柴油发动机. 据介绍,6090AFM75为电控涡轮增压6缸机,排量达9升,功率为317千瓦(425马力),其垂直的燃油喷射装置能够提升该型机的燃烧效率.并减少其废气排放量.

  4. AFM-based force spectroscopy measurements of mature amyloid fibrils of the peptide glucagon

    Energy Technology Data Exchange (ETDEWEB)

    Dong Mingdong; Hovgaard, Mads Bruun; Mamdouh, Wael; Xu Sailong; Otzen, Daniel Erik; Besenbacher, Flemming [Interdisciplinary Nanoscience Center (iNANO), University of Aarhus, DK-8000 Aarhus C (Denmark)], E-mail: dao@inano.dk, E-mail: fbe@inano.dk

    2008-09-24

    We report on the mechanical characterization of individual mature amyloid fibrils by atomic force microscopy (AFM) and AFM-based single-molecule force spectroscopy (SMFS). These self-assembling materials, formed from the 29-residue amphiphatic peptide hormone glucagon, were found to display a reversible elastic behaviour. Based on AFM morphology and SMFS studies, we suggest that the observed elasticity is due to a force-induced conformational transition which is reversible due to the {beta}-helical conformation of protofibrils, allowing a high degree of extension. The elastic properties of such mature fibrils contribute to their high stability, suggesting that the internal hydrophobic interactions of amyloid fibrils are likely to be of fundamental importance in the assembly of amyloid fibrils and therefore for the understanding of the progression of their associated pathogenic disorders. In addition, such biological amyloid fibril structures with highly stable mechanical properties can potentially be used to produce nanofibres (nanowires) that may be suitable for nanotechnological applications.

  5. AFM-assisted fabrication of thiol SAM pattern with alternating quantified surface potential

    Directory of Open Access Journals (Sweden)

    Simons Janet

    2011-01-01

    Full Text Available Abstract Thiol self-assembled monolayers (SAMs are widely used in many nano- and bio-technology applications. We report a new approach to create and characterize a thiol SAMs micropattern with alternating charges on a flat gold-coated substrate using atomic force microscopy (AFM and Kelvin probe force microscopy (KPFM. We produced SAMs-patterns made of alternating positively charged, negatively charged, and hydrophobic-terminated thiols by an automated AFM-assisted manipulation, or nanografting. We show that these thiol patterns possess only small topographical differences as revealed by AFM, and distinguished differences in surface potential (20-50 mV, revealed by KPFM. The pattern can be helpful in the development of biosensor technologies, specifically for selective binding of biomolecules based on charge and hydrophobicity, and serve as a model for creating surfaces with quantified alternating surface potential distribution.

  6. Imaging and force measurement of LDL and HDL by AFM in air and liquid.

    Science.gov (United States)

    Gan, Chaoye; Ao, Meiying; Liu, Zhanghua; Chen, Yong

    2015-01-01

    The size and biomechanical properties of lipoproteins are tightly correlated with their structures/functions. While atomic force microscopy (AFM) has been used to image lipoproteins the force measurement of these nano-sized particles is missing. We detected that the sizes of LDL and HDL in liquid are close to the commonly known values. The Young's modulus of LDL or HDL is ∼0.4 GPa which is similar to that of some viral capsids or nanovesicles but greatly larger than that of various liposomes. The adhesive force of LDL or HDL is small (∼200 pN). The comparison of AFM detection in air and liquid was also performed which is currently lacking. Our data may provide useful information for better understanding and AFM detection of lipoproteins.

  7. Fabrication of gold nanoelectrodes based on nanolithography electrochemically through a conductive AFM tip

    Institute of Scientific and Technical Information of China (English)

    LI Tianfeng; ZHANG Xingtang; JIANG Xiaohong; LI Yuncai; DU Zuliang

    2005-01-01

    Gold nanoelectrodes were fabricated by approach of combining surface self-assembly with nanolithography electrochemically through a conductive AFM tip. The controllable structure with width and distance in nanometer as a template was constructed by nanolithography patterning process, which was accomplished by a conductive AFM tip on certain highly ordered long-tail organosilane monolayers. Then through adsorption of Cd2+ and exposure of the Cd2+-loaded surface to gaseous H2S, CdS nanowires were generated in a template-controlled self-assembly process. Finally, metallic gold nanowires were conversed from CdS nanowires by treatment with the aqueous solution of HAuCl4 via a redox chemical process, which had good conductivity proved by C-AFM.

  8. Modeling the coverage of an AFM tip by enzymes and its application in nanobiosensors.

    Science.gov (United States)

    Amarante, Adriano M; Oliveira, Guedmiller S; Bueno, Carolina C; Cunha, Richard A; Ierich, Jéssica C M; Freitas, Luiz C G; Franca, Eduardo F; Oliveira, Osvaldo N; Leite, Fábio L

    2014-09-01

    A stochastic simulation of adsorption processes was developed to simulate the coverage of an atomic force microscope (AFM) tip with enzymes represented as rigid polyhedrons. From geometric considerations of the enzyme structure and AFM tip, we could estimate the average number of active sites available to interact with substrate molecules in the bulk. The procedure was exploited to determine the interaction force between acetyl-CoA carboxylase enzyme (ACC enzyme) and its substrate diclofop, for which steered molecular dynamics (SMD) was used. The theoretical force of (1.6±0.5) nN per enzyme led to a total force in remarkable agreement with the experimentally measured force with AFM, thus demonstrating the usefulness of the procedure proposed here to assist in the interpretation of nanobiosensors experiments.

  9. Influence of atomic force microscope (AFM) probe shape on adhesion force measured in humidity environment

    Institute of Scientific and Technical Information of China (English)

    阳丽; 涂育松; 谭惠丽

    2014-01-01

    In micro-manipulation, the adhesion force has very important influence on behaviors of micro-objects. Here, a theoretical study on the effects of humidity on the adhesion force is presented between atomic force microscope (AFM) tips and substrate. The analysis shows that the precise tip geometry plays a critical role on humidity depen-dence of the adhesion force, which is the dominant factor in manipulating micro-objects in AFM experiments. For a blunt (paraboloid) tip, the adhesion force versus humidity curves tends to the apparent contrast (peak-to-valley corrugation) with a broad range. This paper demonstrates that the abrupt change of the adhesion force has high correla-tion with probe curvatures, which is mediated by coordinates of solid-liquid-vapor contact lines (triple point) on the probe profiles. The study provides insights for further under-standing nanoscale adhesion forces and the way to choose probe shapes in manipulating micro-objects in AFM experiments.

  10. Ultra thin films of nanocrystalline Ge studied by AFM and interference enhanced Raman scattering

    Indian Academy of Sciences (India)

    S Balaji; S Mohan; D V S Muthu; A K Sood

    2003-10-01

    Initial growth stages of the ultra thin films of germanium (Ge) prepared by ion beam sputter deposition have been studied using atomic force microscope (AFM) and interference enhanced Raman scattering. The growth of the films follows Volmer-Weber growth mechanism. Analysis of the AFM images shows that Ostwald ripening of the grains occurs as the thickness of the film increases. Raman spectra of the Ge films reveal phonon confinement along the growth direction and show that the misfit strain is relieved for film thickness greater than 4 nm.

  11. Sharing my fifteen years experiences in the research field of Atomic Force Microscopy (AFM

    Directory of Open Access Journals (Sweden)

    Guha T

    2014-03-01

    Full Text Available Atomic Force Microscope (AFM was developed by Binnig and his coworkers in the year 1986. He was awarded Nobel Prize in physics for this work in 1986 in sharing with Rohrer and Ruska. Rationale to develop AFM: Scanning Tunneling Microscope (STM, the precursor to AFM is efficient in imaging electrically conducting specimen at atomic resolution. The impetus for development of AFM came to Binnig’s mind because of relatively poor efficiency of STM to image electrically non-conducting biological samples. He wondered why the surfaces be always imaged with a current but not with a force. He thought if small forces of interactions between a probe tip atoms and specimen surface atoms could be detected and amplified then imaging of biological specimen would be possible at a very high resolution. AFM working Principle: AFM is a Scanning Probe Microscopy (SPM by which imaging is realized by interaction of a probe with sample surface without any beam (light, electron and lens system. The probe is attached to a soft and sensitive cantilever and either specimen is scanned by probe or specimen scans itself under a stationary probe. Probe’s spring constant must be small and the deflection must be measurable along with high resonance frequency. The most commonly associated force with AFM is called Vander Waals force. Three modes of working are contact mode, non contact mode and tapping mode. In contact zone, the probe tip attached with cantilever is held less than a few A˚ from the sample surface and the inter-atomic force between the atoms of probe tip and sample surface is repulsive. In non-contact zone, the probe tip is held at a distance of 100s of A˚ from the sample surface and the inter-atomic force here is long range Vander Waals interaction and is attractive in nature. AFM is also called Scanning Force Microscope because the force of interaction between probe tip atoms and surface atoms is amplified to generate a signal voltage which modulates video

  12. Studying post-etching silicon crystal defects on 300mm wafer by automatic defect review AFM

    Science.gov (United States)

    Zandiatashbar, Ardavan; Taylor, Patrick A.; Kim, Byong; Yoo, Young-kook; Lee, Keibock; Jo, Ahjin; Lee, Ju Suk; Cho, Sang-Joon; Park, Sang-il

    2016-03-01

    Single crystal silicon wafers are the fundamental elements of semiconductor manufacturing industry. The wafers produced by Czochralski (CZ) process are very high quality single crystalline materials with known defects that are formed during the crystal growth or modified by further processing. While defects can be unfavorable for yield for some manufactured electrical devices, a group of defects like oxide precipitates can have both positive and negative impacts on the final device. The spatial distribution of these defects may be found by scattering techniques. However, due to limitations of scattering (i.e. light wavelength), many crystal defects are either poorly classified or not detected. Therefore a high throughput and accurate characterization of their shape and dimension is essential for reviewing the defects and proper classification. While scanning electron microscopy (SEM) can provide high resolution twodimensional images, atomic force microscopy (AFM) is essential for obtaining three-dimensional information of the defects of interest (DOI) as it is known to provide the highest vertical resolution among all techniques [1]. However AFM's low throughput, limited tip life, and laborious efforts for locating the DOI have been the limitations of this technique for defect review for 300 mm wafers. To address these limitations of AFM, automatic defect review AFM has been introduced recently [2], and is utilized in this work for studying DOI on 300 mm silicon wafer. In this work, we carefully etched a 300 mm silicon wafer with a gaseous acid in a reducing atmosphere at a temperature and for a sufficient duration to decorate and grow the crystal defects to a size capable of being detected as light scattering defects [3]. The etched defects form a shallow structure and their distribution and relative size are inspected by laser light scattering (LLS). However, several groups of defects couldn't be properly sized by the LLS due to the very shallow depth and low

  13. Surface features on Sahara soil dust particles made visible by atomic force microscope (AFM) phase images

    Science.gov (United States)

    Helas, G.; Andreae, M. O.

    2008-10-01

    We show that atomic force microscopy (AFM) phase images can reveal surface features of soil dust particles, which are not evident using other microscopic methods. The non-contact AFM method is able to resolve topographical structures in the nanometer range as well as to uncover repulsive atomic forces and attractive van der Waals' forces, and thus gives insight to surface properties. Though the method does not allow quantitative assignment in terms of chemical compound description, it clearly shows deposits of distinguishable material on the surface. We apply this technique to dust aerosol particles from the Sahara collected over the Atlantic Ocean and describe micro-features on the surfaces of such particles.

  14. Morphological analysis of polymers on hair fibers by SEM and AFM

    Directory of Open Access Journals (Sweden)

    Valéria Fernandes Monteiro

    2003-12-01

    Full Text Available The polyquaternium 7® polymer is widely used in cosmetic formulations. Morphologic alterations in hair fibers were observed after the application of the polyquaternium 7® polymer, using SEM and AFM. Continuous applications of this product indicated that it accumulates on the fibers, improving the aspect of the hair surface. Quantitative analysis of the images obtained by AFM was undertaken. The data obtained for the hair surface roughness indicates that the fibers treated with the polymer presented higher roughness than the untreated hair fibers.

  15. AFM multilayered Bi-2223 conductors for 13,000 A current leads for CERN

    CERN Document Server

    Martini, L; Berti, R; Volpini, G; Bigoni, L; Curcio, F

    2000-01-01

    Large current carrying capacity multilayered Bi-2223 conductors are reproducibly prepared by means of the "Accordion-Folding Method" and suitably used to manufacture the low temperature stage of 13,000 A hybrid metal-HTS current lead prototypes for CERN. In this work, we report on the electrical characterisation of AFM multilayered Bi-2223 conductors having critical current as high as 400 A at 77 K and on a specific experimental set-up that has been developed to study the thermo-electrical performances of the AFM Bi-2223 composite conductors during the sudden resistive transition of the HTS: quench event. (4 refs).

  16. AFM based anodic oxidation and its application to oxidative cutting and welding of CNT

    Institute of Scientific and Technical Information of China (English)

    JIAO NianDong; WANG YueChao; XI Ning; DONG ZaiLi

    2009-01-01

    Probe anodic oxidation by atomic force microscope (AFM) is one of the most important techniques in fabricating nano structures and devices.The technique was further studied in this paper.By analyzing the distribution of the electric field on substrate surface the dependence of oxide characters on field was discussed.The impacts of various parameters on oxide fabrication were experimentally studied.Based on these studies, we realized the oxidative cutting and welding of carbon nanotube (CNT) by the AFM based oxidation technique and provided a novel technique for the assembly and fabrication of CNT based nano devices.

  17. AFM based anodic oxidation and its application to oxidative cutting and welding of CNT

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Probe anodic oxidation by atomic force microscope (AFM) is one of the most important techniques in fabricating nano structures and devices. The technique was further studied in this paper. By analyzing the distribution of the electric field on substrate surface the dependence of oxide characters on field was discussed. The impacts of various parameters on oxide fabrication were experimentally studied. Based on these studies, we realized the oxidative cutting and welding of carbon nanotube (CNT) by the AFM based oxidation technique and provided a novel technique for the assembly and fabrication of CNT based nano devices.

  18. Study on the AFM Force Spectroscopy method for elastic modulus measurement of living cells

    Science.gov (United States)

    Demichelis, A.; Pavarelli, S.; Mortati, L.; Sassi, G.; Sassi, M.

    2013-09-01

    The cell elasticity gives information about its pathological state and metastatic potential. The aim of this paper is to study the AFM Force Spectroscopy technique with the future goal of realizing a reference method for accurate elastic modulus measurement in the elasticity range of living cells. This biological range has not been yet explored with a metrological approach. Practical hints are given for the realization of a Sylgard elasticity scale. Systematic effects given by the sample curing thickness and nanoindenter geometry have been found with regards of the measured elastic modulus. AFM measurement reproducibility better than 20% is obtained in the entire investigated elastic modulus scale of 101 - 104 kPa.

  19. FRAME (Force Review Automation Environment): MATLAB-based AFM data processor.

    Science.gov (United States)

    Partola, Kostyantyn R; Lykotrafitis, George

    2016-05-01

    Data processing of force-displacement curves generated by atomic force microscopes (AFMs) for elastic moduli and unbinding event measurements is very time consuming and susceptible to user error or bias. There is an evident need for consistent, dependable, and easy-to-use AFM data processing software. We have developed an open-source software application, the force review automation environment (or FRAME), that provides users with an intuitive graphical user interface, automating data processing, and tools for expediting manual processing. We did not observe a significant difference between manually processed and automatically processed results from the same data sets.

  20. Diamond-modified AFM probes: from diamond nanowires to atomic force microscopy-integrated boron-doped diamond electrodes.

    Science.gov (United States)

    Smirnov, Waldemar; Kriele, Armin; Hoffmann, René; Sillero, Eugenio; Hees, Jakob; Williams, Oliver A; Yang, Nianjun; Kranz, Christine; Nebel, Christoph E

    2011-06-15

    In atomic force microscopy (AFM), sharp and wear-resistant tips are a critical issue. Regarding scanning electrochemical microscopy (SECM), electrodes are required to be mechanically and chemically stable. Diamond is the perfect candidate for both AFM probes as well as for electrode materials if doped, due to diamond's unrivaled mechanical, chemical, and electrochemical properties. In this study, standard AFM tips were overgrown with typically 300 nm thick nanocrystalline diamond (NCD) layers and modified to obtain ultra sharp diamond nanowire-based AFM probes and probes that were used for combined AFM-SECM measurements based on integrated boron-doped conductive diamond electrodes. Analysis of the resonance properties of the diamond overgrown AFM cantilevers showed increasing resonance frequencies with increasing diamond coating thicknesses (i.e., from 160 to 260 kHz). The measured data were compared to performed simulations and show excellent correlation. A strong enhancement of the quality factor upon overgrowth was also observed (120 to 710). AFM tips with integrated diamond nanowires are shown to have apex radii as small as 5 nm and where fabricated by selectively etching diamond in a plasma etching process using self-organized metal nanomasks. These scanning tips showed superior imaging performance as compared to standard Si-tips or commercially available diamond-coated tips. The high imaging resolution and low tip wear are demonstrated using tapping and contact mode AFM measurements by imaging ultra hard substrates and DNA. Furthermore, AFM probes were coated with conductive boron-doped and insulating diamond layers to achieve bifunctional AFM-SECM probes. For this, focused ion beam (FIB) technology was used to expose the boron-doped diamond as a recessed electrode near the apex of the scanning tip. Such a modified probe was used to perform proof-of-concept AFM-SECM measurements. The results show that high-quality diamond probes can be fabricated, which are

  1. Relaxation of a Simulated Lipid Bilayer Vesicle Compressed by an AFM

    CERN Document Server

    Barlow, Ben M; Joos, Béla

    2016-01-01

    Using Coarse-Grained Molecular Dynamics simulations, we study the relaxation of bilayer vesicles, uniaxially compressed by an Atomic Force Microscope (AFM) cantilever. The relaxation time exhibits a strong force-dependence. Force-compression curves are very similar to recent experiments wherein giant unilamellar vesicles were compressed in a nearly identical manner.

  2. AFM imaging and analysis of local mechanical properties for detection of surface pattern of functional groups

    Energy Technology Data Exchange (ETDEWEB)

    Knotek, Petr, E-mail: petr.knotek@upce.cz [University of Pardubice, Faculty of Chemical Technology, Joint Laboratory of Solid State Chemistry of IMC ASCR and University of Pardubice, Studentska 573, 532 10 Pardubice (Czech Republic); Chanova, Eliska; Rypacek, Frantisek [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovskeho sq. 2, 162 06 Prague (Czech Republic)

    2013-05-01

    In this work we evaluate the applicability of different atomic force microscopy (AFM) modes, such as Phase Shift Imaging, Atomic Force Acoustic Microscopy (AFAM) and Force Spectroscopy, for mapping of the distribution pattern of low-molecular-weight biomimetic groups on polymer biomaterial surfaces. Patterns with either random or clustered spatial distribution of bioactive peptide group derived from fibronectin were prepared by surface deposition of functional block copolymer nano-colloids and grafted with RGDS peptide containing the sequence of amino acids arginine–glycine–aspartic acid–serine (conventionally labeled as RGDS) and carrying biotin as a tag. The biotin-tagged peptides were labeled with 40 nm streptavidin-modified Au nanospheres. The peptide molecules were localized through the detection of bound Au nanospheres by AFM, and thus, the surface distribution of peptides was revealed. AFM techniques capable of monitoring local mechanical properties of the surface were proved to be the most efficient for identification of Au nano-markers. The efficiency was successfully demonstrated on two different patterns, i.e. random and clustered distribution of RGDS peptides on structured surface of the polymer biomaterial. Highlights: ► Bioactive peptides for cell adhesion on PLA-b-PEO biomimetic surface were visualized. ► The biotin-tagged RGDS peptides were labeled with streptavidin-Au nanospheres. ► The RGDS pattern was detected using different atomic force microscopy (AFM) modes. ► Phase Shift Image was proved to be suitable method for studying peptide distribution.

  3. AFM-tip-induced crystallization of poly(ethylene oxide)melt droplets

    Institute of Scientific and Technical Information of China (English)

    ZHU Dunshen; SHOU Xingxian; LIU Yixin; CHEN Erqiang; Stephen Zhengdi Cheng

    2007-01-01

    The AFM-tip-induced crystallization of poly(ethylene oxide) (PEO) melt droplets was studied.The melt droplets with a height of 50-100 nm and a lateral size of 2-3 pm were obtained by melting the PEO ultra-thin films on a mica surface.For the PEO samples with average molecular weights (Mn) ranging from 1.0×103 g/mol to 1.0×104 g/mol,the lateral perturbation from the AFM tip in the hard-tapping or nanoscratch modes could not induce the growth of the flaton lamellae.In contrast,under AFM nanoindentation mode,the tip-induced crystallization occurred when a sufficiently high vertical tip force was applied to the melt droplets of PEO with Mn≥1.0×104 g/mol. Moreover,the experimental results indicated that the AFM-tip-induced crystallization of PEO in the nanoindentation process had molecular weight dependence.

  4. Nanomechanical probing of soft matter through hydrophobic AFM tips fabricated by two-photon polymerization

    Science.gov (United States)

    Suriano, Raffaella; Zandrini, Tommaso; De Marco, Carmela; Osellame, Roberto; Turri, Stefano; Bragheri, Francesca

    2016-04-01

    Atomic force microscopy (AFM) nanoindentation of soft materials is a powerful tool for probing mechanical properties of biomaterials. Though many results have been reported in this field over the last decade, adhesion forces between the tip and the sample hinder the elastic modulus measurement when hydrophilic soft samples are investigated. Here, two-photon polymerization (2PP) technology was used to fabricate hydrophobic perfluoropolyether-based AFM tips. The hydrophobic 2PP tips allowed us to overcome the limitations of commercial and functionalized tips as well as to successfully measure the elastic modulus of medically relevant soft materials in air. Our results obtained in the characterization of poly(dimethyl siloxane) and polyethylene glycol hydrogels showed lower adhesion forces over a larger measurement range when compared to measurements performed with commercial tips. The elastic moduli measured by means of hydrophobic 2PP AFM tips were also found to be comparable to those obtained using conventional techniques for macroscopic samples. We successfully showed that the hydrophobic AFM tips developed by this highly versatile technology enable the study of mechanical properties of soft matter, benefiting from reduced sample-tip interactions, and a custom-made shape and dimension of the tips.

  5. Nano-Workbench: A Combined Hollow AFM Cantilever and Robotic Manipulator

    NARCIS (Netherlands)

    Pérez Garza, H.; Ghatkesar, M.K.; Basak, S.; Löthman, P.; Staufer, U.

    2015-01-01

    To manipulate liquid matter at the nanometer scale, we have developed a robotic assembly equipped with a hollow atomic force microscope (AFM) cantilever that can handle femtolitre volumes of liquid. The assembly consists of four independent robots, each sugar cube sized with four degrees of freedom.

  6. Dynamics of a Disturbed Sessile Drop Measured by Atomic Force Microscopy (AFM)

    NARCIS (Netherlands)

    McGuiggan, Patricia M.; Grave, Daniel A.; Wallace, Jay S.; Cheng, Shengfeng; Prosperetti, Andrea; Robbins, Mark O.

    2011-01-01

    A new method for studying the dynamics of a sessile drop by atomic force microscopy (AFM) is demonstrated. A hydrophobic microsphere (radius, r 20–30 μm) is brought into contact with a small sessile water drop resting on a polytetrafluoroethylene (PTFE) surface. When the microsphere touches the liq

  7. Advanced fabrication process for combined atomic force-scanning electrochemical microscopy (AFM-SECM) probes.

    Science.gov (United States)

    Eifert, Alexander; Mizaikoff, Boris; Kranz, Christine

    2015-01-01

    An advanced software-controlled focused ion beam (FIB) patterning process for the fabrication of combined atomic force-scanning electrochemical microscopy (AFM-SECM) probes is reported. FIB milling is a standard process in scanning probe microscopy (SPM) for specialized SPM probe fabrication. For AFM-SECM, milling of bifunctional probes usually requires several milling steps. Milling such complex multi-layer/multi-material structures using a single milling routine leads to significantly reduced fabrication times and costs. Based on an advanced patterning routine, a semi-automated FIB milling routine for fabricating combined AFM-SECM probes with high reproducibility is presented with future potential for processing at a wafer level. The fabricated bifunctional probes were electrochemically characterized using cyclic voltammetry, and their performance for AFM-SECM imaging experiments was tested. Different insulation materials (Parylene-C and SixNy) have been evaluated with respect to facilitating the overall milling process, the influence on the electrochemical behavior and the long-term stability of the obtained probes. Furthermore, the influence of material composition and layer sequence to the overall shape and properties of the combined probes were evaluated.

  8. Nanomechanical probing of soft matter through hydrophobic AFM tips fabricated by two-photon polymerization.

    Science.gov (United States)

    Suriano, Raffaella; Zandrini, Tommaso; De Marco, Carmela; Osellame, Roberto; Turri, Stefano; Bragheri, Francesca

    2016-04-15

    Atomic force microscopy (AFM) nanoindentation of soft materials is a powerful tool for probing mechanical properties of biomaterials. Though many results have been reported in this field over the last decade, adhesion forces between the tip and the sample hinder the elastic modulus measurement when hydrophilic soft samples are investigated. Here, two-photon polymerization (2PP) technology was used to fabricate hydrophobic perfluoropolyether-based AFM tips. The hydrophobic 2PP tips allowed us to overcome the limitations of commercial and functionalized tips as well as to successfully measure the elastic modulus of medically relevant soft materials in air. Our results obtained in the characterization of poly(dimethyl siloxane) and polyethylene glycol hydrogels showed lower adhesion forces over a larger measurement range when compared to measurements performed with commercial tips. The elastic moduli measured by means of hydrophobic 2PP AFM tips were also found to be comparable to those obtained using conventional techniques for macroscopic samples. We successfully showed that the hydrophobic AFM tips developed by this highly versatile technology enable the study of mechanical properties of soft matter, benefiting from reduced sample-tip interactions, and a custom-made shape and dimension of the tips.

  9. AFM tip characterization by using FFT filtered images of step structures.

    Science.gov (United States)

    Yan, Yongda; Xue, Bo; Hu, Zhenjiang; Zhao, Xuesen

    2016-01-01

    The measurement resolution of an atomic force microscope (AFM) is largely dependent on the radius of the tip. Meanwhile, when using AFM to study nanoscale surface properties, the value of the tip radius is needed in calculations. As such, estimation of the tip radius is important for analyzing results taken using an AFM. In this study, a geometrical model created by scanning a step structure with an AFM tip was developed. The tip was assumed to have a hemispherical cone shape. Profiles simulated by tips with different scanning radii were calculated by fast Fourier transform (FFT). By analyzing the influence of tip radius variation on the spectra of simulated profiles, it was found that low-frequency harmonics were more susceptible, and that the relationship between the tip radius and the low-frequency harmonic amplitude of the step structure varied monotonically. Based on this regularity, we developed a new method to characterize the radius of the hemispherical tip. The tip radii estimated with this approach were comparable to the results obtained using scanning electron microscope imaging and blind reconstruction methods.

  10. High-speed AFM for 1x node metrology and inspection: Does it damage the features?

    Science.gov (United States)

    Sadeghian, Hamed; van den Dool, Teun C.; Uziel, Yoram; Bar Or, Ron

    2015-03-01

    This paper aims at unraveling the mystery of damage in high speed AFMs for 1X node and below. With the device dimensions moving towards the 1X node and below, the semiconductor industry is rapidly approaching the point where existing metrology, inspection and review tools face huge challenges in terms of resolution, the ability to resolve 3D, and throughput. In this paper, we critically asses the important issue of damage in high speed AFM for metrology and inspection of semiconductor wafers. The issues of damage in four major scanning modes (contact mode, tapping mode, non-contact mode, and peak force tapping mode) are described to show which modes are suitable for which applications and which conditions are damaging. The effects of all important scanning parameters on resulting damage are taken into account for materials such as silicon, photoresists and low K materials. Finally, we recommend appropriate scanning parameters and conditions for several use cases (FinFET, patterned photoresist, HAR structures) that avoid exceeding a critical contact stress such that sample damage is minimized. In conclusion, we show using our theoretical analysis that selecting parameters that exceed the target contact stress, indeed leads to significant damage. This method provides AFM users for metrology with a better understanding of contact stresses and enables selection of AFM cantilevers and experimental parameters that prevent sample damage.

  11. High-speed AFM for 1x node metrology and inspection: does it damage the features?

    NARCIS (Netherlands)

    Sadeghian Marnani, H.; Dool, T.C. van den; Uziel, Y.; Bar Or, R.

    2015-01-01

    This paper aims at unraveling the mystery of damage in high speed AFMs for 1X node and below. With the device dimensions moving towards the 1X node and below, the semiconductor industry is rapidly approaching the point where existing metrology, inspection and review tools face huge challenges in ter

  12. New insights into the mucoadhesion of pectins by AFM roughness parameters in combination with SPR

    DEFF Research Database (Denmark)

    Joergensen, Lars; Klösgen, Beate; Simonsen, Adam Cohen;

    2011-01-01

    The object of this study was to assess the mucoadhesion of the three main commercially available types of pectin by atomic force microscopy (AFM) and surface Plasmon resonance (SPR). Polyacrylic acid and polyvinyl pyrrolidone were used as positive and negative control, respectively. Image analysis...

  13. Fracture Mechanics Testing of Titanium 6AL-4V in AF-M315E

    Science.gov (United States)

    Sampson, J. W.; Martinez, J.; McLean, C.

    2016-01-01

    The Green Propellant Infusion Mission (GPIM) will demonstrate the performance of AF-M315E monopropellant on orbit. Flight certification requires a safe-life analysis of the titanium alloy fuel tank to ensure inherent processing flaws will not cause failure during the design life of the tank. Material property inputs for this analysis require testing to determine the stress intensity factor for environment-assisted cracking (KEAC) of Ti 6Al-4V in combination with the AF-M315E monopropellant. Testing of single-edge notched, or SE(B), specimens representing the bulk tank membrane and weld material were performed in accordance with ASTM E1681. Specimens with fatigue pre-cracks were loaded into test fixtures so that the crack tips were exposed to AF-M315E at 50 C for a duration of 1,000 hours. Specimens that did not fail during exposure were opened to inspect the crack surfaces for evidence of crack growth. The threshold stress intensity value, KEAC, is the highest applied stress intensity that produced neither a failure of the specimen during the exposure nor showed evidence of crack growth. The threshold stress intensity factor for environment-assisted cracking of the Ti 6Al-4V forged tank material was found to be at least 22 ksivin and at least 31 ksivin for the weld material when exposed to AF-M315E monopropellant.

  14. Interaction between nitric oxide and lipid-like DDPA LB film investigated with SHG and AFM

    Institute of Scientific and Technical Information of China (English)

    YU, An- Chi; LIU, Ting-Ting; LUO, Guo-Bin; YING, Li-Ming; ZHAO, Xin-Sheng; HUANG, Yan-Yi; HUANG, Chun-Hui

    2000-01-01

    Interactions between Nitric oxide (NO) and DDPA LangmuirBlodgett (LB) film are investigated with second harmonic generation (SHG) and atomic force microscopy (AFM). It has been found that the adsorption of NO molecules on DDPA LB film only changes the value of the second-order susceptibility of the DDPA molecule on film but not its orientation.

  15. AFM Studies of Lunar Soils and Application to the Mars 2001 Mission

    Science.gov (United States)

    Weitz, C. M.; Anderson, M. S.; Marshall, J.

    1999-01-01

    The upcoming Mars 01 mission will carry an Atomic Force Microscope (AFM) as part of the Mars Environmental Compatibility Assessment (MECA) instrument. By operating in a tapping mode, the AFM is capable of sub-nanometer resolution in three dimensions and can distinguish between substances of different compositions by employing phase contrast imaging. To prepare for the Mars 01 mission, we are testing the AFM on a lunar soil to determine its ability to define particle shapes and sizes and grain-surface textures. The test materials are from the Apollo 17 soil 79221, which is a mixture of agglutinates, impact and volcanic beads, and mare and highland rock and mineral fragments. The majority of the lunar soil particles are less than 100 microns in size, comparable to the sizes estimated for martian dust. We have used the AFM to examine several different soil particles at various resolutions. The instrument has demonstrated the ability to identify parallel ridges characteristic of twinning on a 150 micron plagioclase feldspar particle. Extremely small (10-100 nanometer) adhering particles are visible on the surface of the feldspar grain, and they appear elongate with smooth surfaces. Phase contrast imaging of the nanometer particles shows several compositions to be present. When the AFM was applied to a 100 micron glass spherule, it was possible to define an extremely smooth surface; this is in clear contrast to results from a basalt fragment which exhibited a rough surface texture. Also visible on the surface of the glass spherule were chains of 100 nanometer and smaller impact melt droplets. For the '01 Mars mission, the AFM is intended to define the size and shape distributions of soil particles, in combination with the NMCA optical microscope system and images from the Robot Arm Camera (RAC). These three data sets will provide a means of assessing potentially hazardous soil and dust properties. The study that we have conducted on the lunar soils now suggests that the

  16. High Throughput Nanofabrication of Silicon Nanowire and Carbon Nanotube Tips on AFM Probes by Stencil-Deposited Catalysts

    DEFF Research Database (Denmark)

    Engstrøm, Daniel Southcott; Savu, Veronica; Zhu, Xueni;

    2011-01-01

    A new and versatile technique for the wafer scale nanofabrication of silicon nanowire (SiNW) and multiwalled carbon nanotube (MWNT) tips on atomic force microscope (AFM) probes is presented. Catalyst material for the SiNW and MWNT growth was deposited on prefabricated AFM probes using aligned wafer...

  17. Design of a micro-cartridge system for the robotic assembly of exchangeable AFM-probe tips

    DEFF Research Database (Denmark)

    Bartenwerfer, Malte; Eichhorn, Volkmar; Fatikow, Sergej

    2013-01-01

    goal is the realization of an in-situ exchange of NanoBits within the regular AFM environment. For this, NanoBits have to be provided in a freestanding way, making them accessible for the AFM cantilever. The direct fabrication of such structures is still challenging, hence the robotic preassembly...

  18. Influence of smectite suspension structure on sheet orientation in dry sediments: XRD and AFM applications.

    Science.gov (United States)

    Zbik, Marek S; Frost, Ray L

    2010-06-15

    The structure-building phenomena within clay aggregates are governed by forces acting between clay particles. Measurements of such forces are important to understand in order to manipulate the aggregate structure for applications such as dewatering of mineral processing tailings. A parallel particle orientation is required when conducting XRD investigation on the oriented samples and conduct force measurements acting between basal planes of clay mineral platelets using atomic force microscopy (AFM). To investigate how smectite clay platelets were oriented on silicon wafer substrate when dried from suspension range of methods like SEM, XRD and AFM were employed. From these investigations, we conclude that high clay concentrations and larger particle diameters (up to 5 microm) in suspension result in random orientation of platelets in the substrate. The best possible laminar orientation in the clay dry film, represented in the XRD 001/020 intensity ratio of 47 was obtained by drying thin layers from 0.02 wt.% clay suspensions of the natural pH. Conducted AFM investigations show that smectite studied in water based electrolytes show very long-range repulsive forces lower in strength than electrostatic forces from double-layer repulsion. It was suggested that these forces may have structural nature. Smectite surface layers rehydrate in water environment forms surface gel with spongy and cellular texture which cushion approaching AFM probe. This structural effect can be measured in distances larger than 1000 nm from substrate surface and when probe penetrate this gel layer, structural linkages are forming between substrate and clay covered probe. These linkages prevent subsequently smooth detachments of AFM probe on way back when retrieval. This effect of tearing new formed structure apart involves larger adhesion-like forces measured in retrieval. It is also suggested that these effect may be enhanced by the nano-clay particles interaction.

  19. Structural impact of cations on lipid bilayer models: nanomechanical properties by AFM-force spectroscopy.

    Science.gov (United States)

    Redondo-Morata, Lorena; Giannotti, Marina I; Sanz, Fausto

    2014-02-01

    Atomic Force Microscopy (AFM) has become an invaluable tool for studying the micro- and nanoworlds. As a stand-alone, high-resolution imaging technique and force transducer, it defies most other surface instrumentation in ease of use, sensitivity and versatility. The main strength of AFM relies on the possibility to operate in an aqueous environment on a wide variety of biological samples, from single molecules - DNA or proteins - to macromolecular assemblies like biological membranes. Understanding the effect of mechanical stress on membranes is of primary importance in biophysics, since cells are known to perform their function under a complex combination of forces. In the later years, AFM-based Force-Spectroscopy (AFM-FS) has provided a new vista on membrane mechanics in a confined area within the nanometer realm, where most of the specific molecular interactions take place. Lipid membranes are electrostatically charged entities that physiologically coexist with electrolyte solutions. Thus, specific interactions with ions are a matter of considerable interest. The distribution of ions in the solution and their interaction with the membranes are factors that substantially modify the structure and dynamics of the cell membranes. Furthermore, signaling processes are modified by the membrane capability of retaining ions. Supported Lipid Bilayers (SLBs) are a versatile tool to investigate phospholipid membranes mimicking biological surfaces. In the present contribution, we review selected experiments on the mechanical stability of SLBs as models of lipid membranes by means of AFM-FS, with special focus on the effect of cations and ionic strength in the overall nanomechanical stability.

  20. Effects of the AFM tip trace on nanobundles formation on the polymer surface

    Energy Technology Data Exchange (ETDEWEB)

    Yan Yongda, E-mail: yanyongda@yahoo.com.cn [Key Laboratory of Micro-systems and Micro-structures Manufacturing of Ministry of Education, Harbin Institute of Technology, Harbin, Heilongjiang 150001 (China); Center for Precision Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001 (China); Sun Yang; Yang Yanting; Hu Zhenjiang [Key Laboratory of Micro-systems and Micro-structures Manufacturing of Ministry of Education, Harbin Institute of Technology, Harbin, Heilongjiang 150001 (China); Center for Precision Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001 (China); Zhao Xuesen [Center for Precision Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001 (China)

    2012-10-01

    Highlights: Black-Right-Pointing-Pointer The AFM tip is used to scratch the PC surface once to form nanobundle structures. Black-Right-Pointing-Pointer Effects of the tip trace on bundles formation are studied based on a modified AFM. Black-Right-Pointing-Pointer The sample scanning mode is feasible for perfect nanobundle structures formation. - Abstract: Atomic Force Microscope (AFM) has become a popular experimental tool for the nanotribological studies. Nanobundles formation perpendicular to the scanning direction has been reported as a typical wear mode for the thermoplastics, and such bundle structures are also considered as sinusoidal wave micro-/nanostructures now. In the present study, the AFM tip based nanomechanical machining method is employed to scratch a polymer Polycarbonate (PC) surface for only once with the normal load of several micro-Newtons in order to achieve the perfect regular nanobundle structures. Based on a modified AFM system, effects of different tip traces in the tip scanning mode and in the sample scanning mode on nanobundles formation on the PC surface are studied. The experimental results show that the controlled reciprocal movement of the stage in the sample scanning mode is feasible for perfect nanobundle structures formation. Moreover, effects of the normal load and the feed on bundles formation in the sample scanning mode are analyzed. Experimental results reveal that the feed value directly affects the formed patterns including the bundles and grooves structures. The reciprocal effect of the tip trace is the decisive factor of forming ideal nanobundles. The repeating times on the same area acted by the tip which are larger than twice are necessary to form a perfect nanobundle structure.

  1. Characterization of single 1.8-nm Au nanoparticle attachments on AFM tips for single sub-4-nm object pickup.

    Science.gov (United States)

    Cheng, Hui-Wen; Chang, Yuan-Chih; Tang, Song-Nien; Yuan, Chi-Tsu; Tang, Jau; Tseng, Fan-Gang

    2013-11-15

    This paper presents a novel method for the attachment of a 1.8-nm Au nanoparticle (Au-NP) to the tip of an atomic force microscopy (AFM) probe through the application of a current-limited bias voltage. The resulting probe is capable of picking up individual objects at the sub-4-nm scale. We also discuss the mechanisms involved in the attachment of the Au-NP to the very apex of an AFM probe tip. The Au-NP-modified AFM tips were used to pick up individual 4-nm quantum dots (QDs) using a chemically functionalized method. Single QD blinking was reduced considerably on the Au-NP-modified AFM tip. The resulting AFM tips present an excellent platform for the manipulation of single protein molecules in the study of single protein-protein interactions.

  2. New AFM Techniques for Investigating Molecular Growth Mechanisms of Protein Crystals

    Science.gov (United States)

    Li, Huayu; Nadarajah, Arunan; Konnert, John H.; Pusey, Marc L.

    1998-01-01

    Atomic Force Microscopy (AFM) has emerged as a powerful technique for investigating protein crystal growth. Earlier AFM studies were among the first to demonstrate that these crystals grew by dislocation and 2D nucleation growth mechanisms [1]. These investigations were restricted to the micron range where only surface features, such as dislocation hillocks and 2D islands are visible. Most AFM instruments can scan at higher resolutions and have the potential to resolve individual protein molecules at nanometer ranges. Such scans are essential for determining the molecular packing arrangements on crystal faces and for probing the growth process at the molecular level. However, at this resolution the AFM tip influences the image produced, with the resulting image being a convolution of the tip shape and the surface morphology [2]. In most studies this problem is resolved by deconvoluting the image to obtain the true surface morphology. Although deconvolution routines work reasonably well for simple one- dimensional shapes, for complex surfaces this approach does not produce accurate results. In this study we devised a new approach which takes advantage of the precise molecular order of crystal surfaces, combined with the knowledge of individual molecular shapes from the crystallographic data of the protein and the AFM tip shape. This information is used to construct expected theoretical AFM images by convoluting the tip shape with the constructed crystal surface shape for a given surface packing arrangement. By comparing the images from actual AFM scans with the constructed ones for different possible surface packing arrangements, the correct packing arrangement can be conclusively determined. This approach was used in this study to determine the correct one from two possible packing arrangements on (I 10) faces of tetragonal lysozyme crystals. Another novel AFM technique was also devised to measure the dimension of individual growth units of the crystal faces

  3. In vitro study of AFB1 and AFM1 effects on human lymphoblastoid Jurkat T-cell model.

    Science.gov (United States)

    Luongo, D; Russo, R; Balestrieri, A; Marzocco, S; Bergamo, P; Severino, L

    2014-10-01

    Aflatoxin B(1) (AFB(1)) is a mycotoxin produced by Aspergillus spp. that can occur as a natural contaminant in foods and feeds of vegetable origin. Post-ingestion, AFB(1) can be metabolized in the liver of mammals into hydroxylated aflatoxin M(1) (AFM(1)) that is excreted with milk. Although several studies have been carried out to evaluate effects of AFB(1) on the immune system, studies regarding AFM(1) are moreover lacking. The aim of the current study was to investigate effects of AFB(1) and AFM(1) on immune function using a lymphoblastoid Jurkat T-cell line as an experimental model. Both AFB(1) and AFM(1) produced significant decreases in Jurkat cell proliferation, whereas only minor effects were noted on interleukin (IL)-2 and interferon (IFN)-γ cytokines mRNA expression in stimulated cells that had been pre-incubated with AFB(1) and AFM(1). Particularly, AFB(1), but not AFM(1), at the highest concentration (50 µM) induced a marked increase in IL-8 mRNA expression. The results of the current study suggested the existence of a concentration threshold for AFB(1) and AFM(1) needed to exert biological activity on cell viability and innate immunity.

  4. An AFM-based pit-measuring method for indirect measurements of cell-surface membrane vesicles.

    Science.gov (United States)

    Zhang, Xiaojun; Chen, Yuan; Chen, Yong

    2014-03-28

    Circulating membrane vesicles, which are shed from many cell types, have multiple functions and have been correlated with many diseases. Although circulating membrane vesicles have been extensively characterized, the status of cell-surface membrane vesicles prior to their release is less understood due to the lack of effective measurement methods. Recently, as a powerful, micro- or nano-scale imaging tool, atomic force microscopy (AFM) has been applied in measuring circulating membrane vesicles. However, it seems very difficult for AFM to directly image/identify and measure cell-bound membrane vesicles due to the similarity of surface morphology between membrane vesicles and cell surfaces. Therefore, until now no AFM studies on cell-surface membrane vesicles have been reported. In this study, we found that air drying can induce the transformation of most cell-surface membrane vesicles into pits that are more readily detectable by AFM. Based on this, we developed an AFM-based pit-measuring method and, for the first time, used AFM to indirectly measure cell-surface membrane vesicles on cultured endothelial cells. Using this approach, we observed and quantitatively measured at least two populations of cell-surface membrane vesicles, a nanoscale population (AFM-based pit-measuring method is potentially useful for studying cell-surface membrane vesicles and for investigating the mechanisms of membrane vesicle formation/release.

  5. Development of a novel nanoindentation technique by utilizing a dual-probe AFM system.

    Science.gov (United States)

    Cinar, Eyup; Sahin, Ferat; Yablon, Dalia

    2015-01-01

    A novel instrumentation approach to nanoindentation is described that exhibits improved resolution and depth sensing. The approach is based on a multi-probe scanning probe microscopy (SPM) tool that utilizes tuning-fork based probes for both indentation and depth sensing. Unlike nanoindentation experiments performed with conventional AFM systems using beam-bounce technology, this technique incorporates a second probe system with an ultra-high resolution for depth sensing. The additional second probe measures only the vertical movement of the straight indenter attached to a tuning-fork probe with a high spring constant and it can also be used for AFM scanning to obtain an accurate profiling. Nanoindentation results are demonstrated on silicon, fused silica, and Corning Eagle Glass. The results show that this new approach is viable in terms of accurately characterizing mechanical properties of materials through nanoindentation with high accuracy, and it opens doors to many other exciting applications in the field of nanomechanical characterization.

  6. Development of a novel nanoindentation technique by utilizing a dual-probe AFM system

    Directory of Open Access Journals (Sweden)

    Eyup Cinar

    2015-10-01

    Full Text Available A novel instrumentation approach to nanoindentation is described that exhibits improved resolution and depth sensing. The approach is based on a multi-probe scanning probe microscopy (SPM tool that utilizes tuning-fork based probes for both indentation and depth sensing. Unlike nanoindentation experiments performed with conventional AFM systems using beam-bounce technology, this technique incorporates a second probe system with an ultra-high resolution for depth sensing. The additional second probe measures only the vertical movement of the straight indenter attached to a tuning-fork probe with a high spring constant and it can also be used for AFM scanning to obtain an accurate profiling. Nanoindentation results are demonstrated on silicon, fused silica, and Corning Eagle Glass. The results show that this new approach is viable in terms of accurately characterizing mechanical properties of materials through nanoindentation with high accuracy, and it opens doors to many other exciting applications in the field of nanomechanical characterization.

  7. Atomic-scale non-contact AFM studies of alumina supported nanoparticles

    DEFF Research Database (Denmark)

    Jensen, Thomas Nørregaard; Meinander, Kristoffer; Simonsen, Søren Bredmose

    ATOMIC-SCALE NON-CONTACT ATOMIC FORCE STUDIES OF ALUMINA SUPPORTED NANOPARTICLES Thomas N. Jensen, Kristoffer Meinander, Flemming Besenbacher and Jeppe V. Lauritsen Interdisciplinary Nanoscience Center, Aarhus University, DK-8000 Aarhus C, Denmark Heterogeneous catalysis plays a crucial role...... materials is a prerequisite for the synthesis of more sintering stable catalysts and the realizations of nanocatalysts implementing catalyst particles with a tailored size and morphology. In the last two decades the atomic force microscope (AFM) has become one of the premier tools for studying surfaces...... at the nanometre scale [1]. When operated in the so-called non-contact mode (nc-AFM), this technique yields genuine atomic resolution and offers a unique tool for atomic-scale studies of clean surfaces, as well as, nanoparticles and thin films on these surfaces irrespective of the substrate being electrically...

  8. Surface features on Sahara soil dust particles made visible by atomic force microscope (AFM phase images

    Directory of Open Access Journals (Sweden)

    M. O. Andreae

    2008-10-01

    Full Text Available We show that atomic force microscopy (AFM phase images can reveal surface features of soil dust particles, which are not evident using other microscopic methods. The non-contact AFM method is able to resolve topographical structures in the nanometer range as well as to uncover repulsive atomic forces and attractive van der Waals' forces, and thus gives insight to surface properties. Though the method does not allow quantitative assignment in terms of chemical compound description, it clearly shows deposits of distinguishable material on the surface. We apply this technique to dust aerosol particles from the Sahara collected over the Atlantic Ocean and describe micro-features on the surfaces of such particles.

  9. Surface features on Sahara soil dust particles made visible by atomic force microscope (AFM phase images

    Directory of Open Access Journals (Sweden)

    G. Helas

    2008-08-01

    Full Text Available We show that atomic force microscopy (AFM phase images can reveal surface features of soil dust particles, which are not evident using other microscopic methods. The non-contact AFM method is able to resolve topographical structures in the nanometer range as well as to uncover repulsive atomic forces and attractive van der Waals' forces, and thus gives insight to surface properties. Though the method does not allow quantitative assignment in terms of chemical compound description, it clearly shows deposits of distinguishable material on the surface. We apply this technique to dust aerosol particles from the Sahara collected over the Atlantic Ocean and describe micro-features on the surfaces of such particles.

  10. Characterization of the polycaprolactone melt crystallization: complementary optical microscopy, DSC, and AFM studies.

    Science.gov (United States)

    Speranza, V; Sorrentino, A; De Santis, F; Pantani, R

    2014-01-01

    The first stages of the crystallization of polycaprolactone (PCL) were studied using several techniques. The crystallization exotherms measured by differential scanning calorimetry (DSC) were analyzed and compared with results obtained by polarized optical microscopy (POM), rheology, and atomic force microscope (AFM). The experimental results suggest a strong influence of the observation scale. In particular, the AFM, even if limited on time scale, appears to be the most sensitive technique to detect the first stages of crystallization. On the contrary, at least in the case analysed in this work, rheology appears to be the least sensitive technique. DSC and POM provide closer results. This suggests that the definition of induction time in the polymer crystallization is a vague concept that, in any case, requires the definition of the technique used for its characterization.

  11. Surface electrical properties of stainless steel fibres: An AFM-based study

    Science.gov (United States)

    Yin, Jun; D'Haese, Cécile; Nysten, Bernard

    2015-03-01

    Atomic force microscopy (AFM) electrical modes were used to study the surface electrical properties of stainless steel fibres. The surface electrical conductivity was studied by current sensing AFM and I-V spectroscopy. Kelvin probe force microscopy was used to measure the surface contact potential. The oxide film, known as passivation layer, covering the fibre surface gives rise to the observation of an apparently semiconducting behaviour. The passivation layer generally exhibits a p-type semiconducting behaviour, which is attributed to the predominant formation of chromium oxide on the surface of the stainless steel fibres. At the nanoscale, different behaviours are observed from points to points, which may be attributed to local variations of the chemical composition and/or thickness of the passivation layer. I-V curves are well fitted with an electron tunnelling model, indicating that electron tunnelling may be the predominant mechanism for electron transport.

  12. Study of relaxation and transport processes by means of AFM based dielectric spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Miccio, Luis A. [Centro de Física de Materiales CSIC-UPV/EHU, P. M. de Lardizabal 5, 20018 San Sebastian, Spain and Departamento de Física de Materiales UPV/EHU, Fac. de Química, 20080 San Sebastian (Spain); Schwartz, Gustavo A. [Centro de Física de Materiales CSIC-UPV/EHU, P. M. de Lardizabal 5, 20018 San Sebastian, Spain and Donostia International Physics Center, Paseo Manuel de Lardizabal 4, 20018 San Sebastian (Spain)

    2014-05-15

    Since its birth a few years ago, dielectric spectroscopy studies based on atomic force microscopy (AFM) have gained a growing interest. Not only the frequency and temperature ranges have become broader since then but also the kind of processes that can be studied by means of this approach. In this work we analyze the most adequate experimental setup for the study of several dielectric processes with a spatial resolution of a few nanometers by using force mode AFM based dielectric spectroscopy. Proof of concept experiments were performed on PS/PVAc blends and PMMA homopolymer films, for temperatures ranging from 300 to 400 K. Charge transport processes were also studied by this approach. The obtained results were analyzed in terms of cantilever stray contribution, film thickness and relaxation strength. We found that the method sensitivity is strongly coupled with the film thickness and the relaxation strength, and that it is possible to control it by using an adequate experimental setup.

  13. Soft colloidal probes for AFM force measurements between water droplets in oil

    KAUST Repository

    Vakarelski, Ivan Uriev

    2014-11-01

    Here we introduce an extension of the atomic force microscopy (AFM) colloidal probe technique, as a simple and reliable experimental approach to measure the interaction forces between small water droplets (~80-160. μm) dispersed in oil. Small water droplets are formed by capillary breakup of a microscale water jet in air, which is forced out of a fine capillary nozzle, and deposited on a superhydrophobic substrate immersed in tetradecane oil medium. In these conditions the water droplets are very loosely attached to the superhydrophobic substrate and are easily picked up with a hydrophobic AFM cantilever to form a soft colloidal probe. Sample force measurements are conducted to demonstrate the capability of the technique.

  14. Surface Photovoltage Spectroscopy and AFM Analysis of CIGSe Thin Film Solar Cells

    Directory of Open Access Journals (Sweden)

    Nima E. Gorji

    2015-01-01

    Full Text Available The band gap, grain size, and topography of a Cu(In,GaSe2 (CIGSe thin film solar cell are analyzed using surface photovoltage spectroscopy (SPV and atomic force microscopy (AFM techniques. From the steep increase in SPV signal the band gap of the CIGSe absorber, In2S3 and ZnO layers are extracted and found to be 1.1, 1.3 and 2.6 eV, respectively. Already below the band gap of ZnO layer, a slight SPV response at 1.40 eV photon energies is observed indicating the presence of deep donor states. The root mean square (rms of the surface roughness is found to be 37.8 nm from AFM surface topography maps. The grain sizes are almost uniform and smaller than 1 μm.

  15. AFM characterization of nanobubble formation and slip condition in oxygenated and electrokinetically altered fluids.

    Science.gov (United States)

    Bhushan, Bharat; Pan, Yunlu; Daniels, Stephanie

    2013-02-15

    Nanobubbles are gas-filled features that spontaneously form at the interface of hydrophobic surfaces and aqueous solutions. In this study, an atomic force microscope (AFM) was used to characterize the morphology of nanobubbles formed on hydrophobic polystyrene (PS) and octadecyltrichlorosilane (OTS) films immersed in DI water, saline, saline with oxygen and an electrokinetically altered saline solution produced with Taylor-Couette-Poiseuille flow under elevated oxygen pressure. AFM force spectroscopy was used to evaluate hydrodynamic and electrostatic forces and boundary slip condition in various fluids. The effect of solution, electric field and surface charge on shape, size and density of nanobubbles as well as slip length was quantified and the results and underlying mechanisms are presented in this paper.

  16. The use of functionalized AFM tips as molecular sensors in the detection of pesticides

    Directory of Open Access Journals (Sweden)

    Daiana K. Deda

    2013-06-01

    Full Text Available Atomic force spectroscopy, a technique derived from Atomic Force Microscopy (AFM, allowed us to distinguish nonspecific and specific interactions between the acetolactate synthase enzyme (ALS and anti-atrazine antibody biomolecules and the herbicides imazaquin, metsulfuron-methyl and atrazine. The presence of specific interactions increased the adhesion force (Fadh between the AFM tip and the herbicides, which made the modified tip a powerful biosensor. Increases of approximately 132% and 145% in the Fadh values were observed when a tip functionalized with ALS was used to detect imazaquin and metsulfuron-methyl, respectively. The presence of specific interactions between the atrazine and the anti-atrazine antibody also caused an increase in the Fadh values (approximately 175% compared to those observed when using an unfunctionalized tip. The molecular modeling results obtained with the ALS enzyme suggest that the orientation of the biomolecule on the tip surface could be suitable for allowing interaction with the herbicides imazaquin and metsulfuron-methyl.

  17. SEM and AFM images of pyrite surfaces after bioleaching by the indigenous Thiobacillus thiooxidans.

    Science.gov (United States)

    Liu, H-L; Chen, B-Y; Lan, Y-W; Cheng, Y-C

    2003-09-01

    The bioleaching mechanism of pyrite by the indigenous Thiobacillus thiooxidans was examined with the aid of scanning electron microscopy (SEM) and atomic force microscopy (AFM) images of the pyrite surface. The presence of pyrite eliminated the lag phase during growth of this microorganism. This was due to the stimulatory effect on cell growth of the slight amount of Cu2+ that had leached from the pyrite. Zn2+ was found to be much more readily solubilized than Cu2+. The efficiency of bioleaching was four times higher than that of chemical leaching. SEM images provided evidence of direct cell attachment onto the pyrite surface, thereby enhancing the bioleaching rate. Furthermore, extracellular polymeric substances (EPSs) were found on the pyrite surface after 4 days of oxidation. AFM images showed that the pyrite surface area positively correlated with the oxidation rate. A combination of direct and indirect mechanism is probably responsible for the oxidation of pyrite by T. thiooxidans.

  18. Cerebral ischemia-induced mitochondrial changes in a global ischemic rat model by AFM.

    Science.gov (United States)

    Park, Eunkuk; Choi, Seok Keun; Kang, Sung Wook; Pak, Youngmi Kim; Lee, Gi-Ja; Chung, Joo-Ho; Park, Hun-Kuk

    2015-04-01

    Mitochondria play a central role in cell survival, and apoptotic cell death is associated with morphological changes in mitochondria. Quantification of the morphological and mechanical property changes in brain mitochondria is useful for evaluating the degree of ischemic injury and the neuroprotective effects of various drugs. This study was performed to investigate the changes in brain mitochondria in an 11-vessel occlusion ischemic model treated with magnesium sulfate (MgSO4), utilizing atomic force microscopy (AFM). Rats were randomly divided into three groups consisting of sham (n=6), global ischemia (GI, n=6), and MgSO4-treated global ischemia (MgSO4, n=6). The biophysical properties of brain mitochondria determined from AFM topographic images and adhesion force from force-distance measurements. The mean perimeter of ischemic mitochondria significantly increased to 2,396±541 nm (vs. 1,006±318 nm in control group, PAFM could be effective for evaluating neuronal injury and drug effects.

  19. Observation and Analysis of in vitro Expression of Mouse Heart Nuclear DNA Fragments by AFM

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Using AFM,we observed linear chain-like complexes formed by some specific proteins and the multi-mRNAs during the in vitro expression of some active genes on the DNA fragments. The LDH mRNA in the multi-mRNA complex can in vitro translate LDH. Via AFM, we also discovered that nmRNA prepared from heart muscles, along with some specific proteins can form linear chain-like nmRNA complexes in which LDH mRNA can also translate LDH in vitro. Our work shows the prospective application of AFM in the research of the biological reaction of the active genes on the DNA fragments.

  20. BOREAS AFM-5 Level-2 Upper Air Network Standard Pressure Level Data

    Science.gov (United States)

    Barr, Alan; Hrynkiw, Charmaine; Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The BOREAS AFM-5 team collected and processed data from the numerous radiosonde flights during the project. The goals of the AFM-05 team were to provide large-scale definition of the atmosphere by supplementing the existing AES aerological network, both temporally and spatially. This data set includes basic upper-air parameters interpolated at 0.5 kiloPascal increments of atmospheric pressure from data collected from the network of upper-air stations during the 1993, 1994, and 1996 field campaigns over the entire study region. The data are contained in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884) or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  1. Atom probe, AFM, and STM studies on vacuum-fired stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Stupnik, A. [ACC Austria GmbH, 8280 Fuerstenfeld (Austria); Frank, P. [Institute of Solid State Physics, Graz University of Technology, Petersgasse 16, 8010 Graz (Austria); Leisch, M., E-mail: m.leisch@tugraz.at [Institute of Solid State Physics, Graz University of Technology, Petersgasse 16, 8010 Graz (Austria)

    2009-04-15

    The surface morphology of grades 304L and 316LN stainless steels, after low-temperature bake-out process and vacuum annealing, has been studied by atomic force microscopy (AFM) and scanning tunnelling microscopy (STM). The local elemental composition on the surface before and after thermal treatment has been investigated by atom probe (AP) depth profiling measurements. After vacuum annealing, AFM and STM show significant changes in the surface structure and topology. Recrystallization and surface reconstruction is less pronounced on the 316LN stainless steel. AP depth profiling analyses result in noticeable nickel enrichment on the surface of grade 304L samples. Since hydrogen recombination is almost controlled by surface structure and composition, a strong influence on the outgassing behaviour by the particular surface microstructure can be deduced.

  2. Atom probe, AFM, and STM studies on vacuum-fired stainless steels.

    Science.gov (United States)

    Stupnik, A; Frank, P; Leisch, M

    2009-04-01

    The surface morphology of grades 304L and 316LN stainless steels, after low-temperature bake-out process and vacuum annealing, has been studied by atomic force microscopy (AFM) and scanning tunnelling microscopy (STM). The local elemental composition on the surface before and after thermal treatment has been investigated by atom probe (AP) depth profiling measurements. After vacuum annealing, AFM and STM show significant changes in the surface structure and topology. Recrystallization and surface reconstruction is less pronounced on the 316LN stainless steel. AP depth profiling analyses result in noticeable nickel enrichment on the surface of grade 304L samples. Since hydrogen recombination is almost controlled by surface structure and composition, a strong influence on the outgassing behaviour by the particular surface microstructure can be deduced.

  3. AFM assessment of the surface nano/microstructure on chemically damaged historical and model glasses

    Energy Technology Data Exchange (ETDEWEB)

    Carmona, Noemi [Centro Nacional de Investigaciones Metalurgicas, CSIC, Avda. Gregorio del Amo, 8, 28040 Madrid (Spain); Kowal, Andrzej [Institute of Catalysis and Surface Chemistry, PAN, ul. Niezapominajek 8, 30239 Cracow (Poland); Rincon, Jesus-Maria [Instituto Eduardo Torroja de Ciencias de la Construccion, CSIC, C. Serrano Galvache s/n, 28033 Madrid (Spain); Villegas, Maria-Angeles, E-mail: mariangeles.villegas@cchs.csic.es [Centro Nacional de Investigaciones Metalurgicas, CSIC, Avda. Gregorio del Amo, 8, 28040 Madrid (Spain); Instituto de Historia, Centro de Ciencias Humanas y Sociales, CSIC, C. Albasanz, 26-28, 28037 Madrid (Spain)

    2010-01-15

    Surface chemical damage on selected historical glasses from 13th to 19th centuries was evaluated by means of atomic force microscopy (AFM). Nano- and microstructure, roughness and topography of ancient glass samples have been compared with those of model glasses prepared by conventional melting at the laboratory with similar compositions to those most frequently found in historical glass pieces. The results obtained allow discussing the chemical degradation mechanisms in terms of the acid and/or basic chemical attack carried out by the combination of gaseous pollutants and environmental humidity. Even though deep corrosion features escape to the observation order of magnitude of the AF microscope used, the AFM technique proves to be quite useful for the study and evaluation of the most common surface pathologies of historical glasses with different compositions once submitted to natural weathering.

  4. An AFM-based methodology for measuring axial and radial error motions of spindles

    Science.gov (United States)

    Geng, Yanquan; Zhao, Xuesen; Yan, Yongda; Hu, Zhenjiang

    2014-05-01

    This paper presents a novel atomic force microscopy (AFM)-based methodology for measurement of axial and radial error motions of a high precision spindle. Based on a modified commercial AFM system, the AFM tip is employed as a cutting tool by which nano-grooves are scratched on a flat surface with the rotation of the spindle. By extracting the radial motion data of the spindle from the scratched nano-grooves, the radial error motion of the spindle can be calculated after subtracting the tilting errors from the original measurement data. Through recording the variation of the PZT displacement in the Z direction in AFM tapping mode during the spindle rotation, the axial error motion of the spindle can be obtained. Moreover the effects of the nano-scratching parameters on the scratched grooves, the tilting error removal method for both conditions and the method of data extraction from the scratched groove depth are studied in detail. The axial error motion of 124 nm and the radial error motion of 279 nm of a commercial high precision air bearing spindle are achieved by this novel method, which are comparable with the values provided by the manufacturer, verifying this method. This approach does not need an expensive standard part as in most conventional measurement approaches. Moreover, the axial and radial error motions of the spindle can both be obtained, indicating that this is a potential means of measuring the error motions of the high precision moving parts of ultra-precision machine tools in the future.

  5. Pericellular Brush and Mechanics of Guinea Pig Fibroblast Cells Studied with AFM.

    Science.gov (United States)

    Dokukin, Maxim; Ablaeva, Yulija; Kalaparthi, Vivekanand; Seluanov, Andrei; Gorbunova, Vera; Sokolov, Igor

    2016-07-12

    The atomic force microscopy (AFM) indentation method combined with the brush model can be used to separate the mechanical response of the cell body from deformation of the pericellular layer surrounding biological cells. Although self-consistency of the brush model to derive the elastic modulus of the cell body has been demonstrated, the model ability to characterize the pericellular layer has not been explicitly verified. Here we demonstrate it by using enzymatic removal of hyaluronic content of the pericellular brush for guinea pig fibroblast cells. The effect of this removal is clearly seen in the AFM force-separation curves associated with the pericellular brush layer. We further extend the brush model for brushes larger than the height of the AFM probe, which seems to be the case for fibroblast cells. In addition, we demonstrate that an extension of the brush model (i.e., double-brush model) is capable of detecting the hierarchical structure of the pericellular brush, which, for example, may consist of the pericellular coat and the membrane corrugation (microridges and microvilli). It allows us to quantitatively segregate the large soft polysaccharide pericellular coat from a relatively rigid and dense membrane corrugation layer. This was verified by comparison of the parameters of the membrane corrugation layer derived from the force curves collected on untreated cells (when this corrugation membrane part is hidden inside the pericellular brush layer) and on treated cells after the enzymatic removal of the pericellular coat part (when the corrugations are exposed to the AFM probe). We conclude that the brush model is capable of not only measuring the mechanics of the cell body but also the parameters of the pericellular brush layer, including quantitative characterization of the pericellular layer structure.

  6. Fabrication of tuning-fork based AFM and STM tungsten probe

    KAUST Repository

    Al-Falih, Hisham

    2011-12-01

    We compare the sharpness of tungsten probe tips produced by the single-step and two-step dynamic electrochemical etching processes. A small radius of curvature (RoC) of 25 nm or less was routinely obtained when the two-step electrochemical etching (TEE) process was adopted, while the smallest achievable RoC was ∼10 nm, rendering it suitable for atomic force microscopy (AFM) or scanning tunneling microscopy (STM) applications. © 2011 IEEE.

  7. Study of mechanical behavior of AFM silicon tips under mechanical load

    Science.gov (United States)

    Kopycinska-Mueller, M.; Gluch, J.; Köhler, B.

    2016-11-01

    In this paper we address critical issues concerning calibration of AFM based methods used for nanoscale mechanical characterization of materials. It has been shown that calibration approaches based on macroscopic models for contact mechanics may yield excellent results in terms of the indentation modulus of the sample, but fail to provide a comprehensive and actual information concerning the tip-sample contact radius or the mechanical properties of the tip. Explanations for the severely reduced indentation modulus of the tip included the inadequacies of the models used for calculations of the tip-sample contact stiffness, discrepancies in the actual and ideal shape of the tip, presence of the amorphous silicon phase within the silicon tip, as well as negligence of the actual size of the stress field created in the tip during elastic interactions. To clarify these issues, we investigated the influence of the mechanical load applied to four AFM silicon tips on their crystalline state by exposing them to systematically increasing loads, evaluating the character of the tip-sample interactions via the load-unload stiffness curves, and assessing the state of the tips from HR-TEM images. The results presented in this paper were obtained in a series of relatively simple and basic atomic force acoustic microscopy (AFAM) experiments. The novel combination of TEM imaging of the AFM tips with the analysis of the load-unload stiffness curves gave us a detailed insight into their mechanical behavior under load conditions. We were able to identify the limits for the elastic interactions, as well as the hallmarks for phase transformation and dislocation formation and movement. The comparison of the physical dimensions of the AFM tips, geometry parameters determined from the values of the contact stiffness, and the information on the crystalline state of the tips allowed us a better understanding of the nanoscale contact.

  8. Characterization of the structure of the coating of multilayers using AFM and Interferometric Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jerez A, Martha I; Lara O, Laura; Morantes M, Luz D [Universidad Industrial de Santander (Colombia); Plata G, Arturo; Torres, Yezid; Tsygankov, Petr, E-mail: mayce20@hotmail.com [Grupo de Optica Y Tratamiento de Senales (Colombia)

    2011-01-01

    Ti / TiN films were deposited on H13 steel and silicon substrates with different deposition voltage, by means of the cathodic arc evaporation (CAE) technique, this process was carried out by nanolayers deposition, requiring a detailed survey on growth films, for the properties characterization such as grain size, thickness and roughness of the film was used the atomic force microscopy (AFM) techniques and Interferometric Microscopy. Obtaining a the films growth when varying the deposition voltage.

  9. AFM and XPS Study of Glass Surface Coated with Titania Nanofilms by Sol-Gel Method

    Institute of Scientific and Technical Information of China (English)

    JI Guo-Jun; SHI Zhi-Ming

    2010-01-01

    @@ Ce3+-doped and undoped TiO2 nanofilms are prepared on glass surface using a sol-gel method.Crystal structure,surface morphology,chemical composition and element distribution of both glass substrates and TiO2 films were characterized by x-ray diffractometer(XRD),atomic force microscopy(AFM)and x-ray photoelectron spectroscopy(XPS).

  10. Nanomechanical characterization of nanostructured bainitic steel: Peak Force Microscopy and Nanoindentation with AFM

    OpenAIRE

    2015-01-01

    The full understanding of the deformation mechanisms in nanostructured bainite requires the local characterization of its mechanical properties, which are expected to change from one phase, bainitic ferrite, to another, austenite. This study becomes a challenging process due to the bainitic nanostructured nature and high Young’s modulus. In this work, we have carried out such study by means of the combination of AFM-based techniques, such as nanoindentation and Peak Force Quantitative Nanomec...

  11. Crystallization of Probucol in Nanoparticles Revealed by AFM Analysis in Aqueous Solution.

    Science.gov (United States)

    Egami, Kiichi; Higashi, Kenjirou; Yamamoto, Keiji; Moribe, Kunikazu

    2015-08-03

    The crystallization behavior of a pharmaceutical drug in nanoparticles was directly evaluated by atomic force microscopy (AFM) force curve measurements in aqueous solution. A ternary spray-dried sample (SPD) was prepared by spray drying the organic solvent containing probucol (PBC), hypromellose (HPMC), and sodium dodecyl sulfate (SDS). The amorphization of PBC in the ternary SPD was confirmed by powder X-ray diffraction (PXRD) and solid-state 13C NMR measurements. A nanosuspension containing quite small particles of 25 nm in size was successfully prepared immediately after dispersion of the ternary SPD into water. Furthermore, solution-state 1H NMR measurements revealed that a portion of HPMC coexisted with PBC as a mixed state in the freshly prepared nanosuspension particles. After storing the nanosuspension at 25 °C, a gradual increase in the size of the nanoparticles was observed, and the particle size changed to 93.9 nm after 7 days. AFM enabled the direct observation of the morphology and agglomeration behavior of the nanoparticles in water. Moreover, AFM force-distance curves were changed from (I) to (IV), depending on the storage period, as follows: (I) complete indentation within an applied force of 1 nN, (II) complete indentation with an applied force of 1-5 nN, (III) partial indentation with an applied force of 5 nN, and (IV) nearly no indentation with an applied force of 5 nN. This stiffness increase of the nanoparticles was attributed to gradual changes in the molecular state of PBC from the amorphous to the crystal state. Solid-state 13C NMR measurements of the freeze-dried samples demonstrated the presence of metastable PBC Form II crystals in the stored nanosuspension, strongly supporting the AFM results.

  12. Tumor suppressor protein SMAR1 modulates the roughness of cell surface: combined AFM and SEM study

    Directory of Open Access Journals (Sweden)

    Mamgain Hitesh

    2009-10-01

    Full Text Available Abstract Background Imaging tools such as scanning electron microscope (SEM and atomic force microscope (AFM can be used to produce high-resolution topographic images of biomedical specimens and hence are well suited for imaging alterations in cell morphology. We have studied the correlation of SMAR1 expression with cell surface smoothness in cell lines as well as in different grades of human breast cancer and mouse tumor sections. Methods We validated knockdown and overexpression of SMAR1 using RT-PCR as well as Western blotting in human embryonic kidney (HEK 293, human breast cancer (MCF-7 and mouse melanoma (B16F1 cell lines. The samples were then processed for cell surface roughness studies using atomic force microscopy (AFM and scanning electron microscopy (SEM. The same samples were used for microarray analysis as well. Tumors sections from control and SMAR1 treated mice as well as tissues sections from different grades of human breast cancer on poly L-lysine coated slides were used for AFM and SEM studies. Results Tumor sections from mice injected with melanoma cells showed pronounced surface roughness. In contrast, tumor sections obtained from nude mice that were first injected with melanoma cells followed by repeated injections of SMAR1-P44 peptide, exhibited relatively smoother surface profile. Interestingly, human breast cancer tissue sections that showed reduced SMAR1 expression exhibited increased surface roughness compared to the adjacent normal breast tissue. Our AFM data establishes that treatment of cells with SMAR1-P44 results into increase in cytoskeletal volume that is supported by comparative gene expression data showing an increase in the expression of specific cytoskeletal proteins compared to the control cells. Altogether, these findings indicate that tumor suppressor function of SMAR1 might be exhibited through smoothening of cell surface by regulating expression of cell surface proteins. Conclusion Tumor suppressor

  13. Fabrication of nanochannels with ladder nanostructure at the bottom using AFM nanoscratching method

    OpenAIRE

    2014-01-01

    This letter presents a novel atomic force microscopy (AFM)-based nanomanufacturing method combining the tip scanning with the high-precision stage movement to fabricate nanochannels with ladder nanostructure at the bottom by continuous scanning with a fixed scan size. Different structures can be obtained according to the matching relation of the tip feeding velocity and the precision stage moving velocity. This relationship was first studied in detail to achieve nanochannels with different la...

  14. Brain Tumor Classification Using AFM in Combination with Data Mining Techniques

    Directory of Open Access Journals (Sweden)

    Marlene Huml

    2013-01-01

    Full Text Available Although classification of astrocytic tumors is standardized by the WHO grading system, which is mainly based on microscopy-derived, histomorphological features, there is great interobserver variability. The main causes are thought to be the complexity of morphological details varying from tumor to tumor and from patient to patient, variations in the technical histopathological procedures like staining protocols, and finally the individual experience of the diagnosing pathologist. Thus, to raise astrocytoma grading to a more objective standard, this paper proposes a methodology based on atomic force microscopy (AFM derived images made from histopathological samples in combination with data mining techniques. By comparing AFM images with corresponding light microscopy images of the same area, the progressive formation of cavities due to cell necrosis was identified as a typical morphological marker for a computer-assisted analysis. Using genetic programming as a tool for feature analysis, a best model was created that achieved 94.74% classification accuracy in distinguishing grade II tumors from grade IV ones. While utilizing modern image analysis techniques, AFM may become an important tool in astrocytic tumor diagnosis. By this way patients suffering from grade II tumors are identified unambiguously, having a less risk for malignant transformation. They would benefit from early adjuvant therapies.

  15. Brain tumor classification using AFM in combination with data mining techniques.

    Science.gov (United States)

    Huml, Marlene; Silye, René; Zauner, Gerald; Hutterer, Stephan; Schilcher, Kurt

    2013-01-01

    Although classification of astrocytic tumors is standardized by the WHO grading system, which is mainly based on microscopy-derived, histomorphological features, there is great interobserver variability. The main causes are thought to be the complexity of morphological details varying from tumor to tumor and from patient to patient, variations in the technical histopathological procedures like staining protocols, and finally the individual experience of the diagnosing pathologist. Thus, to raise astrocytoma grading to a more objective standard, this paper proposes a methodology based on atomic force microscopy (AFM) derived images made from histopathological samples in combination with data mining techniques. By comparing AFM images with corresponding light microscopy images of the same area, the progressive formation of cavities due to cell necrosis was identified as a typical morphological marker for a computer-assisted analysis. Using genetic programming as a tool for feature analysis, a best model was created that achieved 94.74% classification accuracy in distinguishing grade II tumors from grade IV ones. While utilizing modern image analysis techniques, AFM may become an important tool in astrocytic tumor diagnosis. By this way patients suffering from grade II tumors are identified unambiguously, having a less risk for malignant transformation. They would benefit from early adjuvant therapies.

  16. Thermodynamic behavior of D-sphingosine/cholesterol monolayers and the topography observed by AFM

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Lipid rafts are of a dynamic microdomain structure found in recent years,enriched in sphingolipids,cholesterol and particular proteins.The change of structure and function of lipid rafts could result in many diseases.In this work,the monolayer behavior of mixed systems of D-sphingosine with choles-terol was investigated in terms of the mean surface area per molecule(Am),excess molecular area(Aex),surface excess Gibbs energy(Gex),interaction parameter(ω),activity coefficients(1 and 2) as well as elasticity(Cs1) of formed films.The deposited Langmuir-Blodgett(LB) monolayers were inves-tigated with atomic force microscopy(AFM).Thermodynamic analysis indicates Aex and Gex in the binary systems with negative deviations from the ideal behavior,suggesting attractive interaction be-tween molecules.The stability,elasticity and activity coefficients show a marked dependence on the mole faction of D-sphingosine.The results of observation by AFM show that the single D-sphingosine molecular film took on small granule structure.When mixing the D-sphingosine and cholesterol at dif-ferent ratios,the mixed films transform from the chains structure to larger slice and net coexisting structure with the increasing of the cholesterol content.In the end,pure cholesterol forms more ag-gregated structure.AFM experiments effectively support the above findings and interpretation.

  17. Study on the nano machining process with a vibrating AFM tip on the polymer surface

    Energy Technology Data Exchange (ETDEWEB)

    Liu Weitao [State Key Laboratory of Robotics and Systems, Robotics Institute, Harbin Institute of Technology, Harbin 150080 (China); Center for Precision Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001 (China); Yan Yongda, E-mail: yanyongda@yahoo.com.cn [State Key Laboratory of Robotics and Systems, Robotics Institute, Harbin Institute of Technology, Harbin 150080 (China); Center for Precision Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001 (China); Hu Zhenjiang; Zhao Xuesen; Yan Jiucun; Dong Shen [Center for Precision Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001 (China)

    2012-01-15

    The polymer has been proved to be nano machined by a vibrating tip in tapping mode of Atomic Force Microscope (AFM). The force between the tip and the surface is an important factor which determines success of the machining process. Controlling this force with high accuracy is the foundation of nanomachining in AFM tapping mode. To achieve a deeper understanding on this process, the tip is modeled as a driving oscillator with damping. Factors affecting the nano machining process are studied. The Hertz elastic contact theory is used to calculate the maximum contact pressure applied by the tip which is employed as a criterion to judge the deformation state of the sample. The simulation results show that: The driven amplitude can be used as a main parameter of controlling the machined depth. Sharper tips and harder cantilevers should be used for successful nanomachining with the vibrating tip. Under the same conditions, a larger tip radius will not only result in the machining error, but also lead to failure of the nanomachining process. The higher driving frequency will lead to a larger tapping force. However it cannot be used as a parameter to control the machined depth because of its narrow variation range. But it is a main error source for the nanomachining process in AFM tapping mode. Moreover, a larger Young's modulus polymer sample will induce a smaller machined depth, a larger maximum contact pressure and a bigger tapping force.

  18. A study of water droplet between an AFM tip and a substrate using dissipative particle dynamics

    Science.gov (United States)

    Pal, Souvik; Lan, Chuanjin; Li, Zhen; Hirleman, E. Daniel; Ma, Yanbao

    2014-11-01

    Formation of a water droplet between a sharp AFM tip and a substrate due to capillary condensation affects the tip-substrate interaction. As a consequence, AFM measurements lose precision and often produce incorrect sample topology. Understanding the physics of liquid bridges is also important in the field of Dip-pen nanolithography (DPN). Significant research is being carried out to understand the mechanics of the formation of the liquid bridge and its dependence of surface properties, ambient conditions etc. The in-between length scale, i.e., mesoscale (~100 nm) associated with this phenomenon presents a steep challenge for experimental measurements. In addition, molecular dynamics (MD) can be computationally prohibitive to model the entire system, especially over microseconds to seconds. Theoretical analysis using Young Laplace equation has so far provided some qualitative insights only. We study this system using Dissipative Particle Dynamics (DPD) which is a simulation technique suitable for describing mesoscopic hydrodynamic behavior of fluids. In this work, we carry out simulations to improve understanding of the process of formation of the meniscus, the mechanics of manipulation and control of its shape, and better estimation of capillary forces. The knowledge gained through our study will help in correcting the AFM measurements affected by capillary condensation. Moreover, it will improve understanding of more accurate droplet manipulation in DPN.

  19. Single-cycle-PLL detection for real-time FM-AFM applications.

    Science.gov (United States)

    Schlecker, Benedikt; Dukic, Maja; Erickson, Blake; Ortmanns, Maurits; Fantner, Georg; Anders, Jens

    2014-04-01

    In this paper we present a novel architecture for phase-locked loop (PLL) based high-speed demodulation of frequency-modulated (FM) atomic force microscopy (AFM) signals. In our approach, we use single-sideband (SSB) frequency upconversion to translate the AFM signal from the position sensitive detector to a fixed intermediate frequency (IF) of 10 MHz. In this way, we fully benefit from the excellent noise performance of PLL-based FM demodulators still avoiding the intrinsic bandwidth limitation of such systems. In addition, the upconversion to a fixed IF renders the PLL demodulator independent of the cantilever's resonance frequency, allowing the system to work with a large range of cantilever frequencies. To investigate if the additional noise introduced by the SSB upconverter degrades the system noise figure we present a model of the AM-to-FM noise conversion in PLLs incorporating a phase-frequency detector. Using this model, we can predict an upper corner frequency for the demodulation bandwidth above which the converted noise from the single-sideband upconverter becomes the dominant noise source and therefore begins to deteriorate the overall system performance. The approach is validated by both electrical and AFM measurements obtained with a PCB-based prototype implementing the proposed demodulator architecture.

  20. Fracture Growth Testing of Titanium 6AL-4V in AF-M315E

    Science.gov (United States)

    Sampson, Jeffrey W.; Martinez, Jonathan; McLean, Christopher

    2015-01-01

    The Green Propellant Infusion Mission (GPIM) will demonstrate the performance of AF-M315E monopropellant in orbit. Flight certification requires a safe-life analysis of the titanium alloy fuel tank to ensure inherent flaws will not cause failure during the design life. Material property inputs for this analysis require testing to determine the stress intensity factor for environmentally-assisted cracking (K (sub EAC)) of Ti 6Al-4V in combination with the AF-M315E monopropellant. Testing of single-edge notched specimens SE(B) representing the bulk tank membrane and weld material were performed in accordance with ASTM E1681. Specimens with fatigue pre-cracks were loaded into test fixtures so that the crack tips were exposed to the monopropellant at 50 degrees Centigrade for a duration of 1,000 hours. Specimens that did not fail during exposure were opened to inspect the crack surfaces for evidence of crack growth. The threshold stress intensity value, KEAC, is the highest applied stress intensity that produced neither a failure of the specimen during the exposure nor showed evidence of crack growth. The threshold stress intensity factor of the Ti 6Al-4V forged tank material when exposed to AF-M315E monopropellant was found to be at least 22.0 kilopounds per square inch. The stress intensity factor of the weld material was at least 31.3 kilopounds per square inch.

  1. A Novel Dog-Bone Oscillating AFM Probe with Thermal Actuation and Piezoresistive Detection †

    Science.gov (United States)

    Xiong, Zhuang; Mairiaux, Estelle; Walter, Benjamin; Faucher, Marc; Buchaillot, Lionel; Legrand, Bernard

    2014-01-01

    In order to effectively increase the resonance frequency and the quality factor of atomic force microscope (AFM) probes, a novel oscillating probe based on a dog-bone shaped MEMS resonator was conceived, designed, fabricated and evaluated. The novel probe with 400 μm in length, 100 μm in width and 5 μm in thickness was enabled to feature MHz resonance frequencies with integrated thermal actuation and piezoresistive detection. Standard silicon micromachining was employed. Both electrical and optical measurements were carried out in air. The resonance frequency and the quality factor of the novel probe were measured to be 5.4 MHz and 4000 respectively, which are much higher than those (about several hundreds of kHz) of commonly used cantilever probes. The probe was mounted onto a commercial AFM set-up through a dedicated probe-holder and circuit board. Topographic images of patterned resist samples were obtained. It is expected that the resonance frequency and the measurement bandwidth of such probes will be further increased by a proper downscaling, thus leading to a significant increase in the scanning speed capability of AFM instruments. PMID:25365463

  2. Robust deposition of lambda DNA on mica for imaging by AFM in air.

    Science.gov (United States)

    Cervantes, Nancy Anabel Gerling; Gutiérrez-Medina, Braulio

    2014-01-01

    Long DNA molecules remain difficult to image by atomic force microscopy (AFM) because of their tendency to entanglement and spontaneous formation of networks. We present a comparison of two different DNA deposition methods operating at room temperature and humidity conditions, aimed at reproducible imaging of isolated and relaxed λ DNA conformations by AFM in air. We first demonstrate that a standard deposition procedure, consisting in adsorption of DNA in the presence of divalent cations followed by washing and air-drying steps, yields a coexistence of different types of λ DNA networks with a only a few isolated DNA chains. In contrast, deposition using a spin-coating-based technique results in reproducible coverage of a significant fraction of the substrate area by isolated and relaxed λ DNA molecules, with the added benefit of a reduction in the effect of a residual layer that normally embeds DNA strands and leads to an apparent DNA height closer to the expected value. Furthermore, we show that deposition by spin-coating is also well-suited to visualize DNA-protein complexes. These results indicate that spin-coating is a simple, powerful alternative for reproducible sample preparation for AFM imaging.

  3. If mechanics of cells can be described by elastic modulus in AFM indentation experiments?

    Science.gov (United States)

    Sokolov, Igor; Dokukin, Maxim; Guz, Nataliia; Kalaparthi, Vivekanand

    2014-03-01

    We study the question if cells, being highly heterogeneous objects, can be described with an elastic modulus (the Young's modulus) in a self-consistent way. We analyze the elastic modulus using indentation done with AFM of human cervical epithelial cells. Both sharp (cone) and dull AFM probes were used. The indentation data collected were processed through different elastic models. The cell was considered as a homogeneous elastic medium which had either smooth spherical boundary (Hertz/Sneddon models) or the boundary covered with a layer of glycocalyx and membrane protrusions (``brush'' models). Validity of these approximations was investigated. Specifically, we tested the independence of the elastic modulus of the indentation depth, which is assumed in these models. We demonstrate that only one model shows consistency with treating cells as homogeneous elastic medium, the bush model when processing the indentation data collected with the dull probe. The elastic modulus demonstrates strong depth dependence in all other three models. We conclude that it is possible to describe the elastic properties of the cell body by means of an effective elastic modulus in a self-consistent way when using the brush model to analyze data collected with a dull AFM probe.

  4. Thermodynamic behavior of D-sphingosine/cholesterol monolayers and the topography observed by AFM

    Institute of Scientific and Technical Information of China (English)

    HAO ChangChun; SUN RunGuang; ZHANG Jing; CHANG YiGuang; NIU ChunLing

    2009-01-01

    Lipid rafts are of a dynamic microdomain structure found in recent years, enriched in sphingolipids, cholesterol and particular proteins. The change of structure and function of lipid rafts could result in many diseases. In this work, the monolayer behavior of mixed systems of D-sphingosine with choles-terol was investigated in terms of the mean surface area per molecule (Am), excess molecular area (△Aex), surface excess Gibbs energy (△Gex), interaction parameter (ω) activity coefficients (f1 and f2) as well as elasticity (Cs-1) of formed films. The deposited Langmuir-Blodgett (LB) monolayers were inves-tigated with atomic force microscopy (AFM). Thermodynamic analysis indicates △Aex and △Gex in the binary systems with negative deviations from the ideal behavior, suggesting attractive interaction be-tween molecules. The stability, elasticity and activity coefficients show a marked dependence on the mole faction of D-sphingosine. The results of observation by AFM show that the single D-sphingosine molecular film took on small granule structure. When mixing the D-sphingosine and cholesterol at dif-ferent ratios, the mixed films transform from the chains structure to larger slice and net coexisting structure with the increasing of the cholesterol content. In the end, pure cholesterol forms more ag-gregated structure. AFM experiments effectively support the above findings and interpretation.

  5. In situ Stiffness Adjustment of AFM Probes by Two Orders of Magnitude.

    Science.gov (United States)

    de Laat, Marcel Lambertus Cornelis; Pérez Garza, Héctor Hugo; Ghatkesar, Murali Krishna

    2016-04-12

    The choice on which type of cantilever to use for Atomic Force Microscopy (AFM) depends on the type of the experiment being done. Typically, the cantilever has to be exchanged when a different stiffness is required and the entire alignment has to be repeated. In the present work, a method to adjust the stiffness in situ of a commercial AFM cantilever is developed. The adjustment is achieved by changing the effective length of the cantilever by electrostatic pull-in. By applying a voltage between the cantilever and an electrode (with an insulating layer at the point of contact), the cantilever snaps to the electrode, reducing the cantilever's effective length. An analytical model was developed to find the pull-in voltage of the system. Subsequently, a finite element model was developed to study the pull-in behavior. The working principle of this concept is demonstrated with a proof-of-concept experiment. The electrode was positioned close to the cantilever by using a robotic nanomanipulator. To confirm the change in stiffness, the fundamental resonance frequency of the cantilever was measured for varying electrode positions. The results match with the theoretical expectations. The stiffness was adjusted in situ in the range of 0.2 N/m to 27 N/m, covering two orders of magnitude in one single cantilever. This proof-of-concept is the first step towards a micro fabricated prototype, that integrates the electrode positioning system and cantilever that can be used for actual AFM experiments.

  6. AFM based dielectric spectroscopy: extended frequency range through excitation of cantilever higher eigenmodes.

    Science.gov (United States)

    Miccio, Luis A; Kummali, Mohammed M; Schwartz, Gustavo A; Alegría, Ángel; Colmenero, Juan

    2014-11-01

    In the last years, a new AFM based dielectric spectroscopy approach has been developed for measuring the dielectric relaxation of materials at the nanoscale, the so called nanoDielectric Spectroscopy (nDS). In spite of the effort done so far, some experimental aspects of this technique remain still unclear. In particular, one of these aspects is the possibility of extending the experimental frequency range, to date limited at high frequencies by the resonance frequency of the AFM cantilever as a main factor. In order to overcome this limitation, the electrical excitation of cantilever higher eigenmodes for measuring the dielectric relaxation is here explored. Thus, in this work we present a detailed experimental analysis of the electrical excitation of the cantilever second eigenmode. Based on this analysis we show that the experimental frequency range of the AFM based dielectric spectroscopy can be extended by nearly two decades with a good signal-to-noise ratio. By using the combination of first and second cantilever eigenmodes we study dissipation processes on well known PVAc based polymeric samples. Both, relaxation spectra and images with molecular dynamics contrast were thus obtained over this broader frequency range.

  7. Accurate, explicit formulae for higher harmonic force spectroscopy by frequency modulation-AFM.

    Science.gov (United States)

    Kuchuk, Kfir; Sivan, Uri

    2015-01-01

    The nonlinear interaction between an AFM tip and a sample gives rise to oscillations of the cantilever at integral multiples (harmonics) of the fundamental resonance frequency. The higher order harmonics have long been recognized to hold invaluable information on short range interactions but their utilization has thus far been relatively limited due to theoretical and experimental complexities. In particular, existing approximations of the interaction force in terms of higher harmonic amplitudes generally require simultaneous measurements of multiple harmonics to achieve satisfactory accuracy. In the present letter we address the mathematical challenge and derive accurate, explicit formulae for both conservative and dissipative forces in terms of an arbitrary single harmonic. Additionally, we show that in frequency modulation-AFM (FM-AFM) each harmonic carries complete information on the force, obviating the need for multi-harmonic analysis. Finally, we show that higher harmonics may indeed be used to reconstruct short range forces more accurately than the fundamental harmonic when the oscillation amplitude is small compared with the interaction range.

  8. A Novel Dog-Bone Oscillating AFM Probe with Thermal Actuation and Piezoresistive Detection

    Directory of Open Access Journals (Sweden)

    Zhuang Xiong

    2014-10-01

    Full Text Available In order to effectively increase the resonance frequency and the quality factor of atomic force microscope (AFM probes, a novel oscillating probe based on a dog-bone shaped MEMS resonator was conceived, designed, fabricated and evaluated. The novel probe with 400 μm in length, 100 μm in width and 5 μm in thickness was enabled to feature MHz resonance frequencies with integrated thermal actuation and piezoresistive detection. Standard silicon micromachining was employed. Both electrical and optical measurements were carried out in air. The resonance frequency and the quality factor of the novel probe were measured to be 5.4 MHz and 4000 respectively, which are much higher than those (about several hundreds of kHz of commonly used cantilever probes. The probe was mounted onto a commercial AFM set-up through a dedicated probe-holder and circuit board. Topographic images of patterned resist samples were obtained. It is expected that the resonance frequency and the measurement bandwidth of such probes will be further increased by a proper downscaling, thus leading to a significant increase in the scanning speed capability of AFM instruments.

  9. A novel dog-bone oscillating AFM probe with thermal actuation and piezoresistive detection.

    Science.gov (United States)

    Xiong, Zhuang; Mairiaux, Estelle; Walter, Benjamin; Faucher, Marc; Buchaillot, Lionel; Legrand, Bernard

    2014-10-31

    In order to effectively increase the resonance frequency and the quality factor of atomic force microscope (AFM) probes, a novel oscillating probe based on a dog-bone shaped MEMS resonator was conceived, designed, fabricated and evaluated. The novel probe with 400 μm in length, 100 μm in width and 5 μm in thickness was enabled to feature MHz resonance frequencies with integrated thermal actuation and piezoresistive detection. Standard silicon micromachining was employed. Both electrical and optical measurements were carried out in air. The resonance frequency and the quality factor of the novel probe were measured to be 5.4 MHz and 4000 respectively, which are much higher than those (about several hundreds of kHz) of commonly used cantilever probes. The probe was mounted onto a commercial AFM set-up through a dedicated probe-holder and circuit board. Topographic images of patterned resist samples were obtained. It is expected that the resonance frequency and the measurement bandwidth of such probes will be further increased by a proper downscaling, thus leading to a significant increase in the scanning speed capability of AFM instruments.

  10. Custom AFM for X-ray beamlines: in situ biological investigations under physiological conditions

    Energy Technology Data Exchange (ETDEWEB)

    Gumí-Audenis, B. [ESRF, The European Synchrotron, Grenoble (France); Institute for Bioengineering of Catalonia (IBEC), Barcelona (Spain); Physical Chemistry Department, Universitat de Barcelona, Barcelona (Spain); Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid (Spain); Carlà, F. [ESRF, The European Synchrotron, Grenoble (France); Vitorino, M. V. [University of Lisboa, Falculty of Science, Biosystems and Integrative Sciences Institute - BIOISI, Lisbon (Portugal); Panzarella, A. [ESRF, The European Synchrotron, Grenoble (France); Porcar, L. [Institut Laue-Langevin, Grenoble (France); Boilot, M. [ORTEC, Marseille (France); Guerber, S. [CEA, LETI Grenoble (France); Bernard, P. [ESRF, The European Synchrotron, Grenoble (France); Rodrigues, M. S. [University of Lisboa, Falculty of Science, Biosystems and Integrative Sciences Institute - BIOISI, Lisbon (Portugal); Sanz, F.; Giannotti, M. I. [Institute for Bioengineering of Catalonia (IBEC), Barcelona (Spain); Physical Chemistry Department, Universitat de Barcelona, Barcelona (Spain); Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid (Spain); Costa, L., E-mail: luca.costa@esrf.fr [ESRF, The European Synchrotron, Grenoble (France)

    2015-09-30

    The performance of a custom atomic force microscope for grazing-incidence X-ray experiments on hydrated soft and biological samples is presented. A fast atomic force microscope (AFM) has been developed that can be installed as a sample holder for grazing-incidence X-ray experiments at solid/gas or solid/liquid interfaces. It allows a wide range of possible investigations, including soft and biological samples under physiological conditions (hydrated specimens). The structural information obtained using the X-rays is combined with the data gathered with the AFM (morphology and mechanical properties), providing a unique characterization of the specimen and its dynamics in situ during an experiment. In this work, lipid monolayers and bilayers in air or liquid environment have been investigated by means of AFM, both with imaging and force spectroscopy, and X-ray reflectivity. In addition, this combination allows the radiation damage induced by the beam on the sample to be studied, as has been observed on DOPC and DPPC supported lipid bilayers under physiological conditions.

  11. Fabrication of nanochannels with ladder nanostructure at the bottom using AFM nanoscratching method

    Science.gov (United States)

    Yan, Yongda; Geng, Yanquan; Hu, Zhenjiang; Zhao, Xuesen; Yu, Bowen; Zhang, Qi

    2014-05-01

    This letter presents a novel atomic force microscopy (AFM)-based nanomanufacturing method combining the tip scanning with the high-precision stage movement to fabricate nanochannels with ladder nanostructure at the bottom by continuous scanning with a fixed scan size. Different structures can be obtained according to the matching relation of the tip feeding velocity and the precision stage moving velocity. This relationship was first studied in detail to achieve nanochannels with different ladder nanostructures at the bottom. Machining experiments were then performed to fabricate nanochannels on an aluminum alloy surface to demonstrate the capability of this AFM-based fabrication method presented in this study. Results show that the feed value and the tip orientation in the removing action play important roles in this method which has a significant effect on the machined surfaces. Finally, the capacity of this method to fabricate a large-scale nanochannel was also demonstrated. This method has the potential to advance the existing AFM tip-based nanomanufacturing technique of the formation these complex structures by increasing the removal speed, simplifying the processing procedure and achieving the large-scale nanofabrication.

  12. High aspect ratio AFM Probe processing by helium-ion-beam induced deposition.

    Science.gov (United States)

    Onishi, Keiko; Guo, Hongxuan; Nagano, Syoko; Fujita, Daisuke

    2014-11-01

    A Scanning Helium Ion Microscope (SHIM) is a high resolution surface observation instrument similar to a Scanning Electron Microscope (SEM) since both instruments employ finely focused particle beams of ions or electrons [1]. The apparent difference is that SHIMs can be used not only for a sub-nanometer scale resolution microscopic research, but also for the applications of very fine fabrication and direct lithography of surfaces at the nanoscale dimensions. On the other hand, atomic force microscope (AFM) is another type of high resolution microscopy which can measure a three-dimensional surface morphology by tracing a fine probe with a sharp tip apex on a specimen's surface.In order to measure highly uneven and concavo-convex surfaces by AFM, the probe of a high aspect ratio with a sharp tip is much more necessary than the probe of a general quadrangular pyramid shape. In this paper we report the manufacture of the probe tip of the high aspect ratio by ion-beam induced gas deposition using a nanoscale helium ion beam of SHIM.Gas of platinum organic compound was injected into the sample surface neighborhood in the vacuum chamber of SHIM. The decomposition of the gas and the precipitation of the involved metal brought up a platinum nano-object in a pillar shape on the normal commercial AFM probe tip. A SHIM system (Carl Zeiss, Orion Plus) equipped with the gas injection system (OmniProbe, OmniGIS) was used for the research. While the vacuum being kept to work, we injected platinum organic compound ((CH3)3(CH3C5H4)Pt) into the sample neighborhood and irradiated the helium ion beam with the shape of a point on the apex of the AFM probe tip. It is found that we can control the length of the Pt nano-pillar by irradiation time of the helium ion beam. The AFM probe which brought up a Pt nano-pillar is shown in Figure 1. It is revealed that a high-aspect-ratio Pt nano-pillar of ∼40nm diameter and up to ∼2000 nm length can be grown. In addition, for possible heating

  13. AFM/MFM hybrid nanocharacterization of martensitic transformation and degradation for Fe-Pd shape memory alloy

    Science.gov (United States)

    Suzuki, Takayuki; Nagatani, Kohei; Hirano, Kazumi; Teramoto, Tokuo; Taya, Minoru

    2003-07-01

    Martensitic transformation and degradation characteristics for Fe-Pd ferromagnetic shape memory alloy were investigated by the developed AFM (Atomic Force Microscope)/MFM (Magnetic Force Microscope) hybrid nano-characterization technique. In AFM martensitic transformation was detected by the changes of surface topography of martensite plates. In MFM martensitic transformation was detected by the changes of magnetic domain structures. This technique has an advantage that martensitic transformation characteristics such as martensitic transformation temperature and reverse transformation temperature can be measured at microscopic and nanoscopic small area. Degradation characteristics of martensitic transformation under cyclic loading were also detected by the changes of AFM and MFM images. In AFM images surface topography of martensite plates became flat and in MFM images the morphology of magnetic domain structures became unfocused under cyclic loading. Then it was found that the hybrid nano-characterization was very high sensitive technique to evaluate degradation for Fe-Pd ferromagnetic shape memory alloy.

  14. On the Accuracy of Imaging on the Nanometer Scale:Geometry versus Material Properties in High Resolution AFM Studies

    Institute of Scientific and Technical Information of China (English)

    Adam; Mechler; Janos; Kokavecz; Peter; Heszler

    2007-01-01

    1 Results Intermittent Contact Mode Atomic Force Microscopy (ICM-AFM) imaging of sub-micron morphology is a routine operation in many fields of research from materials science to molecular biology,typically used to obtain three dimensional geometrical measures of surface structures.When it comes to the nanometer-angstrom range,however,quantitative interpretation of AFM morphology is less straightforward.Reports of non-topography-originated features as well as anomalies and conflicting reports in nanostr...

  15. Applications of AFM in semiconductor R&D and manufacturing at 45 nm technology node and beyond

    Science.gov (United States)

    Lee, Moon-Keun; Shin, Minjung; Bao, Tianming; Song, Chul-Gi; Dawson, Dean; Ihm, Dong-Chul; Ukraintsev, Vladimir

    2009-03-01

    Continuing demand for high performance microelectronic products propelled integrated circuit technology into 45 nm node and beyond. The shrinking device feature geometry created unprecedented challenges for dimension metrology in semiconductor manufacturing and research and development. Automated atomic force microscope (AFM) has been used to meet the challenge and characterize narrower lines, trenches and holes at 45nm technology node and beyond. AFM is indispensable metrology techniques capable of non-destructive full three-dimensional imaging, surface morphology characterization and accurate critical dimension (CD) measurements. While all available dimensional metrology techniques approach their limits, AFM continues to provide reliable information for development and control of processes in memory, logic, photomask, image sensor and data storage manufacturing. In this paper we review up-todate applications of automated AFM in every mentioned above semiconductor industry sector. To demonstrate benefits of AFM at 45 nm node and beyond we compare capability of automated AFM with established in-line and off-line metrologies like critical dimension scanning electron microscopy (CDSEM), optical scatterometry (OCD) and transmission electronic microscopy (TEM).

  16. Fabrication and characterization of mesoscale protein patterns using atomic force microscopy (AFM)

    Science.gov (United States)

    Gao, Pei

    2011-07-01

    A versatile AFM local oxidation lithography was developed for fabricating clean protein patterns ranging from nanometer to sub-millimeter scale on octadecyltrichlorosilane (OTS) layer of Si (100) wafer. This protein patterning method can generate bio-active protein pattern with a clean background without the need of the anti-fouling the surface or repetitive rinsing. As a model system, lysozyme protein patterns were investigated through their binding reactions with antibodies and aptamers by AFM. Polyclonal anti-lysozyme antibodies and anti-lysozyme aptamer are found to preferentially bind to the lysozyme molecules on the edge of a protein pattern before their binding to the interior ones. It was also demonstrated that the topography of the immobilized protein pattern affects the antibody binding direction. We found that the anti-lysozyme antibodies binding to the edge lysozyme molecules on the half-buried pattern started from the top but the binding on the extruded pattern started from the side because of their different spatial accessibility. In addition, after incubating lysozyme pattern with anti-lysozyme aptamer in buffer solution for enough long time, some fractal-shaped aptamer fibers with 1-6nm high and up to tens of micrometers long were formed by the self-assembling of aptamer molecules on the surface. The aptamer fibers anchor specifically on the edge of protein patterns, which originates from the biospecific recognition between the aptamer and its target protein. Once these edge-bound fibers have formed, they can serve as scaffolds for further assembly processes. We used these aptamer fibers as templates to fabricate palladium and streptavidin nanowires, which anchored on the pattern edges and never cross over or collapse over each other. The aptamer fiber scaffold potentially can lead to an effective means to fabricate and interface nanowires to existing surface patterns. KEYWORDS: Atomic Force Microscopy (AFM), Protein Patterns, Lysozyme, Aptamer

  17. Evaluation of surface alterations in different retreatment nickel-titanium files: AFM and SEM study.

    Science.gov (United States)

    Can Sağlam, Baran; Görgül, Güliz

    2015-05-01

    The aim of this study was to evaluate the surface changes of nickel titanium (Ni-Ti) rotary retreatment files after three and five uses. Furthermore, the effects of 2% sodium hypochlorite and chloroform solutions and sterilization procedures on the NiTi rotary retreatment surfaces were investigated. ProTaper Retreatment files, R-endo files, and Mtwo retreatment files were used for this study. The palatinal roots of maxillary molar teeth were obturated with gutta percha and Ah26. Retreatment procedures were performed with these retreatment file systems. The surface changes of untreated NiTi rotary files that were used three and five times, immersed in NaOCl and chloroform and subjected to sterilization procedures were investigated with atomic force microscopy (AFM) and scanning electron microscopy (SEM). The RMS values, three dimensional images and SEM images at various magnifications were obtained. RMS values showed that all three NiTi rotary retreatment file systems showed significant deteriorations after three and five uses. Cracks, damages and spiral construction deteriorations were detected in the SEM images after three and five uses. Furthermore, the Mtwo 15 file was broken off after five uses. AFM data indicated that 2% NaOCl caused significant surface deteriorations on NiTi rotary files and both AFM and SEM evaluation showed that chloroform solution and sterilization procedures did not cause significant surface deteriorations. In conclusion, ProTaper retreatment, R-endo, and Mtwo retreatment files showed surface damages depending on retreatment procedures. Clinicians have to consider that retreatment files always have a tendency to break off after the third time they have been used.

  18. Unspecific membrane protein-lipid recognition: combination of AFM imaging, force spectroscopy, DSC and FRET measurements.

    Science.gov (United States)

    Borrell, Jordi H; Montero, M Teresa; Morros, Antoni; Domènech, Òscar

    2015-11-01

    In this work, we will describe in quantitative terms the unspecific recognition between lactose permease (LacY) of Escherichia coli, a polytopic model membrane protein, and one of the main components of the inner membrane of this bacterium. Supported lipid bilayers of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) (3:1, mol/mol) in the presence of Ca(2+) display lateral phase segregation that can be distinguished by atomic force microscopy (AFM) as well as force spectroscopy. LacY shows preference for fluid (Lα) phases when it is reconstituted in POPE : POPG (3:1, mol/mol) proteoliposomes at a lipid-to-protein ratio of 40. When the lipid-to-protein ratio is decreased down to 0.5, two domains can be distinguished by AFM. While the upper domain is formed by self-segregated units of LacY, the lower domain is constituted only by phospholipids in gel (Lβ) phase. On the one hand, classical differential scanning calorimetry (DSC) measurements evidenced the segregation of a population of phospholipids and point to the existence of a boundary region at the lipid-protein interface. On the other hand, Förster Resonance Energy Transfer (FRET) measurements in solution evidenced that POPE is selectively recognized by LacY. A binary pseudophase diagram of POPE : POPG built from AFM observations enables to calculate the composition of the fluid phase where LacY is inserted. These results are consistent with a model where POPE constitutes the main component of the lipid-LacY interface segregated from the fluid bulk phase where POPG predominates.

  19. Towards easy and reliable AFM tip shape determination using blind tip reconstruction.

    Science.gov (United States)

    Flater, Erin E; Zacharakis-Jutz, George E; Dumba, Braulio G; White, Isaac A; Clifford, Charles A

    2014-11-01

    Quantitative determination of the geometry of an atomic force microscope (AFM) probe tip is critical for robust measurements of the nanoscale properties of surfaces, including accurate measurement of sample features and quantification of tribological characteristics. Blind tip reconstruction, which determines tip shape from an AFM image scan without knowledge of tip or sample shape, was established most notably by Villarrubia [J. Res. Natl. Inst. Stand. Tech. 102 (1997)] and has been further developed since that time. Nevertheless, the implementation of blind tip reconstruction for the general user to produce reliable and consistent estimates of tip shape has been hindered due to ambiguity about how to choose the key input parameters, such as tip matrix size and threshold value, which strongly impact the results of the tip reconstruction. These key parameters are investigated here via Villarrubia's blind tip reconstruction algorithms in which we have added the capability for users to systematically vary the key tip reconstruction parameters, evaluate the set of possible tip reconstructions, and determine the optimal tip reconstruction for a given sample. We demonstrate the capabilities of these algorithms through analysis of a set of simulated AFM images and provide practical guidelines for users of the blind tip reconstruction method. We present a reliable method to choose the threshold parameter corresponding to an optimal reconstructed tip shape for a given image. Specifically, we show that the trend in how the reconstructed tip shape varies with threshold number is so regular that the optimal, or Goldilocks, threshold value corresponds with the peak in the derivative of the RMS difference with respect to the zero threshold curve vs. threshold number.

  20. Cell visco-elasticity measured with AFM and optical trapping at sub-micrometer deformations.

    Directory of Open Access Journals (Sweden)

    Schanila Nawaz

    Full Text Available The measurement of the elastic properties of cells is widely used as an indicator for cellular changes during differentiation, upon drug treatment, or resulting from the interaction with the supporting matrix. Elasticity is routinely quantified by indenting the cell with a probe of an AFM while applying nano-Newton forces. Because the resulting deformations are in the micrometer range, the measurements will be affected by the finite thickness of the cell, viscous effects and even cell damage induced by the experiment itself. Here, we have analyzed the response of single 3T3 fibroblasts that were indented with a micrometer-sized bead attached to an AFM cantilever at forces from 30-600 pN, resulting in indentations ranging from 0.2 to 1.2 micrometer. To investigate the cellular response at lower forces up to 10 pN, we developed an optical trap to indent the cell in vertical direction, normal to the plane of the coverslip. Deformations of up to two hundred nanometers achieved at forces of up to 30 pN showed a reversible, thus truly elastic response that was independent on the rate of deformation. We found that at such small deformations, the elastic modulus of 100 Pa is largely determined by the presence of the actin cortex. At higher indentations, viscous effects led to an increase of the apparent elastic modulus. This viscous contribution that followed a weak power law, increased at larger cell indentations. Both AFM and optical trapping indentation experiments give consistent results for the cell elasticity. Optical trapping has the benefit of a lower force noise, which allows a more accurate determination of the absolute indentation. The combination of both techniques allows the investigation of single cells at small and large indentations and enables the separation of their viscous and elastic components.

  1. Investigation of the influence of UV irradiation on collagen thin films by AFM imaging

    Energy Technology Data Exchange (ETDEWEB)

    Stylianou, Andreas, E-mail: styliand@mail.ntua.gr; Yova, Dido; Alexandratou, Eleni

    2014-12-01

    Collagen is the major fibrous extracellular matrix protein and due to its unique properties, it has been widely used as biomaterial, scaffold and cell-substrate. The aim of the paper was to use Atomic Force Microscopy (AFM) in order to investigate well-characterized collagen thin films after ultraviolet light (UV) irradiation. The films were also used as in vitro culturing substrates in order to investigate the UV-induced alterations to fibroblasts. A special attention was given in the alteration on collagen D-periodicity. For short irradiation times, spectroscopy (fluorescence/absorption) studies demonstrated that photodegradation took place and AFM imaging showed alterations in surface roughness. Also, it was highlighted that UV-irradiation had different effects when it was applied on collagen solution than on films. Concerning fibroblast culturing, it was shown that fibroblast behavior was affected after UV irradiation of both collagen solution and films. Furthermore, after a long irradiation time, collagen fibrils were deformed revealing that collagen fibrils are consisting of multiple shells and D-periodicity occurred on both outer and inner shells. The clarification of the effects of UV light on collagen and the induced modifications of cell behavior on UV-irradiated collagen-based surfaces will contribute to the better understanding of cell–matrix interactions in the nanoscale and will assist in the appropriate use of UV light for sterilizing and photo-cross-linking applications. - Highlights: • Collagen thin films were formed and exposed in UV irradiation. • Collagen thin films were formed from UV-irradiated collagen solution. • Nanocharacterization of collagen thin films by AFM • Fluorescence and absorption spectroscopy studies on collagen films • Investigation of fibroblast response on collagen films.

  2. A Study on HA Titanium Surface with Atomic Force Microscope (AFM)

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Three kinds of titanium surface especially the HA surface are analyzed. Titanium was treated by 3 kinds of methods that were acid & alkali, calcic solution and apatite solution. Samples were observed by optic microscope and atomic force microscope ( AFM). The typical surface morphology of the acid and alkali group is little holes, and on the two HA surface the tiny protuberances is typical. The surface treated by apatite solution was smoother than the two formers. The rough surface treated with acid and alkali was propitious to Ca + , Pand proteins' adhesion, and the relatively smooth HA surface was of benefit to the cell adhesion.

  3. Crystal structures of Boro-AFm and sBoro-AFt phases

    Energy Technology Data Exchange (ETDEWEB)

    Champenois, Jean-Baptiste [Commissariat a l' Energie Atomique et aux Energies Alternatives, CEA DEN/DTCD/SPDE, F-30207 Bagnols sur Ceze (France); Mesbah, Adel [Commissariat a l' Energie Atomique et aux Energies Alternatives, CEA DEN/DTCD/SPDE, F-30207 Bagnols sur Ceze (France); Clermont Universite, ENSCCF, Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand (France); Cau Dit Coumes, Celine, E-mail: celine.cau-dit-coumes@cea.fr [Commissariat a l' Energie Atomique et aux Energies Alternatives, CEA DEN/DTCD/SPDE, F-30207 Bagnols sur Ceze (France); Renaudin, Guillaume [Clermont Universite, ENSCCF, Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand (France); CNRS, UMR 6296, ICCF, F-63171 Aubiere (France); Leroux, Fabrice [Clermont Universite, Universite Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand (France); CNRS, UMR 6296, ICCF, F-63171 Aubiere (France); Mercier, Cyrille [LMCPA, Universite de Valenciennes et du Hainaut Cambresis, 59600 Maubeuge (France); Revel, Bertrand [Centre Commun de Mesure RMN, Universite Lille1 Sciences et Technologies, Cite Scientifique 59655 Villeneuve d' Ascq Cedex (France); Damidot, Denis [EM Douai, MPE-GCE, 59508 Douai (France)

    2012-10-15

    Crystal structures of boron-containing AFm (B-AFm) and AFt (B-AFt) phases have been solved ab-initio and refined from X-ray powder diffraction. {sup 11}B NMR and Raman spectroscopies confirm the boron local environment in both compounds: three-fold coordinated in B-AFm corresponding to HBO{sub 3}{sup 2-} species, and four-fold coordinated in B-AFt corresponding to B (OH){sub 4}{sup -} species. B-AFm crystallizes in the rhombohedral R3{sup Macron }c space group and has the 3CaO{center_dot}Al{sub 2}O{sub 3}{center_dot}CaHBO{sub 3}{center_dot}12H{sub 2}O (4CaO{center_dot}Al{sub 2}O{sub 3}{center_dot}1/2B{sub 2}O{sub 3}{center_dot}12.5H{sub 2}O, C{sub 4}AB{sub 1/2}H{sub 12.5}) general formulae with planar trigonal HBO{sub 3}{sup 2-} anions weakly bonded at the centre of the interlayer region. One HBO{sub 3}{sup 2-} anion is statistically distributed with two weakly bonded water molecules on the same crystallographic site. B-AFt crystallizes in the trigonal P3cl space group and has the 3CaO{center_dot}Al{sub 2}O{sub 3}{center_dot}Ca(OH){sub 2}{center_dot}2Ca(B (OH){sub 4}){sub 2}{center_dot}24H{sub 2}O (6CaO{center_dot}Al{sub 2}O{sub 3}{center_dot}2B{sub 2}O{sub 3}{center_dot}33H{sub 2}O, C{sub 6}AB{sub 2}H{sub 33}) general formulae with tetrahedral B (OH){sub 4}{sup -} anions located in the channel region of the structure. All tetrahedral anions are oriented in a unique direction, leading to a hexagonal c lattice parameter about half that of ettringite.

  4. AFM research on the mechanism of Fe-based alloy stress annealed inducing magnetic anisotropy

    Institute of Scientific and Technical Information of China (English)

    FANG YunZhang; ZHENG JinJu; SHI FangYe; WU FengMin; SUN HuaiJun; LIN GenJin; YANG XiaoHong; MAN QiKui; YE FangMin

    2008-01-01

    The cross-section of the Fe-based alloy (Fe73.5Cu1Nb3Si13.5B9) ribbon annealed at 540℃ under various tensile stress was investigated with atomic force microscope (AFM). The stress effect mechanism in Fe-based alloy ribbon tensile stress an- nealed inducing transverse magnetic anisotropy field was studied using the X-ray diffraction spectra and longitudinal drive giant magneto-impedance effect curves, and the model of direction dominant in encapsulated grain agglomeration was es- tablished. The relationship between the direction dominant in encapsulated grain agglomeration and magnetic anisotropy field was disclosed.

  5. Nano-Workbench: A Combined Hollow AFM Cantilever and Robotic Manipulator

    OpenAIRE

    Héctor Hugo Pérez Garza; Murali Krishna Ghatkesar; Shibabrata Basak; Per Löthman; Urs Staufer

    2015-01-01

    To manipulate liquid matter at the nanometer scale, we have developed a robotic assembly equipped with a hollow atomic force microscope (AFM) cantilever that can handle femtolitre volumes of liquid. The assembly consists of four independent robots, each sugar cube sized with four degrees of freedom. All robots are placed on a single platform around the sample forming a nano-workbench (NWB). Each robot can travel the entire platform and has a minimum position resolution of 5 nm both in-plane a...

  6. Surface Photovoltage Spectroscopy and AFM Analysis of CIGSe Thin Film Solar Cells

    OpenAIRE

    Nima E. Gorji; Ugo Reggiani; Leonardo Sandrolini

    2015-01-01

    The band gap, grain size, and topography of a Cu(In,Ga)Se2 (CIGSe) thin film solar cell are analyzed using surface photovoltage spectroscopy (SPV) and atomic force microscopy (AFM) techniques. From the steep increase in SPV signal the band gap of the CIGSe absorber, In2S3 and ZnO layers are extracted and found to be 1.1, 1.3 and 2.6 eV, respectively. Already below the band gap of ZnO layer, a slight SPV response at 1.40 eV photon energies is observed indicating the presence of deep donor stat...

  7. AFM research on the mechanism of Fe-based alloy stress annealed inducing magnetic anisotropy

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The cross-section of the Fe-based alloy (Fe73.5Cu1Nb3Si13.5B9) ribbon annealed at 540℃ under various tensile stress was investigated with atomic force microscope (AFM). The stress effect mechanism in Fe-based alloy ribbon tensile stress an-nealed inducing transverse magnetic anisotropy field was studied using the X-ray diffraction spectra and longitudinal drive giant magneto-impedance effect curves, and the model of direction dominant in encapsulated grain agglomeration was es-tablished. The relationship between the direction dominant in encapsulated grain agglomeration and magnetic anisotropy field was disclosed.

  8. BOREAS AFM-3 NCAR Electra 1994 Aircraft Flux and Moving Window Data

    Science.gov (United States)

    Lenschow, Donald H.; Hall, Forrest G. (Editor); Knapp, David E. (Editor); Shanot, Al; Oncley, Steven P.; Cooper, Al; Smith, David E. (Technical Monitor)

    2000-01-01

    The BOREAS AFM-3 team used the NCAR Electra aircraft data to make measurements of the fluxes of momentum, sensible and latent heat, carbon dioxide, and ozone over the entire BOREAS region to tie together measurements made in both the SSA and the NSA in 1994. These data were also used to study the planetary boundary layer using both in situ and remote sensing measurements. This data set contains both the aircraft flux and the moving window data. These data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884) or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  9. Designer cantilevers for even more accurate quantitative measurements of biological systems with multifrequency AFM

    Science.gov (United States)

    Contera, S.

    2016-04-01

    Multifrequency excitation/monitoring of cantilevers has made it possible both to achieve fast, relatively simple, nanometre-resolution quantitative mapping of mechanical of biological systems in solution using atomic force microscopy (AFM), and single molecule resolution detection by nanomechanical biosensors. A recent paper by Penedo et al [2015 Nanotechnology 26 485706] has made a significant contribution by developing simple methods to improve the signal to noise ratio in liquid environments, by selectively enhancing cantilever modes, which will lead to even more accurate quantitative measurements.

  10. Study of β-amyloid adsorption and aggregation on graphite by STM and AFM

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The scanning tunneling microscopy (STM) and the atomic force microscopy (AFM) have been applied to the direct study of the adsorption and aggregation of β-amyloid(1-42)(Aβ42) on the hydrophobic graphite surface. It was found that Aβ42 were preferentially adsorbed on graphite defects such as the edges. Aβ42 peptides self-assembled into intermediate protofibrils, which in turn self-associated to form fibrils. Usually, two or more fibrils intertwined to form the helical structure. These results will provide an important clue to studying the aggregation process of β-amyloid.

  11. Fabrication of 3D structure by combining AFM and chemical etching on crystalline silicon surface

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    AFM is used for forming silicon dioxide as a layer (nask) on the silicon wafer surface (100) during the cutting process in ambient atmosphere. The silicon dioxide is made through reaction of silicon and oxygen in the atmosphere. As a result of the anisotropic behavior of single crystalline silicon, the etching rates in alkaline solution depend greatly on the various crystal orientations. The anisotropic etching behaviors in KOH solution and reasons of crystalline silicon are described. Effect of etching conditions such as etching temperature and KOH concentration of the alkaline solution on height of the micro-protuberances has been described.

  12. An AFM investigation of the mesostructure of Fe-based nanocrystalline ribbon

    Institute of Scientific and Technical Information of China (English)

    FANG Yunzhang; WU Fengmin; WU Wenhui; ZHENG Jinju; YANG Xiaohong; SI Jianxiao; SUN Huanjun; LOU Rongxun; ZHANG Fufei

    2004-01-01

    The mesostructure at the cross section of the Fe-based nanocrystalline (Fe73.5Cu1Nb3Si13.5B9) ribbon was observed with atomic force microscopy (AFM). An apparent mesostructural difference was found between the sticking roller face area (SRFA) and the free face area (FFA) of the ribbon crystallized after annealing. In SRFA there is a preponderance of rough grain gathering in longitudinal arrangement, while in FFA a fine grain gathering arranged transversely dominates. This phenomenon could be due to the different residual stress remained in the different areas of the amorphous ribbon resulting from the single-roller quenching technique.

  13. The effect of PeakForce tapping mode AFM imaging on the apparent shape of surface nanobubbles.

    Science.gov (United States)

    Walczyk, Wiktoria; Schön, Peter M; Schönherr, Holger

    2013-05-08

    Until now, TM AFM (tapping mode or intermittent contact mode atomic force microscopy) has been the most often applied direct imaging technique to analyze surface nanobubbles at the solid-aqueous interface. While the presence and number density of nanobubbles can be unequivocally detected and estimated, it remains unclear how much the a priori invasive nature of AFM affects the apparent shapes and dimensions of the nanobubbles. To be able to successfully address the unsolved questions in this field, the accurate knowledge of the nanobubbles' dimensions, radii of curvature etc is necessary. In this contribution we present a comparative study of surface nanobubbles on HOPG (highly oriented pyrolytic graphite) in water acquired with (i) TM AFM and (ii) the recently introduced PFT (PeakForce tapping) mode, in which the force exerted on the nanobubbles rather than the amplitude of the resonating cantilever is used as the AFM feedback parameter during imaging. In particular, we analyzed how the apparent size and shape of nanobubbles depend on the maximum applied force in PFT AFM. Even for forces as small as 73 pN, the nanobubbles appeared smaller than their true size, which was estimated from an extrapolation of the bubble height to zero applied force. In addition, the size underestimation was found to be more pronounced for larger bubbles. The extrapolated true nanoscopic contact angles for nanobubbles on HOPG, measured in PFT AFM, ranged from 145° to 175° and were only slightly underestimated by scanning with non-zero forces. This result was comparable to the nanoscopic contact angles of 160°-175° measured using TM AFM in the same set of experiments. Both values disagree, in accordance with the literature, with the macroscopic contact angle of water on HOPG, measured here to be 63° ± 2°.

  14. Label-free and quantitative evaluation of cytotoxicity based on surface nanostructure and biophysical property of cells utilizing AFM.

    Science.gov (United States)

    Lee, Young Ju; Lee, Gi-Ja; Kang, Sung Wook; Cheong, Youjin; Park, Hun-Kuk

    2013-06-01

    In this study, the four commonly used cytotoxicity assays and the mechanical properties as evaluated by atomic force microscopy (AFM) were compared in a cellular system. A cytotoxicity assay is the first and most essential test to evaluate biocompatibility of various toxic substances. Many of the cytotoxicity methods require complicated and labor-intensive process, as well as introduce experimental error. In addition, these methods cannot provide instantaneous and quantitative cell viability information. AFM has become an exciting analytical tool in medical, biological, and biophysical research due to its unique abilities. AFM-based force-distance curve measurements precisely measure the changes in the biophysical properties of the cell. Therefore, we observed the morphological changes and mechanical property changes in L929 cells following sodium lauryl sulfate (SLS) treatment utilizing AFM. AFM imaging showed that the toxic effects of SLS changed not only the spindle-like shape of L929 cells into a round shape, but also made a rough cell surface. As the concentration of SLS was increased, the surface roughness of L929 cell was increased, and stiffness decreased. We confirmed that inhibition of proliferation clearly increased with increases in SLS concentration based on results from MTT, WST, neutral red uptake, and LIVE/DEAD viability/cytotoxicity assays. The estimated IC₅₀ value by AFM analysis was similar to those of other conventional assays and was included within the 95% confidence interval range. We suggest that an AFM quantitative analysis of the morphological and biophysical changes in cells can be utilized as a new method for evaluating cytotoxicity.

  15. Characterization of Bitumen Micro-Mechanical Behaviors Using AFM, Phase Dynamics Theory and MD Simulation

    Directory of Open Access Journals (Sweden)

    Yue Hou

    2017-02-01

    Full Text Available Fundamental understanding of micro-mechanical behaviors in bitumen, including phase separation, micro-friction, micro-abrasion, etc., can help the pavement engineers better understand the bitumen mechanical performances at macroscale. Recent researches show that the microstructure evolution in bitumen will directly affect its surface structure and micro-mechanical performance. In this study, the bitumen microstructure and micro-mechanical behaviors are studied using Atomic Force Microscopy (AFM experiments, Phase Dynamics Theory and Molecular Dynamics (MD Simulation. The AFM experiment results show that different phase-structure will occur at the surface of the bitumen samples under certain thermodynamic conditions at microscale. The phenomenon can be explained using the phase dynamics theory, where the effects of stability parameter and temperature on bitumen microstructure and micro-mechanical behavior are studied combined with MD Simulation. Simulation results show that the saturates phase, in contrast to the naphthene aromatics phase, plays a major role in bitumen micro-mechanical behavior. A high stress zone occurs at the interface between the saturates phase and the naphthene aromatics phase, which may form discontinuities that further affect the bitumen frictional performance.

  16. Dry powder inhaler: influence of humidity on topology and adhesion studied by AFM.

    Science.gov (United States)

    Bérard, V; Lesniewska, E; Andrès, C; Pertuy, D; Laroche, C; Pourcelot, Y

    2002-01-31

    In the dry powder inhalers (DPIs), the adhesion results of the interactions between the active substance and the excipient. The carrier and the micronized drug particle morphologies are believed to affect the delivery of the drug. In this work, the couple studied was the lactose monohydrate and micronized zanamivir, used for the treatment of influenza. In a first approach, observations by scanning electron microscopy (SEM) have shown that the relative humidity (RH) greatly influenced the zanamivir amount fixed on the lactose monohydrate surface. This paper deals with the direct measurement in controlled atmosphere by atomic force microscopy (AFM) of the forces and the interaction ranges between a zanamivir probe and a lactose substrate. Selected zanamivir crystals were attached to the standard AFM probe. Different RH have been used in order to determine influent parameters permitting to identify the nature of adhesion forces between them. This study demonstrated that the increase of RH modified progressively the surface topology of the two components and increased the adhesion force.

  17. The use of functionalized AFM tips as molecular sensors in the detection of pesticides

    Energy Technology Data Exchange (ETDEWEB)

    Deda, Daiana K.; Pereira, Barbara B.S.; Bueno, Carolina C.; Silva, Aline N. da; Ribeiro, Gabrielle A.; Amarante, Adriano M.; Leite, Fabio L., E-mail: fabioleite@ufscar.br [Universidade Federal de Sao Carlos (LNN/UFSCar), Sorocaba, SP (Brazil). Dept. de Fisica, Quimica e Matematica. Lab. de Nanoneurobiofisica; Franca, Eduardo F. [Universidade Federal de Uberlandia (UFU), MG (Brazil). Inst. de Quimica

    2013-11-01

    Atomic force spectroscopy, a technique derived from Atomic Force Microscopy (AFM), allowed to distinguish nonspecific and specific interactions between the acetolactate synthase enzyme (ALS) and anti-atrazine antibody biomolecules and the herbicides imazaquin, metsulfuron-methyl and atrazine. The presence of specific interactions increased the adhesion force (F{sub adh}) between the AFM tip and the herbicides, which made the modified tip a powerful biosensor. Increases of approximately 132% and 145% in the F{sub adh} values were observed when a tip functionalized with ALS was used to detect imazaquin and metsulfuron-methyl, respectively. The presence of specific interactions between the atrazine and the anti-atrazine antibody also caused an increase in the F{sub adh} values (approximately 175%) compared to those observed when using an unfunctionalized tip. The molecular modeling results obtained with the ALS enzyme suggest that the orientation of the biomolecule on the tip surface could be suitable for allowing interaction with the herbicides imazaquin and metsulfuron-methyl. (author)

  18. Self-assembled polyelectrolyte nanorings observed by liquid-cell AFM

    Energy Technology Data Exchange (ETDEWEB)

    Menchaca, J-Luis [Instituto de Fisica, Universidad Autonoma de San Luis Potosi, Alvaro Obregon 64, San Luis Potosi (Mexico); Flores, Hector [Facultad de Estomatologia, Universidad Autonoma de San Luis Potosi, Alvaro Obregon 64, San Luis Potosi (Mexico); Cuisinier, Frederic [INSERM U 595, Federation de Recherche Odontologiques, Universite Louis Pasteur, 11 rue Humann, 67085 Strasbourg Cedex (France); Perez, ElIas [Instituto de Fisica, Universidad Autonoma de San Luis Potosi, Alvaro Obregon 64, San Luis Potosi (Mexico)

    2004-06-09

    Self-assembled polyelectrolyte nanorings formed by polyelectrolytes are presented for the first time in this work. They are formed by poly(ethylenimine) (PEI) and poly(sodium 4-styrenesulfanate) (PSS) during the two first steps of the formation of the self-assembled polyelectrolyte films (SAPFs). These are formed on a negatively charged glass surface and observed by an in situ liquid-cell AFM technique, which has recently been introduced as an alternative technique to follow polyelectrolyte multilayer formation without drying effects (Menchaca et al 2003 Colloids Surf. A 222 185). Nanoring formation strongly depends on the preparation method and parameters such as polyelectrolyte filtration, air and CO{sub 2} presence during SAPFs formation and buffer solution. A necessary condition to obtain nanorings is that polyelectrolyte solutions have to be filtered prior to injection into the liquid-cell AFM. The outer diameter of nanorings can be varied from hundreds of nanometres to microns by changing these parameters. Nanorings are stable in the liquid cell for hours but they disappear on contact with air. Additionally, carbonate ions seem to be mainly responsible for the formation of this novel structure.

  19. Nanoindentation and AFM studies of PECVD DLC and reactively sputtered Ti containing carbon films

    Indian Academy of Sciences (India)

    A Pauschitz; J Schalko; T Koch; C Eisenmenger-Sittner; S Kvasnica; Manish Roy

    2003-10-01

    Amorphous carbon film, also known as DLC film, is a promising material for tribological application. It is noted that properties relevant to tribological application change significantly depending on the method of preparation of these films. These properties are also altered by the composition of the films. In view of this, the objective of the present work is to compare the nanoindentation and atomic force microscopy (AFM) study of diamond like carbon (DLC) film obtained by plasma enhanced chemical vapour deposition (PECVD) with the Ti containing amorphous carbon (Ti/-C : H) film obtained by unbalanced magnetron sputter deposition (UMSD). Towards that purpose, DLC and Ti/-C : H films are deposited on silicon substrate by PECVD and UMSD processes, respectively. The microstructural features and the mechanical properties of these films are evaluated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), nanoindentation and by AFM. The results show that the PECVD DLC film has a higher elastic modulus, hardness and roughness than the UMSD Ti/-C : H film. It also has a lower pull off force than Ti containing amorphous carbon film.

  20. AFM nano-plough planar YBCO micro-bridges: critical currents and magnetic field effects.

    Science.gov (United States)

    Elkaseh, A A O; Perold, W J; Srinivasu, V V

    2010-10-01

    The critical current (Ic) of YBa2Cu3O7-x (YBCO) AFM plough micro-constrictions is measured as a function of temperature, width and the magnetic flux density (B), which was applied perpendicular to the YBCO ab-plane and surface of the bridges. C-axis oriented thin films of YBa2Cu3O7-x were deposited on MgO substrates using an inverted cylindrical magnetron (ICM) sputtering technique. The films were then patterned into 8-10 micron size strips, using standard photolithography and dry etching processes. Micro-bridges with widths between 1.9 microm to 4.1 microm were fabricated by using atomic force microscope (AFM) nanolithography techniques. Critical current versus temperature data shows a straight-line behavior, which is typical of constriction type Josephson junctions. The Ic versus B characteristics exhibited a modulation, and a suppression of the critical current of up to 84%. It was also found that the critical current increases with increasing constriction width.

  1. Advanced Compatibility Characterization Of AF-M315E With Spacecraft Propulsion System Materials Project

    Science.gov (United States)

    McClure, Mark B.; Greene, Benjamin

    2014-01-01

    All spacecraft require propulsion systems for thrust and maneuvering. Propulsion systems can be chemical, nuclear, electrical, cold gas or combinations thereof. Chemical propulsion has proven to be the most reliable technology since the deployment of launch vehicles. Performance, storability, and handling are three important aspects of liquid chemical propulsion. Bipropellant systems require a fuel and an oxidizer for propulsion, but monopropellants only require a fuel and a catalyst for propulsion and are therefore simpler and lighter. Hydrazine is the state of the art propellant for monopropellant systems, but has drawbacks because it is highly hazardous to human health, which requires extensive care in handling, complex ground ops due to safety and environmental considerations, and lengthy turnaround times for reusable spacecraft. All users of hydrazine monopropellant must contend with these issues and their associated costs. The development of a new monopropellant, intended to replace hydrazine, has been in progress for years. This project will apply advanced techniques to characterize the engineering properties of materials used in AF-M315E propulsion systems after propellant exposure. AF-M315E monopropellant has been selected HQ's Green Propellant Infusion Mission (GPIM) to replace toxic hydrazine for improved performance and reduce safety and health issues that will shorten reusable spacecraft turn-around time. In addition, this project will fundamentally strengthen JSC's core competency to evaluate, use and infuse liquid propellant systems.

  2. Atomic force microscopy (AFM) study of thick lamellar stacks of phospholipid bilayers

    CERN Document Server

    Schafer, Arne; Rheinstadter, Maikel C

    2007-01-01

    We report an Atomic Force Microscopy (AFM) study on thick multi lamellar stacks of approx. 10 mum thickness (about 1500 stacked membranes) of DMPC (1,2-dimyristoyl-sn-glycero-3-phoshatidylcholine) deposited on silicon wafers. These thick stacks could be stabilized for measurements under excess water or solution. From force curves we determine the compressional modulus B and the rupture force F_r of the bilayers in the gel (ripple), the fluid phase and in the range of critical swelling close to the main transition. AFM allows to measure the compressional modulus of stacked membrane systems and values for B compare well to values reported in the literature. We observe pronounced ripples on the top layer in the Pbeta' (ripple) phase and find an increasing ripple period Lambda_r when approaching the temperature of the main phase transition into the fluid Lalpha phase at about 24 C. Metastable ripples with 2Lambda_r are observed. Lambda_r also increases with increasing osmotic pressure, i.e., for different concent...

  3. Cell mechanics as a marker for diseases: Biomedical applications of AFM

    Science.gov (United States)

    Rianna, Carmela; Radmacher, Manfred

    2016-08-01

    Many diseases are related to changes in cell mechanics. Atomic Force Microscopy (AFM) is one of the most suitable techniques allowing the investigation of both topography and mechanical properties of adherent cells with high spatial resolution under physiological conditions. Over the years the use of this technique in medical and clinical applications has largely increased, resulting in the notion of cell mechanics as a biomarker to discriminate between different physiological and pathological states of cells. Cell mechanics has proven to be a biophysical fingerprint able discerning between cell phenotypes, unraveling processes in aging or diseases, or even detecting and diagnosing cellular pathologies. We will review in this report some of the works on cell mechanics investigated by AFM with clinical and medical relevance in order to clarify the state of research in this field and to highlight the role of cell mechanics in the study of pathologies, focusing on cancer, blood and cardiovascular diseases. At the request of all authors of the paper, and with the agreement of the Proceedings Editor, an updated version of this article was published on 26 September 2016. The original version supplied to AIP Publishing contained blurred figures introduced during the PDF conversion process. Moreover, Equations (5), (6), and (7) were not correctly cited in the text. These errors have been corrected in the updated and republished article.

  4. In situ AFM study of interlayer spacing during anion intercalation into HOPG in aqueous electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Alliata, D.; Koetz, R.; Haas, O.; Siegenthaler, H.

    1999-11-23

    In the context of ion transfer batteries, highly oriented pyrolytic graphite (HOPG) was studied as a model in aqueous electrolytes to elucidate the mechanism of electrochemical intercalation into graphite. The local time-dependent dimensional changes of the host material occurring during the electrochemical intercalation processes were investigated on the nanometer scale. Atomic force microscopy (AFM), combined with cyclic voltammetry, was used as an in situ analytical tool during the intercalation of perchlorate and hydrogen sulfate ions into and their expulsion from the HOPG electrodes. For the first time, a reproducible, quantitative estimate of the interlayer spacing in HOPG with intercalated perchlorate and hydrogen sulfate ions could be obtained by in situ AFM measurements. The experimental values are in agreement with theoretical expectations, only for relatively low stacks of graphene layers. After formation of stage IV, HOPG expansion upon intercalation typically amounts to 32% when tens of layers are involved but to only 14% when thousands of layers are involved. Blister formation and more dramatic changes in morphology were observed, depending on the kind of electrolyte used, at higher levels of anion intercalation.

  5. AFM Study on Interface of HTHP As-grown Diamond Single Crystal and Metallic Film

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The study for the interface of as-grown diamond and metallic film surrounding diamond is an attractive way for understanding diamond growth mechanism at high temperature and high pressure (HTHP), because it is that through the interface carbon atom groups from the molten film are transported to growing diamond surface. It is of great interest to perform atomic force microscopy (AFM) experiment, which provides a unique technique different from that of normal optical and electron microscopy studies, to observe the interface morphology. In the present paper,we report first that the morphologies obtained by AFM on the film are similar to those of corresponding diamond surface, and they are the remaining traces after the carbon groups moving from the film to growing diamond. The fine particles and a terrace structure with homogeneous average step height are respectively found on the diamond (100) and (111) surface. Diamond growth conditions show that its growth rates and the temperature gradients in the boundary layer of the molten film at HTHP result in the differences of surface morphologies on diamond planes,being rough on (100) plane and even on the (111) plane. The diamond growth on the (100) surface at HPHT could be considered as a process of unification of these diamond fine particles or of carbon atom groups recombination on the growing diamond crystal surface. Successive growth layer steps directly suggest the layer growth mechanism of the diamond (111) plane. The sources of the layer steps might be two-dimensional nuclei and dislocations.

  6. Surface characterization and AFM imaging of mixed fibrinogen-surfactant films.

    Science.gov (United States)

    Hassan, Natalia; Maldonado-Valderrama, Julia; Gunning, A Patrick; Morris, Victor J; Ruso, Juan M

    2011-05-19

    This study describes the adsorption behavior of mixed protein/surfactant systems at the air-water interface: specifically fibrinogen and the fluorinated and hydrogenated surfactants (C(8)FONa, C(8)HONa, and C(12)HONa). Surface tension techniques and atomic force microscopy (AFM) have been combined to investigate the adsorption behavior of these mixed systems. Interfacial rheology showed that fibrinogen has a low dilatational modulus at the air-water interface when compared to other proteins, suggesting the formation of a weak surface network. Fluorinated and hydrogenated surfactants severely decreased the dilatational modulus of the adsorbed fibrinogen film at the air-water interface. These measurements suggest the progressive displacement of fibrinogen from the air-water interface by both types of surfactants. However, in the case of fibrinogen/fluorinated surfactant systems, surface tension and dilatational rheology measurements suggest the formation of complexes with improved surface activity. AFM imaging of fibrinogen in the presence and absence of surfactants provided new information on the structure of mixed surface films, and revealed new features of the interaction of fibrinogen with hydrogenated and fluorinated surfactants. These studies suggest complexes formed between fibrinogen and fluorinated surfactants which are more surface active than fibrinogen, while the absence of interaction between fibrinogen and hydrogenated surfactants (C(8)HONa and C(12)HONa) results in compaction of the surface layer.

  7. Investigation of geometrical effects in the carbon allotropes manipulation based on AFM: multiscale approach

    Science.gov (United States)

    Korayem, M. H.; Hefzabad, R. N.; Homayooni, A.; Aslani, H.

    2017-01-01

    Carbon allotropes are used as nanocarriers for drug and cell delivery. To obtain an accurate result in the nanoscale, it is important to use a precise model. In this paper, a multiscale approach is presented to investigate the manipulation process of carbon allotropes based on atomic force microscopy (AFM). For this purpose, the AFM setup is separated into two parts with different sizes as macro field (MF) and nano field (NF). Using Kirchhoff's plate model, the cantilever (the main part of MF) is modeled. The molecular dynamics method is applied to model the NF part, and then the MF and NF are coupled with the multiscale algorithm. With this model, by considering the effect of size and shape, the manipulation of carbon allotropes is carried out. The manipulations of armchair CNTs and fullerenes are performed to study the diameter changing effects. The result shows that the manipulation and friction force increases by increasing the diameter. The result of the indentation depth for the armchair CNTs indicates that decreasing the diameter causes the indentation depth to reduce. Moreover, the manipulations of four kinds of carbon allotropes with the same number of atoms have been studied to investigate the geometrical effects. The shapes of these nanoparticles change from sphere to cylinder. The results illustrate that the manipulation and the friction force decrease as the nanoparticle shape varies from sphere to cylinder. The Von-Mises results demonstrate that by changing the nanoparticle shape from the spherical to the cylindrical form, the stress increases, although the manipulation force reduces.

  8. Nanopuller-open data acquisition platform for AFM force spectroscopy experiments.

    Science.gov (United States)

    Pawlak, Konrad; Strzelecki, Janusz

    2016-05-01

    Atomic Force Microscope (AFM) is a widely used tool in force spectroscopy studies. Presently, this instrument is accessible from numerous vendors, albeit commercial solutions are expensive and almost always hardware and software closed. Approaches for open setups were published, as with modern low cost and readily available piezoelectric actuators, data acquisition interfaces and optoelectronic components building such force spectroscopy AFM is relatively easy. However, suitable software to control such laboratory made instrument was not released. Developing it in the lab requires significant time and effort. Our Nanopuller software described in this paper is intended to eliminate this obstacle. With only minimum adjustments this program can be used to control and acquire data with any suitable National Instruments universal digital/analog interface and piezoelectric actuator analog controller, giving significant freedom and flexibility in designing force spectroscopy experiment. Since the full code, written in a graphical LabVIEW environment is available, our Nanopuller can be easily customized. In this paper we describe the program and test its performance in controlling different setups. Successful and accurate force curve acquisition for standard samples (single molecules of I27O reference titin polyprotein and DNA as well as red blood cells) is shown.

  9. AFM Studies of Salt Concentration Effects on the (110) Surface Structure of Tetragonal Lysozyme Crystals

    Science.gov (United States)

    Pusey, Marc Lee; Gorti, Sridhar; Forsythe, Elizabeth; Konnert, John

    2002-01-01

    Previous high resolution AFM studies of the (110) surface of tetragonal chicken egg white lysozyme crystals had shown that only one of two possible molecular surfaces is present, those constituting the completed 43 helices. These suggested that the crystal growth process was by the solution-phase assembly of the growth units, which then attach to the surface. However, the best fit for the imaged surfaces, vs. those predicted based upon the bulk crystallographic coordinates, were obtained when the packing about the 43 helices was "tightened up", while maintaining the underlying crystallographic unit cell spacing. This results in a widening of the gap between adjacent helices, and the top- most layer(s) may no longer be in contact. We postulated that the tightened packing about the helices is a result of the high salt concentrations in the bulk solution, used to crystallize the protein, driving hydrophobic interactions. Once the crystal surface is sufficiently buried by subsequent growth layers the ratio of salt to protein molecules decreases and the helices relax to their bulk crystallographic coordinates. The crystal surface helix structure is thus a reflection of the solution structure, and the tightness of the packing about the 43 helices would be a function of the bulk salt concentration. AFM images of the (110) surface of tetragonal lysozyme crystals grown under low (2%) and high (5%) NaCl concentrations reveal differences in the packing about the 43 helices consistent with the above proposal.

  10. AFM Surface Roughness and Topography Analysis of Lithium Disilicate Glass Ceramic

    Directory of Open Access Journals (Sweden)

    M. Pantić

    2015-12-01

    Full Text Available The aim of this study is presenting AFM analysis of surface roughness of Lithium disilicate glass ceramic (IPS e.max CAD under different finishing procedure (techniques: polishing, glazing and grinding. Lithium disilicate glass ceramics is all-ceramic dental system which is characterized by high aesthetic quality and it can be freely said that properties of material provide all prosthetic requirements: function, biocompatibility and aesthetic. Experimental tests of surface roughness were investigated on 4 samples with dimensions: 18 mm length, 14 mm width and 12 mm height. Contact surfaces of three samples were treated with different finishing procedure (polishing, glazing and grinding, and the contact surface of the raw material is investigated as a fourth sample. Experimental measurements were done using the Atomic Force Microscopy (AFM of NT-MDT manufacturers, in the contact mode. All obtained results of different prepared samples are presented in the form of specific roughness parameters (Rа, Rz, Rmax, Rq and 3D surface topography.

  11. XPS and AFM analysis of antifouling PEG interfaces for microfabricated silicon biosensors.

    Science.gov (United States)

    Sharma, Sadhana; Johnson, Robert W; Desai, Tejal A

    2004-09-15

    In the past two decades, the biological and medical fields have seen great advances in the development of biosensors capable of quantifying biomolecules. Many of these biosensors have micro- and nano-scale features, are fabricated using biochip technology, and use silicon as a base material. The creation of antifouling sensor interfaces is critical to avoid serious consequences that arise due to their contact with biological fluids. To this end, we have created thin PEG interfaces of various grafting densities on silicon using a single-step PEG-silane coupling reaction scheme. Initial PEG concentration (5-50 mM) and coupling time (0.5-24 h) were varied to attain different grafting densities, and different PEG interfaces so created were analyzed using XPS and AFM. Furthermore, all the PEG interfaces were evaluated using XPS and AFM for their antifouling abilities using fibrinogen as the model protein. Results indicated that PEG interfaces created in this investigation are appropriate for biosensors with micro- and nano-scale features, and are efficient in controlling protein fouling.

  12. Nanobiosensors Based on Chemically Modified AFM Probes: A Useful Tool for Metsulfuron-Methyl Detection

    Directory of Open Access Journals (Sweden)

    Fabio L. Leite

    2013-01-01

    Full Text Available The use of agrochemicals has increased considerably in recent years, and consequently, there has been increased exposure of ecosystems and human populations to these highly toxic compounds. The study and development of methodologies to detect these substances with greater sensitivity has become extremely relevant. This article describes, for the first time, the use of atomic force spectroscopy (AFS in the detection of enzyme-inhibiting herbicides. A nanobiosensor based on an atomic force microscopy (AFM tip functionalised with the acetolactate synthase (ALS enzyme was developed and characterised. The herbicide metsulfuron-methyl, an ALS inhibitor, was successfully detected through the acquisition of force curves using this biosensor. The adhesion force values were considerably higher when the biosensor was used. An increase of ~250% was achieved relative to the adhesion force using an unfunctionalised AFM tip. This considerable increase was the result of a specific interaction between the enzyme and the herbicide, which was primarily responsible for the efficiency of the nanobiosensor. These results indicate that this methodology is promising for the detection of herbicides, pesticides, and other environmental contaminants.

  13. Adsorption of albumin and sodium hyaluronate on UHMWPE: a QCM-D and AFM study.

    Science.gov (United States)

    Serro, A P; Degiampietro, K; Colaço, R; Saramago, B

    2010-06-15

    The biotribological properties of artificial joints, in particular the efficiency of the lubrication, strongly determine their lifetime. The most commonly used artificial joints combine a metallic or ceramic part articulating against a ultra high molecular weight polyethylene (UHMWPE) counterface, and are lubricated by the periprosthetic fluid. This fluid contains several macromolecules, namely albumin and sodium hyaluronate (NaHA), that are known to be involved in the lubrication process. There are several studies in the literature concerning the interaction of the referred macromolecules with ceramic or metallic prosthetic materials. However, to our knowledge, information about their binding to the polymeric surface is practically inexistent. The objective of this work is to contribute to clarify the role played by albumin and NaHA on the biolubrication process, through the investigation of their interaction with the UHMWPE surface. The study involves adsorption measurements using a quartz crystal microbalance with dissipation (QCM-D), the characterization of the adsorbed films by atomic force microscopy (AFM) and wettability determinations. Albumin was found to adsorb strongly and extensively to the polymer, while NaHA led to a very low adsorption. In both cases rigid films were obtained, but with different morphology and porosity. The high binding affinity of the protein to the polymer was demonstrated both by the results of the fittings to Langmuir and Freundlich models and by the values of the adhesion forces determined by AFM. In the simultaneous adsorption of albumin and NaHA, protein adsorption is predominant and determines the surface properties.

  14. Dynamic response of AFM cantilevers to dissimilar functionalized silica surfaces in aqueous electrolyte solutions.

    Science.gov (United States)

    Wu, Yan; Misra, Sambit; Karacor, M Basar; Prakash, Shaurya; Shannon, Mark A

    2010-11-16

    The dynamic response of an oscillating microcantilever with a gold-coated tip interacting with dissimilar functionalized silica surfaces was studied in electrolyte solutions with pH ranging from 4 to 9. Silica surfaces were chemically modified, yielding dissimilar surfaces with -Br, -NH(2), and -CH(3) functional group terminations. The relative hydrophobicity of the surfaces was characterized by contact angle measurements. The surface charge of the functionalized surfaces was first probed with commonly used static AFM measurements and serves as a reference to the dynamic response data. The amplitude and phase of the cantilever oscillation were monitored and used to calculate the effective interaction stiffness and damping coefficient, which relate to the electrical double layer interactions and also to distance-dependent hydrodynamic damping at the solid/water interface. The data for the dynamic response of the AFM over silica surfaces as a function of chemical functionalization and electrolyte pH show that the effective stiffness has a distinctive dependence on the surface charge of functionalized silica surfaces. The hydrodynamic damping also correlates strongly with the relative hydrophobicity of the surface. The data reported here indicate that interfacial properties can be strongly affected by changing the chemical composition of surfaces.

  15. Nitrogen ion implantation on stainless steel: AFM study of surface modification

    Energy Technology Data Exchange (ETDEWEB)

    Chico, B. [Dpto. Ingenieria de Materiales, Degradacion y Durabilidad, Centro Nacional de Investigaciones Metalurgicas (CENIM), CSIC, Avda. Gregorio del Amo, 8, 28040 Madrid (Spain)]. E-mail: bchico@cenim.csic.es; Martinez, L. [Dpto. Ciencia de los Materiales e Ingenieria Metalurgica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, Ciudad Universitaria, 28040 Madrid (Spain); Perez, F.J. [Dpto. Ciencia de los Materiales e Ingenieria Metalurgica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, Ciudad Universitaria, 28040 Madrid (Spain)

    2005-04-30

    This work presents a study by means of atomic force microscopy (AFM) of the modification of the surface topography of AISI 304 austenitic stainless steel after N-ion implantation, irradiated by 1 x 10{sup 15} N{sub 2}{sup +}/cm{sup 2} at 80 keV. Prior to the implantation surface modification, the samples were electropolished for the optimum observation of the surface at a small scale to obtain an initial surface with the smaller roughness. The electrolytic bath was composed of a mixture of water/sulphuric acid/orthophosphoric acid in percentages 20, 20 and 60%, respectively. Once the surface was optimized, the samples were implanted and observed by AFM, a new technique whose importance relies on its resolution power, allowing the acquisition of topographic images of the surface with nanometric resolution. Thanks to the high resolution power could be observed that ion implantation increases the surface roughness and promotes the apparition of 3 {mu}m wide and 10 nm depth craters as well as the apparition of products with singular morphology.

  16. Enamel crystals of mice susceptible or resistant to dental fluorosis: an AFM study

    Directory of Open Access Journals (Sweden)

    Marília Afonso Rabelo BUZALAF

    2014-06-01

    Full Text Available Objective: This study aimed to assess the overall apatite crystals profile in the enamel matrix of mice susceptible (A/J strain or resistant (129P3/J strain to dental fluorosis through analyses by atomic force microscopy (AFM. Material and Methods: Samples from the enamel matrix in the early stages of secretion and maturation were obtained from the incisors of mice from both strains. All detectable traces of matrix protein were removed from the samples by a sequential extraction procedure. The purified crystals (n=13 per strain were analyzed qualitatively in the AFM. Surface roughness profile (Ra was measured. Results: The mean (±SD Ra of the crystals of A/J strain (0.58±0.15 nm was lower than the one found for the 129P3/J strain (0.66±0.21 nm but the difference did not reach statistical significance (t=1.187, p=0.247. Crystals of the 129P3/J strain (70.42±6.79 nm were found to be significantly narrower (t=4.013, p=0.0013 than the same parameter measured for the A/J strain (90.42±15.86 nm. Conclusion: enamel crystals of the 129P3/J strain are narrower, which is indicative of slower crystal growth and could interfere in the occurrence of dental fluorosis.

  17. AFM studies of cellular mechanics during osteogenic differentiation of human amniotic fluid-derived stem cells.

    Science.gov (United States)

    Chen, Qian; Xiao, Pan; Chen, Jia-Nan; Cai, Ji-Ye; Cai, Xiao-Fang; Ding, Hui; Pan, Yun-Long

    2010-01-01

    Amniotic fluid-derived stem cells (AFSCs) are becoming an important source of cells for regenerative medicine given with apparent advantages of accessibility, renewal capacity and multipotentiality. In this study, the mechanical properties of human amniotic fluid-derived stem cells (hAFSCs), such as the average Young's modulus, were determined by atomic force microscopy (3.97 ± 0.53 kPa for hAFSCs vs. 1.52 ± 0.63 kPa for fully differentiated osteoblasts). These differences in cell elasticity result primarily from differential actin cytoskeleton organization in these two cell types. Furthermore, ultrastructures, nanostructural details on the surface of cell, were visualized by atomic force microscopy (AFM). It was clearly shown that surface of osteoblasts were covered by mineralized particles, and the histogram of particles size showed that most of the particles on the surface of osteoblasts distributed from 200 to 400 nm in diameter, while the diameter of hAFSCs particles ranged from 100 to 200 nm. In contrast, there were some dips on the surface of hAFSCs, and particles were smaller than that of osteoblasts. Additionally, as osteogenic differentiation of hAFSCs progressed, more and more stress fibers were replaced by a thinner actin network which is characteristic of mature osteoblasts. These results can improve our understanding of the mechanical properties of hAFSCs during osteogenic differentiation. AFM can be used as a powerful tool for detecting ultrastructures and mechanical properties.

  18. Microstructure of plastic zones around crack tips in silicon revealed by HVEM and AFM

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Masaki; Higashida, Kenji; Haraguchi, Tomoko

    2004-12-15

    In order to understand the dislocation process for the sharp brittle-to-ductile transition in silicon crystals, microstructures of plastic zones around crack tips have been investigated using high-voltage electron microscopy (HVEM) and atomic force microscopy (AFM). Cracks were introduced into {l_brace}1 1 0{r_brace} silicon wafers at room temperature by Vickers indentation method. The temperature of specimens indented was raised to higher than 823 K to activate dislocation sources around a crack tip under the presence of residual stress due to the indentation. The crack observed was extending along the <1 1 0> direction from the edge of the indent. AFM study has revealed two types of fine slip bands around the crack tip: one type of slip bands is those parallel to <1 1 2>, and another type is those parallel to the <1 1 0> direction. The former is corresponding to so-called hinge-type plastic zone, and the latter is 45 deg.-shear-type. HVEM study has revealed the characteristics of dislocation structures corresponding to the both types of plastic zones. Detailed analyses of each dislocation, including the determination of the sign of Burgers vector, have been made to characterize those plastic zones.

  19. Tracer kinetic modeling of [(11)C]AFM, a new PET imaging agent for the serotonin transporter.

    Science.gov (United States)

    Naganawa, Mika; Nabulsi, Nabeel; Planeta, Beata; Gallezot, Jean-Dominique; Lin, Shu-Fei; Najafzadeh, Soheila; Williams, Wendol; Ropchan, Jim; Labaree, David; Neumeister, Alexander; Huang, Yiyun; Carson, Richard E

    2013-12-01

    [(11)C]AFM, or [(11)C]2-[2-(dimethylaminomethyl)phenylthio]-5-fluoromethylphenylamine, is a new positron emission tomography (PET) radioligand with high affinity and selectivity for the serotonin transporter (SERT). The purpose of this study was to determine the most appropriate kinetic model to quantify [(11)C]AFM binding in the healthy human brain. Positron emission tomography data and arterial input functions were acquired from 10 subjects. Compartmental modeling and the multilinear analysis-1(MA1) method were tested using the arterial input functions. The one-tissue model showed a lack of fit in low-binding regions, and the two-tissue model failed to estimate parameters reliably. Regional time-activity curves were well described by MA1. The rank order of [(11)C]AFM binding potential (BPND) matched well with the known regional SERT densities. For routine use of [(11)C]AFM, several noninvasive methods for quantification of regional binding were evaluated, including simplified reference tissue models (SRTM and SRTM2), and multilinear reference tissue models (MRTM and MRTM2). The best methods for region of interest (ROI) analysis were MA1, MRTM2, and SRTM2, with fixed population kinetic values ( or b') for the reference methods. The MA1 and MRTM2 methods were best for parametric imaging. These results showed that [(11)C]AFM is a suitable PET radioligand to image and quantify SERT in humans.

  20. Cellular mechanoadaptation to substrate mechanical properties: contributions of substrate stiffness and thickness to cell stiffness measurements using AFM.

    Science.gov (United States)

    Vichare, Shirish; Sen, Shamik; Inamdar, Mandar M

    2014-02-28

    Mechanosensing by adherent cells is usually studied by quantifying cell responses on hydrogels that are covalently linked to a rigid substrate. Atomic force microscopy (AFM) represents a convenient way of characterizing the mechanoadaptation response of adherent cells on hydrogels of varying stiffness and thickness. Since AFM measurements reflect the effective cell stiffness, therefore, in addition to measuring real cytoskeletal alterations across different conditions, these measurements might also be influenced by the geometry and physical properties of the substrate itself. To better understand how the physical attributes of the gel influence AFM stiffness measurements of cells, we have used finite element analysis to simulate the indentation of cells of various spreads resting on hydrogels of varying stiffness and thickness. Consistent with experimental results, our simulation results indicate that for well spread cells, stiffness values are significantly over-estimated when experiments are performed on cells cultured on soft and thin gels. Using parametric studies, we have developed scaling relationships between the effective stiffness probed by AFM and the bulk cell stiffness, taking cell and tip geometry, hydrogel properties, nuclear stiffness and cell contractility into account. Finally, using simulated mechanoadaptation responses, we have demonstrated that a cell stiffening response may arise purely due to the substrate properties. Collectively, our results demonstrate the need to take hydrogel properties into account while estimating cell stiffness using AFM indentation.

  1. Direct observation of hydration of TiO 2 on Ti using electrochemical AFM: freely corroding versus potentiostatically held

    Science.gov (United States)

    Bearinger, Jane P.; Orme, Christine A.; Gilbert, Jeremy L.

    2001-10-01

    Hydration of titanium/titanium oxide surfaces under freely corroding and potentiostatically held conditions has been characterized using electrochemical atomic force microscopy (EC AFM). In contrast to conventional high vacuum techniques, AFM enables measurement of morphological surface structure in the in situ hydrated state. Electrochemical probes in the imaging environment further enable acquisition of electrical characteristics during AFM imaging. Experiments were performed on etched, electropolished commercially pure titanium. As noted by direct observation and corroborated by power spectral density (Fourier analysis) measurements, oxide domes cover the titanium surface and grow laterally during hydration. Applied potential altered the growth rate. Under open circuit potential conditions, growth proceeded approximately six times faster than under a -1 V applied voltage ( 1098±52 nm2/ min ± versus 184.84±19 nm2/min). Film growth increased electrical resistance and lowered interfacial capacitance based on step polarization impedance spectroscopy tests.

  2. Towards quantitative molecular mapping of cells by Raman microscopy: using AFM for decoupling molecular concentration and cell topography.

    Science.gov (United States)

    Boitor, Radu; Sinjab, Faris; Strohbuecker, Stephanie; Sottile, Virginie; Notingher, Ioan

    2016-06-23

    Raman micro-spectroscopy (RMS) is a non-invasive technique for imaging live cells in vitro. However, obtaining quantitative molecular information from Raman spectra is difficult because the intensity of a Raman band is proportional to the number of molecules in the sampled volume, which depends on the local molecular concentration and the thickness of the cell. In order to understand these effects, we combined RMS with atomic force microscopy (AFM), a technique that can measure accurately the thickness profile of the cells. Solution-based calibration models for RNA and albumin were developed to create quantitative maps of RNA and proteins in individual fixed cells. The maps were built by applying the solution-based calibration models, based on partial least squares fitting (PLS), on raster-scan Raman maps, after accounting for the local cell height obtained from the AFM. We found that concentrations of RNA in the cytoplasm of mouse neuroprogenitor stem cells (NSCs) were as high as 25 ± 6 mg ml(-1), while proteins were distributed more uniformly and reached concentrations as high as ∼50 ± 12 mg ml(-1). The combined AFM-Raman datasets from fixed cells were also used to investigate potential improvements for normalization of Raman spectral maps. For all Raman maps of fixed cells (n = 10), we found a linear relationship between the scores corresponding to the first component (PC1) and the cell height profile obtained by AFM. We used PC1 scores to reconstruct the relative height profiles of independent cells (n = 10), and obtained correlation coefficients with AFM maps higher than 0.99. Using this normalization method, qualitative maps of RNA and protein were used to obtain concentrations for live NSCs. While this study demonstrates the potential of using AFM and RMS for measuring concentration maps for individual NSCs in vitro, further studies are required to establish the robustness of the normalization method based on principal component analysis when comparing

  3. AFM Calculated Parameters of Morphology Investigation of Spin Coated MZO (M = Al, Sn, Cd, Co Layers

    Directory of Open Access Journals (Sweden)

    M. Benhaliliba

    2015-12-01

    Full Text Available This paper reports on the deposition and surface properties of the pure and doped zinc oxide layers produced by spin coating route. Pure and metallic (Al, Sn, Cd, Co doped ZnO films are characterized by mean of atomic force microscopy (AFM. Based on atomic force microscope observation, some parameters such as grain size, height, orientation of angle and histogram are determined. The AFM scanned 2D and 3D-views permit us to discover the roughness, the average height and the skewness of clusters or grains.

  4. Influence of the SHI Irradiation on the XRD, AFM, and Electrical Properties of CdSe Thin Films

    OpenAIRE

    Rajesh Singh; Radha Srinivasan

    2016-01-01

    Cadmium Selinide (CdSe) thin films prepared by thermal evaporation on glass substrates were irradiated with swift (100 MeV) Ni+7 ions at fluences of 1 × 1011 and 1 × 1012 cm – 2. The structural changes with respect to increasing fluence were observed by the means of X-ray diffraction (XRD). The modification in surface morphology and electrical properties has been analyzed as a function of fluence using XRD, AFM and I-V techniques. The AFM micrographs of irradiated thin films show the formatio...

  5. A new approach of recognition of ellipsoidal micro- and nanoparticles on AFM images and determination of their sizes

    Science.gov (United States)

    Akhmadeev, Albert A.; Salakhov, Myakzyum Kh

    2016-10-01

    In this work we develop an approach of automatic recognition of ellipsoidal particles on the atomic force microscopy (AFM) image and determination of their size, which is based on image segmentation and the surface approximation by ellipsoids. In addition to the comparative simplicity and rapidity of processing, this method allows us to determine the size of particles, the surface of which is not completely visible on the image. The proposed method showed good results on simulated images including noisy ones. Using this algorithm the size distributions of silica particles on experimental AFM images have been determined.

  6. Investigation of Oxidation Profile in PMR-15 Polyimide using Atomic Microscope (AFM)

    Science.gov (United States)

    Meador, Mary Ann B.; Johnson, Lili L.; Eby, R. K.

    2002-01-01

    Nanoindentation measurements are made on thermosetting materials using cantiever deflection vs. piezoelectric scanner position behavior determined by AFM. The spring model is used to determine mechanical properties of materials. The generalized Sneddon's equation is utilized to calculate Young's moduli for thermosetting materials at ambient conditions. Our investigations show that the force-penetration depth curves during unloading in these materials can be described accurately by a power law relationship. The results show that the accuracy of the measurements can be controlled within 7%. The above method is used to study oxidation profiles in Pl\\1R-15 polyimide. The thermo-mechanical profiles ofPNIR-15 indicate that the elastic modulus at the surface portion of the specimen is different from that at the interior of the material. It is also shown that there are two zones within the oxidized portion of the samples. Results confirm that the surface layer and the core material have substantially different properties.

  7. AFM Study on Reliability of Nanoscale DLC Films Deposited by ECR-MPCVD

    Institute of Scientific and Technical Information of China (English)

    ZHU Shou-xing; ZHU Shi-gen; DING Jian-ning

    2004-01-01

    Nanoindentation, scratch and wear tests based on an atomic force microscope (AFM) were carried out to study the reliability of diamond-like carbon (DLC) films, deposited by electron cyclotron resonance microwave plasma chemical vapor deposition (ECR-MPCVD). The predictors for film reliability were given to investigate the resistance of DLC films to indent, scratch, and wear. Experimental results showed that the films at 64.9nm and 12.07nm exhibited better reliability than thin one at 2.78nm, 4.48nm. In addition, the reliability strength of films above 12.07nm went stable, and the films showed good performance of anti-indentation, anti-scratch and anti-wear. Finally, size effect of nanoscale monolayer film was introduced to explain the reliability of nanoscale DLC films.

  8. Quantitative multichannel NC-AFM data analysis of graphene growth on SiC(0001

    Directory of Open Access Journals (Sweden)

    Christian Held

    2012-02-01

    Full Text Available Noncontact atomic force microscopy provides access to several complementary signals, such as topography, damping, and contact potential. The traditional presentation of such data sets in adjacent figures or in colour-coded pseudo-three-dimensional plots gives only a qualitative impression. We introduce two-dimensional histograms for the representation of multichannel NC-AFM data sets in a quantitative fashion. Presentation and analysis are exemplified for topography and contact-potential data for graphene grown epitaxially on 6H-SiC(0001, as recorded by Kelvin probe force microscopy in ultrahigh vacuum. Sample preparations by thermal decomposition in ultrahigh vacuum and in an argon atmosphere are compared and the respective growth mechanisms discussed.

  9. On the control of bistability in non-contact mode AFM using modulated time delay

    Directory of Open Access Journals (Sweden)

    Kirrou I.

    2014-01-01

    Full Text Available We study the control of bistability in non-contact mode AFM using time delay with modulated feedback gain. We consider that the tip-sample interaction force is described by Lennard-Jones potential and the equation of motion is modeled by single degree of freedom system. Perturbation analysis is performed to obtain the modulation equations of the slow dynamic. The influence of the modulated time delay on the nonlinear characteristic of the frequency response is analyzed and the evolution of the bistability region in the modulated time delay parameter plan is examined. Results show that modulation of the feedback gain can be used to reduce the amplitude of the microcanteliver response and to suppress the bistability regime in large region of the modulated delay parameter space. The analytical predictions are compared to numerical simulations for validation.

  10. AFM显微图像Gabor滤波增强%AFM Micrograph Enhancement Using Gabor Filtering

    Institute of Scientific and Technical Information of China (English)

    雷跃荣; 孙兴波

    2007-01-01

    提出了多尺度多方向Gabor滤波自适应融合的图像增强方法.使用特定不同方向不同尺度的Gabor滤波器与图像卷积,卷积图像进行规格化,通过取极小值和平均值对多通道图像Gabor滤波结果进行自适应融合,得到增强图像.将其用于原子力显微镜(AFM)显微图像增强,能有效消除阴影和噪声,获得了良好效果.

  11. Charge dependent asphaltene adsorption onto metal substrate : electrochemistry and AFM, STM, SAM, SEM analysis

    Energy Technology Data Exchange (ETDEWEB)

    Batina, N.; Morales-Martinez, J. [Univ. Autonoma Metropolitana-Iztapalapa (Mexico). Lab. de Nanotecnologia e Ingenieria Molecular; Ivar-Andersen, S. [Technical Univ. of Denmark (Denmark). Dept. Hem. Eng; Lira-Galeana, C. [Inst. Mexicano del Petroleo, Lazaro (Mexico). Molecular Simulation Research Program; De la Cruz-Hernandez, W.; Cota-Araiza, L.; Avalos-Borja, M. [Univ. Nacional Autonoma de Mexico (Mexico)

    2008-07-01

    Asphaltenes have been identified as the main component of pipeline molecular deposits that cause plugging of oil wells. In this study, Atomic Force Microscopy (AFM), Scanning Tunneling Microscopy (STM), Scanning Auger Microprobe Spectroscopy (SAM) and Scanning Electron Microscopy (SEM) were used to characterized molecular deposits of Mexican crude oil and asphaltenes formed at a charged metal surface. The qualitative and quantitative characterization involved determining the size and shape of adsorbed molecules and aggregates, and the elemental analysis of all components in molecular films. Samples were prepared by electrolytic deposition under galvanostatic or potentiostatic conditions directly from the crude oil or asphaltene in toluene solutions. The study showed that the formation of asphaltene deposit depends on the metal substrate charge. Asphaltenes as well as crude oil readily adsorbed at the negatively charged metal surface. Two elements were present, notably carbon and sulfur. Their content ratio varied depending on the metal substrate charge.

  12. Analysis of air adsorptive on solid surfaces by AFM and XPS

    Institute of Scientific and Technical Information of China (English)

    WANG Rong-guang; Mitsuo KIDO

    2006-01-01

    Solid surfaces of HOPG,pure copper,chromium,zinc,copper and SUS304 steel were observed in ambient air with an a.c. non-contact mode of atomic force microscope(AFM). A type of film-like-domains (adsorptive) was detected on the above surfaces. The thickness of the adsorptive was about 1.2-2.4 nm in this case. The film-like-adsorptive was confirmed to be a liquid layer by the static contact-mode scanning,the measurement of the elasticity and viscosity images,and the detection of the condensation/ evaporation phenomena when the relative humidity changed. The liquid layer is considered to be condensed water covered with organic contaminant.

  13. Nano-Workbench: A Combined Hollow AFM Cantilever and Robotic Manipulator

    Directory of Open Access Journals (Sweden)

    Héctor Hugo Pérez Garza

    2015-05-01

    Full Text Available To manipulate liquid matter at the nanometer scale, we have developed a robotic assembly equipped with a hollow atomic force microscope (AFM cantilever that can handle femtolitre volumes of liquid. The assembly consists of four independent robots, each sugar cube sized with four degrees of freedom. All robots are placed on a single platform around the sample forming a nano-workbench (NWB. Each robot can travel the entire platform and has a minimum position resolution of 5 nm both in-plane and out-of-plane. The cantilever chip was glued to the robotic arm. Dispensing was done by the capillarity between the substrate and the cantilever tip, and was monitored visually through a microscope. To evaluate the performance of the NWB, we have performed three experiments: clamping of graphene with epoxy, mixing of femtolitre volume droplets to synthesize gold nanoparticles and accurately dispense electrolyte liquid for a nanobattery.

  14. Dynamics of a disturbed sessile drop measured by atomic force microscopy (AFM).

    Science.gov (United States)

    McGuiggan, Patricia M; Grave, Daniel A; Wallace, Jay S; Cheng, Shengfeng; Prosperetti, Andrea; Robbins, Mark O

    2011-10-04

    A new method for studying the dynamics of a sessile drop by atomic force microscopy (AFM) is demonstrated. A hydrophobic microsphere (radius, r ∼ 20-30 μm) is brought into contact with a small sessile water drop resting on a polytetrafluoroethylene (PTFE) surface. When the microsphere touches the liquid surface, the meniscus rises onto it because of capillary forces. Although the microsphere volume is 6 orders of magnitude smaller than the drop, it excites the normal resonance modes of the liquid interface. The sphere is pinned at the interface, whose small (drop volumes between 5 and 200 μL. The results for the two lowest normal modes are quantitatively consistent with continuum calculations for the natural frequency of hemispherical drops with no adjustable parameters. The method may enable sensitive measurements of volume, surface tension, and viscosity of small drops.

  15. Simultaneous topographic and amperometric membrane mapping using an AFM probe integrated biosensor.

    Science.gov (United States)

    Stanca, Sarmiza Elena; Csaki, Andrea; Urban, Matthias; Nietzsche, Sandor; Biskup, Christoph; Fritzsche, Wolfgang

    2011-02-15

    The investigation of the plasma membrane with intercorrelated multiparameter techniques is a prerequisite for understanding its function. Presented here, is a simultaneous electrochemical and topographic study of the cell membrane using a miniaturized amperometric enzymatic biosensor. The fabrication of this biosensor is also reported. The biosensor combines a scanning force microscopy (AFM) gold-coated cantilever and an enzymatic transducer layer of peroxidases (PODs). When these enzymes are brought in contact with the substrate, the specific redox reaction produces an electric current. The intensity of this current is detected simultaneously with the surface imaging. For sensor characterization, hydroquinone-2-carboxylic acid (HQ) is selected as an intrinsic source of H(2)O(2). HQ has been electrochemically regenerated by the reduction of antraquinone-2-carboxylic acid (AQ). The biosensor reaches the steady state value of the current intensity in 1 ± 0.2s.

  16. Mapping nanoscale elasticity and dissipation using dual frequency contact resonance AFM

    Energy Technology Data Exchange (ETDEWEB)

    Gannepalli, A; Proksch, R [Asylum Research, Santa Barbara, CA (United States); Yablon, D G; Tsou, A H, E-mail: ganil@asylumresearch.com [Corporate Strategic Research, ExxonMobil Research and Engineering, Annandale, NJ (United States)

    2011-09-02

    We report on a technique that simultaneously quantifies the contact stiffness and dissipation of an AFM cantilever in contact with a surface, which can ultimately be used for quantitative nanomechanical characterization of surfaces. The method is based on measuring the contact resonance frequency using dual AC resonance tracking (DART), where the amplitude and phase of the cantilever response are monitored at two frequencies on either side of the contact resonance. By modelling the tip-sample contact as a driven damped harmonic oscillator, the four measured quantities (two amplitudes and two phases) allow the four model parameters, namely, drive amplitude, drive phase, resonance frequency and quality factor, to be calculated. These mechanical parameters can in turn be used to make quantitative statements about localized sample properties. We apply the method to study the electromechanical coupling coefficients in ferroelectric materials and the storage and loss moduli in viscoelastic materials.

  17. Characterization of human ovarian teratoma hair by using AFM, FT-IR, and Raman spectroscopy.

    Science.gov (United States)

    Kim, Kyung Sook; Lee, Jinwoo; Jung, Min-Hyung; Choi, Young Joon; Park, Hun-Kuk

    2011-12-01

    The structural, physical, and chemical properties of hair taken from an ovarian teratoma (teratoma hair) was first examined by atomic force microscopy (AFM), Fourier transform infrared (FT-IR), and Raman spectroscopy. The similarities and differences between the teratoma hair and scalp hair were also investigated. Teratoma hair showed a similar morphology and chemical composition to scalp hair. Teratoma hair was covered with a cuticle in the same manner as scalp hair and showed the same amide bonding modes as scalp hair according to FT-IR and Raman spectroscopy. On the other hand, teratoma hair showed different physical properties and cysteic acid bands from scalp hair: the surface was rougher and the adhesive force was lower than the scalp hair. The cystine oxides modes did not change with the position unlike scalp hair. These differences can be understood by environmental effects not by the intrinsic properties of the teratoma hair.

  18. Nanomechanical characterization of nanostructured bainitic steel: Peak Force Microscopy and Nanoindentation with AFM

    Science.gov (United States)

    Morales-Rivas, Lucia; González-Orive, Alejandro; Garcia-Mateo, Carlos; Hernández-Creus, Alberto; Caballero, Francisca G.; Vázquez, Luis

    2015-01-01

    The full understanding of the deformation mechanisms in nanostructured bainite requires the local characterization of its mechanical properties, which are expected to change from one phase, bainitic ferrite, to another, austenite. This study becomes a challenging process due to the bainitic nanostructured nature and high Young’s modulus. In this work, we have carried out such study by means of the combination of AFM-based techniques, such as nanoindentation and Peak Force Quantitative Nanomechanical Mapping (PF-QNM) measurements. We have addressed critically the limits and advantages of these techniques and been able to measure some elastoplastic parameters of both phases. Specifically, we have analyzed by PF-QNM two nanostructured bainitic steels, with a finer and a coarser structure, and found that both phases have a similar Young’s modulus. PMID:26602631

  19. BOREAS AFM-6 NOAA/ETL 35 GHz Cloud/Turbulence Radar GIF Images

    Science.gov (United States)

    Martner, Brooks E.; Newcomer, Jeffrey A. (Editor); Hall, Forrest G.; Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-6 team from the National Oceanic and Atmospheric Administration/Environment Technology Laboratory (NOAA/ETL) operated a 35-GHz cloud-sensing radar in the Northern Study Area (NSA) near the Old Jack Pine (OJP) tower from 16 Jul 1994 to 08 Aug 1994. This data set contains a time series of GIF images that show the structure of the lower atmosphere. The NOAA/ETL 35-GHz cloud/turbulence radar GIF images are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  20. Investigation of the 6H-SiC (0001) surface by AFM

    Institute of Scientific and Technical Information of China (English)

    Shouzhen Jiang; Guangwei Yu; Yingmin Wang; Xiaobo Hu; Xiangang Xu; Minhua Jiang

    2008-01-01

    Micropipe and step structures on 6H-SiC (0001) surface were investigated by an atomic force microscopy (AFM). On the facet, all micropipes examined are the origins of spiral steps, indicating that dislocations intersect the surface at these points. Micro-pipes are empty-core super-dislocations as originally described by Frank. The micropipe radius increases with the square of the dis-location Burgers vector. From the center to the periphery, step structures change with different surface inehnations. Regular step is observed within the central faceted area. Step bunching and atomically rough surfaces are observed within the peripheral convex area.If the inclination with respect to the (0001) plane is large enough, step bunching of 15R-SiC can be observed.

  1. The experimental rules of mica as a reference sample of AFM/FFM measurement

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    For the friction measurements with AFM/FFM, usually the relativevalues of friction signal can be obtained. In order to compare the micro-tribological properties of different samples, mica is often used as an reference sample for friction measurement. However, due to the friction force of new cleaved mica surface is unstable, it is urged to systematically investigate the tribological properties of mica to design the experimental rules of the reference sample mica for friction measurements. Experimental results show that the friction of mica varies with the cleaving time, humidity and surface state of tip. The friction measured with different tips on mica varies in the range of ± 15%. For a new tip, the friction increases with the tip’s wear and then becomes stable. For new cleaved mica, the friction increases within the first two hours and then keeps unchanged. The friction of mica also decreases with the relative humidity because of its hydrophilicity.

  2. Pulse gas alignment and AFM manipulation of single-wall carbon nanotube

    Institute of Scientific and Technical Information of China (English)

    TIAN XiaoJun; WANG YueChao; XI Ning; DONG ZaiLi; TUNG Steve

    2008-01-01

    In the fabrication process of nanoelectronic device arrays based on single-wall carbon nanotube (SWCNT), oriented alignment of SWCNTs and property modification of metallic SWCNTs in the array are the key problems to be solved. Pulse gas alignment with substrate downward tilt is proposed to realize the controllable alignment of SWCNTs. Experimental results demonstrate that 84% SWCNTs are aligned in -15°- 15° angular to the pulse gas direction. A modified nanomanipulation technology based on atomic force microscope (AFM) is utilized to perform various kinds of SWCNT manipulation, such as SWCNT separation from the "Y" CNT, catalyst removal from the SWCNT end, continual nano buckles fabrication on SWCNT and even stretching to break, which provides a feasible way to modify the size, shape and the electrical property of SWCNTs.

  3. Nano-topographic evaluation of highly disordered fractal-like structures of immobilized oligonucleotides using AFM

    Energy Technology Data Exchange (ETDEWEB)

    Sawant, P.D. [BioNanoEngineering Laboratory, Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, Hawthorn, Vic. 4122 (Australia)]. E-mail: psawant@swin.edu.au; Nicolau, D.V. [BioNanoEngineering Laboratory, Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, Hawthorn, Vic. 4122 (Australia)

    2006-07-25

    In a recent trend of micro- and nano-array technologies, polymers are gaining preference over traditional substrates such as glass, silicates, etc. as a model biosurface to immobilize biomolecules. In present paper, we compared model polymeric surfaces such as cyclo olefin copolymer (COC) and polycarbonate (PC), with traditional surfaces such as silicone-wafer and mica. We used a 2D fractal dimension method, i.e. the perimeter-area relationship (PAR) to study the immobilization of 26 base pair oligonucleotide primer on surfaces which are imaged by AFM. Results revealed that the efficiency of the vertical immobilization is in the following order: COC > PC > mica > Si-wafer which can be contributed to chemical and nano-topographical heterogeneity. This study is useful for in-depth understanding of fundamental issues such as effects of manufacturing parameters and evaluation of surface nanotopographies for the development of high-density biochips.

  4. The dynamics of individual nucleosomes controls the chromatin condensation pathway: direct AFM visualization of variant chromatin

    CERN Document Server

    Montel, Fabien; Castelnovo, Martin; Bednar, Jan; Dimitrov, Stefan; Angelov, Dimitar; Faivre-Moskalenko, Cendrine

    2009-01-01

    Chromatin organization and dynamics is studied in this work at scales ranging from single nucleosome to nucleosomal array by using a unique combination of biochemical assays, single molecule imaging technique and numerical modeling. We demonstrate that a subtle modification in the nucleosome structure induced by the histone variant H2A.Bbd drastically modifies the higher order organization of the nucleosomal arrays. Importantly, as directly visualized by AFM, conventional H2A nucleosomal arrays exhibit specific local organization, in contrast to H2A.Bbd arrays, which show ?beads on a string? structure. The combination of systematic image analysis and theoretical modeling allows a quantitative description relating the observed gross structural changes of the arrays to their local organization. Our results strongly suggest that higher-order organization of H1-free nucleosomal arrays is mainly determined by the fluctuation properties of individual nucleosomes. Moreover, numerical simulations suggest the existenc...

  5. Hot-Fire Testing of a 1N AF-M315E Thruster

    Science.gov (United States)

    Burnside, Christopher G.; Pedersen, Kevin; Pierce, Charles W.

    2015-01-01

    This hot-fire test continues NASA investigation of green propellant technologies for future missions. To show the potential for green propellants to replace some hydrazine systems in future spacecraft, NASA Marshall Space Flight Center (MSFC) is continuing to embark on hot-fire test campaigns with various green propellant blends. NASA completed a hot-fire test of a 1N AF-M315E monopropellant thruster at the Marshall Space Flight Center in the small altitude test stand located in building 4205. The thruster is a ground test article used for basic performance determination and catalyst studies. The purpose of the hot-fire testing was for performance determination of a 1N size thruster and form a baseline from which to study catalyst performance and life with follow-on testing to be conducted at a later date. The thruster performed as expected. The result of the hot-fire testing are presented in this paper and presentation.

  6. Self assembly of epicuticular waxes on living plant surfaces imaged by atomic force microscopy (AFM).

    Science.gov (United States)

    Koch, Kerstin; Neinhuis, Christoph; Ensikat, Hans-Jürgen; Barthlott, Wilhelm

    2004-03-01

    The cuticle of terrestrial vascular plants and some bryophytes is covered with a complex mixture of lipids, usually called epicuticular waxes. Self-assembly processes of wax molecules lead to crystalline three-dimensional micro- and nanostructures that emerge from an underlying wax film. This paper presents the first AFM study on wax regeneration on the surfaces of living plants and the very early stages of wax crystal formation at the molecular level. Wax formation was analysed on the leaves of Euphorbia lathyris, Galanthus nivalis, and Ipheion uniflorum. Immediately after wax removal, regeneration of a wax film began, consisting of individual layers of, typically, 3-5 nm thickness. Subsequently, several different stages of crystal growth could be distinguished, and different patterns of wax regeneration as well as considerable variation in regeneration speed were found.

  7. AFM characterization of ss-DNA probes immobilization: a sequence effect on surface organization

    Energy Technology Data Exchange (ETDEWEB)

    Lallemand, D [Laboratoire d' Electronique, Optoelectronique et Microsystemes, Ecole Centrale de Lyon, 36 avenue Guy de Collongue, 69134 Ecully (France); Rouillat, M H [Laboratoire d' Electronique, Optoelectronique et Microsystemes, Ecole Centrale de Lyon, 36 avenue Guy de Collongue, 69134 Ecully (France); Dugas, V [BioTray, Ecole Normale Superieure de Lyon, 46 allee d' Italie, 69364 Lyon Cedex 07 (France); Chevolot, Y [Laboratoire d' Electronique, Optoelectronique et Microsystemes, Ecole Centrale de Lyon, 36 avenue Guy de Collongue, 69134 Ecully (France); Souteyrand, E [Laboratoire d' Electronique, Optoelectronique et Microsystemes, Ecole Centrale de Lyon, 36 avenue Guy de Collongue, 69134 Ecully (France); Phaner-Goutorbe, M [Laboratoire d' Electronique, Optoelectronique et Microsystemes, Ecole Centrale de Lyon, 36 avenue Guy de Collongue, 69134 Ecully (France)

    2007-03-15

    The biological sensitivity of a DNA chip depends on the molecular organization of the immobilized probe molecules, single stranded DNA (ss-DNA), on the substrate in terms of accessibility and non specific interactions between probes and substrate. In this article, Amplitude Modulation - Atomic Force Microscopy (AM-AFM) was used to characterize at a molecular scale, the morphological organization of different immobilized probes. In our system, three different ss-DNA were covalently grafted on a silicon substrate with the same deposit process. We studied the influence of probe length (25 bases, 12 bases) and sequence arrangement (two different 25 base oligoprobes) on the morphological organization. We showed that immobilized probes organize themselves in different structures depending on their sequence.

  8. Nanotribology at single crystal electrodes: Influence of ionic adsorbates on friction forces studied with AFM

    Energy Technology Data Exchange (ETDEWEB)

    Hausen, Florian; Nielinger, Michael; Ernst, Siegfried [Institut fuer Physikalische und Theoretische Chemie, Universitaet Bonn, Roemerstrasse 164, D-53117 Bonn (Germany); Baltruschat, Helmut [Institut fuer Physikalische und Theoretische Chemie, Universitaet Bonn, Roemerstrasse 164, D-53117 Bonn (Germany)], E-mail: baltruschat@uni-bonn.de

    2008-09-01

    We present friction force measurements on Au(1 1 1) single crystal electrode surfaces performed under electrochemical conditions using an atomic force microscope (AFM). At monoatomic steps friction is increased in both scan directions. In 0.05 M sulfuric acid an increase of friction is observed with the increase of adsorbed sulfate. Friction force increases non-linearly with load. Cu UPD also increases friction in presence of sulfate. However, in presence of 4 x 10{sup -4} M chloride friction is much smaller for all deposited Cu coverages - ranging from a submonolayer up to bulk copper compared to the solution without chloride. After dissolution of bulk copper clusters deposited on Au(1 1 1) we observed an area with higher friction forces due to the formation of an alloy between gold and copper.

  9. GaN nanowire tip for high aspect ratio nano-scale AFM metrology (Conference Presentation)

    Science.gov (United States)

    Behzadirad, Mahmoud; Dawson, Noel; Nami, Mohsen; Rishinaramangalam, Ashwin K.; Feezell, Daniel F.; Busani, Tito L.

    2016-09-01

    In this study we introduce Gallium Nitride (GaN) nanowire (NW) as high aspect ratio tip with excellent durability for nano-scale metrology. GaN NWs have superior mechanical property and young modulus compare to commercial Si and Carbon tips which results in having less bending issue during measurement. The GaN NWs are prepared via two different methods: i) Catalyst-free selected area growth, using Metal Organic Chemical Vapor Deposition (MOCVD), ii) top-down approach by employing Au nanoparticles as the mask material in dry-etch process. To achieve small diameter tips, the semipolar planes of the NWs grown by MOCVD are etched using AZ400k. The diameter of the NWs fabricated using the top down process is controlled by using different size of nanoparticles and by Inductively Coupled Plasma etching. NWs with various diameters were manipulated on Si cantilevers using Focus Ion Beam (FIB) to make tips for AFM measurement. A Si (110) substrate containing nano-scale grooves with vertical 900 walls were used as a sample for inspection. AFM measurements were carried out in tapping modes for both types of nanowires (top-down and bottom-up grown nanowires) and results are compared with conventional Si and carbon nanotube tips. It is shown our fabricated tips are robust and have improved edge resolution over conventional Si tips. GaN tips made with NW's fabricated using our top down method are also shown to retain the gold nanoparticle at tip, which showed enhanced field effects in Raman spectroscopy.

  10. Aggregation mechanism of Pd nanoparticles in L-cysteine aqueous solution studied by NEXAFS and AFM

    Energy Technology Data Exchange (ETDEWEB)

    Tsukada, C., E-mail: tsukada.chie@e.mbox.nagoya-u.ac.jp [Department of Quantum Engineering, School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Ogawa, S.; Mizutani, T. [Department of Quantum Engineering, School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Kutluk, G.; Namatame, H.; Taniguchi, M. [Synchrotron Radiation Center, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-0046 (Japan); Yagi, S. [Department of Quantum Engineering, School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Synchrotron Radiation Center, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-0046 (Japan)

    2012-12-01

    Highlight: Black-Right-Pointing-Pointer We focus on the biocompatibility of Pd nanoparticles (NPs) for L-cysteine under water environment. Black-Right-Pointing-Pointer The Pd NPs have been fabricated and deposited on Si wafer by gas evaporation method. Black-Right-Pointing-Pointer When the Pd NPs/Si has been dipped into L-cysteine aqueous solution, the L-cysteine has selectively adsorbed on Pd NPs surface and existed as the L-cysteine thiolate, atomic S and L-cystine. Black-Right-Pointing-Pointer Moreover, the aggregation of Pd NPs occurs by the migration of Pd NPs on Si and the cross-linked reaction between L-cysteine thiolate molecules adsorbed on Pd NPs. - Abstract: We focus on the biocompatibility of Pd nanoparticles (NPs) from the point of microscopic view. Thus, as the basic research for the biocompatibility, we have investigated the adsorbates on the Pd NPs surface and the aggregation mechanism for the Pd NPs on Si substrate after dipping into L-cysteine aqueous solution by means of NEXAFS measurement and AFM observation. The Pd NPs have been fabricated and deposited on the Si wafer by the gas evaporation method. Judging from the results of NEXAFS measurement, it is clear that the L-cysteine thiolate and atomic S exist on the Pd NPs surface. The results of AFM observation show that the Pd NPs aggregate. It is thought that the aggregation of the Pd NPs occurs by both the migration of the Pd NPs on Si wafer and the cross-linked reaction.

  11. Nanopuller-open data acquisition platform for AFM force spectroscopy experiments

    Energy Technology Data Exchange (ETDEWEB)

    Pawlak, Konrad; Strzelecki, Janusz

    2016-05-15

    Atomic Force Microscope (AFM) is a widely used tool in force spectroscopy studies. Presently, this instrument is accessible from numerous vendors, albeit commercial solutions are expensive and almost always hardware and software closed. Approaches for open setups were published, as with modern low cost and readily available piezoelectric actuators, data acquisition interfaces and optoelectronic components building such force spectroscopy AFM is relatively easy. However, suitable software to control such laboratory made instrument was not released. Developing it in the lab requires significant time and effort. Our Nanopuller software described in this paper is intended to eliminate this obstacle. With only minimum adjustments this program can be used to control and acquire data with any suitable National Instruments universal digital/analog interface and piezoelectric actuator analog controller, giving significant freedom and flexibility in designing force spectroscopy experiment. Since the full code, written in a graphical LabVIEW environment is available, our Nanopuller can be easily customized. In this paper we describe the program and test its performance in controlling different setups. Successful and accurate force curve acquisition for standard samples (single molecules of I27O reference titin polyprotein and DNA as well as red blood cells) is shown. - Highlights: • We created open data acquisition software for performing Atomic Force Microscopy force measurements with custom laboratory made setups. • The software allows large flexibility in atomic force microscope design with minimum adjustment necessary. • The software is written in LabVIEW, allowing easy customization. • We successfully tested the program on two different hardware configurations by stretching single macromolecules and indenting cells.

  12. AFM study of the thrombogenicity of carbon-based coatings for cardiovascular applications

    Energy Technology Data Exchange (ETDEWEB)

    Karagkiozaki, V. [Department of Physics, Laboratory for Thin Films-Nanosystems and Nanometrology (LTFN), Aristotle University of Thessaloniki, Thessaloniki GR-54124 (Greece); AHEPA Hospital, 1st Cardiology Department, Aristotle University of Thessaloniki, Thessaloniki GR-54124 (Greece); Logothetidis, S. [Department of Physics, Laboratory for Thin Films-Nanosystems and Nanometrology (LTFN), Aristotle University of Thessaloniki, Thessaloniki GR-54124 (Greece)], E-mail: logot@auth.gr; Laskarakis, A. [Department of Physics, Laboratory for Thin Films-Nanosystems and Nanometrology (LTFN), Aristotle University of Thessaloniki, Thessaloniki GR-54124 (Greece); Giannoglou, G. [AHEPA Hospital, 1st Cardiology Department, Aristotle University of Thessaloniki, Thessaloniki GR-54124 (Greece); Lousinian, S. [Department of Physics, Laboratory for Thin Films-Nanosystems and Nanometrology (LTFN), Aristotle University of Thessaloniki, Thessaloniki GR-54124 (Greece)

    2008-08-25

    The new nanotechnologies in biomaterials for cardiovascular applications target at surface alterations for prevention of platelets aggregation and subsequent clotting as their usual failure arises from thrombogenicity. Knowledge of structural properties of platelets during their adhesion on nanostructure materials is required to obtain a comprehensive understanding of their activation and the conventional imaging tools require special preparation of the samples and does not guarantee the viability of the cells. Thus, in this study, the atomic force microscope (AFM) which is a non-destructive and nanoscale precision technique is implemented for the study of platelets' adhesion onto amorphous hydrogenated carbon (a-C:H) thin films and a methodology is developed. Carbon-based thin films grown by magnetron sputtering under different deposition conditions are considered to meet the requirements for biomedical applications and were selected as well-characterized, case study materials. Platelet rich plasma drawn from healthy donors was used for the study of platelets adhesion onto the a-C:H films. The fourier transform IR phase modulated spectroscopic ellipsometry (FTIRSE) (900-3500 cm{sup -1}) being a powerful, non-destructive, optical technique was used for the investigation of bonding structure of the adherent platelets onto the a-C:H materials and the contribution of the different vibration bands of the platelet bonding groups was shown and discussed. The effect of nanostructure, surface properties and wettability of the carbon thin films on their thrombogenic potential was verified and it was found that the different deposition conditions determine their structural, surface and biological properties. Thus, the tailoring of surface properties of biomaterials and the informative study of platelets-nanomaterials interactions with AFM and FTIRSE will revolutionize the development of less thrombogenic biomaterials.

  13. Characterization of mineral-associated organic matter: a combined approach of AFM and NanoSIMS

    Science.gov (United States)

    Pohl, Lydia; Schurig, Christian; Eusterhues, Karin; Mueller, Carsten W.; Höschen, Carmen; Totsche, Kai-Uwe; Kögel-Knabner, Ingrid

    2016-04-01

    The heterogeneous spatial distribution and amount of organic matter (OM) in soils, especially at the micro- or submicron-scale, has major consequences for the soil microstructure and for the accessibility of OM to decomposing microbial communities. Processes occurring at the microscale control soil properties and processes at larger scales, such as macro-aggregation and carbon turnover. Since OM acts as substrate and most important driver for biogeochemical processes, particular attention should be paid to its spatial interaction with soil minerals. In contrast to bulk analysis, Nanoscale Secondary Ion Mass Spectrometry (NanoSIMS) offers the possibility to examine the composition and spatial distribution of OM within the intact organo-mineral matrix. Nevertheless, the yield of secondary electrons is influenced by the individual topography of the analysed particles, which aggravated the quantitative interpretation of the data. A combination of NanoSIMS and Atomic Force Microscopy (AFM), enabled us to visualize and quantify the topographical features of individual particles and correct the NanoSIMS data for this effect. We performed adsorption experiments with water-soluble soil OM in 6 concentration steps, which was extracted from forest floor layer of a Podzol, and adsorbed to illite. Upon the end of the sorption experiments the liquid phase and the solid phase were separated and the carbon content was analysed with TOC- and C/N-measurement, respectively. For the spatially resolved analyses, the samples were applied as thin layers onto silicon wafers and individual particles were chosen by means of the AFM. Subsequently, the identical particles were analysed with NanoSIMS to investigate the distribution of C, N, O, Si, P and Al. The recorded data were analysed for differences in elemental distribution between the different concentration steps. Additionally, we performed a correlation of the detectable counts with the topography of the particle within one

  14. Hematite/silver nanoparticle bilayers on mica--AFM, SEM and streaming potential studies.

    Science.gov (United States)

    Morga, Maria; Adamczyk, Zbigniew; Oćwieja, Magdalena; Bielańska, Elżbieta

    2014-06-15

    Bilayers of hematite/silver nanoparticles were obtained in the self-assembly process and thoroughly characterized using scanning electron microscopy (SEM), atomic force microscopy (AFM), and in situ streaming potential measurements. The hematite nanoparticles, forming a supporting layer, were 22 nm in diameter, exhibiting an isoelectric point at pH 8.9. The silver nanoparticles, used to obtain an external layer, were 29 nm in diameter, and remained negative within the pH range 3 to 11. In order to investigate the particle deposition, mica sheets were used as a model solid substrate. The coverage of the supporting layer was adjusted by changing the bulk concentration of the hematite suspension and the deposition time. Afterward, silver nanoparticle monolayers of controlled coverage were deposited under the diffusion-controlled transport. The coverage of bilayers was determined by a direct enumeration of deposited particles from SEM micrographs and AFM images. Additionally, the formation of the hematite/silver bilayers was investigated by streaming potential measurements carried out under in situ conditions. The effect of the mica substrate and the coverage of a supporting layer on the zeta potential of bilayers was systematically studied. It was established that for the coverage exceeding 0.20, the zeta potential of bilayers was independent on the substrate and the supporting layer coverage. This behavior was theoretically interpreted in terms of the 3D electrokinetic model. Beside significance for basic sciences, these measurements allowed to develop a robust method of preparing nanoparticle bilayers of controlled properties, having potential applications in catalytic processes.

  15. Fabrication of novel AFM probe with high-aspect-ratio ultra-sharp three-face silicon nitride tips

    NARCIS (Netherlands)

    Vermeer, Rolf; Berenschot, Erwin; Sarajlic, Edin; Tas, Niels; Jansen, Henri

    2014-01-01

    In this paper we present the wafer-scale fabrication of molded AFM probes with high aspect ratio ultra-sharp three-plane silicon nitride tips. Using (111) silicon wafers a dedicated process is developed to fabricate molds in the silicon wafer that have a flat triangular bottom surface enclosed by th

  16. Conductive Atomic Force Microscopy (C-AFM) observation of conducting nanofilaments formation in GeSbTe phase change materials

    Science.gov (United States)

    Yang, Fei; Xu, Ling; Fang, Li; Jiang, Yifan; Xu, Jun; Su, Weining; Yu, Yao; Ma, Zhongyuan; Chen, Kunji

    2013-09-01

    GST (GeSbTe) thin films were deposited on glass substrates by electron beam evaporation; Ni was used as the top and bottom electrodes. The I- V (current-voltage) characteristic of the phase change memory (PCM) cell was measured; results showed an electrical threshold switching characteristic for the sample with a threshold voltage of 3.08 V. The threshold switching is attributed to the formation of conductive filaments in the amorphous matrix. Current-voltage spectra which were obtained by C-AFM show that the GST thin film switching from amorphous to the crystalline phase occurs at 1.51 V. C-AFM was used to fabricate crystalline nanoarrays on the sample surface and examine the electrical properties of arrays. In the I- V measurements by C-AFM, when the applied voltage is higher than threshold voltage, conducting nanofilaments with average sizes of 15-60 nm were formed and crystallized spots with current signals were observed. Different times of I- V spectroscopies were applied on thin films to investigate the electrical properties of films during the phase change process. C-AFM results show that as the times of I- V spectroscopies increased, the morphology of crystallized spots changed from bump to pit; the sizes of conductive nanofilaments and detected current signals increased. These results can be attributed to the energy induced by Joule heating dissipated to surrounding films increases with the increasing times of I- V spectroscopies.

  17. Dynamic force microscopy simulator (dForce: A tool for planning and understanding tapping and bimodal AFM experiments

    Directory of Open Access Journals (Sweden)

    Horacio V. Guzman

    2015-02-01

    Full Text Available We present a simulation environment, dForce, which can be used for a better understanding of dynamic force microscopy experiments. The simulator presents the cantilever–tip dynamics for two dynamic AFM methods, tapping mode AFM and bimodal AFM. It can be applied for a wide variety of experimental situations in air or liquid. The code provides all the variables and parameters relevant in those modes, for example, the instantaneous deflection and tip–surface force, velocity, virial, dissipated energy, sample deformation and peak force as a function of time or distance. The simulator includes a variety of interactions and contact mechanics models to describe AFM experiments including: van der Waals, Hertz, DMT, JKR, bottom effect cone correction, linear viscoelastic forces or the standard linear solid viscoelastic model. We have compared two numerical integration methods to select the one that offers optimal accuracy and speed. The graphical user interface has been designed to facilitate the navigation of non-experts in simulations. Finally, the accuracy of dForce has been tested against numerical simulations performed during the last 18 years.

  18. Assembly of live micro-organisms on microstructured PDMS stamps by convective/capillary deposition for AFM bio-experiments.

    Science.gov (United States)

    Dague, E; Jauvert, E; Laplatine, L; Viallet, B; Thibault, C; Ressier, L

    2011-09-30

    Immobilization of live micro-organisms on solid substrates is an important prerequisite for atomic force microscopy (AFM) bio-experiments. The method employed must immobilize the cells firmly enough to enable them to withstand the lateral friction forces exerted by the tip during scanning but without denaturing the cell interface. In this work, a generic method for the assembly of living cells on specific areas of substrates is proposed. It consists in assembling the living cells within the patterns of microstructured, functionalized poly-dimethylsiloxane (PDMS) stamps using convective/capillary deposition. This versatile approach is validated by applying it to two systems of foremost importance in biotechnology and medicine: Saccharomyces cerevisiae yeasts and Aspergillus fumigatus fungal spores. We show that this method allows multiplexing AFM nanomechanical measurements by force spectroscopy on S. cerevisiae yeasts and high-resolution AFM imaging of germinated Aspergillus conidia in buffer medium. These two examples clearly demonstrate the immense potential of micro-organism assembly on functionalized, microstructured PDMS stamps by convective/capillary deposition for performing rigorous AFM bio-experiments on living cells.

  19. Study of influence on micro-fabricated resistive switching organic ZrO2 array by C-AFM measurement

    Indian Academy of Sciences (India)

    Ying Li; Gaoyang Zhao; Zhibo Kou; Long Jin; Yajing Wang

    2015-08-01

    In this paper, a comparison of the interfacial electronic properties between Pt/Ir conductive atomic force microscopy (C-AFM) tip and ZrO2 organic array was carried out. A uniformed ZrO2 array was fabricated with a mean diameter of around 1 m using laser interference lithography. A C-AFM measurement set-up was built up. The - curve was directly measured of the organic ZrO2 array which shows a resistive switching characteristic by C-AFM measurement. The set voltage is 18.0 V and the reset voltage is −5.0 V. After the Pt layer was coated on the ZrO2 array, the set voltage decreases to 0.8 V and the reset voltage decreases to −2.2 V. This result shows that Pt layer can prevent the potential drop effectively. The electron barrier height between Pt/Ir C-AFM tip and organic ZrO2 array was enhanced by sputtering Pt layer on the ZrO2 organic array.

  20. Dynamic force microscopy simulator (dForce): A tool for planning and understanding tapping and bimodal AFM experiments.

    Science.gov (United States)

    Guzman, Horacio V; Garcia, Pablo D; Garcia, Ricardo

    2015-01-01

    We present a simulation environment, dForce, which can be used for a better understanding of dynamic force microscopy experiments. The simulator presents the cantilever-tip dynamics for two dynamic AFM methods, tapping mode AFM and bimodal AFM. It can be applied for a wide variety of experimental situations in air or liquid. The code provides all the variables and parameters relevant in those modes, for example, the instantaneous deflection and tip-surface force, velocity, virial, dissipated energy, sample deformation and peak force as a function of time or distance. The simulator includes a variety of interactions and contact mechanics models to describe AFM experiments including: van der Waals, Hertz, DMT, JKR, bottom effect cone correction, linear viscoelastic forces or the standard linear solid viscoelastic model. We have compared two numerical integration methods to select the one that offers optimal accuracy and speed. The graphical user interface has been designed to facilitate the navigation of non-experts in simulations. Finally, the accuracy of dForce has been tested against numerical simulations performed during the last 18 years.

  1. Tip convolution on HOPG surfaces measured in AM-AFM and interpreted using a combined experimental and simulation approach

    Science.gov (United States)

    Hu, Xiaoli; Chan, Nicholas; Martini, Ashlie; Egberts, Philip

    2017-01-01

    Amplitude modulated atomic force microscopy (AM-AFM) was used to examine the influence of the size of the AFM tip apex on the measured surface topography of single highly oriented pyrolytic graphite (HOPG) atomic steps. Experimental measurements were complemented by molecular dynamics simulations of AM-AFM and the results from both were evaluated by comparison of the measured or simulated width of the topography at the step to that predicted using simple rigid-body geometry. The results showed that the step width, which is a reflection of the resolution of the measurement, increased with tip size, as expected, but also that the difference between the measured/simulated step width and the geometric calculation was tip size dependent. The simulations suggested that this may be due to the deformation of the bodies and the effect of that deformation on the interaction force and oscillation amplitude. Overall, this study showed that the resolution of AM-AFM measurements of atomic steps can be correlated to tip size and that this relationship is affected by the deformation of the system.

  2. Replication and dimensional quality control of industrial nanoscale surfaces using calibrated AFM measurements and SEM image processing

    DEFF Research Database (Denmark)

    Tosello, Guido; Hansen, Hans Nørgaard; Marinello, F.

    2010-01-01

    application of AFM to calibrate height, depth and pitch of sub-micrometer features and SEM image processing to detect replication accuracy in terms of number of replicated features. Surface replication is analyzed using a metrological approach: nano-features on nickel stampers and injection...

  3. Dielectric charging by AFM in tip-to-sample space mode: overview and challenges in revealing the appropriate mechanisms.

    Science.gov (United States)

    Makasheva, K; Villeneuve-Faure, C; Laurent, C; Despax, B; Boudou, L; Teyssedre, G

    2015-07-24

    The study of charge distribution on the surface and in the bulk of dielectrics is of great scientific interest because of the information gained on the storage and transport properties of the medium. Nevertheless, the processes at the nanoscale level remain out of the scope of the commonly used diagnostic methods. Atomic force microscopy (AFM) is currently applied for both injection and imaging of charges on dielectric thin films at the nanoscale level to answer the increasing demand for characterization of miniaturized components used in microelectronics, telecommunications, electrophotography, electrets, etc. However, the mechanisms for dielectric charging by AFM are not well documented, and an analysis of the literature shows that inappropriate mechanisms are sometimes presented. It is shown here that corona discharge, frequently pointed out as a likely mechanism for dielectric charging by AFM in tip-to-sample space mode, cannot develop in such small distances. Furthermore, a review of different mechanisms surmised to be at the origin of dielectric charging at the nanoscale level is offered. Field electron emission enhanced by thermionic emission is identified as a likely mechanism for dielectric charging at the nanoscale level. Experimental validation of this mechanism is obtained for typical electric field strengths in AFM.

  4. Overcoming silicon limitations: new 3D-AFM carbon tips with constantly high-resolution for sub-28nm node semiconductor requirements

    Science.gov (United States)

    Foucher, Johann; Schmidt, Sebastian W.; Penzkofer, Christian; Irmer, Bernd

    2012-03-01

    The demands on atomic force microscopy (AFM) as a reference technique for precisely determining surface properties and structural designs of multiple patterns in the semiconductor industry are steadily increasing. With the aim to meet ITRS requirements and simultaneously improve the accuracy of AFM-based critical dimension (CD) measurements at constant resolution, the AFM tip more and more becomes a factor crucially determining the AFM performance. In this context, AFM tip limitations are given by lack of sharpness with too large tip radii/diameter, insufficient wear resistance, and high total cost, which does not conform to production environment needs. One technical approach to overcome these tip limitations is provided by electron beam induced processing (EBIP), which allows for manufacturing AFM tips of desired sharpness, shape, and mechanical stability. Here, we present T-shape-like 3D-AFM tips made of bulk amorphous, high density diamond-like carbon (HDC/DLC), and compare their performance and wear resistance to standard silicon tips. We show the advantages of this approach for the semiconductor industry, in particular on AFM3D technology in order to answer to sub-28 nm nodes requirements, and present tips with 15 nm diameter at 10 nm vertical edge height.

  5. Research on corona discharge based on AFM probe%基于AFM探针的电晕放电研究

    Institute of Scientific and Technical Information of China (English)

    赵贵; 孔德义; Juergen Brugger; 陈池来; 程玉鹏; 李庄

    2011-01-01

    针对扫描探针显微镜与质谱联用系统中的采样方式,提出了利用原子力显微镜(AFM)探针进行电晕放电解吸附的采样方案.运用ANSYS软件对AFM导电探针进行了有限元仿真,电场分析表明间距100 μm加1 kV高压时的AFM探针周围场强在0.32 ~62.4 V/μm间,验证了利用其产生电晕放电的可行性;通过实验观察了电晕放电现象及其规律,测得了AFM探针加高压时的伏安特性曲线,为下一步利用AFM探针产生电晕放电进行非触式采样奠定了良好的基础.%An atomic force microscopy ( AFM) probe based corona discharge sampling device for desorption ionization in scanning probe microscope mass spectrometer (SPM-MS) is put forward. Through finite element analysis, research is done on the mechanical and electrical character of the AFM probe tip. Electrical analysis shows that the field intensity around the AFM probe could achieve 0.32 -62.4 V/μun when the gap distance is 100 fun and the applied voltage is 1 kV, validating the feasibility and usability of the sampling device. The relationship between discharge current I and applied voltage V is studied through corona discharge experiment. These works lay a foundation for developing the corona discharge for non-contact sampling based on AFM probe.

  6. High resolution AFM and single cell resonance Raman spectroscopy of Geobacter sulfurreducens biofilms early in growth.

    Directory of Open Access Journals (Sweden)

    Nikolai eLebedev

    2014-08-01

    Full Text Available AFM and confocal resonance Raman microscopy (CRRM of single-cells were used to study the transition of anode-grown Geobacter sulfurreducens biofilms from lag phase (initial period of low current to exponential phase (subsequent period of rapidly increasing current. Results reveal that lag phase biofilms consist of lone cells and tightly packed single-cell thick clusters crisscrossed with extracellular linear structures that appear to be comprised of nodules approximately 20 nm in diameter aligned end to end. By early exponential phase cell clusters expand laterally and a second layer of closely packed cells begins to form on top of the first. Abundance of c-type cytochromes (c-Cyt is > 3-fold greater in 2-cell thick regions than in 1-cell thick regions. The results indicate that early biofilm growth involves two transformations. The first is from lone cells to 2-dimensionally associated cells during lag phase when current remains low. This is accompanied by formation of extracellular linear structures. The second is from 2- to 3-dimensionally associated cells during early exponential phase when current begins to increases rapidly. This is accompanied by a dramatic increase in c-Cyt abundance.

  7. AFM imaging of bacteria in liquid media immobilized on gelatin coated mica surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Doktycz, M.J.; Sullivan, C.J.; Hoyt, P.R.; Pelletier, D.A.; Wu, S.; Allison, D.P

    2003-10-15

    Immobilization of particulates, especially biomolecules and cells, onto surfaces is critical for imaging with the atomic force microscope (AFM). In this paper, gelatin coated mica surfaces are shown to be suitable for immobilizing and imaging both gram positive, Staphylococcus aureus, and gram negative, Escherichia coli, bacteria in both air and liquid environments. Gelatin coated surfaces are shown to be superior to poly-L-lysine coated surfaces that are commonly used for the immobilization of cells. This cell immobilization technique is being developed primarily for live cell imaging of Rhodopseudomonas palustris. The genome of R. palustris has been sequenced and the organism is the target of intensive studies aimed at understanding genome function. Images of R. palustris grown both aerobically and anaerobically in liquid media are presented. Images in liquid media show the bacteria is rod shaped and smooth while images in air show marked irregularity and folding of the surface. Significant differences in the vertical dimension are also apparent with the height of the bacteria in liquid being substantially greater than images taken in air. In air immobilized bacterial flagella are clearly seen while in liquid this structure is not visible. Additionally, significant morphological differences are observed that depend on the method of bacterial growth.

  8. Investigating the Photocatalytic Degradation of Oil Paint using ATR-IR and AFM-IR.

    Science.gov (United States)

    Morsch, Suzanne; van Driel, Birgit A; van den Berg, Klaas Jan; Dik, Joris

    2017-03-22

    As linseed oil has a longstanding and continuing history of use as a binder in artistic paints, developing an understanding of its degradation mechanism is critical to conservation efforts. At present, little can be done to detect the early stages of oil paint deterioration due to the complex chemical composition of degrading paints. In this work, we use advanced infrared analysis techniques to investigate the UV-induced deterioration of model linseed oil paints in detail. Subdiffraction limit infrared analysis (AFM-IR) is applied to identify and map accelerated degradation in the presence of two different grades of titanium white pigment particles (rutile or anatase TiO2). Differentiation between the degradation of these two formulations demonstrates the sensitivity of this approach. The identification of characteristic peaks and transient species residing at the paint surface allows infrared absorbance peaks related to degradation deeper in the film to be extricated from conventional ATR-FTIR spectra, potentially opening up a new approach to degradation monitoring.

  9. AFM study of glucagon fibrillation via oligomeric structures resulting in interwoven fibrils

    Energy Technology Data Exchange (ETDEWEB)

    Dong Mingdong [Interdisciplinary Nanoscience Center (iNANO), University of Aarhus, DK-8000 Aarhus C (Denmark); Hovgaard, Mads Bruun [Interdisciplinary Nanoscience Center (iNANO), University of Aarhus, DK-8000 Aarhus C (Denmark); Xu Sailong [Interdisciplinary Nanoscience Center (iNANO), University of Aarhus, DK-8000 Aarhus C (Denmark); Otzen, Daniel Erik [Interdisciplinary Nanoscience Center (iNANO), University of Aarhus, DK-8000 Aarhus C (Denmark); Besenbacher, Flemming [Interdisciplinary Nanoscience Center (iNANO), University of Aarhus, DK-8000 Aarhus C (Denmark)

    2006-08-28

    Glucagon is a 29-residue amphiphatic hormone involved in the regulation of blood glucose levels in conjunction with insulin. In concentrated aqueous solutions, glucagon spontaneously aggregates to form amyloid fibrils, destroying its biological activity. In this study we utilize the atomic force microscope (AFM) to elucidate the fibrillation mechanism of glucagon at the nanoscale under acidic conditions (pH 2.0) by visualizing the nanostructures of fibrils formed at different stages of the incubation. Hollow disc-shaped oligomers form at an early stage in the process and subsequently rearrange to more solid oligomers. These oligomers co-exist with, and most likely act as precursors for, protofibrils, which subsequently associate to form at least three different classes of higher-order fibrils of different heights. A repeat unit of around 50 nm along the main fibril axis suggests a helical arrangement of interwoven protofibrils. The diversity of oligomeric and fibrillar arrangements formed at pH 2.0 complements previous spectroscopic analyses that revealed that fibrils formed under different conditions can differ substantially in stability and secondary structure.

  10. Optimization of Q-factor of AFM cantilevers using genetic algorithms.

    Science.gov (United States)

    Perez-Cruz, Angel; Dominguez-Gonzalez, Aurelio; Stiharu, Ion; Osornio-Rios, Roque A

    2012-04-01

    Micro cantilever beams have been intensively used in sensing applications including to scanning profiles and surfaces where there resolution and imaging speed are critical. Force resolution is related to the Q-factor. When the micro-cantilever operates in air with small separation gaps, the Q-factor is even more reduced due to the squeeze-film damping effect. Thus, the optimization of the configuration of an AFM micro-cantilever is presented in this work with the objective of improving its Q-factor. To accomplish this task, we propose the inclusion of holes as breathing chimneys in the initial design to reduce the squeeze-film damping effect. The evaluation of the Q-factor was carried out using finite element model, which is implemented to work together with the squeeze-film damping model. The methodology applied in the optimization process was genetic algorithms, which considers as constraints the maximum allowable stress, fundamental frequency and spring constant with respect to the initial design. The results show that the optimum design, which includes holes with an optimal location, increases the Q-factor almost five times compared to the initial design.

  11. Numerical Simulation of Nano Scanning in Intermittent-Contact Mode AFM under Q control

    CERN Document Server

    Varol, Aydin; Orun, Bilal; Basdogan, Cagatay

    2012-01-01

    We investigate nano scanning in tapping mode atomic force microscopy (AFM) under quality (Q) control via numerical simulations performed in SIMULINK. We focus on the simulation of whole scan process rather than the simulation of cantilever dynamics and the force interactions between the probe tip and the surface alone, as in most of the earlier numerical studies. This enables us to quantify the scan performance under Q control for different scan settings. Using the numerical simulations, we first investigate the effect of elastic modulus of sample (relative to the substrate surface) and probe stiffness on the scan results. Our numerical simulations show that scanning in attractive regime using soft cantilevers with high Qeff results in a better image quality. We, then demonstrate the trade-off in setting the effective Q factor (Qeff) of the probe in Q control: low values of Qeff cause an increase in tapping forces while higher ones limit the maximum achievable scan speed due to the slow response of the cantil...

  12. SWNT-DNA and SWNT-polyC hybrids: AFM study and computer modeling.

    Science.gov (United States)

    Karachevtsev, M V; Lytvyn, O S; Stepanian, S G; Leontiev, V S; Adamowicz, L; Karachevtsev, V A

    2008-03-01

    Hybrids of carbon single-walled nanotubes (SWNT) with fragmented single or double-stranded DNA (fss- or fds-DNA) or polyC were studied by Atom Force Microscopy (AFM) and computer modeling. It was found that fragments of the polymer wrap in several layers around the nanotube, forming a strand-like spindle. In contrast to the fss-DNA, the fds-DNA also forms compact structures near the tube surface due to the formation of self-assembly structures consisting of a few DNA fragments. The hybrids of SWNT with wrapped single-, double- or triple strands of the biopolymer were simulated, and it was shown that such structures are stable. To explain the reason of multi-layer polymeric coating of the nanotube surface, the energy of the intermolecular interactions between different components of polyC was calculated at the MP2/6-31++G** level as well as the interaction energy in the SWNT-cytosine complex.

  13. AFM quantitative analysis and determination of shear angle of {259}f martensitic surface relief

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    An attentive observation and quantitative analysis of {259}f martensitic surface relief in an Fe-23Ni-0.55C alloy are made by means of an atomic force microscope (AFM), and different martensitic variants' shear angles are determined in this paper. The experiments show that {259}f martensitic surface relief exhibits regular shape in many cases, which is in agreement with the prediction of invariant plane strain (IPS). Generally, {259}f martensitic surface relief appears to be "N"-shaped, but it is tent-shaped in the case of zigzag-shaped martensite. The compressed deformation of parent phase diminishes the surface relief in size but with little change of its relief angle. {259}f martensitic surface relief, large or small, has approximately the same relief angles, exhibiting a good "self-similar fractal". The determined values of different {259}f martensitic variants' shear angles are in fine agreement with the prediction of Wechsler-Liberman-Read (W-L-R) theory, with only a slight difference of less than 3.65°.

  14. FTIR, AFM and PL properties of thin SiO{sub x} films deposited by HFCVD

    Energy Technology Data Exchange (ETDEWEB)

    Luna-Lopez, J.A., E-mail: jalbluna@siu.buap.mx [CIDS-ICUAP, BUAP, Ciudad Universitaria, Ed. 103 D, Col. San Manuel, C.P. 72570, Puebla (Mexico); Garcia-Salgado, G.; Diaz-Becerril, T.; Lopez, J. Carrillo; Vazquez-Valerdi, D.E.; Juarez-Santiesteban, H.; Rosendo-Andres, E.; Coyopol, A. [CIDS-ICUAP, BUAP, Ciudad Universitaria, Ed. 103 D, Col. San Manuel, C.P. 72570, Puebla (Mexico)

    2010-10-25

    In order to have optoelectronic functions integrated in a single chip, it is very important to obtain a silicon compatible material with an optimal photoluminescence response. The non-stoichiometric silicon oxide (SiO{sub x}) has shown photoluminescence response and is also compatible with silicon technology. In this work, the composition and optical properties of the SiO{sub x} films are studied using null ellipsometry, Fourier transformed infrared spectroscopy (FTIR), atomic force microscopy (AFM), and photoluminescence (PL). The SiO{sub x} films were growth to different temperatures. The IR absorption spectrum shows the presence of three typical Si-O-Si vibrations modes in SiO{sub 2}. However, changes in their intensity and position were observed. Also, when growth temperature decreased, the Si-H vibrations modes were observed. These changes are directly related with compositional variation in the SiO{sub x} films due to the growth temperature. A PL spectrum shows a considerable emission in the range 400-850 nm that varies with the growth temperatures.

  15. AFM measurements of adhesive forces between carbonaceous particles and the substrates

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Tianqi [Institute of Nuclear and New Energy Technology of Tsinghua University, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Beijing 100084 (China); Peng, Wei, E-mail: pengwei@tsinghua.edu.cn [Institute of Nuclear and New Energy Technology of Tsinghua University, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Beijing 100084 (China); Shen, Ke [Institute of Nuclear and New Energy Technology of Tsinghua University, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Beijing 100084 (China); Yu, Suyuan, E-mail: suyuan@tsinghua.edu.cn [Center for Combustion Energy, Key Laboratory for Thermal Science and Power Engineering of Ministry of Educations, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China)

    2015-11-15

    Highlights: • Adhesive force of spherical carbonaceous particle MCMBs and HTR-10 graphite matrix debris were measured for the first time. • The measured equivalent works of adhesion were much smaller than the ideal values. • The shape factor and the particle morphology reduce the adhesive force. • The adhesion effect does not change directly with the asperity size. - Abstract: Graphite dust is carbonaceous particles generated during operation of High Temperature Gas-Cooled Reactors (HTR). Graphite dust resuspension is the key behavior associated with HTR source term analyses and environmental safety assessment. The adhesive force is the key factor that determines the resuspension rate. The present study used an atomic force microscope (AFM) to measure the adhesive force between a single carbonaceous particle and the substrate. The measurements were performed on mica, graphite IG110 and Inconel 800H. The prepared “probe cantilevers” were mesocarbon microbeads (MCMB), fuel element debris from HTR-10 and graphite NBG18. The equivalent work of adhesion was derived from the measured adhesive force and calculated based on substrate profile approximation and the JKR theoretical model. The measured work was smaller than the ideal work of adhesion, most likely due to the rough particle morphology and the rough substrate surface. Additionally, a shape factor imposes a constraint on the lateral deformation of the particles. Furthermore, surface roughness could reduce the adhesive force some depending on the particle size. Once the particle was too small to be trapped into a trough, the adhesive force would not be further reduced.

  16. AFM and EDX Study of Self Assembled Pt Nanostructures on PEDOT Thin Films under Ambient Conditions

    Science.gov (United States)

    Senevirathne, Indrajith; Mohney, Austin; Buchheit, Joshua; Goonewardene, Anura

    2011-03-01

    Noble metal nanostructure systems on conductive polymer thin films under ambient conditions are interesting due to their use in BioMEMS and hybrid systems further and considering the physics of the polymer - metal interactions The observed nanostructures have deformed spherical shape. The Pt was magnetron sputter deposited at RT (300K), PEDOT Baytron P 60nm thick, spin coated on glass slides cleaned with acetone and IPA. The system was studied using ambient IC mode Atomic Force Microscopy (AFM) for its structure. Elemental composition/distribution of the system was measured with Energy Dispersive X ray Spectroscopy (EDX). Pt nanostructures on the surface observed to be likely Volmer - Weber growth mode At Pt coverage of 120 ML, nanostructures had a mean diameter of 32 nm and mean height of 5 nm. When annealing at 15min at 473K systems changes to smaller nanostructures coexisting with bigger structures of mean diameter of 120 nm and mean height of 36 nm. Elemental/morphological variations when annealed at successively higher temperatures were also investigated. NSF Grant #: 0923047 and PASSHE FPDC (LOU # 2010-LHU-03).

  17. AFM studies in diverse ionic environments of nucleosomes reconstituted on the 601 positioning sequence.

    Science.gov (United States)

    Nazarov, Igor; Chekliarova, Iana; Rychkov, Georgy; Ilatovskiy, Andrey V; Crane-Robinson, Colyn; Tomilin, Alexey

    2016-02-01

    Atomic force microscopy (AFM) was used to study mononucleosomes reconstituted from a DNA duplex of 353 bp containing the strong 601 octamer positioning sequence, together with recombinant human core histone octamers. Three parameters were measured: 1) the length of DNA wrapped around the core histones; 2) the number of superhelical turns, calculated from the total angle through which the DNA is bent, and 3) the volume of the DNA-histone core. This approach allowed us to define in detail the structural diversity of nucleosomes caused by disassembly of the octasome to form subnucleosomal structures containing hexasomes, tetrasomes and disomes. At low ionic strength (TE buffer) and in the presence of physiological concentrations of monovalent cations, the majority of the particles were subnucleosomal, but physiological concentrations of bivalent cations resulted in about half of the nucleosomes being canonical octasomes in which the exiting DNA duplexes cross orthogonally. The dominance of this last species explains why bivalent but not monovalent cations can induce the initial step towards compaction and convergence of neighboring nucleosomes in nucleosomal arrays to form the chromatin fiber in the absence of linker histone. The observed nucleosome structural diversity may reflect the functional plasticity of nucleosomes under physiological conditions.

  18. AFM study of hydrodynamics in boundary layers around micro- and nanofibers

    CERN Document Server

    de Baubigny, Julien Dupré; Mortagne, Caroline; Devailly, Clémence; Acharige, Sébastien Kosgodagan; Laurent, Justine; Steinberger, Audrey; Salvetat, Jean-Paul; Aimé, Jean-Pierre; Ondarçuhu, Thierry

    2016-01-01

    The description of hydrodynamic interactions between a particle and the surrounding liquid, down to the nanometer scale, is of primary importance since confined liquids are ubiquitous in many natural and technological situations. In this paper, we combine three non-conventional atomic force microscopes to study hydrodynamics around micro- and nano-cylinders. These complementary methods allow the independent measurement of the added mass and friction terms over a large range of probe sizes, fluid viscosities and solicitation conditions. A theoretical model based on an analytical description of the velocity field around the probe shows that the friction force depends on a unique parameter, the ratio of the probe radius to the thickness of the viscous boundary layer. We demonstrate that the whole range of experimental data can be gathered in a master curve which is well reproduced by the model. This validates the use of these AFM modes for a quantitative study of nano-hydrodynamics, and opens the way to the inve...

  19. A review of design concepts for the Advanced Fluids Module (AFM) project

    Science.gov (United States)

    Hill, Myron E.; Tschen, Peter S.

    1993-01-01

    This paper reviews preliminary fluid module design concepts for the Advanced Fluids Module (AFM) project. The objective of this effort is to provide a facility that can handle a wide variety of fluids experiments. Sample science requirements were written and conceptual designs were subsequently generated during the last year. Experiments from the following fluid physics subject areas were used as conceptual design drivers: static and dynamic interfacial phenomena; bubble/droplet thermocapillary migration; surface tension convection and instabilities; thermal/solutal convection; pool boiling; and multiphase flow. After the conceptual designs were completed, the next phase attempted to combine experiments capabilities into a multipurpose, multiuser apparatus configured for the Space Station Freedom. It was found that all the fluid subject areas considered could be accommodated by three basic types of fluids modules. These modules are the Static Fluid Cell Module, the Dynamic Fluid Cell Module, and the Multiphase Flow Module. Descriptions of these preliminary modules designs and their particular sub-systems (e.g., fluid and thermal systems) are discussed. These designs will be refined as the nature of the flight program becomes clearer over the next six to twelve months.

  20. BOREAS AFM-2 King Air 1994 Aircraft Flux and Moving Window Data

    Science.gov (United States)

    Kelly, Robert D.; Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The BOREAS AFM-2 team collected pass-by-pass fluxes (and many other statistics) for a large number of level (constant altitude), straight-line passes used in a variety of flight patterns. The data were collected by the University of Wyoming King Air in 1994 BOREAS IFCs 1-3. Most of these data were collected at 60-70 m above ground level, but a significant number of passes were also flown at various levels in the planetary boundary layer, up to about the inversion height. This documentation concerns only the data from the straight and level passes that are presented as original (over the NSA and SSA) and moving window values (over the Transect). Another archive of King Air data is also available, containing data from all the soundings flown by the King Air 1994 IFCs 1-3. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884) or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  1. BOREAS AFM-08 ECMWF Hourly Surface and Upper Air Data for the SSA and NSA

    Science.gov (United States)

    Viterbo, Pedro; Betts, Alan; Hall, Forrest G. (Editor); Newcomer, Jeffrey A.; Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-8 team focused on modeling efforts to improve the understanding of the diurnal evolution of the convective boundary layer over the boreal forest. This data set contains hourly data from the European Center for for Medium-Range Weather Forecasts (ECMWF) operational model from below the surface to the top of the atmosphere, including the model fluxes at the surface. Spatially, the data cover a pair of the points that enclose the rawinsonde sites at Candle Lake, Saskatchewan, in the Southern Study Area (SSA) and Thompson, Manitoba, in the Northern Study Area (NSA). Temporally, the data include the two time periods of 13 May 1994 to 30 Sept 1994 and 01 Mar 1996 to 31 Mar 1997. The data are stored in tabular ASCII files. The number of records in the upper air data files may exceed 20,000, causing a problem for some software packages. The ECMWF hourly surface and upper air data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  2. BOREAS AFM-1 NOAA/ATDD Long-EZ Aircraft Flux data Over the SSA

    Science.gov (United States)

    Crawford, Timothy L.; Baldocchi, Dennis; Hall, Forrest G. (Editor); Knapp, David E. (Editor); Gunter, Laureen; Dumas, Ed; Smith, David E. (Technical Monitor)

    2000-01-01

    This data set contains measurements from the Airborne Flux and Meteorology (AFM)-1 National Oceanographic and Atmospheric Administration/Atmospheric Turbulence and Diffusion Division (NOAA/ATDD) Long-EZ Aircraft collected during the 1994 Intensive Field Campaigns (IFCs) at the southern study area (SSA). These measurements were made from various instruments mounted on the aircraft. The data that were collected include aircraft altitude, wind direction, wind speed, air temperature, potential temperature, water mixing ratio, U and V components of wind velocity, static pressure, surface radiative temperature, downwelling and upwelling total radiation, downwelling and upwelling longwave radiation, net radiation, downwelling and upwelling photosynthectically active radiation (PAR), greenness index, CO2 concentration, O3 concentration, and CH4 concentration. There are also various columns that indicate the standard deviation, skewness, kurtosis, and trend of some of these data. The data are stored in tabular ASCII files. The NOAA/ATDD Long-EZ aircraft flux data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  3. New insights into morphology of high performance BHJ photovoltaics revealed by high resolution AFM.

    Science.gov (United States)

    Wang, Dong; Liu, Feng; Yagihashi, Noritoshi; Nakaya, Masafumi; Ferdous, Sunzida; Liang, Xiaobin; Muramatsu, Atsushi; Nakajima, Ken; Russell, Thomas P

    2014-10-08

    Direct imaging of the bulk heterojunction (BHJ) thin film morphology in polymer-based solar cells is essential to understand device function and optimize efficiency. The morphology of the BHJ active layer consists of bicontinuous domains of the donor and acceptor materials, having characteristic length scales of several tens of nanometers, that reduces charge recombination, enhances charge separation, and enables electron and hole transport to their respective electrodes. Direct imaging of the morphology from the molecular to macroscopic level, though, is lacking. Though transmission electron tomography provides a 3D, real-space image of the morphology, quantifying the structure is not possible. Here we used high-resolution atomic force microscopy (AFM) in the tapping and nanomechanical modes to investigate the BHJ active layer morphology that, when combined with Ar(+) etching, provided unique insights with unparalleled spatial resolution. PCBM was seen to form a network that interpenetrated into the fibrillar network of the hole-conducting polymer, both being imbedded in a mixture of the two components. The free surface was found to be enriched with polymer crystals having a "face-on" orientation and the morphology at the anode interface was markedly different.

  4. Investigation the Al–Fe–Cr–Ti nano composites structures with using XRD and AFM techniques

    Indian Academy of Sciences (India)

    Ali Bahari; Aref Sadeghi Nik; Mandana Roodbari; Nordin Mirnia

    2012-12-01

    The performance of multilayers has been widely investigated in metal/metal systems. Shrinking this system down to less than 10 nm dislocation blocking occurs. We should thus try to find a way to get a structure with less dislocation, and/or strain because low diffusivity ultra high vacuum chamber is the basic requirements for growing ultra thin films and nano scale materials. We used William–Hall relation based on Scherr equation in X-ray powder spectrum and drawn the stress–strain diagrams. It shows that Al–Fe–Cr–Ti composites have very low diffusivity and equilibrium solubility in Al (0.05 at.% Fe, >0.02 at.% Cr, and >0.3 at.% Ti). Al–Ti– Fe–Cr composite powders have also been prepared from sol–gel method starting from elemental powders at both ambient and elevated temperatures. The obtained results from XRD (X-ray Diffraction), AFM (Atomic Force Microscopy) and X-ray powder techniques indicate that nano-grains with 0.03 at %Cr can cause a reduction of leakage current through the SS chamber due to its amorphous structure.

  5. AFM in mode Peak Force applied to the study of un-worn contact lenses.

    Science.gov (United States)

    Torrent-Burgués, J; Sanz, F

    2014-09-01

    Contact lenses (CLs) are of common use and the biocompatibility, topography and mechanical properties of the used materials are of major importance. The objective of this contribution is to apply the AFM in mode Peak Force to obtain surface topography and mechanical characteristics of un-worn CLs of different materials. One material of hydrogel, two of siloxane-hydrogel and one of rigid gas-permeable were used in the study. The results obtained with different materials have been compared, at a nanoscopic level, and the conclusions are diverse. There is no significant influence of the two environments used to measure the characteristics of the CLs, either water or saline solution. The pHEMA hydrogel CL (Polymacon of Soflens) shows the highest values of roughness, adhesion and elastic modulus. The siloxane-hydrogel CL named Asmofilcon A of PremiO presents the lowest values of mean roughness (Ra), root-mean-square roughness (RMS or Rq), adhesion (Adh) and elastic modulus (Ym), meanwhile the siloxane-hydrogel CL named Lotrafilcon B of Air Optix presents the lowest value of skewness (Rsk) and the rigid gas-permeable CL, named RXD, presents the lowest values of kurtosis (Rku) and maximum roughness (Rmax).

  6. IMPROVED FABRICATION METHOD FOR CARBON NANOTUBE PROBE OF ATOMIC FORCE MICROSCOPY(AFM)

    Institute of Scientific and Technical Information of China (English)

    XU Zongwei; DONG Shen; GUO Liqiu; ZHAO Qingliang

    2006-01-01

    An improved arc discharge method is developed to fabricate carbon nanotube probe of atomic force microscopy (AFM) here. First, silicon probe and carbon nanotube are manipulated under an optical microscope by two high precision microtranslators. When silicon probe and carbon nanotube are very close, several tens voltage is applied between them. And carbon nanotube is divided and attached to the end of silicon probe, which mainly due to the arc welding function.Comparing with the arc discharge method before, the new method here needs no coat silicon probe with metal film in advance, which can greatly reduce the fabrication's difficulty. The fabricated carbon nanotube probe shows good property of higher aspect ratio and can more accurately reflect the true topography of silicon grating than silicon probe. Under the same image drive force, carbon nanotube probe had less indentation depth on soft triblock copolymer sample than silicon probe. This showed that carbon nanotube probe has lower spring constant and less damage to the scan sample than silicon probe.

  7. Zeta potential, contact angles, and AFM imaging of protein conformation adsorbed on hybrid nanocomposite surfaces.

    Science.gov (United States)

    Pinho, Ana C; Piedade, Ana P

    2013-08-28

    The sputtering deposition of gold (Au) and poly(tetrafluoroethylene) (PTFE) was used to prepare a nanocomposite hybrid thin film suitable for protein adsorption while maintaining the native conformation of the biological material. The monolithic PTFE and the nanocomposite PTFE/Au thin films, with Au content up to 1 at %, were co-deposited by r.f. magnetron sputtering using argon as a discharge gas and deposited onto 316L stainless steel substrates, the most commonly used steel in biomaterials. The deposited thin films, before and after bovine serum albumin (BSA) adsorption, were thoroughly characterized with special emphasis on the surface properties/characteristics by atomic force microscopy (AFM), zeta potential, and static and dynamic contact angle measurements, in order to assess the relationship between structure and conformational changes. The influence of a pre-adsorbed peptide (RGD) was also evaluated. The nanotopographic and chemical changes induced by the presence of gold in the nanocomposite thin films enable RGD bonding, which is critical for the maintenance of the BSA native conformation after adsorption.

  8. AFM study of forces between silicon oil and hydrophobic-hydrophilic surfaces in aqueous solutions.

    Science.gov (United States)

    Zbik, Marek S; Frost, Ray L

    2010-09-15

    An investigation has been made of the interactions between silicone oil and various solid substrates immersed in aqueous solutions. Measurements were made using an atomic force microscope (AFM) using the colloid-probe method. The silicone oil drop is simulated by coating a small silica sphere with the oil, and measuring the force as this coated sphere is brought close to contact with a flat solid surface. It is found that the silicone oil surface is negatively charged, which causes a double-layer repulsion between the oil drop and another negatively charged surface such as mica. With hydrophilic solids, this repulsion is strong enough to prevent attachment of the drop to the solid. However, with hydrophobic surfaces there is an additional attractive force which overcomes the double-layer repulsion, and the silicone oil drop attaches to the solid. There is circumstantial evidence that linear and nonlinear effect take part in force results from compression of the silicone oil film coated on the glass sphere.

  9. AFM investigations of the morphology features and local mechanical properties of HTS YBCO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Soifer, Yakov M.; Verdyan, Armen; Lapsker, Igor; Azoulay, Jacob

    2004-08-01

    In the paper presented here the application of the atomic force microscope (AFM) is considered for evaluation of hardness and Young's modulus of high T{sub c} superconducting YBCO thin films of different thickness (from 0.05 to 1 {mu}m) grown on unbuffered SrTiO{sub 3} (film I) and on sapphire with a buffer layer of CeO{sub 2} (film II). The best film features a transition temperature T{sub c} of 90 K, critical current density J{sub c} (H=0) of 3 x 10{sup 7} A/cm{sup 2} at 4.2 K and 2 x 10{sup 6} A/cm{sup 2} at 77 K. The relationship between mechanical properties and microstructure of these films was investigated. It was found that all the films comprised well-defined Cu-rich precipitates of different size and with different density on their surface. For both type of films the hardness was measured to be in the range of 12-18 GPa. The Young's modulus of the films was about 180-200 GPa. The nanoindentation and nanoscratching measurements showed that the mechanical strength of the films studied was determined mainly by mechanical failure and surface defects (secondary phases)

  10. AFM investigations of the morphology features and local mechanical properties of HTS YBCO thin films

    Science.gov (United States)

    Soifer, Yakov M.; Verdyan, Armen; Lapsker, Igor; Azoulay, Jacob

    2004-08-01

    In the paper presented here the application of the atomic force microscope (AFM) is considered for evaluation of hardness and Young's modulus of high Tc superconducting YBCO thin films of different thickness (from 0.05 to 1 μm) grown on unbuffered SrTiO 3 (film I) and on sapphire with a buffer layer of CeO 2 (film II). The best film features a transition temperature Tc of 90 K, critical current density Jc ( H=0) of 3 × 10 7 A/cm 2 at 4.2 K and 2 × 10 6 A/cm 2 at 77 K. The relationship between mechanical properties and microstructure of these films was investigated. It was found that all the films comprised well-defined Cu-rich precipitates of different size and with different density on their surface. For both type of films the hardness was measured to be in the range of 12-18 GPa. The Young's modulus of the films was about 180-200 GPa. The nanoindentation and nanoscratching measurements showed that the mechanical strength of the films studied was determined mainly by mechanical failure and surface defects (secondary phases).

  11. Nonlinear Dynamics and Chaos of Microcantilever-Based TM-AFMs with Squeeze Film Damping Effects

    Directory of Open Access Journals (Sweden)

    Jie-Yu Chen

    2009-05-01

    Full Text Available In Atomic force microscope (AFM examination of a vibrating microcantilever, the nonlinear tip-sample interaction would greatly influence the dynamics of the cantilever. In this paper, the nonlinear dynamics and chaos of a tip-sample dynamic system being run in the tapping mode (TM were investigated by considering the effects of hydrodynamic loading and squeeze film damping. The microcantilever was modeled as a spring-mass-damping system and the interaction between the tip and the sample was described by the Lennard-Jones (LJ potential. The fundamental frequency and quality factor were calculated from the transient oscillations of the microcantilever vibrating in air. Numerical simulations were carried out to study the coupled nonlinear dynamic system using the bifurcation diagram, Poincaré maps, largest Lyapunov exponent, phase portraits and time histories. Results indicated the occurrence of periodic and chaotic motions and provided a comprehensive understanding of the hydrodynamic loading of microcantilevers. It was demonstrated that the coupled dynamic system will experience complex nonlinear oscillation as the system parameters change and the effect of squeeze film damping is not negligible on the micro-scale.

  12. STM/AFM studies of the evolution of morphology of electroplated Ni/W alloys

    Science.gov (United States)

    Zhu, L.; Younes, O.; Ashkenasy, N.; Shacham-Diamand, Y.; Gileadi, E.

    2002-11-01

    The surface morphology evolution of Ni/W alloys was studied, as a function of the alloy composition. Using the modified plating baths developed in our laboratory recently, electroplated Ni/W alloys with different W content, in the range of 7-67 atom percent (a/o), can be obtained. This was found to lead to different structures, ranging from polycrystalline fcc-Ni type structure to amorphous, followed by orthorhombic with increasing W content in the alloy. Powder XRD was studied to determine the crystal structures. Ex situ STM, AFM and SEM were used to study in detail the surface morphologies of the different alloys, and their evolution with increasing W content. The important findings are that a mixture of two crystalline forms can give rise to an amorphous structure. Hillocks that are usually a characteristic of epitaxial growth can also exist in the amorphous alloys. Oriented scratches caused by stress can also be formed. Up to 20 a/o of W is deposited in the alloys in crystalline form, with the fcc-Ni type structure. Between 20 and about 40 a/o an amorphous structure is observed, and above that an orthorhombic crystal structure is seen, which is characteristic of the NiW binary alloy. Careful choice of the composition of the plating bath allowed us to deposit an alloy containing 67 a/o W, which corresponds to the composition NiW 2.

  13. Magnetotransport measurements on AFM structured two-dimensional electron gases on cleaved edges of GaAs/AlGaAs; Magnetotransportmessungen an AFM-strukturierten zweidimensionalen Elektronengasen auf GaAs/AlGaAs-Spaltkanten

    Energy Technology Data Exchange (ETDEWEB)

    Reinwald, Elisabeth

    2009-06-25

    In this thesis a two dimensional electron gas (2DEG) on a (110) cleavage plane of a GaAs/AlGaAs(001) heterostructure was produced by means of cleaved edge overgrowth (CEO) and modulated in two dimensions. The 2DEG was modulated in one direction by a superlattice of the subjacent GaAs/AlGaAs(001) heterostructure. A second modulation, perpendicular to the first was realized by local anodic oxidation (LAO) with an atomic force microscope (AFM). For the process of LAO an electric voltage is applied between the tip of the AFM and the surface of the GaAs. The natural water film on the surface acts as electrolyte so that the GaAs surface is locally oxidized underneath the AFM tip. This oxide leads to a band bending so that the 2DEG underneath the oxide is locally depleted. On these systems magnetotransport measurements revealed that it is actually possible to modulate 2DEGs on a sufficient large area by local anodic oxidation. On the cleaved surfaces the influence of the two dimensional modulation on the electron gas has been demonstrated. (orig.)

  14. The Emergence of AFM Applications to Cell Biology: How new technologies are facilitating investigation of human cells in health and disease at the nanoscale.

    Science.gov (United States)

    Yang, Ruiguo; Xi, Ning; Fung, Carmen Kar Man; Seiffert-Sinha, Kristina; Lai, King Wai Chiu; Sinha, Animesh A

    2011-01-01

    Atomic Force Microscopy (AFM) based nanorobotics has been used for building nano devices in semiconductors for almost a decade. Leveraging the unparallel precision localization capabilities of this technology, high resolution imaging and mechanical property characterization is now increasingly being performed in biological settings. AFM also offers the prospect for handling and manipulating biological materials at nanometer scale. It has unique advantages over other methods, permitting experiments in the liquid phase where physiological conditions can be maintained. Taking advantage of these properties, our group has visualized membrane and cytoskeletal structures of live cells by controlling the interaction force of the AFM tip with cellular components at the nN or sub-nN range. Cell stiffness changes were observed by statistically analyzing the Young's modulus values of human keratinocytes before and after specific antibody treatment. Furthermore, we used the AFM cantilever as a robotic arm for mechanical pushing, pulling and cutting to perform nanoscale manipulations of cell-associated structures. AFM guided nano-dissection, or nanosurgery was enacted on the cell in order to sever intermediate filaments connecting neighboring keratinocytes via sub 100 nm resolution cuts. Finally, we have used a functionalized AFM tip to probe cell surface receptors to obtain binding force measurements. This technique formed the basis for Single Molecule Force Spectroscopy (SMFS). In addition to enhancing our basic understanding of dynamic signaling events in cell biology, these advancements in AFM based biomedical investigations can be expected to facilitate the search for biomarkers related to disease diagnosis progress and treatment.

  15. Non-reciprocal directional dichroism in the AFM phase of BiFeO3 at THz frequencies

    Science.gov (United States)

    Nagel, Urmas; Rõõm, T.; Farkas, D.; Szaller, D.; Bordács, S.; Kézsmárki, I.; Engelkamp, H.; Ozaki, Y.; Tomiaki, Y.; Ito, T.; Fishman, Randy S.

    We did THz absorption spectroscopy of BiFeO3 single crystals in the AFM phase, where the spin cycloid is destroyed in magnetic fields between 18 T and 32 T in Voigt geometry at 1.6 K. If B0 ∥ [ 1 1 0 ] , we see strong directional dichroism (DD) of absorption of the magnon mode with light propagating along the direction of the ferroelectric polarization k ∥ P ∥ [ 111 ] and eω ∥ [ 1 1 0 ] , bω ∥ [ 1 1 2 ] . The sign of DD can be reversed (i) by reversing the direction of B0 or (ii) by flipping the sample, thus reversing the propagation direction of light. The observed effect is caused by the strong magneto-electric coupling in the collinear AFM phase. Research sponsored by the Estonian Ministry of Education and Research (IUT23-3).

  16. Influence of the SHI Irradiation on the XRD, AFM, and Electrical Properties of CdSe Thin Films

    Directory of Open Access Journals (Sweden)

    Rajesh Singh

    2016-06-01

    Full Text Available Cadmium Selinide (CdSe thin films prepared by thermal evaporation on glass substrates were irradiated with swift (100 MeV Ni+7 ions at fluences of 1 × 1011 and 1 × 1012 cm – 2. The structural changes with respect to increasing fluence were observed by the means of X-ray diffraction (XRD. The modification in surface morphology and electrical properties has been analyzed as a function of fluence using XRD, AFM and I-V techniques. The AFM micrographs of irradiated thin films show the formation of small spherical grains and decrease in surface roughness with increasing fluence as well as I-V measurement revels that decrease in resistivity with increasing fluence.

  17. AFM PeakForce QNM mode: Evidencing nanometre-scale mechanical properties of chitin-silica hybrid nanocomposites.

    Science.gov (United States)

    Smolyakov, G; Pruvost, S; Cardoso, L; Alonso, B; Belamie, E; Duchet-Rumeau, J

    2016-10-20

    PeakForce Quantitative Nanomechanical Mapping (QNM) AFM mode was used to explore the mechanical properties of textured chitin-silica hybrid films at the nanoscale. The influence of the force applied by the tip on the sample surface was studied for standard homogeneous samples, for chitin nanorods and for chitin-silica hybrid nanocomposites. Thick films of superimposed chitin nanorods showed a monotonous increase of DMT modulus (based on the Derjaguin-Muller-Toporov model) owing to an increase in modulus at the interface between nanorods due to geometrical constraints of the AFM acquisition. A similar variation of DMT modulus was obtained for chitin-silica hybrid thick films related to mechanical strengthening induced by the presence of silica. This work revealed the role of the organic-inorganic interface, at the nanoscale, in the mechanical behaviour of textured materials using PeakForce QNM mode, with optimized analysis conditions.

  18. A solution for an inverse problem in liquid AFM: calculation of three-dimensional solvation structure on a sample surface

    CERN Document Server

    Amano, Ken-ich

    2013-01-01

    Recent frequency-modulated atomic force microscopy (FM-AFM) can measure three-dimensional force distribution between a probe and a sample surface in liquid. The force distribution is, in the present circumstances, assumed to be solvation structure on the sample surface, because the force distribution and solvation structure have somewhat similar shape. However, the force distribution is exactly not the solvation structure. If we would like to obtain the solvation structure by using the liquid AFM, a method for transforming the force distribution into the solvation structure is necessary. Therefore, in this letter, we present the transforming method in a brief style. We call this method as a solution for an inverse problem, because the solvation structure is obtained at first and the force distribution is obtained next in general calculation processes. The method is formulated (mainly) by statistical mechanics of liquid.

  19. LEEM and XPEEM studies of C-AFM induced surface modifications of thermally grown SiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Heun, S. [Laboratorio TASC-INFM, 34012 Trieste (Italy)]. E-mail: heun@tasc.infm.it; Kremmer, S. [Institute of Physics, University of Leoben, 8700 Leoben (Austria); Ercolani, D. [Laboratorio TASC-INFM, 34012 Trieste (Italy); Universita di Modena e Reggio Emilia, 41100 Modena (Italy); Wurmbauer, H. [Institute of Physics, University of Leoben, 8700 Leoben (Austria); Teichert, C. [Institute of Physics, University of Leoben, 8700 Leoben (Austria)

    2005-06-15

    The process of local anodic oxidation, where a positive voltage is applied between a sample and a conducting probe, is well understood. Here, conducting atomic force microscope (C-AFM) induced surface modifications of thermally grown SiO{sub 2} are investigated for opposite (i.e. negative) sample bias. Also at this polarity, surprisingly, the appearance of protrusions is observed. To obtain information on the nature of these protrusions, low-energy electron microscopy (LEEM) and X-ray photoemission electron microscopy (XPEEM) measurements were performed. Photoemission spectra reveal that the structures formed by C-AFM are chemically homogeneous, and that they are caused by the growth of additional SiO{sub 2} on the sample surface.

  20. Observation of Transcription Regulation in the Mouse Heart Nuclear DNA Fragments and the Specific-protein Interaction by AFM

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Using atom force microscopy (AFM), in vitro transcription, PAGE and other experimental technologies, it is observed that, in active genes of mice (Balb/c) nuclear DNA fragments of non-transcriptional state, only regulation sequences at both ends are associated with scaffold proteins (indissociable proteins) and some transcriptional factors such as complexes (dissociable proteins) made of gene-coding proteins and specific auxiliary small molecules, while there are no combining proteins in intermediate coding sequences. However, in active genes of transcriptional state, both regulation sequences and intermediate coding sequences are associated with active transcriptional factors by non-covalent bonds.This paper shows the prospective application of AFM observation and in vitro transcription in the research on gene expression and regulation. It also offers some theoretical basis for localization of specific genes in human genomes.

  1. Amyloid–β peptides time-dependent structural modifications: AFM and voltammetric characterization

    Energy Technology Data Exchange (ETDEWEB)

    Enache, Teodor Adrian; Chiorcea-Paquim, Ana-Maria; Oliveira-Brett, Ana Maria, E-mail: brett@ci.uc.pt

    2016-07-05

    The human amyloid beta (Aβ) peptides, Aβ{sub 1-40} and Aβ{sub 1-42}, structural modifications, from soluble monomers to fully formed fibrils through intermediate structures, were investigated, and the results were compared with those obtained for the inverse Aβ{sub 40-1} and Aβ{sub 42-1}, mutant Aβ{sub 1-40}Phe{sup 10} and Aβ{sub 1-40}Nle{sup 35}, and rat Aβ{sub 1-40}Rat peptide sequences. The aggregation was followed at a slow rate, in chloride free media and room temperature, and revealed to be a sequence-structure process, dependent on the physicochemical properties of each Aβ peptide isoforms, and occurring at different rates and by different pathways. The fibrilization process was investigated by atomic force microscopy (AFM), via changes in the adsorption morphology from: (i) initially random coiled structures of ∼0.6 nm height, corresponding to the Aβ peptide monomers in random coil or in α-helix conformations, to (ii) aggregates and protofibrils of 1.5–6.0 nm height and (iii) two types of fibrils, corresponding to the Aβ peptide in a β-sheet configuration. The reactivity of the carbon electrode surface was considered. The hydrophobic surface induced rapid changes of the Aβ peptide conformations, and differences between the adsorbed fibrils, formed at the carbon surface (beaded, thin, <2.0 nm height) or in solution (long, smooth, thick, >2.0 nm height), were detected. Differential pulse voltammetry showed that, according to their primary structure, the Aβ peptides undergo oxidation in one or two steps, the first step corresponding to the tyrosine amino acids oxidation, and the second one to the histidine and methionine amino acids oxidation. The fibrilization process was electrochemically detected via the decrease of the Aβ peptide oxidation peak currents that occurred in a time dependent manner. - Highlights: • The Aβ peptide fibrilization process was followed by AFM and DP voltammetry. • The human Aβ{sub 1-40} and Aβ{sub 1

  2. Determination of Morphological Parameters of Supported Gold Nanoparticles: Comparison of AFM Combined with Optical Spectroscopy and Theoretical Modeling versus TEM

    Directory of Open Access Journals (Sweden)

    Frank Hubenthal

    2012-07-01

    Full Text Available The morphology of small gold particles prepared by Volmer–Weber growth on sapphire substrates have been investigated by two different characterization techniques. First, by non-extensive atomic force microscopy (AFM in combination with optical spectroscopy and modeling of the optical properties using a theoretical model, recently developed in our group. Second, by extensive transmission electron microscopy (TEM. Comparing the results obtained with both techniques demonstrate that for small gold nanoparticles within the quasistatic limit, the morphological properties can be precisely determined by an appropriate theoretical modeling of the optical properties in combination with simple AFM measurements. The apparent mean axial ratio of the nanoparticles, i.e., the axial ratio that corresponds to the center frequency of the ensemble plasmon resonance, is obtained easily from the extinction spectrum. The mean size is determined by the nanoparticle number density and the amount of deposited material, measured by AFM and a quartz micro balance, respectively. To extract the most probable axial ratio of the nanoparticle ensemble, i.e., the axial ratio that corresponds to the most probable nanoparticle size in the ensemble, we apply the new theoretical model, which allows to extract the functional dependence of the nanoparticle shape on its size. The morphological parameters obtained with this procedure will be afterwards compared to extensive TEM measurements. The results obtained with both techniques yield excellent agreement. For example, the lateral dimensions of the nanoparticles after deposition of 15.2 × 1015 atoms/cm2 of gold has been compared. While a mean lateral diameter of (13 ± 2 nm has been extracted from AFM, optical spectroscopy and modeling, a value of (12 ± 2 nm is derived from TEM. The consistency of the results demonstrate the precision of our new model. Moreover, since our theoretical model allows to extract the functional

  3. Protein coverage on silicon surfaces modified with amino-organic films: a study by AFM and angle-resolved XPS.

    Science.gov (United States)

    Awsiuk, K; Bernasik, A; Kitsara, M; Budkowski, A; Rysz, J; Haberko, J; Petrou, P; Beltsios, K; Raczkowska, J

    2010-10-01

    An approach to determine structural features, such as surface fractional coverage F and thickness d of protein layers immobilized on silicon substrates coated with amino-organic films is presented. To demonstrate the proposed approach rabbit gamma globulins (RgG) are adsorbed from a 0.66muM solution onto SiO(2) and Si(3)N(4) modified with (3-aminopropyl)triethoxysilane (APTES). Atomic force microscopy data are analyzed by applying an integral geometry approach to yield average coverage values for silanized Si(3)N(4) and SiO(2) coated with RgG, F=0.99+/-0.01 and 0.76+/-0.08, respectively. To determine the RgG thickness d from angle-resolved X-ray photoelectron spectroscopy (ARXPS), a model of amino-organic bilayer with non-homogeneous top lamellae is introduced. For an APTES layer thickness of 1.0+/-0.1nm, calculated from independent ARXPS measurements, and for fractional surface RgG coverage determined from AFM analysis, this model yields d=1.0+/-0.2nm for the proteins on both silanized substrates. This value, confirmed by an evaluation (1.0+/-0.2nm) from integral geometry analysis of AFM images, is lower than the RgG thickness expected for monomolecular film ( approximately 4nm). Structures visible in phase contrast AFM micrographs support the suggested sparse molecular packing in the studied RgG layers. XPS data, compared for bulk and adsorbed RgG, suggest preferential localization of oxygen- and nitrogen-containing carbon groups at silanized silicon substrates. These results demonstrate the potential of the developed AFM/ARXPS approach as a method for the evaluation of surface-protein coverage homogeneity and estimation of adsorbed proteins conformation on silane-modified silicon substrates used in bioanalytical applications.

  4. Application of the Discrete Wavelet Transform to SEM and AFM Micrographs for Quantitative Analysis of Complex Surfaces.

    Science.gov (United States)

    Workman, Michael J; Serov, Alexey; Halevi, Barr; Atanassov, Plamen; Artyushkova, Kateryna

    2015-05-01

    The discrete wavelet transform (DWT) has found significant utility in process monitoring, filtering, and feature isolation of SEM, AFM, and optical images. Current use of the DWT for surface analysis assumes initial knowledge of the sizes of the features of interest in order to effectively isolate and analyze surface components. Current methods do not adequately address complex, heterogeneous surfaces in which features across multiple size ranges are of interest. Further, in situations where structure-to-property relationships are desired, the identification of features relevant for the function of the material is necessary. In this work, the DWT is examined as a tool for quantitative, length-scale specific surface metrology without prior knowledge of relevant features or length-scales. A new method is explored for determination of the best wavelet basis to minimize variation in roughness and skewness measurements with respect to change in position and orientation of surface features. It is observed that the size of the wavelet does not directly correlate with the size of features on the surface, and a method to measure the true length-scale specific roughness of the surface is presented. This method is applied to SEM and AFM images of non-precious metal catalysts, yielding new length-scale specific structure-to-property relationships for chemical speciation and fuel cell performance. The relationship between SEM and AFM length-scale specific roughness is also explored. Evidence is presented that roughness distributions of SEM images, as measured by the DWT, is representative of the true surface roughness distribution obtained from AFM.

  5. DNA-coated AFM cantilevers for the investigation of cell adhesion and the patterning of live cells

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao, Sonny C.; Crow, Ailey K.; Lam, Wilbur A.; Bertozzi, Carolyn R.; Fletcher, Daniel A.; Francis, Matthew B.

    2008-08-01

    Measurement of receptor adhesion strength requires the precise manipulation of single cells on a contact surface. To attach live cells to a moveable probe, DNA sequences complementary to strands displayed on the plasma membrane are introduced onto AFM cantilevers (see picture, bp=base pairs). The strength of the resulting linkages can be tuned by varying the length of DNA strands, allowing for controlled transport of the cells.

  6. AFM of the ultrastructural and mechanical properties of lipid-raft-disrupted and/or cold-treated endothelial cells.

    Science.gov (United States)

    Wu, Li; Huang, Jie; Yu, Xiaoxue; Zhou, Xiaoqing; Gan, Chaoye; Li, Ming; Chen, Yong

    2014-02-01

    The nonionic detergent extraction at 4 °C and the cholesterol-depletion-induced lipid raft disruption are the two widely used experimental strategies for lipid raft research. However, the effects of raft disruption and/or cold treatment on the ultrastructural and mechanical properties of cells are still unclear. Here, we evaluated the effects of raft disruption and/or cold (4 °C) treatment on these properties of living human umbilical vein endothelial cells (HUVECs). At first, the cholesterol-depletion-induced raft disruption was visualized by confocal microscopy and atomic force microscopy (AFM) in combination with fluorescent quantum dots. Next, the cold-induced cell contraction and the formation of end-branched filopodia were observed by confocal microscopy and AFM. Then, the cell-surface ultrastructures were imaged by AFM, and the data showed that raft disruption and cold treatment induced opposite effects on cell-surface roughness (a significant decrease and a significant increase, respectively). Moreover, the cell-surface mechanical properties (stiffness and adhesion force) of raft-disrupted- and/or cold-treated HUVECs were measured by the force measurement function of AFM. We found that raft disruption and cold treatment induced parallel effects on cell stiffness (increase) or adhesion force (decrease) and that the combination of the two treatments caused dramatically strengthened effects. Finally, raft disruption was found to significantly impair cell migration as previously reported, whereas temporary cold treatment only caused a slight but nonsignificant decrease in cell migration performed at physiological temperature. Although the mechanisms for causing these results might be complicated and more in-depth studies will be needed, our data may provide important information for better understanding the effects of raft disruption or cold treatment on cells and the two strategies for lipid raft research.

  7. The study of optical disk pattern based on AFM%基于AFM的光盘形貌研究

    Institute of Scientific and Technical Information of China (English)

    孙大许; 刘万里; 马强; 闫勇刚

    2005-01-01

    介绍了原子力显微镜(AFM)的原理及特点.用AFM对光盘上记录信息用的凹坑结构进行了三维检测,并对测量结果进行了分析.结论表明AFM在光盘质量检测过程中具有独特的优势.

  8. Depth prediction model of nano-grooves fabricated by AFM-based multi-passes scratching method

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Yanquan; Yan, Yongda, E-mail: yanyongda@hit.edu.cn; Yu, Bowen; Li, Jiran; Zhang, Qi; Hu, Zhenjiang; Zhao, Xuesen

    2014-09-15

    Highlights: • An AFM-based depth prediction model of nano-grooves for the atomic force microscopy (AFM)-based multi-passes scratching method is given. • The effect of the tip geometry is considered in the theoretical model. • A correction factor is introduced into the two-passes scratching model and the prediction error of the correction model is less than 10%. - Abstract: This paper proposes a nano-groove depth prediction model for the atomic force microscopy (AFM)-based multi-passes scratching method in which the AFM tip is considered as a cone with a spherical apex. The relationship between the normal load applied on the sample and the depth of the machined nano-groove is systematically investigated for the multi-passes scratching process. Nano-grooves are fabricated with several normal loads and two passes scratches on a 2A12 aluminum alloy surface to verify the developed models. Results show that the hardness may become larger near the machined region after one pass scratching test and a correction factor is introduced into the two passes scratching model which is as a function of the first pass machined depths of the nano-grooves. Based on the correction model, several nano-grooves with an expected depth are machined with different normal loads for each pass in the two passes scratching tests and the difference between the experiment results and the expected values is less than 10%. Actually, to machine a nano-groove with a desired depth, this method has the potential to distribute the appropriate normal load applied for each pass to reduce the tip wear and be used for nano-groove depth correction using the multi passes scratching technique.

  9. AFM studied the effect of celastrol on β1 integrin-mediated HUVEC adhesion and migration.

    Science.gov (United States)

    Ke, Changhong; Jin, Hua; Cai, Jiye

    2013-01-01

    Integrin-mediated human umbilical vein endothelial cells (HUVECs) adhesion to the extracellular matrix plays a fundamental role in tumor-induced angiogenesis. Celastrol, a traditional Chinese medicine plant, has possessed anticancer and suppressed angiogenesis activities. Here, the mechanism underling the antiangiogenesis capacity of celastrol was investigated by exploring the effect of celastrol on β1(CD29) integrin-mediated cell adhesion and migration. Flow cytometry results showed that the HUVECs highly expressed CD29 and cell adhesion assay indicated that celastrol specifically inhibited the adhesion of HUVECs to fibronectin (FN) without affecting nonspecific adhesion to poly-L-lysine (PLL). After cell FN adhesion being inhibited, the cell surface nanoscale structure and adhesion force were detected by atomic force microscope (AFM). High-resolution imaging revealed that cell morphology and ultrastructure changed a lot after being treated with celastrol. The membrane average roughness (Ra) and the major forces were decreased from 31.34 ± 4.56 nm, 519.60 ± 82.86 pN of 0 μg/ml celastrol to 18.47 ± 6.53 nm, 417.79 ± 53.35 pN of 4.0 μg/ml celastrol, 10.54 ± 2.85 nm, 258.95 ± 38.98 pN of 8.0 μg/ml celastrol, respectively. Accompanying with the decrease of adhesion force, the actin cytoskeleton in the cells was obviously disturbed by the celastrol. All of these changes influenced the migration of HUVECs from the wound-healing migration assay. Taken together, our results suggest that celastrol can be as an inhibitor of HUVEC adhesion to FN. This work provides a novel approach to inhibition of tumor angiogenesis and tumor growth.

  10. Lipid asymmetry in DLPC/DSPC supported lipid bilayers, a combined AFM and fluorescence microscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Lin, W; Blanchette, C D; Ratto, T V; Longo, M L

    2005-06-20

    A fundamental attribute of cell membranes is transmembrane asymmetry, specifically the formation of ordered phase domains in one leaflet that are compositionally different from the opposing leaflet of the bilayer. Using model membrane systems, many previous studies have demonstrated the formation of ordered phase domains that display complete transmembrane symmetry but there have been few reports on the more biologically relevant asymmetric membrane structures. Here we report on a combined atomic force microscopy (AFM) and fluorescence microscopy study whereby we observe three different states of transmembrane symmetry in phase-separated supported bilayers formed by vesicle fusion. We find that if the leaflets differ in gel-phase area fraction, then the smaller domains in one leaflet are in registry with the larger domains in the other leaflet and the system is dynamic. In a presumed lipid flip-flop process similar to Ostwald Ripening, the smaller domains in one leaflet erode away while the large domains in the other leaflet grow until complete compositional asymmetry is reached and remains stable. We have quantified this evolution and determined that the lipid flip-flop event happens most frequently at the interface between symmetric and asymmetric DSPC domains. If both leaflets have nearly identical area fraction of gel-phase, gel-phase domains are in registry and are static in comparison to the first state. The stability of these three DSPC domain distributions, the degree of registry observed, and the domain immobility have direct biological significance with regards to maintenance of lipid asymmetry in living cell membranes, communication between inner leaflet and outer leaflet, membrane adhesion, and raft mobility.

  11. Interaction Mechanism of Oil-in-Water Emulsions with Asphaltenes Determined Using Droplet Probe AFM.

    Science.gov (United States)

    Shi, Chen; Zhang, Ling; Xie, Lei; Lu, Xi; Liu, Qingxia; Mantilla, Cesar A; van den Berg, Frans G A; Zeng, Hongbo

    2016-03-15

    Emulsions with interface-active components at the oil/water interface have long been of fundamental and practical interest in many fields. In this work, the interaction forces between two oil droplets in water in the absence/presence of asphaltenes were directly measured using droplet probe atomic force microscopy (AFM) and analyzed using a theoretical model based on Reynolds lubrication theory and the augmented Young-Laplace equation by including the effects of disjoining pressure. It was revealed that the interaction forces measured between two pristine oil droplets (i.e., toluene) could be well described by the classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, while an additional steric interaction should be included in the presence of asphaltenes in the oil. The surface interaction and the stability of oil droplets in aqueous solution were demonstrated to be significantly influenced by the asphaltenes concentration in oil, salt concentration, pH, and presence of divalent ions (Ca(2+)) in water. Adsorbed asphaltenes at the oil/water interface led to more negative surface potential of the oil/water interface and also induced steric repulsion between oil droplets, inhibiting the drop coalescence and stabilizing the oil-in-water emulsion. Lower pH of aqueous solution could lead to less negative surface potential and weaken the repulsion between oil droplets. Addition of divalent ions (Ca(2+)) was found to disrupt the protecting effects of adsorbed asphaltenes at oil/water interface and induce coalescence of oil droplets. Our results provide a useful methodology for quantifying the interaction forces and investigating the properties of asphaltenes at the oil/water interfaces and provide insights into the stabilization mechanism of oil-in-water emulsions due to asphaltenes in oil production and water treatment.

  12. Effect of enamel morphology on nanoscale adhesion forces of streptococcal bacteria : An AFM study.

    Science.gov (United States)

    Wang, Chuanyong; Zhao, Yongqi; Zheng, Sainan; Xue, Jing; Zhou, Jinglin; Tang, Yi; Jiang, Li; Li, Wei

    2015-01-01

    We explore the influence of enamel surface morphology on nanoscale bacterial adhesion forces. Three dimensional morphology characteristics of enamel slices, which were treated with phosphoric acid (for 0 s, 5 s, 10 s, 20 s, and 30 s), were acquired. Adhesion forces of three initial colonizers (Streptococcus oralis, Streptococcus sanguinis, and Streptococcus mitis) and two cariogenic bacterial strains (Streptococcus mutans and Streptococcus sobrinus) with etched enamel surfaces were determined. Comparison of the forces was made by using bacterial probe method under atomic force microscope (AFM) in adhesion buffer. The results showed that enamel morphology was significantly altered by etching treatment. The roughness, peak-to-valley height, and valley-to-valley width of the depth profile, surface area, and volume increased linearly with acid exposure time, and reached the maximum at 30s, respectively. The adhesion forces of different strains increased accordingly with etching time. Adhesion forces of S. oralis, S. mitis, S. mutans, and S. sobrinus reached the maximum values of 0.81 nN, 0.84 nN, 0.73 nN, and 0.64 nN with enamel treated for 20s, respectively, whereas that of S. sanguinis at 10s (1.28nN), and dropped on coarser enamel surfaces. In conclusion, enamel micro-scale morphology may significantly alter the direct adhesion forces of bacteria. And there may be a threshold roughness for bacterial adhesion on enamel surface.

  13. X-AFm stabilization as a mechanism of bypassing conversion phenomena in calcium aluminate cements

    Energy Technology Data Exchange (ETDEWEB)

    Falzone, Gabriel, E-mail: gabefalzone@gmail.com [Laboratory for the Chemistry of Construction Materials LC" 2, Department of Civil and Environmental Engineering, University of California, Los Angeles, CA (United States); Department of Materials Science and Engineering, University of California, Los Angeles, CA (United States); Balonis, Magdalena, E-mail: mbalonis@ucla.edu [Department of Materials Science and Engineering, University of California, Los Angeles, CA (United States); Institute for Technology Advancement, University of California, Los Angeles, CA (United States); Sant, Gaurav, E-mail: gsant@ucla.edu [Laboratory for the Chemistry of Construction Materials LC" 2, Department of Civil and Environmental Engineering, University of California, Los Angeles, CA (United States); California Nanosystems Institute (CNSI), University of California, Los Angeles, CA (United States)

    2015-06-15

    Phase conversion phenomena are often observed in calcium aluminate cements (CACs), when the water-rich hydrates (e.g., CAH{sub 10}, C{sub 2}AH{sub 8}) formed at early ages, at temperatures ≤ 30 °C, expel water in time to form more compact, less water-rich structures (C{sub 3}AH{sub 6}). The phase conversions follow a path regulated by the thermodynamic stabilities (solubilities) of phases. Based on this premise, it is proposed that conversion phenomena in CACs can be bypassed by provoking the precipitation of phases more preferred than those typically encountered along the conversion pathway. Therefore, X-AFm formation (where in this case, X = NO{sub 3}{sup −}) triggered by the sequential addition of calcium nitrate (Ca(NO{sub 3}){sub 2} = CN) additives is identified as a new means of bypassing conversion. A multi-method approach comprising X-ray diffraction (XRD), thermal analytics, and evaluations of the compressive strength is applied to correlate phase balances and properties of CAC systems cured at 25 °C and 45 °C. The results highlight the absence of the C{sub 3}AH{sub 6} phase across all systems and the curing conditions considered, with enhanced strengths being noted, when sufficient quantities of CN are added. The experimental outcomes are supported by insights gained from thermodynamic calculations which highlight thermodynamic selectivity as a means of regulating and controlling the evolutions of solid phase balances using inorganic salts in CACs, and more generally in cementing material systems.

  14. Recombinant albumin adsorption on mica studied by AFM and streaming potential measurements.

    Science.gov (United States)

    Kujda, Marta; Adamczyk, Zbigniew; Morga, Maria; Sofińska, Kamila

    2015-03-01

    Recombinant human serum albumin (rHSA) in monomeric state is widely used in pharmaceutical industry as a drug excipient and for preparing coatings for medical devices. In this work the adsorption process of rHSA on model mica surface at pH 3.5 was studied using the atomic force microscopy (AFM) and in situ streaming potential measurements. The kinetics of albumin adsorption was determined by a direct enumeration of single molecules over various substrate areas. These results were consistent with streaming potential measurements carried out for the parallel-plate channel flow and with theoretical predictions derived from the random sequential adsorption (RSA) model. Desorption kinetics of albumin under flow conditions was also evaluated via the streaming potential measurements. In this way, the amount of irreversibly bound albumin was quantitatively evaluated to be 0.64 and 1.2 mg m(-2) for ionic strength of 0.01 and 0.15 M, respectively. This agrees with previous results obtained for HSA and theoretical calculations derived from the RSA model. Additionally, it was demonstrated that there existed a fraction of reversibly bound albumin that can be fully eluted within a few hours. The binding energy of these fraction of molecules was -18 kT that is consistent with the electrostatic controlled adsorption mechanism of albumin at this pH. It was concluded that the rHSA monolayers of well-defined coverage can find applications for quantitatively analyzing ligand binding and for performing efficient biomaterials and immunological tests.

  15. Evaluation of defect density by top-view large scale AFM on metamorphic structures grown by MOVPE

    Energy Technology Data Exchange (ETDEWEB)

    Gocalinska, Agnieszka, E-mail: agnieszka.gocalinska@tyndall.ie; Manganaro, Marina; Dimastrodonato, Valeria; Pelucchi, Emanuele

    2015-09-15

    Highlights: • Metamorphic buffer layers of In{sub x}Ga{sub 1−x}As were grown by MOVPE and characterised by AFM and TEM. • It was found that AFM provides sufficient information to estimate threading defect density in metamorphic structures, even when significant roughness is present. • When planar-view TEM is lacking, a combination of cross-sectional TEM and large scale AFM can provide good evaluation of the material quality. • It is fast, cheap and non-destructive – can be very useful in development process of complicated structures, requiring multiple test growths and characterisation. - Abstract: We demonstrate an atomic force microscopy based method for estimation of defect density by identification of threading dislocations on a non-flat surface resulting from metamorphic growth. The discussed technique can be applied as an everyday evaluation tool for the quality of epitaxial structures and allow for cost reduction, as it lessens the amount of the transmission electron microscopy analysis required at the early stages of projects. Metamorphic structures with low surface defectivities (below 10{sup 6}) were developed successfully with the application of the technique, proving its usefulness in process optimisation.

  16. An improved AFM cross-sectional method for piezoelectric nanostructures properties investigation: application to GaN nanowires

    Science.gov (United States)

    Xu, Xin; Potié, Alexis; Songmuang, Rudeesun; Lee, Jae Woo; Bercu, Bogdan; Baron, Thierry; Salem, Bassem; Montès, Laurent

    2011-03-01

    We present an improved atomic force microscopy (AFM) method to study the piezoelectric properties of nanostructures. An AFM tip is used to deform a free-standing piezoelectric nanowire. The deflection of the nanowire induces an electric potential via the piezoelectric effect, which is measured by the AFM coating tip. During the manipulation, the applied force, the forcing location and the nanowire's deflection are precisely known and under strict control. We show the measurements carried out on intrinsic GaN and n-doped GaN-AlN-GaN nanowires by using our method. The measured electric potential, as high as 200 mV for n-doped GaN-AlN-GaN nanowire and 150 mV for intrinsic GaN nanowire, have been obtained, these values are higher than theoretical calculations. Our investigation method is exceptionally useful to thoroughly examine and completely understand the piezoelectric phenomena of nanostructures. Our experimental observations intuitively reveal the great potential of piezoelectric nanostructures for converting mechanical energy into electricity. The piezoelectric properties of nanostructures, which are demonstrated in detail in this paper, represent a promising approach to fabricating cost-effective nano-generators and highly sensitive self-powered NEMS sensors.

  17. Observation of the in vitro Transcription of the Mouse (Balb/c) Heart Nuclear DNA Fragments by AFM

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    It is observed that the regulation sequences at the two ends of every active gene of the heart nuclear DNA fragments may differentially combine with active regulation factors such as some specific binding proteins by using AFM and other experimental technologies. These active genes form different "gene knots", which are separated by "intervals". Using AFM, occasionally, it is also discovered that during the transcription stage, the heart nuclear DNA fragments consist of 3-4-5 "gene knots" and related "intervals", which form various "gene lineages" respectively by some "permutation and combination". Each gene lineage is likely to form nRNA chain-like complexes that are 3 times the quantity of gene knots, and each nRNA chain-like complex is connected with both ends of corresponding gene lineage. One gene knot of the DNA fragments participates the formation of different gene lineage and corresponding RNA chain-like complexes by different combination. By posttranscriptional modification, they can form nmRNA linear chain-like complexes that show the speciality of tissues. The beginnings of transcription units have the same number as gene lineages, and all gene lineages in DNA molecules may transcribe efficiently from corresponding beginnings of transcription unit simultaneously. Our work shows the prospective application of AFM in the research of the diversity of gene lineages formation from gene knots in the transcription stage and the efficiency of gene knots transcription.

  18. In situ Electrochemical-AFM Study of LiFePO4 Thin Film in Aqueous Electrolyte.

    Science.gov (United States)

    Wu, Jiaxiong; Cai, Wei; Shang, Guangyi

    2016-12-01

    Lithium-ion (Li-ion) batteries have been widely used in various kinds of electronic devices in our daily life. The use of aqueous electrolyte in Li-ion battery would be an alternative way to develop low cost and environmentally friendly batteries. In this paper, the lithium iron phosphate (LiFePO4) thin film cathode for the aqueous rechargeable Li-ion battery is prepared by radio frequency magnetron sputtering deposition method. The XRD, SEM, and AFM results show that the film is composed of LiFePO4 grains with olivine structure and the average size of 100 nm. Charge-discharge measurements at current density of 10 μAh cm(-2) between 0 and 1 V show that the LiFePO4 thin film electrode is able to deliver an initial discharge capacity of 113 mAh g(-1). Specially, the morphological changes of the LiFePO4 film electrode during charge and discharge processes were investigated in aqueous environment by in situ EC-AFM, which is combined AFM with chronopotentiometry method. The changes in grain area are measured, and the results show that the size of the grains decreases and increases during the charge and discharge, respectively; the relevant mechanism is discussed.

  19. Investigation of the resistive switching in Ag{sub x}AsS{sub 2} layer by conductive AFM

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Bo [Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentska 573, Pardubice, 532 10 Czech Republic (Czech Republic); Kutalek, Petr [Joint Laboratory of Solid State Chemistry of Institute of Macromolecular Chemistry Academy of Sciences of Czech Republic, v.v.i., and University of Pardubice, University of Pardubice, Studentska 573, Pardubice, 532 10 (Czech Republic); Knotek, Petr [Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentska 573, Pardubice, 532 10 Czech Republic (Czech Republic); Hromadko, Ludek; Macak, Jan M. [Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Nam. Cs. Legii 565, Pardubice, 53002 (Czech Republic); Wagner, Tomas, E-mail: tomas.wagner@upce.cz [Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentska 573, Pardubice, 532 10 Czech Republic (Czech Republic); Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Nam. Cs. Legii 565, Pardubice, 53002 (Czech Republic)

    2016-09-30

    Highlights: • The resistive switching was studied from topological maps and spread current maps by conductive AFM. • Both surface particles and filaments were created under bias from conductive AFM. • The combination of topological map and spread current map proves the current did not flow through surface particles. • A model, consisting of interactions between charge carriers and Ag ions, were introduced to explain the experiment phenomena. - Abstract: In this paper, a study of resistive switching in Ag{sub x}AsS{sub 2} layer, based on a utilization of conductive atomic force microscope (AFM), is reported. As the result of biasing, two distinct regions were created on the surface (the conductive region and non-conductive region). Both were analysed from the spread current maps. The volume change, corresponding to the growth of Ag particles, was derived from the topological maps, recorded simultaneously with the current maps. Based on the results, a model explaining the mechanism of the Ag particle and Ag filament formation was proposed from the distribution of charge carriers and Ag ions.

  20. In situ Electrochemical-AFM Study of LiFePO4 Thin Film in Aqueous Electrolyte

    Science.gov (United States)

    Wu, Jiaxiong; Cai, Wei; Shang, Guangyi

    2016-04-01

    Lithium-ion (Li-ion) batteries have been widely used in various kinds of electronic devices in our daily life. The use of aqueous electrolyte in Li-ion battery would be an alternative way to develop low cost and environmentally friendly batteries. In this paper, the lithium iron phosphate (LiFePO4) thin film cathode for the aqueous rechargeable Li-ion battery is prepared by radio frequency magnetron sputtering deposition method. The XRD, SEM, and AFM results show that the film is composed of LiFePO4 grains with olivine structure and the average size of 100 nm. Charge-discharge measurements at current density of 10 μAh cm-2 between 0 and 1 V show that the LiFePO4 thin film electrode is able to deliver an initial discharge capacity of 113 mAh g-1. Specially, the morphological changes of the LiFePO4 film electrode during charge and discharge processes were investigated in aqueous environment by in situ EC-AFM, which is combined AFM with chronopotentiometry method. The changes in grain area are measured, and the results show that the size of the grains decreases and increases during the charge and discharge, respectively; the relevant mechanism is discussed.