WorldWideScience

Sample records for affects zebrafish development

  1. Large-scale mapping of mutations affecting zebrafish development

    Directory of Open Access Journals (Sweden)

    Neuhauss Stephan C

    2007-01-01

    Full Text Available Abstract Background Large-scale mutagenesis screens in the zebrafish employing the mutagen ENU have isolated several hundred mutant loci that represent putative developmental control genes. In order to realize the potential of such screens, systematic genetic mapping of the mutations is necessary. Here we report on a large-scale effort to map the mutations generated in mutagenesis screening at the Max Planck Institute for Developmental Biology by genome scanning with microsatellite markers. Results We have selected a set of microsatellite markers and developed methods and scoring criteria suitable for efficient, high-throughput genome scanning. We have used these methods to successfully obtain a rough map position for 319 mutant loci from the Tübingen I mutagenesis screen and subsequent screening of the mutant collection. For 277 of these the corresponding gene is not yet identified. Mapping was successful for 80 % of the tested loci. By comparing 21 mutation and gene positions of cloned mutations we have validated the correctness of our linkage group assignments and estimated the standard error of our map positions to be approximately 6 cM. Conclusion By obtaining rough map positions for over 300 zebrafish loci with developmental phenotypes, we have generated a dataset that will be useful not only for cloning of the affected genes, but also to suggest allelism of mutations with similar phenotypes that will be identified in future screens. Furthermore this work validates the usefulness of our methodology for rapid, systematic and inexpensive microsatellite mapping of zebrafish mutations.

  2. Whole transcriptome data analysis of zebrafish mutants affecting muscle development.

    Science.gov (United States)

    Armant, Olivier; Gourain, Victor; Etard, Christelle; Strähle, Uwe

    2016-09-01

    Formation of the contractile myofibril of the skeletal muscle is a complex process which when perturbed leads to muscular dystrophy. Herein, we provide a mRNAseq dataset on three different zebrafish mutants affecting muscle organization during embryogenesis. These comprise the myosin folding chaperone unc45b (unc45b-/-), heat shock protein 90aa1.1 (hsp90aa1.1-/-) and the acetylcholine esterase (ache-/-) gene. The transcriptome analysis was performed in duplicate experiments at 72 h post-fertilization (hpf) for all three mutants, with two additional times of development (24 hpf and 48 hpf) for unc45b-/-. A total of 20 samples were analyzed by hierarchical clustering for differential gene expression. The data from this study support the observation made in Etard et al. (2015) [1] (http://dx.doi.org/10.1186/s13059-015-0825-8) that a failure to fold myosin activates a unique transcriptional program in the skeletal muscles that is different from that induced in stressed muscle cells. PMID:27274534

  3. The phytoestrogen genistein affects zebrafish development through two different pathways.

    Directory of Open Access Journals (Sweden)

    Sana Sassi-Messai

    Full Text Available BACKGROUND: Endocrine disrupting chemicals are widely distributed in the environment and derive from many different human activities or can also be natural products synthesized by plants or microorganisms. The phytoestrogen, genistein (4', 5, 7-trihydroxy-isoflavone, is a naturally occurring compound found in soy products. Genistein has been the subject of numerous studies because of its known estrogenic activity. METHODOLOGY/PRINCIPAL FINDINGS: We report that genistein exposure of zebrafish embryos induces apoptosis, mainly in the hindbrain and the anterior spinal cord. Timing experiments demonstrate that apoptosis is induced during a precise developmental window. Since adding ICI 182,780, an ER antagonist, does not rescue the genistein-induced apoptosis and since there is no synergistic effect between genistein and estradiol, we conclude that this apoptotic effect elicited by genistein is estrogen-receptors independent. However, we show in vitro, that genistein binds and activates the three zebrafish estrogen receptors ERalpha, ERbeta-A and ERbeta-B. Furthermore using transgenic ERE-Luciferase fish we show that genistein is able to activate the estrogen pathway in vivo during larval stages. Finally we show that genistein is able to induce ectopic expression of the aromatase-B gene in an ER-dependent manner in the anterior brain in pattern highly similar to the one resulting from estrogen treatment at low concentration. CONCLUSION/SIGNIFICANCE: TAKEN TOGETHER THESE RESULTS INDICATE THAT GENISTEIN ACTS THROUGH AT LEAST TWO DIFFERENT PATHWAYS IN ZEBRAFISH EMBRYOS: (i it induces apoptosis in an ER-independent manner and (ii it regulates aromatase-B expression in the brain in an ER-dependent manner. Our results thus highlight the multiplicity of possible actions of phytoestrogens, such as genistein. This suggests that the use of standardized endpoints to study the effect of a given compound, even when this compound has well known targets, may carry

  4. Induced autoimmunity against gonadal proteins affects gonadal development in juvenile zebrafish.

    Directory of Open Access Journals (Sweden)

    Christopher Presslauer

    Full Text Available A method to mitigate or possibly eliminate reproduction in farmed fish is highly demanded. The existing approaches have certain applicative limitations. So far, no immunization strategies affecting gonadal development in juvenile animals have been developed. We hypothesized that autoimmune mechanisms, occurring spontaneously in a number of diseases, could be induced by targeted immunization. We have asked whether the immunization against specific targets in a juvenile zebrafish gonad will produce an autoimmune response, and, consequently, disturbance in gonadal development. Gonadal soma-derived factor (Gsdf, growth differentiation factor (Gdf9, and lymphocyte antigen 75 (Cd205/Ly75, all essential for early gonad development, were targeted with 5 immunization tests. Zebrafish (n = 329 were injected at 6 weeks post fertilization, a booster injection was applied 15 days later, and fish were sampled at 30 days. We localized transcripts encoding targeted proteins by in situ hybridization, quantified expression of immune-, apoptosis-, and gonad-related genes with quantitative real-time PCR, and performed gonadal histology and whole-mount immunohistochemistry for Bcl2-interacting-killer (Bik pro-apoptotic protein. The treatments resulted in an autoimmune reaction, gonad developmental retardation, intensive apoptosis, cell atresia, and disturbed transcript production. Testes were remarkably underdeveloped after anti-Gsdf treatments. Anti-Gdf9 treatments promoted apoptosis in testes and abnormal development of ovaries. Anti-Cd205 treatment stimulated a strong immune response in both sexes, resulting in oocyte atresia and strong apoptosis in supporting somatic cells. The effect of immunization was FSH-independent. Furthermore, immunization against germ cell proteins disturbed somatic supporting cell development. This is the first report to demonstrate that targeted autoimmunity can disturb gonadal development in a juvenile fish. It shows a

  5. Deiodinase knockdown affects zebrafish eye development at the level of gene expression, morphology and function.

    Science.gov (United States)

    Houbrechts, Anne M; Vergauwen, Lucia; Bagci, Enise; Van Houcke, Jolien; Heijlen, Marjolein; Kulemeka, Bernard; Hyde, David R; Knapen, Dries; Darras, Veerle M

    2016-03-15

    Retinal development in vertebrates relies extensively on thyroid hormones. Their local availability is tightly controlled by several regulators, including deiodinases (Ds). Here we used morpholino technology to explore the roles of Ds during eye development in zebrafish. Transcriptome analysis at 3 days post fertilization (dpf) revealed a pronounced effect of knockdown of both T4-activating Ds (D1D2MO) or knockdown of T3-inactivating D3 (D3bMO) on phototransduction and retinoid recycling. This was accompanied by morphological defects (studied from 1 to 7 dpf) including reduced eye size, disturbed retinal lamination and strong reduction in rods and all four cone types. Defects were more prominent and persistent in D3-deficient fish. Finally, D3-deficient zebrafish larvae had disrupted visual function at 4 dpf and were less sensitive to a light stimulus at 5 dpf. These data demonstrate the importance of TH-activating and -inactivating Ds for correct zebrafish eye development, and point to D3b as a central player. PMID:26802877

  6. Deiodinase knockdown during early zebrafish development affects growth, development, energy metabolism, motility and phototransduction.

    Directory of Open Access Journals (Sweden)

    Enise Bagci

    Full Text Available Thyroid hormone (TH balance is essential for vertebrate development. Deiodinase type 1 (D1 and type 2 (D2 increase and deiodinase type 3 (D3 decreases local intracellular levels of T3, the most important active TH. The role of deiodinase-mediated TH effects in early vertebrate development is only partially understood. Therefore, we investigated the role of deiodinases during early development of zebrafish until 96 hours post fertilization at the level of the transcriptome (microarray, biochemistry, morphology and physiology using morpholino (MO knockdown. Knockdown of D1+D2 (D1D2MO and knockdown of D3 (D3MO both resulted in transcriptional regulation of energy metabolism and (muscle development in abdomen and tail, together with reduced growth, impaired swim bladder inflation, reduced protein content and reduced motility. The reduced growth and impaired swim bladder inflation in D1D2MO could be due to lower levels of T3 which is known to drive growth and development. The pronounced upregulation of a large number of transcripts coding for key proteins in ATP-producing pathways in D1D2MO could reflect a compensatory response to a decreased metabolic rate, also typically linked to hypothyroidism. Compared to D1D2MO, the effects were more pronounced or more frequent in D3MO, in which hyperthyroidism is expected. More specifically, increased heart rate, delayed hatching and increased carbohydrate content were observed only in D3MO. An increase of the metabolic rate, a decrease of the metabolic efficiency and a stimulation of gluconeogenesis using amino acids as substrates may have been involved in the observed reduced protein content, growth and motility in D3MO larvae. Furthermore, expression of transcripts involved in purine metabolism coupled to vision was decreased in both knockdown conditions, suggesting that both may impair vision. This study provides new insights, not only into the role of deiodinases, but also into the importance of a correct

  7. Polybrominated diphenyl ethers affect the reproduction and development, and alter the sex ratio of zebrafish (Danio rerio)

    International Nuclear Information System (INIS)

    Polybrominated diphenyl ethers (PBDEs) have been commonly used as flame retardants and now become ubiquitous in the global environment. Using zebrafish as a model, we tested the hypothesis that PBDEs may affect the reproduction and development of fish. Zebrafish were exposed to environmentally relevant concentrations of DE-71 (a congener of PBDE commonly found in the environment) throughout their whole life cycle, and the effects of DE-71 on gonadal development, gamete quality, fertilization success, hatching success, embryonic development and sex ratio were investigated. Despite gonadal development was enhanced, reductions in spawning, fertilization success, hatching success and larval survival rate were evident, while significant increases in malformation and percentage of male were also observed in the F1 generation. Our laboratory results suggest that PBDEs may pose a risk to reproductive success and alter the sex ratio of fish in environments highly contaminated with PBDEs. -- Highlights: •Zebrafish were exposed to PBDE from eggs to adults. •An increase in Gonadal-Somatic Index and enhanced gonadal development was enhanced. •Fertilization and hatching successes were reduced, while malformation was increased. •PBDE alters sex differentiation, leading to a male biased F1 population. •Environmental relevant concentrations of PBDE threaten natural fish populations. -- PBDE reduces fertilization and hatching successes, causes malformation and leads to a male biased F1 generation in fish

  8. Swimming Effects on Developing Zebrafish

    NARCIS (Netherlands)

    Kranenbarg, S.; Pelster, B.

    2013-01-01

    Zebrafish represent an important vertebrate model species in developmental biology. This chapter reviews the effects of exercise on the development of the musculoskeletal system, the cardiovascular system, metabolic capacities of developing zebrafish, and regulation of these processes on the gene ex

  9. Embryonic Development: Chicken and Zebrafish

    Directory of Open Access Journals (Sweden)

    Veerle M. Darras

    2011-01-01

    Full Text Available Chicken and zebrafish are two model species regularly used to study the role of thyroid hormones in vertebrate development. Similar to mammals, chickens have one thyroid hormone receptor α (TRα and one TRβ gene, giving rise to three TR isoforms: TRα, TRβ2, and TRβ0, the latter with a very short amino-terminal domain. Zebrafish also have one TRβ gene, providing two TRβ1 variants. The zebrafish TRα gene has been duplicated, and at least three TRα isoforms are expressed: TRαA1-2 and TRαB are very similar, while TRαA1 has a longer carboxy-terminal ligand-binding domain. All these TR isoforms appear to be functional, ligand-binding receptors. As in other vertebrates, the different chicken and zebrafish TR isoforms have a divergent spatiotemporal expression pattern, suggesting that they also have distinct functions. Several isoforms are expressed from the very first stages of embryonic development and early chicken and zebrafish embryos respond to thyroid hormone treatment with changes in gene expression. Future studies in knockdown and mutant animals should allow us to link the different TR isoforms to specific processes in embryonic development.

  10. Myelopoiesis during Zebrafish Early Development

    Institute of Scientific and Technical Information of China (English)

    Jin Xu; Linsen Du; Zilong Wen

    2012-01-01

    Myelopoiesis is the process of producing all types of myeloid cells including monocytes/macrophages and granulocytes.Myeloid cells are known to manifest a wide spectrum of activities such as immune surveillance and tissue remodeling.Irregularities in myeloid cell development and their function are known to associate with the onset and the progression of a variety of human disorders such as leukemia.In the past decades,extensive studies have been carried out in various model organisms to elucidate the molecular mechanisms underlying myelopoiesis with the hope that these efforts will yield knowledge translatable into therapies for related diseases.Zebrafish has recently emerged as a prominent animal model for studying myelopoiesis,especially during early embryogenesis,largely owing to its unique properties such as transparent embryonic body and external development.This review introduces the methodologies used in zebrafish research and focuses on the recent research progresses of zebrafish myelopoiesis.

  11. Development of social behavior in young zebrafish

    OpenAIRE

    Elena eDreosti; Gonçalo eLopes; Adam Raymond Kampff; Wilson, Stephen W.

    2015-01-01

    Adult zebrafish are robustly social animals whereas larva is not. We designed an assay to determine at what stage of development zebrafish begin to interact with and prefer other fish. One week old zebrafish do not show significant social preference whereas most 3 weeks old zebrafish strongly prefer to remain in a compartment where they can view conspecifics. However, for some individuals, the presence of conspecifics drives avoidance instead of attraction. Social preference is dependent on v...

  12. Development of social behaviour in young zebrafish

    OpenAIRE

    Dreosti, E.; Lopes, G.; Kampff, A. R.; Wilson, S W

    2015-01-01

    Adult zebrafish are robustly social animals whereas larva is not. We designed an assay to determine at what stage of development zebrafish begin to interact with and prefer other fish. One week old zebrafish do not show significant social preference whereas most 3 weeks old zebrafish strongly prefer to remain in a compartment where they can view conspecifics. However, for some individuals, the presence of conspecifics drives avoidance instead of attraction. Social preference is dependent on v...

  13. Endocrine pancreas development in zebrafish.

    Science.gov (United States)

    Tehrani, Zahra; Lin, Shuo

    2011-10-15

    Type 1 diabetes results from the autoimmune destruction of insulin-producing pancreatic β cells. Current efforts to cure diabetes are aimed at replenishing damaged cells by generating a new supply of β cells in vitro. The most promising strategy for achieving this goal is to differentiate embryonic stem (ES) cells by sequentially exposing them to signaling molecules that they would normally encounter in vivo. This approach requires a thorough understanding of the temporal sequence of the signaling events underlying pancreatic β-cell induction during embryonic development. The zebrafish system has emerged as a powerful tool in the study of pancreas development. In this review, we provide a temporal summary of pancreas development in zebrafish with a special focus on the formation of pancreatic β cells.

  14. Phenylthiourea disrupts thyroid function in developing zebrafish.

    Science.gov (United States)

    Elsalini, Osama A; Rohr, Klaus B

    2003-01-01

    Thyroid hormone (T4) can be detected in thyroid follicles in wild-type zebrafish larvae from 3 days of development, when the thyroid has differentiated. In contrast, embryos or larvae treated with goitrogens (substances such as methimazole, potassium percholorate, and 6-n-propyl-2-thiouracil) are devoid of thyroid hormone immunoreactivity. Phenythiourea (PTurea; also commonly known as PTU) is widely used in zebrafish research to suppress pigmentation in developing embryos/fry. PTurea contains a thiocarbamide group that is responsible for goitrogenic activity in methimazole and 6-n-propyl-2-thiouracil. In the present study, we show that commonly used doses of 0.003% PTurea abolish T4 immunoreactivity of the thyroid follicles of zebrafish larvae. As development of the thyroid gland is not affected, these data suggest that PTurea blocks thyroid hormone production. Like other goitrogens, PTurea causes delayed hatching, retardation and malformation of embryos or larvae with increasing doses. At doses of 0.003% PTurea, however, toxic side effects seem to be at a minimum, and the maternal contribution of the hormone might compensate for compromised thyroid function during the first days of development.

  15. Development of social behaviour in young zebrafish

    Directory of Open Access Journals (Sweden)

    Elena eDreosti

    2015-08-01

    Full Text Available Adult zebrafish are robustly social animals whereas larvae are not. We designed an assay to determine at what stage of development zebrafish begin to interact with and prefer other fish. One week old zebrafish show no social preference whereas most three week old zebrafish strongly prefer to remain in a compartment where they can view conspecifics. However, for some individuals, the presence of conspecifics drives avoidance instead of attraction. Social preference is dependent on vision and requires viewing fish of a similar age/size. In addition, over the same one to three week period larval zebrafish increasingly tend to coordinate their movements, a simple form of social interaction. Finally, social preference and coupled interactions are differentially modified by an NMDAR antagonist and acute exposure to ethanol, both of which are known to alter social behaviour in adult zebrafish.

  16. Acute caffeine administration affects zebrafish response to a robotic stimulus.

    Science.gov (United States)

    Ladu, Fabrizio; Mwaffo, Violet; Li, Jasmine; Macrì, Simone; Porfiri, Maurizio

    2015-08-01

    Zebrafish has been recently proposed as a valid animal model to investigate the fundamental mechanisms regulating emotional behavior and evaluate the modulatory effects exerted by psychoactive compounds. In this study, we propose a novel methodological framework based on robotics and information theory to investigate the behavioral response of zebrafish exposed to acute caffeine treatment. In a binary preference test, we studied the response of caffeine-treated zebrafish to a replica of a shoal of conspecifics moving in the tank. A purely data-driven information theoretic approach was used to infer the influence of the replica on zebrafish behavior as a function of caffeine concentration. Our results demonstrate that acute caffeine administration modulates both the average speed and the interaction with the replica. Specifically, zebrafish exposed to elevated doses of caffeine show reduced locomotion and increased sensitivity to the motion of the replica. The methodology developed in this study may complement traditional experimental paradigms developed in the field of behavioral pharmacology.

  17. Knock-down of pantothenate kinase 2 severely affects the development of the nervous and vascular system in zebrafish, providing new insights into PKAN disease

    OpenAIRE

    Zizioli, Daniela; Tiso, Natascia; Guglielmi, Adele; Saraceno, Claudia; Busolin, Giorgia; Giuliani, Roberta; Khatri, Deepak; Monti, Eugenio; Borsani, Giuseppe; Argenton, Francesco; Finazzi, Dario

    2016-01-01

    Pantothenate Kinase Associated Neurodegeneration (PKAN) is an autosomal recessive disorder with mutations in the pantothenate kinase 2 gene (PANK2), encoding an essential enzyme for Coenzyme A (CoA) biosynthesis. The molecular connection between defects in this enzyme and the neurodegenerative phenotype observed in PKAN patients is still poorly understood. We exploited the zebrafish model to study the role played by the pank2 gene during embryonic development and get new insight into PKAN pat...

  18. Mapping the development of cerebellar Purkinje cells in zebrafish.

    Science.gov (United States)

    Hamling, Kyla R; Tobias, Zachary J C; Weissman, Tamily A

    2015-11-01

    The cells that comprise the cerebellum perform a complex integration of neural inputs to influence motor control and coordination. The functioning of this circuit depends upon Purkinje cells and other cerebellar neurons forming in the precise place and time during development. Zebrafish provide a useful platform for modeling disease and studying gene function, thus a quantitative metric of normal zebrafish cerebellar development is key for understanding how gene mutations affect the cerebellum. To begin to quantitatively measure cerebellar development in zebrafish, we have characterized the spatial and temporal patterning of Purkinje cells during the first 2 weeks of development. Differentiated Purkinje cells first emerged by 2.8 days post fertilization and were spatially patterned into separate dorsomedial and ventrolateral clusters that merged at around 4 days. Quantification of the Purkinje cell layer revealed that there was a logarithmic increase in both Purkinje cell number as well as overall volume during the first 2 weeks, while the entire region curved forward in an anterior, then ventral direction. Purkinje cell dendrites were positioned next to parallel fibers as early as 3.3 days, and Purkinje cell diameter decreased significantly from 3.3 to 14 days, possibly due to cytoplasmic reappropriation into maturing dendritic arbors. A nearest neighbor analysis showed that Purkinje cells moved slightly apart from each other from 3 to 14 days, perhaps spreading as the organized monolayer forms. This study establishes a quantitative spatiotemporal map of Purkinje cell development in zebrafish that provides an important metric for studies of cerebellar development and disease.

  19. The synthetic progestin megestrol acetate adversely affects zebrafish reproduction.

    Science.gov (United States)

    Han, Jian; Wang, Qiangwei; Wang, Xianfeng; Li, Yonggang; Wen, Sheng; Liu, Shan; Ying, Guangguo; Guo, Yongyong; Zhou, Bingsheng

    2014-05-01

    Synthetic progestins contaminate the aquatic ecosystem, and may cause adverse health effects on aquatic organisms. Megestrol acetate (MTA) is present in the aquatic environment, but its possible effects on fish reproduction are unknown. In the present study, we investigated the endocrine disruption and impact of MTA on fish reproduction. After a pre-exposure period of 14 days, reproductively mature zebrafish (Danio rerio) (F0) were exposed to MTA at environmental concentrations (33, 100, 333, and 666 ng/L) for 21 days. Egg production was decreased in F0 fish exposed to MTA, with a significant decrease at 666 ng/L. The exposure significantly decreased the circulating concentrations of estradiol (E2) and testosterone (T) in female fish or 11-keto testosterone (11-KT) in male fish. MTA exposure significantly downregulated the transcription of certain genes along the hypothalamic-pituitary-gonadal (HPG) axis. MTA did not affect early embryonic development or hatching success in the F1 generation. The present study showed that MTA is a potent endocrine disruptor in fish, and short-term exposure to MTA could significantly affect reproduction in fish and negatively impact the fish population. PMID:24647012

  20. Knock-down of pantothenate kinase 2 severely affects the development of the nervous and vascular system in zebrafish, providing new insights into PKAN disease.

    Science.gov (United States)

    Zizioli, Daniela; Tiso, Natascia; Guglielmi, Adele; Saraceno, Claudia; Busolin, Giorgia; Giuliani, Roberta; Khatri, Deepak; Monti, Eugenio; Borsani, Giuseppe; Argenton, Francesco; Finazzi, Dario

    2016-01-01

    Pantothenate Kinase Associated Neurodegeneration (PKAN) is an autosomal recessive disorder with mutations in the pantothenate kinase 2 gene (PANK2), encoding an essential enzyme for Coenzyme A (CoA) biosynthesis. The molecular connection between defects in this enzyme and the neurodegenerative phenotype observed in PKAN patients is still poorly understood. We exploited the zebrafish model to study the role played by the pank2 gene during embryonic development and get new insight into PKAN pathogenesis. The zebrafish orthologue of hPANK2 lies on chromosome 13, is a maternal gene expressed in all development stages and, in adult animals, is highly abundant in CNS, dorsal aorta and caudal vein. The injection of a splice-inhibiting morpholino induced a clear phenotype with perturbed brain morphology and hydrocephalus; edema was present in the heart region and caudal plexus, where hemorrhages with reduction of blood circulation velocity were detected. We characterized the CNS phenotype by studying the expression pattern of wnt1 and neurog1 neural markers and by use of the Tg(neurod:EGFP/sox10:dsRed) transgenic line. The results evidenced that downregulation of pank2 severely impairs neuronal development, particularly in the anterior part of CNS (telencephalon). Whole-mount in situ hybridization analysis of the endothelial markers cadherin-5 and fli1a, and use of Tg(fli1a:EGFP/gata1a:dsRed) transgenic line, confirmed the essential role of pank2 in the formation of the vascular system. The specificity of the morpholino-induced phenotype was proved by the restoration of a normal development in a high percentage of embryos co-injected with pank2 mRNA. Also, addition of pantethine or CoA, but not of vitamin B5, to pank2 morpholino-injected embryos rescued the phenotype with high efficiency. The zebrafish model indicates the relevance of pank2 activity and CoA homeostasis for normal neuronal development and functioning and provides evidence of an unsuspected role for this

  1. Active microrheology of fluids inside developing zebrafish

    Science.gov (United States)

    Taormina, Mike; Parthasarathy, Raghuveer

    2014-03-01

    Biological fluids are a source of diverse and interesting behavior for the soft matter physicist. Since their mechanical properties must be tuned to fulfill functional roles important to the development and health of living things, they often display complex behavior on length and time scales spanning many orders of magnitude. For microbes colonizing an animal host, for example, the mechanical properties of the host environment are of great importance, affecting mobility and hence the ability to establish a stable population. Indeed, some species possess the ability to affect the fluidity of their environment, both directly by chemically modifying it, and indirectly by influencing the host cells' secretion of mucus. Driving magnetically doped micron-scale probes which have been orally micro-gavaged into the intestinal bulb of a larval zebrafish allows the rheology of the mucosal layer within the fish to be measured over three decades of frequency, complementing ecological data on microbial colonization with physical information about the gut environment. Here, we describe the technique, provide the first measurement of mucosal viscosity in a developing animal, and explore the technique's applicability to other small-volume or spatially inhomogeneous fluid samples.

  2. Thyroid development in zebrafish lacking Taz.

    Science.gov (United States)

    Pappalardo, Andrea; Porreca, Immacolata; Caputi, Luigi; De Felice, Elena; Schulte-Merker, Stephan; Zannini, Mariastella; Sordino, Paolo

    2015-11-01

    Taz is a signal-responsive transcriptional coregulator implicated in several biological functions, from chondrogenesis to regulation of organ size. Less well studied, however, is its role in thyroid formation. Here, we explored the in vivo effects on thyroid development of morpholino (MO)-mediated knockdown of wwtr1, the gene encoding zebrafish Taz. The wwtr1 gene is expressed in the thyroid primordium and pharyngeal tissue of developing zebrafish. Compared to mammalian cells, in which Taz promotes expression of thyroid transcription factors and thyroid differentiation genes, wwtr1 MO injection in zebrafish had little or no effect on the expression of thyroid transcription factors, and differentially altered the expression of thyroid differentiation genes. Analysis of wwtr1 morphants at later stages of development revealed that the number and the lumen of thyroid follicles, and the number of thyroid follicle cells, were significantly smaller. In addition, Taz-depleted larvae displayed patterning defects in ventral cranial vessels that correlate with lateral displacement of thyroid follicles. These findings indicate that the zebrafish Taz protein is needed for the normal differentiation of the thyroid and are the first to suggest that Taz confers growth advantage to the endocrine gland.

  3. Early embryogenesis in zebrafish is affected by bisphenol A exposure

    Directory of Open Access Journals (Sweden)

    William K. F. Tse

    2013-03-01

    Exposure of a developing embryo or fetus to endocrine disrupting chemicals (EDCs has been hypothesized to increase the propensity of an individual to develop a disease or dysfunction in his/her later life. Although it is important to understand the effects of EDCs on early development in animals, sufficient information about these effects is not available thus far. This is probably because of the technical difficulties in tracing the continuous developmental changes at different stages of mammalian embryos. The zebrafish, an excellent model currently used in developmental biology, provides new insights to the field of toxicological studies. We used the standard whole-mount in situ hybridization screening protocol to determine the early developmental defects in zebrafish embryos exposed to the ubiquitous pollutant, bisphenol A (BPA. Three stages (60–75% epiboly, 8–10 somite, and prim-5 were selected for in situ screening of different molecular markers, whereas BPA exposure altered early dorsoventral (DV patterning, segmentation, and brain development in zebrafish embryos within 24 hours of exposure.

  4. THYROID GLAND DEVELOPMENT AND FUNCTION IN THE ZEBRAFISH MODEL

    OpenAIRE

    Porazzi, P; D. Calebiro; Benato, F.; N. Tiso; Persani, L

    2009-01-01

    Abstract Thyroid development has been intensively studied in the mouse, where it closely recapitulates the human situation. Despite the lack of a compact thyroid gland, the zebrafish thyroid tissue originates from the pharyngeal endoderm and the main genes involved in its patterning and early development are conserved between zebrafish and mammals. In recent years, the zebrafish has become a powerful model not only for developmental biology studies, but also for large-scale genetic...

  5. Host-microbe interactions in the developing zebrafish

    OpenAIRE

    Kanther, Michelle; Rawls, John F.

    2010-01-01

    The amenability of the zebrafish to in vivo imaging and genetic analysis has fueled expanded use of this vertebrate model to investigate the molecular and cellular foundations of host-microbe relationships. Study of microbial encounters in zebrafish hosts has concentrated on developing embryonic and larval stages, when the advantages of the zebrafish model are maximized. A comprehensive understanding of these host-microbe interactions requires appreciation of the developmental context into wh...

  6. Functional assessment of human coding mutations affecting skin pigmentation using zebrafish.

    Directory of Open Access Journals (Sweden)

    Zurab R Tsetskhladze

    Full Text Available A major challenge in personalized medicine is the lack of a standard way to define the functional significance of the numerous nonsynonymous, single nucleotide coding variants that are present in each human individual. To begin to address this problem, we have used pigmentation as a model polygenic trait, three common human polymorphisms thought to influence pigmentation, and the zebrafish as a model system. The approach is based on the rescue of embryonic zebrafish mutant phenotypes by "humanized" zebrafish orthologous mRNA. Two hypomorphic polymorphisms, L374F in SLC45A2, and A111T in SLC24A5, have been linked to lighter skin color in Europeans. The phenotypic effect of a second coding polymorphism in SLC45A2, E272K, is unclear. None of these polymorphisms had been tested in the context of a model organism. We have confirmed that zebrafish albino fish are mutant in slc45a2; wild-type slc45a2 mRNA rescued the albino mutant phenotype. Introduction of the L374F polymorphism into albino or the A111T polymorphism into slc24a5 (golden abolished mRNA rescue of the respective mutant phenotypes, consistent with their known contributions to European skin color. In contrast, the E272K polymorphism had no effect on phenotypic rescue. The experimental conclusion that E272K is unlikely to affect pigmentation is consistent with a lack of correlation between this polymorphism and quantitatively measured skin color in 59 East Asian humans. A survey of mutations causing human oculocutaneous albinism yielded 257 missense mutations, 82% of which are theoretically testable in zebrafish. The developed approach may be extended to other model systems and may potentially contribute to our understanding the functional relationships between DNA sequence variation, human biology, and disease.

  7. Feed and feeding regime affect growth rate and gonadosomatic index of adult zebrafish (Danio rerio).

    Science.gov (United States)

    Gonzales, John M; Law, Sheran Hiu Wan

    2013-12-01

    A 5-week study was conducted to evaluate commercially available Artemia, Ziegler zebrafish diet, and Calamac diet fed in five different feeding regimes on the growth and reproductive development of 7-month-old zebrafish. Zebrafish were fed to satiation three times daily during the normal work week and twice daily during the weekend and holidays. Zebrafish in dietary groups CCC (Calamac three times daily) and CCA (Calamac twice daily, Artemia once daily) had a significantly (p<0.05) greater weight gain and specific growth rate as compared to all other dietary groups. Male zebrafish in dietary group 5 had significantly larger gonadosomatic index (GSI) values than all other groups, while female zebrafish in dietary group CCC had significantly larger GSI values than all other groups. No differences in the fatty acid content of female gonads were detected. Zebrafish fed solely Artemia had the greatest weight loss and lowest GSI values. Preliminary evidence of protein sparing in zebrafish is reported. Collectively, this study sheds more light into the effects of the use of commercially available feeds and feeding regime on the rearing of zebrafish. PMID:23902461

  8. Retinoic Acid Signaling Is Essential for Valvulogenesis by Affecting Endocardial Cushions Formation in Zebrafish Embryos.

    Science.gov (United States)

    Li, Junbo; Yue, Yunyun; Zhao, Qingshun

    2016-02-01

    Retinoic acid (RA) plays important roles in many stages of heart morphogenesis. Zebrafish embryos treated with exogenous RA display defective atrio-ventricular canal (AVC) specification. However, whether endogenous RA signaling takes part in cardiac valve formation remains unknown. Herein, we investigated the role of RA signaling in cardiac valve development by knocking down aldh1a2, the gene encoding an enzyme that is mainly responsible for RA synthesis during early development, in zebrafish embryos. The results showed that partially knocking down aldh1a2 caused defective formation of primitive cardiac valve leaflets at 108 hpf (hour post-fertilization). Inhibiting endogenous RA signaling by 4-diethylaminobenzal-dehyde revealed that 16-26 hpf was a key time window when RA signaling affects the valvulogenesis. The aldh1a2 morphants had defective formation of endocardial cushion (EC) at 76 hpf though they had almost normal hemodynamics and cardiac chamber specification at early development. Examining the expression patterns of AVC marker genes including bmp4, bmp2b, nppa, notch1b, and has2, we found the morphants displayed abnormal development of endocardial AVC but almost normal development of myocardial AVC at 50 hpf. Being consistent with the reduced expression of notch1b in endocardial AVC, the VE-cadherin gene cdh5, the downstream gene of Notch signaling, was ectopically expressed in AVC of aldh1a2 morphants at 50 hpf, and overexpression of cdh5 greatly affected the formation of EC in the embryos at 76 hpf. Taken together, our results suggest that RA signaling plays essential roles in zebrafish cardiac valvulogenesis.

  9. DEHP impairs zebrafish reproduction by affecting critical factors in oogenesis.

    Directory of Open Access Journals (Sweden)

    Oliana Carnevali

    Full Text Available Public concerns on phthalates distributions in the environment have been increasing since they can cause liver cancer, structural abnormalities and reduce sperm counts in male reproductive system. However, few data are actually available on the effects of Di-(2-ethylhexyl-phthalate (DEHP in female reproductive system. The aim of this study was to assess the impacts of DEHP on zebrafish oogenesis and embryo production. Female Danio rerio were exposed to environmentally relevant doses of DEHP and a significant decrease in ovulation and embryo production was observed. The effects of DEHP on several key regulators of oocyte maturation and ovulation including bone morphogenetic protein-15 (BMP15, luteinizing hormone receptor (LHR, membrane progesterone receptors (mPRs and cyclooxygenase (COX-2 (ptgs2 were determined by real time PCR. The expressions of BMP15 and mPR proteins were further determined by Western analyses to strengthen molecular findings. Moreover, plasma vitellogenin (vtg titers were assayed by an ELISA procedure to determine the estrogenic effects of DEHP and its effects on oocyte growth. A significant reduction of fecundity in fish exposed to DEHP was observed. The reduced reproductive capacity was associated with an increase in ovarian BMP15 levels. This rise, in turn, was concomitant with a significant reduction in LHR and mPRbeta levels. Finally, ptgs2 expression, the final trigger of ovulation, was also decreased by DEHP. By an in vitro maturation assay, the inhibitory effect of DEHP on germinal vesicle breakdown was further confirmed. In conclusion, DEHP affecting signals involved in oocyte growth (vtg, maturation (BMP15, LHR, mPRs, and ovulation (ptgs2, deeply impairs ovarian functions with serious consequences on embryo production. Since there is a significant genetic similarity between D.rerio and humans, the harmful effects observed at oocyte level may be relevant for further molecular studies on humans.

  10. Dihydroartemisinin promotes angiogenesis during the early embryonic development of zebrafish

    Institute of Scientific and Technical Information of China (English)

    Qian BA; Juan DUAN; Jia-qiang TIAN; Zi-liang WANG; Tao CHEN; Xiao-guang LI; Pei-zhan CHEN

    2013-01-01

    Aim:To investigate the embryotoxicity of dihydroartemisinin (DHA),the main active metabolite of artemisinin,in zebrafish,and explore the corresponding mechanisms.Methods:The embryos of wild type and TG (flk1:GFP) transgenic zebrafish were exposed to DHA.Developmental phenotypes of the embryos were observed.Development of blood vessels was directly observed in living embryos of TG (flk1:GFP) transgenic zebrafish under fluorescence microscope.The expression of angiogenesis marker genes vegfa,flk1,and flt1 in the embryos was detected using real-time PCR and RNA in situ hybridization assays.Results:Exposure to DHA (1-10 mg/L) dose-dependently caused abnormal zebrafish embryonic phenotypes in the early developmental stage.Furthermore,exposure to DHA (10 mg/L) resulted in more pronounced embryonic angiogenesis in TG (flk1:GFP)zebrafish line.Exposure to DHA (10 mg/L) significantly increased the mRNA expression of vegfa,flk1,and flt1 in the embryos.Knockdown of the ilk1 protein partially blocked the effects of DHA on embryogenesis.Conclusion:DHA causes abnormal embryonic phenotypes and promotes angiogenesis in zebrafish early embryonic development,demonstrating the potential embryotoxicity of DHA.

  11. Differential Requirement for Pten Lipid and Protein Phosphatase Activity during Zebrafish Embryonic Development

    Science.gov (United States)

    Stumpf, Miriam; den Hertog, Jeroen

    2016-01-01

    The lipid- and protein phosphatase PTEN is one of the most frequently mutated tumor suppressor genes in human cancers and many mutations found in tumor samples directly affect PTEN phosphatase activity. In order to understand the functional consequences of these mutations in vivo, the aim of our study was to dissect the role of Pten phosphatase activities during zebrafish embryonic development. As in other model organisms, zebrafish mutants lacking functional Pten are embryonically lethal. Zebrafish have two pten genes and pten double homozygous zebrafish embryos develop a severe pleiotropic phenotype around 4 days post fertilization, which can be largely rescued by re-introduction of pten mRNA at the one-cell stage. We used this assay to characterize the rescue-capacity of Pten and variants with mutations that disrupt lipid, protein or both phosphatase activities. The pleiotropic phenotype at 4dpf could only be rescued by wild type Pten, indicating that both phosphatase activities are required for normal zebrafish embryonic development. An earlier aspect of the phenotype, hyperbranching of intersegmental vessels, however, was rescued by Pten that retained lipid phosphatase activity, independent of protein phosphatase activity. Lipid phosphatase activity was also required for moderating pAkt levels at 4 dpf. We propose that the role of Pten during angiogenesis mainly consists of suppressing PI3K signaling via its lipid phosphatase activity, whereas the complex process of embryonic development requires lipid and protein phosphatase of Pten. PMID:26848951

  12. Alcohol-induced morphological deficits in the development of octavolateral organs of the zebrafish (Danio rerio).

    Science.gov (United States)

    Zamora, Lilliann Y; Lu, Zhongmin

    2013-03-01

    Prenatal alcohol exposure is known to have many profound detrimental effects on human fetal development (fetal alcohol spectrum disorders), which may manifest as lifelong disabilities. However, how alcohol affects the auditory/vestibular system is still largely unknown. This is the first study to investigate morphological effects of alcohol on the developing octavolateral system (the inner ear and lateral line) using the zebrafish, Danio rerio. Zebrafish embryos of 2 hours post fertilization (hpf) were treated in 2% alcohol for 48 hours and screened at 72 hpf for morphological defects of the inner ear and lateral line. Octavolateral organs from both alcohol-treated and control zebrafish were examined using light, confocal, and scanning electron microscopy. We observed several otolith phenotypes for alcohol-treated zebrafish including zero, one, two abnormal, two normal, and multiple otoliths. Results of this study show that alcohol treatment during early development impairs the inner ear (smaller ear, abnormal otoliths, and fewer sensory hair cells) and the lateral line (smaller neuromasts, fewer neuromasts and hair cells per neuromast, and shorter kinocilia of hair cells). Early embryonic alcohol exposure may also result in defects in hearing, balance, and hydrodynamic function of zebrafish.

  13. VANGL1 rare variants associated with neural tube defects affect convergent extension in zebrafish.

    Science.gov (United States)

    Reynolds, Annie; McDearmid, Jonathan R; Lachance, Stephanie; De Marco, Patrizia; Merello, Elisa; Capra, Valeria; Gros, Philippe; Drapeau, Pierre; Kibar, Zoha

    2010-01-01

    In humans, rare non-synonymous variants in the planar cell polarity gene VANGL1 are associated with neural tube defects (NTDs). These variants were hypothesized to be pathogenic based mainly on genetic studies in a large cohort of NTD patients. In this study, we validate the potential pathogenic effect of these mutations in vivo by investigating their effect on convergent extension in zebrafish. Knocking down the expression of tri, the ortholog of Vangl2, using an antisense morpholino (MO), as shown previously, led to a defective convergent extension (CE) manifested by a shortened body axis and widened somites. Co-injection of the human VANGL1 with the tri-MO was able to partially rescue the tri-MO induced phenotype in zebrafish. In contrast, co-injection of two human VANGL1 variants, p.Val239Ile and p.Met328Thr, failed to rescue this phenotype. We next carried out overexpression studies where we measured the ability of the human VANGL1 alleles to induce a CE phenotype when injected at high doses in zebrafish embryos. While overexpressing the wild-type allele led to a severely defective CE, overexpression of either p.Val239Ile or p.Met328Thr variant failed to do so. Results from both tri-MO knockdown/rescue results and overexpression assays suggest that these two variants most likely represent "loss-of-function" alleles that affect protein function during embryonic development. Our study demonstrates a high degree of functional conservation of VANGL genes across evolution and provides a model system for studying potential variants identified in human NTDs.

  14. The transcriptomics of glucocorticoid receptor signaling in developing zebrafish.

    Directory of Open Access Journals (Sweden)

    Dinushan Nesan

    Full Text Available Cortisol is the primary corticosteroid in teleosts that is released in response to stressor activation of the hypothalamus-pituitary-interrenal axis. The target tissue action of this hormone is primarily mediated by the intracellular glucocorticoid receptor (GR, a ligand-bound transcription factor. In developing zebrafish (Danio rerio embryos, GR transcripts and cortisol are maternally deposited into the oocyte prior to fertilization and influence early embryogenesis. To better understand of the molecular mechanisms involved, we investigated changes in the developmental transcriptome prior to hatch, in response to morpholino oligonucleotide knockdown of GR using the Agilent zebrafish microarray platform. A total of 1313 and 836 mRNA transcripts were significantly changed at 24 and 36 hours post fertilization (hpf, respectively. Functional analysis revealed numerous developmental processes under GR regulation, including neurogenesis, eye development, skeletal and cardiac muscle formation. Together, this study underscores a critical role for glucocorticoid signaling in programming molecular events essential for zebrafish development.

  15. Zebrafish Craniofacial Development: A Window into Early Patterning.

    Science.gov (United States)

    Mork, Lindsey; Crump, Gage

    2015-01-01

    The formation of the face and skull involves a complex series of developmental events mediated by cells derived from the neural crest, endoderm, mesoderm, and ectoderm. Although vertebrates boast an enormous diversity of adult facial morphologies, the fundamental signaling pathways and cellular events that sculpt the nascent craniofacial skeleton in the embryo have proven to be highly conserved from fish to man. The zebrafish Danio rerio, a small freshwater cyprinid fish from eastern India, has served as a popular model of craniofacial development since the 1990s. Unique strengths of the zebrafish model include a simplified skeleton during larval stages, access to rapidly developing embryos for live imaging, and amenability to transgenesis and complex genetics. In this chapter, we describe the anatomy of the zebrafish craniofacial skeleton; its applications as models for the mammalian jaw, middle ear, palate, and cranial sutures; the superior imaging technology available in fish that has provided unprecedented insights into the dynamics of facial morphogenesis; the use of the zebrafish to decipher the genetic underpinnings of craniofacial biology; and finally a glimpse into the most promising future applications of zebrafish craniofacial research.

  16. Studying Lipid Metabolism and Transport During Zebrafish Development.

    Science.gov (United States)

    Zeituni, Erin M; Farber, Steven A

    2016-01-01

    The zebrafish model facilitates the study of lipid metabolism and transport during development. Here, we outline methods to introduce traceable fluorescent or radiolabeled fatty acids into zebrafish embryos and larvae at various developmental stages. Labeled fatty acids can be injected into the large yolk cell prior to the development of digestive organs when the larvae is entirely dependent on the yolk for its nutrition (lecithotrophic state). Once zebrafish are able to consume exogenous food, labeled fatty acids can be incorporated into their food. Our group and others have demonstrated that the transport and processing of these injected or ingested fatty acid analogs can be followed through microscopy and/or biochemical analysis. These techniques can be easily combined with targeted antisense approaches, transgenics, or drug treatments (see Note 1 ), allowing studies of lipid cell biology and metabolism that are exceedingly difficult or impossible in mammals. PMID:27464812

  17. PFOS affects posterior swim bladder chamber inflation and swimming performance of zebrafish larvae.

    Science.gov (United States)

    Hagenaars, A; Stinckens, E; Vergauwen, L; Bervoets, L; Knapen, D

    2014-12-01

    Perfluorooctane sulphonate (PFOS) is one of the most commonly detected perfluorinated alkylated substances in the aquatic environment due to its persistence and the degradation of less stable compounds to PFOS. PFOS is known to cause developmental effects in fish. The main effect of PFOS in zebrafish larvae is an uninflated swim bladder. As no previous studies have focused on the effect of PFOS on zebrafish swim bladder inflation, the exact mechanisms leading to this effect are currently unknown. The objective of this study was to determine the exposure windows during early zebrafish development that are sensitive to PFOS exposure and result in impaired swim bladder inflation in order to specify the mechanisms by which this effect might be caused. Seven different time windows of exposure (1-48, 1-72, 1-120, 1-144, 48-144, 72-144, 120-144h post fertilization (hpf)) were tested based on the different developmental stages of the swim bladder. These seven time windows were tested for four concentrations corresponding to the EC-values of 1, 10, 80 and 95% impaired swim bladder inflation (EC1=0.70 mg L(-1), EC10=1.14 mg L(-1), EC80=3.07 mg L(-1) and EC95=4.28 mg L(-1)). At 6 days post fertilization, effects on survival, hatching, swim bladder inflation and size, larval length and swimming performance were assessed. For 0.70 mg L(-1), no significant effects were found for the tested parameters while 1.14 mg L(-1) resulted in a reduction of larval length. For 3.07 and 4.28 mg L(-1), the number of larvae affected and the severity of effects caused by PFOS were dependent on the time window of exposure. Exposure for 3 days or more resulted in significant reductions of swim bladder size, larval length and swimming speed with increasing severity of effects when the duration of exposure was longer, suggesting a possible effect of accumulated dose. Larvae that were only exposed early (1-48 hpf) or late (120-144 hpf) during development showed no effects on the studied endpoints

  18. Zebrafish Development: High-throughput Test Systems to Assess Developmental Toxicity

    Science.gov (United States)

    Abstract Because of its developmental concordance, ease of handling and rapid development, the small teleost, zebrafish (Danio rerio), is frequently promoted as a vertebrate model for medium-throughput developmental screens. This present chapter discusses zebrafish as an altern...

  19. Transcription factor COUP-TFII is indispensable for venous and lymphatic development in zebrafish and Xenopus laevis

    Energy Technology Data Exchange (ETDEWEB)

    Aranguren, Xabier L., E-mail: xabier.lopezaranguren@med.kuleuven.be [Center for Molecular and Vascular Biology, Katholieke Universiteit Leuven, Campus Gasthuisberg, Onderwijs and Navorsing 1, Herestraat 49, B-3000 Leuven (Belgium); Beerens, Manu, E-mail: manu.beerens@med.kuleuven.be [Center for Molecular and Vascular Biology, Katholieke Universiteit Leuven, Campus Gasthuisberg, Onderwijs and Navorsing 1, Herestraat 49, B-3000 Leuven (Belgium); Vandevelde, Wouter, E-mail: woutervandevelde@gmail.com [Vesalius Research Center, VIB, Campus Gasthuisberg, Onderwijs and Navorsing 1, Herestraat 49, B-3000 Leuven (Belgium); Vesalius Research Center, Katholieke Universiteit Leuven, Campus Gasthuisberg, Onderwijs and Navorsing 1, Herestraat 49, B-3000 Leuven (Belgium); Dewerchin, Mieke, E-mail: mieke.dewerchin@vib-kuleuven.be [Vesalius Research Center, VIB, Campus Gasthuisberg, Onderwijs and Navorsing 1, Herestraat 49, B-3000 Leuven (Belgium); Vesalius Research Center, Katholieke Universiteit Leuven, Campus Gasthuisberg, Onderwijs and Navorsing 1, Herestraat 49, B-3000 Leuven (Belgium); Carmeliet, Peter, E-mail: peter.carmeliet@vib-kuleuven.be [Vesalius Research Center, VIB, Campus Gasthuisberg, Onderwijs and Navorsing 1, Herestraat 49, B-3000 Leuven (Belgium); Vesalius Research Center, Katholieke Universiteit Leuven, Campus Gasthuisberg, Onderwijs and Navorsing 1, Herestraat 49, B-3000 Leuven (Belgium); Luttun, Aernout, E-mail: aernout.luttun@med.kuleuven.be [Center for Molecular and Vascular Biology, Katholieke Universiteit Leuven, Campus Gasthuisberg, Onderwijs and Navorsing 1, Herestraat 49, B-3000 Leuven (Belgium)

    2011-06-24

    Highlights: {yields} COUP-TFII deficiency in zebrafish affects arterio-venous EC specification. {yields} COUP-TFII is indispensable for lymphatic development in zebrafish. {yields} COUP-TFII knockdown in Xenopus disrupts lymphatic EC differentiation and migration. {yields} COUP-TFII's role in EC fate decisions is evolutionary conserved. -- Abstract: Transcription factors play a central role in cell fate determination. Gene targeting in mice revealed that Chicken Ovalbumin Upstream Promoter-Transcription Factor II (COUP-TFII, also known as Nuclear Receptor 2F2 or NR2F2) induces a venous phenotype in endothelial cells (ECs). More recently, NR2F2 was shown to be required for initiating the expression of Prox1, responsible for lymphatic commitment of venous ECs. Small animal models like zebrafish embryos and Xenopus laevis tadpoles have been very useful to elucidate mechanisms of (lymph) vascular development. Therefore, the role of NR2F2 in (lymph) vascular development was studied by eliminating its expression in these models. Like in mice, absence of NR2F2 in zebrafish resulted in distinct vascular defects including loss of venous marker expression, major trunk vessel fusion and vascular leakage. Both in zebrafish and Xenopus the development of the main lymphatic structures was severely hampered. NR2F2 knockdown significantly decreased prox1 expression in zebrafish ECs and the same manipulation affected lymphatic (L)EC commitment, migration and function in Xenopus tadpoles. Therefore, the role of NR2F2 in EC fate determination is evolutionary conserved.

  20. Developing an Experimental Model of Vascular Toxicity in Embryonic Zebrafish

    Science.gov (United States)

    Developing an Experimental Model of Vascular Toxicity in Embryonic Zebrafish Tamara Tal, Integrated Systems Toxicology Division, U.S. EPA Background: There are tens of thousands of chemicals that have yet to be fully evaluated for their toxicity by validated in vivo testing ...

  1. Early retinoic acid deprivation in developing zebrafish results in microphthalmia.

    Science.gov (United States)

    Le, Hong-Gam T; Dowling, John E; Cameron, D Joshua

    2012-09-01

    Vitamin A deficiency causes impaired vision and blindness in millions of children around the world. Previous studies in zebrafish have demonstrated that retinoic acid (RA), the acid form of vitamin A, plays a vital role in early eye development. The objective of this study was to describe the effects of early RA deficiency by treating zebrafish with diethylaminobenzaldehyde (DEAB), a potent inhibitor of the enzyme retinaldehyde dehydrogenase (RALDH) that converts retinal to RA. Zebrafish embryos were treated for 2 h beginning at 9 h postfertilization. Gross morphology and retinal development were examined at regular intervals for 5 days after treatment. The optokinetic reflex (OKR) test, visual background adaptation (VBA) test, and the electroretinogram (ERG) were performed to assess visual function and behavior. Early treatment of zebrafish embryos with 100 μM DEAB (9 h) resulted in reduced eye size, and this microphthalmia persisted through larval development. Retinal histology revealed that DEAB eyes had significant developmental abnormalities but had relatively normal retinal lamination by 5.5 days postfertilization. However, the fish showed neither an OKR nor a VBA response. Further, the retina did not respond to light as measured by the ERG. We conclude that early deficiency of RA during eye development causes microphthalmia as well as other visual defects, and that timing of the RA deficiency is critical to the developmental outcome.

  2. Transcriptional Regulation of Heart Development in Zebrafish

    Directory of Open Access Journals (Sweden)

    Fei Lu

    2016-04-01

    Full Text Available Cardiac transcription factors orchestrate the complex cellular and molecular events required to produce a functioning heart. Misregulation of the cardiac transcription program leads to embryonic developmental defects and is associated with human congenital heart diseases. Recent studies have expanded our understanding of the regulation of cardiac gene expression at an additional layer, involving the coordination of epigenetic and transcriptional regulators. In this review, we highlight and discuss discoveries made possible by the genetic and embryological tools available in the zebrafish model organism, with a focus on the novel functions of cardiac transcription factors and epigenetic and transcriptional regulatory proteins during cardiogenesis.

  3. Transcriptional Regulation of Heart Development in Zebrafish

    Science.gov (United States)

    Lu, Fei; Langenbacher, Adam D.; Chen, Jau-Nian

    2016-01-01

    Cardiac transcription factors orchestrate the complex cellular and molecular events required to produce a functioning heart. Misregulation of the cardiac transcription program leads to embryonic developmental defects and is associated with human congenital heart diseases. Recent studies have expanded our understanding of the regulation of cardiac gene expression at an additional layer, involving the coordination of epigenetic and transcriptional regulators. In this review, we highlight and discuss discoveries made possible by the genetic and embryological tools available in the zebrafish model organism, with a focus on the novel functions of cardiac transcription factors and epigenetic and transcriptional regulatory proteins during cardiogenesis. PMID:27148546

  4. Zebrafish pancreas as a model for development and disease.

    Science.gov (United States)

    Kimmel, R A; Meyer, D

    2016-01-01

    The vertebrate pancreas is composed of acinar tissue that produces digestive enzymes, a ductal system for transporting those enzymes, and the endocrine islets which produce hormones critical for organism glucose homeostasis. Recent studies have highlighted similarities between zebrafish and mammals in organ development, and increasingly reveal that the regulation of metabolic homeostasis is highly conserved as well. Use of zebrafish as a model organism, with its ease of genetic manipulation, high fecundity, and ready access for imaging, has been highly productive for studies of islet cell development. We review the most recent progress in our understanding of how the later forming endocrine cells develop from duct-associated progenitors and new tools available for these studies. We also discuss current approaches and technological advances for addressing beta cell physiology, organism glucose homeostasis, and associated processes within zebrafish. Finally, we describe emerging methods being used to establish new zebrafish models of diabetes and related pathologies, to expand the use of this model organism to discover new therapies and to facilitate studies of disease pathology.

  5. Hedgehog signaling is required at multiple stages of zebrafish tooth development

    Directory of Open Access Journals (Sweden)

    Stock David W

    2010-11-01

    Full Text Available Abstract Background The accessibility of the developing zebrafish pharyngeal dentition makes it an advantageous system in which to study many aspects of tooth development from early initiation to late morphogenesis. In mammals, hedgehog signaling is known to be essential for multiple stages of odontogenesis; however, potential roles for the pathway during initiation of tooth development or in later morphogenesis are incompletely understood. Results We have identified mRNA expression of the hedgehog ligands shha and the receptors ptc1 and ptc2 during zebrafish pharyngeal tooth development. We looked for, but did not detect, tooth germ expression of the other known zebrafish hedgehog ligands shhb, dhh, ihha, or ihhb, suggesting that as in mammals, only Shh participates in zebrafish tooth development. Supporting this idea, we found that morphological and gene expression evidence of tooth initiation is eliminated in shha mutant embryos, and that morpholino antisense oligonucleotide knockdown of shha, but not shhb, function prevents mature tooth formation. Hedgehog pathway inhibition with the antagonist compound cyclopamine affected tooth formation at each stage in which we applied it: arresting development at early stages and disrupting mature tooth morphology when applied later. These results suggest that hedgehog signaling is required continuously during odontogenesis. In contrast, over-expression of shha had no effect on the developing dentition, possibly because shha is normally extensively expressed in the zebrafish pharyngeal region. Conclusion We have identified previously unknown requirements for hedgehog signaling for early tooth initiation and later morphogenesis. The similarity of our results with data from mouse and other vertebrates suggests that despite gene duplication and changes in the location of where teeth form, the roles of hedgehog signaling in tooth development have been largely conserved during evolution.

  6. Myotonia congenita-associated mutations in chloride channel-1 affect zebrafish body wave swimming kinematics.

    Directory of Open Access Journals (Sweden)

    Wei Cheng

    Full Text Available Myotonia congenita is a human muscle disorder caused by mutations in CLCN1, which encodes human chloride channel 1 (CLCN1. Zebrafish is becoming an increasingly useful model for human diseases, including muscle disorders. In this study, we generated transgenic zebrafish expressing, under the control of a muscle specific promoter, human CLCN1 carrying mutations that have been identified in human patients suffering from myotonia congenita. We developed video analytic tools that are able to provide precise quantitative measurements of movement abnormalities in order to analyse the effect of these CLCN1 mutations on adult transgenic zebrafish swimming. Two new parameters for body-wave kinematics of swimming reveal changes in body curvature and tail offset in transgenic zebrafish expressing the disease-associated CLCN1 mutants, presumably due to their effect on muscle function. The capability of the developed video analytic tool to distinguish wild-type from transgenic zebrafish could provide a useful asset to screen for compounds that reverse the disease phenotype, and may be applicable to other movement disorders besides myotonia congenita.

  7. Myotonia Congenita-Associated Mutations in Chloride Channel-1 Affect Zebrafish Body Wave Swimming Kinematics

    Science.gov (United States)

    Cheng, Wei; Tian, Jing; Burgunder, Jean-Marc; Hunziker, Walter; Eng, How-Lung

    2014-01-01

    Myotonia congenita is a human muscle disorder caused by mutations in CLCN1, which encodes human chloride channel 1 (CLCN1). Zebrafish is becoming an increasingly useful model for human diseases, including muscle disorders. In this study, we generated transgenic zebrafish expressing, under the control of a muscle specific promoter, human CLCN1 carrying mutations that have been identified in human patients suffering from myotonia congenita. We developed video analytic tools that are able to provide precise quantitative measurements of movement abnormalities in order to analyse the effect of these CLCN1 mutations on adult transgenic zebrafish swimming. Two new parameters for body-wave kinematics of swimming reveal changes in body curvature and tail offset in transgenic zebrafish expressing the disease-associated CLCN1 mutants, presumably due to their effect on muscle function. The capability of the developed video analytic tool to distinguish wild-type from transgenic zebrafish could provide a useful asset to screen for compounds that reverse the disease phenotype, and may be applicable to other movement disorders besides myotonia congenita. PMID:25083883

  8. Digestive enzymatic activity during ontogenetic development in zebrafish (Danio rerio).

    Science.gov (United States)

    Guerrera, Maria Cristina; De Pasquale, Francesca; Muglia, Ugo; Caruso, Gabriella

    2015-12-01

    Despite the growing importance of zebrafish (Danio rerio) as an experimental model in biomedical research, some aspect of physiological and related morphological age dependent changes in digestive system during larval development are still unknown. In this paper, a biochemical and morphological study of the digestive tract of zebrafish was undertaken to record the functional changes occurring in this species during its ontogenetic development, particularly from 24 hr to 47 days post fertilization (dpf). Endo- and exo-proteases, as well as α-amylase enzymes, were quantified in zebrafish larvae before first feeding (7 dpf). The most morphologically significant events during the ontogenesis of the gut occurred between 3 dpf (mouth opening) and 7 dpf (end of exocrine pancreas differentiation). The presence of a wide range of digestive enzymes, already active at earlier zebrafish larval stages, closely related with the omnivorous diet of this species. Increasing enzyme activities were found with increasing age, probably in relation with intestinal mucosa folding and consequent absorption surface increase. J. Exp. Zool. (Mol. Dev. Evol.) 324B: 699-706, 2015. © 2015 Wiley Periodicals, Inc. PMID:26477613

  9. Retinol dehydrogenase, RDH1l, is essential for the heart development and cardiac performance in zebrafish

    Institute of Scientific and Technical Information of China (English)

    WANG Wei; ZHANG Li-feng; GUI Yong-hao; SONG Hou-yan

    2013-01-01

    Background Retinoic acid (RA) is a potent signaling molecule that plays pleiotropic roles in patterning,morphogenesis,and organogenesis during embryonic development.The synthesis from retinol (vitamin A) to retinoic acid requires two sequential oxidative steps.The first step involves the oxidation of retinol to retinal through the action of retinol dehydrogenases.Retinol dehydrogenases1l (RDH1l) is a novel zebrafish retinol dehydrogenase.Herein we investigated the role of zebrafish RDH1l in heart development and cardiac performance in detail.Methods RDH1l specific morpholino was used to reduce the function of RDH1l in zebrafish.The gene expressions were observed by using whole mount in situ hybridization.Heart rates were observed and recorded under the microscope from 24 to 72 hours post fertilization (hpf).The cardiac performance was analyzed by measuring ventricular shortening fraction (VSF).Results The knock-down of RDH1l led to abnormal neural crest cells migration and reduced numbers of neural crest cells in RDH1l morphant embryos.The reduced numbers of cardiac neural crest cells also can be seen in RDH1l morphant embryos.Furthermore,the morpholino-mediated knock-down of RDH1l resulted in the abnormal heart loop.The left-right determining genes expression pattern was altered in RDH1l morphant embryos.The impaired cardiac performance was observed in RDH1l morphant embryos.Taken together,these data demonstrate that RDH1l is essential for the heart development and cardiac performance in zebrafish.Conclusions RDH1l plays a important role in the neural crest cells development,and then ultimately affects the heart loop and cardiac performance.These results show for the first time that an enzyme involved in the retinol to retinaldehyde conversion participate in the heart development and cardiac performance in zebrafish.

  10. Cadmium inhibits neurogenesis in zebrafish embryonic brain development

    Energy Technology Data Exchange (ETDEWEB)

    Chow, Elly Suk Hen [Division of Biology, California Institute of Technology, 1200 California Boulevard, Pasadena, CA 91125 (United States); Hui, Michelle Nga Yu; Lin Chunchi [Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong (China); Cheng Shukhan [Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong (China)], E-mail: bhcheng@cityu.edu.hk

    2008-05-01

    Cadmium is a non-essential heavy metal found abundantly in the environment. Children of women exposed to cadmium during pregnancy display lower motor and perceptual abilities. High cadmium body burden in children is also related to impaired intelligence and lowered school achievement. However, little is known about the molecular and cellular basis of developmental neurotoxicity in the sensitive early life stages of animals. In this study, we explore neurological deficits caused by cadmium during early embryonic stages in zebrafish by examining regionalization of the neural tube, pattern formation and cell fate determination, commitment of proneural genes and induction of neurogenesis. We show that cadmium-treated embryos developed a smaller head with unclear boundaries between the brain subdivisions, particularly in the mid-hindbrain region. Embryos display normal anterior to posterior regionalization; however, the commitment of neural progenitor cells was affected by cadmium. We observe prominent reductions in the expression of several proneuronal genes including ngn1 in cell clusters, zash1a in the developing optic tectum, and zash1b in the telencephalon and tectum. Cadmium-treated embryos also have fewer differentiated neurons and glia in the facial sensory ganglia as indicated by decreased zn-12 expression. Also, a lower transcription level of neurogenic genes, ngn1 and neuroD, is observed in neurons. Our data suggest that cadmium-induced neurotoxicity can be caused by impaired neurogenesis, resulting in markedly reduced neuronal differentiation and axonogenesis.

  11. Mtmr8 is essential for vasculature development in zebrafish embryos

    Directory of Open Access Journals (Sweden)

    Mei Jie

    2010-09-01

    Full Text Available Abstract Background Embryonic morphogenesis of vascular and muscular systems is tightly coordinated, and a functional cooperation of Mtmr8 with PI3K in actin filament modeling and muscle development has been revealed in zebrafish. Here, we attempt to explore the function of Mtmr8 in vasculature development parallel to its function in muscle development. Results During early stage of somitogenesis, mtmr8 expression was detected in both somitic mesodem and ventral mesoderm. Knockdown of mtmr8 by morpholino impairs arterial endothelial marker expression, and results in endothelial cell reduction and vasculogenesis defects, such as retardation in intersegmental vessel development and interruption of trunk dorsal aorta. Moreover, mtmr8 morphants show loss of arterial endothelial cell identity in dorsal aorta, which is effectively rescued by low concentration of PI3K inhibitor, and by over-expression of dnPKA mRNA or vegf mRNA. Interestingly, mtmr8 expression is up-regulated when zebrafish embryos are treated with specific inhibitor of Hedgehog pathway that abolishes arterial marker expression. Conclusion These data indicate that Mtmr8 is essential for vasculature development in zebrafish embryos, and may play a role in arterial specification through repressing PI3K activity. It is suggested that Mtmr8 should represent a novel element of the Hedgehog/PI3K/VEGF signaling cascade that controls arterial specification.

  12. Integrating zebrafish toxicology and nanoscience for safer product development

    OpenAIRE

    Kim, Ki-Tae; Tanguay, Robert L.

    2013-01-01

    The design, manufacture and application of safer products and manufacturing processes have been important goals over the last decade and will advance in the future under the umbrella of "Green Chemistry". In this review, we focus on the burgeoning diversity of new engineered nanomaterials (ENMs) and the prescient need for a nanotoxicology paradigm that quickly identifies potentially hazardous nanochemistries. Advances in predictive toxicological modeling in the developing zebrafish offer the ...

  13. Knockdown of Leptin A Expression Dramatically Alters Zebrafish Development

    OpenAIRE

    Liu, Qin; Dalman, Mark; CHEN, YUN; Akhter, Mashal; Brahmandam, Sravya; Patel, Yesha; Lowe, Josef; Thakkar, Mitesh; Gregory, Akil-Vuai; Phelps, Daryllanae; Riley, Caitlin; Londraville, Richard L.

    2012-01-01

    Using morpholino antisense oligonucleotide (MO) technology, we blocked leptin A or leptin receptor expression in embryonic zebrafish, and analyzed consequences of leptin knock-down on fish development. Embryos injected with leptin A or leptin receptor MOs (leptin A or leptin receptor morphants) had smaller bodies and eyes, undeveloped inner ear, enlarged pericardial cavity, curved body and/or tail and larger yolk compared to control embryos of the same stages. The defects persisted in 6-9 day...

  14. Vitamin D receptor deficiency impairs inner ear development in zebrafish.

    Science.gov (United States)

    Kwon, Hye-Joo

    2016-09-16

    The biological actions of vitamin D are largely mediated through binding to the vitamin D receptor (VDR), a member of the nuclear hormone receptor family, which regulates gene expression in a wide variety of tissues and cells. Mutations in VDR gene have been implicated in ear disorders (hearing loss and balance disorder) but the mechanisms are not well established. In this study, to investigate the role of VDR in inner ear development, morpholino-mediated gene knockdown approaches were used in zebrafish model system. Two paralogs for VDR, vdra and vdrb, have been identified in zebrafish. Knockdown of vdra had no effect on ear development, whereas knockdown of vdrb displayed morphological ear defects including smaller otic vesicles with malformed semicircular canals and abnormal otoliths. Loss-of-vdrb resulted in down-regulation of pre-otic markers, pax8 and pax2a, indicating impairment of otic induction. Furthermore, zebrafish embryos lacking vdrb produced fewer sensory hair cells in the ears and showed disruption of balance and motor coordination. These data reveal that VDR signaling plays an important role in ear development. PMID:27526995

  15. Functional Development of the Circadian Clock in the Zebrafish Pineal Gland

    OpenAIRE

    Zohar Ben-Moshe; Foulkes, Nicholas S.; Yoav Gothilf

    2014-01-01

    The zebrafish constitutes a powerful model organism with unique advantages for investigating the vertebrate circadian timing system and its regulation by light. In particular, the remarkably early and rapid development of the zebrafish circadian system has facilitated exploring the factors that control the onset of circadian clock function during embryogenesis. Here, we review our understanding of the molecular basis underlying functional development of the central clock in the zebrafish pine...

  16. Effects of base analogues 5-bromouracil and 6-aminopurine on development of zebrafish Danio Rerio

    Institute of Scientific and Technical Information of China (English)

    SAWANT M. S.; ZHANG Shicui; WANG Qingyin

    2005-01-01

    Zebrafish (Danio rerio) genetic screens allow isolation of a wide array of problems in vertebrate biology. The effects of base analogues 5-bromouracil and 6-aminopurine on the development of zebrafish embryos are reported for the first time in this study. The early development of the zebrafish embryos was little affected by 5-bromouracil and 6-aminopurine, while the late development (organogenesis) was significantly impaired. Embryos exposed to 5-bromouracil mainly showed curled tail, wavy body, golden pigmentation and the mouth with protruding lower jaw. 6-aminopurine-treated embryos had defective anterior structures, curled tails and wavy body. RAPD analysis showed that the majority of 5-bromouracil- and 6-aminopurine-treated larvae and fish shared banding patterns in common with the control, suggesting that most mutagenesis induced by these agents are point mutations. However, some fish derived from 5-bromouracil-treated embryos had golden (gol) pigmentation; and RAPD analysis revealed that their band patterns differed from those of the control.Possibly, 5-bromouracil can occasionally cause relatively extensive changes in the fish genome. The results of this study may provide valuable help for detailed studies of mutagenesis.

  17. Making a difference: education at the 10th International Conference on Zebrafish Development and Genetics.

    Science.gov (United States)

    Hutson, Lara D; Liang, Jennifer O; Pickart, Michael A; Pierret, Chris; Tomasciewicz, Henry G

    2012-12-01

    Scientists, educators, and students met at the 10th International Conference on Zebrafish Development and Genetics during the 2-day Education Workshop, chaired by Dr. Jennifer Liang and supported in part by the Genetics Society of America. The goal of the workshop was to share expertise, to discuss the challenges faced when using zebrafish in the classroom, and to articulate goals for expanding the impact of zebrafish in education.

  18. Translating Discovery in Zebrafish Pancreatic Development to Human Pancreatic Cancer: Biomarkers, Targets, Pathogenesis, and Therapeutics

    OpenAIRE

    Yee, Nelson S; Kazi, Abid A.; Rosemary K. Yee

    2013-01-01

    Experimental studies in the zebrafish have greatly facilitated understanding of genetic regulation of the early developmental events in the pancreas. Various approaches using forward and reverse genetics, chemical genetics, and transgenesis in zebrafish have demonstrated generally conserved regulatory roles of mammalian genes and discovered novel genetic pathways in exocrine pancreatic development. Accumulating evidence has supported the use of zebrafish as a model of human malignant diseases...

  19. Development of a Novel and Robust Pharmacological Model of Okadaic Acid-induced Alzheimer's Disease in Zebrafish.

    Science.gov (United States)

    Nada, Shadia E; Williams, Frederick E; Shah, Zahoor A

    2016-01-01

    Alzheimer's disease (AD) is the leading neurodegenerative disorder affecting the world's elderly population. Most experimental models of AD are transgenic or pharmacological in nature, and do not simulate the entire pathophysiology. In the present study, we developed a pharmacologically induced AD using the zebrafish, a species that can recapitulate most of the phenotypes of the disease. The pharmacological agent being used, okadaic acid (OKA) has also been utilized to study AD in other species. In this model, the immunohistochemistry of phosphorylated glycogen synthase-3α/β, Aβ, p-tau, tau protein, and senile plaque formation in zebrafish brain were all significantly increased with increasing exposure to OKA. These represent the majority of the histological hallmarks of AD pathophysiology. The observed changes were also accompanied by learning and memory deficits which are also important components in AD pathophysiology. Zebrafish disease models are gaining popularity mostly due to their economic cost and relevance to human disease pathophysiology. Current pharmacological methods of inducing AD in zebrafish are not adequately developed and do not represent all the features of the disease. OKA-induced AD in zebrafish can become a cost efficient model to study drug discovery for AD. It may also be used to unravel the molecular mechanisms underlying the complex pathophysiology that leads to AD using relatively economical species.

  20. Effects of Atrazine on the Development of Neural System of Zebrafish, Danio rerio

    Directory of Open Access Journals (Sweden)

    Hao Wang

    2015-01-01

    Full Text Available By comparative analysis of histomorphology and AChE activity, the changes of physiological and biochemical parameters were determined in zebrafish embryos and larvae dealt with atrazine (ATR at different concentrations (0.0001, 0.001, 0.01, 0.1, and 1 mg/L. This study showed that the development of the sarcomere and the arrangement of white muscle myofibers were affected by ATR significantly and the length of sarcomere shortened. Further analysis of the results showed that the AChE activity in juvenile fish which was treated with ATR was downregulated, which can indicate that the innervation efficiency to the muscle was impaired. Conversely, the AChE activity in zebrafish embryos which was treated with ATR was upregulated. A parallel phenomenon showed that embryonic primary sensory neurons (Rohon-Beard cells, principally expressing AChE in embryos, survived the physiological apoptosis. These phenomena demonstrated that the motor integration ability of the zebrafish was damaged by ATR which can disturb the development of sensory neurons and sarcomere and the innervations of muscle.

  1. Identification of Estrogen Target Genes during Zebrafish Embryonic Development through Transcriptomic Analysis

    Science.gov (United States)

    Estrogen signaling is important for vertebrate embryonic development. Here we have used zebrafish (Danio rerio) as a vertebrate model to analyze estrogen signaling during development. Zebrafish embryos were exposed to 1 μM 17β-estradiol (E2) or vehicle from 3 hours to 4 days post...

  2. Zebrafish Bone and General Physiology Are Differently Affected by Hormones or Changes in Gravity.

    Directory of Open Access Journals (Sweden)

    Jessica Aceto

    Full Text Available Teleost fish such as zebrafish (Danio rerio are increasingly used for physiological, genetic and developmental studies. Our understanding of the physiological consequences of altered gravity in an entire organism is still incomplete. We used altered gravity and drug treatment experiments to evaluate their effects specifically on bone formation and more generally on whole genome gene expression. By combining morphometric tools with an objective scoring system for the state of development for each element in the head skeleton and specific gene expression analysis, we confirmed and characterized in detail the decrease or increase of bone formation caused by a 5 day treatment (from 5dpf to 10 dpf of, respectively parathyroid hormone (PTH or vitamin D3 (VitD3. Microarray transcriptome analysis after 24 hours treatment reveals a general effect on physiology upon VitD3 treatment, while PTH causes more specifically developmental effects. Hypergravity (3g from 5dpf to 9 dpf exposure results in a significantly larger head and a significant increase in bone formation for a subset of the cranial bones. Gene expression analysis after 24 hrs at 3g revealed differential expression of genes involved in the development and function of the skeletal, muscular, nervous, endocrine and cardiovascular systems. Finally, we propose a novel type of experimental approach, the "Reduced Gravity Paradigm", by keeping the developing larvae at 3g hypergravity for the first 5 days before returning them to 1g for one additional day. 5 days exposure to 3g during these early stages also caused increased bone formation, while gene expression analysis revealed a central network of regulatory genes (hes5, sox10, lgals3bp, egr1, edn1, fos, fosb, klf2, gadd45ba and socs3a whose expression was consistently affected by the transition from hyper- to normal gravity.

  3. Presenilin1 regulates histamine neuron development and behavior in zebrafish, danio rerio.

    Science.gov (United States)

    Sundvik, Maria; Chen, Yu-Chia; Panula, Pertti

    2013-01-23

    Modulatory neurotransmitters, including the histaminergic system, are essential in mediating cognitive functions affected in Alzheimer's disease (AD). The roles of disease genes associated with AD, most importantly the presenilin1 gene (psen1), are poorly understood. We studied the role of psen1 in plasticity of the brain histaminergic system using a novel psen1 mutant zebrafish, Danio rerio. We found that in psen1(-/-) zebrafish, the histaminergic system is altered throughout life. At 7 d postfertilization (dpf) the histamine neuron number was reduced in psen1(-/-) compared with wild-type (WT) fish; at 2 months of age the histamine neuron number was at the same level as that in WT fish. In 1-year-old zebrafish, the histamine neuron number was significantly increased in psen1(-/-) fish compared with WT fish. These changes in histamine neuron number were accompanied by changes in histamine-driven behaviors. Treatment with DAPT, a γ-secretase inhibitor, similarly interfered with the development of the histaminergic neurons. We also assessed the expression of γ-secretase-regulated Notch1a mRNA and β-catenin at different time points. Notch1a mRNA level was reduced in psen1(-/-) compared with WT fish, whereas β-catenin was slightly upregulated in the hypothalamus of psen1(-/-) compared with WT fish at 7 dpf. The results reveal a life-long brain plasticity in both the structure of the histaminergic system and its functions induced by altered Notch1a activity as a consequence of psen1 mutation. The new histaminergic neurons in aging zebrafish brain may arise as a result of phenotypic plasticity or represent newly differentiated stem cells.

  4. Development of the cardiac conduction system in zebrafish.

    Science.gov (United States)

    Poon, Kar-Lai; Liebling, Michael; Kondrychyn, Igor; Brand, Thomas; Korzh, Vladimir

    2016-07-01

    The cardiac conduction system (CCS) propagates and coordinates the electrical excitation that originates from the pacemaker cells, throughout the heart, resulting in rhythmic heartbeat. Its defects result in life-threatening arrhythmias and sudden cardiac death. Understanding of the factors involved in the formation and function of the CCS remains incomplete. By transposon assisted transgenesis, we have developed enhancer trap (ET) lines of zebrafish that express fluorescent protein in the pacemaker cells at the sino-atrial node (SAN) and the atrio-ventricular region (AVR), termed CCS transgenics. This expression pattern begins at the stage when the heart undergoes looping morphogenesis at 36 h post fertilization (hpf) and is maintained into adulthood. Using the CCS transgenics, we investigated the effects of perturbation of cardiac function, as simulated by either the absence of endothelium or hemodynamic stimulation, on the cardiac conduction cells, which resulted in abnormal compaction of the SAN. To uncover the identity of the gene represented by the EGFP expression in the CCS transgenics, we mapped the transposon integration sites on the zebrafish genome to positions in close proximity to the gene encoding fibroblast growth homologous factor 2a (fhf2a). Fhf2a is represented by three transcripts, one of which is expressed in the developing heart. These transgenics are useful tools for studies of development of the CCS and cardiac disease. PMID:27593944

  5. Zebrafish pten genes have overlapping and non-redundant functions in tumorigenesis and embryonic development.

    NARCIS (Netherlands)

    Faucherre, A.F.J.A.; Taylor, G.S.; Overvoorde, J.; Dixon, J.E.; den Hertog, J.

    2008-01-01

    In human cancer, PTEN (Phosphatase and TENsin homolog on chromosome 10, also referred to as MMAC1 and TEP1) is a frequently mutated tumor suppressor gene. We have used the zebrafish as a model to investigate the role of Pten in embryonic development and tumorigenesis. The zebrafish genome encodes tw

  6. Thyroid development in zebrafish lacking Taz

    NARCIS (Netherlands)

    Pappalardo, Andrea; Porreca, Immacolata; Caputi, Luigi; De Felice, Elena; Schulte-Merker, S.; Zannini, Mariastella; Sordino, Paolo

    2015-01-01

    Taz is a signal-responsive transcriptional coregulator implicated in several biological functions, from chondrogenesis to regulation of organ size. Less well studied, however, is its role in thyroid formation. Here, we explored the in vivo effects on thyroid development of morpholino (MO)-mediated k

  7. Transcriptome analysis of severe hypoxic stress during development in zebrafish

    Directory of Open Access Journals (Sweden)

    I.G. Woods

    2015-12-01

    Full Text Available Hypoxia causes critical cellular injury both in early human development and in adulthood, leading to cerebral palsy, stroke, and myocardial infarction. Interestingly, a remarkable phenomenon known as hypoxic preconditioning arises when a brief hypoxia exposure protects target organs against subsequent, severe hypoxia. Although hypoxic preconditioning has been demonstrated in several model organisms and tissues including the heart and brain, its molecular mechanisms remain poorly understood. Accordingly, we used embryonic and larval zebrafish to develop a novel vertebrate model for hypoxic preconditioning, and used this model to identify conserved hypoxia-regulated transcripts for further functional study as published in Manchenkov et al. (2015 in G3: Genes|Genomes|Genetics. In this Brief article, we provide extensive annotation for the most strongly hypoxia-regulated genes in zebrafish, including their human orthologs, and describe in detail the methods used to identify, filter, and annotate hypoxia-regulated transcripts for downstream functional and bioinformatic assays using the source data provided in Gene Expression Omnibus Accession GSE68473.

  8. In vivo wall shear measurements within the developing zebrafish heart.

    Directory of Open Access Journals (Sweden)

    R Aidan Jamison

    Full Text Available Physical forces can influence the embryonic development of many tissues. Within the cardiovascular system shear forces resulting from blood flow are known to be one of the regulatory signals that shape the developing heart. A key challenge in investigating the role of shear forces in cardiac development is the ability to obtain shear force measurements in vivo. Utilising the zebrafish model system we have developed a methodology that allows the shear force within the developing embryonic heart to be determined. Accurate wall shear measurement requires two essential pieces of information; high-resolution velocity measurements near the heart wall and the location and orientation of the heart wall itself. We have applied high-speed brightfield imaging to capture time-lapse series of blood flow within the beating heart between 3 and 6 days post-fertilization. Cardiac-phase filtering is applied to these time-lapse images to remove the heart wall and other slow moving structures leaving only the red blood cell movement. Using particle image velocimetry to calculate the velocity of red blood cells in different regions within the heart, and using the signal-to-noise ratio of the cardiac-phase filtered images to determine the boundary of blood flow, and therefore the position of the heart wall, we have been able to generate the necessary information to measure wall shear in vivo. We describe the methodology required to measure shear in vivo and the application of this technique to the developing zebrafish heart. We identify a reduction in shear at the ventricular-bulbar valve between 3 and 6 days post-fertilization and demonstrate that the shear environment of the ventricle during systole is constantly developing towards a more uniform level.

  9. Chondroitin / dermatan sulfate modification enzymes in zebrafish development.

    Directory of Open Access Journals (Sweden)

    Judith Habicher

    Full Text Available Chondroitin/dermatan sulfate (CS/DS proteoglycans consist of unbranched sulfated polysaccharide chains of repeating GalNAc-GlcA/IdoA disaccharide units, attached to serine residues on specific proteins. The CS/DS proteoglycans are abundant in the extracellular matrix where they have essential functions in tissue development and homeostasis. In this report a phylogenetic analysis of vertebrate genes coding for the enzymes that modify CS/DS is presented. We identify single orthologous genes in the zebrafish genome for the sulfotransferases chst7, chst11, chst13, chst14, chst15 and ust and the epimerase dse. In contrast, two copies were found for mammalian sulfotransferases CHST3 and CHST12 and the epimerase DSEL, named chst3a and chst3b, chst12a and chst12b, dsela and dselb, respectively. Expression of CS/DS modification enzymes is spatially and temporally regulated with a large variation between different genes. We found that CS/DS 4-O-sulfotransferases and 6-O-sulfotransferases as well as CS/DS epimerases show a strong and partly overlapping expression, whereas the expression is restricted for enzymes with ability to synthesize di-sulfated disaccharides. A structural analysis further showed that CS/DS sulfation increases during embryonic development mainly due to synthesis of 4-O-sulfated GalNAc while the proportion of 6-O-sulfated GalNAc increases in later developmental stages. Di-sulfated GalNAc synthesized by Chst15 and 2-O-sulfated GlcA/IdoA synthesized by Ust are rare, in accordance with the restricted expression of these enzymes. We also compared CS/DS composition with that of heparan sulfate (HS. Notably, CS/DS biosynthesis in early zebrafish development is more dynamic than HS biosynthesis. Furthermore, HS contains disaccharides with more than one sulfate group, which are virtually absent in CS/DS.

  10. Cerebellar development in the absence of Gbx function in zebrafish.

    Science.gov (United States)

    Su, Chen-Ying; Kemp, Hilary A; Moens, Cecilia B

    2014-02-01

    The midbrain-hindbrain boundary (MHB) is a well-known organizing center during vertebrate brain development. The MHB forms at the expression boundary of Otx2 and Gbx2, mutually repressive homeodomain transcription factors expressed in the midbrain/forebrain and anterior hindbrain, respectively. The genetic hierarchy of gene expression at the MHB is complex, involving multiple positive and negative feedback loops that result in the establishment of non-overlapping domains of Wnt1 and Fgf8 on either side of the boundary and the consequent specification of the cerebellum. The cerebellum derives from the dorsal part of the anterior-most hindbrain segment, rhombomere 1 (r1), which undergoes a distinctive morphogenesis to give rise to the cerebellar primordium within which the various cerebellar neuron types are specified. Previous studies in the mouse have shown that Gbx2 is essential for cerebellar development. Using zebrafish mutants we show here that in the zebrafish gbx1 and gbx2 are required redundantly for morphogenesis of the cerebellar primordium and subsequent cerebellar differentiation, but that this requirement is alleviated by knocking down Otx. Expression of fgf8, wnt1 and the entire MHB genetic program is progressively lost in gbx1-;gbx2- double mutants but is rescued by Otx knock-down. This rescue of the MHB genetic program depends on rescued Fgf signaling, however the rescue of cerebellar primordium morphogenesis is independent of both Gbx and Fgf. Based on our findings we propose a revised model for the role of Gbx in cerebellar development.

  11. Nestin is essential for zebrafish brain and eye development through control of progenitor cell apoptosis.

    Directory of Open Access Journals (Sweden)

    Hua-Ling Chen

    Full Text Available BACKGROUND: Nestin is expressed in neural progenitor cells (NPC of developing brain. Despite its wide use as an NPC marker, the function of nestin in embryo development is unclear. METHODOLOGY/PRINCIPAL FINDINGS: As nestin is conserved in zebrafish and its predicted sequence is clustered with the mammalian nestin orthologue, we used zebrafish as a model to investigate its role in embryogenesis. Injection of nestin morpholino (MO into fertilized eggs induced time- and dose-dependent brain and eye developmental defects. Nestin morphants exhibited characteristic morphological changes including small head, small eyes and hydrocephalus. Histological examinations show reduced hind- and mid-brain size, dilated ventricle, poorly organized retina and underdeveloped lens. Injection of control nestin MO did not induce brain or eye changes. Nestin MO injection reduced expression of ascl1b (achaete-scute complex-like 1b, a marker of NPCs, without affecting its distribution. Nestin MO did not influence Elavl3/4 (Embryonic lethal, abnormal vision, Drosophila-like 3/4 (a neuronal marker, or otx2 (a midbrain neuronal marker, but severely perturbed cranial motor nerve development and axon distribution. To determine whether the developmental defects are due to excessive NPC apoptosis and/or reduced NPC proliferation, we analyzed apoptosis by TUNEL assay and acridine orange staining and proliferation by BrdU incorporation, pcna and mcm5 expressions. Excessive apoptosis was noted in hindbrain and midbrain cells. Apoptotic signals were colocalized with ascl1b. Proliferation markers were not significantly altered by nestin MO. CONCLUSION/SIGNIFICANCE: These results suggest that nestin is essential for zebrafish brain and eye development probably through control of progenitor cell apoptosis.

  12. A dominant negative zebrafish Ahr2 partially protects developing zebrafish from dioxin toxicity.

    Directory of Open Access Journals (Sweden)

    Kevin A Lanham

    Full Text Available The toxicity by 2,3,7,8 tetrachlorodibenzo-p-dioxin (TCDD is thought to be caused by activation of the aryl hydrocarbon receptor (AHR. However, our understanding of how AHR activation by TCDD leads to toxic effects is poor. Ideally we would like to manipulate AHR activity in specific tissues and at specific times. One route to this is expressing dominant negative AHRs (dnAHRs. This work describes the construction and characterization of dominant negative forms of the zebrafish Ahr2 in which the C-terminal transactivation domain was either removed, or replaced with the inhibitory domain from the Drosophila engrailed repressor protein. One of these dnAhr2s was selected for expression from the ubiquitously active e2fα promoter in transgenic zebrafish. We found that these transgenic zebrafish expressing dnAhr2 had reduced TCDD induction of the Ahr2 target gene cyp1a, as measured by 7-ethoxyresorufin-O-deethylase activity. Furthermore, the cardiotoxicity produced by TCDD, pericardial edema, heart malformation, and reduced blood flow, were all mitigated in the zebrafish expressing the dnAhr2. These results provide in vivo proof-of-principle results demonstrating the effectiveness of dnAHRs in manipulating AHR activity in vivo, and demonstrating that this approach can be a means for blocking TCDD toxicity.

  13. Zebrafish foxo3b negatively regulates canonical Wnt signaling to affect early embryogenesis.

    Directory of Open Access Journals (Sweden)

    Xun-wei Xie

    Full Text Available FOXO genes are involved in many aspects of development and vascular homeostasis by regulating cell apoptosis, proliferation, and the control of oxidative stress. In addition, FOXO genes have been showed to inhibit Wnt/β-catenin signaling by competing with T cell factor to bind to β-catenin. However, how important of this inhibition in vivo, particularly in embryogenesis is still unknown. To demonstrate the roles of FOXO genes in embryogenesis will help us to further understand their relevant physiological functions. Zebrafish foxo3b gene, an orthologue of mammalian FOXO3, was expressed maternally and distributed ubiquitously during early embryogenesis and later restricted to brain. After morpholino-mediated knockdown of foxo3b, the zebrafish embryos exhibited defects in axis and neuroectoderm formation, suggesting its critical role in early embryogenesis. The embryo-developmental marker gene staining at different stages, phenotype analysis and rescue assays revealed that foxo3b acted its role through negatively regulating both maternal and zygotic Wnt/β-catenin signaling. Moreover, we found that foxo3b could interact with zebrafish β-catenin1 and β-catenin2 to suppress their transactivation in vitro and in vivo, further confirming its role relevant to the inhibition of Wnt/β-catenin signaling. Taken together, we revealed that foxo3b played a very important role in embryogenesis and negatively regulated maternal and zygotic Wnt/β-catenin signaling by directly interacting with both β-catenin1 and β-catenin2. Our studies provide an in vivo model for illustrating function of FOXO transcription factors in embryogenesis.

  14. von Hippel-Lindau gene plays a role during zebrafish pronephros development.

    Science.gov (United States)

    Chen, Yau-Hung; Chang, Chiung-Fang; Lai, Yen-Yu; Sun, Chiao-Yin; Ding, Yu-Ju; Tsai, Jen-Ning

    2015-11-01

    von Hippel-Lindau (pVHL)-mediated ubiquitination of HIF-1α plays a central role in the cellular responses to changes in oxygen availability. In the present study, using zebrafish as a model, we showed that specific knockdown of endogenous vhl leads to pronephros malformation and renal failure. Knockdown of vhl resulted in abnormal kidney development, including curved and cystic pronephric tubule or/and cystic and atrophic glomerulus. Co-injecting capped vhl messenger RNA (mRNA) partially rescued pronephros morphant phenotype, confirming the specificity of the morpholino oligonucleotide (MO)-induced pronephric defects. In keeping with the pronephros phenotype, renal function was affected as well in vhl morphants. Dextran clearance abilities of vhl morphants were significantly reduced as compared with those of control embryos. Further analysis indicated that glomerular integrity is impaired in vhl morphants, while the organization of pronephric duct was minimally affected. Vhl morphants display global increased vegf signaling and angiogenesis. In addition, we found that vhl morphants displayed elevated expression of vegfa in podocytes and increased angiogenesis at pronephric glomerulus and the nearby vessels. Treatment of vegf inducer to embryos also caused pronephros phenotype resembling vhl morphants, further supporting that increased vegfa signaling contribute to the pronephros morphant phenotype. Our study establishes the zebrafish as an alternative vertebrate model system for studying Vhl function during kidney development.

  15. Dihydrofolate reductase is required for the development of heart and outflow tract in zebrafish

    Institute of Scientific and Technical Information of China (English)

    Shuna Sun; Yonghao Gui; Qiu Jiang; Houyan Song

    2011-01-01

    Folic acid is very important for embryonic development and folic acid inhibition can cause congenital heart defects in vertebrates.Dihydrofolate reductase (DHFR) is a key enzyme in folate-mediated metabolism.The dysfunction of DHFR disrupts the key biological processes which folic acid participates in.DHFR gene is conserved during vertebrate evolution.It is important to investigate the roles of DHFR in cardiac developments.In this study,we showed that DHFR knockdown resulted in the abnormal developments of zebrafish embryos in the early stages.Obvious malformations in heart and outflow tract (OFT) were also observed in DHFR knockdown embryos.DHFR overexpression rescued the abnormal phenotypes in the DHFR knockdown group.DHFR knockdown had negative impacts on the expressions of NKX2.5 (NK2 transcription factor-related 5),MEF2C (myocyte-specific enhancer factor 2C),TBX20 (T-box 20),and TBX1 (T-box 1) which are important transcriptional factors during cardiac development process,while DHFR overexpression had positive effects.DHFR was required for Hedgehog pathway.DHFR knockdown caused reduced cell proliferation and increased apoptosis,while its overexpression promoted cell proliferation and inhibited apoptosis.Taken together,our study suggested that DHFR plays crucial roles in the development of heart and OFT in zebrafish by regulating gene transcriptions and affecting cell proliferation and apoptosis.

  16. Differences in sexual development in inbred and outbred zebrafish (Danio rerio) and implications for chemical testing.

    Science.gov (United States)

    Brown, A Ross; Bickley, Lisa K; Ryan, Thomas A; Paull, Gregory C; Hamilton, Patrick B; Owen, Stewart F; Sharpe, Alan D; Tyler, Charles R

    2012-05-15

    Outbred laboratory animal strains used in ecotoxicology are intended to represent wild populations. However, breeding history may vary considerably between strains, driving differences in genetic variation and phenotypes used for assessing effects of chemical exposure. We compared a range of phenotypic endpoints in zebrafish from four different "breeding treatments" comprising a Wild Indian Karyotype (WIK) zebrafish strain and a WIK/Wild strain with three levels of inbreeding (F(IT)=n, n+0.25, n+0.375) in a new Fish Sexual Development Test (FSDT). There were no differences between treatments in terms of egg viability, hatch success or fry survival. However, compared with WIKs, WIK/Wild hybrids were significantly larger in size, with more advanced gonadal (germ cell) development at the end of the test (63 days post fertilisation). Increasing the levels of inbreeding in the related WIK/Wild lines did not affect body size, but there was a significant male-bias (72%) in the most inbred line (F(IT)=n+0.375). Conversely, in the reference WIK strain there was a significant female-bias in the population (80% females). Overall, our results support the use of outbred zebrafish strains in the FSDT, where one of the core endpoints is sex ratio. Despite increased variance (and reduced statistical power) for some endpoints, WIK/Wild outbreds (F(IT)=n) met all acceptance criteria for controls in this test, whereas WIKs failed to comply with tolerance limits for sex ratio (30-70% females). Sexual development was also more advanced in WIK/Wild outbreds (cf. WIKs), providing greater scope for detection of developmental reproductive toxicity following chemical exposure.

  17. Zebrafish ift57, ift88, and ift172 intraflagellar transport mutants disrupt cilia but do not affect hedgehog signaling.

    Science.gov (United States)

    Lunt, Shannon C; Haynes, Tony; Perkins, Brian D

    2009-07-01

    Cilia formation requires intraflagellar transport (IFT) proteins. Recent studies indicate that mammalian Hedgehog (Hh) signaling requires cilia. It is unclear, however, if the requirement for cilia and IFT proteins in Hh signaling represents a general rule for all vertebrates. Here we examine zebrafish ift57, ift88, and ift172 mutants and morphants for defects in Hh signaling. Although ift57 and ift88 mutants and morphants contained residual maternal protein, the cilia were disrupted. In contrast to previous genetic studies in mouse, mutations in zebrafish IFT genes did not affect the expression of Hh target genes in the neural tube and forebrain and had no quantitative effect on Hh target gene expression. Zebrafish IFT mutants also exhibited no dramatic changes in the craniofacial skeleton, somite formation, or motor neuron patterning. Thus, our data indicate the requirement for cilia in the Hh signal transduction pathway may not represent a universal mechanism in vertebrates.

  18. Translating discovery in zebrafish pancreatic development to human pancreatic cancer: biomarkers, targets, pathogenesis, and therapeutics.

    Science.gov (United States)

    Yee, Nelson S; Kazi, Abid A; Yee, Rosemary K

    2013-06-01

    Abstract Experimental studies in the zebrafish have greatly facilitated understanding of genetic regulation of the early developmental events in the pancreas. Various approaches using forward and reverse genetics, chemical genetics, and transgenesis in zebrafish have demonstrated generally conserved regulatory roles of mammalian genes and discovered novel genetic pathways in exocrine pancreatic development. Accumulating evidence has supported the use of zebrafish as a model of human malignant diseases, including pancreatic cancer. Studies have shown that the genetic regulators of exocrine pancreatic development in zebrafish can be translated into potential clinical biomarkers and therapeutic targets in human pancreatic adenocarcinoma. Transgenic zebrafish expressing oncogenic K-ras and zebrafish tumor xenograft model have emerged as valuable tools for dissecting the pathogenetic mechanisms of pancreatic cancer and for drug discovery and toxicology. Future analysis of the pancreas in zebrafish will continue to advance understanding of the genetic regulation and biological mechanisms during organogenesis. Results of those studies are expected to provide new insights into how aberrant developmental pathways contribute to formation and growth of pancreatic neoplasia, and hopefully generate valid biomarkers and targets as well as effective and safe therapeutics in pancreatic cancer.

  19. Malformation of certain brain blood vessels caused by TCDD activation of Ahr2/Arnt1 signaling in developing zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Teraoka, Hiroki, E-mail: hteraoka@rakuno.ac.jp [School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501 (Japan); Ogawa, Akira [School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501 (Japan); Kubota, Akira [School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501 (Japan); Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA (United States); Stegeman, John J. [Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA (United States); Peterson, Richard E. [School of Pharmacy, University of Wisconsin, Madison, WI (United States); Hiraga, Takeo [School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501 (Japan)

    2010-08-15

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) causes various signs of toxicity in early life stages of vertebrates through activation of the aryl hydrocarbon receptor (AHR). The AHR also plays important roles in normal development in mice, and AHR{sup -/-} mice show abnormal development of vascular structures in various blood vessels. Our previous studies revealed that Ahr type 2 (Ahr2) activation by TCDD and {beta}-naphthoflavone (BNF) caused a significant decrease in blood flow in the dorsal midbrain of zebrafish embryos. Here we report effects of TCDD exposure on the morphology of some blood vessels in the head of developing zebrafish. TCDD caused concentration-dependent anatomical rearrangements in the shape of the prosencephalic artery in zebrafish larvae. In contrast, no major vascular defects were recognized in the trunk and tail regions following exposure to TCDD at least at the concentrations used. Essentially, the same observations were also confirmed in BNF-exposed larvae. Knock-down of either Ahr2 or Ahr nuclear translocator type 1 (Arnt1) by morpholino oligonucleotides (MOs) protected larvae against abnormal shape of the prosencephalic artery caused by TCDD and BNF. On the other hand, knock-down of Ahr2 or Arnt1 in vehicle-exposed zebrafish larvae had no clear effect on morphology of the prosencephalic artery or trunk vessels. Ascorbic acid, an antioxidant, protected against the TCDD-induced decrease in blood flow through the prosencephalic artery, but not the abnormal morphological changes in the shape of this artery. These results indicate that activation of Ahr2/Arnt1 pathway by TCDD and BNF affects the shape of certain blood vessels in the brain of developing zebrafish.

  20. Toxic effects of perfluorononanoic acid on the development of Zebrafish (Danio rerio) embryos.

    Science.gov (United States)

    Liu, Hui; Sheng, Nan; Zhang, Wei; Dai, Jiayin

    2015-06-01

    Perfluorononanoic acid (PFNA) is a nine-carbon perfluoroalkyl acid widely used in industrial and domestic products. It is a persistent organic pollutant found in the environment as well as in the tissues of humans and wildlife. There is a concern that this chemical might be a developmental toxicant and teratogen in various ecosystems. In the present study, the toxic effects of PFNA were evaluated in zebrafish (Danio rerio) embryos. One hour post-fertilization embryos were treated with 0, 25, 50, 100, 200, 300, 350, and 400 μmol/L PFNA for 96 hr in 6-well plates. Developmental phenotypes and hatching rates were observed and recorded. Nineteen genes related to oxidative stress and lipid metabolism were examined using Quantitative RT-PCR and confirmed by whole mount in situ hybridization (WISH). Results showed that PFNA delayed the development of zebrafish embryos, reduced the hatching rate, and caused ventricular edema and malformation of the spine. In addition, the amount of reactive oxygen species in the embryo bodies increased significantly after exposure to PFNA compared with that of the control group. The Quantitative RT-PCR and WISH experiments demonstrated that mRNA expression of the lfabp and ucp2 genes increased significantly while that of sod1 and mt-nd1 decreased significantly after PFNA exposure. The mRNA expression levels of gpx1 and mt-atp6 decreased significantly in the high concentration group. However, the mRNA expression levels of both ppara and pparg did not show any significant variation after exposure. These findings suggest that PFNA affected the development of zebrafish embryos at relatively low concentrations. PMID:26040728

  1. Chemical genetic effects of Sargassum wightii during embryonic development in zebrafish

    Directory of Open Access Journals (Sweden)

    Rajaretinam Rajesh Kannan

    2015-01-01

    Conclusions: This study demonstrated that the phytomolecules from S. wightii exhibited potential molecular switches on the developmental process, which might have significant role in understanding the development based chemical genetic studies in zebrafish.

  2. Effects of acoustic levitation on the development of zebrafish, Danio rerio, embryos.

    Science.gov (United States)

    Sundvik, Maria; Nieminen, Heikki J; Salmi, Ari; Panula, Pertti; Hæggström, Edward

    2015-01-01

    Acoustic levitation provides potential to characterize and manipulate material such as solid particles and fluid in a wall-less environment. While attempts to levitate small animals have been made, the biological effects of such levitation have been scarcely documented. Here, our goal was to explore if zebrafish embryos can be levitated (peak pressures at the pressure node and anti-node: 135 dB and 144 dB, respectively) with no effects on early development. We levitated the embryos (n = 94) at 2-14 hours post fertilization (hpf) for 1000 (n = 47) or 2000 seconds (n = 47). We compared the size and number of trunk neuromasts and otoliths in sonicated samples to controls (n = 94), and found no statistically significant differences (p > 0.05). While mortality rate was lower in the control group (22.3%) compared to that in the 1000 s (34.0%) and 2000 s (42.6%) levitation groups, the differences were statistically insignificant (p > 0.05). The results suggest that acoustic levitation for less than 2000 sec does not interfere with the development of zebrafish embryos, but may affect mortality rate. Acoustic levitation could potentially be used as a non-contacting wall-less platform for characterizing and manipulating vertebrae embryos without causing major adverse effects to their development. PMID:26337364

  3. The Cell Adhesion-associated Protein Git2 Regulates Morphogenetic Movements during Zebrafish Embryonic Development

    OpenAIRE

    Yu, Jianxin A.; Foley, Fiona C.; Amack, Jeffrey D.; Christopher E Turner

    2010-01-01

    Signaling through cell adhesion complexes plays a critical role in coordinating cytoskeletal remodeling necessary for efficient cell migration. During embryonic development, normal morphogenesis depends on a series of concerted cell movements; but the roles of cell adhesion signaling during these movements are poorly understood. The transparent zebrafish embryo provides an excellent system to study cell migration during development. Here, we have identified zebrafish git2a and git2b, two new ...

  4. Cytoplasm Affects Embryonic Development

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ Recent studies by CAS researchers furnish strong evidence that a fertilized egg's nucleus isn't the sole site of control for an embryo's development. A research team headed by Prof. Zhu Zuoyan from the CAS Institute of Hydrobiology in Wuhan discovered that cytoplasm affects the number of vertebrae in cloned offspring created when nuclei from one fish genus were transplanted to enucleated eggs of another.

  5. Development of Alginate Microspheres Containing Chuanxiong for Oral Administration to Adult Zebrafish

    OpenAIRE

    Li-Jen Lin; Chung-Jen Chiang; Yun-Peng Chao; Shulhn-Der Wang; Yu-Ting Chiou; Han-Yu Wang; Shung-Te Kao

    2016-01-01

    Oral administration of Traditional Chinese Medicine (TCM) by patients is the common way to treat health problems. Zebrafish emerges as an excellent animal model for the pharmacology investigation. However, the oral delivery system of TCM in zebrafish has not been established so far. This issue was addressed by development of alginate microparticles for oral delivery of chuanxiong, a TCM that displays antifibrotic and antiproliferative effects on hepatocytes. The delivery microparticles were p...

  6. Identification of estrogen target genes during zebrafish embryonic development through transcriptomic analysis.

    Directory of Open Access Journals (Sweden)

    Ruixin Hao

    Full Text Available Estrogen signaling is important for vertebrate embryonic development. Here we have used zebrafish (Danio rerio as a vertebrate model to analyze estrogen signaling during development. Zebrafish embryos were exposed to 1 µM 17β-estradiol (E2 or vehicle from 3 hours to 4 days post fertilization (dpf, harvested at 1, 2, 3 and 4 dpf, and subjected to RNA extraction for transcriptome analysis using microarrays. Differentially expressed genes by E2-treatment were analyzed with hierarchical clustering followed by biological process and tissue enrichment analysis. Markedly distinct sets of genes were up and down-regulated by E2 at the four different time points. Among these genes, only the well-known estrogenic marker vtg1 was co-regulated at all time points. Despite this, the biological functional categories targeted by E2 were relatively similar throughout zebrafish development. According to knowledge-based tissue enrichment, estrogen responsive genes were clustered mainly in the liver, pancreas and brain. This was in line with the developmental dynamics of estrogen-target tissues that were visualized using transgenic zebrafish containing estrogen responsive elements driving the expression of GFP (Tg(5xERE:GFP. Finally, the identified embryonic estrogen-responsive genes were compared to already published estrogen-responsive genes identified in male adult zebrafish (Gene Expression Omnibus database. The expressions of a few genes were co-regulated by E2 in both embryonic and adult zebrafish. These could potentially be used as estrogenic biomarkers for exposure to estrogens or estrogenic endocrine disruptors in zebrafish. In conclusion, our data suggests that estrogen effects on early embryonic zebrafish development are stage- and tissue- specific.

  7. White Adipose Tissue Development in Zebrafish Is Regulated by Both Developmental Time and Fish Size

    OpenAIRE

    Imrie, Dru; Sadler, Kirsten C.

    2010-01-01

    Adipocytes are heterogeneous. Whether their differences are attributed to anatomical location or to different developmental origins is unknown. We investigated whether development of different white adipose tissue (WAT) depots in zebrafish occurs simultaneously or whether adipogenesis is influenced by the metabolic demands of growing fish. Like mammals, zebrafish adipocyte morphology is distinctive and adipocytes express cell-specific markers. All adults contain WAT in pancreatic, subcutaneou...

  8. Retinoic acid is necessary for development of the ventral retina in zebrafish.

    OpenAIRE

    Marsh-Armstrong, N; McCaffery, P; Gilbert, W; Dowling, J E; Dräger, U C

    1994-01-01

    In the embryonic zebrafish retina, as in other vertebrates, retinoic acid is synthesized from retinaldehyde by two different dehydrogenases, one localized dorsally, the other primarily ventrally. Early in eye development only the ventral enzyme is present. Citral competitively inhibits the ventral enzyme in vitro and decreases the production of retinoic acid in the ventral retina in vivo. Treatment of neurula-stage zebrafish embryos with citral during the formation of the eye primordia result...

  9. The Zebrafish, a Novel Model Organism for Screening Compounds Affecting Acute and Chronic Ethanol-Induced Effects.

    Science.gov (United States)

    Tran, S; Facciol, A; Gerlai, R

    2016-01-01

    Alcohol addiction is a major unmet medical and economic issue for which very few efficacious pharmacological treatment options are currently available. The development and identification of new compounds and drugs to treat alcohol addiction is hampered by the high costs and low amenability of traditional laboratory rodents to high-throughput behavioral screens. The zebrafish represents an excellent compromise between systems complexity and practical simplicity by overcoming many limitations inherent in these rodent models. In this chapter, we review current advances in the behavioral and neurochemical characterization of ethanol-induced changes in zebrafish. We also discuss the basic principles and methods of and the most recent advances in using paradigms with which one can screen for compounds altering acute and chronic ethanol-induced effects in zebrafish. PMID:27055623

  10. Dynamic phosphorylation of Histone Deacetylase 1 by Aurora kinases during mitosis regulates zebrafish embryos development.

    Science.gov (United States)

    Loponte, Sara; Segré, Chiara V; Senese, Silvia; Miccolo, Claudia; Santaguida, Stefano; Deflorian, Gianluca; Citro, Simona; Mattoscio, Domenico; Pisati, Federica; Moser, Mirjam A; Visintin, Rosella; Seiser, Christian; Chiocca, Susanna

    2016-01-01

    Histone deacetylases (HDACs) catalyze the removal of acetyl molecules from histone and non-histone substrates playing important roles in chromatin remodeling and control of gene expression. Class I HDAC1 is a critical regulator of cell cycle progression, cellular proliferation and differentiation during development; it is also regulated by many post-translational modifications (PTMs). Herein we characterize a new mitosis-specific phosphorylation of HDAC1 driven by Aurora kinases A and B. We show that this phosphorylation affects HDAC1 enzymatic activity and it is critical for the maintenance of a proper proliferative and developmental plan in a complex organism. Notably, we find that Aurora-dependent phosphorylation of HDAC1 regulates histone acetylation by modulating the expression of genes directly involved in the developing zebrafish central nervous system. Our data represent a step towards the comprehension of HDAC1 regulation by its PTM code, with important implications in unravelling its roles both in physiology and pathology. PMID:27458029

  11. Thyroid Hormone Disruption by Water-Accommodated Fractions of Crude Oil and Sediments Affected by the Hebei Spirit Oil Spill in Zebrafish and GH3 Cells.

    Science.gov (United States)

    Kim, Sujin; Sohn, Ju Hae; Ha, Sung Yong; Kang, Habyeong; Yim, Un Hyuk; Shim, Won Joon; Khim, Jong Seong; Jung, Dawoon; Choi, Kyungho

    2016-06-01

    A crude oil and the coastal sediments that were affected by the Hebei Spirit Oil Spill (HSOS) of Taean, Korea were investigated for thyroid hormone disruption potentials. Water-accommodated fractions (WAFs) of Iranian Heavy crude oil, the major oil type of HSOS, and the porewater or leachate of sediment samples collected along the coast line of Taean were tested for thyroid disruption using developing zebrafish and/or rat pituitary GH3 cells. Major polycyclic aromatic hydrocarbons (PAHs) and their alkylated forms were also measured from the test samples. In zebrafish larvae, significant decreases in whole-body thyroxine (T4) and triiodothyronine (T3) levels, along with transcriptional changes of thyroid regulating genes, were observed following 5 day exposure to WAFs. In GH3 cells, transcriptions of thyroid regulating genes were influenced following the exposure to the sediment samples, but the pattern of the regulatory change was different from those observed from the WAFs. Composition of PAHs and their alkylated homologues in the WAFs could partly explain this difference. Our results clearly demonstrate that WAFs of crude oil can disrupt thyroid function of larval zebrafish. Sediment samples also showed thyroid disrupting potentials in the GH3 cell, even several years after the oil spill. Long-term ecosystem consequences of thyroid hormone disruption due to oil spill deserve further investigation. PMID:27144452

  12. Vascular toxicity of silver nanoparticles to developing zebrafish (Danio rerio).

    Science.gov (United States)

    Gao, Jiejun; Mahapatra, Cecon T; Mapes, Christopher D; Khlebnikova, Maria; Wei, Alexander; Sepúlveda, Marisol S

    2016-11-01

    Nanoparticles (NPs, 1-100 nm) can enter the environment and result in exposure to humans and other organisms leading to potential adverse health effects. The aim of the present study is to evaluate the effects of early life exposure to polyvinylpyrrolidone-coated silver nanoparticles (PVP-AgNPs, 50 nm), particularly with respect to vascular toxicity on zebrafish embryos and larvae (Danio rerio). Previously published data has suggested that PVP-AgNP exposure can inhibit the expression of genes within the vascular endothelial growth factor (VEGF) signaling pathway, leading to delayed and abnormal vascular development. Here, we show that early acute exposure (0-12 h post-fertilization, hpf) of embryos to PVP-AgNPs at 1 mg/L or higher results in a transient, dose-dependent induction in VEGF-related gene expression that returns to baseline levels at hatching (72 hpf). Hatching results in normoxia, negating the effects of AgNPs on vascular development. Interestingly, increased gene transcription was not followed by the production of associated proteins within the VEGF pathway, which we attribute to NP-induced stress in the endoplasmic reticulum (ER). The impaired translation may be responsible for the observed delays in vascular development at later stages, and for smaller larvae size at hatching. Silver ion (Ag(+)) concentrations were < 0.001 mg/L at all times, with no significant effects on the VEGF pathway. We propose that PVP-AgNPs temporarily delay embryonic vascular development by interfering with oxygen diffusion into the egg, leading to hypoxic conditions and ER stress. PMID:27499207

  13. Teratogenic, bioenergetic, and behavioral effects of exposure to total particulate matter on early development of zebrafish (Danio rerio) are not mimicked by nicotine

    Science.gov (United States)

    Massarsky, Andrey; Jayasundara, Nishad; Bailey, Jordan M.; Oliveri, Anthony N.; Levin, Edward D.; Prasad, G.L.; Di Giulio, Richard T.

    2016-01-01

    Cigarette smoke has been associated with a number of pathologies; however, the mechanisms leading to developmental effects are yet to be fully understood. The zebrafish embryo is regarded as a ‘bridge model’; however, not many studies examined its applicability to cigarette smoke toxicity. This study examined the effects of total particulate matter (TPM) from 3R4F reference cigarettes on the early development of zebrafish (Danio rerio). Zebrafish embryos were exposed to two concentrations of TPM (0.4 and 1.4 μg/mL equi-nicotine units) or nicotine at equivalent doses. The exposures began at 2 h post-fertilization (hpf) and lasted until 96 hpf. Several physiological parameters were assessed during or after the exposure. We show that TPM increased mortality, delayed hatching, and increased the incidence of deformities in zebrafish. TPM exposure also increased the incidence of hemorrhage and disrupted the angiogenesis of the major vessels in the brain. Moreover, TPM exposure reduced the larval body length, decreased the heart rate, and reduced the metabolic rate. Biomarkers of xenobiotic metabolism and oxidative stress were also affected. TPM-exposed zebrafish also differed behaviorally: at 24 hpf the embryos had a higher frequency of spontaneous contractions and at 144 hpf the larvae displayed swimming hyperactivity. This study demonstrates that TPM disrupts several aspects of early development in zebrafish. The effects reported for TPM were not attributable to nicotine, since embryos treated with nicotine alone did not differ significantly from the control group. Collectively, our work illustrates the utility of zebrafish as an alternative model to evaluate the toxic effects of cigarette smoke constituents. PMID:26391568

  14. Teratogenic, bioenergetic, and behavioral effects of exposure to total particulate matter on early development of zebrafish (Danio rerio) are not mimicked by nicotine.

    Science.gov (United States)

    Massarsky, Andrey; Jayasundara, Nishad; Bailey, Jordan M; Oliveri, Anthony N; Levin, Edward D; Prasad, G L; Di Giulio, Richard T

    2015-01-01

    Cigarette smoke has been associated with a number of pathologies; however, the mechanisms leading to developmental effects are yet to be fully understood. The zebrafish embryo is regarded as a 'bridge model'; however, not many studies examined its applicability to cigarette smoke toxicity. This study examined the effects of total particulate matter (TPM) from 3R4F reference cigarettes on the early development of zebrafish (Danio rerio). Zebrafish embryos were exposed to two concentrations of TPM (0.4 and 1.4 μg/mL equi-nicotine units) or nicotine at equivalent doses. The exposures began at 2h post-fertilization (hpf) and lasted until 96 hpf. Several physiological parameters were assessed during or after the exposure. We show that TPM increased mortality, delayed hatching, and increased the incidence of deformities in zebrafish. TPM exposure also increased the incidence of hemorrhage and disrupted the angiogenesis of the major vessels in the brain. Moreover, TPM exposure reduced the larval body length, decreased the heart rate, and reduced the metabolic rate. Biomarkers of xenobiotic metabolism and oxidative stress were also affected. TPM-exposed zebrafish also differed behaviorally: at 24 hpf the embryos had a higher frequency of spontaneous contractions and at 144 hpf the larvae displayed swimming hyperactivity. This study demonstrates that TPM disrupts several aspects of early development in zebrafish. The effects reported for TPM were not attributable to nicotine, since embryos treated with nicotine alone did not differ significantly from the control group. Collectively, our work illustrates the utility of zebrafish as an alternative model to evaluate the toxic effects of cigarette smoke constituents.

  15. Otx but not Mitf transcription factors are required for zebrafish retinal pigment epithelium development.

    Directory of Open Access Journals (Sweden)

    Brandon M Lane

    Full Text Available Otx and Mitf transcription factors have been implicated in the development of the retinal pigmented epithelium (RPE, but the relationship between these factors and their specific roles in the development of the RPE have not been fully defined. The role of the three Otx transcription factors (Otx1a, Otx1b, and Otx2 and two Mitf transcription factors (Mitfa and Mitfb in the development of the zebrafish RPE was explored in these experiments. The loss of Otx activity through morpholino knockdown produced variable eye defects, ranging from delayed RPE pigmentation to severe coloboma, depending on the combination of Otx factors that were targeted. Expression analysis through in situ hybridization demonstrates that otx transcription factors are necessary for the proper expression of mitfa and mitfb while Mitf transcription factors are not required for the expression of otx genes. Surprisingly, the loss of Mitf activity in mitfa, mitfb, or double mitf mutant zebrafish had no effect on RPE pigmentation or development. Moreover, histological analysis revealed that retinal lamination is unaffected in mitf mutants, as well as in otx morphants, even in regions lacking RPE. Otx and Mitf combined loss of function experiments suggest that mitfa and mitfb may still influence zebrafish RPE development. This is further supported by the ability of mitfa to induce pigmentation in the zebrafish retina when misexpressed. These findings suggest that one or more Otx targets in addition to mitfa and mitfb, possibly another mitf family member, are necessary for development of the RPE in zebrafish.

  16. Dre-miR-2188 targets Nrp2a and mediates proper intersegmental vessel development in zebrafish embryos.

    Directory of Open Access Journals (Sweden)

    Ana R Soares

    Full Text Available BACKGROUND: MicroRNAs (miRNAs are a class of small RNAs that are implicated in the control of eukaryotic gene expression by binding to the 3'UTR of target mRNAs. Several algorithms have been developed for miRNA target prediction however, experimental validation is still essential for the correct identification of miRNA targets. We have recently predicted that Neuropilin2a (Nrp2a, a vascular endothelial growth factor receptor which is essential for normal developmental angiogenesis in zebrafish, is a dre-miR-2188 target. METHODOLOGY: Here we show that dre-miR-2188 targets the 3'-untranslated region (3'UTR of Nrp2a mRNA and is implicated in proper intersegmental vessel development in vivo. Over expression of miR-2188 in zebrafish embryos down regulates Nrp2a expression and results in intersegmental vessel disruption, while its silencing increases Nrp2a expression and intersegmental vessel sprouting. An in vivo GFP sensor assay based on a fusion between the GFP coding region and the Nrp2a 3'UTR confirms that miR-2188 binds to the 3'UTR of Nrp2a and inhibits protein translation. CONCLUSIONS: We demonstrate that miR-2188 targets Nrp2a and affects intersegmental vessel development in zebrafish embryos.

  17. Distinct roles of Shh and Fgf signaling in regulating cell proliferation during zebrafish pectoral fin development

    Directory of Open Access Journals (Sweden)

    Neumann Carl J

    2008-09-01

    Full Text Available Abstract Background Cell proliferation in multicellular organisms must be coordinated with pattern formation. The major signaling pathways directing pattern formation in the vertebrate limb are well characterized, and we have therefore chosen this organ to examine the interaction between proliferation and patterning. Two important signals for limb development are members of the Hedgehog (Hh and Fibroblast Growth Factor (Fgf families of secreted signaling proteins. Sonic hedgehog (Shh directs pattern formation along the anterior/posterior axis of the limb, whereas several Fgfs in combination direct pattern formation along the proximal/distal axis of the limb. Results We used the genetic and pharmacological amenability of the zebrafish model system to dissect the relative importance of Shh and Fgf signaling in regulating proliferation during development of the pectoral fin buds. In zebrafish mutants disrupting the shh gene, proliferation in the pectoral fin buds is initially normal, but later is strongly reduced. Correlating with this reduction, Fgf signaling is normal at early stages, but is later lost in shh mutants. Furthermore, pharmacological inhibition of Hh signaling for short periods has little effect on either Fgf signaling, or on expression of G1- and S-phase cell-cycle genes, whereas long periods of inhibition lead to the downregulation of both. In contrast, even short periods of pharmacological inhibition of Fgf signaling lead to strong disruption of proliferation in the fin buds, without affecting Shh signaling. To directly test the ability of Fgf signaling to regulate proliferation in the absence of Shh signaling, we implanted beads soaked with Fgf protein into shh mutant fin buds. We find that Fgf-soaked beads rescue proliferation in the pectoral find buds of shh mutants, indicating that Fgf signaling is sufficient to direct proliferation in zebrafish fin buds in the absence of Shh. Conclusion Previous studies have shown that both

  18. Selenium status affects selenoprotein expression, reproduction, and F₁ generation locomotor activity in zebrafish (Danio rerio).

    Science.gov (United States)

    Penglase, Sam; Hamre, Kristin; Rasinger, Josef D; Ellingsen, Staale

    2014-06-14

    Se is an essential trace element, and is incorporated into selenoproteins which play important roles in human health. Mammalian selenoprotein-coding genes are often present as paralogues in teleost fish, and it is unclear whether the expression patterns or functions of these fish paralogues reflect their mammalian orthologues. Using the model species zebrafish (Danio rerio; ZF), we aimed to assess how dietary Se affects key parameters in Se metabolism and utilisation including glutathione peroxidase (GPX) activity, the mRNA expression of key Se-dependent proteins (gpx1a, gpx1b, sepp1a and sepp1b), oxidative status, reproductive success and F1 generation locomotor activity. From 27 d until 254 d post-fertilisation, ZF were fed diets with graded levels of Se ranging from deficient ( levels were lowest when dietary Se levels (0·3 mg/kg) resulted in the maximum growth of ZF, and a proposed bimodal mechanism in response to Se status below and above this dietary Se level was identified. The expression of the sepp1 paralogues differed, with only sepp1a responding to Se status. High dietary Se supplementation (30 mg/kg) decreased reproductive success, while the offspring of ZF fed above 0·3 mg Se/kg diet had lower locomotor activity than the other groups. Overall, the novel finding of low selenoprotein expression and activity coinciding with maximum body growth suggests that even small Se-induced variations in redox status may influence cellular growth rates.

  19. Global and gene specific DNA methylation changes during zebrafish development

    Science.gov (United States)

    DNA methylation is dynamic through the life of an organism. In this study, we measured the global and gene specific DNA methylation changes in zebrafish at different developmental stages. We found that the methylation percentage of cytosines was 11.75 ± 0.96% in 3.3 hour post fertilization (hpf) zeb...

  20. Expression and function on embryonic development of lissencephaly-1 genes in zebrafish

    Institute of Scientific and Technical Information of China (English)

    Chengfu Sun; Mafei Xu; Zhen Xing; Zhili Wu; Yiping Li; Tsaiping Li; Mujun Zhao

    2009-01-01

    Lissencephaly is a severe disease characterized by brain malformation. The main causative gene of lissencephaly is LIS1. Mutation or deletion of LIS1 leads to prolifer-ation and migration deficiency of neurons in brain devel-opment. However, little is known about its biological function in embryonic development. In this article, we identified the expression patterns of zebrafish LIS1 gene and investigated its function in embryonic development. We demonstrated that zebrafish consisted of two LIS1 genes, LIS1a and LIS1b. Bioinformatics analysis revealed that LIS1 genes were conserved in evolution both in protein sequences and genomic structures. The expression patterns of zebrafish LIS1a and LIS1b showed that both transcripts were ubiquitously expressed at all embryonic developmental stages and in adult tissues examined. At the protein level, the LIS1 products mainly exist in brain tissue and in embryos at early stages as shown by western blotting analysis. The whole-mount immunostaining data showed that LIS1 proteins were distributed all over the embryos from 1-cell stage to 5 day post-fertilization. Knockdown of LIS1 protein expression through morpholino antisense oligonucleotides resulted in many developmental deficiencies in zebrafish, including brain malformation, circulation abnormality, and body curl. Taken together, our study suggested that zebrafish LIS1 plays a very important role in embryonic development.

  1. In vivo cell biology in zebrafish - providing insights into vertebrate development and disease.

    Science.gov (United States)

    Vacaru, Ana M; Unlu, Gokhan; Spitzner, Marie; Mione, Marina; Knapik, Ela W; Sadler, Kirsten C

    2014-02-01

    Over the past decades, studies using zebrafish have significantly advanced our understanding of the cellular basis for development and human diseases. Zebrafish have rapidly developing transparent embryos that allow comprehensive imaging of embryogenesis combined with powerful genetic approaches. However, forward genetic screens in zebrafish have generated unanticipated findings that are mirrored by human genetic studies: disruption of genes implicated in basic cellular processes, such as protein secretion or cytoskeletal dynamics, causes discrete developmental or disease phenotypes. This is surprising because many processes that were assumed to be fundamental to the function and survival of all cell types appear instead to be regulated by cell-specific mechanisms. Such discoveries are facilitated by experiments in whole animals, where zebrafish provides an ideal model for visualization and manipulation of organelles and cellular processes in a live vertebrate. Here, we review well-characterized mutants and newly developed tools that underscore this notion. We focus on the secretory pathway and microtubule-based trafficking as illustrative examples of how studying cell biology in vivo using zebrafish has broadened our understanding of the role fundamental cellular processes play in embryogenesis and disease.

  2. A novel transgenic zebrafish model for blood-brain and blood-retinal barrier development

    Directory of Open Access Journals (Sweden)

    Sugimoto Masahiko

    2010-07-01

    Full Text Available Abstract Background Development and maintenance of the blood-brain and blood-retinal barrier is critical for the homeostasis of brain and retinal tissue. Despite decades of research our knowledge of the formation and maintenance of the blood-brain (BBB and blood-retinal (BRB barrier is very limited. We have established an in vivo model to study the development and maintenance of these barriers by generating a transgenic zebrafish line that expresses a vitamin D-binding protein fused with enhanced green fluorescent protein (DBP-EGFP in blood plasma, as an endogenous tracer. Results The temporal establishment of the BBB and BRB was examined using this transgenic line and the results were compared with that obtained by injection of fluorescent dyes into the sinus venosus of embryos at various stages of development. We also examined the expression of claudin-5, a component of tight junctions during the first 4 days of development. We observed that the BBB of zebrafish starts to develop by 3 dpf, with expression of claudin-5 in the central arteries preceding it at 2 dpf. The hyaloid vasculature in the zebrafish retina develops a barrier function at 3 dpf, which endows the zebrafish with unique advantages for studying the BRB. Conclusion Zebrafish embryos develop BBB and BRB function simultaneously by 3 dpf, which is regulated by tight junction proteins. The Tg(l-fabp:DBP-EGFP zebrafish will have great advantages in studying development and maintenance of the blood-neural barrier, which is a new application for the widely used vertebrate model.

  3. NMDA receptors on zebrafish Mauthner cells require CaMKII-α for normal development.

    Science.gov (United States)

    Roy, Birbickram; Ferdous, Jannatul; Ali, Declan W

    2015-02-01

    Calcium/calmodulin dependent protein kinase 2 (CaMKII) is a multifunctional protein that is highly enriched in the synapse. It plays important roles in neuronal functions such as synaptic plasticity, synaptogenesis, and neural development. Gene duplication in zebrafish has resulted in the occurrence of seven CaMKII genes (camk2a, camk2b1, camk2b2, camk2g1, camk2g2, camk2d1, and camk2d2) that are developmentally expressed. In this study, we used single cell, real-time quantitative PCR to investigate the expression of CaMKII genes in individual Mauthner cells (M-cells) of 2 days post fertilization (dpf) zebrafish embryos. We found that out of seven different CaMKII genes, only the mRNA for CaMKII-α was expressed in the M-cell at detectable levels, while all other isoforms were undetectable. Morpholino knockdown of CaMKII-α had no significant effect on AMPA synaptic currents (mEPSCs) but decreased the amplitude of NMDA mEPSCs. NMDA events exhibited a biexponential decay with τfast ≈ 30 ms and τslow ≈ 300 ms. Knockdown of CaMKII-α specifically reduced the amplitude of the slow component of the NMDA-mediated currents (mEPSCs), without affecting the fast component, the frequency, or the kinetics of the mEPSCs. Immunolabelling of the M-cell showed increased dendritic arborizations in the morphants compared with controls, and knockdown of CaMKII-α altered locomotor behaviors of touch responses. These results suggest that CaMKII-α is present in embryonic M-cells and that it plays a role in the normal development of excitatory synapses. Our findings pave the way for determining the function of specific CaMKII isoforms during the early stages of M-cell development.

  4. Brain on the stage - spotlight on nervous system development in zebrafish: EMBO practical course, KIT, Sept. 2013.

    Science.gov (United States)

    Scholpp, Steffen; Poggi, Lucia; Zigman, Mihaela

    2013-12-19

    During the EMBO course 'Imaging of Neural Development in Zebrafish', held on September 9-15th 2013, researchers from different backgrounds shared their latest results, ideas and practical expertise on zebrafish as a model to address open questions regarding nervous system development.

  5. Development of Alginate Microspheres Containing Chuanxiong for Oral Administration to Adult Zebrafish.

    Science.gov (United States)

    Lin, Li-Jen; Chiang, Chung-Jen; Chao, Yun-Peng; Wang, Shulhn-Der; Chiou, Yu-Ting; Wang, Han-Yu; Kao, Shung-Te

    2016-01-01

    Oral administration of Traditional Chinese Medicine (TCM) by patients is the common way to treat health problems. Zebrafish emerges as an excellent animal model for the pharmacology investigation. However, the oral delivery system of TCM in zebrafish has not been established so far. This issue was addressed by development of alginate microparticles for oral delivery of chuanxiong, a TCM that displays antifibrotic and antiproliferative effects on hepatocytes. The delivery microparticles were prepared from gelification of alginate containing various levels of chuanxiong. The chuanxiong-encapsulated alginate microparticles were characterized for their solubility, structure, encapsulation efficiency, the cargo release profile, and digestion in gastrointestinal tract of zebrafish. Encapsulation of chuanxiong resulted in more compact structure and the smaller size of microparticles. The release rate of chuanxiong increased for alginate microparticles carrying more chuanxiong in simulated intestinal fluid. This remarkable feature ensures the controlled release of encapsulated cargos in the gastrointestinal tract of zebrafish. Moreover, chuanxiong-loaded alginate microparticles were moved to the end of gastrointestinal tract after oral administration for 6 hr and excreted from the body after 16 hr. Therefore, our developed method for oral administration of TCM in zebrafish is useful for easy and rapid evaluation of the drug effect on disease. PMID:27403425

  6. Development of Alginate Microspheres Containing Chuanxiong for Oral Administration to Adult Zebrafish

    Directory of Open Access Journals (Sweden)

    Li-Jen Lin

    2016-01-01

    Full Text Available Oral administration of Traditional Chinese Medicine (TCM by patients is the common way to treat health problems. Zebrafish emerges as an excellent animal model for the pharmacology investigation. However, the oral delivery system of TCM in zebrafish has not been established so far. This issue was addressed by development of alginate microparticles for oral delivery of chuanxiong, a TCM that displays antifibrotic and antiproliferative effects on hepatocytes. The delivery microparticles were prepared from gelification of alginate containing various levels of chuanxiong. The chuanxiong-encapsulated alginate microparticles were characterized for their solubility, structure, encapsulation efficiency, the cargo release profile, and digestion in gastrointestinal tract of zebrafish. Encapsulation of chuanxiong resulted in more compact structure and the smaller size of microparticles. The release rate of chuanxiong increased for alginate microparticles carrying more chuanxiong in simulated intestinal fluid. This remarkable feature ensures the controlled release of encapsulated cargos in the gastrointestinal tract of zebrafish. Moreover, chuanxiong-loaded alginate microparticles were moved to the end of gastrointestinal tract after oral administration for 6 hr and excreted from the body after 16 hr. Therefore, our developed method for oral administration of TCM in zebrafish is useful for easy and rapid evaluation of the drug effect on disease.

  7. Zebrafish Thsd7a is a neural protein required for angiogenic patterning during development.

    Science.gov (United States)

    Wang, Chieh-Huei; Chen, I-Hui; Kuo, Meng-Wei; Su, Pei-Tsu; Lai, Zih-Yin; Wang, Chian-Huei; Huang, Wei-Chang; Hoffman, Jana; Kuo, Calvin J; You, May-Su; Chuang, Yung-Jen

    2011-06-01

    Angiogenesis is a highly organized process under the control of guidance cues that direct endothelial cell (EC) migration. Recently, many molecules that were initially described as regulators of neural guidance were subsequently shown to also direct EC migration. Here, we report a novel protein, thrombospondin type I domain containing 7A (Thsd7a), that is a neural molecule required for directed EC migration during embryonic angiogenesis in zebrafish. Thsd7a is a vertebrate conserved protein. Zebrafish thsd7a transcript was detected along the ventral edge of the neural tube in the developing zebrafish embryos, correlating with the growth path of angiogenic intersegmental vessels (ISVs). Morpholino-knockdown of Thsd7a caused a lateral deviation of angiogenic ECs below the thsd7a-expressing sites, resulting in aberrant ISV patterning. Collectively, our study shows that zebrafish Thsd7a is a neural protein required for ISV angiogenesis, and suggests an important role of Thsd7a in the neurovascular interaction during zebrafish development.

  8. Generation of Parabiotic Zebrafish Embryos by Surgical Fusion of Developing Blastulae.

    Science.gov (United States)

    Hagedorn, Elliott J; Cillis, Jennifer L; Curley, Caitlyn R; Patch, Taylor C; Li, Brian; Blaser, Bradley W; Riquelme, Raquel; Zon, Leonard I; Shah, Dhvanit I

    2016-01-01

    Surgical parabiosis of two animals of different genetic backgrounds creates a unique scenario to study cell-intrinsic versus cell-extrinsic roles for candidate genes of interest, migratory behaviors of cells, and secreted signals in distinct genetic settings. Because parabiotic animals share a common circulation, any blood or blood-borne factor from one animal will be exchanged with its partner and vice versa. Thus, cells and molecular factors derived from one genetic background can be studied in the context of a second genetic background. Parabiosis of adult mice has been  used extensively to research aging, cancer, diabetes, obesity, and brain development. More recently, parabiosis of zebrafish embryos has been used to study the developmental biology of hematopoiesis. In contrast to mice, the transparent nature of zebrafish embryos permits the direct visualization of cells in the parabiotic context, making it a uniquely powerful method for investigating fundamental cellular and molecular mechanisms. The utility of this technique, however, is limited by a steep learning curve for generating the parabiotic zebrafish embryos. This protocol provides a step-by-step method on how to surgically fuse the blastulae of two zebrafish embryos of different genetic backgrounds to investigate the role of candidate genes of interest. In addition, the parabiotic zebrafish embryos are tolerant to heat shock, making temporal control of gene expression possible. This method does not require a sophisticated set-up and has broad applications for studying cell migration, fate specification, and differentiation in vivo during embryonic development. PMID:27341538

  9. Development of Alginate Microspheres Containing Chuanxiong for Oral Administration to Adult Zebrafish

    Science.gov (United States)

    Lin, Li-Jen; Chiang, Chung-Jen; Chao, Yun-Peng; Wang, Shulhn-Der; Chiou, Yu-Ting; Wang, Han-Yu; Kao, Shung-Te

    2016-01-01

    Oral administration of Traditional Chinese Medicine (TCM) by patients is the common way to treat health problems. Zebrafish emerges as an excellent animal model for the pharmacology investigation. However, the oral delivery system of TCM in zebrafish has not been established so far. This issue was addressed by development of alginate microparticles for oral delivery of chuanxiong, a TCM that displays antifibrotic and antiproliferative effects on hepatocytes. The delivery microparticles were prepared from gelification of alginate containing various levels of chuanxiong. The chuanxiong-encapsulated alginate microparticles were characterized for their solubility, structure, encapsulation efficiency, the cargo release profile, and digestion in gastrointestinal tract of zebrafish. Encapsulation of chuanxiong resulted in more compact structure and the smaller size of microparticles. The release rate of chuanxiong increased for alginate microparticles carrying more chuanxiong in simulated intestinal fluid. This remarkable feature ensures the controlled release of encapsulated cargos in the gastrointestinal tract of zebrafish. Moreover, chuanxiong-loaded alginate microparticles were moved to the end of gastrointestinal tract after oral administration for 6 hr and excreted from the body after 16 hr. Therefore, our developed method for oral administration of TCM in zebrafish is useful for easy and rapid evaluation of the drug effect on disease.

  10. Advances in the Study of Heart Development and Disease Using Zebrafish

    Science.gov (United States)

    Brown, Daniel R.; Samsa, Leigh Ann; Qian, Li; Liu, Jiandong

    2016-01-01

    Animal models of cardiovascular disease are key players in the translational medicine pipeline used to define the conserved genetic and molecular basis of disease. Congenital heart diseases (CHDs) are the most common type of human birth defect and feature structural abnormalities that arise during cardiac development and maturation. The zebrafish, Danio rerio, is a valuable vertebrate model organism, offering advantages over traditional mammalian models. These advantages include the rapid, stereotyped and external development of transparent embryos produced in large numbers from inexpensively housed adults, vast capacity for genetic manipulation, and amenability to high-throughput screening. With the help of modern genetics and a sequenced genome, zebrafish have led to insights in cardiovascular diseases ranging from CHDs to arrhythmia and cardiomyopathy. Here, we discuss the utility of zebrafish as a model system and summarize zebrafish cardiac morphogenesis with emphasis on parallels to human heart diseases. Additionally, we discuss the specific tools and experimental platforms utilized in the zebrafish model including forward screens, functional characterization of candidate genes, and high throughput applications. PMID:27335817

  11. Embryonic alcohol exposure: Towards the development of a zebrafish model of fetal alcohol spectrum disorders.

    Science.gov (United States)

    Gerlai, Robert

    2015-11-01

    Fetal alcohol spectrum disorder (FASD) is a devastating disease of the brain caused by exposure to alcohol during prenatal development. Its prevalence exceeds 1%. The majority of FASD cases represent the milder forms of the disease which often remain undiagnosed, and even when diagnosed treatment options for the patient are limited due to lack of information about the mechanisms that underlie the disease. The zebrafish has been proposed as a model organism for exploring the mechanisms of FASD. Our laboratory has been studying the effects of low doses of alcohol during embryonic development in the zebrafish. This review discusses the methods of alcohol exposure, its effects on behavioral performance including social behavior and learning, and the potential underlying biological mechanisms in zebrafish. It is based upon a recent keynote address delivered by the author, and it focuses on findings obtained mainly in his own laboratory. It paints a promising future of this small vertebrate in FASD research.

  12. NXT2 is required for embryonic heart development in zebrafish

    OpenAIRE

    Chen Jau-nian; Hartenstein Parvana A; Zhang Bo; Huang Haigen; Lin Shuo

    2005-01-01

    Abstract Background NXT2 is a member of NXT family proteins that are generally involved in exporting nuclear RNA in eukaryotic cells. It is not known if NXT2 has any function in specific biological processes. Results A zebrafish mutant exhibiting specific heart defects during embryogenesis was generated by animal cloning-mediated retroviral insertions. Molecular analysis indicated that the mutant phenotype was caused by a disruption of NXT2. Whole-mount RNA in situ hybridization showed that N...

  13. Insights into kidney stem cell development and regeneration using zebrafish

    OpenAIRE

    Drummond, Bridgette E; Wingert, Rebecca A

    2016-01-01

    Kidney disease is an escalating global health problem, for which the formulation of therapeutic approaches using stem cells has received increasing research attention. The complexity of kidney anatomy and function, which includes the diversity of renal cell types, poses formidable challenges in the identification of methods to generate replacement structures. Recent work using the zebrafish has revealed their high capacity to regenerate the integral working units of the kidney, known as nephr...

  14. Selenium status affects selenoprotein expression, reproduction, and F₁ generation locomotor activity in zebrafish (Danio rerio).

    Science.gov (United States)

    Penglase, Sam; Hamre, Kristin; Rasinger, Josef D; Ellingsen, Staale

    2014-06-14

    Se is an essential trace element, and is incorporated into selenoproteins which play important roles in human health. Mammalian selenoprotein-coding genes are often present as paralogues in teleost fish, and it is unclear whether the expression patterns or functions of these fish paralogues reflect their mammalian orthologues. Using the model species zebrafish (Danio rerio; ZF), we aimed to assess how dietary Se affects key parameters in Se metabolism and utilisation including glutathione peroxidase (GPX) activity, the mRNA expression of key Se-dependent proteins (gpx1a, gpx1b, sepp1a and sepp1b), oxidative status, reproductive success and F1 generation locomotor activity. From 27 d until 254 d post-fertilisation, ZF were fed diets with graded levels of Se ranging from deficient ( < 0·10 mg/kg) to toxic (30 mg/kg). The mRNA expression of gpx1a and gpx1b and GPX activity responded in a similar manner to changes in Se status. GPX activity and mRNA levels were lowest when dietary Se levels (0·3 mg/kg) resulted in the maximum growth of ZF, and a proposed bimodal mechanism in response to Se status below and above this dietary Se level was identified. The expression of the sepp1 paralogues differed, with only sepp1a responding to Se status. High dietary Se supplementation (30 mg/kg) decreased reproductive success, while the offspring of ZF fed above 0·3 mg Se/kg diet had lower locomotor activity than the other groups. Overall, the novel finding of low selenoprotein expression and activity coinciding with maximum body growth suggests that even small Se-induced variations in redox status may influence cellular growth rates. PMID:24666596

  15. Developmental exposure of zebrafish (Danio rerio) to 17α-ethinylestradiol affects non-reproductive behavior and fertility as adults, and increases anxiety in unexposed progeny.

    Science.gov (United States)

    Volkova, Kristina; Reyhanian Caspillo, Nasim; Porseryd, Tove; Hallgren, Stefan; Dinnétz, Patrik; Porsch-Hällström, Inger

    2015-07-01

    Exposure to estrogenic endocrine disruptors (EDCs) during development affects fertility, reproductive and non-reproductive behavior in mammals and fish. These effects can also be transferred to coming generations. In fish, the effects of developmental EDC exposure on non-reproductive behavior are less well studied. Here, we analyze the effects of 17α-ethinylestradiol (EE2) on anxiety, shoaling behavior and fertility in zebrafish after developmental treatment and remediation in clean water until adulthood. Zebrafish embryos were exposed from day 1 to day 80 post fertilization to actual concentrations of 1.2 and 1.6ng/L EE2. After remediation for 82days non-reproductive behavior and fertilization success were analyzed in both sexes. Males and females from the 1.2ng/L group, as well as control males and females, were bred, and behavior of the untreated F1 offspring was tested as adults. Developmental treatment with 1.2 and 1.6ng/L EE2 significantly increased anxiety in the novel tank test and increased shoaling intensity in both sexes. Fertilization success was significantly reduced by EE2 in both sexes when mated with untreated fish of opposite sex. Progeny of fish treated with 1.2ng/L EE2 showed increased anxiety in the novel tank test and increased light avoidance in the scototaxis test compared to control offspring. In conclusion, developmental exposure of zebrafish to low doses of EE2 resulted in persistent changes in behavior and fertility. The behavior of unexposed progeny was affected by their parents' exposure, which might suggest transgenerational effects. PMID:26072466

  16. Zebrafish SPI-1 (PU.1) marks a site of myeloid development independent of primitive erythropoiesis : Implications for axial patterning

    NARCIS (Netherlands)

    Lieschke, GJ; Oates, AC; Paw, BH; Thompson, MA; Hall, NE; Ward, AC; Ho, RK; Zon, LI; Layton, JE

    2002-01-01

    The mammalian transcription factor SPI-1 (synonyms: SPI1, PU.1, or Sfpi1) plays a critical role in myeloid development. To examine early myeloid commitment in the zebrafish embryo, we isolated a gene from zebrafish that is a SPI-1 orthologue on the basis of homology and phylogenetic considerations.

  17. Effects of decreased muscle activity on developing axial musculature in nic b107 mutant zebrafish (Danio rerio)

    NARCIS (Netherlands)

    Meulen, van der T.; Schipper, H.; Leeuwen, van J.L.; Kranenbarg, S.

    2005-01-01

    The present paper discusses the effects of decreased muscle activity (DMA) on embryonic development in the zebrafish. Wild-type zebrafish embryos become mobile around 18 h post-fertilisation, long before the axial musculature is fully differentiated. As a model for DMA, the nicb107 mutant was used.

  18. Zebrafish neurofibromatosis type 1 genes have redundant functions in tumorigenesis and embryonic development

    Directory of Open Access Journals (Sweden)

    Jimann Shin

    2012-11-01

    Neurofibromatosis type 1 (NF1 is a common, dominantly inherited genetic disorder that results from mutations in the neurofibromin 1 (NF1 gene. Affected individuals demonstrate abnormalities in neural-crest-derived tissues that include hyperpigmented skin lesions and benign peripheral nerve sheath tumors. NF1 patients also have a predisposition to malignancies including juvenile myelomonocytic leukemia (JMML, optic glioma, glioblastoma, schwannoma and malignant peripheral nerve sheath tumors (MPNSTs. In an effort to better define the molecular and cellular determinants of NF1 disease pathogenesis in vivo, we employed targeted mutagenesis strategies to generate zebrafish harboring stable germline mutations in nf1a and nf1b, orthologues of NF1. Animals homozygous for loss-of-function alleles of nf1a or nf1b alone are phenotypically normal and viable. Homozygous loss of both alleles in combination generates larval phenotypes that resemble aspects of the human disease and results in larval lethality between 7 and 10 days post fertilization. nf1-null larvae demonstrate significant central and peripheral nervous system defects. These include aberrant proliferation and differentiation of oligodendrocyte progenitor cells (OPCs, dysmorphic myelin sheaths and hyperplasia of Schwann cells. Loss of nf1 contributes to tumorigenesis as demonstrated by an accelerated onset and increased penetrance of high-grade gliomas and MPNSTs in adult nf1a+/−; nf1b−/−; p53e7/e7 animals. nf1-null larvae also demonstrate significant motor and learning defects. Importantly, we identify and quantitatively analyze a novel melanophore phenotype in nf1-null larvae, providing the first animal model of the pathognomonic pigmentation lesions of NF1. Together, these findings support a role for nf1a and nf1b as potent tumor suppressor genes that also function in the development of both central and peripheral glial cells as well as melanophores in zebrafish.

  19. Large-Scale Forward Genetic Screening Analysis of Development of Hematopoiesis in Zebrafish

    Institute of Scientific and Technical Information of China (English)

    Kun Wang; Ning Ma; Yiyue Zhang; Wenqing Zhang; Zhibin Huang; Lingfeng Zhao; Wei Liu; Xiaohui Chen; Ping Meng; Qing Lin; Yali Chi; Mengchang Xu

    2012-01-01

    Zebrafish is a powerful model for the investigation of hematopoiesis.In order to isolate novel mutants with hematopoietic defects,large-scale mutagenesis screening of zebrafish was performed.By scoring specific hematopoietic markers,52 mutants were identified and then classified into four types based on specific phenotypic traits.Each mutant represented a putative mutation of a gene regulating the relevant aspect of hematopoiesis,including early macrophage development,early granulopoiesis,embryonic myelopoiesis,and definitive erythropoiesis/lymphopoiesis.Our method should be applicable for other types of genetic screening in zebrafish.In addition,further study of the mutants we identified may help to unveil the molecular basis of hematopoiesis.

  20. Label-free imaging of developing vasculature in zebrafish with phase variance optical coherence microscopy

    Science.gov (United States)

    Chen, Yu; Fingler, Jeff; Trinh, Le A.; Fraser, Scott E.

    2016-03-01

    A phase variance optical coherence microscope (pvOCM) has been created to visualize blood flow in the vasculature of zebrafish embryos, without using exogenous labels. The pvOCM imaging system has axial and lateral resolutions of 2 μm in tissue, and imaging depth of more than 100 μm. Imaging of 2-5 days post-fertilization zebrafish embryos identified the detailed structures of somites, spinal cord, gut and notochord based on intensity contrast. Visualization of the blood flow in the aorta, veins and intersegmental vessels was achieved with phase variance contrast. The pvOCM vasculature images were confirmed with corresponding fluorescence microscopy of a zebrafish transgene that labels the vasculature with green fluorescent protein. The pvOCM images also revealed functional information of the blood flow activities that is crucial for the study of vascular development.

  1. In vivo imaging of hematopoietic stem cell development in the zebrafish

    Institute of Scientific and Technical Information of China (English)

    Panpan Zhang; Feng Liu

    2011-01-01

    In vivo imaging is crucial for developmental biology and can further help to follow cell development/differentiation in normal and pathological conditions.Recent advances in optical imaging techniques has facilitated tracing of the developmental dynamics of a specific organ,tissue,or even a single cell.The zebrafish is an excellent model for imaging of hematopoiesis due to its transparent embryo at early stage; moreover,different zebrafish hematopoietic stem cells (HSCs) transgenic lines have been demonstrated as very useful tools for illustrating the details of the HSC developmental process.In this review,we summarize recent studies related to the non-invasive in vivo imaging of HSC transgenics,to show that zebrafish transgenic lines are powerful tools for developmental biology and disease.At the end of the review,the perspective and some open questions in this field will be discussed.

  2. Perturbation of zebrafish swimbladder development by enhancing Wnt signaling in Wif1 morphants.

    Science.gov (United States)

    Yin, Ao; Korzh, Vladimir; Gong, Zhiyuan

    2012-02-01

    Wnt signaling plays critical roles in development of both tetrapod lung and fish swimbladder, which are the two evolutionary homologous organs. Our previous data reveal that down-regulation of Wnt signaling leads to defective swimbladder development. However, the effects of up-regulation of Wnt signaling on swimbladder development remain unclear. By knockdown of the Wnt protein inhibitory gene wif1, we demonstrated that up-regulation of Wnt signaling also resulted in perturbed development of the swimbladder. Specifically, the growth of epithelium and mesenchyme was greatly inhibited, the smooth muscle differentiation was abolished, and the organization of mesothelium was disturbed. Furthermore, our data reveal that it is the reduced cell proliferation, but not enhanced apoptosis, that contributes to the disturbance of swimbladder development in wif1 morphants. Blocking Wnt signaling by the Wnt antagonist IWR-1 did not affect wif1 expression in the swimbladder, but complete suppression of Hedgehog signaling in smo-/- mutants abolished wif expression, consistent with our earlier report of a negative feedback regulation of Wnt signaling in the swimbladder by the Hedgehog signaling. Our works established the importance of proper level of Wnt signaling for normal development of swimbladder in zebrafish. PMID:22008465

  3. Silica Nanoparticles Target a Wnt Signal Transducer for Degradation and Impair Embryonic Development in Zebrafish

    Science.gov (United States)

    Yi, Hongyang; Wang, Zhuyao; Li, Xiaojiao; Yin, Min; Wang, Lihua; Aldalbahi, Ali; El-Sayed, Nahed Nasser; Wang, Hui; Chen, Nan; Fan, Chunhai; Song, Haiyun

    2016-01-01

    Many types of biocompatible nanomaterials have proven of low cytotoxicity and hold great promise for various applications in nanomedicine. Whereas they generally do not cause apparent organ toxicity or tissue damage in adult animals, it is yet to determine their biological consequences in more general contexts. In this study, we investigate how silica nanoparticles (NPs) affect cellular activities and functions under several physiological or pathological conditions. Although silica NPs are generally regarded as “inert” nanocarriers and widely employed in biomedical studies, we find that they actively affect Wnt signaling in various types of cell lines, diminishing its anti-adipogenic effect in preadipocytes and pro-invasive effect in breast cancer cells, and more significantly, impair Wnt-regulated embryonic development in Zebrafish. We further demonstrate that intracellular silica NPs block Wnt signal transduction in a way resembling signaling molecules. Specifically, silica NPs target the Dvl protein, a key component of Wnt signaling cascade, for lysosomal degradation. As Wnt signaling play significant roles in embryonic development and adipogenesis, the observed physiological effects beyond toxicity imply potential risk of obesity, or developmental defects in somitogenesis and osteogenesis upon exposure to silica NPs. In addition, given the clinical implications of Wnt signaling in tumorigenesis and cancer metastasis, our work also establishes for the first time a molecular link between nanomaterials and the Wnt signaling pathway, which opens new door for novel applications of unmodified silica NPs in targeted therapy for cancers and other critical illness. PMID:27570552

  4. Isolation and genetic characterization of mother-of-snow-white, a maternal effect allele affecting laterality and lateralized behaviors in zebrafish.

    Directory of Open Access Journals (Sweden)

    Alice Domenichini

    Full Text Available In the present work we report evidence compatible with a maternal effect allele affecting left-right development and functional lateralization in vertebrates. Our study demonstrates that the increased frequency of reversed brain asymmetries in a zebrafish line isolated through a behavioral assay is due to selection of mother-of-snow-white (msw, a maternal effect allele involved in early stages of left-right development in zebrafish. msw homozygous females could be identified by screening of their progeny for the position of the parapineal organ because in about 50% of their offspring we found an altered, either bilateral or right-sided, expression of lefty1 and spaw. Deeper investigations at earlier stages of development revealed that msw is involved in the specification and differentiation of precursors of the Kupffer's vesicle, a structure homologous to the mammalian node. To test the hypothesis that msw, by controlling Kupffer's vesicle morphogenesis, controls lateralized behaviors related to diencephalic asymmetries, we analyzed left- and right-parapineal offspring in a "viewing test". As a result, left- and right-parapineal individuals showed opposite and complementary eye preference when scrutinizing a model predator, and a different degree of lateralization when scrutinizing a virtual companion. As maternal effect genes are expected to evolve more rapidly when compared to zygotic ones, our results highlight the driving force of maternal effect alleles in the evolution of vertebrates behaviors.

  5. A Student Team in a University of Michigan Biomedical Engineering Design Course Constructs a Microfluidic Bioreactor for Studies of Zebrafish Development

    OpenAIRE

    Shen, Yu-chi; Li, David; Al-Shoaibi, Ali; Bersano-Begey, Tom; Chen, Hao; Shahid ALI; Flak, Betsy; Perrin, Catherine; Winslow, Max; Shah, Harsh; Ramamurthy, Poornapriya; Schmedlen, Rachael H.; Takayama, Shuichi; Barald, Kate F.

    2009-01-01

    The zebrafish is a valuable model for teaching developmental, molecular, and cell biology; aquatic sciences; comparative anatomy; physiology; and genetics. Here we demonstrate that zebrafish provide an excellent model system to teach engineering principles. A seven-member undergraduate team in a biomedical engineering class designed, built, and tested a zebrafish microfluidic bioreactor applying microfluidics, an emerging engineering technology, to study zebrafish development. During the seme...

  6. Effect of X-ray Contrast Media, Chlorination, and Chloramination on Zebrafish Development

    Science.gov (United States)

    Effect of X-ray Contrast Media, Chlorination, and Chloramination on Zebrafish Development Little is known about the vertebrate developmental toxicity of chlorinated or chloraminated drinking water (DW), iodinated X-ray contrast media (ICM, a common contaminate of DW) or how the c...

  7. Mutations in N-cadherin and a Stardust homolog, Nagie oko, affect cell-cycle exit in zebrafish retina.

    Science.gov (United States)

    Yamaguchi, Masahiro; Imai, Fumiyasu; Tonou-Fujimori, Noriko; Masai, Ichiro

    2010-01-01

    It has been reported that the loss of apicobasal cell polarity and the disruption of adherens junctions induce hyperplasia in the mouse developing brain. However, it is not fully understood whether hyperplasia is caused by an enhanced cell proliferation, an inhibited neurogenesis, or both. In this study, we found that the ratio of the number of proliferating progenitor cells to the total number of retinal cells increases in the neurogenic stages in zebrafish n-cadherin (ncad) and nagie oko (nok) mutants, in which the apicobasal cell polarity and adherens junctions in the retinal epithelium are disrupted. The cell-cycle progression was not altered in the ncad and nok mutants. Rather, the ratio of the number of cells undergoing neurogenic cell division to the total number of cells undergoing mitosis decreased in the ncad and nok mutant retinas, suggesting that the switching from proliferative cell division to neurogenic cell division was compromised in these mutant retinas. These findings suggest that the inhibition of neurogenesis is a primary defect that causes hyperplasia in the ncad and nok mutant retinas. The Hedgehog-protein kinase A signaling pathway and the Notch signaling pathway regulate retinal neurogenesis in zebrafish. We found that both signaling pathways are involved in the generation of neurogenic defects in the ncad and nok mutant retinas. Taken together, these findings suggest that apicobasal cell polarity and epithelial integrity are essential for retinal neurogenesis in zebrafish.

  8. Development of an automated imaging pipeline for the analysis of the zebrafish larval kidney.

    Directory of Open Access Journals (Sweden)

    Jens H Westhoff

    Full Text Available The analysis of kidney malformation caused by environmental influences during nephrogenesis or by hereditary nephropathies requires animal models allowing the in vivo observation of developmental processes. The zebrafish has emerged as a useful model system for the analysis of vertebrate organ development and function, and it is suitable for the identification of organotoxic or disease-modulating compounds on a larger scale. However, to fully exploit its potential in high content screening applications, dedicated protocols are required allowing the consistent visualization of inner organs such as the embryonic kidney. To this end, we developed a high content screening compatible pipeline for the automated imaging of standardized views of the developing pronephros in zebrafish larvae. Using a custom designed tool, cavities were generated in agarose coated microtiter plates allowing for accurate positioning and orientation of zebrafish larvae. This enabled the subsequent automated acquisition of stable and consistent dorsal views of pronephric kidneys. The established pipeline was applied in a pilot screen for the analysis of the impact of potentially nephrotoxic drugs on zebrafish pronephros development in the Tg(wt1b:EGFP transgenic line in which the developing pronephros is highlighted by GFP expression. The consistent image data that was acquired allowed for quantification of gross morphological pronephric phenotypes, revealing concentration dependent effects of several compounds on nephrogenesis. In addition, applicability of the imaging pipeline was further confirmed in a morpholino based model for cilia-associated human genetic disorders associated with different intraflagellar transport genes. The developed tools and pipeline can be used to study various aspects in zebrafish kidney research, and can be readily adapted for the analysis of other organ systems.

  9. Effects of dietary exposure to brominated flame retardant BDE-47 on thyroid condition, gonadal development and growth of zebrafish

    Science.gov (United States)

    Torres, Leticia; Orazio, Carl E.; Peterman, Paul H.; Patino, Reynaldo

    2013-01-01

    Little is known about the effects of brominated flame retardants in teleosts and some of the information currently available is inconsistent. This study examined effects of dietary exposure to 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47) on thyroid condition, body mass and size, and gonadal development of zebrafish. Pubertal, 49-day-old (posthatch) fish were fed diets without BDE-47 (control) or with 1, 5 or 25 μg/g BDE-47/diet. Treatments were conducted in triplicate 30-L tanks each containing 50 zebrafish, and 15 fish per treatment (5 per tank) were sampled at days 40, 80 and 120 of exposure. Measurements were taken of body mass, standard length, head depth and head length. Sex (at 40–120 days of exposure), germ cell stage (at 40 days) and thyroid condition (at 120 days; follicular cell height, colloid depletion, angiogenesis) were histologically determined. Whole-body BDE-47 levels at study completion were within the high end of levels reported in environmentally exposed (wild) fishes. Analysis of variance was used to determine differences among treatments at each sampling time. No effects were observed on thyroid condition or germ cell stage in either sex. Reduced head length was observed in females exposed to BDE-47 at 80 days but not at 40 or 120 days. In males, no apparent effects of BDE-47 were observed at 40 and 80 days, but fish exposed to 25 μg/g had lower body mass at 120 days compared to control fish. These observations suggest that BDE-47 at environmentally relevant whole-body concentrations does not affect thyroid condition or pubertal development of zebrafish but does affect growth during the juvenile-to-adult transition, especially in males.

  10. Site-1 protease is required for cartilage development in zebrafish.

    Science.gov (United States)

    Schlombs, Kornelia; Wagner, Thomas; Scheel, Jochen

    2003-11-25

    gonzo (goz) is a zebrafish mutant with defects in cartilage formation. The goz phenotype comprises cartilage matrix defects and irregular chondrocyte morphology. Expression of endoderm, mesoderm, and cartilage marker genes is, however, normal, indicating a defect in chondrocyte morphogenesis. The mutated gene responsible for the goz phenotype, identified by positional cloning and confirmed by phosphomorpholino knockdown, encodes zebrafish site-1 protease (s1p). S1P has been shown to process and activate sterol regulatory element-binding proteins (SREBPs), which regulate expression of key enzymes of lipid biosynthesis or transport. This finding is consistent with the abnormal distribution of lipids in goz embryos. Knockdown of site-2 protease, which is also involved in activation of SREBPs, results in similar lipid and cartilage phenotypes as S1P knockdown. However, knockdown of SREBP cleavage-activating protein, which forms a complex with SREBP and is essential for S1P cleavage, results only in lipid phenotypes, whereas cartilage appears normal. This indicates that the cartilage phenoptypes of goz are caused independently of the lipid defects. PMID:14612568

  11. Lysine-specific demethylase 1 expression in zebrafish during the early stages of neuronal development

    Institute of Scientific and Technical Information of China (English)

    Aihong Li; Yong Sun; Changming Dou; Jixian Chen; Jie Zhang

    2012-01-01

    Lysine-specific demethylase 1 (Lsd1) is associated with transcriptional coregulation via the modulation of histone methylation. The expression pattern and function of zebrafish Lsd1 has not, however, been studied. Here, we describe the pattern of zebrafish Lsd1 expression during different development stages. In the zebrafish embryo, lsd1 mRNA was present during the early cleavage stage, indicating that maternally derived Lsd1 protein is involved in embryonic patterning. During embryogenesis from 0 to 48 hours post-fertilization (hpf), the expression of lsd1 mRNA in the embryo was ubiquitous before 12 hpf and then became restricted to the anterior of the embryo (particularly in the brain) from 24 hpf to 72 hpf. Inhibition of Lsd1 activity (by exposure to tranylcypromine) or knockdown of lsd1 expression (by morpholino antisense oligonucleotide injection) led to the loss of cells in the brain and to a dramatic downregulation of neural genes, including gad65, gad75, and reelin, but not hey1. These findings indicate an important role of Lsd1 during nervous system development in zebrafish.

  12. Control over the morphology and segregation of Zebrafish germ cell granules during embryonic development

    Directory of Open Access Journals (Sweden)

    Nakkrasae La-Iad

    2008-05-01

    Full Text Available Abstract Background Zebrafish germ cells contain granular-like structures, organized around the cell nucleus. These structures share common features with polar granules in Drosophila, germinal granules in Xenopus and chromatoid bodies in mice germ cells, such as the localization of the zebrafish Vasa, Piwi and Nanos proteins, among others. Little is known about the structure of these granules as well as their segregation in mitosis during early germ-cell development. Results Using transgenic fish expressing a fluorescently labeled novel component of Zebrafish germ cell granules termed Granulito, we followed the morphology and distribution of the granules. We show that whereas these granules initially exhibit a wide size variation, by the end of the first day of development they become a homogeneous population of medium size granules. We investigated this resizing event and demonstrated the role of microtubules and the minus-end microtubule dependent motor protein Dynein in the process. Last, we show that the function of the germ cell granule resident protein the Tudor domain containing protein-7 (Tdrd7 is required for determination of granule morphology and number. Conclusion Our results suggest that Zebrafish germ cell granules undergo a transformation process, which involves germ cell specific proteins as well as the microtubular network.

  13. Functional validation of GWAS gene candidates for abnormal liver function during zebrafish liver development

    Directory of Open Access Journals (Sweden)

    Leah Y. Liu

    2013-09-01

    Genome-wide association studies (GWAS have revealed numerous associations between many phenotypes and gene candidates. Frequently, however, further elucidation of gene function has not been achieved. A recent GWAS identified 69 candidate genes associated with elevated liver enzyme concentrations, which are clinical markers of liver disease. To investigate the role of these genes in liver homeostasis, we narrowed down this list to 12 genes based on zebrafish orthology, zebrafish liver expression and disease correlation. To assess the function of gene candidates during liver development, we assayed hepatic progenitors at 48 hours post fertilization (hpf and hepatocytes at 72 hpf using in situ hybridization following morpholino knockdown in zebrafish embryos. Knockdown of three genes (pnpla3, pklr and mapk10 decreased expression of hepatic progenitor cells, whereas knockdown of eight genes (pnpla3, cpn1, trib1, fads2, slc2a2, pklr, mapk10 and samm50 decreased cell-specific hepatocyte expression. We then induced liver injury in zebrafish embryos using acetaminophen exposure and observed changes in liver toxicity incidence in morphants. Prioritization of GWAS candidates and morpholino knockdown expedites the study of newly identified genes impacting liver development and represents a feasible method for initial assessment of candidate genes to instruct further mechanistic analyses. Our analysis can be extended to GWAS for additional disease-associated phenotypes.

  14. A Comparative Analysis of Glomerulus Development in the Pronephros of Medaka and Zebrafish

    Science.gov (United States)

    Ichimura, Koichiro; Bubenshchikova, Ekaterina; Powell, Rebecca; Fukuyo, Yayoi; Nakamura, Tomomi; Tran, Uyen; Oda, Shoji; Tanaka, Minoru; Wessely, Oliver; Kurihara, Hidetake; Sakai, Tatsuo; Obara, Tomoko

    2012-01-01

    The glomerulus of the vertebrate kidney links the vasculature to the excretory system and produces the primary urine. It is a component of every single nephron in the complex mammalian metanephros and also in the primitive pronephros of fish and amphibian larvae. This systematic work highlights the benefits of using teleost models to understand the pronephric glomerulus development. The morphological processes forming the pronephric glomerulus are astoundingly different between medaka and zebrafish. (1) The glomerular primordium of medaka - unlike the one of zebrafish - exhibits a C-shaped epithelial layer. (2) The C-shaped primordium contains a characteristic balloon-like capillary, which is subsequently divided into several smaller capillaries. (3) In zebrafish, the bilateral pair of pronephric glomeruli is fused at the midline to form a glomerulus, while in medaka the two parts remain unmerged due to the interposition of the interglomerular mesangium. (4) Throughout pronephric development the interglomerular mesangial cells exhibit numerous cytoplasmic granules, which are reminiscent of renin-producing (juxtaglomerular) cells in the mammalian afferent arterioles. Our systematic analysis of medaka and zebrafish demonstrates that in fish, the morphogenesis of the pronephric glomerulus is not stereotypical. These differences need be taken into account in future analyses of medaka mutants with glomerulus defects. PMID:23028906

  15. A comparative analysis of glomerulus development in the pronephros of medaka and zebrafish.

    Directory of Open Access Journals (Sweden)

    Koichiro Ichimura

    Full Text Available The glomerulus of the vertebrate kidney links the vasculature to the excretory system and produces the primary urine. It is a component of every single nephron in the complex mammalian metanephros and also in the primitive pronephros of fish and amphibian larvae. This systematic work highlights the benefits of using teleost models to understand the pronephric glomerulus development. The morphological processes forming the pronephric glomerulus are astoundingly different between medaka and zebrafish. (1 The glomerular primordium of medaka - unlike the one of zebrafish - exhibits a C-shaped epithelial layer. (2 The C-shaped primordium contains a characteristic balloon-like capillary, which is subsequently divided into several smaller capillaries. (3 In zebrafish, the bilateral pair of pronephric glomeruli is fused at the midline to form a glomerulus, while in medaka the two parts remain unmerged due to the interposition of the interglomerular mesangium. (4 Throughout pronephric development the interglomerular mesangial cells exhibit numerous cytoplasmic granules, which are reminiscent of renin-producing (juxtaglomerular cells in the mammalian afferent arterioles. Our systematic analysis of medaka and zebrafish demonstrates that in fish, the morphogenesis of the pronephric glomerulus is not stereotypical. These differences need be taken into account in future analyses of medaka mutants with glomerulus defects.

  16. Sema4d is required for the development of the hindbrain boundary and skeletal muscle in zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jie; Zeng, Zhen; Wei, Juncheng; Jiang, Lijun; Ma, Quanfu; Wu, Mingfu; Huang, Xiaoyuan; Ye, Shuangmei; Li, Ye; Ma, Ding [Cancer Biology Research Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030 (China); Gao, Qinglei, E-mail: qlgao@tjh.tjmu.edu.cn [Cancer Biology Research Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030 (China)

    2013-04-05

    Highlights: ► Sema4d was expressed at all developmental stages of zebrafish. ► Knockdown of sema4d in embryos resulted in defects in the hindbrain and the trunk structure. ► Knockdown of sema4d in embryos upregulated the expression of three hindbrain rhombomere markers. ► Knockdown of sema4d in embryos increased the expression of myogenic regulatory factors. ► Knockdown of sema4d in embryos resulted in an obvious increase of cell apoptosis. -- Abstract: Semaphorin4d (SEMA4D), also known as CD100, an oligodendrocyte secreted R-Ras GTPase-activating protein (GAP), affecting axonal growth is involved in a range of processes including cell adhesion, motility, angiogenesis, immune responses and tumour progression. However, its actual physiological mechanisms and its role in development remain unclear. This study has focused on the role of sema4d in the development and expression patterns in zebrafish embryos and the effect of its suppression on development using sema4d-specific antisense morpholino-oligonucleotides. In this study the knockdown of sema4d, expressed at all developmental stages, lead to defects in the hindbrain and trunk structure of zebrafish embryos. In addition, these phenotypes appeared to be associated with the abnormal expression of three hindbrain rhombomere boundary markers, wnt1, epha4a and foxb1.2, and two myogenic regulatory factors, myod and myog. Further, a notable increase of cell apoptosis appeared in the sema4d knockdown embryos, while no obvious reduction in cell proliferation was observed. Collectively, these data suggest that sema4d plays an important role in the development of the hindbrain and skeletal muscle.

  17. Expression patterns of lgr4 and lgr6 during zebrafish development.

    Science.gov (United States)

    Hirose, Kentaro; Shimoda, Nobuyoshi; Kikuchi, Yutaka

    2011-10-01

    Leucine-rich repeat (LRR)-containing G protein-coupled receptors (LGRs) belong to the superfamily of G protein-coupled receptors, and are characterized by the presence of seven transmembrane domains and an extracellular domain that contains a series of LRR motifs. Three Lgr proteins - Lgr4, Lgr5, and Lgr6 - were identified as members of the LGR subfamily. Mouse Lgr4 has been implicated in the formation of various organs through regulation of cell proliferation during development, and Lgr5 and Lgr6 are stem cell markers in the intestine or skin. Although the expression of these three genes has already been characterized in adult mice, their expression profiles during the embryonic and larval development of the organism have not yet been defined. We cloned two zebrafish lgr genes using the zebrafish genomic database. Phylogenetic analyses showed that these two genes are orthologs of mammalian Lgr4 and Lgr6. Zebrafish lgr4 is expressed in the neural plate border, Kupffer's vesicle, neural tube, otic vesicles, midbrain, eyes, forebrain, and brain ventricular zone by 24h post-fertilization (hpf). From 36 to 96hpf, lgr4 expression is detected in the midbrain-hindbrain boundary, otic vesicles, pharyngeal arches, cranial cartilages such as Meckel's cartilages, palatoquadrates, and ceratohyals, cranial cavity, pectoral fin buds, brain ventricular zone, ciliary marginal zone, and digestive organs such as the intestine, liver, and pancreas. In contrast, zebrafish lgr6 is expressed in the notochord, Kupffer's vesicle, the most anterior region of diencephalon, otic vesicles, and the anterior and posterior lateral line primordia by 24hpf. From 48 to 72hpf, lgr6 expression is confined to the anterior and posterior neuromasts, otic vesicles, pharyngeal arches, pectoral fin buds, and cranial cartilages such as Meckel's cartilages, ceratohyals, and trabeculae. Our results provide a basis for future studies aimed at analyzing the functions of zebrafish Lgr4 and Lgr6 in cell

  18. Microcystin-LR impairs zebrafish reproduction by affecting oogenesis and endocrine system.

    Science.gov (United States)

    Zhao, Yanyan; Xie, Liqiang; Yan, Yunjun

    2015-02-01

    Previous studies have shown that microcystins (MCs) are able to exert negative effects on the reproductive system of fish. However, few data are actually available on the effects of MC-LR on the reproductive system of female fish. In the present study, female zebrafish were exposed to 2, 10, and 50 μg L(-1) of MC-LR for 21 d, and its effects on oogenesis, sex hormones, transcription of genes on the hypothalamic-pituitary-gonad (HPG) axis, and reproduction were investigated for the first time. It was observed that egg production significantly declined at ⩾ 10 μg L(-1) MC-LR. MC-LR exposure to zebrafish increased the concentrations of 17β-estradiol (E2) and vitellogenin (VTG) at 10 μg L(-1) level, whereas concentrations of E2, VTG and testosterone declined at 50 μg L(-1) MC-LR. The transcriptions of steroidogenic pathway gene (cyp19a, cyp19b, 17βhsd, cyp17 and hmgra) changed as well after the exposure and corresponded well with the alterations of hormone levels. A number of intra- and extra-ovarian factors, such as gnrh3, gnrhr1, fshβ, fshr, lhr, bmp15, mrpβ, ptgs2 and vtg1 which regulate oogenesis, were significantly changed with a different dose-related effect. Moreover, MC-LR exposure to female zebrafish resulted in decreased fertilization and hatching rates, and may suggest the possibility of trans-generational effects of MC-LR exposure. The results demonstrate that MC-LR could modulate endocrine function and oogenesis, eventually leading to disruption of reproductive performance in female zebrafish. These data suggest there is a risk for aquatic population living in MC polluted areas.

  19. Estrogenic effects of several BPA analogs in the developing zebrafish brain

    Directory of Open Access Journals (Sweden)

    Joel eCano-Nicolau

    2016-03-01

    Full Text Available Important set of studies have demonstrated the endocrine disrupting activity of Bisphenol A (BPA. The present work aimed at defining estrogenic-like activity of several BPA structural analogs, including BPS, BPF, BPAF, and BPAP, on 4-day or 7-day post-fertilization (dpf zebrafish larva as an in vivo model. We measured the induction level of the estrogen-sensitive marker cyp19a1b gene (Aromatase B, expressed in the brain, using three different in situ/in vivo strategies: 1 Quantification of cyp19a1b transcripts using RT-qPCR in wild type 7-dpf larva brains exposed to bisphenols ; 2 Detection and distribution of cyp19a1b transcripts using in situ hybridization on 7-dpf brain sections (hypothalamus; and 3 Quantification of the cyp19a1b promoter activity in live cyp19a1b-GFP transgenic zebrafish (EASZY assay at 4-dpf larval stage. These three different experimental approaches demonstrated that BPS, BPF or BPAF exposure, similarly to BPA, significantly activates the expression of the estrogenic marker in the brain of developing zebrafish. In vitro experiments using both reporter gene assay in a glial cell context and competitive ligand binding assays strongly suggested that up-regulation of cyp19a1b is largely mediated by the zebrafish estrogen nuclear receptor alpha (zfERα. Importantly, and in contrast to other tested bisphenol A analogs, the bisphenol AP (BPAP did not show estrogenic activity in our model.

  20. Estrogenic Effects of Several BPA Analogs in the Developing Zebrafish Brain.

    Science.gov (United States)

    Cano-Nicolau, Joel; Vaillant, Colette; Pellegrini, Elisabeth; Charlier, Thierry D; Kah, Olivier; Coumailleau, Pascal

    2016-01-01

    Important set of studies have demonstrated the endocrine disrupting activity of Bisphenol A (BPA). The present work aimed at defining estrogenic-like activity of several BPA structural analogs, including BPS, BPF, BPAF, and BPAP, on 4- or 7-day post-fertilization (dpf) zebrafish larva as an in vivo model. We measured the induction level of the estrogen-sensitive marker cyp19a1b gene (Aromatase B), expressed in the brain, using three different in situ/in vivo strategies: (1) Quantification of cyp19a1b transcripts using RT-qPCR in wild type 7-dpf larva brains exposed to bisphenols; (2) Detection and distribution of cyp19a1b transcripts using in situ hybridization on 7-dpf brain sections (hypothalamus); and (3) Quantification of the cyp19a1b promoter activity in live cyp19a1b-GFP transgenic zebrafish (EASZY assay) at 4-dpf larval stage. These three different experimental approaches demonstrated that BPS, BPF, or BPAF exposure, similarly to BPA, significantly activates the expression of the estrogenic marker in the brain of developing zebrafish. In vitro experiments using both reporter gene assay in a glial cell context and competitive ligand binding assays strongly suggested that up-regulation of cyp19a1b is largely mediated by the zebrafish estrogen nuclear receptor alpha (zfERα). Importantly, and in contrast to other tested bisphenol A analogs, the bisphenol AP (BPAP) did not show estrogenic activity in our model. PMID:27047331

  1. Influences of textured substrates on the heart rate of developing zebrafish embryos

    Science.gov (United States)

    Chen, Chia-Yun; Chen, Chia-Yuan

    2013-07-01

    Identification of the effects of different textured substrates on zebrafish (Danio rerio) embryos provides insights into the influence of external stimuli on normal cardiovascular functions in the developmental stages of the embryos. This knowledge can be used in numerous genetic studies using zebrafish as an animal model as well as in bioanalytical assays using digital microfluidics. In this study, zebrafish embryos were systematically positioned and in vivo imaged on four types of silicon substrates. These substrates exhibited surface textures and surface wettability that were well modulated by wet chemical etching. The heart rate of the developing embryos significantly increased by 9.1% upon exposure to textured Si substrates with nanostructured surfaces compared with bare Si substrates. Modulation of surface wettability in the tested substrates also responded to the increase in the heart rate of the embryo; however, the effect of surface wettability on heart rate was slight compared with the effect of texture. In-depth experimental and statistical investigations of heart rate under the effects of substrate textures imply a pathway through which the inner mass of the embryo reacts to external stimuli. These findings contribute to zebrafish-related studies and suggest other factors to consider in the design of nanostructure-based microfluidics and other biomedical devices.

  2. Duplicate dmbx1 genes regulate progenitor cell cycle and differentiation during zebrafish midbrain and retinal development

    Directory of Open Access Journals (Sweden)

    Chang Belinda SW

    2010-09-01

    Full Text Available Abstract Background The Dmbx1 gene is important for the development of the midbrain and hindbrain, and mouse gene targeting experiments reveal that this gene is required for mediating postnatal and adult feeding behaviours. A single Dmbx1 gene exists in terrestrial vertebrate genomes, while teleost genomes have at least two paralogs. We compared the loss of function of the zebrafish dmbx1a and dmbx1b genes in order to gain insight into the molecular mechanism by which dmbx1 regulates neurogenesis, and to begin to understand why these duplicate genes have been retained in the zebrafish genome. Results Using gene knockdown experiments we examined the function of the dmbx1 gene paralogs in zebrafish, dmbx1a and dmbx1b in regulating neurogenesis in the developing retina and midbrain. Dose-dependent loss of dmbx1a and dmbx1b function causes a significant reduction in growth of the midbrain and retina that is evident between 48-72 hpf. We show that this phenotype is not due to patterning defects or persistent cell death, but rather a deficit in progenitor cell cycle exit and differentiation. Analyses of the morphant retina or anterior hindbrain indicate that paralogous function is partially diverged since loss of dmbx1a is more severe than loss of dmbx1b. Molecular evolutionary analyses of the Dmbx1 genes suggest that while this gene family is conservative in its evolution, there was a dramatic change in selective constraint after the duplication event that gave rise to the dmbx1a and dmbx1b gene families in teleost fish, suggestive of positive selection. Interestingly, in contrast to zebrafish dmbx1a, over expression of the mouse Dmbx1 gene does not functionally compensate for the zebrafish dmbx1a knockdown phenotype, while over expression of the dmbx1b gene only partially compensates for the dmbx1a knockdown phenotype. Conclusion Our data suggest that both zebrafish dmbx1a and dmbx1b genes are retained in the fish genome due to their requirement

  3. Cloning of zebrafish Mustn1 orthologs and their expression during early development.

    Science.gov (United States)

    Camarata, Troy; Vasilyev, Aleksandr; Hadjiargyrou, Michael

    2016-11-15

    Mustn1 is a small nuclear protein that is involved in the development and regeneration of the musculoskeletal system. Previous work established a role for Mustn1 in myogenic and chondrogenic differentiation. In addition, recent evidence suggests a potential role for Mustn1 in cilia function in zebrafish. A detailed study of Mustn1 expression has yet to be conducted in zebrafish. As such, we report herein the cloning of the zebrafish Mustn1 orthologs, mustn1a and mustn1b, and their expression during zebrafish embryonic and larval development. Results indicate a 44% nucleotide identity between the two paralogs. Phylogenetic analysis further confirmed that the Mustn1a and 1b predicted proteins were highly related to other vertebrate members of the Mustn1 protein family. Whole mount in situ hybridization revealed expression of both mustn1a and 1b at the 7-somite stage through 72hpf in structures such as Kupffer's vesicle, segmental mesoderm, head structures, and otic vesicle. Additionally, in 5day old larva, mustn1a and 1b expression is detected in the neurocranium, otic capsule, and the gut. Although both were expressed in the neurocranium, mustn1a was localized in the hypophyseal fenestra whereas mustn1b was found near the posterior basicapsular commissure. mustn1b also displayed expression in the ceratohyal and ceratobranchial elements of the pharyngeal skeleton. These expression patterns were verified temporally by q-PCR analysis. Taken together, we conclude that Mustn1 expression is conserved in vertebrates and that the variations in expression of the two zebrafish paralogs suggest different modes of molecular regulation. PMID:27565701

  4. NXT2 is required for embryonic heart development in zebrafish

    Science.gov (United States)

    Huang, Haigen; Zhang, Bo; Hartenstein, Parvana A; Chen, Jau-nian; Lin, Shuo

    2005-01-01

    Background NXT2 is a member of NXT family proteins that are generally involved in exporting nuclear RNA in eukaryotic cells. It is not known if NXT2 has any function in specific biological processes. Results A zebrafish mutant exhibiting specific heart defects during embryogenesis was generated by animal cloning-mediated retroviral insertions. Molecular analysis indicated that the mutant phenotype was caused by a disruption of NXT2. Whole-mount RNA in situ hybridization showed that NXT2 transcripts were clearly detectable in embryonic heart as well as other tissues. Further analysis revealed that expression level of one form of alternative splicing NXT2 mRNA transcripts was significantly reduced, resulting in deficient myocardial cell differentiation and the malformation of cardiac valve at the atrioventricular boundary. The defects could be reproduced by morpholino anti-sense oligo knockdown of NXT2. Conclusion NXT2 has a critical role in maintaining morphogenetic integrity of embryonic heart in vertebrate species. PMID:15790397

  5. Genes involved in forebrain development in the zebrafish, Danio rerio.

    Science.gov (United States)

    Heisenberg, C P; Brand, M; Jiang, Y J; Warga, R M; Beuchle, D; van Eeden, F J; Furutani-Seiki, M; Granato, M; Haffter, P; Hammerschmidt, M; Kane, D A; Kelsh, R N; Mullins, M C; Odenthal, J; Nusslein-Volhard, C

    1996-12-01

    We identified four zebrafish mutants with defects in forebrain induction and patterning during embryogenesis. The four mutants define three genes: masterblind (mbl), silberblick (slb), and knollnase (kas). In mbl embryos, the anterior forebrain acquires posterior forebrain characteristics: anterior structures such as the eyes, olfactory placodes and the telencephalon are missing, whereas the epiphysis located in the posterior forebrain is expanded. In slb embryos, the extension of the embryonic axis is initially delayed and eventually followed by a partial fusion of the eyes. Finally, in kas embryos, separation of the telencephalic primordia is incomplete and dorsal midline cells fail to form a differentiated roof plate. Analysis of the mutant phenotypes indicates that we have identified genes essential for the specification of the anterior forebrain (mbl), positioning of the eyes (slb) and differentiation of the roof plate (kas). In an appendix to this study we list mutants showing alterations in the size of the eyes and abnormal differentiation of the lenses. PMID:9007240

  6. Hedgehog signaling is required at multiple stages of zebrafish tooth development

    OpenAIRE

    Stock David W; Yoo James J; Jackman William R

    2010-01-01

    Abstract Background The accessibility of the developing zebrafish pharyngeal dentition makes it an advantageous system in which to study many aspects of tooth development from early initiation to late morphogenesis. In mammals, hedgehog signaling is known to be essential for multiple stages of odontogenesis; however, potential roles for the pathway during initiation of tooth development or in later morphogenesis are incompletely understood. Results We have identified mRNA expression of the he...

  7. Swim-training affects zebrafish development: from molecules to function

    NARCIS (Netherlands)

    Fiaz, A.W.

    2013-01-01

    In the last decades, it became clear that not only molecular signals but also mechanical forces are crucial regulators of developmental processes. The molecular mechanisms via which mechanical forces mediate their control of developmental processes have been extensively investigated via in vitro stu

  8. Histone deacetylase 1 is required for the development of the zebrafish inner ear

    Science.gov (United States)

    He, Yingzi; Tang, Dongmei; Li, Wenyan; Chai, Renjie; Li, Huawei

    2016-01-01

    Histone deacetylase 1 (HDAC1) has been reported to be important for multiple aspects of normal embryonic development, but little is known about its function in the development of mechanosensory organs. Here, we first confirmed that HDAC1 is expressed in the developing otic vesicles of zebrafish by whole-mount in situ hybridization. Knockdown of HDAC1 using antisense morpholino oligonucleotides in zebrafish embryos induced smaller otic vesicles, abnormal otoliths, malformed or absent semicircular canals, and fewer sensory hair cells. HDAC1 loss of function also caused attenuated expression of a subset of key genes required for otic vesicle formation during development. Morpholino-mediated knockdown of HDAC1 resulted in decreased expression of members of the Fgf family in the otic vesicles, suggesting that HDAC1 is involved in the development of the inner ear through regulation of Fgf signaling pathways. Taken together, our results indicate that HDAC1 plays an important role in otic vesicle formation. PMID:26832938

  9. Research Resource: Whole Transcriptome RNA Sequencing Detects Multiple 1α,25-Dihydroxyvitamin D3-Sensitive Metabolic Pathways in Developing Zebrafish

    OpenAIRE

    Craig, Theodore A.; Zhang, Yuji; McNulty, Melissa S.; Middha, Sumit; Ketha, Hemamalini; SINGH, Ravinder J; Magis, Andrew T.; Funk, Cory; Nathan D Price; Ekker, Stephen C.; Kumar, Rajiv

    2012-01-01

    The biological role of vitamin D receptors (VDR), which are abundantly expressed in developing zebrafish (Danio rerio) as early as 48 h after fertilization, and before the development of a mineralized skeleton and mature intestine and kidney, is unknown. We probed the role of VDR in developing zebrafish biology by examining changes in expression of RNA by whole transcriptome shotgun sequencing (RNA-seq) in fish treated with picomolar concentrations of the VDR ligand and hormonal form of vitam...

  10. Copper at low levels impairs memory of adult zebrafish (Danio rerio) and affects swimming performance of larvae.

    Science.gov (United States)

    Acosta, Daiane da Silva; Danielle, Naissa Maria; Altenhofen, Stefani; Luzardo, Milene Dornelles; Costa, Patrícia Gomes; Bianchini, Adalto; Bonan, Carla Denise; da Silva, Rosane Souza; Dafre, Alcir Luiz

    2016-01-01

    Metal contamination at low levels is an important issue because it usually produces health and environmental effects, either positive or deleterious. Contamination of surface waters with copper (Cu) is a worldwide event, usually originated by mining, agricultural, industrial, commercial, and residential activities. Water quality criteria for Cu are variable among countries but allowed limits are generally in the μg/L range, which can disrupt several functions in the early life-stages of fish species. Behavioral and biochemical alterations after Cu exposure have also been described at concentrations close to the allowed limits. Aiming to search for the effects of Cu in the range of the allowed limits, larvae and adult zebrafish (Danio rerio) were exposed to different concentrations of dissolved Cu (nominally: 0, 5, 9, 20 and 60μg/L; measured: 0.4, 5.7, 7.2 16.6 and 42.3μg/L, respectively) for 96h. Larvae swimming and body length, and adult behavior and biochemical biomarkers (activity of glutathione-related enzymes in gills, muscle, and brain) were assessed after Cu exposure. Several effects were observed in fish exposed to 9μg/L nominal Cu, including increased larvae swimming distance and velocity, abolishment of adult inhibitory avoidance memory, and decreased glutathione S-transferase (GST) activity in gills of adult fish. At the highest Cu concentration tested (nominally: 60μg/L), body length of larvae, spatial memory of adults, and gill GST activity were decreased. Social behavior (aggressiveness and conspecific interaction), and glutathione reductase (GR) activity were not affected in adult zebrafish. Exposure to Cu, at concentrations close to the water quality criteria for this metal in fresh water, was able to alter larvae swimming performance and to induce detrimental effects on the behavior of adult zebrafish, thus indicating the need for further studies to reevaluate the currently allowed limits for Cu in fresh water. PMID:27012768

  11. Teratological effects of a panel of sixty water-soluble toxicants on zebrafish development.

    Science.gov (United States)

    Ali, Shaukat; Aalders, Jeffrey; Richardson, Michael K

    2014-04-01

    The zebrafish larva is a promising whole-animal model for safety pharmacology, environmental risk assessment, and developmental toxicity. This model has been used for the high-throughput toxicity screening of various compounds. Our aim here is to identify possible phenotypic markers of teratogenicity in zebrafish embryos that could be used for the assaying compounds for reproductive toxicity. We have screened a panel of 60 water-soluble toxicants to examine their effects on zebrafish development. A total of 22,080 wild-type zebrafish larvae were raised in 250 μL defined buffer in 96-well plates at a plating density of one embryo per well. They were exposed for a 96-h period starting at 24 h post-fertilization. A logarithmic concentration series was used for range-finding, followed by a narrower geometric series for developmental toxicity assessment. A total of 9017 survivors were analyzed at 5 days post-fertilization for nine phenotypes, namely, (1) normal, (2) pericardial oedema, (3) yolk sac oedema, (4) melanophores dispersed, (5) bent tail tip, (6) bent body axis, (7) abnormal Meckel's cartilage, (8) abnormal branchial arches, and (9) uninflated swim bladder. For each toxicant, the EC50 (concentration required to produce one or more of these abnormalities in 50% of embryos) was also calculated. For the majority of toxicants (55/60) there was, at the population level, a statistically significant, concentration-dependent increase in the incidence of abnormal phenotypes among survivors. The commonest abnormalities were pericardial oedema, yolk sac oedema, dispersed melanophores, and uninflated swim bladder. It is possible therefore that these could prove to be general indicators of reproductive toxicity in the zebrafish embryo assay.

  12. Brief embryonic cadmium exposure induces a stress response and cell death in the developing olfactory system followed by long-term olfactory deficits in juvenile zebrafish

    International Nuclear Information System (INIS)

    The toxic effects of cadmium and other metals have been well established. A primary target of these metals is known to be the olfactory system, and fish exposed to a number of different waterborne metals display deficiencies in olfaction. Importantly, exposure over embryonic/larval development periods can cause deficits in chemosensory function in juvenile fish, but the specific cell types affected are unknown. We have previously characterized a transgenic zebrafish strain expressing the green fluorescent protein (eGFP) gene linked to the hsp70 gene promoter, and shown it to be a useful tool for examining cell-specific toxicity in living embryos and larvae. Here we show that the hsp70/eGFP transgene is strongly and specifically upregulated within the olfactory sensory neurons (OSNs) of transgenic zebrafish larvae following a brief 3-h exposure to water-borne cadmium. This molecular response was closely correlated to an endpoint for tissue damage within the olfactory placode, namely cell death. Furthermore, cadmium-induced olfactory cytotoxicity in zebrafish larvae gives rise to more permanent effects. Juvenile zebrafish briefly exposed to cadmium during early larval development display deficits in olfactory-dependent predator avoidance behaviors 4-6 weeks after a return to clean water. Lateral line neuromasts of exposed zebrafish larvae also activate both the endogenous hsp70 gene and the hsp70/eGFP transgene. The data reveal that even a very brief exposure period that gives rise to cell death within the developing olfactory placode results in long-term deficits in olfaction, and that hsp70/eGFP may serve as an effective indicator of sublethal cadmium exposure in sensory cells

  13. Identification of Wnt Genes Expressed in Neural Progenitor Zones during Zebrafish Brain Development

    OpenAIRE

    Robert N Duncan; Panahi, Samin; Piotrowski, Tatjana; Dorsky, Richard I.

    2015-01-01

    Wnt signaling regulates multiple aspects of vertebrate central nervous system (CNS) development, including neurogenesis. However, vertebrate genomes can contain up to 25 Wnt genes, the functions of which are poorly characterized partly due to redundancy in their expression. To identify candidate Wnt genes as candidate mediators of pathway activity in specific brain progenitor zones, we have performed a comprehensive expression analysis at three different stages during zebrafish development. A...

  14. The defective expression of gtpbp3 related to tRNA modification alters the mitochondrial function and development of zebrafish.

    Science.gov (United States)

    Chen, Danni; Li, Feng; Yang, Qingxian; Tian, Miao; Zhang, Zengming; Zhang, Qinghai; Chen, Ye; Guan, Min-Xin

    2016-08-01

    Human mitochondrial DNA (mtDNA) mutations have been associated with a wide spectrum of clinical abnormalities. However, nuclear modifier gene(s) modulate the phenotypic expression of pathogenic mtDNA mutations. In our previous investigation, we identified the human GTPBP3 related to mitochondrial tRNA modification, acting as a modifier to influence of deafness-associated mtDNA mutation. Mutations in GTPBP3 have been found to be associated with other human diseases. However, the pathophysiology of GTPBP3-associated disorders is still not fully understood. Here, we reported the generation and characterization of Gtpbp3 depletion zebrafish model using antisense morpholinos. Zebrafish gtpbp3 has three isoforms localized at mitochondria. Zebrafish gtpbp3 is expressed at various embryonic stages and in multiple tissues. In particular, the gtpbp3 was expressed more abundantly in adult zebrafish ovary and testis. The expression of zebrafish gtpbp3 can functionally restore the growth defects caused by the mss1/gtpbp3 mutation in yeast. A marked decrease of mitochondrial ATP generation accompanied by increased levels of apoptosis and reactive oxygen species were observed in gtpbp3 knockdown zebrafish embryos. The Gtpbp3 morphants exhibited defective in embryonic development including bleeding, melenin, oedema and curved tails within 5days post fertilization, as compared with uninjected controls. The co-injection of wild type gtpbp3 mRNA partially rescued these defects in Gtpbp3 morphants. These data suggest that zebrafish Gtpbp3 is a structural and functional homolog of human and yeast GTPBP3. The mitochondrial dysfunction caused by defective Gtpbp3 may alter the embryonic development in the zebrafish. In addition, this zebrafish model of mitochondrial disease may provide unique opportunities for studying defective tRNA modification, mitochondrial biogenesis, and pathophysiology of mitochondrial disorders. PMID:27184967

  15. Matrix metalloproteinase 14 in the zebrafish: an eye on retinal and retinotectal development.

    Directory of Open Access Journals (Sweden)

    Els Janssens

    Full Text Available BACKGROUND: Matrix metalloproteinases (MMPs are members of the metzincin superfamily of proteinases that cleave structural elements of the extracellular matrix and many molecules involved in signal transduction. Although there is evidence that MMPs promote the proper development of retinotectal projections, the nature and working mechanisms of specific MMPs in retinal development remain to be elucidated. Here, we report a role for zebrafish Mmp14a, one of the two zebrafish paralogs of human MMP14, in retinal neurogenesis and retinotectal development. RESULTS: Whole mount in situ hybridization and immunohistochemical stainings for Mmp14a in developing zebrafish embryos reveal expression in the optic tectum, in the optic nerve and in defined retinal cell populations, including retinal ganglion cells (RGCs. Furthermore, Mmp14a loss-of-function results in perturbed retinoblast cell cycle kinetics and consequently, in a delayed retinal neurogenesis, differentiation and lamination. These Mmp14a-dependent retinal defects lead to microphthalmia and a significantly reduced innervation of the optic tectum (OT by RGC axons. Mmp14b, on the contrary, does not appear to alter retinal neurogenesis or OT innervation. As mammalian MMP14 is known to act as an efficient MMP2-activator, we also explored and found a functional link and a possible co-involvement of Mmp2 and Mmp14a in zebrafish retinotectal development. CONCLUSION: Both the Mmp14a expression in the developing visual system and the Mmp14a loss-of-function phenotype illustrate a critical role for Mmp14a activity in retinal and retinotectal development.

  16. Zebrafish Zic2a and Zic2b regulate neural crest and craniofacial development.

    Science.gov (United States)

    Teslaa, Jessica J; Keller, Abigail N; Nyholm, Molly K; Grinblat, Yevgenya

    2013-08-01

    Holoprosencephaly (HPE), the most common malformation of the human forebrain, is associated with defects of the craniofacial skeleton. ZIC2, a zinc-finger transcription factor, is strongly linked to HPE and to a characteristic set of dysmorphic facial features in humans. We have previously identified important functions for zebrafish Zic2 in the developing forebrain. Here, we demonstrate that ZIC2 orthologs zic2a and zic2b also regulate the forming zebrafish craniofacial skeleton, including the jaw and neurocranial cartilages, and use the zebrafish to study Zic2-regulated processes that may contribute to the complex etiology of HPE. Using temporally controlled Zic2a overexpression, we show that the developing craniofacial cartilages are sensitive to Zic2 elevation prior to 24hpf. This window of sensitivity overlaps the critical expansion and migration of the neural crest (NC) cells, which migrate from the developing neural tube to populate vertebrate craniofacial structures. We demonstrate that zic2b influences the induction of NC at the neural plate border, while both zic2a and zic2b regulate NC migratory onset and strongly contribute to chromatophore development. Both Zic2 depletion and early ectopic Zic2 expression cause moderate, incompletely penetrant mispatterning of the NC-derived jaw precursors at 24hpf, yet by 2dpf these changes in Zic2 expression result in profoundly mispatterned chondrogenic condensations. We attribute this discrepancy to an additional role for Zic2a and Zic2b in patterning the forebrain primordium, an important signaling source during craniofacial development. This hypothesis is supported by evidence that transplanted Zic2-deficient cells can contribute to craniofacial cartilages in a wild-type background. Collectively, these data suggest that zebrafish Zic2 plays a dual role during craniofacial development, contributing to two disparate aspects of craniofacial morphogenesis: (1) neural crest induction and migration, and (2) early

  17. Zebrafish bcl2l is a survival factor in thyroid development.

    Science.gov (United States)

    Porreca, Immacolata; De Felice, Elena; Fagman, Henrik; Di Lauro, Roberto; Sordino, Paolo

    2012-06-15

    Regulated cell death, defined in morphological terms as apoptosis, is crucial for organ morphogenesis. While differentiation of the thyroid gland has been extensively studied, nothing is yet known about the survival mechanisms involved in the development of this endocrine gland. Using the zebrafish model system, we aim to understand whether genes belonging to the Bcl-2 family that control apoptosis are implicated in regulation of cell survival during thyroid development. Evidence of strong Bcl-2 gene expression in mouse thyroid precursors prompted us to investigate the functions played by its zebrafish homologs during thyroid development. We show that the bcl2-like (bcl2l) gene is expressed in the zebrafish thyroid primordium. Morpholino-mediated knockdown and mutant analyses revealed that bcl2l is crucial for thyroid cell survival and that this function is tightly modulated by the transcription factors pax2a, nk2.1a and hhex. Also, the bcl2l gene appears to control a caspase-3-dependent apoptotic mechanism during thyroid development. Thyroid precursor cells require an actively maintained survival mechanism to properly proceed through development. The bcl2l gene operates in the inhibition of cell death under direct regulation of a thyroid specific set of transcription factors. This is the first demonstration of an active mechanism to ensure survival of the thyroid primordium during morphogenesis.

  18. The PAF1 complex component Leo1 is essential for cardiac and neural crest development in zebrafish.

    Science.gov (United States)

    Nguyen, Catherine T; Langenbacher, Adam; Hsieh, Michael; Chen, Jau-Nian

    2010-05-01

    Leo1 is a component of the Polymerase-Associated Factor 1 (PAF1) complex, an evolutionarily conserved protein complex involved in gene transcription regulation and chromatin remodeling. The role of leo1 in vertebrate embryogenesis has not previously been examined. Here, we report that zebrafish leo1 encodes a nuclear protein that has a similar molecular structure to Leo1 proteins from other species. From a genetic screen, we identified a zebrafish mutant defective in the leo1 gene. The truncated Leo1(LA1186) protein lacks a nuclear localization signal and is distributed mostly in the cytoplasm. Phenotypic analysis showed that while the initial patterning of the primitive heart tube is not affected in leo1(LA1186) mutant embryos, the differentiation of cardiomyocytes at the atrioventricular boundary is aberrant, suggesting a requirement for Leo1 in cardiac differentiation. In addition, the expression levels of markers for neural crest-derived cells such as crestin, gch2, dct and mitfa are greatly reduced in leo1(LA1186) mutants, indicating a requirement for Leo1 in maintaining the neural crest population. Consistent with this finding, melanocyte and xanthophore populations are severely reduced, craniofacial cartilage is barely detectable, and mbp-positive glial cells are absent in leo1(LA1186) mutants after three days of development. Taken together, these results provide the first genetic evidence of the requirement for Leo1 in the development of the heart and neural crest cell populations.

  19. NXT2 is required for embryonic heart development in zebrafish

    Directory of Open Access Journals (Sweden)

    Chen Jau-nian

    2005-03-01

    Full Text Available Abstract Background NXT2 is a member of NXT family proteins that are generally involved in exporting nuclear RNA in eukaryotic cells. It is not known if NXT2 has any function in specific biological processes. Results A zebrafish mutant exhibiting specific heart defects during embryogenesis was generated by animal cloning-mediated retroviral insertions. Molecular analysis indicated that the mutant phenotype was caused by a disruption of NXT2. Whole-mount RNA in situ hybridization showed that NXT2 transcripts were clearly detectable in embryonic heart as well as other tissues. Further analysis revealed that expression level of one form of alternative splicing NXT2 mRNA transcripts was significantly reduced, resulting in deficient myocardial cell differentiation and the malformation of cardiac valve at the atrioventricular boundary. The defects could be reproduced by morpholino anti-sense oligo knockdown of NXT2. Conclusion NXT2 has a critical role in maintaining morphogenetic integrity of embryonic heart in vertebrate species.

  20. Serotonin Promotes Development and Regeneration of Spinal Motor Neurons in Zebrafish.

    Science.gov (United States)

    Barreiro-Iglesias, Antón; Mysiak, Karolina S; Scott, Angela L; Reimer, Michell M; Yang, Yujie; Becker, Catherina G; Becker, Thomas

    2015-11-01

    In contrast to mammals, zebrafish regenerate spinal motor neurons. During regeneration, developmental signals are re-deployed. Here, we show that, during development, diffuse serotonin promotes spinal motor neuron generation from pMN progenitor cells, leaving interneuron numbers unchanged. Pharmacological manipulations and receptor knockdown indicate that serotonin acts at least in part via 5-HT1A receptors. In adults, serotonin is supplied to the spinal cord mainly (90%) by descending axons from the brain. After a spinal lesion, serotonergic axons degenerate caudal to the lesion but sprout rostral to it. Toxin-mediated ablation of serotonergic axons also rostral to the lesion impaired regeneration of motor neurons only there. Conversely, intraperitoneal serotonin injections doubled numbers of new motor neurons and proliferating pMN-like progenitors caudal to the lesion. Regeneration of spinal-intrinsic serotonergic interneurons was unaltered by these manipulations. Hence, serotonin selectively promotes the development and adult regeneration of motor neurons in zebrafish.

  1. Abnormal photoreceptor outer segment development and early retinal degeneration in kif3a mutant zebrafish.

    Science.gov (United States)

    Raghupathy, Rakesh K; Zhang, Xun; Alhasani, Reem H; Zhou, Xinzhi; Mullin, Margaret; Reilly, James; Li, Wenchang; Liu, Mugen; Shu, Xinhua

    2016-08-01

    Photoreceptors are highly specialized sensory neurons that possess a modified primary cilium called the outer segment. Photoreceptor outer segment formation and maintenance require highly active protein transport via a process known as intraflagellar transport. Anterograde transport in outer segments is powered by the heterotrimeric kinesin II and coordinated by intraflagellar transport proteins. Here, we describe a new zebrafish model carrying a nonsense mutation in the kinesin II family member 3A (kif3a) gene. Kif3a mutant zebrafish exhibited curved body axes and kidney cysts. Outer segments were not formed in most parts of the mutant retina, and rhodopsin was mislocalized, suggesting KIF3A has a role in rhodopsin trafficking. Both rod and cone photoreceptors degenerated rapidly between 4 and 9 days post fertilization, and electroretinography response was not detected in 7 days post fertilization mutant larvae. Loss of KIF3A in zebrafish also resulted in an intracellular transport defect affecting anterograde but not retrograde transport of organelles. Our results indicate KIF3A plays a conserved role in photoreceptor outer segment formation and intracellular transport. PMID:27470972

  2. [Lumen morphogenesis and molecular mechanisms in tubular organs during zebrafish embryonic development].

    Science.gov (United States)

    Xiao, Chun; Hu, Huo-Zhen; Mo, Xian-Ming

    2013-04-01

    A network tubular system is an important structure in the body and organ of metazoa. The lumen of tube is fundamental units in the structure, which serve to transport material, divide the organ into different functional compartments and separate the organ from the environment. The defects of lumen formation will lead to abnormalities of the organ morphogenesis and disorder of the function. Zebrafish (Danio rerio)is an important model for development research. Meanwhile easy observation of tubular organ, the relevant mutants, and transgene linages make zebrafish to become an excellent model to study the formation of lumen in the tubular organs, including the blood vessels, neural tube, gut, exocrine pancreas, and pronephric duct, which undergo the typical morphogenesis of lumen that is involved in the organs' development. The process of lumen formation is mainly consisted of induction of extracellular signals, polarization of epithelial cell, directional transportation in the polar cells, the aggregation and transportation of fluid in the lumen, and the reconstruction of cytoskeleton in polar cells and controlled by the precise and complicated molecular networks during embryonic development. This review will summarize our current knowledge on lumen morphogenesis in four kinds of typical tubular organs during zebrafish embryonic development and the related molecular mechanisms as well as to supply helpful reference to the future studies.

  3. The microcephaly gene aspm is involved in brain development in zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun-Taek; Lee, Mi-Sun; Choi, Jung-Hwa [Department of Biology and GRAST, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Jung, Ju-Yeon [Department of Biotechnology, Konkuk University, Chungju 380-701 (Korea, Republic of); Ahn, Dae-Gwon [Department of Biology and GRAST, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Yeo, Sang-Yeob [Department of Biotechnology, Division of Applied Chemistry and Biotechnology, Hanbat National University, Daejeon 305-719 (Korea, Republic of); Choi, Dong-Kug, E-mail: choidk@kku.ac.kr [Department of Biotechnology, Konkuk University, Chungju 380-701 (Korea, Republic of); Kim, Cheol-Hee, E-mail: zebrakim@cnu.ac.kr [Department of Biology and GRAST, Chungnam National University, Daejeon 305-764 (Korea, Republic of)

    2011-06-17

    Highlights: {yields} We identified a zebrafish aspm/mcph5 gene that is expressed in proliferating cells in the CNS during early development. {yields} Embryos injected with the aspm MO consistently showed a reduced head and eye size but were otherwise grossly normal, closely mimicking the known phenotypes of human microcephaly patients. {yields} Knock-down of aspm causes cell cycle arrest and apoptotic cell death during early development. -- Abstract: MCPH is a neurodevelopmental disorder characterized by a global reduction in cerebral cortical volume. Homozygous mutation of the MCPH5 gene, also known as ASPM, is the most common cause of the MCPH phenotype. To elucidate the roles of ASPM during embryonic development, the zebrafish aspm was identified, which is specifically expressed in proliferating cells in the CNS. Morpholino-mediated knock-down of aspm resulted in a significant reduction in head size. Furthermore, aspm-deficient embryos exhibited a mitotic arrest during early development. These findings suggest that the reduction in brain size in MCPH might be caused by lack of aspm function in the mitotic cell cycle and demonstrate that the zebrafish can provide a model system for congenital diseases of the human nervous system.

  4. Id2a is required for hepatic outgrowth during liver development in zebrafish.

    Science.gov (United States)

    Khaliq, Mehwish; Choi, Tae-Young; So, Juhoon; Shin, Donghun

    2015-11-01

    During development, inhibitor of DNA binding (Id) proteins, a subclass of the helix-loop-helix family of proteins, regulate cellular proliferation, differentiation, and apoptosis in various organs. However, a functional role of Id2a in liver development has not yet been reported. Here, using zebrafish as a model organism, we provide in vivo evidence that Id2a regulates hepatoblast proliferation and cell death during liver development. Initially, in the liver, id2a is expressed in hepatoblasts and after their differentiation, id2a expression is restricted to biliary epithelial cells. id2a knockdown in zebrafish embryos had no effect on hepatoblast specification or hepatocyte differentiation. However, liver size was greatly reduced in id2a morpholino-injected embryos, indicative of a hepatic outgrowth defect attributable to the significant decrease in proliferating hepatoblasts concomitant with the significant increase in hepatoblast cell death. Altogether, these data support the role of Id2a as an important regulator of hepatic outgrowth via modulation of hepatoblast proliferation and survival during liver development in zebrafish.

  5. Visualizing Compound Distribution during Zebrafish Embryo Development: The Effects of Lipophilicity and DMSO.

    Science.gov (United States)

    de Koning, Coco; Beekhuijzen, Manon; Tobor-Kapłon, Marysia; de Vries-Buitenweg, Selinda; Schoutsen, Dick; Leeijen, Nico; van de Waart, Beppy; Emmen, Harry

    2015-12-01

    The predictability of the zebrafish embryo model is highly influenced by internal exposure of the embryo/larva. As compound uptake is likely to be influenced by factors such as lipophilicity, solvent use, and chorion presence, this article focuses on investigating their effects on compound distribution within the zebrafish embryo. To visualize compound uptake and distribution, zebrafish embryos were exposed for 96 hr, starting at 4 hr postfertilization, to water-soluble dyes: Schiff's reagent (logP -4.63), Giemsa stain (logP -0.77), Van Gierson stain (logP 1.64), Cresyl fast violet (logP 3.5), Eosine Y (logP 4.8), Sudan III (logP 7.5), and Oil red O (logP 9.81), with and without 1% dimethyl-sulfoxide (DMSO). Three additional compounds were used to analytically determine the uptake and distribution: Acyclovir (logP -1.56), Zidovudine (logP 0.05), and Metoprolol Tartrate Salt (logP 1.8). Examinations were performed every 24 hr. Both methods (visualization and specific analysis) showed that exposure to higher logP values results in higher compound uptake. Specific analysis showed that for lipophilic compounds >90% of compound is taken up by the embryo. For hydrophilic compounds, >90% of compound within the complete egg could not be associated to embryo or chorion and is probably distributed into the perivitelline space. Overall, internal exposure analyses on at least two occasions (i.e., before and after hatching) is crucial for interpretation of zebrafish embryotoxicity data, especially for compounds with extreme logP values. DMSO did not affect exposure when examined with the visualization method, however, this method might be not sensitive enough to draw hard conclusions.

  6. Mutations in zebrafish leucine-rich repeat-containing six-like affect cilia motility and result in pronephric cysts, but have variable effects on left-right patterning.

    Science.gov (United States)

    Serluca, Fabrizio C; Xu, Bo; Okabe, Noriko; Baker, Kari; Lin, Shin-Yi; Sullivan-Brown, Jessica; Konieczkowski, David J; Jaffe, Kimberly M; Bradner, Joshua M; Fishman, Mark C; Burdine, Rebecca D

    2009-05-01

    Cilia defects have been implicated in a variety of human diseases and genetic disorders, but how cilia motility contributes to these phenotypes is still unknown. To further our understanding of how cilia function in development, we have cloned and characterized two alleles of seahorse, a zebrafish mutation that results in pronephric cysts. seahorse encodes Lrrc6l, a leucine-rich repeat-containing protein that is highly conserved in organisms that have motile cilia. seahorse is expressed in zebrafish tissues known to contain motile cilia. Although mutants do not affect cilia structure and retain the ability to interact with Disheveled, both alleles of seahorse strongly affect cilia motility in the zebrafish pronephros and neural tube. Intriguingly, although seahorse mutations variably affect fluid flow in Kupffer's vesicle, they can have very weak effects on left-right patterning. Combined with recently published results, our alleles suggest that the function of seahorse in cilia motility is separable from its function in other cilia-related phenotypes.

  7. Silver Nanoparticles Alter Zebrafish Development and Larval Behavior: Distinct Roles for Particle Size, Coating and Composition

    OpenAIRE

    Powers, Christina M; Slotkin, Theodore A.; Seidler, Frederic J; Badireddy, Appala R.; Padilla, Stephanie

    2011-01-01

    Silver nanoparticles (AgNPs) act as antibacterials by releasing monovalent silver (Ag+) and are increasingly used in consumer products, thus elevating exposures in human and wildlife populations. In vitro models indicate that AgNPs are likely to be developmental neurotoxicants with actions distinct from those of Ag+. We exposed developing zebrafish (Danio rerio) to Ag+ or AgNPs on days 0–5 post-fertilization and evaluated hatching, morphology, survival and swim bladder inflation. Larval swimm...

  8. Maternal topoisomerase II alpha, not topoisomerase II beta, enables embryonic development of zebrafish top2a-/- mutants

    Directory of Open Access Journals (Sweden)

    Sapetto-Rebow Beata

    2011-11-01

    Full Text Available Abstract Background Genetic alterations in human topoisomerase II alpha (TOP2A are linked to cancer susceptibility. TOP2A decatenates chromosomes and thus is necessary for multiple aspects of cell division including DNA replication, chromosome condensation and segregation. Topoisomerase II alpha is also required for embryonic development in mammals, as mouse Top2a knockouts result in embryonic lethality as early as the 4-8 cell stage. The purpose of this study was to determine whether the extended developmental capability of zebrafish top2a mutants arises from maternal expression of top2a or compensation from its top2b paralogue. Results Here, we describe bloody minded (blm, a novel mutant of zebrafish top2a. In contrast to mouse Top2a nulls, zebrafish top2a mutants survive to larval stages (4-5 day post fertilization. Developmental analyses demonstrate abundant expression of maternal top2a but not top2b. Inhibition or poisoning of maternal topoisomerase II delays embryonic development by extending the cell cycle M-phase. Zygotic top2a and top2b are co-expressed in the zebrafish CNS, but endogenous or ectopic top2b RNA appear unable to prevent the blm phenotype. Conclusions We conclude that maternal top2a enables zebrafish development before the mid-zygotic transition (MZT and that zebrafish top2a and top2b are not functionally redundant during development after activation of the zygotic genome.

  9. Maternal topoisomerase II alpha, not topoisomerase II beta, enables embryonic development of zebrafish top2a-/- mutants

    LENUS (Irish Health Repository)

    Sapetto-Rebow, Beata

    2011-11-23

    Abstract Background Genetic alterations in human topoisomerase II alpha (TOP2A) are linked to cancer susceptibility. TOP2A decatenates chromosomes and thus is necessary for multiple aspects of cell division including DNA replication, chromosome condensation and segregation. Topoisomerase II alpha is also required for embryonic development in mammals, as mouse Top2a knockouts result in embryonic lethality as early as the 4-8 cell stage. The purpose of this study was to determine whether the extended developmental capability of zebrafish top2a mutants arises from maternal expression of top2a or compensation from its top2b paralogue. Results Here, we describe bloody minded (blm), a novel mutant of zebrafish top2a. In contrast to mouse Top2a nulls, zebrafish top2a mutants survive to larval stages (4-5 day post fertilization). Developmental analyses demonstrate abundant expression of maternal top2a but not top2b. Inhibition or poisoning of maternal topoisomerase II delays embryonic development by extending the cell cycle M-phase. Zygotic top2a and top2b are co-expressed in the zebrafish CNS, but endogenous or ectopic top2b RNA appear unable to prevent the blm phenotype. Conclusions We conclude that maternal top2a enables zebrafish development before the mid-zygotic transition (MZT) and that zebrafish top2a and top2b are not functionally redundant during development after activation of the zygotic genome.

  10. aldh7a1 regulates eye and limb development in zebrafish.

    Directory of Open Access Journals (Sweden)

    Holly E Babcock

    Full Text Available Uveal coloboma is a potentially blinding congenital ocular malformation caused by failure of the optic fissure to close during development. Although mutations in numerous genes have been described, these account for a minority of cases, complicating molecular diagnosis and genetic counseling. Here we describe a key role of aldh7a1 as a gene necessary for normal eye development. We show that morpholino knockdown of aldh7a1 in zebrafish causes uveal coloboma and misregulation of nlz1, another known contributor to the coloboma phenotype, as well as skeletal abnormalities. Knockdown of aldh7a1 leads to reduced cell proliferation in the optic cup of zebrafish, delaying the approximation of the edges of the optic fissure. The aldh7a1 morphant phenotype is partially rescued by co-injection of nlz1 mRNA suggesting that nlz1 is functionally downstream of aldh7a1 in regulating cell proliferation in the optic cup. These results support a role of aldh7a1 in ocular development and skeletal abnormalities in zebrafish.

  11. An essential function for the centrosomal protein NEDD1 in zebrafish development.

    Science.gov (United States)

    Manning, J A; Lewis, M; Koblar, S A; Kumar, S

    2010-08-01

    The centrosome is the primary microtubule organising centre of the cell. It is composed of many proteins, some of which make up the core of the centrosome, whereas others are used for specific functions. Although the cellular roles of many centrosomal proteins are well defined, much less is known about their functions and the role of the centrosome in development. In this study we investigated the function of NEDD1, a critical component of the centrosome essential for microtubule nucleation, in zebrafish (Danio rerio) development. The zebrafish homologue of NEDD1 (zNEDD1) was cloned and found to have a similar localisation and function to mammalian NEDD1. We show that zNEDD1 is essential for survival, as a high level of knockdown was embryonic lethal. Partial knockdown of zNEDD1 caused abnormalities including an increase in mitotic and apoptotic cells. Pronounced phenotypic defects were seen in the brain, with a lack of defined brain structures, incomplete neural tube formation and a disorganisation of neurons. In addition, we show that a reduction in zNEDD1 resulted in the loss of gamma-tubulin at the centrosome. Our data thus demonstrate that zNEDD1 is critical for the recruitment of gamma-tubulin to the centrosome, and is essential for the proper development of zebrafish.

  12. Tissue factor pathway inhibitor-2: a novel gene involved in zebrafish central nervous system development.

    Science.gov (United States)

    Zhang, Yanli; Wang, Lina; Zhou, Wenhao; Wang, Huijun; Zhang, Jin; Deng, Shanshan; Li, Weihua; Li, Huawei; Mao, Zuohua; Ma, Duan

    2013-09-01

    Tissue factor pathway inhibitor-2 (Tfpi-2) is an important serine protease inhibitor in the extracellular matrix (ECM), but its precise physiological significance remains unknown. This work is part of a series of studies intended to investigate functional roles of Tfpi-2 and explore the underlying molecular mechanisms. First, we cloned and identified zebrafish Tfpi-2 (zTfpi-2) as an evolutionarily conserved protein essential for zebrafish development. We also demonstrated that ztfpi-2 is mainly expressed in the central nervous system (CNS) of zebrafish, and embryonic depletion of ztfpi-2 caused severe CNS defects. In addition, changes of neural markers, including pax2a, egr2b, huC, ngn1, gfap and olig2, confirmed the presence of developmental abnormalities in the relevant regions of ztfpi-2 morphants. Using microarray analysis, we found that members of the Notch pathway, especially her4 and mib, which mediate lateral inhibition in CNS development, were also downregulated. Intriguingly, both her4 and mib were able to partially rescue the ztfpi-2 morphant phenotype. Furthermore, Morpholino knockdown of ztfpi-2 resulted in upregulation of neuronal markers while downregulation of glial markers, providing evidence that the Notch pathway is probably involved in ztfpi-2-mediated CNS development.

  13. F-spondin/spon1b expression patterns in developing and adult zebrafish.

    Directory of Open Access Journals (Sweden)

    Veronica Akle

    Full Text Available F-spondin, an extracellular matrix protein, is an important player in embryonic morphogenesis and CNS development, but its presence and role later in life remains largely unknown. We generated a transgenic zebrafish in which GFP is expressed under the control of the F-spondin (spon1b promoter, and used it in combination with complementary techniques to undertake a detailed characterization of the expression patterns of F-spondin in developing and adult brain and periphery. We found that F-spondin is often associated with structures forming long neuronal tracts, including retinal ganglion cells, the olfactory bulb, the habenula, and the nucleus of the medial longitudinal fasciculus (nMLF. F-spondin expression coincides with zones of adult neurogenesis and is abundant in CSF-contacting secretory neurons, especially those in the hypothalamus. Use of this new transgenic model also revealed F-spondin expression patterns in the peripheral CNS, notably in enteric neurons, and in peripheral tissues involved in active patterning or proliferation in adults, including the endoskeleton of zebrafish fins and the continuously regenerating pharyngeal teeth. Moreover, patterning of the regenerating caudal fin following fin amputation in adult zebrafish was associated with F-spondin expression in the blastema, a proliferative region critical for tissue reconstitution. Together, these findings suggest major roles for F-spondin in the CNS and periphery of the developing and adult vertebrate.

  14. Ethanol disrupts the formation of hypochord and dorsal aorta during the development of embryonic zebrafish

    Institute of Scientific and Technical Information of China (English)

    QIAN Linxi; WANG Yuexiang; JIANG Qiu; ZHONG Tao; SONG Houyan

    2005-01-01

    Exposure to ethanol during human embryonic period has severe teratogenic effects on the cardiovascular system. In our study, we demonstrated that ethanol of gradient concentrations can interfere with the establishment of circulatory system in embryonic zebrafish. The effective concentration to cause 50% malformations (EC50) was 182.5 mmol/L. The ethanol pulse exposure experiment displayed that dome stage during embryogenesis is the sensitive time window to ethanol. It is found that 400 mmol/L ethanol pulse exposure can induce circulatory defects in 43% treated embryos. We ruled out the possibility that ethanol can interfere with the process of hematopoiesis in zebrafish. By employing in situ hybridization with endothelial biomarker (Flk-1), we revealed that ethanol disrupts the establishment of trunk axial vasculature, but has no effect on cranial vessels. Combined with the results of semi-thin histological sections, the in situ hybridization experiments with arterial and venous biomarkers (ephrinB2, ephB4) suggested that ethanol mainly interrupts the development of dorsal aorta while has little effect on axial vein. Further study indicated the negative influence of ethanol on the development of hypochord in zebrafish. The consequent lack of vasculogenic factors including Radar and Ang-1 partly explains the defects in formation and integrity of dorsal aorta. These results provide important clues to the study of adverse effects of ethanol on the cardiovascular development in human fetus.

  15. Effects of simulated-microgravity on zebrafish embryonic development and microRNA expression

    Science.gov (United States)

    Hang, Xiaoming; Sun, Yeqing; Zhang, Meng; Li, Hui

    2012-07-01

    Microgravity is a constant physical factor astronauts must meet during space flight. Therefore, the mechanism of microgravity-induced biological effects is one of the most important issues in space biological studies. In this research, zebrafish (Danio rerio) embryos at different development stages were exposed to simulated microgravity, respectively, using a rotary cell culture system (RCCS) designed by NASA. Biological effects of simulated microgravity on zebrafish embryos were investigated at the phenotypic and microRNA expression levels. Malformation rate and mortality rate were found increased after simulated microgravity exposure. Body length and heart rate were also increased during microgravity exposure and after a shot period of gravity recovery, but both returned to normal level after 10 days and 7 days of gravity recovery, respectively. Additionally, significant changes in microRNA expression profiles of zebrafish embryos were observed, depending on the development stages of embyos exposed to simulated microgravity and the exposure time. All together, nine miRNAs showed significant changes after three different microgravity exposures (8-72hpf, 24-72hpf and 24-48hpf). Four miRNAs, dre-miR-738, dre-miR-133a, dre-miR-133b and dre-miR-22a, were up-regulated. Two miRNAs, dre-miR-1 and dre-miR-16a, were down-regulated. The other three miRNAs, dre-miR-204, dre-miR-9* and dre-miR-429, were found up-regulated when microgravity exposures ended at 72hpf, but down-regulated when microgravity exposures ended at 48hpf. Above results demonstrated microRNA expression of zebrafish embryos could be induced by both embryonic development stage and simulated microgravity. Key Words: Danio rerio; Simulated-microgravity; embryonic devlopment; microRNA expression

  16. Characterization of zebrafish mutants with defects in bone calcification during development.

    Science.gov (United States)

    Xi, Yang; Chen, Dongyan; Sun, Lei; Li, Yuhao; Li, Lei

    2013-10-11

    Using the fluorescent dyes calcein and alcian blue, we stained the F3 generation of chemically (ENU) mutagenized zebrafish embryos and larvae, and screened for mutants with defects in bone development. We identified a mutant line, bone calcification slow (bcs), which showed delayed axial vertebra calcification during development. Before 4-5 days post-fertilization (dpf), the bcs embryos did not display obvious abnormalities in bone development (i.e., normal number, size and shape of cartilage and vertebrae). At 5-6 dpf, when vertebrae calcification starts, bcs embryos began to show defects. At 7 dpf, for example, in most of the bcs embryos examined, calcein staining revealed no signals of vertebrae mineralization, whereas during the same developmental stages, 2-14 mineralized vertebrae were observed in wild-type animals. Decreases in the number of calcified vertebrae were also observed in bcs mutants when examined at 9 and 11 dpf, respectively. Interestingly, by 13 dpf the defects in bcs mutants were no longer evident. There were no significant differences in the number of calcified vertebrae between wild-type and mutant animals. We examined the expression of bone development marker genes (e.g., Sox9b, Bmp2b, and Cyp26b1, which play important roles in bone formation and calcification). In mutant fish, we observed slight increases in Sox9b expression, no alterations in Bmp2b expression, but significant increases in Cyp26b1 expression. Together, the data suggest that bcs delays axial skeletal calcification, but does not affect bone formation and maturation.

  17. Melanosomes in pigmented epithelia maintain eye lens transparency during zebrafish embryonic development.

    Science.gov (United States)

    Takamiya, Masanari; Xu, Feng; Suhonen, Heikki; Gourain, Victor; Yang, Lixin; Ho, Nga Yu; Helfen, Lukas; Schröck, Anne; Etard, Christelle; Grabher, Clemens; Rastegar, Sepand; Schlunck, Günther; Reinhard, Thomas; Baumbach, Tilo; Strähle, Uwe

    2016-01-01

    Altered levels of trace elements are associated with increased oxidative stress that is eventually responsible for pathologic conditions. Oxidative stress has been proposed to be involved in eye diseases, including cataract formation. We visualized the distribution of metals and other trace elements in the eye of zebrafish embryos by micro X-ray fluorescence (μ-XRF) imaging. Many elements showed highest accumulation in the retinal pigment epithelium (RPE) of the zebrafish embryo. Knockdown of the zebrafish brown locus homologues tyrp1a/b eliminated accumulation of these elements in the RPE, indicating that they are bound by mature melanosomes. Furthermore, albino (slc45a2) mutants, which completely lack melanosomes, developed abnormal lens reflections similar to the congenital cataract caused by mutation of the myosin chaperon Unc45b, and an in situ spin trapping assay revealed increased oxidative stress in the lens of albino mutants. Finally transplanting a wildtype lens into an albino mutant background resulted in cataract formation. These data suggest that melanosomes in pigment epithelial cells protect the lens from oxidative stress during embryonic development, likely by buffering trace elements. PMID:27141993

  18. Ribosome Biogenesis Factor Bmsl-like Is Essential for Liver Development in Zebrafish

    Institute of Scientific and Technical Information of China (English)

    Yong Wang; Yue Luo; Yunhan Hong; Jinrong Peng; Lijan Lo

    2012-01-01

    Ribosome biogenesis in the nucleolus requires numerous nucleolar proteins and small non-coding RNAs.Among them is ribosome biogenesis factor Bmsl,which is highly conserved from yeast to human.In yeast,Bmsl initiates ribosome biogenesis through recruiting Rcll to pre-ribosomes.However,little is known about the biological function of Bmsl in vertebrates.Here we report that Bmsl plays an essential role in zebrafish liver development.We identified a zebrafish bmsllsq163 mutant which carries a T to A mutation in the gene bmsl-like (bmsll).This mutation results in L152 to Q152 substitution in a GTPase motif in Bmsll.Surprisingly,bmsllsq163 mutation confers hypoplasia specifically in the liver,exocrine pancreas and intestine after 3 days post-fertilization (dpf).Consistent with the bmsllsq163 mutant phenotypes,whole-mount in situ hybridization (WISH) on wild type embryos showed that bmsll transcripts are abundant in the entire digestive tract and its accessory organs.Immunostaining for phospho-Histone 3 (P-H3) and TUNEL assay revealed that impairment of hepatoblast proliferation rather than cell apoptosis is one of the consequences of bmsllsq163 giving rise to an underdeveloped liver.Therefore,our findings demonstrate that Bmsll is necessary for zebrafish liver development.

  19. Pbx-dependent regulation of lbx gene expression in developing zebrafish embryos.

    Science.gov (United States)

    Lukowski, Chris M; Drummond, Danna Lynne; Waskiewicz, Andrew J

    2011-12-01

    Ladybird (Lbx) homeodomain transcription factors function in neural and muscle development--roles conserved from Drosophila to vertebrates. Lbx expression in mice specifies neural cell types, including dorsally located interneurons and association neurons, within the neural tube. Little, however, is known about the regulation of vertebrate lbx family genes. Here we describe the expression pattern of three zebrafish ladybird genes via mRNA in situ hybridization. Zebrafish lbx genes are expressed in distinct but overlapping regions within the developing neural tube, with strong expression within the hindbrain and spinal cord. The Hox family of transcription factors, in cooperation with cofactors such as Pbx and Meis, regulate hindbrain segmentation during embryogenesis. We have identified a novel regulatory interaction in which lbx1 genes are strongly downregulated in Pbx-depleted embryos. Further, we have produced a transgenic zebrafish line expressing dTomato and EGFP under the control of an lbx1b enhancer--a useful tool to acertain neuron location, migration, and morphology. Using this transgenic strain, we have identified a minimal neural lbx1b enhancer that contains key regulatory elements for expression of this transcription factor.

  20. Assessment of Toxicological Perturbations and Variants of Pancreatic Islet Development in the Zebrafish Model

    Directory of Open Access Journals (Sweden)

    Karilyn E. Sant

    2016-09-01

    Full Text Available The pancreatic islets, largely comprised of insulin-producing beta cells, play a critical role in endocrine signaling and glucose homeostasis. Because they have low levels of antioxidant defenses and a high perfusion rate, the endocrine islets may be a highly susceptible target tissue of chemical exposures. However, this endpoint, as well as the integrity of the surrounding exocrine pancreas, is often overlooked in studies of developmental toxicology. Disruption of development by toxicants can alter cell fate and migration, resulting in structural alterations that are difficult to detect in mammalian embryo systems, but that are easily observed in the zebrafish embryo model (Danio rerio. Using endogenously expressed fluorescent protein markers for developing zebrafish beta cells and exocrine pancreas tissue, we documented differences in islet area and incidence rates of islet morphological variants in zebrafish embryos between 48 and 96 h post fertilization (hpf, raised under control conditions commonly used in embryotoxicity assays. We identified critical windows for chemical exposures during which increased incidences of endocrine pancreas abnormalities were observed following exposure to cyclopamine (2–12 hpf, Mono-2-ethylhexyl phthalate (MEHP (3–48 hpf, and Perfluorooctanesulfonic acid (PFOS (3–48 hpf. Both islet area and length of the exocrine pancreas were sensitive to oxidative stress from exposure to the oxidant tert-butyl hydroperoxide during a highly proliferative critical window (72 hpf. Finally, pancreatic dysmorphogenesis following developmental exposures is discussed with respect to human disease.

  1. The binary mixtures of megestrol acetate and 17α-ethynylestradiol adversely affect zebrafish reproduction.

    Science.gov (United States)

    Hua, Jianghuan; Han, Jian; Wang, Xianfeng; Guo, Yongyong; Zhou, Bingsheng

    2016-06-01

    Synthetic progesterones and estrogens are broadly used bioactive pharmaceutical agents and have been detected in aquatic environments. In the present study, we investigated the combined reproductive effects of megestrol acetate (MTA) and 17α-ethinylestradiol (EE2) on zebrafish. Adult zebrafish were exposed to MTA (33, 100 or 333 ng/L), EE2 (10 ng/L) or a mixture of both (MTA + EE2: 33 + 10, 100 + 10 or 333 + 10 ng/L) for 21 days. Results demonstrated that egg production was significantly reduced by exposure to 10 ng/L EE2, but not MTA. However, a combined exposure to MTA and EE2 caused further reduction of fish fecundity compared to EE2 exposure alone, suggesting an additive effect on egg production when EE2 is supplemented with MTA. Plasma concentrations of 17β-estradiol and testosterone in the females and 11-ketotestosterone in the males were significantly decreased in the groups exposed to EE2 or MTA alone compared with the solvent control, and the plasma concentrations of the three hormones were further reduced in the co-exposure groups relative to the MTA exposure group, but not the EE2 exposure group. These data indicate that the inhibitory effects on plasma concentrations in the co-exposures were predominantly caused by EE2. Furthermore, exposure to MTA and EE2 (alone or in combination) led to histological alterations in the ovaries (decreased vitellogenic/mature oocytes), but not in the testes. This study has important implications for environmental risk assessment of synthetic hormones that are concurrently present in aquatic systems. PMID:27038209

  2. From zebrafish heart jogging genes to mouse and human orthologs: using Gene Ontology to investigate mammalian heart development.

    Science.gov (United States)

    Khodiyar, Varsha K; Howe, Doug; Talmud, Philippa J; Breckenridge, Ross; Lovering, Ruth C

    2013-01-01

    For the majority of organs in developing vertebrate embryos, left-right asymmetry is controlled by a ciliated region; the left-right organizer node in the mouse and human, and the Kuppfer's vesicle in the zebrafish. In the zebrafish, laterality cues from the Kuppfer's vesicle determine asymmetry in the developing heart, the direction of 'heart jogging' and the direction of 'heart looping'.  'Heart jogging' is the term given to the process by which the symmetrical zebrafish heart tube is displaced relative to the dorsal midline, with a leftward 'jog'. Heart jogging is not considered to occur in mammals, although a leftward shift of the developing mouse caudal heart does occur prior to looping, which may be analogous to zebrafish heart jogging. Previous studies have characterized 30 genes involved in zebrafish heart jogging, the majority of which have well defined orthologs in mouse and human and many of these orthologs have been associated with early mammalian heart development.    We undertook manual curation of a specific set of genes associated with heart development and we describe the use of Gene Ontology term enrichment analyses to examine the cellular processes associated with heart jogging.  We found that the human, mouse and zebrafish 'heart jogging orthologs' are involved in similar organ developmental processes across the three species, such as heart, kidney and nervous system development, as well as more specific cellular processes such as cilium development and function. The results of these analyses are consistent with a role for cilia in the determination of left-right asymmetry of many internal organs, in addition to their known role in zebrafish heart jogging.    This study highlights the importance of model organisms in the study of human heart development, and emphasises both the conservation and divergence of developmental processes across vertebrates, as well as the limitations of this approach. PMID:24627794

  3. The impact of ZnO nanoparticle aggregates on the embryonic development of zebrafish (Danio rerio)

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Xiaoshan; Zhang Xuezhi; Chen Yongsheng [Department of Civil and Environmental Engineering, Arizona State University, Tempe, AZ 85287 (United States); Wang Jiangxin; Chang Yung [School of Life Sciences, Center for Infectious Diseases and Vaccinology, Biodesign Institute, Arizona State University, Tempe, AZ 85287 (United States)], E-mail: yung.chang@asu.edu, E-mail: yschen@asu.edu

    2009-05-13

    With extensive use of metal oxide nanoparticles (NPs) in a variety of applications comes a higher potential of release into aquatic environments. NPs tend to form much larger aggregates in water, which are expected to settle down to the bottom of the water column and possibly get mixed with the sediments. However, little is known about the environmental impacts and biological effects of these aggregated NPs in the sediment column. In this study, we examined the sedimentation of nanoscale ZnO particles (nZnO) in zebrafish culture medium, and assessed the toxicity of settled nZnO aggregates on developing zebrafish embryos and larvae. Given the known dissolution of nZnO particles to release Zn{sup 2+}, we also assessed the toxic effect of soluble Zn{sup 2+} in this organism. We demonstrated that within 48 h, micron-sized nZnO aggregates were formed and settled out of the culture medium. These aggregates were found to exert dose-dependent toxicity to zebrafish embryos and larvae, reducing the hatching rate and causing pericardial edema. The observed toxicity of the nZnO aggregates was not likely a result solely of particle dissolution, as soluble Zn{sup 2+} alone caused much less toxicity to zebrafish embryos than nZnO. Instead, the combination of both nZnO and Zn{sup 2+} may contribute to the embryonic toxicity, possibly by increasing reactive oxidative species (ROS) and/or compromising the cellular oxidative stress response. Interestingly, we demonstrated that one type of formulated sediments could mitigate the toxicity of nZnO aggregates, highlighting a possible countermeasure to reduce the adverse impact of nZnO aggregates on the environment.

  4. Lipid dynamics in zebrafish embryonic development observed by DESI-MS imaging and nanoelectrospray-MS.

    Science.gov (United States)

    Pirro, V; Guffey, S C; Sepúlveda, M S; Mahapatra, C T; Ferreira, C R; Jarmusch, A K; Cooks, R G

    2016-06-01

    The zebrafish Danio rerio is a model vertebrate organism for understanding biological mechanisms. Recent studies have explored using zebrafish as a model for lipid-related diseases, for in vivo fish bioassays, and for embryonic toxicity experiments. Mass spectrometry (MS) and MS imaging are established tools for lipid profiling and spatial mapping of biomolecules and offer rapid, sensitive, and simple analytical protocols for zebrafish analysis. When ambient ionization techniques are used, ions are generated in native environmental conditions, requiring neither sample preparation nor separation of molecules prior to MS. We used two direct MS techniques to describe the dynamics of the lipid profile during zebrafish embryonic development from 0 to 96 hours post-fertilization and to explore these analytical approaches as molecular diagnostic assays. Desorption electrospray ionization (DESI) MS imaging followed by nanoelectrospray (nESI) MS and tandem MS (MS/MS) were used in positive and negative ion modes, allowing the detection of a large variety of phosphatidylglycerols, phosphatidylcholines, phosphatidylinositols, free fatty acids, triacylglycerols, ubiquinone, squalene, and other lipids, and revealed information on the spatial distributions of lipids within the embryo and on lipid molecular structure. Differences were observed in the relative ion abundances of free fatty acids, triacylglycerols, and ubiquinone - essentially localized to the yolk - across developmental stages, whereas no relevant differences were found in the distribution of complex membrane glycerophospholipids, indicating conserved lipid constitution. Embryos exposed to trichloroethylene for 72 hours exhibited an altered lipid profile, indicating the potential utility of this technique for testing the effects of environmental contaminants. PMID:27120110

  5. Zebrafish: an exciting model for investigating the spatio-temporal pattern of enteric nervous system development.

    LENUS (Irish Health Repository)

    Doodnath, Reshma

    2012-02-01

    AIM: Recently, the zebrafish (Danio rerio) has been shown to be an excellent model for human paediatric research. Advantages over other models include its small size, externally visually accessible development and ease of experimental manipulation. The enteric nervous system (ENS) consists of neurons and enteric glia. Glial cells permit cell bodies and processes of neurons to be arranged and maintained in a proper spatial arrangement, and are essential in the maintenance of basic physiological functions of neurons. Glial fibrillary acidic protein (GFAP) is expressed in astrocytes, but also expressed outside of the central nervous system. The aim of this study was to investigate the spatio-temporal pattern of GFAP expression in developing zebrafish ENS from 24 h post-fertilization (hpf), using transgenic fish that express green fluorescent protein (GFP). METHODS: Zebrafish embryos were collected from transgenic GFP Tg(GFAP:GFP)(mi2001) adult zebrafish from 24 to 120 hpf, fixed and processed for whole mount immunohistochemistry. Antibodies to Phox2b were used to identify enteric neurons. Specimens were mounted on slides and imaging was performed using a fluorescent laser confocal microscope. RESULTS: GFAP:GFP labelling outside the spinal cord was identified in embryos from 48 hpf. The patterning was intracellular and consisted of elongated profiles that appeared to migrate away from the spinal cord into the periphery. At 72 and 96 hpf, GFAP:GFP was expressed dorsally and ventrally to the intestinal tract. At 120 hpf, GFAP:GFP was expressed throughout the intestinal wall, and clusters of enteric neurons were identified using Phox2b immunofluorescence along the pathway of GFAP:GFP positive processes, indicative of a migratory pathway of ENS precursors from the spinal cord into the intestine. CONCLUSION: The pattern of migration of GFAP:GFP expressing cells outside the spinal cord suggests an organized, early developing migratory pathway to the ENS. This shows for the

  6. Netrin-4 Acts as a Pro-angiogenic Factor during Zebrafish Development*

    Science.gov (United States)

    Lambert, Elise; Coissieux, Marie-May; Laudet, Vincent; Mehlen, Patrick

    2012-01-01

    Netrins form a heterogeneous family of laminin-related molecules with multifunctional activities. Netrin-4, the most distant member of this family, is related to the laminin β chain and has recently been proposed to play an important role in embryonic and pathological angiogenesis. However, the data reported so far lead to the apparently contradictory conclusions supporting Netrin-4 as either a pro- or an anti-angiogenic factor. To elucidate this controversy, Netrin-4 was analyzed for a vascular activity in both cell-based models (human umbilical vein endothelial cells and human umbilical artery endothelial cells) and two zebrafish models: the wild-type AB/Tü strain and the transgenic Tg(fli1a:EGFP)y1 strain. We show that Netrin-4 is expressed in endothelial cells and in the zebrafish vascular system. We also show evidence that Netrin-4 activates various kinases and induces various biological effects directly linked to angiogenesis in vitro. Using a morpholinos strategy, we demonstrate that Netrin-4 expression is crucial for zebrafish vessel formation and that a blood vessel formation defect induced by netrin-4 morpholinos can be partially rescued through drug delivery leading to protein kinase activation. Together these data underscore the crucial role of Netrin-4 in blood vessel formation and the involvement of protein kinases activation in Netrin-4-induced biological effects related to vascular development. PMID:22179604

  7. Netrin-4 acts as a pro-angiogenic factor during zebrafish development.

    Science.gov (United States)

    Lambert, Elise; Coissieux, Marie-May; Laudet, Vincent; Mehlen, Patrick

    2012-02-01

    Netrins form a heterogeneous family of laminin-related molecules with multifunctional activities. Netrin-4, the most distant member of this family, is related to the laminin β chain and has recently been proposed to play an important role in embryonic and pathological angiogenesis. However, the data reported so far lead to the apparently contradictory conclusions supporting Netrin-4 as either a pro- or an anti-angiogenic factor. To elucidate this controversy, Netrin-4 was analyzed for a vascular activity in both cell-based models (human umbilical vein endothelial cells and human umbilical artery endothelial cells) and two zebrafish models: the wild-type AB/Tü strain and the transgenic Tg(fli1a:EGFP)(y1) strain. We show that Netrin-4 is expressed in endothelial cells and in the zebrafish vascular system. We also show evidence that Netrin-4 activates various kinases and induces various biological effects directly linked to angiogenesis in vitro. Using a morpholinos strategy, we demonstrate that Netrin-4 expression is crucial for zebrafish vessel formation and that a blood vessel formation defect induced by netrin-4 morpholinos can be partially rescued through drug delivery leading to protein kinase activation. Together these data underscore the crucial role of Netrin-4 in blood vessel formation and the involvement of protein kinases activation in Netrin-4-induced biological effects related to vascular development. PMID:22179604

  8. Affective Development in University Education

    Science.gov (United States)

    Grootenboer, Peter

    2010-01-01

    There seems to be an increasing requirement for university courses and programs to develop students' affective qualities (beliefs, values, dispositions and attitudes). This study explored the ways academics determined what the desirable qualities were for their particular disciplines and the pedagogical strategies and approaches they used to…

  9. The effects of waterborne uranium on the hatching success, development, and survival of early life stages of zebrafish (Danio rerio)

    Energy Technology Data Exchange (ETDEWEB)

    Bourrachot, Stephanie [Laboratoire de Radioecologie et Ecotoxicologie, IRSN, Cadarache, 13115 Saint-Paul-lez-Durance (France)], E-mail: stephanie.bourrachot@irsn.fr; Simon, Olivier; Gilbin, Rodolphe [Laboratoire de Radioecologie et Ecotoxicologie, IRSN, Cadarache, 13115 Saint-Paul-lez-Durance (France)

    2008-10-20

    In this study, we investigated the effects of the radioactive metal uranium (U) on the embryonic development, hatching success, growth rate, and survival of juvenile zebrafish (Danio rerio). We studied the effects of depleted uranium (20-500 {mu}g L{sup -1} of DU), inducing mainly chemical toxicity due to its low specific activity, and the combined effects of chemical and radiological toxicity by using a higher specific activity uranium isotope (20 and 100 {mu}g L{sup -1} of {sup 233}U). Results showed that early life stages are significantly affected by uranium exposure through both chemical and combined (chemical and radiological) toxicity. Experiments showed significant effects of U on hatching success starting at the concentration of 250 {mu}g L{sup -1} of DU, causing a 42% delay in median hatching times relative to control. Furthermore, a reduction of growth (decrease in body length and weight) was observed followed by a high mortality of pro-larvae stage (up to 100% at DU concentrations of 250 {mu}g L{sup -1} upon a 15 day exposure). Bioaccumulation measurements highlighted that U was mainly localised in the chorion but penetrated in the embryo inside eggs at a higher concentration. The effects differed depending on the isotopic composition of the uranium: sublethal defects in the tail detachment process were more pronounced for {sup 233}U than DU exposure, while the presence of {sup 233}U specifically affected embryo development and led to higher mortality rates of the prolarvae. The results from this study showed that the early life stages of zebrafish seems to be more sensitive to uranium contamination than more mature stages, and underline the importance of including pro-larval stages into toxicity tests in order to improve the relevancy for environmental risk assessments.

  10. Transgenic zebrafish illuminate the dynamics of thyroid morphogenesis and its relationship to cardiovascular development.

    Science.gov (United States)

    Opitz, Robert; Maquet, Emilie; Huisken, Jan; Antonica, Francesco; Trubiroha, Achim; Pottier, Gaëlle; Janssens, Véronique; Costagliola, Sabine

    2012-12-15

    Among the various organs derived from foregut endoderm, the thyroid gland is unique in that major morphogenic events such as budding from foregut endoderm, descent into subpharyngeal mesenchyme and growth expansion occur in close proximity to cardiovascular tissues. To date, research on thyroid organogenesis was missing one vital tool-a transgenic model that allows to track the dynamic changes in thyroid size, shape and location relative to adjacent cardiovascular tissues in live embryos. In this study, we generated a novel transgenic zebrafish line, tg(tg:mCherry), in which robust and thyroid-specific expression of a membrane version of mCherry enables live imaging of thyroid development in embryos from budding stage throughout formation of functional thyroid follicles. By using various double transgenic models in which EGFP expression additionally labels cardiovascular structures, a high coordination was revealed between thyroid organogenesis and cardiovascular development. Early thyroid development was found to proceed in intimate contact with the distal ventricular myocardium and live imaging confirmed that thyroid budding from the pharyngeal floor is tightly coordinated with the descent of the heart. Four-dimensional imaging of live embryos by selective plane illumination microscopy and 3D-reconstruction of confocal images of stained embryos yielded novel insights into the role of specific pharyngeal vessels, such as the hypobranchial artery (HA), in guiding late thyroid expansion along the pharyngeal midline. An important role of the HA was corroborated by the detailed examination of thyroid development in various zebrafish models showing defective cardiovascular development. In combination, our results from live imaging as well es from 3D-reconstruction of thyroid development in tg(tg:mCherry) embryos provided a first dynamic view of late thyroid organogenesis in zebrafish-a critical resource for the design of future studies addressing the molecular

  11. Hypoxic conditions alter developing branchial arch-derived structures in zebrafish

    Directory of Open Access Journals (Sweden)

    Trish E Parsons

    2014-08-01

    Full Text Available Background: Previous epidemiological findings have implicated hypoxia as a risk factor for craniofacial defects including cleft lip, microtia and branchial arch anomalies. This study tests the hypothesis that hypoxic exposure results in craniofacial shape variation in a zebrafish model. Methods: Three sets of zebrafish embryos were raised in uniform conditions with the exception of dissolved oxygen level.  At 24 hours past fertilization (hpf embryos were placed in hypoxic conditions (70% or 50% dissolved oxygen tank water and compared to unexposed control embryos.  After 24 hours of exposure to hypoxia, the embryos were incubated under normoxia.  Larvae were collected at 5 days post fertilization (dpf and stained for cartilage. Images were taken of each specimen and subsequently landmarked to capture viscerocranial morphology.  A geometric morphometric analysis was performed to compare shape variation across groups. Results: The mean branchial arch shape of each exposure group was significantly different from controls (p<0.001.  Principal components analysis revealed a clear separation of the three groups, with controls at one end of the shape spectrum, the 50% hypoxia group at the other end, and the 70% hypoxia group spanning the variation in between. Conclusions: This experiment shows that hypoxia exposure at 24hpf is capable of affecting craniofacial shape in a dose-dependent manner.  These results may have implications not only for high altitude fetal health, but other environments, behaviors and genes that affect fetal oxygen delivery.

  12. Defective neuroepithelial cell cohesion affects tangential branchiomotor neuron migration in the zebrafish neural tube.

    Science.gov (United States)

    Stockinger, Petra; Maître, Jean-Léon; Heisenberg, Carl-Philipp

    2011-11-01

    Facial branchiomotor neurons (FBMNs) in zebrafish and mouse embryonic hindbrain undergo a characteristic tangential migration from rhombomere (r) 4, where they are born, to r6/7. Cohesion among neuroepithelial cells (NCs) has been suggested to function in FBMN migration by inhibiting FBMNs positioned in the basal neuroepithelium such that they move apically between NCs towards the midline of the neuroepithelium instead of tangentially along the basal side of the neuroepithelium towards r6/7. However, direct experimental evaluation of this hypothesis is still lacking. Here, we have used a combination of biophysical cell adhesion measurements and high-resolution time-lapse microscopy to determine the role of NC cohesion in FBMN migration. We show that reducing NC cohesion by interfering with Cadherin 2 (Cdh2) activity results in FBMNs positioned at the basal side of the neuroepithelium moving apically towards the neural tube midline instead of tangentially towards r6/7. In embryos with strongly reduced NC cohesion, ectopic apical FBMN movement frequently results in fusion of the bilateral FBMN clusters over the apical midline of the neural tube. By contrast, reducing cohesion among FBMNs by interfering with Contactin 2 (Cntn2) expression in these cells has little effect on apical FBMN movement, but reduces the fusion of the bilateral FBMN clusters in embryos with strongly diminished NC cohesion. These data provide direct experimental evidence that NC cohesion functions in tangential FBMN migration by restricting their apical movement.

  13. Zebrafish Noxa promotes mitosis in early embryonic development and regulates apoptosis in subsequent embryogenesis.

    Science.gov (United States)

    Zhong, J-X; Zhou, L; Li, Z; Wang, Y; Gui, J-F

    2014-06-01

    Noxa functions in apoptosis and immune system of vertebrates, but its activities in embryo development remain unclear. In this study, we have studied the role of zebrafish Noxa (zNoxa) by using zNoxa-specifc morpholino knockdown and overexpression approaches in developing zebrafish embryos. Expression pattern analysis indicates that zNoxa transcript is of maternal origin, which displays a uniform distribution in early embryonic development until shield stage, and the zygote zNoxa transcription is initiated from this stage and mainly localized in YSL of the embryos. The zNoxa expression alterations result in strong embryonic development defects, demonstrating that zNoxa regulates apoptosis from 75% epiboly stage of development onward, in which zNoxa firstly induces the expression of zBik, and then cooperates with zBik to regulate apoptosis. Moreover, zNoxa knockdown also causes a reduction in number of mitotic cells before 8 h.p.f., suggesting that zNoxa also promotes mitosis before 75% epiboly stage. The effect of zNoxa on mitosis is mediated by zWnt4b in early embryos, whereas zMcl1a and zMcl1b suppress the ability of zNoxa to regulate mitosis and apoptosis at different developmental stages. In addition, mammalian mouse Noxa (mNoxa) mRNA was demonstrated to rescue the arrest of mitosis when zNoxa was knocked down, suggesting that mouse and zebrafish Noxa might have similar dual functions. Therefore, the current findings indicate that Noxa is a novel regulator of early mitosis before 75% epiboly stage when it translates into a key mediator of apoptosis in subsequent embryogenesis.

  14. A Student Team in a University of Michigan Biomedical Engineering Design Course Constructs a Microfluidic Bioreactor for Studies of Zebrafish Development

    Science.gov (United States)

    Shen, Yu-chi; Li, David; Al-Shoaibi, Ali; Bersano-Begey, Tom; Chen, Hao; Ali, Shahid; Flak, Betsy; Perrin, Catherine; Winslow, Max; Shah, Harsh; Ramamurthy, Poornapriya; Schmedlen, Rachael H.; Takayama, Shuichi

    2009-01-01

    Abstract The zebrafish is a valuable model for teaching developmental, molecular, and cell biology; aquatic sciences; comparative anatomy; physiology; and genetics. Here we demonstrate that zebrafish provide an excellent model system to teach engineering principles. A seven-member undergraduate team in a biomedical engineering class designed, built, and tested a zebrafish microfluidic bioreactor applying microfluidics, an emerging engineering technology, to study zebrafish development. During the semester, students learned engineering and biology experimental design, chip microfabrication, mathematical modeling, zebrafish husbandry, principles of developmental biology, fluid dynamics, microscopy, and basic molecular biology theory and techniques. The team worked to maximize each person's contribution and presented weekly written and oral reports. Two postdoctoral fellows, a graduate student, and three faculty instructors coordinated and directed the team in an optimal blending of engineering, molecular, and developmental biology skill sets. The students presented two posters, including one at the Zebrafish meetings in Madison, Wisconsin (June 2008). PMID:19292670

  15. Tissue specific roles for the ribosome biogenesis factor Wdr43 in zebrafish development.

    Directory of Open Access Journals (Sweden)

    Chengtian Zhao

    2014-01-01

    Full Text Available During vertebrate craniofacial development, neural crest cells (NCCs contribute to most of the craniofacial pharyngeal skeleton. Defects in NCC specification, migration and differentiation resulting in malformations in the craniofacial complex are associated with human craniofacial disorders including Treacher-Collins Syndrome, caused by mutations in TCOF1. It has been hypothesized that perturbed ribosome biogenesis and resulting p53 mediated neuroepithelial apoptosis results in NCC hypoplasia in mouse Tcof1 mutants. However, the underlying mechanisms linking ribosome biogenesis and NCC development remain poorly understood. Here we report a new zebrafish mutant, fantome (fan, which harbors a point mutation and predicted premature stop codon in zebrafish wdr43, the ortholog to yeast UTP5. Although wdr43 mRNA is widely expressed during early zebrafish development, and its deficiency triggers early neural, eye, heart and pharyngeal arch defects, later defects appear fairly restricted to NCC derived craniofacial cartilages. Here we show that the C-terminus of Wdr43, which is absent in fan mutant protein, is both necessary and sufficient to mediate its nucleolar localization and protein interactions in metazoans. We demonstrate that Wdr43 functions in ribosome biogenesis, and that defects observed in fan mutants are mediated by a p53 dependent pathway. Finally, we show that proper localization of a variety of nucleolar proteins, including TCOF1, is dependent on that of WDR43. Together, our findings provide new insight into roles for Wdr43 in development, ribosome biogenesis, and also ribosomopathy-induced craniofacial phenotypes including Treacher-Collins Syndrome.

  16. Use of a highly transparent zebrafish mutant for investigations in the development of the vertebrate auditory system (Conference Presentation)

    Science.gov (United States)

    Wisniowiecki, Anna M.; Mattison, Scott P.; Kim, Sangmin; Riley, Bruce; Applegate, Brian E.

    2016-03-01

    Zebrafish, an auditory specialist among fish, offer analogous auditory structures to vertebrates and is a model for hearing and deafness in vertebrates, including humans. Nevertheless, many questions remain on the basic mechanics of the auditory pathway. Phase-sensitive Optical Coherence Tomography has been proven as valuable technique for functional vibrometric measurements in the murine ear. Such measurements are key to building a complete understanding of auditory mechanics. The application of such techniques in the zebrafish is impeded by the high level of pigmentation, which develops superior to the transverse plane and envelops the auditory system superficially. A zebrafish double mutant for nacre and roy (mitfa-/- ;roya-/- [casper]), which exhibits defects for neural-crest derived melanocytes and iridophores, at all stages of development, is pursued to improve image quality and sensitivity for functional imaging. So far our investigations with the casper mutants have enabled the identification of the specialized hearing organs, fluid-filled canal connecting the ears, and sub-structures of the semicircular canals. In our previous work with wild-type zebrafish, we were only able to identify and observe stimulated vibration of the largest structures, specifically the anterior swim bladder and tripus ossicle, even among small, larval specimen, with fully developed inner ears. In conclusion, this genetic mutant will enable the study of the dynamics of the zebrafish ear from the early larval stages all the way into adulthood.

  17. Beta-Catenin and Plakoglobin Expression during Zebrafish Tooth Development and Replacement.

    Science.gov (United States)

    Verstraeten, Barbara; van Hengel, Jolanda; Huysseune, Ann

    2016-01-01

    We analyzed the protein distribution of two cadherin-associated molecules, plakoglobin and β-catenin, during the different stages of tooth development and tooth replacement in zebrafish. Plakoglobin was detected at the plasma membrane already at the onset of tooth development in the epithelial cells of the tooth. This pattern remained unaltered during further tooth development. The mesenchymal cells only showed plakoglobin from cytodifferentiation onwards. Plakoglobin 1a morpholino-injected embryos showed normal tooth development with proper initiation and differentiation. Although plakoglobin is clearly present during normal odontogenesis, the loss of plakoglobin 1a does not influence tooth development. β-catenin was found at the cell borders of all cells of the successional lamina but also in the nuclei of surrounding mesenchymal cells. Only membranous, not nuclear, β-catenin, was found during morphogenesis stage. However, during cytodifferentiation stage, both nuclear and membrane-bound β-catenin was detected in the layers of the enamel organ as well as in the differentiating odontoblasts. Nuclear β-catenin is an indication of an activated Wnt pathway, therefore suggesting a possible role for Wnt signalling during zebrafish tooth development and replacement. PMID:26938059

  18. Beta-Catenin and Plakoglobin Expression during Zebrafish Tooth Development and Replacement.

    Directory of Open Access Journals (Sweden)

    Barbara Verstraeten

    Full Text Available We analyzed the protein distribution of two cadherin-associated molecules, plakoglobin and β-catenin, during the different stages of tooth development and tooth replacement in zebrafish. Plakoglobin was detected at the plasma membrane already at the onset of tooth development in the epithelial cells of the tooth. This pattern remained unaltered during further tooth development. The mesenchymal cells only showed plakoglobin from cytodifferentiation onwards. Plakoglobin 1a morpholino-injected embryos showed normal tooth development with proper initiation and differentiation. Although plakoglobin is clearly present during normal odontogenesis, the loss of plakoglobin 1a does not influence tooth development. β-catenin was found at the cell borders of all cells of the successional lamina but also in the nuclei of surrounding mesenchymal cells. Only membranous, not nuclear, β-catenin, was found during morphogenesis stage. However, during cytodifferentiation stage, both nuclear and membrane-bound β-catenin was detected in the layers of the enamel organ as well as in the differentiating odontoblasts. Nuclear β-catenin is an indication of an activated Wnt pathway, therefore suggesting a possible role for Wnt signalling during zebrafish tooth development and replacement.

  19. Delta-Notch signaling and lateral inhibition in zebrafish spinal cord development

    Directory of Open Access Journals (Sweden)

    Givan Lee Anne

    2001-07-01

    Full Text Available Abstract Background Vertebrate neural development requires precise coordination of cell proliferation and cell specification to guide orderly transition of mitotically active precursor cells into different types of post-mitotic neurons and glia. Lateral inhibition, mediated by the Delta-Notch signaling pathway, may provide a mechanism to regulate proliferation and specification in the vertebrate nervous system. We examined delta and notch gene expression in zebrafish embryos and tested the role of lateral inhibition in spinal cord patterning by ablating cells and genetically disrupting Delta-Notch signaling. Results Zebrafish embryos express multiple delta and notch genes throughout the developing nervous system. All or most proliferative precursors appeared to express notch genes whereas subsets of precursors and post-mitotic neurons expressed delta genes. When we ablated identified primary motor neurons soon after they were born, they were replaced, indicating that specified neurons laterally inhibit neighboring precursors. Mutation of a delta gene caused precursor cells of the trunk neural tube to cease dividing prematurely and develop as neurons. Additionally, mutant embryos had excess early specified neurons, with fates appropriate for their normal positions within the neural tube, and a concomitant deficit of late specified cells. Conclusions Our results are consistent with the idea that zebrafish Delta proteins, expressed by newly specified neurons, promote Notch activity in neighboring precursors. This signaling is required to maintain a proliferative precursor population and generate late-born neurons and glia. Thus, Delta-Notch signaling may diversify vertebrate neural cell fates by coordinating cell cycle control and cell specification.

  20. Effects of copper oxide nanoparticles on developing zebrafish embryos and larvae

    Directory of Open Access Journals (Sweden)

    Sun Y

    2016-03-01

    Full Text Available Yan Sun, Gong Zhang, Zizi He, Yajie Wang, Jianlin Cui, Yuhao Li Department of Pathology, Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Nankai University School of Medicine, Tianjin, People’s Republic of China Abstract: Copper oxide nanoparticles (CuO NPs are used for a variety of purposes in a wide range of commercially available products. Some CuO NPs probably end up in the aquatic systems, thus raising concerns about aqueous exposure toxicity, and the impact of CuO NPs on liver development and neuronal differentiation remains unclear. In this study, particles were characterized using Fourier transform infrared spectra, scanning electron microscopy, and transmission electron microscopy. Zebrafish embryos were continuously exposed to CuO NPs from 4 hours postfertilization at concentrations of 50, 25, 12.5, 6.25, or 1 mg/L. The expression of gstp1 and cyp1a was examined by quantitative reverse transcription polymerase chain reaction. The expression of tumor necrosis factor alpha and superoxide dismutase 1 was examined by quantitative reverse transcription polymerase chain reaction and Western blotting. Liver development and retinal neurodifferentiation were analyzed by whole-mount in situ hybridization, hematoxylin–eosin staining, and immunohistochemistry, and a behavioral test was performed to track the movement of larvae. We show that exposure of CuO NPs at low doses has little effect on embryonic development. However, exposure to CuO NPs at concentrations of 12.5 mg/L or higher leads to abnormal phenotypes and induces an inflammatory response in a dose-dependent pattern. Moreover, exposure to CuO NPs at high doses results in an underdeveloped liver and a delay in retinal neurodifferentiation accompanied by reduced locomotor ability. Our data demonstrate that short-term exposure to CuO NPs at high doses shows hepatotoxicity and neurotoxicity in zebrafish embryos and larvae. Keywords: copper oxide nanoparticles

  1. Effects of acoustic levitation on the development of zebrafish, Danio rerio, embryos

    OpenAIRE

    Maria Sundvik; Nieminen, Heikki J.; Ari Salmi; Pertti Panula; Edward Hæggström

    2015-01-01

    Acoustic levitation provides potential to characterize and manipulate material such as solid particles and fluid in a wall-less environment. While attempts to levitate small animals have been made, the biological effects of such levitation have been scarcely documented. Here, our goal was to explore if zebrafish embryos can be levitated (peak pressures at the pressure node and anti-node: 135 dB and 144 dB, respectively) with no effects on early development. We levitated the embryos (n = 94) a...

  2. Expression of nk2.1a during early development of the thyroid gland in zebrafish.

    Science.gov (United States)

    Rohr, K B; Concha, M L

    2000-07-01

    We show here that a zebrafish orthologue of the Thyroid Transcription Factor-1 (TTF-1), nk2.1a, is expressed in the developing thyroid gland. Using a fate mapping approach we found that an early nk2.1a expression domain in the endoderm adjacent to the heart follows morphogenetic movements of the lower jaw, ending up in the region in which the mature thyroid gland is located. We therefore suggest that nk2.1a labels the thyroid precursor cells from somitogenesis stages onwards.

  3. Vitamin D receptor signaling is required for heart development in zebrafish embryo.

    Science.gov (United States)

    Kwon, Hye-Joo

    2016-02-12

    Vitamin D has been found to be associated with cardiovascular diseases. However, the role of vitamin D in heart development during embryonic period is largely unknown. Vitamin D induces its genomic effects through its nuclear receptor, the vitamin D receptor (VDR). The present study investigated the role of VDR on heart development by antisense-mediated knockdown approaches in zebrafish model system. In zebrafish embryos, two distinct VDR genes (vdra and vdrb) have been identified. Knockdown of vdra has little effect on heart development, whereas disrupting vdrb gene causes various cardiac phenotypes, characterized by pericardial edema, slower heart rate and laterality defects. Depletion of both vdra and vdrb (vdra/b) produce additive, but not synergistic effects. To determine whether atrioventricular (AV) cardiomyocytes are properly organized in these embryos, the expression of bmp4, which marks the developing AV boundary at 48 h post-fertilization, was examined. Notably, vdra/b-deficient embryos display ectopic expression of bmp4 towards the ventricle or throughout atrial and ventricular chambers. Taken together, these results suggest that VDR signaling plays an essential role in heart development. PMID:26797277

  4. Hedgehog-PKA signaling and gnrh3 regulate the development of zebrafish gnrh3 neurons.

    Directory of Open Access Journals (Sweden)

    Ming-Wei Kuo

    Full Text Available GnRH neurons secrete GnRH that controls the development of the reproduction system. Despite many studies, the signals controlling the development of GnRH neurons from its progenitors have not been fully established. To understand the development of GnRH neurons, we examined the development of gnrh3-expressing cells using a transgenic zebrafish line that expresses green fluorescent protein (GFP and LacZ driven by the gnrh3 promoter. GFP and LacZ expression recapitulated that of gnrh3 in the olfactory region, olfactory bulb and telencephalon. Depletion of gnrh3 by morpholinos led to a reduction of GFP- and gnrh3-expressing cells, while over-expression of gnrh3 mRNA increased the number of these cells. This result indicates a positive feed-forward regulation of gnrh3 cells by gnrh3. The gnrh3 cells were absent in embryos that lack Hedgehog signaling, but their numbers were increased in embryos overexpressing shhb. We manipulated the amounts of kinase that antagonizes the Hedgehog signaling pathway, protein kinase A (PKA, by treating embryos with PKA activator forskolin or by injecting mRNAs encoding its constitutively active catalytic subunit (PKA* and dominant negative regulatory subunit (PKI into zebrafish embryos. PKA* misexpression or forskolin treatment decreased GFP cell numbers, while PKI misexpression led to ectopic production of GFP cells. Our data indicate that the Hedgehog-PKA pathway participates in the development of gnrh3-expressing neurons during embryogenesis.

  5. A novel role for MAPKAPK2 in morphogenesis during zebrafish development.

    Directory of Open Access Journals (Sweden)

    Beth A Holloway

    2009-03-01

    Full Text Available One of the earliest morphogenetic processes in the development of many animals is epiboly. In the zebrafish, epiboly ensues when the animally localized blastoderm cells spread, thin over, and enclose the vegetally localized yolk. Only a few factors are known to function in this fundamental process. We identified a maternal-effect mutant, betty boop (bbp, which displays a novel defect in epiboly, wherein the blastoderm margin constricts dramatically, precisely when half of the yolk cell is covered by the blastoderm, causing the yolk cell to burst. Whole-blastoderm transplants and mRNA microinjection rescue demonstrate that Bbp functions in the yolk cell to regulate epiboly. We positionally cloned the maternal-effect bbp mutant gene and identified it as the zebrafish homolog of the serine-threonine kinase Mitogen Activated Protein Kinase Activated Protein Kinase 2, or MAPKAPK2, which was not previously known to function in embryonic development. We show that the regulation of MAPKAPK2 is conserved and p38 MAP kinase functions upstream of MAPKAPK2 in regulating epiboly in the zebrafish embryo. Dramatic alterations in calcium dynamics, together with the massive marginal constrictive force observed in bbp mutants, indicate precocious constriction of an F-actin network within the yolk cell, which first forms at 50% epiboly and regulates epiboly progression. We show that MAPKAPK2 activity and its regulator p38 MAPK function in the yolk cell to regulate the process of epiboly, identifying a new pathway regulating this cell movement process. We postulate that a p38 MAPKAPK2 kinase cascade modulates the activity of F-actin at the yolk cell margin circumference allowing the gradual closure of the blastopore as epiboly progresses.

  6. Combining Zebrafish and Mouse Models to Test the Function of Deubiquitinating Enzyme (Dubs) Genes in Development: Role of USP45 in the Retina.

    Science.gov (United States)

    Toulis, Vasileios; Garanto, Alejandro; Marfany, Gemma

    2016-01-01

    Ubiquitination is a dynamic and reversible posttranslational modification. Much effort has been devoted to characterize the function of ubiquitin pathway genes in the cell context, but much less is known on their functional role in the development and maintenance of organs and tissues in the organism. In fact, several ubiquitin ligases and deubiquitinating enzymes (DUBs) are implicated in human pathological disorders, from cancer to neurodegeneration. The aim of our work is to explore the relevance of DUBs in retinal function in health and disease, particularly since some genes related to the ubiquitin or SUMO pathways cause retinal dystrophies, a group of rare diseases that affect 1:3000 individuals worldwide. We propose zebrafish as an extremely useful and informative genetic model to characterize the function of any particular gene in the retina, and thus complement the expression data from mouse. A preliminary characterization of gene expression in mouse retinas (RT-PCR and in situ hybridization) was performed to select particularly interesting genes, and we later replicated the experiments in zebrafish. As a proof of concept, we selected ups45 to be knocked down by morpholino injection in zebrafish embryos. Morphant phenotypic analysis showed moderate to severe eye morphological defects, with a defective formation of the retinal structures, therefore supporting the relevance of DUBs in the formation and differentiation of the vertebrate retina, and suggesting that genes encoding ubiquitin pathway enzymes are good candidates for causing hereditary retinal dystrophies. PMID:27613029

  7. Glucocorticoid receptor, but not mineralocorticoid receptor, mediates cortisol regulation of epidermal ionocyte development and ion transport in zebrafish (danio rerio.

    Directory of Open Access Journals (Sweden)

    Shelly Abad Cruz

    Full Text Available Cortisol is the major endogenous glucocorticoid (GC both in human and fish, mediated by corticosteroid receptors. Due to the absence of aldosterone production in teleost fish, cortisol is also traditionally accepted to function as mineralocorticoid (MC; but whether it acts through the glucocorticoid receptor (GR or the mineralocorticoid receptor (MR remains a subject of debate. Here, we used loss-of-function and rescue assays to determine whether cortisol affects zebrafish epidermal ionocyte development and function via the GR and/or the MR. GR knockdown morphants displayed a significant decrease in the major ionocytes, namely Na(+-K(+-ATPase-rich cells (NaRCs and H(+-ATPase-rich cells (HRCs, as well as other cells, including epidermal stem cells (ESCs, keratinocytes, and mucus cells; conversely, cell numbers were unaffected in MR knockdown morphants. In agreement, GR morphants, but not MR morphants, exhibited decreased NaRC-mediated Ca(2+ uptake and HRC-mediated H(+ secretion. Rescue via GR capped mRNA injection or exogenous cortisol incubation normalized the number of epidermal ionocytes in GR morphants. We also provide evidence for GR localization in epidermal cells. At the transcript level, GR mRNA is ubiquitously expressed in gill sections and present in both NaRCs and HRCs, supporting the knockdown and functional assay results in embryo. Altogether, we have provided solid molecular evidence that GR is indeed present on ionocytes, where it mediates the effects of cortisol on ionocyte development and function. Hence, cortisol-GR axis performs the roles of both GC and MC in zebrafish skin and gills.

  8. O-GlcNAc modifications regulate cell survival and epiboly during zebrafish development

    Directory of Open Access Journals (Sweden)

    Klonowski Kimberly D

    2009-04-01

    Full Text Available Abstract Background The post-translational addition of the monosaccharide O-linked β-N-acetylglucosamine (O-GlcNAc regulates the activity of a wide variety of nuclear and cytoplasmic proteins. The enzymes O-GlcNAc Transferase (Ogt and O-GlcNAcase (Oga catalyze, respectively, the attachment and removal of O-GlcNAc to target proteins. In adult mice, Ogt and Oga attenuate the response to insulin by modifying several components of the signal transduction pathway. Complete loss of ogt function, however, is lethal to mouse embryonic stem cells, suggesting that the enzyme has additional, unstudied roles in development. We have utilized zebrafish as a model to determine role of O-GlcNAc modifications in development. Zebrafish has two ogt genes, encoding six different enzymatic isoforms that are expressed maternally and zygotically. Results We manipulated O-GlcNAc levels in zebrafish embryos by overexpressing zebrafish ogt, human oga or by injecting morpholinos against ogt transcripts. Each of these treatments results in embryos with shortened body axes and reduced brains at 24 hpf. The embryos had 23% fewer cells than controls, and displayed increased rates of cell death as early as the mid-gastrula stages. An extensive marker analysis indicates that derivatives of three germ layers are reduced to variable extents, and the embryos are severely disorganized after gastrulation. Overexpression of Ogt and Oga delayed epiboly and caused a severe disorganization of the microtubule and actin based cytoskeleton in the extra-embryonic yolk syncytial layer (YSL. The cytoskeletal defects resemble those previously reported for embryos lacking function of the Pou5f1/Oct4 transcription factor spiel ohne grenzen. Consistent with this, Pou5f1/Oct4 is modified by O-GlcNAc in human embryonic stem cells. Conclusion We conclude that O-GlcNAc modifications control the activity of proteins that regulate apoptosis and epiboly movements, but do not seem to regulate germ layer

  9. Small molecule screening identifies targetable zebrafish pigmentation pathways

    DEFF Research Database (Denmark)

    Colanesi, Sarah; Taylor, Kerrie L; Temperley, Nicholas D;

    2012-01-01

    Small molecules complement genetic mutants and can be used to probe pigment cell biology by inhibiting specific proteins or pathways. Here, we present the results of a screen of active compounds for those that affect the processes of melanocyte and iridophore development in zebrafish......, including pigment cells, are conserved between zebrafish and other vertebrates, we present these chemicals as molecular tools to study developmental processes of pigment cells in living animals and emphasize the value of zebrafish as an in vivo system for testing the on- and off-target activities...

  10. Using zebrafish to assess the impact of drugs on neural development and function

    Science.gov (United States)

    Guo, Su

    2009-01-01

    Background Zebrafish is becoming an increasingly attractive model organism for understanding biology and developing therapeutics, because as a vertebrate, it shares considerable similarity with mammals in both genetic compositions and tissue/organ structures, and yet remains accessible to high throughput phenotype-based genetic and small molecule compound screening. Objective/method The focus of this review is on the nervous system, which is arguably the most complex organ and known to be afflicted by more than six hundred disorders in humans. I discuss the past, present, and future of using zebrafish to assess the impact of small molecule drugs on neural development and function, in light of understanding and treating neurodevelopmental disorders such as autism, neurodegenerative disorders including Alzheimer’s, Parkinson’s, and Hungtington’s disease, and neural system dysfunctions such as anxiety/depression and addiction. Conclusion These studies hold promise to reveal fundamental mechanisms governing nervous system development and function, and to facilitate small molecule drug discovery for the many types of neurological disorders. PMID:19774094

  11. NRSF/REST is required for gastrulation and neurogenesis during zebrafish development

    Institute of Scientific and Technical Information of China (English)

    Xuesong Wang; Jianke Ren; Zhugang Wang; Jihua Yao; Jian Fei

    2012-01-01

    Repressor element 1-silencing transcription factor (REST)was recognized as a transcription suppressor regulating nervous system differentiation.However,the role of REST during early development has not been clarified.We cloned the zebrafish homolog of human REST.Real-time polymerase chain reaction results showed that zebrafish REST mRNA was both maternal and zygotic with the higher expression level from blastula to the late segmentation period.Whole-mount in situ hybridization showed that REST was strongly expressed in the blastoderm since dome stage and dynamically expressed mainly in developing brain,especially in the border of the brain subdivisions in early segmentation period.Knockdown of REST using translation blocking morpholino (MO-tra) technique resulted in gastrulation delay or even blockage,and subsequently led to embryo lethality by early segmentation period with deficient neurogenesis.However,splicing blocking morpholino for REST did not show obviously abnormal phenotype until 48 hpf (hours postfertilization),indicating that maternal REST was an important regulator for gastrulation.Further study revealed that the abnormal development in MO-tra morphants was at least partly due to the dysfunction of protein transportation from the yolk to the blastoderm.Our results showed that REST (especially maternal supplied REST) was required for gastrulation and neurogenesis during zebraflsh early embryogenesis.

  12. Expression of the zebrafish intermediate neurofilament Nestin in the developing nervous system and in neural proliferation zones at postembryonic stages

    Directory of Open Access Journals (Sweden)

    Driever Wolfgang

    2007-07-01

    Full Text Available Abstract Background The intermediate filament Nestin has been reported as a marker for stem cells and specific precursor cell populations in the developing mammalian central nervous system (CNS. Nestin expressing precursors may give rise to neurons and glia. Mouse nestin expression starts at the onset of neurulation in the neuroectodermal cells and is dramatically down regulated when progenitor cells differentiate and become postmitotic. It has been reported that in the adult zebrafish (Danio rerio active neurogenesis continues in all major subdivisions of the CNS, however few markers for zebrafish precursors cells are known, and Nestin has not been described in zebrafish. Results We cloned a zebrafish nestin gDNA fragment in order to find a marker for precursor cells in the developing and postembryonic brain. Phylogenetic tree analysis reveals that this zebrafish ortholog clusters with Nestin sequences from other vertebrates but not with other intermediate filament proteins. We analyzed nestin expression from gastrula stage to 4 day larvae, and in post-embryonic brains. We found broad expression in the neuroectoderm during somitogenesis. In the larvae, nestin expression progressively becomes restricted to all previously described proliferative zones of the developing and postembryonic central nervous system. nestin expressing cells of the forebrain also express PCNA during late embryogenesis, identifying them as proliferating precursor or neural stem cells. nestin is also expressed in the cranial ganglia, in mesodermal precursors of muscle cells, and in cranial mesenchymal tissue. Conclusion Our data demonstrate that in zebrafish, like in mammals, the expression of the intermediated neurofilament nestin gene may serve as a marker for stem cells and proliferating precursors in the developing embryonic nervous system as well as in the postembryonic brain.

  13. Consequences of Aberrant Hedgehog Signaling During Zebrafish Development

    NARCIS (Netherlands)

    Koudijs, M.J.

    2007-01-01

    The Hedgehog signaling pathway is controlling proliferation, patterning and differentiation during development of vertebrates and invertebrates. Aberrant Hedgehog activity has been shown to be one of the underlying causes of a number of congenital disorders and multiple types of cancer. We investiga

  14. Polymethoxy-1-alkenes from Aphanizomenon ovalisporum Inhibit Vertebrate Development in the Zebrafish (Danio rerio Embryo Model

    Directory of Open Access Journals (Sweden)

    John P. Berry

    2012-10-01

    Full Text Available Cyanobacteria are recognized producers of a wide array of toxic or otherwise bioactive secondary metabolites. The present study utilized the zebrafish (Danio rerio embryo as an aquatic animal model of vertebrate development to identify, purify and characterize lipophilic inhibitors of development (i.e., developmental toxins from an isolate of the freshwater cyanobacterial species, Aphanizomenon ovalisporum. Bioassay-guided fractionation led to the purification, and subsequent chemical characterization, of an apparent homologous series of isotactic polymethoxy-1-alkenes (1–6, including three congeners (4–6 previously identified from the strain, and two variants previously identified from other species (2 and 3, as well as one apparently novel member of the series (1. Five of the PMAs in the series (1–5 were purified in sufficient quantity for comparative toxicological characterization, and toxicity in the zebrafish embryo model was found to generally correlate with relative chain length and/or methoxylation. Moreover, exposure of embryos to a combination of variants indicates an apparent synergistic interaction between the congeners. Although PMAs have been identified previously in cyanobacteria, this is the first report of their apparent toxicity. These results, along with the previously reported presence of the PMAs from several cyanobacterial species, suggest a possibly widespread distribution of the PMAs as toxic secondary metabolites and warrants further chemical and toxicological investigation.

  15. pitx2 Deficiency results in abnormal ocular and craniofacial development in zebrafish.

    Directory of Open Access Journals (Sweden)

    Yi Liu

    Full Text Available Human PITX2 mutations are associated with Axenfeld-Rieger syndrome, an autosomal-dominant developmental disorder that involves ocular anterior segment defects, dental hypoplasia, craniofacial dysmorphism and umbilical abnormalities. Characterization of the PITX2 pathway and identification of the mechanisms underlying the anomalies associated with PITX2 deficiency is important for better understanding of normal development and disease; studies of pitx2 function in animal models can facilitate these analyses. A knockdown of pitx2 in zebrafish was generated using a morpholino that targeted all known alternative transcripts of the pitx2 gene; morphant embryos generated with the pitx2(ex4/5 splicing-blocking oligomer produced abnormal transcripts predicted to encode truncated pitx2 proteins lacking the third (recognition helix of the DNA-binding homeodomain. The morphological phenotype of pitx2(ex4/5 morphants included small head and eyes, jaw abnormalities and pericardial edema; lethality was observed at ∼6-8-dpf. Cartilage staining revealed a reduction in size and an abnormal shape/position of the elements of the mandibular and hyoid pharyngeal arches; the ceratobranchial arches were also decreased in size. Histological and marker analyses of the misshapen eyes of the pitx2(ex4/5 morphants identified anterior segment dysgenesis and disordered hyaloid vasculature. In summary, we demonstrate that pitx2 is essential for proper eye and craniofacial development in zebrafish and, therefore, that PITX2/pitx2 function is conserved in vertebrates.

  16. Long-term hyperphagia and caloric restriction caused by low- or high-density husbandry have differential effects on zebrafish postembryonic development, somatic growth, fat accumulation and reproduction.

    Directory of Open Access Journals (Sweden)

    Sandra Leibold

    Full Text Available In recent years, the zebrafish (Danio rerio has emerged as an alternative vertebrate model for energy homeostasis and metabolic diseases, including obesity and anorexia. It has been shown that diet-induced obesity (DIO in zebrafish shares multiple pathophysiological features with obesity in mammals. However, a systematic and comprehensive analysis of the different pathways of energy expenditure in obese and starved fish had been missing thus far. Here, we carry out long-term ad libitum feeding (hyperphagia and caloric restriction studies induced by low- or high-density husbandry, respectively, to investigate the impact of caloric intake on the timing of scale formation, a crucial step of postembryonic development and metamorphosis, and on somatic growth, body weight, fat storage and female reproduction. We show that all of them are positively affected by increased caloric intake, that middle-aged fish develop severe DIO, and that the body mass index (BMI displays a strict linear correlation with whole-body triglyceride levels in adult zebrafish. Interestingly, juvenile fish are largely resistant to DIO, while BMI and triglyceride values drop in aged fish, pointing to aging-associated anorexic effects. Histological analyses further indicate that increased fat storage in white adipose tissue involves both hyperplasia and hypertrophy of adipocytes. Furthermore, in ovaries, caloric intake primarily affects the rate of oocyte growth, rather than total oocyte numbers. Finally, comparing the different pathways of energy expenditure with each other, we demonstrate that they are differentially affected by caloric restriction / high-density husbandry. In juvenile fish, scale formation is prioritized over somatic growth, while in sexually mature adults, female reproduction is prioritized over somatic growth, and somatic growth over fat storage. Our data will serve as a template for future functional studies to dissect the neuroendocrine regulators of

  17. Loss of Lrp2 in zebrafish disrupts pronephric tubular clearance but not forebrain development.

    Science.gov (United States)

    Kur, Esther; Christa, Anna; Veth, Kerry N; Gajera, Chandresh R; Andrade-Navarro, Miguel A; Zhang, Jingjing; Willer, Jason R; Gregg, Ronald G; Abdelilah-Seyfried, Salim; Bachmann, Sebastian; Link, Brian A; Hammes, Annette; Willnow, Thomas E

    2011-06-01

    Low-density lipoprotein receptor-related protein 2 (LRP2) is a multifunctional cell surface receptor conserved from nematodes to humans. In mammals, it acts as regulator of sonic hedgehog and bone morphogenetic protein pathways in patterning of the embryonic forebrain and as a clearance receptor in the adult kidney. Little is known about activities of this LRP in other phyla. Here, we extend the functional elucidation of LRP2 to zebrafish as a model organism of receptor (dys)function. We demonstrate that expression of Lrp2 in embryonic and larval fish recapitulates the patterns seen in mammalian brain and kidney. Furthermore, we studied the consequence of receptor deficiencies in lrp2 and in lrp2b, a homologue unique to fish, using ENU mutagenesis or morpholino knockdown. While receptor-deficient zebrafish suffer from overt renal resorption deficiency, their brain development proceeds normally, suggesting evolutionary conservation of receptor functions in pronephric duct clearance but not in patterning of the teleost forebrain.

  18. Impacts of chemical modification on the toxicity of diverse nanocellulose materials to developing zebrafish

    Science.gov (United States)

    Harper, Bryan J.; Clendaniel, Alicea; Sinche, Federico; Way, Daniel; Hughes, Michael; Schardt, Jenna; Simonsen, John; Stefaniak, Aleksandr B.

    2016-01-01

    Cellulose is an abundant and renewable resource currently being investigated for utility in nanomaterial form for various promising applications ranging from medical and pharmaceutical uses to mechanical reinforcement and biofuels. The utility of nanocellulose and wide implementation ensures increasing exposure to humans and the environment as nanocellulose-based technologies advance. Here, we investigate how differences in aspect ratio and changes to surface chemistry, as well as synthesis methods, influence the biocompatibility of nanocellulose materials using the embryonic zebrafish. Investigations into the toxicity of neutral, cationic and anionic surface functionalities revealed that surface chemistry had a minimal influence on the overall toxicity of nanocellulose materials. Higher aspect ratio cellulose nanofibers produced by mechanical homogenization were, in some cases, more toxic than other cellulose-based nanofibers or nanocrystals produced by chemical synthesis methods. Using fluorescently labeled nanocellulose we were able to show that nanocellulose uptake did occur in embryonic zebrafish during development. We conclude that the benign nature of nanocellulose materials makes them an ideal platform to systematically investigate the inherent surface features driving nanomaterial toxicity in order to create safer design principles for engineered nanoparticles. PMID:27468180

  19. Transcriptomic analysis in the developing zebrafish embryo after compound exposure: Individual gene expression and pathway regulation

    Energy Technology Data Exchange (ETDEWEB)

    Hermsen, Sanne A.B., E-mail: Sanne.Hermsen@rivm.nl [Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven (Netherlands); Department of Toxicogenomics, Maastricht University, P.O. Box 616, 6200 MD, Maastricht (Netherlands); Institute for Risk Assessment Sciences (IRAS), Utrecht University, P.O. Box 80.178, 3508 TD, Utrecht (Netherlands); Pronk, Tessa E. [Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven (Netherlands); Department of Toxicogenomics, Maastricht University, P.O. Box 616, 6200 MD, Maastricht (Netherlands); Brandhof, Evert-Jan van den [Centre for Environmental Quality, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven (Netherlands); Ven, Leo T.M. van der [Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven (Netherlands); Piersma, Aldert H. [Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven (Netherlands); Institute for Risk Assessment Sciences (IRAS), Utrecht University, P.O. Box 80.178, 3508 TD, Utrecht (Netherlands)

    2013-10-01

    The zebrafish embryotoxicity test is a promising alternative assay for developmental toxicity. Classically, morphological assessment of the embryos is applied to evaluate the effects of compound exposure. However, by applying differential gene expression analysis the sensitivity and predictability of the test may be increased. For defining gene expression signatures of developmental toxicity, we explored the possibility of using gene expression signatures of compound exposures based on commonly expressed individual genes as well as based on regulated gene pathways. Four developmental toxic compounds were tested in concentration-response design, caffeine, carbamazepine, retinoic acid and valproic acid, and two non-embryotoxic compounds, D-mannitol and saccharin, were included. With transcriptomic analyses we were able to identify commonly expressed genes, which were mostly development related, after exposure to the embryotoxicants. We also identified gene pathways regulated by the embryotoxicants, suggestive of their modes of action. Furthermore, whereas pathways may be regulated by all compounds, individual gene expression within these pathways can differ for each compound. Overall, the present study suggests that the use of individual gene expression signatures as well as pathway regulation may be useful starting points for defining gene biomarkers for predicting embryotoxicity. - Highlights: • The zebrafish embryotoxicity test in combination with transcriptomics was used. • We explored two approaches of defining gene biomarkers for developmental toxicity. • Four compounds in concentration-response design were tested. • We identified commonly expressed individual genes as well as regulated gene pathways. • Both approaches seem suitable starting points for defining gene biomarkers.

  20. Experimental Dissection of Metalloproteinase Inhibition-Mediated and Toxic Effects of Phenanthroline on Zebrafish Development

    Directory of Open Access Journals (Sweden)

    Tonya R. Ellis

    2016-09-01

    Full Text Available Metalloproteinases are zinc-dependent endopeptidases that function as primary effectors of tissue remodeling, cell-signaling, and many other roles. Their regulation is ferociously complex, and is exquisitely sensitive to their molecular milieu, making in vivo studies challenging. Phenanthroline (PhN is an inexpensive, broad-spectrum inhibitor of metalloproteinases that functions by chelating the catalytic zinc ion, however its use in vivo has been limited due to suspected off-target effects. PhN is very similar in structure to phenanthrene (PhE, a well-studied poly aromatic hydrocarbon (PAH known to cause toxicity in aquatic animals by activating the aryl hydrocarbon receptor (AhR. We show that zebrafish are more sensitive to PhN than PhE, and that PhN causes a superset of the effects caused by PhE. Morpholino knock-down of the AhR rescues the effects of PhN that are shared with PhE, suggesting these are due to PAH toxicity. The effects of PhN that are not shared with PhE (specifically disruption of neural crest development and angiogenesis involve processes known to depend on metalloproteinase activity. Furthermore these PhN-specific effects are not rescued by AhR knock-down, suggesting that these are bona fide effects of metalloproteinase inhibition, and that PhN can be used as a broad spectrum metalloproteinase inhibitor for studies with zebrafish in vivo.

  1. Experimental Dissection of Metalloproteinase Inhibition-Mediated and Toxic Effects of Phenanthroline on Zebrafish Development.

    Science.gov (United States)

    Ellis, Tonya R; Crawford, Bryan D

    2016-01-01

    Metalloproteinases are zinc-dependent endopeptidases that function as primary effectors of tissue remodeling, cell-signaling, and many other roles. Their regulation is ferociously complex, and is exquisitely sensitive to their molecular milieu, making in vivo studies challenging. Phenanthroline (PhN) is an inexpensive, broad-spectrum inhibitor of metalloproteinases that functions by chelating the catalytic zinc ion, however its use in vivo has been limited due to suspected off-target effects. PhN is very similar in structure to phenanthrene (PhE), a well-studied poly aromatic hydrocarbon (PAH) known to cause toxicity in aquatic animals by activating the aryl hydrocarbon receptor (AhR). We show that zebrafish are more sensitive to PhN than PhE, and that PhN causes a superset of the effects caused by PhE. Morpholino knock-down of the AhR rescues the effects of PhN that are shared with PhE, suggesting these are due to PAH toxicity. The effects of PhN that are not shared with PhE (specifically disruption of neural crest development and angiogenesis) involve processes known to depend on metalloproteinase activity. Furthermore these PhN-specific effects are not rescued by AhR knock-down, suggesting that these are bona fide effects of metalloproteinase inhibition, and that PhN can be used as a broad spectrum metalloproteinase inhibitor for studies with zebrafish in vivo. PMID:27618022

  2. Obscurin Depletion Impairs Organization of Skeletal Muscle in Developing Zebrafish Embryos

    Directory of Open Access Journals (Sweden)

    Maide Ö. Raeker

    2011-01-01

    Full Text Available During development, skeletal myoblasts differentiate into myocytes and skeletal myotubes with mature contractile structures that are precisely oriented with respect to surrounding cells and tissues. Establishment of this highly ordered structure requires reciprocal interactions between the differentiating myocytes and the surrounding extracellular matrix to form correctly positioned and well-organized attachments from the skeletal muscle to the bony skeleton. Using the developing zebrafish embryo as a model, we examined the relationship between new myofibril assembly and the organization of the membrane domains involved in cell-extracellular matrix interactions. We determined that depletion of obscurin, a giant muscle protein, resulted in irregular cell morphology and disturbed extracellular matrix organization during skeletal muscle development. The resulting impairment of myocyte organization was associated with disturbance of the internal architecture of the myocyte suggesting that obscurin participates in organizing the internal structure of the myocyte and translating those structural cues to surrounding cells and tissues.

  3. The behavior of larval zebrafish reveals stressor-mediated anorexia during early vertebrate development

    Science.gov (United States)

    De Marco, Rodrigo J.; Groneberg, Antonia H.; Yeh, Chen-Min; Treviño, Mario; Ryu, Soojin

    2014-01-01

    The relationship between stress and food consumption has been well documented in adults but less so in developing vertebrates. Here we demonstrate that an encounter with a stressor can suppress food consumption in larval zebrafish. Furthermore, we provide indication that food intake suppression cannot be accounted for by changes in locomotion, oxygen consumption and visual responses, as they remain unaffected after exposure to a potent stressor. We also show that feeding reoccurs when basal levels of cortisol (stress hormone in humans and teleosts) are re-established. The results present evidence that the onset of stress can switch off the drive for feeding very early in vertebrate development, and add a novel endpoint for analyses of metabolic and behavioral disorders in an organism suitable for high-throughput genetics and non-invasive brain imaging. PMID:25368561

  4. Thyroid hormone and retinoic acid interact to regulate zebrafish craniofacial neural crest development.

    Science.gov (United States)

    Bohnsack, Brenda L; Kahana, Alon

    2013-01-15

    Craniofacial and ocular morphogenesis require proper regulation of cranial neural crest migration, proliferation, survival and differentiation. Although alterations in maternal thyroid hormone (TH) are associated with congenital craniofacial anomalies, the role of TH on the neural crest has not been previously described. Using zebrafish, we demonstrate that pharmacologic and genetic alterations in TH signaling disrupt cranial neural crest migration, proliferation, and survival, leading to craniofacial, extraocular muscle, and ocular developmental abnormalities. In the rostral cranial neural crest that gives rise to the periocular mesenchyme and the frontonasal process, retinoic acid (RA) rescued migratory defects induced by decreased TH signaling. In the caudal cranial neural crest, TH and RA had reciprocal effects on anterior and posterior pharyngeal arch development. The interactions between TH and RA signaling were partially mediated by the retinoid X receptor. We conclude that TH regulates both rostral and caudal cranial neural crest. Further, coordinated interactions of TH and RA are required for proper craniofacial and ocular development.

  5. Evaluating human cancer cell metastasis in zebrafish

    International Nuclear Information System (INIS)

    In vivo metastasis assays have traditionally been performed in mice, but the process is inefficient and costly. However, since zebrafish do not develop an adaptive immune system until 14 days post-fertilization, human cancer cells can survive and metastasize when transplanted into zebrafish larvae. Despite isolated reports, there has been no systematic evaluation of the robustness of this system to date. Individual cell lines were stained with CM-Dil and injected into the perivitelline space of 2-day old zebrafish larvae. After 2-4 days fish were imaged using confocal microscopy and the number of metastatic cells was determined using Fiji software. To determine whether zebrafish can faithfully report metastatic potential in human cancer cells, we injected a series of cells with different metastatic potential into the perivitelline space of 2 day old embryos. Using cells from breast, prostate, colon and pancreas we demonstrated that the degree of cell metastasis in fish is proportional to their invasion potential in vitro. Highly metastatic cells such as MDA231, DU145, SW620 and ASPC-1 are seen in the vasculature and throughout the body of the fish after only 24–48 hours. Importantly, cells that are not invasive in vitro such as T47D, LNCaP and HT29 do not metastasize in fish. Inactivation of JAK1/2 in fibrosarcoma cells leads to loss of invasion in vitro and metastasis in vivo, and in zebrafish these cells show limited spread throughout the zebrafish body compared with the highly metastatic parental cells. Further, knockdown of WASF3 in DU145 cells which leads to loss of invasion in vitro and metastasis in vivo also results in suppression of metastasis in zebrafish. In a cancer progression model involving normal MCF10A breast epithelial cells, the degree of invasion/metastasis in vitro and in mice is mirrored in zebrafish. Using a modified version of Fiji software, it is possible to quantify individual metastatic cells in the transparent larvae to correlate with

  6. Slc39a7/zip7 plays a critical role in development and zinc homeostasis in zebrafish.

    Directory of Open Access Journals (Sweden)

    Guang Yan

    Full Text Available BACKGROUND: Slc39a7/Zip7, also known as Ke4, is a member of solute carrier family 39 (Slc39a and plays a critical role in regulating cell growth and death. Because the function of Zip7 in vivo was unclear, the present study investigated the function of zip7 in vertebrate development and zinc metabolism using zebrafish as a model organism. PRINCIPAL FINDING: Using real-time PCR to determine the gene expression pattern of zip7 during zebrafish development, we found that zip7 mRNA is expressed throughout embryonic development and into maturity. Interestingly, whole mount in situ hybridization revealed that while zip7 mRNA is ubiquitously expressed until 12 hours post-fertilization (hpf; at 24 hpf and beyond, zip7 mRNA was specifically detected only in eyes. Morpholino-antisense (MO gene knockdown assay revealed that downregulation of zip7 expression resulted in several morphological defects in zebrafish including decreased head size, smaller eyes, shorter palates, and shorter and curved spinal cords. Analysis by synchrotron radiation X-ray fluorescence (SR-XRF showed reduced concentrations of zinc in brain, eyes, and gills of zip7-MO-injected embryos. Furthermore, incubation of the zip7 knockdown embryos in a zinc-supplemented solution was able to rescue the MO-induced morphological defects. SIGNIFICANCE: Our data suggest that zip7 is required for eye, brain, and skeleton formation during early embryonic development in zebrafish. Moreover, zinc supplementation can partially rescue defects resulting from zip7 gene knockdown. Taken together, our data provide critical insight into a novel function of zip7 in development and zinc homeostasis in vivo in zebrafish.

  7. Expression patterns of SH3BGR family members in zebrafish development.

    Science.gov (United States)

    Tong, Fang; Zhang, Mingming; Guo, Xiaoling; Shi, Hongshun; Li, Li; Guan, Wen; Wang, Haihe; Yang, Shulan

    2016-07-01

    SH3 domain-binding glutamic acid-rich (SH3BGR) gene family is composed of SH3BGR, SH3BGRL, SH3BGRL2, and SH3BGRL3 which encodes a cluster of small thioredoxin-like proteins and shares a Src homology 3 (SH3) domain. However, biological functions of SH3BGR family members are largely elusive. Given that zebrafish (Danio rerio) sh3bgrl, sh3bgrl2, sh3bgrl3, and sh3bgr are evolutionally identical to their corresponding human orthologues, we analyzed the spatiotemporal expression of SH3BGR family members in zebrafish embryonic development stages by in situ hybridization. Our results revealed that except sh3bgrl, other members are all maternally expressed, especially for sh3bgrl3 that is strongly expressed from one-cell stage to juvenile fishes. In situ expression patterns of SH3BGR members are similar in the very early developmental stages, including with commonly strong expression in intestines, olfactory bulbs, and neuromasts for neural system building up. Organ-specific expressions are also demonstrated, of which sh3bgr is uniquely expressed in sarcomere, and sh3bgrl3 in liver. sh3bgrl and sh3bgrl2 are similarly expressed in intestines, notochords, and neuromasts after 12-h post-fertilization of embryos. Eventually, messenger RNAs (mRNAs) of all sh3bgr members are mainly constrained into intestines of juvenile fishes. Collectively, our study clarified the expression patterns of sh3bgr family members in diverse organogenesis in embryonic development and indicates that SH3BGR members may play predominant roles in neural system development and in maintenance of normal function of digestive organs, especially for intestine homeostasis. However, their expression patterns are varied with the development stages and organ types, suggesting that the aberrant expression of these members would result in multiple diseases. PMID:27233781

  8. Expression patterns of CREB binding protein (CREBBP) and its methylated species during zebrafish development.

    Science.gov (United States)

    Batut, Julie; Duboé, Carine; Vandel, Laurence

    2015-01-01

    Proper embryonic development requires a fine-tuned control of gene expression, which is achieved in part through the activity of transcription coactivators or corepressors. The nuclear coactivator cAMP-response element-binding protein (CREB) binding protein (CREBBP or CBP) interacts with numerous transcription factors and thereby plays a key role in various signaling pathways. Interestingly, in cell-based studies CREBBP activity is modulated by post-translational modifications such as methylation on arginine residues which is catalyzed by coactivator-associated arginine methyltransferase 1 (CARM1). However, whether and where CREBBP, and in particular its methylated forms, are expressed during development in vertebrates has not been addressed so far. Here, we analyzed the expression of the two crebbp genes (crebbpa & crebbpb) during zebrafish development using both RT-qPCR and in situ hybridization. We found that while crebbpa expression is higher in posterior, caudal nascent somites during somitogenesis, crebbpb accumulates in anterior, rostral, and more mature somites. In addition, crebbpa mRNA is enriched in the central myotome at 24 hpf indicating that its expression is spatially and temporally controlled. We next characterized the expression of CREBBP protein from blastula to gastrula stages by immunohistochemistry. We found that while CREBBP is clearly cytoplasmic in the early blastula, it becomes both cytoplasmic and nuclear at 30% epiboly before turning mainly nuclear during gastrulation. Of interest, CREBBP methylated species appear to be mainly nuclear from 30% epiboly to 6-somite stage. This suggests that methylation may regulate CREBBP import to the nucleus during zebrafish development and could therefore participate in the control of early developmental processes.

  9. Zebrafish: an animal model for research in veterinary medicine.

    Science.gov (United States)

    Nowik, N; Podlasz, P; Jakimiuk, A; Kasica, N; Sienkiewicz, W; Kaleczyc, J

    2015-01-01

    The zebrafish (Danio rerio) has become known as an excellent model organism for studies of vertebrate biology, vertebrate genetics, embryonal development, diseases and drug screening. Nevertheless, there is still lack of detailed reports about usage of the zebrafish as a model in veterinary medicine. Comparing to other vertebrates, they can lay hundreds of eggs at weekly intervals, externally fertilized zebrafish embryos are accessible to observation and manipulation at all stages of their development, which makes possible to simplify the research techniques such as fate mapping, fluorescent tracer time-lapse lineage analysis and single cell transplantation. Although zebrafish are only 2.5 cm long, they are easy to maintain. Intraperitoneal and intracerebroventricular injections, blood sampling and measurement of food intake are possible to be carry out in adult zebrafish. Danio rerio is a useful animal model for neurobiology, developmental biology, drug research, virology, microbiology and genetics. A lot of diseases, for which the zebrafish is a perfect model organism, affect aquatic animals. For a part of them, like those caused by Mycobacterium marinum or Pseudoloma neutrophila, Danio rerio is a natural host, but the zebrafish is also susceptible to the most of fish diseases including Itch, Spring viraemia of carp and Infectious spleen and kidney necrosis. The zebrafish is commonly used in research of bacterial virulence. The zebrafish embryo allows for rapid, non-invasive and real time analysis of bacterial infections in a vertebrate host. Plenty of common pathogens can be examined using zebrafish model: Streptococcus iniae, Vibrio anguillarum or Listeria monocytogenes. The steps are taken to use the zebrafish also in fungal research, especially that dealing with Candida albicans and Cryptococcus neoformans. Although, the zebrafish is used commonly as an animal model to study diseases caused by external agents, it is also useful in studies of metabolic

  10. Zebrafish: an animal model for research in veterinary medicine.

    Science.gov (United States)

    Nowik, N; Podlasz, P; Jakimiuk, A; Kasica, N; Sienkiewicz, W; Kaleczyc, J

    2015-01-01

    The zebrafish (Danio rerio) has become known as an excellent model organism for studies of vertebrate biology, vertebrate genetics, embryonal development, diseases and drug screening. Nevertheless, there is still lack of detailed reports about usage of the zebrafish as a model in veterinary medicine. Comparing to other vertebrates, they can lay hundreds of eggs at weekly intervals, externally fertilized zebrafish embryos are accessible to observation and manipulation at all stages of their development, which makes possible to simplify the research techniques such as fate mapping, fluorescent tracer time-lapse lineage analysis and single cell transplantation. Although zebrafish are only 2.5 cm long, they are easy to maintain. Intraperitoneal and intracerebroventricular injections, blood sampling and measurement of food intake are possible to be carry out in adult zebrafish. Danio rerio is a useful animal model for neurobiology, developmental biology, drug research, virology, microbiology and genetics. A lot of diseases, for which the zebrafish is a perfect model organism, affect aquatic animals. For a part of them, like those caused by Mycobacterium marinum or Pseudoloma neutrophila, Danio rerio is a natural host, but the zebrafish is also susceptible to the most of fish diseases including Itch, Spring viraemia of carp and Infectious spleen and kidney necrosis. The zebrafish is commonly used in research of bacterial virulence. The zebrafish embryo allows for rapid, non-invasive and real time analysis of bacterial infections in a vertebrate host. Plenty of common pathogens can be examined using zebrafish model: Streptococcus iniae, Vibrio anguillarum or Listeria monocytogenes. The steps are taken to use the zebrafish also in fungal research, especially that dealing with Candida albicans and Cryptococcus neoformans. Although, the zebrafish is used commonly as an animal model to study diseases caused by external agents, it is also useful in studies of metabolic

  11. Green tea extract suppresses adiposity and affects the expression of lipid metabolism genes in diet-induced obese zebrafish

    Directory of Open Access Journals (Sweden)

    Hasumura Takahiro

    2012-08-01

    Full Text Available Abstract Background Visceral fat accumulation is one of the most important predictors of mortality in obese populations. Administration of green tea extract (GTE can reduce body fat and reduce the risk of obesity-related diseases in mammals. In this study, we investigated the effects and mechanisms of GTE on adiposity in diet-induced obese (DIO zebrafish. Methods Zebrafish at 3.5 to 4.5 months post-fertilization were allocated to four groups: non-DIO, DIO, DIO + 0.0025%GTE, and DIO + 0.0050%GTE. The non-DIO group was fed freshly hatched Artemia once daily (5 mg cysts/fish daily for 40 days. Zebrafish in the three DIO groups were fed freshly hatched Artemia three times daily (60 mg cysts/fish daily. Zebrafish in the DIO + 0.0025%GTE and DIO + 0.0050%GTE groups were exposed to GTE after the start of feeding three times daily for 40 days. Results Three-dimensional microcomputed tomography analysis showed that GTE exposure significantly decreased the volume of visceral but not subcutaneous fat tissue in DIO zebrafish. GTE exposure increased hepatic expression of the lipid catabolism genes ACOX1 (acyl-coenzyme A oxidase 1, palmitoyl, ACADM (acyl-coenzyme A dehydrogenase, c-4 to c-12 straight chain, and PPARA (peroxisome proliferator-activated receptor alpha. GTE exposure also significantly decreased the visceral fat expression of SOCS3 (suppressor of cytokine signaling 3b which inhibits leptin signaling. Conclusions The present results are consistent with those seen in mammals treated with GTE, supporting the validity of studying the effects of GTE in DIO zebrafish. Our results suggest that GTE exerts beneficial effects on adiposity, possibly by altering the expression of lipid catabolism genes and SOCS3.

  12. Pretilachlor has the potential to induce endocrine disruption, oxidative stress, apoptosis and immunotoxicity during zebrafish embryo development.

    Science.gov (United States)

    Jiang, Jinhua; Chen, Yanhong; Yu, Ruixian; Zhao, Xueping; Wang, Qiang; Cai, Leiming

    2016-03-01

    The objectives of the present study were to investigate the toxic effects of pretilachlor on zebrafish during its embryo development. The results demonstrated that the transcription of genes involved in the hypothalamic-pituitary-gonadal/thyroid (HPG/HPT) axis was increased after exposure to 50, 100, 200 μg/L pretilachlor for 96 h, the aromatase activity, vitellogenin (VTG) and thyroid hormones T3 and T4 levels in zebrafish were also up-regulated simultaneously. Pretilachlor exposure induced a noticeable increase in ROS level, increased the transcription and level of antioxidant proteins (e.g., CAT, SOD and GPX). Moreover, the up-regulation of P53, Mdm2, Bbc3 expression and Caspase3 and Caspase9 activities in the apoptosis pathway suggested pretilachlor might trigger cell apoptosis in zebrafish. In addition, the transcription of CXCL-C1C, IL-1β and IL-8 related to the innate immunity was down-regulated after pretilachlor exposure. These data suggested that pretilachlor could simultaneously induce endocrine disruption, apoptosis, oxidative stress and immunotoxicity during zebrafish embryo development. PMID:26851375

  13. Zebrafish con/disp1 reveals multiple spatiotemporal requirements for Hedgehog-signaling in craniofacial development

    Directory of Open Access Journals (Sweden)

    Schwend Tyler

    2009-11-01

    Full Text Available Abstract Background The vertebrate head skeleton is derived largely from cranial neural crest cells (CNCC. Genetic studies in zebrafish and mice have established that the Hedgehog (Hh-signaling pathway plays a critical role in craniofacial development, partly due to the pathway's role in CNCC development. Disruption of the Hh-signaling pathway in humans can lead to the spectral disorder of Holoprosencephaly (HPE, which is often characterized by a variety of craniofacial defects including midline facial clefting and cyclopia 12. Previous work has uncovered a role for Hh-signaling in zebrafish dorsal neurocranium patterning and chondrogenesis, however Hh-signaling mutants have not been described with respect to the ventral pharyngeal arch (PA skeleton. Lipid-modified Hh-ligands require the transmembrane-spanning receptor Dispatched 1 (Disp1 for proper secretion from Hh-synthesizing cells to the extracellular field where they act on target cells. Here we study chameleon mutants, lacking a functional disp1(con/disp1. Results con/disp1 mutants display reduced and dysmorphic mandibular and hyoid arch cartilages and lack all ceratobranchial cartilage elements. CNCC specification and migration into the PA primorida occurs normally in con/disp1 mutants, however disp1 is necessary for post-migratory CNCC patterning and differentiation. We show that disp1 is required for post-migratory CNCC to become properly patterned within the first arch, while the gene is dispensable for CNCC condensation and patterning in more posterior arches. Upon residing in well-formed pharyngeal epithelium, neural crest condensations in the posterior PA fail to maintain expression of two transcription factors essential for chondrogenesis, sox9a and dlx2a, yet continue to robustly express other neural crest markers. Histology reveals that posterior arch residing-CNCC differentiate into fibrous-connective tissue, rather than becoming chondrocytes. Treatments with Cyclopamine, to

  14. Development of the lateral line canal system through a bone remodeling process in zebrafish.

    Science.gov (United States)

    Wada, Hironori; Iwasaki, Miki; Kawakami, Koichi

    2014-08-01

    The lateral line system of teleost fish is composed of mechanosensory receptors (neuromasts), comprising superficial receptors and others embedded in canals running under the skin. Canal diameter and size of the canal neuromasts are correlated with increasing body size, thus providing a very simple system to investigate mechanisms underlying the coordination between organ growth and body size. Here, we examine the development of the trunk lateral line canal system in zebrafish. We demonstrated that trunk canals originate from scales through a bone remodeling process, which we suggest is essential for the normal growth of canals and canal neuromasts. Moreover, we found that lateral line cells are required for the formation of canals, suggesting the existence of mutual interactions between the sensory system and surrounding connective tissues.

  15. UHRF1 regulation of Dnmt1 is required for pre-gastrula zebrafish development.

    Science.gov (United States)

    Kent, Brandon; Magnani, Elena; Walsh, Martin J; Sadler, Kirsten C

    2016-04-01

    Landmark epigenetic events underlie early embryonic development, yet how epigenetic modifiers are regulated to achieve rapid epigenome re-patterning is not known. Uhrf1 and DNA methyltransferase 1 (Dnmt1) are known to largely mediate maintenance DNA methylation and Uhrf1 is also required for both Dnmt1 localization and stability. Here, we investigate how these two key epigenetic modifiers regulate early zebrafish development and characterize the developmental consequences of disrupting their homeostatic relationship. Unlike Uhrf1 knockdown, which causes developmental arrest and death prior to gastrulation, overexpression of human UHRF1 (WT-UHRF1) caused asymmetric epiboly, inefficient gastrulation and multi-systemic defects. UHRF1 phosphorylation was previously demonstrated as essential for zebrafish embryogenesis, and we found that penetrance of the asymmetric epiboly phenotype was significantly increased in embryos injected with mRNA encoding non-phosphorylatable UHRF1 (UHRF1(S661A)). Surprisingly, both WT-UHRF1 and UHRF1(S661A) overexpression caused DNA hypomethylation. However, since other approaches that caused an equivalent degree of DNA hypomethylation did not cause the asymmetric epiboly phenotype, we conclude that bulk DNA methylation is not the primary mechanism. Instead, UHRF1(S661A) overexpression resulted in accumulation of Dnmt1 protein and the overexpression of both WT and a catalytically inactive Dnmt1 phenocopied the assymetric epiboly phenotype. Dnmt1 knockdown suppressed the phenotype caused by UHRF1(S661A) overexpression, and Uhrf1 knockdown suppressed the effect of Dnmt1 overexpression. Therefore, we conclude that the interaction between these two proteins is the mechanism underlying the gastrulation defects. This indicates that Dnmt1 stability requires UHRF1 phosphorylation and that crosstalk between the proteins is essential for the function of these two important epigenetic regulators during gastrulation.

  16. Zebrafish assessment of cognitive improvement and anxiolysis: filling the gap between in vitro and rodent models for drug development.

    Science.gov (United States)

    Levin, Edward D

    2011-01-01

    Zebrafish can provide a valuable animal model to screen potential cognitive enhancing and anxiolytic drugs. They are economical and can provide a relatively quick indication of possible functional efficacy. In as much as they have a complex nervous system and elaborate behavioral repertoire, zebrafish can provide a good intermediate model between in vitro receptor and cell-based assays and classic mammalian models for drug screening. In addition, the variety of molecular tools available in zebrafish makes them outstanding models for helping to determine the neuromolecular mechanisms for psychoactive drugs. However, to use zebrafish as a translational model we must have validated, sensitive and efficient behavioral tests. In a series of studies, our lab has developed tests of cognitive function and stress response, which are sensitive to drug effects in a similar manner as rodent models and humans for cognitive enhancement and alleviating stress response. In particular, the three-chamber task for learning and memory was shown to be sensitive to the cognitive enhancing effects of nicotine and has been useful in helping to determine neural mechanisms crucial for nicotinic-induced cognitive enhancement. The novel tank diving test was shown to be a valid and efficient test of stress response. It is sensitive to the reduction in stress-related behaviors due to the amxiolytic drugs diazepam and buspirone but not chlordiazepoxide. Nicotine also causes stress alleviating effects which can be interpreted as anxiolytic effects. Zebrafish models of behavioral pharmacology can be useful to efficiently screen test compounds for drug development and can be useful in helping to determine the mechanisms crucial for new therapeutic treatments of neurobehavioral impairments.

  17. Alternate Immersion in an External Glucose Solution Differentially Affects Blood Sugar Values in Older Versus Younger Zebrafish Adults.

    Science.gov (United States)

    Connaughton, Victoria P; Baker, Cassandra; Fonde, Lauren; Gerardi, Emily; Slack, Carly

    2016-04-01

    Recently, zebrafish have been used to examine hyperglycemia-induced complications (retinopathy and neuropathy), as would occur in individuals with diabetes. Current models to induce hyperglycemia in zebrafish include glucose immersion and streptozotocin injections. Both are effective, although neither is reported to elevate blood sugar values for more than 1 month. In this article, we report differences in hyperglycemia induction and maintenance in young (4-11 months) versus old (1-3 years) zebrafish adults. In particular, older fish immersed in an alternating constant external glucose solution (2%) for 2 months displayed elevated blood glucose levels for the entire experimental duration. In contrast, younger adults displayed only transient hyperglycemia, suggesting the fish were acclimating to the glucose exposure protocol. However, modifying the immersion protocol to include a stepwise increasing glucose concentration (from 1% → 2%→3%) resulted in maintained hyperglycemia in younger zebrafish adults for up to 2 months. Glucose-exposed younger fish collected after 8 weeks of exposure also displayed a significant decrease in wet weight. Taken together, these data suggest different susceptibilities to hyperglycemia in older and younger fish and that stepwise increasing glucose concentrations of 1% are required for maintenance of hyperglycemia in younger adults, with higher concentrations of glucose resulting in greater increases in blood sugar values. PMID:26771444

  18. Home tank water versus novel water differentially affect alcohol-induced locomotor activity and anxiety related behaviours in zebrafish.

    Science.gov (United States)

    Tran, Steven; Facciol, Amanda; Gerlai, Robert

    2016-05-01

    The zebrafish may be uniquely well suited for studying alcohol's mechanisms of action in vivo, since alcohol can be administered via immersion in a non-invasive manner. Despite the robust behavioural effects of alcohol administration in mammals, studies reporting the locomotor stimulant and anxiolytic effects of alcohol in zebrafish have been inconsistent. In the current study, we examined whether differences in the type of water used for alcohol exposure and behavioural testing contribute to these inconsistencies. To answer this question, we exposed zebrafish to either home water from their housing tanks or novel water from an isolated reservoir (i.e. water lacking zebrafish chemosensory and olfactory cues) with 0% or 1% v/v alcohol for 30min, a 2×2 between subject experimental designs. Behavioural responses were quantified throughout the 30-minute exposure session via a video tracking system. Although control zebrafish exposed to home water and novel water were virtually indistinguishable in their behavioural responses, alcohol's effect on locomotor activity and anxiety-like behavioural responses were dependent on the type of water used for testing. Alcohol exposure in home tank water produced a mild anxiolytic and locomotor stimulant effect, whereas alcohol exposure in novel water produced an anxiogenic effect without altering locomotor activity. These results represent a dissociation between alcohol's effects on locomotor and anxiety related responses, and also illustrate how environmental factors, in this case familiarity with the water, may interact with such effects. In light of these findings, we urge researchers to explicitly state the type of water used. PMID:26921455

  19. Inactivation of ca10a and ca10b Genes Leads to Abnormal Embryonic Development and Alters Movement Pattern in Zebrafish.

    Directory of Open Access Journals (Sweden)

    Ashok Aspatwar

    Full Text Available Carbonic anhydrase related proteins (CARPs X and XI are highly conserved across species and are predominantly expressed in neural tissues. The biological role of these proteins is still an enigma. Ray-finned fish have lost the CA11 gene, but instead possess two co-orthologs of CA10. We analyzed the expression pattern of zebrafish ca10a and ca10b genes during embryonic development and in different adult tissues, and studied 61 CARP X/XI-like sequences to evaluate their phylogenetic relationship. Sequence analysis of zebrafish ca10a and ca10b reveals strongly predicted signal peptides, N-glycosylation sites, and a potential disulfide, all of which are conserved, suggesting that all of CARP X and XI are secretory proteins and potentially dimeric. RT-qPCR showed that zebrafish ca10a and ca10b genes are expressed in the brain and several other tissues throughout the development of zebrafish. Antisense morpholino mediated knockdown of ca10a and ca10b showed developmental delay with a high rate of mortality in larvae. Zebrafish morphants showed curved body, pericardial edema, and abnormalities in the head and eye, and there was increased apoptotic cell death in the brain region. Swim pattern showed abnormal movement in morphant zebrafish larvae compared to the wild type larvae. The developmental phenotypes of the ca10a and ca10b morphants were confirmed by inactivating these genes with the CRISPR/Cas9 system. In conclusion, we introduce a novel zebrafish model to investigate the mechanisms of CARP Xa and CARP Xb functions. Our data indicate that CARP Xa and CARP Xb have important roles in zebrafish development and suppression of ca10a and ca10b expression in zebrafish larvae leads to a movement disorder.

  20. Environmental issues affecting CCT development

    Energy Technology Data Exchange (ETDEWEB)

    Reidy, M. [U.S. House of Representatives, Washington, DC (United States)

    1997-12-31

    While no final legislative schedule has been set for the new Congress, two issues with strong environmental ramifications which are likely to affect the coal industry seem to top the list of closely watched debates in Washington -- the Environmental Protection Agency`s proposed new ozone and particulate matter standards and utility restructuring. The paper discusses the background of the proposed standards, public comment, the Congressional review of regulations, other legislative options, and utility restructuring.

  1. The Zebrafish Model Organism Database (ZFIN)

    Data.gov (United States)

    U.S. Department of Health & Human Services — ZFIN serves as the zebrafish model organism database. It aims to: a) be the community database resource for the laboratory use of zebrafish, b) develop and support...

  2. Platelet-derived growth factor receptor beta is critical for zebrafish intersegmental vessel formation.

    Directory of Open Access Journals (Sweden)

    Katie M Wiens

    Full Text Available BACKGROUND: Platelet-derived growth factor receptor beta (PDGFRbeta is a tyrosine kinase receptor known to affect vascular development. The zebrafish is an excellent model to study specific regulators of vascular development, yet the role of PDGF signaling has not been determined in early zebrafish embryos. Furthermore, vascular mural cells, in which PDGFRbeta functions cell autonomously in other systems, have not been identified in zebrafish embryos younger than 72 hours post fertilization. METHODOLOGY/PRINCIPAL FINDINGS: In order to investigate the role of PDGFRbeta in zebrafish vascular development, we cloned the highly conserved zebrafish homolog of PDGFRbeta. We found that pdgfrbeta is expressed in the hypochord, a developmental structure that is immediately dorsal to the dorsal aorta and potentially regulates blood vessel development in the zebrafish. Using a PDGFR tyrosine kinase inhibitor, a morpholino oligonucleotide specific to PDGFRbeta, and a dominant negative PDGFRbeta transgenic line, we found that PDGFRbeta is necessary for angiogenesis of the intersegmental vessels. SIGNIFICANCE/CONCLUSION: Our data provide the first evidence that PDGFRbeta signaling is required for zebrafish angiogenesis. We propose a novel mechanism for zebrafish PDGFRbeta signaling that regulates vascular angiogenesis in the absence of mural cells.

  3. Alternative splicing of sept9a and sept9b in zebrafish produces multiple mRNA transcripts expressed throughout development.

    Directory of Open Access Journals (Sweden)

    Megan L Landsverk

    Full Text Available BACKGROUND: Septins are involved in a number of cellular processes including cytokinesis and organization of the cytoskeleton. Alterations in human septin-9 (SEPT9 levels have been linked to multiple cancers, whereas mutations in SEPT9 cause the episodic neuropathy, hereditary neuralgic amyotrophy (HNA. Despite its important function in human health, the in vivo role of SEPT9 is unknown. METHODOLOGY/PRINCIPAL FINDINGS: Here we utilize zebrafish to study the role of SEPT9 in early development. We show that zebrafish possess two genes, sept9a and sept9b that, like humans, express multiple transcripts. Knockdown or overexpression of sept9a transcripts results in specific developmental alterations including circulation defects and aberrant epidermal development. CONCLUSIONS/SIGNIFICANCE: Our work demonstrates that sept9 plays an important role in zebrafish development, and establishes zebrafish as a valuable model organism for the study of SEPT9.

  4. G-protein-coupled estrogen receptor 1 is involved in brain development during zebrafish (Danio rerio) embryogenesis

    International Nuclear Information System (INIS)

    Highlights: •The Gper expression was detected in the developing brain of zebrafish. •Gper morpholino knockdown induced apoptosis of brain cells. •Gper morpholino knockdown reduced expression in neuron markers. •Zebrafish Gper may be involved in neuronal development. -- Abstract: G-protein-coupled estrogen receptor 1 (Gper, formerly known as GPR30) is found to be a trophic and protective factor in mediating action of estrogen in adult brain, while its role in developing brain remains to be elucidated. Here we present the expression pattern of Gper and its functions during embryogenesis in zebrafish. Both the mRNA and protein of Gper were detected throughout embryogenesis. Whole mount in situ hybridization (WISH) revealed a wide distribution of gper mRNAs in various regions of the developing brain. Gper knockdown by specific morpholinos resulted in growth retardation in embryos and morphological defects in the developing brain. In addition, induced apoptosis, decreased proliferation of the brain cells and maldevelopment of sensory and motor neurons were also found in the morphants. Our results provide novel insights into Gper functions in the developing brain, revealing that Gper can maintain the survival of the brain cells, and formation and/or differentiation of the sensory and motor neurons

  5. G-protein-coupled estrogen receptor 1 is involved in brain development during zebrafish (Danio rerio) embryogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yanan; Liu, Xiaochun [State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275 (China); Zhu, Pei; Li, Jianzhen; Sham, Kathy W.Y. [School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong (China); Cheng, Shuk Han [Department of Biology and Chemistry, City University of Hong Kong, Kowloon, Hong Kong (China); Li, Shuisheng; Zhang, Yong [State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275 (China); Cheng, Christopher H.K., E-mail: chkcheng@cuhk.edu.hk [School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong (China); Lin, Haoran, E-mail: lsslhr@mail.sysu.edu.cn [State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275 (China); College of Ocean, Hainan University, Haikou 570228, Hainan (China)

    2013-05-24

    Highlights: •The Gper expression was detected in the developing brain of zebrafish. •Gper morpholino knockdown induced apoptosis of brain cells. •Gper morpholino knockdown reduced expression in neuron markers. •Zebrafish Gper may be involved in neuronal development. -- Abstract: G-protein-coupled estrogen receptor 1 (Gper, formerly known as GPR30) is found to be a trophic and protective factor in mediating action of estrogen in adult brain, while its role in developing brain remains to be elucidated. Here we present the expression pattern of Gper and its functions during embryogenesis in zebrafish. Both the mRNA and protein of Gper were detected throughout embryogenesis. Whole mount in situ hybridization (WISH) revealed a wide distribution of gper mRNAs in various regions of the developing brain. Gper knockdown by specific morpholinos resulted in growth retardation in embryos and morphological defects in the developing brain. In addition, induced apoptosis, decreased proliferation of the brain cells and maldevelopment of sensory and motor neurons were also found in the morphants. Our results provide novel insights into Gper functions in the developing brain, revealing that Gper can maintain the survival of the brain cells, and formation and/or differentiation of the sensory and motor neurons.

  6. Development and regeneration of the zebrafish maxillary barbel: a novel study system for vertebrate tissue growth and repair.

    Directory of Open Access Journals (Sweden)

    Elizabeth E LeClair

    Full Text Available BACKGROUND: Barbels are integumentary sense organs found in fishes, reptiles and amphibians. The zebrafish, Danio rerio, develops paired nasal and maxillary barbels approximately one month post fertilization. Small in diameter and optically clear, these adult appendages offer a window on the development, maintenance and function of multiple cell types including skin cells, neural-crest derived pigment cells, circulatory vessels, taste buds and sensory nerves. Importantly, barbels in other otophysan fishes (e.g., catfish are known to regenerate; however, this capacity has not been tested in zebrafish. METHODOLOGY/PRINCIPAL FINDINGS: We describe the development of the maxillary barbel in a staged series of wild type and transgenic zebrafish using light microscopy, histology and immunohistochemistry. By imaging transgenic zebrafish containing fluorescently labeled endothelial cells (Tg(fli1a:EGFP, we demonstrate that the barbel contains a long ( approximately 2-3 mm closed-end vessel that we interpret as a large lymphatic. The identity of this vessel was further supported by live imaging of the barbel circulation, extending recent descriptions of the lymphatic system in zebrafish. The maxillary barbel can be induced to regenerate by proximal amputation. After more than 750 experimental surgeries in which approximately 85% of the barbel's length was removed, we find that wound healing is complete within hours, followed by blastema formation ( approximately 3 days, epithelial redifferentiation (3-5 days and appendage elongation. Maximum regrowth occurs within 2 weeks of injury. Although superficially normal, the regenerates are shorter and thicker than the contralateral controls, have abnormally organized mesenchymal cells and extracellular matrix, and contain prominent connective tissue "stumps" at the plane of section--a mode of regeneration more typical of mammalian scarring than other zebrafish appendages. Finally, we show that the maxillary

  7. Evolving Cardiac Conduction Phenotypes in Developing Zebrafish Larvae: Implications to Drug Sensitivity

    OpenAIRE

    Yu, Fei; Huang, Jie; Adlerz, Katrina; Jadvar, Hossein; Hamdan, Mohamed H.; Chi, Neil; Chen, Jau-Nian; Hsiai, Tzung K.

    2010-01-01

    Cardiac arrhythmias include problems with impulse formation and/or conduction abnormalities. Zebrafish (Danio rerio) is an emerging model system for studying the cardiac conduction system. However, real-time recording of the electrocardiogram remains a challenge. In the present study, we assessed the feasibility of recording electrical cardiogram (ECG) signals from the zebrafish larvae using the micropipette electrodes, and demonstrated the dynamic changes in ECG signals and their sensitivity...

  8. Using the Larval Zebrafish Locomotor Asssay in Functional Neurotoxicity Screening: Light Brightness and the Order of Stimulus Presentation Affect the Outcome

    Science.gov (United States)

    We are evaluating methods to screen/prioritize large numbers of chemicals using 6 day old zebrafish (Danio rerio) as an alternative model for detecting neurotoxic effects. Our behavioral testing paradigm simultaneously tests individual larval zebrafish under sequential light and...

  9. 不同饲养密度对斑马鱼生长发育的影响%Effects of rearing density on growth and development in zebrafish

    Institute of Scientific and Technical Information of China (English)

    巨英超; 谢英; 刘超; 吴建华; 刘树锋

    2013-01-01

    Object To investigate effects of rearing density on growth and development of the zebrafish. Materials and method Zebrafish was maintained at 1, 2, 4, 6, 8 Tail/L density in a 3L indepent unit. In some distinct developmental stages, the weight, length, organ weight of fish was measured and some indicators were calculated. The results of weight, DWG, WGR, LGR and viscera index were analyzed by SPSS 17.0, thus investigating the effects of rearing density on growth and development of zebrafish. Result There was no significant difference among each group , when the rearing density differ from 1 to 4 Tail / L. However, the weight, DWG, WGR, LGR and viscera index descend when density is increasing, and there was a significant difference between the groups of low density ( P < 0. 01 ). Conclusion In a comprehensive consideration of considering the factors that affect the efficacy of breeding including space and the quality of living environment of zebrafish et al, 4Tail/L is an ideal rearing density.%目的 探讨饲养密度对斑马鱼生长发育的影响.方法 分别按1、2、4、6、8Tail/L的密度将斑马鱼饲养于容积为3L饲养盒中,测定不同生长阶段的体重、体长、脏器重量等指标,计算日增重(DWG)、增重率(WGR)、增长率(LGR)和成鱼脏器指数,并使用SPSSI7.0进行统计分析.结果 当饲养密度介于1~4TaiL/L之间时,各组间的DWG、WGR、LGR及脏器指数无显著差异.进一步增加饲养密度时,DWG、WGR、LGR及脏器指数均出现不同程度下降,与低密度组有显著性差异(P<0.01).结论 综合考虑空间利用率、斑马鱼生存环境质量等因素,4Tai1/L是一个比较理想的饲养密度.

  10. MicroRNA 218 mediates the effects of Tbx5a over-expression on zebrafish heart development.

    Directory of Open Access Journals (Sweden)

    Elena Chiavacci

    Full Text Available tbx5, a member of the T-box gene family, encodes one of the key transcription factors mediating vertebrate heart development. Tbx5 function in heart development appears to be exquisitely sensitive to gene dosage, since both haploinsufficiency and gene duplication generate the cardiac abnormalities associated with Holt-Oram syndrome (HOS, a highly penetrant autosomal dominant disease characterized by congenital heart defects of varying severity and upper limb malformation. It is suggested that tight integration of microRNAs and transcription factors into the cardiac genetic circuitry provides a rich and robust array of regulatory interactions to control cardiac gene expression. Based on these considerations, we performed an in silico screening to identify microRNAs embedded in genes highly sensitive to Tbx5 dosage. Among the identified microRNAs, we focused our attention on miR-218-1 that, together with its host gene, slit2, is involved in heart development. We found correlated expression of tbx5 and miR-218 during cardiomyocyte differentiation of mouse P19CL6 cells. In zebrafish embryos, we show that both Tbx5 and miR-218 dysregulation have a severe impact on heart development, affecting early heart morphogenesis. Interestingly, down-regulation of miR-218 is able to rescue the heart defects generated by tbx5 over-expression supporting the notion that miR-218 is a crucial mediator of Tbx5 in heart development and suggesting its possible involvement in the onset of heart malformations.

  11. In vivo and in vitro biophysical properties of hair cells from the lateral line and inner ear of developing and adult zebrafish

    OpenAIRE

    Olt, J; Johnson, S. L.; Marcotti, W.

    2014-01-01

    Hair cells detect and process sound and movement information, and transmit this with remarkable precision and efficiency to afferent neurons via specialized ribbon synapses. The zebrafish is emerging as a powerful model for genetic analysis of hair cell development and function both in vitro and in vivo. However, the full exploitation of the zebrafish is currently limited by the difficulty in performing systematic electrophysiological recordings from hair cells under physiological recording c...

  12. Vegfa signaling promotes zebrafish intestinal vasculature development through endothelial cell migration from the posterior cardinal vein.

    Science.gov (United States)

    Koenig, Andrew L; Baltrunaite, Kristina; Bower, Neil I; Rossi, Andrea; Stainier, Didier Y R; Hogan, Benjamin M; Sumanas, Saulius

    2016-03-01

    The mechanisms underlying organ vascularization are not well understood. The zebrafish intestinal vasculature forms early, is easily imaged using transgenic lines and in-situ hybridization, and develops in a stereotypical pattern thus making it an excellent model for investigating mechanisms of organ specific vascularization. Here, we demonstrate that the sub-intestinal vein (SIV) and supra-intestinal artery (SIA) form by a novel mechanism from angioblasts that migrate out of the posterior cardinal vein and coalesce to form the intestinal vasculature in an anterior to posterior wave with the SIA forming after the SIV. We show that vascular endothelial growth factor aa (vegfaa) is expressed in the endoderm at the site where intestinal vessels form and therefore likely provides a guidance signal. Vegfa/Vegfr2 signaling is required for early intestinal vasculature development with mutation in vegfaa or loss of Vegfr2 homologs causing nearly complete inhibition of the formation of the intestinal vasculature. Vegfc and Vegfr3 function, however, are dispensable for intestinal vascularization. Interestingly, ubiquitous overexpression of Vegfc resulted in an overgrowth of the SIV, suggesting that Vegfc is sufficient to induce SIV development. These results argue that Vegfa signaling directs endothelial cells to migrate out of existing vasculature and coalesce to form the intestinal vessels. It is likely that a similar mechanism is utilized during vascularization of other organs.

  13. The Zebrafish Neurophenome Database (ZND): a dynamic open-access resource for zebrafish neurophenotypic data.

    Science.gov (United States)

    Kyzar, Evan; Zapolsky, Ivan; Green, Jeremy; Gaikwad, Siddharth; Pham, Mimi; Collins, Christopher; Roth, Andrew; Stewart, Adam Michael; St-Pierre, Paul; Hirons, Budd; Kalueff, Allan V

    2012-03-01

    Zebrafish (Danio rerio) are widely used in neuroscience research, where their utility as a model organism is rapidly expanding. Low cost, ease of experimental manipulations, and sufficient behavioral complexity make zebrafish a valuable tool for high-throughput studies in biomedicine. To complement the available repositories for zebrafish genetic information, there is a growing need for the collection of zebrafish neurobehavioral and neurological phenotypes. For this, we are establishing the Zebrafish Neurophenome Database (ZND; www.tulane.edu/∼znpindex/search ) as a new dynamic online open-access data repository for behavioral and related physiological data. ZND, currently focusing on adult zebrafish, combines zebrafish neurophenotypic data with a simple, easily searchable user interface, which allow scientists to view and compare results obtained by other laboratories using various treatments in different testing paradigms. As a developing community effort, ZND is expected to foster innovative research using zebrafish by federating the growing body of zebrafish neurophenotypic data.

  14. Identification of WSB1 gene as an important regulator in the development of zebrafish embryo during midblastula transition

    Institute of Scientific and Technical Information of China (English)

    Wenjian Lv; Yunbin Zhang; Zhili Wu; Lin Chu; S. S. Koide; Yuguang Chen; Yuanchang Yan; Yiping Li

    2008-01-01

    To uncover novel genes potentially involved in embryo development, especially at the midblastula transition (MBT) phase in the developing embryo of zebrafish, Affymetrix zebrafish GeneChip microarray analysis was carried out on the expression of 14,900 gene transcripts. The results of the analysis showed that 360 genes were clearly up-regulated and 119 genes were markedly down-regulated. Many of these genes were involved in transcription factor activity, nucleic acid binding, and cell growth. The present study showed that significant changes in transcript abundance occurred during the MBT phase. The expression of eight of these 479 genes was identified by reverse transcription-polymerase chain reaction analysis, confirming the microarray results. The WSB1 gene, found to be down-regulated by the microarray and reverse transcription-polymerase chain reaction analyses, was selected for further study. Sequence analysis of the WSB1 gene showed that it encodes a protein with 75% identity to the corresponding active human orthologs. In addition, WSB1 gene expression was detected at a higher level at 2 h post fertilization and at a lower level at 4 h post fertilization, consistent with the chip results. Overexpression of the WSB1 gene can result in the formation of abnormalities in embryos, as determined by fluorescence-activated cell sorting. The present study showed unequivo- cally that the occurrence of WSB1 expression is an impor-tant event during the MBT phase in the development of zebrafish embryos.

  15. Effects of rare earth elements La and Yb on the morphological and functional development of zebrafish embryos

    Institute of Scientific and Technical Information of China (English)

    Jun'an Cui; Zhiyong Zhang; Wei Bai; Ligang Zhang; Xiao He; Yuhui Ma; Yan Liu; Zhifang Chai

    2012-01-01

    In recent years,with the wide applications and mineral exploitation of rare earth elements,their potential environmental and health effects have caused increasing public concern.Effect of rare earth elements La and Yb on the morphological and functional development of zebrafish embryos were studied.The embryos were exposed to La3+ or Yb3+ at 0,0.01,0.1,0.3,0.5 and 1.0 mmol/L,respectively.Early life stage parameters such as egg and embryo mortality,gastrula development,tail detachment,eyes,somite formation,circulatory system,pigmentation,malformations,hatching rate,length of larvae and mortality were investigated.The results showed La3+ and Yb3+ delayed zebrafish embryo and larval development,decreased survival and hatching rates,and caused tail malformation in a concentration-dependent way.Moreover,heavy rare-earth ytterbium led to more severe acute toxicity of zebrafish embryo than light rare-earth lanthanum.

  16. Methods to study the development, anatomy, and function of the zebrafish inner ear across the life course.

    Science.gov (United States)

    Baxendale, S; Whitfield, T T

    2016-01-01

    The inner ear is a remarkably intricate structure able to detect sound, motion, and gravity. During development of the zebrafish embryo, the ear undergoes dynamic morphogenesis from a simple epithelial vesicle into a complex labyrinth, consisting of three semicircular canals and three otolithic sensory organs, each with an array of differentiated cell types. This microcosm of biology has led to advances in understanding molecular and cellular changes in epithelial patterning and morphogenesis, through to mechanisms of mechanosensory transduction and the origins of reflexive behavior. In this chapter, we describe different methods to study the zebrafish ear, including high-speed imaging of otic cilia, confocal microscopy, and light-sheet fluorescent microscopy. Many dyes, antibodies, and transgenic lines for labeling the ear are available, and we provide a comprehensive review of these resources. The developing ear is amenable to genetic, chemical, and physical manipulations, including injection and transplantation. Chemical modulation of developmental signaling pathways has paved the way for zebrafish to be widely used in drug discovery. We describe two chemical screens with relevance to the ear: a fluorescent-based screen for compounds that protect against ototoxicity, and an in situ-based screen for modulators of a signaling pathway involved in semicircular canal development. We also describe methods for dissection and imaging of the adult otic epithelia. We review both manual and automated methods to test the function of the inner ear and lateral line, defects in which can lead to altered locomotor behavior. Finally, we review a collection of zebrafish models that are generating new insights into human deafness and vestibular disorders. PMID:27312494

  17. Development of a quantitative morphological assessment of toxicant-treated zebrafish larvae using brightfield imaging and high-content analysis.

    Science.gov (United States)

    Deal, Samantha; Wambaugh, John; Judson, Richard; Mosher, Shad; Radio, Nick; Houck, Keith; Padilla, Stephanie

    2016-09-01

    One of the rate-limiting procedures in a developmental zebrafish screen is the morphological assessment of each larva. Most researchers opt for a time-consuming, structured visual assessment by trained human observer(s). The present studies were designed to develop a more objective, accurate and rapid method for screening zebrafish for dysmorphology. Instead of the very detailed human assessment, we have developed the computational malformation index, which combines the use of high-content imaging with a very brief human visual assessment. Each larva was quickly assessed by a human observer (basic visual assessment), killed, fixed and assessed for dysmorphology with the Zebratox V4 BioApplication using the Cellomics® ArrayScan® V(TI) high-content image analysis platform. The basic visual assessment adds in-life parameters, and the high-content analysis assesses each individual larva for various features (total area, width, spine length, head-tail length, length-width ratio, perimeter-area ratio). In developing the computational malformation index, a training set of hundreds of embryos treated with hundreds of chemicals were visually assessed using the basic or detailed method. In the second phase, we assessed both the stability of these high-content measurements and its performance using a test set of zebrafish treated with a dose range of two reference chemicals (trans-retinoic acid or cadmium). We found the measures were stable for at least 1 week and comparison of these automated measures to detailed visual inspection of the larvae showed excellent congruence. Our computational malformation index provides an objective manner for rapid phenotypic brightfield assessment of individual larva in a developmental zebrafish assay. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26924781

  18. Carbendazim has the potential to induce oxidative stress, apoptosis, immunotoxicity and endocrine disruption during zebrafish larvae development.

    Science.gov (United States)

    Jiang, Jinhua; Wu, Shenggan; Wang, Yanhua; An, Xuehua; Cai, Leiming; Zhao, Xueping; Wu, Changxing

    2015-10-01

    Increasing evidence have suggested deleterious effects of carbendazim on reproduction, apoptosis, immunotoxicity and endocrine disruption in mice and rats, however, the developmental toxicity of carbendazim to aquatic organisms remains obscure. In the present study, we utilized zebrafish as an environmental monitoring model to characterize the effects of carbendazim on expression of genes related to oxidative stress, apoptosis, immunotoxicity and endocrine disruption during larval development. Different trends in gene expression were observed upon exposing the larvae to 4, 20, 100, and 500 μg/L carbendazim for 4 and 8d. The mRNA levels of catalase, glutathione peroxidase and manganese superoxide dismutase (CAT, GPX, and Mn/SOD) were up-regulated after exposure to different concentrations of carbendazim for 4 or 8d. The up-regulation of p53, Apaf1, Cas8 and the down-regulation of Bcl2, Mdm2, Cas3 in the apoptosis pathway, as well as the increased expression of cytokines and chemokines, including CXCL-C1C, CCL1, IL-1b, IFN, IL-8, and TNFα, suggested carbendazim might trigger apoptosis and immune response during zebrafish larval development. In addition, the alteration of mRNA expression of VTG, ERα, ERβ1, ERβ2, TRα, TRβ, Dio1, and Dio2 indicated the potential of carbendazim to induce endocrine disruption in zebrafish larvae. These data suggested that carbendazim could simultaneously induce multiple responses during zebrafish larval development, and bidirectional interactions among oxidative stress, apoptosis pathway, immune and endocrine systems might be present. PMID:26055223

  19. DEAD-box protein Ddx46 is required for the development of the digestive organs and brain in zebrafish.

    Directory of Open Access Journals (Sweden)

    Shunya Hozumi

    Full Text Available Spatially and temporally controlled gene expression, including transcription, several mRNA processing steps, and the export of mature mRNA to the cytoplasm, is essential for developmental processes. It is well known that RNA helicases of the DExD/H-box protein family are involved in these gene expression processes, including transcription, pre-mRNA splicing, and rRNA biogenesis. Although one DExD/H-box protein, Prp5, a homologue of vertebrate Ddx46, has been shown to play important roles in pre-mRNA splicing in yeast, the in vivo function of Ddx46 remains to be fully elucidated in metazoans. In this study, we isolated zebrafish morendo (mor, a mutant that shows developmental defects in the digestive organs and brain, and found that it encodes Ddx46. The Ddx46 transcript is maternally supplied, and as development proceeds in zebrafish larvae, its ubiquitous expression gradually becomes restricted to those organs. The results of whole-mount in situ hybridization showed that the expression of various molecular markers in these organs is considerably reduced in the Ddx46 mutant. Furthermore, splicing status analysis with RT-PCR revealed unspliced forms of mRNAs in the digestive organ and brain tissues of the Ddx46 mutant, suggesting that Ddx46 may be required for pre-mRNA splicing during zebrafish development. Therefore, our results suggest a model in which zebrafish Ddx46 is required for the development of the digestive organs and brain, possibly through the control of pre-mRNA splicing.

  20. Large-scale analysis of acute ethanol exposure in zebrafish development: a critical time window and resilience.

    Directory of Open Access Journals (Sweden)

    Shaukat Ali

    Full Text Available BACKGROUND: In humans, ethanol exposure during pregnancy causes a spectrum of developmental defects (fetal alcohol syndrome or FAS. Individuals vary in phenotypic expression. Zebrafish embryos develop FAS-like features after ethanol exposure. In this study, we ask whether stage-specific effects of ethanol can be identified in the zebrafish, and if so, whether they allow the pinpointing of sensitive developmental mechanisms. We have therefore conducted the first large-scale (>1500 embryos analysis of acute, stage-specific drug effects on zebrafish development, with a large panel of readouts. METHODOLOGY/PRINCIPAL FINDINGS: Zebrafish embryos were raised in 96-well plates. Range-finding indicated that 10% ethanol for 1 h was suitable for an acute exposure regime. High-resolution magic-angle spinning proton magnetic resonance spectroscopy showed that this produced a transient pulse of 0.86% concentration of ethanol in the embryo within the chorion. Survivors at 5 days postfertilisation were analysed. Phenotypes ranged from normal (resilient to severely malformed. Ethanol exposure at early stages caused high mortality (≥88%. At later stages of exposure, mortality declined and malformations developed. Pharyngeal arch hypoplasia and behavioral impairment were most common after prim-6 and prim-16 exposure. By contrast, microphthalmia and growth retardation were stage-independent. CONCLUSIONS: Our findings show that some ethanol effects are strongly stage-dependent. The phenotypes mimic key aspects of FAS including craniofacial abnormality, microphthalmia, growth retardation and behavioral impairment. We also identify a critical time window (prim-6 and prim-16 for ethanol sensitivity. Finally, our identification of a wide phenotypic spectrum is reminiscent of human FAS, and may provide a useful model for studying disease resilience.

  1. Development of a transient expression assay for detecting environmental oestrogens in zebrafish and medaka embryos

    Directory of Open Access Journals (Sweden)

    Lee Okhyun

    2012-06-01

    Full Text Available Abstract Background Oestrogenic contaminants are widespread in the aquatic environment and have been shown to induce adverse effects in both wildlife (most notably in fish and humans, raising international concern. Available detecting and testing systems are limited in their capacity to elucidate oestrogen signalling pathways and physiological impacts. Here we developed a transient expression assay to investigate the effects of oestrogenic chemicals in fish early life stages and to identify target organs for oestrogenic effects. To enhance the response sensitivity to oestrogen, we adopted the use of multiple tandem oestrogen responsive elements (EREc38 in a Tol2 transposon mediated Gal4ff-UAS system. The plasmid constructed (pTol2_ERE-TATA-Gal4ff, contains three copies of oestrogen response elements (3ERE that on exposure to oestrogen induces expression of Gal4ff which this in turn binds Gal4-responsive Upstream Activated Sequence (UAS elements, driving the expression of a second reporter gene, EGFP (Enhanced Green Fluorescent Protein. Results The response of our construct to oestrogen exposure in zebrafish embryos was examined using a transient expression assay. The two plasmids were injected into 1–2 cell staged zebrafish embryos, and the embryos were exposed to various oestrogens including the natural steroid oestrogen 17ß-oestradiol (E2, the synthetic oestrogen 17α- ethinyloestradiol (EE2, and the relatively weak environmental oestrogen nonylphenol (NP, and GFP expression was examined in the subsequent embryos using fluorescent microscopy. There was no GFP expression detected in unexposed embryos, but specific and mosaic expression of GFP was detected in the liver, heart, somite muscle and some other tissue cells for exposures to steroid oestrogen treatments (EE2; 10 ng/L, E2; 100 ng/L, after 72 h exposures. For the NP exposures, GFP expression was observed at 10 μg NP/L after 72 h (100 μg NP/L was toxic to the fish. We

  2. Developing methods based on light sheet fluorescence microscopy for biophysical investigations of larval zebrafish

    Science.gov (United States)

    Taormina, Michael J.

    Adapting the tools of optical microscopy to the large-scale dynamic systems encountered in the development of multicellular organisms provides a path toward understanding the physical processes necessary for complex life to form and function. Obtaining quantitatively meaningful results from such systems has been challenging due to difficulty spanning the spatial and temporal scales representative of the whole, while also observing the many individual members from which complex and collective behavior emerges. A three-dimensional imaging technique known as light sheet fluorescence microscopy provides a number of significant benefits for surmounting these challenges and studying developmental systems. A thin plane of fluorescence excitation light is produced such that it coincides with the focal plane of an imaging system, providing rapid acquisition of optically sectioned images that can be used to construct a three-dimensional rendition of a sample. I discuss the implementation of this technique for use in larva of the model vertebrate Danio rerio (zebrafish). The nature of light sheet imaging makes it especially well suited to the study of large systems while maintaining good spatial resolution and minimizing damage to the specimen from excessive exposure to excitation light. I show the results from a comparative study that demonstrates the ability to image certain developmental processes non-destructively, while in contrast confocal microscopy results in abnormal growth due to phototoxicity. I develop the application of light sheet microscopy to the study of a previously inaccessible system: the bacterial colonization of a host organism. Using the technique, we are able to obtain a survey of the intestinal tract of a larval zebrafish and observe the location of microbes as they grow and establish a stable population in an initially germ free fish. Finally, I describe a new technique to measure the fluid viscosity of this intestinal environment in vivo using

  3. PACAP in developing sensory and peripheral organs of the zebrafish, Danio rerio

    Directory of Open Access Journals (Sweden)

    M Mathieu

    2009-06-01

    Full Text Available The anatomical distribution of PACAP-like immunoreactivity was investigated in sensory and peripheral organs of the zebrafish, Danio rerio, during the pharyngula, hatching and larval periods, by using indirect immunofluorescence methods. First PACAP-like immunoreactive (ir elements appeared during the pharyngula period, at 24 hours post fertilization (hpf, within the most superficial layer of the retina and the dorsal aorta. At 48 hpf, additional ir cells were found in the olfactory placode and esophagus. At 72 hpf (hatching period, PACAP-like immunoreactivity was first detected in the ganglion cell layer of the retina, the otic sensory epithelium, pharyngeal arches, swim bladder and pancreatic progenitor cells. During day 5 of larval development, new groups of ir cells appeared in the liver, whereas no ir elements were observed in the olfactory placode. Subsequently, at day 13 of larval development, additional ir elements were found for the first time in some gut epithelial cells while those previously observed in the retina and otic sensory epithelium were absent. The transient expression of PACAP-like ir material in sensory organs suggests that the peptide could be implicated in neurotrophic activities and neurosensorial connections in the migration and/or differentiation processes. The appearance of PACAP-like ir elements in peripheral organs at different developmental stages, indicates that this peptide could be involved in the control of more specific functions as soon as these peripheral structures begin to operate.

  4. Expression of nitric oxide synthase in the developing eye of Zebrafish Danio rerio

    Institute of Scientific and Technical Information of China (English)

    WANG Yongjun; ZHANG Shicui; M S. Sawant

    2004-01-01

    Expression of nitric oxide synthase (NOS) in the developing eye of zebrafish was studied by NADPH-diaphorase staining technique. NOS activity was first observed in the optic primordium and the lens placode at 5-somite stage, and remained basically unchanged up to the prim-5 stage. Upon hatching, NOS activity was nearly equally detected in the gangalion cell layer and the photoreceptor layer in the developing retina. However, it began declining in the inner plexiform layer and the inner nuclear layer at this stage. NOS activity disappeared in the lens although the anterior lens epithelium was strongly stained. Two days after hatching, NOS activity was still strong in the photoreceptor layer, but decreased markedly in the gangalion cell layer, the inner plexiform layer and the inner nuclear layer with the retinal patterning. These suggested that nitric oxide (NO), the product of NOS, is not only involved in the modulation of patterning and differentiation of the retinal cells but also in the regulation of proliferation, and differentiation of the lens fibrocytes.

  5. Guarding embryo development of zebrafish by shell engineering: a strategy to shield life from ozone depletion.

    Directory of Open Access Journals (Sweden)

    Ben Wang

    Full Text Available BACKGROUND: The reduced concentration of stratospheric ozone results in an increased flux of biologically damaging mid-ultraviolet radiation (UVB, 280 to 320 nm reaching earth surfaces. Environmentally relevant levels of UVB negatively impact various natural populations of marine organisms, which is ascribed to suppressed embryonic development by increased radiation. METHODOLOGY/PRINCIPAL FINDINGS: Inspired by strategies in the living systems generated by evolution, we induce an extra UVB-adsorbed coat on the chorion (eggshell surrounding embryo of zebrafish, during the blastula period. Short and long UV exposure experiments show that the artificial mineral-shell reduces the UV radiation effectively and the enclosed embryos become more robust. In contrast, the uncoated embryos cannot survive under the enhanced UVB condition. CONCLUSIONS: We suggest that an engineered shell of functional materials onto biological units can be developed as a strategy to shield lives to counteract negative changes of global environment, or to provide extra protection for the living units in biological research.

  6. Expression of nitric oxide synthase in the developing eye of Zebrafish Danio rerio

    Science.gov (United States)

    Wang, Yongjun; Zhang, Shicui; Sawant, M. S.

    2004-12-01

    Expression of nitric oxide synthase (NOS) in the developing eye of zebrafish was studied by NADPH-diaphorase staining technique. NOS activity was first observed in the optic primordium and the lens placode at 5-somite stage, and remained basically unchanged up to the prim-5 stage. Upon hatching, NOS activity was nearly equally detected in the gangalion cell layer and the photoreceptor layer in the developing retina. However, it began declining in the inner plexiform layer and the inner nuclear layer at this stage. NOS activity disappeared in the lens although the anterior lens epithelium was strongly stained. Two days after hatching, NOS activity was still strong in the photoreceptor layer, but decreased markedly in the gangalion cell layer, the inner plexiform layer and the inner nuclear layer with the retinal patterning. These suggested that nitric oxide (NO), the product of NOS, is not only involved in the modulation of patterning and differentiation of the retinal cells but also in the regulation of proliferation, and differentiation of the lens fibrocytes.

  7. TM4SF5 suppression disturbs integrin α5-related signalling and muscle development in zebrafish.

    Science.gov (United States)

    Choi, Yoon-Ju; Kim, Hyun Ho; Kim, Jeong-Gyun; Kim, Hye-Jin; Kang, Minkyung; Lee, Mi-Sook; Ryu, Jihye; Song, Haeng Eun; Nam, Seo Hee; Lee, Doohyung; Kim, Kyu-Won; Lee, Jung Weon

    2014-08-15

    TM4SF5 (transmembrane 4 L six family member 5) is involved in EMT (epithelial-mesenchymal transition) for liver fibrosis and cancer metastasis; however, the function(s) of TM4SF5 during embryogenesis remains unknown. In the present study the effects of TM4SF5 on embryogenesis of zebrafish were investigated. tm4sf5 mRNA was expressed in the posterior somites during somitogenesis and in whole myotome 1 dpf (day post-fertilization). tm4sf5 suppression impaired development of the trunk with aberrant morphology of muscle fibres and altered expression of integrin α5. The arrangement and adhesion of muscle cells were abnormally disorganized in tm4sf5 morphants with reduced muscle fibre masses, where integrin α5-related signalling molecules, including fibronectin, FAK (focal adhesion kinase), vinculin and actin were aberrantly localized, compared with those in control fish. Aberrant muscle developments in tm4sf5 morphants were recovered by additional tm4sf5 or integrin α5 mRNA injection. Such a role for TM4SF5 was observed in the differentiation of C2C12 mouse myoblast cells to multinuclear muscle cells. Taken together, the results show that TM4SF5 controls muscle differentiation via co-operation with integrin α5-related signalling. PMID:24897542

  8. Zebrafish IGF genes: gene duplication, conservation and divergence, and novel roles in midline and notochord development.

    Directory of Open Access Journals (Sweden)

    Shuming Zou

    Full Text Available Insulin-like growth factors (IGFs are key regulators of development, growth, and longevity. In most vertebrate species including humans, there is one IGF-1 gene and one IGF-2 gene. Here we report the identification and functional characterization of 4 distinct IGF genes (termed as igf-1a, -1b, -2a, and -2b in zebrafish. These genes encode 4 structurally distinct and functional IGF peptides. IGF-1a and IGF-2a mRNAs were detected in multiple tissues in adult fish. IGF-1b mRNA was detected only in the gonad and IGF-2b mRNA only in the liver. Functional analysis showed that all 4 IGFs caused similar developmental defects but with different potencies. Many of these embryos had fully or partially duplicated notochords, suggesting that an excess of IGF signaling causes defects in the midline formation and an expansion of the notochord. IGF-2a, the most potent IGF, was analyzed in depth. IGF-2a expression caused defects in the midline formation and expansion of the notochord but it did not alter the anterior neural patterning. These results not only provide new insights into the functional conservation and divergence of the multiple igf genes but also reveal a novel role of IGF signaling in midline formation and notochord development in a vertebrate model.

  9. A retrospective study of the prevalence and classification of intestinal neoplasia in zebrafish (Danio rerio).

    Science.gov (United States)

    Paquette, Colleen E; Kent, Michael L; Buchner, Cari; Tanguay, Robert L; Guillemin, Karen; Mason, Timothy J; Peterson, Tracy S

    2013-06-01

    For over a decade, spontaneous intestinal neoplasia has been observed in zebrafish (Danio rerio) submitted to the ZIRC (Zebrafish International Resource Center) diagnostic service. In addition, zebrafish displayed preneoplastic intestinal changes including hyperplasia, dysplasia, and enteritis. A total of 195 zebrafish, representing 2% of the total fish submitted to the service, were diagnosed with these lesions. Neoplastic changes were classified either as adenocarcinoma or small cell carcinoma, with a few exceptions (carcinoma not otherwise specified, tubular adenoma, and tubulovillous adenoma). Tumor prevalence appeared similarly distributed between sexes and generally occurred in zebrafish greater than 1 year of age, although neoplastic changes were observed in fish 6 months of age. Eleven lines displayed these preneoplastic and neoplastic changes, including wild-types and mutants. Affected zebrafish originated from 18 facilities, but the majority of fish were from a single zebrafish research facility (hereafter referred to as the primary facility) that has submitted numerous samples to the ZIRC diagnostic service. Zebrafish from the primary facility submitted as normal sentinel fish demonstrate that these lesions are most often subclinical. Fish fed the diet from the primary facility and held at another location did not develop intestinal lesions, indicating that diet is not the etiologic agent.

  10. Development of Novel Visual-Plus Quantitative Analysis Systems for Studying DNA Double-Strand Break Repairs in Zebrafish

    Institute of Scientific and Technical Information of China (English)

    Jingang Liu; Lu Gong; Changqing Chang; Cong Liu; Jinrong Peng; Jun Chen

    2012-01-01

    The use of reporter systems to analyze DNA double-strand break (DSB) repairs,based on the enhanced green fluorescent protein (EGFP) and meganuclease such as I-Sce Ⅰ,is usually carried out with cell lines.In this study,we developed three visual-plus quantitative assay systems for homologous recombination (HR),non-homologous end joining (NHEJ) and single-strand annealing (SSA) DSB repair pathways at the organismal level in zebrafish embryos.To initiate DNA DSB repair,we used two I-Sce Ⅰ recognition sites in opposite orientation rather than the usual single site.The NHEJ,HR and SSA repair pathways were separately triggered by the injection of three corresponding I-Sce I-cut constructions,and the repair of DNA lesion caused by I-Sce Ⅰ could be tracked by EGFP expression in the embryos.Apart from monitoring the intensity of green fluorescence,the repair frequencies could also be precisely measured by quantitative real-time polymerase chain reaction (qPCR).Analysis of DNA sequences at the DSB sites showed that NHEJ was predominant among these three repair pathways in zebrafish embryos.Furthermore,while HR and SSA reporter systems could be effectively decreased by the knockdown of rad51 and rad52,respectively,NHEJ could only be impaired by the knockdown of ligaseⅣ (lig4) when the NHEJ construct was cut by I-Sce Ⅰ in vivo.More interestingly,blocking NHEJ with lig4-MO increased the frequency of HR,but decreased the frequency of SSA.Our studies demonstrate that the major mechanisms used to repair DNA DSBs are conserved from zebrafish to mammal,and zebrafish provides an excellent model for studying and manipulating DNA DSB repair at the organismal level.

  11. Zebrafish as an Emerging Model Organism to Study Angiogenesis in Development and Regeneration.

    Science.gov (United States)

    Chávez, Myra N; Aedo, Geraldine; Fierro, Fernando A; Allende, Miguel L; Egaña, José T

    2016-01-01

    Angiogenesis is the process through which new blood vessels are formed from preexisting ones and plays a critical role in several conditions including embryonic development, tissue repair and disease. Moreover, enhanced therapeutic angiogenesis is a major goal in the field of regenerative medicine and efficient vascularization of artificial tissues and organs is one of the main hindrances in the implementation of tissue engineering approaches, while, on the other hand, inhibition of angiogenesis is a key therapeutic target to inhibit for instance tumor growth. During the last decades, the understanding of cellular and molecular mechanisms involved in this process has been matter of intense research. In this regard, several in vitro and in vivo models have been established to visualize and study migration of endothelial progenitor cells, formation of endothelial tubules and the generation of new vascular networks, while assessing the conditions and treatments that either promote or inhibit such processes. In this review, we address and compare the most commonly used experimental models to study angiogenesis in vitro and in vivo. In particular, we focus on the implementation of the zebrafish (Danio rerio) as a model to study angiogenesis and discuss the advantages and not yet explored possibilities of its use as model organism. PMID:27014075

  12. Cavin4b/Murcb Is Required for Skeletal Muscle Development and Function in Zebrafish.

    Science.gov (United States)

    Housley, Michael P; Njaine, Brian; Ricciardi, Filomena; Stone, Oliver A; Hölper, Soraya; Krüger, Marcus; Kostin, Sawa; Stainier, Didier Y R

    2016-06-01

    Skeletal muscles provide metazoans with the ability to feed, reproduce and avoid predators. In humans, a heterogeneous group of genetic diseases, termed muscular dystrophies (MD), lead to skeletal muscle dysfunction. Mutations in the gene encoding Caveolin-3, a principal component of the membrane micro-domains known as caveolae, cause defects in muscle maintenance and function; however it remains unclear how caveolae dysfunction underlies MD pathology. The Cavin family of caveolar proteins can form membrane remodeling oligomers and thus may also impact skeletal muscle function. Changes in the distribution and function of Cavin4/Murc, which is predominantly expressed in striated muscles, have been reported to alter caveolae structure through interaction with Caveolin-3. Here, we report the generation and phenotypic analysis of murcb mutant zebrafish, which display impaired swimming capacity, skeletal muscle fibrosis and T-tubule abnormalities during development. To understand the mechanistic importance of Murc loss of function, we assessed Caveolin-1 and 3 localization and found it to be abnormal. We further identified an in vivo function for Murc in Erk signaling. These data link Murc with developmental defects in T-tubule formation and progressive muscle dysfunction, thereby providing a new candidate for the etiology of muscular dystrophy. PMID:27294373

  13. Post-transcriptional regulation of wnt8a is essential to zebrafish axis development.

    Science.gov (United States)

    Wylie, Annika D; Fleming, Jo-Ann G W; Whitener, Amy E; Lekven, Arne C

    2014-02-01

    wnt8a Is essential for normal patterning during vertebrate embryonic development, and either gain or loss-of-function gene dysregulation results in severe axis malformations. The zebrafish wnt8a locus is structured such that transcripts may possess two regulatory 3' untranslated regions (UTRs), raising the possibility of post-transcriptional regulation as an important mode of wnt8a signaling control. To determine whether both UTRs contribute to post-transcriptional wnt8a gene regulation, each UTR (UTR1 and UTR2) was tested in transient and transgenic reporter assays. Both UTRs suppress EGFP reporter expression in cis, with UTR2 exhibiting a more pronounced effect. UTR2 contains a 6 base sequence necessary for UTR2 regulatory function that is complementary to the seed of the microRNA, miR-430. A target protector morpholino that overlaps the seed complement stabilizes both reporter mRNAs and wnt8a mRNAs, and produces phenotypic abnormalities consistent with wnt8a gain-of-function. In rescue assays, specific functions can be attributed to each of the two wnt8a proteins encoded by the locus. An interplay of wnt8a.1 and wnt8a.2 regulates neural and mesodermal patterning and morphogenesis as well as patterning between brain subdivisions. Thus, post-transcriptional control of wnt8a is essential to fine tune the balance of the signaling outputs of the complex wnt8a locus.

  14. Zebrafish as an emerging model organism to study angiogenesis in development and regeneration

    Directory of Open Access Journals (Sweden)

    Myra Noemi Chavez

    2016-03-01

    Full Text Available Angiogenesis is the process through which new blood vessels are formed from preexisting ones and plays a critical role in several conditions including embryonic development, tissue repair and disease. Moreover, enhanced therapeutic angiogenesis is a major goal in the field of regenerative medicine and efficient vascularization of artificial tissues and organs is one of the main hindrances in the implementation of tissue engineering approaches, while, on the other hand, inhibition of angiogenesis is a key therapeutic target to inhibit for instance tumor growth. During the last decades, the understanding of cellular and molecular mechanisms involved in this process has been matter of intense research. In this regard, several in vitro and in vivo models have been established to visualize and study migration of endothelial progenitor cells, formation of endothelial tubules and the generation of new vascular networks, while assessing the conditions and treatments that either promote or inhibit such processes. In this review, we address and compare the most commonly used experimental models to study angiogenesis in vitro and in vivo. In particular, we focus on the implementation of the zebrafish (Danio rerio as a model to study angiogenesis and discuss the advantages and not yet explored possibilities of its use as model organism.

  15. Development and recovery of histopathological alterations in the gonads of zebrafish (Danio rerio) after single and combined exposure to endocrine disruptors (17α-ethinylestradiol and fadrozole).

    Science.gov (United States)

    Luzio, Ana; Monteiro, Sandra M; Rocha, Eduardo; Fontaínhas-Fernandes, António A; Coimbra, Ana M

    2016-06-01

    Exposure of wildlife to endocrine disrupting chemicals (EDCs) is not necessarily continuous. Due to seasonal changes and variable industrial and agricultural activities it often occurs intermittently. Thus, it is possible that aquatic organisms may be more affected by periodic peak exposure than by chronic exposure. Therefore, an experimental scenario including an exposure from 2h to 90 days post-fertilization (dpf) and a subsequent recovery period until 150 dpf was chosen to assess the potential reversibility of the effects of sex steroids on sexual and gonad development of zebrafish (Danio rerio). The aim of this study was to investigate the persistence of the endocrine effects of an estrogen (EE2-17α-ethinylestradiol, 4ng/L), an inhibitor of estrogen synthesis (Fad-fadrozole, 50μg/L) or their binary mixture (Mix-EE2+ Fad, 4ng/L+50μg/L). Afterwards, a semi-quantitative histological assessment was used to investigate histopathological changes on gonad differentiation and development. The data showed that fadrozole, alone or in combination with EE2, permanently disrupts the sexual development, inducing masculinization and causing severe pathological alterations in testis, such as intersex associated to the enlargement of sperm ducts, interstitial changes, asynchronous development and detachment of basal membrane. After exposures to both EDCs and their mixture, the gonad histopathology revealed interstitial proteinaceous fluid deposits and, in ovaries, there were atretic oocytes, and presumably degenerative mineralization. On the other hand, the gonadal changes induced by EE2 alone seem to be partially reversible when the exposure regime changed to a recovery period. In addition, EE2 enhanced zebrafish growth in both genders, with male fish presenting signs of early obesity such as the presence of adipocytes in testis. Moreover, sex ratio was slightly skewed toward females, at 90 and 105 dpf, in zebrafish exposed to EE2. The data further indicate that long

  16. Effects of methotrexate on the developments of heart and vessel in zebrafish

    Institute of Scientific and Technical Information of China (English)

    Shuna Sun; Yonghao Gui; Yuexiang Wang; Linxi Qian; Xuefei Liu; Qiu Jiang; Houyan Song

    2009-01-01

    Methotrexate(MTX),an antagonist of folic acid,can inhibit dihydrofolate reductase(DHFR)which is of great importance in the synthesis of tetrahydrofolic acid and embryonic development.In this study,we found that after being exposed to 1.5 mM MTX at 6-10 hours post-fertilization,zebrafish embryos fail to form normal cardiovascular system.In MTX-treated embryos,the morphological development of ventricle and atrium was disrupted,the cardiac twist was abnormal,the heart rate and ventricular shortening fraction were reduced,and the vascular development was disrupted.We also found that either microinjection with dhfr-gfp mRNA or treatment with folinic acid calcium salt pentahydrate(CF)could cause improved development in the heart and vessels in MTX-treated embryos,which proved that MTX induced the malformations by inhibiting DHFR.The transcript levels of genes such as hand2,mef2a,mef2c,and flk-1 were reduced in MTXtreated embryos.Compared with the MTX-treated group,the transcript levels of hand2,mef2a,mef2c,and flk-1 were increased in the MTX+dhfr-gfp mRNAinjected group and in the MTX+CF group.Our results indicated that the disrupted development of the heart and vessels in MTX-treated embryos is related to the reduced transcript levels of hand2,mef2a,mef2c,and flk-1.

  17. Mmp25β facilitates elongation of sensory neurons during zebrafish development.

    Science.gov (United States)

    Crawford, Bryan D; Po, Michelle D; Saranyan, Pillai V; Forsberg, Daniel; Schulz, Richard; Pilgrim, Dave B

    2014-10-01

    Matrix metalloproteinases (MMPs) are a large and complex family of zinc-dependent endoproteinases widely recognized for their roles in remodeling the extracellular matrix (ECM) during embryonic development, wound healing, and tissue homeostasis. Their misregulation is central to many pathologies, and they have therefore been the focus of biomedical research for decades. These proteases have also recently emerged as mediators of neural development and synaptic plasticity in vertebrates, however, understanding of the mechanistic basis of these roles and the molecular identities of the MMPs involved remains far from complete. We have identified a zebrafish orthologue of mmp25 (a.k.a. leukolysin; MT6-MMP), a membrane-type, furin-activated MMP associated with leukocytes and invasive carcinomas, but which we find is expressed by a subset of the sensory neurons during normal embryonic development. We detect high levels of Mmp25β expression in the trigeminal, craniofacial, and posterior lateral line ganglia in the hindbrain, and in Rohon-Beard cells in the dorsal neural tube during the first 48 h of embryonic development. Knockdown of Mmp25β expression with morpholino oligonucleotides results in larvae that are uncoordinated and insensitive to touch, and which exhibit defects in the development of sensory neural structures. Using in vivo zymography, we observe that Mmp25β morphant embryos show reduced Type IV collagen degradation in regions of the head traversed by elongating axons emanating from the trigeminal ganglion, suggesting that Mmp25β may play a pivotal role in mediating ECM remodeling in the vicinity of these elongating axons.

  18. Influence of carbon nanotube length on toxicity to zebrafish embryos

    Directory of Open Access Journals (Sweden)

    Cheng J

    2012-07-01

    Full Text Available Jinping Cheng,1,2 Shuk Han Cheng11Department of Biology and Chemistry, City University of Hong Kong, Hong Kong; 2State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, ChinaAbstract: There is currently a large difference of opinion in nanotoxicology studies of nanomaterials. There is concern about why some studies have indicated that there is strong toxicity, while others have not. In this study, the length of carbon nanotubes greatly affected their toxicity in zebrafish embryos. Multiwalled carbon nanotubes (MWCNTs were sonicated in a nitric acid solution for 24 hours and 48 hours. The modified MWCNTs were tested in early developing zebrafish embryo. MWCNTs prepared with the longer sonication time resulted in severe developmental toxicity; however, the shorter sonication time did not induce any obvious toxicity in the tested developing zebrafish embryos. The cellular and molecular changes of the affected zebrafish embryos were studied and the observed phenotypes scored. This study suggests that length plays an important role in the in vivo toxicity of functionalized CNTs. This study will help in furthering the understanding on current differences in toxicity studies of nanomaterials.Keywords: length, carbon nanotubes, sonication, developmental toxicity, zebrafish

  19. Phenothiourea sensitizes zebrafish cranial neural crest and extraocular muscle development to changes in retinoic acid and IGF signaling.

    Directory of Open Access Journals (Sweden)

    Brenda L Bohnsack

    Full Text Available 1-Phenyl 2-thiourea (PTU is a tyrosinase inhibitor commonly used to block pigmentation and aid visualization of zebrafish development. At the standard concentration of 0.003% (200 µM, PTU inhibits melanogenesis and reportedly has minimal other effects on zebrafish embryogenesis. We found that 0.003% PTU altered retinoic acid and insulin-like growth factor (IGF regulation of neural crest and mesodermal components of craniofacial development. Reduction of retinoic acid synthesis by the pan-aldehyde dehydrogenase inhibitor diethylbenzaldehyde, only when combined with 0.003% PTU, resulted in extraocular muscle disorganization. PTU also decreased retinoic acid-induced teratogenic effects on pharyngeal arch and jaw cartilage despite morphologically normal appearing PTU-treated controls. Furthermore, 0.003% PTU in combination with inhibition of IGF signaling through either morpholino knockdown or pharmacologic inhibition of tyrosine kinase receptor phosphorylation, disrupted jaw development and extraocular muscle organization. PTU in and of itself inhibited neural crest development at higher concentrations (0.03% and had the greatest inhibitory effect when added prior to 22 hours post fertilization (hpf. Addition of 0.003% PTU between 4 and 20 hpf decreased thyroxine (T4 in thyroid follicles in the nasopharynx of 96 hpf embryos. Treatment with exogenous triiodothyronine (T3 and T4 improved, but did not completely rescue, PTU-induced neural crest defects. Thus, PTU should be used with caution when studying zebrafish embryogenesis as it alters the threshold of different signaling pathways important during craniofacial development. The effects of PTU on neural crest development are partially caused by thyroid hormone signaling.

  20. Modulation of p53 and met expression by Krüppel-like factor 8 regulates zebrafish cerebellar development.

    Science.gov (United States)

    Tsai, Ming-Yuan; Lu, Yu-Fen; Liu, Yu-Hsiu; Lien, Huang-Wei; Huang, Chang-Jen; Wu, Jen-Leih; Hwang, Sheng-Ping L

    2015-09-01

    Krüppel-like factor 8 (Klf8) is a zinc-finger transcription factor implicated in cell proliferation, and cancer cell survival and invasion; however, little is known about its role in normal embryonic development. Here, we show that Klf8 is required for normal cerebellar development in zebrafish embryos. Morpholino knockdown of klf8 resulted in abnormal cerebellar primordium morphology and the induction of p53 in the brain region at 24 hours post-fertilization (hpf). Both p53-dependent reduction of cell proliferation and augmentation of apoptosis were observed in the cerebellar anlage of 24 hpf-klf8 morphants. In klf8 morphants, expression of ptf1a in the ventricular zone was decreased from 48 to 72 hpf; on the other hand, expression of atohla in the upper rhombic lip was unaffected. Consistent with this finding, Purkinje cell development was perturbed and granule cell number was reduced in 72 hpf-klf8 morphants; co-injection of p53 MO(sp) or klf8 mRNA substantially rescued development of cerebellar Purkinje cells in klf8 morphants. Hepatocyte growth factor/Met signaling is known to regulate cerebellar development in zebrafish and mouse. We observed decreased met expression in the tectum and rhombomere 1 of 24 hpf-klf8 morphants, which was largely rescued by co-injection with klf8 mRNA. Moreover, co-injection of met mRNA substantially rescued formation of Purkinje cells in klf8 morphants at 72 hpf. Together, these results demonstrate that Klf8 modulates expression of p53 and met to maintain ptf1a-expressing neuronal progenitors, which are required for the appropriate development of cerebellar Purkinje and granule cells in zebrafish embryos.

  1. A Smad3 transgenic reporter reveals TGF-beta control of zebrafish spinal cord development.

    Science.gov (United States)

    Casari, Alessandro; Schiavone, Marco; Facchinello, Nicola; Vettori, Andrea; Meyer, Dirk; Tiso, Natascia; Moro, Enrico; Argenton, Francesco

    2014-12-01

    TGF-beta (TGFβ) family mediated Smad signaling is involved in mesoderm and endoderm specifications, left-right asymmetry formation and neural tube development. The TGFβ1/2/3 and Activin/Nodal signal transduction cascades culminate with activation of SMAD2 and/or SMAD3 transcription factors and their overactivation are involved in different pathologies with an inflammatory and/or uncontrolled cell proliferation basis, such as cancer and fibrosis. We have developed a transgenic zebrafish reporter line responsive to Smad3 activity. Through chemical, genetic and molecular approaches we have seen that this transgenic line consistently reproduces in vivo Smad3-mediated TGFβ signaling. Reporter fluorescence is activated in phospho-Smad3 positive cells and is responsive to both Smad3 isoforms, Smad3a and 3b. Moreover, Alk4 and Alk5 inhibitors strongly repress the reporter activity. In the CNS, Smad3 reporter activity is particularly high in the subpallium, tegumentum, cerebellar plate, medulla oblongata and the retina proliferative zone. In the spinal cord, the reporter is activated at the ventricular zone, where neuronal progenitor cells are located. Colocalization methods show in vivo that TGFβ signaling is particularly active in neuroD+ precursors. Using neuronal transgenic lines, we observed that TGFβ chemical inhibition leads to a decrease of differentiating cells and an increase of proliferation. Similarly, smad3a and 3b knock-down alter neural differentiation showing that both paralogues play a positive role in neural differentiation. EdU proliferation assay and pH3 staining confirmed that Smad3 is mainly active in post-mitotic, non-proliferating cells. In summary, we demonstrate that the Smad3 reporter line allows us to follow in vivo Smad3 transcriptional activity and that Smad3, by controlling neural differentiation, promotes the progenitor to precursor switch allowing neural progenitors to exit cell cycle and differentiate.

  2. 17{beta}-Estradiol inhibits chondrogenesis in the skull development of zebrafish embryos

    Energy Technology Data Exchange (ETDEWEB)

    Fushimi, Shigeko, E-mail: fushimi@med.kawasaki-m.ac.jp [Department of Public Health, Kawasaki Medical School, 577 Matsushima, Kurashiki 701-0192 (Japan); Wada, Naoyuki, E-mail: wada@med.kawasaki-m.ac.jp [Department of Molecular and Developmental Biology, Kawasaki Medical School, 577 Matsushima, Kurashiki 701-0192 (Japan); Nohno, Tsutomu, E-mail: nohno@bcc.kawasaki-m.ac.jp [Department of Molecular and Developmental Biology, Kawasaki Medical School, 577 Matsushima, Kurashiki 701-0192 (Japan); Tomita, Masafumi, E-mail: toxicology@med.kawasaki-m.ac.jp [Department of Medical Toxicology, Kawasaki Medical School, 577 Matsushima, Kurashiki 701-0192 (Japan); Saijoh, Kiyofumi, E-mail: saijohk@med.kanazawa-u.ac.jp [Department of Hygiene, Kanazawa University School of Medicine, 13-1 Takaramachi, Kanazawa 920-8564 (Japan); Sunami, Shigeo, E-mail: ssunami@med.kawasaki-m.ac.jp [Department of Clinical Nutrition, Kawasaki University of Medical Welfare, 288 Matsushima, Kurashiki 701-0193 (Japan); Katsuyama, Hironobu, E-mail: katsu@med.kawasaki-m.ac.jp [Department of Public Health, Kawasaki Medical School, 577 Matsushima, Kurashiki 701-0192 (Japan)

    2009-12-13

    17{beta}-Estradiol (E2) plays important roles in the development and differentiation of the gonad and central nervous systems, but little is known regarding the effects of exogenous E2 on chondrogenesis in skeletal development. In the present study, we found that treatment with E2 1-5 days post-fertilization (dpf) at concentrations above 1.5 x 10{sup -5} M increased the mortality rate in zebrafish embryos. Morphological analysis showed that treatment with E2 1-5 dpf caused abnormal cartilage formation in a dose-dependent manner at concentrations above 5 x 10{sup -6} M. E2 1-5 dpf at 1.5 x 10{sup -5} M caused defects of the ethmoid plate, parallel cleft of the trabecular cartilage, and hypoplasia of Meckel's cartilage and the ceratohyal cartilage. The sensitivity of embryos to E2 depended on the developmental stage. In early chondrogenesis (1-2 dpf), the embryos were highly sensitive to E2, leading to hypoplasia of the cartilage. In situ hybridization studies showed that expression levels of patched1 (ptc1) and patched2 (ptc2) receptor mRNAs were markedly decreased by exposure to 2 x 10{sup -5} M E2 1-2 dpf. However, the expression levels of sonic hedgehog (shh) and tiggywinkle hedgehog (twhh) mRNAs were constant in the E2-treated embryos. In addition, the estrogen receptor antagonist ICI 182,780 did not completely abolish the effects of E2, suggesting that E2 may not inhibit chondrogenesis through its nuclear estrogen receptor. These results suggest that exposure to exogenous E2 possibly inhibits chondrogenesis via inhibition of the hedgehog (Hh) signal transduction system.

  3. Benzo[a]pyrene decreases global and gene specific DNA methylation during zebrafish development

    Science.gov (United States)

    DNA methylation is important for gene regulation and is vulnerable to early-life exposure to environmental contaminants. We found that direct waterborne benzo[a]pyrene (BaP) exposure at 24 'g/L from 2.5 to 96 hours post fertilization (hpf) to zebrafish embryos significantly decreased global cytosine...

  4. Expression patterns of dnmt3aa, dnmt3ab, and dnmt4 during development and fin regeneration in zebrafish.

    Science.gov (United States)

    Takayama, Kazuya; Shimoda, Nobuyoshi; Takanaga, Shunsuke; Hozumi, Shunya; Kikuchi, Yutaka

    2014-03-01

    Epigenetic modifications such as DNA methylation and chromatin modifications are critical for regulation of spatiotemporal gene expression during development. In mammals, the de novo-type DNA methyltransferases (Dnmts), Dnmt3a and Dnmt3b, are responsible for the creation of DNA methylation patterns during development. In addition to developmental processes, we recently showed that DNA methylation levels are dynamically changed during zebrafish fin regeneration, suggesting that the de novo-type Dnmts might play roles in the regulation of gene expression during regeneration processes. Here, we showed the detailed expression profiles of three zebrafish dnmt genes (dnmt3aa, dnmt3ab, and dnmt4), which were identified as the orthologues of mammalian dnmt3a and dnmt3b, during embryonic and larval development, as well as fin regeneration processes. dnmt3aa and dnmt3ab are expressed in the brain, pharyngeal arches, pectoral fin buds, intestine, and swim bladder; the specific expression of dnmt3aa is observed in the pronephric duct during larval development. dnmt4 expression is observed in the zona limitans intrathalamica, midbrain-hindbrain boundary, ciliary marginal zone, pharyngeal arches, auditory capsule, pectoral fin buds, intestine, pancreas, liver, and hematopoietic cells in the aorta-gonad-mesonephros and caudal hematopoietic tissue from 48 to 72 h post-fertilization. Furthermore, during fin regeneration, strong dnmt3aa expression, and faint dnmt3ab and dnmt4 expression are detected in blastema cells at 72 h post-amputation. Taken together, our results suggest that zebrafish Dnmt3aa, Dnmt3ab, and Dnmt4 may play roles in the formation of various organs, such as the brain, kidney, digestive organs, and/or hematopoietic cells, as well as in the differentiation of blastema cells.

  5. Mapping of zebrafish research: a global outlook.

    Science.gov (United States)

    Kinth, Priyamvadah; Mahesh, Gopalakrishnan; Panwar, Yatish

    2013-12-01

    On the basis of analysis of 17,151 records on zebrafish identified from Zebrafish Information Network: the zebrafish model organism database and Web of Science, the research performance on this model organism has been evaluated. The earliest research work on zebrafish as reflected in the databases goes back to 1951. After a rather slow growth till the 1980s, research on zebrafish gained momentum in the 1990s. Analysis shows a rapid and consistent increase in the publication output with 226 publications in the year 1996, to 1929 publications in the year 2012. The prominent areas of zebrafish research, journals, and leading authors as reflected from the research output have been identified. USA is the most productive country with 8196 articles. The most frequently used keywords were also determined to gain insights about the research trends and some of the commonly used keywords other than zebrafish and Danio rerio are development, retina, and gene expression.

  6. Aquatic blues: modeling depression and antidepressant action in zebrafish.

    Science.gov (United States)

    Nguyen, Michael; Stewart, Adam Michael; Kalueff, Allan V

    2014-12-01

    Depression is a serious psychiatric condition affecting millions of patients worldwide. Unipolar depression is characterized by low mood, anhedonia, social withdrawal and other severely debilitating psychiatric symptoms. Bipolar disorder manifests in alternating depressed mood and 'hyperactive' manic/hypomanic states. Animal experimental models are an invaluable tool for research into the pathogenesis of bipolar/unipolar depression, and for the development of potential treatments. Due to their high throughput value, genetic tractability, low cost and quick reproductive cycle, zebrafish (Danio rerio) have emerged as a promising new model species for studying brain disorders. Here, we discuss the developing utility of zebrafish for studying depression disorders, and outline future areas of research in this field. We argue that zebrafish represent a useful model organism for studying depression and its behavioral, genetic and physiological mechanisms, as well as for anti-depressant drug discovery.

  7. Ectopic expression and knockdown of a zebrafish sox21 reveal its role as a transcriptional repressor in early development.

    Science.gov (United States)

    Argenton, Francesco; Giudici, Simona; Deflorian, Gianluca; Cimbro, Simona; Cotelli, Franco; Beltrame, Monica

    2004-02-01

    Sox proteins are DNA-binding proteins belonging to the HMG box superfamily and they play key roles in animal embryonic development. Zebrafish Sox21a is part of group B Sox proteins and its chicken and mouse orthologs have been described as transcriptional repressor and activator, respectively, in two different target gene contexts. Zebrafish sox21a is present as a maternal transcript in the oocyte and is mainly expressed at the developing midbrain-hindbrain boundary from the onset of neurulation. In order to understand its role in vivo, we ectopically expressed sox21a by microinjection. Ectopic expression of full length sox21a leads to dorsalization of the embryos. A subset of the dorsalized embryos shows a partial axis splitting, and hence an ectopic neural tube, as an additional phenotype. At gastrulation, injected embryos show expansion of the expression domains of organizer-specific genes, such as chordin and goosecoid. Molecular markers used in somitogenesis highlight that sox21a-injected embryos have shortened AP axis, undulating axial structures, enlarged or even radialized paraxial territory. The developmental abnormalities caused by ectopic expression of sox21a are suggestive of defects in convergence-extension morphogenetic movements. Antisense morpholino oligonucleotides, designed to functionally knockdown sox21a, cause ventralization of the embryos. Moreover, gain-of-function experiments with chimeric constructs, where Sox21a DNA-binding domain is fused to a transcriptional activator (VP16) or repressor (EnR) domain, suggests that zebrafish Sox21a acts as a repressor in dorso-ventral patterning.

  8. Regulation of zebrafish development by microRNAs%MicroRNAs对斑马鱼发育的调控

    Institute of Scientific and Technical Information of China (English)

    丁雷; 闫学春; 孙效文; 滕春波

    2011-01-01

    MicroRNAs (miRNAs) are a class of non-coding small RNAs at the length about 22nt, which are found in the cells of both unicellular and multicellular eukaryotes, and highly conserved in many processes of biological evolution. miRNAs play important roles in the regulation of animal development, physiological functions, and pathological processes. As a model organism, zebrafish has been widely used in the modern biological researches. The studies on miRNAs in ze-brafish are capable of revealing the function of miRNAs in vertebrate. This paper reviews the effects of total miRNA deletion and the individual miRNAs on the embryonic development of zebrafish in order to provide the clues for the functional researches of miRNAs on vertebrate and breeding in fish.%microRNAs(miRNAs)是一类长度约为22nt的非编码小RNA,从单细胞到多细胞真核生物中都广泛存在,在进化过程中高度保守,对动物发育、生理功能及病理过程都具有重要调控作用.斑马鱼(Danio rerio)是现代生物学研究中广泛使用的模式动物,以斑马鱼为模型研究miRNAs可以揭示miRNAs在脊椎动物中的功能.文章就miRNAs整体缺失对斑马鱼胚胎发育的影响及一些miRNAs在斑马鱼早期发育过程中的调控机制进行了综述,从而为探索miRNAs在脊椎动物中的功能及鱼类的生产育种提供理论基础.

  9. 斑马鱼资源的开发保藏与国家斑马鱼资源中心%Development and maintenance of zebrafish resources, and the China Zebrafish Resouce Center

    Institute of Scientific and Technical Information of China (English)

    李阔宇; 潘鲁湲; 孙永华

    2014-01-01

    Zebrafish is a relatively new and booming vertebrate animal model.Over the past three decades, ze-brafish has been applied in various aspects of life science, as well as health sciences, environmental studies and aquacul-ture research.To meet the requirement for different research purposes, large amounts of zebrafish resources, including mu-tant and transgenic lines, have been developed with different techniques.All of these resources need well and careful col-lection and maintenance, therefore several zebrafish resource facilities have been built worldwide.As one of them, the Chi-na Zebrafish Resource Center (CZRC, http://zfish.cn) was founded in 2012.This review is trying to introduce the devel-opment and maintenance of zebrafish scientific resources, and the updated progress of CZRC.%斑马鱼是一种新兴的脊椎模式动物。在过去的30年中,斑马鱼已被广泛应用于生命科学、健康科学、环境农业等诸多科研领域。为了满足不同的科研需要,研究人员开发和利用各种技术创建了大量的斑马鱼基因突变和转基因品系,这些品系已成为开展相关科学研究的宝贵资源。为了更好地保藏和利用这些资源,在全球范围内建设有多个规模不一的斑马鱼资源库。2012年,我国的国家斑马鱼资源中心( http://zfish.cn)在中国科学院水生生物研究所正式成立。本文将重点介绍全球斑马鱼资源的开发和保藏情况,以及我国国家斑马鱼资源中心的最新建设进展。

  10. Environmental Factors Affecting Preschoolers' Motor Development

    Science.gov (United States)

    Venetsanou, Fotini; Kambas, Antonis

    2010-01-01

    The process of development occurs according to the pattern established by the genetic potential and also by the influence of environmental factors. The aim of the present study was to focus on the main environmental factors affecting motor development. The review of the literature revealed that family features, such as socioeconomic status,…

  11. Effects of titanium dioxide nanoparticles on lead bioconcentration and toxicity on thyroid endocrine system and neuronal development in zebrafish larvae.

    Science.gov (United States)

    Miao, Wei; Zhu, Biran; Xiao, Xiaohong; Li, Ying; Dirbaba, Niguse Bekele; Zhou, Bingsheng; Wu, Hongjuan

    2015-04-01

    Nanoparticles (NPs) have attracted considerable attention because of their wide range of applications. Interactions between heavy metals (e.g., Pb) and NPs in aquatic environments may modify the bioavailability and toxicity of heavy metals. Therefore, this study investigated the influence of NPs (e.g., nano-TiO2) on the bioavailability and toxicity of Pb and its effects in the thyroid endocrine and nervous systems of zebrafish (Danio rerio) larvae. Zebrafish embryos (2-h post-fertilization) were exposed to five concentrations of Pb alone (0, 5, 10, 20, and 30μg/L) or in combination with nano-TiO2 (0.1mg/L) until 6 days post-fertilization. Results showed that the bioconcentration of Pb was significantly enhanced when combined with nano-TiO2 than when used alone. Zebrafish exposure to Pb alone at 30μg/L significantly decreased the thyroid hormone levels (T4 and T3), whereas nano-TiO2 treatment alone did not produce detectable changes. The levels of T4 and T3 were further decreased when Pb was combined with nano-TiO2 than when used alone. The transcription of the thyroid hormone-related factor tg gene was remarkably down-regulated by Pb treatment alone but up-regulated when Pb was combined with nano-TiO2. The significant up-regulation of tshβ gene and the down-regulation of TTR gene expression in the hypothalamic-pituitary-thyroid were observed in Pb with or without nano-TiO2 treatment groups. In addition, the transcription of genes involved in central nervous system (CNS) development (α-tubulin, mbp, gfap and shha) were significantly down-regulated by Pb and nano-TiO2 co-exposure as compared with Pb exposure alone. The locomotion activity analyzes confirmed that nano-TiO2 might enhance the toxicity of Pb to CNS development. These results suggest that nano-TiO2 increase bioconcentration of lead, which lead to the disruption of thyroid endocrine and neuronal system in zebrafish larvae.

  12. Identification of differentially expressed genes during development of the zebrafish pineal complex using RNA sequencing.

    Science.gov (United States)

    Khuansuwan, Sataree; Gamse, Joshua T

    2014-11-01

    We describe a method for isolating RNA suitable for high-throughput RNA sequencing (RNA-seq) from small numbers of fluorescently labeled cells isolated from live zebrafish (Danio rerio) embryos without using costly, commercially available columns. This method ensures high cell viability after dissociation and suspension of cells and gives a very high yield of intact RNA. We demonstrate the utility of our new protocol by isolating RNA from fluorescence activated cell sorted (FAC sorted) pineal complex neurons in wild-type and tbx2b knockdown embryos at 24 hours post-fertilization. Tbx2b is a transcription factor required for pineal complex formation. We describe a bioinformatics pipeline used to analyze differential expression following high-throughput sequencing and demonstrate the validity of our results using in situ hybridization of differentially expressed transcripts. This protocol brings modern transcriptome analysis to the study of small cell populations in zebrafish.

  13. The histaminergic system regulates wakefulness and orexin/hypocretin neuron development via histamine receptor H1 in zebrafish.

    Science.gov (United States)

    Sundvik, Maria; Kudo, Hisaaki; Toivonen, Pauliina; Rozov, Stanislav; Chen, Yu-Chia; Panula, Pertti

    2011-12-01

    The histaminergic and hypocretin/orexin (hcrt) neurotransmitter systems play crucial roles in alertness/wakefulness in rodents. We elucidated the role of histamine in wakefulness and the interaction of the histamine and hcrt systems in larval zebrafish. Translation inhibition of histidine decarboxylase (hdc) with morpholino oligonucleotides (MOs) led to a behaviorally measurable decline in light-associated activity, which was partially rescued by hdc mRNA injections and mimicked by histamine receptor H1 (Hrh1) antagonist pyrilamine treatment. Histamine-immunoreactive fibers targeted the dorsal telencephalon, an area that expresses histamine receptors hrh1 and hrh3 and contains predominantly glutamatergic neurons. Tract tracing with DiI revealed that projections from dorsal telencephalon innervate the hcrt and histaminergic neurons. Translation inhibition of hdc decreased the number of hcrt neurons in a Hrh1-dependent manner. The reduction was rescued by overexpression of hdc mRNA. hdc mRNA injection alone led to an up-regulation of hcrt neuron numbers. These results suggest that histamine is essential for the development of a functional and intact hcrt system and that histamine has a bidirectional effect on the development of the hcrt neurons. In summary, our findings provide evidence that these two systems are linked both functionally and developmentally, which may have important implications in sleep disorders and narcolepsy. development via histamine receptor H1 in zebrafish.

  14. Teratogenicity of Ochratoxin A and the Degradation Product, Ochratoxin α, in the Zebrafish (Danio rerio Embryo Model of Vertebrate Development

    Directory of Open Access Journals (Sweden)

    Mehreen Haq

    2016-02-01

    Full Text Available Ochratoxins, and particularly ochratoxin A (OTA, are toxic fungal-derived contaminants of food and other agricultural products. Growing evidence supports the degradation of OTA by chemical, enzymatic and/or microbial means as a potential approach to remove this mycotoxin from food products. In particular, hydrolysis of OTA to ochratoxin α (OTα and phenylalanine is the presumptive product of degradation in most cases. In the current study, we employed the zebrafish (Danio rerio embryo, as a model of vertebrate development to evaluate, the teratogenicity of OTA and OTα. These studies show that OTA is potently active in the zebrafish embryo toxicity assay (ZETA, and that toxicity is both concentration- and time-dependent with discernible and quantifiable developmental toxicity observed at nanomolar concentrations. On the other hand, OTα had no significant effect on embryo development at all concentrations tested supporting a decreased toxicity of this degradation product. Taken together, these results suggest that ZETA is a useful, and highly sensitive, tool for evaluating OTA toxicity, as well as its degradation products, toward development of effective detoxification strategies. Specifically, the results obtained with ZETA, in the present study, further demonstrate the toxicity of OTA, and support its degradation via hydrolysis to OTα as an effective means of detoxification.

  15. Teratogenicity of Ochratoxin A and the Degradation Product, Ochratoxin α, in the Zebrafish (Danio rerio) Embryo Model of Vertebrate Development

    Science.gov (United States)

    Haq, Mehreen; Gonzalez, Nelson; Mintz, Keenan; Jaja-Chimedza, Asha; De Jesus, Christopher Lawrence; Lydon, Christina; Welch, Aaron Z.; Berry, John P.

    2016-01-01

    Ochratoxins, and particularly ochratoxin A (OTA), are toxic fungal-derived contaminants of food and other agricultural products. Growing evidence supports the degradation of OTA by chemical, enzymatic and/or microbial means as a potential approach to remove this mycotoxin from food products. In particular, hydrolysis of OTA to ochratoxin α (OTα) and phenylalanine is the presumptive product of degradation in most cases. In the current study, we employed the zebrafish (Danio rerio) embryo, as a model of vertebrate development to evaluate, the teratogenicity of OTA and OTα. These studies show that OTA is potently active in the zebrafish embryo toxicity assay (ZETA), and that toxicity is both concentration- and time-dependent with discernible and quantifiable developmental toxicity observed at nanomolar concentrations. On the other hand, OTα had no significant effect on embryo development at all concentrations tested supporting a decreased toxicity of this degradation product. Taken together, these results suggest that ZETA is a useful, and highly sensitive, tool for evaluating OTA toxicity, as well as its degradation products, toward development of effective detoxification strategies. Specifically, the results obtained with ZETA, in the present study, further demonstrate the toxicity of OTA, and support its degradation via hydrolysis to OTα as an effective means of detoxification. PMID:26861395

  16. Genetic analysis and in vivo imaging of vascular development in the zebrafish

    OpenAIRE

    Bussmann, J.

    2009-01-01

    The circulatory system, consisting of the heart, blood, blood vessels and lymphatic vessels is one of the major organ systems required for maintaining homeostasis in humans. Its main functions are the transport of nutrients, gases, signaling molecules and cells to and from tissues to maintain an array of body parameters including tissue oxygen levels, temperature and pH, and to help fight diseases. During recent years, the zebrafish has emerged as an important and instructive model organism f...

  17. Scribble participates in Hippo signaling and is required for normal zebrafish pronephros development

    OpenAIRE

    Skouloudaki, Kassiani; Puetz, Michael; Simons, Matias; Courbard, Jean-Remy; Boehlke, Christopher; Hartleben, Björn; Engel, Christina; Moeller, Marcus J.; Englert, Christoph; Bollig, Frank; Schäfer, Tobias; Ramachandran, Haribaskar; Mlodzik, Marek; Huber, Tobias B.; Kuehn, E. Wolfgang

    2009-01-01

    Spatial organization of cells and their appendages is controlled by the planar cell polarity pathway, a signaling cascade initiated by the protocadherin Fat in Drosophila. Vertebrates express 4 Fat molecules, Fat1–4. We found that depletion of Fat1 caused cyst formation in the zebrafish pronephros. Knockdown of the PDZ domain containing the adaptor protein Scribble intensified the cyst-promoting phenotype of Fat1 depletion, suggesting that Fat1 and Scribble act in overlapping signaling cascad...

  18. Development of a fluorescent transgenic zebrafish biosensor for sensing aquatic heavy metal pollution.

    Science.gov (United States)

    Pawar, Nilambari; Gireesh-Babu, P; Sabnis, Supriya; Rasal, Kiran; Murthy, Renuka; Zaidi, S G S; Sivasubbu, Sridhar; Chaudhari, Aparna

    2016-10-01

    We report a transgenic zebrafish (Danio rerio) designed to respond to heavy metals using a metal-responsive promoter linked to a fluorescent reporter gene (DsRed2). The metallothionein MT-Ia1 promoter containing metal-responsive elements was derived from the Asian green mussel, Perna viridis. The promoter is known to be induced by a broad spectrum of heavy metals. The promoter-reporter cassette cloned into the Tol2 transposon vector was microinjected into zebrafish embryos that were then reared to maturity. A transgene integration rate of 28 % was observed. The confirmed transgenics were mated with wild-type counterparts, and pools of F1 embryos were exposed to sub-lethal doses of Cd(2+), Cu(2+), Hg(2+), Pb(2+) and Zn(2+). The red fluorescence response of zebrafish embryos was observed 8 h post- exposure to these sub-lethal doses of heavy metals using a fluorescence microscope. Reporter expression estimated by real-time PCR revealed eightfold, sixfold and twofold increase on exposure to highest concentrations of Hg(2+), Cd(2+) and Cu(2+), while Pb(2+) and Zn(2+) had no effect. This biosensor could be a first-level screening method for confirming aquatic heavy metal bio-toxicity to eukaryotes. PMID:27120052

  19. Induction of cytochrome P450 1 genes and stress response genes in developing zebrafish exposed to ultraviolet radiation

    Energy Technology Data Exchange (ETDEWEB)

    Behrendt, Lars [Biology Department, Redfield 352 MS-32, Woods Hole Oceanographic Institution, 45 Water Street, Woods Hole, MA 02543 (United States); Joensson, Maria E. [Biology Department, Redfield 352 MS-32, Woods Hole Oceanographic Institution, 45 Water Street, Woods Hole, MA 02543 (United States); Department of Environmental Toxicology, Uppsala University (Sweden); Goldstone, Jared V. [Biology Department, Redfield 352 MS-32, Woods Hole Oceanographic Institution, 45 Water Street, Woods Hole, MA 02543 (United States); Stegeman, John J., E-mail: jstegeman@whoi.edu [Biology Department, Redfield 352 MS-32, Woods Hole Oceanographic Institution, 45 Water Street, Woods Hole, MA 02543 (United States)

    2010-06-01

    Ultraviolet (UV) radiation damages cell molecules, and has been suggested to up-regulate mammalian cytochrome P4501 (CYP1) genes through an aryl hydrocarbon receptor (AHR) mediated mechanism. In this study, embryos and larvae of zebrafish (Danio rerio) were exposed to UV to determine the effects on expression of CYP1 and stress response genes in vivo in these fish. Zebrafish embryos were exposed for varying times to UV on two consecutive days, with exposure beginning at 24 and 48 h post-fertilization (hpf). Embryos exposed for 2, 4 or 6 h twice over 2 days to UVB (0.62 W/m{sup 2}; 8.9-26.7 kJ/m{sup 2}) plus UVA (2.05 W/m{sup 2}; 29.5-144.6 kJ/m{sup 2}) had moderately (2.4 {+-} 0.8-fold) but significantly up-regulated levels of CYP1A. UVA alone had no effect on CYP1A expression. Proliferating cellular nuclear antigen (PCNA) and Cu-Zn superoxide dismutase (SOD1) transcript levels were induced (2.1 {+-} 0.2 and 2.3 {+-} 0.5-fold, respectively) in embryos exposed to two 6-h pulses of 0.62 W/m{sup 2} UVB (26.8 kJ/m{sup 2}). CYP1A was induced also in embryos exposed to higher intensity UVB (0.93 W/m{sup 2}) for two 3-h or two 4-h pulses (20.1 or 26.8 kJ/m{sup 2}). CYP1B1, SOD1 and PCNA expression was induced by the two 3-h pulses of the higher intensity UVB, but not after two 4-h pulses of the higher intensity UVB, possibly due to impaired condition of surviving embryos, reflected in a mortality of 34% at that UVB dose. A single 8-h long exposure of zebrafish larvae (8 dpf) to UVB at 0.93 W/m{sup 2} (26.8 kJ/m{sup 2}) significantly induced CYP1A and CYP1B1 expression, but other CYP1 genes (CYP1C1, CYP1C2 and CYP1D1) showed no significant increase. The results show that UVB can induce expression of CYP1 genes as well stress response genes in developing zebrafish, and that UVB intensity and duration influence the responses.

  20. DNA methylation profiling of the fibrinogen gene landscape in human cells and during mouse and zebrafish development.

    Directory of Open Access Journals (Sweden)

    Silja Vorjohann

    Full Text Available The fibrinogen genes FGA, FGB and FGG show coordinated expression in hepatocytes. Understanding the underlying transcriptional regulation may elucidate how their tissue-specific expression is maintained and explain the high variability in fibrinogen blood levels. DNA methylation of CpG-poor gene promoters is dynamic with low methylation correlating with tissue-specific gene expression but its direct effect on gene regulation as well as implications of non-promoter CpG methylation are not clear. Here we compared methylation of CpG sites throughout the fibrinogen gene cluster in human cells and mouse and zebrafish tissues. We observed low DNA methylation of the CpG-poor fibrinogen promoters and of additional regulatory elements (the liver enhancers CNC12 and PFE2 in fibrinogen-expressing samples. In a gene reporter assay, CpG-methylation in the FGA promoter reduced promoter activity, suggesting a repressive function for DNA methylation in the fibrinogen locus. In mouse and zebrafish livers we measured reductions in DNA methylation around fibrinogen genes during development that were preceded by increased fibrinogen expression and tri-methylation of Histone3 lysine4 (H3K4me3 in fibrinogen promoters. Our data support a model where changes in hepatic transcription factor expression and histone modification provide the switch for increased fibrinogen gene expression in the developing liver which is followed by reduction of CpG methylation.

  1. Bioconcentration and metabolism of BDE-209 in the presence of titanium dioxide nanoparticles and impact on the thyroid endocrine system and neuronal development in zebrafish larvae.

    Science.gov (United States)

    Wang, Qiangwei; Chen, Qi; Zhou, Peng; Li, Wenwen; Wang, Junxia; Huang, Changjiang; Wang, Xianfeng; Lin, Kuangfei; Zhou, Bingsheng

    2014-08-01

    Interactions between organic toxicants and nanoparticles (NPs) in the aquatic environment may modify toxicant bioavailability and consequently the toxicant's environmental fate and toxicity. Therefore, we investigated the influence of titanium dioxide NPs (nano-TiO2) on deca-BDE (BDE-209; a polybrominated diphenyl ether congener) bioconcentration, metabolism and its effects on the thyroid endocrine system in zebrafish (Danio rerio) larvae. Zebrafish embryos were exposed to various concentrations of BDE-209 alone or in combination with nano-TiO2 (0.1 mg/L) until 7-day post-fertilization. Nano-TiO2 can adsorb BDE-209 and nano-TiO2 is taken up into developing zebrafish larvae. Chemical measurements showed that BDE-209 was bioconcentrated and metabolized in zebrafish larvae, and BDE-209 uptake was enhanced by nano-TiO2. Furthermore, increased BDE-209 metabolites were detected in larvae co-exposed with nano-TiO2. BDE-209 exposure significantly increased whole-body thyroid hormone contents (T3 and T4); T4 content significantly increased in the larvae co-exposed with nano-TiO2. Nano-TiO2 exposure alone did not induce generation of reactive oxygen species, lipid peroxidative oxidation, gene transcription or thyroid hormone levels. Upregulation of several gene transcriptions (tshβ, tg, dio2) in the hypothalamic-pituitary-thyroid axis was also observed. Furthermore, co-exposure of nano-TiO2 and BDE-209 caused a decrease in locomotion activity and downregulation of specific genes and proteins involved in the central nervous system of developing zebrafish larvae (e.g. myelin basic protein and α1-tubulin). These results indicate nano-TiO2 enhances BDE-209 bioavailability and metabolism, leading to thyroid endocrine disruption and developmental neurotoxicity in zebrafish.

  2. Textile dyes induce toxicity on zebrafish early life stages.

    Science.gov (United States)

    de Oliveira, Gisele Augusto Rodrigues; de Lapuente, Joaquín; Teixidó, Elisabet; Porredón, Constança; Borràs, Miquel; de Oliveira, Danielle Palma

    2016-02-01

    Textile manufacturing is one of the most polluting industrial sectors because of the release of potentially toxic compounds, such as synthetic dyes, into the environment. Depending on the class of the dyes, their loss in wastewaters can range from 2% to 50% of the original dye concentration. Consequently, uncontrolled use of such dyes can negatively affect human health and the ecological balance. The present study assessed the toxicity of the textile dyes Direct Black 38 (DB38), Reactive Blue 15 (RB15), Reactive Orange 16 (RO16), and Vat Green 3 (VG3) using zebrafish (Danio rerio) embryos for 144 h postfertilization (hpf). At the tested conditions, none of the dyes caused significant mortality. The highest RO16 dose significantly delayed or inhibited the ability of zebrafish embryos to hatch from the chorion after 96 hpf. From 120 hpf to 144 hpf, all the dyes impaired the gas bladder inflation of zebrafish larvae, DB38 also induced curved tail, and VG3 led to yolk sac edema in zebrafish larvae. Based on these data, DB38, RB15, RO16, and VG3 can induce malformations during embryonic and larval development of zebrafish. Therefore, it is essential to remove these compounds from wastewater or reduce their concentrations to safe levels before discharging textile industry effluents into the aquatic environment.

  3. Developmental toxicity evaluation of three hexabromocyclododecane diastereoisomers on zebrafish embryos

    Energy Technology Data Exchange (ETDEWEB)

    Du Miaomiao [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Zhang Dandan; Yan Changzhou [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Zhang Xian, E-mail: xzhang@iue.ac.cn [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China)

    2012-05-15

    Structural dissimilarities of hexabromocyclododecane diastereoisomers could raise substantial differences in physicochemical, biological and toxicological properties. In order to fully assess the environmental safety and health risk of hexabromocyclododecanes (HBCDs), zebrafish embryos were used to evaluate the developmental toxicity of individual HBCD diastereoisomers ({alpha}-HBCD, {beta}-HBCD and {gamma}-HBCD). Four-hour post-fertilization (hpf) zebrafish embryos were exposed to different concentrations of HBCD diastereoisomers (0, 0.01, 0.1 and 1.0 mg/l) until 120 hpf. The results showed that exposure to HBCDs can affect the development of zebrafish embryos/larvae in a dose-dependent and diastereoselective manner. The diastereoisomers {alpha}-, {beta}- and {gamma}-HBCD at 0.01 mg/l had little effect on the development of zebrafish embryos except that exposure to 0.01 mg/l {gamma}-HBCD significantly delayed hatching (P < 0.05). At 0.1 mg/l, {alpha}-HBCD resulted in depressed heart rate of larvae (96 hpf) and delayed hatching, whereas {beta}- and {gamma}-HBCD both caused significant hatching delay and growth inhibition (P < 0.05). In addition, a remarkable and significant increase in mortality and malformation rate was noted at 0.1 mg/l {gamma}-HBCD exposure groups (P < 0.05). At 1.0 mg/l, {alpha}-, {beta}- and {gamma}-HBCD significantly affected all of the endpoints monitored (P < 0.05). Additionally, HBCD diastereoisomers could induce the generation of reactive oxygen species (ROS) and the activities of caspase-3 and caspase-9 in a dose-dependent manner. The results indicated that HBCD diastereoisomers could cause developmental toxicity to zebrafish embryos through inducing apoptosis by ROS formation. The overall results showed a good agreement confirming that the order of developmental toxicity of HBCD diastereoisomers in zebrafish is {gamma}-HBCD > {beta}-HBCD > {alpha}-HBCD.

  4. Down-regulation of msrb3 and destruction of normal auditory system development through hair cell apoptosis in zebrafish.

    Science.gov (United States)

    Shen, Xiaofang; Liu, Fei; Wang, Yingzhi; Wang, Huijun; Ma, Jing; Xia, Wenjun; Zhang, Jin; Jiang, Nan; Sun, Shaoyang; Wang, Xu; Ma, Duan

    2015-01-01

    Hearing defects can significantly influence quality of life for those who experience them. At this time, 177 deafness genes have been cloned, including 134 non-syndromic hearing-loss genes. The methionine sulfoxide reductase B3 (Ahmed et al., 2011) gene (also called DFNB74) is one such newly discovered hearing-loss gene. Within this gene c.265 T>G and c.55 T>C mutations are associated with autosomal recessive hearing loss. However, the biological role and mechanism underlying how it contributes to deafness is unclear. Thus, to better understand this mutation, we designed splicing morpholinos for the purpose of down-regulating msrb3 in zebrafish. Morphants exhibited small, tiny, fused, or misplaced otoliths and abnormal numbers of otoliths. Down-regulation of msrb3 also caused shorter, thinner, and more crowded cilia. Furthermore, L1-8 neuromasts were reduced and disordered in the lateral line system; hair cells in each neuromast underwent apoptosis. Co-injection with human MSRB3 mRNA partially rescued auditory system defects, but mutant MSRB3 mRNA could not. Thus, msrb3 is instrumental for auditory system development in zebrafish and MSRB3-related deafness may be caused by promotion of hair cell apoptosis.

  5. Effects of embryonic ethanol exposure at low doses on neuronal development, voluntary ethanol consumption and related behaviors in larval and adult zebrafish: Role of hypothalamic orexigenic peptides.

    Science.gov (United States)

    Sterling, M E; Chang, G-Q; Karatayev, O; Chang, S Y; Leibowitz, S F

    2016-05-01

    Embryonic exposure to ethanol is known to affect neurochemical systems in rodents and increase alcohol drinking and related behaviors in humans and rodents. With zebrafish emerging as a powerful tool for uncovering neural mechanisms of numerous diseases and exhibiting similarities to rodents, the present report building on our rat studies examined in zebrafish the effects of embryonic ethanol exposure on hypothalamic neurogenesis, expression of orexigenic neuropeptides, and voluntary ethanol consumption and locomotor behaviors in larval and adult zebrafish, and also effects of central neuropeptide injections on these behaviors affected by ethanol. At 24h post-fertilization, zebrafish embryos were exposed for 2h to ethanol, at low concentrations of 0.25% and 0.5%, in the tank water. Embryonic ethanol compared to control dose-dependently increased hypothalamic neurogenesis and the proliferation and expression of the orexigenic peptides, galanin (GAL) and orexin (OX), in the anterior hypothalamus. These changes in hypothalamic peptide neurons were accompanied by an increase in voluntary consumption of 10% ethanol-gelatin and in novelty-induced locomotor and exploratory behavior in adult zebrafish and locomotor activity in larvae. After intracerebroventricular injection, these peptides compared to vehicle had specific effects on these behaviors altered by ethanol, with GAL stimulating consumption of 10% ethanol-gelatin more than plain gelatin food and OX stimulating novelty-induced locomotor behavior while increasing intake of food and ethanol equally. These results, similar to those obtained in rats, suggest that the ethanol-induced increase in genesis and expression of these hypothalamic peptide neurons contribute to the behavioral changes induced by embryonic exposure to ethanol. PMID:26778786

  6. Effects of low-dose embryonic thyroid disruption and rearing temperature on the development of the eye and retina in zebrafish.

    Science.gov (United States)

    Reider, Masha; Connaughton, Victoria P

    2014-10-01

    Thyroid hormones are required for vertebrate development, and disruption of the thyroid system in developing embryos can result in a large range of morphologic and physiologic changes, including in the eye and retina. In this study, our anatomic analyses following low-dose, chronic thyroid inhibition reveal that both methimazole (MMI) exposure and rearing temperature affect eye development in a time- and temperature-dependent fashion. Maximal sensitivity to MMI for external eye development occurred at 65 hr postfertilization (hpf) for zebrafish reared at 28°C, and at 69 hpf for those reared at 31°C. Changes in eye diameter corresponded to changes in thickness of two inner retinal layers: the ganglion cell layer and the inner plexiform layer, with irreversible MMI-induced decreases in layer thickness observed in larvae treated with MMI until 66 hpf at 28°C. We infer that maximal sensitivity to MMI between 65 and 66 hpf at 28°C indicates a critical period of thyroid-dependent eye and retinal development. Furthermore, our results support previous work that shows spontaneous escape from MMI-induced effects potentially due to embryonic compensatory actions, as our data show that embryos treated beyond the critical period generally resemble controls.

  7. Recent developments in affective recommender systems

    Science.gov (United States)

    Katarya, Rahul; Verma, Om Prakash

    2016-11-01

    Recommender systems (RSs) are playing a significant role since 1990s as they provide relevant, personalized information to the users over the internet. Lots of work have been done in information filtering, utilization, and application related to RS. However, an important area recently draws our attention which is affective recommender system. Affective recommender system (ARS) is latest trending area of research, as publication in this domain are few and recently published. ARS is associated with human behaviour, human factors, mood, senses, emotions, facial expressions, body gesture and physiological with human-computer interaction (HCI). Due to this assortment and various interests, more explanation is required, as it is in premature phase and growing as compared to other fields. So we have done literature review (LR) in the affective recommender systems by doing classification, incorporate reputed articles published from the year 2003 to February 2016. We include articles which highlight, analyse, and perform a study on affective recommender systems. This article categorizes, synthesizes, and discusses the research and development in ARS. We have classified and managed ARS papers according to different perspectives: research gaps, nature, algorithm or method adopted, datasets, the platform on executed, types of information and evaluation techniques applied. The researchers and professionals will positively support this survey article for understanding the current position, research in affective recommender systems and will guide future trends, opportunity and research focus in ARS.

  8. 斑马鱼胚胎发育的功能染色体组%Functional Genomics of Embryonic Development in Zebrafish

    Institute of Scientific and Technical Information of China (English)

    孟安明

    2003-01-01

    As the genome sequencing of human and other species is complete, a major task in life science is to elucidate biological functions of thousands of genes. Life cycle of human and animals starts from single fertilized eggs that will develop step by step into sophisticated organisms consisting of multiple tissues and organs. During embryogenesis, genes are expressed sequentially according to inherent programs and gene products function coordinately, which determine and actualize the body plan. Functional genomics of embryos can be accelerated if an appropriate model animal is exploited. Zebrafish is an excellent model for such a study. The natural advantages of Zebrafish include high production of eggs, external development of embryos, small size and easy maintenance. In addition, many molecular, cellular, embryonic and genetic operations can be done easily in zebra fish. Two approaches, forward and reverse genetics, have been widely used to study gene functions during development of zebrafish embryos. The forward genetics is to identify genes from mutants created by mutagenesis with chemical mutagens, y-ray and recombinant retrovirus. More than 4,000 mutants with various embryonic defects have been generated and about 500 genes responsible for mutant phenotypes have been identified. The mutagenesis in zebrafish has revealed some important mechanisms controlling development of vertebrate embryos. With respect to reverse genetics approach, over 3,000 tissue-specific genes have been identified through whole-mount in situ hybridization screen. The functions of some of these genes during embryogenesis have been studied in details.

  9. Genes of the adaptive immune system are expressed early in zebrafish larval development following lipopolysaccharide stimulation

    Institute of Scientific and Technical Information of China (English)

    LI Fengling; ZHANG Shicui; WANG Zhiping; LI Hongyan

    2011-01-01

    Information regarding immunocompetence of the adaptive immune system (AIS) in zebrafish Danio rerio remains limited. Here, we stimulated an immune response in fish embryos,larvae and adults using lipopolysaccharide (LPS) and measured the upregulation of a number of AIS-related genes (Rag2, AID, TCRAC, IgLC-1, mIg, sIg, IgZ and DAB) 3 and 18 h later. We found that all of the genes evaluated were strongly induced following LPS stimulation, with most of them responding at 8 d post fertilization. This confirms that a functional adaptive immune response is present in D. rerio larvae, and provides a window for further functional analyses.

  10. Mutagenesis Screen Identifies agtpbp1 and eps15L1 as Essential for T lymphocyte Development in Zebrafish.

    Directory of Open Access Journals (Sweden)

    Christoph Seiler

    Full Text Available Genetic screens are a powerful tool to discover genes that are important in immune cell development and function. The evolutionarily conserved development of lymphoid cells paired with the genetic tractability of zebrafish make this a powerful model system for this purpose. We used a Tol2-based gene-breaking transposon to induce mutations in the zebrafish (Danio rerio, AB strain genome, which served the dual purpose of fluorescently tagging cells and tissues that express the disrupted gene and provided a means of identifying the disrupted gene. We identified 12 lines in which hematopoietic tissues expressed green fluorescent protein (GFP during embryonic development, as detected by microscopy. Subsequent analysis of young adult fish, using a novel approach in which single cell suspensions of whole fish were analyzed by flow cytometry, revealed that 8 of these lines also exhibited GFP expression in young adult cells. An additional 15 lines that did not have embryonic GFP+ hematopoietic tissue by microscopy, nevertheless exhibited GFP+ cells in young adults. RT-PCR analysis of purified GFP+ populations for expression of T and B cell-specific markers identified 18 lines in which T and/or B cells were fluorescently tagged at 6 weeks of age. As transposon insertion is expected to cause gene disruption, these lines can be used to assess the requirement for the disrupted genes in immune cell development. Focusing on the lines with embryonic GFP+ hematopoietic tissue, we identified three lines in which homozygous mutants exhibited impaired T cell development at 6 days of age. In two of the lines we identified the disrupted genes, agtpbp1 and eps15L1. Morpholino-mediated knockdown of these genes mimicked the T cell defects in the corresponding mutant embryos, demonstrating the previously unrecognized, essential roles of agtpbp1 and eps15L1 in T cell development.

  11. Policy factors affecting broadband development in Poland

    DEFF Research Database (Denmark)

    Henten, Anders; Windekilde, Iwona Maria

    2014-01-01

    ’s telecommunications market with the European market. The market reflects all the global trends, a gradually growing significance of mobile telecommunications services, broadband Internet access, construction of offers directed towards clients’ needs, and a strong trend towards market consolidation, which...... will gradually change the previous balance of power. The specific problem of the Polish market is its very poor infrastructure development and the lack of competitors on the fixed market. This translates into limited access to services for end users particularly in the rural areas. A much lower level...... and discuss broadband access development in Poland and the policy factors influencing this development as well as to examine national strategies used to stimulate service and infrastructure competition in Poland. There are, indeed, many other factors affecting broadband development such as the income level...

  12. Comparing phototoxicity during the development of a zebrafish craniofacial bone using confocal and light sheet fluorescence microscopy techniques.

    Science.gov (United States)

    Jemielita, Matthew; Taormina, Michael J; Delaurier, April; Kimmel, Charles B; Parthasarathy, Raghuveer

    2013-12-01

    The combination of genetically encoded fluorescent proteins and three-dimensional imaging enables cell-type-specific studies of embryogenesis. Light sheet microscopy, in which fluorescence excitation is provided by a plane of laser light, is an appealing approach to live imaging due to its high speed and efficient use of photons. While the advantages of rapid imaging are apparent from recent work, the importance of low light levels to studies of development is not well established. We examine the zebrafish opercle, a craniofacial bone that exhibits pronounced shape changes at early developmental stages, using both spinning disk confocal and light sheet microscopies of fluorescent osteoblast cells. We find normal and aberrant opercle morphologies for specimens imaged with short time intervals using light sheet and spinning disk confocal microscopies, respectively, under equivalent exposure conditions over developmentally-relevant time scales. Quantification of shapes reveals that the differently imaged specimens travel along distinct trajectories in morphological space. PMID:23242824

  13. Zebrafish cyclin Dx is required for development of motor neuron progenitors, and its expression is regulated by hypoxia-inducible factor 2α.

    Science.gov (United States)

    Lien, Huang-Wei; Yuan, Rey-Yue; Chou, Chih-Ming; Chen, Yi-Chung; Hung, Chin-Chun; Hu, Chin-Hwa; Hwang, Sheng-Ping L; Hwang, Pung-Pung; Shen, Chia-Ning; Chen, Chih-Lung; Cheng, Chia-Hsiung; Huang, Chang-Jen

    2016-06-21

    Cyclins play a central role in cell-cycle regulation; in mammals, the D family of cyclins consists of cyclin D1, D2, and D3. In Xenopus, only homologs of cyclins D1 and D2 have been reported, while a novel cyclin, cyclin Dx (ccndx), was found to be required for the maintenance of motor neuron progenitors during embryogenesis. It remains unknown whether zebrafish possess cyclin D3 or cyclin Dx. In this study, we identified a zebrafish ccndx gene encoding a protein which can form a complex with Cdk4. Through whole-mount in situ hybridization, we observed that zccndx mRNA is expressed in the motor neurons of hindbrain and spinal cord during development. Analysis of a 4-kb promoter sequence of the zccndx gene revealed the presence of HRE sites, which can be regulated by HIF2α. Morpholino knockdown of zebrafish Hif2α and cyclin Dx resulted in the abolishment of isl1 and oligo2 expression in the precursors of motor neurons, and also disrupted axon growth. Overexpression of cyclin Dx mRNA in Hif2α morphants partially rescued zccndx expression. Taken together, our data indicate that zebrafish cyclin Dx plays a role in maintaining the precursors of motor neurons.

  14. Abnormal differentiation of dopaminergic neurons in zebrafish trpm7 mutant larvae impairs development of the motor pattern.

    Science.gov (United States)

    Decker, Amanda R; McNeill, Matthew S; Lambert, Aaron M; Overton, Jeffrey D; Chen, Yu-Chia; Lorca, Ramón A; Johnson, Nicolas A; Brockerhoff, Susan E; Mohapatra, Durga P; MacArthur, Heather; Panula, Pertti; Masino, Mark A; Runnels, Loren W; Cornell, Robert A

    2014-02-15

    Transient receptor potential, melastatin-like 7 (Trpm7) is a combined ion channel and kinase implicated in the differentiation or function of many cell types. Early lethality in mice and frogs depleted of the corresponding gene impedes investigation of the functions of this protein particularly during later stages of development. By contrast, zebrafish trpm7 mutant larvae undergo early morphogenesis normally and thus do not have this limitation. The mutant larvae are characterized by multiple defects including melanocyte cell death, transient paralysis, and an ion imbalance that leads to the development of kidney stones. Here we report a requirement for Trpm7 in differentiation or function of dopaminergic neurons in vivo. First, trpm7 mutant larvae are hypomotile and fail to make a dopamine-dependent developmental transition in swim-bout length. Both of these deficits are partially rescued by the application of levodopa or dopamine. Second, histological analysis reveals that in trpm7 mutants a significant fraction of dopaminergic neurons lack expression of tyrosine hydroxylase, the rate-limiting enzyme in dopamine synthesis. Third, trpm7 mutants are unusually sensitive to the neurotoxin 1-methyl-4-phenylpyridinium, an oxidative stressor, and their motility is partially rescued by application of the iron chelator deferoxamine, an anti-oxidant. Finally, in SH-SY5Y cells, which model aspects of human dopaminergic neurons, forced expression of a channel-dead variant of TRPM7 causes cell death. In summary, a forward genetic screen in zebrafish has revealed that both melanocytes and dopaminergic neurons depend on the ion channel Trpm7. The mechanistic underpinning of this dependence requires further investigation.

  15. Gaining translational momentum: more zebrafish models for neuroscience research.

    Science.gov (United States)

    Kalueff, Allan V; Echevarria, David J; Stewart, Adam Michael

    2014-12-01

    Zebrafish (Danio rerio) are rapidly becoming a popular model organism in translational neuroscience and biological psychiatry research. Here we discuss conceptual, practical and other related aspects of using zebrafish in this field ("from tank to bedside"), and critically evaluate both advantages and limitations of zebrafish models of human brain disorders. We emphasize the need to more actively develop zebrafish models for neuroscience research focusing on complex traits. PMID:24593944

  16. Mixtures, Metabolites, and Mechanisms: Understanding Toxicology Using Zebrafish.

    Science.gov (United States)

    Gamse, Joshua T; Gorelick, Daniel A

    2016-10-01

    For more than 60 years, zebrafish have been used in toxicological studies. Due to their transparency, genetic tractability, and compatibility with high-throughput screens, zebrafish embryos are uniquely suited to study the effects of pharmaceuticals and environmental insults on embryonic development, organ formation and function, and reproductive success. This special issue of Zebrafish highlights the ways zebrafish are used to investigate the toxic effects of endocrine disruptors, pesticides, and heavy metals. PMID:27618129

  17. The tumor suppressor gene lkb1 is essential for glucose homeostasis during zebrafish early development.

    Science.gov (United States)

    Kuang, Xia; Liu, Chao; Fang, Junshun; Ma, Weirui; Zhang, Jian; Cui, Sheng

    2016-07-01

    The liver kinase B1 (LKB1) is encoded by tumor suppressor gene STK11, which is mutated in Peutz-Jeghers syndrome patients. Lkb1 plays indispensable roles in energy homeostasis. However, how Lkb1 regulates energy homeostasis in vivo remains to be fully understood. We found that inactivation of zebrafish Lkb1 upregulates pyruvate dehydrogenase kinase 2 expression and inactivates pyruvate dehydrogenase complex by increasing phosphorylation of pyruvate dehydrogenase. As a result, glycolysis is significantly enhanced as indicated by increased lactate production, which resembles the Warburg effect in cancer cells. Inhibition of Pdk2 in lkb1 mutants with dichloroacetate, a promising anticancer drug, rescued the lactate production to wild-type level, suggesting the lkb1 mutant may be used to screen compounds targeting aerobic glycolysis in cancer therapy. PMID:27264935

  18. Pten function in zebrafish : Anything but a fish story

    NARCIS (Netherlands)

    Stumpf, Miriam; Choorapoikayil, Suma; den Hertog, J.

    2015-01-01

    Zebrafish is an excellent model system for the analysis of gene function. We and others use zebrafish to investigate the function of the tumor suppressor, Pten, in tumorigenesis and embryonic development. Zebrafish have two pten genes, ptena and ptenb. The recently identified N-terminal extension of

  19. Pten function in zebrafish : Anything but a fish story

    NARCIS (Netherlands)

    Stumpf, Miriam; Choorapoikayil, Suma; den Hertog, Jeroen

    2014-01-01

    Zebrafish is an excellent model system for the analysis of gene function. We and others use zebrafish to investigate the function of the tumor suppressor, Pten, in tumorigenesis and embryonic development. Zebrafish have two pten genes, ptena and ptenb. The recently identified N-terminal extension of

  20. cables1 is required for embryonic neural development: molecular, cellular, and behavioral evidence from the zebrafish.

    Science.gov (United States)

    Groeneweg, Jolijn W; White, Yvonne A R; Kokel, David; Peterson, Randall T; Zukerberg, Lawrence R; Berin, Inna; Rueda, Bo R; Wood, Antony W

    2011-01-01

    In vitro studies have suggested that the Cables1 gene regulates epithelial cell proliferation, whereas other studies suggest a role in promoting neural differentiation. In efforts to clarify the functions of Cables1 in vivo, we conducted gain- and loss-of-function studies targeting its ortholog (cables1) in the zebrafish embryo. Similar to rodents, zebrafish cables1 mRNA expression is detected most robustly in embryonic neural tissues. Antisense knockdown of cables1 leads to increased numbers of apoptotic cells, particularly in brain tissue, in addition to a distinct behavioral phenotype, characterized by hyperactivity in response to stimulation. Apoptosis and the behavioral abnormality could be rescued by co-expression of a morpholino-resistant cables1 construct. Suppression of p53 expression in cables1 morphants partially rescued both apoptosis and the behavioral phenotype, suggesting that the phenotype of cables1 morphants is due in part to p53-dependent apoptosis. Alterations in the expression patterns of several neural transcription factors were observed in cables1 morphants during early neurulation, suggesting that cables1 is required for early neural differentiation. Ectopic overexpression of cables1 strongly disrupted embryonic morphogenesis, while overexpression of a cables1 mutant lacking the C-terminal cyclin box had little effect, suggesting functional importance of the cyclin box. Lastly, marked reductions in p35, but not Cdk5, were observed in cables1 morphants. Collectively, these data suggest that cables1 is important for neural differentiation during embryogenesis, in a mechanism that likely involves interactions with the Cdk5/p35 kinase pathway.

  1. Structurally Distinct Polycyclic Aromatic Hydrocarbons Induce Differential Transcriptional Responses in Developing Zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Goodale, Britton; Tilton, Susan C.; Corvi, Margaret M.; Wilson, Glenn V.; Janszen, Derek B.; Anderson, Kim A.; Waters, Katrina M.; Tanguay, Robert

    2013-11-01

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in the environment as components of fossil fuels and by-products of combustion. These multi-ring chemicals differentially activate the aryl hydrocarbon receptor (AHR) in a structurally dependent manner, and induce toxicity via both AHR-dependent and -independent mechanisms. PAH exposure is known to induce developmental malformations in zebrafish embryos, and recent studies have shown cardiac toxicity induced by compounds with low AHR affinity. Unraveling the potentially diverse molecular mechanisms of PAH toxicity is essential for understanding the hazard posed by complex PAH mixtures present in the environment. We analyzed transcriptional responses to PAH exposure in zebrafish embryos exposed to benz(a)anthracene (BAA), dibenzothiophene (DBT) and pyrene (PYR) at concentrations that induced developmental malformations by 120 h post-fertilization (hpf). Whole genome microarray analysis of mRNA expression at 24 and 48 hpf identified genes that were differentially regulated over time and in response to the three PAH structures. PAH body burdens were analyzed at both time points using GC-MS, and demonstrated differences in PAH uptake into the embryos. This was important for discerning dose-related differences from those that represented unique molecular mechanisms. While BAA misregulated the least number of transcripts, it caused strong induction of cyp1a and other genes known to be downstream of the AHR, which were not induced by the other two PAHs. Analysis of functional roles of misregulated genes and their predicted regulatory transcription factors also distinguished the BAA response from regulatory networks disrupted by DBT and PYR exposure. These results indicate that systems approaches can be used to classify the toxicity of PAHs based on the networks perturbed following exposure, and may provide a path for unraveling the toxicity of complex PAH mixtures.

  2. Zebrafish Social Behavior in the Wild.

    Science.gov (United States)

    Suriyampola, Piyumika S; Shelton, Delia S; Shukla, Rohitashva; Roy, Tamal; Bhat, Anuradha; Martins, Emília P

    2016-02-01

    Wild zebrafish exhibit a wide range of behavior. We found abundant wild zebrafish in flowing rivers and still water, in large, tightly-knit groups of hundreds of individuals, as well as in small, loose shoals. In two still-water populations, zebrafish were quite small in body size, common, and in tight groups of up to 22 fish. As in earlier laboratory studies, these zebrafish exhibited very low levels of aggression. In slowly flowing water in central India, zebrafish were relatively rare and gathered in small shoals (4-12 fish), often with other small fish, such as Rasbora daniconius. These stream zebrafish were larger in body size (27 mm TL) and much more aggressive than those in still water. In a second river population with much faster flowing water, zebrafish were abundant and again relatively large (21 mm TL). These zebrafish occurred in very large (up to 300 individuals) and tightly-knit (nearest-neighbor distances up to 21 mm) groups that exhibited collective rheotaxis and almost no aggression. This remarkable variation in social behavior of wild zebrafish offers an opportunity for future studies of behavioral genetics, development, and neuroscience.

  3. Development of inter-family nuclear transplant embryos by transplanting the nuclei from the loach blastulae into the non-enucleated zebrafish eggs

    Science.gov (United States)

    Li, Li; Zhang, Shicui; Yuan, Jinduo; Li, Hongyan

    2003-03-01

    The developmental fate of the pronuclei in recombined embryos obtained by transplanting the donor nuclei into the non-enucleated eggs remains controversial in the case of fish. In the present study, the nuclei from the loach blastulae were transplanted into non-enucleated zebrafish eggs, the resulting 9 inter-family nuclear transplant embryos developed to larval stages. Although the development timing of the nuclear transplants resembled that of zebrafish, chromosome examination revealed that most of the recombined embryos were diploids with karyotype characteristic of loach, which was also proved by RAPD analysis. Moreover, 3 out of the 9 larval fish formed barb rudiments specific to loach. It was therefore concluded that the nuclear transplant larval fish were inter-family nucleo-cytoplasmic hybrids; and that only the donor nuclei were involved in the development of the nuclear transplant embryos, while the pronuclei in the non-enucleated eggs were likely automatically eliminated during the development.

  4. Zebrafish Expression Ontology of Gene Sets (ZEOGS): a tool to analyze enrichment of zebrafish anatomical terms in large gene sets.

    Science.gov (United States)

    Prykhozhij, Sergey V; Marsico, Annalisa; Meijsing, Sebastiaan H

    2013-09-01

    The zebrafish (Danio rerio) is an established model organism for developmental and biomedical research. It is frequently used for high-throughput functional genomics experiments, such as genome-wide gene expression measurements, to systematically analyze molecular mechanisms. However, the use of whole embryos or larvae in such experiments leads to a loss of the spatial information. To address this problem, we have developed a tool called Zebrafish Expression Ontology of Gene Sets (ZEOGS) to assess the enrichment of anatomical terms in large gene sets. ZEOGS uses gene expression pattern data from several sources: first, in situ hybridization experiments from the Zebrafish Model Organism Database (ZFIN); second, it uses the Zebrafish Anatomical Ontology, a controlled vocabulary that describes connected anatomical structures; and third, the available connections between expression patterns and anatomical terms contained in ZFIN. Upon input of a gene set, ZEOGS determines which anatomical structures are overrepresented in the input gene set. ZEOGS allows one for the first time to look at groups of genes and to describe them in terms of shared anatomical structures. To establish ZEOGS, we first tested it on random gene selections and on two public microarray datasets with known tissue-specific gene expression changes. These tests showed that ZEOGS could reliably identify the tissues affected, whereas only very few enriched terms to none were found in the random gene sets. Next we applied ZEOGS to microarray datasets of 24 and 72 h postfertilization zebrafish embryos treated with beclomethasone, a potent glucocorticoid. This analysis resulted in the identification of several anatomical terms related to glucocorticoid-responsive tissues, some of which were stage-specific. Our studies highlight the ability of ZEOGS to extract spatial information from datasets derived from whole embryos, indicating that ZEOGS could be a useful tool to automatically analyze gene expression

  5. Cartilage development requires the function of Estrogen-related receptor alpha that directly regulates sox9 expression in zebrafish.

    Science.gov (United States)

    Kim, Yong-Il; No Lee, Joon; Bhandari, Sushil; Nam, In-Koo; Yoo, Kyeong-Won; Kim, Se-Jin; Oh, Gi-Su; Kim, Hyung-Jin; So, Hong-Seob; Choe, Seong-Kyu; Park, Raekil

    2015-12-10

    Estrogen-related receptor alpha (ESRRa) regulates a number of cellular processes including development of bone and muscles. However, direct evidence regarding its involvement in cartilage development remains elusive. In this report, we establish an in vivo role of Esrra in cartilage development during embryogenesis in zebrafish. Gene expression analysis indicates that esrra is expressed in developing pharyngeal arches where genes necessary for cartilage development are also expressed. Loss of function analysis shows that knockdown of esrra impairs expression of genes including sox9, col2a1, sox5, sox6, runx2 and col10a1 thus induces abnormally formed cartilage in pharyngeal arches. Importantly, we identify putative ESRRa binding elements in upstream regions of sox9 to which ESRRa can directly bind, indicating that Esrra may directly regulate sox9 expression. Accordingly, ectopic expression of sox9 rescues defective formation of cartilage induced by the knockdown of esrra. Taken together, our results indicate for the first time that ESRRa is essential for cartilage development by regulating sox9 expression during vertebrate development.

  6. Zebrafish as a model for human osteosarcoma.

    Science.gov (United States)

    Mohseny, A B; Hogendoorn, P C W

    2014-01-01

    For various reasons involving biological comparativeness, expansive technological possibilities, accelerated experimental speed, and competitive costs, zebrafish has become a comprehensive model for cancer research. Hence, zebrafish embryos and full-grown fish have been instrumental for studies of leukemia, melanoma, pancreatic cancer, bone tumors, and other malignancies. Although because of its similarities to human osteogenesis zebrafish appears to be an appealing model to investigate osteosarcoma, only a few osteosarcoma specific studies have been accomplished yet. Here, we review interesting related and unrelated reports of which the findings might be extrapolated to osteosarcoma. More importantly, rational but yet unexplored applications of zebrafish are debated to expand the window of opportunities for future establishment of osteosarcoma models. Accordingly technological advances of zebrafish based cancer research, such as robotic high-throughput multicolor injection systems and advanced imaging methods are discussed. Furthermore, various use of zebrafish embryos for screening drug regimens by combinations of chemotherapy, novel drug deliverers, and immune system modulators are suggested. Concerning the etiology, the high degree of genetic similarity between zebrafish and human cancers indicates that affected regions are evolutionarily conserved. Therefore, zebrafish as a swift model system that allows for the investigation of multiple candidate gene-defects is presented. PMID:24924177

  7. Short-term exposure to low concentrations of the synthetic androgen methyltestosterone affects vitellogenin and steroid levels in adult male zebrafish (Danio rerio).

    Science.gov (United States)

    Andersen, Lene; Goto-Kazeto, Rie; Trant, John M; Nash, Jon P; Korsgaard, Bodil; Bjerregaard, Poul

    2006-03-10

    Short-term effects of methyltestosterone (MT) on the endocrine system of adult male zebrafish (Danio rerio) were examined. Males were exposed to 0, 4.5, 6.6, 8.5, 19.8, 35.9, 62.3 ng MT/l and ethinylestradiol (EE2) (26.4 ng/l) for 7 days. Several physiological endpoints that may be affected by endocrine disrupters were analysed, specifically vitellogenin (VTG) concentration, estradiol (E2), testosterone (T), and 11-ketotestosterone (KT) content, brain aromatase activity and gene expression of CYP19A1 and CYP19A2 in the testis. Exposure to the lowest MT concentration (4.5 ng MT/l), and the EE2 increased the concentration of VTG significantly compared to solvent control group. Exposure to higher concentrations of MT did not increase VTG levels. Endogenous KT and T levels decreased significantly in a concentration-dependent manner in response to the MT exposure and the lowest effective concentrations were 6.4 and 8.5 ng MT/l, respectively. The levels of KT and T were also significantly suppressed by EE2 when compared to the solvent control group. Significant decreases in endogenous E2 levels were found in some MT groups but it was not possible to distinguish a simple concentration-response relationship. No effects of MT or EE2 on the brain aromatase activity or on testicular gene expression of CYP19A1 and CYP19A2 were detected. The results show that androgens such as MT can act as endocrine disrupters even at very low concentrations.

  8. Zebrafish Sensitivity to Botulinum Neurotoxins

    Directory of Open Access Journals (Sweden)

    Kamalakar Chatla

    2016-05-01

    Full Text Available Botulinum neurotoxins (BoNT are the most potent known toxins. The mouse LD50 assay is the gold standard for testing BoNT potency, but is not sensitive enough to detect the extremely low levels of neurotoxin that may be present in the serum of sensitive animal species that are showing the effects of BoNT toxicity, such as channel catfish affected by visceral toxicosis of catfish. Since zebrafish are an important animal model for diverse biomedical and basic research, they are readily available and have defined genetic lines that facilitate reproducibility. This makes them attractive for use as an alternative bioassay organism. The utility of zebrafish as a bioassay model organism for BoNT was investigated. The 96 h median immobilizing doses of BoNT/A, BoNT/C, BoNT/E, and BoNT/F for adult male Tübingen strain zebrafish (0.32 g mean weight at 25 °C were 16.31, 124.6, 4.7, and 0.61 picograms (pg/fish, respectively. These findings support the use of the zebrafish-based bioassays for evaluating the presence of BoNT/A, BoNT/E, and BoNT/F. Evaluating the basis of the relatively high resistance of zebrafish to BoNT/C and the extreme sensitivity to BoNT/F may reveal unique functional patterns to the action of these neurotoxins.

  9. Structurally distinct polycyclic aromatic hydrocarbons induce differential transcriptional responses in developing zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Goodale, Britton C. [Department of Environmental and Molecular Toxicology, The Environmental Health Sciences Center, Oregon State University, Corvallis, OR (United States); Tilton, Susan C. [Computational Biology and Bioinformatics, Pacific Northwest National Laboratory (United States); Corvi, Margaret M.; Wilson, Glenn R. [Department of Environmental and Molecular Toxicology, The Environmental Health Sciences Center, Oregon State University, Corvallis, OR (United States); Janszen, Derek B. [Computational Biology and Bioinformatics, Pacific Northwest National Laboratory (United States); Anderson, Kim A. [Department of Environmental and Molecular Toxicology, The Environmental Health Sciences Center, Oregon State University, Corvallis, OR (United States); Waters, Katrina M. [Computational Biology and Bioinformatics, Pacific Northwest National Laboratory (United States); Tanguay, Robert L., E-mail: tanguay.robert@oregonstate.edu [Department of Environmental and Molecular Toxicology, The Environmental Health Sciences Center, Oregon State University, Corvallis, OR (United States)

    2013-11-01

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in the environment as components of fossil fuels and by-products of combustion. These multi-ring chemicals differentially activate the aryl hydrocarbon receptor (AHR) in a structurally dependent manner, and induce toxicity via both AHR-dependent and -independent mechanisms. PAH exposure is known to induce developmental malformations in zebrafish embryos, and recent studies have shown cardiac toxicity induced by compounds with low AHR affinity. Unraveling the potentially diverse molecular mechanisms of PAH toxicity is essential for understanding the hazard posed by complex PAH mixtures present in the environment. We analyzed transcriptional responses to PAH exposure in zebrafish embryos exposed to benz(a)anthracene (BAA), dibenzothiophene (DBT) and pyrene (PYR) at concentrations that induced developmental malformations by 120 h post-fertilization (hpf). Whole genome microarray analysis of mRNA expression at 24 and 48 hpf identified genes that were differentially regulated over time and in response to the three PAH structures. PAH body burdens were analyzed at both time points using GC–MS, and demonstrated differences in PAH uptake into the embryos. This was important for discerning dose-related differences from those that represented unique molecular mechanisms. While BAA misregulated the least number of transcripts, it caused strong induction of cyp1a and other genes known to be downstream of the AHR, which were not induced by the other two PAHs. Analysis of functional roles of misregulated genes and their predicted regulatory transcription factors also distinguished the BAA response from regulatory networks disrupted by DBT and PYR exposure. These results indicate that systems approaches can be used to classify the toxicity of PAHs based on the networks perturbed following exposure, and may provide a path for unraveling the toxicity of complex PAH mixtures. - Highlights: • Defined global mRNA expression

  10. miR-430 regulates oriented cell division during neural tube development in zebrafish.

    Science.gov (United States)

    Takacs, Carter M; Giraldez, Antonio J

    2016-01-15

    MicroRNAs have emerged as critical regulators of gene expression. Originally shown to regulate developmental timing, microRNAs have since been implicated in a wide range of cellular functions including cell identity, migration and signaling. miRNA-430, the earliest expressed microRNA during zebrafish embryogenesis, is required to undergo morphogenesis and has previously been shown to regulate maternal mRNA clearance, Nodal signaling, and germ cell migration. The functions of miR-430 in brain morphogenesis, however, remain unclear. Herein we find that miR-430 instructs oriented cell divisions in the neural rod required for neural midline formation. Loss of miR-430 function results in mitotic spindle misorientation in the neural rod, failed neuroepithelial integration after cell division, and ectopic cell accumulation in the dorsal neural tube. We propose that miR-430, independently of canonical apicobasal and planar cell polarity (PCP) pathways, coordinates the stereotypical cell divisions that instruct neural tube morphogenesis.

  11. A transcription factor network controls cell migration and fate decisions in the developing zebrafish pineal complex

    Science.gov (United States)

    Clanton, Joshua A.; Dean, Benjamin J.; Gamse, Joshua T.

    2016-01-01

    The zebrafish pineal complex consists of four cell types (rod and cone photoreceptors, projection neurons and parapineal neurons) that are derived from a single pineal complex anlage. After specification, parapineal neurons migrate unilaterally away from the rest of the pineal complex whereas rods, cones and projection neurons are non-migratory. The transcription factor Tbx2b is important for both the correct number and migration of parapineal neurons. We find that two additional transcription factors, Flh and Nr2e3, negatively regulate parapineal formation. Flh induces non-migratory neuron fates and limits the extent of parapineal specification, in part by activation of Nr2e3 expression. Tbx2b is positively regulated by Flh, but opposes Flh action during specification of parapineal neurons. Loss of parapineal neuron specification in Tbx2b-deficient embryos can be partially rescued by loss of Nr2e3 or Flh function; however, parapineal migration absolutely requires Tbx2b activity. We conclude that cell specification and migration in the pineal complex are regulated by a network of at least three transcription factors. PMID:27317804

  12. Endosulfan affects health variables in adult zebrafish (Danio rerio) and induces alterations in larvae development

    DEFF Research Database (Denmark)

    Velasco-Santamaria, Y. M.; Handy, R. D.; Sloman, K. A.

    2011-01-01

    to controls. Both concentrations of endosulfan caused a 4.0 fold increase in Na(+)K(+)-ATPase activity compared to controls (ANOVA, p ANOVA, p ... alterations in the progeny of fish exposed to endosulfan were observed. Heart beat frequency was significantly lower in larvae from exposed adults to 0.16 mu g/L compared to the control (ANOVA, p

  13. Distinct functional and temporal requirements for zebrafish Hdac1 during neural crest-derived craniofacial and peripheral neuron development.

    Directory of Open Access Journals (Sweden)

    Myron S Ignatius

    Full Text Available The regulation of gene expression is accomplished by both genetic and epigenetic means and is required for the precise control of the development of the neural crest. In hdac1(b382 mutants, craniofacial cartilage development is defective in two distinct ways. First, fewer hoxb3a, dlx2 and dlx3-expressing posterior branchial arch precursors are specified and many of those that are consequently undergo apoptosis. Second, in contrast, normal numbers of progenitors are present in the anterior mandibular and hyoid arches, but chondrocyte precursors fail to terminally differentiate. In the peripheral nervous system, there is a disruption of enteric, DRG and sympathetic neuron differentiation in hdac1(b382 mutants compared to wildtype embryos. Specifically, enteric and DRG-precursors differentiate into neurons in the anterior gut and trunk respectively, while enteric and DRG neurons are rarely present in the posterior gut and tail. Sympathetic neuron precursors are specified in hdac1(b382 mutants and they undergo generic neuronal differentiation but fail to undergo noradrenergic differentiation. Using the HDAC inhibitor TSA, we isolated enzyme activity and temporal requirements for HDAC function that reproduce hdac1(b382 defects in craniofacial and sympathetic neuron development. Our study reveals distinct functional and temporal requirements for zebrafish hdac1 during neural crest-derived craniofacial and peripheral neuron development.

  14. The toxicity of chlorpyrifos on the early life stage of zebrafish: a survey on the endpoints at development, locomotor behavior, oxidative stress and immunotoxicity.

    Science.gov (United States)

    Jin, Yuanxiang; Liu, Zhenzhen; Peng, Tao; Fu, Zhengwei

    2015-04-01

    Chlorpyrifos (CPF) is one of the most toxic pesticides in aquatic ecosystem, but its toxicity mechanisms to fish are still not fully understood. This study examined the toxicity targets of CPF in early life stage of zebrafish on the endpoints at developmental toxicity, neurotoxicity, oxidative stress and immunotoxicity. Firstly, CPF exposure decreased the body length, inhibited the hatchability and heart rate, and resulted in a number of morphological abnormalities, primarily spinal deformities (SD) and pericardial edema (PE), in larval zebrafish. Secondly, the free swimming activities and the swimming behaviors of the larvae in response to the stimulation of light-to-dark photoperiod transition were significantly influenced by the exposure to 100 and 300 μg/L CPF. In addition, the activity of acetylcholinesterase (AChE) and the transcription of some genes related to neurotoxicity were also influenced by CPF exposure. Thirdly, CPF exposure induced oxidative stress in the larval zebrafish. The malondialdehyde (MDA) levels increased and the glutathione (GSH) contents decreased significantly in a concentration-dependent manner after the exposure to CPF for 96 hours post fertilization (hpf). CPF affected not only the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX) and glutathione S-transferase (GST), but also the transcriptional levels of their respective genes. Finally, the mRNA levels of the main cytokines including tumor necrosis factor α (Tnfα), interferon (Ifn), interleukin-1 beta (Il-1β), interleukin 6 (Il6), complement factor 4 (C4) in the larvae increased significantly after the exposure to 100 or 300 μg/L CPF for 96 hpf, suggesting that the innate immune system disturbed by CPF in larvae. Taken together, our results suggested that CPF had the potential to cause developmental toxicity, behavior alterations, oxidative stress and immunotoxicity in the larval zebrafish.

  15. Distribution of carnosine-like peptides in the nervous system of developing and adult zebrafish (Danio rerio) and embryonic effects of chronic carnosine exposure

    OpenAIRE

    Senut, Marie-Claude; Azher, Seema; Margolis, Frank L.; Patel, Kamakshi; Mousa, Ahmad; Majid, Arshad

    2009-01-01

    Carnosine-like peptides (carnosine-LP) are a family of histidine derivatives that are present in the nervous system of various species and that exhibit antioxidant, anti-matrix-metalloproteinase, anti-excitotoxic, and free-radical scavenging properties. They are also neuroprotective in animal models of cerebral ischemia. Although the function of carnosine-LP is largely unknown, the hypothesis has been advanced that they play a role in the developing nervous system. Since the zebrafish is an e...

  16. Melanophore migration and survival during zebrafish adult pigment stripe development require the immunoglobulin superfamily adhesion molecule Igsf11.

    Directory of Open Access Journals (Sweden)

    Dae Seok Eom

    Full Text Available The zebrafish adult pigment pattern has emerged as a useful model for understanding the development and evolution of adult form as well as pattern-forming mechanisms more generally. In this species, a series of horizontal melanophore stripes arises during the larval-to-adult transformation, but the genetic and cellular bases for stripe formation remain largely unknown. Here, we show that the seurat mutant phenotype, consisting of an irregular spotted pattern, arises from lesions in the gene encoding Immunoglobulin superfamily member 11 (Igsf11. We find that Igsf11 is expressed by melanophores and their precursors, and we demonstrate by cell transplantation and genetic rescue that igsf11 functions autonomously to this lineage in promoting adult stripe development. Further analyses of cell behaviors in vitro, in vivo, and in explant cultures ex vivo demonstrate that Igsf11 mediates adhesive interactions and that mutants for igsf11 exhibit defects in both the migration and survival of melanophores and their precursors. These findings identify the first in vivo requirements for igsf11 as well as the first instance of an immunoglobulin superfamily member functioning in pigment cell development and patterning. Our results provide new insights into adult pigment pattern morphogenesis and how cellular interactions mediate pattern formation.

  17. The critical role of protein arginine methyltransferase prmt8 in zebrafish embryonic and neural development is non-redundant with its paralogue prmt1.

    Directory of Open Access Journals (Sweden)

    Yu-ling Lin

    Full Text Available Protein arginine methyltransferase (PRMT 1 is the most conserved and widely distributed PRMT in eukaryotes. PRMT8 is a vertebrate-restricted paralogue of PRMT1 with an extra N-terminal sequence and brain-specific expression. We use zebrafish (Danio rerio as a vertebrate model to study PRMT8 function and putative redundancy with PRMT1. The transcripts of zebrafish prmt8 were specifically expressed in adult zebrafish brain and ubiquitously expressed from zygotic to early segmentation stage before the neuronal development. Whole-mount in situ hybridization revealed ubiquitous prmt8 expression pattern during early embryonic stages, similar to that of prmt1. Knockdown of prmt8 with antisense morpholino oligonucleotide phenocopied prmt1-knockdown, with convergence/extension defects at gastrulation. Other abnormalities observed later include short body axis, curled tails, small and malformed brain and eyes. Catalytically inactive prmt8 failed to complement the morphants, indicating the importance of methyltransferase activity. Full-length prmt8 but not prmt1 cRNA can rescue the phenotypic changes. Nevertheless, cRNA encoding Prmt1 fused with the N-terminus of Prmt8 can rescue the prmt8 morphants. In contrast, N-terminus- deleted but not full-length prmt8 cRNA can rescue the prmt1 morphants as efficiently as prmt1 cRNA. Abnormal brain morphologies illustrated with brain markers and loss of fluorescent neurons in a transgenic fish upon prmt8 knockdown confirm the critical roles of prmt8 in neural development. In summery, our study is the first report showing the expression and function of prmt8 in early zebrafish embryogenesis. Our results indicate that prmt8 may play important roles non-overlapping with prmt1 in embryonic and neural development depending on its specific N-terminus.

  18. Role of active contraction and tropomodulins in regulating actin filament length and sarcomere structure in developing zebrafish skeletal muscle

    Directory of Open Access Journals (Sweden)

    Lise eMazelet

    2016-03-01

    Full Text Available Whilst it is recognised that contraction plays an important part in maintaining the structure and function of mature skeletal muscle, its role during development remains undefined. In this study the role of movement in skeletal muscle maturation was investigated in intact zebrafish embryos using a combination of genetic and pharmacological approaches. An immotile mutant line (cacnb1ts25 which lacks functional voltage-gated calcium channels (dihydropyridine receptors in the muscle and pharmacological immobilisation of embryos with a reversible anaesthetic (Tricaine, allowed the study of paralysis (in mutants and anaesthetised fish and recovery of movement (reversal of anaesthetic treatment. The effect of paralysis in early embryos (aged between 17-24 hours post fertilisation, hpf on skeletal muscle structure at both myofibrillar and myofilament level was determined using both immunostaining with confocal microscopy and small angle X-ray diffraction. The consequences of paralysis and subsequent recovery on the localisation of the actin capping proteins Tropomodulin 1 &4 (Tmod in fish aged from 17hpf until 42hpf was also assessed. The functional consequences of early paralysis were investigated by examining the mechanical properties of the larval muscle. The length-force relationship, active and passive tension, was measured in immotile, recovered and control skeletal muscle at 5 and 7 day post fertilisation (dpf. Recovery of muscle function was also assessed by examining swimming patterns in recovered and control fish. Inhibition of the initial embryonic movements (up to 24 hpf resulted in an increase in myofibril length and a decrease in width followed by almost complete recovery in both moving and paralysed fish by 42hpf. In conclusion, myofibril organisation is regulated by a dual mechanism involving movement-dependent and movement-independent processes. The initial contractile event itself drives the localisation of Tmod1 to its sarcomeric

  19. Involvement of COX2–thromboxane pathway in TCDD-induced precardiac edema in developing zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Teraoka, Hiroki, E-mail: hteraoka@rakuno.ac.jp [School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu (Japan); Okuno, Yuki; Nijoukubo, Daisuke; Yamakoshi, Ayumi [School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu (Japan); Peterson, Richard E. [School of Pharmacy, University of Wisconsin, Madison, WI (United States); Stegeman, John J. [Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA (United States); Kitazawa, Takio; Hiraga, Takeo [School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu (Japan); Kubota, Akira [School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu (Japan); Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA (United States)

    2014-09-15

    Highlights: • We establish a new indicator of pericardial edema in developing zebrafish (precardiac edema). • Property of precardiac edema by TCDD is similar to that for conventional pericardial edema. • COX2b (but not COX2a)–thromboxane pathway is involved in precardiac edema by TCDD. - Abstract: The cardiovascular system is one of the most characteristic and important targets for developmental toxicity by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in fish larvae. However, knowledge of the mechanism of TCDD-induced edema after heterodimerization of aryl hydrocarbon receptor type 2 (AHR2) and AHR nuclear translocator type 1 (ARNT1) is still limited. In the present study, microscopic analysis with a high-speed camera revealed that TCDD increased the size of a small cavity between the heart and body wall in early eleutheroembryos, a toxic effect that we designate as precardiac edema. A concentration–response curve for precardiac edema at 2 days post fertilization (dpf) showed close similarity to that for conventional pericardial edema at 3 dpf. Precardiac edema caused by TCDD was reduced by morpholino knockdown of AHR2 and ARNT1, as well as by an antioxidant (ascorbic acid). A selective inhibitor of cyclooxygenase type 2 (COX2), NS398, also markedly inhibited TCDD-induced precardiac edema. A thromboxane receptor (TP) antagonist, ICI-192,605 almost abolished TCDD-induced precardiac edema and this effect was canceled by U46619, a TP agonist, which was not influential in the action of TCDD by itself. Knockdown of COX2b and thromboxane A synthase 1 (TBXS), but not COX2a, strongly reduced TCDD-induced precardiac edema. Knockdown of COX2b was without effect on mesencephalic circulation failure caused by TCDD. The edema by TCDD was also inhibited by knockdown of c-mpl, a thrombopoietin receptor necessary for thromobocyte production. Finally, induction of COX2b, but not COX2a, by TCDD was seen in eleutheroembryos at 3 dpf. These results suggest a role of the COX2b

  20. Interaction with LC8 is required for Pak1 nuclear import and is indispensable for zebrafish development.

    Directory of Open Access Journals (Sweden)

    Christine M Lightcap

    Full Text Available Pak1 (p21 activated kinase 1 is a serine/threonine kinase implicated in regulation of cell motility and survival and in malignant transformation of mammary epithelial cells. In addition, the dynein light chain, LC8, has been described to cooperate with Pak1 in malignant transformation of breast cancer cells. Pak1 itself may aid breast cancer development by phosphorylating nuclear proteins, including estrogen receptor alpha. Recently, we showed that the LC8 binding site on Pak1 is adjacent to the nuclear localization sequence (NLS required for Pak1 nuclear import. Here, we demonstrate that the LC8-Pak1 interaction is necessary for epidermal growth factor (EGF-induced nuclear import of Pak1 in MCF-7 cells, and that this event is contingent upon LC8-mediated Pak1 dimerization. In contrast, Pak2, which lacks an LC8 binding site but contains a nuclear localization sequence identical to that in Pak1, remains cytoplasmic upon EGF stimulation of MCF-7 cells. Furthermore, we show that severe developmental defects in zebrafish embryos caused by morpholino injections targeting Pak are partially rescued by co-injection of wild-type human Pak1, but not by co-injection of mutant Pak1 mRNA disrupting either the LC8 binding or the NLS site. Collectively, these results suggest that LC8 facilitates nuclear import of Pak1 and that this function is indispensable during vertebrate development.

  1. PIAS-like protein Zimp7 is required for the restriction of the zebrafish organizer and mesoderm development.

    Science.gov (United States)

    Moreno-Ayala, Roberto; Schnabel, Denhí; Salas-Vidal, Enrique; Lomelí, Hilda

    2015-07-01

    The Zmiz2 (Zimp7) protein and its homolog Zmiz1 (Zimp10) were initially identified in humans as androgen receptor co-activators. Sequence analysis revealed the presence of an SP-RING/Miz domain, which is highly conserved in members of the PIAS family and confers SUMO-conjugating activity. Zimp7 has been shown to interact with components of the Wnt/β-Catenin signaling pathway and with Brg1 and BAF57, components of the ATP-dependent mammalian SWI/SNF-like BAF chromatin-remodeling complexes. In this work, we analyze the role of zygotic Zimp7 in zebrafish development. We describe evidence indicating that Zimp7 is required for mesoderm development and dorsoventral patterning. Morpholino-mediated reduction of zygotic Zimp7 produced axial mesodermal defects that were preceded by up-regulation of organizer genes such as bozozok, goosecoid and floating head at the onset of gastrulation and by down-regulation of the ventral markers vox, vent and eve1 indicating loss of the ventrolateral mesoderm. Consistently, embryos overexpressing zimp7 RNA exhibited midline defects such as loss of forebrain and cyclopia accompanied by transcriptional changes directly opposite of those found in the morphants. In addition, the patterning of ventralized embryos produced by the overexpression of vox and vent was restored by a reduction of Zimp7 activity. Altogether, our findings indicate that Zimp7 is involved in transcriptional regulation of factors that are essential for patterning in the dorsoventral axis.

  2. Transcriptomic changes in zebrafish embryos and larvae following benzo[a]pyrene exposure

    Science.gov (United States)

    Benzo[a]pyrene (BaP) is an environmentally relevant carcinogenic and endocrine disrupting compound that causes immediate, long-term, and multigenerational health deficits in mammals and fish. Previously, we found that BaP alters DNA methylation patterns in developing zebrafish, which may affect gene...

  3. From zebrafish heart jogging genes to mouse and human orthologs: using Gene Ontology to investigate mammalian heart development. [v2; ref status: indexed, http://f1000r.es/2ys

    Directory of Open Access Journals (Sweden)

    Varsha K Khodiyar

    2014-02-01

    Full Text Available For the majority of organs in developing vertebrate embryos, left-right asymmetry is controlled by a ciliated region; the left-right organizer node in the mouse and human, and the Kuppfer’s vesicle in the zebrafish. In the zebrafish, laterality cues from the Kuppfer’s vesicle determine asymmetry in the developing heart, the direction of ‘heart jogging’ and the direction of ‘heart looping’.  ‘Heart jogging’ is the term given to the process by which the symmetrical zebrafish heart tube is displaced relative to the dorsal midline, with a leftward ‘jog’. Heart jogging is not considered to occur in mammals, although a leftward shift of the developing mouse caudal heart does occur prior to looping, which may be analogous to zebrafish heart jogging. Previous studies have characterized 30 genes involved in zebrafish heart jogging, the majority of which have well defined orthologs in mouse and human and many of these orthologs have been associated with early mammalian heart development.    We undertook manual curation of a specific set of genes associated with heart development and we describe the use of Gene Ontology term enrichment analyses to examine the cellular processes associated with heart jogging.  We found that the human, mouse and zebrafish ‘heart jogging orthologs’ are involved in similar organ developmental processes across the three species, such as heart, kidney and nervous system development, as well as more specific cellular processes such as cilium development and function. The results of these analyses are consistent with a role for cilia in the determination of left-right asymmetry of many internal organs, in addition to their known role in zebrafish heart jogging.    This study highlights the importance of model organisms in the study of human heart development, and emphasises both the conservation and divergence of developmental processes across vertebrates, as well as the limitations of this approach.

  4. From zebrafish heart jogging genes to mouse and human orthologs: using Gene Ontology to investigate mammalian heart development. [v1; ref status: indexed, http://f1000r.es/28b

    Directory of Open Access Journals (Sweden)

    Varsha K Khodiyar

    2013-11-01

    Full Text Available For the majority of organs in developing vertebrate embryos, left-right asymmetry is controlled by a ciliated region; the left-right organizer node in the mouse and human, and the Kuppfer’s vesicle in the zebrafish. In the zebrafish, laterality cues from the Kuppfer’s vesicle determine asymmetry in the developing heart, the direction of ‘heart jogging’ and the direction of ‘heart looping’.  ‘Heart jogging’ is the term given to the process by which the symmetrical zebrafish heart tube is displaced relative to the dorsal midline, with a leftward ‘jog’. Heart jogging is not considered to occur in mammals, although a leftward shift of the developing mouse caudal heart does occur prior to looping, which may be analogous to zebrafish heart jogging. Previous studies have characterized 30 genes involved in zebrafish heart jogging, the majority of which have well defined orthologs in mouse and human and many of these orthologs have been associated with early mammalian heart development.    We undertook manual curation of a specific set of genes associated with heart development and we describe the use of Gene Ontology term enrichment analyses to examine the cellular processes associated with heart jogging.  We found that the human, mouse and zebrafish ‘heart jogging orthologs’ are involved in similar organ developmental processes across the three species, such as heart, kidney and nervous system development, as well as more specific cellular processes such as cilium development and function. The results of these analyses are consistent with a role for cilia in the determination of left-right asymmetry of many internal organs, in addition to their known role in zebrafish heart jogging.    This study highlights the importance of model organisms in the study of human heart development, and emphasises both the conservation and divergence of developmental processes across vertebrates, as well as the limitations of this approach.

  5. Electroporation-based methods for in vivo, whole mount and primary culture analysis of zebrafish brain development

    Directory of Open Access Journals (Sweden)

    Jesuthasan Suresh

    2007-03-01

    Full Text Available Abstract Background Electroporation is a technique for the introduction of nucleic acids and other macromolecules into cells. In chick embryos it has been a particularly powerful technique for the spatial and temporal control of gene expression in developmental studies. Electroporation methods have also been reported for Xenopus, zebrafish, and mouse. Results We present a new protocol for zebrafish brain electroporation. Using a simple set-up with fixed spaced electrodes and microinjection equipment, it is possible to electroporate 50 to 100 embryos in 1 hour with no lethality and consistently high levels of transgene expression in numerous cells. Transfected cells in the zebrafish brain are amenable to in vivo time lapse imaging. Explants containing transfected neurons can be cultured for in vitro analysis. We also present a simple enzymatic method to isolate whole brains from fixed zebrafish for immunocytochemistry. Conclusion Building on previously described methods, we have optimized several parameters to allow for highly efficient unilateral or bilateral transgenesis of a large number of cells in the zebrafish brain. This method is simple and provides consistently high levels of transgenesis for large numbers of embryos.

  6. Spatial-temporal expressions of Crumbs and Nagie oko and their interdependence in zebrafish central nervous system during early development.

    Science.gov (United States)

    Zou, Jian; Wen, Yi; Yang, Xiaojun; Wei, Xiangyun

    2013-12-01

    A vast number of apicobasal polarity proteins play essential roles in the polarization and morphogenesis of the neuroepithelia. Crumbs (Crb) type I transmembrane cell-cell adhesion proteins are among these proteins. Five crb genes have been identified in zebrafish. However, their expressional and functional differences during early neural development remain to be fully elucidated. Here, we study the spatial-temporal expression patterns and functions of Crb1, Crb2a, and Crb2b in the central nervous system (CNS) during the neurulation period. We show that: 1, the optic vesicle and undifferentiated retinal neuroepithelium only express Crb2a; 2, Crb1 and Crb2a expressions overlap extensively in the undifferentiated neural tube epithelium; 3, Crb2b expression is the weakest of the three and is restricted to the ventral-most regions of the anterior CNS; and 4, Nok and Crb proteins require each other for their apical localization in neuroepithelium. The commencements of Crb1, Crb2a, and Crb2b expressions follow a spatial-temporal spread from anterior to posterior and from ventral to dorsal and lag behind that of adherens junction components, such as ZO-1 and actin bundles. Genetic and morpholino suppression analyses suggest that in regions where these Crb expressions overlap, they are functionally redundant in maintaining apicobasal polarity of the undifferentiated neuroepithelium.

  7. Zebrafish: modeling for herpes simplex virus infections.

    Science.gov (United States)

    Antoine, Thessicar Evadney; Jones, Kevin S; Dale, Rodney M; Shukla, Deepak; Tiwari, Vaibhav

    2014-02-01

    For many years, zebrafish have been the prototypical model for studies in developmental biology. In recent years, zebrafish has emerged as a powerful model system to study infectious diseases, including viral infections. Experiments conducted with herpes simplex virus type-1 in adult zebrafish or in embryo models are encouraging as they establish proof of concept with viral-host tropism and possible screening of antiviral compounds. In addition, the presence of human homologs of viral entry receptors in zebrafish such as 3-O sulfated heparan sulfate, nectins, and tumor necrosis factor receptor superfamily member 14-like receptor bring strong rationale for virologists to test their in vivo significance in viral entry in a zebrafish model and compare the structure-function basis of virus zebrafish receptor interaction for viral entry. On the other end, a zebrafish model is already being used for studying inflammation and angiogenesis, with or without genetic manipulations, and therefore can be exploited to study viral infection-associated pathologies. The major advantage with zebrafish is low cost, easy breeding and maintenance, rapid lifecycle, and a transparent nature, which allows visualizing dissemination of fluorescently labeled virus infection in real time either at a localized region or the whole body. Further, the availability of multiple transgenic lines that express fluorescently tagged immune cells for in vivo imaging of virus infected animals is extremely attractive. In addition, a fully developed immune system and potential for receptor-specific knockouts further advocate the use of zebrafish as a new tool to study viral infections. In this review, we focus on expanding the potential of zebrafish model system in understanding human infectious diseases and future benefits.

  8. Ethylnitrosourea induces neoplasia in zebrafish (Danio rerio).

    Science.gov (United States)

    Beckwith, L G; Moore, J L; Tsao-Wu, G S; Harshbarger, J C; Cheng, K C

    2000-03-01

    The zebrafish (Danio rerio) has been successfully used to discover hundreds of genes involved in development and organogenesis. To address the potential of zebrafish as a cancer model, it is important to determine the susceptibility of zebrafish to tumors. Germ line mutations are most commonly induced for zebrafish mutant screens by exposing adult male zebrafish to the alkylating agent, ethylnitrosourea (ENU). To determine whether ENU induces tumors, we compared the incidence of tumors in ENU-treated fish with untreated controls. Interestingly, 18 of 18 (100%) fish mutagenized with either 2.5 or 3.0 mM ENU developed epidermal papillomas, which numbered 1 to 22 per fish, within 1 year of treatment. The induced epidermal lesions included epidermal hyperplasia, flat papillomas (0.2 to 1.2 mm), and pedunculated papillomas (1.2 to 8 mm in greatest dimension), but no skin cancers. Angiogenesis was evident in papillomas larger than approximately 1 mm. All but two papillomas contained the three cell types (keratinocytes, club, and mucous cells) of normal zebrafish epidermis; histologic variants lacked either club cells or mucous cells. Two cavernous hemangiomas and a single malignant peripheral nerve sheath tumor were also found in the treated fish. None of five untreated controls developed tumors. These studies establish the feasibility of the zebrafish as an experimental model for the study of skin tumors. PMID:10744073

  9. Actions of Bisphenol A and Bisphenol S on the Reproductive Neuroendocrine System During Early Development in Zebrafish.

    Science.gov (United States)

    Qiu, Wenhui; Zhao, Yali; Yang, Ming; Farajzadeh, Matthew; Pan, Chenyuan; Wayne, Nancy L

    2016-02-01

    Bisphenol A (BPA) is a well-known environmental, endocrine-disrupting chemical, and bisphenol S (BPS) has been considered a safer alternative for BPA-free products. The present study aims to evaluate the impact of BPA and BPS on the reproductive neuroendocrine system during zebrafish embryonic and larval development and to explore potential mechanisms of action associated with estrogen receptor (ER), thyroid hormone receptor (THR), and enzyme aromatase (AROM) pathways. Environmentally relevant, low levels of BPA exposure during development led to advanced hatching time, increased numbers of GnRH3 neurons in both terminal nerve and hypothalamus, increased expression of reproduction-related genes (kiss1, kiss1r, gnrh3, lhβ, fshβ, and erα), and a marker for synaptic transmission (sv2). Low levels of BPS exposure led to similar effects: increased numbers of hypothalamic GnRH3 neurons and increased expression of kiss1, gnrh3, and erα. Antagonists of ER, THRs, and AROM blocked many of the effects of BPA and BPS on reproduction-related gene expression, providing evidence that those three pathways mediate the actions of BPA and BPS on the reproductive neuroendocrine system. This study demonstrates that alternatives to BPA used in the manufacture of BPA-free products are not necessarily safer. Furthermore, this is the first study to describe the impact of low-level BPA and BPS exposure on the Kiss/Kiss receptor system during development. It is also the first report of multiple cellular pathways (ERα, THRs, and AROM) mediating the effects of BPA and BPS during embryonic development in any species.

  10. Regulation of gonadal sex ratios and pubertal development by the thyroid endocrine system in zebrafish (Danio rerio)

    Science.gov (United States)

    Sharma, Prakash; Patino, Reynaldo

    2013-01-01

    We examined associations between thyroid condition, gonadal sex and pubertal development in zebrafish. Seventy-two-hour postfertilization larvae were reared in untreated medium or in the presence of goitrogens (sodium perchlorate, 0.82 mM; methimazole, 0.15 and 0.3 mM) or thyroxine (1 and 10 nM) for 30 days. Thyrocyte height, gonadal sex and gonadal development were histologically determined at 45 and 60 days postfertilization (dpf). Thyrocyte hypertrophy, an index of hypothyroidism, was observed at 45 and 60 dpf in perchlorate-treated but only at 45 dpf in methimazole-treated fish. Similarly, gonadal sex ratios were biased toward ovaries relative to control animals at 45 and 60 dpf in perchlorate-treated fish but only at 45 dpf in methimazole-treated fish. Gonadal sex ratios were biased toward testes at 45 and 60 dpf in thyroxine-treated fish. Spermatogenesis was delayed in testes from goitrogen-treated fish at 60 dpf relative to control values, but was unaffected in testes from thyroxine-treated individuals. Oogenesis seemed to be nonspecifically delayed in all treatments relative to control at 60 dpf. This study confirmed the previously reported association between hypothyroid condition and ovarian-skewed ratios, and hyperthyroid condition and testicular-skewed ratios, and also showed that male pubertal development is specifically delayed by experimental hypothyroidism. The simultaneous recovery from the hypothyroid and ovary-inducing effects of methimazole by 60 dpf (27 days post-treatment) suggests that the ovary-skewing effect of goitrogens is reversible when thyroid conditions return to basal levels before developmental commitment of gonadal sex. Conversely, the masculinizing effect of hyperthyroidism seems to be stable and perhaps permanent.

  11. Regulation of gonadal sex ratios and pubertal development by the thyroid endocrine system in zebrafish (Danio rerio).

    Science.gov (United States)

    Sharma, Prakash; Patiño, Reynaldo

    2013-04-01

    We examined associations between thyroid condition, gonadal sex and pubertal development in zebrafish. Seventy-two-hour postfertilization larvae were reared in untreated medium or in the presence of goitrogens (sodium perchlorate, 0.82 mM; methimazole, 0.15 and 0.3 mM) or thyroxine (1 and 10 nM) for 30 days. Thyrocyte height, gonadal sex and gonadal development were histologically determined at 45 and 60 days postfertilization (dpf). Thyrocyte hypertrophy, an index of hypothyroidism, was observed at 45 and 60 dpf in perchlorate-treated but only at 45 dpf in methimazole-treated fish. Similarly, gonadal sex ratios were biased toward ovaries relative to control animals at 45 and 60 dpf in perchlorate-treated fish but only at 45 dpf in methimazole-treated fish. Gonadal sex ratios were biased toward testes at 45 and 60 dpf in thyroxine-treated fish. Spermatogenesis was delayed in testes from goitrogen-treated fish at 60 dpf relative to control values, but was unaffected in testes from thyroxine-treated individuals. Oogenesis seemed to be nonspecifically delayed in all treatments relative to control at 60 dpf. This study confirmed the previously reported association between hypothyroid condition and ovarian-skewed ratios, and hyperthyroid condition and testicular-skewed ratios, and also showed that male pubertal development is specifically delayed by experimental hypothyroidism. The simultaneous recovery from the hypothyroid and ovary-inducing effects of methimazole by 60 dpf (27 days post-treatment) suggests that the ovary-skewing effect of goitrogens is reversible when thyroid conditions return to basal levels before developmental commitment of gonadal sex. Conversely, the masculinizing effect of hyperthyroidism seems to be stable and perhaps permanent.

  12. Live predators, robots, and computer-animated images elicit differential avoidance responses in zebrafish.

    Science.gov (United States)

    Ladu, Fabrizio; Bartolini, Tiziana; Panitz, Sarah G; Chiarotti, Flavia; Butail, Sachit; Macrì, Simone; Porfiri, Maurizio

    2015-06-01

    Emotional disturbances constitute a major health issue affecting a considerable portion of the population in western countries. In this context, animal models offer a relevant tool to address the underlying biological determinants and to screen novel therapeutic strategies. While rodents have traditionally constituted the species of choice, zebrafish are now becoming a viable alternative. As zebrafish gain momentum in biomedical sciences, considerable efforts are being devoted to developing high-throughput behavioral tests. Here, we present a comparative study of zebrafish behavioral response to fear-evoking stimuli offered via three alternative methodologies. Specifically, in a binary-choice test, we exposed zebrafish to an allopatric predator Astronotus ocellatus, presented in the form of a live subject, a robotic replica, and a computer-animated image. The robot's design and operation were inspired by the morphology and tail-beat motion of its live counterpart, thereby offering a consistent three-dimensional stimulus to focal fish. The computer-animated image was also designed after the live subject to replicate its appearance. We observed that differently from computer-animated images, both the live predator and its robotic replica elicited robust avoidance response in zebrafish. In addition, in response to the robot, zebrafish exhibited increased thrashing behavior, which is considered a valid indicator of fear. Finally, inter-individual response to a robotic stimulus is more consistent than that shown in response to live stimuli and animated images, thereby increasing experimental statistical power. Our study supports the view that robotic stimuli can constitute a promising experimental tool to elicit targeted behavioral responses in zebrafish. PMID:25734228

  13. Characterization of behavioral and endocrine effects of LSD on zebrafish.

    Science.gov (United States)

    Grossman, Leah; Utterback, Eli; Stewart, Adam; Gaikwad, Siddharth; Chung, Kyung Min; Suciu, Christopher; Wong, Keith; Elegante, Marco; Elkhayat, Salem; Tan, Julia; Gilder, Thomas; Wu, Nadine; Dileo, John; Cachat, Jonathan; Kalueff, Allan V

    2010-12-25

    Lysergic acid diethylamide (LSD) is a potent hallucinogenic drug that strongly affects animal and human behavior. Although adult zebrafish (Danio rerio) are emerging as a promising neurobehavioral model, the effects of LSD on zebrafish have not been investigated previously. Several behavioral paradigms (the novel tank, observation cylinder, light-dark box, open field, T-maze, social preference and shoaling tests), as well as modern video-tracking tools and whole-body cortisol assay were used to characterize the effects of acute LSD in zebrafish. While lower doses (5-100 microg/L) did not affect zebrafish behavior, 250 microg/L LSD increased top dwelling and reduced freezing in the novel tank and observation cylinder tests, also affecting spatiotemporal patterns of activity (as assessed by 3D reconstruction of zebrafish traces and ethograms). LSD evoked mild thigmotaxis in the open field test, increased light behavior in the light-dark test, reduced the number of arm entries and freezing in the T-maze and social preference test, without affecting social preference. In contrast, LSD affected zebrafish shoaling (increasing the inter-fish distance in a group), and elevated whole-body cortisol levels. Overall, our findings show sensitivity of zebrafish to LSD action, and support the use of zebrafish models to study hallucinogenic drugs of abuse.

  14. Developmental expression and organisation of fibrinogen genes in the zebrafish.

    Science.gov (United States)

    Fish, Richard J; Vorjohann, Silja; Béna, Frédérique; Fort, Alexandre; Neerman-Arbez, Marguerite

    2012-01-01

    The zebrafish is a model organism for studying vertebrate development and many human diseases. Orthologues of the majority of human coagulation factors are present in zebrafish, including fibrinogen. As a first step towards using zebrafish to model human fibrinogen disorders, we cloned the zebrafish fibrinogen cDNAs and made in situ hybridisations and quantitative reverse transcription-polymerase chain reactions (qRT-PCR) to detect zebrafish fibrinogen mRNAs. Prior to liver development or blood flow we detected zebrafish fibrinogen expression in the embryonic yolk syncytial layer and then in the early cells of the developing liver. While human fibrinogen is encoded by a three-gene, 50 kilobase (kb) cluster on chromosome 4 ( FGB-FGA-FGG ), recent genome assemblies showed that the zebrafish fgg gene appears distanced from fga and fgb , which we confirmed by in situ hybridisation. The zebrafish fibrinogen Bβ and γ protein chains are conserved at over 50% of amino acid positions, compared to the human polypeptides. The zebrafish Aα chain is less conserved and its C-terminal region is nearly 200 amino acids shorter than human Aα. We generated transgenic zebrafish which express a green fluorescent protein reporter gene under the control of a 1.6 kb regulatory region from zebrafish fgg . Transgenic embryos showed strong fluorescence in the developing liver, mimicking endogenous fibrinogen expression. This regulatory sequence can now be used for overexpression of transgenes in zebrafish hepatocytes. Our study is a proof-of-concept step towards using zebrafish to model human disease linked to fibrinogen gene mutations.

  15. The effect of methylmercury exposure on early central nervous system development in the zebrafish (Danio rerio) embryo.

    Science.gov (United States)

    Hassan, S A; Moussa, E A; Abbott, L C

    2012-09-01

    Much attention is focused on environmental contamination by heavy metals. The heavy metal mercury is found worldwide and is ranked number 3 on the Comprehensive Environmental Response, Compensation and Liability Act substance list. We examined the effect of low-level methylmercury exposure on central nervous system development of wild-type zebrafish embryos (ZFEs) of the AB strain because methylmercury is the most common form of mercury to which humans are exposed in the environment. ZFEs were exposed to nine different concentrations of methylmercury [0 (negative control), 5, 10, 50, 80, 100, 200, 500 and 1000 parts per billion (μg l(-1) )] starting at 6 h post-fertilization, which is the time the neural tube is first beginning to form. ZFEs were exposed to 2% ethanol as positive controls (100% embryonic death). ZFEs were assessed at 30, 54, 72 and 96 h post-fertilization for changes in embryonic development, mortality, time of hatching and morphological deformities. No abnormalities were observed in ZFEs exposed to 5 μg l(-1) methylmercury. The time of hatching from the chorion was delayed in ZFEs exposed to methylmercury concentrations of 50 μg l(-1) or higher. Significantly more ZFEs exposed to 0, 5 or 10 μg l(-1) methylmercury successfully completed hatching compared with ZFEs exposed to 50 μg l(-1) or higher methylmercury. ZFEs exposed to more than 200 μg l(-1) methylmercury exhibited 100% embryonic mortality. The rate of cell proliferation within the neural tube was significantly decreased in embryos exposed to 10, 50 and 80 μg l(-1) methylmercury and there were no differences between these doses.

  16. Genetic Dissection of Dual Roles for the Transcription Factor six7 in Photoreceptor Development and Patterning in Zebrafish.

    Science.gov (United States)

    Sotolongo-Lopez, Mailin; Alvarez-Delfin, Karen; Saade, Carole J; Vera, Daniel L; Fadool, James M

    2016-04-01

    The visual system of a particular species is highly adapted to convey detailed ecological and behavioral information essential for survival. The consequences of structural mutations of opsins upon spectral sensitivity and environmental adaptation have been studied in great detail, but lacking is knowledge of the potential influence of alterations in gene regulatory networks upon the diversity of cone subtypes and the variation in the ratio of rods and cones observed in numerous diurnal and nocturnal species. Exploiting photoreceptor patterning in cone-dominated zebrafish, we uncovered two independent mechanisms by which the sine oculis homeobox homolog 7 (six7) regulates photoreceptor development. In a genetic screen, we isolated the lots-of-rods-junior (ljrp23ahub) mutation that resulted in an increased number and uniform distribution of rods in otherwise normal appearing larvae. Sequence analysis, genome editing using TALENs and knockdown strategies confirm ljrp23ahub as a hypomorphic allele of six7, a teleost orthologue of six3, with known roles in forebrain patterning and expression of opsins. Based on the lack of predicted protein-coding changes and a deletion of a conserved element upstream of the transcription start site, a cis-regulatory mutation is proposed as the basis of the reduced expression of six7 in ljrp23ahub. Comparison of the phenotypes of the hypomorphic and knock-out alleles provides evidence of two independent roles in photoreceptor development. EdU and PH3 labeling show that the increase in rod number is associated with extended mitosis of photoreceptor progenitors, and TUNEL suggests that the lack of green-sensitive cones is the result of cell death of the cone precursor. These data add six7 to the small but growing list of essential genes for specification and patterning of photoreceptors in non-mammalian vertebrates, and highlight alterations in transcriptional regulation as a potential source of photoreceptor variation across species

  17. Effects of 4-methylbenzylidene camphor (4-MBC) on neuronal and muscular development in zebrafish (Danio rerio) embryos.

    Science.gov (United States)

    Li, Vincent Wai Tsun; Tsui, Mei Po Mirabelle; Chen, Xueping; Hui, Michelle Nga Yu; Jin, Ling; Lam, Raymond H W; Yu, Richard Man Kit; Murphy, Margaret B; Cheng, Jinping; Lam, Paul Kwan Sing; Cheng, Shuk Han

    2016-05-01

    The negative effects of overexposure to ultraviolet (UV) radiation in humans, including sunburn and light-induced cellular injury, are of increasing public concern. 4-Methylbenzylidene camphor (4-MBC), an organic chemical UV filter, is an active ingredient in sunscreen products. To date, little information is available about its neurotoxicity during early vertebrate development. Zebrafish embryos were exposed to various concentrations of 4-MBC in embryo medium for 3 days. In this study, a high concentration of 4-MBC, which is not being expected at the current environmental concentrations in the environment, was used for the purpose of phenotypic screening. Embryos exposed to 15 μM of 4-MBC displayed abnormal axial curvature and exhibited impaired motility. Exposure effects were found to be greatest during the segmentation period, when somite formation and innervation occur. Immunostaining of the muscle and axon markers F59, znp1, and zn5 revealed that 4-MBC exposure leads to a disorganized pattern of slow muscle fibers and axon pathfinding errors during the innervation of both primary and secondary motor neurons. Our results also showed reduction in AChE activity upon 4-MBC exposure both in vivo in the embryos (15 μM) and in vitro in mammalian Neuro-2A cells (0.1 μM), providing a possible mechanism for 4-MBC-induced muscular and neuronal defects. Taken together, our results have shown that 4-MBC is a teratogen and influences muscular and neuronal development, which may result in developmental defects. PMID:26888529

  18. Analysis of mutants from a genetic screening reveals the control of intestine and liver development by many common genes in zebrafish.

    Science.gov (United States)

    Jiang, Faming; Chen, Jiehui; Ma, Xirui; Huang, Chao; Zhu, Shicheng; Wang, Fei; Li, Li; Luo, Lingfei; Ruan, Hua; Huang, Honghui

    2015-05-01

    Both the intestine and liver develop from the endoderm, yet little is known how these two digestive organs share and differ in their developmental programs, at the molecular level. A classical forward genetic screen, with no gene bias, is an effective way to address this question by examining the defects of the intestine and liver in obtained mutants to assess mutated genes responsible for the development of either organ or both. We report here such a screen in zebrafish. ENU was used as the mutagen because of its high mutagenic efficiency and no site preference. Embryos were collected at 3.5 dpf for RNA whole mount in situ hybridization with a cocktail probe of the intestine marker ifabp and the liver marker lfabp to check phenotypes and determine their parental heterozygosis. A total of 52 F2 putative mutants were identified, and those with general developmental defects were aborted. To rule out non-inheritable phenotypes caused by high mutation background, F2 putative mutants were outcrossed with wild type fish and a re-screen in F3 generations was performed. After complementation tests between F3 mutants with similar phenotypes originating from the same F2 families, a total of 37 F3 mutant lines originated from 22 F2 families were identified after screening 78 mutagenized genomes. Classification of mutant phenotypes indicated that 31 out of the 37 mutants showed defects in both the intestine and liver. In addition, four "intestine specific mutants" and two "liver specific mutants" showed selectively more severe phenotype in the intestine and liver respectively. These results suggested that the intestine and liver share a substantial number of essential genes during both organs development in zebrafish. Further studies of the mutants are likely to shed more insights into the molecular basis of the digestive system development in the zebrafish and vertebrate. PMID:25824031

  19. Analysis of mutants from a genetic screening reveals the control of intestine and liver development by many common genes in zebrafish.

    Science.gov (United States)

    Jiang, Faming; Chen, Jiehui; Ma, Xirui; Huang, Chao; Zhu, Shicheng; Wang, Fei; Li, Li; Luo, Lingfei; Ruan, Hua; Huang, Honghui

    2015-05-01

    Both the intestine and liver develop from the endoderm, yet little is known how these two digestive organs share and differ in their developmental programs, at the molecular level. A classical forward genetic screen, with no gene bias, is an effective way to address this question by examining the defects of the intestine and liver in obtained mutants to assess mutated genes responsible for the development of either organ or both. We report here such a screen in zebrafish. ENU was used as the mutagen because of its high mutagenic efficiency and no site preference. Embryos were collected at 3.5 dpf for RNA whole mount in situ hybridization with a cocktail probe of the intestine marker ifabp and the liver marker lfabp to check phenotypes and determine their parental heterozygosis. A total of 52 F2 putative mutants were identified, and those with general developmental defects were aborted. To rule out non-inheritable phenotypes caused by high mutation background, F2 putative mutants were outcrossed with wild type fish and a re-screen in F3 generations was performed. After complementation tests between F3 mutants with similar phenotypes originating from the same F2 families, a total of 37 F3 mutant lines originated from 22 F2 families were identified after screening 78 mutagenized genomes. Classification of mutant phenotypes indicated that 31 out of the 37 mutants showed defects in both the intestine and liver. In addition, four "intestine specific mutants" and two "liver specific mutants" showed selectively more severe phenotype in the intestine and liver respectively. These results suggested that the intestine and liver share a substantial number of essential genes during both organs development in zebrafish. Further studies of the mutants are likely to shed more insights into the molecular basis of the digestive system development in the zebrafish and vertebrate.

  20. Detection of vitellogenin incorporation into zebrafish oocytes by FITC fluorescence

    Directory of Open Access Journals (Sweden)

    Yokoi Hayato

    2011-04-01

    Full Text Available Abstract Background Large volumes of lymph can be collected from the eye-sacs of bubble-eye goldfish. We attempted to induce vitellogenin (Vtg in the eye-sac lymph of bubble-eye goldfish and develop a method for visualizing Vtg incorporation by zebrafish oocytes using FITC-labeling. Methods Estrogen efficiently induced Vtg in the eye-sac lymph of goldfish. After FITC-labeled Vtg was prepared, it was injected into mature female zebrafish. Results Incorporation of FITC-labeled Vtg by zebrafish oocytes was detected in in vivo and in vitro experiments. The embryos obtained from zebrafish females injected with FITC-labeled Vtg emitted FITC fluorescence from the yolk sac and developed normally. Conclusion This method for achieving Vtg incorporation by zebrafish oocytes could be useful in experiments related to the development and endocrinology of zebrafish oocytes.

  1. Input and output constraints affecting irrigation development

    Science.gov (United States)

    Schramm, G.

    1981-05-01

    In many of the developing countries the expansion of irrigated agriculture is used as a major development tool for bringing about increases in agricultural output, rural economic growth and income distribution. Apart from constraints imposed by water availability, the major limitations considered to any acceleration of such programs are usually thought to be those of costs and financial resources. However, as is shown on the basis of empirical data drawn from Mexico, in reality the feasibility and effectiveness of such development programs is even more constrained by the lack of specialized physical and human factors on the input and market limitations on the output side. On the input side, the limited availability of complementary factors such as, for example, truly functioning credit systems for small-scale farmers or effective agricultural extension services impose long-term constraints on development. On the output side the limited availability, high risk, and relatively slow growth of markets for high-value crops sharply reduce the usually hoped-for and projected profitable crop mix that would warrant the frequently high costs of irrigation investments. Three conclusions are drawn: (1) Factors in limited supply have to be shadow-priced to reflect their high opportunity costs in alternative uses. (2) Re-allocation of financial resources from immediate construction of projects to longer-term increase in the supply of scarce, highly-trained manpower resources are necessary in order to optimize development over time. (3) Inclusion of high-value, high-income producing crops in the benefit-cost analysis of new projects is inappropriate if these crops could potentially be grown in already existing projects.

  2. The Roles of RNA Polymerase I and III Subunits Polr1c and Polr1d in Craniofacial Development and in Zebrafish Models of Treacher Collins Syndrome.

    Directory of Open Access Journals (Sweden)

    Kristin E Noack Watt

    2016-07-01

    Full Text Available Ribosome biogenesis is a global process required for growth and proliferation of all cells, yet perturbation of ribosome biogenesis during human development often leads to tissue-specific defects termed ribosomopathies. Transcription of the ribosomal RNAs (rRNAs by RNA polymerases (Pol I and III, is considered a rate limiting step of ribosome biogenesis and mutations in the genes coding for RNA Pol I and III subunits, POLR1C and POLR1D cause Treacher Collins syndrome, a rare congenital craniofacial disorder. Our understanding of the functions of individual RNA polymerase subunits, however, remains poor. We discovered that polr1c and polr1d are dynamically expressed during zebrafish embryonic development, particularly in craniofacial tissues. Consistent with this pattern of activity, polr1c and polr1d homozygous mutant zebrafish exhibit cartilage hypoplasia and cranioskeletal anomalies characteristic of humans with Treacher Collins syndrome. Mechanistically, we discovered that polr1c and polr1d loss-of-function results in deficient ribosome biogenesis, Tp53-dependent neuroepithelial cell death and a deficiency of migrating neural crest cells, which are the primary progenitors of the craniofacial skeleton. More importantly, we show that genetic inhibition of tp53 can suppress neuroepithelial cell death and ameliorate the skeletal anomalies in polr1c and polr1d mutants, providing a potential avenue to prevent the pathogenesis of Treacher Collins syndrome. Our work therefore has uncovered tissue-specific roles for polr1c and polr1d in rRNA transcription, ribosome biogenesis, and neural crest and craniofacial development during embryogenesis. Furthermore, we have established polr1c and polr1d mutant zebrafish as models of Treacher Collins syndrome together with a unifying mechanism underlying its pathogenesis and possible prevention.

  3. The Roles of RNA Polymerase I and III Subunits Polr1c and Polr1d in Craniofacial Development and in Zebrafish Models of Treacher Collins Syndrome.

    Science.gov (United States)

    Noack Watt, Kristin E; Achilleos, Annita; Neben, Cynthia L; Merrill, Amy E; Trainor, Paul A

    2016-07-01

    Ribosome biogenesis is a global process required for growth and proliferation of all cells, yet perturbation of ribosome biogenesis during human development often leads to tissue-specific defects termed ribosomopathies. Transcription of the ribosomal RNAs (rRNAs) by RNA polymerases (Pol) I and III, is considered a rate limiting step of ribosome biogenesis and mutations in the genes coding for RNA Pol I and III subunits, POLR1C and POLR1D cause Treacher Collins syndrome, a rare congenital craniofacial disorder. Our understanding of the functions of individual RNA polymerase subunits, however, remains poor. We discovered that polr1c and polr1d are dynamically expressed during zebrafish embryonic development, particularly in craniofacial tissues. Consistent with this pattern of activity, polr1c and polr1d homozygous mutant zebrafish exhibit cartilage hypoplasia and cranioskeletal anomalies characteristic of humans with Treacher Collins syndrome. Mechanistically, we discovered that polr1c and polr1d loss-of-function results in deficient ribosome biogenesis, Tp53-dependent neuroepithelial cell death and a deficiency of migrating neural crest cells, which are the primary progenitors of the craniofacial skeleton. More importantly, we show that genetic inhibition of tp53 can suppress neuroepithelial cell death and ameliorate the skeletal anomalies in polr1c and polr1d mutants, providing a potential avenue to prevent the pathogenesis of Treacher Collins syndrome. Our work therefore has uncovered tissue-specific roles for polr1c and polr1d in rRNA transcription, ribosome biogenesis, and neural crest and craniofacial development during embryogenesis. Furthermore, we have established polr1c and polr1d mutant zebrafish as models of Treacher Collins syndrome together with a unifying mechanism underlying its pathogenesis and possible prevention.

  4. Histocompatibility and Hematopoietic Transplantation in the Zebrafish

    Directory of Open Access Journals (Sweden)

    Jill L. O. de Jong

    2012-01-01

    Full Text Available The zebrafish has proven to be an excellent model for human disease, particularly hematopoietic diseases, since these fish make similar types of blood cells as humans and other mammals. The genetic program that regulates the development and differentiation of hematopoietic cells is highly conserved. Hematopoietic stem cells (HSCs are the source of all the blood cells needed by an organism during its lifetime. Identifying an HSC requires a functional assay, namely, a transplantation assay consisting of multilineage engraftment of a recipient and subsequent serial transplant recipients. In the past decade, several types of hematopoietic transplant assays have been developed in the zebrafish. An understanding of the major histocompatibility complex (MHC genes in the zebrafish has lagged behind transplantation experiments, limiting the ability to perform unbiased competitive transplantation assays. This paper summarizes the different hematopoietic transplantation experiments performed in the zebrafish, both with and without immunologic matching, and discusses future directions for this powerful experimental model of human blood diseases.

  5. Effect of dihydrofolate reductase gene knock-down on the expression of heart and neural crest derivatives expressed transcript 2 in zebrafish cardiac development

    Institute of Scientific and Technical Information of China (English)

    SUN Shu-na; GUI Yong-hao; WANG Yue-xiang; QIAN Lin-xi; JIANG Qiu; LIU Dong; SONG Hou-yan

    2007-01-01

    Background Folic acid is very important for embryonic development and dihydrofolate reductase is one of the key enzymes in the process of folic acid performing its biological function. Therefore, the dysfunction of dihydrofolate reductase can inhibit the function of folic acid and finally cause the developmental malformations. In this study, we observed the abnormal cardiac phenotypes in dihydrofolate reductase (DHFR) gene knock-down zebrafish embryos,investigated the effect of DHFR on the expression of heart and neural crest derivatives expressed transcript 2 (HAND2)and explored the possible mechanism of DHFR knock-down inducing zebrafish cardiac malformations.Methods Morpholino oligonucleotides were microinjected into fertilized eggs to knock down the functions of DHFR or HAND2. Full length of HAND2 mRNA which was transcribed in vitro was microinjected into fertilized eggs to overexpress HAND2. The cardiac morphologies, the heart rates and the ventricular shortening fraction were observed and recorded under the microscope at 48 hours post fertilization. Whole-mount in situ hybridization and real-time PCR were performed to detect HAND2 expression.Results DHFR or HAND2 knock-down caused the cardiac malformation in zebrafish. The expression of HAND2 was obviously reduced in DHFR knock-down embryos (P<0.05). Microinjecting HAND2 mRNA into fertilized eggs can induce HAND2 overexpression. HAND2 overexpression rescued the cardiac malformation phenotypes of DHFR knock-down embryos.Conclusions DHFR plays a crucial role in cardiac development. The down-regulation of HAND2 caused by DHFR knock-down is the possible mechanism of DHFR knock-down inducing the cardiac malformation.

  6. Effects of metal-bearing nanoparticles (Ag, Au, CdS, ZnO, SiO2) on developing zebrafish embryos

    Science.gov (United States)

    María Lacave, José; Retuerto, Ander; Vicario-Parés, Unai; Gilliland, Douglas; Oron, Miriam; Cajaraville, Miren P.; Orbea, Amaia

    2016-08-01

    Due to the increasing commercialization of consumer and industrial products containing nanoparticles (NPs), an increase in the introduction of these materials into the environment is expected. NP toxicity to aquatic organisms depends on multiple biotic and abiotic factors, resulting in an unlimited number of combinations impossible to test in practice. The zebrafish embryo model offers a useful screening tool to test and rank the toxicity of nanomaterials according to those diverse factors. This work aims to study the acute and sublethal toxicity of a set of metal-bearing NPs displaying different properties, in comparison to that of the ionic and bulk forms of the metals, in order to establish a toxicity ranking. Soluble NPs (Ag, CdS and ZnO) showed the highest acute and sublethal toxicity, with LC50 values as low as 0.529 mg Ag l-1 for Ag NPs of 20 nm, and a significant increase in the malformation prevalence in embryos exposed to 0.1 mg Cd l-1 of CdS NPs of ˜4 nm. For insoluble NPs, like SiO2 NPs, acute effects were not observed during early embryo development due to the protective effect of the chorion. But effects on larvae could be expected, since deposition of fluorescent SiO2 NPs over the gill lamella and excretion through the intestine were observed after hatching. In other cases, such as for gold NPs, the toxicity could be attributed to the presence of additives (sodium citrate) in the NP suspension, as they displayed a similar toxicity when tested separately. Overall, the results indicated that toxicity to zebrafish embryos depends primarily on the chemical composition and, thus, the solubility of the NPs. Other characteristics, such as size, played a secondary role. This was supported by the observation that ionic forms of the metals were always more toxic than the nano forms, and bulk forms were the least toxic to the developing zebrafish embryos.

  7. Effects of metal-bearing nanoparticles (Ag, Au, CdS, ZnO, SiO2) on developing zebrafish embryos.

    Science.gov (United States)

    Lacave, José María; Retuerto, Ander; Vicario-Parés, Unai; Gilliland, Douglas; Oron, Miriam; Cajaraville, Miren P; Orbea, Amaia

    2016-08-12

    Due to the increasing commercialization of consumer and industrial products containing nanoparticles (NPs), an increase in the introduction of these materials into the environment is expected. NP toxicity to aquatic organisms depends on multiple biotic and abiotic factors, resulting in an unlimited number of combinations impossible to test in practice. The zebrafish embryo model offers a useful screening tool to test and rank the toxicity of nanomaterials according to those diverse factors. This work aims to study the acute and sublethal toxicity of a set of metal-bearing NPs displaying different properties, in comparison to that of the ionic and bulk forms of the metals, in order to establish a toxicity ranking. Soluble NPs (Ag, CdS and ZnO) showed the highest acute and sublethal toxicity, with LC50 values as low as 0.529 mg Ag l(-1) for Ag NPs of 20 nm, and a significant increase in the malformation prevalence in embryos exposed to 0.1 mg Cd l(-1) of CdS NPs of ∼4 nm. For insoluble NPs, like SiO2 NPs, acute effects were not observed during early embryo development due to the protective effect of the chorion. But effects on larvae could be expected, since deposition of fluorescent SiO2 NPs over the gill lamella and excretion through the intestine were observed after hatching. In other cases, such as for gold NPs, the toxicity could be attributed to the presence of additives (sodium citrate) in the NP suspension, as they displayed a similar toxicity when tested separately. Overall, the results indicated that toxicity to zebrafish embryos depends primarily on the chemical composition and, thus, the solubility of the NPs. Other characteristics, such as size, played a secondary role. This was supported by the observation that ionic forms of the metals were always more toxic than the nano forms, and bulk forms were the least toxic to the developing zebrafish embryos. PMID:27363512

  8. Ahr2-dependence of PCB126 effects on the swim bladder in relation to expression of CYP1 and cox-2 genes in developing zebrafish

    International Nuclear Information System (INIS)

    The teleost swim bladder is assumed a homolog of the tetrapod lung. Both swim bladder and lung are developmental targets of persistent aryl hydrocarbon receptor (AHR) agonists; in zebrafish (Danio rerio) the swim bladder fails to inflate with exposure to 3,3′,4,4′,5-pentachlorobiphenyl (PCB126). The mechanism for this effect is unknown, but studies have suggested roles of cytochrome P450 1 (CYP1) and cyclooxygenase 2 (Cox-2) in some Ahr-mediated developmental effects in zebrafish. We determined relationships between swim bladder inflation and CYP1 and Cox-2 mRNA expression in PCB126-exposed zebrafish embryos. We also examined effects on β-catenin dependent transcription, histological effects, and Ahr2 dependence of the effect of PCB126 on swim bladder using morpholinos targeting ahr2. One-day-old embryos were exposed to waterborne PCB126 or carrier (DMSO) for 24 h and then held in clean water until day 4, a normal time for swim bladder inflation. The effects of PCB126 were concentration-dependent with EC50 values of 1.4 to 2.0 nM for induction of the CYP1s, 3.7 and 5.1 nM (or higher) for cox-2a and cox-2b induction, and 2.5 nM for inhibition of swim bladder inflation. Histological defects included a compaction of the developing bladder. Ahr2-morpholino treatment rescued the effect of PCB126 (5 nM) on swim bladder inflation and blocked induction of CYP1A, cox-2a, and cox-2b. With 2 nM PCB126 approximately 30% of eleutheroembryos failed to inflate the swim bladder, but there was no difference in CYP1 or cox-2 mRNA expression between those embryos and embryos showing inflated swim bladder. Our results indicate that PCB126 blocks swim bladder inflation via an Ahr2-mediated mechanism. This mechanism seems independent of CYP1 or cox-2 mRNA induction but may involve abnormal development of swim bladder cells. -- Highlights: ► PCB126 caused cellular changes in the developing swim bladder. ► Swim bladder inflation was not related to expression of CYP1 or cox-2.

  9. Ahr2-dependence of PCB126 effects on the swim bladder in relation to expression of CYP1 and cox-2 genes in developing zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Jönsson, Maria E., E-mail: maria.jonsson@ebc.uu.se [Dept. of Environmental Toxicology, Evolutionary Biology, Centre, Uppsala University, Norbyvägen 18A, 752 36 Uppsala (Sweden); Biology Department, Redfield 3-42 MS 32, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543 (United States); Kubota, Akira, E-mail: akubota@whoi.edu [Biology Department, Redfield 3-42 MS 32, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543 (United States); Timme-Laragy, Alicia R., E-mail: atimmelaragy@whoi.edu [Biology Department, Redfield 3-42 MS 32, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543 (United States); Division of Environmental Health, Department of Public Health, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, 01003 (United States); Woodin, Bruce, E-mail: bwoodin@whoi.edu [Biology Department, Redfield 3-42 MS 32, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543 (United States); Stegeman, John J., E-mail: jstegeman@whoi.edu [Biology Department, Redfield 3-42 MS 32, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543 (United States)

    2012-12-01

    The teleost swim bladder is assumed a homolog of the tetrapod lung. Both swim bladder and lung are developmental targets of persistent aryl hydrocarbon receptor (AHR) agonists; in zebrafish (Danio rerio) the swim bladder fails to inflate with exposure to 3,3′,4,4′,5-pentachlorobiphenyl (PCB126). The mechanism for this effect is unknown, but studies have suggested roles of cytochrome P450 1 (CYP1) and cyclooxygenase 2 (Cox-2) in some Ahr-mediated developmental effects in zebrafish. We determined relationships between swim bladder inflation and CYP1 and Cox-2 mRNA expression in PCB126-exposed zebrafish embryos. We also examined effects on β-catenin dependent transcription, histological effects, and Ahr2 dependence of the effect of PCB126 on swim bladder using morpholinos targeting ahr2. One-day-old embryos were exposed to waterborne PCB126 or carrier (DMSO) for 24 h and then held in clean water until day 4, a normal time for swim bladder inflation. The effects of PCB126 were concentration-dependent with EC{sub 50} values of 1.4 to 2.0 nM for induction of the CYP1s, 3.7 and 5.1 nM (or higher) for cox-2a and cox-2b induction, and 2.5 nM for inhibition of swim bladder inflation. Histological defects included a compaction of the developing bladder. Ahr2-morpholino treatment rescued the effect of PCB126 (5 nM) on swim bladder inflation and blocked induction of CYP1A, cox-2a, and cox-2b. With 2 nM PCB126 approximately 30% of eleutheroembryos failed to inflate the swim bladder, but there was no difference in CYP1 or cox-2 mRNA expression between those embryos and embryos showing inflated swim bladder. Our results indicate that PCB126 blocks swim bladder inflation via an Ahr2-mediated mechanism. This mechanism seems independent of CYP1 or cox-2 mRNA induction but may involve abnormal development of swim bladder cells. -- Highlights: ► PCB126 caused cellular changes in the developing swim bladder. ► Swim bladder inflation was not related to expression of CYP1 or cox

  10. β-Amyloid precursor protein-b is essential for Mauthner cell development in the zebrafish in a Notch-dependent manner.

    Science.gov (United States)

    Banote, Rakesh Kumar; Edling, Malin; Eliassen, Fredrik; Kettunen, Petronella; Zetterberg, Henrik; Abramsson, Alexandra

    2016-05-01

    Amyloid precursor protein (APP) is a transmembrane glycoprotein that has been the subject of intense research because of its implication in Alzheimer's disease. However, the physiological function of APP in the development and maintenance of the central nervous system remains largely unknown. We have previously shown that the APP homologue in zebrafish (Danio rerio), Appb, is required for motor neuron patterning and formation. Here we study the function of Appb during neurogenesis in the zebrafish hindbrain. Partial knockdown of Appb using antisense morpholino oligonucleotides blocked the formation of the Mauthner neurons, uni- or bilaterally, with an aberrant behavior as a consequence of this cellular change. The Appb morphants had decreased neurogenesis, increased notch signaling and notch1a expression at the expense of deltaA/D expression. The Mauthner cell development could be restored either by a general decrease in Notch signaling through γ-secretase inhibition or by a partial knock down of Notch1a. Together, this demonstrates the importance of Appb in neurogenesis and for the first time shows the essential requirement of Appb in the formation of a specific cell type, the Mauthner cell, in the hindbrain during development. Our results suggest that Appb-regulated neurogenesis is mediated through balancing the Notch1a signaling pathway and provide new insights into the development of the Mauthner cell.

  11. Polystyrene nanoparticles affect Xenopus laevis development

    Energy Technology Data Exchange (ETDEWEB)

    Tussellino, Margherita; Ronca, Raffaele [University of Naples Federico II, Department of Biology (Italy); Formiggini, Fabio [Italian Institute of Technology, Center for Advanced Biomaterials for Health Care IIT@CRIB (Italy); Marco, Nadia De [University of Naples Federico II, Department of Biology (Italy); Fusco, Sabato; Netti, Paolo Antonio [Italian Institute of Technology, Center for Advanced Biomaterials for Health Care IIT@CRIB (Italy); Carotenuto, Rosa, E-mail: rosa.carotenuto@unina.it [University of Naples Federico II, Department of Biology (Italy)

    2015-02-15

    Exposing living organisms to nanoparticulates is potentially hazardous, in particular when it takes place during embryogenesis. In this investigation, we have studied the effects of 50-nm-uncoated polystyrene nanoparticles (PSNPs) as a model to investigate the suitability of their possible future employments. We have used the standardized Frog Embryo Teratogenesis Assay-Xenopus test during the early stages of larval development of Xenopus laevis, and we have employed either contact exposure or microinjections. We found that the embryos mortality rate is dose dependent and that the survived embryos showed high percentage of malformations. They display disorders in pigmentation distribution, malformations of the head, gut and tail, edema in the anterior ventral region, and a shorter body length compared with sibling untreated embryos. Moreover, these embryos grow more slowly than the untreated embryos. Expressions of the mesoderm markers, bra (T-box Brachyury gene), myod1 (myogenic differentiation1), and of neural crest marker sox9 (sex SRY (determining region Y-box 9) transcription factor sox9), are modified. Confocal microscopy showed that the nanoparticles are localized in the cytoplasm, in the nucleus, and in the periphery of the digestive gut cells. Our data suggest that PSNPs are toxic and show a potential teratogenic effect for Xenopus larvae. We hypothesize that these effects may be due either to the amount of NPs that penetrate into the cells and/or to the “corona” effect caused by the interaction of PSNPs with cytoplasm components. The three endpoints of our study, i.e., mortality, malformations, and growth inhibition, suggest that the tests we used may be a powerful and flexible bioassay in evaluating pollutants in aquatic embryos.

  12. Transcriptional analysis of endocrine disruption using zebrafish and massively parallel sequencing.

    Science.gov (United States)

    Baker, Michael E; Hardiman, Gary

    2014-06-01

    Endocrine-disrupting chemicals (EDCs), including plasticizers, pesticides, detergents, and pharmaceuticals, affect a variety of hormone-regulated physiological pathways in humans and wildlife. Many EDCs are lipophilic molecules and bind to hydrophobic pockets in steroid receptors, such as the estrogen receptor and androgen receptor, which are important in vertebrate reproduction and development. Indeed, health effects attributed to EDCs include reproductive dysfunction (e.g. reduced fertility, reproductive tract abnormalities, and skewed male:female sex ratios in fish), early puberty, various cancers, and obesity. A major concern is the effects of exposure to low concentrations of endocrine disruptors in utero and post partum, which may increase the incidence of cancer and diabetes in adults. EDCs affect transcription of hundreds and even thousands of genes, which has created the need for new tools to monitor the global effects of EDCs. The emergence of massive parallel sequencing for investigating gene transcription provides a sensitive tool for monitoring the effects of EDCs on humans and other vertebrates, as well as elucidating the mechanism of action of EDCs. Zebrafish conserve many developmental pathways found in humans, which makes zebrafish a valuable model system for studying EDCs, especially on early organ development because their embryos are translucent. In this article, we review recent advances in massive parallel sequencing approaches with a focus on zebrafish. We make the case that zebrafish exposed to EDCs at different stages of development can provide important insights on EDC effects on human health. PMID:24850832

  13. Using the Zebrafish Lateral Line to Screen for Ototoxicity

    OpenAIRE

    Chiu, Lynn L.; Cunningham, Lisa L.; Raible, David W.; Rubel, Edwin W; Ou, Henry C.

    2008-01-01

    The zebrafish is a valuable model for studying hair cell development, structure, genetics, and behavior. Zebrafish and other aquatic vertebrates have hair cells on their body surface organized into a sensory system called the lateral line. These hair cells are highly accessible and easily visualized using fluorescent dyes. Morphological and functional similarities to mammalian hair cells of the inner ear make the zebrafish a powerful preparation for studying hair cell toxicity. The ototoxic p...

  14. Immediate and long-term consequences of vascular toxicity during zebrafish development

    Science.gov (United States)

    Proper formation of the vascular system is necessary for embryogenesis, and chemical disruption of vascular development may be a key event driving developmental toxicity. In order to test the effect of environmental chemicals on this critical process, we developed a quantitative ...

  15. Knockout of RP2 decreases GRK1 and rod transducin subunits and leads to photoreceptor degeneration in zebrafish.

    Science.gov (United States)

    Liu, Fei; Chen, Jiaxiang; Yu, Shanshan; Raghupathy, Rakesh Kotapati; Liu, Xiliang; Qin, Yayun; Li, Chang; Huang, Mi; Liao, Shengjie; Wang, Jiuxiang; Zou, Jian; Shu, Xinhua; Tang, Zhaohui; Liu, Mugen

    2015-08-15

    Retinitis pigmentosa (RP) affects about 1.8 million individuals worldwide. X-linked retinitis pigmentosa (XLRP) is one of the most severe forms of RP. Nearly 85% of XLRP cases are caused by mutations in the X-linked retinitis pigmentosa 2 (RP2) and RPGR. RP2 has been considered to be a GTPase activator protein for ARL3 and to play a role in the traffic of ciliary proteins. The mechanism of how RP2 mutations cause RP is still unclear. In this study, we generated an RP2 knockout zebrafish line using transcription activator-like effector nuclease technology. Progressive retinal degeneration could be observed in the mutant zebrafish. The degeneration of rods' outer segments (OSs) is predominant, followed by the degeneration of cones' OS. These phenotypes are similar to the characteristics of RP2 patients, and also partly consistent with the phenotypes of RP2 knockout mice and morpholino-mediated RP2 knockdown zebrafish. For the first time, we found RP2 deletion leads to decreased protein levels and abnormal retinal localizations of GRK1 and rod transducin subunits (GNAT1 and GNB1) in zebrafish. Furthermore, the distribution of the total farnesylated proteins in zebrafish retina is also affected by RP2 ablation. These molecular alterations observed in the RP2 knockout zebrafish might probably be responsible for the gradual loss of the photoreceptors' OSs. Our work identified the progression of retinal degeneration in RP2 knockout zebrafish, provided a foundation for revealing the pathogenesis of RP caused by RP2 mutations, and would help to develop potential therapeutics against RP in further studies. PMID:26034134

  16. Dynamic cell rearrangements shape the cranial vascular network of developing Zebrafish embryos

    OpenAIRE

    Lenard, Anna

    2013-01-01

    To form the complex network of endothelial tubes making up the vasculature, a number of vessels have to interact and connect to each other during development. This involves the transformation of blunt-ended angiogenic sprouts into interconnected functional tubes, a process called vessel fusion or anastomosis. While much is known about vessel sprouting, little is known about vessel fusion at the cellular and molecular levels. Most of the vessels in the developing vertebrate embryo form in the ...

  17. Gene Duplication of the zebrafish kit ligand and partitioning of melanocyte development functions to kit ligand a.

    Directory of Open Access Journals (Sweden)

    Keith A Hultman

    2007-01-01

    Full Text Available The retention of particular genes after the whole genome duplication in zebrafish has given insights into how genes may evolve through partitioning of ancestral functions. We examine the partitioning of expression patterns and functions of two zebrafish kit ligands, kit ligand a (kitla and kit ligand b (kitlb, and discuss their possible coevolution with the duplicated zebrafish kit receptors (kita and kitb. In situ hybridizations show that kitla mRNA is expressed in the trunk adjacent to the notochord in the middle of each somite during stages of melanocyte migration and later expressed in the skin, when the receptor is required for melanocyte survival. kitla is also expressed in other regions complementary to kita receptor expression, including the pineal gland, tail bud, and ear. In contrast, kitlb mRNA is expressed in brain ventricles, ear, and cardinal vein plexus, in regions generally not complementary to either zebrafish kit receptor ortholog. However, like kitla, kitlb is expressed in the skin during stages consistent with melanocyte survival. Thus, it appears that kita and kitla have maintained congruent expression patterns, while kitb and kitlb have evolved divergent expression patterns. We demonstrate the interaction of kita and kitla by morpholino knockdown analysis. kitla morphants, but not kitlb morphants, phenocopy the null allele of kita, with defects for both melanocyte migration and survival. Furthermore, kitla morpholino, but not kitlb morpholino, interacts genetically with a sensitized allele of kita, confirming that kitla is the functional ligand to kita. Last, we examine kitla overexpression in embryos, which results in hyperpigmentation caused by an increase in the number and size of melanocytes. This hyperpigmentation is dependent on kita function. We conclude that following genome duplication, kita and kitla have maintained their receptor-ligand relationship, coevolved complementary expression patterns, and that

  18. Immobilization of Dystrophin and Laminin α2-Chain Deficient Zebrafish Larvae In Vivo Prevents the Development of Muscular Dystrophy

    OpenAIRE

    Mei Li; Anders Arner

    2015-01-01

    Muscular dystrophies are often caused by genetic alterations in the dystrophin-dystroglycan complex or its extracellular ligands. These structures are associated with the cell membrane and provide mechanical links between the cytoskeleton and the matrix. Mechanical stress is considered a pathological mechanism and muscle immobilization has been shown to be beneficial in some mouse models of muscular dystrophy. The zebrafish enables novel and less complex models to examine the effects of exten...

  19. Teratogenicity of Ochratoxin A and the Degradation Product, Ochratoxin α, in the Zebrafish (Danio rerio) Embryo Model of Vertebrate Development

    OpenAIRE

    Mehreen Haq; Nelson Gonzalez; Keenan Mintz; Asha Jaja-Chimedza; Christopher Lawrence De Jesus; Christina Lydon; Welch, Aaron Z.; Berry, John P.

    2016-01-01

    Ochratoxins, and particularly ochratoxin A (OTA), are toxic fungal-derived contaminants of food and other agricultural products. Growing evidence supports the degradation of OTA by chemical, enzymatic and/or microbial means as a potential approach to remove this mycotoxin from food products. In particular, hydrolysis of OTA to ochratoxin α (OTα) and phenylalanine is the presumptive product of degradation in most cases. In the current study, we employed the zebrafish (Danio rerio) embryo, as a...

  20. Zebrafish Models for Human Acute Organophosphorus Poisoning.

    Science.gov (United States)

    Faria, Melissa; Garcia-Reyero, Natàlia; Padrós, Francesc; Babin, Patrick J; Sebastián, David; Cachot, Jérôme; Prats, Eva; Arick Ii, Mark; Rial, Eduardo; Knoll-Gellida, Anja; Mathieu, Guilaine; Le Bihanic, Florane; Escalon, B Lynn; Zorzano, Antonio; Soares, Amadeu M V M; Raldúa, Demetrio

    2015-10-22

    Terrorist use of organophosphorus-based nerve agents and toxic industrial chemicals against civilian populations constitutes a real threat, as demonstrated by the terrorist attacks in Japan in the 1990 s or, even more recently, in the Syrian civil war. Thus, development of more effective countermeasures against acute organophosphorus poisoning is urgently needed. Here, we have generated and validated zebrafish models for mild, moderate and severe acute organophosphorus poisoning by exposing zebrafish larvae to different concentrations of the prototypic organophosphorus compound chlorpyrifos-oxon. Our results show that zebrafish models mimic most of the pathophysiological mechanisms behind this toxidrome in humans, including acetylcholinesterase inhibition, N-methyl-D-aspartate receptor activation, and calcium dysregulation as well as inflammatory and immune responses. The suitability of the zebrafish larvae to in vivo high-throughput screenings of small molecule libraries makes these models a valuable tool for identifying new drugs for multifunctional drug therapy against acute organophosphorus poisoning.

  1. Development of utricular otoliths, but not saccular otoliths, is necessary for vestibular function and survival in zebrafish

    Science.gov (United States)

    Riley, B. B.; Moorman, S. J.

    2000-01-01

    We have been studying the consequences of embryonic vestibular dysfunction caused by the monolith (mnl) mutation in zebrafish. mnl is a dominant mutation that specifically inhibits formation of utricular otoliths. However, briefly immobilizing mnl/mnl embryos in agarose with the otic vesicle orientated at certain angles selectively induces or prevents formation of utricular and/or saccular otoliths. With this noninvasive technique, we generated six phenotypic classes of mnl/mnl mutants, designated S-S, U-U, U-S, S-US, U-US, and US-US, depending on which otoliths are present on each side (U, utricular otolith; S, saccular otolith). All mnl/mnl larvae survived through day 10 of development. Thereafter, S-S larvae showed a rapid decline, probably because of starvation, and none survived to adulthood. Survival rates in all other classes of mnl/mnl larvae (those having at least one utricular otolith) were close to normal. The presence or absence of utricular otoliths also correlated with vestibular function during early larval development, as measured by three criteria: First, unlike wild-type larvae, S-S mutant larvae showed almost no detectable counter-rotation of the eyes when tilted tail up or tail down. Second, 95% of S-S mutant larvae never acquired the ability to maintain a balanced dorsal-up posture. Third, although most wild-type larvae responded to gentle prodding by swimming in a straight line, S-S larvae responded by swimming in rapid circles, showing sudden and frequent changes in direction ("zigzagging"), and/or rolling and spiraling. All other phenotypic classes of mnl/mnl larvae behaved normally in these assays. These data demonstrate that bilateral loss of utricular otoliths disrupts the ability to sense gravity, severely impairs balance and motor coordination, and is invariably lethal. The presence of a utricular otolith in at least one inner ear is necessary and sufficient for vestibular function and survival. In contrast, saccular otoliths are

  2. Histological Characterization of the Dicer1 Mutant Zebrafish Retina

    Directory of Open Access Journals (Sweden)

    Saeed Akhtar

    2015-01-01

    Full Text Available DICER1, a multidomain RNase III endoribonuclease, plays a critical role in microRNA (miRNA and RNA-interference (RNAi functional pathways. Loss of Dicer1 affects different developmental processes. Dicer1 is essential for retinal development and maintenance. DICER1 was recently shown to have another function of silencing the toxicity of Alu RNAs in retinal pigment epithelium (RPE cells, which are involved in the pathogenesis of age related macular degeneration. In this study, we characterized a Dicer1 mutant fish line, which carries a nonsense mutation (W1457Ter induced by N-ethyl-N-nitrosourea mutagenesis. Zebrafish DICER1 protein is highly conserved in the evolution. Zebrafish Dicer1 is expressed at the earliest stages of zebrafish development and persists into late developmental stages; it is widely expressed in adult tissues. Homozygous Dicer1 mutant fish (DICER1W1457Ter/W1457Ter have an arrest in early growth with significantly smaller eyes and are dead at 14–18 dpf. Heterozygous Dicer1 mutant fish have similar retinal structure to that of control fish; the retinal pigment epithelium (RPE cells are normal with no sign of degeneration at the age of 20 months.

  3. Heparan sulfate 6-O-Sulfotransferase is essential for muscle development in zebrafish

    NARCIS (Netherlands)

    Bink, R.J.; Habuchi, H.; Lele, Z.; Dolk, E.; Joore, J.; Rauch, G.; Geisler, R.; Wilson, S.W.; Hertog, J. den; Kimata, K.; Zivkovic, D.

    2003-01-01

    Heparan sulfate proteoglycans function in development and disease. They consist of a core protein with attached heparan sulfate chains that are altered by a series of carbohydrate-modifying enzymes and sulfotransferases. Here, we report on the identification and characterization of a gene encoding z

  4. Functional characterization of protein-tyrosine phosphatases in zebrafish development using image analysis

    NARCIS (Netherlands)

    Runtuwene, Vincent Jimmy

    2012-01-01

    During gastrulation, the cells, and consequently the organ anlagen, are repositioned according to their future arrangement along the anterio- posterior axis. The movements responsible, the convergence and extension (CE) cell movements, are crucial for normal development and defects in their mechanis

  5. APC mutant zebrafish uncover a changing temporal requirement for wnt signaling in liver development.

    NARCIS (Netherlands)

    Goessling, W.; North, T.E.; Lord, A.M.; Ceol, C.; Lee, S.; Weidinger, G.; Bourque, C.; Strijbosch, R.; Haramis, A.P.; Puder, M.; Clevers, H.; Moon, R.T.; Zon, L.I.

    2008-01-01

    Developmental signaling pathways hold the keys to unlocking the promise of adult tissue regeneration, and to inhibiting carcinogenesis. Patients with mutations in the Adenomatous Polyposis Coli (APC) gene are at increased risk of developing hepatoblastoma, an embryonal form of liver cancer, suggesti

  6. Radiation hazards of radio frequency waves on the early embryonic development of Zebrafish

    Science.gov (United States)

    Harkless, Ryan; Al-Quraishi, Muntather; Vagula, Mary C.

    2014-06-01

    With the growing use of wireless devices in almost all day-to-day activities, exposure to radio-frequency radiation has become an immediate health concern. It is imperative that the effects of such radiation not only on humans, but also on other organisms be well understood. In particular, it is critical to understand if RF radiation has any bearing on the gene expression during embryonic development, as this is a crucial and delicate phase for any organism. Owing to possible effects that RF radiation may have on gene expression, it is essential to explore the carcinogenic or teratogenic properties that it may show. This study observed the effects of RF radiation emitted from a cellular telephone on the embryonic development of zebra fish. The expression of the gene shha plays a key role in the early development of the fish. This gene has homologs in humans as well as in other model organisms. Additionally, several biomarkers indicative of cell stress were examined: including lactate dehydrogenase (LDH), superoxide dismutase (SOD), and lipid peroxidation (LPO). Results show a significant decrease in the expression of shha, a significant decrease in LDH activity. There was no significant increase in SOD and LPO activity. No morphological abnormalities were observed in the developing embryos. At present, these results indicate that exposure to cell phone radiation may have a suppressive effect on expression of shha in D. rerio, though such exposure does not appear to cause morphological detriments. More trials are underway to corroborate these results.

  7. What is the Thalamus in Zebrafish?

    Directory of Open Access Journals (Sweden)

    Thomas eMueller

    2012-05-01

    Full Text Available Current research on the thalamus and related structures in the zebrafish diencephalon identifies an increasing number of both neurological structures and ontogenetic processes as evolutionary conserved between teleosts and mammals. The patterning processes, for example, which during the embryonic development of zebrafish form the thalamus proper appear largely conserved. Yet also striking differences between zebrafish and other vertebrates have been observed, particularly when we look at mature and histologically differentiated brains. A case in point is the migrated preglomerular complex of zebrafish which evolved only within the lineage of ray-finned fish and has no counterpart in mammals or tetrapod vertebrates. Based on its function as a sensory relay station with projections to pallial zones, the preglomerular complex has been compared to specific thalamic nuclei in mammals. However, no thalamic projections to the zebrafish dorsal pallium, which corresponds topologically to the mammalian isocortex, have been identified. Merely one teleostean thalamic nucleus proper, the auditory nucleus, projects to a part of the dorsal telencephalon, the pallial amygdala. Studies on patterning mechanisms identify a rostral and caudal domain in the embryonic thalamus proper. In both, teleosts and mammals, the rostral domain gives rise to GABAergic neurons, whereas glutamatergic neurons originate in the caudal domain of the zebrafish thalamus. The distribution of GABAergic derivatives in the adult zebrafish brain, furthermore, revealed previously overlooked thalamic nuclei and redefined already established ones. These findings require some reconsideration regarding the topological origin of these adult structures. In what follows, I discuss how evolutionary conserved and newly acquired features of the developing and adult zebrafish thalamus can be compared to the mammalian situation.

  8. Impaired cardiovascular function caused by different stressors elicits a common pathological and transcriptional response in zebrafish embryos.

    Science.gov (United States)

    Chen, Jing

    2013-09-01

    Zebrafish embryos have been widely used to study the genes and processes needed for normal vertebrate heart development. We recently observed that exposure to 2,3,7,8-tetra-chlorodibenzo-p-dioxin (TCDD) or retinoic acid (RA) produces very similar signs of heart failure in developing zebrafish via divergent molecular pathways. The fact that diverse stressors and mutations cause severe pericardial edema and circulatory collapse in developing zebrafish has been largely unexplored. We hypothesized that unrelated chemicals can trigger a common pathological response leading to the same end-stage heart failure. To test this hypothesis, we compared the effects of TCDD, RA, carbaryl, valproic acid, and morpholino oligonucleotide (MO) knockdown of TBX5 on the developing heart in zebrafish embryos. These model stressors have all been previously reported to affect zebrafish heart development, and elicited very similar signs of embryonic heart failure. Microarray analysis showed that one cluster of 92 transcripts affected by these different treatments was significantly downregulated by all treatments. This gene cluster is composed of transcripts required for chromosome assembly, DNA replication, and cell cycle progression. We refer to this cluster as the cell cycle gene cluster (CCGC). Immunohistochemistry revealed that downregulation of the CCGC precedes a halt in cardiomyocyte proliferation in the hearts of zebrafish exposed to any of the treatments. Previous work has shown that the initial response to TCDD is a decrease in cardiac output. Since this precedes the signs of edema, heart failure, and fall in CCGC expression, we postulated that any factor that decreases cardiac output will produce the same syndrome of heart failure responses. To test this, we used MO knockdown of cardiac troponin T2 (TNNT2) to specifically block contractility. The TNNT2-MO produced exactly the same signs of cardiotoxicity as the other treatments, including downregulation of the signature CCGC

  9. Rearing environment affects development of the immune system in neonates

    NARCIS (Netherlands)

    Inman, C.F.; Haverson, K.; Konstantinov, S.R.; Jones, P.H.; Harris, C.; Smidt, H.; Miller, B.; Bailey, M.; Stokes, C.

    2010-01-01

    P>Early-life exposure to appropriate microbial flora drives expansion and development of an efficient immune system. Aberrant development results in increased likelihood of allergic disease or increased susceptibility to infection. Thus, factors affecting microbial colonization may also affect th

  10. Zebrafish as an Emerging Model Organism to Study Angiogenesis in Development and Regeneration

    OpenAIRE

    Myra N Chávez; Aedo, Geraldine; Fierro, Fernando A.; Allende, Miguel L; Egaña, José T.

    2016-01-01

    Angiogenesis is the process through which new blood vessels are formed from preexisting ones and plays a critical role in several conditions including embryonic development, tissue repair and disease. Moreover, enhanced therapeutic angiogenesis is a major goal in the field of regenerative medicine and efficient vascularization of artificial tissues and organs is one of the main hindrances in the implementation of tissue engineering approaches, while, on the other hand, inhibition of angiogene...

  11. An optogenetic investigation of the control and development of the spinal central pattern generator in zebrafish

    OpenAIRE

    Warp, Erica Kirsten

    2012-01-01

    The nervous system directly controls the muscles of the body, and thus, the behavior of the animal. An understanding of the neural circuits and cell types that mediate and control behavior would give us insight into the mechanisms by which the nervous system operates and would also contribute to the development of therapies and treatments for neurological disorders and diseases that result in locomotor deficits. Some behaviors are organized by constant voluntary drive, while others, which req...

  12. ZebRA: An overview of retinoic acid signaling during zebrafish development.

    Science.gov (United States)

    Samarut, Eric; Fraher, Daniel; Laudet, Vincent; Gibert, Yann

    2015-02-01

    Retinoic acid (RA), the main active vitamin A derivative, is crucial for embryo development, regulating cellular processes, embryo patterning and organogenesis. Many studies performed in mammalian or avian models have successfully undertaken the investigation of the role played by RA during embryogenesis. Since the early 1980s, the zebrafish (Danio rerio) has emerged as a powerful developmental model to study the in vivo role of RA during embryogenesis. Unlike mammalian models, zebrafish embryogenesis is external, not only allowing the observation of the translucent embryo from the earliest steps but also providing an easily accessible system for pharmacological treatment or genetic approaches. Therefore, zebrafish research largely participates in deciphering the role of RA during development. This review aims at illustrating different concepts of RA signaling based on the research performed on zebrafish. Indeed, RA action relies on a multitude of cross-talk with other signaling pathways and requires a coordinated, dynamic and fine-regulation of its level and activity in both temporal and spatial dimensions. This review also highlights major advances that have been discovered using zebrafish such as the observation of the RA gradient in vivo for the first time, the effects of RA signaling in brain patterning, its role in establishing left-right asymmetry and its effects on the development of a variety of organs and tissues including the heart, blood, bone and fat. This review demonstrates that the zebrafish is a convenient and powerful model to study retinoic acid signaling during vertebrate embryogenesis. This article is part of a Special Issue entitled: Nuclear receptors in animal development. PMID:24928143

  13. Affective Development in Advanced Old Age: Analyses of Terminal Change in Positive and Negative Affect

    Science.gov (United States)

    Schilling, Oliver K.; Wahl, Hans-Werner; Wiegering, Sarah

    2013-01-01

    Late-life development of affect may unfold terminal changes that are driven more by end-of-life processes and not so much by time since birth. This study aimed to explore time-to-death-related effects in measures of affect in a sample of the very old. We used longitudinal data (2 measurement occasions: 2002 and 2003) from 140 deceased…

  14. Strategies to Mitigate a Mycobacterium marinum Outbreak in a Zebrafish Research Facility

    Science.gov (United States)

    Snell, Kathy; Mittge, Erika; Melancon, Ellie; Montgomery, Rebecca; McFadden, Marcie; Camoriano, Javier; Kent, Michael L.; Whipps, Christopher M.; Peirce, Judy

    2016-01-01

    Abstract In 2011, the zebrafish research facility at the University of Oregon experienced an outbreak of Mycobacterium marinum that affected both research fish and facility staff. A thorough review of risks to personnel, the zebrafish veterinary care program, and zebrafish husbandry procedures at the research facility followed. In the years since 2011, changes have been implemented throughout the research facility to protect the personnel, the fish colony, and ultimately the continued success of the zebrafish model research program. In this study, we present the history of the outbreak, the changes we implemented, and recommendations to mitigate pathogen outbreaks in zebrafish research facilities. PMID:27351618

  15. Genomic Organization of Zebrafish microRNAs

    Directory of Open Access Journals (Sweden)

    Paydar Ima

    2008-05-01

    Full Text Available Abstract Background microRNAs (miRNAs are small (~22 nt non-coding RNAs that regulate cell movement, specification, and development. Expression of miRNAs is highly regulated, both spatially and temporally. Based on direct cloning, sequence conservation, and predicted secondary structures, a large number of miRNAs have been identified in higher eukaryotic genomes but whether these RNAs are simply a subset of a much larger number of noncoding RNA families is unknown. This is especially true in zebrafish where genome sequencing and annotation is not yet complete. Results We analyzed the zebrafish genome to identify the number and location of proven and predicted miRNAs resulting in the identification of 35 new miRNAs. We then grouped all 415 zebrafish miRNAs into families based on seed sequence identity as a means to identify possible functional redundancy. Based on genomic location and expression analysis, we also identified those miRNAs that are likely to be encoded as part of polycistronic transcripts. Lastly, as a resource, we compiled existing zebrafish miRNA expression data and, where possible, listed all experimentally proven mRNA targets. Conclusion Current analysis indicates the zebrafish genome encodes 415 miRNAs which can be grouped into 44 families. The largest of these families (the miR-430 family contains 72 members largely clustered in two main locations along chromosome 4. Thus far, most zebrafish miRNAs exhibit tissue specific patterns of expression.

  16. Adult zebrafish model for pneumococcal pathogenesis.

    Science.gov (United States)

    Saralahti, Anni; Piippo, Hannaleena; Parikka, Mataleena; Henriques-Normark, Birgitta; Rämet, Mika; Rounioja, Samuli

    2014-02-01

    Streptococcus pneumoniae (pneumococcus) is a leading cause of community acquired pneumonia, septicemia, and meningitis. Due to incomplete understanding of the host and bacterial factors contributing to these diseases optimal treatment and prevention methods are lacking. In the present study we examined whether the adult zebrafish (Danio rerio) can be used to investigate the pathophysiology of pneumococcal diseases. Here we show that both intraperitoneal and intramuscular injections of the pneumococcal strain TIGR4 cause a fulminant, dose-dependent infection in adult zebrafish, while isogenic mutant bacteria lacking the polysaccharide capsule, autolysin, or pneumolysin are attenuated in the model. Infection through the intraperitoneal route is characterized by rapid expansion of pneumococci in the bloodstream, followed by penetration of the blood-brain barrier and progression to meningitis. Using Rag1 mutant zebrafish, which are devoid of somatic recombination and thus lack adaptive immune responses, we show that clearance of pneumococci in adult zebrafish depends mainly on innate immune responses. In conclusion, this study provides evidence that the adult zebrafish can be used as a model for a pneumococcal infection, and that it can be used to study both host and bacterial factors involved in the pathogenesis. However, our results do not support the use of the zebrafish in studies on the role of adaptive immunity in pneumococcal disease or in the development of new pneumococcal vaccines.

  17. Natural mixtures of persistent organic pollutants (POPs) suppress ovarian follicle development, liver vitellogenin immunostaining and hepatocyte proliferation in female zebrafish (Danio rerio)

    Energy Technology Data Exchange (ETDEWEB)

    Kraugerud, Marianne, E-mail: Marianne.Kraugerud@nvh.no [Dept. of Basic Sciences and Aquatic Medicine, Norwegian School of Veterinary Science, POB 8146 Dep., 0033 Oslo (Norway); Doughty, Richard William, E-mail: vetrwdoughty@yahoo.co.uk [Sundveien 22, 2015 Leirsund (Norway); Lyche, Jan L., E-mail: Jan.Lyche@nvh.no [Dept. of Food Safety and Infection Biology, Norwegian School of Veterinary Science, POB 8146 Dep., 0033 Oslo (Norway); Berg, Vidar, E-mail: Vidar.Berg@nvh.no [Dept. of Food Safety and Infection Biology, Norwegian School of Veterinary Science, POB 8146 Dep., 0033 Oslo (Norway); Tremoen, Nina H., E-mail: Nina.Hardnes@nvh.no [Dept. of Production Animal Clinical Sciences, Norwegian School of Veterinary Science, POB 8146 Dep., 0033 Oslo (Norway); Alestrom, Peter, E-mail: Peter.Alestrom@nvh.no [Dept. of Basic Sciences and Aquatic Medicine, Norwegian School of Veterinary Science, POB 8146 Dep., 0033 Oslo (Norway); Aleksandersen, Mona, E-mail: Mona.Aleksandersen@nvh.no [Dept. of Basic Sciences and Aquatic Medicine, Norwegian School of Veterinary Science, POB 8146 Dep., 0033 Oslo (Norway); Ropstad, Erik, E-mail: Erik.Ropstad@nvh.no [Dept. of Production Animal Clinical Sciences, Norwegian School of Veterinary Science, POB 8146 Dep., 0033 Oslo (Norway)

    2012-07-15

    Persistent organic pollutants such as polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) and dichlorodiphenyltrichloroethane (DDT) are present in high concentrations in livers of burbot (Lota lota) in Lake Mjosa, Norway. In order to assess effects of such pollutants on fish gonadal morphology, female zebrafish were exposed in two generations by food to mixtures of pollutants extracted from livers of burbot from Lake Mjosa (high and low dose) and Lake Losna, which represents background pollution, and compared to a control group. Ovarian follicle counts detected a significant decrease in late vitellogenic follicle stages in fish exposed to the Losna and the high concentrations of Mjosa mixtures in fish from the first generation. In addition, proliferation of granulosa cells, visualized by immunohistochemistry against proliferating cell nuclear antigen (PCNA), was decreased in all exposure groups in either early or late vitellogenic follicle stages compared to control. This was accompanied by increased apoptosis of granulosa cells. There was a decrease in proliferation of liver hepatocytes with exposure to both Mjosa mixtures. In addition, immunopositivity for vitellogenin in the liver was significantly lower in the Mjosa high group than in the control group. When analysing effects of parental exposure, fish with parents exposed to Mjosa high mixture had significantly higher numbers of perinucleolar follicles than fish with control parents. We conclude that long-term exposure of a real-life mixture of pollutants containing high- and background levels of chemicals supress ovarian follicle development, liver vitellogenin immunostaining intensity and hepatocyte proliferation in the zebrafish model.

  18. Zebrafish arl6ip1 is required for neural crest development during embryogenesis.

    Directory of Open Access Journals (Sweden)

    Chi-Tang Tu

    Full Text Available BACKGROUND: Although the embryonic expression pattern of ADP ribosylation factor-like 6 interacting protein 1 (Arl6ip1 has been reported, its function in neural crest development is unclear. METHODS/PRINCIPAL FINDINGS: We found that knockdown of Arl6ip1 caused defective embryonic neural crest derivatives that were particularly severe in craniofacial cartilages. Expressions of the ectodermal patterning factors msxb, dlx3b, and pax3 were normal, but the expressions of the neural crest specifier genes foxd3, snai1b, and sox10 were greatly reduced. These findings suggest that arl6ip1 is essential for specification of neural crest derivatives, but not neural crest induction. Furthermore, we revealed that the streams of crestin- and sox10-expressing neural crest cells, which migrate ventrally from neural tube into trunk, were disrupted in arl6ip1 morphants. This migration defect was not only in the trunk neural crest, but also in the enteric tract where the vagal-derived neural crest cells failed to populate the enteric nervous system. We found that this migration defect was induced by dampened Shh signaling, which may have resulted from defective cilia. These data further suggested that arl6ip1 is required for neural crest migration. Finally, by double-staining of TUNEL and crestin, we confirmed that the loss of neural crest cells could not be attributed to apoptosis. CONCLUSIONS/SIGNIFICANCE: Therefore, we concluded that arl6ip1 is required for neural crest migration and sublineage specification.

  19. CdSe/ZnS 量子点对斑马鱼胚胎发育的影响%The effects of CdSe/ZnS quantum dots on embryonic development of zebrafish

    Institute of Scientific and Technical Information of China (English)

    陶核; 兰志仙; 吴南翔; 楼建林; 徐娟; 谭玉凤; 高明; 陈琼姜; 洪雅青; 黄雅丽; 张芳芳

    2015-01-01

    Objective To understand the developmental effects induced by CdSe /ZnS quantum dots(QDs)on zebrafish embryos.Methods Zebrafish embryos were exposed to 0,0.5,1,2,4,8 and 16 nmol/L of CdSe /ZnS QDs,and the typical toxicological indexes were recorded at five time points respectively (24 hours post fertilization (hpf),48 hpf, 72 hpf,96 hpf,120 hpf).Results The results showed that the median lethal concentration (LC50 )for zebrafish embryos after 120 hpf was 21.38 nmol/L(95% CI =17.21 -26.57).The frequency of spontaneous movement in 60 seconds after 24 hpf,the frequency of heart beat in 60 seconds after 48 hpf,the hatching rate and the mortality rate were obviously affected by CdSe /ZnS QDs.Several abnormalities and toxic symptoms caused by CdSe /ZnS QDs at 8 nmol/L and 16 nmol/L were observed including pericardial edema,liver atrophy,non -depleted yolk,intestinal abnormal development and muscle degeneration after 120 hpf.Conclusion High level of CdSe /ZnS QDs (more than 8 nmol/L)could induce toxic effects on zebrafish embryonic development.%目的:研究 CdSe /ZnS 量子点对斑马鱼胚胎发育的影响。方法以0、0.5、1、2、4、8和16 nmol/L CdSe /ZnS 量子点分别处理斑马鱼胚胎,于受精后24、48、72、96和120 h (简称 hpf)5个时间点分别观察各自具有代表性的毒理学终点。结果在120 hpf 时,CdSe /ZnS 量子点对斑马鱼胚胎的 LC50为21.38 nmol/L (95%CI:17.21~26.57)。量子点 CdSe /ZnS 对斑马鱼胚胎24 hpf 时60 s 内胚胎自主运动频率,48 hpf 60 s 内心率、胚胎孵化率、死亡率等均有明显影响,高浓度8 nmol/L 和16 nmol/L 组 CdSe /ZnS 量子点在120 hpf 时可致斑马鱼胚胎发生心包水肿、肝脏变小、卵黄囊吸收延迟、肠道发育异常及肌肉变性等中毒症状。结论8 nmol/L 及以上浓度 CdSe /ZnS 量子点对斑马鱼胚胎具有较强的发育毒性,暴露浓度和时间的增加,CdSe /ZnS 量子点可造斑马鱼胚胎死亡率升高。

  20. Impairment of social behaviour persists two years after embryonic alcohol exposure in zebrafish: A model of fetal alcohol spectrum disorders.

    Science.gov (United States)

    Fernandes, Yohaan; Rampersad, Mindy; Gerlai, Robert

    2015-10-01

    Zebrafish naturally form social groups called shoals. Previously, we have shown that submerging zebrafish eggs into low concentrations of alcohol (0.00, 0.25, 0.50, 0.75 and 1.00 vol/vol% external bath concentration) during development (24h post-fertilization) for two hours resulted in impaired shoaling response in seven month old young adult zebrafish. Here we investigate whether this embryonic alcohol exposure induced behavioural deficit persists to older age. Zebrafish embryos were exposed either to fresh system water (control) or to 1% alcohol for two hours, 24h after fertilization, and were raised in a high-density tank system. Social behaviour was tested by presenting the experimental fish with a computer animated group of zebrafish images, while automated tracking software measured their behaviour. Control fish were found to respond strongly to animated conspecific images by reducing their distanceand remaining close to the images during image presentation, embryonic alcohol treated fish did not. Our results suggest that the impaired shoaling response of the alcohol exposed fish was not due to altered motor function or visual perception, but likely to a central nervous system alteration affecting social behaviour itself. We found the effects of embryonic alcohol exposure on social behaviour not to diminish with age, a result that demonstrates the deleterious and potentially life-long consequences of exposure to even small amount of alcohol during embryonic development in vertebrates.

  1. The Development of the Meta-Affective Trait Scale

    Science.gov (United States)

    Uzuntiryaki-Kondakci, Esen; Kirbulut, Zubeyde Demet

    2016-01-01

    The purpose of this study was to develop a Meta-Affective Trait Scale (MATS) to measure the meta-affective inclinations related to emotions that students have while they are studying for their classes. First, a pilot study was performed with 380 10th-grade students. Results of the exploratory factor analysis supported a two-factor structure of the…

  2. Character Development. Does Sport Affect Character Development in Athletes?

    Science.gov (United States)

    Sage, George

    1998-01-01

    Examines the impact of sport on character development, noting that historically British and American schools have valued sports for helping develop social character and citizenship. The paper discusses research on sport as a character builder, suggesting that the effect of sport on character depends on the positive or negative social contextual…

  3. Scale Development: Factors Affecting Diet, Exercise, and Stress Management (FADESM)

    OpenAIRE

    Nitzke Susan; Brown Roger; Chang Mei-Wei

    2008-01-01

    Abstract Background The objective of this study was to develop scales measuring personal and environmental factors that affect dietary fat intake behavior, physical activity, and stress management in low-income mothers. Methods FADESM (factors affecting diet, exercise, and stress management) scales were developed using the Social Cognitive Theory to measure personal (outcome expectancies, self-efficacy, emotional coping response) and environmental (physical environment, social environment, si...

  4. Immobilization of Dystrophin and Laminin α2-Chain Deficient Zebrafish Larvae In Vivo Prevents the Development of Muscular Dystrophy.

    Directory of Open Access Journals (Sweden)

    Mei Li

    Full Text Available Muscular dystrophies are often caused by genetic alterations in the dystrophin-dystroglycan complex or its extracellular ligands. These structures are associated with the cell membrane and provide mechanical links between the cytoskeleton and the matrix. Mechanical stress is considered a pathological mechanism and muscle immobilization has been shown to be beneficial in some mouse models of muscular dystrophy. The zebrafish enables novel and less complex models to examine the effects of extended immobilization or muscle relaxation in vivo in different dystrophy models. We have examined effects of immobilization in larvae from two zebrafish strains with muscular dystrophy, the Sapje dystrophin-deficient and the Candyfloss laminin α2-chain-deficient strains. Larvae (4 days post fertilization, dpf of both mutants have significantly lower active force in vitro, alterations in the muscle structure with gaps between muscle fibers and altered birefringence patterns compared to their normal siblings. Complete immobilization (18 hrs to 4 dpf was achieved using a small molecular inhibitor of actin-myosin interaction (BTS, 50 μM. This treatment resulted in a significantly weaker active contraction at 4 dpf in both mutated larvae and normal siblings, most likely reflecting a general effect of immobilization on myofibrillogenesis. The immobilization also significantly reduced the structural damage in the mutated strains, showing that muscle activity is an important pathological mechanism. Following one-day washout of BTS, muscle tension partly recovered in the Candyfloss siblings and caused structural damage in these mutants, indicating activity-induced muscle recovery and damage, respectively.

  5. Fibroblast growth factor (Fgf) signaling pathway regulates liver homeostasis in zebrafish.

    Science.gov (United States)

    Tsai, Su-Mei; Liu, Da-Wei; Wang, Wen-Pin

    2013-04-01

    In mammals, fibroblast growth factor (FGF) signaling controls liver specification and regulates the metabolism of lipids, cholesterol, and bile acids. FGF signaling also promotes hepatocyte proliferation, and helps detoxify hepatotoxin during liver regeneration after partial hepatectomy. However, the function of Fgf in zebrafish liver is not yet well understood, specifically for postnatal homeostasis. The current study analyzed the expression of fgf receptors (fgfrs) in the liver of zebrafish. We then investigated the function of Fgf signaling in the zebrafish liver by expressing a dominant-negative Fgf receptor in hepatocytes (lfabp:dnfgfr1-egfp, lf:dnfr). Histological analysis showed that our genetic intervention resulted in a small liver size with defected medial expansion of developing livers in transgenic (Tg) larvae. Morphologically, the liver lobe of lf:dnfr adult fish was shorter than that of control. Ballooning degeneration of hepatocytes was observed in fish as young as 3 months. Further examination revealed the development of hepatic steatosis and cholestasis. In adult Tg fish, we unexpectedly observed increased liver-to-body-weight ratios, with higher percentages of proliferating hepatocytes. Considering all these findings, we concluded that as in mammals, in adult zebrafish the metabolism of lipid and bile acids in the liver are regulated by Fgf signaling. Disruption of the Fgf signal-mediated metabolism might indirectly affect hepatocyte proliferation. PMID:22820869

  6. Programming of the hypothalamic-pituitary-interrenal axis by maternal social status in zebrafish (Danio rerio).

    Science.gov (United States)

    Jeffrey, Jennifer D; Gilmour, Kathleen M

    2016-06-01

    The present study examined the effects of maternal social status, with subordinate status being a chronic stressor, on development and activity of the stress axis in zebrafish embryos and larvae. Female zebrafish were confined in pairs for 48 h to establish dominant/subordinate hierarchies; their offspring were reared to 144 h post-fertilization (hpf) and sampled at five time points over development. No differences were detected in maternal cortisol contribution, which is thought to be an important programmer of offspring phenotype. However, once zebrafish offspring began to synthesize cortisol de novo (48 hpf), larvae of dominant females exhibited significantly lower baseline cortisol levels than offspring of subordinate females. These lower cortisol levels may reflect reduced hypothalamic-pituitary-interrenal (HPI) axis activity, because corticotropin-releasing factor (crf) and cytochrome p450 side chain cleavage enzyme (p450scc) mRNA levels also were lower in larvae from dominant females. Moreover, baseline mRNA levels of HPI axis genes continued to be affected by maternal social status beyond 48 hpf. At 144 hpf, stress-induced cortisol levels were significantly lower in offspring of subordinate females. These results suggest programming of stress axis function in zebrafish offspring by maternal social status, emphasizing the importance of maternal environment and experience on offspring stress axis activity. PMID:27045091

  7. Conservation and early expression of zebrafish tyrosine kinases support the utility of zebrafish as a model for tyrosine kinase biology.

    Science.gov (United States)

    Challa, Anil Kumar; Chatti, Kiranam

    2013-09-01

    Tyrosine kinases have significant roles in cell growth, apoptosis, development, and disease. To explore the use of zebrafish as a vertebrate model for tyrosine kinase signaling and to better understand their roles, we have identified all of the tyrosine kinases encoded in the zebrafish genome and quantified RNA expression of selected tyrosine kinases during early development. Using profile hidden Markov model analysis, we identified 122 zebrafish tyrosine kinase genes and proposed unambiguous gene names where needed. We found them to be organized into 39 nonreceptor and 83 receptor type, and 30 families consistent with human tyrosine kinase family assignments. We found five human tyrosine kinase genes (epha1, bmx, fgr, srm, and insrr) with no identifiable zebrafish ortholog, and one zebrafish gene (yrk) with no identifiable human ortholog. We also found that receptor tyrosine kinase genes were duplicated more often than nonreceptor tyrosine kinase genes in zebrafish. We profiled expression levels of 30 tyrosine kinases representing all families using direct digital detection at different stages during the first 24 hours of development. The profiling experiments clearly indicate regulated expression of tyrosine kinases in the zebrafish, suggesting their role during early embryonic development. In summary, our study has resulted in the first comprehensive description of the zebrafish tyrosine kinome.

  8. Ahr2-dependence of PCB126 effects on the swim bladder in relation to expression of CYP1 and cox-2 genes in developing zebrafish.

    Science.gov (United States)

    Jönsson, Maria E; Kubota, Akira; Timme-Laragy, Alicia R; Woodin, Bruce; Stegeman, John J

    2012-12-01

    The teleost swim bladder is assumed a homolog of the tetrapod lung. Both swim bladder and lung are developmental targets of persistent aryl hydrocarbon receptor (AHR(2)) agonists; in zebrafish (Danio rerio) the swim bladder fails to inflate with exposure to 3,3',4,4',5-pentachlorobiphenyl (PCB126). The mechanism for this effect is unknown, but studies have suggested roles of cytochrome P450 1 (CYP1) and cyclooxygenase 2 (Cox-2) in some Ahr-mediated developmental effects in zebrafish. We determined relationships between swim bladder inflation and CYP1 and Cox-2 mRNA expression in PCB126-exposed zebrafish embryos. We also examined effects on β-catenin dependent transcription, histological effects, and Ahr2 dependence of the effect of PCB126 on swim bladder using morpholinos targeting ahr2. One-day-old embryos were exposed to waterborne PCB126 or carrier (DMSO) for 24h and then held in clean water until day 4, a normal time for swim bladder inflation. The effects of PCB126 were concentration-dependent with EC(50) values of 1.4 to 2.0 nM for induction of the CYP1s, 3.7 and 5.1 nM (or higher) for cox-2a and cox-2b induction, and 2.5 nM for inhibition of swim bladder inflation. Histological defects included a compaction of the developing bladder. Ahr2-morpholino treatment rescued the effect of PCB126 (5 nM) on swim bladder inflation and blocked induction of CYP1A, cox-2a, and cox-2b. With 2nM PCB126 approximately 30% of eleutheroembryos(3) failed to inflate the swim bladder, but there was no difference in CYP1 or cox-2 mRNA expression between those embryos and embryos showing inflated swim bladder. Our results indicate that PCB126 blocks swim bladder inflation via an Ahr2-mediated mechanism. This mechanism seems independent of CYP1 or cox-2 mRNA induction but may involve abnormal development of swim bladder cells.

  9. FishNet: an online database of zebrafish anatomy

    Directory of Open Access Journals (Sweden)

    Gibson Abigail J

    2007-08-01

    Full Text Available Abstract Background Over the last two decades, zebrafish have been established as a genetically versatile model system for investigating many different aspects of vertebrate developmental biology. With the credentials of zebrafish as a developmental model now well recognized, the emerging new opportunity is the wider application of zebrafish biology to aspects of human disease modelling. This rapidly increasing use of zebrafish as a model for human disease has necessarily generated interest in the anatomy of later developmental phases such as the larval, juvenile, and adult stages, during which many of the key aspects of organ morphogenesis and maturation take place. Anatomical resources and references that encompass these stages are non-existent in zebrafish and there is therefore an urgent need to understand how different organ systems and anatomical structures develop throughout the life of the fish. Results To overcome this deficit we have utilized the technique of optical projection tomography to produce three-dimensional (3D models of larval fish. In order to view and display these models we have created FishNet http://www.fishnet.org.au, an interactive reference of zebrafish anatomy spanning the range of zebrafish development from 24 h until adulthood. Conclusion FishNet contains more than 36 000 images of larval zebrafish, with more than 1 500 of these being annotated. The 3D models can be manipulated on screen or virtually sectioned. This resource represents the first complete embryo to adult atlas for any species in 3D.

  10. Development of a convenient in vivo hepatotoxin assay using a transgenic zebrafish line with liver-specific DsRed expression.

    Directory of Open Access Journals (Sweden)

    Xiaoyan Zhang

    Full Text Available Previously we have developed a transgenic zebrafish line (LiPan with liver-specific red fluorescent protein (DsRed expression under the fabp10a promoter. Since red fluorescence in the liver greatly facilitates the observation of liver in live LiPan fry, we envision that the LiPan zebrafish may provide a useful tool in analyses of hepatotoxicity based on changes of liver red fluorescence intensity and size. In this study, we first tested four well-established hepatotoxins (acetaminophen, aspirin, isoniazid and phenylbutazone in LiPan fry and demonstrated that these hepatotoxins could significantly reduce both liver red fluorescence and liver size in a dosage-dependent manner, thus the two measurable parameters could be used as indicators of hepatotoxicity. We then tested the LiPan fry with nine other chemicals including environmental toxicants and human drugs. Three (mefenamic acid, lindane, and arsenate behave like hepatotoxins in reduction of liver red fluorescence, while three others (17β-estradiol, TCDD [2,3,7,8-tetrachlorodibenzo-p-dioxin] and NDMA [N-nitrosodimethylamine] caused increase of liver red fluorescence and the liver size. Ethanol and two other chemicals, amoxicillin (antibiotics and chlorphenamine (pain killer did not resulted in significant changes of liver red fluorescence and liver size. By quantitative RT-PCR analysis, we found that the changes of red fluorescence intensity caused by different chemicals correlated to the changes of endogenous fabp10a RNA expression, indicating that the measured hepatotoxicity was related to fatty acid transportation and metabolism. Finally we tested a mixture of four hepatotoxins and observed a significant reduction of red fluorescence in the liver at concentrations below the lowest effective concentrations of individual hepatotoxins, suggesting that the transgenic zebrafish assay is capable of reporting compound hepatotoxicity effect from chemical mixtures. Thus, the LiPan transgenic fry

  11. The zebrafish world of colors and shapes: preference and discrimination.

    Science.gov (United States)

    Oliveira, Jessica; Silveira, Mayara; Chacon, Diana; Luchiari, Ana

    2015-04-01

    Natural environment imposes many challenges to animals, which have to use cognitive abilities to cope with and exploit it to enhance their fitness. Since zebrafish is a well-established model for cognitive studies and high-throughput screening for drugs and diseases that affect cognition, we tested their ability for ambient color preference and 3D objects discrimination to establish a protocol for memory evaluation. For the color preference test, zebrafish were observed in a multiple-chamber tank with different environmental color options. Zebrafish showed preference for blue and green, and avoided yellow and red. For the 3D objects discrimination, zebrafish were allowed to explore two equal objects and then observed in a one-trial test in which a new color, size, or shape of the object was presented. Zebrafish showed discrimination for color, shape, and color+shape combined, but not size. These results imply that zebrafish seem to use some categorical system to discriminate items, and distracters affect their ability for discrimination. The type of variables available (color and shape) may favor zebrafish objects perception and facilitate discrimination processing. We suggest that this easy and simple memory test could serve as a useful screening tool for cognitive dysfunction and neurotoxicological studies. PMID:25674976

  12. Function if Cooperative Learning in Developing Positive Affect

    Institute of Scientific and Technical Information of China (English)

    佟玉平

    2008-01-01

    This paper focus on the function of cooperative learning in developing positive affect, Including reducing anxiety, increasing motivation, facilitating the development of positive attitudes toward learning and language learning, promoting serf- esteem, as well as supporting different learning styles and encouraging perseverance in the difficult and confusing process of learning a foreign language.

  13. Towards Developmental Models of Psychiatric Disorders in Zebrafish

    Directory of Open Access Journals (Sweden)

    William Howard James Norton

    2013-04-01

    Full Text Available Psychiatric disorders are a diverse set of diseases that affect all aspects of mental function including social interaction, thinking, feeling and mood. Although psychiatric disorders place a large economic burden on society, the drugs available to treat them are often palliative with variable efficacy and intolerable side-effects. The development of novel drugs has been hindered by a lack of knowledge about the etiology of these diseases. It is thus necessary to further investigate psychiatric disorders using a combination of human molecular genetics, gene-by-environment studies, in vitro pharmacological and biochemistry experiments, animal models and investigation of the non-biological basis of these diseases, such as environmental effects.Many psychiatric disorders, including autism spectrum disorder, attention-deficit/hyperactivity disorder, mental retardation and schizophrenia can be triggered by alterations to neural development. The zebrafish is a popular model for developmental biology that is increasingly used to study human disease. Recent work has extended this approach to examine psychiatric disorders as well. However, since psychiatric disorders affect complex mental functions that might be human specific, it is not possible to fully model them in fish. In this review, I will propose that the suitability of zebrafish for developmental studies, and the genetic tools available to manipulate them, provide a powerful model to study the roles of genes that are linked to psychiatric disorders during neural development. The relative speed and ease of conducting experiments in zebrafish can be used to address two areas of future research: the contribution of environmental factors to disease onset, and screening for novel therapeutic compounds.

  14. Zebrafish models flex their muscles to shed light on muscular dystrophies

    Directory of Open Access Journals (Sweden)

    Joachim Berger

    2012-11-01

    Full Text Available Muscular dystrophies are a group of genetic disorders that specifically affect skeletal muscle and are characterized by progressive muscle degeneration and weakening. To develop therapies and treatments for these diseases, a better understanding of the molecular basis of muscular dystrophies is required. Thus, identification of causative genes mutated in specific disorders and the study of relevant animal models are imperative. Zebrafish genetic models of human muscle disorders often closely resemble disease pathogenesis, and the optical clarity of zebrafish embryos and larvae enables visualization of dynamic molecular processes in vivo. As an adjunct tool, morpholino studies provide insight into the molecular function of genes and allow rapid assessment of candidate genes for human muscular dystrophies. This unique set of attributes makes the zebrafish model system particularly valuable for the study of muscle diseases. This review discusses how recent research using zebrafish has shed light on the pathological basis of muscular dystrophies, with particular focus on the muscle cell membrane and the linkage between the myofibre cytoskeleton and the extracellular matrix.

  15. Zebrafish models flex their muscles to shed light on muscular dystrophies.

    Science.gov (United States)

    Berger, Joachim; Currie, Peter D

    2012-11-01

    Muscular dystrophies are a group of genetic disorders that specifically affect skeletal muscle and are characterized by progressive muscle degeneration and weakening. To develop therapies and treatments for these diseases, a better understanding of the molecular basis of muscular dystrophies is required. Thus, identification of causative genes mutated in specific disorders and the study of relevant animal models are imperative. Zebrafish genetic models of human muscle disorders often closely resemble disease pathogenesis, and the optical clarity of zebrafish embryos and larvae enables visualization of dynamic molecular processes in vivo. As an adjunct tool, morpholino studies provide insight into the molecular function of genes and allow rapid assessment of candidate genes for human muscular dystrophies. This unique set of attributes makes the zebrafish model system particularly valuable for the study of muscle diseases. This review discusses how recent research using zebrafish has shed light on the pathological basis of muscular dystrophies, with particular focus on the muscle cell membrane and the linkage between the myofibre cytoskeleton and the extracellular matrix.

  16. The myopathy-causing mutation DNM2-S619L leads to defective tubulation in vitro and in developing zebrafish

    Directory of Open Access Journals (Sweden)

    Elizabeth M. Gibbs

    2014-01-01

    Full Text Available DNM2 is a ubiquitously expressed GTPase that regulates multiple subcellular processes. Mutations in DNM2 are a common cause of centronuclear myopathy, a severe disorder characterized by altered skeletal muscle structure and function. The precise mechanisms underlying disease-associated DNM2 mutations are unresolved. We examined the common DNM2-S619L mutation using both in vitro and in vivo approaches. Expression of DNM2-S619L in zebrafish led to the accumulation of aberrant vesicular structures and to defective excitation-contraction coupling. Expression of DNM2-S619L in COS7 cells resulted in defective BIN1-dependent tubule formation. These data suggest that DNM2-S619L causes disease, in part, by interfering with membrane tubulation.

  17. NICHD Zebrafish Core

    Data.gov (United States)

    Federal Laboratory Consortium — The core[HTML_REMOVED]s goal is to help researchers of any expertise perform zebrafish experiments aimed at illuminating basic biology and human disease mechanisms,...

  18. The Fanconi anemia/BRCA gene network in zebrafish: Embryonic expression and comparative genomics

    Energy Technology Data Exchange (ETDEWEB)

    Titus, Tom A.; Yan Yilin; Wilson, Catherine; Starks, Amber M.; Frohnmayer, Jonathan D.; Bremiller, Ruth A.; Canestro, Cristian; Rodriguez-Mari, Adriana; He Xinjun [Institute of Neuroscience, University of Oregon, 1425 E. 13th Avenue, Eugene, OR 97403 (United States); Postlethwait, John H., E-mail: jpostle@uoneuro.uoregon.edu [Institute of Neuroscience, University of Oregon, 1425 E. 13th Avenue, Eugene, OR 97403 (United States)

    2009-07-31

    Fanconi anemia (FA) is a genetic disease resulting in bone marrow failure, high cancer risks, and infertility, and developmental anomalies including microphthalmia, microcephaly, hypoplastic radius and thumb. Here we present cDNA sequences, genetic mapping, and genomic analyses for the four previously undescribed zebrafish FA genes (fanci, fancj, fancm, and fancn), and show that they reverted to single copy after the teleost genome duplication. We tested the hypothesis that FA genes are expressed during embryonic development in tissues that are disrupted in human patients by investigating fanc gene expression patterns. We found fanc gene maternal message, which can provide Fanc proteins to repair DNA damage encountered in rapid cleavage divisions. Zygotic expression was broad but especially strong in eyes, central nervous system and hematopoietic tissues. In the pectoral fin bud at hatching, fanc genes were expressed specifically in the apical ectodermal ridge, a signaling center for fin/limb development that may be relevant to the radius/thumb anomaly of FA patients. Hatching embryos expressed fanc genes strongly in the oral epithelium, a site of squamous cell carcinomas in FA patients. Larval and adult zebrafish expressed fanc genes in proliferative regions of the brain, which may be related to microcephaly in FA. Mature ovaries and testes expressed fanc genes in specific stages of oocyte and spermatocyte development, which may be related to DNA repair during homologous recombination in meiosis and to infertility in human patients. The intestine strongly expressed some fanc genes specifically in proliferative zones. Our results show that zebrafish has a complete complement of fanc genes in single copy and that these genes are expressed in zebrafish embryos and adults in proliferative tissues that are often affected in FA patients. These results support the notion that zebrafish offers an attractive experimental system to help unravel mechanisms relevant not only

  19. Exploratory behaviour in the open field test adapted for larval zebrafish: impact of environmental complexity.

    Science.gov (United States)

    Ahmad, Farooq; Richardson, Michael K

    2013-01-01

    This study aimed to develop and characterize a novel (standard) open field test adapted for larval zebrafish. We also developed and characterized a variant of the same assay consisting of a colour-enriched open field; this was used to assess the impact of environmental complexity on patterns of exploratory behaviours as well to determine natural colour preference/avoidance. We report the following main findings: (1) zebrafish larvae display characteristic patterns of exploratory behaviours in the standard open field, such as thigmotaxis/centre avoidance; (2) environmental complexity (i.e. presence of colours) differentially affects patterns of exploratory behaviours and greatly attenuates natural zone preference; (3) larvae displayed the ability to discriminate colours. As reported previously in adult zebrafish, larvae showed avoidance towards blue and black; however, in contrast to the reported adult behaviour, larvae displayed avoidance towards red. Avoidance towards yellow and preference for green and orange are shown for the first time, (4) compared to standard open field tests, exposure to the colour-enriched open field resulted in an enhanced expression of anxiety-like behaviours. To conclude, we not only developed and adapted a traditional rodent behavioural assay that serves as a gold standard in preclinical drug screening, but we also provide a version of the same test that affords the possibility to investigate the impact of environmental stress on behaviour in larval zebrafish while representing the first test for assessment of natural colour preference/avoidance in larval zebrafish. In the future, these assays will improve preclinical drug screening methodologies towards the goal to uncover novel drugs. This article is part of a Special Issue entitled: insert SI title.

  20. Recent advances in the study of zebrafish extracellular matrix proteins.

    Science.gov (United States)

    Jessen, Jason R

    2015-05-01

    The zebrafish extracellular matrix (ECM) is a dynamic and pleomorphic structure consisting of numerous proteins that together regulate a variety of cellular and morphogenetic events beginning as early as gastrulation. The zebrafish genome encodes a similar complement of ECM proteins as found in other vertebrate organisms including glycoproteins, fibrous proteins, proteoglycans, glycosaminoglycans, and interacting or modifying proteins such as integrins and matrix metalloproteinases. As a genetic model system combined with its amenability to high-resolution microscopic imaging, the zebrafish allows interrogation of ECM protein structure and function in both the embryo and adult. Accumulating data have identified important roles for zebrafish ECM proteins in processes as diverse as cell polarity, migration, tissue mechanics, organ laterality, muscle contraction, and regeneration. In this review, I highlight recently published data on these topics that demonstrate how the ECM proteins fibronectin, laminin, and collagen contribute to zebrafish development and adult homeostasis.

  1. Natural mixtures of persistent organic pollutants (POPs) suppress ovarian follicle development, liver vitellogenin immunostaining and hepatocyte proliferation in female zebrafish (Danio rerio)

    International Nuclear Information System (INIS)

    Persistent organic pollutants such as polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) and dichlorodiphenyltrichloroethane (DDT) are present in high concentrations in livers of burbot (Lota lota) in Lake Mjøsa, Norway. In order to assess effects of such pollutants on fish gonadal morphology, female zebrafish were exposed in two generations by food to mixtures of pollutants extracted from livers of burbot from Lake Mjøsa (high and low dose) and Lake Losna, which represents background pollution, and compared to a control group. Ovarian follicle counts detected a significant decrease in late vitellogenic follicle stages in fish exposed to the Losna and the high concentrations of Mjøsa mixtures in fish from the first generation. In addition, proliferation of granulosa cells, visualized by immunohistochemistry against proliferating cell nuclear antigen (PCNA), was decreased in all exposure groups in either early or late vitellogenic follicle stages compared to control. This was accompanied by increased apoptosis of granulosa cells. There was a decrease in proliferation of liver hepatocytes with exposure to both Mjøsa mixtures. In addition, immunopositivity for vitellogenin in the liver was significantly lower in the Mjøsa high group than in the control group. When analysing effects of parental exposure, fish with parents exposed to Mjøsa high mixture had significantly higher numbers of perinucleolar follicles than fish with control parents. We conclude that long-term exposure of a real-life mixture of pollutants containing high- and background levels of chemicals supress ovarian follicle development, liver vitellogenin immunostaining intensity and hepatocyte proliferation in the zebrafish model.

  2. Complement system in zebrafish.

    Science.gov (United States)

    Zhang, Shicui; Cui, Pengfei

    2014-09-01

    Zebrafish is recently emerging as a model species for the study of immunology and human diseases. Complement system is the humoral backbone of the innate immune defense, and our knowledge as such in zebrafish has dramatically increased in the recent years. This review summarizes the current research progress of zebrafish complement system. The global searching for complement components in genome database, together with published data, has unveiled the existence of all the orthologues of mammalian complement components identified thus far, including the complement regulatory proteins and complement receptors, in zebrafish. Interestingly, zebrafish complement components also display some distinctive features, such as prominent levels of extrahepatic expression and isotypic diversity of the complement components. Future studies should focus on the following issues that would be of special importance for understanding the physiological role of complement components in zebrafish: conclusive identification of complement genes, especially those with isotypic diversity; analysis and elucidation of function and mechanism of complement components; modulation of innate and adaptive immune response by complement system; and unconventional roles of complement-triggered pathways.

  3. Development and psychometric validation of the verbal affective memory test

    DEFF Research Database (Denmark)

    Jensen, Christian Gaden; Hjordt, Liv V; Stenbæk, Dea S;

    2015-01-01

    We here present the development and validation of the Verbal Affective Memory Test-24 (VAMT-24). First, we ensured face validity by selecting 24 words reliably perceived as positive, negative or neutral, respectively, according to healthy Danish adults' valence ratings of 210 common and non......-taboo words. Second, we studied the test's psychometric properties in healthy adults. Finally, we investigated whether individuals diagnosed with Seasonal Affective Disorder (SAD) differed from healthy controls on seasonal changes in affective recall. Recall rates were internally consistent and reliable...... and converged satisfactorily with established non-affective verbal tests. Immediate recall (IMR) for positive words exceeded IMR for negative words in the healthy sample. Relatedly, individuals with SAD showed a significantly larger decrease in positive recall from summer to winter than healthy controls...

  4. Affectivity

    OpenAIRE

    Stenner, Paul; Greco, Monica

    2013-01-01

    The concept of affectivity has assumed central importance in much recent scholarship, and many in the social sciences and humanities now talk of an ‘affective turn’. The concept of affectivity at play in this ‘turn’ remains, however, somewhat vague and slippery. Starting with Silvan Tomkins’ influential theory of affect, this paper will explore the relevance of the general assumptions (or ‘utmost abstractions’) that inform thinking about affectivity. The technological and instrumentalist char...

  5. Factors affecting the development of collaborative improvement with strategic suppliers

    NARCIS (Netherlands)

    Kaltoft, Rasmus; Boer, Harry; Corso, Mariano; Gertsen, Frank; Gieskes, José; Middel, Rick; Steendahl Nielsen, Jacob

    2003-01-01

    The research presented in this paper was aimed at increasing the current understanding of the process of developing collaborative improvement in Extended Manufacturing Enterprises (EME). Theory suggests a number of factors to affect that process, including shared sense of direction (i.e. vision), tr

  6. The Olig family affects central nervous system development and disease

    Institute of Scientific and Technical Information of China (English)

    Botao Tan; Jing Yu; Ying Yin; Gongwei Jia; Wei Jiang; Lehua Yu

    2014-01-01

    Neural cell differentiation and maturation is a critical step during central nervous system devel-opment. The oligodendrocyte transcription family (Olig family) is known to be an important factor in regulating neural cell differentiation. Because of this, the Olig family also affects acute and chronic central nervous system diseases, including brain injury, multiple sclerosis, and even gliomas. Improved understanding about the functions of the Olig family in central nervous system development and disease will greatly aid novel breakthroughs in central nervous system diseases. This review investigates the role of the Olig family in central nervous system develop-ment and related diseases.

  7. Zebrafish forebrain and temporal conditioning

    OpenAIRE

    Cheng, Ruey-Kuang; Jesuthasan, Suresh J.; Penney, Trevor B.

    2014-01-01

    The rise of zebrafish as a neuroscience research model organism, in conjunction with recent progress in single-cell resolution whole-brain imaging of larval zebrafish, opens a new window of opportunity for research on interval timing. In this article, we review zebrafish neuroanatomy and neuromodulatory systems, with particular focus on identifying homologies between the zebrafish forebrain and the mammalian forebrain. The neuroanatomical and neurochemical basis of interval timing is summariz...

  8. Characterization of snakehead rhabdovirus infection in zebrafish (Danio rerio).

    Science.gov (United States)

    Phelan, Peter E; Pressley, Meagan E; Witten, P Eckhard; Mellon, Mark T; Blake, Sharon; Kim, Carol H

    2005-02-01

    The zebrafish, Danio rerio, has become recognized as a valuable model for the study of development, genetics, and toxicology. Recently, the zebrafish has been recognized as a useful model for infectious disease and immunity. In this study, the pathogenesis and antiviral immune response of zebrafish to experimental snakehead rhabdovirus (SHRV) infection was characterized. Zebrafish 24 h postfertilization to 30 days postfertilization were susceptible to infection by immersion in 10(6) 50% tissue culture infective doses (TCID50) of SHRV/ml, and adult zebrafish were susceptible to infection by intraperitoneal (i.p.) injection of 10(5) TCID50 of SHRV/ml. Mortalities exceeded 40% in infected fish, and clinical presentation of infection included petechial hemorrhaging, redness of the abdomen, and erratic swim behavior. Virus reisolation and reverse transcription-PCR analysis of the viral nucleocapsid gene confirmed the presence of SHRV. Histological sections of moribund embryonic and juvenile fish revealed necrosis of the pharyngeal epithelium and liver, in addition to congestion of the swim bladder by cell debris. Histopathology in adult fish injected i.p. was confined to the site of injection. The antiviral response in zebrafish was monitored by quantitative real-time PCR analysis of zebrafish interferon (IFN) and Mx expression. IFN and Mx levels were elevated in zebrafish exposed to SHRV, although expression and intensity differed with age and route of infection. This study is the first to examine the pathogenesis of SHRV infection in zebrafish. Furthermore, this study is the first to describe experimental infection of zebrafish embryos with a viral pathogen, which will be important for future experiments involving targeted gene disruption and forward genetic screens.

  9. Professional Group Development Trainers’ Personality Characteristics and Affective Profiles

    Directory of Open Access Journals (Sweden)

    Max eRapp Ricciardi

    2014-10-01

    Full Text Available Background: The Development of Groups and Leaders (UGL, provided by the Swedish National Defence College and mentored by UGL-trainers, is one of the most popular management programs among civilians in Sweden. However, there is a lack of scientific evidence regarding the training. We used the affective profile model (i.e., the combination of positive, PA, and negative affect, NA to mapp important markers of empowerment, self-awareness, adaptive coping skills, and maturity among the UGL-trainers. The aims were: (1 to compare profiles between UGL-trainers and managers/supervisors and (2 to investigate differences in personal characteristics.Method: UGL-trainers (N = 153 and the comparison group (104 Swedish Chiefs of Police completed an online survey on optimism, self-esteem, locus of control, and affect. The four profiles are: self-fulfilling (high PA, low NA, high affective (high PA, high NA, low affective (high PA, low NA, and self-destructive (low PA, high NA,Results: The self-fulfilling profile was more common among UGL-trainers (25.70% than among Chiefs of Police (19.20%. UGL-trainers, compared to Chiefs of Police, were more likely to express a self-fulling than a low affective profile (OR=2.22, p < .05 and a high affective than a low affective profile (OR=1.43, p <.001. UGL-trainers with a self-fulfilling profile, compared to those with a self-destructive profile, scored higher in optimism, higher in self-esteem, and lower in external locus of control. Conclusions: The probability of self-fulfilment rather than low affectivity was higher among UGL-trainers. Self-fulfilment was associated to markers of self-awareness and adaptive coping skills. However, the most common profile was the low affective, which is associated to low performance during stress, low degree of personal development, low degree of purpose in life, and low resilience. Hence, it might be important for UGL-trainers to have a continuos training in awareness after

  10. Dynamic focusing in the zebrafish beating heart

    Science.gov (United States)

    Andrés-Delgado, L.; Peralta, M.; Mercader, N.; Ripoll, J.

    2016-03-01

    Of the large amount of the animal models available for cardiac research, the zebrafish is extremely valuable due to its transparency during early stages of development. In this work a dual illumination laser sheet microscope with simultaneous dual camera imaging is used to image the beating heart at 200 fps, dynamically and selectively focusing inside the beating heart through the use of a tunable lens. This dual color dynamic focusing enables imaging with cellular resolution at unprecedented high frame rates, allowing 3D imaging of the whole beating heart of embryonic zebrafish.

  11. Development of Inter-Family Nuclear Transplant Embryos by Transplanting the Nuclei from the Loach Blastulae into the Non-Enucleated Zebrafish Eggs

    Institute of Scientific and Technical Information of China (English)

    李荔; 张士璀; 袁金铎; 李红岩

    2003-01-01

    The developmental fate of the pronuclei in recombined embryos obtained by transpla-nting the donor nuclei into the non-enucleated eggs remains controversial in the case of fish. In thepresent study, the nuclei from the loach blastulae were transplanted into non-enucleated zebrafisheggs, the resulting 9 inter-family nuclear transplant embryos developed to larval stages. Althoughthe development timing of the nuclear transplants resembled that of zebrafish, chromosome examina-tion revealed that most of the recombined embryos were diploids with karyotype characteristic of loa-ch, which was also proved by RAPD analysis. Moreover, 3 out of the 9 larval fish formed barb ru-diments specific to loach. It was therefore concluded that the nuclear transplant larval fish were in-ter-family nucleo-cytoplasmic hybrids; and that only the donor nuclei were involved in the develop-ment of the nuclear transplant embryos, while the pronuclei in the non-enucleated eggs were likelyautomatically eliminated during the development.

  12. Solute Carrier Family 26 Member a2 (slc26a2 Regulates Otic Development and Hair Cell Survival in Zebrafish.

    Directory of Open Access Journals (Sweden)

    Fei Liu

    Full Text Available Hearing loss is one of the most prevalent human birth defects. Genetic factors contribute to the pathogenesis of deafness. It is estimated that one-third of deafness genes have already been identified. The current work is an attempt to find novel genes relevant to hearing loss using guilt-by-profiling and guilt-by-association bioinformatics analyses of approximately 80 known non-syndromic hereditary hearing loss (NSHL genes. Among the 300 newly identified candidate deafness genes, slc26a2 were selected for functional studies in zebrafish. The slc26a2 gene was knocked down using an antisense morpholino (MO, and significant defects were observed in otolith patterns, semicircular canal morphology, and lateral neuromast distributions in morphants. Loss-of-function defects are caused primarily by apoptosis, and morphants are insensitive to sound stimulation and imbalanced swimming behaviours. Morphant defects were found to be partially rescued by co-injection of human SLC26A2 mRNA. All the results suggest that bioinformatics is capable of predicting new deafness genes and this showed slc26a2 is to be a critical otic gene whose dysfunction may induce hearing impairment.

  13. Alcohol exposure leads to unrecoverable cardiovascular defects along with edema and motor function changes in developing zebrafish larvae

    Science.gov (United States)

    Li, Xu; Gao, Aiai; Wang, Yanan; Chen, Man; Peng, Jun; Yan, Huaying; Zhao, Xin; Feng, Xizeng

    2016-01-01

    ABSTRACT Maternal alcohol consumption during pregnancy can cause a series of developmental disorders in the fetus called FAS (fetal alcohol syndrome). In the present study we exposed zebrafish embryos to 1% and 2% alcohol and observed the morphology of heart and blood vessels during and after exposure to investigate motor function alterations, and damage and recovery to the cardiovascular system. The results showed that alcohol exposure could induce heart deformation, slower heart rate, and incomplete blood vessels and pericardium. After stopping exposure, larvae exposed to 1% alcohol could recover only in heart morphology, but larvae in 2% alcohol could not recover either morphology or function of cardiovascular system. The edema-like characteristics in the 2% alcohol group became more conspicuous afterwards, with destruction in the dorsal aorta, coarctation in segmental arteries and a decrease in motor function, implying more serious unrecoverable cardiovascular defects in the 2% group. The damaged blood vessels in the 2% alcohol group resulted in an alteration in permeability and a decrease of blood volume, which were the causes of edema in pathology. These findings contribute towards a better understanding of ethanol-induced cardiovascular abnormalities and co-syndrome in patients with FAS, and warns against excessive maternal alcohol consumption during pregnancy. PMID:27422904

  14. Development of a Patient-Derived Xenograft (PDX of Breast Cancer Bone Metastasis in a Zebrafish Model

    Directory of Open Access Journals (Sweden)

    Laura Mercatali

    2016-08-01

    Full Text Available Bone metastasis is a complex process that needs to be better understood in order to help clinicians prevent and treat it. Xenografts using patient-derived material (PDX rather than cancer cell lines are a novel approach that guarantees more clinically realistic results. A primary culture of bone metastasis derived from a 67-year-old patient with breast cancer was cultured and then injected into zebrafish (ZF embryos to study its metastatic potential. In vivo behavior and results of gene expression analyses of the primary culture were compared with those of cancer cell lines with different metastatic potential (MCF7 and MDA-MB-231. The MCF7 cell line, which has the same hormonal receptor status as the bone metastasis primary culture, did not survive in the in vivo model. Conversely, MDA-MB-231 disseminated and colonized different parts of the ZF, including caudal hematopoietic tissues (CHT, revealing a migratory phenotype. Primary culture cells disseminated and in later stages extravasated from the vessels, engrafting into ZF tissues and reaching the CHT. Primary cell behavior reflected the clinical course of the patient’s medical history. Our results underline the potential for using PDX models in bone metastasis research and outline new methods for the clinical application of this in vivo model.

  15. Development of a Patient-Derived Xenograft (PDX) of Breast Cancer Bone Metastasis in a Zebrafish Model

    Science.gov (United States)

    Mercatali, Laura; La Manna, Federico; Groenewoud, Arwin; Casadei, Roberto; Recine, Federica; Miserocchi, Giacomo; Pieri, Federica; Liverani, Chiara; Bongiovanni, Alberto; Spadazzi, Chiara; de Vita, Alessandro; van der Pluijm, Gabri; Giorgini, Andrea; Biagini, Roberto; Amadori, Dino; Ibrahim, Toni; Snaar-Jagalska, Ewa

    2016-01-01

    Bone metastasis is a complex process that needs to be better understood in order to help clinicians prevent and treat it. Xenografts using patient-derived material (PDX) rather than cancer cell lines are a novel approach that guarantees more clinically realistic results. A primary culture of bone metastasis derived from a 67-year-old patient with breast cancer was cultured and then injected into zebrafish (ZF) embryos to study its metastatic potential. In vivo behavior and results of gene expression analyses of the primary culture were compared with those of cancer cell lines with different metastatic potential (MCF7 and MDA-MB-231). The MCF7 cell line, which has the same hormonal receptor status as the bone metastasis primary culture, did not survive in the in vivo model. Conversely, MDA-MB-231 disseminated and colonized different parts of the ZF, including caudal hematopoietic tissues (CHT), revealing a migratory phenotype. Primary culture cells disseminated and in later stages extravasated from the vessels, engrafting into ZF tissues and reaching the CHT. Primary cell behavior reflected the clinical course of the patient’s medical history. Our results underline the potential for using PDX models in bone metastasis research and outline new methods for the clinical application of this in vivo model. PMID:27556456

  16. Zebrafish models of idiopathic scoliosis link cerebrospinal fluid flow defects to spine curvature.

    Science.gov (United States)

    Grimes, D T; Boswell, C W; Morante, N F C; Henkelman, R M; Burdine, R D; Ciruna, B

    2016-06-10

    Idiopathic scoliosis (IS) affects 3% of children worldwide, yet the mechanisms underlying this spinal deformity remain unknown. Here we show that ptk7 mutant zebrafish, a faithful developmental model of IS, exhibit defects in ependymal cell cilia development and cerebrospinal fluid (CSF) flow. Transgenic reintroduction of Ptk7 in motile ciliated lineages prevents scoliosis in ptk7 mutants, and mutation of multiple independent cilia motility genes yields IS phenotypes. We define a finite developmental window for motile cilia in zebrafish spine morphogenesis. Notably, restoration of cilia motility after the onset of scoliosis blocks spinal curve progression. Together, our results indicate a critical role for cilia-driven CSF flow in spine development, implicate irregularities in CSF flow as an underlying biological cause of IS, and suggest that noninvasive therapeutic intervention may prevent severe scoliosis.

  17. Genetic determinants of hyaloid and retinal vasculature in zebrafish

    Directory of Open Access Journals (Sweden)

    Hyde David R

    2007-10-01

    Full Text Available Abstract Background The retinal vasculature is a capillary network of blood vessels that nourishes the inner retina of most mammals. Developmental abnormalities or microvascular complications in the retinal vasculature result in severe human eye diseases that lead to blindness. To exploit the advantages of zebrafish for genetic, developmental and pharmacological studies of retinal vasculature, we characterised the intraocular vasculature in zebrafish. Results We show a detailed morphological and developmental analysis of the retinal blood supply in zebrafish. Similar to the transient hyaloid vasculature in mammalian embryos, vessels are first found attached to the zebrafish lens at 2.5 days post fertilisation. These vessels progressively lose contact with the lens and by 30 days post fertilisation adhere to the inner limiting membrane of the juvenile retina. Ultrastructure analysis shows these vessels to exhibit distinctive hallmarks of mammalian retinal vasculature. For example, smooth muscle actin-expressing pericytes are ensheathed by the basal lamina of the blood vessel, and vesicle vacuolar organelles (VVO, subcellular mediators of vessel-retinal nourishment, are present. Finally, we identify 9 genes with cell membrane, extracellular matrix and unknown identity that are necessary for zebrafish hyaloid and retinal vasculature development. Conclusion Zebrafish have a retinal blood supply with a characteristic developmental and adult morphology. Abnormalities of these intraocular vessels are easily observed, enabling application of genetic and chemical approaches in zebrafish to identify molecular regulators of hyaloid and retinal vasculature in development and disease.

  18. Epithelial cell fate in the nephron tubule is mediated by the ETS transcription factors etv5a and etv4 during zebrafish kidney development.

    Science.gov (United States)

    Marra, Amanda N; Wingert, Rebecca A

    2016-03-15

    Kidney development requires the differentiation and organization of discrete nephron epithelial lineages, yet the genetic and molecular pathways involved in these events remain poorly understood. The embryonic zebrafish kidney, or pronephros, provides a simple and useful model to study nephrogenesis. The pronephros is primarily comprised of two types of epithelial cells: transportive and multiciliated cells (MCCs). Transportive cells occupy distinct tubule segments and are characterized by the expression of various solute transporters, while MCCs function in fluid propulsion and are dispersed in a "salt-and-pepper" fashion within the tubule. Epithelial cell identity is reliant on interplay between the Notch signaling pathway and retinoic acid (RA) signaling, where RA promotes MCC fate by inhibiting Notch activity in renal progenitors, while Notch acts downstream to trigger transportive cell formation and block adoption of an MCC identity. Previous research has shown that the transcription factor ets variant 5a (etv5a), and its closely related ETS family members, are required for ciliogenesis in other zebrafish tissues. Here, we mapped etv5a expression to renal progenitors that occupy domains where MCCs later emerge. Thus, we hypothesized that etv5a is required for normal development of MCCs in the nephron. etv5a loss of function caused a decline of MCC number as indicated by the reduced frequency of cells that expressed the MCC-specific markers outer dense fiber of sperm tails 3b (odf3b) and centrin 4 (cetn4), where rescue experiments partially restored MCC incidence. Interestingly, deficiency of ets variant 4 (etv4), a related gene that is broadly expressed in the posterior mesoderm during somitogenesis stages, also led to reduced MCC numbers, which were further reduced by dual etv5a/4 deficiency, suggesting that both of these ETS factors are essential for MCC formation and that they also might have redundant activities. In epistatic studies, exogenous RA

  19. Cep70 and Cep131 contribute to ciliogenesis in zebrafish embryos

    Directory of Open Access Journals (Sweden)

    Carl Matthias

    2009-03-01

    Full Text Available Abstract Background The centrosome is the cell's microtubule organising centre, an organelle with important roles in cell division, migration and polarity. However, cells can divide and flies can, for a large part of development, develop without them. Many centrosome proteins have been identified but the roles of most are still poorly understood. The centrioles of the centrosome are similar to the basal bodies of cilia, hair-like extensions of many cells that have important roles in cell signalling and development. In a number of human diseases, such Bardet-Biedl syndrome, centrosome/cilium proteins are mutated, leading to polycystic kidney disease, situs inversus, and neurological problems, amongst other symptoms. Results We describe zebrafish (Danio rerio embryos depleted for two uncharacterised, centrosome proteins, Cep70 and Cep131. The phenotype of these embryos resembles that of zebrafish mutants for intraflagellar transport proteins (IFTs, with kidney and ear development affected and left-right asymmetry randomised. These organs and processes are those affected in Bardet-Biedl syndrome and other similar diseases. Like these diseases, the root cause of the phenotype lies, in fact, in dysfunctional cilia, which are shortened but not eliminated in several tissues in the morphants. Centrosomes and basal bodies, on the other hand, are present. Both Cep70 and Cep131 possess a putative HDAC (histone deacetylase interacting domain. However, we could not detect in yeast two-hybrid assays any interaction with the deacetylase that controls cilium length, HDAC6, or any of the IFTs that we tested. Conclusion Cep70 and Cep131 contribute to ciliogenesis in many tissues in the zebrafish embryo: cilia are made in cep70 and cep131 morphant zebrafish embryos but are shortened. We propose that the role of these centrosomal/basal body proteins is in making the cilium and that they are involved in determination of the length of the axoneme.

  20. Zebrafish eda and edar mutants reveal conserved and ancestral roles of ectodysplasin signaling in vertebrates.

    Directory of Open Access Journals (Sweden)

    Matthew P Harris

    Full Text Available The genetic basis of the development and variation of adult form of vertebrates is not well understood. To address this problem, we performed a mutant screen to identify genes essential for the formation of adult skeletal structures of the zebrafish. Here, we describe the phenotypic and molecular characterization of a set of mutants showing loss of adult structures of the dermal skeleton, such as the rays of the fins and the scales, as well as the pharyngeal teeth. The mutations represent adult-viable, loss of function alleles in the ectodysplasin (eda and ectodysplasin receptor (edar genes. These genes are frequently mutated in the human hereditary disease hypohidrotic ectodermal dysplasia (HED; OMIM 224900, 305100 that affects the development of integumentary appendages such as hair and teeth. We find mutations in zebrafish edar that affect similar residues as mutated in human cases of HED and show similar phenotypic consequences. eda and edar are not required for early zebrafish development, but are rather specific for the development of adult skeletal and dental structures. We find that the defects of the fins and scales are due to the role of Eda signaling in organizing epidermal cells into discrete signaling centers of the scale epidermal placode and fin fold. Our genetic analysis demonstrates dose-sensitive and organ-specific response to alteration in levels of Eda signaling. In addition, we show substantial buffering of the effect of loss of edar function in different genetic backgrounds, suggesting canalization of this developmental system. We uncover a previously unknown role of Eda signaling in teleosts and show conservation of the developmental mechanisms involved in the formation and variation of both integumentary appendages and limbs. Lastly, our findings point to the utility of adult genetic screens in the zebrafish in identifying essential developmental processes involved in human disease and in morphological evolution.

  1. Zebrafish eda and edar Mutants Reveal Conserved and Ancestral Roles of Ectodysplasin Signaling in Vertebrates

    Science.gov (United States)

    Harris, Matthew P.; Rohner, Nicolas; Schwarz, Heinz; Perathoner, Simon; Konstantinidis, Peter; Nüsslein-Volhard, Christiane

    2008-01-01

    The genetic basis of the development and variation of adult form of vertebrates is not well understood. To address this problem, we performed a mutant screen to identify genes essential for the formation of adult skeletal structures of the zebrafish. Here, we describe the phenotypic and molecular characterization of a set of mutants showing loss of adult structures of the dermal skeleton, such as the rays of the fins and the scales, as well as the pharyngeal teeth. The mutations represent adult-viable, loss of function alleles in the ectodysplasin (eda) and ectodysplasin receptor (edar) genes. These genes are frequently mutated in the human hereditary disease hypohidrotic ectodermal dysplasia (HED; OMIM 224900, 305100) that affects the development of integumentary appendages such as hair and teeth. We find mutations in zebrafish edar that affect similar residues as mutated in human cases of HED and show similar phenotypic consequences. eda and edar are not required for early zebrafish development, but are rather specific for the development of adult skeletal and dental structures. We find that the defects of the fins and scales are due to the role of Eda signaling in organizing epidermal cells into discrete signaling centers of the scale epidermal placode and fin fold. Our genetic analysis demonstrates dose-sensitive and organ-specific response to alteration in levels of Eda signaling. In addition, we show substantial buffering of the effect of loss of edar function in different genetic backgrounds, suggesting canalization of this developmental system. We uncover a previously unknown role of Eda signaling in teleosts and show conservation of the developmental mechanisms involved in the formation and variation of both integumentary appendages and limbs. Lastly, our findings point to the utility of adult genetic screens in the zebrafish in identifying essential developmental processes involved in human disease and in morphological evolution. PMID:18833299

  2. Nutritional components affecting skeletal development in fish larvae

    OpenAIRE

    Cahu, Chantal; Zambonino, Jose-luis; Takeuchi, Toshio

    2003-01-01

    Marine fish larvae undergo major functional and morphological changes during the developmental stages and several factors can interfere with the normal development of larvae and affect fry quality. Skeletal malformations, such as spinal malformation-scoliosis, lordosis, coiled vertebral column-, missing or additional fin rays, bending opercle or jaw malformations, are frequently observed in hatchery-reared larvae. This paper reviews the effects of some nutritional components on skeletal devel...

  3. Investigating the factors affecting the investment decision in residential development.

    OpenAIRE

    Narang, Somil

    2007-01-01

    The purpose of this project is to provide a rare insight into the motivation behind residential property investors when looking to purchase an apartment. The factors driving demand preferences for housing are constantly changing, difficult to measure, and often deemed to be a complex bundle of attributes. The project attempts to answer the following questions: What are the factors affecting the investment decision in a Residential Development? To identify the significance and weight of su...

  4. Development of brain mechanisms for processing affective touch

    OpenAIRE

    Malin eBjornsdotter; Ilanit eGordon; Pelphrey, Kevin A.; Håkan eOlausson; Martha eKaiser

    2014-01-01

    Affective tactile stimulation plays a key role in the maturation of neural circuits, but the development of brain mechanisms processing touch is poorly understood. We therefore used functional magnetic resonance imaging (fMRI) to study brain responses to soft brush stroking of both glabrous (palm) and hairy (forearm) skin in healthy children (5-13 years), adolescents (14-17 years), and adults (25-35 years). Adult-defined regions-of-interests in the primary somatosensory cortex (SI), secondary...

  5. Survey of state water laws affecting coal slurry pipeline development

    Energy Technology Data Exchange (ETDEWEB)

    Rogozen, M.B.

    1980-11-01

    This report summarizes state water laws likely to affect the development of coal slurry pipelines. It was prepared as part of a project to analyze environmental issues related to energy transportation systems. Coal slurry pipelines have been proposed as a means to expand the existing transportation system to handle the increasing coal shipments that will be required in the future. The availability of water for use in coal slurry systems in the coal-producing states is an issue of major concern.

  6. Hypoxia Suppressed Copper Toxicity during Early Development in Zebrafish Embryos in a Process Mediated by the Activation of the HIF Signaling Pathway.

    Science.gov (United States)

    Fitzgerald, Jennifer A; Jameson, Hannah M; Fowler, Victoria H Dewar; Bond, Georgia L; Bickley, Lisa K; Webster, Tamsyn M Uren; Bury, Nic R; Wilson, Robert J; Santos, Eduarda M

    2016-04-19

    Hypoxia is a global and increasingly important stressor in aquatic ecosystems, with major impacts on biodiversity worldwide. Hypoxic waters are often contaminated with a wide range of chemicals but little is known about the interactions between these stressors. We investigated the effects of hypoxia on the responses of zebrafish (Danio rerio) embryos to copper, a widespread aquatic contaminant. We showed that during continuous exposures copper toxicity was reduced by over 2-fold under hypoxia compared to normoxia. When exposures were conducted during 24 h windows, hypoxia reduced copper toxicity during early development and increased its toxicity in hatched larvae. To investigate the role of the hypoxia signaling pathway on the suppression of copper toxicity during early development, we stabilized the hypoxia inducible factor (HIF) pathway under normoxia using a prolyl-4-hydroxylase inhibitor, dimethyloxalylglycine (DMOG) and demonstrated that HIF activation results in a strong reduction in copper toxicity. We also established that the reduction in copper toxicity during early development was independent of copper uptake, while after hatching, copper uptake was increased under hypoxia, corresponding to an increase in copper toxicity. These findings change our understanding of the current and future impacts of worldwide oxygen depletion on fish communities challenged by anthropogenic toxicants. PMID:27019216

  7. Older Siblings Affect Gut Microbiota Development in Early Childhood

    DEFF Research Database (Denmark)

    Laursen, Martin Frederik; Zachariassen, Gitte; Bahl, Martin Iain;

    Background: Evidence suggests that early life infections, presence of older siblings and furred pets in the household affect the risk of developing allergic diseases through altered microbial exposure. Recently, low gut microbial diversity during infancy has also been linked with later developmen......-associated gut microbial changes influence development of allergies later in childhood.   The work has recently (July 2015) been accepted for publication in BMC Microbiology...... early childhood, which could contribute to the substantiation of the hygiene hypothesis. However, no associations were found between gut microbiota and atopic symptoms of eczema and asthmatic bronchitis during early childhood and thus further studies are required to elucidate whether sibling...

  8. The Factors that Affect Science Teachers' Participation in Professional Development

    Science.gov (United States)

    Roux, Judi Ann

    Scientific literacy for our students and the possibilities for careers available in Science, Technology, Engineering, and Mathematics (STEM) areas are important topics for economic growth as well as global competitiveness. The achievement of students in science learning is dependent upon the science teachers' effectiveness and experienced science teachers depend upon relevant professional development experiences to support their learning. In order to understand how to improve student learning in science, the learning of science teachers must also be understood. Previous research studies on teacher professional development have been conducted in other states, but Minnesota science teachers comprised a new and different population from those previously studied. The purpose of this two-phase mixed methods study was to identify the current types of professional development in which experienced, Minnesota secondary science teachers participated and the factors that affect their participation in professional development activities. The mixed-methods approach s utilized an initial online survey followed by qualitative interviews with five survey respondents. The results of the quantitative survey and the qualitative interviews indicated the quality of professional development experiences and the factors which affected the science teachers' participation in professional development activities. The supporting and inhibiting factors involved the availability of resources such as time and money, external relationships with school administrators, teacher colleagues, and family members, and personal intrinsic attributes such as desires to learn and help students. This study also describes implications for science teachers, school administrators, policymakers, and professional development providers. Recommendations for future research include the following areas: relationships between and among intrinsic and extrinsic factors, science-related professional development activities

  9. Carbonic anhydrase 5 regulates acid-base homeostasis in zebrafish.

    Directory of Open Access Journals (Sweden)

    Ruben Postel

    Full Text Available The regulation of the acid-base balance in cells is essential for proper cellular homeostasis. Disturbed acid-base balance directly affects cellular physiology, which often results in various pathological conditions. In every living organism, the protein family of carbonic anhydrases regulate a broad variety of homeostatic processes. Here we describe the identification, mapping and cloning of a zebrafish carbonic anhydrase 5 (ca5 mutation, collapse of fins (cof, which causes initially a collapse of the medial fins followed by necrosis and rapid degeneration of the embryo. These phenotypical characteristics can be mimicked in wild-type embryos by acetazolamide treatment, suggesting that CA5 activity in zebrafish is essential for a proper development. In addition we show that CA5 regulates acid-base balance during embryonic development, since lowering the pH can compensate for the loss of CA5 activity. Identification of selective modulators of CA5 activity could have a major impact on the development of new therapeutics involved in the treatment of a variety of disorders.

  10. Cloning and expression of new microRNAs from zebrafish

    OpenAIRE

    Kloosterman, Wigard P.; Steiner, Florian A.; Berezikov, Eugene; de Bruijn, Ewart; Van de Belt, Jose; Verheul, Mark; Cuppen, Edwin; Ronald H A Plasterk

    2006-01-01

    MicroRNAs (miRNAs) play an important role in development and regulate the expression of many animal genes by post-transcriptional gene silencing. Here we describe the cloning and expression of new miRNAs from zebrafish. By high-throughput sequencing of small-RNA cDNA libraries from 5-day-old zebrafish larvae and adult zebrafish brain we found 139 known miRNAs and 66 new miRNAs. For 65 known miRNAs and for 11 new miRNAs we also cloned the miRNA star sequence. We analyzed the temporal and spati...

  11. ZEBRAFISH AS BIOINDICATOR OF EPIGENETIC FACTORS PRESENT IN DRINKING WATER THAT MAY AFFECT DEVELOPMENT AND REPRODUCTIVE FUNCTION

    OpenAIRE

    MARTÍNEZ SALES, MARÍA ISABEL

    2016-01-01

    [EN] Emerging organic pollutants include a wide array of different compounds. The main characteristic of these numerous substances is that they do not need to be persistent in the environment to cause negative effects, since their high transformation and removal rates can be offset by their continuous introduction into the environment. One of the main sources of these contaminants is untreated urban wastewaters and wastewater treatment effluents. Most current wastewater treatment plants are n...

  12. Zebrafish: A Versatile Animal Model for Fertility Research

    Science.gov (United States)

    Hoo, Jing Ying; Kumari, Yatinesh; Shaikh, Mohd Farooq; Hue, Seow Mun

    2016-01-01

    The utilization of zebrafish in biomedical research is very common in the research world nowadays. Today, it has emerged as a favored vertebrate organism for the research in science of reproduction. There is a significant growth in amount numbers of scientific literature pertaining to research discoveries in reproductive sciences in zebrafish. It has implied the importance of zebrafish in this particular field of research. In essence, the current available literature has covered from the very specific brain region or neurons of zebrafish, which are responsible for reproductive regulation, until the gonadal level of the animal. The discoveries and findings have proven that this small animal is sharing a very close/similar reproductive system with mammals. More interestingly, the behavioral characteristics and along with the establishment of animal courtship behavior categorization in zebrafish have laid an even stronger foundation and firmer reason on the suitability of zebrafish utilization in research of reproductive sciences. In view of the immense importance of this small animal for the development of reproductive sciences, this review aimed at compiling and describing the proximate close similarity of reproductive regulation on zebrafish and human along with factors contributing to the infertility, showing its versatility and its potential usage for fertility research.

  13. Development of affective modelling competencies in primary school learners

    Directory of Open Access Journals (Sweden)

    Piera Biccard

    2011-10-01

    Full Text Available Learner affect and beliefs about mathematics are complex and multifaceted aspects of mathematical learning. Traditional teaching and learning approaches in mathematics education often result in problematic beliefs about mathematics. Since beliefs influence what learners learn and how they deal with learning mathematics, it is essential that the roles of beliefs and affect in mathematics classrooms are carefully examined. In solving modelling problems, learners and teachers take on new roles in the classroom: learners are placed in an active, self-directing situation in which they solve real-world problems. When learners engage in modelling tasks, they display and integrate cognitive, meta-cognitive and affective competencies. A modelling approach therefore allows one to detect learner beliefs in an authentic learning environment. Will this environment lead to students having more positive and productive dispositions towards mathematics? This article presents partial results of a study documenting the development of modelling competencies in learners working in groups over a period of 12 weeks. Through a design research approach, 12 learners working in groups solved three modelling problems, and transcriptions of learner interactions, questionnaires and informal interviews revealed that learner beliefs improved over this short period when exposed to modelling tasks. The results are encouraging, and may provide mathematics education with an avenue to develop more positive learner beliefs in mathematics.

  14. Chemical Screening in Zebrafish.

    Science.gov (United States)

    Brady, Colleen A; Rennekamp, Andrew J; Peterson, Randall T

    2016-01-01

    Phenotypic small molecule screens in zebrafish have gained popularity as an unbiased approach to probe biological processes. In this chapter we outline basic methods for performing chemical screens with larval zebrafish including breeding large numbers of embryos, plating larval fish into multi-well dishes, and adding small molecules to these wells. We also highlight important considerations when designing and interpreting the results of a phenotypic screen and possible follow-up approaches, including popular methods used to identify the mechanism of action of a chemical compound. PMID:27464797

  15. Significant Influence on Nervous System Development in dync1h1-knockout Zebrafish Via CRISPR/Cas9 Technology%利用CRISPR/Cas9技术敲除dync1h1基因显著影响斑马鱼神经系统发育

    Institute of Scientific and Technical Information of China (English)

    钱亭; 陈向军; 邓波; 张祥; 王旭

    2016-01-01

    细胞质动力蛋白(cytoplasmic dynein)是神经系统内重要的马达蛋白复合体,负责轴浆内重要物质从轴索末端到神经细胞胞体的逆行性运输.重链蛋白二聚体1 (dynein l heavy chain 1,DYNC1H1)是dynein复合体的核心结构,其是否正常表达与神经系统发育及神经退行性疾病的发生存在密切联系.该研究运用CRISPR/Cas9基因编辑技术在斑马鱼中对dync1h1基因进行敲除,并将dync1h1突变体与转基因鱼Tg(HuC:mCherry;FLK1:eGFP)外交,获得带有荧光标记且突变稳定遗传的斑马鱼种系.表型鉴定提示,dync1h1杂合突变斑马鱼发育较野生型斑马鱼无明显异常;而dync1h1纯合突变斑马鱼胚胎正常形态发育受到严重抑制,dync1h1基因表达量及Dync1h1蛋白质含量均有明显下降,脊髓肿胀,脊髓神经细胞数目显著减少,背部血管存在发育畸形,并于受精后5~6d(days post fertilization,dpf)死亡.该研究利用CRISPR/Cas9技术成功建立了dync1h1基因敲除的斑马鱼模型,为dync1h1突变致病机制相关的信号通路或者分子网络间相互作用的探索打下了基础.%In nervous system,cytoplasmic dynein is an important motor protein complex,which is responsible for the axonal retrograde transportation.Dynein complex drives the movement of cargos from the synapse along the axon and back to the cell body.As the core component of dynein complex,the dimer of heavy chain (DYNC1H1) is highly conserved and has housekeeping functions.Mutants in dync1h1 may result in many kinds of neurodegeneration diseases.This study generated and verified a heterozygous dync1h1-knockout zebrafish model by using CRISPR/Cas9 genome-editing technology,then outcrossed the heterozygous dync1h1-knockout zebrafish with wild-type and transgenic zebrafish (Tg[HuC:mCherry;FLK1:eGFP]) in order to obtain a stable heterozygous dync1h1-knockout line.The results showed that there was no detectable difference in development between the heterozygous

  16. A non-canonical function of telomerase RNA in the regulation of developmental myelopoiesis in zebrafish

    Science.gov (United States)

    Alcaraz-Pérez, Francisca; García-Castillo, Jesús; García-Moreno, Diana; López-Muñoz, Azucena; Anchelin, Monique; Angosto, Diego; Zon, Leonard I.; Mulero, Victoriano; Cayuela, María L.

    2014-02-01

    Dyskeratosis congenita (DC) is an inherited disorder with mutations affecting telomerase or telomeric proteins. DC patients usually die of bone marrow failure. Here we show that genetic depletion of the telomerase RNA component (TR) in the zebrafish results in impaired myelopoiesis, despite normal development of haematopoietic stem cells (HSCs). The neutropenia caused by TR depletion is independent of telomere length and telomerase activity. Genetic analysis shows that TR modulates the myeloid-erythroid fate decision by controlling the levels of the master myeloid and erythroid transcription factors spi1 and gata1, respectively. The alteration in spi1 and gata1 levels occurs through stimulation of gcsf and mcsf. Our model of TR deficiency in the zebrafish illuminates the non-canonical roles of TR, and could establish therapeutic targets for DC.

  17. Lactobacillus rhamnosus accelerates zebrafish backbone calcification and gonadal differentiation through effects on the GnRH and IGF systems.

    Directory of Open Access Journals (Sweden)

    Matteo A Avella

    Full Text Available Endogenous microbiota play essential roles in the host's immune system, physiology, reproduction and nutrient metabolism. We hypothesized that a continuous administration of an exogenous probiotic might also influence the host's development. Thus, we treated zebrafish from birth to sexual maturation (2-months treatment with Lactobacillus rhamnosus, a probiotic species intended for human use. We monitored for the presence of L. rhamnosus during the entire treatment. Zebrafish at 6 days post fertilization (dpf exhibited elevated gene expression levels for Insulin-like growth factors -I and -II, Peroxisome proliferator activated receptors -α and -β, VDR-α and RAR-γ when compared to untreated-10 days old zebrafish. Using a gonadotropin-releasing hormone 3 GFP transgenic zebrafish (GnRH3-GFP, higher GnRH3 expression was found at 6, 8 and 10 dpf upon L. rhamnosus treatment. The same larvae exhibited earlier backbone calcification and gonad maturation. Noteworthy in the gonad development was the presence of first testes differentiation at 3 weeks post fertilization in the treated zebrafish population -which normally occurs at 8 weeks- and a dramatic sex ratio modulation (93% females, 7% males in control vs. 55% females, 45% males in the treated group. We infer that administration of L. rhamnosus stimulated the IGF system, leading to a faster backbone calcification. Moreover we hypothesize a role for administration of L. rhamnosus on GnRH3 modulation during early larval development, which in turn affects gonadal development and sex differentiation. These findings suggest a significant role of the microbiota composition on the host organism development profile and open new perspectives in the study of probiotics usage and application.

  18. 氯苯对斑马鱼胚胎发育和仔鱼的毒性效应研究%Toxic Effects of Chlorobenzene on Embryonic Development and Larva of Zebrafish

    Institute of Scientific and Technical Information of China (English)

    刘在平; 张松林; 杨敬辉

    2012-01-01

    选取健康的雌雄斑马鱼按1:1或1:2的比例进行交配产卵.采用静态法,以丙酮为助溶剂,分别用不同浓度的CB进行斑马鱼受精卵和刚平衡游动仔鱼的暴露试验,记录胚胎孵化数和胚胎、仔鱼畸形数以及仔鱼死亡数.不同浓度的CB可导致斑马鱼胚胎孵化率降低及孵出的仔鱼畸形率增加,且毒性呈现剂量-效应关系.当CB浓度高于0.88μg/L时,斑马鱼胚胎及其孵出的仔鱼畸形率开始增加;当CB为108.9μg/L时,暴露24 h的胚胎出现全致畸效应.能平衡游动的斑马仔鱼对CB的毒性也很敏感,24 h、72 h和96 h的LC50值分别为95.35、80.51和62.28 μg/L;110.0μg/LCB使处理24h的仔鱼全部死亡.较低浓度的CB就使斑马鱼胚胎发育畸形;其对仔鱼的毒性也很显著,达到一定浓度可使其死亡.%Toxicity of chlorobenzene(CB) on the embryonic development and larva of zebrafish were studied. Healthy male and female zebrafishes were selected to mate and oviposit in the proportion of 1:1 or 1:2. The exposure test of CB on fertilized eggs and just balance-swimming larva of zebrafish was made with static method, and acetone was used as cosolvent. Numbers of embryonic hatching, embryo and larval abnormality and larval death were counted. Results indicated that CB of different concentrations could reduce the embryonic hatching rate and increase the hatched larval deformity rate, and toxic effect was dose-dependent. When CB concentration was higher than 0.88 μg/L, malformation rate of zebrafish embryos and hatched larval began to increase. As for CB 108.9 μg/L, teratogenic effect was found for all embryos after 24 h. The just balance-swimming zebrafish larva was sensitive to CB, and LC50 of 24 h, 72 h, 96 h was 95.35,80.51 and 62.28 μg/L respectively. When CB concentration was 110.0 μg/L, all larvae were dead during 24 h. CB was toxic on zebrafish embryonic development even at lower concentrations. Toxicity of CB to zebrafish larva was

  19. Antiangiogenic cancer drug using the zebrafish model.

    Science.gov (United States)

    Santoro, Massimo M

    2014-09-01

    The process of de novo vessel formation, called angiogenesis, is essential for tumor progression and spreading. Targeting of molecular pathways involved in such tumor angiogenetic processes by using specific drugs or inhibitors is important for developing new anticancer therapies. Drug discovery remains to be the main focus for biomedical research and represents the essence of antiangiogenesis cancer research. To pursue these molecular and pharmacological goals, researchers need to use animal models that facilitate the elucidation of tumor angiogenesis mechanisms and the testing of antiangiogenic therapies. The past few years have seen the zebrafish system emerge as a valid model organism to study developmental angiogenesis and, more recently, as an alternative vertebrate model for cancer research. In this review, we will discuss why the zebrafish model system has the advantage of being a vertebrate model equipped with easy and powerful transgenesis as well as imaging tools to investigate not only physiological angiogenesis but also tumor angiogenesis. We will also highlight the potential of zebrafish for identifying antitumor angiogenesis drugs to block tumor development and progression. We foresee the zebrafish model as an important system that can possibly complement well-established mouse models in cancer research to generate novel insights into the molecular mechanism of the tumor angiogenesis. PMID:24903092

  20. Biomimetic nanomaterials: Development of protein coated nanoceria as a potential antioxidative nano-agent for the effective scavenging of reactive oxygen species in vitro and in zebrafish model.

    Science.gov (United States)

    Bhushan, Bharat; Nandhagopal, Soundharapandiyan; Rajesh Kannan, Rajaretinam; Gopinath, P

    2016-10-01

    Reactive oxygen species (ROS) induced oxidative stress is one of the major factors responsible for initiation of several intracellular toxic events that leads to cell death. Antioxidant enzymes defence system of the body is responsible for maintaining the oxidative balance and cellular homeostasis. Several diseases are promoted by the excessive oxidative stress caused by the impaired antioxidant defence system that leads to oxidant/antioxidant imbalance in the body. In order to restore or precise the aberrant antioxidant system, a large number of catalytic nanoparticles has been screened so far. Exceptional antioxidative activity of nanoceria made it as a potential antioxidative nano-agent for the effective scavenging of toxic ROS. In this work albumin coated nanoceria (ANC) was synthesized and further characterised by various physicochemical techniques. The antioxidant and superoxide dismutase (SOD) assay confirm that the albumin coating do not alter the antioxidant potential of ANC. The biocompatibility and protective efficacy of ANC against oxidative stress was investigated both in vitro and in vivo in human lung epithelial (L-132) cells and zebrafish embryos, respectively. The inductively coupled plasma mass spectrometry (ICP-MS), transmission electron microscopy (TEM) and field emission scanning electron microscope (FE-SEM) analysis corroborates the uptake of ANC by the cells. Furthermore, the semi-quantitative gene expression studies confirmed that the ANC successfully defend the cells against oxidative stress by preserving the antioxidant system of the cells. Thus, the current work open up a new avenue for the development of improved antioxidant nano-drug therapies. PMID:27388966

  1. Toxic effects of aflatoxin B1 on embryonic development of zebrafish (Danio rerio): potential activity of piceatannol encapsulated chitosan/poly (lactic acid) nanoparticles.

    Science.gov (United States)

    Dhanapal, Jeevitha; Ravindrran, Malathy Balaraman; Baskar, Santhosh K

    2015-01-01

    The aim was to analyse the efficacy of piceatannol (PIC) loaded chitosan (CS)/poly(lactic acid)(PLA) nanoparticles (CS/PLA-PIC NPs) in zebra fish embryos exposed to aflatoxin B1 (AFB1). FTIR confirmed the chemical interaction between the polymers and drug. SEM showed the size of CS/PLA-PIC NPs approximately 87 to 200nm, compared to CS-PLA NPs of 150nm size. The size was further affirmed as 127nm (CS-PLA NPs) and 147nm (CS/PLA-PIC NPs) by zetasizer depiction. CS/PLA-PIC NPs have not illustrated toxicity at high concentrations when tested in zebrafish embryos. AFB1 wielded their toxic effects on the survival, spontaneous movement, hatching and heart rate and development of embryos were observed in both time and dose-dependent manner at 4μM. Our results suggested that the addition of CS/PLA-PIC NPs increases the survival, heart rate and hatching in time dependent manner at the dosage of 20μg/ml. These hopeful results may prompt the advancement of drug encapsulated polymeric nanoparticles which may have the potential role in improving the AFB1 induced toxicity in humans as well. PMID:25322988

  2. Endocrine-disrupting effect of the ultraviolet filter benzophenone-3 in zebrafish, Danio rerio.

    Science.gov (United States)

    Kinnberg, Karin L; Petersen, Gitte I; Albrektsen, Mette; Minghlani, Mita; Awad, Suad Mohamud; Holbech, Bente F; Green, John W; Bjerregaard, Poul; Holbech, Henrik

    2015-12-01

    The chemical ultraviolet (UV) filter benzophenone-3 (BP-3) is suspected to be an endocrine disruptor based on results from in vitro and in vivo testing. However, studies including endpoints of endocrine adversity are lacking. The present study investigated the potential endocrine-disrupting effects of BP-3 in zebrafish (Danio rerio) in the Fish Sexual Development Test (Organisation for Economic Co-operation and Development TG 234) and a 12-d adult male zebrafish study. In TG 234, exposure from 0 d to 60 d posthatch caused a monotone dose-dependent skewing of the phenotypic sex ratio toward fewer males and more female zebrafish (no observed effect concentration [NOEC]: 191 μg/L, lowest observed effect concentration [LOEC]: 388 μg/L). Besides, gonad maturation was affected in both female fish (NOEC 191 μg/L, LOEC 388 μg/L) and male fish (NOEC 388 μg/L, LOEC 470 μg/L). Exposure to BP-3 did not affect the vitellogenin concentration in TG 234. After 12 d exposure of adult male zebrafish, a slight yet significant increase in the vitellogenin concentration was observed at 268 μg/L but not at 63 μg/L and 437 μg/L BP-3. Skewing of the sex ratio is a marker of an endocrine-mediated mechanism as well as a marker of adversity, and therefore the conclusion of the present study is that BP-3 is an endocrine-disrupting chemical in accordance with the World Health Organization's definition. PMID:26118430

  3. Loss of col8a1a function during zebrafish embryogenesis results in congenital vertebral malformations.

    Science.gov (United States)

    Gray, Ryan S; Wilm, Thomas P; Smith, Jeff; Bagnat, Michel; Dale, Rodney M; Topczewski, Jacek; Johnson, Stephen L; Solnica-Krezel, Lilianna

    2014-02-01

    Congenital vertebral malformations (CVM) occur in 1 in 1000 live births and in many cases can cause spinal deformities, such as scoliosis, and result in disability and distress of affected individuals. Many severe forms of the disease, such as spondylocostal dystostosis, are recessive monogenic traits affecting somitogenesis, however the etiologies of the majority of CVM cases remain undetermined. Here we demonstrate that morphological defects of the notochord in zebrafish can generate congenital-type spine defects. We characterize three recessive zebrafish leviathan/col8a1a mutant alleles ((m531, vu41, vu105)) that disrupt collagen type VIII alpha1a (col8a1a), and cause folding of the embryonic notochord and consequently adult vertebral column malformations. Furthermore, we provide evidence that a transient loss of col8a1a function or inhibition of Lysyl oxidases with drugs during embryogenesis was sufficient to generate vertebral fusions and scoliosis in the adult spine. Using periodic imaging of individual zebrafish, we correlate focal notochord defects of the embryo with vertebral malformations (VM) in the adult. Finally, we show that bends and kinks in the notochord can lead to aberrant apposition of osteoblasts normally confined to well-segmented areas of the developing vertebral bodies. Our results afford a novel mechanism for the formation of VM, independent of defects of somitogenesis, resulting from aberrant bone deposition at regions of misshapen notochord tissue.

  4. Zebrafish (Danio rerio): A Potential Model for Toxinological Studies.

    Science.gov (United States)

    Vargas, Rafael Antonio; Sarmiento, Karen; Vásquez, Isabel Cristina

    2015-10-01

    Zebrafish are an emerging basic biomedical research model that has multiple advantages compared with other research models. Given that biotoxins, such as toxins, poisons, and venoms, represent health hazards to animals and humans, a low-cost biological model that is highly sensitive to biotoxins is useful to understand the damage caused by such agents and to develop biological tests to prevent and reduce the risk of poisoning in potential cases of bioterrorism or food contamination. In this article, a narrative review of the general aspects of zebrafish as a model in basic biomedical research and various studies in the field of toxinology that have used zebrafish as a biological model are presented. This information will provide useful material to beginner students and researchers who are interested in developing toxinological studies with the zebrafish model. PMID:26196742

  5. Zebrafish as a model for bioavailability testing of over the counter drug

    Directory of Open Access Journals (Sweden)

    Sivamani S

    2013-06-01

    Full Text Available Zebrafish (Danio rerio has been an important model organism in a variety of biological disciplines. Presently it is well suited for studies in genetics, toxicology, behavioural neuroscience and developmental biology. Zebrafish embryos exhibit unique characteristics, including ease of maintenance and drug administration, short reproductive cycle, and embryo transparency that permits visual assessment of developing cells and organs. Because of these advantages, zebrafish bioassays are cheaper and faster than mouse assays, and are suitable for large-scale drug screening. In the present study, we investigate bioavailability of different drugs in adult zebrafish and compared our studies with fish fry. The effect of drug compounds on fish fry and in blood and liver of adult zebrafish were studied through thin layer chromatography (TLC. We hopeful that the use of these techniques or methods will make the zebrafish a prominent model in drug discovery and development research in the forthcoming years.

  6. How Stock Markets Development Affect Endogenous Growth Theory

    Directory of Open Access Journals (Sweden)

    Najeb Masoud

    2013-10-01

    Full Text Available This paper can bedescribed as a significant exploratory study that will provide a significantcontribution to knowledge to consider crucial issues which need to be barriersto understanding or a temptation/ requirement to judge some practices as‘better’ than others for stock market development effective approach andimplement successful stock market performance and economic growth. Recentanalysis of the link between financial development and growth, gained frominsights acquired as a result of using the technique of endogenous growthmodels, has illustrated that growth without exogenous technical progress andthat growth rates could be related to technology, income distribution andinstitutional arrangements. This provides the theoretical background thatempirical studies have lacked; illustrating that financial intermediationaffects the level of economic growth. Resulting models have provided newimpetus to empirical research of the effects of financial development. Thebirth of the new endogenous growth theory has facilitated the development ofimproved growth models where the long-term rate could be affected by a numberof elements. These included technology, education and health policies in theprocess of economic development, capital accumulation, government policies andinstitutional activities in the role of financial development in economicgrowth.

  7. ZEBRAFISH CHROMOSOME-BANDING

    NARCIS (Netherlands)

    PIJNACKER, LP; FERWERDA, MA

    1995-01-01

    Banding techniques were carried out on metaphase chromosomes of zebrafish (Danio rerio) embryos. The karyotypes with the longest chromosomes consist of 12 metacentrics, 26 submetacentrics, and 12 subtelocentrics (2n = 50). All centromeres are C-band positive. Eight chromosomes have a pericentric C-b

  8. Cognitive aging in zebrafish.

    Directory of Open Access Journals (Sweden)

    Lili Yu

    Full Text Available BACKGROUND: Age-related impairments in cognitive functions represent a growing clinical and social issue. Genetic and behavioral characterization of animal models can provide critical information on the intrinsic and environmental factors that determine the deterioration or preservation of cognitive abilities throughout life. METHODOLOGY/PRINCIPAL FINDINGS: Behavior of wild-type, mutant and gamma-irradiated zebrafish (Danio rerio was documented using image-analysis technique. Conditioned responses to spatial, visual and temporal cues were investigated in young, middle-aged and old animals. The results demonstrate that zebrafish aging is associated with changes in cognitive responses to emotionally positive and negative experiences, reduced generalization of adaptive associations, increased stereotypic and reduced exploratory behavior and altered temporal entrainment. Genetic upregulation of cholinergic transmission attenuates cognitive decline in middle-aged achesb55/+ mutants, compared to wild-type siblings. In contrast, the genotoxic stress of gamma-irradiation accelerates the onset of cognitive impairment in young zebrafish. CONCLUSIONS/SIGNIFICANCE: These findings would allow the use of powerful molecular biological resources accumulated in the zebrafish field to address the mechanisms of cognitive senescence, and promote the search for therapeutic strategies which may attenuate age-related cognitive decline.

  9. Regeneration of Zebrafish CNS: Adult Neurogenesis.

    Science.gov (United States)

    Ghosh, Sukla; Hui, Subhra Prakash

    2016-01-01

    Regeneration in the animal kingdom is one of the most fascinating problems that have allowed scientists to address many issues of fundamental importance in basic biology. However, we came to know that the regenerative capability may vary across different species. Among vertebrates, fish and amphibians are capable of regenerating a variety of complex organs through epimorphosis. Zebrafish is an excellent animal model, which can repair several organs like damaged retina, severed spinal cord, injured brain and heart, and amputated fins. The focus of the present paper is on spinal cord regeneration in adult zebrafish. We intend to discuss our current understanding of the cellular and molecular mechanism(s) that allows formation of proliferating progenitors and controls neurogenesis, which involve changes in epigenetic and transcription programs. Unlike mammals, zebrafish retains radial glia, a nonneuronal cell type in their adult central nervous system. Injury induced proliferation involves radial glia which proliferate, transcribe embryonic genes, and can give rise to new neurons. Recent technological development of exquisite molecular tools in zebrafish, such as cell ablation, lineage analysis, and novel and substantial microarray, together with advancement in stem cell biology, allowed us to investigate how progenitor cells contribute to the generation of appropriate structures and various underlying mechanisms like reprogramming.

  10. Regeneration of Zebrafish CNS: Adult Neurogenesis

    Directory of Open Access Journals (Sweden)

    Sukla Ghosh

    2016-01-01

    Full Text Available Regeneration in the animal kingdom is one of the most fascinating problems that have allowed scientists to address many issues of fundamental importance in basic biology. However, we came to know that the regenerative capability may vary across different species. Among vertebrates, fish and amphibians ar