Realization of Robertson-Walker spacetimes as affine hypersurfaces
International Nuclear Information System (INIS)
Chen Bangyen
2007-01-01
Due to the growing interest in embeddings of spacetimes in higher dimensional spaces, we consider a special type of embedding. We prove that Robertson-Walker spacetimes can be embedded as centroaffine hypersurfaces and graph hypersurfaces in some affine spaces in such a way that the induced relative metrics are exactly the Lorentzian metrics on the Robertson-Walker spacetimes. Such realizations allow us to view Robertson-Walker spacetimes and their submanifolds as affine submanifolds in a natural way. Consequently, our realizations make it possible to apply the tools of affine differential geometry to study Robertson-Walker spacetimes and their submanifolds
Global affine differential geometry of hypersurfaces
Li, An-Min; Zhao, Guosong; Hu, Zejun
2015-01-01
This book draws a colorful and widespread picture of global affine hypersurface theory up to the most recent state. Moreover, the recent development revealed that affine differential geometry- as differential geometry in general- has an exciting intersection area with other fields of interest, like partial differential equations, global analysis, convex geometry and Riemann surfaces.
Lightlike Hypersurfaces and Canal Hypersurfaces of Lorentzian Surfaces
Directory of Open Access Journals (Sweden)
Jianguo Sun
2014-01-01
Full Text Available The lightlike hypersurfaces in semi-Euclidean space are of special interest in Relativity Theory. In particular, the singularities of these lightlike hypersurfaces provide good models for the study of different horizon types. And we obtain some geometrical propositions of the canal hypersurfaces of Lorentzian surfaces. We introduce the notions of flatness for these hypersurfaces and study their singularities.
Manifolds with integrable affine shape operator
Directory of Open Access Journals (Sweden)
Daniel A. Joaquín
2005-05-01
Full Text Available This work establishes the conditions for the existence of vector fields with the property that theirs covariant derivative, with respect to the affine normal connection, be the affine shape operatorS in hypersurfaces. Some results are obtained from this property and, in particular, for some kind of affine decomposable hypersurfaces we explicitely get the actual vector fields.
Hypersurfaces in simply connected space forms
Indian Academy of Sciences (India)
Let M be a hypersurface of (M(κ), ds2). For every point m ∈ M, let A: TmM → TmM be the Weingarten map of the hypersurface. In this paper we prove the following results. Theorem 1. Let M be a connected hypersurface in the simply connected space form. (M(κ), ds2) such that the Ricci curvature of M satisfies the inequality ...
Lightlike Hypersurfaces in Indefinite Trans-Sasakian Manifolds
International Nuclear Information System (INIS)
Massamba, Fortune
2010-07-01
This paper deals with lightlike hypersurfaces of indefinite trans-Sasakian manifolds of type (α, β), tangent to the structure vector field. Characterization Theorems on parallel vector fields, integrable distributions, minimal distributions, Ricci-semi symmetric, geodesibility of lightlike hypersurfaces are obtained. The geometric configuration of lightlike hypersurfaces is established. We prove, under some conditions, that there are no parallel and totally contact umbilical lightlike hypersurfaces of trans-Sasakian space forms, tangent to the structure vector field. We show that there exists a totally umbilical distribution in an Einstein parallel lightlike hypersurface which does not contain the structure vector field. We characterize the normal bundle along any totally contact umbilical leaf of an integrable screen distribution. We finally prove that the geometry of any leaf of an integrable distribution is closely related to the geometry of a normal bundle and its image under φ-bar. (author)
Fermat varieties and the periods of some hypersurfaces
Looijenga, Eduard
2010-01-01
The variety of all smooth hypersurfaces of given degree and dimension has the Fermat hypersurface as a natural base point. In order to study the period map for such varieties, we first determine the integral polarized Hodge structure of the primitive cohomology of a Fermat hypersurface (as a module
Lie sphere transformations and the focal sets of hyper-surfaces
International Nuclear Information System (INIS)
Buyske, S.G.
1988-01-01
Isoparametric hypersurfaces of euclidean or spherical space are those with constant principal curvatures. The image of the hypersurface under a conformal transformation of the ambient space will no longer be isoparametric, but will be Dupin: the principal curvatures will be constant in the principal directions. Dupin hypersurfaces are closely related to taut hypersurfaces, for which almost every distance function is a perfect Morse function (the number of critical points is the minimum for the topology of the hypersurface). A weaker concept is tightness, for which almost every linear height function is required to be a perfect Morse function. Dupin and taut hypersurfaces are preserved not just under conformal, or Moebuius, transformations but also under the more general Lie sphere transformations. Roughly speaking, these are generated by Moebius transformations and parallel transformations. The purpose of this thesis is to study certain taut or Dupin hypersurfaces under Lie sphere transformations including the effect on the focal set. The thesis is divided into four sections. After the introduction, the method of studying hypersurfaces as Lie sphere objects is developed. The third section extends the concepts of tightness and tautness of semi-euclidean space. The final section shows that if a hypersurface is the Lie sphere image of certain standard constructions (tubes, cylinders, and rotations), the resulting family of curvature spheres is taut in the Lie quadric
Totally Contact Umbilical Lightlike Hypersurfaces of Indefinite -Manifolds
Directory of Open Access Journals (Sweden)
Rachna Rani
2013-01-01
Full Text Available We study totally contact umbilical lightlike hypersurfaces of indefinite -manifolds and prove the nonexistence of totally contact umbilical lightlike hypersurface in indefinite -space form.
Maximal hypersurfaces and foliations of constant mean curvature in general relativity
International Nuclear Information System (INIS)
Marsden, J.E.; Tipler, F.J.; Texas Univ., Austin
1980-01-01
We prove theorems on existence, uniqueness and smoothness of maximal and constant mean curvature compact spacelike hypersurfaces in globally hyperbolic spacetimes. The uniqueness theorem for maximal hypersurfaces of Brill and Flaherty, which assumed matter everywhere, is extended to specetimes that are vacuum and non-flat or that satisfy a generic-type condition. In this connection we show that under general hypotheses, a spatially closed universe with a maximal hypersurface must be Wheeler universe; i.e. be closed in time as well. The existence of Lipschitz achronal maximal volume hypersurfaces under the hypothesis that candidate hypersurfaces are bounded away from the singularity is proved. This hypothesis is shown to be valid in two cases of interest: when the singularities are of strong curvature type, and when the singularity is a single ideal point. Some properties of these maximal volume hypersurfaces and difficulties with Avez' original arguments are discussed. The difficulties involve the possibility that the maximal volume hypersurface can be null on certain portions; we present an incomplete argument which suggests that these hypersurfaces are always smooth, but prove that an a priori bound on the second fundamental form does imply smoothness. An extension of the perturbation theorem of Choquet-Bruhat, Fischer and Marsden is given and conditions under which local foliantions by constant mean curvature hypersurfaces can be extended to global ones is obtained. (orig.)
Compact space-like hypersurfaces in de Sitter space
Lv, Jinchi
2005-01-01
We present some integral formulas for compact space-like hypersurfaces in de Sitter space and some equivalent characterizations for totally umbilical compact space-like hypersurfaces in de Sitter space in terms of mean curvature and higher-order mean curvatures.
On the problem of isometry of a hypersurface preserving mean ...
Indian Academy of Sciences (India)
study and it is described on a hypersurface. It is proved that, non-minimal hypersur- face in Rn+1 with no umbilical points is a Bonnet hypersurface if and only if it has an. A-net. Keywords. Bonnet hypersurface; Bonnet associate; isometry; mean curvature; preserving; Bonnet curve; A-net. 1. Introduction. The isometry problem ...
Constant scalar curvature hypersurfaces in extended Schwarzschild space-time
International Nuclear Information System (INIS)
Pareja, M. J.; Frauendiener, J.
2006-01-01
We present a class of spherically symmetric hypersurfaces in the Kruskal extension of the Schwarzschild space-time. The hypersurfaces have constant negative scalar curvature, so they are hyperboloidal in the regions of space-time which are asymptotically flat
Hyperbolicity of projective hypersurfaces
Diverio, Simone
2016-01-01
This book presents recent advances on Kobayashi hyperbolicity in complex geometry, especially in connection with projective hypersurfaces. This is a very active field, not least because of the fascinating relations with complex algebraic and arithmetic geometry. Foundational works of Serge Lang and Paul A. Vojta, among others, resulted in precise conjectures regarding the interplay of these research fields (e.g. existence of Zariski dense entire curves should correspond to the (potential) density of rational points). Perhaps one of the conjectures which generated most activity in Kobayashi hyperbolicity theory is the one formed by Kobayashi himself in 1970 which predicts that a very general projective hypersurface of degree large enough does not contain any (non-constant) entire curves. Since the seminal work of Green and Griffiths in 1979, later refined by J.-P. Demailly, J. Noguchi, Y.-T. Siu and others, it became clear that a possible general strategy to attack this problem was to look at particular algebr...
Killing Horizons as Equipotential Hypersurfaces
Smolić, Ivica
2012-01-01
In this note we present a new proof that Killing horizons are equipotential hypersurfaces for the electric and the magnetic scalar potential, that makes no use of gravitational field equations or the assumption about the existence of bifurcation surface.
Killing horizons as equipotential hypersurfaces
International Nuclear Information System (INIS)
Smolić, Ivica
2012-01-01
In this note we present a new proof that Killing horizons are equipotential hypersurfaces for the electric and the magnetic scalar potential, which makes no use of gravitational field equations or the assumption about the existence of a bifurcation surface. (note)
Beig, Robert; Siddiqui, Azad A.
2007-11-01
It is known that spherically symmetric static spacetimes admit a foliation by flat hypersurfaces. Such foliations have explicitly been constructed for some spacetimes, using different approaches, but none of them have proved or even discussed the uniqueness of these foliations. The issue of uniqueness becomes more important due to suitability of flat foliations for studying black hole physics. Here, flat spherically symmetric spacelike hypersurfaces are obtained by a direct method. It is found that spherically symmetric static spacetimes admit flat spherically symmetric hypersurfaces, and that these hypersurfaces are unique up to translation under the timelike Killing vector. This result guarantees the uniqueness of flat spherically symmetric foliations for such spacetimes.
Rotational hypersurfaces with $L_r$-pointwise 1-type Gauss map
Directory of Open Access Journals (Sweden)
Akram Mohammadpouri
2018-07-01
Full Text Available In this paper, we study hypersurfaces in $\\E^{n+1}$ which Gauss map $G$ satisfies the equation $L_rG = f(G + C$ for a smooth function $f$ and a constant vector $C$, where $L_r$ is the linearized operator of the $(r + 1$th mean curvature of the hypersurface, i.e., $L_r(f=tr(P_r\\circ\
Spherical-type hypersurfaces in a Riemannian manifold
International Nuclear Information System (INIS)
Ezin, J.P.; Rigoli, M.
1988-06-01
Let M be a compact hypersurface immersed in R n and let K and L be its mean curvature function and scalar curvature respectively. A classical global problem concerning these two geometrical quantities is to find out if assuming that either K or L is constant and under some additional assumptions M is a sphere. It was demonstrated that assuming the immersion to be an embedding, the consistency of K implies M to be spherical. It was also demonstrated that the sphere is the only compact hypersurface with constant scalar curvature embedded in Euclidean space. In this paper we give a generalization of these results when the ambient space is an appropriate Riemannian manifold (N, h). 17 refs
Real hypersurfaces of a complex projective space
Indian Academy of Sciences (India)
Kaehler manifolds of con- stant holomorphic sectional curvature c) is a very interesting and active area of research. The ambient space ¯M(c), specially in the case c = 0 imposes quite significant restrictions on the geometry of its real hypersurfaces.
Solutions to the maximal spacelike hypersurface equation in generalized Robertson-Walker spacetimes
Directory of Open Access Journals (Sweden)
Henrique F. de Lima
2018-03-01
Full Text Available We apply some generalized maximum principles for establishing uniqueness and nonexistence results concerning maximal spacelike hypersurfaces immersed in a generalized Robertson-Walker (GRW spacetime, which is supposed to obey the so-called timelike convergence condition (TCC. As application, we study the uniqueness and nonexistence of entire solutions of a suitable maximal spacelike hypersurface equation in GRW spacetimes obeying the TCC.
Hypersurfaces in nearly Kaehler manifold
Indian Academy of Sciences (India)
Biaogui Yang
2017-08-08
Aug 8, 2017 ... metric structures. We know the conformal vector fields are very useful tools in studying ... where X ∈ T M, ξ = −J N, N is the unit vector field normal to the hypersurface M and η is the smooth 1-form dual to ξ. ... surface M of the nearly Kaehler ¯M. Then the following hold for X, Y ∈ T M: (a) ∇X ξ = ϕ1 AX −. √.
Self-adjoint elliptic operators with boundary conditions on not closed hypersurfaces
Mantile, Andrea; Posilicano, Andrea; Sini, Mourad
2016-07-01
The theory of self-adjoint extensions of symmetric operators is used to construct self-adjoint realizations of a second-order elliptic differential operator on Rn with linear boundary conditions on (a relatively open part of) a compact hypersurface. Our approach allows to obtain Kreĭn-like resolvent formulae where the reference operator coincides with the ;free; operator with domain H2 (Rn); this provides an useful tool for the scattering problem from a hypersurface. Concrete examples of this construction are developed in connection with the standard boundary conditions, Dirichlet, Neumann, Robin, δ and δ‧-type, assigned either on a (n - 1) dimensional compact boundary Γ = ∂ Ω or on a relatively open part Σ ⊂ Γ. Schatten-von Neumann estimates for the difference of the powers of resolvents of the free and the perturbed operators are also proven; these give existence and completeness of the wave operators of the associated scattering systems.
F-Theory on all Toric Hypersurface Fibrations and its Higgs Branches
Klevers, Denis; Oehlmann, Paul-Konstantin; Piragua, Hernan; Reuter, Jonas
2015-01-01
We consider F-theory compactifications on genus-one fibered Calabi-Yau manifolds with their fibers realized as hypersurfaces in the toric varieties associated to the 16 reflexive 2D polyhedra. We present a base-independent analysis of the codimension one, two and three singularities of these fibrations. We use these geometric results to determine the gauge groups, matter representations, 6D matter multiplicities and 4D Yukawa couplings of the corresponding effective theories. All these theories have a non-trivial gauge group and matter content. We explore the network of Higgsings relating these theories. Such Higgsings geometrically correspond to extremal transitions induced by blow-ups in the 2D toric varieties. We recover the 6D effective theories of all 16 toric hypersurface fibrations by repeatedly Higgsing the theories that exhibit Mordell-Weil torsion. We find that the three Calabi-Yau manifolds without section, whose fibers are given by the toric hypersurfaces in P^2, P^1x P^1 and the recently studied ...
Directory of Open Access Journals (Sweden)
Theocharis Theofanidis
2016-01-01
Full Text Available Real hypersurfaces satisfying the condition ϕl=lϕ(l=R(·,ξξ have been studied by many authors under at least one more condition, since the class of these hypersurfaces is quite tough to be classified. The aim of the present paper is the classification of real hypersurfaces in complex projective plane CP2 satisfying a generalization of ϕl=lϕ under an additional restriction on a specific function.
Local Monotonicity and Isoperimetric Inequality on Hypersurfaces in Carnot groups
Directory of Open Access Journals (Sweden)
Francesco Paolo Montefalcone
2010-12-01
Full Text Available Let G be a k-step Carnot group of homogeneous dimension Q. Later on we shall present some of the results recently obtained in [32] and, in particular, an intrinsic isoperimetric inequality for a C2-smooth compact hypersurface S with boundary @S. We stress that S and @S are endowed with the homogeneous measures n????1 H and n????2 H , respectively, which are actually equivalent to the intrinsic (Q - 1-dimensional and (Q - 2-dimensional Hausdor measures with respect to a given homogeneous metric % on G. This result generalizes a classical inequality, involving the mean curvature of the hypersurface, proven by Michael and Simon [29] and Allard [1], independently. One may also deduce some related Sobolev-type inequalities. The strategy of the proof is inspired by the classical one and will be discussed at the rst section. After reminding some preliminary notions about Carnot groups, we shall begin by proving a linear isoperimetric inequality. The second step is a local monotonicity formula. Then we may achieve the proof by a covering argument.We stress however that there are many dierences, due to our non-Euclidean setting.Some of the tools developed ad hoc are, in order, a \\blow-up" theorem, which holds true also for characteristic points, and a smooth Coarea Formula for the HS-gradient. Other tools are the horizontal integration by parts formula and the 1st variation formula for the H-perimeter n????1H already developed in [30, 31] and then generalized to hypersurfaces having non-empty characteristic set in [32]. These results can be useful in the study of minimal and constant horizontal mean curvature hypersurfaces in Carnot groups.
Embedded positive constant r-mean curvature hypersurfaces in Mm × R
Directory of Open Access Journals (Sweden)
Cheng Xu
2005-01-01
Full Text Available Let M be an m-dimensional Riemannian manifold with sectional curvature bounded from below. We consider hypersurfaces in the (m + 1-dimensional product manifold M x R with positive constant r-mean curvature. We obtain height estimates of certain compact vertical graphs in M x R with boundary in M x {0}. We apply this to obtain topological obstructions for the existence of some hypersurfaces. We also discuss the rotational symmetry of some embedded complete surfaces in S² x R of positive constant 2-mean curvature.
CMC Hypersurfaces on Riemannian and Semi-Riemannian Manifolds
International Nuclear Information System (INIS)
Perdomo, Oscar M.
2012-01-01
In this paper we generalize the explicit formulas for constant mean curvature (CMC) immersion of hypersurfaces of Euclidean spaces, spheres and hyperbolic spaces given in Perdomo (Asian J Math 14(1):73–108, 2010; Rev Colomb Mat 45(1):81–96, 2011) to provide explicit examples of several families of immersions with constant mean curvature and non constant principal curvatures, in semi-Riemannian manifolds with constant sectional curvature. In particular, we prove that every h is an element of [-1,-(2√n-1/n can be realized as the constant curvature of a complete immersion of S 1 n-1 x R in the (n + 1)-dimensional de Sitter space S 1 n+1 . We provide 3 types of immersions with CMC in the Minkowski space, 5 types of immersion with CMC in the de Sitter space and 5 types of immersion with CMC in the anti de Sitter space. At the end of the paper we analyze the families of examples that can be extended to closed hypersurfaces.
The Magnetic Laplacian in Shrinking Tubular Neighborhoods of Hypersurfaces
Czech Academy of Sciences Publication Activity Database
Krejčiřík, David; Raymond, N.; Tušek, M.
2015-01-01
Roč. 25, č. 4 (2015), s. 2546-2564 ISSN 1050-6926 R&D Projects: GA ČR GAP203/11/0701 Grant - others:GA ČR(CZ) GA13-11058S Institutional support: RVO:61389005 Keywords : curvature of hypersurfaces * effective potential * Eigenvalue asymptotics Subject RIV: BE - Theoretical Physics Impact factor: 1.109, year: 2015
Spacelike Hypersurfaces in Weighted Generalized Robertson-Walker Space-Times
Directory of Open Access Journals (Sweden)
Ximin Liu
2018-01-01
Full Text Available Applying generalized maximum principle and weak maximum principle, we obtain several uniqueness results for spacelike hypersurfaces immersed in a weighted generalized Robertson-Walker (GRW space-time under suitable geometric assumptions. Furthermore, we also study the special case when the ambient space is static and provide some results by using Bochner’s formula.
Boundary triples for Schrodinger operators with singular interactions on hypersurfaces
Czech Academy of Sciences Publication Activity Database
Behrndt, J.; Langer, M.; Lotoreichik, Vladimir
2016-01-01
Roč. 7, č. 2 (2016), s. 290-302 ISSN 2220-8054 R&D Projects: GA ČR(CZ) GA14-06818S Institutional support: RVO:61389005 Keywords : boundary triple * Weyl function * Schrodinger operator * singular potential * delta-interaction * hypersurface Subject RIV: BE - Theoretical Physics
Polynomials associated with equilibria of affine Toda-Sutherland systems
International Nuclear Information System (INIS)
Odake, S; Sasaki, R
2004-01-01
An affine Toda-Sutherland system is a quasi-exactly solvable multi-particle dynamics based on an affine simple root system. It is a 'cross' between two well-known integrable multi-particle dynamics, an affine Toda molecule (exponential potential, periodic nearest-neighbour interaction) and a Sutherland system (inverse sine-square interaction). Polynomials describing the equilibrium positions of affine Toda-Sutherland systems are determined for all affine simple root systems
Mavlyutov, Anvar R.
2000-01-01
We solved the long-standing problem of describing the cohomology ring of semiample hypersurfaces in complete simplicial toric varieties. Also, the monomial-divisor mirror map is generalized to a map between the whole Picard group and the space of infinitesimal deformations for a mirror pair of Calabi-Yau hypersurfaces. This map is compatible with certain vanishing limiting products of the subrings of the chiral rings, on which the ring structure is related to a product of the roots of $A$-typ...
Dynamics of Open Systems with Affine Maps
International Nuclear Information System (INIS)
Zhang Da-Jian; Liu Chong-Long; Tong Dian-Min
2015-01-01
Many quantum systems of interest are initially correlated with their environments and the reduced dynamics of open systems are an interesting while challenging topic. Affine maps, as an extension of completely positive maps, are a useful tool to describe the reduced dynamics of open systems with initial correlations. However, it is unclear what kind of initial state shares an affine map. In this study, we give a sufficient condition of initial states, in which the reduced dynamics can always be described by an affine map. Our result shows that if the initial states of the combined system constitute a convex set, and if the correspondence between the initial states of the open system and those of the combined system, defined by taking the partial trace, is a bijection, then the reduced dynamics of the open system can be described by an affine map. (paper)
Affinity between information retrieval system and search topic
International Nuclear Information System (INIS)
Ebinuma, Yukio
1979-01-01
Ten search profiles are tested on the INIS system at the Japan Atomic Energy Research Institute. The results are plotted on recall-precision chart ranging from 100% recall to 100% precision. The curves are not purely systems-dependent nor search-dependent, and are determined substantially by the ''affinity'' between the system and the search topic. The curves are named ''Affinity curves of search topics with information retrieval systems'', and hence retrieval affinity factors are derived. They are obtained not only for individual search topics but also for averages in the system. By such a quantitative examination, the difference of affinity among search topics in a given system, that of the same search topic among various systems, and that of systems to the same group of search topics can be compared reasonably. (author)
On some hypersurfaces with time like normal bundle in pseudo Riemannian space forms
International Nuclear Information System (INIS)
Kashani, S.M.B.
1995-12-01
In this work we classify immersed hypersurfaces with constant sectional curvature in pseudo Riemannian space forms if the normal bundle is time like and the mean curvature is constant. (author). 9 refs
Approximation of Schrodinger operators with delta-interactions supported on hypersurfaces
Czech Academy of Sciences Publication Activity Database
Behrndt, J.; Exner, Pavel; Holzmann, M.; Lotoreichik, Vladimir
2017-01-01
Roč. 290, 8-9 (2017), s. 1215-1248 ISSN 0025-584X R&D Projects: GA ČR(CZ) GA14-06818S Institutional support: RVO:61389005 Keywords : Schrodinger operators * delta-interactions supported on hypersurfaces * approximation by scaled regular potentials * norm resolvent convergence * spectral convergence Subject RIV: BE - Theoretical Physics OBOR OECD: Pure mathematics Impact factor: 0.742, year: 2016
Control and estimation of piecewise affine systems
Xu, Jun
2014-01-01
As a powerful tool to study nonlinear systems and hybrid systems, piecewise affine (PWA) systems have been widely applied to mechanical systems. Control and Estimation of Piecewise Affine Systems presents several research findings relating to the control and estimation of PWA systems in one unified view. Chapters in this title discuss stability results of PWA systems, using piecewise quadratic Lyapunov functions and piecewise homogeneous polynomial Lyapunov functions. Explicit necessary and sufficient conditions for the controllability and reachability of a class of PWA systems are
Singular Null Hypersurfaces in General Relativity
International Nuclear Information System (INIS)
Dray, T
2006-01-01
Null hypersurfaces are a mathematical consequence of the Lorentzian signature of general relativity; singularities in mathematical models usually indicate where the interesting physics takes place. This book discusses what happens when you combine these ideas. Right from the preface, this is a no-nonsense book. There are two principal approaches to singular shells, one distributional and the other 'cut and paste'; both are treated in detail. A working knowledge of GR is assumed, including familiarity with null tetrads, differential forms, and 3 + 1 decompositions. Despite my own reasonably extensive, closely related knowledge, there was material unfamiliar to me already in chapter 3, although I was reunited with some old friends in later chapters. The exposition is crisp, with a minimum of transition from chapter to chapter. In fact, my main criticism is that there is no clear statement of the organization of the book, nor is there an index. Everything is here, and the story is compelling if you know what to look for, although it is less easy to follow the story if you are not already familiar with it. But this is really a book for experts, and the authors certainly qualify, having played a significant role in developing and extending the results they describe. It is also entirely appropriate that the book is dedicated to Werner Israel, who pioneered the thin-shell approach to (non-null) singular surfaces and later championed the use of similar methods for analysing null shells. After an introductory chapter on impulsive signals, the authors show how the Bianchi identities can be used to classify spacetimes with singular null hypersurfaces. This approach, due to the authors, generalizes the framework originally proposed by Penrose. While astrophysical applications are discussed only briefly, the authors point out that detailed physical characteristics of signals from isolated sources can be determined in this manner. In particular, they describe the behaviour of
Constant scalar curvature hypersurfaces in (3 + 1) -dimensional GHMC Minkowski spacetimes
Smith, Graham
2018-06-01
We prove that every (3 + 1) -dimensional flat GHMC Minkowski spacetime which is not a translation spacetime or a Misner spacetime carries a unique foliation by spacelike hypersurfaces of constant scalar curvature. In other words, we prove that every such spacetime carries a unique time function with isochrones of constant scalar curvature. Furthermore, this time function is a smooth submersion.
Convex Hypersurfaces and $L^p$ Estimates for Schr\\"odinger Equations
Zheng, Quan; Yao, Xiaohua; Fan, Da
2004-01-01
This paper is concerned with Schr\\"odinger equations whose principal operators are homogeneous elliptic. When the corresponding level hypersurface is convex, we show the $L^p$-$L^q$ estimate of solution operator in free case. This estimate, combining with the results of fractionally integrated groups, allows us to further obtain the $L^p$ estimate of solutions for the initial data belonging to a dense subset of $L^p$ in the case of integrable potentials.
Spatial hypersurfaces in causal set cosmology
International Nuclear Information System (INIS)
Major, Seth A; Rideout, David; Surya, Sumati
2006-01-01
Within the causal set approach to quantum gravity, a discrete analogue of a spacelike region is a set of unrelated elements, or an antichain. In the continuum approximation of the theory, a moment-of-time hypersurface is well represented by an inextendible antichain. We construct a richer structure corresponding to a thickening of this antichain containing non-trivial geometric and topological information. We find that covariant observables can be associated with such thickened antichains and transitions between them, in classical sequential growth models of causal sets. This construction highlights the difference between the covariant measure on causal set cosmology and the standard sum-over-histories approach: the measure is assigned to completed histories rather than to histories on a restricted spacetime region. The resulting re-phrasing of the sum-over-histories may be fruitful in other approaches to quantum gravity
F-theory on all toric hypersurface fibrations and its Higgs branches
Energy Technology Data Exchange (ETDEWEB)
Klevers, Denis [Department of Physics and Astronomy, University of Pennsylvania,Philadelphia, PA 19104-6396 (United States); Theory Group, Physics Department, CERN,CH-1211, Geneva 23 (Switzerland); Peña, Damián Kaloni Mayorga; Oehlmann, Paul-Konstantin [Bethe Center for Theoretical Physics, Physikalisches Institut der Universität Bonn,Nussallee 12, 53115 Bonn (Germany); Piragua, Hernan [Department of Physics and Astronomy, University of Pennsylvania,Philadelphia, PA 19104-6396 (United States); Reuter, Jonas [Bethe Center for Theoretical Physics, Physikalisches Institut der Universität Bonn,Nussallee 12, 53115 Bonn (Germany)
2015-01-27
We consider F-theory compactifications on genus-one fibered Calabi-Yau manifolds with their fibers realized as hypersurfaces in the toric varieties associated to the 16 reflexive 2D polyhedra. We present a base-independent analysis of the codimension one, two and three singularities of these fibrations. We use these geometric results to determine the gauge groups, matter representations, 6D matter multiplicities and 4D Yukawa couplings of the corresponding effective theories. All these theories have a non-trivial gauge group and matter content. We explore the network of Higgsings relating these theories. Such Higgsings geometrically correspond to extremal transitions induced by blow-ups in the 2D toric varieties. We recover the 6D effective theories of all 16 toric hypersurface fibrations by repeatedly Higgsing the theories that exhibit Mordell-Weil torsion. We find that the three Calabi-Yau manifolds without section, whose fibers are given by the toric hypersurfaces in ℙ{sup 2}, ℙ{sup 1}×ℙ{sup 1} and the recently studied ℙ{sup 2}(1,1,2), yield F-theory realizations of SUGRA theories with discrete gauge groups ℤ{sub 3}, ℤ{sub 2} and ℤ{sub 4}. This opens up a whole new arena for model building with discrete global symmetries in F-theory. In these three manifolds, we also find codimension two I{sub 2}-fibers supporting matter charged only under these discrete gauge groups. Their 6D matter multiplicities are computed employing ideal techniques and the associated Jacobian fibrations. We also show that the Jacobian of the biquadric fibration has one rational section, yielding one U(1)-gauge field in F-theory. Furthermore, the elliptically fibered Calabi-Yau manifold based on dP{sub 1} has a U(1)-gauge field induced by a non-toric rational section. In this model, we find the first F-theory realization of matter with U(1)-charge q=3.
DEFF Research Database (Denmark)
Cotterill, Rodney M J; Madsen, J.
1986-01-01
Sections of configuration space for Lennard-Jones matter were obtained by probing all the normal-mode energy profiles, following diagonalization of the dynamical matrix for a 240-particle system. For the crystal and sufficiently cold glass, these are single welled, whereas increasing numbers...... of double wells occur as the glass is warmed toward the fluid. This indicates that there might be a fundamental difference between the topologies of the constant-potential-energy hypersurfaces of crystalline and noncrystalline Lennard-Jones matter....
NVU dynamics. I. Geodesic motion on the constant-potential-energy hypersurface
DEFF Research Database (Denmark)
Ingebrigtsen, Trond; Toxværd, Søren; Heilmann, Ole
2011-01-01
that ensures potential-energy and step-length conservation; center-of-mass drift is also eliminated. Analytical arguments confirmed by simulations demonstrate that the modified NVU algorithm is absolutely stable. Finally, we present simulations showing that the NVU algorithm and the standard leap-frog NVE......An algorithm is derived for computer simulation of geodesics on the constant-potential-energy hypersurface of a system of N classical particles. First, a basic time-reversible geodesic algorithm is derived by discretizing the geodesic stationarity condition and implementing the constant......-potential-energy constraint via standard Lagrangian multipliers. The basic NVU algorithm is tested by single-precision computer simulations of the Lennard-Jones liquid. Excellent numerical stability is obtained if the force cutoff is smoothed and the two initial configurations have identical potential energy within machine...
Affine and quasi-affine frames for rational dilations
DEFF Research Database (Denmark)
Bownik, Marcin; Lemvig, Jakob
2011-01-01
In this paper we extend the investigation of quasi-affine systems, which were originally introduced by Ron and Shen [J. Funct. Anal. 148 (1997), 408-447] for integer, expansive dilations, to the class of rational, expansive dilations. We show that an affine system is a frame if, and only if......, the corresponding family of quasi-affine systems are frames with uniform frame bounds. We also prove a similar equivalence result between pairs of dual affine frames and dual quasi-affine frames. Finally, we uncover some fundamental differences between the integer and rational settings by exhibiting an example...
Hypersurface Homogeneous Cosmological Model in Modified Theory of Gravitation
Katore, S. D.; Hatkar, S. P.; Baxi, R. J.
2016-12-01
We study a hypersurface homogeneous space-time in the framework of the f (R, T) theory of gravitation in the presence of a perfect fluid. Exact solutions of field equations are obtained for exponential and power law volumetric expansions. We also solve the field equations by assuming the proportionality relation between the shear scalar (σ ) and the expansion scalar (θ ). It is observed that in the exponential model, the universe approaches isotropy at large time (late universe). The investigated model is notably accelerating and expanding. The physical and geometrical properties of the investigated model are also discussed.
Three-form periods on Calabi-Yau fourfolds: toric hypersurfaces and F-theory applications
Energy Technology Data Exchange (ETDEWEB)
Greiner, Sebastian; Grimm, Thomas W. [Institute for Theoretical Physics and Center for Extreme Matter and Emergent Phenomena, Utrecht University,Leuvenlaan 4, 3584 CE Utrecht (Netherlands); Max-Planck-Institut für Physik, Föhringer Ring 6, 80805 Munich (Germany)
2017-05-30
The study of the geometry of Calabi-Yau fourfolds is relevant for compactifications of string theory, M-theory, and F-theory to various dimensions. This work introduces the mathematical machinery to derive the complete moduli dependence of the periods of non-trivial three-forms for fourfolds realized as hypersurfaces in toric ambient spaces. It sets the stage to determine Picard-Fuchs-type differential equations and integral expressions for these forms. The key tool is the observation that non-trivial three-forms on fourfold hypersurfaces in toric ambient spaces always stem from divisors that are build out of trees of toric surfaces fibered over Riemann surfaces. The three-form periods are then non-trivially related to the one-form periods of these Riemann surfaces. In general, the three-form periods are known to vary holomorphically over the complex structure moduli space and play an important role in the effective actions arising in fourfold compactifications. We discuss two explicit example fourfolds for F-theory compactifications in which the three-form periods determine axion decay constants.
Mixed Boundary Value Problem on Hypersurfaces
Directory of Open Access Journals (Sweden)
R. DuDuchava
2014-01-01
Full Text Available The purpose of the present paper is to investigate the mixed Dirichlet-Neumann boundary value problems for the anisotropic Laplace-Beltrami equation divC(A∇Cφ=f on a smooth hypersurface C with the boundary Γ=∂C in Rn. A(x is an n×n bounded measurable positive definite matrix function. The boundary is decomposed into two nonintersecting connected parts Γ=ΓD∪ΓN and on ΓD the Dirichlet boundary conditions are prescribed, while on ΓN the Neumann conditions. The unique solvability of the mixed BVP is proved, based upon the Green formulae and Lax-Milgram Lemma. Further, the existence of the fundamental solution to divS(A∇S is proved, which is interpreted as the invertibility of this operator in the setting Hp,#s(S→Hp,#s-2(S, where Hp,#s(S is a subspace of the Bessel potential space and consists of functions with mean value zero.
Online identification of continuous bimodal and trimodal piecewise affine systems
Le, Q.T.; van den Boom, A.J.J.; Baldi, S.; Rantzer, Anders; Bagterp Jørgensen, John; Stoustrup, Jakob
2016-01-01
This paper investigates the identification of continuous piecewise affine systems in state space form with jointly unknown partition and subsystem matrices. The partition of the system is generated by the so-called centers. By representing continuous piecewise affine systems in the max-form and
Local uncontrollability for affine control systems with jumps
Treanţă, Savin
2017-09-01
This paper investigates affine control systems with jumps for which the ideal If(g1, …, gm) generated by the drift vector field f in the Lie algebra L(f, g1, …, gm) can be imbedded as a kernel of a linear first-order partial differential equation. It will lead us to uncontrollable affine control systems with jumps for which the corresponding reachable sets are included in explicitly described differentiable manifolds.
Hypersurfaces cubiques : équivalence rationnelle, R-équivalence et approximation faible
Madore , David
2005-01-01
version 2 en tout point identique à la version 1 (le PDF est rigoureusement le même) mais incluant les fichiers sources; This thesis presents some results concerning the arithmetic of rationally connected varieties and, more specifically, cubic hypersurfaces, in three main directions: rational equivalence, R-equivalence, and weak approximation. In the first part, we describe explicitly the specialization of R-equivalence. The second part deals with the vanishing of the Chow group of 0-cycles ...
The hypersurfaces with conformal normal Gauss map in Hn+1 and S1n+1
Directory of Open Access Journals (Sweden)
Shuguo Shi
2008-03-01
Full Text Available In this paper, we introduce the fourth fundamental forms for hypersurfaces in Hn+1 and space-like hypersurfaces in S1n+1, and discuss the conformality of the normal Gauss map of the hypersurfaces in Hn+1 and S1n+1. Particularly, we discuss the surfaces with conformal normal Gauss map in H³ and S³1, and prove a duality property. We give a Weierstrass representation formula for space-like surfaces in S³1 with conformal normal Gauss map. We also state the similar results for time-like surfaces in S³1. Some examples of surfaces in S³1 with conformal normal Gauss map are given and a fully nonlinear equation of Monge-Ampère type for the graphs in S³1 with conformal normal Gauss map is derived.Neste artigo, introduzimos a quarta forma fundamental de uma hipersuperfície em Hn+1 de uma hipersuperfície tipo-espaço em S1n+1, e discutimos a conformalidade da aplicação normal de Gauss de tais hipersuperfícies. Em particular, investigamos o caso de superfícies com aplicação normal de Gauss conforme em H³ e S³1, e provamos um teorema de dualidade. Apresentamos uma representação de Weierstrass para superfícies tipo-espaço em S³1 com aplicação de Gauss conforme. Enunciamos também resultados semelhantes para superfícies tipo-tempo em S³1. São dados alguns exemplos de superfícies em S³1 com aplicações de Gauss conformes, e é deduzida uma equação totalmente não-linear do tipo Monge-Ampère para gráficos em S³1 com aplicações de Gauss conformes.
Fault detection for piecewise affine systems with application to ship propulsion systems.
Yang, Ying; Linlin, Li; Ding, Steven X; Qiu, Jianbin; Peng, Kaixiang
2017-09-09
In this paper, the design approach of non-synchronized diagnostic observer-based fault detection (FD) systems is investigated for piecewise affine processes via continuous piecewise Lyapunov functions. Considering that the dynamics of piecewise affine systems in different regions can be considerably different, the weighting matrices are used to weight the residual of each region, so as to optimize the fault detectability. A numerical example and a case study on a ship propulsion system are presented in the end to demonstrate the effectiveness of the proposed results. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
The centripetal force law and the equation of motion for a particle on a curved hypersurface
International Nuclear Information System (INIS)
Hu, L.D.; Lian, D.K.; Liu, Q.H.
2016-01-01
It is pointed out that the current form of the extrinsic equation of motion for a particle constrained to remain on a hypersurface is in fact a half-finished version; for it is established without regard to the fact that the particle can never depart from the geodesics on the surface. Once this fact is taken into consideration, the equation takes the same form as that for the centripetal force law, provided that the symbols are re-interpreted so that the law is applicable for higher dimensions. The controversial issue of constructing operator forms of these equations is addressed, and our studies show the quantization of constrained system based on the extrinsic equation of motion is preferable. (orig.)
International Nuclear Information System (INIS)
Maugin, G.A.
1976-01-01
In this work the compatibility conditions verified by the discontinuities of relativistic fields and of their space-time and time-like derivatives up to be second order are systematically constructed in terms of the local geometry of the wave front (singular hypersurface). A new time-like derivative that generalizes Thomas' delta-derivative of classical continuum mechanics is thus introduced in the relativistic frame. It allows to formulate these conditions in compact forms. It is thus expected that the relativistic analogue of T.Y. Thomas' (1957) classical theory is produced [fr
Combinatorial Vector Fields for Piecewise Affine Control Systems
DEFF Research Database (Denmark)
Wisniewski, Rafal; Larsen, Jesper Abildgaard
2008-01-01
This paper is intended to be a continuation of Habets and van Schuppen (2004) and Habets, Collins and van Schuppen (2006), which address the control problem for piecewise-affine systems on an arbitrary polytope or a family of these. Our work deals with the underlying combinatorics of the underlyi...
A Piecewise Affine Hybrid Systems Approach to Fault Tolerant Satellite Formation Control
DEFF Research Database (Denmark)
Grunnet, Jacob Deleuran; Larsen, Jesper Abildgaard; Bak, Thomas
2008-01-01
In this paper a procedure for modelling satellite formations including failure dynamics as a piecewise-affine hybrid system is shown. The formulation enables recently developed methods and tools for control and analysis of piecewise-affine systems to be applied leading to synthesis of fault...... tolerant controllers and analysis of the system behaviour given possible faults. The method is illustrated using a simple example involving two satellites trying to reach a specific formation despite of actuator faults occurring....
Cubic systems with invariant affine straight lines of total parallel multiplicity seven
Directory of Open Access Journals (Sweden)
Alexandru Suba
2013-12-01
Full Text Available In this article, we study the planar cubic differential systems with invariant affine straight lines of total parallel multiplicity seven. We classify these system according to their geometric properties encoded in the configurations of invariant straight lines. We show that there are only 17 different topological phase portraits in the Poincar\\'e disc associated to this family of cubic systems up to a reversal of the sense of their orbits, and we provide representatives of every class modulo an affine change of variables and rescaling of the time variable.
Moving energies as first integrals of nonholonomic systems with affine constraints
Fassò, Francesco; García-Naranjo, Luis C.; Sansonetto, Nicola
2018-03-01
In nonholonomic mechanical systems with constraints that are affine (linear nonhomogeneous) functions of the velocities, the energy is typically not a first integral. It was shown in Fassò and Sansonetto (2016 J. Nonlinear Sci. 26 519-44) that, nevertheless, there exist modifications of the energy, called there moving energies, which under suitable conditions are first integrals. The first goal of this paper is to study the properties of these functions and the conditions that lead to their conservation. In particular, we enlarge the class of moving energies considered in Fassò and Sansonetto (2016 J. Nonlinear Sci. 26 519-44). The second goal of the paper is to demonstrate the relevance of moving energies in nonholonomic mechanics. We show that certain first integrals of some well known systems (the affine Veselova and LR systems), which had been detected on a case-by-case way, are instances of moving energies. Moreover, we determine conserved moving energies for a class of affine systems on Lie groups that include the LR systems, for a heavy convex rigid body that rolls without slipping on a uniformly rotating plane, and for an n-dimensional generalization of the Chaplygin sphere problem to a uniformly rotating hyperplane.
Model predictive control for Max-Plus-Linear and piecewise affine systems
Necoara, I.
2006-01-01
This Ph.D. thesis considers the development of new analysis and control techniques for special classes of hybrid systems and discrete event systems. Two particular classes of hybrid systems (piecewise affine systems and max-min-plus-scaling systems), and two particular classes of discrete event
Convergent piecewise affine systems : analysis and design Part II: discontinuous case
Pavlov, A.V.; Pogromski, A.Y.; Wouw, van de N.; Nijmeijer, H.; Rooda, J.E.
2005-01-01
In this paper convergence properties of piecewise affine (PWA) systems with discontinuous right-hand sides are studied. It is shown that for discontinuous PWA systems existence of a common quadratic Lyapunov function is not sufficient for convergence. For discontinuous bimodal PWA systems necessary
International Nuclear Information System (INIS)
Escandon, E.; Chao, M.V.
1990-01-01
In order to study regulation of the nerve growth factor (NGF) receptor during embryogenesis in chick brain, we have used affinity crosslinking of tissues with 125 I-NGF. NGF interacts with high- and low-affinity receptors; high-affinity receptors are required for the majority of NGF's actions. Most measurements of receptor levels do not distinguish between high- and low-affinity forms of the receptor. We have used the lipophilic crosslinking agent HSAB to identify the high-affinity, functional receptor during development of the chicken central nervous system. A peak of expression during Embryonic Days 5-10 was detected in all regions of the chicken central nervous system, but, shortly after birth, only the cerebellar region displays significant levels of NGF receptor protein. The time course of expression confirms the dramatic regulation of the NGF receptor gene during defined embryonic periods. The detection of high-affinity NGF receptors in brain and neural retina provides strong evidence that NGF is involved in essential ontogenetic events in the development of the chicken central nervous system
Affinity partitioning of human antibodies in aqueous two-phase systems.
Rosa, P A J; Azevedo, A M; Ferreira, I F; de Vries, J; Korporaal, R; Verhoef, H J; Visser, T J; Aires-Barros, M R
2007-08-24
The partitioning of human immunoglobulin (IgG) in a polymer-polymer and polymer-salt aqueous two-phase system (ATPS) in the presence of several functionalised polyethylene glycols (PEGs) was studied. As a first approach, the partition studies were performed with pure IgG using systems in which the target protein remained in the bottom phase when the non-functionalised systems were tested. The effect of increasing functionalised PEG concentration and the type of ligand were studied. Afterwards, selectivity studies were performed with the most successful ligands first by using systems containing pure proteins and an artificial mixture of proteins and, subsequently, with systems containing a Chinese hamster ovary (CHO) cells supernatant. The PEG/phosphate ATPS was not suitable for the affinity partitioning of IgG. In the PEG/dextran ATPS, the diglutaric acid functionalised PEGs (PEG-COOH) displayed great affinity to IgG, and all IgG could be recovered in the top phase when 20% (w/w) of PEG 150-COOH and 40% (w/w) PEG 3350-COOH were used. The selectivity of these functionalised PEGs was evaluated using an artificial mixture of proteins, and PEG 3350-COOH did not show affinity to IgG in the presence of typical serum proteins such as human serum albumin and myoglobin, while in systems with PEG 150-COOH, IgG could be recovered with a yield of 91%. The best purification of IgG from the CHO cells supernatant was then achieved in a PEG/dextran ATPS in the presence of PEG 150-COOH with a recovery yield of 93%, a purification factor of 1.9 and a selectivity to IgG of 11. When this functionalised PEG was added to the ATPS, a 60-fold increase in selectivity was observed when compared to the non-functionalised systems.
Directory of Open Access Journals (Sweden)
D. A. Fetisov
2015-01-01
Full Text Available The controllability conditions are well known if we speak about linear stationary systems: a linear stationary system is controllable if and only if the dimension of the state vector is equal to the rank of the controllability matrix. The concept of the controllability matrix is extended to affine systems, but relations between affine systems controllability and properties of this matrix are more complicated. Various controllability conditions are set for affine systems, but they deal as usual either with systems of some special form or with controllability in some small neighborhood of the concerned point. An affine system is known to be controllable if the system is equivalent to a system of a canonical form, which is defined and regular in the whole space of states. In this case, the system is said to be feedback linearizable in the space of states. However there are examples, which illustrate that a system can be controllable even if it is not feedback linearizable in any open subset in the space of states. In this article we deal with such systems.Affine systems with two-dimensional control are considered. The system in question is assumed to be equivalent to a system of a quasicanonical form with two-dimensional zero dynamics which is defined and regular in the whole space of states. Therefore the controllability of the original system is equivalent to the controllability of the received system of a quasicanonical form. In this article the sufficient condition for an available solution of the terminal problem is proven for systems of a quasicanonical form with two-dimensional control and two-dimensional zero dynamics. The condition is valid in the case of an arbitrary time interval and arbitrary initial and finite states of the system. Therefore the controllability condition is set for systems of a quasicanonical form with two-dimensional control and two-dimensional zero dynamics. An example is given which illustrates how the proved
Approximate convex hull of affine iterated function system attractors
International Nuclear Information System (INIS)
Mishkinis, Anton; Gentil, Christian; Lanquetin, Sandrine; Sokolov, Dmitry
2012-01-01
Highlights: ► We present an iterative algorithm to approximate affine IFS attractor convex hull. ► Elimination of the interior points significantly reduces the complexity. ► To optimize calculations, we merge the convex hull images at each iteration. ► Approximation by ellipses increases speed of convergence to the exact convex hull. ► We present a method of the output convex hull simplification. - Abstract: In this paper, we present an algorithm to construct an approximate convex hull of the attractors of an affine iterated function system (IFS). We construct a sequence of convex hull approximations for any required precision using the self-similarity property of the attractor in order to optimize calculations. Due to the affine properties of IFS transformations, the number of points considered in the construction is reduced. The time complexity of our algorithm is a linear function of the number of iterations and the number of points in the output approximate convex hull. The number of iterations and the execution time increases logarithmically with increasing accuracy. In addition, we introduce a method to simplify the approximate convex hull without loss of accuracy.
Realization of parking task based on affine system modeling
International Nuclear Information System (INIS)
Kim, Young Woo; Narikiyo, Tatsuo
2007-01-01
This paper presents a motion control system of an unmanned vehicle, where parallel parking task is realized based on a self-organizing affine system modeling and a quadratic programming based robust controller. Because of non-linearity of the vehicle system and complexity of the task to realize, control objective is not always realized with a single algorithm or control mode. This paper presents a hybrid model for parallel parking task in which seven modes for describing sub-tasks constitute an entire model
2017 Guralp Affinity Digitizer Evaluation.
Energy Technology Data Exchange (ETDEWEB)
Merchant, Bion J.
2018-03-01
Sandia National Laboratories has tested and evaluated two Guralp Affinity digitizers. The Affinity digitizers are intended to record sensor output for seismic and infrasound monitoring applications. The purpose of this digitizer evaluation is to measure the performance characteristics in such areas as power consumption, input impedance, sensitivity, full scale, self- noise, dynamic range, system noise, response, passband, and timing. The Affinity digitizers are being evaluated for potential use in the International Monitoring System (IMS) of the Comprehensive Nuclear Test-Ban-Treaty Organization (CTBTO).
Hypersurfaces in P^{n} with 1-parameter symmetry groups II
DEFF Research Database (Denmark)
Plessis, Andrew du; Wall, C.T.C.
2010-01-01
We assume V a hypersurface of degree d in with isolated singularities and not a cone, admitting a group G of linear symmetries. In earlier work we treated the case when G is semi-simple; here we analyse the unipotent case. Our first main result lists the possible groups G. In each case we discuss...... the geometry of the action, reduce V to a normal form, find the singular points, study their nature, and calculate the Milnor numbers. The Tjurina number τ(V) ≤ (d − 1) n–2(d 2 − 3d + 3): we call V oversymmetric if this value is attained. We calculate τ in many cases, and characterise the oversymmetric...
Mapping Affinities in Academic Organizations
Directory of Open Access Journals (Sweden)
Dario Rodighiero
2018-02-01
Full Text Available Scholarly affinities are one of the most fundamental hidden dynamics that drive scientific development. Some affinities are actual, and consequently can be measured through classical academic metrics such as co-authoring. Other affinities are potential, and therefore do not leave visible traces in information systems; for instance, some peers may share interests without actually knowing it. This article illustrates the development of a map of affinities for academic collectives, designed to be relevant to three audiences: the management, the scholars themselves, and the external public. Our case study involves the School of Architecture, Civil and Environmental Engineering of EPFL, hereinafter ENAC. The school consists of around 1,000 scholars, 70 laboratories, and 3 institutes. The actual affinities are modeled using the data available from the information systems reporting publications, teaching, and advising scholars, whereas the potential affinities are addressed through text mining of the publications. The major challenge for designing such a map is to represent the multi-dimensionality and multi-scale nature of the information. The affinities are not limited to the computation of heterogeneous sources of information; they also apply at different scales. The map, thus, shows local affinities inside a given laboratory, as well as global affinities among laboratories. This article presents a graphical grammar to represent affinities. Its effectiveness is illustrated by two actualizations of the design proposal: an interactive online system in which the map can be parameterized, and a large-scale carpet of 250 square meters. In both cases, we discuss how the materiality influences the representation of data, in particular the way key questions could be appropriately addressed considering the three target audiences: the insights gained by the management and their consequences in terms of governance, the understanding of the scholars’ own
On the Penrose inequality along null hypersurfaces
International Nuclear Information System (INIS)
Mars, Marc; Soria, Alberto
2016-01-01
The null Penrose inequality, i.e. the Penrose inequality in terms of the Bondi energy, is studied by introducing a functional on surfaces and studying its properties along a null hypersurface Ω extending to past null infinity. We prove a general Penrose-type inequality which involves the limit at infinity of the Hawking energy along a specific class of geodesic foliations called Geodesic Asymptotically Bondi (GAB), which are shown to always exist. Whenever this foliation approaches large spheres, this inequality becomes the null Penrose inequality and we recover the results of Ludvigsen–Vickers (1983 J. Phys. A: Math. Gen. 16 3349–53) and Bergqvist (1997 Class. Quantum Grav. 14 2577–83). By exploiting further properties of the functional along general geodesic foliations, we introduce an approach to the null Penrose inequality called the Renormalized Area Method and find a set of two conditions which imply the validity of the null Penrose inequality. One of the conditions involves a limit at infinity and the other a restriction on the spacetime curvature along the flow. We investigate their range of applicability in two particular but interesting cases, namely the shear-free and vacuum case, where the null Penrose inequality is known to hold from the results by Sauter (2008 PhD Thesis Zürich ETH ), and the case of null shells propagating in the Minkowski spacetime. Finally, a general inequality bounding the area of the quasi-local black hole in terms of an asymptotic quantity intrinsic of Ω is derived. (paper)
International Nuclear Information System (INIS)
Chen Yanguang; Lin Jingyi
2009-01-01
This paper demonstrates self-affine fractal structure of city systems by means of theoretical and empirical analyses. A Cobb-Douglas-type function (C-D function) of city systems is derived from a general urban response equation, and the partial scaling exponent of the C-D function proved to be the fractal dimension reflecting the self-affine features of city systems. As a case, the self-affine fractal model is applied to the city of Zhengzhou, China, and the result is satisfying. A fractal parameter equation indicative of structural optimization conditions is then obtained from the C-D function. The equation suggests that priority should be given to the development of the urban element with a lower fractal dimension, or a higher partial scaling exponent, for utility maximization. Moreover, the fractal dimensions of different urban elements tend to become equivalent to each other in the long term. Accordingly, it is self-similar fractals rather than self-affine fractals that represent the optimal structure of city systems under ideal conditions.
Directory of Open Access Journals (Sweden)
D. K. Lian
2017-12-01
Full Text Available In classical mechanics, a nonrelativistic particle constrained on an N − 1 curved hypersurface embedded in N flat space experiences the centripetal force only. In quantum mechanics, the situation is totally different for the presence of the geometric potential. We demonstrate that the motion of the quantum particle is ”driven” by not only the centripetal force, but also a curvature induced force proportional to the Laplacian of the mean curvature, which is fundamental in the interface physics, causing curvature driven interface evolution.
Mirror symmetry and the moduli space for generic hypersurfaces in toric varieties
Berglund, P; Klemm, A D
1995-01-01
The moduli dependence of (2,2) superstring compactifications based on Calabi--Yau hypersurfaces in weighted projective space has so far only been investigated for Fermat-type polynomial constraints. These correspond to Landau-Ginzburg orbifolds with c=9 whose potential is a sum of A-type singularities. Here we consider the generalization to arbitrary quasi-homogeneous singularities at c=9. We use mirror symmetry to derive the dependence of the models on the complexified K\\"ahler moduli and check the expansions of some topological correlation functions against explicit genus zero and genus one instanton calculations. As an important application we give examples of how non-algebraic (``twisted'') deformations can be mapped to algebraic ones, hence allowing us to study the full moduli space. We also study how moduli spaces can be nested in each other, thus enabling a (singular) transition from one theory to another. Following the recent work of Greene, Morrison and Strominger we show that this corresponds to bla...
Fukuda, Nobuo; Ishii, Jun; Tanaka, Tsutomu; Kondo, Akihiko
2010-04-01
We have developed a new approach based on the Ggamma recruitment system to screen affinity-enhanced proteins by expressing a binding competitor. The previously established Ggamma recruitment system is a yeast two-hybrid (Y2H) system that utilizes G-protein signaling, and is based on the fact that membrane localization of the G-protein gamma subunit (Ggamma) is essential for signal transduction in yeast. In the original Y2H system, an engineered Ggamma that lacks membrane localization upon deletion of the lipid modification site (Ggamma(cyto)) is produced, and a candidate protein with an artificial lipidation site and its counterpart fused with Ggamma(cyto) are expressed. As protein-protein interactions bring Ggamma(cyto) towards the plasma membrane, G-protein signaling can be activated, and the interaction is detected by various cellular responses as the readout. In the current study, we expressed a third cytosolic protein that competes with the candidate protein to specifically isolate affinity-enhanced mutants from a mutation library of the candidate protein. Enhancing the affinity of the protein candidate guides the counterpart-Ggamma(cyto) fusion protein towards the plasma membrane and activates signaling. Using mutants of the Z domain derived from Staphylococcus aureus protein A as candidate proteins or competitors, and the Fc portion of human immunoglobulin G (IgG) as the counterpart, we demonstrate that affinity-enhanced proteins can be effectively screened from a library containing a 10 000-fold excess of non-enhanced proteins. This new approach, called the competitor-introduced Ggamma recruitment system, will be useful for efficient discovery of rare valuable candidates hidden among excess ordinary ones.
Affine LIBOR Models with Multiple Curves
DEFF Research Database (Denmark)
Grbac, Zorana; Papapantoleon, Antonis; Schoenmakers, John
2015-01-01
are specified following the methodology of the affine LIBOR models and are driven by the wide and flexible class of affine processes. The affine property is preserved under forward measures, which allows us to derive Fourier pricing formulas for caps, swaptions, and basis swaptions. A model specification...... with dependent LIBOR rates is developed that allows for an efficient and accurate calibration to a system of caplet prices....
Systematics of axion inflation in Calabi-Yau hypersurfaces
Energy Technology Data Exchange (ETDEWEB)
Long, Cody; McAllister, Liam; Stout, John [Department of Physics, Cornell University,Ithaca, NY 14853 (United States)
2017-02-03
We initiate a comprehensive survey of axion inflation in compactifications of type IIB string theory on Calabi-Yau hypersurfaces in toric varieties. For every threefold with h{sup 1,1}≤4 in the Kreuzer-Skarke database, we compute the metric on Kähler moduli space, as well as the matrix of four-form axion charges of Euclidean D3-branes on rigid divisors. These charges encode the possibility of enlarging the field range via alignment. We then determine an upper bound on the inflationary field range Δϕ that results from the leading instanton potential, in the absence of monodromy. The bound on the field range in this ensemble is Δϕ≲0.3M{sub pl}, in a compactification where the smallest curve volume is (2π){sup 2}α{sup ′}, and we argue that the sigma model expansion is adequately controlled. The largest increase resulting from alignment is a factor ≈2.6. We also examine a set of threefolds with h{sup 1,1} up to 100 and characterize their axion charge matrices. While we find modest alignment in this ensemble, the maximum field range is ultimately suppressed by the volume of the internal space, which typically grows quickly with h{sup 1,1}. Furthermore, we find that many toric divisors are rigid — and the corresponding charge matrices are relatively trivial — at large h{sup 1,1}. It is therefore challenging to realize alignment via superpotentials generated only by Euclidean D3-branes, without taking into account the effects of flux, D7-branes, and orientifolding.
Problem-solving tools for analyzing system problems. The affinity map and the relationship diagram.
Lepley, C J
1998-12-01
The author describes how to use two management tools, an affinity map and a relationship diagram, to define and analyze aspects of a complex problem in a system. The affinity map identifies the key influencing elements of the problem, whereas the relationship diagram helps to identify the area that is the most important element of the issue. Managers can use the tools to draw a map of problem drivers, graphically display the drivers in a diagram, and use the diagram to develop a cause-and-effect relationship.
A Lyapunov method for stability analysis of piecewise-affine systems over non-invariant domains
Rubagotti, Matteo; Zaccarian, Luca; Bemporad, Alberto
2016-05-01
This paper analyses stability of discrete-time piecewise-affine systems, defined on possibly non-invariant domains, taking into account the possible presence of multiple dynamics in each of the polytopic regions of the system. An algorithm based on linear programming is proposed, in order to prove exponential stability of the origin and to find a positively invariant estimate of its region of attraction. The results are based on the definition of a piecewise-affine Lyapunov function, which is in general discontinuous on the boundaries of the regions. The proposed method is proven to lead to feasible solutions in a broader range of cases as compared to a previously proposed approach. Two numerical examples are shown, among which a case where the proposed method is applied to a closed-loop system, to which model predictive control was applied without a-priori guarantee of stability.
International Nuclear Information System (INIS)
Lavenir, E.; Pic, J.M.; Alibran, P.; Leclercq, J.M.
1987-01-01
The QUANTUM I project is a three-stage device. The stages are respectively dedicated to particular steps of the ab initio determination of a point on the hypersurface. The first stage deals with the computation of the integrals between the basis functions, the second with the S.C.F. (or M.C.S.C.F.) process and the third with the C.I treatment. Each step is developed in terms of parallel mode (M.I.M.D.), the whole device working following a pipeline mode: the three stages works simultaneously for different points
Hu, Meng-Xin; Li, Xiang; Li, Ji-Nian; Huang, Jing-Jing; Ren, Ge-Rui
2018-02-23
Polymer brushes modified surfaces have been widely used for protein immobilization and isolation. Modification of membranes with polymer brushes increases the surface concentration of affinity ligands used for protein binding. Albumin is one of the transporting proteins and shows a high affinity to bile acids. In this work, the modified membranes with cholic acid-containing polymer brushes can be facilely prepared by the immobilization of cholic acid on the poly(2-hydroxyethyl methacrylate) grafted microporous polypropylene membranes (MPPMs) for affinity adsorption of albumin. ATR/FT-IR and X-ray photoelectron spectroscopy were used to characterize the chemical composition of the modified membranes. Water contact angle measurements were used to analyze the hydrophilic/hydrophobic properties of the membrane surface. The modified MPPMs show a high affinity to albumin and have little non-specific adsorption of hemoglobin. The dynamic binding capacity of albumin in the continous-flow system increases with the cycle number and feed rate as the binding degree of cholic acid is moderate. The highest binding capacity of affinity membranes is about 52.49 g/m 2 membrane, which is about 24 times more than the monolayer binding capacity. These results reveal proteins could be captured in multilayers by the polymer brushes containing affinity ligands similar to the polymer brushes containing ion-exchange groups, which open up the potential of the polymer brushes containing affinity ligands in protein or another components separation. And the cholic acid containing polymer brushes modified membranes has the promising potential for albumin separation and purification rapidly from serum or fermented solution in medical diagnosis and bioseparation. Copyright © 2018 Elsevier B.V. All rights reserved.
CVA identification of nonlinear systems with LPV state-space models of affine dependence
Larimore, W.E.; Cox, P.B.; Toth, R.
2015-01-01
This paper discusses an improvement on the extension of linear subspace methods (originally developed in the Linear Time-Invariant (LTI) context) to the identification of Linear Parameter-Varying (LPV) and state-affine nonlinear system models. This includes the fitting of a special polynomial
International Nuclear Information System (INIS)
Fukuda, E.K.
1983-01-01
Molecular electron affinities have historically been difficult quantities to measure accurately. These difficulties arise from differences in structure between the ion and neutral as well as the existence of excited negative ion states. To circumvent these problems, relative electron affinities were determined in this dissertation by studying equilibrium electron transfer reactions using a pulsed ion cyclotron resonance (ICR) spectrometer. Direct measurement of ion and neutral concentrations for reactions of the general type, A - + B = B - + A, allow calculation of the equilibrium constant and, therefore, the free energy change. The free energy difference is related to the difference in electron affinities between A and B. A relative electron affinity scale covering a range of about 45 kcal/mol was constructed with various substituted p-benzoquinones, nitrobenzenes, anhydrides, and benzophenones. To assign absolute electron affinities, various species with accurately known electron affinities are tied to the scale via ion-cyclotron double resonance bracketing techniques. After the relative scale is anchored to these species with well-known electron affinities, the scale is then used as a check on other electron affinity values as well as generating new electron affinity values. Many discrepancies were found between the electron affinities measured using the ICR technique and previous literature determinations
Automated Controller Synthesis for non-Deterministic Piecewise-Affine Hybrid Systems
DEFF Research Database (Denmark)
Grunnet, Jacob Deleuran
formations. This thesis uses a hybrid systems model of a satellite formation with possible actuator faults as a motivating example for developing an automated control synthesis method for non-deterministic piecewise-affine hybrid systems (PAHS). The method does not only open an avenue for further research...... in fault tolerant satellite formation control, but can be used to synthesise controllers for a wide range of systems where external events can alter the system dynamics. The synthesis method relies on abstracting the hybrid system into a discrete game, finding a winning strategy for the game meeting...... game and linear optimisation solvers for controller refinement. To illustrate the efficacy of the method a reoccurring satellite formation example including actuator faults has been used. The end result is the application of PAHSCTRL on the example showing synthesis and simulation of a fault tolerant...
Passive Fault Tolerant Control of Piecewise Affine Systems Based on H Infinity Synthesis
DEFF Research Database (Denmark)
Gholami, Mehdi; Cocquempot, vincent; Schiøler, Henrik
2011-01-01
In this paper we design a passive fault tolerant controller against actuator faults for discretetime piecewise affine (PWA) systems. By using dissipativity theory and H analysis, fault tolerant state feedback controller design is expressed as a set of Linear Matrix Inequalities (LMIs). In the cur...
Directory of Open Access Journals (Sweden)
Olav Slupphaug
1999-07-01
Full Text Available In this paper a method for nonlinear robust stabilization based on solving a bilinear matrix inequality (BMI feasibility problem is developed. Robustness against model uncertainty is handled. In different non-overlapping regions of the state-space called clusters the plant is assumed to be an element in a polytope which vertices (local models are affine systems. In the clusters containing the origin in their closure, the local models are restricted to be linear systems. The clusters cover the region of interest in the state-space. An affine state-feedback is associated with each cluster. By utilizing the affinity of the local models and the state-feedback, a set of linear matrix inequalities (LMIs combined with a single nonconvex BMI are obtained which, if feasible, guarantee quadratic stability of the origin of the closed-loop. The feasibility problem is attacked by a branch-and-bound based global approach. If the feasibility check is successful, the Liapunov matrix and the piecewise affine state-feedback are given directly by the feasible solution. Control constraints are shown to be representable by LMIs or BMIs, and an application of the control design method to robustify constrained nonlinear model predictive control is presented. Also, the control design method is applied to a simple example.
The utility of affine variables and affine coherent states
International Nuclear Information System (INIS)
Klauder, John R
2012-01-01
Affine coherent states are generated by affine kinematical variables much like canonical coherent states are generated by canonical kinematical variables. Although all classical and quantum formalisms normally entail canonical variables, it is shown that affine variables can serve equally well for many classical and quantum studies. This general purpose analysis provides tools to discuss two major applications: (1) the completely successful quantization of a nonrenormalizable scalar quantum field theory by affine techniques, in complete contrast to canonical techniques which only offer triviality; and (2) a formulation of the kinematical portion of quantum gravity that favors affine kinematical variables over canonical kinematical variables, and which generates a framework in which a favorable analysis of the constrained dynamical issues can take place. All this is possible because of the close connection between the affine and the canonical stories, while the few distinctions can be used to advantage when appropriate. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Coherent states: mathematical and physical aspects’. (review)
Satake diagrams of affine Kac-Moody algebras
Energy Technology Data Exchange (ETDEWEB)
Tripathy, L K [S B R Government Womens' College, Berhampur, Orissa 760 001 (India); Pati, K C [Department of Physics, Khallikote College, Berhampur, Orissa 760 001 (India)
2006-02-10
Satake diagrams of affine Kac-Moody algebras (untwisted and twisted) are obtained from their Dynkin diagrams. These diagrams give a classification of restricted root systems associated with these algebras. In the case of simple Lie algebras, these root systems and Satake diagrams correspond to symmetric spaces which have recently found many physical applications in quantum integrable systems, quantum transport problems, random matrix theories etc. We hope these types of root systems may have similar applications in theoretical physics in future and may correspond to symmetric spaces analogue of affine Kac-Moody algebras if they exist.
Influence of affinity on antibody determination in microtiter ELISA systems
International Nuclear Information System (INIS)
Peterman, J.H.; Voss, E.W. Jr.; Butler, J.E.
1986-01-01
Theoretically, all immunoassays are affinity (Ka) dependent when the product of the antibody (Ab) Ka and the free epitope concentration is less than 10. Thus, the degree of dependence on Ka depends on the concentration of available antigen in the system. The authors examined the binding of 125 I-anti-fluorescein (a-FLU) monoclonal antibodies of different affinities to FLU-gelatin adsorbed on Immunlon 2 microtiter plates. Data obtained were in general agreement with our theoretical predictions; the percent of 125 I-a-FLU which bound correlated with Ka, as did the shape of the titration curves. Measurement of 5 a-FLU monoclonals by the ELISA showed that the determination of Ab concentrations depends on the FLU-gelatin concentration, epitope density, and on the relationship between the Kas of test samples and the reference standard Ab preparation. Thus the ELISA is Ka dependent and should not be used routinely to estimate the absolute amount to Ab in unknown samples. However, the Ka dependency of the ELISA might provide a convenient assay for the estimation of the relative functional Ka (rfKa) of antibody preparations
Report: Affinity Chromatography.
Walters, Rodney R.
1985-01-01
Supports, affinity ligands, immobilization, elution methods, and a number of applications are among the topics considered in this discussion of affinity chromatography. An outline of the basic principles of affinity chromatography is included. (JN)
Affine fractal functions as bases of continuous funtions | Navascues ...
African Journals Online (AJOL)
The objective of the present paper is the study of affine transformations of the plane, which provide self-affine curves as attractors. The properties of these curves depend decisively of the coefficients of the system of affinities involved. The corresponding functions are continuous on a compact interval. If the scale factors are ...
Doris, A.; Wouw, van de N.; Heemels, W.P.M.H.; Nijmeijer, H.
2010-01-01
We consider the disturbance attenuation problem for a class of continuous piecewise affine systems. Hereto, observer-based output-feedback controllers are proposed that render the closed-loop system uniformly convergent. The convergence property ensures, first, stability and, second, the existence
Multiprocessor Real-Time Scheduling with Hierarchical Processor Affinities
Bonifaci , Vincenzo; Brandenburg , Björn; D'Angelo , Gianlorenzo; Marchetti-Spaccamela , Alberto
2016-01-01
International audience; Many multiprocessor real-time operating systems offer the possibility to restrict the migrations of any task to a specified subset of processors by setting affinity masks. A notion of " strong arbitrary processor affinity scheduling " (strong APA scheduling) has been proposed; this notion avoids schedulability losses due to overly simple implementations of processor affinities. Due to potential overheads, strong APA has not been implemented so far in a real-time operat...
Nazarov, Anton
2012-11-01
In this paper we present Affine.m-a program for computations in representation theory of finite-dimensional and affine Lie algebras and describe implemented algorithms. The algorithms are based on the properties of weights and Weyl symmetry. Computation of weight multiplicities in irreducible and Verma modules, branching of representations and tensor product decomposition are the most important problems for us. These problems have numerous applications in physics and we provide some examples of these applications. The program is implemented in the popular computer algebra system Mathematica and works with finite-dimensional and affine Lie algebras. Catalogue identifier: AENA_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENB_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, UK Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 24 844 No. of bytes in distributed program, including test data, etc.: 1 045 908 Distribution format: tar.gz Programming language: Mathematica. Computer: i386-i686, x86_64. Operating system: Linux, Windows, Mac OS, Solaris. RAM: 5-500 Mb Classification: 4.2, 5. Nature of problem: Representation theory of finite-dimensional Lie algebras has many applications in different branches of physics, including elementary particle physics, molecular physics, nuclear physics. Representations of affine Lie algebras appear in string theories and two-dimensional conformal field theory used for the description of critical phenomena in two-dimensional systems. Also Lie symmetries play a major role in a study of quantum integrable systems. Solution method: We work with weights and roots of finite-dimensional and affine Lie algebras and use Weyl symmetry extensively. Central problems which are the computations of weight multiplicities, branching and fusion coefficients are solved using one general recurrent
Mehraeen, Shahab; Dierks, Travis; Jagannathan, S; Crow, Mariesa L
2013-12-01
In this paper, the nearly optimal solution for discrete-time (DT) affine nonlinear control systems in the presence of partially unknown internal system dynamics and disturbances is considered. The approach is based on successive approximate solution of the Hamilton-Jacobi-Isaacs (HJI) equation, which appears in optimal control. Successive approximation approach for updating control and disturbance inputs for DT nonlinear affine systems are proposed. Moreover, sufficient conditions for the convergence of the approximate HJI solution to the saddle point are derived, and an iterative approach to approximate the HJI equation using a neural network (NN) is presented. Then, the requirement of full knowledge of the internal dynamics of the nonlinear DT system is relaxed by using a second NN online approximator. The result is a closed-loop optimal NN controller via offline learning. A numerical example is provided illustrating the effectiveness of the approach.
Passive Fault-tolerant Control of Discrete-time Piecewise Affine Systems against Actuator Faults
DEFF Research Database (Denmark)
Tabatabaeipour, Seyed Mojtaba; Izadi-Zamanabadi, Roozbeh; Bak, Thomas
2012-01-01
In this paper, we propose a new method for passive fault-tolerant control of discrete time piecewise affine systems. Actuator faults are considered. A reliable piecewise linear quadratic regulator (LQR) state feedback is designed such that it can tolerate actuator faults. A sufficient condition f...... is illustrated on a numerical example and a two degree of freedom helicopter....
Hirota's solitons in the affine and the conformal affine Toda models
International Nuclear Information System (INIS)
Aratyn, H.; Constantinidis, C.P.; Ferreira, L.A.; Gomes, J.F.; Zimerman, A.H.
1993-01-01
We use Hirota's method formulated as a recursive scheme to construct a complete set of soliton solutions for the affine Toda field theory based on an arbitrary Lie algebra. Our solutions include a new class of solitons connected with two different types of degeneracies encountered in Hirota's perturbation approach. We also derive an universal mass formula for all Hirota's solutions to the affine Toda model valid for all underlying Lie groups. Embedding of the affine Toda model in the conformal affine Toda model plays a crucial role in this analysis. (orig.)
Mathematical analysis of frontal affinity chromatography in particle and membrane configurations.
Tejeda-Mansir, A; Montesinos, R M; Guzmán, R
2001-10-30
The scaleup and optimization of large-scale affinity-chromatographic operations in the recovery, separation and purification of biochemical components is of major industrial importance. The development of mathematical models to describe affinity-chromatographic processes, and the use of these models in computer programs to predict column performance is an engineering approach that can help to attain these bioprocess engineering tasks successfully. Most affinity-chromatographic separations are operated in the frontal mode, using fixed-bed columns. Purely diffusive and perfusion particles and membrane-based affinity chromatography are among the main commercially available technologies for these separations. For a particular application, a basic understanding of the main similarities and differences between particle and membrane frontal affinity chromatography and how these characteristics are reflected in the transport models is of fundamental relevance. This review presents the basic theoretical considerations used in the development of particle and membrane affinity chromatography models that can be applied in the design and operation of large-scale affinity separations in fixed-bed columns. A transport model for column affinity chromatography that considers column dispersion, particle internal convection, external film resistance, finite kinetic rate, plus macropore and micropore resistances is analyzed as a framework for exploring further the mathematical analysis. Such models provide a general realistic description of almost all practical systems. Specific mathematical models that take into account geometric considerations and transport effects have been developed for both particle and membrane affinity chromatography systems. Some of the most common simplified models, based on linear driving-force (LDF) and equilibrium assumptions, are emphasized. Analytical solutions of the corresponding simplified dimensionless affinity models are presented. Particular
The solutions of affine and conformal affine Toda field theory
International Nuclear Information System (INIS)
Papadopoulos, G.; Spence, B.
1994-02-01
We give new formulations of the solutions of the field equations of the affine Toda and conformal affine Toda theories on a cylinder and two-dimensional Minkowski space-time. These solutions are parameterised in terms of initial data and the resulting covariant phase spaces are diffeomorphic to the Hamiltonian ones. We derive the fundamental Poisson brackets of the parameters of the solutions and give the general static solutions for the affine theory. (authors). 10 refs
Lectin affinity electrophoresis.
Kobayashi, Yuka
2014-01-01
An interaction or a binding event typically changes the electrophoretic properties of a molecule. Affinity electrophoresis methods detect changes in the electrophoretic pattern of molecules (mainly macromolecules) that occur as a result of biospecific interactions or complex formation. Lectin affinity electrophoresis is a very effective method for the detection and analysis of trace amounts of glycobiological substances. It is particularly useful for isolating and separating the glycoisomers of target molecules. Here, we describe a sensitive technique for the detection of glycoproteins separated by agarose gel-lectin affinity electrophoresis that uses antibody-affinity blotting. The technique is tested using α-fetoprotein with lectin (Lens culinaris agglutinin and Phaseolus vulgaris agglutinin)-agarose gels.
Computation of piecewise affine terminal cost functions for model predictive control
Brunner, F.D.; Lazar, M.; Allgöwer, F.; Fränzle, Martin; Lygeros, John
2014-01-01
This paper proposes a method for the construction of piecewise affine terminal cost functions for model predictive control (MPC). The terminal cost function is constructed on a predefined partition by solving a linear program for a given piecewise affine system, a stabilizing piecewise affine
Affinity Strings: Enterprise Data for Resource Recommendations
Directory of Open Access Journals (Sweden)
Shane Nackerud
2008-12-01
Full Text Available The University of Minnesota Libraries have created a MyLibrary portal, with databases and e-journals targeted to users, based on their affiliations. The University's enterprise authentication system provides an "affinity string", now used to personalize the MyLibrary portal. This affinity string automates discovery of a user's relationship to the University--describing a user's academic department and degree program or position at the University. Affinity strings also provide the Libraries with an anonymized view of resource usage, allowing data collection that respects users' privacy and lays the groundwork for automated recommendation of relevant resources based on the practices and habits of their peers.
Directory of Open Access Journals (Sweden)
Koki Tsukamoto
2009-01-01
Full Text Available Koki Tsukamoto1, Tatsuya Yoshikawa1,2, Kiyonobu Yokota1, Yuichiro Hourai1, Kazuhiko Fukui11Computational Biology Research Center (CBRC, National Institute of Advanced Industrial Science and Technology (AIST, Koto-ku, Tokyo, Japan; 2Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Toyonaka, Osaka, JapanAbstract: A system was developed to evaluate and predict the interaction between protein pairs by using the widely used shape complementarity search method as the algorithm for docking simulations between the proteins. We used this system, which we call the affinity evaluation and prediction (AEP system, to evaluate the interaction between 20 protein pairs. The system first executes a “round robin” shape complementarity search of the target protein group, and evaluates the interaction between the complex structures obtained by the search. These complex structures are selected by using a statistical procedure that we developed called ‘grouping’. At a prevalence of 5.0%, our AEP system predicted protein–protein interactions with a 50.0% recall, 55.6% precision, 95.5% accuracy, and an F-measure of 0.526. By optimizing the grouping process, our AEP system successfully predicted 10 protein pairs (among 20 pairs that were biologically relevant combinations. Our ultimate goal is to construct an affinity database that will provide cell biologists and drug designers with crucial information obtained using our AEP system.Keywords: protein–protein interaction, affinity analysis, protein–protein docking, FFT, massive parallel computing
Wei, Wang; Binwu, He
2008-12-01
According to the notion of Lp-affine surface area by Lutwak, in this paper, we introduce the concept of Lp-dual affine surface area. Further, we establish the affine isoperimetric inequality and the Blaschke-Santaló inequality for Lp-dual affine surface area. Besides, the dual Brunn-Minkowski inequality for Lp-dual affine surface area is presented.
International Nuclear Information System (INIS)
Shukla, S.K.; Cipriani, C.; Atzei, G.
1998-01-01
Cancer patient needs less diagnosis but an effective therapy. The systemic nature of cancer, often right from its inception, requires systemic therapy with cancer-affine radiopharmaceuticals which contain radionuclide species recognizing both the primary and secondary cancers which have generally different biochemical properties. Cancers may be classified into two groups: I. CATIONIC COMPLEX-AFFINE TUMOURS; Lung cancer, thyroid cancer, primary breast cancer, renal cell carcinoma, bone metastases from anionic complex-affine cancers, ...; II. ANIONIC COMPLEX-AFFINE TUMOURS; Primary prostate cancer, melanoma, hepatocellular carcinoma, osteosarcoma, Ewing's sarcoma, bone metastases from cationic complex-affine cancer. With cancer-affine citratogallate-67 complexes we have diagnosed and followed up, and with citratoyttrate-90 complexes we have treated advanced breast, prostate, renal cell cancer patients. The patient preparation by advising to avoid cancer risk factors and to take cancer preventing and radiopharmaceutical stabilizing diets during diagnosis and therapy have given better results. Friendliness, caring visits and telephone calls from the therapist group help to obtain better outcomes of the diagnosis, and mainly of the therapy. The complexes of these radionuclides with other chelating agents EDTA and DPTA are expected to give better images and cure of advanced cancer patients. Cancer-affine formulations of Tc-99m(V), Re-186(V) and Re-188(V)-DMSA are being studied for their future use in early diagnosis and follow-up, and for the systemic therapy of cancer which will show affinity for them. (author)
Hage, David S.; Anguizola, Jeanethe A.; Bi, Cong; Li, Rong; Matsuda, Ryan; Papastavros, Efthimia; Pfaunmiller, Erika; Vargas, John; Zheng, Xiwei
2012-01-01
Affinity chromatography is a separation technique that has become increasingly important in work with biological samples and pharmaceutical agents. This method is based on the use of a biologically-related agent as a stationary phase to selectively retain analytes or to study biological interactions. This review discusses the basic principles behind affinity chromatography and examines recent developments that have occurred in the use of this method for biomedical and pharmaceutical analysis. Techniques based on traditional affinity supports are discussed, but an emphasis is placed on methods in which affinity columns are used as part of HPLC systems or in combination with other analytical methods. General formats for affinity chromatography that are considered include step elution schemes, weak affinity chromatography, affinity extraction and affinity depletion. Specific separation techniques that are examined include lectin affinity chromatography, boronate affinity chromatography, immunoaffinity chromatography, and immobilized metal ion affinity chromatography. Approaches for the study of biological interactions by affinity chromatography are also presented, such as the measurement of equilibrium constants, rate constants, or competition and displacement effects. In addition, related developments in the use of immobilized enzyme reactors, molecularly imprinted polymers, dye ligands and aptamers are briefly considered. PMID:22305083
Le quang, Thuan; Baldi, S.
2018-01-01
This paper establishes a novel online fault detection and identification strategy for a class of continuous piecewise affine (PWA) systems, namely, bimodal and trimodal PWA systems. The main contributions with respect to the state-of-the-art are the recursive nature of the proposed scheme and the
Active Complementary Control for Affine Nonlinear Control Systems With Actuator Faults.
Fan, Quan-Yong; Yang, Guang-Hong
2017-11-01
This paper is concerned with the problem of active complementary control design for affine nonlinear control systems with actuator faults. The outage and loss of effectiveness fault cases are considered. In order to achieve the performance enhancement of the faulty control system, the complementary control scheme is designed in two steps. Firstly, a novel fault estimation scheme is developed. Then, by using the fault estimations to reconstruct the faulty system dynamics and introducing a cost function as the optimization objective, a nearly optimal complementary control is obtained online based on the adaptive dynamic programming (ADP) method. Unlike most of the previous ADP methods with the addition of a probing signal, new adaptive weight update laws are derived to guarantee the convergence of neural network weights and the stability of the closed-loop system, which strongly supports the online implementation of the ADP method. Finally, two simulation examples are given to illustrate the performance and effectiveness of the proposed method.
Y-formalism and curved {beta}-{gamma} systems
Energy Technology Data Exchange (ETDEWEB)
Grassi, Pietro Antonio [DISTA, Universita del Piemonte Orientale, via Bellini 25/g, 15100 Alessandria (Italy); INFN - Sezione di Torino (Italy)], E-mail: antonio.pietro.grassi@cern.ch; Oda, Ichiro [Department of Physics, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213 (Japan); Tonin, Mario [Dipartimento di Fisica, Universita degli Studi di Padova, INFN, Sezionedi Padova, Via F. Marzolo 8, 35131 Padova (Italy)
2009-01-01
We adopt the Y-formalism to study {beta}-{gamma} systems on hypersurfaces. We compute the operator product expansions of gauge-invariant currents and we discuss some applications of the Y-formalism to model on Calabi-Yau spaces.
Y-formalism and curved β-γ systems
International Nuclear Information System (INIS)
Grassi, Pietro Antonio; Oda, Ichiro; Tonin, Mario
2009-01-01
We adopt the Y-formalism to study β-γ systems on hypersurfaces. We compute the operator product expansions of gauge-invariant currents and we discuss some applications of the Y-formalism to model on Calabi-Yau spaces
Lectures on zeta functions over finite fields
Wan, Daqing
2007-01-01
These are the notes from the summer school in G\\"ottingen sponsored by NATO Advanced Study Institute on Higher-Dimensional Geometry over Finite Fields that took place in 2007. The aim was to give a short introduction on zeta functions over finite fields, focusing on moment zeta functions and zeta functions of affine toric hypersurfaces.
DEFF Research Database (Denmark)
Buchardt, Kristian
2016-01-01
Affine processes possess the property that expectations of exponential affine transformations are given by a set of Riccati differential equations, which is the main feature of this popular class of processes. In this paper we generalise these results for expectations of more general transformati...
Heegaard, Niels H H
2009-06-01
The journal Electrophoresis has greatly influenced my approaches to biomolecular affinity studies. The methods that I have chosen as my main tools to study interacting biomolecules--native gel and later capillary zone electrophoresis--have been the topic of numerous articles in Electrophoresis. Below, the role of the journal in the development and dissemination of these techniques and applications reviewed. Many exhaustive reviews on affinity electrophoresis and affinity CE have been published in the last few years and are not in any way replaced by the present deliberations that are focused on papers published by the journal.
The metric-affine gravitational theory as the gauge theory of the affine group
International Nuclear Information System (INIS)
Lord, E.A.
1978-01-01
The metric-affine gravitational theory is shown to be the gauge theory of the affine group, or equivalently, the gauge theory of the group GL(4,R) of tetrad deformations in a space-time with a locally Minkowskian metric. The identities of the metric-affine theory, and the relationship between them and those of general relativity and Sciama-Kibble theory, are derived. (Auth.)
A Generalized Affine Isoperimetric Inequality
Chen, Wenxiong; Howard, Ralph; Lutwak, Erwin; Yang, Deane; Zhang, Gaoyong
2004-01-01
A purely analytic proof is given for an inequality that has as a direct consequence the two most important affine isoperimetric inequalities of plane convex geometry: The Blaschke-Santalo inequality and the affine isoperimetric inequality of affine differential geometry.
DEFF Research Database (Denmark)
Vorum, H; Pedersen, A O; Honoré, B
1992-01-01
Binding equilibria for decanoate to a defatted, commercially available human serum albumin preparation were investigated by dialysis exchange rate determinations. The binding isotherm could not be fitted by the general binding equation. It was necessary to assume that the preparation was a mixture...... of two albumin components about 40% of the albumin having high affinity and about 60% having low affinity. By affinity chromatography we succeeded in purifying the low-affinity component from the mixture. The high-affinity component, however, could not be isolated. We further analyzed the fatty acid...... and drug binding abilities of the low-affinity component. The fatty acids decanoate, laurate, myristate and palmitate were bound with higher affinity to the mixture than to the low-affinity component. Diazepam was bound with nearly the same affinity to the low-affinity component as to the albumin mixture...
Methods for Fault Diagnosability Analysis of a Class of Affine Nonlinear Systems
Directory of Open Access Journals (Sweden)
Xiafu Peng
2015-01-01
Full Text Available The fault diagnosability analysis for a given model, before developing a diagnosis algorithm, can be used to answer questions like “can the fault fi be detected by observed states?” and “can it separate fault fi from fault fj by observed states?” If not, we should redesign the sensor placement. This paper deals with the problem of the evaluation of detectability and separability for the diagnosability analysis of affine nonlinear system. First, we used differential geometry theory to analyze the nonlinear system and proposed new detectability criterion and separability criterion. Second, the related matrix between the faults and outputs of the system and the fault separable matrix are designed for quantitative fault diagnosability calculation and fault separability calculation, respectively. Finally, we illustrate our approach to exemplify how to analyze diagnosability by a certain nonlinear system example, and the experiment results indicate the effectiveness of the fault evaluation methods.
Wang, Weidong; Leng, Gangsong
2007-11-01
According to the three notions of mixed affine surface area, Lp-affine surface area and Lp-mixed affine surface area proposed by Lutwak, in this article, we give the concept of ith Lp-mixed affine surface area such that the first and second notions of Lutwak are its special cases. Further, some Lutwak's results are extended associated with this concept. Besides, applying this concept, we establish an inequality for the volumes and dual quermassintegrals of a class of star bodies.
DEFF Research Database (Denmark)
Skjødt, Mette Louise
Yeast surface display is an effective tool for antibody affinity maturation because yeast can be used as an all-in-one workhorse to assemble, display and screen diversified antibody libraries. By employing the natural ability of yeast Saccharomyces cerevisiae to efficiently recombine multiple DNA...... laboratory conditions. A particular emphasis was put on using molecular techniques in conjunction with microenvironmental measurements (O2, pH, irradiance), a combination that is rarely found but provides a much more detailed understanding of “cause and effect” in complex natural systems...
On Affine Fusion and the Phase Model
Directory of Open Access Journals (Sweden)
Mark A. Walton
2012-11-01
Full Text Available A brief review is given of the integrable realization of affine fusion discovered recently by Korff and Stroppel. They showed that the affine fusion of the su(n Wess-Zumino-Novikov-Witten (WZNW conformal field theories appears in a simple integrable system known as the phase model. The Yang-Baxter equation leads to the construction of commuting operators as Schur polynomials, with noncommuting hopping operators as arguments. The algebraic Bethe ansatz diagonalizes them, revealing a connection to the modular S matrix and fusion of the su(n WZNW model. The noncommutative Schur polynomials play roles similar to those of the primary field operators in the corresponding WZNW model. In particular, their 3-point functions are the su(n fusion multiplicities. We show here how the new phase model realization of affine fusion makes obvious the existence of threshold levels, and how it accommodates higher-genus fusion.
ODE/IM correspondence and Bethe ansatz for affine Toda field equations
Directory of Open Access Journals (Sweden)
Katsushi Ito
2015-07-01
Full Text Available We study the linear problem associated with modified affine Toda field equation for the Langlands dual gˆ∨, where gˆ is an untwisted affine Lie algebra. The connection coefficients for the asymptotic solutions of the linear problem are found to correspond to the Q-functions for g-type quantum integrable models. The ψ-system for the solutions associated with the fundamental representations of g leads to Bethe ansatz equations associated with the affine Lie algebra gˆ. We also study the A2r(2 affine Toda field equation in massless limit in detail and find its Bethe ansatz equations as well as T–Q relations.
Na+,K+-ATPase Na+ affinity in rat skeletal muscle fiber types
DEFF Research Database (Denmark)
Kristensen, Michael; Juel, Carsten
2010-01-01
Previous studies in expression systems have found different ion activation of the Na(+)/K(+)-ATPase isozymes, which suggest that different muscles have different ion affinities. The rate of ATP hydrolysis was used to quantify Na(+),K(+)-ATPase activity, and the Na(+) affinity of Na(+),K(+)-ATPase...
Fundamentals of affinity cell separations.
Zhang, Ye; Lyons, Veronica; Pappas, Dimitri
2018-03-01
Cell separations using affinity methods continue to be an enabling science for a wide variety of applications. In this review, we discuss the fundamental aspects of affinity separation, including the competing forces for cell capture and elution, cell-surface interactions, and models for cell adhesion. Factors affecting separation performance such as bond affinity, contact area, and temperature are presented. We also discuss and demonstrate the effects of nonspecific binding on separation performance. Metrics for evaluating cell separations are presented, along with methods of comparing separation techniques for cell isolation using affinity capture. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
k-Schur functions and affine Schubert calculus
Lam, Thomas; Morse, Jennifer; Schilling, Anne; Shimozono, Mark; Zabrocki, Mike
2014-01-01
This book gives an introduction to the very active field of combinatorics of affine Schubert calculus, explains the current state of the art, and states the current open problems. Affine Schubert calculus lies at the crossroads of combinatorics, geometry, and representation theory. Its modern development is motivated by two seemingly unrelated directions. One is the introduction of k-Schur functions in the study of Macdonald polynomial positivity, a mostly combinatorial branch of symmetric function theory. The other direction is the study of the Schubert bases of the (co)homology of the affine Grassmannian, an algebro-topological formulation of a problem in enumerative geometry. This is the first introductory text on this subject. It contains many examples in Sage, a free open source general purpose mathematical software system, to entice the reader to investigate the open problems. This book is written for advanced undergraduate and graduate students, as well as researchers, who want to become familiar with ...
Novel trends in affinity biosensors: current challenges and perspectives
International Nuclear Information System (INIS)
Arugula, Mary A; Simonian, Aleksandr
2014-01-01
Molecular biorecognition processes facilitate physical and biochemical interactions between molecules in all crucial metabolic pathways. Perhaps the target analyte and the biorecognition element interactions have the most impactful use in biosensing applications. Traditional analytical sensing systems offer excellent biorecognition elements with the ability to detect and determine the presence of analytes. High affinity antibodies and DNA play an important role in the development of affinity biosensors based on electrochemical, optical and mass sensitive approaches. Advancements in this area routinely employ labels, label free, nanoparticles, multifunctional matrices, carbon nanotubes and other methods to meet the requirements of its own application. However, despite increasing affinity ceilings for conventional biosensors, the field draws back in meeting specifically important demands, such as long-term stability, ultrasensitivity, rapid detection, extreme selectivity, strong biological base, calibration, in vivo measurements, regeneration, satisfactory performance and ease of production. Nevertheless, recent efforts through this line have produced novel high-tech nanosensing systems such as ‘aptamers’ and ‘phages’ which exhibit high-throughput sensing. Aptamers and phages are powerful tools that excel over antibodies in sensibility, stability, multi-detection, in vivo measurements and regeneration. Phages are superior in stability, screening for affinity-based target molecules ranging from small to proteins and even cells, and easy production. In this review, we focus mainly on recent developments in affinity-based biosensors such as immunosensors, DNA sensors, emphasizing aptasensors and phage-based biosensors basing on novel electrochemical, optical and mass sensitive detection techniques. We also address enzyme inhibition-based biosensors and the current problems associated with the above sensors and their future perspectives. (topical review)
Extrinsic and intrinsic curvatures in thermodynamic geometry
Energy Technology Data Exchange (ETDEWEB)
Hosseini Mansoori, Seyed Ali, E-mail: shossein@bu.edu [Department of Physics, Boston University, 590 Commonwealth Ave., Boston, MA 02215 (United States); Department of Physics, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Mirza, Behrouz, E-mail: b.mirza@cc.iut.ac.ir [Department of Physics, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Sharifian, Elham, E-mail: e.sharifian@ph.iut.ac.ir [Department of Physics, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)
2016-08-10
We investigate the intrinsic and extrinsic curvatures of a certain hypersurface in thermodynamic geometry of a physical system and show that they contain useful thermodynamic information. For an anti-Reissner–Nordström-(A)de Sitter black hole (Phantom), the extrinsic curvature of a constant Q hypersurface has the same sign as the heat capacity around the phase transition points. The intrinsic curvature of the hypersurface can also be divergent at the critical points but has no information about the sign of the heat capacity. Our study explains the consistent relationship holding between the thermodynamic geometry of the KN-AdS black holes and those of the RN (J-zero hypersurface) and Kerr black holes (Q-zero hypersurface) ones [1]. This approach can easily be generalized to an arbitrary thermodynamic system.
Extrinsic and intrinsic curvatures in thermodynamic geometry
International Nuclear Information System (INIS)
Hosseini Mansoori, Seyed Ali; Mirza, Behrouz; Sharifian, Elham
2016-01-01
We investigate the intrinsic and extrinsic curvatures of a certain hypersurface in thermodynamic geometry of a physical system and show that they contain useful thermodynamic information. For an anti-Reissner–Nordström-(A)de Sitter black hole (Phantom), the extrinsic curvature of a constant Q hypersurface has the same sign as the heat capacity around the phase transition points. The intrinsic curvature of the hypersurface can also be divergent at the critical points but has no information about the sign of the heat capacity. Our study explains the consistent relationship holding between the thermodynamic geometry of the KN-AdS black holes and those of the RN (J-zero hypersurface) and Kerr black holes (Q-zero hypersurface) ones [1]. This approach can easily be generalized to an arbitrary thermodynamic system.
International Nuclear Information System (INIS)
Cadavid, A.C.
1989-01-01
The author constructs a non-Abelian field theory by gauging a Kac-Moody algebra, obtaining an infinite tower of interacting vector fields and associated ghosts, that obey slightly modified Feynman rules. She discusses the spontaneous symmetry breaking of such theory via the Higgs mechanism. If the Higgs particle lies in the Cartan subalgebra of the Kac-Moody algebra, the previously massless vectors acquire a mass spectrum that is linear in the Kac-Moody index and has additional fine structure depending on the associated Lie algebra. She proceeds to show that there is no obstacle in implementing the affine extension of supersymmetric Yang-Mills theories. The result is valid in four, six and ten space-time dimensions. Then the affine extension of supergravity is investigated. She discusses only the loop algebra since the affine extension of the super-Poincare algebra appears inconsistent. The construction of the affine supergravity theory is carried out by the group manifold method and leads to an action describing infinite towers of spin 2 and spin 3/2 fields that interact subject to the symmetries of the loop algebra. The equations of motion satisfy the usual consistency check. Finally, she postulates a theory in which both the vector and scalar fields lie in the loop algebra of SO(3). This theory has an expanded soliton sector, and corresponding to the original 't Hooft-Polyakov solitonic solutions she now finds an infinite family of exact, special solutions of the new equations. She also proposes a perturbation method for obtaining an arbitrary solution of those equations for each level of the affine index
Electron affinities: theoretical
International Nuclear Information System (INIS)
Kaufman, J.J.
1976-01-01
A brief description is given of the conceptual background and formalism of the various ab-initio and semi-ab-initio quantum computational techniques for calculating atomic and molecular electron affinities: Hartree--Fock--Roothaan SCF, configuration interaction (CI), multiconfiguration SCF (MC-SCF), Bethe--Goldstone, superposition of configurations (SOC), ab-initio effective core model potentials, Xα-MS, plus other less common methods. Illustrative and comparative examples of electron affinities calculated by these various methods are presented
1996-01-01
When Wisconsin's St. Elizabeth Hospital and Mercy Medical Center affiliated to create Affinity Health System, Inc., strategic planning and a solid marketing plan carefully executed were instrumental in its success. A corporate identity campaign and product line identification were follow-up phases to the merger approval.
Hemoglobin affinity in Andean rodents
Directory of Open Access Journals (Sweden)
HRVOJ OSTOJIC
2002-01-01
Full Text Available Blood hemoglobin oxygen affinity (P50 was measured in three Andean species and in the laboratory rat (control, all raised near sea level. Chinchilla lanigera (Molina, 1792 has an altitudinal habitat range from low Andean slopes up to 3000 m., while Chinchilla brevicaudata (Waterhouse, 1848 has an altitudinal range from 3000 to 5000 m. The laboratory type guinea pig, wild type guinea pig (Cavia porcellus, (Waterhouse, 1748, and laboratory rat (Rattus norvegicus were also raised at sea level. The Andean species had high hemoglobin oxygen affinities (low P50 compared with the rat. Chinchilla brevicaudata had a higher affinity than Chinchilla lanigera. The wild type guinea pig had a higher affinity than the laboratory type. As has been shown in other species, this is another example of an inverse correlation between the altitude level and the P50 values. This is the first hemoglobin oxygen affinity study in Chinchilla brevicaudata.
Detection-Guided Fast Affine Projection Channel Estimator for Speech Applications
Directory of Open Access Journals (Sweden)
Yan Wu Jennifer
2007-04-01
Full Text Available In various adaptive estimation applications, such as acoustic echo cancellation within teleconferencing systems, the input signal is a highly correlated speech. This, in general, leads to extremely slow convergence of the NLMS adaptive FIR estimator. As a result, for such applications, the affine projection algorithm (APA or the low-complexity version, the fast affine projection (FAP algorithm, is commonly employed instead of the NLMS algorithm. In such applications, the signal propagation channel may have a relatively low-dimensional impulse response structure, that is, the number m of active or significant taps within the (discrete-time modelled channel impulse response is much less than the overall tap length n of the channel impulse response. For such cases, we investigate the inclusion of an active-parameter detection-guided concept within the fast affine projection FIR channel estimator. Simulation results indicate that the proposed detection-guided fast affine projection channel estimator has improved convergence speed and has lead to better steady-state performance than the standard fast affine projection channel estimator, especially in the important case of highly correlated speech input signals.
Reis, Louis G.
With the increasing prevalence of diabetes in the United States and worldwide, blood glucose monitoring must be accurate and reliable. Current enzymatic sensors have numerous disadvantages that make them unreliable and unfavorable among patients. Recent research in glucose affinity sensors correct some of the problems that enzymatic sensors experience. Dextran and concanavalin A are two of the more common components used in glucose affinity sensors. When these sensors were first explored, a model was derived to predict the response time of a glucose affinity sensor using concanavalin A and dextran. However, the model assumed the system was linear and fell short of calculating times representative of the response times determined through experimental tests with the sensors. In this work, a new model that uses the Stokes-Einstein Equation to demonstrate the nonlinear behavior of the glucose affinity assay was developed to predict the response times of similar glucose affinity sensors. In addition to the device tested by the original linear model, additional devices were identified and tested with the proposed model. The nonlinear model was designed to accommodate the many different variations between systems. The proposed model was able to accurately calculate response times for sensors using the concanavalin A-dextran affinity assay with respect to the experimentally reported times by the independent research groups. Parameter studies using the nonlinear model were able to identify possible setbacks that could compromise the response of thesystem. Specifically, the model showed that the improper use of asymmetrical membranes could increase the response time by as little as 20% or more as the device is miniaturized. The model also demonstrated that systems using the concanavalin Adextran assay would experience higher response times in the hypoglycemic range. This work attempted to replicate and improve an osmotic glucose affinity sensor. The system was designed to
Energy Technology Data Exchange (ETDEWEB)
Lukas, R.L.; Bennett, E.L.
1979-12-01
In general, pharmacological effects of local anesthetics may be attributed to their ability to reversibly block the propagation of nerve and muscle action potentials. At physiologically potent concentrations, local anesthetics (LA) also act as noncompetitive antagonists of the physiological response of post-synaptic nicotinic acetylcholine receptors (nAChR) to cholinergic agonists, and increase agonist binding affinities of nAChR from electric organ. It is postulated that the primary site of LA action on nAChR function is at the receptor-coupled ionophore. Furthermore, LA-nAChR ionophore interactions are thought to accelerate physiological desensitization of nAChR, manifest biochemically as increased affinity of nAChR for agonist. Specific receptors for ..cap alpha..-bungarotoxin (..cap alpha..-Bgt), a potent competitive antagonist at nAChR sites in the periphery, have been detected in rat central nervous system membrane preparations. The affinity of these central ..cap alpha..-Bgt receptors (..cap alpha..-BgtR) for cholinergic agonists is found to increase on exposure to agonist. Nevertheless, on the basis of inconsistent pharmacological and physiological results, uncertainty remains regarding the relationship between ..cap alpha..-BgtR and authentic nAChR in the CNS, despite a wide body of biochemical and histological evidence consistent with their identity. Reasoning that if CNS ..cap alpha..-BgtR are true in nAChR, coupled to functional ion channels, LA might be expected to cause biochemically measurable increases in ..cap alpha..-BgtR affinity for cholinergic agonists, we have undertaken a study of the effects of LA on the ability of acetylcholine (ACh) to inhibit interaction of ..cap alpha..-BgtR with /sup 3/H-labeled ..cap alpha..-Bgt.
Single-cell measurement of red blood cell oxygen affinity.
Di Caprio, Giuseppe; Stokes, Chris; Higgins, John M; Schonbrun, Ethan
2015-08-11
Oxygen is transported throughout the body by hemoglobin (Hb) in red blood cells (RBCs). Although the oxygen affinity of blood is well-understood and routinely assessed in patients by pulse oximetry, variability at the single-cell level has not been previously measured. In contrast, single-cell measurements of RBC volume and Hb concentration are taken millions of times per day by clinical hematology analyzers, and they are important factors in determining the health of the hematologic system. To better understand the variability and determinants of oxygen affinity on a cellular level, we have developed a system that quantifies the oxygen saturation, cell volume, and Hb concentration for individual RBCs in high throughput. We find that the variability in single-cell saturation peaks at an oxygen partial pressure of 2.9%, which corresponds to the maximum slope of the oxygen-Hb dissociation curve. In addition, single-cell oxygen affinity is positively correlated with Hb concentration but independent of osmolarity, which suggests variation in the Hb to 2,3-diphosphoglycerate (2-3 DPG) ratio on a cellular level. By quantifying the functional behavior of a cellular population, our system adds a dimension to blood cell analysis and other measurements of single-cell variability.
Prediction Governors for Input-Affine Nonlinear Systems and Application to Automatic Driving Control
Directory of Open Access Journals (Sweden)
Yuki Minami
2018-04-01
Full Text Available In recent years, automatic driving control has attracted attention. To achieve a satisfactory driving control performance, the prediction accuracy of the traveling route is important. If a highly accurate prediction method can be used, an accurate traveling route can be obtained. Despite the considerable efforts that have been invested in improving prediction methods, prediction errors do occur in general. Thus, a method to minimize the influence of prediction errors on automatic driving control systems is required. This need motivated us to focus on the design of a mechanism for shaping prediction signals, which is called a prediction governor. In this study, we first extended our previous study to the input-affine nonlinear system case. Then, we analytically derived a solution to an optimal design problem of prediction governors. Finally, we applied the solution to an automatic driving control system, and demonstrated its usefulness through a numerical example and an experiment using a radio controlled car.
International Nuclear Information System (INIS)
Hu Naihong; Rosso, M.; Zhang Honglian
2006-12-01
We further find the defining structure of a two-parameter quantum affine algebra U r,s (sl n -circumflex) (n > 2) in the sense of Benkart-Witherspoon [BW1] after the work of [BGH1], [HS] and [BH], which turns out to be a Drinfeld double. Of more importance for the 'affine' cases is that we work out the compatible two-parameter version of the Drinfeld realization as a quantum affinization of U r,s (sl n ) and establish the Drinfeld isomorphism Theorem in the two-parameter setting via developing a new remarkable combinatorial approach - quantum 'affine' Lyndon basis with an explicit valid algorithm, based on the Drinfeld realization. (author)
Representations of affine Hecke algebras
Xi, Nanhua
1994-01-01
Kazhdan and Lusztig classified the simple modules of an affine Hecke algebra Hq (q E C*) provided that q is not a root of 1 (Invent. Math. 1987). Ginzburg had some very interesting work on affine Hecke algebras. Combining these results simple Hq-modules can be classified provided that the order of q is not too small. These Lecture Notes of N. Xi show that the classification of simple Hq-modules is essentially different from general cases when q is a root of 1 of certain orders. In addition the based rings of affine Weyl groups are shown to be of interest in understanding irreducible representations of affine Hecke algebras. Basic knowledge of abstract algebra is enough to read one third of the book. Some knowledge of K-theory, algebraic group, and Kazhdan-Lusztig cell of Cexeter group is useful for the rest
Antisymmetric tensor generalizations of affine vector fields.
Houri, Tsuyoshi; Morisawa, Yoshiyuki; Tomoda, Kentaro
2016-02-01
Tensor generalizations of affine vector fields called symmetric and antisymmetric affine tensor fields are discussed as symmetry of spacetimes. We review the properties of the symmetric ones, which have been studied in earlier works, and investigate the properties of the antisymmetric ones, which are the main theme in this paper. It is shown that antisymmetric affine tensor fields are closely related to one-lower-rank antisymmetric tensor fields which are parallelly transported along geodesics. It is also shown that the number of linear independent rank- p antisymmetric affine tensor fields in n -dimensions is bounded by ( n + 1)!/ p !( n - p )!. We also derive the integrability conditions for antisymmetric affine tensor fields. Using the integrability conditions, we discuss the existence of antisymmetric affine tensor fields on various spacetimes.
Characterization of high-affinity (/sup 3/H)ouabain binding in the rat central nervous system
Energy Technology Data Exchange (ETDEWEB)
Hauger, R.; Luu, H.M.; Meyer, D.K.; Goodwin, F.K.; Paul, S.M.
1985-06-01
The characteristics of (/sup 3/H)ouabain binding were examined in various areas of rat brain. In the striatum, Scatchard analysis revealed a single class of high-affinity binding sites with an apparent binding affinity (KD) of 10.4 +/- 0.9 nM and an estimated binding capacity (Bmax) of 7.6 +/- 1.9 pmol/mg protein. Similar monophasic Scatchard plots were found in the brainstem, cerebellum, hypothalamus, and frontal cerebral cortex. (/sup 3/H)Ouabain binding to rat brain was sodium- and ATP-dependent and strongly inhibited by potassium. Proscillariden A was the most potent cardiac glycoside tested in inhibiting specific (/sup 3/H)ouabain binding to brain membranes, and the rank order of inhibitory potencies for a series of cardiac glycosides was similar to that previously reported for inhibition of heart Na,K-ATPase. To assess whether the high-affinity binding sites for (/sup 3/H)ouabain were localized to neuronal or nonneuronal membranes, the effect of discrete kainic acid lesions on striatal (/sup 3/H)ouabain binding was examined. Kainic acid lesions of the striatum reduced (/sup 3/H)ouabain binding to striatal homogenates by 79.6 +/- 1.6%. This suggests that the high-affinity (/sup 3/H)ouabain binding sites measured in our experiments are localized to neuronal elements. Thus, the high-affinity binding of (/sup 3/H)ouabain to brain membranes may selectively label a neuronal form or conformation of Na,K-ATPase.
Yang, Qinmin; Jagannathan, Sarangapani
2012-04-01
In this paper, reinforcement learning state- and output-feedback-based adaptive critic controller designs are proposed by using the online approximators (OLAs) for a general multi-input and multioutput affine unknown nonlinear discretetime systems in the presence of bounded disturbances. The proposed controller design has two entities, an action network that is designed to produce optimal signal and a critic network that evaluates the performance of the action network. The critic estimates the cost-to-go function which is tuned online using recursive equations derived from heuristic dynamic programming. Here, neural networks (NNs) are used both for the action and critic whereas any OLAs, such as radial basis functions, splines, fuzzy logic, etc., can be utilized. For the output-feedback counterpart, an additional NN is designated as the observer to estimate the unavailable system states, and thus, separation principle is not required. The NN weight tuning laws for the controller schemes are also derived while ensuring uniform ultimate boundedness of the closed-loop system using Lyapunov theory. Finally, the effectiveness of the two controllers is tested in simulation on a pendulum balancing system and a two-link robotic arm system.
Affinity Programs and the Real Estate Brokerage Industry
G Stacy Sirmans; David A. Macpherson
2001-01-01
This study surveys active real estate brokers obtaining information on involvement in affinity programs and referral/relocation networks. Some results regarding affinity involvement are: (a) 13% of respondents reported affinity affilliations, 75% reported no affiliations, and 12% indicated plans to become involved within the next year; (b) about half having affinity affiliations were involved with 2-4 groups; (c) affinity relationships were most often with membership organizations, corporatio...
DEFF Research Database (Denmark)
Gholami, M.; Cocquempot, V.; Schiøler, H.
2014-01-01
An active fault tolerant control (AFTC) method is proposed for discrete-time piecewise affine (PWA) systems. Only actuator faults are considered. The AFTC framework contains a supervisory scheme, which selects a suitable controller in a set of controllers such that the stability and an acceptable...... performance of the faulty system are held. The design of the supervisory scheme is not considered here. The set of controllers is composed of a normal controller for the fault-free case, an active fault detection and isolation controller for isolation and identification of the faults, and a set of passive...... fault tolerant controllers (PFTCs) modules designed to be robust against a set of actuator faults. In this research, the piecewise nonlinear model is approximated by a PWA system. The PFTCs are state feedback laws. Each one is robust against a fixed set of actuator faults and is able to track...
Immobilizing affinity proteins to nitrocellulose: a toolbox for paper-based assay developers.
Holstein, Carly A; Chevalier, Aaron; Bennett, Steven; Anderson, Caitlin E; Keniston, Karen; Olsen, Cathryn; Li, Bing; Bales, Brian; Moore, David R; Fu, Elain; Baker, David; Yager, Paul
2016-02-01
To enable enhanced paper-based diagnostics with improved detection capabilities, new methods are needed to immobilize affinity reagents to porous substrates, especially for capture molecules other than IgG. To this end, we have developed and characterized three novel methods for immobilizing protein-based affinity reagents to nitrocellulose membranes. We have demonstrated these methods using recombinant affinity proteins for the influenza surface protein hemagglutinin, leveraging the customizability of these recombinant "flu binders" for the design of features for immobilization. The three approaches shown are: (1) covalent attachment of thiolated affinity protein to an epoxide-functionalized nitrocellulose membrane, (2) attachment of biotinylated affinity protein through a nitrocellulose-binding streptavidin anchor protein, and (3) fusion of affinity protein to a novel nitrocellulose-binding anchor protein for direct coupling and immobilization. We also characterized the use of direct adsorption for the flu binders, as a point of comparison and motivation for these novel methods. Finally, we demonstrated that these novel methods can provide improved performance to an influenza hemagglutinin assay, compared to a traditional antibody-based capture system. Taken together, this work advances the toolkit available for the development of next-generation paper-based diagnostics.
Directory of Open Access Journals (Sweden)
Johan Nilvebrant
Full Text Available The epidermal growth factor receptor 2, ERBB2, is a well-validated target for cancer diagnostics and therapy. Recent studies suggest that the over-expression of this receptor in various cancers might also be exploited for antibody-based payload delivery, e.g. antibody drug conjugates. In such strategies, the full-length antibody format is probably not required for therapeutic effect and smaller tumor-specific affinity proteins might be an alternative. However, small proteins and peptides generally suffer from fast excretion through the kidneys, and thereby require frequent administration in order to maintain a therapeutic concentration. In an attempt aimed at combining ERBB2-targeting with antibody-like pharmacokinetic properties in a small protein format, we have engineered bispecific ERBB2-binding proteins that are based on a small albumin-binding domain. Phage display selection against ERBB2 was used for identification of a lead candidate, followed by affinity maturation using second-generation libraries. Cell surface display and flow-cytometric sorting allowed stringent selection of top candidates from pools pre-enriched by phage display. Several affinity-matured molecules were shown to bind human ERBB2 with sub-nanomolar affinity while retaining the interaction with human serum albumin. Moreover, parallel selections against ERBB2 in the presence of human serum albumin identified several amino acid substitutions that dramatically modulate the albumin affinity, which could provide a convenient means to control the pharmacokinetics. The new affinity proteins competed for ERBB2-binding with the monoclonal antibody trastuzumab and recognized the native receptor on a human cancer cell line. Hence, high affinity tumor targeting and tunable albumin binding were combined in one small adaptable protein.
Low-complexity piecewise-affine virtual sensors: theory and design
Rubagotti, Matteo; Poggi, Tomaso; Oliveri, Alberto; Pascucci, Carlo Alberto; Bemporad, Alberto; Storace, Marco
2014-03-01
This paper is focused on the theoretical development and the hardware implementation of low-complexity piecewise-affine direct virtual sensors for the estimation of unmeasured variables of interest of nonlinear systems. The direct virtual sensor is designed directly from measured inputs and outputs of the system and does not require a dynamical model. The proposed approach allows one to design estimators which mitigate the effect of the so-called 'curse of dimensionality' of simplicial piecewise-affine functions, and can be therefore applied to relatively high-order systems, enjoying convergence and optimality properties. An automatic toolchain is also presented to generate the VHDL code describing the digital circuit implementing the virtual sensor, starting from the set of measured input and output data. The proposed methodology is applied to generate an FPGA implementation of the virtual sensor for the estimation of vehicle lateral velocity, using a hardware-in-the-loop setting.
Using Affinity Diagrams to Evaluate Interactive Prototypes
DEFF Research Database (Denmark)
Lucero, Andrés
2015-01-01
our particular use of affinity diagramming in prototype evaluations. We reflect on a decade’s experience using affinity diagramming across a number of projects, both in industry and academia. Our affinity diagramming process in interaction design has been tailored and consists of four stages: creating...
Koch, Katherine S; Moran, Tom; Shier, W Thomas; Leffert, Hyam L
2018-05-01
N-acetyl-2-aminofluorene (AAF) is a procarcinogen used widely in physiological investigations of chemical hepatocarcinogenesis. Its metabolic pathways have been described extensively, yet little is known about its biochemical processing, growth cycle expression, and pharmacological properties inside living hepatocytes-the principal cellular targets of this hepatocarcinogen. In this report, primary monolayer adult rat hepatocyte cultures and high specific-activity [ring G-3 H]-N-acetyl-2-aminofluorene were used to extend previous observations of metabolic activation of AAF by highly differentiated, proliferation-competent hepatocytes in long-term cultures. AAF metabolism proceeded by zero-order kinetics. Hepatocytes processed significant amounts of procarcinogen (≈12 μg AAF/106 cells/day). Five ring-hydroxylated and one deacetylated species of AAF were secreted into the culture media. Extracellular metabolite levels varied during the growth cycle (days 0-13), but their rank quantitative order was time invariant: 5-OH-AAF > 7-OH-AAF > 3-OH-AAF > N-OH-AAF > aminofluorene (AF) > 1-OH-AAF. Lineweaver-Burk analyses revealed two principal classes of metabolism: System I (high-affinity and low-velocity), Km[APPARENT] = 1.64 × 10-7 M and VMAX[APPARENT] = 0.1 nmol/106 cells/day and System II (low-affinity and high-velocity), Km[APPARENT] = 3.25 × 10-5 M and VMAX[APPARENT] = 1000 nmol/106 cells/day. A third system of metabolism of AAF to AF, with Km[APPARENT] and VMAX[APPARENT] constants of 9.6 × 10-5 M and 4.7 nmol/106 cells/day, was also observed. Evidence provided in this report and its companion paper suggests selective roles and intracellular locations for System I- and System II-mediated AAF metabolite formation during hepatocarcinogenesis, although some of the molecules and mechanisms responsible for multi-system processing remain to be fully defined.
Identification of Thioredoxin Target Disulfides Using Isotope-Coded Affinity Tags
DEFF Research Database (Denmark)
Hägglund, Per; Bunkenborg, Jakob; Maeda, Kenji
2014-01-01
Thioredoxins (Trx) are small redox proteins that reduce disulfide bonds in various target proteins and maintain cellular thiol redox control. Here, a thiol-specific labeling and affinity enrichment approach for identification and relative quantification of Trx target disulfides in complex protein...... reduction is determined by LC-MS/MS-based quantification of tryptic peptides labeled with "light" (12C) and "heavy" (13C) ICAT reagents. The methodology can be adapted to monitor the effect of different reductants or oxidants on the redox status of thiol/disulfide proteomes in biological systems....... extracts is described. The procedure utilizes the isotope-coded affinity tag (ICAT) reagents containing a thiol reactive iodoacetamide group and a biotin affinity tag to target peptides containing reduced cysteine residues. The identification of substrates for Trx and the extent of target disulfide...
The Cutting Edge of Affinity Electrophoresis Technology.
Kinoshita, Eiji; Kinoshita-Kikuta, Emiko; Koike, Tohru
2015-03-18
Affinity electrophoresis is an important technique that is widely used to separate and analyze biomolecules in the fields of biology and medicine. Both quantitative and qualitative information can be gained through affinity electrophoresis. Affinity electrophoresis can be applied through a variety of strategies, such as mobility shift electrophoresis, charge shift electrophoresis or capillary affinity electrophoresis. These strategies are based on changes in the electrophoretic patterns of biological macromolecules that result from interactions or complex-formation processes that induce changes in the size or total charge of the molecules. Nucleic acid fragments can be characterized through their affinity to other molecules, for example transcriptional factor proteins. Hydrophobic membrane proteins can be identified by means of a shift in the mobility induced by a charged detergent. The various strategies have also been used in the estimation of association/disassociation constants. Some of these strategies have similarities to affinity chromatography, in that they use a probe or ligand immobilized on a supported matrix for electrophoresis. Such methods have recently contributed to profiling of major posttranslational modifications of proteins, such as glycosylation or phosphorylation. Here, we describe advances in analytical techniques involving affinity electrophoresis that have appeared during the last five years.
Affinity chromatography: A versatile technique for antibody purification.
Arora, Sushrut; Saxena, Vikas; Ayyar, B Vijayalakshmi
2017-03-01
Antibodies continue to be extremely utilized entities in myriad applications including basic research, imaging, targeted delivery, chromatography, diagnostics, and therapeutics. At production stage, antibodies are generally present in complex matrices and most of their intended applications necessitate purification. Antibody purification has always been a major bottleneck in downstream processing of antibodies, due to the need of high quality products and associated high costs. Over the years, extensive research has focused on finding better purification methodologies to overcome this holdup. Among a plethora of different techniques, affinity chromatography is one of the most selective, rapid and easy method for antibody purification. This review aims to provide a detailed overview on affinity chromatography and the components involved in purification. An array of support matrices along with various classes of affinity ligands detailing their underlying working principles, together with the advantages and limitations of each system in purifying different types of antibodies, accompanying recent developments and important practical methodological considerations to optimize purification procedure are discussed. Copyright © 2016 Elsevier Inc. All rights reserved.
Single-step affinity purification for fungal proteomics.
Liu, Hui-Lin; Osmani, Aysha H; Ukil, Leena; Son, Sunghun; Markossian, Sarine; Shen, Kuo-Fang; Govindaraghavan, Meera; Varadaraj, Archana; Hashmi, Shahr B; De Souza, Colin P; Osmani, Stephen A
2010-05-01
A single-step protein affinity purification protocol using Aspergillus nidulans is described. Detailed protocols for cell breakage, affinity purification, and depending on the application, methods for protein release from affinity beads are provided. Examples defining the utility of the approaches, which should be widely applicable, are included.
Connections between quantized affine algebras and superalgebras
International Nuclear Information System (INIS)
Zhang, R.B.
1992-08-01
Every affine superalgebra with a symmetrizable Cartan matrix is closely related to an ordinary affine algebra with the same Cartan matrix. It is shown that the quantum supergroup associated with the former is essentially isomorphic to the quantum group associated with the latter in an appropriate class of representations. At the classical level, each integrable irreducible highest weight representation of the affine superalgebra has a corresponding irreducible representation of the affine algebra, which has the same weight space decomposition. (author). 5 refs, 3 tabs
Mobile Technology Affinity in Renal Transplant Recipients.
Reber, S; Scheel, J; Stoessel, L; Schieber, K; Jank, S; Lüker, C; Vitinius, F; Grundmann, F; Eckardt, K-U; Prokosch, H-U; Erim, Y
Medication nonadherence is a common problem in renal transplant recipients (RTRs). Mobile health approaches to improve medication adherence are a current trend, and several medication adherence apps are available. However, it is unknown whether RTRs use these technologies and to what extent. In the present study, the mobile technology affinity of RTRs was analyzed. We hypothesized significant age differences in mobile technology affinity and that mobile technology affinity is associated with better cognitive functioning as well as higher educational level. A total of 109 RTRs (63% male) participated in the cross-sectional study, with an overall mean age of 51.8 ± 14.2 years. The study included the Technology Experience Questionnaire (TEQ) for the assessment of mobile technology affinity, a cognitive test battery, and sociodemographic data. Overall, 57.4% of the patients used a smartphone or tablet and almost 45% used apps. The TEQ sum score was 20.9 in a possible range from 6 (no affinity to technology) to 30 (very high affinity). Younger patients had significantly higher scores in mobile technology affinity. The only significant gender difference was found in having fun with using electronic devices: Men enjoyed technology more than women did. Mobile technology affinity was positively associated with cognitive functioning and educational level. Young adult patients might profit most from mobile health approaches. Furthermore, high educational level and normal cognitive functioning promote mobile technology affinity. This should be kept in mind when designing mobile technology health (mHealth) interventions for RTRs. For beneficial mHealth interventions, further research on potential barriers and desired technologic features is necessary to adapt apps to patients' needs. Copyright © 2017 Elsevier Inc. All rights reserved.
The Cutting Edge of Affinity Electrophoresis Technology
Kinoshita, Eiji; Kinoshita-Kikuta, Emiko; Koike, Tohru
2015-01-01
Affinity electrophoresis is an important technique that is widely used to separate and analyze biomolecules in the fields of biology and medicine. Both quantitative and qualitative information can be gained through affinity electrophoresis. Affinity electrophoresis can be applied through a variety of strategies, such as mobility shift electrophoresis, charge shift electrophoresis or capillary affinity electrophoresis. These strategies are based on changes in the electrophoretic patterns of biological macromolecules that result from interactions or complex-formation processes that induce changes in the size or total charge of the molecules. Nucleic acid fragments can be characterized through their affinity to other molecules, for example transcriptional factor proteins. Hydrophobic membrane proteins can be identified by means of a shift in the mobility induced by a charged detergent. The various strategies have also been used in the estimation of association/disassociation constants. Some of these strategies have similarities to affinity chromatography, in that they use a probe or ligand immobilized on a supported matrix for electrophoresis. Such methods have recently contributed to profiling of major posttranslational modifications of proteins, such as glycosylation or phosphorylation. Here, we describe advances in analytical techniques involving affinity electrophoresis that have appeared during the last five years. PMID:28248262
Aguda, Adeleke H; Lavallee, Vincent; Cheng, Ping; Bott, Tina M; Meimetis, Labros G; Law, Simon; Nguyen, Nham T; Williams, David E; Kaleta, Jadwiga; Villanueva, Ivan; Davies, Julian; Andersen, Raymond J; Brayer, Gary D; Brömme, Dieter
2016-08-26
Natural products are an important source of novel drug scaffolds. The highly variable and unpredictable timelines associated with isolating novel compounds and elucidating their structures have led to the demise of exploring natural product extract libraries in drug discovery programs. Here we introduce affinity crystallography as a new methodology that significantly shortens the time of the hit to active structure cycle in bioactive natural product discovery research. This affinity crystallography approach is illustrated by using semipure fractions of an actinomycetes culture extract to isolate and identify a cathepsin K inhibitor and to compare the outcome with the traditional assay-guided purification/structural analysis approach. The traditional approach resulted in the identification of the known inhibitor antipain (1) and its new but lower potency dehydration product 2, while the affinity crystallography approach led to the identification of a new high-affinity inhibitor named lichostatinal (3). The structure and potency of lichostatinal (3) was verified by total synthesis and kinetic characterization. To the best of our knowledge, this is the first example of isolating and characterizing a potent enzyme inhibitor from a partially purified crude natural product extract using a protein crystallographic approach.
Affine Fullerene C60 in a GS-Quasigroup
Directory of Open Access Journals (Sweden)
Vladimir Volenec
2014-01-01
Full Text Available It will be shown that the affine fullerene C60, which is defined as an affine image of buckminsterfullerene C60, can be obtained only by means of the golden section. The concept of the affine fullerene C60 will be constructed in a general GS-quasigroup using the statements about the relationships between affine regular pentagons and affine regular hexagons. The geometrical interpretation of all discovered relations in a general GS-quasigroup will be given in the GS-quasigroup C(1/2(1+5.
Affinity Spaces and 21st Century Learning
Gee, James Paul
2017-01-01
This article discusses video games as "attractors" to "affinity spaces." It argues that affinity spaces are key sites today where people teach and learn 21st Century skills. While affinity spaces are proliferating on the Internet as interest-and-passion-driven sites devoted to a common set of endeavors, they are not new, just…
Landsman, Zinoviy
2008-10-01
We present an explicit closed form solution of the problem of minimizing the root of a quadratic functional subject to a system of affine constraints. The result generalizes Z. Landsman, Minimization of the root of a quadratic functional under an affine equality constraint, J. Comput. Appl. Math. 2007, to appear, see sciencedirect.com/science/journal/03770427>, articles in press, where the optimization problem was solved under only one linear constraint. This is of interest for solving significant problems pertaining to financial economics as well as some classes of feasibility and optimization problems which frequently occur in tomography and other fields. The results are illustrated in the problem of optimal portfolio selection and the particular case when the expected return of finance portfolio is certain is discussed.
The Monitoring and Affinity Purification of Proteins Using Dual Tags with Tetracysteine Motifs
Giannone, Richard J.; Liu, Yie; Wang, Yisong
Identification and characterization of protein-protein interaction networks is essential for the elucidation of biochemical mechanisms and cellular function. Affinity purification in combination with liquid chromatography-tandem mass spectrometry (LC-MS/MS) has emerged as a very powerful tactic for the identification of specific protein-protein interactions. In this chapter, we describe a comprehensive methodology that uses our recently developed dual-tag affinity purification system for the enrichment and identification of mammalian protein complexes. The protocol covers a series of separate but sequentially related techniques focused on the facile monitoring and purification of a dual-tagged protein of interest and its interacting partners via a system built with tetracysteine motifs and various combinations of affinity tags. Using human telomeric repeat binding factor 2 (TRF2) as an example, we demonstrate the power of the system in terms of bait protein recovery after dual-tag affinity purification, detection of bait protein subcellular localization and expression, and successful identification of known and potentially novel TRF2 interacting proteins. Although the protocol described here has been optimized for the identification and characterization of TRF2-associated proteins, it is, in principle, applicable to the study of any other mammalian protein complexes that may be of interest to the research community.
Affinity of antibody secreted by a single cell
International Nuclear Information System (INIS)
Doran, D.M.
1978-01-01
It was the intention of this research to measure the affinity of antibody secreted by a single cell, and to describe the spectrum of affinities displayed in response to antigenic stimulation. The single cell secreting specific antibody was isolated by means of the hemolytic plaque assay. The amount of antibody secreted by the cell was to be measured through the use of a solid phase radioimmunoassay. The affinity of the antibody would be estimated by comparing the diameter of the plaque, and the amount of antibody secreted, with a mathematical theory of the formation of a plaque in agar. As a test system, a solid phase radioimmunoassay was developed for human serum albumin using antibody coupled to Sephadex. A sensitivity of 1 nanogram was attained with this assay. A solid phase radioimmunoassay for mouse immunoglobulin M was developed, using antibody coupled to Sepharose. The sensitivity attained with this assay was only on the order of 10 micrograms. The mouse immunoglobulin M radioimmunoassay was not sensitive enough to measure the amount of antibody secreted by a single cell. From a theoretical equation, the relationship between antibody affinity, plaque diameter and antibody secretion rate was calculated for the experimental conditions used in this research. By assuming a constant antibody secretion rate, an effective binding constant for the antibody was estimated from the average plaque diameters. This effective binding constant was observed to increase during the immune response
On the structure of self-affine convex bodies
Energy Technology Data Exchange (ETDEWEB)
Voynov, A S [M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Moscow (Russian Federation)
2013-08-31
We study the structure of convex bodies in R{sup d} that can be represented as a union of their affine images with no common interior points. Such bodies are called self-affine. Vallet's conjecture on the structure of self-affine bodies was proved for d = 2 by Richter in 2011. In the present paper we disprove the conjecture for all d≥3 and derive a detailed description of self-affine bodies in R{sup 3}. Also we consider the relation between properties of self-affine bodies and functional equations with a contraction of an argument. Bibliography: 10 titles.
Different endothelin receptor affinities in dog tissues
International Nuclear Information System (INIS)
Loeffler, B.M.L.; Loehrer, W.
1991-01-01
Endothelin (ET) is a long-lasting potent vasoconstrictor-peptide. Here the authors report different binding affinities of endothelin-1 (ET-1) to ET-receptors of various dog tissues. Crude microsomal fractions were prepared after homogenisation of dog tissues in 50 mM Tris/HCl, 20 mM MnCl2, 1 mM EDTA, pH 7.4 by differential centrifugation. Aliquots of microsomal fractions (70 micrograms of protein) were incubated at 25 degrees C for 180 min in the presence of 20 pM 125I-ET-1 and various concentrations of cold ET-1. Four different ET-1 receptor binding affinities were found: adrenals, cerebrum, liver, heart, skeletal muscle and stomach microsomal membranes contained high affinity binding sites (Kd 50 - 80 pM, Bmax 60 - 250 fmol/mg). In cerebellum and spleen medium affinity ET-1 receptors (Kd 350 pM, Bmax 880 and 1200 fmol/mg respectively) were present. In comparison lung and kidney microsomes contained a low affinity ET-1 receptor (Kd 800 and 880 pM, Bmax 1600 and 350 fmol/mg). Receptors of even lower affinity were present in heart, intestine and liver microsomes with Kd values of 3 - 6 nM
Duals of Affine Grassmann Codes and Their Relatives
DEFF Research Database (Denmark)
Beelen, P.; Ghorpade, S. R.; Hoholdt, T.
2012-01-01
Affine Grassmann codes are a variant of generalized Reed-Muller codes and are closely related to Grassmann codes. These codes were introduced in a recent work by Beelen Here, we consider, more generally, affine Grassmann codes of a given level. We explicitly determine the dual of an affine...... Grassmann code of any level and compute its minimum distance. Further, we ameliorate the results by Beelen concerning the automorphism group of affine Grassmann codes. Finally, we prove that affine Grassmann codes and their duals have the property that they are linear codes generated by their minimum......-weight codewords. This provides a clean analogue of a corresponding result for generalized Reed-Muller codes....
A Novel Vertex Affinity for Community Detection
Energy Technology Data Exchange (ETDEWEB)
Yoo, Andy [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sanders, Geoffrey [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Henson, Van [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vassilevski, Panayot [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2015-10-05
We propose a novel vertex affinity measure in this paper. The new vertex affinity quantifies the proximity between two vertices in terms of their clustering strength and is ideal for such graph analytics applications as community detection. We also developed a framework that combines simple graph searches and resistance circuit formulas to compute the vertex affinity efficiently. We study the properties of the new affinity measure empirically in comparison to those of other popular vertex proximity metrics. Our results show that the existing metrics are ill-suited for community detection due to their lack of fundamental properties that are essential for correctly capturing inter- and intra-cluster vertex proximity.
Lie algebraic discussion for affinity based information diffusion in social networks
Shang, Yilun
2017-11-01
In this paper we develop a dynamical information diffusion model which features the affinity of people with information disseminated in social networks. Four types of agents, i.e., susceptible, informed, known, and refractory ones, are involved in the system, and the affinity mechanism composing of an affinity threshold which represents the fitness of information to be propagated is incorporated. The model can be generally described by a time-inhomogeneous Markov chain, which is governed by its master (Kolmogorov) equation. Based on the Wei-Norman method, we derive analytical solutions of the model by constructing a low-dimensional Lie algebra. Numerical examples are provided to illustrate the obtained theoretical results. This study provides useful insights into the closed-form solutions of complex social dynamics models through the Lie algebra method.
On affine non-negative matrix factorization
DEFF Research Database (Denmark)
Laurberg, Hans; Hansen, Lars Kai
2007-01-01
We generalize the non-negative matrix factorization (NMF) generative model to incorporate an explicit offset. Multiplicative estimation algorithms are provided for the resulting sparse affine NMF model. We show that the affine model has improved uniqueness properties and leads to more accurate id...
Accurate determination of the oxidative phosphorylation affinity for ADP in isolated mitochondria.
Directory of Open Access Journals (Sweden)
Gilles Gouspillou
Full Text Available BACKGROUND: Mitochondrial dysfunctions appear strongly implicated in a wide range of pathologies. Therefore, there is a growing need in the determination of the normal and pathological integrated response of oxidative phosphorylation to cellular ATP demand. The present study intends to address this issue by providing a method to investigate mitochondrial oxidative phosphorylation affinity for ADP in isolated mitochondria. METHODOLOGY/PRINCIPAL FINDINGS: The proposed method is based on the simultaneous monitoring of substrate oxidation (determined polarographically and phosphorylation (determined using the glucose-hexokinase glucose-6-phosphate dehydrogenase-NADP(+ enzymatic system rates, coupled to the determination of actual ADP and ATP concentrations by bioluminescent assay. This enzymatic system allows the study of oxidative phosphorylation during true steady states in a wide range of ADP concentrations. We demonstrate how the application of this method allows an accurate determination of mitochondrial affinity for ADP from both oxidation (K(mVox and phosphorylation (K(mVp rates. We also demonstrate that determination of K(mVox leads to an important overestimation of the mitochondrial affinity for ADP, indicating that mitochondrial affinity for ADP should be determined using phosphorylation rate. Finally, we show how this method allows the direct and precise determination of the mitochondrial coupling efficiency. Data obtained from rat skeletal muscle and liver mitochondria illustrate the discriminating capabilities of this method. CONCLUSIONS/SIGNIFICANCE: Because the proposed method allows the accurate determination of mitochondrial oxidative phosphorylation affinity for ADP in isolated mitochondria, it also opens the route to a better understanding of functional consequences of mitochondrial adaptations/dysfunctions arising in various physiological/pathophysiological conditions.
Improving image segmentation by learning region affinities
Energy Technology Data Exchange (ETDEWEB)
Prasad, Lakshman [Los Alamos National Laboratory; Yang, Xingwei [TEMPLE UNIV.; Latecki, Longin J [TEMPLE UNIV.
2010-11-03
We utilize the context information of other regions in hierarchical image segmentation to learn new regions affinities. It is well known that a single choice of quantization of an image space is highly unlikely to be a common optimal quantization level for all categories. Each level of quantization has its own benefits. Therefore, we utilize the hierarchical information among different quantizations as well as spatial proximity of their regions. The proposed affinity learning takes into account higher order relations among image regions, both local and long range relations, making it robust to instabilities and errors of the original, pairwise region affinities. Once the learnt affinities are obtained, we use a standard image segmentation algorithm to get the final segmentation. Moreover, the learnt affinities can be naturally unutilized in interactive segmentation. Experimental results on Berkeley Segmentation Dataset and MSRC Object Recognition Dataset are comparable and in some aspects better than the state-of-art methods.
Selection of imprinted nanoparticles by affinity chromatography.
Guerreiro, António R; Chianella, Iva; Piletska, Elena; Whitcombe, Michael J; Piletsky, Sergey A
2009-04-15
Soluble molecularly imprinted nanoparticles were synthesised via iniferter initiated polymerisation and separated by size via gel permeation chromatography. Subsequent fractionation of these particles by affinity chromatography allowed the separation of high affinity fractions from the mixture of nanoparticles. Fractions selected this way possess affinity similar to that of natural antibodies (K(d) 6.6x10(-8)) M and were also able to discriminate between related functional analogues of the template.
Contractions of affine spherical varieties
International Nuclear Information System (INIS)
Arzhantsev, I V
1999-01-01
The language of filtrations and contractions is used to describe the class of G-varieties obtainable as the total spaces of the construction of contraction applied to affine spherical varieties, which is well-known in invariant theory. These varieties are local models for arbitrary affine G-varieties of complexity 1 with a one-dimensional categorical quotient. As examples, reductive algebraic semigroups and three-dimensional SL 2 -varieties are considered
International Nuclear Information System (INIS)
Wali, Kameshwar C
2010-01-01
We consider a variant of the 5 dimensional Kaluza-Klein theory within the framework of Einstein-Cartan formalism. By imposing a set of constraints on torsion and Ricci rotation coefficients, we show that the torsion components are completely expressed in terms of the metric. and the Ricci tensor in 5D corresponds exactly to what one would obtain from torsion-free general relativity on a 4D hypersurface. The contributions of the scalar and vector fields of the standard K-K theory to the Ricci tensor and the affine connections are completely nullified by the contributions from the torsion. As a consequence, geodesic motions do not distinguish the torsion free 4D space-time from a hypersurface of 5D space-time with torsion satisfying the constraints. Since torsion is not an independent dynamical variable in this formalism, the modified Einstein equations are different from those in the general Einstein-Cartan theory. This leads to important cosmological consequences such as the emergence of cosmic acceleration.
Milic, Vladimir; Kasac, Josip; Novakovic, Branko
2015-10-01
This paper is concerned with ?-gain optimisation of input-affine nonlinear systems controlled by analytic fuzzy logic system. Unlike the conventional fuzzy-based strategies, the non-conventional analytic fuzzy control method does not require an explicit fuzzy rule base. As the first contribution of this paper, we prove, by using the Stone-Weierstrass theorem, that the proposed fuzzy system without rule base is universal approximator. The second contribution of this paper is an algorithm for solving a finite-horizon minimax problem for ?-gain optimisation. The proposed algorithm consists of recursive chain rule for first- and second-order derivatives, Newton's method, multi-step Adams method and automatic differentiation. Finally, the results of this paper are evaluated on a second-order nonlinear system.
Wood, Matthew D; MacEwan, Matthew R; French, Alexander R; Moore, Amy M; Hunter, Daniel A; Mackinnon, Susan E; Moran, Daniel W; Borschel, Gregory H; Sakiyama-Elbert, Shelly E
2010-08-15
Glial-derived neurotrophic factor (GDNF) and nerve growth factor (NGF) have both been shown to enhance peripheral nerve regeneration following injury and target different neuronal populations. The delivery of either growth factor at the site of injury may, therefore, result in quantitative differences in motor nerve regeneration and functional recovery. In this study we evaluated the effect of affinity-based delivery of GDNF or NGF from fibrin-filled nerve guidance conduits (NGCs) on motor nerve regeneration and functional recovery in a 13 mm rat sciatic nerve defect. Seven experimental groups were evaluated consisting of GDNF or NGF and the affinity-based delivery system (DS) within NGCs, control groups excluding the DS and/or growth factor, and nerve isografts. Groups with growth factor in the conduit demonstrated equivalent or superior performance in behavioral tests and relative muscle mass measurements compared to isografts at 12 weeks. Additionally, groups with GDNF demonstrated greater specific twitch and tetanic force production in extensor digitorum longus (EDL) muscle than the isograft control, while groups with NGF produced demonstrated similar force production compared to the isograft control. Assessment of motor axon regeneration by retrograde labeling further revealed that the number of ventral horn neurons regenerating across NGCs containing GDNF and NGF DS was similar to the isograft group and these counts were greater than the groups without growth factor. Overall, the GDNF DS group demonstrated superior functional recovery and equivalent motor nerve regeneration compared to the isograft control, suggesting it has potential as a treatment for motor nerve injury.
New unitary affine-Virasoro constructions
International Nuclear Information System (INIS)
Halpern, M.B.; Kiritsis, E.; Obers, N.A.; Poratti, M.; Yamron, J.P.
1990-01-01
This paper reports on a quasi-systematic investigation of the Virasoro master equation. The space of all affine-Virasoro constructions is organized by K-conjugation into affine-Virasoro nests, and an estimate of the dimension of the space shows that most solutions await discovery. With consistent ansatze for the master equation, large classes of new unitary nests are constructed, including quadratic deformation nests with continuous conformal weights, and unitary irrational central charge nests, which may dominate unitary rational central charge on compact g
Alternative affinity tools: more attractive than antibodies?
Ruigrok, V.J.B.; Levisson, M.; Eppink, M.H.M.; Smidt, H.; Oost, van der J.
2011-01-01
Antibodies are the most successful affinity tools used today, in both fundamental and applied research (diagnostics, purification and therapeutics). Nonetheless, antibodies do have their limitations, including high production costs and low stability. Alternative affinity tools based on nucleic acids
Schrager, D.F.
2006-01-01
We propose a new model for stochastic mortality. The model is based on the literature on affine term structure models. It satisfies three important requirements for application in practice: analytical tractibility, clear interpretation of the factors and compatibility with financial option pricing
Expression and affinity purification of recombinant proteins from plants
Desai, Urvee A.; Sur, Gargi; Daunert, Sylvia; Babbitt, Ruth; Li, Qingshun
2002-01-01
With recent advances in plant biotechnology, transgenic plants have been targeted as an inexpensive means for the mass production of proteins for biopharmaceutical and industrial uses. However, the current plant purification techniques lack a generally applicable, economic, large-scale strategy. In this study, we demonstrate the purification of a model protein, beta-glucuronidase (GUS), by employing the protein calmodulin (CaM) as an affinity tag. In the proposed system, CaM is fused to GUS. In the presence of calcium, the calmodulin fusion protein binds specifically to a phenothiazine-modified surface of an affinity column. When calcium is removed with a complexing agent, e.g., EDTA, calmodulin undergoes a conformational change allowing the dissociation of the calmodulin-phenothiazine complex and, therefore, permitting the elution of the GUS-CaM fusion protein. The advantages of this approach are the fast, efficient, and economical isolation of the target protein under mild elution conditions, thus preserving the activity of the target protein. Two types of transformation methods were used in this study, namely, the Agrobacterium-mediated system and the viral-vector-mediated transformation system. Copyright 2002 Elsevier Science (USA).
Rank Two Affine Manifolds in Genus 3
Aulicino, David; Nguyen, Duc-Manh
2016-01-01
We complete the classification of rank two affine manifolds in the moduli space of translation surfaces in genus three. Combined with a recent result of Mirzakhani and Wright, this completes the classification of higher rank affine manifolds in genus three.
Rational design of peptide affinity ligands for the purification of therapeutic enzymes.
Trasatti, John P; Woo, James; Ladiwala, Asif; Cramer, Steven; Karande, Pankaj
2018-04-25
Non-mAb biologics represent a growing class of therapeutics under clinical development. Although affinity chromatography is a potentially attractive approach for purification, the development of platform technologies, such as Protein A for mAbs, has been challenging due to the inherent chemical and structural diversity of these molecules. Here, we present our studies on the rapid development of peptide affinity ligands for the purification of biologics using a prototypical enzyme therapeutic in clinical use. Employing a suite of de novo rational and combinatorial design strategies we designed and screened a library of peptides on microarray platforms for their ability to bind to the target with high affinity and selectivity in cell culture fluid. Lead peptides were evaluated on resin in batch conditions and compared with a commercially available resin to evaluate their efficacy. Two lead candidates identified from microarray studies provided high binding capacity to the target while demonstrating high selectivity against culture contaminants and product variants compared to a commercial resin system. These findings provide a proof-of-concept for developing affinity peptide-based bioseparations processes for a target biologic. Peptide affinity ligand design and screening approaches presented in this work can also be easily translated to other biologics of interest. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 2018. © 2018 American Institute of Chemical Engineers.
USING MICROSCALE THERMOPHORESIS TO EASILY MEASURE BINDING AFFINITY
Directory of Open Access Journals (Sweden)
Dennis Breitsprecher*
2018-03-01
Full Text Available While it’s very common for biologists and chemists to test whether or not two molecules interact with each other, it’s much more useful to gather information on the nature of that interaction. How strong is it? How long will it last? What does that mean for its biological function? One way to answer these questions is to study affinity. Binding affinity is defined as the strength of the binding interaction between a single biomolecule to its binding partner, or ligand, and it can be quantifiably measured, providing information on whether or not molecules are interacting, as well as assigning a value to the affinity. When measuring binding affinity, there are several parameters to look at, but the dissociation constant (Kd, which defines the likelihood that an interaction between two molecules will break, is a very common measurement. The smaller the dissociation constant, the more tightly bound the ligand is, and the higher the affinity is between the two molecules.
Generalized magnification in visual optics. Part 2: Magnification as affine transformation
Directory of Open Access Journals (Sweden)
W. F. Harris
2010-12-01
Full Text Available In astigmatic systems magnification may be different in different directions. It may also be accompanied by rotation or reflection. These changes from object to image are examples of generalized magnification. They are represented by 2 2× matrices. Because they are linear transformations they can be called linear magnifications. Linear magnifications account for a change in appearance without regard to position. Mathematical structure suggests a natural further generalization to a magnification that is complete in the sense that it accountsfor change in appearance and position. It is represented by a 3 3× matrix with a dummy third row. The transformation is called affine in linear algebra which suggests that these generalized magnifica-tions be called affine magnifications. The purpose of the paper is to define affine magnification in the context of astigmatic optics. Several examples are presented and illustrated graphically. (S Afr Optom 2010 69(4 166-172
Agonist-induced affinity alterations of a central nervous system. cap alpha. -bungarotoxin receptor
Energy Technology Data Exchange (ETDEWEB)
Lukas, R.J.; Bennett, E.L.
1979-01-01
The ability of cholinergic agonists to block the specific interaction of ..cap alpha..-bungarotoxin (..cap alpha..-Bgt) with membrane-bound sites derived from rat brain is enhanced when membranes are preincubated with agonist. Thus, pretreatment of ..cap alpha..-Bgt receptors with agonist (but not antagonist) causes transformation of sites to a high-affinity form toward agonist. This change in receptor state occurs with a half-time on the order of minutes, and is fully reversible on dilution of agonist. The results are consistent with the identity of ..cap alpha..-Bgt binding sites as true central nicotinic acetylcholine receptors. Furthermore, this agonist-induced alteration in receptor state may represent an in vitro correlate of physiological desensitization. As determined from the effects of agonist on toxin binding isotherms, and on the rate of toxin binding to specific sites, agonist inhibition of toxin binding to the high-affinity state is non-competitive. This result suggests that there may exist discrete toxin-binding and agonist-binding sites on central toxin receptors.
Single-Step Affinity Purification for Fungal Proteomics ▿ †
Liu, Hui-Lin; Osmani, Aysha H.; Ukil, Leena; Son, Sunghun; Markossian, Sarine; Shen, Kuo-Fang; Govindaraghavan, Meera; Varadaraj, Archana; Hashmi, Shahr B.; De Souza, Colin P.; Osmani, Stephen A.
2010-01-01
A single-step protein affinity purification protocol using Aspergillus nidulans is described. Detailed protocols for cell breakage, affinity purification, and depending on the application, methods for protein release from affinity beads are provided. Examples defining the utility of the approaches, which should be widely applicable, are included.
Narayanan, Vignesh; Jagannathan, Sarangapani
2017-06-08
This paper presents an approximate optimal distributed control scheme for a known interconnected system composed of input affine nonlinear subsystems using event-triggered state and output feedback via a novel hybrid learning scheme. First, the cost function for the overall system is redefined as the sum of cost functions of individual subsystems. A distributed optimal control policy for the interconnected system is developed using the optimal value function of each subsystem. To generate the optimal control policy, forward-in-time, neural networks are employed to reconstruct the unknown optimal value function at each subsystem online. In order to retain the advantages of event-triggered feedback for an adaptive optimal controller, a novel hybrid learning scheme is proposed to reduce the convergence time for the learning algorithm. The development is based on the observation that, in the event-triggered feedback, the sampling instants are dynamic and results in variable interevent time. To relax the requirement of entire state measurements, an extended nonlinear observer is designed at each subsystem to recover the system internal states from the measurable feedback. Using a Lyapunov-based analysis, it is demonstrated that the system states and the observer errors remain locally uniformly ultimately bounded and the control policy converges to a neighborhood of the optimal policy. Simulation results are presented to demonstrate the performance of the developed controller.
The Structure of Affine Buildings
Weiss, Richard M
2009-01-01
In The Structure of Affine Buildings, Richard Weiss gives a detailed presentation of the complete proof of the classification of Bruhat-Tits buildings first completed by Jacques Tits in 1986. The book includes numerous results about automorphisms, completions, and residues of these buildings. It also includes tables correlating the results in the locally finite case with the results of Tits's classification of absolutely simple algebraic groups defined over a local field. A companion to Weiss's The Structure of Spherical Buildings, The Structure of Affine Buildings is organized around the clas
The dynamics of metric-affine gravity
International Nuclear Information System (INIS)
Vitagliano, Vincenzo; Sotiriou, Thomas P.; Liberati, Stefano
2011-01-01
Highlights: → The role and the dynamics of the connection in metric-affine theories is explored. → The most general second order action does not lead to a dynamical connection. → Including higher order invariants excites new degrees of freedom in the connection. → f(R) actions are also discussed and shown to be a non- representative class. - Abstract: Metric-affine theories of gravity provide an interesting alternative to general relativity: in such an approach, the metric and the affine (not necessarily symmetric) connection are independent quantities. Furthermore, the action should include covariant derivatives of the matter fields, with the covariant derivative naturally defined using the independent connection. As a result, in metric-affine theories a direct coupling involving matter and connection is also present. The role and the dynamics of the connection in such theories is explored. We employ power counting in order to construct the action and search for the minimal requirements it should satisfy for the connection to be dynamical. We find that for the most general action containing lower order invariants of the curvature and the torsion the independent connection does not carry any dynamics. It actually reduces to the role of an auxiliary field and can be completely eliminated algebraically in favour of the metric and the matter field, introducing extra interactions with respect to general relativity. However, we also show that including higher order terms in the action radically changes this picture and excites new degrees of freedom in the connection, making it (or parts of it) dynamical. Constructing actions that constitute exceptions to this rule requires significant fine tuned and/or extra a priori constraints on the connection. We also consider f(R) actions as a particular example in order to show that they constitute a distinct class of metric-affine theories with special properties, and as such they cannot be used as representative toy
Spectral affinity in protein networks.
Voevodski, Konstantin; Teng, Shang-Hua; Xia, Yu
2009-11-29
Protein-protein interaction (PPI) networks enable us to better understand the functional organization of the proteome. We can learn a lot about a particular protein by querying its neighborhood in a PPI network to find proteins with similar function. A spectral approach that considers random walks between nodes of interest is particularly useful in evaluating closeness in PPI networks. Spectral measures of closeness are more robust to noise in the data and are more precise than simpler methods based on edge density and shortest path length. We develop a novel affinity measure for pairs of proteins in PPI networks, which uses personalized PageRank, a random walk based method used in context-sensitive search on the Web. Our measure of closeness, which we call PageRank Affinity, is proportional to the number of times the smaller-degree protein is visited in a random walk that restarts at the larger-degree protein. PageRank considers paths of all lengths in a network, therefore PageRank Affinity is a precise measure that is robust to noise in the data. PageRank Affinity is also provably related to cluster co-membership, making it a meaningful measure. In our experiments on protein networks we find that our measure is better at predicting co-complex membership and finding functionally related proteins than other commonly used measures of closeness. Moreover, our experiments indicate that PageRank Affinity is very resilient to noise in the network. In addition, based on our method we build a tool that quickly finds nodes closest to a queried protein in any protein network, and easily scales to much larger biological networks. We define a meaningful way to assess the closeness of two proteins in a PPI network, and show that our closeness measure is more biologically significant than other commonly used methods. We also develop a tool, accessible at http://xialab.bu.edu/resources/pnns, that allows the user to quickly find nodes closest to a queried vertex in any protein
Antibody Affinity Maturation in Fishes—Our Current Understanding
Directory of Open Access Journals (Sweden)
Brad G. Magor
2015-07-01
Full Text Available It has long been believed that fish lack antibody affinity maturation, in part because they were thought to lack germinal centers. Recent research done on sharks and bony fishes indicates that these early vertebrates are able to affinity mature their antibodies. This article reviews the functionality of the fish homologue of the immunoglobulin (Ig mutator enzyme activation-induced cytidine deaminase (AID. We also consider the protein and molecular evidence for Ig somatic hypermutation and antibody affinity maturation. In the context of recent evidence for a putative proto-germinal center in fishes we propose some possible reasons that observed affinity maturation in fishes often seems lacking and propose future work that might shed further light on this process in fishes.
Thermokinetic model of borosilicate glass dissolution: contextual affinity
International Nuclear Information System (INIS)
Advocat, T.; Vernaz, E.; Crovisier, J.L.; Fritz, B.
1989-01-01
Short and long-term geochemical interactions of R7T7 nuclear glass with water at 100 0 C were simulated with the DISSOL thermokinetic computer code. Both the dissolved glass quantity and the resulting water composition, saturation states and mineral quantities produced were calculated as a function of time. The rate equation used in the simulation was first proposed by Aagaard and Helgeson. It simulates a gradually diminishing dissolution rate as the reaction affinity diminishes. The best agreement with 1-year experimental data was obtained with a reaction affinity calculated from silica activity (Grambow's hypothesis) rather than taking into account the activity of all the glass components as proposed by Jantzen and Plodinec. The concept of residual affinity was introduced by Grambow to express the fact that the glass dissolution rate does not cease. We prefer to replace the term residual affinity by contextual affinity, which expresses the influence on the dissolution rate of three factors: the solution chemistry, the metastability of SiO 2 (m), and the possible precipitation of certain aluminosilicates such as zeolites. 19 refs
Momentum conserving defects in affine Toda field theories
Energy Technology Data Exchange (ETDEWEB)
Bristow, Rebecca; Bowcock, Peter [Department of Mathematical Sciences, Durham University,Durham, DH1 3LE (United Kingdom)
2017-05-30
Type II integrable defects with more than one degree of freedom at the defect are investigated. A condition on the form of the Lagrangian for such defects is found which ensures the existence of a conserved momentum in the presence of the defect. In addition it is shown that for any Lagrangian satisfying this condition, the defect equations of motion, when taken to hold everywhere, can be extended to give a Bäcklund transformation between the bulk theories on either side of the defect. This strongly suggests that such systems are integrable. Momentum conserving defects and Bäcklund transformations for affine Toda field theories based on the A{sub n}, B{sub n}, C{sub n} and D{sub n} series of Lie algebras are found. The defect associated with the D{sub 4} affine Toda field theory is examined in more detail. In particular classical time delays for solitons passing through the defect are calculated.
Compound immobilization and drug-affinity chromatography.
Rix, Uwe; Gridling, Manuela; Superti-Furga, Giulio
2012-01-01
Bioactive small molecules act through modulating a yet unpredictable number of targets. It is therefore of critical importance to define the cellular target proteins of a compound as an entry point to understanding its mechanism of action. Often, this can be achieved in a direct fashion by chemical proteomics. As with any affinity chromatography, immobilization of the bait to a solid support is one of the earliest and most crucial steps in the process. Interfering with structural features that are important for identification of a target protein will be detrimental to binding affinity. Also, many molecules are sensitive to heat or to certain chemicals, such as acid or base, and might be destroyed during the process of immobilization, which therefore needs to be not only efficient, but also mild. The subsequent affinity chromatography step needs to preserve molecular and conformational integrity of both bait compound and proteins in order to result in the desired specific enrichment while ensuring a high level of compatibility with downstream analysis by mass spectrometry. Thus, the right choice of detergent, buffer, and protease inhibitors is also essential. This chapter describes a widely applicable procedure for the immobilization of small molecule drugs and for drug-affinity chromatography with subsequent protein identification by mass spectrometry.
Directory of Open Access Journals (Sweden)
Lykke Pedersen
2014-01-01
Full Text Available Antisense oligonucleotides complementary to RNA targets promise generality and ease of drug design. The first systemically administered antisense drug was recently approved for treatment and others are in clinical development. Chemical modifications that increase the hybridization affinity of oligonucleotides are reasoned to confer higher potency, i.e., modified oligonucleotides can be dosed at lower concentrations to achieve the same effect. Surprisingly, shorter and less affine oligonucleotides sometimes display increased potency. To explain this apparent contradiction, increased uptake or decreased propensity to form structures have been suggested as possible mechanisms. Here, we provide an alternative explanation that invokes only the kinetics behind oligonucleotide-mediated cleavage of RNA targets. A model based on the law of mass action predicts, and experiments support, the existence of an optimal binding affinity. Exaggerated affinity, and not length per se, is detrimental to potency. This finding clarifies how to optimally apply high-affinity modifications in the discovery of potent antisense oligonucleotide drugs.
Affine coherent states and Toeplitz operators
Hutníková, Mária; Hutník, Ondrej
2012-06-01
We study a parameterized family of Toeplitz operators in the context of affine coherent states based on the Calderón reproducing formula (= resolution of unity on L_2( {R})) and the specific admissible wavelets (= affine coherent states in L_2( {R})) related to Laguerre functions. Symbols of such Calderón-Toeplitz operators as individual coordinates of the affine group (= upper half-plane with the hyperbolic geometry) are considered. In this case, a certain class of pseudo-differential operators, their properties and their operator algebras are investigated. As a result of this study, the Fredholm symbol algebras of the Calderón-Toeplitz operator algebras for these particular cases of symbols are described. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Coherent states: mathematical and physical aspects’.
Hashemi, Hoda Sadat; Boily, Mathieu; Martineau, Paul A.; Rivaz, Hassan
2017-03-01
Ultrasound elastography entails imaging mechanical properties of tissue and is therefore of significant clinical importance. In elastography, two frames of radio-frequency (RF) ultrasound data that are obtained while the tissue is undergoing deformation, and the time-delay estimate (TDE) between the two frames is used to infer mechanical properties of tissue. TDE is a critical step in elastography, and is challenging due to noise and signal decorrelation. This paper presents a novel and robust technique TDE using all samples of RF data simultaneously. We assume tissue deformation can be approximated by an affine transformation, and hence call our method ATME (Affine Transformation Model Elastography). The affine transformation model is utilized to obtain initial estimates of axial and lateral displacement fields. The affine transformation only has six degrees of freedom (DOF), and as such, can be efficiently estimated. A nonlinear cost function that incorporates similarity of RF data intensity and prior information of displacement continuity is formulated to fine-tune the initial affine deformation field. Optimization of this function involves searching for TDE of all samples of the RF data. The optimization problem is converted to a sparse linear system of equations, which can be solved in real-time. Results on simulation are presented for validation. We further collect RF data from in-vivo patellar tendon and medial collateral ligament (MCL), and show that ATME can be used to accurately track tissue displacement.
Affine group formulation of the Standard Model coupled to gravity
Energy Technology Data Exchange (ETDEWEB)
Chou, Ching-Yi, E-mail: l2897107@mail.ncku.edu.tw [Department of Physics, National Cheng Kung University, Taiwan (China); Ita, Eyo, E-mail: ita@usna.edu [Department of Physics, US Naval Academy, Annapolis, MD (United States); Soo, Chopin, E-mail: cpsoo@mail.ncku.edu.tw [Department of Physics, National Cheng Kung University, Taiwan (China)
2014-04-15
In this work we apply the affine group formalism for four dimensional gravity of Lorentzian signature, which is based on Klauder’s affine algebraic program, to the formulation of the Hamiltonian constraint of the interaction of matter and all forces, including gravity with non-vanishing cosmological constant Λ, as an affine Lie algebra. We use the hermitian action of fermions coupled to gravitation and Yang–Mills theory to find the density weight one fermionic super-Hamiltonian constraint. This term, combined with the Yang–Mills and Higgs energy densities, are composed with York’s integrated time functional. The result, when combined with the imaginary part of the Chern–Simons functional Q, forms the affine commutation relation with the volume element V(x). Affine algebraic quantization of gravitation and matter on equal footing implies a fundamental uncertainty relation which is predicated upon a non-vanishing cosmological constant. -- Highlights: •Wheeler–DeWitt equation (WDW) quantized as affine algebra, realizing Klauder’s program. •WDW formulated for interaction of matter and all forces, including gravity, as affine algebra. •WDW features Hermitian generators in spite of fermionic content: Standard Model addressed. •Constructed a family of physical states for the full, coupled theory via affine coherent states. •Fundamental uncertainty relation, predicated on non-vanishing cosmological constant.
Recombinant spider silk genetically functionalized with affinity domains.
Jansson, Ronnie; Thatikonda, Naresh; Lindberg, Diana; Rising, Anna; Johansson, Jan; Nygren, Per-Åke; Hedhammar, My
2014-05-12
Functionalization of biocompatible materials for presentation of active protein domains is an area of growing interest. Herein, we describe a strategy for functionalization of recombinant spider silk via gene fusion to affinity domains of broad biotechnological use. Four affinity domains of different origin and structure; the IgG-binding domains Z and C2, the albumin-binding domain ABD, and the biotin-binding domain M4, were all successfully produced as soluble silk fusion proteins under nondenaturing purification conditions. Silk films and fibers produced from the fusion proteins were demonstrated to be chemically and thermally stable. Still, the bioactive domains are concluded to be folded and accessible, since their respective targets could be selectively captured from complex samples, including rabbit serum and human plasma. Interestingly, materials produced from mixtures of two different silk fusion proteins displayed combined binding properties, suggesting that tailor-made materials with desired stoichiometry and surface distributions of several binding domains can be produced. Further, use of the IgG binding ability as a general mean for presentation of desired biomolecules could be demonstrated for a human vascular endothelial growth factor (hVEGF) model system, via a first capture of anti-VEGF IgG to silk containing the Z-domain, followed by incubation with hVEGF. Taken together, this study demonstrates the potential of recombinant silk, genetically functionalized with affinity domains, for construction of biomaterials capable of presentation of almost any desired biomolecule.
A new BODIPY/nanoparticle/Ni affinity system for binding of cytochrome c
Energy Technology Data Exchange (ETDEWEB)
Maltas, Esra, E-mail: maltasesra@gmail.com [Selcuk University, Faculty of Science, Department of Chemistry, 42075 Konya (Turkey); Selcuk University, Faculty of Science, Department of Biochemistry, 42075 Konya (Turkey); Kursunlu, Ahmed Nuri [Selcuk University, Faculty of Science, Department of Chemistry, 42075 Konya (Turkey); Arslan, Gulsin [Selcuk University, Faculty of Science, Department of Biochemistry, 42075 Konya (Turkey); Selcuk University, Advanced Research Technology and Application Center, 42075 Konya (Turkey); Ozmen, Mustafa [Selcuk University, Faculty of Science, Department of Chemistry, 42075 Konya (Turkey); Selcuk University, Advanced Research Technology and Application Center, 42075 Konya (Turkey)
2015-09-15
Highlights: • BODIPY was synthesized, and then attached to magnetic nanoparticles. • Ni(II) ions were chelated on prepared material. • The binding of cytochrome c to obtained material was studied. - Abstract: In this study, 3,5-{Bis[4,4-difluoro, 8-(2,6-diethyl, 1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene)]}benzoylchloride (BODIPY) was synthesized for the improving of a new immobilized metal affinity supporting material. Firstly, the synthesized BODIPY was immobilized on iron oxide superparamagnetic nanoparticles (SPIONs) and then, Ni(II) ions were chelated with the active terminals of BODIPY on nanoparticles surfaces to prepare an immobilized metal affinity (IMA) adsorbent for protein adsorption. The amount of BODIPY coated on SPIONs was about 29.7 μM at 10 mg nanoparticles. 738 μmol of Ni(II) ions were loaded to 10 mg of the SPIONs/BODIPY. The binding amount of cytochrome c was found to be 170 μg to the SPIONs/BODIPY/Ni at pH 7.4. The binding amount of the molecules on SPIONs was analyzed by using UV–vis, fluorescence and atomic absorption spectroscopy. The characterization of the prepared surfaces was performed by FT-IR, SEM and TEM.
Spectral affinity in protein networks
Directory of Open Access Journals (Sweden)
Teng Shang-Hua
2009-11-01
Full Text Available Abstract Background Protein-protein interaction (PPI networks enable us to better understand the functional organization of the proteome. We can learn a lot about a particular protein by querying its neighborhood in a PPI network to find proteins with similar function. A spectral approach that considers random walks between nodes of interest is particularly useful in evaluating closeness in PPI networks. Spectral measures of closeness are more robust to noise in the data and are more precise than simpler methods based on edge density and shortest path length. Results We develop a novel affinity measure for pairs of proteins in PPI networks, which uses personalized PageRank, a random walk based method used in context-sensitive search on the Web. Our measure of closeness, which we call PageRank Affinity, is proportional to the number of times the smaller-degree protein is visited in a random walk that restarts at the larger-degree protein. PageRank considers paths of all lengths in a network, therefore PageRank Affinity is a precise measure that is robust to noise in the data. PageRank Affinity is also provably related to cluster co-membership, making it a meaningful measure. In our experiments on protein networks we find that our measure is better at predicting co-complex membership and finding functionally related proteins than other commonly used measures of closeness. Moreover, our experiments indicate that PageRank Affinity is very resilient to noise in the network. In addition, based on our method we build a tool that quickly finds nodes closest to a queried protein in any protein network, and easily scales to much larger biological networks. Conclusion We define a meaningful way to assess the closeness of two proteins in a PPI network, and show that our closeness measure is more biologically significant than other commonly used methods. We also develop a tool, accessible at http://xialab.bu.edu/resources/pnns, that allows the user to
Quantitative relationship between antibody affinity and antibody avidity
International Nuclear Information System (INIS)
Griswold, W.R.
1987-01-01
The relationship between antibody avidity, measured by the dissociation of the antigen-antibody bond in antigen excess, and antibody affinity was studied. Complexes of radiolabelled antigen and antibody of known affinity were prepared in vitro and allowed to stand for seven days to reach equilibrium. Then nonlabelled antigen in one hundred fold excess was added to dissociate the complexes. After an appropriate incubation the fraction of antigen bound to antibody was measured by the ammonium sulfate precipitation method. The dissociation index was the fraction bound in the experimental sample divided by the fraction bound in the control. The correlation coefficient between the dissociation index and the antibody binding constant was 0.92 for early dissociation and 0.98 for late dissociation. The regression equation relating the binding constant to the dissociation index was K = 6.4(DI) + 6.25, where DI is the late dissociation index and K is the logarithm to the base 10 of the binding constant. There is a high correlation between avidity and affinity of antibody. Antibody affinity can be estimated from avidity data. The stability of antigen-antibody complexes can be predicted from antibody affinity
Thermokinetic model of borosilicate glass dissolution: Contextual affinity
International Nuclear Information System (INIS)
Advocat, T.; Vernaz, E.; Crovisier, J.L.; Fritz, B.
1990-01-01
Short and long-term geochemical interactions of R7T7 nuclear glass with water at 100C were simulated with the DISSOL thermokinetic computer code. Both the dissolved glass quantity and the resulting water composition, saturation states and mineral quantities produced were calculated as a function of time. The rate equation used in the simulation was first proposed by Aagaard and Hegelson: v = k + · S · a( H + ) -n · (1 - e -(A/RT) ). It simulates a gradually diminishing dissolution rate as the reaction affinity diminishes. The best agreement with 1-year experimental data was obtained with a reaction affinity calculated from silica activity (Grambow's hypothesis) rather than taking into account the activity of all the glass components as proposed by Jantzen and Plodinec. The concept of residual affinity was introduced by Grambow to express the fact that the glass dissolution rate does not cease. The authors prefer to replace the term residual affinity by contextual affinity, which expresses the influence on the dissolution rate of three factors: the solution chemistry, the metastability of SiO 2 (m), and the possible precipitation of certain aluminosilicates such as zeolites
Bras, Eduardo J S; Soares, Ruben R G; Azevedo, Ana M; Fernandes, Pedro; Arévalo-Rodríguez, Miguel; Chu, Virginia; Conde, João P; Aires-Barros, M Raquel
2017-09-15
Antibodies and other protein products such as interferons and cytokines are biopharmaceuticals of critical importance which, in order to be safely administered, have to be thoroughly purified in a cost effective and efficient manner. The use of aqueous two-phase extraction (ATPE) is a viable option for this purification, but these systems are difficult to model and optimization procedures require lengthy and expensive screening processes. Here, a methodology for the rapid screening of antibody extraction conditions using a microfluidic channel-based toolbox is presented. A first microfluidic structure allows a simple negative-pressure driven rapid screening of up to 8 extraction conditions simultaneously, using less than 20μL of each phase-forming solution per experiment, while a second microfluidic structure allows the integration of multi-step extraction protocols based on the results obtained with the first device. In this paper, this microfluidic toolbox was used to demonstrate the potential of LYTAG fusion proteins used as affinity tags to optimize the partitioning of antibodies in ATPE processes, where a maximum partition coefficient (K) of 9.2 in a PEG 3350/phosphate system was obtained for the antibody extraction in the presence of the LYTAG-Z dual ligand. This represents an increase of approx. 3.7 fold when compared with the same conditions without the affinity molecule (K=2.5). Overall, this miniaturized and versatile approach allowed the rapid optimization of molecule partition followed by a proof-of-concept demonstration of an integrated back extraction procedure, both of which are critical procedures towards obtaining high purity biopharmaceuticals using ATPE. Copyright © 2017 Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Ohyama, Takuya; Saegusa, Hiromitsu
2009-03-01
As a part of the research and development regarding characterisation of deep geological environment, the GEOMASS (GEOLOGICAL MODELLING ANALYSIS AND SIMULATION SOFTWARE) system has been developed by the Japan Atomic Energy Agency in order to carry out geological and hydrogeological modelling and groundwater flow simulation and so on. The GEOMASS system integrates a commercial geological interpretation system (EarthVision), which is used for geological modelling and visualisation, with a proprietary code for groundwater flow (FracAffinity). This integrated system allows users to make rapid improvement of models as data increases. Also, it is possible to perform more realistic groundwater flow simulation due to the capability of modelling the rock mass as a continuum with discrete hydro-structural features in the rock mass. This paper consists of 'Overview of GEOMASS system', FracAffinity Theoretical Background' and 'FracAffinity User Guide' and is edited as a GEOMASS system manual. 'Overview of GEOMASS system' describes the outline of this system. 'FracAffinity Theoretical Background' describes the information of technical background of FracAffinity software. FracAffinity User Guide' describes the structure of the FracAffinity input files, the usage of FracAffinity Interface and flow-solver. Updating of the FracAffinity has been continued as needed and FracAffinity version3.3 is the latest version at present (July 2008). (author)
Blakeley, D; Sykes, D A; Ensor, P; Bertran, E; Aston, P J; Charlton, S J
2015-11-01
Plasma protein binding (PPB) influences the free fraction of drug available to bind to its target and is therefore an important consideration in drug discovery. While traditional methods for assessing PPB (e.g. rapid equilibrium dialysis) are suitable for comparing compounds with relatively weak PPB, they are not able to accurately discriminate between highly bound compounds (typically >99.5%). The aim of the present work was to use mathematical modelling to explore the potential utility of receptor binding and cellular functional assays to estimate the affinity of compounds for plasma proteins. Plasma proteins are routinely added to in vitro assays, so a secondary goal was to investigate the effect of plasma proteins on observed ligand-receptor interactions. Using the principle of conservation of mass and the law of mass action, a cubic equation was derived describing the ligand-receptor complex [LR] in the presence of plasma protein at equilibrium. The model demonstrates the profound influence of PPB on in vitro assays and identifies the utility of Schild analysis, which is usually applied to determine receptor-antagonist affinities, for calculating affinity at plasma proteins (termed KP ). We have also extended this analysis to functional effects using operational modelling and demonstrate that these approaches can also be applied to cell-based assay systems. These mathematical models can potentially be used in conjunction with experimental data to estimate drug-plasma protein affinities in the earliest phases of drug discovery programmes. © 2015 The British Pharmacological Society.
Calculation of protein-ligand binding affinities.
Gilson, Michael K; Zhou, Huan-Xiang
2007-01-01
Accurate methods of computing the affinity of a small molecule with a protein are needed to speed the discovery of new medications and biological probes. This paper reviews physics-based models of binding, beginning with a summary of the changes in potential energy, solvation energy, and configurational entropy that influence affinity, and a theoretical overview to frame the discussion of specific computational approaches. Important advances are reported in modeling protein-ligand energetics, such as the incorporation of electronic polarization and the use of quantum mechanical methods. Recent calculations suggest that changes in configurational entropy strongly oppose binding and must be included if accurate affinities are to be obtained. The linear interaction energy (LIE) and molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) methods are analyzed, as are free energy pathway methods, which show promise and may be ready for more extensive testing. Ultimately, major improvements in modeling accuracy will likely require advances on multiple fronts, as well as continued validation against experiment.
ASIFT: An Algorithm for Fully Affine Invariant Comparison
Directory of Open Access Journals (Sweden)
Guoshen Yu
2011-02-01
Full Text Available If a physical object has a smooth or piecewise smooth boundary, its images obtained by cameras in varying positions undergo smooth apparent deformations. These deformations are locally well approximated by affine transforms of the image plane. In consequence the solid object recognition problem has often been led back to the computation of affine invariant image local features. The similarity invariance (invariance to translation, rotation, and zoom is dealt with rigorously by the SIFT method The method illustrated and demonstrated in this work, Affine-SIFT (ASIFT, simulates a set of sample views of the initial images, obtainable by varying the two camera axis orientation parameters, namely the latitude and the longitude angles, which are not treated by the SIFT method. Then it applies the SIFT method itself to all images thus generated. Thus, ASIFT covers effectively all six parameters of the affine transform.
Wensveen, Felix M; van Gisbergen, Klaas P J M; Eldering, Eric
2012-09-01
Lymphocyte activation via the antigen receptor is associated with radical shifts in metabolism and changes in requirements for nutrients and cytokines. Concomitantly, drastic changes occur in the expression of pro-and anti-apoptotic proteins that alter the sensitivity of lymphocytes to limiting concentrations of key survival factors. Antigen affinity is a primary determinant for the capacity of activated lymphocytes to access these vital resources. The shift in metabolic needs and the variable access to key survival factors is used by the immune system to eliminate activated low-affinity cells and to generate an optimal high-affinity response. In this review, we focus on the control of apoptosis regulators in activated lymphocytes by nutrients, cytokines, and costimulation. We propose that the struggle among individual clones that leads to the formation of high-affinity effector cell populations is in effect an 'invisible' fourth signal required for effective immune responses. © 2012 John Wiley & Sons A/S.
Applications of Affine and Weyl geometry
García-Río, Eduardo; Nikcevic, Stana
2013-01-01
Pseudo-Riemannian geometry is, to a large extent, the study of the Levi-Civita connection, which is the unique torsion-free connection compatible with the metric structure. There are, however, other affine connections which arise in different contexts, such as conformal geometry, contact structures, Weyl structures, and almost Hermitian geometry. In this book, we reverse this point of view and instead associate an auxiliary pseudo-Riemannian structure of neutral signature to certain affine connections and use this correspondence to study both geometries. We examine Walker structures, Riemannia
Theoretical determination of proton affinity differences in zeolites
Kramer, G.J.; Santen, van R.A.
1993-01-01
An important factor in zeolite catalysis is the proton affinity, i.e., the energy required to remove a proton from the zeolite lattice. Differences in proton affinity are expected to influence the catalytic activity of acid sites, making the catalytically active sites inhomogeneous (within one
Pseudo-affinity chromatography of rumen microbial cellulase on ...
African Journals Online (AJOL)
Pseudo-affinity chromatography of rumen microbial cellulase on Sepharose- Cibacron Blue F3GA. ... African Journal of Biotechnology ... Pseudo affinity adsorption of bioproducts on Sepharose-cibacron blue F3-GA was subjected to rumen microbial enzyme evaluation through batch binding and column chromatography of ...
Volatility Components, Affine Restrictions and Non-Normal Innovations
DEFF Research Database (Denmark)
Christoffersen, Peter; Jacobs, Kris; Dorian, Christian
Recent work by Engle and Lee (1999) shows that allowing for long-run and short-run components greatly enhances a GARCH model's ability fit daily equity return dynamics. Using the risk-neutralization in Duan (1995), we assess the option valuation performance of the Engle-Lee model and compare...... models to four conditionally non-normal versions. As in Hsieh and Ritchken (2005), we find that non-affine models dominate affine models both in terms of fitting return and in terms of option valuation. For the affine models we find strong evidence in favor of the component structure for both returns...
Mulder, R. Joshua; Guerra, Celia Fonseca; Bickelhaupt, F. Matthias
2010-01-01
We have computed the methyl cation affinities in the gas phase of archetypal anionic and neutral bases across the periodic table using ZORA-relativistic density functional theory (DFT) at BP86/QZ4P//BP86/TZ2P. The main purpose of this work is to provide the methyl cation affinities (and
In vitro evolution and affinity-maturation with Coliphage qβ display.
Directory of Open Access Journals (Sweden)
Claudia Skamel
Full Text Available The Escherichia coli bacteriophage, Qβ (Coliphage Qβ, offers a favorable alternative to M13 for in vitro evolution of displayed peptides and proteins due to high mutagenesis rates in Qβ RNA replication that better simulate the affinity maturation processes of the immune response. We describe a benchtop in vitro evolution system using Qβ display of the VP1 G-H loop peptide of foot-and-mouth disease virus (FMDV. DNA encoding the G-H loop was fused to the A1 minor coat protein of Qβ resulting in a replication-competent hybrid phage that efficiently displayed the FMDV peptide. The surface-localized FMDV VP1 G-H loop cross-reacted with the anti-FMDV monoclonal antibody (mAb SD6 and was found to decorate the corners of the Qβ icosahedral shell by electron microscopy. Evolution of Qβ-displayed peptides, starting from fully degenerate coding sequences corresponding to the immunodominant region of VP1, allowed rapid in vitro affinity maturation to SD6 mAb. Qβ selected under evolutionary pressure revealed a non-canonical, but essential epitope for mAb SD6 recognition consisting of an Arg-Gly tandem pair. Finally, the selected hybrid phages induced polyclonal antibodies in guinea pigs with good affinity to both FMDV and hybrid Qβ-G-H loop, validating the requirement of the tandem pair epitope. Qβ-display emerges as a novel framework for rapid in vitro evolution with affinity-maturation to molecular targets.
Generalized Warburg impedance on realistic self-affine fractals ...
Indian Academy of Sciences (India)
2016-08-26
Aug 26, 2016 ... We analyse the problem of impedance for a diffusion controlled charge transfer process across an irregular interface. These interfacial irregularities are characterized as two class of random fractals: (i) a statistically isotropic self-affine fractals and (ii) a statistically corrugated self-affine fractals.
Lee, Jae Young; Park, Jin Bae; Choi, Yoon Ho
2015-05-01
This paper focuses on a class of reinforcement learning (RL) algorithms, named integral RL (I-RL), that solve continuous-time (CT) nonlinear optimal control problems with input-affine system dynamics. First, we extend the concepts of exploration, integral temporal difference, and invariant admissibility to the target CT nonlinear system that is governed by a control policy plus a probing signal called an exploration. Then, we show input-to-state stability (ISS) and invariant admissibility of the closed-loop systems with the policies generated by integral policy iteration (I-PI) or invariantly admissible PI (IA-PI) method. Based on these, three online I-RL algorithms named explorized I-PI and integral Q -learning I, II are proposed, all of which generate the same convergent sequences as I-PI and IA-PI under the required excitation condition on the exploration. All the proposed methods are partially or completely model free, and can simultaneously explore the state space in a stable manner during the online learning processes. ISS, invariant admissibility, and convergence properties of the proposed methods are also investigated, and related with these, we show the design principles of the exploration for safe learning. Neural-network-based implementation methods for the proposed schemes are also presented in this paper. Finally, several numerical simulations are carried out to verify the effectiveness of the proposed methods.
Leelawattanachai, Jeerapond; Kwon, Keon-Woo; Michael, Praveesuda; Ting, Richard; Kim, Ju-Young; Jin, Moonsoo M.
2015-01-01
The ability to use a systemically injected agent to image tumor is influenced by tumor characteristics such as permeability and vascularity, and the size, shape, and affinity of the imaging agent. In this study, six different imaging biomolecules, with or without specificity to tumor, were examined for tumor uptake and internalization at the whole body, ex-vivo tissue, and cellular levels: antibodies, antibody fragments (Fab), serum albumin, and streptavidin. The time of peak tumor uptake was dependent solely on the size of molecules, suggesting that molecular size is the major factor that influences tumor uptake by its effect on systemic clearance and diffusion into tumor. Affinity to tumor antigen failed to augment tumor uptake of Fab above non-specific accumulation, which suggests that Fab fragments of typical monoclonal antibodies may fall below an affinity threshold for use as molecular imaging agents. Despite abundant localization into the tumor, albumin and streptavidin were not found on cell surface or inside cells. By comparing biomolecules differing in size and affinity, our study highlights that while pharmacokinetics are a dominant factor in tumor uptake for biomolecules, affinity to tumor antigen is required for tumor binding and internalization. PMID:25901755
Weak affinity chromatography for evaluation of stereoisomers in early drug discovery.
Duong-Thi, Minh-Dao; Bergström, Maria; Fex, Tomas; Svensson, Susanne; Ohlson, Sten; Isaksson, Roland
2013-07-01
In early drug discovery (e.g., in fragment screening), recognition of stereoisomeric structures is valuable and guides medicinal chemists to focus only on useful configurations. In this work, we concurrently screened mixtures of stereoisomers and estimated their affinities to a protein target (thrombin) using weak affinity chromatography-mass spectrometry (WAC-MS). Affinity determinations by WAC showed that minor changes in stereoisomeric configuration could have a major impact on affinity. The ability of WAC-MS to provide instant information about stereoselectivity and binding affinities directly from analyte mixtures is a great advantage in fragment library screening and drug lead development.
Generalized Warburg impedance on realistic self-affine fractals
Indian Academy of Sciences (India)
We analyse the problem of impedance for a diffusion controlled charge transfer process across an irregular interface. These interfacial irregularities are characterized as two class of random fractals: (i) a statistically isotropic self-affine fractals and (ii) a statistically corrugated self-affine fractals. The information about the ...
Acar, T.; Lauter, K.; Naehrig, M.; Shumow, D.
2011-01-01
Pairings on elliptic curves are being used in an increasing number of cryptographic applications on many different devices and platforms, but few performance numbers for cryptographic pairings have been reported on embedded and mobile devices. In this paper we give performance numbers for affine and
A novel affinity purification method to isolate peptide specific antibodies
DEFF Research Database (Denmark)
Karlsen, Alan E; Lernmark, A; Kofod, Hans
1990-01-01
Site-specific, high affinity polyclonal antisera are effectively and successfully produced by immunizing rabbits with synthetic peptides. The use of these antisera in subsequent immune analysis is often limited because of non-specific binding. We describe a new and simple method to effectively...... affinity-purify anti-peptide antibodies. To test our system, rabbits were immunized with model peptides representing sequences of the putative rabbit growth hormone receptor and several HLA-DQ beta-chain molecules. Polystyrene plastic beads were coated with peptides. Immune serum was incubated...... with the beads and after a wash step the bound antibodies were eluted in 1 M acetic acid. The eluted material was composed predominantly of intact immunoglobulin as evidenced by the presence of heavy and light chain bands in SDS-PAGE. The eluted antibodies were peptide specific in ELISA and bound only to intact...
Synthetic Receptors for the High-Affinity Recognition of O-GlcNAc Derivatives
Rios, Pablo; Carter, Tom S; Mooibroek, Tiddo J; Crump, Matthew P; Lisbjerg, Micke; Pittelkow, Michael; Supekar, Nitin T; Boons, Geert-Jan|info:eu-repo/dai/nl/088245489; Davis, Anthony P
2016-01-01
The combination of a pyrenyl tetraamine with an isophthaloyl spacer has led to two new water-soluble carbohydrate receptors ("synthetic lectins"). Both systems show outstanding affinities for derivatives of N-acetylglucosamine (GlcNAc) in aqueous solution. One receptor binds the methyl glycoside
Maximum-Entropy Models of Sequenced Immune Repertoires Predict Antigen-Antibody Affinity.
Directory of Open Access Journals (Sweden)
Lorenzo Asti
2016-04-01
Full Text Available The immune system has developed a number of distinct complex mechanisms to shape and control the antibody repertoire. One of these mechanisms, the affinity maturation process, works in an evolutionary-like fashion: after binding to a foreign molecule, the antibody-producing B-cells exhibit a high-frequency mutation rate in the genome region that codes for the antibody active site. Eventually, cells that produce antibodies with higher affinity for their cognate antigen are selected and clonally expanded. Here, we propose a new statistical approach based on maximum entropy modeling in which a scoring function related to the binding affinity of antibodies against a specific antigen is inferred from a sample of sequences of the immune repertoire of an individual. We use our inference strategy to infer a statistical model on a data set obtained by sequencing a fairly large portion of the immune repertoire of an HIV-1 infected patient. The Pearson correlation coefficient between our scoring function and the IC50 neutralization titer measured on 30 different antibodies of known sequence is as high as 0.77 (p-value 10-6, outperforming other sequence- and structure-based models.
ODE/IM correspondence and modified affine Toda field equations
Energy Technology Data Exchange (ETDEWEB)
Ito, Katsushi; Locke, Christopher
2014-08-15
We study the two-dimensional affine Toda field equations for affine Lie algebra g{sup ^} modified by a conformal transformation and the associated linear equations. In the conformal limit, the associated linear problem reduces to a (pseudo-)differential equation. For classical affine Lie algebra g{sup ^}, we obtain a (pseudo-)differential equation corresponding to the Bethe equations for the Langlands dual of the Lie algebra g, which were found by Dorey et al. in study of the ODE/IM correspondence.
Characterization of self-affinity in the global regime
Neimark, Alexander V.
1994-11-01
Methods for characterization of self-affine surfaces and measurements of their roughness exponents H are developed. It is shown that for smoothed surfaces, which underwent particular coarse graining or averaging of the small-scale fluctuations, the excess surface area Sex and the mean square root radius of curvature ac are related by two distinct asymptotic power laws if ac is well below or well above a certain crossover scale acr. In the local regime of self-affinity, when acSex~(ac/acr)-(1-H). In the global regime of self-affinity, when ac>>acr, Sex~(ac/acr)-2(1-H)/(2-H). The former scaling relationship is consistent with the well known definition of local fractal dimensions dloc=dtop+1-H. The latter scaling relationship offers alternatives for characterization of self-affinity over large scales by means of excess dimensions defined as dex=dtop+2(1-H)/(2-H) and can be used for determination of roughness exponents from the measurements provided in the global regime. The thermodynamic method of fractal analysis, proposed earlier for self-similar surfaces (A.V. Neimark, Pis'ma Zh. Eksp. Teor. Fiz. 51, 535 (1990) [JETP Lett. 51, 607 (1990)]; Physica A 191, 258 (1992)), is extended for self-affine surfaces for determination of fractal dimensions and roughness exponents from adsorption and capillary experimental data.
Mulder, R Joshua; Guerra, Célia Fonseca; Bickelhaupt, F Matthias
2010-07-22
We have computed the methyl cation affinities in the gas phase of archetypal anionic and neutral bases across the periodic table using ZORA-relativistic density functional theory (DFT) at BP86/QZ4P//BP86/TZ2P. The main purpose of this work is to provide the methyl cation affinities (and corresponding entropies) at 298 K of all anionic (XH(n-1)(-)) and neutral bases (XH(n)) constituted by maingroup-element hydrides of groups 14-17 and the noble gases (i.e., group 18) along the periods 2-6. The cation affinity of the bases decreases from H(+) to CH(3)(+). To understand this trend, we have carried out quantitative bond energy decomposition analyses (EDA). Quantitative correlations are established between the MCA and PA values.
DAYA ANTIBAKTERI EKSTRAK ETANOL DAUN SENGGANI (Melastoma affine D. Don
Directory of Open Access Journals (Sweden)
Ika Trisharyanti Dian Kusumowati
2014-08-01
Full Text Available Melastoma affine D. Don had some activities such as anthelmintic, antibacteria, antiinfiammation, antifungal, and antitumor. The aims of this research was determine antibacteria activity of ethanolic extract of Melastoma affine D. Don. The antimicrobial activity was tested by solid dilution method to get Minimum Inhibition Concentration (MIC. The compounds in Melastoma affine D. Don was analyzed by tube test method and Thin Layer Chromatography (TLC with chloroform : methanol : formic acid (8,5:1,5:0,5 as mobile phase and silica gel GF254 as stationary phase. The result showed ethanolic extract of Melastoma affine D. Don contains alkaloid, polyphenol, fiavonoid, saponin, and essential oil. The MIC of Senggani against Staphylococcus aureus was 2% and 3% against Escherichia coli and the extract could not inhibit Staphylococcus aureus and Escherichia coli multiresistant until concentration 7% extract ethanol. Keywords: Melastoma affine D. Don, Staphylococcus aureus, Escherichia coli
Directory of Open Access Journals (Sweden)
Brian H. Carrick
2016-03-01
Full Text Available Isolation of endogenous proteins from Saccharomyces cerevisiae has been facilitated by inserting encoding polypeptide affinity tags at the C-termini of chromosomal open reading frames (ORFs using homologous recombination of DNA fragments. Tagged protein isolation is limited by a number of factors, including high cost of affinity resins for bulk isolation and low concentration of ligands on the resin surface, leading to low isolation efficiencies and trapping of contaminants. To address this, we have created a recombinant “CelTag” DNA construct from which PCR fragments can be created to easily tag C-termini of S. cerevisiae ORFs using selection for a nat1 marker. The tag has a C-terminal cellulose binding module to be used in the first affinity step. Microgranular cellulose is very inexpensive and has an effectively continuous ligand on its surface, allowing rapid, highly efficient purification with minimal background. Cellulose-bound proteins are released by specific cleavage of an included site for TEV protease, giving nearly pure product. The tag can be lifted from the recombinant DNA construct either with or without a 13x myc epitope tag between the target ORF and the TEV protease site. Binding of CelTag protein fusions to cellulose is stable to high salt, nonionic detergents, and 1 M urea, allowing stringent washing conditions to remove loosely associated components, as needed, before specific elution. It is anticipated that this reagent could allow isolation of protein complexes from large quantities of yeast extract, including soluble, membrane-bound, or nucleic acid-associated assemblies.
Capillary electrophoresis-based assessment of nanobody affinity and purity
Haselberg, Rob; Oliveira, Sabrina; van der Meel, Roy; Somsen, Govert W; de Jong, Gerhardus J
2014-01-01
Drug purity and affinity are essential attributes during development and production of therapeutic proteins. In this work, capillary electrophoresis (CE) was used to determine both the affinity and composition of the biotechnologically produced "nanobody" EGa1, the binding fragment of a
KASAI, Kenichi
2014-01-01
Combination of bioaffinity and chromatography gave birth to affinity chromatography. A further combination with frontal analysis resulted in creation of frontal affinity chromatography (FAC). This new versatile research tool enabled detailed analysis of weak interactions that play essential roles in living systems, especially those between complex saccharides and saccharide-binding proteins. FAC now becomes the best method for the investigation of saccharide-binding proteins (lectins) from viewpoints of sensitivity, accuracy, and efficiency, and is contributing greatly to the development of glycobiology. It opened a door leading to deeper understanding of the significance of saccharide recognition in life. The theory is also concisely described. PMID:25169774
Specificity and affinity quantification of protein-protein interactions.
Yan, Zhiqiang; Guo, Liyong; Hu, Liang; Wang, Jin
2013-05-01
Most biological processes are mediated by the protein-protein interactions. Determination of the protein-protein structures and insight into their interactions are vital to understand the mechanisms of protein functions. Currently, compared with the isolated protein structures, only a small fraction of protein-protein structures are experimentally solved. Therefore, the computational docking methods play an increasing role in predicting the structures and interactions of protein-protein complexes. The scoring function of protein-protein interactions is the key responsible for the accuracy of the computational docking. Previous scoring functions were mostly developed by optimizing the binding affinity which determines the stability of the protein-protein complex, but they are often lack of the consideration of specificity which determines the discrimination of native protein-protein complex against competitive ones. We developed a scoring function (named as SPA-PP, specificity and affinity of the protein-protein interactions) by incorporating both the specificity and affinity into the optimization strategy. The testing results and comparisons with other scoring functions show that SPA-PP performs remarkably on both predictions of binding pose and binding affinity. Thus, SPA-PP is a promising quantification of protein-protein interactions, which can be implemented into the protein docking tools and applied for the predictions of protein-protein structure and affinity. The algorithm is implemented in C language, and the code can be downloaded from http://dl.dropbox.com/u/1865642/Optimization.cpp.
Exploring Girls' Science Affinities Through an Informal Science Education Program
Todd, Brandy; Zvoch, Keith
2017-10-01
This study examines science interests, efficacy, attitudes, and identity—referred to as affinities, in the context of an informal science outreach program for girls. A mixed methods design was used to explore girls' science affinities before, during, and after participation in a cohort-based summer science camp. Multivariate analysis of survey data revealed that girls' science affinities varied as a function of the joint relationship between family background and number of years in the program, with girls from more affluent families predicted to increase affinities over time and girls from lower income families to experience initial gains in affinities that diminish over time. Qualitative examination of girls' perspectives on gender and science efficacy, attitudes toward science, and elements of science identities revealed a complex interplay of gendered stereotypes of science and girls' personal desires to prove themselves knowledgeable and competent scientists. Implications for the best practice in fostering science engagement and identities in middle school-aged girls are discussed.
Beyond Helper Phage: Using "Helper Cells" to Select Peptide Affinity Ligands.
Directory of Open Access Journals (Sweden)
M Lisa Phipps
Full Text Available Peptides are important affinity ligands for microscopy, biosensing, and targeted delivery. However, because they can have low affinity for their targets, their selection from large naïve libraries can be challenging. When selecting peptidic ligands from display libraries, it is important to: 1 ensure efficient display; 2 maximize the ability to select high affinity ligands; and 3 minimize the effect of the display context on binding. The "helper cell" packaging system has been described as a tool to produce filamentous phage particles based on phagemid constructs with varying display levels, while remaining free of helper phage contamination. Here we report on the first use of this system for peptide display, including the systematic characterization and optimization of helper cells, their inefficient use in antibody display and their use in creating and selecting from a set of phage display peptide libraries. Our libraries were analyzed with unprecedented precision by standard or deep sequencing, and shown to be superior in quality than commercial gold standards. Using our helper cell libraries, we have obtained ligands recognizing Yersinia pestis surface antigen F1V and L-glutamine-binding periplasmic protein QBP. In the latter case, unlike any of the peptide library selections described so far, we used a combination of phage and yeast display to select intriguing peptide ligands. Based on the success of our selections we believe that peptide libraries obtained with helper cells are not only suitable, but preferable to traditional phage display libraries for selection of peptidic ligands.
Yoshimi, T; Kawabata, S; Taira, S; Okuno, A; Mikawa, R; Murayama, S; Tanaka, K; Takikawa, O
2015-11-07
A novel screening system, using affinity imaging mass spectrometry (AIMS), has been developed to identify protein aggregates or organ structures in unfixed human tissue. Frozen tissue sections are positioned on small (millimetre-scale) stainless steel chips and incubated with an extensive library of small molecules. Candidate molecules showing specific affinity for the tissue section are identified by imaging mass spectrometry (IMS). As an example application, we screened over a thousand compounds against Alzheimer's disease (AD) brain tissue and identified several compounds with high affinity for AD brain sections containing tau deposits compared to age-matched controls. It should also be possible to use AIMS to isolate chemical compounds with affinity for tissue structures or components that have been extensively modified by events such as oxidation, phosphorylation, acetylation, aggregation, racemization or truncation, for example, due to aging. It may also be applicable to biomarker screening programs.
International Nuclear Information System (INIS)
Murfi, Hendri; Basaruddin, T.
2001-01-01
The interior point method for linear programming has gained extraordinary interest as an alternative to simplex method since Karmarkar presented a polynomial-time algorithm for linear programming based on interior point method. In implementation of the algorithm of this method, there are two important things that have impact heavily to performance of the algorithm; they are data structure and used method to solve linear equation system in the algorithm. This paper describes about solving linear equation system in variants of the algorithm called dual-affine scaling algorithm. Next, we evaluate experimentally results of some used methods, either direct method or iterative method. The experimental evaluation used Matlab
International Nuclear Information System (INIS)
Moaddel, Ruin; Wainer, Irving W.
2006-01-01
Membranes obtained from cell lines that express or do not express a target membrane bound protein have been immobilized on a silica-based liquid chromatographic support or on the surface of an activated glass capillary. The resulting chromatographic columns have been placed in liquid chromatographic systems and used to characterize the target proteins and to identify small molecules that bind to the target. Membranes containing ligand gated ion channels, G-protein coupled receptors and drug transporters have been prepared and characterized. If a marker ligand has been identified for the target protein, frontal or zonal displacement chromatographic techniques can be used to determine binding affinities (K d values) and non-linear chromatography can be used to assess the association (k on ) and dissociation (k off ) rate constants and the thermodynamics of the binding process. Membrane-based affinity columns have been created using membranes from a cell line that does not express the target protein (control) and the same cell line that expresses the target protein (experimental) after genomic transfection. The resulting columns can be placed in a parallel chromatography system and the differential retention between the control and experimental columns can be used to identify small molecules and protein that bind to the target protein. These applications will be illustrated using columns created using cellular membranes containing nicotinic acetylcholine receptors and the drug transporter P-glycoprotein
Energy Technology Data Exchange (ETDEWEB)
Moaddel, Ruin [Gerontology Research Center, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224-6825 (United States); Wainer, Irving W. [Gerontology Research Center, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224-6825 (United States)]. E-mail: Wainerir@grc.nia.nih.gov
2006-03-30
Membranes obtained from cell lines that express or do not express a target membrane bound protein have been immobilized on a silica-based liquid chromatographic support or on the surface of an activated glass capillary. The resulting chromatographic columns have been placed in liquid chromatographic systems and used to characterize the target proteins and to identify small molecules that bind to the target. Membranes containing ligand gated ion channels, G-protein coupled receptors and drug transporters have been prepared and characterized. If a marker ligand has been identified for the target protein, frontal or zonal displacement chromatographic techniques can be used to determine binding affinities (K {sub d} values) and non-linear chromatography can be used to assess the association (k {sub on}) and dissociation (k {sub off}) rate constants and the thermodynamics of the binding process. Membrane-based affinity columns have been created using membranes from a cell line that does not express the target protein (control) and the same cell line that expresses the target protein (experimental) after genomic transfection. The resulting columns can be placed in a parallel chromatography system and the differential retention between the control and experimental columns can be used to identify small molecules and protein that bind to the target protein. These applications will be illustrated using columns created using cellular membranes containing nicotinic acetylcholine receptors and the drug transporter P-glycoprotein.
Acar, T.; Lauter, K.; Naehrig, M.; Shumow, D.; Abdalla, M.; Lange, T.
2013-01-01
We report on relative performance numbers for affine and projective pairings on a dual-core Cortex A9 ARM processor. Using a fast inversion in the base field and doing inversion in extension fields by using the norm map to reduce to inversions in smaller fields, we find a very low ratio of
Affine planes, ternary rings, and examples of non-Desarguesian planes
Ivanov, Nikolai V.
2016-01-01
The paper is devoted to a detailed self-contained exposition of a part of the theory of affine planes leading to a construction of affine (or, equivalently, projective) planes not satisfying the Desarques axiom. It is intended to complement the introductory expositions of the theory of affine and projective planes. A novelty of our exposition is a new notation for the ternary operation in a ternary ring, much more suggestive than the standard one.
Wang, Xiaolei
2014-12-12
Background: A quantitative understanding of interactions between transcription factors (TFs) and their DNA binding sites is key to the rational design of gene regulatory networks. Recent advances in high-throughput technologies have enabled high-resolution measurements of protein-DNA binding affinity. Importantly, such experiments revealed the complex nature of TF-DNA interactions, whereby the effects of nucleotide changes on the binding affinity were observed to be context dependent. A systematic method to give high-quality estimates of such complex affinity landscapes is, thus, essential to the control of gene expression and the advance of synthetic biology. Results: Here, we propose a two-round prediction method that is based on support vector regression (SVR) with weighted degree (WD) kernels. In the first round, a WD kernel with shifts and mismatches is used with SVR to detect the importance of subsequences with different lengths at different positions. The subsequences identified as important in the first round are then fed into a second WD kernel to fit the experimentally measured affinities. To our knowledge, this is the first attempt to increase the accuracy of the affinity prediction by applying two rounds of string kernels and by identifying a small number of crucial k-mers. The proposed method was tested by predicting the binding affinity landscape of Gcn4p in Saccharomyces cerevisiae using datasets from HiTS-FLIP. Our method explicitly identified important subsequences and showed significant performance improvements when compared with other state-of-the-art methods. Based on the identified important subsequences, we discovered two surprisingly stable 10-mers and one sensitive 10-mer which were not reported before. Further test on four other TFs in S. cerevisiae demonstrated the generality of our method. Conclusion: We proposed in this paper a two-round method to quantitatively model the DNA binding affinity landscape. Since the ability to modify
Directory of Open Access Journals (Sweden)
Keisuke Fukunaga
2012-01-01
Full Text Available Phage display technology is undoubtedly a powerful tool for affinity selection of target-specific peptide. Commercially available premade phage libraries allow us to take screening in the easiest way. On the other hand, construction of a custom phage library seems to be inaccessible, because several practical tips are absent in instructions. This paper focuses on what should be born in mind for beginners using commercially available cloning kits (Ph.D. with type 3 vector and T7Select systems for M13 and T7 phage, respectively. In the M13 system, Pro or a basic amino acid (especially, Arg should be avoided at the N-terminus of peptide fused to gp3. In both systems, peptides containing odd number(s of Cys should be designed with caution. Also, DNA sequencing of a constructed library before biopanning is highly recommended for finding unexpected bias.
Fermionic construction of vertex operators for twisted affine algebras
International Nuclear Information System (INIS)
Frappat, L.; Sorba, P.; Sciarrino, A.
1988-03-01
We construct vertex operator representations of the twisted affine algebras in terms of fermionic (or parafermionic in some cases) elementary fields. The folding method applied to the extended Dynkin diagrams of the affine algebras allows us to determine explicitly these fermionic fields as vertex operators
Excited state electron affinity calculations for aluminum
Hussein, Adnan Yousif
2017-08-01
Excited states of negative aluminum ion are reviewed, and calculations of electron affinities of the states (3s^23p^2)^1D and (3s3p^3){^5}{S}° relative to the (3s^23p)^2P° and (3s3p^2)^4P respectively of the neutral aluminum atom are reported in the framework of nonrelativistic configuration interaction (CI) method. A priori selected CI (SCI) with truncation energy error (Bunge in J Chem Phys 125:014107, 2006) and CI by parts (Bunge and Carbó-Dorca in J Chem Phys 125:014108, 2006) are used to approximate the valence nonrelativistic energy. Systematic studies of convergence of electron affinity with respect to the CI excitation level are reported. The calculated value of the electron affinity for ^1D state is 78.675(3) meV. Detailed Calculations on the ^5S°c state reveals that is 1216.8166(3) meV below the ^4P state.
Supramolecular Affinity Chromatography for Methylation-Targeted Proteomics.
Garnett, Graham A E; Starke, Melissa J; Shaurya, Alok; Li, Janessa; Hof, Fraser
2016-04-05
Proteome-wide studies of post-translationally methylated species using mass spectrometry are complicated by high sample diversity, competition for ionization among peptides, and mass redundancies. Antibody-based enrichment has powered methylation proteomics until now, but the reliability, pan-specificity, polyclonal nature, and stability of the available pan-specific antibodies are problematic and do not provide a standard, reliable platform for investigators. We have invented an anionic supramolecular host that can form host-guest complexes selectively with methyllysine-containing peptides and used it to create a methylysine-affinity column. The column resolves peptides on the basis of methylation-a feat impossible with a comparable commercial cation-exchange column. A proteolyzed nuclear extract was separated on the methyl-affinity column prior to standard proteomics analysis. This experiment demonstrates that such chemical methyl-affinity columns are capable of enriching and improving the analysis of methyllysine residues from complex protein mixtures. We discuss the importance of this advance in the context of biomolecule-driven enrichment methods.
Single-cell measurement of red blood cell oxygen affinity
Caprio, Di; Stokes, Chris; Higgins, John M.; Schonbrun, Ethan
2015-01-01
Oxygen is transported throughout the body by hemoglobin in red blood cells. While the oxygen affinity of blood is well understood and is routinely assessed in patients by pulse oximetry, variability at the single-cell level has not been previously measured. In contrast, single-cell measurements of red blood cell volume and hemoglobin concentration are taken millions of times per day by clinical hematology analyzers and are important factors in determining the health of the hematologic system....
Surface sensitization mechanism on negative electron affinity p-GaN nanowires
Diao, Yu; Liu, Lei; Xia, Sihao; Feng, Shu; Lu, Feifei
2018-03-01
The surface sensitization is the key to prepare negative electron affinity photocathode. The thesis emphasizes on the study of surface sensitization mechanism of p-type doping GaN nanowires utilizing first principles based on density function theory. The adsorption energy, work function, dipole moment, geometry structure, electronic structure and optical properties of Mg-doped GaN nanowires surfaces with various coverages of Cs atoms are investigated. The GaN nanowire with Mg doped in core position is taken as the sensitization base. At the initial stage of sensitization, the best adsorption site for Cs atom on GaN nanowire surface is BN, the bridge site of two adjacent N atoms. Surface sensitization generates a p-type internal surface with an n-type surface state, introducing a band bending region which can help reduce surface barrier and work function. With increasing Cs coverage, work functions decrease monotonously and the "Cs-kill" phenomenon disappears. For Cs coverage of 0.75 ML and 1 ML, the corresponding sensitization systems reach negative electron affinity state. Through surface sensitization, the absorption curves are red shifted and the absorption coefficient is cut down. All theoretical calculations can guide the design of negative electron affinity Mg doped GaN nanowires photocathode.
ABEE, T; SIEBERS, A; ALTENDORF, K; KONINGS, WN
1992-01-01
Cells of the purple nonsulfur bacterium Rhodobacter sphaeroides express a high-affinity K+ uptake system when grown in media with low K+ concentrations. A vanadate-sensitive, K+-stimulated and Mg2+-stimulated ATPase was purified from membranes of these cells by solubilization with
International Nuclear Information System (INIS)
Murphy, G.L.
1975-01-01
The general topic of geometric unified field theories is discussed in the first section. Some reasons are given for pursuing such theories, and some criticisms are considered. The second section develops the fundamental equations of a purely affine theory which is invariant under projective transformations of the affine connection. This theory is a generalization of that of Schrodinger. Possible identifications for the space-time metric are considered in Sec. III. Sections IV and V deal with the limits of pure gravitation and electrodynamics. In the symmetric limit, Einstein's vacuum equations with cosmological term are recovered. The theory also contains a generalized electrodynamic set of equations which is very similar to the Born-Infeld set. In the weak-field approximation, a finite mass must be attributed to the photon. The problem of motion for charges is discussed here, and it is argued that criticisms of unified field theories because of a supposed inability to produce the Lorentz force law are probably not justified. Three more speculative sections deal with possible explanations of nuclear forces, the spin-torsion relation, and particle structure
PRINCIPLES OF AFFINITY-BASED BIOSENSORS
Despite the amount of resources that have been invested by national and international academic, government, and commercial sectors to develop affinity-based biosensor products, little obvious success has been realized through commercialization of these devices for specific applic...
Polynomial Primal-Dual Cone Affine Scaling for Semidefinite Programming
A.B. Berkelaar (Arjan); J.F. Sturm; S. Zhang (Shuzhong)
1996-01-01
textabstractIn this paper we generalize the primal--dual cone affine scaling algorithm of Sturm and Zhang to semidefinite programming. We show in this paper that the underlying ideas of the cone affine scaling algorithm can be naturely applied to semidefinite programming, resulting in a new
Non-contact adhesion to self-affine surfaces: A theoretical model
Energy Technology Data Exchange (ETDEWEB)
Makeev, Maxim A., E-mail: makeev@umich.edu
2013-11-22
Strength of adhesion between materials is known to be strongly influenced by interface irregularities. In this work, I devise a perturbative approach to describe the effect of self-affine roughness on non-contact adhesive interactions. The hierarchy of the obtained analytical solutions is the following. First, analytical formulae are deduced to describe roughness corrections to the van der Waals interaction energies between a hemi-space adherend, bounded by a self-affine surface, and a point-like adherent. Second, the problem of two hemi-spaces, one of which has a planar surface, and the other is bounded by a self-affine surface, is solved analytically. In the latter case, a numerical analysis is performed to delineate the behavior of the roughness corrections as a function of the parameters, characterizing self-affine fractal surface roughness. The problem of two hemi-spaces, both bounded by self-affine fractal surfaces, is also addressed in this work. The model's predictions are compared with previously reported theoretical results and available experimental data.
Self-affine roughness influence on redox reaction charge admittance
Palasantzas, G
2005-01-01
In this work we investigate the influence of self-affine electrode roughness on the admittance of redox reactions during facile charge transfer kinetics. The self-affine roughness is characterized by the rms roughness amplitude w, the correlation length xi and the roughness exponent H (0
Affine Toda equations and solutions in the homogeneous grading
Czech Academy of Sciences Publication Activity Database
Zuevsky, Alexander
2018-01-01
Roč. 542, April 1 (2018), s. 149-161 ISSN 0024-3795 Institutional support: RVO:67985840 Keywords : affine Lie gebras * affine Toda modes * solitons Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 0.973, year: 2016 https://www.sciencedirect.com/science/article/pii/S0024379517302100
Binding affinities of anti-acetylcholine receptor autoantibodies in myasthenia gravis
Energy Technology Data Exchange (ETDEWEB)
Bray, J.J.; Drachman, D.B.
1982-01-01
Antibodies directed against acetylcholine (ACh) receptors are present in the sera of nearly 90% of patients with myasthenia gravis (MG), and are involved in the pathogenesis of this autoimmune disease. However, the antibody titers measured by the standard radioimmunoassay correspond poorly with the clinical severity of the disease. To determine whether this disparity could be accounted for by differences in the binding affinities of anti-ACh receptor antibodies in different patients, we have measured the binding affinities of these autoantibodies in 15 sera from MG patients. The affinity constants (K/sub o/), as determined by Scatchard analysis, were all in the range of 10/sup 10/ M/sup -1/, comparable to the highest values reported in immunized animals. The affinity constants were truly representative of the population of autoantibodies detected by the radioimmunoassay, as shown by the remarkable linearity of the Scatchard plots (r/sup 2/>0.90) and the close correlation between the antibody titers determined by extrapolation of the Scatchard plots and by saturation analysis (r = 0.99; p < 0.001). There was only a 6-fold variation in affinity constants measured in this series of patients despite widely differing antibody titers and severity of the disease. Factors other than the titer and affinity of anti-ACh receptor antibodies may correlate better with the clinical manifestations of MG.
Generators, Relations and Symmetries in Pairs of 3x3 Unimodular Matrices
Lawton, Sean
2006-01-01
Denote the free group on two letters by F2 and the SL(3,C)-representation variety of F2 by R = Hom(F2, SL(3,C)). There is a SL(3,C)-action on the coordinate ring of R, and the geometric points of the subring of invariants is an affine variety X. We determine explicit minimal generators and defining relations for the subring of invariants and show X is a degree 6 hyper-surface in C9 mapping onto C8. Our choice of generators exhibit Out(F2) symmetries which allow for a succinct expression of th...
Multichannel Filtered-X Error Coded Affine Projection-Like Algorithm with Evolving Order
Directory of Open Access Journals (Sweden)
J. G. Avalos
2017-01-01
Full Text Available Affine projection (AP algorithms are commonly used to implement active noise control (ANC systems because they provide fast convergence. However, their high computational complexity can restrict their use in certain practical applications. The Error Coded Affine Projection-Like (ECAP-L algorithm has been proposed to reduce the computational burden while maintaining the speed of AP, but no version of this algorithm has been derived for active noise control, for which the adaptive structures are very different from those of other configurations. In this paper, we introduce a version of the ECAP-L for single-channel and multichannel ANC systems. The proposed algorithm is implemented using the conventional filtered-x scheme, which incurs a lower computational cost than the modified filtered-x structure, especially for multichannel systems. Furthermore, we present an evolutionary method that dynamically decreases the projection order in order to reduce the dimensions of the matrix used in the algorithm’s computations. Experimental results demonstrate that the proposed algorithm yields a convergence speed and a final residual error similar to those of AP algorithms. Moreover, it achieves meaningful computational savings, leading to simpler hardware implementation of real-time ANC applications.
An improved affine projection algorithm for active noise cancellation
Zhang, Congyan; Wang, Mingjiang; Han, Yufei; Sun, Yunzhuo
2017-08-01
Affine projection algorithm is a signal reuse algorithm, and it has a good convergence rate compared to other traditional adaptive filtering algorithm. There are two factors that affect the performance of the algorithm, which are step factor and the projection length. In the paper, we propose a new variable step size affine projection algorithm (VSS-APA). It dynamically changes the step size according to certain rules, so that it can get smaller steady-state error and faster convergence speed. Simulation results can prove that its performance is superior to the traditional affine projection algorithm and in the active noise control (ANC) applications, the new algorithm can get very good results.
Phosphopeptide enrichment by immobilized metal affinity chromatography
DEFF Research Database (Denmark)
Thingholm, Tine E.; Larsen, Martin R.
2016-01-01
Immobilized metal affinity chromatography (IMAC) has been the method of choice for phosphopeptide enrichment prior to mass spectrometric analysis for many years and it is still used extensively in many laboratories. Using the affinity of negatively charged phosphate groups towards positively...... charged metal ions such as Fe3+, Ga3+, Al3+, Zr4+, and Ti4+ has made it possible to enrich phosphorylated peptides from peptide samples. However, the selectivity of most of the metal ions is limited, when working with highly complex samples, e.g., whole-cell extracts, resulting in contamination from...
Hamdy, M; Hamdan, I
2015-07-01
In this paper, a robust H∞ fuzzy output feedback controller is designed for a class of affine nonlinear systems with disturbance via Takagi-Sugeno (T-S) fuzzy bilinear model. The parallel distributed compensation (PDC) technique is utilized to design a fuzzy controller. The stability conditions of the overall closed loop T-S fuzzy bilinear model are formulated in terms of Lyapunov function via linear matrix inequality (LMI). The control law is robustified by H∞ sense to attenuate external disturbance. Moreover, the desired controller gains can be obtained by solving a set of LMI. A continuous stirred tank reactor (CSTR), which is a benchmark problem in nonlinear process control, is discussed in detail to verify the effectiveness of the proposed approach with a comparative study. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
DEFF Research Database (Denmark)
Graversen, Jonas Heilskov; Jacobsen, C; Sigurskjold, B W
2000-01-01
-type lectin-like domain of tetranectin, involving Lys-148, Glu-150, and Asp-165, which mediates calcium-sensitive binding to plasminogen kringle 4. Here, we investigate the effect of conservative substitutions of these and a neighboring amino acid residue. Substitution of Thr-149 in tetranectin...... with a tyrosine residue considerably increases the affinity for plasminogen kringle 4, and, in addition, confers affinity for plasminogen kringle 2. As shown by isothermal titration calorimetry analysis, this new interaction is stronger than the binding of wild-type tetranectin to plasminogen kringle 4...
A method that reveals the multi-level ultrametric tree hidden in p -spin-glass-like systems
International Nuclear Information System (INIS)
Baviera, R; Virasoro, M A
2015-01-01
In the study of disordered models like spin glasses the key object of interest is the rugged energy hypersurface defined in configuration space. The statistical mechanics calculation of the Gibbs–Boltzmann partition function gives the information necessary to understand the equilibrium behavior of the system as a function of the temperature but is not enough if we are interested in the more general aspects of the hypersurface: it does not give us, for instance, the different degrees of ruggedness at different scales. In the context of the replica symmetry breaking (RSB) approach we discuss here a rather simple extension that can provide a much more detailed picture. The attractiveness of the method relies on the fact that it is conceptually transparent and the additional calculations are rather straightforward. We think that this approach reveals an ultrametric organisation with many levels in models like p-spin glasses when we include saddle points. In this first paper we present detailed calculations for the spherical p-spin glass model where we discover that the corresponding decreasing Parisi function q(x) codes this hidden ultrametric organisation. (paper)
Integrable deformations of affine Toda theories and duality
International Nuclear Information System (INIS)
Fateev, V.A.
1996-01-01
We introduce and study five series of one-parameter families of two-dimensional integrable quantum field theories. These theories have a Lagrangian description in terms of the massive Thirring model coupled with non-simply laced affine Toda theories. Perturbative calculations, analysis of the factorized scattering theory and the Bethe ansatz technique are used to show that these field theories possess the dual representation available for the perturbative analysis in the strong coupling limit. The dual theory can be formulated as the non-linear sigma model with Witten's Euclidean black hole metric (complex sinh-Gordon theory) coupled with non-simply laced affine Toda theories. Lie algebras associated with these ''dual'' Toda theories belong to the dual series of affine algebras but have a smaller rank. The exact relation between coupling constants in the dual theories is conjectured. (orig.)
2D Affine and Projective Shape Analysis.
Bryner, Darshan; Klassen, Eric; Huiling Le; Srivastava, Anuj
2014-05-01
Current techniques for shape analysis tend to seek invariance to similarity transformations (rotation, translation, and scale), but certain imaging situations require invariance to larger groups, such as affine or projective groups. Here we present a general Riemannian framework for shape analysis of planar objects where metrics and related quantities are invariant to affine and projective groups. Highlighting two possibilities for representing object boundaries-ordered points (or landmarks) and parameterized curves-we study different combinations of these representations (points and curves) and transformations (affine and projective). Specifically, we provide solutions to three out of four situations and develop algorithms for computing geodesics and intrinsic sample statistics, leading up to Gaussian-type statistical models, and classifying test shapes using such models learned from training data. In the case of parameterized curves, we also achieve the desired goal of invariance to re-parameterizations. The geodesics are constructed by particularizing the path-straightening algorithm to geometries of current manifolds and are used, in turn, to compute shape statistics and Gaussian-type shape models. We demonstrate these ideas using a number of examples from shape and activity recognition.
A pharmacological profile of the high-affinity GluK5 kainate receptor
DEFF Research Database (Denmark)
Møllerud, Stine; Kastrup, Jette Sandholm Jensen; Pickering, Darryl S
2016-01-01
-hydroxyisoxazol-4-yl)propionate (ATPA), dihydrokainate and (2 S,4 R)−4-methyl-glutamate (SYM2081) have higher affinity at GluK3 compared to GluK5. Since some studies have indicated that GluK5 is associated with various diseases in the central nervous system (e.g. schizophrenia, temporal lobe epilepsy, bipolar...
J.F. Sturm; J. Zhang (Shuzhong)
1996-01-01
textabstractIn this paper we introduce a primal-dual affine scaling method. The method uses a search-direction obtained by minimizing the duality gap over a linearly transformed conic section. This direction neither coincides with known primal-dual affine scaling directions (Jansen et al., 1993;
The topological entropy of iterated piecewise affine maps is uncomputable
Directory of Open Access Journals (Sweden)
Pascal Koiran
2001-12-01
Full Text Available We show that it is impossible to compute (or even to approximate the topological entropy of a continuous piecewise affine function in dimension four. The same result holds for saturated linear functions in unbounded dimension. We ask whether the topological entropy of a piecewise affine function is always a computable real number, and conversely whether every non-negative computable real number can be obtained as the topological entropy of a piecewise affine function. It seems that these two questions are also open for cellular automata.
Low affinity uniporter carrier proteins can increase net substrate uptake rate by reducing efflux
Bosdriesz, Evert; Wortel, Meike T.; Haanstra, Jurgen R.; Wagner, Marijke J.; De La Torre Cortés, Pilar; Teusink, Bas
2018-01-01
Many organisms have several similar transporters with different affinities for the same substrate. Typically, high-affinity transporters are expressed when substrate is scarce and low-affinity ones when it is abundant. The benefit of using low instead of high-affinity transporters remains unclear,
Low affinity uniporter carrier proteins can increase net substrate uptake rate by reducing efflux
Bosdriesz, Evert; Wortel, M.T.; Haanstra, Jurgen R.; Wagner, Marijke J.; De La Torre, P.; Teusink, Bas
2018-01-01
Many organisms have several similar transporters with different affinities for the same substrate. Typically, high-affinity transporters are expressed when substrate is scarce and low-affinity ones when it is abundant. The benefit of using low instead of high-affinity transporters remains
Affinity biosensors: techniques and protocols
National Research Council Canada - National Science Library
Rogers, Kim R; Mulchandani, Ashok
1998-01-01
..., and government to begin or expand their biosensors research. This volume, Methods in Biotechnology vol. 7: Affinity Biosensors: Techniques and Protocols, describes a variety of classical and emerging transduction technologies that have been interfaced to bioaffinity elements (e.g., antibodies and receptors). Some of the reas...
Dos Santos, P Lopes; Deshpande, Sunil; Rivera, Daniel E; Azevedo-Perdicoúlis, T-P; Ramos, J A; Younger, Jarred
2013-12-31
There is good evidence that naltrexone, an opioid antagonist, has a strong neuroprotective role and may be a potential drug for the treatment of fibromyalgia. In previous work, some of the authors used experimental clinical data to identify input-output linear time invariant models that were used to extract useful information about the effect of this drug on fibromyalgia symptoms. Additional factors such as anxiety, stress, mood, and headache, were considered as additive disturbances. However, it seems reasonable to think that these factors do not affect the drug actuation, but only the way in which a participant perceives how the drug actuates on herself. Under this hypothesis the linear time invariant models can be replaced by State-Space Affine Linear Parameter Varying models where the disturbances are seen as a scheduling signal signal only acting at the parameters of the output equation. In this paper a new algorithm for identifying such a model is proposed. This algorithm minimizes a quadratic criterion of the output error. Since the output error is a linear function of some parameters, the Affine Linear Parameter Varying system identification is formulated as a separable nonlinear least squares problem. Likewise other identification algorithms using gradient optimization methods several parameter derivatives are dynamical systems that must be simulated. In order to increase time efficiency a canonical parametrization that minimizes the number of systems to be simulated is chosen. The effectiveness of the algorithm is assessed in a case study where an Affine Parameter Varying Model is identified from the experimental data used in the previous study and compared with the time-invariant model.
Dynamics, integrability and topology for some classes of Kolmogorov Hamiltonian systems in R+4
Llibre, Jaume; Xiao, Dongmei
2017-02-01
In this paper we first give the sufficient and necessary conditions in order that two classes of polynomial Kolmogorov systems in R+4 are Hamiltonian systems. Then we study the integrability of these Hamiltonian systems in the Liouville sense. Finally, we investigate the global dynamics of the completely integrable Lotka-Volterra Hamiltonian systems in R+4. As an application of the invariant subsets of these systems, we obtain topological classifications of the 3-submanifolds in R+4 defined by the hypersurfaces axy + bzw + cx2 y + dxy2 + ez2 w + fzw2 = h, where a , b , c , d , e , f , w and h are real constants.
The affine quantum gravity programme
Klauder, J R
2002-01-01
The central principle of affine quantum gravity is securing and maintaining the strict positivity of the matrix left brace g-hat sub a sub b (x)right brace composed of the spatial components of the local metric operator. On spectral grounds, canonical commutation relations are incompatible with this principle, and they must be replaced by noncanonical, affine commutation relations. Due to the partial second-class nature of the quantum gravitational constraints, it is advantageous to use the recently developed projection operator method, which treats all quantum constraints on an equal footing. Using this method, enforcement of regularized versions of the gravitational operator constraints is formulated quite naturally by means of a novel and relatively well-defined functional integral involving only the same set of variables that appears in the usual classical formulation. It is anticipated that skills and insight to study this formulation can be developed by studying special, reduced-variable models that sti...
Affinity resins as new tools for identifying target proteins of ascorbic acid.
Iwaoka, Yuji; Nishino, Kohei; Ishikawa, Takahiro; Ito, Hideyuki; Sawa, Yoshihiro; Tai, Akihiro
2018-02-12
l-Ascorbic acid (AA) has diverse physiological functions, but little is known about the functional mechanisms of AA. In this study, we synthesized two types of affinity resin on which AA is immobilized in a stable form to identify new AA-targeted proteins, which can provide important clues for elucidating unknown functional mechanisms of AA. To our knowledge, an affinity resin on which AA as a ligand is immobilized has not been prepared, because AA is very unstable and rapidly degraded in an aqueous solution. By using the affinity resins, cytochrome c (cyt c) was identified as an AA-targeted protein, and we showed that oxidized cyt c exhibits specific affinity for AA. These results suggest that two kinds of AA-affinity resin can be powerful tools to identify new target proteins of AA.
On local invariants of singular symplectic forms
Domitrz, Wojciech
2017-04-01
We find a complete set of local invariants of singular symplectic forms with the structurally stable Martinet hypersurface on a 2 n-dimensional manifold. In the C-analytic category this set consists of the Martinet hypersurface Σ2, the restriction of the singular symplectic form ω to TΣ2 and the kernel of ω n - 1 at the point p ∈Σ2. In the R-analytic and smooth categories this set contains one more invariant: the canonical orientation of Σ2. We find the conditions to determine the kernel of ω n - 1 at p by the other invariants. In dimension 4 we find sufficient conditions to determine the equivalence class of a singular symplectic form-germ with the structurally smooth Martinet hypersurface by the Martinet hypersurface and the restriction of the singular symplectic form to it. We also study the singular symplectic forms with singular Martinet hypersurfaces. We prove that the equivalence class of such singular symplectic form-germ is determined by the Martinet hypersurface, the canonical orientation of its regular part and the restriction of the singular symplectic form to its regular part if the Martinet hypersurface is a quasi-homogeneous hypersurface with an isolated singularity.
Directory of Open Access Journals (Sweden)
Greg Hussack
2017-10-01
Full Text Available ABTAG is a camelid single-domain antibody (sdAb that binds to bovine serum albumin (BSA with low picomolar affinity. In surface plasmon resonance (SPR analyses using BSA surfaces, bound ABTAG can be completely dissociated from the BSA surfaces at low pH, over multiple cycles, without any reduction in the capacity of the BSA surfaces to bind ABTAG. A moderate throughput, SPR-based, antibody screening assay exploiting the unique features of ABTAG is described. Anti-carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6 sdAbs were isolated from a phage-displayed sdAb library derived from the heavy chain antibody repertoire of a llama immunized with CEACAM6. Following one or two rounds of panning, enriched clones were expressed as ABTAG fusions in microtiter plate cultures. The sdAb-ABTAG fusions from culture supernatants were captured on BSA surfaces and CEACAM6 antigen was then bound to the captured molecules. The SPR screening method gives a read-out of relative expression levels of the fusion proteins and kinetic and affinity constants for CEACAM6 binding by the captured molecules. The library was also panned and screened by conventional methods and positive clones were subcloned and expressed for SPR analysis. Compared to conventional panning and screening, the SPR-based ABTAG method yielded a considerably higher diversity of binders, some with affinities that were three orders of magnitude higher affinity than those identified by conventional panning.
Alkali Metal Cation Affinities of Anionic Main Group-Element Hydrides Across the Periodic Table.
Boughlala, Zakaria; Fonseca Guerra, Célia; Bickelhaupt, F Matthias
2017-10-05
We have carried out an extensive exploration of gas-phase alkali metal cation affinities (AMCA) of archetypal anionic bases across the periodic system using relativistic density functional theory at ZORA-BP86/QZ4P//ZORA-BP86/TZ2P. AMCA values of all bases were computed for the lithium, sodium, potassium, rubidium and cesium cations and compared with the corresponding proton affinities (PA). One purpose of this work is to provide an intrinsically consistent set of values of the 298 K AMCAs of all anionic (XH n-1 - ) constituted by main group-element hydrides of groups 14-17 along the periods 2-6. In particular, we wish to establish the trend in affinity for a cation as the latter varies from proton to, and along, the alkali cations. Our main purpose is to understand these trends in terms of the underlying bonding mechanism using Kohn-Sham molecular orbital theory together with a quantitative bond energy decomposition analyses (EDA). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Grillo-Puertas, Mariana; Schurig-Briccio, Lici Ariane; Rodríguez-Montelongo, Luisa; Rintoul, María Regina; Rapisarda, Viviana Andrea
2014-03-19
Metal tolerance in bacteria has been related to polyP in a model in which heavy metals stimulate the polymer hydrolysis, forming metal-phosphate complexes that are exported. As previously described in our laboratory, Escherichia coli cells grown in media containing a phosphate concentration >37 mM maintained an unusually high polyphosphate (polyP) level in stationary phase. The aim of the present work was to evaluate the influence of polyP levels as the involvement of low-affinity inorganic phosphate transport (Pit) system in E. coli copper tolerance. PolyP levels were modulated by the media phosphate concentration and/or using mutants in polyP metabolism. Stationary phase wild-type cells grown in high phosphate medium were significantly more tolerant to copper than those grown in sufficient phosphate medium. Copper addition to tolerant cells induced polyP degradation by PPX (an exopolyphosphatase), phosphate efflux and membrane polarization. ppk-ppx- (unable to synthesize/degrade polyP), ppx- (unable to degrade polyP) and Pit system mutants were highly sensitive to metal even in high phosphate media. In exponential phase, CopA and polyP-Pit system would act simultaneously to detoxify the metal or one could be sufficient to safeguard the absence of the other. Our results support a mechanism for copper detoxification in exponential and stationary phases of E. coli, involving Pit system and degradation of polyP. Data reflect the importance of the environmental phosphate concentration in the regulation of the microbial physiological state.
Traceless affinity labeling of endogenous proteins for functional analysis in living cells.
Hayashi, Takahiro; Hamachi, Itaru
2012-09-18
Protein labeling and imaging techniques have provided tremendous opportunities to study the structure, function, dynamics, and localization of individual proteins in the complex environment of living cells. Molecular biology-based approaches, such as GFP-fusion tags and monoclonal antibodies, have served as important tools for the visualization of individual proteins in cells. Although these techniques continue to be valuable for live cell imaging, they have a number of limitations that have only been addressed by recent progress in chemistry-based approaches. These chemical approaches benefit greatly from the smaller probe sizes that should result in fewer perturbations to proteins and to biological systems as a whole. Despite the research in this area, so far none of these labeling techniques permit labeling and imaging of selected endogenous proteins in living cells. Researchers have widely used affinity labeling, in which the protein of interest is labeled by a reactive group attached to a ligand, to identify and characterize proteins. Since the first report of affinity labeling in the early 1960s, efforts to fine-tune the chemical structures of both the reactive group and ligand have led to protein labeling with excellent target selectivity in the whole proteome of living cells. Although the chemical probes used for affinity labeling generally inactivate target proteins, this strategy holds promise as a valuable tool for the labeling and imaging of endogenous proteins in living cells and by extension in living animals. In this Account, we summarize traceless affinity labeling, a technique explored mainly in our laboratory. In our overview of the different labeling techniques, we emphasize the challenge of designing chemical probes that allow for dissociation of the affinity module (often a ligand) after the labeling reaction so that the labeled protein retains its native function. This feature distinguishes the traceless labeling approach from the traditional
Affinity of Iresine herbstii and Brugmansia arborea extracts on different cerebral receptors.
Nencini, Cristina; Cavallo, Federica; Bruni, Giancarlo; Capasso, Anna; De Feo, Vincenzo; De Martino, Laura; Giorgi, Giorgio; Micheli, Lucia
2006-05-24
Iresine herbstii Hook. (Amaranthaceae) and Brugmansia arborea (L.) Lagerheim (Solanaceae) are used in the northern Peruvian Andes for magic-therapeutical purposes. The traditional healers use Iresine herbstii with the ritual aim to expel bad spirits from the body. Furthermore, Iresine herbstii was used in association with other plants, such as Trichocereus pachanoi Britt. et Rose, for divination, to diagnose diseases, and to take possession of another identity. Also, species of Brugmansia have been reported to be used during ritual practices for magical and curative purposes. Given the above evidence, the aim of the present study is to evaluate if the central effects of Iresine herbstii and Brugmansia arborea could be associated with interaction with SNC receptors. Two Iresine herbstii extracts (methanolic and aqueous) and one Brugmansia arborea aqueous extract were tested for in vitro affinity on 5-HT(1A), 5-HT(2A), 5-HT(2C), D1, D2, alpha(1), and alpha(2) receptors by radioligand binding assays. The biological materials for binding assay (cerebral cortex) were taken from male Sprague-Dawley rats. The extracts affinity for receptors is definite as inhibition percentage of radioligand/receptor binding and measured as the radioactivity of remaining complex radioligand/receptor. The data obtained for Iresine extracts have shown a low affinity for the 5-HT(1A) receptor and no affinity for 5-HT(2A) receptor. Otherwise the methanolic extract showed affinity for 5-HT(2C) receptor (IC(50): 34.78 microg/ml) and for D1 receptor (IC(50): 19.63 microg/ml), instead the Iresine aqueous extract displayed a lower affinity for D1 (48.3% at the maximum concentration tested) and a higher value of affinity for D2 receptors (IC(50): 32.08 microg/ml). The Brugmansia aqueous extract displayed affinity for D1 receptors (IC(50): 17.68 microg/ml), D2 receptors (IC(50): 15.95 microg/ml) and weak affinity for the serotoninergic receptors. None of the three extracts showed relevant affinity
Biochemical method for fast affinity diagnosis in grape-vine transplantation
International Nuclear Information System (INIS)
Lilov, D.
1977-01-01
Long term experiments have proved the affinity of cv. Mavroud in transplantations on various root stocks. Best affinity was observed in the combination cv. Mavroud X Riparia tomanteau, followed, in a descending order, by the combinations Mavroud X Mavroud (autotransplantation), Mavroud X Berlandieri X Riparia Kobber SBB and Mavroud X Riparia 33 EM. In view to establish indices for predicting the transplantation affinity a great number of physiological-biochemical and morphological-anatomical studies were carried out. The results obtained showed that a most clearly expressed positive, statistically significant correlation exists between the amount of 15 N transported from the root stock to the scions, shoots and leaves. As a result, a biochemical method for fast affinity diagnosis in grape-vine transplantation has been developed. The reliability of the method has been checked up also with other cultivars. Up to the present no such method was known in grape-vine science and practice. (author)
Methods for quantifying T cell receptor binding affinities and thermodynamics
Piepenbrink, Kurt H.; Gloor, Brian E.; Armstrong, Kathryn M.; Baker, Brian M.
2013-01-01
αβ T cell receptors (TCRs) recognize peptide antigens bound and presented by class I or class II major histocompatibility complex (MHC) proteins. Recognition of a peptide/MHC complex is required for initiation and propagation of a cellular immune response, as well as the development and maintenance of the T cell repertoire. Here we discuss methods to quantify the affinities and thermodynamics of interactions between soluble ectodomains of TCRs and their peptide/MHC ligands, focusing on titration calorimetry, surface plasmon resonance, and fluorescence anisotropy. As TCRs typically bind ligand with weak-to-moderate affinities, we focus the discussion on means to enhance the accuracy and precision of low affinity measurements. In addition to further elucidating the biology of the T cell mediated immune response, more reliable low affinity measurements will aid with more probing studies with mutants or altered peptides that can help illuminate the physical underpinnings of how TCRs achieve their remarkable recognition properties. PMID:21609868
Affinity purification using recombinant PXR as a tool to characterize environmental ligands.
Dagnino, Sonia; Bellet, Virginie; Grimaldi, Marina; Riu, Anne; Aït-Aïssa, Sélim; Cavaillès, Vincent; Fenet, Hélène; Balaguer, Patrick
2014-02-01
Many environmental endocrine disrupting compounds act as ligands for nuclear receptors. The human pregnane X receptor (hPXR), for instance, is activated by a variety of environmental ligands such as steroids, pharmaceutical drugs, pesticides, alkylphenols, polychlorinated biphenyls and polybromo diethylethers. Some of us have previously reported the occurrence of hPXR ligands in environmental samples but failed to identify them. The aim of this study was to test whether a PXR-affinity column, in which recombinant hPXR was immobilized on solid support, could help the purification of these chemicals. Using PXR ligands of different affinity (10 nM < EC50 < 10 μM), we demonstrated that the PXR-affinity preferentially column captured ligands with medium to high affinities (EC50 < 1 μM). Furthermore, by using the PXR-affinity column to analyze an environmental sample containing ERα, AhR, AR, and PXR activities, we show that (i) half of the PXR activity of the sample was due to compounds with medium to high affinity for PXR and (ii) PXR shared ligands with ERα, AR, and AhR. These findings demonstrate that the newly developed PXR-affinity column coupled to reporter cell lines represents a valuable tool for the characterization of the nature of PXR active compounds and should therefore guide and facilitate their further analysis. Copyright © 2012 Wiley Periodicals, Inc., a Wiley company.
Targeting Anti-Cancer Active Compounds: Affinity-Based Chromatographic Assays
de Moraes, Marcela Cristina; Cardoso, Carmen Lucia; Seidl, Claudia; Moaddel, Ruin; Cass, Quezia Bezerra
2016-01-01
Affinity-based chromatography assays encompass the use of solid supports containing immobilized biological targets to monitor binding events in the isolation , identification and/or characterization of bioactive compounds. This powerful bioanalytical technique allows the screening of potential binders through fast analyses that can be directly performed using isolated substances or complex matrices. An overview of the recent researches in frontal and zonal affinity-based chromatography screen...
Quantum image encryption based on generalized affine transform and logistic map
Liang, Hao-Ran; Tao, Xiang-Yang; Zhou, Nan-Run
2016-07-01
Quantum circuits of the generalized affine transform are devised based on the novel enhanced quantum representation of digital images. A novel quantum image encryption algorithm combining the generalized affine transform with logistic map is suggested. The gray-level information of the quantum image is encrypted by the XOR operation with a key generator controlled by the logistic map, while the position information of the quantum image is encoded by the generalized affine transform. The encryption keys include the independent control parameters used in the generalized affine transform and the logistic map. Thus, the key space is large enough to frustrate the possible brute-force attack. Numerical simulations and analyses indicate that the proposed algorithm is realizable, robust and has a better performance than its classical counterpart in terms of computational complexity.
Enhancing Community Detection By Affinity-based Edge Weighting Scheme
Energy Technology Data Exchange (ETDEWEB)
Yoo, Andy [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sanders, Geoffrey [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Henson, Van [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vassilevski, Panayot [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2015-10-05
Community detection refers to an important graph analytics problem of finding a set of densely-connected subgraphs in a graph and has gained a great deal of interest recently. The performance of current community detection algorithms is limited by an inherent constraint of unweighted graphs that offer very little information on their internal community structures. In this paper, we propose a new scheme to address this issue that weights the edges in a given graph based on recently proposed vertex affinity. The vertex affinity quantifies the proximity between two vertices in terms of their clustering strength, and therefore, it is ideal for graph analytics applications such as community detection. We also demonstrate that the affinity-based edge weighting scheme can improve the performance of community detection algorithms significantly.
APPLICATION OF IMMUNOGLOBULIN-BINDING PROTEINS A, G, L IN THE AFFINITY CHROMATOGRAPHY
Directory of Open Access Journals (Sweden)
О. V. Sviatenko
2014-04-01
Full Text Available Proteins A, G and L are native or recombinant proteins of microbial origin that bind to mammalian immunoglobulins. Preferably recombinant variants of proteins A, G, L are used in biotechnology for affinity sorbents production. Сomparative characteristics of proteins A, G, L and affinity sorbents on the basis of them, advantages and disadvantages of these proteins application as ligands in the affinity chromatography are done. Analysis of proteins A, G, L properties is presented. Binding specificities and affinities of these proteins differ between species and antibody subclass. Protein А has high affinity to human IgG1, IgG2, IgG4, mouse IgG2a, IgG2b, IgG3, goat and sheep IgG2, dog, cat, guinea pig, rabbit IgG. Protein G binds strongly to human, mouse, cow, goat, sheep and rabbit IgG. Protein L has ability of strong binding to immunoglobulin kappa-chains of human, mouse, rat and pig. Expediency of application of affinity chromatography with usage of sorbents on the basis of immobilized proteins A, G, L are shown for isolation and purification of antibodies different classes. Previously mentioned method is used as an alternative to conventional methods of protein purification, such as ion-exchange, hydrophobic interactions, metal affinity chromatography, ethanol precipitation due to simplicity in usage, possibility of one-step purification process, obtaining of proteins high level purity, multiuse at maintenance of proper storage and usage conditions. Affinity sorbents on the basis of immobilized proteins A, G, L are used not only for antibodies purification, but also for extraction of different antibodies fractions from blood serum.
R-matrix arising from affine Hecke algebras and its application to Macdonald's difference operators
International Nuclear Information System (INIS)
Kato, Shinichi
1994-01-01
We shall give a certain trigonometric R-matrix associated with each root system by using affine Hecke algebras. From this R-matrix, we derive a quantum Knizhnik-Zamolodchikov equation after Cherednik, and show that the solutions of this KZ equation yield eigenfunctions of Macdonald's difference operators. (orig.)
DEFF Research Database (Denmark)
Pedersen, M. K.; Sørensen, Nanna Skall; Heegaard, Peter M. H.
2006-01-01
-based assay systems and in deciding whether a vaccine-induced antibody response will be protective. With ovalbumin as a carrier protein and a peptide (7.2NY) representing a 19 ammo acid sequence from the E. coli-derived Verotoxin 2e as a model hapten we investigated whether it was possible to influence...... ten dines at two-weeks intervals with low doses of the eight conjugates, Blood samples collected between each immunisation were analysed by ELISA for specific antibody titres and relative affinities. With both types of conjugations, the anti-peptide antibody titres increased in response to increasing...... for terminal conjugation. Thus, it appears that the molar ratio of a peptide and its carrier may affect the resulting antibody affinities, and that a conjugation ratio between a terminally Conjugated peptide and its carrier approaching one will result in relatively high antibody affinities. Furthermore...
Durán-Lara, Esteban F; López-Cortés, Xaviera A; Castro, Ricardo I; Avila-Salas, Fabián; González-Nilo, Fernando D; Laurie, V Felipe; Santos, Leonardo S
2015-02-01
Polyvinylpolypyrrolidone (PVPP) is a fining agent, widely used in winemaking and brewing, whose mode of action in removing phenolic compounds has not been fully characterised. The aim of this study was to evaluate the experimental and theoretical binding affinity of PVPP towards six phenolic compounds representing different types of phenolic species. The interaction between PVPP and phenolics was evaluated in model solutions, where hydroxyl groups, hydrophobic bonding and steric hindrance were characterised. The results of the study indicated that PVPP exhibits high affinity for quercetin and catechin, moderate affinity for epicatechin, gallic acid and lower affinity for 4-methylcatechol and caffeic acid. The affinity has a direct correlation with the hydroxylation degree of each compound. The results show that the affinity of PVPP towards phenols is related with frontier orbitals. This work demonstrates a direct correlation between the experimental affinity and the interaction energy calculations obtained through computational chemistry methods. Copyright © 2014 Elsevier Ltd. All rights reserved.
Effect of 2,3-diphosphoglycerate on oxygen affinity of blood in sickle cell anemia
Charache, Samuel; Grisolia, Santiago; Fiedler, Adam J.; Hellegers, Andre E.
1970-01-01
Blood of patients with sickle cell anemia (SS) exhibits decreased affinity for oxygen, although the oxygen affinity of hemoglobin S is the same as that of hemoglobin A. SS red cells contain more 2,3-diphosphoglycerate (DPG) than normal erythrocytes. The oxygen affinity of hemolyzed red cells is decreased by added DPG, and hemolysates prepared from SS red cells do not differ from normal hemolysates in this regard. Reduction of oxygen affinity to the levels found in intact SS red cells required DPG concentrations in excess of those found in most SS patients. The same was true of oxygen affinity of patients with pyruvate kinase deficiency. Other organic phosphates, as well as inorganic ions, are known to alter the oxygen affinity of dilute solutions of hemoglobin. These substances, the state of aggregation of hemoglobin molecules, and cytoarchitectural factors probably play roles in determining oxygen affinity of both normal and SS red cells. PMID:5443181
Prathipati, Philip; Nagao, Chioko; Ahmad, Shandar; Mizuguchi, Kenji
2016-09-01
The D3R 2015 grand drug design challenge provided a set of blinded challenges for evaluating the applicability of our protocols for pose and affinity prediction. In the present study, we report the application of two different strategies for the two D3R protein targets HSP90 and MAP4K4. HSP90 is a well-studied target system with numerous co-crystal structures and SAR data. Furthermore the D3R HSP90 test compounds showed high structural similarity to existing HSP90 inhibitors in BindingDB. Thus, we adopted an integrated docking and scoring approach involving a combination of both pharmacophoric and heavy atom similarity alignments, local minimization and quantitative structure activity relationships modeling, resulting in the reasonable prediction of pose [with the root mean square deviation (RMSD) values of 1.75 Å for mean pose 1, 1.417 Å for the mean best pose and 1.85 Å for the mean all poses] and affinity (ROC AUC = 0.702 at 7.5 pIC50 cut-off and R = 0.45 for 180 compounds). The second protein, MAP4K4, represents a novel system with limited SAR and co-crystal structure data and little structural similarity of the D3R MAP4K4 test compounds to known MAP4K4 ligands. For this system, we implemented an exhaustive pose and affinity prediction protocol involving docking and scoring using the PLANTS software which considers side chain flexibility together with protein-ligand fingerprints analysis assisting in pose prioritization. This protocol through fares poorly in pose prediction (with the RMSD values of 4.346 Å for mean pose 1, 4.69 Å for mean best pose and 4.75 Å for mean all poses) and produced reasonable affinity prediction (AUC = 0.728 at 7.5 pIC50 cut-off and R = 0.67 for 18 compounds, ranked 1st among 80 submissions).
On the Lp affine isoperimetric inequalities
Indian Academy of Sciences (India)
surface area measure on convex bodies. We also establish the reverse version of -Petty projection inequality and an affine isoperimetric inequality of − p K . Author Affiliations. Wuyang Yu1 Gangsong Leng2. Institute of Management Decision ...
Directory of Open Access Journals (Sweden)
Xiakun Chu
2014-08-01
Full Text Available Flexibility in biomolecular recognition is essential and critical for many cellular activities. Flexible recognition often leads to moderate affinity but high specificity, in contradiction with the conventional wisdom that high affinity and high specificity are coupled. Furthermore, quantitative understanding of the role of flexibility in biomolecular recognition is still challenging. Here, we meet the challenge by quantifying the intrinsic biomolecular recognition energy landscapes with and without flexibility through the underlying density of states. We quantified the thermodynamic intrinsic specificity by the topography of the intrinsic binding energy landscape and the kinetic specificity by association rate. We found that the thermodynamic and kinetic specificity are strongly correlated. Furthermore, we found that flexibility decreases binding affinity on one hand, but increases binding specificity on the other hand, and the decreasing or increasing proportion of affinity and specificity are strongly correlated with the degree of flexibility. This shows more (less flexibility leads to weaker (stronger coupling between affinity and specificity. Our work provides a theoretical foundation and quantitative explanation of the previous qualitative studies on the relationship among flexibility, affinity and specificity. In addition, we found that the folding energy landscapes are more funneled with binding, indicating that binding helps folding during the recognition. Finally, we demonstrated that the whole binding-folding energy landscapes can be integrated by the rigid binding and isolated folding energy landscapes under weak flexibility. Our results provide a novel way to quantify the affinity and specificity in flexible biomolecular recognition.
Fenobody: A Ferritin-Displayed Nanobody with High Apparent Affinity and Half-Life Extension.
Fan, Kelong; Jiang, Bing; Guan, Zhe; He, Jiuyang; Yang, Dongling; Xie, Ni; Nie, Guohui; Xie, Can; Yan, Xiyun
2018-04-10
Nanobodies consist of a single domain variable fragment of a camelid heavy-chain antibody. Nanobodies have potential applications in biomedical fields because of their simple production procedures and low cost. Occasionally, nanobody clones of interest exhibit low affinities for their target antigens, which, together with their short half-life limit bioanalytical or therapeutic applications. Here, we developed a novel platform we named fenobody, in which a nanobody developed against H5N1 virus is displayed on the surface of ferritin in the form of a 24mer. We constructed a fenobody by substituting the fifth helix of ferritin with the nanobody. TEM analysis showed that nanobodies were displayed on the surface of ferritin in the form of 6 × 4 bundles, and that these clustered nanobodies are flexible for antigen binding in spatial structure. Comparing fenobodies with conventional nanobodies currently used revealed that the antigen binding apparent affinity of anti-H5N1 fenobody was dramatically increased (∼360-fold). Crucially, their half-life extension in a murine model was 10-fold longer than anti-H5N1 nanobody. In addition, we found that our fenobodies are highly expressed in Escherichia coli, and are both soluble and thermo-stable nanocages that self-assemble as 24-polymers. In conclusion, our results demonstrate that fenobodies have unique advantages over currently available systems for apparent affinity enhancement and half-life extension of nanobodies. Our fenobody system presents a suitable platform for various large-scale biotechnological processes and should greatly facilitate the application of nanobody technology in these areas.
Differential affinity of mammalian histone H1 somatic subtypes for DNA and chromatin
Directory of Open Access Journals (Sweden)
Mora Xavier
2007-05-01
Full Text Available Abstract Background Histone H1 is involved in the formation and maintenance of chromatin higher order structure. H1 has multiple isoforms; the subtypes differ in timing of expression, extent of phosphorylation and turnover rate. In vertebrates, the amino acid substitution rates differ among subtypes by almost one order of magnitude, suggesting that each subtype might have acquired a unique function. We have devised a competitive assay to estimate the relative binding affinities of histone H1 mammalian somatic subtypes H1a-e and H1° for long chromatin fragments (30–35 nucleosomes in physiological salt (0.14 M NaCl at constant stoichiometry. Results The H1 complement of native chromatin was perturbed by adding an additional amount of one of the subtypes. A certain amount of SAR (scaffold-associated region DNA was present in the mixture to avoid precipitation of chromatin by excess H1. SAR DNA also provided a set of reference relative affinities, which were needed to estimate the relative affinities of the subtypes for chromatin from the distribution of the subtypes between the SAR and the chromatin. The amounts of chromatin, SAR and additional H1 were adjusted so as to keep the stoichiometry of perturbed chromatin similar to that of native chromatin. H1 molecules freely exchanged between the chromatin and SAR binding sites. In conditions of free exchange, H1a was the subtype of lowest affinity, H1b and H1c had intermediate affinities and H1d, H1e and H1° the highest affinities. Subtype affinities for chromatin differed by up to 19-fold. The relative affinities of the subtypes for chromatin were equivalent to those estimated for a SAR DNA fragment and a pUC19 fragment of similar length. Avian H5 had an affinity ~12-fold higher than H1e for both DNA and chromatin. Conclusion H1 subtypes freely exchange in vitro between chromatin binding sites in physiological salt (0.14 M NaCl. The large differences in relative affinity of the H1 subtypes for
Quantifying high-affinity binding of hydrophobic ligands by isothermal titration calorimetry.
Krainer, Georg; Broecker, Jana; Vargas, Carolyn; Fanghänel, Jörg; Keller, Sandro
2012-12-18
A fast and reliable quantification of the binding thermodynamics of hydrophobic high-affinity ligands employing a new calorimetric competition experiment is described. Although isothermal titration calorimetry is the method of choice for a quantitative characterization of intermolecular interactions in solution, a reliable determination of a dissociation constant (K(D)) is typically limited to the range 100 μM > K(D) > 1 nM. Interactions displaying higher or lower K(D) values can be assessed indirectly, provided that a suitable competing ligand is available whose K(D) falls within the directly accessible affinity window. This established displacement assay, however, requires the high-affinity ligand to be soluble at high concentrations in aqueous buffer and, consequently, poses serious problems in the study of protein binding involving small-molecule ligands dissolved in organic solvents--a familiar case in many drug-discovery projects relying on compound libraries. The calorimetric competition assay introduced here overcomes this limitation, thus allowing for a detailed thermodynamic description of high-affinity receptor-ligand interactions involving poorly water-soluble compounds. Based on a single titration of receptor into a dilute mixture of the two competing ligands, this competition assay provides accurate and precise values for the dissociation constants and binding enthalpies of both high- and moderate-affinity ligands. We discuss the theoretical background underlying the approach, demonstrate its practical application to metal ion chelation and high-affinity protein-inhibitor interactions, and explore its potential and limitations with the aid of simulations and statistical analyses.
Political ideology: its structure, functions, and elective affinities.
Jost, John T; Federico, Christopher M; Napier, Jaime L
2009-01-01
Ideology has re-emerged as an important topic of inquiry among social, personality, and political psychologists. In this review, we examine recent theory and research concerning the structure, contents, and functions of ideological belief systems. We begin by defining the construct and placing it in historical and philosophical context. We then examine different perspectives on how many (and what types of) dimensions individuals use to organize their political opinions. We investigate (a) how and to what extent individuals acquire the discursive contents associated with various ideologies, and (b) the social-psychological functions that these ideologies serve for those who adopt them. Our review highlights "elective affinities" between situational and dispositional needs of individuals and groups and the structure and contents of specific ideologies. Finally, we consider the consequences of ideology, especially with respect to attitudes, evaluations, and processes of system justification.
Abdiche, Yasmina Noubia; Yeung, Yik Andy; Chaparro-Riggers, Javier; Barman, Ishita; Strop, Pavel; Chin, Sherman Michael; Pham, Amber; Bolton, Gary; McDonough, Dan; Lindquist, Kevin; Pons, Jaume; Rajpal, Arvind
2015-01-01
The neonatal Fc receptor (FcRn) is expressed by cells of epithelial, endothelial and myeloid lineages and performs multiple roles in adaptive immunity. Characterizing the FcRn/IgG interaction is fundamental to designing therapeutic antibodies because IgGs with moderately increased binding affinities for FcRn exhibit superior serum half-lives and efficacy. It has been hypothesized that 2 FcRn molecules bind an IgG homodimer with disparate affinities, yet their affinity constants are inconsistent across the literature. Using surface plasmon resonance biosensor assays that eliminated confounding experimental artifacts, we present data supporting an alternate hypothesis: 2 FcRn molecules saturate an IgG homodimer with identical affinities at independent sites, consistent with the symmetrical arrangement of the FcRn/Fc complex observed in the crystal structure published by Burmeister et al. in 1994. We find that human FcRn binds human IgG1 with an equilibrium dissociation constant (KD) of 760 ± 60 nM (N = 14) at 25°C and pH 5.8, and shows less than 25% variation across the other human subtypes. Human IgG1 binds cynomolgus monkey FcRn with a 2-fold higher affinity than human FcRn, and binds both mouse and rat FcRn with a 10-fold higher affinity than human FcRn. FcRn/IgG interactions from multiple species show less than a 2-fold weaker affinity at 37°C than at 25°C and appear independent of an IgG's variable region. Our in vivo data in mouse and rat models demonstrate that both affinity and avidity influence an IgG's serum half-life, which should be considered when choosing animals, especially transgenic systems, as surrogates.
Postupalenko, Viktoriia; Desplancq, Dominique; Orlov, Igor; Arntz, Youri; Spehner, Danièle; Mely, Yves; Klaholz, Bruno P; Schultz, Patrick; Weiss, Etienne; Zuber, Guy
2015-09-01
Recombinant proteins with cytosolic or nuclear activities are emerging as tools for interfering with cellular functions. Because such tools rely on vehicles for crossing the plasma membrane we developed a protein delivery system consisting in the assembly of pyridylthiourea-grafted polyethylenimine (πPEI) with affinity-purified His-tagged proteins pre-organized onto a nickel-immobilized polymeric guide. The guide was prepared by functionalization of an ornithine polymer with nitrilotriacetic acid groups and shown to bind several His-tagged proteins. Superstructures were visualized by electron and atomic force microscopy using 2 nm His-tagged gold nanoparticles as probes. The whole system efficiently carried the green fluorescent protein, single-chain antibodies or caspase 3, into the cytosol of living cells. Transduction of the protease caspase 3 induced apoptosis in two cancer cell lines, demonstrating that this new protein delivery method could be used to interfere with cellular functions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Swart, Marcel; Bickelhaupt, F Matthias
2006-03-01
We have carried out an extensive exploration of the gas-phase basicity of archetypal anionic bases across the periodic system using the generalized gradient approximation of density functional theory (DFT) at BP86/QZ4P//BP86/TZ2P. First, we validate DFT as a reliable tool for computing proton affinities and related thermochemical quantities: BP86/QZ4P//BP86/TZ2P is shown to yield a mean absolute deviation of 1.6 kcal/mol for the proton affinity at 0 K with respect to high-level ab initio benchmark data. The main purpose of this work is to provide the proton affinities (and corresponding entropies) at 298 K of the anionic conjugate bases of all main-group-element hydrides of groups 14-17 and periods 2-6. We have also studied the effect of stepwise methylation of the protophilic center of the second- and third-period bases.
Braun, Michael B; Traenkle, Bjoern; Koch, Philipp A; Emele, Felix; Weiss, Frederik; Poetz, Oliver; Stehle, Thilo; Rothbauer, Ulrich
2016-01-21
Nanobodies are highly valuable tools for numerous bioanalytical and biotechnical applications. Here, we report the characterization of a nanobody that binds a short peptide epitope with extraordinary affinity. Structural analysis reveals an unusual binding mode where the extended peptide becomes part of a β-sheet structure in the nanobody. This interaction relies on sequence-independent backbone interactions augmented by a small number of specificity-determining side chain contacts. Once bound, the peptide is fastened by two nanobody side chains that clamp it in a headlock fashion. Exploiting this unusual binding mode, we generated a novel nanobody-derived capture and detection system. Matrix-coupled nanobody enables the fast and efficient isolation of epitope-tagged proteins from prokaryotic and eukaryotic expression systems. Additionally, the fluorescently labeled nanobody visualizes subcellular structures in different cellular compartments. The high-affinity-binding and modifiable peptide tag of this system renders it a versatile and robust tool to combine biochemical analysis with microscopic studies.
Affinity functions for modeling glass dissolution rates
Energy Technology Data Exchange (ETDEWEB)
Bourcier, W.L. [Lawrence Livermore National Lab., CA (United States)
1997-07-01
Glass dissolution rates decrease dramatically as glass approach ''saturation'' with respect to the leachate solution. Most repository sites are chosen where water fluxes are minimal, and therefore the waste glass is most likely to dissolve under conditions close to ''saturation''. The key term in the rate expression used to predict glass dissolution rates close to ''saturation'' is the affinity term, which accounts for saturation effects on dissolution rates. Interpretations of recent experimental data on the dissolution behaviour of silicate glasses and silicate minerals indicate the following: 1) simple affinity control does not explain the observed dissolution rate for silicate minerals or glasses; 2) dissolution rates can be significantly modified by dissolved cations even under conditions far from saturation where the affinity term is near unity; 3) the effects of dissolved species such as Al and Si on the dissolution rate vary with pH, temperature, and saturation state; and 4) as temperature is increased, the effect of both pH and temperature on glass and mineral dissolution rates decrease, which strongly suggests a switch in rate control from surface reaction-based to diffusion control. Borosilicate glass dissolution models need to be upgraded to account for these recent experimental observations. (A.C.)
On $L_p$ Affine Surface Area and Curvature Measures
Zhao, Yiming
2015-01-01
The relationship between $L_p$ affine surface area and curvature measures is investigated. As a result, a new representation of the existing notion of $L_p$ affine surface area depending only on curvature measures is derived. Direct proofs of the equivalence between this new representation and those previously known are provided. The proofs show that the new representation is, in a sense, "polar" to that of Lutwak's and "dual" to that of Sch\\"utt & Werner's.
Learning a peptide-protein binding affinity predictor with kernel ridge regression
2013-01-01
peptide-protein binding affinities. The proposed approach is flexible and can be applied to predict any quantitative biological activity. Moreover, generating reliable peptide-protein binding affinities will also improve system biology modelling of interaction pathways. Lastly, the method should be of value to a large segment of the research community with the potential to accelerate the discovery of peptide-based drugs and facilitate vaccine development. The proposed kernel is freely available at http://graal.ift.ulaval.ca/downloads/gs-kernel/. PMID:23497081
[An examination of the determinants of social withdrawal and affinity for social withdrawal].
Watanabe, Asami; Matsui, Yutaka; Takatsuka, Yusuke
2010-12-01
This study examined the determinants of social withdrawal using data from a survey by the Tokyo Metropolitan Government Office for Youth Affairs and Public Safety (2008). In addition, this study identified young people who showed an affinity for social withdrawal although they were not in a state of withdrawal, and examined the determinants of an affinity for social withdrawal. The results of stepwise discriminant analysis showed that factors such as social phobia, depression, violence, and emotional bonds with family differentiated between the general youth group and the social withdrawal group and the "affinity group". Social phobia, violence, and refusal to be interfered in self-decision making differentiated between the social withdrawal group and the "affinity group". This study shows that an "affinity group" should be cared as well as an actual withdrawal group.
DFT study on the effect of exocyclic substituents on the proton affinity of 1-methylimidazole
International Nuclear Information System (INIS)
Liu, Haining; Bara, Jason E.; Turner, C. Heath
2013-01-01
Highlights: • DFT calculations are used to predict the proton affinity of 1-methylimidazoles. • The electron-withdrawing groups dominate the predicted proton affinity. • The effects of multiple substituents on the proton affinity can be accurately predicted. • Large compound libraries can be screened for imidazoles with tailored reactivity. - Abstract: A deeper understanding of the acid/base properties of imidazole derivatives will aid the development of solvents, polymer membranes and other materials that can be used for CO 2 capture and acid gas removal. In this study, we employ density functional theory calculations to investigate the effect of various electron-donating and electron-withdrawing groups on the proton affinity of 1-methylimidazole. We find that electron-donating groups are able to increase the proton affinity relative to 1-methylimidazole, i.e., making the molecule more basic. In contrast, electron-withdrawing groups cause a decrease of the proton affinity. When multiple substituents are present, their effects on the proton affinity were found to be additive. This finding offers a quick approach for predicting and targeting the proton affinities of this series of molecules, and we show the strong correlation between the calculated proton affinities and experimental pK a values
International Nuclear Information System (INIS)
Wolnik, Barbara; Dembowski, Marcin; Bołt, Witold; Baetens, Jan M; De Baets, Bernard
2017-01-01
The focus of this paper is on the density classification problem in the context of affine continuous cellular automata. Although such cellular automata cannot solve this problem in the classical sense, most density-conserving affine continuous cellular automata with a unit neighborhood radius are valid solutions of a slightly relaxed version of this problem. This result follows from a detailed study of the dynamics of the density-conserving affine continuous cellular automata that we introduce. (paper)
High affinity binding of [3H]cocaine to rat liver microsomes
International Nuclear Information System (INIS)
El-Maghrabi, E.A.; Calligaro, D.O.; Eldefrawi, M.E.
1988-01-01
] 3 H]cocaine bound reversible, with high affinity and stereospecificity to rat liver microsomes. Little binding was detected in the lysosomal, mitochondrial and nuclear fractions. The binding kinetics were slow and the kinetically calculated K/sub D/ was 2 nM. Induction of mixed function oxidases by phenobarbital did not produce significant change in [ 3 H]cocaine binding. On the other hand, chronic administration of cocaine reduced [ 3 H]cocaine binding drastically. Neither treatment affected the affinity of the liver binding protein for cocaine. Microsomes from mouse and human livers had less cocaine-binding protein and lower affinity for cocaine than those from rat liver. Binding of [ 3 H]cocaine to rat liver microsomes was insensitive to monovalent cations and > 10 fold less sensitive to biogenic amines than the cocaine receptor in rat striatum. However, the liver protein had higher affinity for cocaine and metabolites except for norcocaine. Amine uptake inhibitors displaced [ 3 H]cocaine binding to liver with a different rank order of potency than their displacement of [ 3 H]cocaine binding to striatum. This high affinity [ 3 H]cocaine binding protein in liver is not likely to be monooxygenase, but may have a role in cocaine-induced hepatotoxicity
Alkali Metal Cation Affinities of Anionic Main Group-Element Hydrides Across the Periodic Table
Boughlala, Zakaria; Fonseca Guerra, Célia; Bickelhaupt, F. Matthias
2017-01-01
We have carried out an extensive exploration of gas-phase alkali metal cation affinities (AMCA) of archetypal anionic bases across the periodic system using relativistic density functional theory at ZORA-BP86/QZ4P//ZORA-BP86/TZ2P. AMCA values of all bases were computed for the lithium, sodium,
Electrochemical affinity biosensors for detection of mycotoxins: A review.
Vidal, Juan C; Bonel, Laura; Ezquerra, Alba; Hernández, Susana; Bertolín, Juan R; Cubel, Carlota; Castillo, Juan R
2013-11-15
This review discusses the current state of electrochemical biosensors in the determination of mycotoxins in foods. Mycotoxins are highly toxic secondary metabolites produced by molds. The acute toxicity of these results in serious human and animal health problems, although it has been only since early 1960s when the first studied aflatoxins were found to be carcinogenic. Mycotoxins affect a broad range of agricultural products, most important cereals and cereal-based foods. A majority of countries, mentioning especially the European Union, have established preventive programs to control contamination and strict laws of the permitted levels in foods. Official methods of analysis of mycotoxins normally requires sophisticated instrumentation, e.g. liquid chromatography with fluorescence or mass detectors, combined with extraction procedures for sample preparation. For about sixteen years, the use of simpler and faster analytical procedures based on affinity biosensors has emerged in scientific literature as a very promising alternative, particularly electrochemical (i.e., amperometric, impedance, potentiometric or conductimetric) affinity biosensors due to their simplicity and sensitivity. Typically, electrochemical biosensors for mycotoxins use specific antibodies or aptamers as affinity ligands, although recombinant antibodies, artificial receptors and molecular imprinted polymers show potential utility. This article deals with recent advances in electrochemical affinity biosensors for mycotoxins and covers complete literature from the first reports about sixteen years ago. Copyright © 2013 Elsevier B.V. All rights reserved.
Paper-based immune-affinity arrays for detection of multiple mycotoxins in cereals.
Li, Li; Chen, Hongpu; Lv, Xiaolan; Wang, Min; Jiang, Xizhi; Jiang, Yifei; Wang, Heye; Zhao, Yongfu; Xia, Liru
2018-03-01
Mycotoxins produced by different species of fungi may coexist in cereals and feedstuffs, and could be highly toxic for humans and animals. For quantification of multiple mycotoxins in cereals, we developed a paper-based mycotoxin immune-affinity array. First, paper-based microzone arrays were fabricated by photolithography. Then, monoclonal mycotoxin antibodies were added in a copolymerization reaction with a cross-linker to form an immune-affinity monolith on the paper-based microzone array. With use of a competitive immune-response format, paper-based mycotoxin immune-affinity arrays were successfully applied to detect mycotoxins in samples. The detection limits for deoxynivalenol, zearalenone, T-2 toxin, and HT-2 toxin were 62.7, 10.8, 0.36, and 0.23 μg·kg -1 , respectively, which meet relevant requirements for these compounds in food. The recovery rates were 81-86% for deoxynivalenol, 89-117% for zearalenone, 79-86% for T-2 toxin, and 78-83% for HT-2 toxin, and showed the paper-based immune-affinity arrays had good reproducibility. In summary, the paper-based mycotoxin immune-affinity array provides a sensitive, rapid, accurate, stable, and convenient platform for detection of multiple mycotoxins in agro-foods. Graphical abstract Paper-based immune-affinity monolithic array. DON deoxynivalenol, HT-2 HT-2 toxin, T-2 T-2 toxin, PEGDA polyethylene glycol diacrylate, ZEN zearalenone.
Fragment-based quantum mechanical calculation of protein-protein binding affinities.
Wang, Yaqian; Liu, Jinfeng; Li, Jinjin; He, Xiao
2018-04-29
The electrostatically embedded generalized molecular fractionation with conjugate caps (EE-GMFCC) method has been successfully utilized for efficient linear-scaling quantum mechanical (QM) calculation of protein energies. In this work, we applied the EE-GMFCC method for calculation of binding affinity of Endonuclease colicin-immunity protein complex. The binding free energy changes between the wild-type and mutants of the complex calculated by EE-GMFCC are in good agreement with experimental results. The correlation coefficient (R) between the predicted binding energy changes and experimental values is 0.906 at the B3LYP/6-31G*-D level, based on the snapshot whose binding affinity is closest to the average result from the molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA) calculation. The inclusion of the QM effects is important for accurate prediction of protein-protein binding affinities. Moreover, the self-consistent calculation of PB solvation energy is required for accurate calculations of protein-protein binding free energies. This study demonstrates that the EE-GMFCC method is capable of providing reliable prediction of relative binding affinities for protein-protein complexes. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.
Two distinct affinity binding sites for IL-1 on human cell lines
International Nuclear Information System (INIS)
Bensimon, C.; Wakasugi, N.; Tagaya, Y.; Takakura, K.; Yodoi, J.; Tursz, T.; Wakasugi, H.
1989-01-01
We used two human cell lines, NK-like YT-C3 and an EBV-containing B cell line, 3B6, as models to study the receptor(s) for IL-1. Two distinct types of saturable binding sites were found on both cell lines at 37 degrees C. Between 1 pM and 100 pM of 125I-IL-1-alpha concentration, saturable binding sites were detected on the YT-C3 cells with a K of 4 x 10(-11) M. The K found for the IL-1-alpha binding sites on 3B6 cells was 7.5 x 10(-11) M. An additional binding curve was detected above 100 pM on YT-C3 cells with a K of 7 x 10(-9) M and on 3B6 cells with a K of 5 x 10(-9) M. Scatchard plot analysis revealed 600 sites/cell with high affinity binding and 7000 sites/cell with low affinity for YT-C3 cells and 300 sites/cell with high affinity binding and 6000 sites/cell with low affinity for 3B6 cells. At 37 degrees C, the internalization of 125I-labeled IL-1 occurred via both high and low affinity IL-1R on both YT-C3 and 3B6 cells, whereas the rates of internalization for high affinity binding sites on YT-C3 cells were predominant in comparison to that of low affinity binding sites. In chemical cross-linking studies of 125 I-IL-1-alpha to 3B6 and YT-C3 cells, two protein bands were immunoprecipitated with Mr around 85 to 90 kDa leading to an estimation of the Mr of the IL-1R around 68 to 72 kDa. In similar experiments, the Mr found for the IL-1R expressed on the murine T cell line EL4 was slightly higher (around 80 kDa). Whether these distinct affinity binding sites are shared by a single molecule or by various chains remains to be elucidated
Shetty, Dinesh; Khedkar, Jayshree K; Park, Kyeng Min; Kim, Kimoon
2015-12-07
The design of synthetic, monovalent host-guest molecular recognition pairs is still challenging and of particular interest to inquire into the limits of the affinity that can be achieved with designed systems. In this regard, cucurbit[7]uril (CB[7]), an important member of the host family cucurbit[n]uril (CB[n], n = 5-8, 10, 14), has attracted much attention because of its ability to form ultra-stable complexes with multiple guests. The strong hydrophobic effect between the host cavity and guests, ion-dipole and dipole-dipole interactions of guests with CB portals helps in cooperative and multiple noncovalent interactions that are essential for realizing such strong complexations. These highly selective, strong yet dynamic interactions can be exploited in many applications including affinity chromatography, biomolecule immobilization, protein isolation, biological catalysis, and sensor technologies. In this review, we summarize the progress in the development of high affinity guests for CB[7], factors affecting the stability of complexes, theoretical insights, and the utility of these high affinity pairs in different challenging applications.
Directory of Open Access Journals (Sweden)
Sujatha P Koduvayur
Full Text Available The abundance and physiological importance of GABAA receptors in the central nervous system make this neurotransmitter receptor an attractive target for localizing diagnostic and therapeutic biomolecules. GABAA receptors are expressed within the retina and mediate synaptic signaling at multiple stages of the visual process. To generate monoclonal affinity reagents that can specifically recognize GABAA receptor subunits, we screened two bacteriophage M13 libraries, which displayed human scFvs, by affinity selection with synthetic peptides predicted to correspond to extracellular regions of the rat α1 and β2 GABAA subunits. We isolated three anti-β2 and one anti-α1 subunit specific scFvs. Fluorescence polarization measurements revealed all four scFvs to have low micromolar affinities with their cognate peptide targets. The scFvs were capable of detecting fully folded GABAA receptors heterologously expressed by Xenopus laevis oocytes, while preserving ligand-gated channel activity. Moreover, A10, the anti-α1 subunit-specific scFv, was capable of detecting native GABAA receptors in the mouse retina, as observed by immunofluorescence staining. In order to improve their apparent affinity via avidity, we dimerized the A10 scFv by fusing it to the Fc portion of the IgG. The resulting scFv-Fc construct had a Kd of ∼26 nM, which corresponds to an approximately 135-fold improvement in binding, and a lower detection limit in dot blots, compared to the monomeric scFv. These results strongly support the use of peptides as targets for generating affinity reagents to membrane proteins and encourage investigation of molecular conjugates that use scFvs as anchoring components to localize reagents of interest at GABAA receptors of retina and other neural tissues, for studies of receptor activation and subunit structure.
Accurate and sensitive quantification of protein-DNA binding affinity.
Rastogi, Chaitanya; Rube, H Tomas; Kribelbauer, Judith F; Crocker, Justin; Loker, Ryan E; Martini, Gabriella D; Laptenko, Oleg; Freed-Pastor, William A; Prives, Carol; Stern, David L; Mann, Richard S; Bussemaker, Harmen J
2018-04-17
Transcription factors (TFs) control gene expression by binding to genomic DNA in a sequence-specific manner. Mutations in TF binding sites are increasingly found to be associated with human disease, yet we currently lack robust methods to predict these sites. Here, we developed a versatile maximum likelihood framework named No Read Left Behind (NRLB) that infers a biophysical model of protein-DNA recognition across the full affinity range from a library of in vitro selected DNA binding sites. NRLB predicts human Max homodimer binding in near-perfect agreement with existing low-throughput measurements. It can capture the specificity of the p53 tetramer and distinguish multiple binding modes within a single sample. Additionally, we confirm that newly identified low-affinity enhancer binding sites are functional in vivo, and that their contribution to gene expression matches their predicted affinity. Our results establish a powerful paradigm for identifying protein binding sites and interpreting gene regulatory sequences in eukaryotic genomes. Copyright © 2018 the Author(s). Published by PNAS.
Self-affinity in the dengue fever time series
Azevedo, S. M.; Saba, H.; Miranda, J. G. V.; Filho, A. S. Nascimento; Moret, M. A.
2016-06-01
Dengue is a complex public health problem that is common in tropical and subtropical regions. This disease has risen substantially in the last three decades, and the physical symptoms depict the self-affine behavior of the occurrences of reported dengue cases in Bahia, Brazil. This study uses detrended fluctuation analysis (DFA) to verify the scale behavior in a time series of dengue cases and to evaluate the long-range correlations that are characterized by the power law α exponent for different cities in Bahia, Brazil. The scaling exponent (α) presents different long-range correlations, i.e. uncorrelated, anti-persistent, persistent and diffusive behaviors. The long-range correlations highlight the complex behavior of the time series of this disease. The findings show that there are two distinct types of scale behavior. In the first behavior, the time series presents a persistent α exponent for a one-month period. For large periods, the time series signal approaches subdiffusive behavior. The hypothesis of the long-range correlations in the time series of the occurrences of reported dengue cases was validated. The observed self-affinity is useful as a forecasting tool for future periods through extrapolation of the α exponent behavior. This complex system has a higher predictability in a relatively short time (approximately one month), and it suggests a new tool in epidemiological control strategies. However, predictions for large periods using DFA are hidden by the subdiffusive behavior.
International Nuclear Information System (INIS)
Ichinose, Shoichi
2010-01-01
A geometric approach to general quantum statistical systems (including the harmonic oscillator) is presented. It is applied to Casimir energy and the dissipative system with friction. We regard the (N+1)-dimensional Euclidean coordinate system (X i ,τ) as the quantum statistical system of N quantum (statistical) variables (X τ ) and one Euclidean time variable (t). Introducing paths (lines or hypersurfaces) in this space (X τ ,t), we adopt the path-integral method to quantize the mechanical system. This is a new view of (statistical) quantization of the mechanical system. The system Hamiltonian appears as the area. We show quantization is realized by the minimal area principle in the present geometric approach. When we take a line as the path, the path-integral expressions of the free energy are shown to be the ordinary ones (such as N harmonic oscillators) or their simple variation. When we take a hyper-surface as the path, the system Hamiltonian is given by the area of the hyper-surface which is defined as a closed-string configuration in the bulk space. In this case, the system becomes a O(N) non-linear model. We show the recently-proposed 5 dimensional Casimir energy (ArXiv:0801.3064,0812.1263) is valid. We apply this approach to the visco-elastic system, and present a new method using the path-integral for the calculation of the dissipative properties.
Lai, H; Carino, M A
1992-07-01
Acute (20 min) exposure to 100-dB white noise elicits a naltrexone-sensitive decrease in sodium-dependent high-affinity choline uptake in the frontal cortex and hippocampus of the rat. In the present study, the subtypes of opioid receptors involved were investigated by pretreating rats with microinjection of specific opioid-receptor antagonists into the lateral cerebroventricle before noise exposure. We found that the noise-induced decrease in high-affinity choline uptake in the hippocampus was blocked by pretreatment with either mu-, delta-, or kappa-opioid-receptor antagonists, whereas the effect of noise on frontal cortical high-affinity choline uptake was blocked by a mu- and delta- but not by a kappa-antagonist. These data further confirm the role of endogenous opioids in mediating the effects of noise on central cholinergic activity and indicate that different neural mechanisms are involved in the effects of noise on the frontal cortical and hippocampal cholinergic systems.
Constraints on the affinity term for modeling long-term glass dissolution rates
International Nuclear Information System (INIS)
Bourcier, W.L.; Carroll, S.A.; Phillips, B.L.
1993-11-01
Predictions of long-term glass dissolution rates are highly dependent on the form of the affinity term in the rate expression. Analysis of the quantitative effect of saturation state on glass dissolution rate for CSG glass (a simple analog of SRL-165 glass), shows that a simple (1-Q/K) affinity term does not match experimental results. Our data at 100 degree C show that the data is better fit by an affinity term having the form (1 - (Q/K) 1 /σ) where σ = 10
Identification of an adeno-associated virus binding epitope for AVB sepharose affinity resin
Directory of Open Access Journals (Sweden)
Qiang Wang
Full Text Available Recent successes of adeno-associated virus (AAVâbased gene therapy have created a demand for large-scale AAV vector manufacturing and purification techniques for use in clinical trials and beyond. During the development of purification protocols for rh.10, hu.37, AAV8, rh.64R1, AAV3B, and AAV9 vectors, based on a widely used affinity resin, AVB sepharose (GE, we found that, under the same conditions, different serotypes have different affinities to the resin, with AAV3B binding the best and AAV9 the poorest. Further analysis revealed a surface-exposed residue (amino acid number 665 in AAV8 VP1 numbering differs between the high-affinity AAV serotypes (serine in AAV3B, rh.10, and hu.37 and the low-affinity ones (asparagine in AAV8, rh.64R1, and AAV9. The residue locates within a surface-exposed, variable epitope flanked by highly conserved residues. The substitution of the epitope in AAV8, rh.64R1, and AAV9 with the corresponding epitope of AAV3B (SPAKFA resulted in greatly increased affinity to AVB sepharose with no reduction in the vectorsâ in vitro potency. The presence of the newly identified AVB-binding epitope will be useful for affinity resin selection for the purification of novel AAV serotypes. It also suggests the possibility of vector engineering to yield a universal affinity chromatography purification method for multiple AAV serotypes.
Braun, Michael B.; Traenkle, Bjoern; Koch, Philipp A.; Emele, Felix; Weiss, Frederik; Poetz, Oliver; Stehle, Thilo; Rothbauer, Ulrich
2016-01-01
Nanobodies are highly valuable tools for numerous bioanalytical and biotechnical applications. Here, we report the characterization of a nanobody that binds a short peptide epitope with extraordinary affinity. Structural analysis reveals an unusual binding mode where the extended peptide becomes part of a β-sheet structure in the nanobody. This interaction relies on sequence-independent backbone interactions augmented by a small number of specificity-determining side chain contacts. Once bound, the peptide is fastened by two nanobody side chains that clamp it in a headlock fashion. Exploiting this unusual binding mode, we generated a novel nanobody-derived capture and detection system. Matrix-coupled nanobody enables the fast and efficient isolation of epitope-tagged proteins from prokaryotic and eukaryotic expression systems. Additionally, the fluorescently labeled nanobody visualizes subcellular structures in different cellular compartments. The high-affinity-binding and modifiable peptide tag of this system renders it a versatile and robust tool to combine biochemical analysis with microscopic studies. PMID:26791954
Affinity purification of recombinant human plasminogen activator ...
African Journals Online (AJOL)
Affinity purification of recombinant human plasminogen activator from ... Screening antibody was performed using rhPA milk in an ELISA-elution assay. ... useful for purifying other tPA mutants or other novel recombinant milkderived proteins.
Evaluation Codes from an Affine Veriety Code Perspective
DEFF Research Database (Denmark)
Geil, Hans Olav
2008-01-01
Evaluation codes (also called order domain codes) are traditionally introduced as generalized one-point geometric Goppa codes. In the present paper we will give a new point of view on evaluation codes by introducing them instead as particular nice examples of affine variety codes. Our study...... includes a reformulation of the usual methods to estimate the minimum distances of evaluation codes into the setting of affine variety codes. Finally we describe the connection to the theory of one-pointgeometric Goppa codes. Contents 4.1 Introduction...... . . . . . . . . . . . . . . . . . . . . . . . 171 4.9 Codes form order domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 4.10 One-point geometric Goppa codes . . . . . . . . . . . . . . . . . . . . . . . . 176 4.11 Bibliographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 References...
DEFF Research Database (Denmark)
Jørgensen, Thomas R; vanKuyk, Patricia A; Poulsen, Bjarne R
2007-01-01
This is a study of high-affinity glucose uptake in Aspergillus niger and the effect of disruption of a high-affinity monosaccharide-transporter gene, mstA. The substrate saturation constant (K(s)) of a reference strain was about 15 microM in glucose-limited chemostat culture. Disruption of mst......-affinity uptake system of A. niger. The mstA disruptant and a reference strain were cultivated in glucose-limited chemostat cultures at low, intermediate and high dilution rate (D=0.07 h(-1), 0.14 h(-1) and 0.20 h(-1)). Mycelium harvested from steady-state cultures was subjected to glucose uptake assays...
The Purification of a Blood Group A Glycoprotein: An Affinity Chromatography Experiment.
Estelrich, J.; Pouplana, R.
1988-01-01
Describes a purification process through affinity chromatography necessary to obtain specific blood group glycoproteins from erythrocytic membranes. Discusses the preparation of erythrocytic membranes, extraction of glycoprotein from membranes, affinity chromatography purification, determination of glycoproteins, and results. (CW)
Alkali Metal Cation versus Proton and Methyl Cation Affinities: Structure and Bonding Mechanism.
Boughlala, Zakaria; Fonseca Guerra, Célia; Bickelhaupt, F Matthias
2016-06-01
We have analyzed the structure and bonding of gas-phase Cl-X and [HCl-X](+) complexes for X(+)= H(+), CH3 (+), Li(+), and Na(+), using relativistic density functional theory (DFT). We wish to establish a quantitative trend in affinities of the anionic and neutral Lewis bases Cl(-) and HCl for the various cations. The Cl-X bond becomes longer and weaker along X(+) = H(+), CH3 (+), Li(+), and Na(+). Our main purpose is to understand the heterolytic bonding mechanism behind the intrinsic (i.e., in the absence of solvent) alkali metal cation affinities (AMCA) and how this compares with and differs from those of the proton affinity (PA) and methyl cation affinity (MCA). Our analyses are based on Kohn-Sham molecular orbital (KS-MO) theory in combination with a quantitative energy decomposition analysis (EDA) that pinpoints the importance of the different features in the bonding mechanism. Orbital overlap appears to play an important role in determining the trend in cation affinities.
Quantum deformation of the affine transformation algebra
International Nuclear Information System (INIS)
Aizawa, N.; Sato, Haru-Tada
1994-01-01
We discuss a quantum deformation of the affine transformation algebra in one-dimensional space. It is shown that the quantum algebra has a non-cocommutative Hopf algebra structure, simple realizations and quantum tensor operators. (orig.)
Cyclization strategies of meditopes: affinity and diffraction studies of meditope–Fab complexes
International Nuclear Information System (INIS)
Bzymek, Krzysztof P.; Ma, Yuelong; Avery, Kendra A.; Horne, David A.; Williams, John C.
2016-01-01
An overview of cyclization strategies of a Fab-binding peptide to maximize affinity. Recently, a unique binding site for a cyclic 12-residue peptide was discovered within a cavity formed by the light and heavy chains of the cetuximab Fab domain. In order to better understand the interactions that drive this unique complex, a number of variants including the residues within the meditope peptide and the antibody, as well as the cyclization region of the meditope peptide, were created. Here, multiple crystal structures of meditope peptides incorporating different cyclization strategies bound to the central cavity of the cetuximab Fab domain are presented. The affinity of each cyclic derivative for the Fab was determined by surface plasmon resonance and correlated to structural differences. Overall, it was observed that the disulfide bond used to cyclize the peptide favorably packs against a hydrophobic ‘pocket’ and that amidation and acetylation of the original disulfide meditope increased the overall affinity ∼2.3-fold. Conversely, replacing the terminal cysteines with serines and thus creating a linear peptide reduced the affinity over 50-fold, with much of this difference being reflected in a decrease in the on-rate. Other cyclization methods, including the formation of a lactam, reduced the affinity but not to the extent of the linear peptide. Collectively, the structural and kinetic data presented here indicate that small perturbations introduced by different cyclization strategies can significantly affect the affinity of the meditope–Fab complex
Cyclization strategies of meditopes: affinity and diffraction studies of meditope–Fab complexes
Energy Technology Data Exchange (ETDEWEB)
Bzymek, Krzysztof P.; Ma, Yuelong; Avery, Kendra A.; Horne, David A.; Williams, John C., E-mail: jcwilliams@coh.org [Beckman Research Institute of City of Hope, 1710 Flower Street, Duarte, CA 91010 (United States)
2016-05-23
An overview of cyclization strategies of a Fab-binding peptide to maximize affinity. Recently, a unique binding site for a cyclic 12-residue peptide was discovered within a cavity formed by the light and heavy chains of the cetuximab Fab domain. In order to better understand the interactions that drive this unique complex, a number of variants including the residues within the meditope peptide and the antibody, as well as the cyclization region of the meditope peptide, were created. Here, multiple crystal structures of meditope peptides incorporating different cyclization strategies bound to the central cavity of the cetuximab Fab domain are presented. The affinity of each cyclic derivative for the Fab was determined by surface plasmon resonance and correlated to structural differences. Overall, it was observed that the disulfide bond used to cyclize the peptide favorably packs against a hydrophobic ‘pocket’ and that amidation and acetylation of the original disulfide meditope increased the overall affinity ∼2.3-fold. Conversely, replacing the terminal cysteines with serines and thus creating a linear peptide reduced the affinity over 50-fold, with much of this difference being reflected in a decrease in the on-rate. Other cyclization methods, including the formation of a lactam, reduced the affinity but not to the extent of the linear peptide. Collectively, the structural and kinetic data presented here indicate that small perturbations introduced by different cyclization strategies can significantly affect the affinity of the meditope–Fab complex.
IA-2 autoantibody affinity in children at risk for type 1 diabetes.
Krause, Stephanie; Chmiel, Ruth; Bonifacio, Ezio; Scholz, Marlon; Powell, Michael; Furmaniak, Jadwiga; Rees Smith, Bernard; Ziegler, Anette-G; Achenbach, Peter
2012-12-01
Autoantibodies to insulinoma-associated protein 2 (IA-2A) are associated with increased risk for type 1 diabetes. Here we examined IA-2A affinity and epitope specificity to assess heterogeneity in response intensity in relation to pathogenesis and diabetes risk in 50 children who were prospectively followed from birth. At first IA-2A appearance, affinity ranged from 10(7) to 10(11)L/mol and was high (>1.0×10(9)L/mol) in 41 (82%) children. IA-2A affinity was not associated with epitope specificity or HLA class II haplotype. On follow-up, affinity increased or remained high, and IA-2A were commonly against epitopes within the protein tyrosine phosphatase-like IA-2 domain and the homologue protein IA-2β. IA-2A were preceded or accompanied by other islet autoantibodies in 49 (98%) children, of which 34 progressed to diabetes. IA-2A affinity did not stratify diabetes risk. In conclusion, the IA-2A response in children is intense with rapid maturation against immunogenic epitopes and a strong association with diabetes development. Copyright © 2012 Elsevier Inc. All rights reserved.
Hall, Justin; Brault, Amy; Vincent, Fabien; Weng, Shawn; Wang, Hong; Dumlao, Darren; Aulabaugh, Ann; Aivazian, Dikran; Castro, Dana; Chen, Ming; Culp, Jeffrey; Dower, Ken; Gardner, Joseph; Hawrylik, Steven; Golenbock, Douglas; Hepworth, David; Horn, Mark; Jones, Lyn; Jones, Peter; Latz, Eicke; Li, Jing; Lin, Lih-Ling; Lin, Wen; Lin, David; Lovering, Frank; Niljanskul, Nootaree; Nistler, Ryan; Pierce, Betsy; Plotnikova, Olga; Schmitt, Daniel; Shanker, Suman; Smith, James; Snyder, William; Subashi, Timothy; Trujillo, John; Tyminski, Edyta; Wang, Guoxing; Wong, Jimson; Lefker, Bruce; Dakin, Leslie; Leach, Karen
2017-01-01
Cyclic GMP-AMP synthase (cGAS) initiates the innate immune system in response to cytosolic dsDNA. After binding and activation from dsDNA, cGAS uses ATP and GTP to synthesize 2', 3' -cGAMP (cGAMP), a cyclic dinucleotide second messenger with mixed 2'-5' and 3'-5' phosphodiester bonds. Inappropriate stimulation of cGAS has been implicated in autoimmune disease such as systemic lupus erythematosus, thus inhibition of cGAS may be of therapeutic benefit in some diseases; however, the size and polarity of the cGAS active site makes it a challenging target for the development of conventional substrate-competitive inhibitors. We report here the development of a high affinity (KD = 200 nM) inhibitor from a low affinity fragment hit with supporting biochemical and structural data showing these molecules bind to the cGAS active site. We also report a new high throughput cGAS fluorescence polarization (FP)-based assay to enable the rapid identification and optimization of cGAS inhibitors. This FP assay uses Cy5-labelled cGAMP in combination with a novel high affinity monoclonal antibody that specifically recognizes cGAMP with no cross reactivity to cAMP, cGMP, ATP, or GTP. Given its role in the innate immune response, cGAS is a promising therapeutic target for autoinflammatory disease. Our results demonstrate its druggability, provide a high affinity tool compound, and establish a high throughput assay for the identification of next generation cGAS inhibitors.
Roelofs, Anke J; Stewart, Charlotte A; Sun, Shuting; Błażewska, Katarzyna M; Kashemirov, Boris A; McKenna, Charles E; Russell, R Graham G; Rogers, Michael J; Lundy, Mark W; Ebetino, Frank H; Coxon, Fraser P
2012-04-01
Bisphosphonates are widely used antiresorptive drugs that bind to calcium. It has become evident that these drugs have differing affinities for bone mineral; however, it is unclear whether such differences affect their distribution on mineral surfaces. In this study, fluorescent conjugates of risedronate, and its lower-affinity analogues deoxy-risedronate and 3-PEHPC, were used to compare the localization of compounds with differing mineral affinities in vivo. Binding to dentine in vitro confirmed differences in mineral binding between compounds, which was influenced predominantly by the characteristics of the parent compound but also by the choice of fluorescent tag. In growing rats, all compounds preferentially bound to forming endocortical as opposed to resorbing periosteal surfaces in cortical bone, 1 day after administration. At resorbing surfaces, lower-affinity compounds showed preferential binding to resorption lacunae, whereas the highest-affinity compound showed more uniform labeling. At forming surfaces, penetration into the mineralizing osteoid was found to inversely correlate with mineral affinity. These differences in distribution at resorbing and forming surfaces were not observed at quiescent surfaces. Lower-affinity compounds also showed a relatively higher degree of labeling of osteocyte lacunar walls and labeled lacunae deeper within cortical bone, indicating increased penetration of the osteocyte canalicular network. Similar differences in mineralizing surface and osteocyte network penetration between high- and low-affinity compounds were evident 7 days after administration, with fluorescent conjugates at forming surfaces buried under a new layer of bone. Fluorescent compounds were incorporated into these areas of newly formed bone, indicating that "recycling" had occurred, albeit at very low levels. Taken together, these findings indicate that the bone mineral affinity of bisphosphonates is likely to influence their distribution within the
On dynamic equations for interaction of the affinor field with affine connection
International Nuclear Information System (INIS)
Pestov, A.B.
1987-01-01
The Lagrangian of interaction of an affinor field with an affine connection is constructed and the equations of motion and conservation laws are derived. It is shown that there exists a symmetric conserved tensor of the affine-connection energy-momentum
Affinity for Quantitative Tools: Undergraduate Marketing Students Moving beyond Quantitative Anxiety
Tarasi, Crina O.; Wilson, J. Holton; Puri, Cheenu; Divine, Richard L.
2013-01-01
Marketing students are known as less likely to have an affinity for the quantitative aspects of the marketing discipline. In this article, we study the reasons why this might be true and develop a parsimonious 20-item scale for measuring quantitative affinity in undergraduate marketing students. The scale was administered to a sample of business…
Modifiers of hemoglobin/oxygen affinity as sensitizers of tumors to radiation
International Nuclear Information System (INIS)
Hirst, D.G.; Wood, P.J.
1987-01-01
A powerful mechanism in the control of oxygen delivery to tissues is the allosteric modification of hemoglobin. Increased or decreased release of oxygen can be achieved by altering the affinity of hemoglobin for oxygen. Several studies have shown that tumor radiosensitivity is dependent on this relationship. The authors studied affinity changes produced in two distinctly different ways. Tumor bearing mice were given isovolemic exchange blood transfusions with the blood from donor mice which had been exposed to abnormal oxygen tensions, leading to increased or slightly decreased levels of 2,3-diphosphoglycerate (2,3 DPG) in their blood. When the recipient mice were irradiated, those receiving the blood with higher 2,3 DPG levels showed greater tumor sensitivity to radiation. An alternative strategy is the use of drugs which directly alter hemoglobin/oxygen affinity. The authors studied three antihyperlipoproteinemia drugs, all of which have produced markedly reduced affinities in vivo. Preliminary data indicate that the radiosensitization produced by at least one of these compounds is less than would have been expected from the 2,3 DPG experiments
Solitons and the energy-momentum tensor for affine Toda theory
Olive, D. I.; Turok, N.; Underwood, J. W. R.
1993-07-01
Following Leznov and Saveliev, we present the general solution to Toda field theories of conformal, affine or conformal affine type, associated with a simple Lie algebra g. These depend on a free massless field and on a group element. By putting the former to zero, soliton solutions to the affine Toda theories with imaginary coupling constant result with the soliton data encoded in the group element. As this requires a reformulation of the affine Kac-Moody algebra closely related to that already used to formulate the physical properties of the particle excitations, including their scattering matrices, a unified treatment of particles and solitons emerges. The physical energy—momentum tensor for a general solution is broken into a total derivative plus a part dependent only on the derivatives of the free field. Despite the non-linearity of the field equations and their complex nature the energy and momentum of the N-soliton solution is shown to be real, equalling the sum of contributions from the individual solitons. There are rank-g species of soliton, with masses given by a generalisation of a formula due to Hollowood, being proportional to the components of the left Perron-Frobenius eigenvector of the Cartan matrix of g.
Solitons and the energy-momentum tensor for affine Toda theory
International Nuclear Information System (INIS)
Olive, D.I.; Turok, N.; Underwood, J.W.R.
1993-01-01
Following Leznov and Saveliev, we present the general solution to Toda field theories of conformal, affine or conformal affine type, associated with a simple Lie algebra g. These depend on a free massless field and on a group element. By putting the former to zero, soliton solutions to the affine Toda theories with imaginary coupling constant result with the soliton data encoded in the group element. As this requires a reformulation of the affine Kac-Moodyy algebra closely related to that already used to formulate the physical properties of the particle excitations, including their scattering matrices, a unified treatment of particles and solitons emerges. The physical energy-momentum tensor for a general solution is broken into a total derivative plus a part dependent only on the derivatives of the free field. Despite the non-linearity of the field equations and their complex nature the energy and momentum of the N-soliton solution is shown to be real, equalling the sum of contributions from the individual solitons. There are rank-g species of soliton, with masses given by a generalisation of a formula due to Hollowood, being proportional to the components of the left Perron-Frobenius eigenvector of the Cartan matrix of g. (orig.)
Affine invariants of convex polygons.
Flusser, Jan
2002-01-01
In this correspondence, we prove that the affine invariants, for image registration and object recognition, proposed recently by Yang and Cohen (see ibid., vol.8, no.7, p.934-46, July 1999) are algebraically dependent. We show how to select an independent and complete set of the invariants. The use of this new set leads to a significant reduction of the computing complexity without decreasing the discrimination power.
Specific capture of uranyl protein targets by metal affinity chromatography
International Nuclear Information System (INIS)
Basset, C.; Dedieu, A.; Guerin, P.; Quemeneur, E.; Meyer, D.; Vidaud, C.
2008-01-01
To improve general understanding of biochemical mechanisms in the field of uranium toxicology, the identification of protein targets needs to be intensified. Immobilized metal affinity chromatography (IMAC) has been widely developed as a powerful tool for capturing metal binding proteins from biological extracts. However uranyl cations (UO 2 2+ ) have particular physico-chemical characteristics which prevent them from being immobilized on classical metal chelating supports. We report here on the first development of an immobilized uranyl affinity chromatography method, based on the cation-exchange properties of amino-phosphonate groups for uranyl binding. The cation distribution coefficient and loading capacity on the support were determined. Then the stability of the uranyl-bonded phase under our chromatographic conditions was optimized to promote affinity mechanisms. The successful enrichment of uranyl binding proteins from human serum was then proven using proteomic and mass spectral analysis. (authors)
Li, Qian-Shu; Zhao, Jun-Fang; Xie, Yaoming; Schaefer, Henry F., III
Four independent density functional theory (DFT) methods have been employed to study the structures and electron affinities of the methyl and F-, Cl- and Br-substituted methyl radicals and their anions. The methods used have been carefully calibrated against a comprehensive tabulation of experimental electron affinities (Chemical Reviews, 2002, 102, 231). The first dissociation energies together with the vibrational frequencies of these species are also reported. The basis sets used in this work are of double- ζ plus polarization quality with additional s- and p-type diffuse functions, labelled as DZP++. Previously observed trends in the prediction of bond lengths by the DFT methods are also demonstrated for the F-, Cl- and Br-substituted methyl radicals and their anions. Generally, the Hartree-Fock/DFT hybrid methods predict shorter and more reliable bond lengths than the pure DFT methods. Neutral-anion energy differences reported in this work are the adiabatic electron affinity (EAad), the vertical electron affinity (EAvert), and the vertical detachment energy (VDE). Compared with the available experimental electron affinities, the BHLYP method predicts much lower values, while the other methods predict values (EAad, EAvert, VDE) close to each other and almost within the experimental range. For those systems without reliable experimental measurements, our best adiabatic EAs predicted by BLYP are 0.78 (CHF2), 1.23 (CHFCl), 1.44 (CHFBr), 1.61 (CHClBr), 2.24 (CF2Cl), 2.42 (CF2Br), 2.56 (CFBr2), 2.36 (CCl2Br), 2.46 (CClBr2), and 2.44 eV (CFClBr). The most striking feature of these predictions is that they display an inverse relationship between halogen electronegativity and EA. The DZP++ B3LYP method determines the vibrational frequencies in best agreement with available experimental results for this series, with an average relative error of ~2%. The value of using a variety of DFT methods is observed in that BHLYP does best for geometries, BLYP for electron
Use of Intrinsic Viscosity for evaluation of polymer-solvent affinity
DEFF Research Database (Denmark)
Marani, Debora; Hjelm, Johan; Wandel, Marie
2013-01-01
The objective of the current paper was to define a rheological method for the study of the solvent/binder affinity. The adopted strategy involves the study of the intrinsic viscosity [η] of polymer solutions. [η] was estimated via an extrapolation procedure using the Huggins and Kramer equations....... The intrinsic viscosity and the Mark-Houwink shape parameter were estimated for the three polymers and used as criteria for estimating the polymer/solvent affinity....
Preparation of Affinity Column Based on Zr4+ Ion for Phosphoproteins Isolation
International Nuclear Information System (INIS)
Lee, Seon Mi; Bae, In Ae; Park, Jung Hyen; Kim, Tae Dong; Choi, Seong Ho
2009-01-01
This paper has described about preparation of Zr 4+ affinity column based on the poly(styreneco- glycidyl methacrylate) prepared by emulsion polymerization of styrene and glycidyl methacrylate in order to isolate phosphopeptide. The Zr 4+ ions were introduced after the phophonation of an epoxy group on polymeric microspheres. The successful preparation of Zr 4+ -immobilized polymeric microsphere stationary phase was confirmed through Fourier transform infrared spectra, optical microscopy, scanning electron microscopy, X-ray photoelectron spectra and inductively coupled plasma-atomic emission spectrometer. The separation efficiency for Zr 4+ affinity column prepared by slurry packing was tested to phosphonated casein and dephosphonated casein. The resolution time (min) of the phosphonated casein was higher than that of dephosphated casein for Zr 4+ affinity polymeric microsphere by liquid chromatography. This Zr 4+ affinity column can be used for isolation of phosphonated casein from casein using liquid chromatography
Fractionation of Aspergillus niger cellulases by combined ion exchange affinity chromatography
Energy Technology Data Exchange (ETDEWEB)
Boyer, R.F.; Allen, T.L.; Dykema, P.A.
1987-02-05
Eight chemically modified cellulose supports were tested for their ability to adsorb components of the Aspergillus niger cellulase system. At least two of the most effective adsorbents, aminoethyl cellulose and carboxymethyl cellulose, were shown to be useful for the fractionation of cellulases. These supports apparently owe their resolving capacity to both ion exchange and biospecific binding effects; however, the relative importance of each effect is unknown. These observations form the basis for a new cellulase fractionation technique, combined ion exchange-affinity chromatography. 22 references.
Einstein’s gravity from a polynomial affine model
Castillo-Felisola, Oscar; Skirzewski, Aureliano
2018-03-01
We show that the effective field equations for a recently formulated polynomial affine model of gravity, in the sector of a torsion-free connection, accept general Einstein manifolds—with or without cosmological constant—as solutions. Moreover, the effective field equations are partially those obtained from a gravitational Yang–Mills theory known as Stephenson–Kilmister–Yang theory. Additionally, we find a generalization of a minimally coupled massless scalar field in General Relativity within a ‘minimally’ coupled scalar field in this affine model. Finally, we present a brief (perturbative) analysis of the propagators of the gravitational theory, and count the degrees of freedom. For completeness, we prove that a Birkhoff-like theorem is valid for the analyzed sector.
Hage, David S
2017-06-01
The interactions between biochemical and chemical agents in the body are important in many clinical processes. Affinity chromatography and high-performance affinity chromatography (HPAC), in which a column contains an immobilized biologically related binding agent, are 2 methods that can be used to study these interactions. This review presents various approaches that can be used in affinity chromatography and HPAC to characterize the strength or rate of a biological interaction, the number and types of sites that are involved in this process, and the interactions between multiple solutes for the same binding agent. A number of applications for these methods are examined, with an emphasis on recent developments and high-performance affinity methods. These applications include the use of these techniques for fundamental studies of biological interactions, high-throughput screening of drugs, work with modified proteins, tools for personalized medicine, and studies of drug-drug competition for a common binding agent. The wide range of formats and detection methods that can be used with affinity chromatography and HPAC for examining biological interactions makes these tools attractive for various clinical and pharmaceutical applications. Future directions in the development of small-scale columns and the coupling of these methods with other techniques, such as mass spectrometry or other separation methods, should continue to increase the flexibility and ease with which these approaches can be used in work involving clinical or pharmaceutical samples. © 2016 American Association for Clinical Chemistry.
Yank-Mills fields and hypersurface twistors
International Nuclear Information System (INIS)
Fioravanti, M.A.
1989-01-01
The author establishes a one-to-one correspondence between (not necessarily self-dual) solutions of the non-abelian source-free Yang-Mills equations on Minkowski space, and pairs of cohomology classes [γ], [φ]. If O(n) is the sheaf of holomorphic sections of the n th tensor power of the hyperplane line bundle over C P 1 , and g is the Lie algebra of the gauge group, [γ] var-epsilon H CR 1 (PN circumflex,g) and defines a deformation C-R(γ) of the canonical C-R structure on a principal bundle over PN circumflex, the subset of null twistor space PN, representing unscaled null geodesics in Minkowski space. [φ] var-epsilon H CR(γ) 1 (PN,O(-4) direct-product g). The spin-bundle over Minkowski space is used in the construction. This bundle is foliated by a congruence of lines; each of these lines projects into a null geodesic in Minkowski space, and corresponds to a point in N. The restriction S of the spin-bundle to a spacelike hyperplane in Minkowski space is transversal to this foliation, and PN is identified with S. [γ] encodes certain components of the Yang-Mills connection on S, and [φ] encodes the self-dual part of the field on S. They give initial values for a system of evolution equations in the spin-bundle. This system is composed by four first order ordinary differential equations along the lines in the foliation of the spin-bundle, with some of the right-hand sides given by integrals on the fiber over a point in Minkowski space, and a partial differential equation on this fiber. The evolution equations simplify largely in the case of an abelian gauge group. In the case of anti-self-dual fields, the system reduces to two ordinary differential equations along the lines in the foliation of the spin-bundle, and the differential equation on the fiber over each point in Minkowski space. He studies the modifications in the construction when sources are present
The affine quantum gravity programme
International Nuclear Information System (INIS)
Klauder, John R
2002-01-01
The central principle of affine quantum gravity is securing and maintaining the strict positivity of the matrix { g-hat ab (x)} composed of the spatial components of the local metric operator. On spectral grounds, canonical commutation relations are incompatible with this principle, and they must be replaced by noncanonical, affine commutation relations. Due to the partial second-class nature of the quantum gravitational constraints, it is advantageous to use the recently developed projection operator method, which treats all quantum constraints on an equal footing. Using this method, enforcement of regularized versions of the gravitational operator constraints is formulated quite naturally by means of a novel and relatively well-defined functional integral involving only the same set of variables that appears in the usual classical formulation. It is anticipated that skills and insight to study this formulation can be developed by studying special, reduced-variable models that still retain some basic characteristics of gravity, specifically a partial second-class constraint operator structure. Although perturbatively nonrenormalizable, gravity may possibly be understood nonperturbatively from a hard-core perspective that has proved valuable for specialized models. Finally, developing a procedure to pass to the genuine physical Hilbert space involves several interconnected steps that require careful coordination
Sugawara construction for affine SL(N,1)
International Nuclear Information System (INIS)
Henningson, M.
1990-01-01
We investigate the sl(N,1) superalgebras, their affine extensions and their representations. This is used to perform a Sugawara construction of the Virasoro algebra. The allowed values of the conformal anomaly and the conformal dimension are computed. (orig.)
High-throughput fragment screening by affinity LC-MS.
Duong-Thi, Minh-Dao; Bergström, Maria; Fex, Tomas; Isaksson, Roland; Ohlson, Sten
2013-02-01
Fragment screening, an emerging approach for hit finding in drug discovery, has recently been proven effective by its first approved drug, vemurafenib, for cancer treatment. Techniques such as nuclear magnetic resonance, surface plasmon resonance, and isothemal titration calorimetry, with their own pros and cons, have been employed for screening fragment libraries. As an alternative approach, screening based on high-performance liquid chromatography separation has been developed. In this work, we present weak affinity LC/MS as a method to screen fragments under high-throughput conditions. Affinity-based capillary columns with immobilized thrombin were used to screen a collection of 590 compounds from a fragment library. The collection was divided into 11 mixtures (each containing 35 to 65 fragments) and screened by MS detection. The primary screening was performed in 3500 fragments per day). Thirty hits were defined, which subsequently entered a secondary screening using an active site-blocked thrombin column for confirmation of specificity. One hit showed selective binding to thrombin with an estimated dissociation constant (K (D)) in the 0.1 mM range. This study shows that affinity LC/MS is characterized by high throughput, ease of operation, and low consumption of target and fragments, and therefore it promises to be a valuable method for fragment screening.
Gaussian and Affine Approximation of Stochastic Diffusion Models for Interest and Mortality Rates
Directory of Open Access Journals (Sweden)
Marcus C. Christiansen
2013-10-01
Full Text Available In the actuarial literature, it has become common practice to model future capital returns and mortality rates stochastically in order to capture market risk and forecasting risk. Although interest rates often should and mortality rates always have to be non-negative, many authors use stochastic diffusion models with an affine drift term and additive noise. As a result, the diffusion process is Gaussian and, thus, analytically tractable, but negative values occur with positive probability. The argument is that the class of Gaussian diffusions would be a good approximation of the real future development. We challenge that reasoning and study the asymptotics of diffusion processes with affine drift and a general noise term with corresponding diffusion processes with an affine drift term and an affine noise term or additive noise. Our study helps to quantify the error that is made by approximating diffusive interest and mortality rate models with Gaussian diffusions and affine diffusions. In particular, we discuss forward interest and forward mortality rates and the error that approximations cause on the valuation of life insurance claims.
Influence of metallic surface states on electron affinity of epitaxial AlN films
Energy Technology Data Exchange (ETDEWEB)
Mishra, Monu; Krishna, Shibin; Aggarwal, Neha [Advanced Materials and Devices Division, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi110012 (India); Academy of Scientific and Innovative Research (AcSIR), CSIR-NPL Campus, Dr. K.S. Krishnan Marg, New Delhi 110012 (India); Gupta, Govind, E-mail: govind@nplindia.org [Advanced Materials and Devices Division, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi110012 (India); Academy of Scientific and Innovative Research (AcSIR), CSIR-NPL Campus, Dr. K.S. Krishnan Marg, New Delhi 110012 (India)
2017-06-15
The present article investigates surface metallic states induced alteration in the electron affinity of epitaxial AlN films. AlN films grown by plasma-assisted molecular beam epitaxy system with (30% and 16%) and without metallic aluminium on the surface were probed via photoemission spectroscopic measurements. An in-depth analysis exploring the influence of metallic aluminium and native oxide on the electronic structure of the films is performed. It was observed that the metallic states pinned the Fermi Level (FL) near valence band edge and lead to the reduction of electron affinity (EA). These metallic states initiated charge transfer and induced changes in surface and interface dipoles strength. Therefore, the EA of the films varied between 0.6–1.0 eV due to the variation in contribution of metallic states and native oxide. However, the surface barrier height (SBH) increased (4.2–3.5 eV) adversely due to the availability of donor-like surface states in metallic aluminium rich films.
High affinity hemoglobin and Parkinson's disease.
Graham, Jeffrey; Hobson, Douglas; Ponnampalam, Arjuna
2014-12-01
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra (SN) region of the midbrain. Oxidative damage in this region has been shown to play an important role in the pathogenesis of this disease. Human neurons have been discovered to contain hemoglobin, with an increased concentration seen in the neurons of the SN. High affinity hemoglobin is a clinical entity resulting from mutations that create a functional increase in the binding of hemoglobin to oxygen and an inability to efficiently unload it to tissues. This can result in a number of metabolic compensatory changes, including an elevation in circulating hemoglobin and an increase in the molecule 2,3-diphosphoglycerate (2,3-DPG). Population based studies have revealed that patients with PD have elevated hemoglobin as well as 2,3-DPG levels. Based on these observations, we hypothesize that the oxidative damage seen in PD is related to an underlying high affinity hemoglobin subtype. Copyright © 2014 Elsevier Ltd. All rights reserved.
Food and value motivation: Linking consumer affinities to different types of food products.
de Boer, Joop; Schösler, Hanna
2016-08-01
This study uses the consumer affinity concept to examine the multiple motives that may shape consumers' relationships with food. The concept was applied in a study on four broad product types in the Netherlands, which cover a wide range of the market and may each appeal to consumers with different affinities towards foods. These product types may be denoted as 'conventional', 'efficient', 'gourmet' and 'pure'. A comparative analysis, based on Higgins' Regulatory Focus Theory, was performed to examine whether food-related value motivations could explain different consumer affinities for these product types. The affinities of consumers were measured by means of a non-verbal, visual presentation of four samples of food products in a nationwide survey (n = 742) among consumers who were all involved in food purchasing and/or cooking. The affinities found could be predicted fairly well from a number of self-descriptions relating to food and eating, which expressed different combinations of type of value motivation and involvement with food. The analysis demonstrated the contrasting role of high and low involvement as well as the potential complementarity of promotion- and prevention-focused value motivation. It is suggested that knowledge of the relationships between product types, consumer affinities and value motivation can help improve the effectiveness of interventions that seek to promote healthy and sustainable diets in developed countries. Copyright © 2016 Elsevier Ltd. All rights reserved.
DEFF Research Database (Denmark)
Guglielmi, Michel; Johannesen, Hl
2004-01-01
, Essex, Hertfordshire, Norfolk and Suffolk. Research found that there was a lack of identity or sense of belonging and nothing anchoring people to the region as a whole. Common affinity is somehow forced to the people of East England and thereby we came to the conclusion that a single landmark...... and potential situations but also virtual events that calls for an undeterminated process of resolution. This process is activated by the user who co-produces the actualisation as an answer to a virtual reality that we defined at the first place. The potential situations or the possible it is a fantomatic real....... The possible is like the real. It is determinated and it only lakes existence. While the possible is already made, the virtual is like a problematic which needs to be resolved and actualized. Our installations are based on high tech interactivity where we use sensors and remote communication to offer a sense...
Directory of Open Access Journals (Sweden)
MOACYR J.B.M. RÊGO
2014-09-01
Full Text Available The present work aimed to magnetize Parkia pendula seeds gum and use it as a matrix for Concanavalin A covalent immobilization. This composite was applied in affinity purification of glycoconjugates. Parkia pendula seeds were hydrated and the gum provenient from the supernatant was precipitated and washed with ethanol and dried. The gum was magnetized in co-precipitation using solutions of Fe+2 and Fe+3. Matrix activation was accomplished with NaIO4. Magnetized Parkia pendula seeds gum with covalently immobilized Concanavalin A was used as an affinity matrix for the recognition of bovine serum fetuin glycoprotein. Fetuin elution was carried out with a solution of glucose (300mM and evaluated through SDS-PAGE. The efficiency of lectin immobilization and fetuin purification were 63% and 14%, respectively. These results indicate that the composite produced is a promising magnetic polysaccharide matrix for lectins immobilization. Thus, such system can be applied for affinity purification allowing an easy recovery by magnetic field.
Hung, Lien-Yu; Wang, Chih-Hung; Fu, Chien-Yu; Gopinathan, Priya; Lee, Gwo-Bin
2016-08-07
Microfluidic technologies have miniaturized a variety of biomedical applications, and these chip-based systems have several significant advantages over their large-scale counterparts. Recently, this technology has been used for automating labor-intensive and time-consuming screening processes, whereby affinity reagents, including aptamers, peptides, antibodies, polysaccharides, glycoproteins, and a variety of small molecules, are used to probe for molecular biomarkers. When compared to conventional methods, the microfluidic approaches are faster, more compact, require considerably smaller quantities of samples and reagents, and can be automated. Furthermore, they allow for more precise control of reaction conditions (e.g., pH, temperature, and shearing forces) such that more efficient screening can be performed. A variety of affinity reagents for targeting cancer cells or cancer biomarkers are now available and will likely replace conventional antibodies. In this review article, the selection of affinity reagents for cancer cells or cancer biomarkers on microfluidic platforms is reviewed with the aim of highlighting the utility of such approaches in cancer diagnostics.
Haemoglobin Pierre-Benite--a high affinity variant associated with relative polycythaemia.
Beard, M E; Potter, H C; Spearing, R L; Brennan, S O
2001-12-01
This is the second reported example of Hb Pierre--Benite (beta90 Glu-->Asp). This mutation is associated with increased oxygen affinity and polycythaemia. No instability was found and there was no charge shift detected by cellulose acetate electrophoresis at pH 8.3. The mutation was however, clearly indicated by electrospray ionization mass spectrometry (ESI MS), which showed an abnormal beta chain with a 14 Da decrease in mass. Blood volume studies documented a relative rather than a true polycythaemia and this finding has been reported in at least two other high affinity haemoglobin variants--Hb Heathrow and Hb Rahere. This finding led to delay in diagnosis because high oxygen affinity variants are conventionally considered to cause a true polycythaemia.
Myoglobin oxygen affinity in aquatic and terrestrial birds and mammals.
Wright, Traver J; Davis, Randall W
2015-07-01
Myoglobin (Mb) is an oxygen binding protein found in vertebrate skeletal muscle, where it facilitates intracellular transport and storage of oxygen. This protein has evolved to suit unique physiological needs in the muscle of diving vertebrates that express Mb at much greater concentrations than their terrestrial counterparts. In this study, we characterized Mb oxygen affinity (P50) from 25 species of aquatic and terrestrial birds and mammals. Among diving species, we tested for correlations between Mb P50 and routine dive duration. Across all species examined, Mb P50 ranged from 2.40 to 4.85 mmHg. The mean P50 of Mb from terrestrial ungulates was 3.72±0.15 mmHg (range 3.70-3.74 mmHg). The P50 of cetaceans was similar to terrestrial ungulates ranging from 3.54 to 3.82 mmHg, with the exception of the melon-headed whale, which had a significantly higher P50 of 4.85 mmHg. Among pinnipeds, the P50 ranged from 3.23 to 3.81 mmHg and showed a trend for higher oxygen affinity in species with longer dive durations. Among diving birds, the P50 ranged from 2.40 to 3.36 mmHg and also showed a trend of higher affinities in species with longer dive durations. In pinnipeds and birds, low Mb P50 was associated with species whose muscles are metabolically active under hypoxic conditions associated with aerobic dives. Given the broad range of potential globin oxygen affinities, Mb P50 from diverse vertebrate species appears constrained within a relatively narrow range. High Mb oxygen affinity within this range may be adaptive for some vertebrates that make prolonged dives. © 2015. Published by The Company of Biologists Ltd.
Proadifen-sensitive high affinity binding of 3H-alaproclate to liver membranes
International Nuclear Information System (INIS)
Ross, S.B.
1987-01-01
3 H-alaproclate, a selective 5 h ydroxytryptamine uptake inhibitor, was found to bind to microsomal membranes from the rat liver with high affinity (K D -=3 nM) and large capacity (B max about 2 nmol/g liver). This binding was stereoselective since S-( - )-alaproclate was 30 times more potent than the R-( + )-enantiomer to displace the 3 H-labelled racemate. Proadifen (SKF 525A), an inhibitor of cytochrome P-450, displaced the 3 H-alaproclate binding with the same, high affinity (K i =3 nM) as alaproclate itself. Repeated treatment with phenobarbital sodium (5x75 mg/kg intraperitoneally) increased the number of alaproclate binding sites 7-8 times without changing the affinity. However, most of the phenobarbital induced 3 H-alaproclate binding was not displaceable by proadifen, showing the presence of at least two different high affinity binding sites. The possible involvement of cytochrome P-450 in the alaproclate binding is discussed. (author)
A mix-and-read drop-based in vitro two-hybrid method for screening high-affinity peptide binders
Cui, Naiwen; Zhang, Huidan; Schneider, Nils; Tao, Ye; Asahara, Haruichi; Sun, Zhiyi; Cai, Yamei; Koehler, Stephan A.; de Greef, Tom F. A.; Abbaspourrad, Alireza; Weitz, David A.; Chong, Shaorong
2016-01-01
Drop-based microfluidics have recently become a novel tool by providing a stable linkage between phenotype and genotype for high throughput screening. However, use of drop-based microfluidics for screening high-affinity peptide binders has not been demonstrated due to the lack of a sensitive functional assay that can detect single DNA molecules in drops. To address this sensitivity issue, we introduced in vitro two-hybrid system (IVT2H) into microfluidic drops and developed a streamlined mix-and-read drop-IVT2H method to screen a random DNA library. Drop-IVT2H was based on the correlation between the binding affinity of two interacting protein domains and transcriptional activation of a fluorescent reporter. A DNA library encoding potential peptide binders was encapsulated with IVT2H such that single DNA molecules were distributed in individual drops. We validated drop-IVT2H by screening a three-random-residue library derived from a high-affinity MDM2 inhibitor PMI. The current drop-IVT2H platform is ideally suited for affinity screening of small-to-medium-sized libraries (103–106). It can obtain hits within a single day while consuming minimal amounts of reagents. Drop-IVT2H simplifies and accelerates the drop-based microfluidics workflow for screening random DNA libraries, and represents a novel alternative method for protein engineering and in vitro directed protein evolution. PMID:26940078
Ferromagnetic Levan Composite: An Affinity Matrix to Purify Lectin
Directory of Open Access Journals (Sweden)
Renata Angeli
2009-01-01
Full Text Available A simple and inexpensive procedure used magnetite and levan to synthesize a composite recovered by a magnetic field. Lectins from Canavalia ensiformis (Con A and Cratylia mollis (Cramoll 1 and Cramoll 1,4 did bind specifically to composite. The magnetic property of derivative favored washing out contaminating proteins and recovery of pure lectins with glucose elution. Cramoll 1 was purified by this affinity binding procedure in two steps instead of a previous three-step protocol with ammonium sulfate fractionation, affinity chromatography on Sephadex G-75, and ion exchange chromatography through a CM-cellulose column.
It's the peptide-MHC affinity, stupid.
Kammertoens, Thomas; Blankenstein, Thomas
2013-04-15
Adoptively transferred T cells can reject large established tumors, but recurrence due to escape variants frequently occurs. In this issue of Cancer Cell, Engels et al. demonstrate that the affinity of the target peptide to the MHC molecule determines whether large tumors will relapse following adoptive T cell therapy. Copyright © 2013 Elsevier Inc. All rights reserved.
On gravity's role in the genesis of rest masses of classical fields
Szabados, László B.
2018-03-01
It is shown that in the Einstein-conformally coupled Higgs-Maxwell system with Friedman-Robertson-Walker symmetries the energy density of the Higgs field has stable local minimum only if the mean curvature of the t=const hypersurfaces is less than a finite critical value χ _c, while for greater mean curvature the energy density is not bounded from below. Therefore, there are extreme gravitational situations in which even quasi-locally defined instantaneous vacuum states of the Higgs sector cannot exist, and hence one cannot at all define the rest mass of all the classical fields. On hypersurfaces with mean curvature less than χ _c the energy density has the `wine bottle' (rather than the familiar `Mexican hat') shape, and the gauge field can get rest mass via the Brout-Englert-Higgs mechanism. The spacelike hypersurface with the critical mean curvature represents the moment of `genesis' of rest masses.
Maximum-Entropy Models of Sequenced Immune Repertoires Predict Antigen-Antibody Affinity
DEFF Research Database (Denmark)
Asti, Lorenzo; Uguzzoni, Guido; Marcatili, Paolo
2016-01-01
The immune system has developed a number of distinct complex mechanisms to shape and control the antibody repertoire. One of these mechanisms, the affinity maturation process, works in an evolutionary-like fashion: after binding to a foreign molecule, the antibody-producing B-cells exhibit a high...... of an HIV-1 infected patient. The Pearson correlation coefficient between our scoring function and the IC50 neutralization titer measured on 30 different antibodies of known sequence is as high as 0.77 (p-value 10-6), outperforming other sequence- and structure-based models....
Mirror symmetry in the presence of branes
Energy Technology Data Exchange (ETDEWEB)
Mertens, Adrian
2011-10-11
This work deals with mirror symmetry for N=1 compactifications on compact Calabi-Yau threefolds with branes. The mayor tool is a combined deformation space for the Calabi-Yau and a hypersurface within it. Periods of this deformation space contain information about B-type branes within the hypersurface in addition to the usual closed string data. To study these periods we generalize techniques used in closed string mirror symmetry. We derive the Picard-Fuchs system and encode the information in extended toric polytopes. Solutions of the Picard-Fuchs equations give superpotentials for certain brane configurations. This is an efficient way to calculate superpotentials. The deformations we consider are massive for all branes with non trivial superpotential. Depending on a choice of a family of hypersurfaces, the superpotential of the effective low energy theory depends on different massive fields. A priori there is no reason for these fields to be lighter then other fields that are not included. We find however examples where the superpotential is nearly at. In these examples we use the Gauss-Manin connection on the combined deformation space to define an open string mirror map. We find instanton generated superpotentials of A-type branes. This gives predictions for Ooguri-Vafa invariants counting holomorphic disks that end on a Lagrangian brane on the Quintic. A second class of examples does not have preferred nearly massless deformations and different families of hypersurfaces can be used to calculate the same on-shell superpotential. We calculate examples of superpotentials for branes in Calabi-Yau manifolds with several moduli. The on-shell superpotentials are mapped to the mirror A-model to study the instanton expansion and to obtain predictions for disk invariants. The combined deformation spaces are equivalent to the quantum corrected Kaehler deformation spaces of certain non compact Calabi-Yau fourfolds. These fourfolds are fibrations of Calabi-Yau threefolds
Mirror symmetry in the presence of branes
International Nuclear Information System (INIS)
Mertens, Adrian
2011-01-01
This work deals with mirror symmetry for N=1 compactifications on compact Calabi-Yau threefolds with branes. The mayor tool is a combined deformation space for the Calabi-Yau and a hypersurface within it. Periods of this deformation space contain information about B-type branes within the hypersurface in addition to the usual closed string data. To study these periods we generalize techniques used in closed string mirror symmetry. We derive the Picard-Fuchs system and encode the information in extended toric polytopes. Solutions of the Picard-Fuchs equations give superpotentials for certain brane configurations. This is an efficient way to calculate superpotentials. The deformations we consider are massive for all branes with non trivial superpotential. Depending on a choice of a family of hypersurfaces, the superpotential of the effective low energy theory depends on different massive fields. A priori there is no reason for these fields to be lighter then other fields that are not included. We find however examples where the superpotential is nearly at. In these examples we use the Gauss-Manin connection on the combined deformation space to define an open string mirror map. We find instanton generated superpotentials of A-type branes. This gives predictions for Ooguri-Vafa invariants counting holomorphic disks that end on a Lagrangian brane on the Quintic. A second class of examples does not have preferred nearly massless deformations and different families of hypersurfaces can be used to calculate the same on-shell superpotential. We calculate examples of superpotentials for branes in Calabi-Yau manifolds with several moduli. The on-shell superpotentials are mapped to the mirror A-model to study the instanton expansion and to obtain predictions for disk invariants. The combined deformation spaces are equivalent to the quantum corrected Kaehler deformation spaces of certain non compact Calabi-Yau fourfolds. These fourfolds are fibrations of Calabi-Yau threefolds
Energy Technology Data Exchange (ETDEWEB)
Hall, Justin; Brault, Amy; Vincent, Fabien; Weng, Shawn; Wang, Hong; Dumlao, Darren; Aulabaugh, Ann; Aivazian, Dikran; Castro, Dana; Chen, Ming; Culp, Jeffrey; Dower, Ken; Gardner, Joseph; Hawrylik, Steven; Golenbock, Douglas; Hepworth, David; Horn, Mark; Jones, Lyn; Jones, Peter; Latz, Eicke; Li, Jing; Lin, Lih-Ling; Lin, Wen; Lin, David; Lovering, Frank; Niljanskul, Nootaree; Nistler, Ryan; Pierce, Betsy; Plotnikova, Olga; Schmitt, Daniel; Shanker, Suman; Smith, James; Snyder, William; Subashi, Timothy; Trujillo, John; Tyminski, Edyta; Wang, Guoxing; Wong, Jimson; Lefker, Bruce; Dakin, Leslie; Leach, Karen (UMASS, MED); (Pfizer)
2017-09-21
Cyclic GMP-AMP synthase (cGAS) initiates the innate immune system in response to cytosolic dsDNA. After binding and activation from dsDNA, cGAS uses ATP and GTP to synthesize 2', 3' -cGAMP (cGAMP), a cyclic dinucleotide second messenger with mixed 2'-5' and 3'-5' phosphodiester bonds. Inappropriate stimulation of cGAS has been implicated in autoimmune disease such as systemic lupus erythematosus, thus inhibition of cGAS may be of therapeutic benefit in some diseases; however, the size and polarity of the cGAS active site makes it a challenging target for the development of conventional substrate-competitive inhibitors. We report here the development of a high affinity (K_{D} = 200 nM) inhibitor from a low affinity fragment hit with supporting biochemical and structural data showing these molecules bind to the cGAS active site. We also report a new high throughput cGAS fluorescence polarization (FP)-based assay to enable the rapid identification and optimization of cGAS inhibitors. This FP assay uses Cy5-labelled cGAMP in combination with a novel high affinity monoclonal antibody that specifically recognizes cGAMP with no cross reactivity to cAMP, cGMP, ATP, or GTP. Given its role in the innate immune response, cGAS is a promising therapeutic target for autoinflammatory disease. Our results demonstrate its druggability, provide a high affinity tool compound, and establish a high throughput assay for the identification of next generation cGAS inhibitors.
Color and Contrast Enhancement by Controlled Piecewise Affine Histogram Equalization
Directory of Open Access Journals (Sweden)
Jose-Luis Lisani
2012-10-01
Full Text Available This paper presents a simple contrast enhancement algorithm based on histogram equalization (HE. The proposed algorithm performs a piecewise affine transform of the intensity levels of a digital image such that the new cumulative distribution function will be approximately uniform (as with HE, but where the stretching of the range is locally controlled to avoid brutal noise enhancement. We call this algorithm Piecewise Affine Equalization (PAE. Several experiments show that, in general, the new algorithm improves HE results.
Lettieri, R.; D'Abramo, M.; Stella, L.; La Bella, A.; Leonelli, F.; Giansanti, L.; Venanzi, M.; Gatto, E.
2018-04-01
Thymidine phosphorylase (TP) is an enzyme that is up-regulated in a wide variety of solid tumors, including breast and colorectal cancers. It is involved in tumor growth and metastasis, for this reason it is one of the key enzyme to be inhibited, in an attempt to prevent tumor proliferation. However, it also plays an active role in cancer treatment, through its contribution in the conversion of the anti-cancer drug 5-fluorouracil (5-FU) to an irreversible inhibitor of thymidylate synthase (TS), responsible of the inhibition of the DNA synthesis. In this work, the intrinsic TP fluorescence has been investigated for the first time and exploited to study TP binding affinity for the unsubstituted 5-FU and for two 5-FU derivatives, designed to expose this molecule on liposomal membranes. These molecules were obtained by functionalizing the nitrogen atom with a chain consisting of six (1) or seven (2) units of glycol, linked to an alkyl moiety of 12 carbon atoms. Derivatives (1) and (2) exhibited an affinity for TP in the micromolar range, 10 times higher than the parent compound, irrespective of the length of the polyoxyethylenic spacer. This high affinity was maintained also when the compounds were anchored in liposomal membranes. Experimental results were supported by molecular dynamics simulations and docking calculations, supporting a feasible application of the designed supramolecular lipid structure in selective targeting of TP, to be potentially used as a drug delivery system or sensor device.
Affine Kac-Moody algebras and their representations
International Nuclear Information System (INIS)
Slansky, R.
1988-01-01
Highest weight representation theory of finite dimensional and affine Kac-Moody algebras is summarized from a unified point of view. Lattices of discrete additive quantum numbers and the presentation of Lie algebras on Cartan matrices are the central points of departure for the analysis. (author)
Affinity monolith chromatography: A review of general principles and applications.
Li, Zhao; Rodriguez, Elliott; Azaria, Shiden; Pekarek, Allegra; Hage, David S
2017-11-01
Affinity monolith chromatography, or AMC, is a liquid chromatographic method in which the support is a monolith and the stationary phase is a biological-binding agent or related mimic. AMC has become popular for the isolation of biochemicals, for the measurement of various analytes, and for studying biological interactions. This review will examine the principles and applications of AMC. The materials that have been used to prepare AMC columns will be discussed, which have included various organic polymers, silica, agarose, and cryogels. Immobilization schemes that have been used in AMC will also be considered. Various binding agents and applications that have been reported for AMC will then be described. These applications will include the use of AMC for bioaffinity chromatography, immunoaffinity chromatography, dye-ligand affinity chromatography, and immobilized metal-ion affinity chromatography. The use of AMC with chiral stationary phases and as a tool to characterize biological interactions will also be examined. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Energy Technology Data Exchange (ETDEWEB)
Orcutt, Kelly Davis; Slusarczyk, Adrian L. [Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Cieslewicz, Maryelise [Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Ruiz-Yi, Benjamin [Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Bhushan, Kumar R. [Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Boston, MA 02215 (United States); Frangioni, John V. [Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Boston, MA 02215 (United States); Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA 02215 (United States); Wittrup, K. Dane, E-mail: wittrup@mit.ed [Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)
2011-02-15
Introduction: In pretargeted radioimmunotherapy (PRIT), a bifunctional antibody is administered and allowed to pre-localize to tumor cells. Subsequently, a chelated radionuclide is administered and captured by cell-bound antibody while unbound hapten clears rapidly from the body. We aim to engineer high-affinity binders to 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) chelates for use in PRIT applications. Methods: We mathematically modeled antibody and hapten pharmacokinetics to analyze hapten tumor retention as a function of hapten binding affinity. Motivated by model predictions, we used directed evolution and yeast surface display to affinity mature the 2D12.5 antibody to DOTA, reformatted as a single chain variable fragment (scFv). Results: Modeling predicts that for high antigen density and saturating bsAb dose, a hapten-binding affinity of 100 pM is needed for near-maximal hapten retention. We affinity matured 2D12.5 with an initial binding constant of about 10 nM to DOTA-yttrium chelates. Affinity maturation resulted in a 1000-fold affinity improvement to biotinylated DOTA-yttrium, yielding an 8.2{+-}1.9 picomolar binder. The high-affinity scFv binds DOTA complexes of lutetium and gadolinium with similar picomolar affinity and indium chelates with low nanomolar affinity. When engineered into a bispecific antibody construct targeting carcinoembryonic antigen, pretargeted high-affinity scFv results in significantly higher tumor retention of a {sup 111}In-DOTA hapten compared to pretargeted wild-type scFv in a xenograft mouse model. Conclusions: We have engineered a versatile, high-affinity, DOTA-chelate-binding scFv. We anticipate it will prove useful in developing pretargeted imaging and therapy protocols to exploit the potential of a variety of radiometals.
Role of the T cell receptor ligand affinity in T cell activation by bacterial superantigens
DEFF Research Database (Denmark)
Andersen, P S; Geisler, C; Buus, S
2001-01-01
Similar to native peptide/MHC ligands, bacterial superantigens have been found to bind with low affinity to the T cell receptor (TCR). It has been hypothesized that low ligand affinity is required to allow optimal TCR signaling. To test this, we generated variants of Staphylococcus enterotoxin C3...... (SEC3) with up to a 150-fold increase in TCR affinity. By stimulating T cells with SEC3 molecules immobilized onto plastic surfaces, we demonstrate that increasing the affinity of the SEC3/TCR interaction caused a proportional increase in the ability of SEC3 to activate T cells. Thus, the potency...... correlation between ligand affinity and ligand potency indicating that it is the density of receptor-ligand complexes in the T cell contact area that determines TCR signaling strength....
Nakanishi, Takeshi; Maru, Takamitsu; Tahara, Kazuhiro; Sanada, Hideaki; Umetsu, Mitsuo; Asano, Ryutaro; Kumagai, Izumi
2013-02-01
We showed previously that humanization of 528, a murine anti-epidermal growth factor receptor (EGFR) antibody, causes reduced affinity for its target. Here, to improve the affinity of the humanized antibody for use in cancer immunotherapy, we constructed phage display libraries focused on the complementarity-determining regions (CDRs) of the antibody and carried out affinity selection. Two-step selections using libraries constructed in a stepwise manner enabled a 32-fold affinity enhancement of humanized 528 (h528). Thermodynamic analysis of the interactions between the variable domain fragment of h528 (h528Fv) mutants and the soluble extracellular domain of EGFR indicated that the h528Fv mutants obtained from the first selection showed a large increase in negative enthalpy change due to binding, resulting in affinity enhancement. Furthermore, mutants from the second selection showed a decrease in entropy loss, which led to further affinity maturation. These results suggest that a single mutation in the heavy chain variable domain (i.e. Tyr(52) to Trp) enthalpically contributed for overcoming the energetic barrier to the antigen-antibody interaction, which was a major hurdle for the in vitro affinity maturation of h528. We reported previously that the humanized bispecific diabody hEx3 Db, which targets EGFR and CD3, shows strong anti-tumor activity. hEx3 Db mutants, in which the variable domains of h528 were replaced with those of the affinity-enhanced mutants, were prepared and characterized. In a growth inhibition assay of tumor cells, the hEx3 Db mutants showed stronger anti-tumor activity than that of hEx3 Db, suggesting that affinity enhancement of h528Fv enhances the anti-tumor activity of the bispecific diabody.
High affinity calmodulin target sequence in the signalling molecule PI 3-kinase
DEFF Research Database (Denmark)
Fischer, R; Julsgart, J; Berchtold, M W
1998-01-01
M-binding peptide derived from the p110gamma isoform interacts with CaM in a calcium-dependent way. Using gel shift analysis and fluorescence spectrophotometry we discovered that the peptide forms a high affinity complex with CaM. Titration experiments using dansylated CaM gave an affinity constant of 5 n...
F+ and F⁻ affinities of simple N(x)F(y) and O(x)F(y) compounds.
Grant, Daniel J; Wang, Tsang-Hsiu; Vasiliu, Monica; Dixon, David A; Christe, Karl O
2011-03-07
Atomization energies at 0 K and heats of formation at 0 and 298 K are predicted for the neutral and ionic N(x)F(y) and O(x)F(y) systems using coupled cluster theory with single and double excitations and including a perturbative triples correction (CCSD(T)) method with correlation consistent basis sets extrapolated to the complete basis set (CBS) limit. To achieve near chemical accuracy (±1 kcal/mol), three corrections to the electronic energy were added to the frozen core CCSD(T)/CBS binding energies: corrections for core-valence, scalar relativistic, and first order atomic spin-orbit effects. Vibrational zero point energies were computed at the CCSD(T) level of theory where possible. The calculated heats of formation are in good agreement with the available experimental values, except for FOOF because of the neglect of higher order correlation corrections. The F(+) affinity in the N(x)F(y) series increases from N(2) to N(2)F(4) by 63 kcal/mol, while that in the O(2)F(y) series decreases by 18 kcal/mol from O(2) to O(2)F(2). Neither N(2) nor N(2)F(4) is predicted to bind F(-), and N(2)F(2) is a very weak Lewis acid with an F(-) affinity of about 10 kcal/mol for either the cis or trans isomer. The low F(-) affinities of the nitrogen fluorides explain why, in spite of the fact that many stable nitrogen fluoride cations are known, no nitrogen fluoride anions have been isolated so far. For example, the F(-) affinity of NF is predicted to be only 12.5 kcal/mol which explains the numerous experimental failures to prepare NF(2)(-) salts from the well-known strong acid HNF(2). The F(-) affinity of O(2) is predicted to have a small positive value and increases for O(2)F(2) by 23 kcal/mol, indicating that the O(2)F(3)(-) anion might be marginally stable at subambient temperatures. The calculated adiabatic ionization potentials and electron affinities are in good agreement with experiment considering that many of the experimental values are for vertical processes. © 2011
Mechanisms of anaphylaxis in human low-affinity IgG receptor locus knock-in mice.
Gillis, Caitlin M; Jönsson, Friederike; Mancardi, David A; Tu, Naxin; Beutier, Héloïse; Van Rooijen, Nico; Macdonald, Lynn E; Murphy, Andrew J; Bruhns, Pierre
2017-04-01
Anaphylaxis can proceed through distinct IgE- or IgG-dependent pathways, which have been investigated in various mouse models. We developed a novel mouse strain in which the human low-affinity IgG receptor locus, comprising both activating (hFcγRIIA, hFcγRIIIA, and hFcγRIIIB) and inhibitory (hFcγRIIB) hFcγR genes, has been inserted into the equivalent murine locus, corresponding to a locus swap. We sought to determine the capabilities of hFcγRs to induce systemic anaphylaxis and identify the cell types and mediators involved. hFcγR expression on mouse and human cells was compared to validate the model. Passive systemic anaphylaxis was induced by injection of heat-aggregated human intravenous immunoglobulin and active systemic anaphylaxis after immunization and challenge. Anaphylaxis severity was evaluated based on hypothermia and mortality. The contribution of receptors, mediators, or cell types was assessed based on receptor blockade or depletion. The human-to-mouse low-affinity FcγR locus swap engendered hFcγRIIA/IIB/IIIA/IIIB expression in mice comparable with that seen in human subjects. Knock-in mice were susceptible to passive and active anaphylaxis, accompanied by downregulation of both activating and inhibitory hFcγR expression on specific myeloid cells. The contribution of hFcγRIIA was predominant. Depletion of neutrophils protected against hypothermia and mortality. Basophils contributed to a lesser extent. Anaphylaxis was inhibited by platelet-activating factor receptor or histamine receptor 1 blockade. Low-affinity FcγR locus-switched mice represent an unprecedented model of cognate hFcγR expression. Importantly, IgG-related anaphylaxis proceeds within a native context of activating and inhibitory hFcγRs, indicating that, despite robust hFcγRIIB expression, activating signals can dominate to initiate a severe anaphylactic reaction. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights
The matrix realization of affine Jacobi varieties and the extended Lotka-Volterra lattice
International Nuclear Information System (INIS)
Inoue, Rei
2004-01-01
We study completely integrable Hamiltonian systems whose monodromy matrices are related to the representatives for the set of gauge equivalence classes M F of polynomial matrices. Let X be the algebraic curve given by the common characteristic equation for M F . We construct the isomorphism from the set of representatives to an affine part of the Jacobi variety of X. This variety corresponds to the invariant manifold of the system, where the Hamiltonian flow is linearized. As an application, we discuss the algebraic complete integrability of the extended Lotka-Volterra lattice with a periodic boundary condition
Targeting Anti-Cancer Active Compounds: Affinity-Based Chromatographic Assays
de Moraes, Marcela Cristina; Cardoso, Carmen Lucia; Seidl, Claudia; Moaddel, Ruin; Cass, Quezia Bezerra
2016-01-01
Affinity-based chromatography assays encompass the use of solid supports containing immobilized biological targets to monitor binding events in the isolation , identification and/or characterization of bioactive compounds. This powerful bioanalytical technique allows the screening of potential binders through fast analyses that can be directly performed using isolated substances or complex matrices. An overview of the recent researches in frontal and zonal affinity-based chromatography screening assays, which has been used as a tool in the identification and characterization of new anti-cancer agents, is discussed. In addition, a critical evaluation of the recently emerged ligands fishing assays in complex mixtures is also discussed. PMID:27306095
Set-Membership Proportionate Affine Projection Algorithms
Directory of Open Access Journals (Sweden)
Stefan Werner
2007-01-01
Full Text Available Proportionate adaptive filters can improve the convergence speed for the identification of sparse systems as compared to their conventional counterparts. In this paper, the idea of proportionate adaptation is combined with the framework of set-membership filtering (SMF in an attempt to derive novel computationally efficient algorithms. The resulting algorithms attain an attractive faster converge for both situations of sparse and dispersive channels while decreasing the average computational complexity due to the data discerning feature of the SMF approach. In addition, we propose a rule that allows us to automatically adjust the number of past data pairs employed in the update. This leads to a set-membership proportionate affine projection algorithm (SM-PAPA having a variable data-reuse factor allowing a significant reduction in the overall complexity when compared with a fixed data-reuse factor. Reduced-complexity implementations of the proposed algorithms are also considered that reduce the dimensions of the matrix inversions involved in the update. Simulations show good results in terms of reduced number of updates, speed of convergence, and final mean-squared error.
International Nuclear Information System (INIS)
Hanyu, Naohiro; Nishio, Kosuke; Hatakeyama, Mamoru; Yasuno, Hiroshi; Tanaka, Toshiyuki; Tada, Masaru; Nakagawa, Takashi; Sandhu, Adarsh; Abe, Masanori; Handa, Hiroshi
2009-01-01
For affinity purification of drug target protein we have developed magnetic carriers, narrow in size distribution (184±9 nm), which exhibit minimal non-specific binding of unwanted proteins. The carriers were highly dispersed in aqueous solutions and highly resistant to organic solvents, which enabled immobilization of various hydrophobic chemicals as probes on the carrier surfaces. Utilizing the carriers we have automated the process of separation and purification of the target proteins that had been done by manual operation previously.
Grillo-Puertas, Mariana; Schurig-Briccio, Lici Ariane; Rodríguez-Montelongo, Luisa; Rintoul, María Regina; Rapisarda, Viviana Andrea
2014-01-01
Background Metal tolerance in bacteria has been related to polyP in a model in which heavy metals stimulate the polymer hydrolysis, forming metal-phosphate complexes that are exported. As previously described in our laboratory, Escherichia coli cells grown in media containing a phosphate concentration >37 mM maintained an unusually high polyphosphate (polyP) level in stationary phase. The aim of the present work was to evaluate the influence of polyP levels as the involvement of low-affinity ...
Aspects of affine Toda field theory
International Nuclear Information System (INIS)
Braden, H.W.; Corrigan, E.; Dorey, P.E.; Sasaki, R.
1990-05-01
The report is devoted to properties of the affine Toda field theory, the intention being to highlight a selection of curious properties that should be explicable in terms of the underlying group theory but for which in most cases there are no explanation. The motivation for exploring the ideas contained in this report came principally from the recent work of Zamolodchikov concerning the two dimensional Ising model at critical temperature perturbed by a magnetic field. Hollowood and Mansfield pointed out that since Toda field theory is conformal the perturbation considered by Zamolodchikov might well be best regarded as a perturbation of a Toda field theory. This work made it seem plausible that the theory sought by Zamolodchikov was actually affine E 8 Toda field theory. However, this connection required an imaginary value of the coupling constant. Investigations here concerning exact S-matrices use a perturbative approach based on real coupling and the results differ in various ways from those thought to correspond to perturbed conformal field theory. A further motivation is to explore the connection between conformal and perturbed conformal field theories in other contexts using similar ideas. (N.K.)
Extreme disorder in an ultrahigh-affinity protein complex
DEFF Research Database (Denmark)
Borgia, Alessandro; Borgia, Madeleine B; Bugge, Katrine
2018-01-01
Molecular communication in biology is mediated by protein interactions. According to the current paradigm, the specificity and affinity required for these interactions are encoded in the precise complementarity of binding interfaces. Even proteins that are disordered under physiological conditions...... with picomolar affinity, but fully retain their structural disorder, long-range flexibility and highly dynamic character. On the basis of closely integrated experiments and molecular simulations, we show that the interaction can be explained by the large opposite net charge of the two proteins, without requiring...... or that contain large unstructured regions commonly interact with well-structured binding sites on other biomolecules. Here we demonstrate the existence of an unexpected interaction mechanism: the two intrinsically disordered human proteins histone H1 and its nuclear chaperone prothymosin-α associate in a complex...
Skeletal affinity of Tc(V)-DMS is bone cell mediated and pH dependent.
Horiuchi-Suzuki, Kazuko; Konno, Aya; Ueda, Mayumi; Fukuda, Yoko; Nishio, Saori; Hashimoto, Kazuyuki; Saji, Hideo
2004-03-01
In spite of recent advances in bone cellular and molecular biology, there is still a poor correlation between these parameters and data obtained from bone scintigraphy. Diphosphonate derivatives radiolabelled with technetium-99m (Tc-BPs) have long been recognised as bone-seeking agents with an affinity for areas of active mineralisation. However, during clinical trials with a pH-sensitive tumour agent, the pentavalent technetium complex of dimercaptosuccinic acid [Tc(V)-DMS] showed a noticeable osteotropic character only in bone pathologies (bone metastases, Paget's diseases) and lacked accumulation in normal mature bone. To decipher the osteotropic character of Tc(V)-DMS, a study at the cellular level was considered necessary. Moreover, to learn more about the role of Tc bone agents, acid-base regulation by bone tissue or cells was studied. First, biological parameters in body fluid were measured under systemic acidosis, induced by glucose administration, in normal and Ehrlich ascites tumour (EAT)-bearing mice. Then, in vivo biodistribution studies using Tc(V)-DMS or a conventional Tc-BP agent were carried out. The effect of glucose-mediated acidification on the skeletal distribution of the Tc agents in the mice provided valuable hints regarding the differential mediation of bone cells in skeletal tissue affinity for the agents. Thereafter, in vitro studies on osteoblast and osteoclast cells were performed and the comparative affinity of Tc(V)-DMS and Tc-BP was screened under diverse acidification conditions. Moreover, studies were also carried out on acid-base parameters related to the cellular uptake mechanism. Very specific pH-sensitive Tc(V)-DMS accumulation only in the osteoclastic system was detected, and use of Tc(V)-DMS in the differential detection of osteoblastic and osteoclastic metastases is discussed.
Preparation of Affinity Column Based on Zr{sup 4+} Ion for Phosphoproteins Isolation
Energy Technology Data Exchange (ETDEWEB)
Lee, Seon Mi; Bae, In Ae; Park, Jung Hyen; Kim, Tae Dong; Choi, Seong Ho [Hannam University, Daejeon (Korea, Republic of)
2009-06-15
This paper has described about preparation of Zr{sup 4+} affinity column based on the poly(styreneco- glycidyl methacrylate) prepared by emulsion polymerization of styrene and glycidyl methacrylate in order to isolate phosphopeptide. The Zr{sup 4+} ions were introduced after the phophonation of an epoxy group on polymeric microspheres. The successful preparation of Zr{sup 4+}-immobilized polymeric microsphere stationary phase was confirmed through Fourier transform infrared spectra, optical microscopy, scanning electron microscopy, X-ray photoelectron spectra and inductively coupled plasma-atomic emission spectrometer. The separation efficiency for Zr{sup 4+} affinity column prepared by slurry packing was tested to phosphonated casein and dephosphonated casein. The resolution time (min) of the phosphonated casein was higher than that of dephosphated casein for Zr{sup 4+} affinity polymeric microsphere by liquid chromatography. This Zr{sup 4+} affinity column can be used for isolation of phosphonated casein from casein using liquid chromatography.
Development of an aptamer-based affinity purification method for vascular endothelial growth factor
Directory of Open Access Journals (Sweden)
Maren Lönne
2015-12-01
Full Text Available Since aptamers bind their targets with high affinity and specificity, they are promising alternative ligands in protein affinity purification. As aptamers are chemically synthesized oligonucleotides, they can be easily produced in large quantities regarding GMP conditions allowing their application in protein production for therapeutic purposes. Several advantages of aptamers compared to antibodies are described in general within this paper. Here, an aptamer directed against the human Vascular Endothelial Growth Factor (VEGF was used as affinity ligand for establishing a purification platform for VEGF in small scale. The aptamer was covalently immobilized on magnetic beads in a controlled orientation resulting in a functional active affinity matrix. Target binding was optimized by introduction of spacer molecules and variation of aptamer density. Further, salt-induced target elution was demonstrated as well as VEGF purification from a complex protein mixture proving the specificity of protein-aptamer binding.
Directory of Open Access Journals (Sweden)
Fabian König
Full Text Available The monoclonal antibody S9.6 is a widely-used tool to purify, analyse and quantify R-loop structures in cells. A previous study using the surface plasmon resonance technology and a single-chain variable fragment (scFv of S9.6 showed high affinity (0.6 nM for DNA-RNA and also a high affinity (2.7 nM for RNA-RNA hybrids. We used the microscale thermophoresis method allowing surface independent interaction studies and electromobility shift assays to evaluate additional RNA-DNA hybrid sequences and to quantify the binding affinities of the S9.6 antibody with respect to distinct sequences and their GC-content. Our results confirm high affinity binding to previously analysed sequences, but reveals that binding affinities are highly sequence specific. Our study presents R-loop sequences that independent of GC-content and in different sequence variations exhibit either no binding, binding affinities in the micromolar range and as well high affinity binding in the nanomolar range. Our study questions the usefulness of the S9.6 antibody in the quantitative analysis of R-loop sequences in vivo.
DEFF Research Database (Denmark)
Walters, Benjamin T; Jensen, Pernille Foged; Larraillet, Vincent
2016-01-01
Crystallographic evidence suggests that the pH-dependent affinity of IgG molecules for the neonatal Fc receptor (FcRn) receptor primarily arises from salt bridges involving IgG histidine residues, resulting in moderate affinity at mildly acidic conditions. However, this view does not explain the ......H-dependent affinity in IgG-FcRn interactions and exemplify the important and often ignored role of intrinsic conformational dynamics in a protein ligand, to dictate affinity for biologically important receptors.......Crystallographic evidence suggests that the pH-dependent affinity of IgG molecules for the neonatal Fc receptor (FcRn) receptor primarily arises from salt bridges involving IgG histidine residues, resulting in moderate affinity at mildly acidic conditions. However, this view does not explain...... the diversity in affinity found in IgG variants, such as the YTE mutant (M252Y,S254T,T256E), which increases affinity to FcRn by up to 10×. Here we compare hydrogen exchange measurements at pH 7.0 and pH 5.5 with and without FcRn bound with surface plasmon resonance estimates of dissociation constants and Fc...
High blood oxygen affinity in the air-breathing swamp eel Monopterus albus.
Damsgaard, Christian; Findorf, Inge; Helbo, Signe; Kocagoz, Yigit; Buchanan, Rasmus; Huong, Do Thi Thanh; Weber, Roy E; Fago, Angela; Bayley, Mark; Wang, Tobias
2014-12-01
The Asian swamp eel (Monopterus albus, Zuiew 1793) is a facultative air-breathing fish with reduced gills. Previous studies have shown that gas exchange seems to occur across the epithelium of the buccopharyngeal cavity, the esophagus and the integument, resulting in substantial diffusion limitations that must be compensated by adaptations in others steps of the O₂ transport system to secure adequate O₂ delivery to the respiring tissues. We therefore investigated O₂ binding properties of whole blood, stripped hemoglobin (Hb), two major isoHb components and the myoglobin (Mb) from M. albus. Whole blood was sampled using indwelling catheters for blood gas analysis and determination of O₂ equilibrium curves. Hb was purified to assess the effects of endogenous allosteric effectors, and Mb was isolated from heart and skeletal muscle to determine its O₂ binding properties. The blood of M. albus has a high O₂ carrying capacity [hematocrit (Hct) of 42.4±4.5%] and binds O₂ with an unusually high affinity (P₅₀=2.8±0.4mmHg at 27°C and pH7.7), correlating with insensitivity of the Hb to the anionic allosteric effectors that normally decrease Hb-O₂ affinity. In addition, Mb is present at high concentrations in both heart and muscle (5.16±0.99 and 1.08±0.19mg ∙ g wet tissue⁻¹, respectively). We suggest that the high Hct and high blood O₂ affinity serve to overcome the low diffusion capacity in the relatively inefficient respiratory surfaces, while high Hct and Mb concentration aid in increasing the O₂ flux from the blood to the muscles. Copyright © 2014 Elsevier Inc. All rights reserved.
Hur, Byung-ung; Yoon, Jae-bong; Liu, Li-Kun; Cha, Sang-hoon
2010-11-30
Specific antibodies that possess a subnanomolar affinity are very difficult to obtain from human naïve immunoglobulin repertoires without the use of lengthy affinity optimization procedures. Here, we designed a hierarchical phage-displayed antibody library system to generate an enormous diversity of combinatorial Fab fragments (6×10(17)) and attempted to isolate high-affinity Fabs against the human epidermal growth factor receptor (EGFR). A primary antibody library, designated HuDVFab-8L, comprising 4.5×10(9) human naïve heavy chains and eight unspecified human naïve light chains was selected against the EGFR-Fc protein by biopanning, and four anti-EGFR Fab clones were isolated. Because one of the Fab clones, denoted EG-L2-11, recognized a native EGFR expressed on A431 cells, the heavy chain of the Fab was shuffled with a human naïve light chain repertoire with a diversity of 1.4×10(8) and selected a second time against the EGFR-Fc protein again. One EG-L2-11 variant, denoted EG-19-11, recognized an EGFR epitope that was almost the same as that bound by cetuximab and had a K(D) of approximately 540 pM for soluble EGFR, which is about 7-fold higher than that of the FabC225 derived from cetuximab. This variant was also internalized by A431 cells, likely via receptor-mediated endocytosis, and it efficiently inhibited EGF-mediated tyrosine phosphorylation of the EGFR. These results demonstrate that the use of our hierarchical antibody library system is advantageous in generating fully human antibodies especially with a therapeutic purpose. Copyright © 2010 Elsevier B.V. All rights reserved.
Blood O2 affinity of a large polar elasmobranch, the Greenland shark Somniosus microcephalus
DEFF Research Database (Denmark)
Herbert, N.A.; Skov, Peter Vilhelm; Tirsgaard, B.
2017-01-01
The Greenland shark (Somniosus microcephalus. Bloch & Schneider 1801) is a polar elasmobranch that is hypothesised to possess a unique metabolic physiology due to its extreme large size, the cold waters it inhabits and its slow swimming lifestyle. Our results therefore provide the first insight...... into the metabolic physiology of this unique shark, with a focus on blood O2 affinity. An evaluation of blood O2 affinity at 2 °C using tonometry revealed a P50 of 11.7 mmHg at a PCO2 of 2.25 mmHg and a Bohr effect (binding sensitivity of blood to pH, ϕ = Δlog P50/ΔpH) of −0.26. A comparative evaluation of blood O2...... affinity across elasmobranch fishes suggests that S. microcephalus has a high blood O2 affinity (i.e., low P50) and a small Bohr effect but these are common traits in sluggish elasmobranch fishes, with little evidence for any relationship of blood O2 affinity to the low metabolic rates, low environmental...
Energy Technology Data Exchange (ETDEWEB)
Peng, Bo; Govind, Niranjan; Apra, Edoardo; Klemm, Michael; Hammond, Jeff R.; Kowalski, Karol
2017-02-03
In this paper we apply equation-of-motion coupled cluster (EOMCC) methods in studies of vertical ionization potentials (IP) and electron affinities (EA) for sin- gled walled carbon nanotubes. EOMCC formulations for ionization potentials and electron affinities employing excitation manifolds spanned by single and double ex- citations (IP/EA-EOMCCSD) are used to study IPs and EAs of nanotubes as a function of nanotube length. Several armchair nanotubes corresponding to C20nH20 models with n = 2 - 6 have been used in benchmark calculations. In agreement with previous studies, we demonstrate that the electronegativity of C20nH20 systems remains, to a large extent, independent of nanotube length. We also compare IP/EA- EOMCCSD results with those obtained with the coupled cluster models with single and double excitations corrected by perturbative triples, CCSD(T), and density func- tional theory (DFT) using global and range-separated hybrid exchange-correlation functionals.
Brorsen, Kurt R; Yang, Yang; Hammes-Schiffer, Sharon
2017-08-03
Nuclear quantum effects such as zero point energy play a critical role in computational chemistry and often are included as energetic corrections following geometry optimizations. The nuclear-electronic orbital (NEO) multicomponent density functional theory (DFT) method treats select nuclei, typically protons, quantum mechanically on the same level as the electrons. Electron-proton correlation is highly significant, and inadequate treatments lead to highly overlocalized nuclear densities. A recently developed electron-proton correlation functional, epc17, has been shown to provide accurate nuclear densities for molecular systems. Herein, the NEO-DFT/epc17 method is used to compute the proton affinities for a set of molecules and to examine the role of nuclear quantum effects on the equilibrium geometry of FHF - . The agreement of the computed results with experimental and benchmark values demonstrates the promise of this approach for including nuclear quantum effects in calculations of proton affinities, pK a 's, optimized geometries, and reaction paths.
Liu, Jianming; Grant, Steven L.; Benesty, Jacob
2015-12-01
A new reweighted proportionate affine projection algorithm (RPAPA) with memory and row action projection (MRAP) is proposed in this paper. The reweighted PAPA is derived from a family of sparseness measures, which demonstrate performance similar to mu-law and the l 0 norm PAPA but with lower computational complexity. The sparseness of the channel is taken into account to improve the performance for dispersive system identification. Meanwhile, the memory of the filter's coefficients is combined with row action projections (RAP) to significantly reduce computational complexity. Simulation results demonstrate that the proposed RPAPA MRAP algorithm outperforms both the affine projection algorithm (APA) and PAPA, and has performance similar to l 0 PAPA and mu-law PAPA, in terms of convergence speed and tracking ability. Meanwhile, the proposed RPAPA MRAP has much lower computational complexity than PAPA, mu-law PAPA, and l 0 PAPA, etc., which makes it very appealing for real-time implementation.
Self-affine fractal growth front of Aspergillus oryzae
Matsuura, Shu; Miyazima, Sasuke
1992-12-01
Aspergillus oryzae have been grown in various environmental conditions and analyzed from the viewpoint of self-affinity. The growth behavior can be described by the Eden model in favorable conditions, and by DLA in unfavorable conditions.
The role of CH/π interactions in the high affinity binding of streptavidin and biotin.
Ozawa, Motoyasu; Ozawa, Tomonaga; Nishio, Motohiro; Ueda, Kazuyoshi
2017-08-01
The streptavidin-biotin complex has an extraordinarily high affinity (Ka: 10 15 mol -1 ) and contains one of the strongest non-covalent interactions known. This strong interaction is widely used in biological tools, including for affinity tags, detection, and immobilization of proteins. Although hydrogen bond networks and hydrophobic interactions have been proposed to explain this high affinity, the reasons for it remain poorly understood. Inspired by the deceased affinity of biotin observed for point mutations of streptavidin at tryptophan residues, we hypothesized that a CH/π interaction may also contribute to the strong interaction between streptavidin and biotin. CH/π interactions were explored and analyzed at the biotin-binding site and at the interface of the subunits by the fragment molecular orbital method (FMO) and extended applications: PIEDA and FMO4. The results show that CH/π interactions are involved in the high affinity for biotin at the binding site of streptavidin. We further suggest that the involvement of CH/π interactions at the subunit interfaces and an extended CH/π network play more critical roles in determining the high affinity, rather than involvement at the binding site. Copyright © 2017 Elsevier Inc. All rights reserved.
International Nuclear Information System (INIS)
Branchek, T.; Adham, N.; Macchi, M.; Kao, H.T.; Hartig, P.R.
1990-01-01
The binding properties of the 5-hydroxytryptamine2 (5-HT2) receptor have been the subject of much interest and debate in recent years. The hallucinogenic amphetamine derivative 4-bromo-2,5-dimethoxyphenylisopropylamine (DOB) has been shown to bind to a small number of binding sites with properties very similar to [3H]ketanserin-labeled 5-HT2 receptors, but with much higher agonist affinities. Some researchers have interpreted this as evidence for the existence of a new subtype of 5-HT2 receptor (termed 5-HT2A), whereas others have interpreted these data as indicative of agonist high affinity and agonist low affinity states for the 5-HT2 receptor. In this investigation, a cDNA clone encoding the serotonin 5-HT2 receptor was transiently transfected into monkey kidney Cos-7 cells and stably transfected into mouse fibroblast L-M(TK-) cells. In both systems, expression of this single serotonin receptor cDNA led to the appearance of both [3H]DOB and [3H]ketanserin binding sites with properties that matched their binding characteristics in mammalian brain homogenates. Addition of guanosine 5'-(beta, gamma-imido) triphosphate [Gpp(NH)p] to this system caused a rightward shift and steepening of agonist competition curves for [3H] ketanserin binding, converting a two-site binding curve to a single low affinity binding state. Gpp(NH)p addition also caused a 50% decrease in the number of high affinity [3H]DOB binding sites, with no change in the dissociation constant of the remaining high affinity states. These data on a single human 5-HT2 receptor cDNA expressed in two different transfection host cells indicate that [3H]DOB and [3H]ketanserin binding reside on the same gene product, apparently interacting with agonist and antagonist conformations of a single human 5-HT2 receptor protein
Congruence of genomic and ethnolinguistic affinities among five ...
Indian Academy of Sciences (India)
their ethnic and linguistic affinities, we analysed DNA samples of individuals drawn from five tribes with diverse, but ... arisen from admixture between the Gonds (maternal) and ..... nuclear `fossil' of the mitochondrial D-loop and the origin of.
Plasma-polymerized films providing selective affinity to the polarity of vaporized organic solvents
International Nuclear Information System (INIS)
Akimoto, Takuo; Ikeshita, Yusuke; Terashima, Ryo; Karube, Isao
2009-01-01
Plasma-polymerized films (PPFs) were fabricated as recognition membranes for a vapor-sensing device, and their affinity to vaporized organic solvents was evaluated with surface plasmon resonance. The affinity we intended to create is the selective sorption of the vaporized organic solvents depending on their polarity. For this purpose, acetonitrile, ethylenediamine (EDA), styrene, hexamethyldisiloxane (HMDSO), and hexamethyldisilazane were used to fabricate PPFs. Vaporized methanol, ethanol, and 1-propanol were used as high-polar solvents to be analyzed. Hexane, toluene, and p-xylene were used as low-polar solvents. As a result, the HMDSO-PPF with 97.3 o of contact angle was found to provide affinity to the low-polar solvents. In contrast, the EDA-PPF with 7.1 o of contact angle provided affinity to the high-polar solvents. Observations of the surface morphology of the HMDSO- and EDA-PPFs with a scanning electron microscope revealed that they are composed of nano-scale islands.
Proadifen-sensitive high affinity binding of /sup 3/H-alaproclate to liver membranes
Energy Technology Data Exchange (ETDEWEB)
Ross, S.B.
1987-01-01
/sup 3/H-alaproclate, a selective 5/sub h/ydroxytryptamine uptake inhibitor, was found to bind to microsomal membranes from the rat liver with high affinity (K/sub D/-=3 nM) and large capacity (B/sub max/ about 2 nmol/g liver). This binding was stereoselective since S-( - )-alaproclate was 30 times more potent than the R-( + )-enantiomer to displace the /sup 3/H-labelled racemate. Proadifen (SKF 525A), an inhibitor of cytochrome P-450, displaced the /sup 3/H-alaproclate binding with the same, high affinity (K/sub i/=3 nM) as alaproclate itself. Repeated treatment with phenobarbital sodium (5x75 mg/kg intraperitoneally) increased the number of alaproclate binding sites 7-8 times without changing the affinity. However, most of the phenobarbital induced /sup 3/H-alaproclate binding was not displaceable by proadifen, showing the presence of at least two different high affinity binding sites. The possible involvement of cytochrome P-450 in the alaproclate binding is discussed.
Affinity for music in Wolf-Hirschhorn syndrome: two case reports.
Arakawa, Chikako; Fujita, Yukihiko; Fuchigami, Tatsuo; Kawamura, Yuki; Ishii, Wakako; Endo, Ayumi; Kohira, Ryutaro; Takahashi, Shori
2014-10-01
Wolf-Hirschhorn syndrome is a congenital malformation syndrome resulting from deletion of the short arm of chromosome 4. Individuals with Wolf-Hirschhorn syndrome may have a "Greek warrior helmet" appearance, growth retardation, developmental delay, muscular hypotonia, epilepsy, and difficulty with language including verbal communication. An affinity for music has not previously been reported in these patients. We describe two patients with Wolf-Hirschhorn syndrome who both have a strong affinity for music. One patient is a 20-year-old woman who likes to listen to music all day and can hum many tunes. The other patient is a 9-year-old girl who is calmed by music and received music therapy, with subsequent improvement in her communication skills (eye contact, joint attention, and vocalizations to request music). Individuals with Wolf-Hirschhorn syndrome may have a strong affinity for music and may benefit from music therapy. Additional studies are needed to investigate the interest in music in individuals with Wolf-Hirschhorn syndrome. Copyright © 2014 Elsevier Inc. All rights reserved.
Simulated electron affinity tuning in metal-insulator-metal (MIM) diodes
Mistry, Kissan; Yavuz, Mustafa; Musselman, Kevin P.
2017-05-01
Metal-insulator-metal diodes for rectification applications must exhibit high asymmetry, nonlinearity, and responsivity. Traditional methods of improving these figures of merit have consisted of increasing insulator thickness, adding multiple insulator layers, and utilizing a variety of metal contact combinations. However, these methods have come with the price of increasing the diode resistance and ultimately limiting the operating frequency to well below the terahertz regime. In this work, an Airy Function Transfer Matrix simulation method was used to observe the effect of tuning the electron affinity of the insulator as a technique to decrease the diode resistance. It was shown that a small increase in electron affinity can result in a resistance decrease in upwards of five orders of magnitude, corresponding to an increase in operating frequency on the same order. Electron affinity tuning has a minimal effect on the diode figures of merit, where asymmetry improves or remains unaffected and slight decreases in nonlinearity and responsivity are likely to be greatly outweighed by the improved operating frequency of the diode.
A Novel Fast and Robust Binary Affine Invariant Descriptor for Image Matching
Directory of Open Access Journals (Sweden)
Xiujie Qu
2014-01-01
Full Text Available As the current binary descriptors have disadvantages of high computational complexity, no affine invariance, and the high false matching rate with viewpoint changes, a new binary affine invariant descriptor, called BAND, is proposed. Different from other descriptors, BAND has an irregular pattern, which is based on local affine invariant region surrounding a feature point, and it has five orientations, which are obtained by LBP effectively. Ultimately, a 256 bits binary string is computed by simple random sampling pattern. Experimental results demonstrate that BAND has a good matching result in the conditions of rotating, image zooming, noising, lighting, and small-scale perspective transformation. It has better matching performance compared with current mainstream descriptors, while it costs less time.
The electron affinity of some radiotherapeutic agents used in cancer therapy
International Nuclear Information System (INIS)
Wold, E.; Kaalhus, O.; Johansen, E.S.; Ekse, A.T.
1980-01-01
In order to evaluate whether chemotherapeutic compounds applied in cancer treatment might interact with radiation as anoxic cell sensitizers, the electron-affinic properties of DTIC (5-(3,3-dimethyl-1-triazeno)imidazole-4 carboxamide) AIC 4(5)-aminoimidazole-5(4)-carboxamide, hydroxyurea, busulfan and cyclophosphamide were studied by pulse radiolysis. Reaction rates with hydrated electrons were determined for all these compounds. With the exception of DTIC, they all reacted much more slowly with electrons than do most electron-affinic sensitizers. One-electron reduction potentials were determined for DTIC, AIC and hydroxyurea. The values were all in the region for the onset of sensitization, with hydroxyurea as the most promising (E 7 1 = -0.552 V). For busulfan and cyclophosphamide no value could be determined, but these compounds are probably less electron-affinic than hydroxyurea. A possible application of chemotherapeutic agents as radiosensitizers is discussed. (author)
Craniomandibular morphology and phylogenetic affinities of panthera atrox
DEFF Research Database (Denmark)
Christiansen, Per; Harris, J.M.
2009-01-01
The great North American Pleistocene pantherine felid Panthera atrox has had a turbulent phylogenetic history, and has been claimed to show affinities to both the jaguar and the tiger; currently, it is most often regarded as a subspecies of the extant lion. The cranial, mandibular, and dental...... morphology of Panthera atrox was compared with those of extant lions, jaguars, and tigers using bivariate, multivariate, and shape analyses. Results indicate that the skull of Panthera atrox shows lion affinities, but also deviates from lions in numerous aspects. Mandibular morphology is more similar...... to jaguars and tigers and, as with cranial morphology, the mandible shows a number of traits not present among extant pantherines. Multivariate analyses grouped Panthera atrox separately from other pantherines. Panthera atrox was no lion, and cannot be assigned to any of the extant pantherines...
Structure of Greyhound hemoglobin: origin of high oxygen affinity.
Bhatt, Veer S; Zaldívar-López, Sara; Harris, David R; Couto, C Guillermo; Wang, Peng G; Palmer, Andre F
2011-05-01
This study presents the crystal structure of Greyhound hemoglobin (GrHb) determined to 1.9 Å resolution. GrHb was found to crystallize with an α₁β₁ dimer in the asymmetric unit and belongs to the R2 state. Oxygen-affinity measurements combined with the fact that GrHb crystallizes in the R2 state despite the high-salt conditions used for crystallization strongly indicate that GrHb can serve as a model high-oxygen-affinity hemoglobin (Hb) for higher mammals, especially humans. Structural analysis of GrHb and its comparison with the R2-state of human Hb revealed several regions that can potentially contribute to the high oxygen affinity of GrHb and serve to rationalize the additional stability of the R2-state of GrHb. A previously well studied hydrophobic cluster of bar-headed goose Hb near α119 was also incorporated in the comparison between GrHb and human Hb. Finally, a structural comparison with generic dog Hb and maned wolf Hb was conducted, revealing that in contrast to GrHb these structures belong to the R state of Hb and raising the intriguing possibility of an additional allosteric factor co-purifying with GrHb that can modulate its quaternary structure.
Optimizing scoring function of protein-nucleic acid interactions with both affinity and specificity.
Directory of Open Access Journals (Sweden)
Zhiqiang Yan
Full Text Available Protein-nucleic acid (protein-DNA and protein-RNA recognition is fundamental to the regulation of gene expression. Determination of the structures of the protein-nucleic acid recognition and insight into their interactions at molecular level are vital to understanding the regulation function. Recently, quantitative computational approach has been becoming an alternative of experimental technique for predicting the structures and interactions of biomolecular recognition. However, the progress of protein-nucleic acid structure prediction, especially protein-RNA, is far behind that of the protein-ligand and protein-protein structure predictions due to the lack of reliable and accurate scoring function for quantifying the protein-nucleic acid interactions. In this work, we developed an accurate scoring function (named as SPA-PN, SPecificity and Affinity of the Protein-Nucleic acid interactions for protein-nucleic acid interactions by incorporating both the specificity and affinity into the optimization strategy. Specificity and affinity are two requirements of highly efficient and specific biomolecular recognition. Previous quantitative descriptions of the biomolecular interactions considered the affinity, but often ignored the specificity owing to the challenge of specificity quantification. We applied our concept of intrinsic specificity to connect the conventional specificity, which circumvents the challenge of specificity quantification. In addition to the affinity optimization, we incorporated the quantified intrinsic specificity into the optimization strategy of SPA-PN. The testing results and comparisons with other scoring functions validated that SPA-PN performs well on both the prediction of binding affinity and identification of native conformation. In terms of its performance, SPA-PN can be widely used to predict the protein-nucleic acid structures and quantify their interactions.
Makarska-Bialokoz, Magdalena
2017-09-01
The binding affinity between vitamin B12 (VitB12) and bovine serum albumin (BSA) has been investigated in aqueous solution at pH = 7.4, employing UV-vis absorption and steady-state, synchronous and three-dimensional fluorescence spectra techniques. Representative effects noted for BSA intrinsic fluorescence resulting from the interactions with VitB12 confirm the formation of π-π stacked non-covalent and non-fluorescent complexes in the system VitB12-BSA. All the determined parameters, the binding, fluorescence quenching and bimolecular quenching rate constants (of the order of 104 L mol- 1, 103 L mol- 1 and 1011 L mol- 1 s- 1, respectively), as well as Förster resonance energy transfer parameters validate the mechanism of static quenching. The interaction with VitB12 induces folding of the polypeptide chains around Trp residues of BSA, resulting in a more hydrophobic surrounding. Presented outcomes suggest that the addition of VitB12 can lead to the more organized BSA conformation and its more folded tertiary structure, what could influence the physiological functions of bovine serum albumin, notably in case of its overuse or abnormal metabolism.
Characterization of gradient control systems
Cortés, Jorge; van der Schaft, Arjan; Crouch, Peter E.
2005-01-01
Given a general nonlinear affine control system with outputs and a torsion-free affine connection defined on its state space, we investigate the gradient realization problem: we give necessary and sufficient conditions under which the control system can be written as a gradient control system
Characterization of Gradient Control Systems
Cortés, Jorge; Schaft, Arjan van der; Crouch, Peter E.
2005-01-01
Given a general nonlinear affine control system with outputs and a torsion-free affine connection defined on its state space, we investigate the gradient realization problem: we give necessary and sufficient conditions under which the control system can be written as a gradient control system
Molecular basis of a high affinity murine interleukin-5 receptor.
Devos, R; Plaetinck, G; Van der Heyden, J; Cornelis, S; Vandekerckhove, J; Fiers, W; Tavernier, J
1991-01-01
The mouse interleukin-5 receptor (mIL-5R) consists of two components one of which, the mIL-5R alpha-chain, binds mIL-5 with low affinity. Recently we demonstrated that monoclonal antibodies (Mabs) recognizing the second mIL-5R beta-chain, immunoprecipitate a p130-140 protein doublet which corresponds to the mIL-3R and the mIL-3R-like protein, the latter chain for which so far no ligand has been identified. In this study we show that a high affinity mIL-5R can be reconstituted on COS1 cells by...
On the global "two-sided" characteristic Cauchy problem for linear wave equations on manifolds
Lupo, Umberto
2018-04-01
The global characteristic Cauchy problem for linear wave equations on globally hyperbolic Lorentzian manifolds is examined, for a class of smooth initial value hypersurfaces satisfying favourable global properties. First it is shown that, if geometrically well-motivated restrictions are placed on the supports of the (smooth) initial datum and of the (smooth) inhomogeneous term, then there exists a continuous global solution which is smooth "on each side" of the initial value hypersurface. A uniqueness result in Sobolev regularity H^{1/2+ɛ }_{loc} is proved among solutions supported in the union of the causal past and future of the initial value hypersurface, and whose product with the indicator function of the causal future (resp. past) of the hypersurface is past compact (resp. future compact). An explicit representation formula for solutions is obtained, which prominently features an invariantly defined, densitised version of the null expansion of the hypersurface. Finally, applications to quantum field theory on curved spacetimes are briefly discussed.
Covariant description of Hamiltonian form for field dynamics
International Nuclear Information System (INIS)
Ozaki, Hiroshi
2005-01-01
Hamiltonian form of field dynamics is developed on a space-like hypersurface in space-time. A covariant Poisson bracket on the space-like hypersurface is defined and it plays a key role to describe every algebraic relation into a covariant form. It is shown that the Poisson bracket has the same symplectic structure that was brought in the covariant symplectic approach. An identity invariant under the canonical transformations is obtained. The identity follows a canonical equation in which the interaction Hamiltonian density generates a deformation of the space-like hypersurface. The equation just corresponds to the Yang-Feldman equation in the Heisenberg pictures in quantum field theory. By converting the covariant Poisson bracket on the space-like hypersurface to four-dimensional commutator, we can pass over to quantum field theory in the Heisenberg picture without spoiling the explicit relativistic covariance. As an example the canonical QCD is displayed in a covariant way on a space-like hypersurface
Characteristics of high affinity and low affinity adenosine binding sites in human cerebral cortex
International Nuclear Information System (INIS)
John, D.; Fox, I.V.
1986-01-01
The binding characteristics of human brain cortical membrane fractions were evaluated to test the hypothesis that there are A 1 and A 2 adenosine binding sites. The ligands used were 2-chloro(8- 3 H) adenosine and N 6 -(adenine-2, 8- 3 H) cyclohexayladenosine. Binding of chloroadenosine to human brain cortical membranes was time dependent, reversible and concentration dependent. The kinetic constant determinations from binding studies of the adenosine receptor are presented. Utilizing tritium-cyclohexyladenosine as ligand the authors observed evidence for a high affinity binding site in human brain cortical membranes with a kd of 5 nM
Transformations Based on Continuous Piecewise-Affine Velocity Fields
DEFF Research Database (Denmark)
Freifeld, Oren; Hauberg, Søren; Batmanghelich, Kayhan
2017-01-01
We propose novel finite-dimensional spaces of well-behaved transformations. The latter are obtained by (fast and highly-accurate) integration of continuous piecewise-affine velocity fields. The proposed method is simple yet highly expressive, effortlessly handles optional constraints (e.g., volum...
Co-evolution of affinity and stability of grafted amyloid-motif domain antibodies.
Julian, Mark C; Lee, Christine C; Tiller, Kathryn E; Rabia, Lilia A; Day, Evan K; Schick, Arthur J; Tessier, Peter M
2015-10-01
An attractive approach for designing lead antibody candidates is to mimic natural protein interactions by grafting peptide recognition motifs into the complementarity-determining regions (CDRs). We are using this approach to generate single-domain (VH) antibodies specific for amyloid-forming proteins such as the Alzheimer's Aβ peptide. Here, we use random mutagenesis and yeast surface display to improve the binding affinity of a lead VH domain grafted with Aβ residues 33-42 in CDR3. Interestingly, co-selection for improved Aβ binding and VH display on the surface of yeast yields antibody domains with improved affinity and reduced stability. The highest affinity VH domains were strongly destabilized on the surface of yeast as well as unfolded when isolated as autonomous domains. In contrast, stable VH domains with improved affinity were reliably identified using yeast surface display by replacing the display antibody that recognizes a linear epitope tag at the terminus of both folded and unfolded VH domains with a conformational ligand (Protein A) that recognizes a discontinuous epitope on the framework of folded VH domains. Importantly, we find that selection for improved stability using Protein A without simultaneous co-selection for improved Aβ binding leads to strong enrichment for stabilizing mutations that reduce antigen binding. Our findings highlight the importance of simultaneously optimizing affinity and stability to improve the rapid isolation of well-folded and specific antibody fragments. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
International Nuclear Information System (INIS)
Shyu, Conrad; Cavileer, Timothy D.; Nagler, James J.; Ytreberg, F. Marty
2011-01-01
Environmental estrogens have been the subject of intense research due to their documented detrimental effects on the health of fish and wildlife and their potential to negatively impact humans. A complete understanding of how these compounds affect health is complicated because environmental estrogens are a structurally heterogeneous group of compounds. In this work, computational molecular dynamics simulations were utilized to predict the binding affinity of different compounds using rainbow trout (Oncorhynchus mykiss) estrogen receptors (ERs) as a model. Specifically, this study presents a comparison of the binding affinity of the natural ligand estradiol-17β to the four rainbow trout ER isoforms with that of three known environmental estrogens 17α-ethinylestradiol, bisphenol A, and raloxifene. Two additional compounds, atrazine and testosterone, that are known to be very weak or non-binders to ERs were tested. The binding affinity of these compounds to the human ERα subtype is also included for comparison. The results of this study suggest that, when compared to estradiol-17β, bisphenol A binds less strongly to all four receptors, 17α-ethinylestradiol binds more strongly, and raloxifene has a high affinity for the α subtype only. The results also show that atrazine and testosterone are weak or non-binders to the ERs. All of the results are in excellent qualitative agreement with the known in vivo estrogenicity of these compounds in the rainbow trout and other fishes. Computational estimation of binding affinities could be a valuable tool for predicting the impact of environmental estrogens in fish and other animals.
Dai, Hanjun
2017-07-26
Motivation: An accurate characterization of transcription factor (TF)-DNA affinity landscape is crucial to a quantitative understanding of the molecular mechanisms underpinning endogenous gene regulation. While recent advances in biotechnology have brought the opportunity for building binding affinity prediction methods, the accurate characterization of TF-DNA binding affinity landscape still remains a challenging problem. Results: Here we propose a novel sequence embedding approach for modeling the transcription factor binding affinity landscape. Our method represents DNA binding sequences as a hidden Markov model (HMM) which captures both position specific information and long-range dependency in the sequence. A cornerstone of our method is a novel message passing-like embedding algorithm, called Sequence2Vec, which maps these HMMs into a common nonlinear feature space and uses these embedded features to build a predictive model. Our method is a novel combination of the strength of probabilistic graphical models, feature space embedding and deep learning. We conducted comprehensive experiments on over 90 large-scale TF-DNA data sets which were measured by different high-throughput experimental technologies. Sequence2Vec outperforms alternative machine learning methods as well as the state-of-the-art binding affinity prediction methods.
Umali, Beng P; Oliver, Danielle P; Ostendorf, Bertram; Forrester, Sean; Chittleborough, David J; Hutson, John L; Kookana, Rai S
2012-05-30
We investigated how the sorption affinity of diuron (3'-(3,4-dichlorophenyl)-1,1-dimenthyl-urea), a moderately hydrophobic herbicide, is affected by soil properties, topography and management practices in an intensively managed orchard system. Soil-landscape analysis was carried out in an apple orchard which had a strong texture contrast soil and a landform with relief difference of 50 m. Diuron sorption (K(d)) affinity was successfully predicted (R(2)=0.79; pdiuron K(d) with TOC, pH(w), slope and WI as key variables. Mean diuron K(d) values were also significantly different (pdiuron than soil in the alleys. Younger stands, which were found to have lower TOC than in the older stands, also had lower diuron K(d) values. In intensively managed orchards, sorption affinity of pesticides to soils was not only affected by soil properties and terrain attributes but also by management regime. Copyright © 2012 Elsevier B.V. All rights reserved.
Affinity maturation of a portable Fab–RNA module for chaperone-assisted RNA crystallography
Koirala, Deepak; Shelke, Sandip A; Dupont, Marcel; Ruiz, Stormy; DasGupta, Saurja; Bailey, Lucas J; Benner, Steven A; Piccirilli, Joseph A
2018-01-01
Abstract Antibody fragments such as Fabs possess properties that can enhance protein and RNA crystallization and therefore can facilitate macromolecular structure determination. In particular, Fab BL3–6 binds to an AAACA RNA pentaloop closed by a GC pair with ∼100 nM affinity. The Fab and hairpin have served as a portable module for RNA crystallization. The potential for general application make it desirable to adjust the properties of this crystallization module in a manner that facilitates its use for RNA structure determination, such as ease of purification, surface entropy or binding affinity. In this work, we used both in vitro RNA selection and phage display selection to alter the epitope and paratope sides of the binding interface, respectively, for improved binding affinity. We identified a 5′-GNGACCC-3′ consensus motif in the RNA and S97N mutation in complimentarity determining region L3 of the Fab that independently impart about an order of magnitude improvement in affinity, resulting from new hydrogen bonding interactions. Using a model RNA, these modifications facilitated crystallization under a wider range of conditions and improved diffraction. The improved features of the Fab–RNA module may facilitate its use as an affinity tag for RNA purification and imaging and as a chaperone for RNA crystallography. PMID:29309709
From affine Hecke algebras to boundary symmetries
International Nuclear Information System (INIS)
Doikou, Anastasia
2005-01-01
Motivated by earlier works we employ appropriate realizations of the affine Hecke algebra and we recover previously known non-diagonal solutions of the reflection equation for the U q (gl n -bar ) case. The corresponding N site spin chain with open boundary conditions is then constructed and boundary non-local charges associated to the non-diagonal solutions of the reflection equation are derived, as coproduct realizations of the reflection algebra. With the help of linear intertwining relations involving the aforementioned solutions of the reflection equation, the symmetry of the open spin chain with the corresponding boundary conditions is exhibited, being essentially a remnant of the U q (gl n -bar ) algebra. More specifically, we show that representations of certain boundary non-local charges commute with the generators of the affine Hecke algebra and with the local Hamiltonian of the open spin chain for a particular choice of boundary conditions. Furthermore, we are able to show that the transfer matrix of the open spin chain commutes with a certain number of boundary non-local charges, depending on the choice of boundary conditions
Approximated affine projection algorithm for feedback cancellation in hearing aids.
Lee, Sangmin; Kim, In-Young; Park, Young-Cheol
2007-09-01
We propose an approximated affine projection (AP) algorithm for feedback cancellation in hearing aids. It is based on the conventional approach using the Gauss-Seidel (GS) iteration, but provides more stable convergence behaviour even with small step sizes. In the proposed algorithm, a residue of the weighted error vector, instead of the current error sample, is used to provide stable convergence. A new learning rate control scheme is also applied to the proposed algorithm to prevent signal cancellation and system instability. The new scheme determines step size in proportion to the prediction factor of the input, so that adaptation is inhibited whenever tone-like signals are present in the input. Simulation results verified the efficiency of the proposed algorithm.
Kong, Gang; Dai, Dao-Qing; Zou, Lu-Min
2008-07-01
In order to remove the artifacts of peripheral digital subtraction angiography (DSA), an affine transformation-based automatic image registration algorithm is introduced here. The whole process is described as follows: First, rectangle feature templates are constructed with their centers of the extracted Harris corners in the mask, and motion vectors of the central feature points are estimated using template matching technology with the similarity measure of maximum histogram energy. And then the optimal parameters of the affine transformation are calculated with the matrix singular value decomposition (SVD) method. Finally, bilinear intensity interpolation is taken to the mask according to the specific affine transformation. More than 30 peripheral DSA registrations are performed with the presented algorithm, and as the result, moving artifacts of the images are removed with sub-pixel precision, and the time consumption is less enough to satisfy the clinical requirements. Experimental results show the efficiency and robustness of the algorithm.
General super Virasoro construction on affine G
International Nuclear Information System (INIS)
Mohammedi, N.
1990-10-01
We consider a bosonic current algebra and a theory of free fermions and construct a general N = 1 super Virasoro current algebra. We obtain a master-set of equations which comprises the bosonic master equation for general Virasoro construction on affine G. As an illustration we study the case of the group SU(2). (author). 13 refs
Fan Affinity Laws from a Collision Model
Bhattacharjee, Shayak
2012-01-01
The performance of a fan is usually estimated using hydrodynamical considerations. The calculations are long and involved and the results are expressed in terms of three affinity laws. In this paper we use kinetic theory to attack this problem. A hard sphere collision model is used, and subsequently a correction to account for the flow behaviour…
Solitons, τ-functions and hamiltonian reduction for non-Abelian conformal affine Toda theories
Ferreira, L. A.; Miramontes, J. Luis; Guillén, Joaquín Sánchez
1995-02-01
We consider the Hamiltonian reduction of the "two-loop" Wess-Zumino-Novikov-Witten model (WZNW) based on an untwisted affine Kac-Moody algebra G. The resulting reduced models, called Generalized Non-Abelian Conformal Affine Toda (G-CAT), are conformally invariant and a wide class of them possesses soliton solutions; these models constitute non-Abelian generalizations of the conformal affine Toda models. Their general solution is constructed by the Leznov-Saveliev method. Moreover, the dressing transformations leading to the solutions in the orbit of the vacuum are considered in detail, as well as the τ-functions, which are defined for any integrable highest weight representation of G, irrespectively of its particular realization. When the conformal symmetry is spontaneously broken, the G-CAT model becomes a generalized affine Toda model, whose soliton solutions are constructed. Their masses are obtained exploring the spontaneous breakdown of the conformal symmetry, and their relation to the fundamental particle masses is discussed. We also introduce what we call the two-loop Virasoro algebra, describing extended symmetries of the two-loop WZNW models.
Importance of Accurate Charges in Binding Affinity Calculations: A Case of Neuraminidase Series
Energy Technology Data Exchange (ETDEWEB)
Park, Kichul; Kyun, Nack Sung; Cho, Art E. [Korea Univ., Sejong (Korea, Republic of)
2013-02-15
It has been shown that calculating atomic charges using quantum mechanical level theory greatly improves the accuracy of docking. A protocol was developed and shown to be effective. That this protocol works is just a manifestation of the fact that electrostatic interactions are important in protein-ligand binding. In order to investigate how the same protocol helps in prediction of binding affinities, we took a series of known cocrystal structures of influenza neuraminidase inhibitors with the receptor and performed docking with Glide SP, Glide XP, and QPLD, the last being a workflow that incorporates QM/MM calculations to replace the fixed atomic charges of force fields with quantum mechanically recalculated ones at a given docking pose, and predicted the binding affinities of each cocrystal. The correlation with experimental binding affinities considerably improved with QPLD compared to Glide SP/XP yielding r{sup 2} = 0.83. The results suggest that for binding sites, such as that of neuraminidase, which are laden with hydrophilic residues, protocols such as QPLD which utilizes QM-based atomic charges can better predict the binding affinities.
Swart, Marcel; Rösler, Ernst; Bickelhaupt, F Matthias
2006-10-01
We have carried out an extensive exploration of the gas-phase basicity of archetypal neutral bases across the periodic system using the generalized gradient approximation (GGA) of the density functional theory (DFT) at BP86/QZ4P//BP86/TZ2P. First, we validate DFT as a reliable tool for computing proton affinities and related thermochemical quantities: BP86/QZ4P//BP86/TZ2P is shown to yield a mean absolute deviation of 2.0 kcal/mol for the proton affinity at 298 K with respect to experiment, and 1.2 kcal/mol with high-level ab initio benchmark data. The main purpose of this work is to provide the proton affinities (and corresponding entropies) at 298 K of the neutral bases constituted by all maingroup-element hydrides of groups 15-17 and the noble gases, that is, group 18, and periods 1-6. We have also studied the effect of step-wise methylation of the protophilic center of the second- and third-period bases. Copyright 2006 Wiley Periodicals, Inc.
Affinity labeling of the folate-methotrexate transporter from Leishmania donovani
International Nuclear Information System (INIS)
Beck, J.T.; Ullman, B.
1989-01-01
An affinity labeling technique has been developed to identify the folate-methotrexate transporter of Leishmania donovani promastigotes using activated derivatives of the ligands. These activated derivatives were synthesized by incubating folate and methotrexate with a 10-fold excess of 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide (EDC) for 10 min at ambient temperature in dimethyl sulfoxide. When intact wild-type (DI700) Leishmania donovani or preparations of their membranes were incubated with a 0.4 μM concentration of either activated [ 3 H]folate or activated [ 3 H]methotrexate, the radiolabeled ligands were covalently incorporated into a polypeptide with a molecular weight of approximately 46,000, as demonstrated by SDS-polyacrylamide gel electrophoresis. No affinity labeling of a 46,000-dalton protein was observed when equimolar concentrations of activated radiolabeled ligands were incubated with intact cells or membranes prepared from a methotrexate-resistant mutant clone of Leishmania donovani, MTXA5, that is genetically defective in folate-methotrexate transport capability. Time course studies indicated that maximal labeling of the 46,000-dalton protein occurred within 5-10 min of incubation of intact cells with activated ligand. These studies provide biochemical evidence that the folate-methotrexate transporter of Leishmania donovani can be identified in crude extracts by an affinity labeling technique and serve as a prerequisite to further analysis of the transport protein by providing a vehicle for subsequent purification of this membrane carrier. Moreover, these investigations suggest that the affinity labeling technique using EDC-activated ligands may be exploitable to analyze other cell surface binding proteins in Leishmania donovani, as well as in other organisms
Reconstitution of high-affinity opioid agonist binding in brain membranes
Energy Technology Data Exchange (ETDEWEB)
Remmers, A.E.; Medzihradsky, F. (Univ. of Michigan Medical School, Ann Arbor (United States))
1991-03-15
In synaptosomal membranes from rat brain cortex, the {mu} selective agonist ({sup 3}H)dihydromorphine in the absence of sodium, and the nonselective antagonist ({sup 3}H)naltrexone in the presence of sodium, bound to two populations of opioid receptor sites with K{sub d} values of 0.69 and 8.7 nM for dihydromorphine, and 0.34 and 5.5 nM for naltrexone. The addition of 5 {mu}M guanosine 5{prime}-({gamma}-thio)triphosphate (GTP({gamma}S)) strongly reduced high-affinity agonist but not antagonist binding. Exposure of the membranes to high pH reduced the number of GTP({gamma}-{sup 35}S) binding sites by 90% and low K{sub m}, opioid-sensitive GTPase activity by 95%. In these membranes, high-affinity agonist binding was abolished and modulation of residual binding by GTP({gamma}S) was diminished. Alkali treatment of the glioma cell membranes prior to fusion inhibited most of the low K{sub m} GTPase activity and prevented the reconstitution of agonist binding. The results show that high-affinity opioid agonist binding reflects the ligand-occupied receptor - guanine nucleotide binding protein complex.
Affinity membranes for hormone removal from aqueous solutions
Urmenyi, A.M.; Poot, Andreas A.; Wessling, Matthias; Mulder, M.H.V.
2005-01-01
A novel affinity membrane was prepared by covalent binding of antibodies (against 17--estradiol) to a micro-porous poly(ethylene vinyl alcohol) (EVAL) membrane, taking benefit from the high surface area of EVAL membranes and the large number of reactive groups available for further surface
Studies on the tumor and organ affinity of /sup 201/Tl
Energy Technology Data Exchange (ETDEWEB)
Mori, H; Ando, I; Takeuchi, T [Kanazawa Univ. (Japan). School of Medicine; Ando, A; Hiraki, T
1980-01-01
In order to evaluate the tumor and organ affinity of /sup 201/Tl, using the Yoshida sarcoma bearing rats, the distribution of /sup 201/Tl/sup +/ in tissues and tumor was examined and compared to /sup 22/Na/sup +/, /sup 42/K/sup +/, /sup 86/Rb/sup +/, /sup 134/Cs/sup +/, and /sup 67/Ga-citrate. /sup 201/Tl/sup +/ showed almost same organ accumulation and kinetics as /sup 42/K/sup +/, /sup 86/Rb/sup +/, /sup 134/Cs, whereas /sup 201/Tl/sup +/ and /sup 22/Na/sup +/ had completely different organ distribution. These results suggest that organ affinity of /sup 201/Tl/sup +/ might be related to active transport, namely Na/sup +/-K/sup +/-ATPase pump mechanism as well as blood flow. However, it appeared to be taken into account the other factors such as different accumulation and clearance rate due to different substrates of organs. Kidney accumulation rate of /sup 201/Tl/sup +/ was much higher than /sup 42/K/sup +/, /sup 86/Rb/sup +/, /sup 134/Cs/sup +/ and about 10 times as /sup 42/K/sup +/. Macroautoradiograms of rat kidneys showed that /sup 201/Tl/sup +/ exhibited an initial high accumulation in the cortex and appeared in the outer cortex, as the cortex cleared of radioactivity. /sup 201/Tl might be interchangeable with K/sup +/ in the tubular system, reabsorbed with more affinity and cleared more slowly than K/sup +/. The tumor accumulation /sup 201/Tl/sup +/ might be related to Na/sup +/-K/sup +/-ATPase pump mechanism as well as other organs. However, in terms of tumor accumulation and concentration ratio to other organs, /sup 201/Tl/sup +/ was inferior to /sup 67/Ga-citrate, although the tumor to blood ratio was identical to that of /sup 67/Ga-citrate. Since /sup 201/Tl/sup + + +/ showed almost same distribution as /sup 201/Tl/sup +/, /sup 201/Tl/sup + + +/ might change into /sup 201/Tl/sup +/ in vivo.
Krainer, Georg; Keller, Sandro
2015-04-01
Isothermal titration calorimetry (ITC) is the gold standard for dissecting the thermodynamics of a biomolecular binding process within a single experiment. However, reliable determination of the dissociation constant (KD) from a single titration is typically limited to the range 100 μM>KD>1 nM. Interactions characterized by a lower KD can be assessed indirectly by so-called competition or displacement assays, provided that a suitable competitive ligand is available whose KD falls within the directly accessible window. However, this protocol is limited by the fact that it necessitates at least two titrations to characterize one high-affinity inhibitor, resulting in considerable consumption of both sample material and time. Here, we introduce a fast and efficient ITC displacement assay that allows for the simultaneous characterization of both a high-affinity ligand and a moderate-affinity ligand competing for the same binding site on a receptor within a single experiment. The protocol is based on a titration of the high-affinity ligand into a solution containing the moderate-affinity ligand bound to the receptor present in excess. The resulting biphasic binding isotherm enables accurate and precise determination of KD values and binding enthalpies (ΔH) of both ligands. We discuss the theoretical background underlying the approach, demonstrate its practical application to metal ion chelation, explore its potential and limitations with the aid of simulations and statistical analyses, and elaborate on potential applications to protein-inhibitor interactions. Copyright © 2014 Elsevier Inc. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Mo, Kai-For; Dai, Ziyu; Wunschel, David S.
2016-06-24
Siderophores are Fe binding secondary metabolites that have been investigated for their uranium binding properties. Much of the previous work has focused on characterizing hydroxamate types of siderophores, such as desferrioxamine B, for their uranyl binding affinity. Carboxylate forms of these metabolites hold potential to be more efficient chelators of uranyl, yet they have not been widely studied and are more difficult to obtain. Desmalonichrome is a carboxylate siderophore which is not commercially available and so was obtained from the ascomycete fungus Fusarium oxysporum cultivated under Fe depleted conditions. The relative affinity for uranyl binding of desmalonichrome was investigated using a competitive analysis of binding affinities between uranyl acetate and different concentrations of iron(III) chloride using electrospray ionization mass spectrometry (ESI-MS). In addition to desmalonichrome, three other siderophores, including two hydroxamates (desferrioxamine B and desferrichrome) and one carboxylate (desferrichrome A) were studied to understand their relative affinities for the uranyl ion at two pH values. The binding affinities of hydroxymate siderophores to uranyl ion were found to decrease to a greater degree at lower pH as the concentration of Fe (III) ion increases. On the other hand, lowering pH has little impact on the binding affinities between carboxylate siderophores and uranyl ion. Desmalonichrome was shown to have the greatest relative affinity for uranyl at any pH and Fe(III) concentration. These results suggest that acidic functional groups in the ligands are critical for strong chelation with uranium at lower pH.
Proteolysis inside the membrane is a rate-governed reaction not driven by substrate affinity.
Dickey, Seth W; Baker, Rosanna P; Cho, Sangwoo; Urban, Siniša
2013-12-05
Enzymatic cleavage of transmembrane anchors to release proteins from the membrane controls diverse signaling pathways and is implicated in more than a dozen diseases. How catalysis works within the viscous, water-excluding, two-dimensional membrane is unknown. We developed an inducible reconstitution system to interrogate rhomboid proteolysis quantitatively within the membrane in real time. Remarkably, rhomboid proteases displayed no physiological affinity for substrates (K(d) ~190 μM/0.1 mol%). Instead, ~10,000-fold differences in proteolytic efficiency with substrate mutants and diverse rhomboid proteases were reflected in k(cat) values alone. Analysis of gate-open mutant and solvent isotope effects revealed that substrate gating, not hydrolysis, is rate limiting. Ultimately, a single proteolytic event within the membrane normally takes minutes. Rhomboid intramembrane proteolysis is thus a slow, kinetically controlled reaction not driven by transmembrane protein-protein affinity. These properties are unlike those of other studied proteases or membrane proteins but are strikingly reminiscent of one subset of DNA-repair enzymes, raising important mechanistic and drug-design implications. Copyright © 2013 Elsevier Inc. All rights reserved.
Definition of percolation thresholds on self-affine surfaces
Marrink, S.J.; Paterson, Lincoln; Knackstedt, Mark A.
2000-01-01
We study the percolation transition on a two-dimensional substrate with long-range self-affine correlations. We find that the position of the percolation threshold on a correlated lattice is no longer unique and depends on the spanning rule employed. Numerical results are provided for spanning
DEFF Research Database (Denmark)
Tosco, Paolo; Ahring, Philip K; Dyhring, Tino
2009-01-01
Complementary 3D-QSAR modeling of binding affinity and functional potency is proposed as a tool to pinpoint the molecular features of the ligands, and the corresponding amino acids in the receptor, responsible for high affinity binding vs those driving agonist behavior and receptor activation. Th...
Anderson, Caitlin E; Holstein, Carly A; Strauch, Eva-Maria; Bennett, Steven; Chevalier, Aaron; Nelson, Jorgen; Fu, Elain; Baker, David; Yager, Paul
2017-06-20
Influenza is a ubiquitous and recurring infection that results in approximately 500 000 deaths globally each year. Commercially available rapid diagnostic tests are based upon detection of the influenza nucleoprotein, which are limited in that they are unable to differentiate by species and require an additional viral lysis step. Sample preprocessing can be minimized or eliminated by targeting the intact influenza virus, thereby reducing assay complexity and leveraging the large number of hemagglutinin proteins on the surface of each virus. Here, we report the development of a paper-based influenza assay that targets the hemagglutinin protein; the assay employs a combination of antibodies and novel computationally designed, recombinant affinity proteins as the capture and detection agents. This system leverages the customizability of recombinant protein design to target the conserved receptor-binding pocket of the hemagglutinin protein and to match the trimeric nature of hemagglutinin for improved avidity. Using this assay, we demonstrate the first instance of intact influenza virus detection using a combination of antibody and affinity proteins within a porous network. The recombinant head region binder based assays yield superior analytical sensitivity as compared to the antibody based assay, with lower limits of detection of 3.54 × 10 7 and 1.34 × 10 7 CEID 50 /mL for the mixed and all binder stacks, respectively. Not only does this work describe the development of a novel influenza assay, it also demonstrates the power of recombinant affinity proteins for use in rapid diagnostic assays.
Affinity of four polar neurotransmitters for lipid bilayer membranes
DEFF Research Database (Denmark)
Wang, Chunhua; Ye, Fengbin; Valardez, Gustavo F.
2011-01-01
. The simulations suggest that this attraction mainly relies on electrostatic interactions of the amino group of the neurotransmitter and the lipid phosphate. We conclude that moderate attraction to lipid membranes occurs for some polar neurotransmitters and hence that one premise for a theory of bilayer-mediated......Weak interactions of neurotransmitters and the lipid matrix in the synaptic membrane have been hypothesized to play a role in synaptic transmission of nerve signals, particularly with respect to receptor desensitization (Cantor, R. S. Biochemistry 2003, 42, 11891). The strength of such interactions......, however, was not measured, and this is an obvious impediment for further evaluation and understanding of a possible role for desensitization. We have used dialysis equilibrium to directly measure the net affinity of selected neurotransmitters for lipid membranes and analyzed this affinity data...
Extreme disorder in an ultrahigh-affinity protein complex
Borgia, Alessandro; Borgia, Madeleine B.; Bugge, Katrine; Kissling, Vera M.; Heidarsson, Pétur O.; Fernandes, Catarina B.; Sottini, Andrea; Soranno, Andrea; Buholzer, Karin J.; Nettels, Daniel; Kragelund, Birthe B.; Best, Robert B.; Schuler, Benjamin
2018-03-01
Molecular communication in biology is mediated by protein interactions. According to the current paradigm, the specificity and affinity required for these interactions are encoded in the precise complementarity of binding interfaces. Even proteins that are disordered under physiological conditions or that contain large unstructured regions commonly interact with well-structured binding sites on other biomolecules. Here we demonstrate the existence of an unexpected interaction mechanism: the two intrinsically disordered human proteins histone H1 and its nuclear chaperone prothymosin-α associate in a complex with picomolar affinity, but fully retain their structural disorder, long-range flexibility and highly dynamic character. On the basis of closely integrated experiments and molecular simulations, we show that the interaction can be explained by the large opposite net charge of the two proteins, without requiring defined binding sites or interactions between specific individual residues. Proteome-wide sequence analysis suggests that this interaction mechanism may be abundant in eukaryotes.
Theory of affine projection algorithms for adaptive filtering
Ozeki, Kazuhiko
2016-01-01
This book focuses on theoretical aspects of the affine projection algorithm (APA) for adaptive filtering. The APA is a natural generalization of the classical, normalized least-mean-squares (NLMS) algorithm. The book first explains how the APA evolved from the NLMS algorithm, where an affine projection view is emphasized. By looking at those adaptation algorithms from such a geometrical point of view, we can find many of the important properties of the APA, e.g., the improvement of the convergence rate over the NLMS algorithm especially for correlated input signals. After the birth of the APA in the mid-1980s, similar algorithms were put forward by other researchers independently from different perspectives. This book shows that they are variants of the APA, forming a family of APAs. Then it surveys research on the convergence behavior of the APA, where statistical analyses play important roles. It also reviews developments of techniques to reduce the computational complexity of the APA, which are important f...
Smooth surfaces from bilinear patches: Discrete affine minimal surfaces
Kä ferbö ck, Florian; Pottmann, Helmut
2013-01-01
Motivated by applications in freeform architecture, we study surfaces which are composed of smoothly joined bilinear patches. These surfaces turn out to be discrete versions of negatively curved affine minimal surfaces and share many properties
An Affine Combination of Adaptive Filters for Channels with Different Sparsity Levels
Directory of Open Access Journals (Sweden)
M. Butsenko
2016-06-01
Full Text Available In this paper we present an affine combination strategy for two adaptive filters. One filter is designed to handle sparse impulse responses and the other one performs better if impulse response is dispersive. Filter outputs are combined using an adaptive mixing parameter and the resulting output shows a better performance than each of the combining filters separately. We also demonstrate that affine combination results in faster convergence than a convex combination of two adaptive filters.
Size and shape dependent deprotonation potential and proton affinity of nanodiamond
International Nuclear Information System (INIS)
Barnard, Amanda S; Per, Manolo C
2014-01-01
Many important reactions in biology and medicine involve proton abstraction and transfer, and it is integral to applications such as drug delivery. Unlike electrons, which are quantum mechanically delocalized, protons are instantaneously localized on specific residues in these reactions, which can be a distinct advantage. However, the introduction of nanoparticles, such as non-toxic nanodiamonds, to this field complicates matters, as the number of possible sites increases as the inverse radius of the particle. In this paper we present >10 4 simulations that map the size- and shape-dependence of the deprotonation potential and proton affinity of nanodiamonds in the range 1.8–2.7 nm in average diameter. We find that while the average deprotonation potential and proton affinities decrease with size, the site-specific values are inhomogeneous over the surface of the particles, exhibiting strong shape-dependence. The proton affinity is strongly facet-dependent, whereas the deprotonation potential is edge/corner-dependent, which creates a type of spatial hysteresis in the transfer of protons to and from the nanodiamond, and provides new opportunities for selective functionalization. (paper)
Size and shape dependent deprotonation potential and proton affinity of nanodiamond
Barnard, Amanda S.; Per, Manolo C.
2014-11-01
Many important reactions in biology and medicine involve proton abstraction and transfer, and it is integral to applications such as drug delivery. Unlike electrons, which are quantum mechanically delocalized, protons are instantaneously localized on specific residues in these reactions, which can be a distinct advantage. However, the introduction of nanoparticles, such as non-toxic nanodiamonds, to this field complicates matters, as the number of possible sites increases as the inverse radius of the particle. In this paper we present \\gt {{10}4} simulations that map the size- and shape-dependence of the deprotonation potential and proton affinity of nanodiamonds in the range 1.8-2.7 nm in average diameter. We find that while the average deprotonation potential and proton affinities decrease with size, the site-specific values are inhomogeneous over the surface of the particles, exhibiting strong shape-dependence. The proton affinity is strongly facet-dependent, whereas the deprotonation potential is edge/corner-dependent, which creates a type of spatial hysteresis in the transfer of protons to and from the nanodiamond, and provides new opportunities for selective functionalization.
Object matching using a locally affine invariant and linear programming techniques.
Li, Hongsheng; Huang, Xiaolei; He, Lei
2013-02-01
In this paper, we introduce a new matching method based on a novel locally affine-invariant geometric constraint and linear programming techniques. To model and solve the matching problem in a linear programming formulation, all geometric constraints should be able to be exactly or approximately reformulated into a linear form. This is a major difficulty for this kind of matching algorithm. We propose a novel locally affine-invariant constraint which can be exactly linearized and requires a lot fewer auxiliary variables than other linear programming-based methods do. The key idea behind it is that each point in the template point set can be exactly represented by an affine combination of its neighboring points, whose weights can be solved easily by least squares. Errors of reconstructing each matched point using such weights are used to penalize the disagreement of geometric relationships between the template points and the matched points. The resulting overall objective function can be solved efficiently by linear programming techniques. Our experimental results on both rigid and nonrigid object matching show the effectiveness of the proposed algorithm.
Gravitational Goldstone fields from affine gauge theory
Tresguerres, Romualdo; Mielke, Eckehard W.
2000-08-01
In order to facilitate the application of standard renormalization techniques, gravitation should be described, in the pure connection formalism, as a Yang-Mills theory of a certain spacetime group, say the Poincaré or the affine group. This embodies the translational as well as the linear connection. However, the coframe is not the standard Yang-Mills-type gauge field of the translations, since it lacks the inhomogeneous gradient term in the gauge transformations. By explicitly restoring this ``hidden'' piece within the framework of nonlinear realizations, the usual geometrical interpretation of the dynamical theory becomes possible, and in addition one can avoid the metric or coframe degeneracy which would otherwise interfere with the integrations within the path integral. We claim that nonlinear realizations provide the general mathematical scheme for the foundation of gauge theories of spacetime symmetries. When applied to construct the Yang-Mills theory of the affine group, tetrads become identified with nonlinear translational connections; the anholonomic metric no longer constitutes an independent gravitational potential, since its degrees of freedom reveal a correspondence to eliminateable Goldstone bosons. This may be an important advantage for quantization.
Paraschiv, Gabriela; Vincke, Cécile; Czaplewska, Paulina; Manea, Marilena; Muyldermans, Serge; Przybylski, Michael
2013-01-01
ß-Amyloid (Aß) immunotherapy has become a promising strategy for reducing the level of Aß in brain. New immunological approaches have been recently proposed for rapid, early diagnosis, and molecular treatment of neurodegenerative diseases related to Alzheimer's Disease (AD). The combination of proteolytic epitope excision and extraction and mass spectrometry using digestion with various proteases has been shown to be an efficient tool for the identification and molecular characterization of antigenic determinants. Here, we report the identification of the Aβ epitope recognized by the variable domain of single chain llama anti-Aβ-antibodies, termed Aβ-nanobodies, that have been discovered in the blood of camelids and found to be promising candidates for immunotherapy of AD. The epitope recognized by two Aβ-specific nanobodies was identified by proteolytic epitope extraction- and excision-mass spectrometry using a series of proteases (trypsin, chymotrypsin, GluC-protease, and LysC-protease). Matrix-assisted laser desorption ionization--mass spectrometric analysis of the affinity--elution fraction provided the epitope, Aβ(17-28), in the mid- to carboxy-terminal domain of Aβ, which has been shown to exert an Aß-fibril inhibiting effect. Affinity studies of the synthetic epitope confirmed that the Aβ(17-28) peptide is the minimal fragment that binds to the nanobodies. The interactions between the nanobodies and full length Aβ(1-40) or Aβ-peptides containing or lacking the epitope sequence were further characterized by enzyme linked immunosorbent assay and bioaffinity analysis. Determinations of binding affinities between the Aβ-nanobodies and Aβ(1-40) and the Aβ(17-28) epitope provided K(D) values of approximately 150 and 700 nmol, respectively. Thus, the knowledge of the epitope may be highly useful for future studies of Aβ-aggregation (oligomerization and fibril formation) and for designing new aggregation inhibitors. Copyright © 2012 John Wiley
Constructing decidable hybrid systems with velocity bounds
Belta, C.; Habets, L.C.G.J.M.
2004-01-01
In this paper, the question of bi-similarity between hybrid systems and their discrete quotients is studied from a new point of view. We consider two classes of hybrid systems: piecewise affine hybrid systems on simplices and piecewise multi-affine systems on multi-dimensional rectangles. Given a
Affinity-seeking, social loneliness, and social avoidance among Facebook users.
Lemieux, Robert; Lajoie, Sean; Trainor, Nathan E
2013-04-01
This study explored the relations between use of the social networking site Facebook and scores on affinity-seeking, social loneliness, and social avoidance by 313 college students. Social loneliness and social avoidance, but not affinity-seeking, were positively and statistically significantly related to time spent using Facebook. The number of close Facebook friends was negatively and statistically significantly related to social loneliness and social avoidance. Women perceived Facebook as a more integral part of daily interactions than did men. 38% of the 283 Facebook members indicated their accounts contained information and/or a picture that could embarrass them, with men having significantly more embarrassing content than women. The findings are discussed within the context of social compensation.
Li, Min; Zhu, Min; Zhang, Cunzheng; Liu, Xianjin; Wan, Yakun
2014-01-01
Nanobodies are the smallest natural fragments with useful properties such as high affinity, distinct paratope and high stability, which make them an ideal tool for detecting target antigens. In this study, we generated and characterized nanobodies against the Cry1Ac toxin and applied them in a biotin-streptavidin based double antibodies (nanobodies) sandwich-ELISA (DAS-ELISA) assay. After immunizing a camel with soluble Cry1Ac toxin, a phage displayed library was constructed to generate Nbs against the Cry1Ac toxin. Through successive rounds of affinity bio-panning, four nanobodies with greatest diversity in CDR3 sequences were obtained. After affinity determination and conjugating to HRP, two nanobodies with high affinity which can recognize different epitopes of the same antigen (Cry1Ac) were selected as capture antibody (Nb61) and detection antibody (Nb44). The capture antibody (Nb61) was biotinylated in vivo for directional immobilization on wells coated with streptavidin matrix. Both results of specificity analysis and thermal stability determination add support for reliability of the following DAS-ELISA with a minimum detection limit of 0.005 μg·mL−1 and a working range 0.010–1.0 μg·mL−1. The linear curve displayed an acceptable correlation coefficient of 0.9976. These results indicated promising applications of nanobodies for detection of Cry1Ac toxin with biotin-streptavidin based DAS-ELISA system. PMID:25474492
Directory of Open Access Journals (Sweden)
Min Li
2014-12-01
Full Text Available Nanobodies are the smallest natural fragments with useful properties such as high affinity, distinct paratope and high stability, which make them an ideal tool for detecting target antigens. In this study, we generated and characterized nanobodies against the Cry1Ac toxin and applied them in a biotin-streptavidin based double antibodies (nanobodies sandwich-ELISA (DAS-ELISA assay. After immunizing a camel with soluble Cry1Ac toxin, a phage displayed library was constructed to generate Nbs against the Cry1Ac toxin. Through successive rounds of affinity bio-panning, four nanobodies with greatest diversity in CDR3 sequences were obtained. After affinity determination and conjugating to HRP, two nanobodies with high affinity which can recognize different epitopes of the same antigen (Cry1Ac were selected as capture antibody (Nb61 and detection antibody (Nb44. The capture antibody (Nb61 was biotinylated in vivo for directional immobilization on wells coated with streptavidin matrix. Both results of specificity analysis and thermal stability determination add support for reliability of the following DAS-ELISA with a minimum detection limit of 0.005 μg·mL−1 and a working range 0.010–1.0 μg·mL−1. The linear curve displayed an acceptable correlation coefficient of 0.9976. These results indicated promising applications of nanobodies for detection of Cry1Ac toxin with biotin-streptavidin based DAS-ELISA system.
Energy Technology Data Exchange (ETDEWEB)
Rajaratnam, S.; Adams, G.E.; Stratford, I.J.; Clarke, C.
1982-01-01
The cytotoxicity of 3 electron-affinic radiosensitizers has been studied in Chinese hamster V-79 cells as a function of pH and modest hyperthermia. When equitoxic concentrations were used and temperature was increased from 34 to 41/sup 0/C metronidazole, the compound with the lowest electron affinity showed the greatest enhancement of hypoxic-cell toxicity, and nitrofurantoin, the compound with the highest electron affinity, the least. The results can be explained if the mechanisms of toxicity involves a redox reaction, since it would be expected that the least toxic compound (lowest electron affinity) would have the largest activation energy and hence the greatest temperature effect. This appears to hold for these 3 compounds. Experiments also showed that nitrofurantoin which exhibits no increase in toxicity when the temperature was increased from 37 to 41/sup 0/C at pH 7.4, showed an increase in toxicity for the same temperature change at the pH of 7.0 and 6.6. Under aerobic conditions only metronidazole showed significant toxicity at 41/sup 0/C, where the differential between aerobic and hypoxic cell toxicity was minimal, both at pH 7.4, and at the low pH values of 7.0 and 6.6. In the clinical setting there is evidence that tumor cells are at a lower pH than their surrounding normal tissues. Hypoxic-cell cytotoxicity is enhanced at low pH, and even further enhanced at low pH in combination with a temperature of 41/sup 0/C. However, this finding correlates conversely with electron affinity.
Holdgate, Geoff A; Anderson, Malcolm; Edfeldt, Fredrik; Geschwindner, Stefan
2010-10-01
Affinity-based technologies have become impactful tools to detect, monitor and characterize molecular interactions using recombinant target proteins. This can aid the understanding of biological function by revealing mechanistic details, and even more importantly, enables the identification of new improved ligands that can modulate the biological activity of those targets in a desired fashion. The selection of the appropriate technology is a key step in that process, as each one of the currently available technologies offers a characteristic type of biophysical information about the ligand-binding event. Alongside the indisputable advantages of each of those technologies they naturally display diverse restrictions that are quite frequently related to the target system to be studied but also to the affinity, solubility and molecular size of the ligands. This paper discusses some of the theoretical and experimental aspects of the most common affinity-based methods, what type of information can be gained from each one of those approaches, and what requirements as well as limitations are expected from working with recombinant proteins on those platforms and how those can be optimally addressed.
A Quick and Affine Invariance Matching Method for Oblique Images
Directory of Open Access Journals (Sweden)
XIAO Xiongwu
2015-04-01
Full Text Available This paper proposed a quick, affine invariance matching method for oblique images. It calculated the initial affine matrix by making full use of the two estimated camera axis orientation parameters of an oblique image, then recovered the oblique image to a rectified image by doing the inverse affine transform, and left over by the SIFT method. We used the nearest neighbor distance ratio(NNDR, normalized cross correlation(NCC measure constraints and consistency check to get the coarse matches, then used RANSAC method to calculate the fundamental matrix and the homography matrix. And we got the matches that they were interior points when calculating the homography matrix, then calculated the average value of the matches' principal direction differences. During the matching process, we got the initial matching features by the nearest neighbor(NN matching strategy, then used the epipolar constrains, homography constrains, NCC measure constrains and consistency check of the initial matches' principal direction differences with the calculated average value of the interior matches' principal direction differences to eliminate false matches. Experiments conducted on three pairs of typical oblique images demonstrate that our method takes about the same time as SIFT to match a pair of oblique images with a plenty of corresponding points distributed evenly and an extremely low mismatching rate.
Li, Qianjin; Liu, Zhen
2015-01-01
Boronate affinity monolithic columns have been developed into an important means for the selective recognition and capture of cis-diol-containing biomolecules, such as glycoproteins, nucleosides and saccharides. The ligands of boronic acids are playing an important role in boronate affinity monolithic columns. Although several boronate affinity monoliths with high affinity toward cis-diol-containing biomolecules have been reported, only few publications are focused on their detailed procedures for preparation and characterization. This chapter describes in detail the preparation and characterization of a boronate affinity monolithic column applying 2,4-difluoro-3-formyl-phenylboronic acid (DFFPBA) as a ligand. The DFFPBA-functionalized monolithic column not only exhibited an ultrahigh boronate affinity toward cis-diol-containing biomolecules, but also showed great potential for the selective enrichment of cis-diol-containing biomolecules in real samples.
An affine model of the dynamics of astrophysical discs
Ogilvie, Gordon I.
2018-06-01
Thin astrophysical discs are very often modelled using the equations of 2D hydrodynamics. We derive an extension of this model that describes more accurately the behaviour of a thin disc in the absence of self-gravity, magnetic fields, and complex internal motions. The ideal fluid theory is derived directly from Hamilton's Principle for a 3D fluid after making a specific approximation to the deformation gradient tensor. We express the equations in Eulerian form after projection on to a reference plane. The disc is thought of as a set of fluid columns, each of which is capable of a time-dependent affine transformation, consisting of a translation together with a linear transformation in three dimensions. Therefore, in addition to the usual 2D hydrodynamics in the reference plane, the theory allows for a deformation of the mid-plane (as occurs in warped discs) and for the internal shearing motions that accompany such deformations. It also allows for the vertical expansions driven in non-circular discs by a variation of the vertical gravitational field around the horizontal streamlines, or by a divergence of the horizontal velocity. The equations of the affine model embody conservation laws for energy and potential vorticity, even for non-planar discs. We verify that they reproduce exactly the linear theories of 3D warped and eccentric discs in a secular approximation. However, the affine model does not rely on any secular or small-amplitude assumptions and should be useful in more general circumstances.
Affinity-tuning leukocyte integrin for development of safe therapeutics
Park, Spencer
Much attention has been given to the molecular and cellular pathways linking inflammation with cancer and the local tumor environment to identify new target molecules that could lead to improved diagnosis and treatment. Among the many molecular players involved in the complex response, central to the induction of inflammation is intercellular adhesion molecule (ICAM)-1, which is of particular interest for its highly sensitive and localized expression in response to inflammatory signals. ICAM-1, which has been implicated to play a critical role in tumor progression in various types of cancer, has also been linked to cancer metastases, where ICAM-1 facilitates the spread of metastatic cancer cells to secondary sites. This unique expression profile of ICAM-1 throughout solid tumor microenvironment makes ICAM-1 an intriguing molecular target, which holds great potential as an important diagnostic and therapeutic tool. Herein, we have engineered the ligand binding domain, or the inserted (I) domain of a leukocyte integrin, to exhibit a wide range of monovalent affinities to the natural ligand, ICAM-1. Using the resulting I domain variants, we have created drug and gene delivery nanoparticles, as well as targeted immunotherapeutics that have the ability to bind and migrate to inflammatory sites prevalent in tumors and the associated microenvironment. Through the delivery of diagnostic agents, chemotherapeutics, and immunotherapeutics, the following chapters demonstrate that the affinity enhancements achieved by directed evolution bring the affinity of I domains into the range optimal for numerous applications.
Directory of Open Access Journals (Sweden)
Romain Pardoux
Full Text Available To improve our understanding of uranium toxicity, the determinants of uranyl affinity in proteins must be better characterized. In this work, we analyzed the contribution of a phosphoryl group on uranium binding affinity in a protein binding site, using the site 1 EF-hand motif of calmodulin. The recombinant domain 1 of calmodulin from A. thaliana was engineered to impair metal binding at site 2 and was used as a structured template. Threonine at position 9 of the loop was phosphorylated in vitro, using the recombinant catalytic subunit of protein kinase CK2. Hence, the T(9TKE(12 sequence was substituted by the CK2 recognition sequence TAAE. A tyrosine was introduced at position 7, so that uranyl and calcium binding affinities could be determined by following tyrosine fluorescence. Phosphorylation was characterized by ESI-MS spectrometry, and the phosphorylated peptide was purified to homogeneity using ion-exchange chromatography. The binding constants for uranyl were determined by competition experiments with iminodiacetate. At pH 6, phosphorylation increased the affinity for uranyl by a factor of ∼5, from K(d = 25±6 nM to K(d = 5±1 nM. The phosphorylated peptide exhibited a much larger affinity at pH 7, with a dissociation constant in the subnanomolar range (K(d = 0.25±0.06 nM. FTIR analyses showed that the phosphothreonine side chain is partly protonated at pH 6, while it is fully deprotonated at pH 7. Moreover, formation of the uranyl-peptide complex at pH 7 resulted in significant frequency shifts of the ν(as(P-O and ν(s(P-O IR modes of phosphothreonine, supporting its direct interaction with uranyl. Accordingly, a bathochromic shift in ν(as(UO(2(2+ vibration (from 923 cm(-1 to 908 cm(-1 was observed upon uranyl coordination to the phosphorylated peptide. Together, our data demonstrate that the phosphoryl group plays a determining role in uranyl binding affinity to proteins at physiological pH.
International Nuclear Information System (INIS)
Pardoux, Romain; Sauge-Merle, Sandrine; Lemaire, David; Guilloreau, Luc; Berthomieu, Catherine; Delangle, Pascale; Adriano, Jean-Marc
2012-01-01
To improve our understanding of uranium toxicity, the determinants of uranyl affinity in proteins must be better characterized. In this work, we analyzed the contribution of a phosphoryl group on uranium binding affinity in a protein binding site, using the site 1 EF-hand motif of calmodulin. The recombinant domain 1 of calmodulin from A. thaliana was engineered to impair metal binding at site 2 and was used as a structured template. Threonine at position 9 of the loop was phosphorylated in vitro, using the recombinant catalytic subunit of protein kinase CK2. Hence, the T 9 TKE 12 sequence was substituted by the CK2 recognition sequence TAAE. A tyrosine was introduced at position 7, so that uranyl and calcium binding affinities could be determined by following tyrosine fluorescence. Phosphorylation was characterized by ESI-MS spectrometry, and the phosphorylated peptide was purified to homogeneity using ion-exchange chromatography. The binding constants for uranyl were determined by competition experiments with iminodiacetate. At pH 6, phosphorylation increased the affinity for uranyl by a factor of ∼5, from K d =25±6 nM to K d =5±1 nM. The phosphorylated peptide exhibited a much larger affinity at pH 7, with a dissociation constant in the sub-nanomolar range (K d = 0.25±0.06 nM). FTIR analyses showed that the phospho-threonine side chain is partly protonated at pH 6, while it is fully deprotonated at pH 7. Moreover, formation of the uranyl-peptide complex at pH 7 resulted in significant frequency shifts of the ν as (P-O) and ν s (P-O) IR modes of phospho-threonine, supporting its direct interaction with uranyl. Accordingly, a bathochromic shift in ν as (UO 2 ) 2+ vibration (from 923 cm -1 to 908 cm -1 ) was observed upon uranyl coordination to the phosphorylated peptide. Together, our data demonstrate that the phosphoryl group plays a determining role in uranyl binding affinity to proteins at physiological pH. (authors)
Heparin-binding peptide as a novel affinity tag for purification of recombinant proteins.
Morris, Jacqueline; Jayanthi, Srinivas; Langston, Rebekah; Daily, Anna; Kight, Alicia; McNabb, David S; Henry, Ralph; Kumar, Thallapuranam Krishnaswamy Suresh
2016-10-01
Purification of recombinant proteins constitutes a significant part of the downstream processing in biopharmaceutical industries. Major costs involved in the production of bio-therapeutics mainly depend on the number of purification steps used during the downstream process. Affinity chromatography is a widely used method for the purification of recombinant proteins expressed in different expression host platforms. Recombinant protein purification is achieved by fusing appropriate affinity tags to either N- or C- terminus of the target recombinant proteins. Currently available protein/peptide affinity tags have proved quite useful in the purification of recombinant proteins. However, these affinity tags suffer from specific limitations in their use under different conditions of purification. In this study, we have designed a novel 34-amino acid heparin-binding affinity tag (HB-tag) for the purification of recombinant proteins expressed in Escherichia coli (E. coli) cells. HB-tag fused recombinant proteins were overexpressed in E. coli in high yields. A one-step heparin-Sepharose-based affinity chromatography protocol was developed to purify HB-fused recombinant proteins to homogeneity using a simple sodium chloride step gradient elution. The HB-tag has also been shown to facilitate the purification of target recombinant proteins from their 8 M urea denatured state(s). The HB-tag has been demonstrated to be successfully released from the fusion protein by an appropriate protease treatment to obtain the recombinant target protein(s) in high yields. Results of the two-dimensional NMR spectroscopy experiments indicate that the purified recombinant target protein(s) exist in the native conformation. Polyclonal antibodies raised against the HB-peptide sequence, exhibited high binding specificity and sensitivity to the HB-fused recombinant proteins (∼10 ng) in different crude cell extracts obtained from diverse expression hosts. In our opinion, the HB-tag provides a
DEFF Research Database (Denmark)
Domanski, Michal; Molloy, Kelly; Jiang, Hua
2012-01-01
An efficient and reliable procedure for the capture of affinity-tagged proteins and associated complexes from human cell lines is reported. Through multiple optimizations, high yield and low background affinity-purifications are achieved from modest quantities of human cells expressing endogenous...
Horejsí, V; Tichá, M; Kocourek, J
1977-09-29
Affinity electrophoresis was used to study the sugar binding heterogeneity of lectins or their derivatives. Commercial and demetallized preparations of concanavalin A could be resolved by affinity electrophoresis into three components with different affinity to immobilized sugar. Similarly the Vicia cracca lectin obtained by affinity chromatography behaved on affinity gels as a mixture of active and inactive molecular species. Affinity electrophoresis has shown that the nonhemagglutinating acetylated lentil lectin and photo-oxidized or sulfenylated pea lectin retain their sugar binding properties; dissociation constants of saccharide complexes of these derivatives are similar to those of native lectins. The presence of specific immobilized sugar in the affinity gel improved the resolution of isolectins from Dolichos biflorus and Ricinus communis seeds.
Robotic high-throughput purification of affinity-tagged recombinant proteins.
Wiesler, Simone C; Weinzierl, Robert O J
2015-01-01
Affinity purification of recombinant proteins has become the method of choice to obtain good quantities and qualities of proteins for a variety of downstream biochemical applications. While manual or FPLC-assisted purification techniques are generally time-consuming and labor-intensive, the advent of high-throughput technologies and liquid handling robotics has simplified and accelerated this process significantly. Additionally, without the human factor as a potential source of error, automated purification protocols allow for the generation of large numbers of proteins simultaneously and under directly comparable conditions. The delivered material is ideal for activity comparisons of different variants of the same protein. Here, we present our strategy for the simultaneous purification of up to 24 affinity-tagged proteins for activity measurements in biochemical assays. The protocol described is suitable for the scale typically required in individual research laboratories.
DEFF Research Database (Denmark)
Sørensen, Steen; Myrhøj, Vibeke; Nguyen, Thanh Ha
2017-01-01
for functional studies because the carbohydrate part can be lacking or be insufficient in recombinant glycodelin from prokaryotic and eukaryotic cell systems. METHODS AND RESULTS: Native glycodelin was purified from amniotic fluid by a series of affinity chromatography steps and had many glycosylated forms...
On maximal surfaces in asymptotically flat space-times
International Nuclear Information System (INIS)
Bartnik, R.; Chrusciel, P.T.; O Murchadha, N.
1990-01-01
Existence of maximal and 'almost maximal' hypersurfaces in asymptotically flat space-times is established under boundary conditions weaker than those considered previously. We show in particular that every vacuum evolution of asymptotically flat data for Einstein equations can be foliated by slices maximal outside a spatially compact set and that every (strictly) stationary asymptotically flat space-time can be foliated by maximal hypersurfaces. Amongst other uniqueness results, we show that maximal hypersurface can be used to 'partially fix' an asymptotic Poincare group. (orig.)
Selective induction of high-ouabain-affinity isoform of Na+-K+-ATPase by thyroid hormone
International Nuclear Information System (INIS)
Haber, R.S.; Loeb, J.N.
1988-01-01
The administration of thyroid hormone is known to result in an induction of the Na + -K + -adenosinetriphosphatase (Na + -K + -ATPase) in rat skeletal muscle and other thyroid hormone-responsive tissues. Since the Na + -K + -ATPase in a variety of mammalian tissues has recently been reported to exist in at least two forms distinguishable by differing affinities for the inhibitory cardiac glycoside ouabain. The authors have studied the effects of 3,3',5-triiodo-L-thyronine (T 3 ) treatment on these two forms of the enzyme in rat diaphragm. The inhibition of Na + -K + -ATPase activity in a crude membrane fraction by varying concentrations of ouabain conformed to a biphasic pattern consistent with the presence of two distinct isoforms with inhibition constants (K I s) for ouabain of ∼10 -7 and 10 -4 M, respectively. Measurement of the specific binding of [ 3 H]ouabain to these membranes confirmed the presence of a class of high-affinity ouabain binding sites with a dissociation constant (K d ) of slightly less than 10 -7 M, whose maximal binding capacity was increased by T 3 treatment by 185%. Binding studies in unfractionated homogenates of diaphragm similarly demonstrated the presence of high-affinity sites whose maximal binding capacity was increased by T 3 treatment. Quantitation of both the high- and low-ouabain-affinity forms of the Na + -K + -ATPase by ouabain-dependent phosphorylation from [ 32 P]orthophosphate confirmed that T 3 treatment markedly increased the number of high-affinity sites while having little effect on the number of low-affinity sites. These observations provide, to our knowledge, the first demonstration that these two forms of the Na + -K + -ATPase are subject to selective hormonal induction
hPEPT1 Affinity and Translocation of Selected Gln-Sar and Glu-Sar Dipeptide Derivatives
DEFF Research Database (Denmark)
Eriksson, A. H.; Elm, Peter L.; Begtrup, Mikael
2005-01-01
using 14C-labeled Gly-Sar. Translocation was measured as fluorescence ratios induced by the substrates using the fluorescent probe BCECF and an epifluorescence microscope setup. All compounds showed high affinity to hPEPT1, but only the amides l-Gln(N,N-dimethyl)-Sar and l-Gln(N-piperidinyl)-Sar were...... been suggested. However, these are not necessarily predictive of compounds that are actually translocated by hPEPT1. More information on affinity to and translocation via hPEPT1 of side-chain-modified dipeptides may be gained by conducting a study of selected dipeptide derivatives with variety in size...... translocated by hPEPT1. hPEPT1 is very susceptible to modifications of the N-terminal amino acid side chain of dipeptidomimetic substrates, in terms of achieving compounds with high affinity for the transporter. However, as affinity is not predictive of translocation, derivatization in this position must...
Student Engagement and Neoliberalism: Mapping an Elective Affinity
Zepke, Nick
2015-01-01
The purpose of this article is to argue that student engagement, an important area for research about learning and teaching in formal higher education, has an elective affinity with neoliberalism, a hegemonic ideology in many countries of the developed world. The paper first surveys an extensive research literature examining student engagement and…
Bubble collisions and measures of the multiverse
International Nuclear Information System (INIS)
Salem, Michael P.
2012-01-01
To compute the spectrum of bubble collisions seen by an observer in an eternally-inflating multiverse, one must choose a measure over the diverging spacetime volume, including choosing an ''initial'' hypersurface below which there are no bubble nucleations. Previous calculations focused on the case where the initial hypersurface is pushed arbitrarily deep into the past. Interestingly, the observed spectrum depends on the orientation of the initial hypersurface, however one's ability observe the effect rapidly decreases with the ratio of inflationary Hubble rates inside and outside one's bubble. We investigate whether this conclusion might be avoided under more general circumstances, including placing the observer's bubble near the initial hypersurface. We find that it is not. As a point of reference, a substantial appendix reviews relevant aspects of the measure problem of eternal inflation
Qudsia, Sehar; Merugu, Siva B; Mangukiya, Hitesh B; Hema, Negi; Wu, Zhenghua; Li, Dawei
2018-04-30
Antibody display libraries have become a popular technique to screen monoclonal antibodies for therapeutic purposes. An important aspect of display technology is to generate an optimization library by changing antibody affinity to antigen through mutagenesis and screening the high affinity antibody. In this study, we report a novel lentivirus display based optimization library antibody in which Agtuzumab scFv is displayed on cell membrane of HEK-293T cells. To generate an optimization library, hotspot mutagenesis was performed to achieve diverse antibody library. Based on sequence analysis of randomly selected clones, library size was estimated approximately to be 1.6 × 10 6 . Lentivirus display vector was used to display scFv antibody on cell surface and flow cytometery was performed to check the antibody affinity to antigen. Membrane bound scFv antibodies were then converted to secreted antibody through cre/loxP recombination. One of the mutant clones, M8 showed higher affinity to antigen in flow cytometery analysis. Further characterization of cellular and secreted scFv through western blot showed that antibody affinity was increased by three fold after mutagenesis. This study shows successful construction of a novel antibody library and suggests that hotspot mutagenesis could prove a useful and rapid optimization tool to generate similar libraries with various degree of antigen affinity. Copyright © 2018 Elsevier Inc. All rights reserved.
Staircase Models from Affine Toda Field Theory
Dorey, P; Dorey, Patrick; Ravanini, Francesco
1993-01-01
We propose a class of purely elastic scattering theories generalising the staircase model of Al. B. Zamolodchikov, based on the affine Toda field theories for simply-laced Lie algebras g=A,D,E at suitable complex values of their coupling constants. Considering their Thermodynamic Bethe Ansatz equations, we give analytic arguments in support of a conjectured renormalisation group flow visiting the neighbourhood of each W_g minimal model in turn.
Generalized Warburg impedance on realistic self-affine fractals ...
Indian Academy of Sciences (India)
Administrator
Generalized Warburg impedance on realistic self-affine fractals: Comparative study of statistically corrugated and isotropic roughness. RAJESH KUMAR and RAMA KANT. Journal of Chemical Sciences, Vol. 121, No. 5, September 2009, pp. 579–588. 1. ( ) c. L. R ω on page 582, column 2, para 2, after eq (8) should read as ...
Affinity Electrophoresis for Analysis of Catalytic Module-Carbohydrate Interactions
DEFF Research Database (Denmark)
Cockburn, Darrell; Wilkens, Casper; Svensson, Birte
2017-01-01
Affinity electrophoresis has long been used to study the interaction between proteins and large soluble ligands. The technique has been found to have great utility for the examination of polysaccharide binding by proteins, particularly carbohydrate binding modules (CBMs). In recent years, carbohy...
Dynamics behind affinity maturation of an anti-HCMV antibody family influencing antigen binding
Di Palma, Francesco; Tramontano, Anna
2017-01-01
The investigation of antibody affinity maturation and its effects on antigen binding is important with respect to understanding the regulation of the immune response. To shed light on this crucial process, we analyzed two Igs neutralizing the human cytomegalovirus: the primary germline antibody M2J1 and its related mature antibody 8F9. Both antibodies target the AD-2S1 epitope of the gB envelope protein and are considered to establish similar interactions with the cognate antigen. We used molecular dynamics simulations to understand the effect of mutations on the antibody–antigen interactions. The results provide a qualitative explanation for the increased 8F9 peptide affinity compared with that of M2J1. The emerging atomistic-detailed description of these complexes reveals the molecular effects of the somatic hypermutations occurring during affinity maturation.
On-bead chemical synthesis and display of phosphopeptides for affinity pull-down proteomics
DEFF Research Database (Denmark)
Malene, Brandt; Madsen, Jens C.; Bunkenborg, Jakob
2006-01-01
We describe a new method for phosphopeptide proteomics based on the solid-phase synthesis of phosphopeptides on beads suitable for affinity pull-down experiments. Peptide sequences containing the Bad Ser112 and Ser136 phosphorylation motifs were used as bait in affinity pull-down experiments...... (aldehyde) at the C terminus for potential activity-based proteomics. The synthetic support-bound Bad phosphopeptides were able to pull down 14-3-3zeta. Furthermore, Bad phosphopeptides bound endogenous 14-3-3 proteins, and all seven members of the 14-3-3 family were identified by mass spectrometry....... In control experiments, none of the unphosphorylated Bad peptides bound transfected 14-3-3zeta or endogenous 14-3-3. We conclude that the combined synthesis and display of phosphopeptides on-bead is a fast and efficient method for affinity pull-down proteomics....
Dynamics behind affinity maturation of an anti-HCMV antibody family influencing antigen binding
Di Palma, Francesco
2017-08-03
The investigation of antibody affinity maturation and its effects on antigen binding is important with respect to understanding the regulation of the immune response. To shed light on this crucial process, we analyzed two Igs neutralizing the human cytomegalovirus: the primary germline antibody M2J1 and its related mature antibody 8F9. Both antibodies target the AD-2S1 epitope of the gB envelope protein and are considered to establish similar interactions with the cognate antigen. We used molecular dynamics simulations to understand the effect of mutations on the antibody–antigen interactions. The results provide a qualitative explanation for the increased 8F9 peptide affinity compared with that of M2J1. The emerging atomistic-detailed description of these complexes reveals the molecular effects of the somatic hypermutations occurring during affinity maturation.
Affinity monolith chromatography: A review of principles and recent analytical applications
Pfaunmiller, Erika L.; Paulemond, Marie Laura; Dupper, Courtney M.; Hage, David S.
2012-01-01
Affinity monolith chromatography (AMC) is a type of liquid chromatography that uses a monolithic support and a biologically-related binding agent as a stationary phase. AMC is a powerful method for the selective separation, analysis or studies of specific target compounds in a sample. This review discusses the basic principles of AMC and recent developments or applications of this method, with particular emphasis being given to work that has appeared in the last five years. Various materials that have been used to prepare columns for AMC are examined, including organic monoliths, silica monoliths, agarose monoliths and cryogels. These supports have been used in AMC for formats that have ranged from traditional columns to disks, microcolumns and capillaries. Many binding agents have also been employed in AMC, such as antibodies, enzymes, proteins, lectins, immobilized metal-ions and dyes. Some applications that have been reported with these binding agents in AMC are bioaffinity chromatography, immunoaffinity chromatography or immunoextraction, immobilized metal-ion affinity chromatography, dye-ligand affinity chromatography, chiral separations and biointeraction studies. Examples are presented from fields that include analytical chemistry, pharmaceutical analysis, clinical testing and biotechnology. Current trends and possible future directions in AMC are also discussed. PMID:23187827
Kamakoti, Vikramshankar; Shanmugam, Nandhinee Radha; Tanak, Ambalika Sanjeev; Jagannath, Badrinath; Prasad, Shalini
2018-04-01
Molybdenum (Mo) has been investigated for implementation as an electrode material for affinity based biosensing towards devloping flexibe electronic biosensors. Treatment of the native oxide of molybdenum was investigated through two surface treatment strategies namely thiol and carbodiimide crosslinking methods. The binding interaction between cross-linker molecules and Mo electrode surface has been characterized using Fourier Transform Infrared Spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and optical microscopy. The efficacy of treatment of Mo with its native oxide using carbodiimide cross linking methodology was established. The carbodiimide cross-linking chemistry was found to possess better surface coverage and binding affinity with Molybdenum electrode surface when compared to thiol cross-linking chemistry.Electrochemical characterization of Mo electrode using Electrochemical Impedance Spectroscopy (EIS) and Cyclic Voltametry (CV) techniques was performed to evaluate the effect of ionic properties of solution buffer on the Mo electrode's performance. Affinity based biosensing of C-Reactive Protein (CRP) has been demonstrated on a flexible nanoporous polymeric substrate with detection threshold of 100 pg/ml in synthetic urine buffer medium. The biosensor has been evaluated to be developed as a dipstick based point of care device for detection of biomarkers in urine.
Pina, Ana Sofia; Carvalho, Sara; Dias, Ana Margarida G C; Guilherme, Márcia; Pereira, Alice S; Caraça, Luciana T; Coroadinha, Ana Sofia; Lowe, Christopher R; Roque, A Cecília A
2016-11-11
A common strategy for the production and purification of recombinant proteins is to fuse a tag to the protein terminal residues and employ a "tag-specific" ligand for fusion protein capture and purification. In this work, we explored the effect of two tryptophan-based tags, NWNWNW and WFWFWF, on the expression and purification of Green Fluorescence Protein (GFP) used as a model fusion protein. The titers obtained with the expression of these fusion proteins in soluble form were 0.11mgml -1 and 0.48mgml -1 for WFWFWF and NWNWNW, respectively. A combinatorial library comprising 64 ligands based on the Ugi reaction was prepared and screened for binding GFP-tagged and non-tagged proteins. Complementary ligands A2C2 and A3C1 were selected for the effective capture of NWNWNW and WFWFWF tagged proteins, respectively, in soluble forms. These affinity pairs displayed 10 6 M -1 affinity constants and Qmax values of 19.11±2.60ugg -1 and 79.39ugg -1 for the systems WFWFWF AND NWNWNW, respectively. GFP fused to the WFWFWF affinity tag was also produced as inclusion bodies, and a refolding-on column strategy was explored using the ligand A4C8, selected from the combinatorial library of ligands but in presence of denaturant agents. Copyright © 2016 Elsevier B.V. All rights reserved.
From Stein to Weinstein and back symplectic geometry of affine complex manifolds
Cieliebak, Kai
2013-01-01
A beautiful and comprehensive introduction to this important field. -Dusa McDuff, Barnard College, Columbia University This excellent book gives a detailed, clear, and wonderfully written treatment of the interplay between the world of Stein manifolds and the more topological and flexible world of Weinstein manifolds. Devoted to this subject with a long history, the book serves as a superb introduction to this area and also contains the authors' new results. -Tomasz Mrowka, MIT This book is devoted to the interplay between complex and symplectic geometry in affine complex manifolds. Affine co
Viricel, Clément; de Givry, Simon; Schiex, Thomas; Barbe, Sophie
2018-02-20
Accurate and economic methods to predict change in protein binding free energy upon mutation are imperative to accelerate the design of proteins for a wide range of applications. Free energy is defined by enthalpic and entropic contributions. Following the recent progresses of Artificial Intelligence-based algorithms for guaranteed NP-hard energy optimization and partition function computation, it becomes possible to quickly compute minimum energy conformations and to reliably estimate the entropic contribution of side-chains in the change of free energy of large protein interfaces. Using guaranteed Cost Function Network algorithms, Rosetta energy functions and Dunbrack's rotamer library, we developed and assessed EasyE and JayZ, two methods for binding affinity estimation that ignore or include conformational entropic contributions on a large benchmark of binding affinity experimental measures. If both approaches outperform most established tools, we observe that side-chain conformational entropy brings little or no improvement on most systems but becomes crucial in some rare cases. as open-source Python/C ++ code at sourcesup.renater.fr/projects/easy-jayz. thomas.schiex@inra.fr and sophie.barbe@insa-toulouse.fr. Supplementary data are available at Bioinformatics online.
NK1 receptor fused to beta-arrestin displays a single-component, high-affinity molecular phenotype.
Martini, Lene; Hastrup, Hanne; Holst, Birgitte; Fraile-Ramos, Alberto; Marsh, Mark; Schwartz, Thue W
2002-07-01
Arrestins are cytosolic proteins that, upon stimulation of seven transmembrane (7TM) receptors, terminate signaling by binding to the receptor, displacing the G protein and targeting the receptor to clathrin-coated pits. Fusion of beta-arrestin1 to the C-terminal end of the neurokinin NK1 receptor resulted in a chimeric protein that was expressed to some extent on the cell surface but also accumulated in transferrin-labeled recycling endosomes independently of agonist stimulation. As expected, the fusion protein was almost totally silenced with respect to agonist-induced signaling through the normal Gq/G11 and Gs pathways. The NK1-beta-arrestin1 fusion construct bound nonpeptide antagonists with increased affinity but surprisingly also bound two types of agonists, substance P and neurokinin A, with high, normal affinity. In the wild-type NK1 receptor, neurokinin A (NKA) competes for binding against substance P and especially against antagonists with up to 1000-fold lower apparent affinity than determined in functional assays and in homologous binding assays. When the NK1 receptor was closely fused to G proteins, this phenomenon was eliminated among agonists, but the agonists still competed with low affinity against antagonists. In contrast, in the NK1-beta-arrestin1 fusion protein, all ligands bound with similar affinity independent of the choice of radioligand and with Hill coefficients near unity. We conclude that the NK1 receptor in complex with arrestin is in a high-affinity, stable, agonist-binding form probably best suited to structural analysis and that the receptor can display binding properties that are nearly theoretically ideal when it is forced to complex with only a single intracellular protein partner.
Semi-continuous protein fractionating using affinity cross-flow filtration
Borneman, Zandrie; Zhang, W.; van den Boomgaard, Anthonie; Smolders, C.A.
2002-01-01
Protein purification by means of downstream processing is increasingly important. At the University of Twente a semi-continuous process is developed for the isolation of BSA out of crude protein mixtures. For this purpose an automated Affinity Cross-Flow Filtration, ACFF, process is developed. This
Affinity for a malignant tumor and organs at the elements in group VIII of the periodic table
International Nuclear Information System (INIS)
Ando, Atsushi; Hisada, Kinichi; Ando, Itsuko.
1975-01-01
In order to investigate the tumor affinity of the radioisotopes, iron(Fe-59), cobalt(Co-58), ruthenium(Ru-103), palladium(Pd-103), osmium(Os-185+191) and iridium(Ir-192), the elements of group VIII in the periodic table were examined, using rats which were subcutaneously transplanted with Yoshida sarcoma. Six preparations, 59 Fe-chloride, 58 Co-chloride, 103 Ru-chloride, 103 Pd-chloride, 185+191 Os-hexachlorosmic acid and 192 Ir-hexachloriridic acid were injected intravenously in to each group of tumor bearing rats. These rats were sacrificed at various periods after injection of each preparation: 3 hours, 24 hours and 48 hours in all preparations, except 59 Fe-chloride with 30 minutes, 3 hours, 24 hours and 48 hours. The radioactivities of the tumor, blood muscle, liver, kidney and spleen were measured by a well-type scintillation counter, and retention values (in every tissue including the tumor were calculated in percent of administered dose per g-tissue weight). 185+191 Os-hexachlorosmic acid had a considerably strong affinity for the malignant tumor. 59 Fe-chloride, 58 Co-chloride, 103 Ru-chloride, 103 Pd-chloride and 192 Ir-hexachloriridic acid did not have any affinity for the malignant tumor. However 59 Fe-chloride had a very strong affinity for blood corpuscles. 103 Pd-chloride had a fairly strong affinity for the kidney and liver, 58 Co-chloride had a fairly affinity for the liver, 103 Ru-chloride, 185+191 Os-hexachlorosmic acid and 192 Ir-hexachloriridic acid had a fairly strong affinity for the kidney. (Evans, J.)
International Nuclear Information System (INIS)
Fischer, C.F.
1990-01-01
Variational procedures for predicting energy differences of many-electron systems are investigated. Several different calculations for few-electron systems are considered that illustrate the problems encountered when a many-electron system is modeled as a core plus outer electrons. It is shown that sequences of increasingly more accurate calculations for outer correlation may converge yielding wrong transition energies. At the same time, accurate core-polarization calculations overestimate the binding energy, requiring a core-valence correction. For the high-spin, core-excited states of Li, it was found that outer correlation only predicted electron affinities as accurately as full-correlation studies. This observation suggested a prediction of the core-excited 4 P endash 4 S transition in Be - , based on observed 3 P 0 endash 3 P transition energies of the neutral species, predicted electron affinities including only outer correlation, and a core-valence correction, that is shown to be in good agreement with experiment. A similar calculation for Mg - predicts a wavelength of 2895.1 A for this transition
Bubble collisions and measures of the multiverse
Energy Technology Data Exchange (ETDEWEB)
Salem, Michael P., E-mail: salem@cosmos.phy.tufts.edu [Department of Physics, Stanford University, Stanford, CA 94305 (United States)
2012-01-01
To compute the spectrum of bubble collisions seen by an observer in an eternally-inflating multiverse, one must choose a measure over the diverging spacetime volume, including choosing an ''initial'' hypersurface below which there are no bubble nucleations. Previous calculations focused on the case where the initial hypersurface is pushed arbitrarily deep into the past. Interestingly, the observed spectrum depends on the orientation of the initial hypersurface, however one's ability observe the effect rapidly decreases with the ratio of inflationary Hubble rates inside and outside one's bubble. We investigate whether this conclusion might be avoided under more general circumstances, including placing the observer's bubble near the initial hypersurface. We find that it is not. As a point of reference, a substantial appendix reviews relevant aspects of the measure problem of eternal inflation.
DEFF Research Database (Denmark)
Hermit, Mette B; Greenwood, Jeremy R; Bräuner-Osborne, Hans
2004-01-01
The metabotropic glutamate receptors (mGluRs) are key modulators of excitatory neurotransmission in the central nervous system. The eight mGluR subtypes are seven trans-membrane-spanning proteins that possess a large extracellular amino-terminal domain in which the endogenous ligand binding pocket...... resides. In this study, we have identified four non-conserved amino acid residues that are essential for differentiating mGluR1 from mGluR4. Our approach has been to increase the affinity of the classic mGluR1 agonists, quisqualic acid and ibotenic acid, at mGluR4 by making various point mutations......, the mutations K74Y and K317R induced dramatic triple-order-of-magnitude increases in the affinity of ibotenic acid at mGluR4, making the affinity equivalent to that of mGluR1. Furthermore, the affinity of quisqualic acid at mGluR4 was increased to the same level as mGluR1 by the two double mutations, K74Y/K317R...
The high-affinity peptidoglycan binding domain of Pseudomonas phage endolysin KZ144
Energy Technology Data Exchange (ETDEWEB)
Briers, Yves [Division of Gene Technology, Department of Biosystems, Katholieke Universiteit Leuven, Kasteelpark Arenberg 21, B-3001 Leuven (Belgium); Schmelcher, Mathias; Loessner, Martin J. [Institute of Food Science and Nutrition, ETH Zuerich, Schmelzbergstrasse 7, CH-8092 Zuerich (Switzerland); Hendrix, Jelle; Engelborghs, Yves [Laboratory of Biomolecular Dynamics, Department of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200G, B-3001 Leuven (Belgium); Volckaert, Guido [Division of Gene Technology, Department of Biosystems, Katholieke Universiteit Leuven, Kasteelpark Arenberg 21, B-3001 Leuven (Belgium); Lavigne, Rob, E-mail: rob.lavigne@biw.kuleuven.be [Division of Gene Technology, Department of Biosystems, Katholieke Universiteit Leuven, Kasteelpark Arenberg 21, B-3001 Leuven (Belgium)
2009-05-29
The binding affinity of the N-terminal peptidoglycan binding domain of endolysin KZ144 (PBD{sub KZ}), originating from Pseudomonas aeruginosa bacteriophage {phi}KZ, has been examined using a fusion protein of PBD{sub KZ} and green fluorescent protein (PBD{sub KZ}-GFP). A fluorescence recovery after photobleaching analysis of bound PBD{sub KZ}-GFP molecules showed less than 10% fluorescence recovery in the bleached area within 15 min. Surface plasmon resonance analysis confirmed this apparent high binding affinity revealing an equilibrium affinity constant of 2.95 x 10{sup 7} M{sup -1} for the PBD{sub KZ}-peptidoglycan interaction. This unique domain, which binds to the peptidoglycan of all tested Gram-negative species, was harnessed to improve the specific activity of the peptidoglycan hydrolase domain KMV36C. The chimeric peptidoglycan hydrolase (PBD{sub KZ}-KMV36C) exhibits a threefold higher specific activity than the native catalytic domain (KMV36C). These results demonstrate that the modular assembly of functional domains is a rational approach to improve the specific activity of endolysins from phages infecting Gram-negatives.
Roughness of equipotential lines due to a self-affine boundary
International Nuclear Information System (INIS)
Assis, Thiago A de; Mota, Fernando de B; Miranda, Jose G V; Andrade, Roberto F S; Filho, Hugo de O Dias; Castilho, Caio M C de
2006-01-01
In this work, the characterization of the roughness of a set of equipotential lines l, due to a rough surface held at a nonzero voltage bias, is investigated. The roughness of the equipotential lines reflects the roughness of the profile, and causes a rapid variation in the electric field close to the surface. An ideal situation was considered, where a well known self-affine profile mimics the surface, while the equipotential lines are numerically evaluated using Liebmann's method. The use of an exact scale invariant profile helps to understand the dependency of the line roughness exponent α(l) on both the value of the potential (or on the average distance to the profile) and the profile's length. Results clearly support previous indications that: (a) for a system of fixed size, higher values of α characterize less corrugated lines far away from the profile; (b) for a fixed value of the potential, α decreases with the length of the profile towards the value of the boundary. This suggests that, for a system of infinite size, all equipotential lines share the same value of α
Production and Identification of High Affinity Monoclonal Antibodies Against Pesticide Carbofuran
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
To produce high-affinity monoclonal antibodies against pesticide carbofuran, and the develop immunochemical assays for people's health and environmental protection, the hapten 4-[[(2,3-dihydro-2,2-dimethyl-7-benzofuranyloxy) carbonyl]-amino]-butanoic acid (BFNB) of carbofuran was synthesized and Balb/c mice were immunized by the hapten-carrier (BFNB-bovine serum albumin, BFNB-BSA) conjugates. The splenocytes of immunized mice were fused with Sp2/0 cells and the cultural supernatants of hybridoma cells were screened by the indirect enzyme-linked immunoabsorbent assay (ELISA), based on BFNB-ovoalbumin conjugates (BFNB-OVA). Purified monoclonal antibody (McAb) was obtained from fluids of ascites, deposited by octanoic acid and ammonium sulfate. The affinity and the specificity of McAb were characterized by ELISA or indirect competitive ELISA. A hybridoma cell line (5D3) secreting anti-carbofuran McAb had been established. The titer of culture medium and ascites was up to 1:2.048 × 103 and 1:1.024 × 106, respectively, and the subtype of the McAb was IgG1. The affinity constant of the McAb was about 2.54 × 109 L mol-1, with an IC50 value of 1.18 ng mL-1 and a detection limit of 0.01 ng mL-1. Cross-reactivity studies showed that the McAb was quiet specific for carbofuran, as among the four analogous compounds, they were all hardly recognized (4.59 × 10-4% for 2,3-dihydro-2,2-dimethyl-7-benzofuranol and less than 3.0 × 10-4% for others). The prepared McAb had a very high affinity and specificity,and it could be used to develop ELISA for rapid determination of carbofuran.
Chitinolytic activity of the rumen ciliates Diploplastron affine
Czech Academy of Sciences Publication Activity Database
Belzecki, G.; Miltko, R.; Michalowski, T.; Šimůnek, Jiří; Kopečný, Jan
2008-01-01
Roč. 53, č. 3 (2008), s. 201-203 ISSN 0015-5632 R&D Projects: GA ČR GA525/05/2584 Grant - others:Ministry of Scientific Research and Information Technology Poland(PL) 2 P06Z 052 30 Institutional research plan: CEZ:AV0Z50450515 Keywords : Diploplastron affine Subject RIV: EE - Microbiology, Virology Impact factor: 1.172, year: 2008
Anselmetti, Dario; Bartels, Frank Wilco; Becker, Anke; Decker, Björn; Eckel, Rainer; McIntosh, Matthew; Mattay, Jochen; Plattner, Patrik; Ros, Robert; Schäfer, Christian; Sewald, Norbert
2008-02-19
Tunable and switchable interaction between molecules is a key for regulation and control of cellular processes. The translation of the underlying physicochemical principles to synthetic and switchable functional entities and molecules that can mimic the corresponding molecular functions is called reverse molecular engineering. We quantitatively investigated autoinducer-regulated DNA-protein interaction in bacterial gene regulation processes with single atomic force microscopy (AFM) molecule force spectroscopy in vitro, and developed an artificial bistable molecular host-guest system that can be controlled and regulated by external signals (UV light exposure and thermal energy). The intermolecular binding functionality (affinity) and its reproducible and reversible switching has been proven by AFM force spectroscopy at the single-molecule level. This affinity-tunable optomechanical switch will allow novel applications with respect to molecular manipulation, nanoscale rewritable molecular memories, and/or artificial ion channels, which will serve for the controlled transport and release of ions and neutral compounds in the future.
A rhodium(III) complex for high-affinity DNA base-pair mismatch recognition
Junicke, Henrik; Hart, Jonathan R.; Kisko, Jennifer; Glebov, Oleg; Kirsch, Ilan R.; Barton, Jacqueline K.
2003-01-01
A rhodium(III) complex, rac-[Rh(bpy)2phzi]3+ (bpy, 2,2′-bipyridine; phzi, benzo[a]phenazine-5,6-quinone diimine) has been designed as a sterically demanding intercalator targeted to destabilized mismatched sites in double-helical DNA. The complex is readily synthesized by condensation of the phenazine quinone with the corresponding diammine complex. Upon photoactivation, the complex promotes direct strand scission at single-base mismatch sites within the DNA duplex. As with the parent mismatch-specific reagent, [Rh(bpy)2(chrysi)]3+ [chrysene-5,6-quinone diimine (chrysi)], mismatch selectivity depends on the helix destabilization associated with mispairing. Unlike the parent chrysi complex, the phzi analogue binds and cleaves with high affinity and efficiency. The specific binding constants for CA, CC, and CT mismatches within a 31-mer oligonucleotide duplex are 0.3, 1, and 6 × 107 M−1, respectively; site-specific photocleavage is evident at nanomolar concentrations. Moreover, the specificity, defined as the ratio in binding affinities for mispaired vs. well paired sites, is maintained. The increase in affinity is attributed to greater stability in the mismatched site associated with stacking by the heterocyclic aromatic ligand. The high-affinity complex is also applied in the differential cleavage of DNA obtained from cell lines deficient in mismatch repair vs. those proficient in mismatch repair. Agreement is found between photocleavage by the mismatch-specific probes and deficiency in mismatch repair. This mismatch-specific targeting, therefore, offers a potential strategy for new chemotherapeutic design. PMID:12610209
The S-Matrix coupling dependence for a, d and e affine Toda field theory
International Nuclear Information System (INIS)
Braden, H.W.; Sasaki, R.
1990-09-01
Affine Toda field theories are solvable 1+1 dimensional quantum field theories closely related to integrable deformations of conformal field theory. The S-Matrix elements for an affine Toda field theory are known to depend on the coupling constant β through one universal function B(β) which cannot be determined by unitarity, crossing and the bootstrap. From the requirement of nonexistence of extra poles in the physical region its form is conjectured to be B(β) = (2π) -1 ·β 2 /((1+β 2 )/4π). We show that the above conjecture is correct up to one loop order (i.e., β 4 ) of perturbation for simply laced, i.e., a, d and e affine Toda field theories using a general argument which exhibits much of the richness of these theories. (author)
Reconfigurability of Piecewise Affine Systems Against Actuator Faults
DEFF Research Database (Denmark)
Tabatabaeipour, Seyed Mojtaba; Gholami, Mehdi; Bak, Thomas
2011-01-01
In this paper, we consider the problem of recongurability of peicewise ane (PWA) systems. Actuator faults are considered. A system subject to a fault is considered as recongurable if it can be stabilized by a state feedback controller and the optimal cost of the performance of the systems...
Interest Rates with Long Memory: A Generalized Affine Term-Structure Model
DEFF Research Database (Denmark)
Osterrieder, Daniela
.S. government bonds, we model the time series of the state vector by means of a co-fractional vector autoregressive model. The implication is that yields of all maturities exhibit nonstationary, yet mean-reverting, long-memory behavior of the order d ≈ 0.87. The long-run dynamics of the state vector are driven......We propose a model for the term structure of interest rates that is a generalization of the discrete-time, Gaussian, affine yield-curve model. Compared to standard affine models, our model allows for general linear dynamics in the vector of state variables. In an application to real yields of U...... forecasts that outperform several benchmark models, especially at long forecasting horizons....
International Nuclear Information System (INIS)
Shang Hao; Kirkham, Perry M.; Myers, Tina M.; Cassell, Gail H.; Lee, Gil U.
2005-01-01
A new method has been developed for measuring the binding affinity of phage displayed peptides and a target protein using magnetic particles. The specific interaction between the phage displayed peptides and the target protein was subject to a force generated by the magnetic particle. The binding affinity was obtained by analyzing the force-bond lifetime
Benson, Mark L.; Faver, John C.; Ucisik, Melek N.; Dashti, Danial S.; Zheng, Zheng; Merz, Kenneth M.
2012-05-01
Two families of binding affinity estimation methodologies are described which were utilized in the SAMPL3 trypsin/fragment binding affinity challenge. The first is a free energy decomposition scheme based on a thermodynamic cycle, which included separate contributions from enthalpy and entropy of binding as well as a solvent contribution. Enthalpic contributions were estimated with PM6-DH2 semiempirical quantum mechanical interaction energies, which were modified with a statistical error correction procedure. Entropic contributions were estimated with the rigid-rotor harmonic approximation, and solvent contributions to the free energy were estimated with several different methods. The second general methodology is the empirical score LISA, which contains several physics-based terms trained with the large PDBBind database of protein/ligand complexes. Here we also introduce LISA+, an updated version of LISA which, prior to scoring, classifies systems into one of four classes based on a ligand's hydrophobicity and molecular weight. Each version of the two methodologies (a total of 11 methods) was trained against a compiled set of known trypsin binders available in the Protein Data Bank to yield scaling parameters for linear regression models. Both raw and scaled scores were submitted to SAMPL3. Variants of LISA showed relatively low absolute errors but also low correlation with experiment, while the free energy decomposition methods had modest success when scaling factors were included. Nonetheless, re-scaled LISA yielded the best predictions in the challenge in terms of RMS error, and six of these models placed in the top ten best predictions by RMS error. This work highlights some of the difficulties of predicting binding affinities of small molecular fragments to protein receptors as well as the benefit of using training data.