WorldWideScience

Sample records for affects yeast cell

  1. Parameters affecting methanol utilization by yeasts

    Energy Technology Data Exchange (ETDEWEB)

    Foda, M.S.; El-Masry, H.G.

    1981-01-01

    Screening of 28 yeast cultures, representing 22 species of various yeasts, with respect to their capabilities to assimilate methanol, has shown that this property was mostly found in certain species of the two genera Hansenula and Candida. When methanol was used as a sole carbon source for a methanol-adapted strain of Hansenula polymorpha, a linear yield response could be obtained with increasing alcohol up to 2% concentration. The amount of inoculum proved to be the decisive factor in determining a priori the ability of the organism to grow at 6% methanol as final concentration. The optimum pH values for growth ranged between 4.5-5.5 with no growth at pH 6.5 or higher. A marked growth stimulation was obtained when the medium was supplied with phosphate up to 0.08 M as final concentration. Within the nitrogen sources tested, corn steep liquor concentrate gave the highest yield of cells. The significance of the obtained results are discussed with reference to feasibilities of application.

  2. Genetic and physiological factors affecting repair and mutagenesis in yeast

    Energy Technology Data Exchange (ETDEWEB)

    Lemontt, J F

    1979-01-01

    Current views of DNA repair and mutagenesis in the yeast Saccharomyces cerevisiae are discussed in the light of recent data and with emphasis on the isolation and characterization of genetically well-defined mutations that affect DNA metabolism in general (including replication and recombination). Various pathways of repair are described, particularly in relation to their imvolvement in mutagenic mechanisms. In addition to genetic control, certain physiological factors such as cell age, DNA replication, and the regulatory state of the mating-type locus are shown to also play a role in repair and mutagenesis.

  3. Genetic and physiological factors affecting repair and mutagenesis in yeast

    Energy Technology Data Exchange (ETDEWEB)

    Lemontt, J F

    1979-01-01

    Current views of DNA repair and mutagenesis in the yeast Saccharomyces cerevisiae are discussed in the light of recent data, and with emphasis on the isolation and characterization of genetically well-defined mutations that affect DNA metabolism in general (including replication and recombination). Various pathways of repair are described particularly in relation to their involvement in mutagenic mechanisms. In addition to genetic control, certain physiological factors such as cell age, DNA replication, and the regulatory state of the mating-type locus, are shown to also play a role in repair and mutagenesis.

  4. Nonlinear Dielectric Properties of Yeast Cells Cultured in Different Environmental Conditions

    Science.gov (United States)

    Kawanishi, Gomon; Fukuda, Naoki; Muraji, Masafumi

    The harmonics of the electric current through yeast suspensions, the nonlinear dielectric properties of yeast cells, have particular patterns according to the biological activity of the cells and the measurement of these patterns is a technique for determining the activity of living cells. The concentration of glucose and oxygen in yeast culture medium influences the manifestation of fermentation or respiration of yeast cells. Measurements were made with yeast cells (Saccharomyces cerevisiae) cultured aerobically and anaerobically in sufficient glucose concentration, aerobic fermentation and anaerobic fermentation, and aerobically in limited glucose concentration, respiration. The results showed that the harmonics were barely apparent for yeast cells in aerobic fermentation and respiratory; however, cells in the anaerobic fermentation displayed substantial third and fifth harmonics. We can say that environmental condition affects the yeast cells' nonlinear properties, from another viewpoint, the measurements of the nonlinear properties are available to determine the activity of yeast cells adjusted to the conditions of their cultivation.

  5. Comet assay on tetraploid yeast cells

    DEFF Research Database (Denmark)

    Rank, Jette; Syberg, Kristian; Jensen, Klara

    2009-01-01

    Tetraploid yeast cells (Saccharomyces cerevisiae) were used in the comet assay with the intention of developing a new, fast and easy assay for detecting environmental genotoxic agents without using higher organisms. Two DNA-damaging chemicals, H2O2 and acrylamide, together with wastewater from...... three municipal treatment plants were tested for their effect on the yeast-cell DNA. The main problem with using yeast in the comet assay is the necessity to degrade the cell wall. This was achieved by using Zymolase 100 T twice during the procedure, since Zymolase 20 T did not open the cell wall....... Analytical problems that arose due to the small amount of DNA in the yeast nuclei in haploid and diploid cells, which contain 13 Mbp and 26 Mbp DNA per cell, respectively, were solved by using tetraploid yeast cells (52 Mbp) instead. DNA damage was shown after exposure to H2O2 and acrylamide. The lowest dose...

  6. Lipid raft involvement in yeast cell growth and death.

    Science.gov (United States)

    Mollinedo, Faustino

    2012-01-01

    The notion that cellular membranes contain distinct microdomains, acting as scaffolds for signal transduction processes, has gained considerable momentum. In particular, a class of such domains that is rich in sphingolipids and cholesterol, termed as lipid rafts, is thought to compartmentalize the plasma membrane, and to have important roles in survival and cell death signaling in mammalian cells. Likewise, yeast lipid rafts are membrane domains enriched in sphingolipids and ergosterol, the yeast counterpart of mammalian cholesterol. Sterol-rich membrane domains have been identified in several fungal species, including the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe as well as the pathogens Candida albicans and Cryptococcus neoformans. Yeast rafts have been mainly involved in membrane trafficking, but increasing evidence implicates rafts in a wide range of additional cellular processes. Yeast lipid rafts house biologically important proteins involved in the proper function of yeast, such as proteins that control Na(+), K(+), and pH homeostasis, which influence many cellular processes, including cell growth and death. Membrane raft constituents affect drug susceptibility, and drugs interacting with sterols alter raft composition and membrane integrity, leading to yeast cell death. Because of the genetic tractability of yeast, analysis of yeast rafts could be an excellent model to approach unanswered questions of mammalian raft biology, and to understand the role of lipid rafts in the regulation of cell death and survival in human cells. A better insight in raft biology might lead to envisage new raft-mediated approaches to the treatment of human diseases where regulation of cell death and survival is critical, such as cancer and neurodegenerative diseases.

  7. Lipid raft involvement in yeast cell growth and death

    Directory of Open Access Journals (Sweden)

    Faustino eMollinedo

    2012-10-01

    Full Text Available The notion that cellular membranes contain distinct microdomains, acting as scaffolds for signal transduction processes, has gained considerable momentum. In particular, a class of such domains that is rich in sphingolipids and cholesterol, termed as lipid rafts, is thought to compartmentalize the plasma membrane, and to have important roles in survival and cell death signaling in mammalian cells. Likewise, yeast lipid rafts are membrane domains enriched in sphingolipids and ergosterol, the yeast counterpart of mammalian cholesterol. Sterol-rich membrane domains have been identified in several fungal species, including the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe as well as the pathogens Candida albicans and Crytococcus neoformans. Yeast rafts have been mainly involved in membrane trafficking, but increasing evidence implicates rafts in a wide range of additional cellular processes. Yeast lipid rafts house biologically important proteins involved in the proper function of yeast, such as proteins that control Na+, K+ and pH homeostasis, which influence many cellular processes, including cell growth and death. Membrane raft constituents affect drug susceptibility, and drugs interacting with sterols alter raft composition and membrane integrity, leading to yeast cell death. Because of the genetic tractability of yeast, analysis of yeast rafts could be an excellent model to approach unanswered questions of mammalian raft biology, and to understand the role of lipid rafts in the regulation of cell death and survival in human cells. A better insight in raft biology might lead to envisage new raft-mediated approaches to the treatment of human diseases where regulation of cell death and survival is critical, such as cancer and neurodegenerative diseases.

  8. Affected chromosome homeostasis and genomic instability of clonal yeast cultures.

    Science.gov (United States)

    Adamczyk, Jagoda; Deregowska, Anna; Panek, Anita; Golec, Ewelina; Lewinska, Anna; Wnuk, Maciej

    2016-05-01

    Yeast cells originating from one single colony are considered genotypically and phenotypically identical. However, taking into account the cellular heterogeneity, it seems also important to monitor cell-to-cell variations within a clone population. In the present study, a comprehensive yeast karyotype screening was conducted using single chromosome comet assay. Chromosome-dependent and mutation-dependent changes in DNA (DNA with breaks or with abnormal replication intermediates) were studied using both single-gene deletion haploid mutants (bub1, bub2, mad1, tel1, rad1 and tor1) and diploid cells lacking one active gene of interest, namely BUB1/bub1, BUB2/bub2, MAD1/mad1, TEL1/tel1, RAD1/rad1 and TOR1/tor1 involved in the control of cell cycle progression, DNA repair and the regulation of longevity. Increased chromosome fragility and replication stress-mediated chromosome abnormalities were correlated with elevated incidence of genomic instability, namely aneuploid events-disomies, monosomies and to a lesser extent trisomies as judged by in situ comparative genomic hybridization (CGH). The tor1 longevity mutant with relatively balanced chromosome homeostasis was found the most genomically stable among analyzed mutants. During clonal yeast culture, spontaneously formed abnormal chromosome structures may stimulate changes in the ploidy state and, in turn, promote genomic heterogeneity. These alterations may be more accented in selected mutated genetic backgrounds, namely in yeast cells deficient in proper cell cycle regulation and DNA repair.

  9. Fission Yeast Cell Cycle Synchronization Methods.

    Science.gov (United States)

    Tormos-Pérez, Marta; Pérez-Hidalgo, Livia; Moreno, Sergio

    2016-01-01

    Fission yeast cells can be synchronized by cell cycle arrest and release or by size selection. Cell cycle arrest synchronization is based on the block and release of temperature-sensitive cell cycle mutants or treatment with drugs. The most widely used approaches are cdc10-129 for G1; hydroxyurea (HU) for early S-phase; cdc25-22 for G2, and nda3-KM311 for mitosis. Cells can also be synchronized by size selection using centrifugal elutriation or a lactose gradient. Here we describe the methods most commonly used to synchronize fission yeast cells.

  10. Ethanol tolerance of immobilized brewers' yeast cells.

    Science.gov (United States)

    Norton, S; Watson, K; D'Amore, T

    1995-04-01

    A method based on the survival of yeast cells subjected to an ethanol or heat shock was utilized to compare the stress resistance of free and carrageenan-immobilized yeast cells. Results demonstrated a significant increase of yeast survival against ethanol for immobilized cells as compared to free cells, while no marked difference in heat resistance was observed. When entrapped cells were released by mechanical disruption of the gel beads and submitted to the same ethanol stress, they exhibited a lower survival rate than entrapped cells, but a similar or slightly higher survival rate than free cells. The incidence of ethanol- or heat-induced respiratory-deficient mutants of entrapped cells was equivalent to that of control or non-stressed cells (1.3 +/- 0.5%) whereas ethanol- and heat-shocked free and released cells exhibited between 4.4% and 10.9% average incidence of respiration-deficient mutants. It was concluded that the carrageenan gel matrix provided a protection against ethanol, and that entrapped cells returned to normal physiological behaviour as soon as they were released. The cell growth rate was a significant factor in the resistance of yeast to high ethanol concentrations. The optimum conditions to obtain reliable and reproducible results involved the use of slow-growing cells after exhaustion of the sugar substrate.

  11. Yeast fuel cell: Application for desalination

    Science.gov (United States)

    Mardiana, Ummy; Innocent, Christophe; Cretin, Marc; Buchari, Buchari; Gandasasmita, Suryo

    2016-02-01

    Yeasts have been implicated in microbial fuel cells as biocatalysts because they are non-pathogenic organisms, easily handled and robust with a good tolerance in different environmental conditions. Here we investigated baker's yeast Saccharomyces cerevisiae through the oxidation of glucose. Yeast was used in the anolyte, to transfer electrons to the anode in the presence of methylene blue as mediator whereas K3Fe(CN)6 was used as an electron acceptor for the reduction reaction in the catholyte. Power production with biofuel cell was coupled with a desalination process. The maximum current density produced by the cell was 88 mA.m-2. In those conditions, it was found that concentration of salt was removed 64% from initial 0.6 M after 1-month operation. This result proves that yeast fuel cells can be used to remove salt through electrically driven membrane processes and demonstrated that could be applied for energy production and desalination. Further developments are in progress to improve power output to make yeast fuel cells applicable for water treatment.

  12. Air-drying kinetics affect yeast membrane organization and survival.

    Science.gov (United States)

    Lemetais, Guillaume; Dupont, Sébastien; Beney, Laurent; Gervais, Patrick

    2012-10-01

    The plasma membrane (PM) is a key structure for the survival of cells during dehydration. In this study, we focused on the concomitant changes in survival and in the lateral organization of the PM in yeast strains during desiccation, a natural or technological environmental perturbation that involves transition from a liquid to a solid medium. To evaluate the role of the PM in survival during air-drying, a wild-type yeast strain and an osmotically fragile mutant (erg6Δ) were used. The lateral organization of the PM (microdomain distribution) was observed using a fluorescent marker related to a specific green fluorescent protein-labeled membrane protein (Sur7-GFP) after progressive or rapid desiccation. We also evaluated yeast behavior during a model dehydration experiment performed in liquid medium (osmotic stress). For both strains, we observed similar behavior after osmotic and desiccation stresses. In particular, the same lethal magnitude of dehydration and the same lethal kinetic effect were found for both dehydration methods. Thus, yeast survival after progressive air-drying was related to PM reorganization, suggesting the positive contribution of passive lateral rearrangements of the membrane components. This study also showed that the use of glycerol solutions is an efficient means to simulate air-drying desiccation.

  13. Secretion of invertase in mitotic yeast cells.

    OpenAIRE

    Makarow, M

    1988-01-01

    In mammalian cells intracellular transport is inhibited during mitosis. Here we show that in the yeast Saccharomyces cerevisiae secretion continues uninterrupted during mitosis. S. cerevisiae cells were arrested in mitosis by treating wild-type cells with the microtubule-inhibitor nocodazole, or by incubating a temperature-sensitive cell division cycle mutant (cdc16) at the restrictive temperature. Secretion of invertase into the periplasmic space was equally efficient in mitotic and in unsyn...

  14. Sorption of volatile phenols by yeast cell walls

    Directory of Open Access Journals (Sweden)

    Nerea Jiménez-Moreno

    2009-01-01

    Full Text Available Nerea Jiménez-Moreno, Carmen Ancín-AzpilicuetaDepartment of Applied Chemistry, Universidad Pública de Navarra, Pamplona, SpainAbstract: Yeast walls can retain different wine compounds and so its use is interesting in order to eliminate harmful substances from the must which affect alcoholic fermentation (medium chain fatty acids or which affect wine quality in a negative way (ethyl phenols, ochratoxin A. The aim of this study was to examine the capacity of commercial yeast cell walls in eliminating volatile phenols (4-ethylphenol and 4-ethylguaiacol from a synthetic wine that contained 1 mg/L of each one of these compounds. The binding of these compounds to the wall was quite fast which would seem to indicate that the yeast wall-volatile compound union is produced in the outer surface layers of this enological additive. The cell walls used reduced the concentration of 4-ethylphenol and 4-ethylguaiacol, although it would seem that on modifying the matrix of the wine the number of free binding sites on the walls is also modified.Keywords: volatile phenols, yeast cell walls, wine, sorption

  15. Cell biology of homologous recombination in yeast

    DEFF Research Database (Denmark)

    Eckert-Boulet, Nadine Valerie; Rothstein, Rodney; Lisby, Michael

    2011-01-01

    Homologous recombination is an important pathway for error-free repair of DNA lesions, such as single- and double-strand breaks, and for rescue of collapsed replication forks. Here, we describe protocols for live cell imaging of single-lesion recombination events in the yeast Saccharomyces...

  16. Yeast culture supplement during nursing and transport affects immunity and intestinal microbial ecology of weanling pigs.

    Science.gov (United States)

    Weedman, S M; Rostagno, M H; Patterson, J A; Yoon, I; Fitzner, G; Eicher, S D

    2011-06-01

    The objectives of this study were to determine the influence of a Saccharomyces cerevisiae fermentation product on innate immunity and intestinal microbial ecology after weaning and transport stress. In a randomized complete block design, before weaning and in a split-plot analysis of a 2 × 2 factorial arrangement of yeast culture (YY) and transport (TT) after weaning, 3-d-old pigs (n = 108) were randomly assigned within litter (block) to either a control (NY, milk only) or yeast culture diet (YY; delivered in milk to provide 0.1 g of yeast culture product/kg of BW) from d 4 to 21. At weaning (d 21), randomly, one-half of the NY and YY pigs were assigned to a 6-h transport (NY-TT and YY-TT) before being moved to nursery housing, and the other one-half were moved directly to nursery housing (NY-NT and YY-NT, where NT is no transport). The yeast treatment was a 0.2% S. cerevisiae fermentation product and the control treatment was a 0.2% grain blank in feed for 2 wk. On d 1 before transport and on d 1, 4, 7, and 14 after transport, blood was collected for leukocyte assays, and mesenteric lymph node, jejunal, and ileal tissue, and jejunal, ileal, and cecal contents were collected for Toll-like receptor expression (TLR); enumeration of Escherichia coli, total coliforms, and lactobacilli; detection of Salmonella; and microbial analysis. After weaning, a yeast × transport interaction for ADG was seen (P = 0.05). Transport affected (P = 0.09) ADFI after weaning. Yeast treatment decreased hematocrit (P = 0.04). A yeast × transport interaction was found for counts of white blood cells (P = 0.01) and neutrophils (P = 0.02) and for the neutrophil-to-lymphocyte ratio (P = 0.02). Monocyte counts revealed a transport (P = 0.01) effect. Interactions of yeast × transport (P = 0.001) and yeast × transport × day (P = 0.09) for TLR2 and yeast × transport (P = 0.08) for TLR4 expression in the mesenteric lymph node were detected. Day affected lactobacilli, total coliform, and E

  17. Cell surface engineering of yeast for applications in white biotechnology.

    Science.gov (United States)

    Kuroda, Kouichi; Ueda, Mitsuyoshi

    2011-01-01

    Cell surface engineering is a promising strategy for the molecular breeding of whole-cell biocatalysts. By using this strategy, yeasts can be constructed by the cell surface display of functional proteins; these yeasts are referred to as arming yeasts. Because reactions using arming yeasts as whole-cell biocatalysts occur on the cell surface, materials that cannot enter the cell can be used as reaction substrates. Numerous arming yeasts have therefore been constructed for a wide range of uses such as biofuel production, synthesis of valuable chemicals, adsorption or degradation of environmental pollutants, recovery of rare metal ions, and biosensors. Here, we review the science of yeast cell surface modification as well as current applications and future opportunities.

  18. Mediated Electrochemical Measurements of Intracellular Catabolic Activities of Yeast Cells

    Institute of Scientific and Technical Information of China (English)

    Jin Sheng ZHAO; Zhen Yu YANG; Yao LU; Zheng Yu YANG

    2005-01-01

    Coupling with the dual mediator system menadione/ferricyanide, microelectrode voltammetric measurements were undertaken to detect the ferrocyanide accumulations arising from the mediated reduction of ferricyanide by yeast cells. The results indicate that the dual mediator system menadione/ferricyanide could be used as a probe to detect cellular catabolic activities in yeast cells and the electrochemical response has a positive relationship with the specific growth rate of yeast cells.

  19. The Cell Biology of Fission Yeast Septation.

    Science.gov (United States)

    García Cortés, Juan C; Ramos, Mariona; Osumi, Masako; Pérez, Pilar; Ribas, Juan Carlos

    2016-09-01

    In animal cells, cytokinesis requires the formation of a cleavage furrow that divides the cell into two daughter cells. Furrow formation is achieved by constriction of an actomyosin ring that invaginates the plasma membrane. However, fungal cells contain a rigid extracellular cell wall surrounding the plasma membrane; thus, fungal cytokinesis also requires the formation of a special septum wall structure between the dividing cells. The septum biosynthesis must be strictly coordinated with the deposition of new plasma membrane material and actomyosin ring closure and must occur in such a way that no breach in the cell wall occurs at any time. Because of the high turgor pressure in the fungal cell, even a minor local defect might lead to cell lysis and death. Here we review our knowledge of the septum structure in the fission yeast Schizosaccharomyces pombe and of the recent advances in our understanding of the relationship between septum biosynthesis and actomyosin ring constriction and how the two collaborate to build a cross-walled septum able to support the high turgor pressure of the cell. In addition, we discuss the importance of the septum biosynthesis for the steady ingression of the cleavage furrow.

  20. Yeast Actin-Related Protein ARP6 Negatively Regulates Agrobacterium-Mediated Transformation of Yeast Cell

    Directory of Open Access Journals (Sweden)

    Yumei Luo

    2015-01-01

    Full Text Available The yeasts, including Saccharomyces cerevisiae and Pichia pastoris, are single-cell eukaryotic organisms that can serve as models for human genetic diseases and hosts for large scale production of recombinant proteins in current biopharmaceutical industry. Thus, efficient genetic engineering tools for yeasts are of great research and economic values. Agrobacterium tumefaciens-mediated transformation (AMT can transfer T-DNA into yeast cells as a method for genetic engineering. However, how the T-DNA is transferred into the yeast cells is not well established yet. Here our genetic screening of yeast knockout mutants identified a yeast actin-related protein ARP6 as a negative regulator of AMT. ARP6 is a critical member of the SWR1 chromatin remodeling complex (SWR-C; knocking out some other components of the complex also increased the transformation efficiency, suggesting that ARP6 might regulate AMT via SWR-C. Moreover, knockout of ARP6 led to disruption of microtubule integrity, higher uptake and degradation of virulence proteins, and increased DNA stability inside the cells, all of which resulted in enhanced transformation efficiency. Our findings have identified molecular and cellular mechanisms regulating AMT and a potential target for enhancing the transformation efficiency in yeast cells.

  1. Yeast Actin-Related Protein ARP6 Negatively Regulates Agrobacterium-Mediated Transformation of Yeast Cell.

    Science.gov (United States)

    Luo, Yumei; Chen, Zikai; Zhu, Detu; Tu, Haitao; Pan, Shen Quan

    2015-01-01

    The yeasts, including Saccharomyces cerevisiae and Pichia pastoris, are single-cell eukaryotic organisms that can serve as models for human genetic diseases and hosts for large scale production of recombinant proteins in current biopharmaceutical industry. Thus, efficient genetic engineering tools for yeasts are of great research and economic values. Agrobacterium tumefaciens-mediated transformation (AMT) can transfer T-DNA into yeast cells as a method for genetic engineering. However, how the T-DNA is transferred into the yeast cells is not well established yet. Here our genetic screening of yeast knockout mutants identified a yeast actin-related protein ARP6 as a negative regulator of AMT. ARP6 is a critical member of the SWR1 chromatin remodeling complex (SWR-C); knocking out some other components of the complex also increased the transformation efficiency, suggesting that ARP6 might regulate AMT via SWR-C. Moreover, knockout of ARP6 led to disruption of microtubule integrity, higher uptake and degradation of virulence proteins, and increased DNA stability inside the cells, all of which resulted in enhanced transformation efficiency. Our findings have identified molecular and cellular mechanisms regulating AMT and a potential target for enhancing the transformation efficiency in yeast cells.

  2. Effect of salt hyperosmotic stress on yeast cell viability

    Directory of Open Access Journals (Sweden)

    Logothetis Stelios

    2007-01-01

    Full Text Available During fermentation for ethanol production, yeasts are subjected to different kinds of physico-chemical stresses such as: initially high sugar concentration and low temperature; and later, increased ethanol concentrations. Such conditions trigger a series of biological responses in an effort to maintain cell cycle progress and yeast cell viability. Regarding osmostress, many studies have been focused on transcriptional activation and gene expression in laboratory strains of Saccharomyces cerevisiae. The overall aim of this present work was to further our understanding of wine yeast performance during fermentations under osmotic stress conditions. Specifically, the research work focused on the evaluation of NaCl-induced stress responses of an industrial wine yeast strain S. cerevisiae (VIN 13, particularly with regard to yeast cell growth and viability. The hypothesis was that osmostress conditions energized specific genes to enable yeast cells to survive under stressful conditions. Experiments were designed by pretreating cells with different sodium chloride concentrations (NaCl: 4%, 6% and 10% w/v growing in defined media containing D-glucose and evaluating the impact of this on yeast growth and viability. Subsequent fermentation cycles took place with increasing concentrations of D-glucose (20%, 30%, 40% w/v using salt-adapted cells as inocula. We present evidence that osmostress induced by mild salt pre-treatments resulted in beneficial influences on both cell viability and fermentation performance of an industrial wine yeast strain.

  3. Yeast cell surface display for lipase whole cell catalyst and its applications

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yun; Zhang, Rui; Lian, Zhongshuai; Wang, Shihui; Wright, Aaron T.

    2014-08-01

    The cell surface display technique allows for the expression of target proteins or peptides on the microbial cell surface by fusing an appropriate protein as an anchoring motif. Yeast display systems, such as Pichia pastoris, Yarowia lipolytica and Saccharomyces cerevisiae, are ideal, alternative and extensive display systems with the advantage of simple genetic manipulation and post-translational modification of expressed heterologous proteins. Engineered yeasts show high performance characteristics and variant utilizations. Herein, we comprehensively summarize the variant factors affecting lipase whole cell catalyst activity and display efficiency, including the structure and size of target proteins, screening anchor proteins, type and chain length of linkers, and the appropriate matching rules among the above-mentioned display units. Furthermore, we also address novel approaches to enhance stability and activity of recombinant lipases, such as VHb gene co-expression, multi-enzyme co-display technique, and the micro-environmental interference and self-assembly techniques. Finally, we represent the variety of applications of whole cell surface displayed lipases on yeast cells in non-aqueous phases, including synthesis of esters, PUFA enrichment, resolution of chiral drugs, organic synthesis and biofuels. We demonstrate that the lipase surface display technique is a powerful tool for functionalizing yeasts to serve as whole cell catalysts, and increasing interest is providing an impetus for broad application of this technique.

  4. Harvesting yeast (Saccharomyces cerevisiae) at different physiological phases significantly affects its functionality in bread dough fermentation.

    Science.gov (United States)

    Rezaei, Mohammad N; Dornez, Emmie; Jacobs, Pieter; Parsi, Anali; Verstrepen, Kevin J; Courtin, Christophe M

    2014-05-01

    Fermentation of sugars into CO2, ethanol and secondary metabolites by baker's yeast (Saccharomyces cerevisiae) during bread making leads to leavening of dough and changes in dough rheology. The aim of this study was to increase our understanding of the impact of yeast on dough related aspects by investigating the effect of harvesting yeast at seven different points of the growth profile on its fermentation performance, metabolite production, and the effect on critical dough fermentation parameters, such as gas retention potential. The yeast cells harvested during the diauxic shift and post-diauxic growth phase showed a higher fermentation rate and, consequently, higher maximum dough height than yeast cells harvested in the exponential or stationary growth phase. The results further demonstrate that the onset of CO2 loss from fermenting dough is correlated with the fermentation rate of yeast, but not with the amount of CO2 that accumulated up to the onset point. Analysis of the yeast metabolites produced in dough yielded a possible explanation for this observation, as they are produced in different levels depending on physiological phase and in concentrations that can influence dough matrix properties. Together, our results demonstrate a strong effect of yeast physiology at the time of harvest on subsequent dough fermentation performance, and hint at an important role of yeast metabolites on the subsequent gas holding capacity.

  5. Cell-cycle analyses using thymidine analogues in fission yeast.

    Directory of Open Access Journals (Sweden)

    Silje Anda

    Full Text Available Thymidine analogues are powerful tools when studying DNA synthesis including DNA replication, repair and recombination. However, these analogues have been reported to have severe effects on cell-cycle progression and growth, the very processes being investigated in most of these studies. Here, we have analyzed the effects of 5-ethynyl-2'-deoxyuridine (EdU and 5-Chloro-2'-deoxyuridine (CldU using fission yeast cells and optimized the labelling procedure. We find that both analogues affect the cell cycle, but that the effects can be mitigated by using the appropriate analogue, short pulses of labelling and low concentrations. In addition, we report sequential labelling of two consecutive S phases using EdU and 5-bromo-2'-deoxyuridine (BrdU. Furthermore, we show that detection of replicative DNA synthesis is much more sensitive than DNA-measurements by flow cytometry.

  6. Cell-cycle analyses using thymidine analogues in fission yeast.

    Science.gov (United States)

    Anda, Silje; Boye, Erik; Grallert, Beata

    2014-01-01

    Thymidine analogues are powerful tools when studying DNA synthesis including DNA replication, repair and recombination. However, these analogues have been reported to have severe effects on cell-cycle progression and growth, the very processes being investigated in most of these studies. Here, we have analyzed the effects of 5-ethynyl-2'-deoxyuridine (EdU) and 5-Chloro-2'-deoxyuridine (CldU) using fission yeast cells and optimized the labelling procedure. We find that both analogues affect the cell cycle, but that the effects can be mitigated by using the appropriate analogue, short pulses of labelling and low concentrations. In addition, we report sequential labelling of two consecutive S phases using EdU and 5-bromo-2'-deoxyuridine (BrdU). Furthermore, we show that detection of replicative DNA synthesis is much more sensitive than DNA-measurements by flow cytometry.

  7. Effects of Selenium Yeast on Oxidative Stress, Growth Inhibition, and Apoptosis in Human Breast Cancer Cells.

    Science.gov (United States)

    Guo, Chih-Hung; Hsia, Simon; Shih, Min-Yi; Hsieh, Fang-Chin; Chen, Pei-Chung

    2015-01-01

    Recent evidence suggests that selenium (Se) yeast may exhibit potential anti-cancer properties; whereas the precise mechanisms remain unknown. The present study was aimed at evaluating the effects of Se yeast on oxidative stress, growth inhibition, and apoptosis in human breast cancer cells. Treatments of ER-positive MCF-7 and triple-negative MDA-MB-231 cells with Se yeast (100, 750, and 1500 ng Se/mL), methylseleninic acid (MSA, 1500 ng Se/mL), or methylselenocysteine (MSC, 1500 ng Se/mL) at a time course experiment (at 24, 48, 72, and 96 h) were analyzed. Se yeast inhibited the growth of these cancer cells in a dose- and time-dependent manner. Compared with the same level of MSA, cancer cells exposure to Se yeast exhibited a lower growth-inhibitory response. The latter has also lower superoxide production and reduced antioxidant enzyme activities. Furthermore, MSA (1500 ng Se/mL)-exposed non-tumorigenic human mammary epithelial cells (HMEC) have a significant growth inhibitory effect, but not Se yeast and MSC. Compared with MSA, Se yeast resulted in a greater increase in the early apoptosis in MCF-7 cells as well as a lower proportion of early and late apoptosis in MDA-MB-231 cells. In addition, nuclear morphological changes and loss of mitochondrial membrane potential were observed. In conclusion, a dose of 100 to 1500 ng Se/mL of Se yeast can increase oxidative stress, and stimulate growth inhibitory effects and apoptosis induction in breast cancer cell lines, but does not affect non-tumorigenic cells.

  8. Yeast cell factories on the horizon

    DEFF Research Database (Denmark)

    Nielsen, Jens

    2015-01-01

    For thousands of years, yeast has been used for making beer, bread, and wine. In modern times, it has become a commercial workhorse for producing fuels, chemicals, and pharmaceuticals such as insulin, human serum albumin, and vaccines against hepatitis virus and human papillomavirus. Yeast has al...

  9. Stabilization and encapsulation of photosensitive resveratrol within yeast cell.

    Science.gov (United States)

    Shi, Guorong; Rao, Liqun; Yu, Huazhong; Xiang, Hua; Yang, Hua; Ji, Runa

    2008-02-12

    The photosensitive resveratrol was successfully encapsulated in yeast cells for the first time, as characterized by FT-IR spectra, fluorescence and confocal micrographs of the yeast cells, resveratrol and microcapsules. The release characteristic of the obtained yeast-encapsulated resveratrol in simulated gastric fluid was evaluated, and its storage stability as a powder was investigated at 25 degrees C/75% relative humidity (RH), 25 degrees C/90% RH and 60 degrees C under the laboratory fluorescent lighting conditions (ca. 300 lx) or in the dark. Also, the scavenging capacity of yeast-encapsulated resveratrol on DPPH radical was compared with that of non-encapsulated resveratrol. It could be demonstrated clearly that no chemical changes occurred during the encapsulation. Besides, the DPPH radical-scavenging activity increased after the encapsulation. In addition, the yeast-encapsulated resveratrol exhibited good stability, and its bioavailability was enhanced as a result of increased solubility of resveratrol and sustained releasing.

  10. Dynamic changes in brewing yeast cells in culture revealed by statistical analyses of yeast morphological data.

    Science.gov (United States)

    Ohnuki, Shinsuke; Enomoto, Kenichi; Yoshimoto, Hiroyuki; Ohya, Yoshikazu

    2014-03-01

    The vitality of brewing yeasts has been used to monitor their physiological state during fermentation. To investigate the fermentation process, we used the image processing software, CalMorph, which generates morphological data on yeast mother cells and bud shape, nuclear shape and location, and actin distribution. We found that 248 parameters changed significantly during fermentation. Successive use of principal component analysis (PCA) revealed several important features of yeast, providing insight into the dynamic changes in the yeast population. First, PCA indicated that much of the observed variability in the experiment was summarized in just two components: a change with a peak and a change over time. Second, PCA indicated the independent and important morphological features responsible for dynamic changes: budding ratio, nucleus position, neck position, and actin organization. Thus, the large amount of data provided by imaging analysis can be used to monitor the fermentation processes involved in beer and bioethanol production.

  11. Yeast fermentation affected by homo- and hetero-fermentative Lactobacilli isolated from fuel ethanol distilleries with sugarcane products as substrates

    Science.gov (United States)

    The antagonism between by yeast and lactobacilli is largely dependent on the initial population of each organism. While homo-fermentative lactobacillus present higher inhibitory effect upon yeast when in equal cell number, in industrial fuel ethanol conditions where high yeast cell densities prevail...

  12. Anhydrobiosis in yeast: cell wall mannoproteins are important for yeast Saccharomyces cerevisiae resistance to dehydration.

    Science.gov (United States)

    Borovikova, Diana; Teparić, Renata; Mrša, Vladimir; Rapoport, Alexander

    2016-08-01

    The state of anhydrobiosis is linked with the reversible delay of metabolism as a result of strong dehydration of cells, and is widely distributed in nature. A number of factors responsible for the maintenance of organisms' viability in these conditions have been revealed. This study was directed to understanding how changes in cell wall structure may influence the resistance of yeasts to dehydration-rehydration. Mutants lacking various cell wall mannoproteins were tested to address this issue. It was revealed that mutants lacking proteins belonging to two structurally and functionally unrelated groups (proteins non-covalently attached to the cell wall, and Pir proteins) possessed significantly lower cell resistance to dehydration-rehydration than the mother wild-type strain. At the same time, the absence of the GPI-anchored cell wall protein Ccw12 unexpectedly resulted in an increase of cell resistance to this treatment; this phenomenon is explained by the compensatory synthesis of chitin. The results clearly indicate that the cell wall structure/composition relates to parameters strongly influencing yeast viability during the processes of dehydration-rehydration, and that damage to cell wall proteins during yeast desiccation can be an important factor leading to cell death. Copyright © 2016 John Wiley & Sons, Ltd.

  13. Monitoring of yeast cell concentration using a micromachined impedance sensor

    NARCIS (Netherlands)

    Krommenhoek, E.E.; Gardeniers, J.G.E.; Bomer, J.G.; Berg, van den A.; Li, X.; Ottens, M.; Wielen, van der L.A.M.; Dedem, van G.W.K.; Leeuwen, M.; Gulik, van W.M.; Heijnen, J.J.

    2005-01-01

    The paper describes the design, modelling and experimental characterization of a micromachined impedance sensor for on-line monitoring of the viable yeast cell concentration (biomass) in a miniaturized cell assay. Measurements in a Saccharomyces cerevisiae cell culture show that the permittivity of

  14. Monitoring of yeast cell concentration using a micromachnined impedance sensor

    NARCIS (Netherlands)

    Krommenhoek, E.E.; Gardeniers, J.G.E.; Bomer, J.G.; Berg, van den A.; Li, X.; Ottens, M.; Wielen, van der L.A.M.; Dedem, van G.W.K.; Leeuwen, van M.; Gulik, van W.M.; Heijnen, J.J.

    2006-01-01

    This paper describes the design, modeling and experimental characterization of a micromachined impedance sensor for on-line monitoring of the viable yeast cell concentration (biomass) in a miniaturized cell assay. Measurements in Saccharomyces cerevisiae cell culture show that the characteristic fre

  15. Investigation of zinc biosorption by brewer's yeast cells

    Directory of Open Access Journals (Sweden)

    Dodić Siniša N.

    2005-01-01

    Full Text Available The highest amount of zinc (= 90% is bound after 3 hrs of contact at low initial (total concentrations of zinc in suspension of yeast, 10-100 mg/l at 10-30°C. The equilibrium between bound and free zinc ions is established after 6 hrs of contact time, independently on the total zinc concentration in yeast milk. No bigger changes of content of zinc bound to brewer's yeast cells was determined at temperatures 10°C and 30°C. 40% of bound zinc in the equilibrium state is bound during the first 15 min of contact of zinc ions and brewer's yeast cells at all initial (total zinc concentrations in suspension of yeast both at 10°C and 30°C. The "KEKAM" equation can be used for the description of kinetics of zinc biosorption by waste brewer's yeast cells, for the ranges of zinc concentration 10-100 mg/l at 30°C (mean correlation coefficient 0,96 and 60,0-100 mg/l at 10°C (mean correlation coefficient 0,95.

  16. Evaluation of yeast cell wall on the performance of broiles fed diets with or without mycotoxins

    Directory of Open Access Journals (Sweden)

    E Santin

    2006-12-01

    Full Text Available This experiment aimed at evaluating the effects of the interactions between aflatoxin (500 or 250 ppb and ochratoxin (500 or 250 ppb, and the possible benefits of adding yeast cell wall to prevent the effects of these mycotoxins in broiler chickens. Relative organ weight gain and live performance were evaluated at 21 and 42 days of age. Results indicated that at the levels of mycotoxins included in the experimental diets, ochratoxin reduced feed intake and body weight gain, and aflatoxin only affect feed intake of 21-day-old birds. No interaction was observed between aflatoxin and ochratoxin at the levels used in experimental study. Yeast cell wall did not significantly reduced the deleterious effects of ochratoxins. No significant differences were observed in relative organ weight gain. Yeast cell wall improved feed conversion ratio when birds were fed either contaminated or non-contaminated feeds.

  17. Aroma formation by immobilized yeast cells in fermentation processes.

    Science.gov (United States)

    Nedović, V; Gibson, B; Mantzouridou, T F; Bugarski, B; Djordjević, V; Kalušević, A; Paraskevopoulou, A; Sandell, M; Šmogrovičová, D; Yilmaztekin, M

    2015-01-01

    Immobilized cell technology has shown a significant promotional effect on the fermentation of alcoholic beverages such as beer, wine and cider. However, genetic, morphological and physiological alterations occurring in immobilized yeast cells impact on aroma formation during fermentation processes. The focus of this review is exploitation of existing knowledge on the biochemistry and the biological role of flavour production in yeast for the biotechnological production of aroma compounds of industrial importance, by means of immobilized yeast. Various types of carrier materials and immobilization methods proposed for application in beer, wine, fruit wine, cider and mead production are presented. Engineering aspects with special emphasis on immobilized cell bioreactor design, operation and scale-up potential are also discussed. Ultimately, examples of products with improved quality properties within the alcoholic beverages are addressed, together with identification and description of the future perspectives and scope for cell immobilization in fermentation processes.

  18. Biomimetic Yeast Cell Typing—Application of QCMs

    Directory of Open Access Journals (Sweden)

    Franz L. Dickert

    2009-10-01

    Full Text Available Artificial antibodies represent a key factor in the generation of sensing systems for the selective detection of bioanalytes of variable sizes. With biomimetic surfaces, the important model organism Saccharomyces cerevisiae and several of its growth stages may be detected. Quartz crystal microbalances (QCM with 10 MHz fundamental frequency and coated with polymers imprinted with synchronized yeast cells are presented, which are able to detect duplex cells with high selectivity. Furthermore, a multichannel quartz crystal microbalance (MQCM was designed and optimized for the measurement in liquids. This one-chip system based on four-electrode geometry allows the simultaneous detection of four analytes and, thus, provides a monitoring system for biotechnology and process control. For further standardization of the method, synthetic stamps containing plastic yeast cells in different growth stages were produced and utilized for imprinting. Mass-sensitive measurements with such MIPs resulted in the same sensor characteristics as obtained for those imprinted with native yeast cells.

  19. Biocavity laser spectroscopy of genetically altered yeast cells and isolated yeast mitochondria

    Science.gov (United States)

    Gourley, Paul L.; Hendricks, Judy K.; McDonald, Anthony E.; Copeland, R. Guild; Naviaux, Robert K.; Yaffe, Michael P.

    2006-02-01

    We report an analysis of 2 yeast cell mutants using biocavity laser spectroscopy. The two yeast strains differed only by the presence or absence of mitochondrial DNA. Strain 104 is a wild-type (ρ +) strain of the baker's yeast, Saccharomyces cerevisiae. Strain 110 was derived from strain 104 by removal of its mitochondrial DNA (mtDNA). Removal of mtDNA causes strain 110 to grow as a "petite" (ρ -), named because it forms small colonies (of fewer cells because it grows more slowly) on agar plates supplemented with a variety of different carbon sources. The absence of mitochondrial DNA results in the complete loss of all the mtDNA-encoded proteins and RNAs, and loss of the pigmented, heme-containing cytochromes a and b. These cells have mitochondria, but the mitochondria lack the normal respiratory chain complexes I, III, IV, and V. Complex II is preserved because its subunits are encoded by genes located in nuclear DNA. The frequency distributions of the peak shifts produced by wild-type and petite cells and mitochondria show striking differences in the symmetry and patterns of the distributions. Wild-type ρ + cells (104) and mitochondria produced nearly symmetric, Gaussian distributions. The ρ - cells (110) and mitochondria showed striking asymmetry and skew that appeared to follow a Poisson distribution.

  20. Physical, functional and structural characterization of the cell wall fractions from baker's yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Borchani, Chema; Fonteyn, Fabienne; Jamin, Guilhem; Paquot, Michel; Thonart, Philippe; Blecker, Christophe

    2016-03-01

    The yeast cell wall of Saccharomyces cerevisiae is an important source of β-d-glucan, a glucose homopolymer with many functional, nutritional and human health benefits. In the present study, the yeast cell wall fractionation process involving enzymatic treatments (savinase and lipolase enzymes) affected most of the physical and functional characteristics of extracted fractions. Thus, the fractionation process showed that β-d-glucan fraction F4 had significantly higher swelling power and fat binding capacity compared to other fractions (F1, F2 and F3). It also exhibited a viscosity of 652.12mPas and a high degree of brightness of extracted β-d-glucan fraction. Moreover, the fractionation process seemed to have an effect on structural and thermal properties of extracted fractions. Overall, results showed that yeast β-d-glucan had good potential for use as a prebiotic ingredient in food, as well as medicinal and pharmaceutical products.

  1. The role of oxygen in yeast metabolism during high cell density brewery fermentations.

    Science.gov (United States)

    Verbelen, P J; Saerens, S M G; Van Mulders, S E; Delvaux, F; Delvaux, F R

    2009-04-01

    The volumetric productivity of the beer fermentation process can be increased by using a higher pitching rate (i.e., higher inoculum size). However, the decreased yeast net growth observed in these high cell density fermentations can have a negative impact on the physiological stability throughout subsequent yeast generations. The use of different oxygen conditions (wort aeration, wort oxygenation, yeast preoxygenation) was investigated to improve the growth yield during high cell density fermentations and yeast metabolic and physiological parameters were assessed systematically. Together with a higher extent of growth (dependent on the applied oxygen conditions), the fermentation power and the formation of unsaturated fatty acids were also affected. Wort oxygenation had a significant decreasing effect on the formation of esters, which was caused by a decreased expression of the alcohol acetyl transferase gene ATF1, compared with the other conditions. Lower glycogen and trehalose levels at the end of fermentation were observed in case of the high cell density fermentations with oxygenated wort and the reference fermentation. The expression levels of BAP2 (encoding the branched chain amino acid permease), ERG1 (encoding squalene epoxidase), and the stress responsive gene HSP12 were predominantly influenced by the high cell concentrations, while OLE1 (encoding the fatty acid desaturase) and the oxidative stress responsive genes SOD1 and CTT1 were mainly affected by the oxygen availability per cell. These results demonstrate that optimisation of high cell density fermentations could be achieved by improving the oxygen conditions, without drastically affecting the physiological condition of the yeast and beer quality.

  2. Inactivation cross section of yeast cells irradiated by heavy ions

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Inactivation cross sections for haploid yeast cell strain211a have been calculated as 1-hit detector based on the tracktheory in an extended target mode and a numerical calculation ofradial dose distribution. In the calculations, characteristic dose D0 is a fitted parameter which is obtained to be 42 Gy, and "radius"of hypothetical target a0 is chosen to be 0.5μm which is about the sizeof nucleus of yeast cells for obtaining an overall agreement withexperimental cross sections. The results of the calculations are inagreement with the experimental data in high LET (linear energy transfer) including the thindown region.

  3. Imp2, the PSTPIP homolog in fission yeast, affects sensitivity to the immunosuppressant FK506 and membrane trafficking in fission yeast

    Energy Technology Data Exchange (ETDEWEB)

    Kita, Ayako; Higa, Mari [Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, 3-4-1 Kowakae, Higashi-Osaka 577-8502 (Japan); Doi, Akira [Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, 3-4-1 Kowakae, Higashi-Osaka 577-8502 (Japan); Japan Society for the Promotion of Science, 1-8 Chiyoda-ku, Tokyo 102-8472 (Japan); Satoh, Ryosuke [Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, 3-4-1 Kowakae, Higashi-Osaka 577-8502 (Japan); Sugiura, Reiko, E-mail: sugiurar@phar.kindai.ac.jp [Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, 3-4-1 Kowakae, Higashi-Osaka 577-8502 (Japan)

    2015-02-13

    Cytokinesis is a highly ordered process that divides one cell into two cells, which is functionally linked to the dynamic remodeling of the plasma membrane coordinately with various events such as membrane trafficking. Calcineurin is a highly conserved serine/threonine protein phosphatase, which regulates multiple biological functions, such as membrane trafficking and cytokinesis. Here, we isolated imp2-c3, a mutant allele of the imp2{sup +} gene, encoding a homolog of the mouse PSTPIP1 (proline-serine-threonine phosphatase interacting protein 1), using a genetic screen for mutations that are synthetically lethal with calcineurin deletion in fission yeast. The imp2-c3 mutants showed a defect in cytokinesis with multi-septated phenotypes, which was further enhanced upon treatment with the calcineurin inhibitor FK506. Notably, electron micrographs revealed that the imp2-c3 mutant cells accumulated aberrant multi-lamella Golgi structures and putative post-Golgi secretory vesicles, and exhibited fragmented vacuoles in addition to thickened septa. Consistently, imp2-c3 mutants showed a reduced secretion of acid phosphatase and defects in vacuole fusion. The imp2-c3 mutant cells exhibited a weakened cell wall, similar to the membrane trafficking mutants identified in the same genetic screen such as ypt3-i5. These findings implicate the PSTPIP1 homolog Imp2 in Golgi/vacuole function, thereby affecting various cellular processes, including cytokinesis and cell integrity. - Highlights: • We isolated imp2-c3, in a synthetic lethal screen with calcineurin in fission yeast. • The imp2{sup +} gene encodes a component of the actin contractile ring similar to Cdc15. • The imp2-c3 mutants showed defects in cytokinesis, which were exacerbated by FK506. • The imp2-c3 mutants were defective in membrane trafficking and cell wall integrity. • Our study revealed a novel role for Imp2 in the Golgi/vacuolar membrane trafficking.

  4. The GEF1 proton-chloride exchanger affects tombusvirus replication via regulation of copper metabolism in yeast.

    Science.gov (United States)

    Sasvari, Zsuzsanna; Kovalev, Nikolay; Nagy, Peter D

    2013-02-01

    Replication of plus-strand RNA viruses [(+)RNA viruses] is performed by viral replicases, whose function is affected by many cellular factors in infected cells. In this paper, we demonstrate a surprising role for Gef1p proton-chloride exchanger in replication of Tomato bushy stunt virus (TBSV) model (+)RNA virus. A genetic approach revealed that Gef1p, which is the only proton-chloride exchanger in Saccharomyces cerevisiae, is required for TBSV replication in the yeast model host. We also show that the in vitro activity of the purified tombusvirus replicase from gef1Δ yeast was low and that the in vitro assembly of the viral replicase in a cell extract was inhibited by the cytosolic fraction obtained from gef1Δ yeast. Altogether, our data reveal that Gef1p modulates TBSV replication via regulating Cu(2+) metabolism in the cell. This conclusion is supported by several lines of evidence, including the direct inhibitory effect of Cu(2+) ions on the in vitro assembly of the viral replicase, on the activity of the viral RNA-dependent RNA polymerase, and an inhibitory effect of deletion of CCC2 copper pump on TBSV replication in yeast, while altered iron metabolism did not reduce TBSV replication. In addition, applying a chloride channel blocker impeded TBSV replication in Nicotiana benthamiana protoplasts or in whole plants. Overall, blocking Gef1p function seems to inhibit TBSV replication through altering Cu(2+) ion metabolism in the cytosol, which then inhibits the normal functions of the viral replicase.

  5. The digestion of yeast cell wall polysaccharides in veal calves

    NARCIS (Netherlands)

    Gaillard, B.D.E.; Weerden, van E.J.

    1976-01-01

    1. The digestibility of the cell wall polysaccharides of an alkane-grown yeast in different parts of the digestive tract of two veal calves fitted with re-entrant cannulas at the end of the ileum was studied by replacing part of the skim-milk powder of their ‘normal’, milk-substitute (all-milk-prote

  6. Non-interferometric quantitative phase imaging of yeast cells

    Science.gov (United States)

    Poola, Praveen K.; Pandiyan, Vimal Prabhu; John, Renu

    2015-12-01

    Real-time imaging of live cells is quite difficult without the addition of external contrast agents. Various methods for quantitative phase imaging of living cells have been proposed like digital holographic microscopy and diffraction phase microscopy. In this paper, we report theoretical and experimental results of quantitative phase imaging of live yeast cells with nanometric precision using transport of intensity equations (TIE). We demonstrate nanometric depth sensitivity in imaging live yeast cells using this technique. This technique being noninterferometric, does not need any coherent light sources and images can be captured through a regular bright-field microscope. This real-time imaging technique would deliver the depth or 3-D volume information of cells and is highly promising in real-time digital pathology applications, screening of pathogens and staging of diseases like malaria as it does not need any preprocessing of samples.

  7. A Predictive Model for Yeast Cell Polarization in Pheromone Gradients.

    Science.gov (United States)

    Muller, Nicolas; Piel, Matthieu; Calvez, Vincent; Voituriez, Raphaël; Gonçalves-Sá, Joana; Guo, Chin-Lin; Jiang, Xingyu; Murray, Andrew; Meunier, Nicolas

    2016-04-01

    Budding yeast cells exist in two mating types, a and α, which use peptide pheromones to communicate with each other during mating. Mating depends on the ability of cells to polarize up pheromone gradients, but cells also respond to spatially uniform fields of pheromone by polarizing along a single axis. We used quantitative measurements of the response of a cells to α-factor to produce a predictive model of yeast polarization towards a pheromone gradient. We found that cells make a sharp transition between budding cycles and mating induced polarization and that they detect pheromone gradients accurately only over a narrow range of pheromone concentrations corresponding to this transition. We fit all the parameters of the mathematical model by using quantitative data on spontaneous polarization in uniform pheromone concentration. Once these parameters have been computed, and without any further fit, our model quantitatively predicts the yeast cell response to pheromone gradient providing an important step toward understanding how cells communicate with each other.

  8. Effects of gamma radiation on Sporothrix schenckii yeast cells

    Energy Technology Data Exchange (ETDEWEB)

    Lacerda, Camila M. de Sousa; Martins, Estefania Mara Nascimento; Andrade, Antero S.R. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)], e-mail: cmsl@cdtn.br, e-mail: estefaniabio@yahoo.com.br, e-mail: antero@cdtn.br; Resende, Maria Aparecida de [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Microbiologia], e-mail: maressend@mono.icb.ufmg.br

    2009-07-01

    Sporotrichosis is a subacute or chronic infection caused by the fungus Sporothrix schenckii. Zoonotic transmission can occur after scratches or bites of animals, mainly cats, rodents, and armadillos. Up to the moment, no approved vaccine was reported for S. schenckii or to any important pathogenic fungi infection in humans, indicating the need to expand the research in this field and to explore new alternatives. The aim of this study was to evaluate the effects of gamma radiation in the viability, metabolic activity and reproductive ability of S. schenckii yeast cells for further studies on the development of a vaccine for immunization of cats and dogs. The culture of S. schenckii, in solid medium, was irradiated at doses ranging from 1.0 to 9.0 kGy. After each dose the reproductive capacity, viability and protein synthesis were estimated. The results showed that a reduction of 6 log{sub 10} cycles in the number of colonies was achieved at 6.0 kGy and after 8.0 kGy no colonies could be recovered. The viability analysis indicated that yeast cells remained viable up to 9.0 kGy. The results of protein synthesis analysis showed that the yeast cells, irradiated up to 9.0 kGy, were able to synthesize proteins. Our preliminary results indicated that for the yeast cells of S. schenckii, it is possible to find an absorbed dose in which the pathogen loses its reproductive ability, while retaining its viability, a necessary condition for the development of a radioattenuated yeast vaccine. (author)

  9. Study of budding yeast colony formation and its characterizations by using circular granular cell

    Science.gov (United States)

    Aprianti, D.; Haryanto, F.; Purqon, A.; Khotimah, S. N.; Viridi, S.

    2016-03-01

    Budding yeast can exhibit colony formation in solid substrate. The colony of pathogenic budding yeast can colonize various surfaces of the human body and medical devices. Furthermore, it can form biofilm that resists drug effective therapy. The formation of the colony is affected by the interaction between cells and with its growth media. The cell budding pattern holds an important role in colony expansion. To study this colony growth, the molecular dynamic method was chosen to simulate the interaction between budding yeast cells. Every cell was modelled by circular granular cells, which can grow and produce buds. Cohesion force, contact force, and Stokes force govern this model to mimic the interaction between cells and with the growth substrate. Characterization was determined by the maximum (L max) and minimum (L min) distances between two cells within the colony and whether two lines that connect the two cells in the maximum and minimum distances intersect each other. Therefore, it can be recognized the colony shape in circular, oval, and irregular shapes. Simulation resulted that colony formation are mostly in oval shape with little branch. It also shows that greater cohesion strength obtains more compact colony formation.

  10. Technological steps and yeast biomass as factors affecting the lipid content of beer during the brewing process.

    Science.gov (United States)

    Bravi, Elisabetta; Perretti, Giuseppe; Buzzini, Pietro; Della Sera, Rolando; Fantozzi, Paolo

    2009-07-22

    Knowledge of lipid content and composition in the brewing process enables the quality control of the final product. Lipids have a beneficial effect on yeast growth during fermentation as well as deleterious effects on end-product quality. The lipid content of a beer affects its ability to form a stable head of foam and plays an important role in beer staling. Lipid oxidation during wort production is of great interest because of its effect on beer quality: both lipids and their oxidation products are known to have adverse effects on beer flavor, whereas interactions between lipids and protein films stabilizing the gas bubbles are thought to cause the collapse of foam. In this background, the aim of this research was the characterization of the lipid content during a brewing process for evaluating the influence of both technological steps and yeast biomass in the lipid composition of beer. Lipid contents and their fatty acid profile were evaluated in brewing raw materials, wort, and beer. A high-resolution gas chromatography-flame ionization detector (HRGC-FID) system was used for fatty acid determination in lipid extracts. The results of the present study highlighted that the main technological steps influencing the lipid content in brewing byproduct and beer were clarification in a whirlpool and filtration. Moreover, the presence of metabolically active yeast cells (used as starter culture) were found to have a great influence on the fatty acids composition of lipids.

  11. Screening the budding yeast genome reveals unique factors affecting K2 toxin susceptibility.

    Directory of Open Access Journals (Sweden)

    Elena Servienė

    Full Text Available BACKGROUND: Understanding how biotoxins kill cells is of prime importance in biomedicine and the food industry. The budding yeast (S. cerevisiae killers serve as a convenient model to study the activity of biotoxins consistently supplying with significant insights into the basic mechanisms of virus-host cell interactions and toxin entry into eukaryotic target cells. K1 and K2 toxins are active at the cell wall, leading to the disruption of the plasma membrane and subsequent cell death by ion leakage. K28 toxin is active in the cell nucleus, blocking DNA synthesis and cell cycle progression, thereby triggering apoptosis. Genome-wide screens in the budding yeast S. cerevisiae identified several hundred effectors of K1 and K28 toxins. Surprisingly, no such screen had been performed for K2 toxin, the most frequent killer toxin among industrial budding yeasts. PRINCIPAL FINDINGS: We conducted several concurrent genome-wide screens in S. cerevisiae and identified 332 novel K2 toxin effectors. The effectors involved in K2 resistance and hypersensitivity largely map in distinct cellular pathways, including cell wall and plasma membrane structure/biogenesis and mitochondrial function for K2 resistance, and cell wall stress signaling and ion/pH homeostasis for K2 hypersensitivity. 70% of K2 effectors are different from those involved in K1 or K28 susceptibility. SIGNIFICANCE: Our work demonstrates that despite the fact that K1 and K2 toxins share some aspects of their killing strategies, they largely rely on different sets of effectors. Since the vast majority of the host factors identified here is exclusively active towards K2, we conclude that cells have acquired a specific K2 toxin effectors set. Our work thus indicates that K1 and K2 have elaborated different biological pathways and provides a first step towards the detailed characterization of K2 mode of action.

  12. High power density yeast catalyzed microbial fuel cells

    Science.gov (United States)

    Ganguli, Rahul

    Microbial fuel cells leverage whole cell biocatalysis to convert the energy stored in energy-rich renewable biomolecules such as sugar, directly to electrical energy at high efficiencies. Advantages of the process include ambient temperature operation, operation in natural streams such as wastewater without the need to clean electrodes, minimal balance-of-plant requirements compared to conventional fuel cells, and environmentally friendly operation. These make the technology very attractive as portable power sources and waste-to-energy converters. The principal problem facing the technology is the low power densities compared to other conventional portable power sources such as batteries and traditional fuel cells. In this work we examined the yeast catalyzed microbial fuel cell and developed methods to increase the power density from such fuel cells. A combination of cyclic voltammetry and optical absorption measurements were used to establish significant adsorption of electron mediators by the microbes. Mediator adsorption was demonstrated to be an important limitation in achieving high power densities in yeast-catalyzed microbial fuel cells. Specifically, the power densities are low for the length of time mediator adsorption continues to occur. Once the mediator adsorption stops, the power densities increase. Rotating disk chronoamperometry was used to extract reaction rate information, and a simple kinetic expression was developed for the current observed in the anodic half-cell. Since the rate expression showed that the current was directly related to microbe concentration close to the electrode, methods to increase cell mass attached to the anode was investigated. Electrically biased electrodes were demonstrated to develop biofilm-like layers of the Baker's yeast with a high concentration of cells directly connected to the electrode. The increased cell mass did increase the power density 2 times compared to a non biofilm fuel cell, but the power density

  13. Construction of a large synthetic human Fab antibody library on yeast cell surface by optimized yeast mating.

    Science.gov (United States)

    Baek, Du-San; Kim, Yong-Sung

    2014-03-28

    Yeast surface-displayed antibody libraries provide an efficient and quantitative screening resource for given antigens, but suffer from typically modest library sizes owing to low yeast transformation efficiency. Yeast mating is an attractive method for overcoming the limit of yeast transformation to construct a large, combinatorial antibody library, but the optimal conditions have not been reported. Here, we report a large synthetic human Fab (antigen binding fragment) yeast surface-displayed library generated by stepwise optimization of yeast mating conditions. We first constructed HC (heavy chain) and LC (light chain) libraries, where all of the six CDRs (complementarity-determining regions) of the variable domains were diversified mimicking the human germline antibody repertoires by degenerate codons, onto single frameworks of VH3-23 and Vkappa1-16 germline sequences, in two haploid cells of opposite mating types. Yeast mating conditions were optimized in the order of cell density, media pH, and cell growth phase, yielding a mating efficiency of ~58% between the two haploid cells carrying HC and LC libraries. We constructed two combinatorial Fab libraries with CDR-H3 of 9 or 11 residues in length with colony diversities of more than 10(9) by one round of yeast mating between the two haploid HC and LC libraries, with modest diversity sizes of ~10(7). The synthetic human Fab yeast-displayed libraries exhibited relative amino acid compositions in each position of the six CDRs that were very similar to those of the designed repertoires, suggesting that they are a promising source for human Fab antibody screening.

  14. Conductometric biosensor for ethanol detection based on whole yeast cells.

    Science.gov (United States)

    Korpan, Y I; Dzyadevich, S V; Zharova, V P; El'skaya, A V

    1994-01-01

    The quantification of ethanol in alcoholic beverages was performed by yeast cell-based conductometric biosensor. A membrane with yeast cells immobilized in 2% Ca-alginate gel was attached on gold planar electrodes. Changes in conductivity due to the specific consumption of ethanol by yeast cells were registered by the computer-controlled sensor system. The response time of the constructed microbial sensor was less than 5 min, linearity (in a logarithmic scale) was observed in the range of 5-100 mM alcohol concentration. It was established that pH value in their region from 5 to 8 did not influence the levels of initial signal. The increase of a buffer capacity in the sample results in the decrease of the biosensor output. The minimal detectable level of ethanol was 1 mM and the relative standard deviation appeared to be 10-12% for 15 repeated assays. When the system was operated and stored at 20-25 degrees C, the biosensor response was stable for only 3 days. However, when the microbial sensor was stored at 4 degrees C, the system was stable up to 12 days. Good correlation between the results obtained by a conductometric cell-biosensor and gas chromatograph was observed.

  15. Inactivation cross sectiopn of yeast cells irradiated by heavy ions

    Institute of Scientific and Technical Information of China (English)

    ZHANGChunxiang; LUODaling

    1999-01-01

    Inactivation cross sections for haploid yeast cell strain 211a have been calculated as 1-ht detector based on the track theory in an extended target mode and a numerical calculation of radial dose distribution.In the calculations,characteristic dose D0 is a fitted parameter which is obtained to be 42Gy,and “radius” of hypothetical target a0 is chosen to be 0.5μm which is about the size of nucleus of yeast cells for obtaining an overall agreement with experimental cross sections.The results of the calculations are in agreement with the experimental data in igh LEF(linear energy transfer)including the thindown region.

  16. Budding yeast colony growth study based on circular granular cell

    Science.gov (United States)

    Aprianti, Devi; Khotimah, S. N.; Viridi, S.

    2016-08-01

    Yeast colony growth can be modelled by using circular granular cells, which can grow and produce buds. The bud growth angle can be set to regulate cell budding pattern. Cohesion force, contact force and Stokes force were adopted to accommodate the behaviour and interactions among cells. Simulation steps are divided into two steps, the explicit step is due to cell growing and implicit step for the cell rearrangement. Only in explicit step that time change was performed. In this study, we examine the influence of cell diameter growth time and reproduction time combination toward the growth of cell number and colony formation. We find a commutative relation between the cell diameter growth time and reproduction time to the specific growth rate. The greater value of the multiplication of the parameters, the smaller specific growth rate is obtained. It also shows a linear correlation between the specific growth rate and colony diameter growth rate.

  17. Yeast cells proliferation on various strong static magnetic fields and temperatures

    Science.gov (United States)

    Otabe, E. S.; Kuroki, S.; Nikawa, J.; Matsumoto, Y.; Ooba, T.; Kiso, K.; Hayashi, H.

    2009-03-01

    The effect of strong magnetic fields on activities of yeast cells were investigated. Experimental yeast cells were cultured in 5 ml of YPD(Yeast extract Peptone Dextrose) for the number density of yeast cells of 5.0 ±0.2 x 106/ml with various temperatures and magnetic fields up to 10 T. Since the yeast cells were placed in the center of the superconducting magnet, the effect of magnetic force due to the diamagnetism and magnetic gradient was negligibly small. The yeast suspension was opened to air and cultured in shaking condition. The number of yeast cells in the yeast suspension was counted by a counting plate with an optical microscope, and the time dependence of the number density of yeast cells was measured. The time dependence of the number density of yeast cells, ρ, of initial part is analyzed in terms of Malthus equation as given by ρ = ρo exp(kt), where k is the growth coefficient. It is found that, the growth coefficient under the magnetic field is suppressed compared with the control. The growth coefficient decreasing as increasing magnetic field and is saturated at about 5 T. On the other hand, it is found that the suppression of growth of yeast cells by the magnetic field is diminished at high temperatures.

  18. Yeast cells proliferation on various strong static magnetic fields and temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Otabe, E S; Kuroki, S; Nikawa, J [Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, 680-4 Kawazu Iizuka Fukuoka 820-8502 (Japan); Matsumoto, Y [Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180 (Japan); Ooba, T [Fukuoka Industrial Technology Center, 1465-5 Aikawa-machi, Kurume, Fukuoka 839-0861 (Japan); Kiso, K [Fukuoka Regional Taxation Bureau, 2-11-1 Hakataekihigashi, Hakata-ku Fukuoka, 812-8547 (Japan); Hayashi, H [Kyushu Power Electric, 2-1-47 Shiobaru Minami-ku Fukuoka 815-8520 (Japan)], E-mail: otabe@cse.kyutech.ac.jp

    2009-03-01

    The effect of strong magnetic fields on activities of yeast cells were investigated. Experimental yeast cells were cultured in 5 ml of YPD(Yeast extract Peptone Dextrose) for the number density of yeast cells of 5.0 {+-}0.2 x 10{sup 6}/ml with various temperatures and magnetic fields up to 10 T. Since the yeast cells were placed in the center of the superconducting magnet, the effect of magnetic force due to the diamagnetism and magnetic gradient was negligibly small. The yeast suspension was opened to air and cultured in shaking condition. The number of yeast cells in the yeast suspension was counted by a counting plate with an optical microscope, and the time dependence of the number density of yeast cells was measured. The time dependence of the number density of yeast cells, {rho}, of initial part is analyzed in terms of Malthus equation as given by {rho} = {rho}o exp(kt), where k is the growth coefficient. It is found that, the growth coefficient under the magnetic field is suppressed compared with the control. The growth coefficient decreasing as increasing magnetic field and is saturated at about 5 T. On the other hand, it is found that the suppression of growth of yeast cells by the magnetic field is diminished at high temperatures.

  19. Stratification of yeast cells during chronological aging by size points to the role of trehalose in cell vitality.

    Science.gov (United States)

    Svenkrtova, Andrea; Belicova, Lenka; Volejnikova, Andrea; Sigler, Karel; Jazwinski, S Michal; Pichova, Alena

    2016-04-01

    Cells of the budding yeast Saccharomyces cerevisiae undergo a process akin to differentiation during prolonged culture without medium replenishment. Various methods have been used to separate and determine the potential role and fate of the different cell species. We have stratified chronologically-aged yeast cultures into cells of different sizes, using centrifugal elutriation, and characterized these subpopulations physiologically. We distinguish two extreme cell types, very small (XS) and very large (L) cells. L cells display higher viability based on two separate criteria. They respire much more actively, but produce lower levels of reactive oxygen species (ROS). L cells are capable of dividing, albeit slowly, giving rise to XS cells which do not divide. L cells are more resistant to osmotic stress and they have higher trehalose content, a storage carbohydrate often connected to stress resistance. Depletion of trehalose by deletion of TPS2 does not affect the vital characteristics of L cells, but it improves some of these characteristics in XS cells. Therefore, we propose that the response of L and XS cells to the trehalose produced in the former differs in a way that lowers the vitality of the latter. We compare our XS- and L-fraction cell characteristics with those of cells isolated from stationary cultures by others based on density. This comparison suggests that the cells have some similarities but also differences that may prove useful in addressing whether it is the segregation or the response to trehalose that may play the predominant role in cell division from stationary culture.

  20. Unidirectional P-body transport during the yeast cell cycle.

    Directory of Open Access Journals (Sweden)

    Cecilia Garmendia-Torres

    Full Text Available P-bodies belong to a large family of RNA granules that are associated with post-transcriptional gene regulation, conserved from yeast to mammals, and influence biological processes ranging from germ cell development to neuronal plasticity. RNA granules can also transport RNAs to specific locations. Germ granules transport maternal RNAs to the embryo, and neuronal granules transport RNAs long distances to the synaptic dendrites. Here we combine microfluidic-based fluorescent microscopy of single cells and automated image analysis to follow p-body dynamics during cell division in yeast. Our results demonstrate that these highly dynamic granules undergo a unidirectional transport from the mother to the daughter cell during mitosis as well as a constrained "hovering" near the bud site half an hour before the bud is observable. Both behaviors are dependent on the Myo4p/She2p RNA transport machinery. Furthermore, single cell analysis of cell size suggests that PBs play an important role in daughter cell growth under nutrient limiting conditions.

  1. Immobilization of microbial cell and yeast cell and its application to biomass conversion using radiation techniques

    Science.gov (United States)

    Kaetsu, Isao; Kumakura, Minoru; Fujimura, Takashi; Kasai, Noboru; Tamada, Masao

    The recent results of immobilization of cellulase-producing cells and ethanol-fermentation yeast by radiation were reported. The enzyme of cellulase produced by immobilized cells was used for saccharification of lignocellulosic wastes and immobilized yeast cells were used for fermentation reaction from glucose to ethanol. The wastes such as chaff and bagasse were treated by γ-ray or electron-beam irradiation in the presence of alkali and subsequent mechanical crushing, to form a fine powder less than 50 μm in diameter. On the other hand, Trichoderma reesei as a cellulase-producing microbial cell was immobilized on a fibrous carrier having a specific porous structure and cultured to produce cellulase. The enzymatic saccharification of the pretreated waste was carried out using the produced cellulase. The enhanced fermentation process to produce ethanol from glucose with the immobilized yeast by radiation was also studied. The ethanol productivity of immobilized growing yeast cells thus obtained was thirteen times that of free yeast cells in a 1:1 volume of liquid medium to immobilized yeast cells.

  2. Preparation of corncob grits as a carrier for immobilizing yeast cells for ethanol production.

    Science.gov (United States)

    Lee, Sang-Eun; Lee, Choon Geun; Kang, Do Hyung; Lee, Hyeon-Yong; Jung, Kyung-Hwan

    2012-12-01

    In this study, DEAE-corncobs [delignified corncob grits derivatized with 2-(diethylamino)ethyl chloride hydrochloride (DEAE·HCl)] were prepared as a carrier to immobilize yeast (Saccharomyces cerevisiae) for ethanol production. The immobilized yeast cell reactor produced ethanol under optimized DEAE·HCl derivatization and adsorption conditions between yeast cells and the DEAE-corncobs. When delignified corncob grit (3.0 g) was derivatized with 0.5M DEAE·HCl, the yeast cell suspension (OD600 = 3.0) was adsorbed at >90% of the initial cell OD600. This amount of adsorbed yeast cells was estimated to be 5.36 mg-dry cells/g-DEAE corncobs. The Qmax (the maximum cell adsorption by the carrier) of the DEAE-corncobs was estimated to be 25.1 (mg/g), based on a Languir model biosorption isotherm experiment. When we conducted a batch culture with medium recycling using the immobilized yeast cells, the yeast cells on DEAE-corncobs produced ethanol gradually, according to glucose consumption, without cells detaching from the DEAE-corncobs. We observed under electron microscopy that the yeast cells grew on the surface and in the holes of the DEAEcorncobs. In a future study, DEAE-corncobs and the immobilized yeast cell reactor system will contribute to bioethanol production from biomass hydrolysates.

  3. Modeling Yeast Cell Polarization Induced by Pheromone Gradients

    Science.gov (United States)

    Yi, Tau-Mu; Chen, Shanqin; Chou, Ching-Shan; Nie, Qing

    2007-07-01

    Yeast cells respond to spatial gradients of mating pheromones by polarizing and projecting up the gradient toward the source. It is thought that they employ a spatial sensing mechanism in which the cell compares the concentration of pheromone at different points on the cell surface and determines the maximum point, where the projection forms. Here we constructed the first spatial mathematical model of the yeast pheromone response that describes the dynamics of the heterotrimeric and Cdc42p G-protein cycles, which are linked in a cascade. Two key performance objectives of this system are (1) amplification—converting a shallow external gradient of ligand to a steep internal gradient of protein components and (2) tracking—following changes in gradient direction. We used simulations to investigate amplification mechanisms that allow tracking. We identified specific strategies for regulating the spatial dynamics of the protein components (i.e. their changing location in the cell) that would enable the cell to achieve both objectives.

  4. Oxygen Consumption by Postfermentation Wine Yeast Lees: Factors Affecting Its Rate and Extent under Oenological Conditions

    OpenAIRE

    Schneider, Volker; Müller, Jonas; Schmidt, Dominik

    2016-01-01

    Postfermentation wine yeast lees show antioxidant properties based on their ability to consume dissolved oxygen. The oxygen consumption capacity of suspended yeast lees obtained after fermentations with six commercial active dry yeast strains was investigated in model, white and red wines using fluorescence-based oxygen sensors operating in a nondestructive way. In model solution, the oxygen consumption rate of yeast lees was shown to depend on their amount, yeast strain, sulfur dioxide and t...

  5. Research of aquatic organism addition influence on the reproduction of yeast cells in the dough

    Directory of Open Access Journals (Sweden)

    Дмитро Павлович Крамаренко

    2016-12-01

    Full Text Available The analysis of the research results of influence of various amounts of aquatic organism additions on the reproduction of yeast cells is given. A positive impact of aquatic organism addition of animal and plant origin in investigated quantities on the reproduction of yeast cells is revealed. The influence of the chemical composition of the aquatic organism additives on the reproduction of yeast cells is proved

  6. Boolean network model predicts cell cycle sequence of fission yeast.

    Directory of Open Access Journals (Sweden)

    Maria I Davidich

    Full Text Available A Boolean network model of the cell-cycle regulatory network of fission yeast (Schizosaccharomyces Pombe is constructed solely on the basis of the known biochemical interaction topology. Simulating the model in the computer faithfully reproduces the known activity sequence of regulatory proteins along the cell cycle of the living cell. Contrary to existing differential equation models, no parameters enter the model except the structure of the regulatory circuitry. The dynamical properties of the model indicate that the biological dynamical sequence is robustly implemented in the regulatory network, with the biological stationary state G1 corresponding to the dominant attractor in state space, and with the biological regulatory sequence being a strongly attractive trajectory. Comparing the fission yeast cell-cycle model to a similar model of the corresponding network in S. cerevisiae, a remarkable difference in circuitry, as well as dynamics is observed. While the latter operates in a strongly damped mode, driven by external excitation, the S. pombe network represents an auto-excited system with external damping.

  7. Cell wall trapping of autocrine peptides for human G-protein-coupled receptors on the yeast cell surface.

    Directory of Open Access Journals (Sweden)

    Jun Ishii

    Full Text Available G-protein-coupled receptors (GPCRs regulate a wide variety of physiological processes and are important pharmaceutical targets for drug discovery. Here, we describe a unique concept based on yeast cell-surface display technology to selectively track eligible peptides with agonistic activity for human GPCRs (Cell Wall Trapping of Autocrine Peptides (CWTrAP strategy. In our strategy, individual recombinant yeast cells are able to report autocrine-positive activity for human GPCRs by expressing a candidate peptide fused to an anchoring motif. Following expression and activation, yeast cells trap autocrine peptides onto their cell walls. Because captured peptides are incapable of diffusion, they have no impact on surrounding yeast cells that express the target human GPCR and non-signaling peptides. Therefore, individual yeast cells can assemble the autonomous signaling complex and allow single-cell screening of a yeast population. Our strategy may be applied to identify eligible peptides with agonistic activity for target human GPCRs.

  8. Synchronization of glycolytic oscillations in a yeast cell population

    DEFF Research Database (Denmark)

    Dano, S.; Hynne, F.; De Monte, Silvia

    2001-01-01

    The mechanism of active phase synchronization in a suspension of oscillatory yeast cells has remained a puzzle for almost half a century. The difficulty of the problem stems from the fact that the synchronization phenomenon involves the entire metabolic network of glycolysis and fermentation......, and consequently it cannot be addressed at the level of a single enzyme or a single chemical species. In this paper it is shown how this system in a CSTR (continuous flow stirred tank reactor) can be modelled quantitatively as a population of Stuart-Landau oscillators interacting by exchange of metabolites through...

  9. Single-particle tracking of quantum dot-conjugated prion proteins inside yeast cells

    Energy Technology Data Exchange (ETDEWEB)

    Tsuji, Toshikazu; Kawai-Noma, Shigeko [Department of Biomolecular Engineering, Graduate School of Biosciences and Biotechnology, Tokyo Institute of Technology, B56, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501 (Japan); Pack, Chan-Gi [Cellular Informatics Laboratory, RIKEN Advanced Science Institute, Wako-shi, Saitama 351-0198 (Japan); Terajima, Hideki [Department of Biomolecular Engineering, Graduate School of Biosciences and Biotechnology, Tokyo Institute of Technology, B56, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501 (Japan); Yajima, Junichiro; Nishizaka, Takayuki [Department of Physics, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588 (Japan); Kinjo, Masataka [Laboratory of Molecular Cell Dynamics, Graduate School of Life Sciences, Hokkaido University, Sapporo 001-0021 (Japan); Taguchi, Hideki, E-mail: taguchi@bio.titech.ac.jp [Department of Biomolecular Engineering, Graduate School of Biosciences and Biotechnology, Tokyo Institute of Technology, B56, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501 (Japan)

    2011-02-25

    Research highlights: {yields} We develop a method to track a quantum dot-conjugated protein in yeast cells. {yields} We incorporate the conjugated quantum dot proteins into yeast spheroplasts. {yields} We track the motions by conventional or 3D tracking microscopy. -- Abstract: Yeast is a model eukaryote with a variety of biological resources. Here we developed a method to track a quantum dot (QD)-conjugated protein in the budding yeast Saccharomyces cerevisiae. We chemically conjugated QDs with the yeast prion Sup35, incorporated them into yeast spheroplasts, and tracked the motions by conventional two-dimensional or three-dimensional tracking microscopy. The method paves the way toward the individual tracking of proteins of interest inside living yeast cells.

  10. Effects of different yeast cell wall supplements added to maize- or wheat-based diets for broiler chickens.

    Science.gov (United States)

    Morales-López, R; Auclair, E; Van Immerseel, F; Ducatelle, R; García, F; Brufau, J

    2010-06-01

    1. Three experiments were carried out to study the effects of two experimental yeast cell wall (YCW) supplements, one from the yeast extract industry and the other from the brewery industry, added to maize or wheat based-diets, on performance and intestinal parameters of broiler chickens (Ross 308). 2. In the first and second experiments, a completely randomised block design with 4 experimental treatments was used: T-1) Negative control, no additives T-2) Positive control, avilamycin group (10 mg/kg feed), T-3) Yeast extract-YCW (500 mg/kg), and T-4) Brewery-YCW (500 mg/kg feed). There were 6 replicates of 20 (experiment 1) and 22 (experiment 2) chicks per treatment. 3. In experiment 1 (wheat based diets), yeast extract-YCW increased BW and daily feed intake (42 d). The effects were comparable to those of avilamycin. In experiment 2 (maize based diet), avilamycin, yeast extract-YCW and brewery-YCW treatments improved the feed conversion ratio with respect to the negative control group (0 to 14 d). 4. At 24 d, in both experiments, the ileal nutrient digestibility and ileal bacterial counts were not affected by any experimental treatment. In maize diets, lower intestinal viscosity was obtained with avilamycin, yeast extract-YCW and brewery-YCW than with the negative control. In wheat diets, yeast extract-YCW and brewery-YCW reduced intestinal viscosity. 5. A third experiment was conducted to study the effect of yeast extract-YCW on animal performance, intestinal mucosa morphology and intestinal viscosity. A 2 x 2 factorial arrangement of treatments was used; one factor was the dietary yeast extract-YCW supplementation (0 or 500 mg/kg feed) and the other the cereal in the diet (maize or wheat). 6. At 43 d, the heaviest BW was in chickens fed on yeast extract-YCW compared to those given the negative control. At 22 d, yeast extract-YCW increased villus height, mucus thickness and number of goblet cells with respect to negative control. 7. Results of these experiments

  11. A FIBER APPARATUS IN THE NUCLEUS OF THE YEAST CELL

    Science.gov (United States)

    Robinow, C. F.; Marak, J.

    1966-01-01

    The structure and mode of division of the nucleus of budding yeast cells have been studied by phase-contrast microscopy during life and by ordinary microscopy after Helly fixation. The components of the nucleus were differentially stained by the Feulgen procedure, with Giemsa solution after hydrolysis, and with iron alum haematoxylin. New information was obtained in cells fixed in Helly's by directly staining them with 0.005% acid fuchsin in 1% acetic acid in water. Electron micrographs have been made of sections of cells that were first fixed with 3% glutaraldehyde, then divested of their walls with snail juice, and postfixed with osmium tetroxide. Light and electron microscopy have given concordant information about the organization of the yeast nucleus. A peripheral segment of the nucleus is occupied by relatively dense matter (the "peripheral cluster" of Mundkur) which is Feulgen negative. The greater part of the nucleus is filled with fine-grained Feulgen-positive matter of low density in which chromosomes could not be identified. Chromosomes become visible in this region under the light microscope at meiosis. In the chromatin lies a short fiber with strong affinity for acid fuchsin. The nucleus divides by elongation and constriction, and during this process the fiber becomes long and thin. Electron microscopy has resolved it into a bundle of dark-edged 150 to 180 A filaments which extends between "centriolar plaques" that are attached to the nuclear envelope. PMID:5331666

  12. A yeast-based genomic strategy highlights the cell protein networks altered by FTase inhibitor peptidomimetics

    Directory of Open Access Journals (Sweden)

    Porcu Giampiero

    2010-07-01

    Full Text Available Abstract Background Farnesyltransferase inhibitors (FTIs are anticancer agents developed to inhibit Ras oncoprotein activities. FTIs of different chemical structure act via a conserved mechanism in eukaryotic cells. They have low toxicity and are active on a wide range of tumors in cellular and animal models, independently of the Ras activation state. Their ultimate mechanism of action, however, remains undetermined. FTase has hundred of substrates in human cells, many of which play a pivotal role in either tumorigenesis or in pro-survival pathways. This lack of knowledge probably accounts for the failure of FTIs at clinical stage III for most of the malignancies treated, with the notable exception of haematological malignancies. Understanding which cellular pathways are the ultimate targets of FTIs in different tumor types and the basis of FTI resistance is required to improve the efficacy of FTIs in cancer treatment. Results Here we used a yeast-based cellular assay to define the transcriptional changes consequent to FTI peptidomimetic administration in conditions that do not substantially change Ras membrane/cytosol distribution. Yeast and cancer cell lines were used to validate the results of the network analysis. The transcriptome of yeast cells treated with FTase inhibitor I was compared with that of untreated cells and with an isogenic strain genetically inhibited for FTase activity (Δram1. Cells treated with GGTI-298 were analyzed in a parallel study to validate the specificity of the FTI response. Network analysis, based on gene ontology criteria, identified a cell cycle gene cluster up-regulated by FTI treatment that has the Aurora A kinase IPL1 and the checkpoint protein MAD2 as hubs. Moreover, TORC1-S6K-downstream effectors were found to be down-regulated in yeast and mammalian FTI-treated cells. Notably only FTIs, but not genetic inhibition of FTase, elicited up-regulation of ABC/transporters. Conclusions This work provides a view

  13. Yeast surface display of dehydrogenases in microbial fuel-cells.

    Science.gov (United States)

    Gal, Idan; Schlesinger, Orr; Amir, Liron; Alfonta, Lital

    2016-12-01

    Two dehydrogenases, cellobiose dehydrogenase from Corynascus thermophilus and pyranose dehydrogenase from Agaricus meleagris, were displayed for the first time on the surface of Saccharomyces cerevisiae using the yeast surface display system. Surface displayed dehydrogenases were used in a microbial fuel cell and generated high power outputs. Surface displayed cellobiose dehydrogenase has demonstrated a midpoint potential of -28mV (vs. Ag/AgCl) at pH=6.5 and was used in a mediator-less anode compartment of a microbial fuel cell producing a power output of 3.3μWcm(-2) using lactose as fuel. Surface-displayed pyranose dehydrogenase was used in a microbial fuel cell and generated high power outputs using different substrates, the highest power output that was achieved was 3.9μWcm(-2) using d-xylose. These results demonstrate that surface displayed cellobiose dehydrogenase and pyranose dehydrogenase may successfully be used in microbial bioelectrochemical systems.

  14. Novel and improved yeast cell factories for biosustainable processes

    DEFF Research Database (Denmark)

    Workman, Mhairi

    2014-01-01

    utilizing traditionally applied cell factories are generally based on a limited range of substrates (mainly glucose). However, a wider diversity in substrate range is highly desirable in developing biorefinery scenarios where feed-stocks containing a number of carbon sources are typically employed....... In addition to plant biomass hydrolysates, glycerol is of interest here, being available in amounts relevant for industrial scale bioprocesses due to increased production of biodiesel. The well characterised cell factory Saccharomyces cerevisiae exhibits a clear preference for glucose as a carbon source...... with relevant applications as cell factories (including Pichia spp. and Yarrowia lipolytica) and other less well characterized strains (e.g. Pachysolen tannophilus). This presentation will address how we evaluate cellular performance with a view to utilizing yeast species in industrial biotechnology...

  15. Yeast modulation of human dendritic cell cytokine secretion: an in vitro study.

    Science.gov (United States)

    Smith, Ida M; Christensen, Jeffrey E; Arneborg, Nils; Jespersen, Lene

    2014-01-01

    Probiotics are live microorganisms which when administered in adequate amounts confer a health benefit on the host. The concept of individual microorganisms influencing the makeup of T cell subsets via interactions with intestinal dendritic cells (DCs) appears to constitute the foundation for immunoregulatory effects of probiotics, and several studies have reported probiotic strains resulting in reduction of intestinal inflammation through modulation of DC function. Consequent to a focus on Saccharomyces boulardii as the fundamental probiotic yeast, very little is known about hundreds of non-Saccharomyces yeasts in terms of their interaction with the human gastrointestinal immune system. The aim of the present study was to evaluate 170 yeast strains representing 75 diverse species for modulation of inflammatory cytokine secretion by human DCs in vitro, as compared to cytokine responses induced by a S. boulardii reference strain with probiotic properties documented in clinical trials. Furthermore, we investigated whether cytokine inducing interactions between yeasts and human DCs are dependent upon yeast viability or rather a product of membrane interactions regardless of yeast metabolic function. We demonstrate high diversity in yeast induced cytokine profiles and employ multivariate data analysis to reveal distinct clustering of yeasts inducing similar cytokine profiles in DCs, highlighting clear species distinction within specific yeast genera. The observed differences in induced DC cytokine profiles add to the currently very limited knowledge of the cross-talk between yeasts and human immune cells and provide a foundation for selecting yeast strains for further characterization and development toward potentially novel yeast probiotics. Additionally, we present data to support a hypothesis that the interaction between yeasts and human DCs does not solely depend on yeast viability, a concept which may suggest a need for further classifications beyond the current

  16. Yeast modulation of human dendritic cell cytokine secretion: an in vitro study.

    Directory of Open Access Journals (Sweden)

    Ida M Smith

    Full Text Available Probiotics are live microorganisms which when administered in adequate amounts confer a health benefit on the host. The concept of individual microorganisms influencing the makeup of T cell subsets via interactions with intestinal dendritic cells (DCs appears to constitute the foundation for immunoregulatory effects of probiotics, and several studies have reported probiotic strains resulting in reduction of intestinal inflammation through modulation of DC function. Consequent to a focus on Saccharomyces boulardii as the fundamental probiotic yeast, very little is known about hundreds of non-Saccharomyces yeasts in terms of their interaction with the human gastrointestinal immune system. The aim of the present study was to evaluate 170 yeast strains representing 75 diverse species for modulation of inflammatory cytokine secretion by human DCs in vitro, as compared to cytokine responses induced by a S. boulardii reference strain with probiotic properties documented in clinical trials. Furthermore, we investigated whether cytokine inducing interactions between yeasts and human DCs are dependent upon yeast viability or rather a product of membrane interactions regardless of yeast metabolic function. We demonstrate high diversity in yeast induced cytokine profiles and employ multivariate data analysis to reveal distinct clustering of yeasts inducing similar cytokine profiles in DCs, highlighting clear species distinction within specific yeast genera. The observed differences in induced DC cytokine profiles add to the currently very limited knowledge of the cross-talk between yeasts and human immune cells and provide a foundation for selecting yeast strains for further characterization and development toward potentially novel yeast probiotics. Additionally, we present data to support a hypothesis that the interaction between yeasts and human DCs does not solely depend on yeast viability, a concept which may suggest a need for further classifications

  17. Microbiology and Epidemiology of Oral Yeast Colonization in Hemopoietic Progenitor Cell Transplant Recipients

    Science.gov (United States)

    Westbrook, Steven D.; Kirkpatrick, William R.; Wiederhold, Nathan P.; Freytes, Cesar O.; Toro, Juan J.; Patterson, Thomas F.; Redding, Spencer W.

    2012-01-01

    Objective We monitored the epidemiology and microbiology of oral yeast colonization in patients undergoing hemopoietic progenitor cell transplantation (HPCT) to examine associations between yeast colonization and oral mucositis. Study Design One hundred twenty-one consecutive HPCT patients were sampled for oral yeasts prior to fluconazole (FLC) prophylaxis, at transplant, and weekly until discharge. Clinical oral mucositis screenings were performed tri-weekly. Results Yeast colonization was evident at 216 of 510 total visits. Candida albicans and C. glabrata were the predominate organisms. Eight patients showed elevated MICs to FLC. One patient developed fungal septicemia. Patients with OMAS mucositis scores <20 had higher colonization rates than those with higher scores. Conclusions FLC is very effective in controlling a variety of oral yeasts in HPCT recipients. FLC resistant yeasts do emerge and can be the source of fungal sepsis. A positive association was not shown between yeast colonization and presence or severity of oral mucositis. PMID:23312542

  18. Hydrothermal decomposition of yeast cells for production of proteins and amino acids.

    Science.gov (United States)

    Lamoolphak, Wiwat; Goto, Motonobu; Sasaki, Mitsuru; Suphantharika, Manop; Muangnapoh, Chirakarn; Prommuag, Chattip; Shotipruk, Artiwan

    2006-10-11

    This study examines hydrothermal decomposition of Baker's yeast cells, used as a model for spent Brewer's yeast waste, into protein and amino acids. The reaction was carried out in a closed batch reactor at various temperatures between 100 and 250 degrees C. The reaction products were separated into water-soluble and solid residue. The results demonstrated that the amount of yeast residue decreased with increasing hydrolysis temperature. After 20 min reaction in water at 250 degrees C, 78% of yeast was decomposed. The highest amount of protein produced was also obtained at this condition and was found to be 0.16 mg/mg dry yeast. The highest amount of amino acids (0.063 mg/mg dry yeast) was found at the lowest temperature tested after 15 min. The hydrolysis product obtained at 200 degrees C was tested as a nutrient source for yeast growth. The growth of yeast cells in the culture medium containing 2 w/v% of this product was comparable to that of the cells grown in the medium containing commercial yeast extract at the same concentration. These results demonstrated the feasibility of using subcritical water to potentially decompose proteinaceous waste such as spent Brewer's yeast while recovering more useful products.

  19. The human septin7 and the yeast CDC10 septin prevent Bax and copper mediated cell death in yeast.

    Science.gov (United States)

    Horowitz, Avital; Lapointe, Jason F; Eid, Rawan; Sheibani, Sara; Gharib, Nada; Jones, Natalie K; Vali, Hojatollah; Mandato, Craig A; Greenwood, Michael T

    2013-12-01

    The mechanisms of programmed cell death activate genetically encoded intracellular programs in a controlled manner, the most common form being apoptosis. Apoptosis is carried out through a cascade of caspase mediated proteolytic cleavages initiated by the oligomerization of Bax, a cardinal regulator of mitochondrial-mediated apoptosis. Heterologous expression of Bax in yeast causes cell death that shares a number of similarities to processes that occur in mammalian apoptosis. A screen of a cardiac cDNA library for suppressors of Bax-mediated apoptosis identified human septin7, a protein that belongs to the septin superfamily of conserved GTP-binding proteins that share a conserved cdc/septin domain. Analysis of the amino acid sequence deduced from the septin7 clone as well as the corresponding human septin7 gene revealed that a novel alternatively spliced transcript called septin7 variant4 (v4) was uncovered. Yeast cells overexpressing the human septin7 v4 cDNA were also capable of resisting copper-mediated cell death suggesting that it is not only a Bax suppressor but also an anti-apoptotic sequence. Analysis of septin7 function in a MCA1Δ yeast strain suggests that septin7 inhibits apoptosis in a caspase independent pathway. Overexpression of the yeast septin7 ortholog CDC10 also conferred resistance to the negative effects of copper as well as protecting cells from the overexpression of Bax. In contrast, septin7 was unable to prevent the increase in cell size associated with mutants lacking the endogenous yeast CDC10 gene. Taken together, our analysis suggests that anti-apoptosis is a novel yet evolutionarily conserved property of the septin7 sub-family of septins.

  20. Hydrolysis of whey lactose using CTAB-permeabilized yeast cells.

    Science.gov (United States)

    Kaur, Gurpreet; Panesar, Parmjit S; Bera, Manav B; Kumar, Harish

    2009-01-01

    Disposal of lactose in whey and whey permeates is one of the most significant problems with regard to economics and environmental impact faced by the dairy industries. The enzymatic hydrolysis of whey lactose to glucose and galactose by beta-galactosidase constitutes the basis of the most biotechnological processes currently developed to exploit the sugar content of whey. Keeping this in view, lactose hydrolysis in whey was performed using CTAB permeabilized Kluyveromyces marxianus cells. Permeabilization of K. marxianus cells in relation to beta-galactosidase activity was carried out using cetyltrimethyl ammonium bromide (CTAB) to avoid the problem of enzyme extraction. Different process parameters (biomass load, pH, temperature, and incubation time) were optimized to enhance the lactose hydrolysis in whey. Maximum hydrolysis (90.5%) of whey lactose was observed with 200 mg DW yeast biomass after 90 min of incubation period at optimum pH of 6.5 and temperature of 40 degrees C.

  1. Sterol-Rich Membrane Domains Define Fission Yeast Cell Polarity.

    Science.gov (United States)

    Makushok, Tatyana; Alves, Paulo; Huisman, Stephen Michiel; Kijowski, Adam Rafal; Brunner, Damian

    2016-05-19

    Cell polarization is crucial for the functioning of all organisms. The cytoskeleton is central to the process but its role in symmetry breaking is poorly understood. We study cell polarization when fission yeast cells exit starvation. We show that the basis of polarity generation is de novo sterol biosynthesis, cell surface delivery of sterols, and their recruitment to the cell poles. This involves four phases occurring independent of the polarity factor cdc42p. Initially, multiple, randomly distributed sterol-rich membrane (SRM) domains form at the plasma membrane, independent of the cytoskeleton and cell growth. These domains provide platforms on which the growth and polarity machinery assembles. SRM domains are then polarized by the microtubule-dependent polarity factor tea1p, which prepares for monopolar growth initiation and later switching to bipolar growth. SRM polarization requires F-actin but not the F-actin organizing polarity factors for3p and bud6p. We conclude that SRMs are key to cell polarization.

  2. Physiological analysis of yeast cells by flow cytometry during serial-repitching of low-malt beer fermentation.

    Science.gov (United States)

    Kobayashi, Michiko; Shimizu, Hiroshi; Shioya, Suteaki

    2007-05-01

    At the end of beer brewing fermentation, yeast cells are collected and repitched for economical reasons. Although it is generally accepted that the physiological state of inoculated yeast cells affects their subsequent fermentation performance, the effect of serial-repitching on the physiological state of such yeast cells has not been well clarified. In this study, the fermentation performance of yeast cells during serial-repitching was investigated. After multiple repitchings, the specific growth rate and maximum optical density (OD(660)) decreased, and increases in isoamyl alcohol, which causes an undesirable flavor, and residual free amino acid nitrogen (FAN) concentrations were observed. The physiological state of individual cells before inoculation was characterized by flow cytometry using the fluorescent dyes dehydrorhodamine 123 (DHR) and bis-(1,3-dibutylbarbituric acid) trimethine oxonol (OXN). The fluorescence intensities of DHR, an indicator of reactive oxygen species (ROSs), and OXN, which indicates membrane potential, gradually increased as the number of serial-repitching cycles increased. Fluorescence intensity correlated strongly with cell growth. The subsequent fermentation performance can be predicted from this correlation.

  3. Biosynthesis of amorphous mesoporous aluminophosphates using yeast cells as templates

    Energy Technology Data Exchange (ETDEWEB)

    Sifontes, Ángela B., E-mail: asifonte@ivic.gob.ve [Centro de Química, Instituto Venezolano de Investigaciones Científicas, Apartado 20632, Caracas 1020-A (Venezuela, Bolivarian Republic of); González, Gema [Centro de Ingeniería de Materiales y Nanotecnología, Instituto Venezolano de Investigaciones Científicas, Apartado 20632, Caracas 1020-A (Venezuela, Bolivarian Republic of); Tovar, Leidy M.; Méndez, Franklin J. [Centro de Química, Instituto Venezolano de Investigaciones Científicas, Apartado 20632, Caracas 1020-A (Venezuela, Bolivarian Republic of); Gomes, Maria E. [Centro de Ingeniería de Materiales y Nanotecnología, Instituto Venezolano de Investigaciones Científicas, Apartado 20632, Caracas 1020-A (Venezuela, Bolivarian Republic of); Cañizales, Edgar [Área de Análisis Químico Inorgánico, PDVSA, INTEVEP, Los Teques 1070-A (Venezuela, Bolivarian Republic of); Niño-Vega, Gustavo; Villalobos, Hector [Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas, Apartado 20632, Caracas 1020-A (Venezuela, Bolivarian Republic of); Brito, Joaquin L. [Centro de Química, Instituto Venezolano de Investigaciones Científicas, Apartado 20632, Caracas 1020-A (Venezuela, Bolivarian Republic of)

    2013-02-15

    Graphical abstract: Display Omitted Highlights: ► Amorphous aluminophosphates can take place using yeast as template. ► A mesoporous material was obtained. ► The specific surface area after calcinations ranged between 176 and 214 m{sup 2} g{sup −1}. -- Abstract: In this study aluminophosphates have been synthesized from aluminum isopropoxide and phosphoric acid solutions using yeast cells as template. The physicochemical characterization was carried out by thermogravimetric analysis; X-ray diffraction; Fourier transform infrared; N{sub 2} adsorption–desorption isotherms; scanning electron microscopy; transmission electron microscopy and potentiometric titration with N-butylamine for determination of: thermal stability; crystalline structure; textural properties; morphology and surface acidity, respectively. The calcined powders consisted of an intimate mixture of amorphous and crystallized AlPO particles with sizes between 23 and 30 nm. The average pore size observed is 13–16 nm and the specific surface area after calcinations (at 650 °C) ranged between 176 and 214 m{sup 2} g{sup −1}.

  4. Astaxanthinogenesis in the yeast Phaffia rhodozyma - optimization of low-cost culture media and yeast cell-wall lysis

    Energy Technology Data Exchange (ETDEWEB)

    Fontana, J.D.; Baron, M.; Guimaraes, M.F. [LQBB-Biomass Chemo Biotechnology Lab., Curitiba (Brazil)] [and others

    1997-12-31

    Astaxanthin is a diketo-dihydroxy-carotenoid produced by Phaffia rhodozyma, a basidiomicetous yeast. A low-cost fermentation medium consisting of raw sugarcane juice and urea was developed to exploit the active sucrolytic/urelolytic enzyme apparatus inherent to the yeast. As compared to the beneficial effect of 0.1 g% urea, a ready nitrogen source, mild phosphoric pre inversion of juice sucrose to glucose and fructose, promptly fermentable carbon sources, resulted in smaller benefits. Corn steep liquor (CSL) was found to be a valuable supplement for both yeast biomass yield (9.2 g dry cells/L) and astaxanthin production (1.3 mg/g cells). Distillery effluent (vinace), despite only a slightly positive effect on yeast growth, allowed for the highest pigment productivity (1.9 mg/g cells). Trace amounts of Ni{sup 2} (1 mg/L, as a cofactor for urease) resulted in controversial effects, namely, biomass decrease and astaxanthin increase, with no effect on the release (and uptake) of ammonium ion from urea. 13 refs., 6 figs.

  5. Raman scattering evidence of hydrohalite formation on frozen yeast cells

    CERN Document Server

    Okotrub, K A

    2012-01-01

    We studied yeast cells in physiological solution during freezing by Raman microspectroscopy technique. The purpose was to find out the origin of a sharp peak near ~3430 cm^-1 in Raman spectrum of frozen mammalian cells, observed earlier (J. Dong et al, Biophys. J., 99 (2010) 2453), which presumably could be used as an indicator of intracellar ice appearance. We have shown that this line (actually doublet of 3408 and 3425 cm^-1) corresponds to Raman spectrum of hydrohalite (NaCl-2H2O), which is formed as the result of the eutectic crystallization of the liquid solution around the cells. We also show that the spatial distribution of hydrohalite in the sample significantly depends on the cooling rate. At lower cooling rate (1{\\deg}C/min), products of eutectic crystallization form layer on the cell surface which thickness varies for different cells and can reach ~1 {\\mu}m in thickness. At higher cooling rate (20{\\deg}C/min), the hydrohalite distribution appears more homogeneous, in the sample, and the eutectic cr...

  6. Apple Can Act as Anti-Aging on Yeast Cells

    Directory of Open Access Journals (Sweden)

    Vanessa Palermo

    2012-01-01

    Full Text Available In recent years, epidemiological and biochemical studies have shown that eating apples is associated with reduction of occurrence of cancer, degenerative, and cardiovascular diseases. This association is often attributed to the presence of antioxidants such as ascorbic acid (vitamin C and polyphenols. The substances that hinder the presence of free radicals are also able to protect cells from aging. In our laboratory we used yeast, a unicellular eukaryotic organism, to determine in vivo efficacy of entire apples and their components, such as flesh, skin and polyphenolic fraction, to influence aging and oxidative stress. Our results indicate that all the apple components increase lifespan, with the best result given by the whole fruit, indicating a cooperative role of all apple components.

  7. Construction of the yeast whole-cell Rhizopus oryzae lipase biocatalyst with high activity

    Institute of Scientific and Technical Information of China (English)

    Mei-ling CHEN; Qin GUO; Rui-zhi WANG; Juan XU; Chen-wei ZHOU; Hui RUAN; Guo-qing HE

    2011-01-01

    Surface display is effectively utilized to construct a whole-cell biocatalyst.Codon optimization has been proven to be effective in maximizing production of heterologous proteins in yeast.Here,the cDNA sequence of Rhizopus oryzae lipase (ROL) was optimized and synthesized according to the codon bias of Saccharomyces cerevisiae,and based on the Saccharomyces cerevisiae cell surface display system with α-agglutinin as an anchor,recombinant yeast displaying fully codon-optimized ROL with high activity was successfully constructed.Compared with the wild-type ROL-displaying yeast,the activity of the codon-optimized ROL yeast whole-cell biocatalyst (25 U/g dried cells) was 12.8-fold higher in a hydrolysis reaction using p-nitrophenyl palmitate (pNPP) as the substrate.To our knowledge,this was the first attempt to combine the techniques of yeast surface display and codon optimization for whole-cell biocatalyst construction.Consequently,the yeast whole-cell ROL biocatalyst was constructed with high activity.The optimum pH and temperature for the yeast whole-cell ROL biocatalyst were pH 7.0 and 40 ℃.Furthermore,this whole-cell biocatalyst was applied to the hydrolysis of tributyrin and the resulted conversion of butyric acid reached 96.91% after 144 h.

  8. Cell wall staining with Trypan Blue enables quantitative analysis of morphological changes in yeast cells

    Directory of Open Access Journals (Sweden)

    Johannes eLiesche

    2015-02-01

    Full Text Available Yeast cells are protected by a cell wall that plays an important role in the exchange of substances with the environment. The cell wall structure is dynamic and can adapt to different physiological states or environmental conditions. For the investigation of morphological changes, selective staining with fluorescent dyes is a valuable tool. Furthermore, cell wall staining is used to facilitate sub-cellular localization experiments with fluorescently-labeled proteins and the detection of yeast cells in non-fungal host tissues. Here, we report staining of Saccharomyces cerevisiae cell wall with Trypan Blue, which emits strong red fluorescence upon binding to chitin and yeast glucan; thereby, it facilitates cell wall analysis by confocal and super-resolution microscopy. The staining pattern of Trypan Blue was similar to that of the widely used UV-excitable, blue fluorescent cell wall stain Calcofluor White. Trypan Blue staining facilitated quantification of cell size and cell wall volume when utilizing the optical sectioning capacity of a confocal microscope. This enabled the quantification of morphological changes during growth under anaerobic conditions and in the presence of chemicals, demonstrating the potential of this approach for morphological investigations or screening assays.

  9. Ethanol and Acetate Acting as Carbon/Energy Sources Negatively Affect Yeast Chronological Aging

    Directory of Open Access Journals (Sweden)

    Ivan Orlandi

    2013-01-01

    Full Text Available In Saccharomyces cerevisiae, the chronological lifespan (CLS is defined as the length of time that a population of nondividing cells can survive in stationary phase. In this phase, cells remain metabolically active, albeit at reduced levels, and responsive to environmental signals, thus simulating the postmitotic quiescent state of mammalian cells. Many studies on the main nutrient signaling pathways have uncovered the strong influence of growth conditions, including the composition of culture media, on CLS. In this context, two byproducts of yeast glucose fermentation, ethanol and acetic acid, have been proposed as extrinsic proaging factors. Here, we report that ethanol and acetic acid, at physiological levels released in the exhausted medium, both contribute to chronological aging. Moreover, this combined proaging effect is not due to a toxic environment created by their presence but is mainly mediated by the metabolic pathways required for their utilization as carbon/energy sources. In addition, measurements of key enzymatic activities of the glyoxylate cycle and gluconeogenesis, together with respiration assays performed in extreme calorie restriction, point to a long-term quiescent program favoured by glyoxylate/gluconeogenesis flux contrary to a proaging one based on the oxidative metabolism of ethanol/acetate via TCA and mitochondrial respiration.

  10. Interaction of benzo[c]phenanthridine and protoberberine alkaloids with animal and yeast cells.

    Science.gov (United States)

    Slaninová, I; Táborská, E; Bochoráková, H; Slanina, J

    2001-01-01

    We compared the effects of four quaternary benzo[c]phenanthridine alkaloids--chelerythrine, chelilutine, sanguinarine, and sanguilutine--and two quaternary protoberberine alkaloids-berberine and coptisine--on the human cell line HeLa (cervix carcinoma cells) and the yeasts Saccharomyces cerevisiae and Schizosaccharomyces japonicus var. versatilis. The ability of alkaloids to display primary fluorescence, allowed us to record their dynamics and localization in cells. Cytotoxic, anti-microtubular, and anti-actin effects in living cells were studied. In the yeasts, neither microtubules nor cell growth was seriously affected even at the alkaloid concentration of 100 microg/ml. The HeLa cells, however, responded to the toxic effect of alkaloids at concentrations ranging from 1 to 50 microg/ml. IC50 values for individual alkaloids were: sanguinarine IC50 = 0.8 microg/ml, sanguilutine IC50 = 8.3 microg/ml, chelerythrine IC50 = 6.2 microg/ml, chelilutine IC50 = 5.2 microg/ml, coptisine IC50 = 2.6 microg/ml and berberine IC50 > 10.0 microg/ml. In living cells, sanguinarine produced a decrease in microtubule numbers, particularly at the cell periphery, at a concentration of 0.1 microg/ml. The other alkaloids showed a similar effect but at higher concentrations (5-50 microg/ml). The strongest effects of sanguinarine were explained as a consequence of its easy penetration through the cell membrane owing to nonpolar pseudobase formation and to a high degree of molecular planarity.

  11. Human Cpr (Cell Cycle Progression Restoration) Genes Impart a Far(-) Phenotype on Yeast Cells

    OpenAIRE

    Edwards, M. C.; Liegeois, N.; Horecka, J.; DePinho, R A; Sprague-Jr., G. F.; Tyers, M; Elledge, S J

    1997-01-01

    Regulated cell cycle progression depends on the proper integration of growth control pathways with the basic cell cycle machinery. While many of the central molecules such as cyclins, CDKs, and CKIs are known, and many of the kinases and phosphatases that modify the CDKs have been identified, little is known about the additional layers of regulation that impinge upon these molecules. To identify new regulators of cell proliferation, we have selected for human and yeast cDNAs that when overexp...

  12. Modelling of Yeast Mating Reveals Robustness Strategies for Cell-Cell Interactions.

    Directory of Open Access Journals (Sweden)

    Weitao Chen

    2016-07-01

    Full Text Available Mating of budding yeast cells is a model system for studying cell-cell interactions. Haploid yeast cells secrete mating pheromones that are sensed by the partner which responds by growing a mating projection toward the source. The two projections meet and fuse to form the diploid. Successful mating relies on precise coordination of dynamic extracellular signals, signaling pathways, and cell shape changes in a noisy background. It remains elusive how cells mate accurately and efficiently in a natural multi-cell environment. Here we present the first stochastic model of multiple mating cells whose morphologies are driven by pheromone gradients and intracellular signals. Our novel computational framework encompassed a moving boundary method for modeling both a-cells and α-cells and their cell shape changes, the extracellular diffusion of mating pheromones dynamically coupled with cell polarization, and both external and internal noise. Quantification of mating efficiency was developed and tested for different model parameters. Computer simulations revealed important robustness strategies for mating in the presence of noise. These strategies included the polarized secretion of pheromone, the presence of the α-factor protease Bar1, and the regulation of sensing sensitivity; all were consistent with data in the literature. In addition, we investigated mating discrimination, the ability of an a-cell to distinguish between α-cells either making or not making α-factor, and mating competition, in which multiple a-cells compete to mate with one α-cell. Our simulations were consistent with previous experimental results. Moreover, we performed a combination of simulations and experiments to estimate the diffusion rate of the pheromone a-factor. In summary, we constructed a framework for simulating yeast mating with multiple cells in a noisy environment, and used this framework to reproduce mating behaviors and to identify strategies for robust cell-cell

  13. Microchannel-free collection and single-cell isolation of yeast cells in a suspension using liquid standing wave

    Science.gov (United States)

    Matsutani, Akihiro; Takada, Ayako

    2016-11-01

    We demonstrate a microchannel-free collection method at nodes of liquid standing waves by the vertical vibration of a suspension including yeast cells. The pattern formation of the collection of cells using standing waves in a suspension was investigated by varying the frequency and waveform of vibrations. The single-cell isolation of yeast cells was achieved using a microenclosure array set at the nodes. In addition, we succeeded in the microchannel-free collection of yeast cells in a suspension, where patterns were formed by tapping vibration. The proposed technique is very simple and we believe that it will be useful for single-cell analysis and investigation.

  14. Performance of a Yeast-mediated Biological Fuel Cell

    Directory of Open Access Journals (Sweden)

    Filip To

    2008-10-01

    Full Text Available Saccharomyces cerevisiae present in common Baker’s yeast was used in a microbial fuel cell in which glucose was the carbon source. Methylene blue was used as the electronophore in the anode compartment, while potassium ferricyanide and methylene blue were tested as electron acceptors in the cathode compartment. Microbes in a mediator-free environment were used as the control. The experiment was performed in both open and closed circuit configurations under different loads ranging from 100 kΩ to 400Ω. The eukaryotic S. cerevisiae-based fuel cell showed improved performance when methylene blue and ferricyanide were used as electron mediators, rendering a maximum power generation of 146.71±7.7 mW/m3. The fuel cell generated a maximum open circuit voltage of 383.6±1.5 mV and recorded a maximum efficiency of 28±1.8 % under 100 kΩ of external load.

  15. Spatial control of the energy metabolism of yeast cells through electrolytic generation of oxygen.

    Science.gov (United States)

    Warnke, Christian; Mair, Thomas; Witte, Hartmut; Reiher, Antje; Hauser, Marcus J B; Krost, Alois

    2009-11-03

    The metabolic dynamics of yeast cells is controlled by electric pulses delivered through a spatially extended yeast cell/Au electrode interface. Concomitant with voltage pulses, oxygen is generated electrolytically at the electrode surface and delivered to the cells. The generation of oxygen was investigated in dependence of the applied voltage, width of the voltage pulses and temperature of the electrolytic solution. The local oxygen pulses at the electrodes lead to a transient activation of the aerobic energy metabolism of the yeast cells causing a perturbation in their energy balance. The effect of these local perturbations on the temporal dynamics of glycolysis in yeast cells is quantified in dependence of the energy state of cells.

  16. The sensitivity of yeast and yeast-like cells to new lysosomotropic agents.

    Science.gov (United States)

    Krasowska, Anna; Chmielewska, Lucyna; Adamski, Ryszard; Luczyński, Jacek; Witek, Stanisław; Sigler, Karel

    2004-01-01

    The lysosomotropic action of the compounds DM-11 and DMAL-12s against Saccharomyces cerevisiae, Schizosaccharomyces pombe and Candida albicans is species- and pH-dependent. At pH 6.0, DMAL-12s is less effective against S. cerevisiae and S. pombe but more effective against C. albicans than DM-11. At pH 8.0, DMAL-12s strongly inhibits the growth of S. cerevisiae but has only a marginal effect on the resistant C. albicans. S. pombe did not grow at pH 8.0. As shown by quinacrine accumulation, DM-11 causes a general intracellular acidification in all three species, while with DMAL-12s, the acidification is marginal. Morphological changes caused by DMAL-12s in S. cerevisiae affect the cell interior but not surface structures, while S. pombe cells exhibit a thickened and wrinkled cell wall, shrunken protoplast and "grainy" plasma membrane. A large number of blisters resembling lipid droplets were observed inside S. cerevisiae and S. pombe vacuoles. The high susceptibility of S. pombe cells to the action of DM-11 and DMAL-12s contrasts with the low sensitivity of S. pombe H+-ATPase to the agents. In our C. albicans isolate, DMAL 12s did not have an effect on cell morphology and appeared to be unable to penetrate the cells, especially at pH 8.0.

  17. A yeast surface display system for the discovery of ligands that trigger cell activation.

    Science.gov (United States)

    Cho, B K; Kieke, M C; Boder, E T; Wittrup, K D; Kranz, D M

    1998-11-01

    Opposing cells often communicate signalling events using multivalent interactions between receptors present on their cell surface. For example, T cells are typically activated when the T cell receptor (TCR) and its associated costimulatory molecules are multivalently engaged by the appropriate ligands present on an antigen presenting cell. In this report, yeast expressing high cell-surface levels of a TCR ligand (a recombinant antibody to the TCR Vbeta domain) were shown to act as 'pseudo' antigen presenting cells and induce T cell activation as monitored by increased levels of CD25 and CD69 and by downregulation of cell surface TCR. Similar levels of T cell activation could occur even when a 30-fold excess of irrelevant yeast was present, suggesting that such a yeast display system, by virtue of its ability to present ligands multivalently, may be used in highly sensitive procedures to identify novel polypeptides that interact multivalently with cell surface receptors and thereby trigger specific cellular responses.

  18. Surface Modifying Substances that Reduce Apparent Yeast Cell Hydrophobicity

    Directory of Open Access Journals (Sweden)

    Lisa Colling

    2005-01-01

    Full Text Available Conclusions. Several commercially available compounds were able to block binding of styrene microspheres to yeast. Some of the binding activity appeared to be attributable to mannose-containing surface components. These findings have implications for formulating therapeutic products that might block yeast binding to tissues.

  19. How do yeast cells become tolerant to high ethanol concentrations?

    DEFF Research Database (Denmark)

    Snoek, Tim; Verstrepen, Kevin J.; Voordeckers, Karin

    2016-01-01

    The brewer’s yeast Saccharomyces cerevisiae displays a much higher ethanol tolerance compared to most other organisms, and it is therefore commonly used for the industrial production of bioethanol and alcoholic beverages. However, the genetic determinants underlying this yeast’s exceptional ethan...... and challenges involved in obtaining superior industrial yeasts with improved ethanol tolerance....

  20. Timing robustness in the budding and fission yeast cell cycles.

    KAUST Repository

    Mangla, Karan

    2010-02-01

    Robustness of biological models has emerged as an important principle in systems biology. Many past analyses of Boolean models update all pending changes in signals simultaneously (i.e., synchronously), making it impossible to consider robustness to variations in timing that result from noise and different environmental conditions. We checked previously published mathematical models of the cell cycles of budding and fission yeast for robustness to timing variations by constructing Boolean models and analyzing them using model-checking software for the property of speed independence. Surprisingly, the models are nearly, but not totally, speed-independent. In some cases, examination of timing problems discovered in the analysis exposes apparent inaccuracies in the model. Biologically justified revisions to the model eliminate the timing problems. Furthermore, in silico random mutations in the regulatory interactions of a speed-independent Boolean model are shown to be unlikely to preserve speed independence, even in models that are otherwise functional, providing evidence for selection pressure to maintain timing robustness. Multiple cell cycle models exhibit strong robustness to timing variation, apparently due to evolutionary pressure. Thus, timing robustness can be a basis for generating testable hypotheses and can focus attention on aspects of a model that may need refinement.

  1. Use of non-conventional cell disruption method for extraction of proteins from black yeasts

    Directory of Open Access Journals (Sweden)

    Maja eLeitgeb

    2016-04-01

    Full Text Available The influence of pressure and treatment time on cells disruption of different black yeasts and on activities of extracted proteins using supercritical carbon dioxide process was studied. The cells of three different black yeasts Phaeotheca triangularis, Trimatostroma salinum and Wallemia ichthyophaga were exposed to supercritical carbon dioxide (SC CO2 by varying pressure at fixed temperature (35 °C. The black yeasts cell walls were disrupted and the content of the cells was spilled into the liquid medium. The impact of SC CO2 conditions on secretion of enzymes and proteins from black yeast cells suspension was studied. The residual activity of the enzymes cellulase, β-glucosidase, α-amylase and protease was studied by enzymatic assay. The viability of black yeast cells was determined by measuring the optical density of the cell suspension at 600 nm. The total protein concentration in the suspension was determined on UV-Vis spectrophotometer at 595 nm. The release of intracellular and extracellular products from black yeast cells was achieved. Also, the observation by an environmental scanning electron microscopy shows major morphological changes with SC CO2 treated cells. The advantages of the proposed method are in a simple use which is also possible for heat sensitive materials on one hand and on the other hand integration of the extraction of enzymes and their use in biocatalytical reactions.

  2. Cell dualism: presence of cells with alternative membrane potentials in growing populations of bacteria and yeasts.

    Science.gov (United States)

    Ivanov, Volodymyr; Rezaeinejad, Saeid; Chu, Jian

    2013-10-01

    It is considered that all growing cells, for exception of acidophilic bacteria, have negatively charged inside cytoplasmic membrane (Δψ⁻-cells). Here we show that growing populations of microbial cells contain a small portion of cells with positively charged inside cytoplasmic membrane (Δψ⁺-cells). These cells were detected after simultaneous application of the fluorescent probes for positive membrane potential (anionic dye DIBAC⁻) and membrane integrity (propidium iodide, PI). We found in exponentially growing cell populations of Escherichia coli and Saccharomyces cerevisiae that the content of live Δψ⁻-cells was 93.6 ± 1.8 % for bacteria and 90.4 ± 4.0 % for yeasts and the content of live Δψ⁺-cells was 0.9 ± 0.3 % for bacteria and 2.4 ± 0.7 % for yeasts. Hypothetically, existence of Δψ⁺-cells could be due to short-term, about 1 min for bacteria and 5 min for yeasts, change of membrane potential from negative to positive value during the cell cycle. This change has been shown by the reversions of K⁺, Na⁺, and Ca²⁺ ions fluxes across the cell membrane during synchronous yeast culture. The transformation of Δψ(⁻-cells to Δψ⁺-cells can be explained by slow influx of K⁺ ions into Δψ⁻-cell to the trigger level of K⁺ concentration ("compression of potassium spring"), which is forming "alternative" Δψ⁺-cell for a short period, following with fast efflux of K⁺ ions out of Δψ⁺-cell ("release of potassium spring") returning cell to normal Δψ⁻ state. We anticipate our results to be a starting point to reveal the biological role of cell dualism in form of Δψ⁻- and Δψ⁺- cells.

  3. Development of a yeast cell factory for production of aromatic secondary metabolites

    DEFF Research Database (Denmark)

    Rodriguez Prado, Edith Angelica

    secondary metabolites in cell factories. In this research project, we developed a yeast platform strain for the production of p-coumaric acid an intermediate compound for the synthesis of aromatic secondary metabolites. Subsequently, we performed a systems biology analysis of the strain and finally we...... developed an array of yeast strains expressing flavonoid metabolic pathways containing up to ten heterologous genes. The platform strain was capable of producing 1.93 ± 0.26 g L-1 of p-coumaric acid in fed-batch fermentation, which is the highest titer that has been reported for a yeast cell factory so far...

  4. Cell wall staining with Trypan blue enables quantitative analysis of morphological changes in yeast cells

    DEFF Research Database (Denmark)

    Liesche, Johannes; Marek, Magdalena; Günther-Pomorski, Thomas

    2015-01-01

    with Trypan Blue, which emits strong red fluorescence upon binding to chitin and yeast glucan; thereby, it facilitates cell wall analysis by confocal and super-resolution microscopy. The staining pattern of Trypan Blue was similar to that of the widely used UV-excitable, blue fluorescent cell wall stain...... Calcofluor White. Trypan Blue staining facilitated quantification of cell size and cell wall volume when utilizing the optical sectioning capacity of a confocal microscope. This enabled the quantification of morphological changes during growth under anaerobic conditions and in the presence of chemicals...

  5. Human ribosomal protein L9 is a Bax suppressor that promotes cell survival in yeast.

    Science.gov (United States)

    Eid, Rawan; Sheibani, Sara; Gharib, Nada; Lapointe, Jason F; Horowitz, Avital; Vali, Hojatollah; Mandato, Craig A; Greenwood, Michael T

    2014-05-01

    The identification of a human ribosomal protein L9 (hRPL9) cDNA as a sequence capable of suppressing the lethal effects of heterologously expressed murine Bax in yeast led us to investigate its antiapoptotic potential. Using growth and viability assays, we show that yeast cells heterologously expressing hRPL9 are resistant to the growth inhibitory and lethal effects of exogenously supplied copper, indicating that it has pro-survival properties. To explore potential mechanisms, we used yeast mutants defective in all three types of programmed cell death (apoptosis, necrosis, and autophagy). The ability to retain pro-survival function in all the mutants suggests that hRPL9 may regulate a common pro-death process. In contrast, the yeast RPL9 orthologues, RPL9A and RPL9B, have opposite effects when overexpressed in yeast. In effect, instead of showing resistance to stress, RPL9A and RPL9B overexpressing cells show reduced cell growth. Further analysis indicates that the effects of overexpressed RPL9A and RPL9B are not in themselves lethal, instead, they serve to increase cell doubling time. Thus, yeast RPL9s are more representative of RPs whose extra-ribosomal function is similar to that of tumor suppressors. Taken together, our results demonstrate that RPL9 represents a species- and sequence-specific regulator of cell growth and survival.

  6. New insight into translation during yeast programmed cell death

    OpenAIRE

    Silva, Maria Alexandra Oliveira da

    2012-01-01

    Tese de doutoramento em Ciências da Saúde Global mRNA translation impairment has been described during the course of apoptosis in both mammalian and yeast. Nevertheless, the molecular pathways modulating translation during different scenarios of yeast apoptosis are still largely unexplored. Here we show by polysome profile analysis an impairment in capdependent translation initiation, correlated with alterations in translation machinery, such as the decrease in eIF4A levels ...

  7. Evidence that pulsed electric field treatment enhances the cell wall porosity of yeast cells.

    Science.gov (United States)

    Ganeva, Valentina; Galutzov, Bojidar; Teissie, Justin

    2014-02-01

    The application of rectangular electric pulses, with 0.1-2 ms duration and field intensity of 2.5-4.5 kV/cm, to yeast suspension mediates liberation of cytoplasmic proteins without cell lysis. The aim of this study was to evaluate the effect of pulsed electric field with similar parameters on cell wall porosity of different yeast species. We found that electrically treated cells become more susceptible to lyticase digestion. In dependence on the strain and the electrical conditions, cell lysis was obtained at 2-8 times lower enzyme concentration in comparison with control untreated cells. The increase of the maximal lysis rate was between two and nine times. Furthermore, when applied at low concentration (1 U/ml), the lyticase enhanced the rate of protein liberation from electropermeabilized cells without provoking cell lysis. Significant differences in the cell surface of control and electrically treated cells were revealed by scanning electron microscopy. Data presented in this study allow us to conclude that electric field pulses provoke not only plasma membrane permeabilization, but also changes in the cell wall structure, leading to increased wall porosity.

  8. Origin of irreversibility of cell cycle start in budding yeast.

    Directory of Open Access Journals (Sweden)

    Gilles Charvin

    2010-01-01

    Full Text Available Budding yeast cells irreversibly commit to a new division cycle at a regulatory transition called Start. This essential decision-making step involves the activation of the SBF/MBF transcription factors. SBF/MBF promote expression of the G1 cyclins encoded by CLN1 and CLN2. Cln1,2 can activate their own expression by inactivating the Whi5 repressor of SBF/MBF. The resulting transcriptional positive feedback provides an appealing, but as yet unproven, candidate for generating irreversibility of Start. Here, we investigate the logic of the Start regulatory module by quantitative single-cell time-lapse microscopy, using strains in which expression of key regulators is efficiently controlled by changes of inducers in a microfluidic chamber. We show that Start activation is ultrasensitive to G1 cyclin. In the absence of CLN1,2-dependent positive feedback, we observe that Start transit is reversible, due to reactivation of the Whi5 transcriptional repressor. Introduction of the positive feedback loop makes Whi5 inactivation and Start activation irreversible, which therefore guarantees unidirectional entry into S phase. A simple mathematical model to describe G1 cyclin turn on at Start, entirely constrained by empirically measured parameters, shows that the experimentally measured ultrasensitivity and transcriptional positive feedback are necessary and sufficient dynamical characteristics to make the Start transition a bistable and irreversible switch. Our study thus demonstrates that Start irreversibility is a property that arises from the architecture of the system (Whi5/SBF/Cln2 loop, rather than the consequence of the regulation of a single component (e.g., irreversible protein degradation.

  9. Origin of irreversibility of cell cycle start in budding yeast.

    Science.gov (United States)

    Charvin, Gilles; Oikonomou, Catherine; Siggia, Eric D; Cross, Frederick R

    2010-01-19

    Budding yeast cells irreversibly commit to a new division cycle at a regulatory transition called Start. This essential decision-making step involves the activation of the SBF/MBF transcription factors. SBF/MBF promote expression of the G1 cyclins encoded by CLN1 and CLN2. Cln1,2 can activate their own expression by inactivating the Whi5 repressor of SBF/MBF. The resulting transcriptional positive feedback provides an appealing, but as yet unproven, candidate for generating irreversibility of Start. Here, we investigate the logic of the Start regulatory module by quantitative single-cell time-lapse microscopy, using strains in which expression of key regulators is efficiently controlled by changes of inducers in a microfluidic chamber. We show that Start activation is ultrasensitive to G1 cyclin. In the absence of CLN1,2-dependent positive feedback, we observe that Start transit is reversible, due to reactivation of the Whi5 transcriptional repressor. Introduction of the positive feedback loop makes Whi5 inactivation and Start activation irreversible, which therefore guarantees unidirectional entry into S phase. A simple mathematical model to describe G1 cyclin turn on at Start, entirely constrained by empirically measured parameters, shows that the experimentally measured ultrasensitivity and transcriptional positive feedback are necessary and sufficient dynamical characteristics to make the Start transition a bistable and irreversible switch. Our study thus demonstrates that Start irreversibility is a property that arises from the architecture of the system (Whi5/SBF/Cln2 loop), rather than the consequence of the regulation of a single component (e.g., irreversible protein degradation).

  10. Cell-Cell Communication in Yeast Using Auxin Biosynthesis and Auxin Responsive CRISPR Transcription Factors.

    Science.gov (United States)

    Khakhar, Arjun; Bolten, Nicholas J; Nemhauser, Jennifer; Klavins, Eric

    2016-04-15

    An engineering framework for synthetic multicellular systems requires a programmable means of cell-cell communication. Such a communication system would enable complex behaviors, such as pattern formation, division of labor in synthetic microbial communities, and improved modularity in synthetic circuits. However, it remains challenging to build synthetic cellular communication systems in eukaryotes due to a lack of molecular modules that are orthogonal to the host machinery, easy to reconfigure, and scalable. Here, we present a novel cell-to-cell communication system in Saccharomyces cerevisiae (yeast) based on CRISPR transcription factors and the plant hormone auxin that exhibits several of these features. Specifically, we engineered a sender strain of yeast that converts indole-3-acetamide (IAM) into auxin via the enzyme iaaH from Agrobacterium tumefaciens. To sense auxin and regulate transcription in a receiver strain, we engineered a reconfigurable library of auxin-degradable CRISPR transcription factors (ADCTFs). Auxin-induced degradation is achieved through fusion of an auxin-sensitive degron (from IAA corepressors) to the CRISPR TF and coexpression with an auxin F-box protein. Mirroring the tunability of auxin perception in plants, our family of ADCTFs exhibits a broad range of auxin sensitivities. We characterized the kinetics and steady-state behavior of the sender and receiver independently as well as in cocultures where both cell types were exposed to IAM. In the presence of IAM, auxin is produced by the sender cell and triggers deactivation of reporter expression in the receiver cell. The result is an orthogonal, rewireable, tunable, and, arguably, scalable cell-cell communication system for yeast and other eukaryotic cells.

  11. Detection and quantitative determination by PIXE of the mutagen Sn 2+ in yeast cells

    Science.gov (United States)

    Viau, C. M.; Yoneama, M.-L.; Dias, J. F.; Pungartnik, C.; Brendel, M.; Henriques, J. A. P.

    2006-08-01

    The main goal of this work was to determine the concentration of Sn2+ ions in cells of the yeast Saccharomyces cerevisiae and to correlate their quantity with the genotoxicity of intracellularly accumulated metal ions. The intracellular metal content of yeast cells was determined by PIXE (particle-induced X-ray emission) after cell exposure to SnCl2. To that end, a thick target protocol was developed for PIXE analysis. The samples were irradiated with a 2 MeV proton beam, while the induced X-rays were detected with a high-purity germanium detector. The results of the toxicity of SnCl2 and the PIXE analysis performed with two different yeast strains (haploid and diploid) suggest that the exposure of haploid and diploid yeast to Sn2+ induces DNA lesions and that the absorption depends on the genetic background of each strain.

  12. Tombusvirus-yeast interactions identify conserved cell-intrinsic viral restriction factors

    Directory of Open Access Journals (Sweden)

    Zsuzsanna eSasvari

    2014-08-01

    Full Text Available To combat viral infections, plants possess innate and adaptive immune pathways, such as RNA silencing, R gene and recessive gene-mediated resistance mechanisms. However, it is likely that additional cell-intrinsic restriction factors (CIRF are also involved in limiting plant virus replication. This review discusses novel CIRFs with antiviral functions, many of them RNA-binding proteins or affecting the RNA binding activities of viral replication proteins. The CIRFs against tombusviruses have been identified in yeast (Saccharomyces cerevisiae, which is developed as an advanced model organism. Grouping of the identified CIRFs based on their known cellular functions and subcellular localization in yeast reveals that TBSV replication is limited by a wide variety of host gene functions. Yeast proteins with the highest connectivity in the network map include the well-characterized Xrn1p 5’-3’ exoribonuclease, Act1p actin protein and Cse4p centromere protein. The protein network map also reveals an important interplay between the pro-viral Hsp70 cellular chaperone and the antiviral co-chaperones, and possibly key roles for the ribosomal or ribosome-associated factors. We discuss the antiviral functions of selected CIRFs, such as the RNA binding nucleolin, ribonucleases, WW-domain proteins, single- and multi-domain cyclophilins, TPR-domain co-chaperones and cellular ion pumps. These restriction factors frequently target the RNA-binding region in the viral replication proteins, thus interfering with the recruitment of the viral RNA for replication and the assembly of the membrane-bound viral replicase. Although many of the characterized CIRFs act directly against TBSV, we propose that the TPR-domain co-chaperones function as guardians of the cellular Hsp70 chaperone system, which is subverted efficiently by TBSV for viral replicase assembly in the absence of the TPR-domain co-chaperones.

  13. The use of yeast as single-cell protein in aquacultural diets

    OpenAIRE

    Coutteau, P. (Peter); Lavens, P.

    1989-01-01

    Aquaculture is becoming more and more an industrial practice. However, feed cost, which may mount up to around 30% of the total operating costs still appears to be one of the major constraints for further expansion of aquaculture. Due to the relatively inexpensive mass-production of yeasts, serious efforts have been made to evaluate the incorporation of these Single-Cell Proteins in aquaculture diets. The aim of this communication is to review the most important results obtained with yeast di...

  14. The yeast TUM1 affects production of hydrogen sulfide from cysteine treatment during fermentation.

    Science.gov (United States)

    Huang, Chien-Wei; Walker, Michelle E; Fedrizzi, Bruno; Roncoroni, Miguel; Gardner, Richard C; Jiranek, Vladimir

    2016-12-01

    The undesirable rotten-egg odour of hydrogen sulfide (H2S) produced by yeast shortly after yeast inoculation of grape musts might be an important source of desirable varietal thiols, which contribute to tropical aromas in varieties such as Sauvign-on Blanc. In this study, we observed that Saccharomyces cerevisiae strains produce an early burst of H2S from cysteine. Both Δmet2 and Δmet17 strains produce a larger burst, likely because they are unable to utilise the H2S in the sulfate assimilation pathway. For the first time, we show that TUM1 is partly responsible for the early production of H2S from cysteine. Overex-pressing TUM1 elevated production of H2S, whilst its deletion yields only half of the H2S. We further confirmed that yeast convert cysteine to H2S by analysing growth of mutants lacking components of the transsulfuration pathway. High concent-rations of cysteine overcame this growth block, but required TUM1 Collectively, the data indicate that S. cerevisiae does not convert cysteine to sulfate or sulfite, but rather to sulfide via a novel pathway that requires the action of Tum1p. The findi-ngs of this study may allow the improvement of commercial yeasts through the manipulation of sulfur metabolism that are better suited towards production of fruit-driven styles.

  15. Intestinal microbial affects of yeast products on weaned and transport stressed pigs

    Science.gov (United States)

    Study objectives were to determine effects of a commercially available yeast product (XPC, Diamond-V Mills) and stress of transportation on total Enterobacteriaceae, Escherichia coli, coliforms, and Lactobacilli populations in the intestine of weaning pigs. In a RCB design with a 2 x 2 factorial ar...

  16. Untangling the Roles of Anti-Apoptosis in Regulating Programmed Cell Death using Humanized Yeast Cells.

    Science.gov (United States)

    Clapp, Caitlin; Portt, Liam; Khoury, Chamel; Sheibani, Sara; Eid, Rawan; Greenwood, Matthew; Vali, Hojatollah; Mandato, Craig A; Greenwood, Michael T

    2012-01-01

    Genetically programmed cell death (PCD) mechanisms, including apoptosis, are important for the survival of metazoans since it allows, among things, the removal of damaged cells that interfere with normal function. Cell death due to PCD is observed in normal processes such as aging and in a number of pathophysiologies including hypoxia (common causes of heart attacks and strokes) and subsequent tissue reperfusion. Conversely, the loss of normal apoptotic responses is associated with the development of tumors. So far, limited success in preventing unwanted PCD has been reported with current therapeutic approaches despite the fact that inhibitors of key apoptotic inducers such as caspases have been developed. Alternative approaches have focused on mimicking anti-apoptotic processes observed in cells displaying increased resistance to apoptotic stimuli. Hormesis and pre-conditioning are commonly observed cellular strategies where sub-lethal levels of pro-apoptotic stimuli lead to increased resistance to higher or lethal levels of stress. Increased expression of anti-apoptotic sequences is a common mechanism mediating these protective effects. The relevance of the latter observation is exemplified by the observation that transgenic mice overexpressing anti-apoptotic genes show significant reductions in tissue damage following ischemia. Thus strategies aimed at increasing the levels of anti-apoptotic proteins, using gene therapy or cell penetrating recombinant proteins are being evaluated as novel therapeutics to decrease cell death following acute periods of cell death inducing stress. In spite of its functional and therapeutic importance, more is known regarding the processes involved in apoptosis than anti-apoptosis. The genetically tractable yeast Saccharomyces cerevisiae has emerged as an exceptional model to study multiple aspects of PCD including the mitochondrial mediated apoptosis observed in metazoans. To increase our knowledge of the process of anti

  17. Image processing and classification algorithm for yeast cell morphology in a microfluidic chip

    Science.gov (United States)

    Yang Yu, Bo; Elbuken, Caglar; Ren, Carolyn L.; Huissoon, Jan P.

    2011-06-01

    The study of yeast cell morphology requires consistent identification of cell cycle phases based on cell bud size. A computer-based image processing algorithm is designed to automatically classify microscopic images of yeast cells in a microfluidic channel environment. The images were enhanced to reduce background noise, and a robust segmentation algorithm is developed to extract geometrical features including compactness, axis ratio, and bud size. The features are then used for classification, and the accuracy of various machine-learning classifiers is compared. The linear support vector machine, distance-based classification, and k-nearest-neighbor algorithm were the classifiers used in this experiment. The performance of the system under various illumination and focusing conditions were also tested. The results suggest it is possible to automatically classify yeast cells based on their morphological characteristics with noisy and low-contrast images.

  18. Image processing and classification algorithm for yeast cell morphology in a microfluidic chip.

    Science.gov (United States)

    Yang Yu, Bo; Elbuken, Caglar; Ren, Carolyn L; Huissoon, Jan P

    2011-06-01

    The study of yeast cell morphology requires consistent identification of cell cycle phases based on cell bud size. A computer-based image processing algorithm is designed to automatically classify microscopic images of yeast cells in a microfluidic channel environment. The images were enhanced to reduce background noise, and a robust segmentation algorithm is developed to extract geometrical features including compactness, axis ratio, and bud size. The features are then used for classification, and the accuracy of various machine-learning classifiers is compared. The linear support vector machine, distance-based classification, and k-nearest-neighbor algorithm were the classifiers used in this experiment. The performance of the system under various illumination and focusing conditions were also tested. The results suggest it is possible to automatically classify yeast cells based on their morphological characteristics with noisy and low-contrast images.

  19. Yeast peroxisomes : function and biogenesis of a versatile cell organelle

    NARCIS (Netherlands)

    van der Klei, IJ; Veenhuis, M

    1997-01-01

    Yeast peroxisomes harbour enzymes involved in the metabolism of specific growth substrates, Sequestration of these enzymes increases the efficiency of such pathways. Currently, 16 genes involved in peroxisome biogenesis have been identified, and analysis of their products suggests novel mechanisms f

  20. Effects of Ionizing Radiation and Glutathione Precursor on Antioxidant Enzyme and Cell Survival in Yeast

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jinkyu; Roh, Changhyun; Ryu, Taeho; Park, Jiyoung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Nili, Michael A. [Oxiage Cosmeceutical Research Institute, Virginia (United States)

    2013-05-15

    Cells react to such an induced oxidative stress through scavenging the generated reactive oxygen species to reduce oxidative damage. Antioxidant enzymes such as glutathione peroxidase, catalase, and superoxide dismutase are immediately triggered for reactive oxygen species. N-acetyl-L-cysteine (NAC), a precursor of glutathione, is one of the antioxidants. The effect of NAC as an antioxidant and/or a cell rescue agent was investigated in the present study. Glutathione (GSH) is the most abundant intracellular thiol, which involves in antioxidant defense via direct interaction with ROS or via activities of detoxication enzymes like glutathione peroxidases (GPx). NAC flowed in the cell is converted to cysteine by deacetylation, that is supplied to the depleted GSH by oxidative stress. NAC prevents the depletion of GSH by radiation, increases the production of GSH, and improves enzymes activity such as GPx and alkaline phosphatase. Cell growth and survivorship and transcriptional level of glutathione gene are analyzed in two yeast strains exposed to combined treatment of NAC with gamma-rays. The effect of NAC on cell growth was measured during 72 hours. The cell growth was hampered by higher concentrations of NAC at stationary phase. NAC, however, didn't affect the cell division at the exponential phase. The survival of the cells decreased with radiation dose. The cell viability of the strain W303-1A was reduced significantly at the low dose (10 and 30 Gy). By comparison, the strain W303-1A was more sensitive to radiation with having a half lethal dose (LD{sub 50}) of about 20 Gy. The quantitative RT-PCR analysis showed that the transcriptional expression of antioxidant enzyme gene GPX1 increased after irradiation while the expression of the gene decreased by the combined treatment of NAC with 100 Gy radiation. The present study shows that NAC can directly scavenge ROS against oxidative stress in vivo. In conclusion, NAC can prevent radiation-induced oxidative

  1. Extracellular superoxide dismutase protects Histoplasma yeast cells from host-derived oxidative stress.

    Directory of Open Access Journals (Sweden)

    Brian H Youseff

    Full Text Available In order to establish infections within the mammalian host, pathogens must protect themselves against toxic reactive oxygen species produced by phagocytes of the immune system. The fungal pathogen Histoplasma capsulatum infects both neutrophils and macrophages but the mechanisms enabling Histoplasma yeasts to survive in these phagocytes have not been fully elucidated. We show that Histoplasma yeasts produce a superoxide dismutase (Sod3 and direct it to the extracellular environment via N-terminal and C-terminal signals which promote its secretion and association with the yeast cell surface. This localization permits Sod3 to protect yeasts specifically from exogenous superoxide whereas amelioration of endogenous reactive oxygen depends on intracellular dismutases such as Sod1. While infection of resting macrophages by Histoplasma does not stimulate the phagocyte oxidative burst, interaction with polymorphonuclear leukocytes (PMNs and cytokine-activated macrophages triggers production of reactive oxygen species (ROS. Histoplasma yeasts producing Sod3 survive co-incubation with these phagocytes but yeasts lacking Sod3 are rapidly eliminated through oxidative killing similar to the effect of phagocytes on Candida albicans yeasts. The protection provided by Sod3 against host-derived ROS extends in vivo. Without Sod3, Histoplasma yeasts are attenuated in their ability to establish respiratory infections and are rapidly cleared with the onset of adaptive immunity. The virulence of Sod3-deficient yeasts is restored in murine hosts unable to produce superoxide due to loss of the NADPH-oxidase function. These results demonstrate that phagocyte-produced ROS contributes to the immune response to Histoplasma and that Sod3 facilitates Histoplasma pathogenesis by detoxifying host-derived reactive oxygen thereby enabling Histoplasma survival.

  2. Permeabilization of yeast Saccharomyces cerevisiae cell walls using nanosecond high power electrical pulses

    Science.gov (United States)

    Stirke, A.; Zimkus, A.; Balevicius, S.; Stankevic, V.; Ramanaviciene, A.; Ramanavicius, A.; Zurauskiene, N.

    2014-12-01

    The electrical field-induced changes of the yeast Saccharomyces cerevisiae cells permeabilization to tetraphenylphosphonium (TPP+) ions were studied using square-shaped, nanosecond duration high power electrical pulses. It was obtained that pulses having durations ranging from 10 ns to 60 ns, and generating electric field strengths up to 190 kV/cm significantly (up to 65 times) increase the absorption rate of TPP+ ions without any detectible influence on the yeast cell viability. The modelling of the TPP+ absorption process using a second order rate equation demonstrates that depending on the duration of the pulses, yeast cell clusters of different sizes are homogeniously permeabilized. It was concluded, that nanosecond pulse-induced permeabilization can be applied to increase the operational speed of whole cell biosensors.

  3. Functional genomics in the study of yeast cell polarity: moving in the right direction.

    Science.gov (United States)

    Styles, Erin; Youn, Ji-Young; Mattiazzi Usaj, Mojca; Andrews, Brenda

    2013-01-01

    The budding yeast Saccharomyces cerevisiae has been used extensively for the study of cell polarity, owing to both its experimental tractability and the high conservation of cell polarity and other basic biological processes among eukaryotes. The budding yeast has also served as a pioneer model organism for virtually all genome-scale approaches, including functional genomics, which aims to define gene function and biological pathways systematically through the analysis of high-throughput experimental data. Here, we outline the contributions of functional genomics and high-throughput methodologies to the study of cell polarity in the budding yeast. We integrate data from published genetic screens that use a variety of functional genomics approaches to query different aspects of polarity. Our integrated dataset is enriched for polarity processes, as well as some processes that are not intrinsically linked to cell polarity, and may provide new areas for future study.

  4. Bacterial toxin-antitoxin gene system as containment control in yeast cells

    DEFF Research Database (Denmark)

    Kristoffersen, P.; Jensen, G. B.; Gerdes, K.;

    2000-01-01

    The potential of a bacterial toxin-antitoxin gene system for use in containment control in eukaryotes was explored. The Escherichia coli relE and relB genes were expressed in the yeast Saccharomyces cerevisiae, Expression of the relE gene was highly toxic to yeast cells. However, expression...... of the relB gene counteracted the effect of relE to some extent, suggesting that toxin-antitoxin interaction also occurs in S. cerevisiae, Thus, bacterial toxin-antitoxin gene systems also have potential applications in the control of cell proliferation in eukaryotic cells, especially in those industrial...

  5. Genome-Wide Screen for Haploinsufficient Cell Size Genes in the Opportunistic Yeast Candida albicans

    Directory of Open Access Journals (Sweden)

    Julien Chaillot

    2017-02-01

    Full Text Available One of the most critical but still poorly understood aspects of eukaryotic cell proliferation is the basis for commitment to cell division in late G1 phase, called Start in yeast and the Restriction Point in metazoans. In all species, a critical cell size threshold coordinates cell growth with cell division and thereby establishes a homeostatic cell size. While a comprehensive survey of cell size genetic determinism has been performed in the saprophytic yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, very little is known in pathogenic fungi. As a number of critical Start regulators are haploinsufficient for cell size, we applied a quantitative analysis of the size phenome, using elutriation-barcode sequencing methodology, to 5639 barcoded heterozygous deletion strains of the opportunistic yeast Candida albicans. Our screen identified conserved known regulators and biological processes required to maintain size homeostasis in the opportunistic yeast C. albicans. We also identified novel C. albicans-specific size genes and provided a conceptual framework for future mechanistic studies. Interestingly, some of the size genes identified were required for fungal pathogenicity suggesting that cell size homeostasis may be elemental to C. albicans fitness or virulence inside the host.

  6. Genome-Wide Screen for Haploinsufficient Cell Size Genes in the Opportunistic Yeast Candida albicans

    Science.gov (United States)

    Chaillot, Julien; Cook, Michael A.; Corbeil, Jacques; Sellam, Adnane

    2016-01-01

    One of the most critical but still poorly understood aspects of eukaryotic cell proliferation is the basis for commitment to cell division in late G1 phase, called Start in yeast and the Restriction Point in metazoans. In all species, a critical cell size threshold coordinates cell growth with cell division and thereby establishes a homeostatic cell size. While a comprehensive survey of cell size genetic determinism has been performed in the saprophytic yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, very little is known in pathogenic fungi. As a number of critical Start regulators are haploinsufficient for cell size, we applied a quantitative analysis of the size phenome, using elutriation-barcode sequencing methodology, to 5639 barcoded heterozygous deletion strains of the opportunistic yeast Candida albicans. Our screen identified conserved known regulators and biological processes required to maintain size homeostasis in the opportunistic yeast C. albicans. We also identified novel C. albicans-specific size genes and provided a conceptual framework for future mechanistic studies. Interestingly, some of the size genes identified were required for fungal pathogenicity suggesting that cell size homeostasis may be elemental to C. albicans fitness or virulence inside the host. PMID:28040776

  7. Mitochondrial-derived ROS in edelfosine-induced apoptosis in yeasts and tumor cells

    Institute of Scientific and Technical Information of China (English)

    Hui ZHANG; Consuelo GAJATE; Li-ping YU; Yun-xiang FANG; Faustino MOLLINEDO

    2007-01-01

    Aim: To investigate whether a similar process mediates cytotoxicity of 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine (ET- 18-OCH3, edelfosine) in both yeasts and human tumor cells.Methods: A modified version of a previously described assay for the intracellular conversion of nitro blue tetrazolium to formazan by superoxide anion was used to measure the generation of reactive oxygen spe-cies (ROS). Apoptotic yeast cells were detected using terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay. DNA fragmenta-tion and the generation of ROS were measured by cytofluorimetric analysis in Jurkat cells.Results: Edelfosine induced apoptosis in Saccharomyces cerevisiae,as assessed by TUNEL assay. Meanwhile, edelfosine induced a time- and con-centration-dependent generation of ROS in yeasts. Rotenone, an inhibitor of the mitochondrial electron transport chain, prevented ROS generation and apoptosis in response to edelfosine in S cerevisiae, α-Tocopherol abrogated the edelfosine-induced generation of intracellular ROS and apoptosis. Edelfosine also induced an increase of ROS in human leukemic cells that preceded apoptosis. The overexpression of Bcl-2 by gene transfer abrogated both ROS generation and apoptosis induced by edelfosine in leukemic cells. Changes in the relative mito-chondrial membrane potential were detected in both yeasts and Jurkat cells.Conclusion: These results indicate that edelfosine induces apoptosis in yeasts in addition to human tumor cells, and this apoptotic process involves mitochondria,likely through mitochondrial-derived ROS. These data also suggest that yeasts can be used as a suitable cell model in elucidating the antitumor mechanism of action of edelfosine.

  8. Genetic and proteomic evidences support the localization of yeast enolase in the cell surface

    DEFF Research Database (Denmark)

    López-Villar, Elena; Monteoliva, Lucía; Larsen, Martin Røssel;

    2006-01-01

    Although enolase, other glycolytic enzymes, and a variety of cytoplasmic proteins lacking an N-terminal secretion signal have been widely described as located at the cell surface in yeast and in mammalian cells, their presence in this external location is still controversial. Here, we report that...

  9. Chromatin Assembly in a Yeast Whole-Cell Extract

    Science.gov (United States)

    Schultz, Michael C.; Hockman, Darren J.; Harkness, Troy A. A.; Garinther, Wendy I.; Altheim, Brent A.

    1997-08-01

    A simple in vitro system that supports chromatin assembly was developed for Saccharomyces cerevisiae. The assembly reaction is ATP-dependent, uses soluble histones and assembly factors, and generates physiologically spaced nucleosomes. We analyze the pathway of histone recruitment into nucleosomes, using this system in combination with genetic methods for the manipulation of yeast. This analysis supports the model of sequential recruitment of H3/H4 tetramers and H2A/H2B dimers into nucleosomes. Using a similar approach, we show that DNA ligase I can play an important role in template repair during assembly. These studies demonstrate the utility of this system for the combined biochemical and genetic analysis of chromatin assembly in yeast.

  10. Utilization of Candida utilis Cells for the Production of Yeast Extract:Effects of Enzyme Types, Dosages and Treatment Time

    Directory of Open Access Journals (Sweden)

    Yuping Guan

    2013-05-01

    Full Text Available The purpose of this study was to establish an enzymatic hydrolysis process to prepare yeast extract with the advantages of low-cost and high-content of flavor nucleotides. Yeast extract was produced from the broken cell suspension of Candida utilis, using papain, 5′-Phosphodiesterase (RP-1 and Adenosine Monophosphate (AMP -deaminase. The effects of types, dosages and treatment time of enzymes on the recovery of solid, protein and flavor nucleotides, as well as the extract composition were investigated. Enzyme types remarkably affected the recovery of protein and solid and papain was found to be the most effective hydrolysis enzyme. The optimal dosage of papain and its treatment time were determined as 0.2% and 6 h, respectively. On this condition, the recovery of solid and protein of yeast cells was 69.26 and 60.87%, respectively. Further treatments with RP-1 (0.045%, 3 h and AMP-deaminase (0.045%, 2 h were employed to obtain a higher content of flavor 5′-nucleotides (GMP + IMP, 4.39%. This process had the advantages of a small amount of enzymes dosage, short enzymatic reaction time and high extraction yield.

  11. Measuring the toxic effects of high gene dosage on yeast cells.

    Science.gov (United States)

    Daniel, J

    1996-12-13

    A novel method, which is rapid, reliable and quantitative, is presented for measuring the toxic effects on yeast cells of high dosage of any given gene. It is based on the possibility of monitoring the presence in cells of a plasmid carrying the ADE2 gene from Saccharomyces cerevisiae by direct observation of colonies, the construction of this particular plasmid being easily made by marked homologous recombination in yeast. Four yeast regulatory genes tested were found to result in various degrees of toxicity at high dosage. Possible implications of the measurement of gene toxicity for eukaryotic cell regulatory mechanisms and for the use of novel general approaches to gene selection, such as the gene-gene interference method, are discussed.

  12. Coupling gravitational and flow field-flow fractionation, and size-distribution analysis of whole yeast cells.

    Science.gov (United States)

    Sanz, Ramsés; Puignou, Lluís; Galceran, Maria Teresa; Reschiglian, Pierluigi; Zattoni, Andrea; Melucci, Dora

    2004-08-01

    This work continues the project on field-flow fractionation characterisation of whole wine-making yeast cells reported in previous papers. When yeast cells are fractionated by gravitational field-flow fractionation and cell sizing of the collected fractions is achieved by the electrosensing zone technique (Coulter counter), it is shown that yeast cell retention depends on differences between physical indexes of yeast cells other than size. Scanning electron microscopy on collected fractions actually shows co-elution of yeast cells of different size and shape. Otherwise, the observed agreement between the particle size distribution analysis obtained by means of the Coulter counter and by flow field-flow fractionation, which employs a second mobile phase flow as applied field instead of Earth's gravity, indicates that yeast cell density can play a major role in the gravitational field-flow fractionation retention mechanism of yeast cells, in which flow field-flow fractionation retention is independent of particle density. Flow field-flow fractionation is then coupled off-line to gravitational field-flow fractionation for more accurate characterisation of the doubly-fractionated cells. Coupling gravitational and flow field-flow fractionation eventually furnishes more information on the multipolydispersity indexes of yeast cells, in particular on their shape and density polydispersity.

  13. Absence of fks1p in lager brewing yeast results in aberrant cell wall composition and improved beer flavor stability.

    Science.gov (United States)

    Wang, Jin-jing; Xu, Wei-na; Li, Xin'er; Li, Jia; Li, Qi

    2014-06-01

    The flavor stability during storage is very important to the freshness and shelf life of beer. However, beer fermented with a yeast strain which is prone to autolyze will significantly affect the flavor of product. In this study, the gene encoding β-1,3-glucan synthetase catalytic subunit (fks1) of the lager yeast was destroyed via self-clone strategy. β-1,3-glucan is the principle cell wall component, so fks1 disruption caused a decrease in β-1,3-glucan level and increase in chitin level in cell wall, resulting in the increased cell wall thickness. Comparing with wild-type strain, the mutant strain had 39.9 and 63.41 % less leakage of octanoic acid and decanoic acid which would significantly affect the flavor of beer during storage. Moreover, the results of European Brewery Convention tube fermentation test showed that the genetic manipulation to the industrial brewing yeast helped with the anti-staling ability, rather than affecting the fermentation ability. The thiobarbituric acid value reduced by 65.59 %, and the resistant staling value increased by 26.56 %. Moreover, the anti-staling index of the beer fermented with mutant strain increased by 2.64-fold than that from wild-type strain respectively. China has the most production and consumption of beer around the world, so the quality of beer has a significant impact on Chinese beer industry. The result of this study could help with the improvement of the quality of beer in China as well as around the world.

  14. Ethanol production potential from fermented rice noodle wastewater treatment using entrapped yeast cell sequencing batch reactor

    Science.gov (United States)

    Siripattanakul-Ratpukdi, Sumana

    2012-03-01

    Fermented rice noodle production generates a large volume of starch-based wastewater. This study investigated the treatment of the fermented rice noodle wastewater using entrapped cell sequencing batch reactor (ECSBR) compared to traditional sequencing batch reactor (SBR). The yeast cells were applied because of their potential to convert reducing sugar in the wastewater to ethanol. In present study, preliminary treatment by acid hydrolysis was performed. A yeast culture, Saccharomyces cerevisiae, with calcium alginate cell entrapment was used. Optimum yeast cell loading in batch experiment and fermented rice noodle treatment performances using ECSBR and SBR systems were examined. In the first part, it was found that the cell loadings (0.6-2.7 × 108 cells/mL) did not play an important role in this study. Treatment reactions followed the second-order kinetics with the treatment efficiencies of 92-95%. In the second part, the result showed that ECSBR performed better than SBR in both treatment efficiency and system stability perspectives. ECSBR maintained glucose removal of 82.5 ± 10% for 5-cycle treatment while glucose removal by SBR declined from 96 to 40% within the 5-cycle treatment. Scanning electron microscopic images supported the treatment results. A number of yeast cells entrapped and attached onto the matrix grew in the entrapment matrix.

  15. Yeast CUP1 protects HeLa cells against copper-induced stress

    Energy Technology Data Exchange (ETDEWEB)

    Xie, X.X. [Department of Animal Sciences, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai (China); Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai (China); College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou (China); Ma, Y.F.; Wang, Q.S.; Chen, Z.L.; Liao, R.R.; Pan, Y.C. [Department of Animal Sciences, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai (China); Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai (China)

    2015-06-12

    As an essential trace element, copper can be toxic in mammalian cells when present in excess. Metallothioneins (MTs) are small, cysteine-rich proteins that avidly bind copper and thus play an important role in detoxification. YeastCUP1 is a member of the MT gene family. The aim of this study was to determine whether yeast CUP1 could bind copper effectively and protect cells against copper stress. In this study,CUP1 expression was determined by quantitative real-time PCR, and copper content was detected by inductively coupled plasma mass spectrometry. Production of intracellular reactive oxygen species (ROS) was evaluated using the 2',7'-dichlorofluorescein-diacetate (DCFH-DA) assay. Cellular viability was detected using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, and the cell cycle distribution of CUP1 was analyzed by fluorescence-activated cell sorting. The data indicated that overexpression of yeast CUP1 in HeLa cells played a protective role against copper-induced stress, leading to increased cellular viability (P<0.05) and decreased ROS production (P<0.05). It was also observed that overexpression of yeast CUP1 reduced the percentage of G1 cells and increased the percentage of S cells, which suggested that it contributed to cell viability. We found that overexpression of yeast CUP1 protected HeLa cells against copper stress. These results offer useful data to elucidate the mechanism of the MT gene on copper metabolism in mammalian cells.

  16. Involvement of flocculin in negative potential-applied ITO electrode adhesion of yeast cells

    OpenAIRE

    Koyama, Sumihiro; Tsubouchi, Taishi; Usui, Keiko; UEMATSU, Katsuyuki; Tame, Akihiro; Nogi, Yuichi; Ohta, Yukari; Hatada, Yuji; Kato, Chiaki; Miwa, Tetsuya; Toyofuku, Takashi; Nagahama, Takehiko; Konishi, Masaaki; Nagano, Yuriko; ABE, FUMIYOSHI

    2015-01-01

    The purpose of this study was to develop novel methods for attachment and cultivation of specifically positioned single yeast cells on a microelectrode surface with the application of a weak electrical potential. Saccharomyces cerevisiae diploid strains attached to an indium tin oxide/glass (ITO) electrode to which a negative potential between −0.2 and −0.4 V vs. Ag/AgCl was applied, while they did not adhere to a gallium-doped zinc oxide/glass electrode surface. The yeast cells attached to t...

  17. Comparative Polygenic Analysis of Maximal Ethanol Accumulation Capacity and Tolerance to High Ethanol Levels of Cell Proliferation in Yeast

    NARCIS (Netherlands)

    Pais, Thiago M.; Foulquié-Moreno, María R.; Hubmann, Georg; Duitama, Jorge; Swinnen, Steve; Goovaerts, Annelies; Yang, Yudi; Dumortier, Françoise; Thevelein, Johan M.

    2013-01-01

    The yeast Saccharomyces cerevisiae is able to accumulate ≥17% ethanol (v/v) by fermentation in the absence of cell proliferation. The genetic basis of this unique capacity is unknown. Up to now, all research has focused on tolerance of yeast cell proliferation to high ethanol levels. Comparison of m

  18. The Bioeffects Resulting from Prokaryotic Cells and Yeast Being Exposed to an 18 GHz Electromagnetic Field.

    Science.gov (United States)

    Nguyen, The Hong Phong; Pham, Vy T H; Nguyen, Song Ha; Baulin, Vladimir; Croft, Rodney J; Phillips, Brian; Crawford, Russell J; Ivanova, Elena P

    2016-01-01

    The mechanisms by which various biological effects are triggered by exposure to an electromagnetic field are not fully understood and have been the subject of debate. Here, the effects of exposing typical representatives of the major microbial taxa to an 18 GHz microwave electromagnetic field (EMF)were studied. It appeared that the EMF exposure induced cell permeabilisation in all of the bacteria and yeast studied, while the cells remained viable (94% throughout the exposure), independent of the differences in cell membrane fatty acid and phospholipid composition. The resulting cell permeabilisation was confirmed by detection of the uptake of propidium iodine and 23 nm fluorescent silica nanospheres using transmission electron microscopy (TEM) and confocal laser scanning microscopy (CLSM). Upon EMF exposure, the bacterial cell membranes are believed to become permeable through quasi-endocytosis processes. The dosimetry analysis revealed that the EMF threshold level required to induce the uptake of the large (46 nm) nanopsheres was between three and six EMF doses, with a specific absorption rate (SAR) of 3 kW/kg and 5 kW/kg per exposure, respectively, depending on the bacterial taxa being studied. It is suggested that the taxonomic affiliation and lipid composition (e.g. the presence of phosphatidyl-glycerol and/or pentadecanoic fatty acid) may affect the extent of uptake of the large nanospheres (46 nm). Multiple 18 GHz EMF exposures over a one-hour period induced periodic anomalous increases in the cell growth behavior of two Staphylococcus aureus strains, namely ATCC 25923 and CIP 65.8T.

  19. The Bioeffects Resulting from Prokaryotic Cells and Yeast Being Exposed to an 18 GHz Electromagnetic Field.

    Directory of Open Access Journals (Sweden)

    The Hong Phong Nguyen

    Full Text Available The mechanisms by which various biological effects are triggered by exposure to an electromagnetic field are not fully understood and have been the subject of debate. Here, the effects of exposing typical representatives of the major microbial taxa to an 18 GHz microwave electromagnetic field (EMFwere studied. It appeared that the EMF exposure induced cell permeabilisation in all of the bacteria and yeast studied, while the cells remained viable (94% throughout the exposure, independent of the differences in cell membrane fatty acid and phospholipid composition. The resulting cell permeabilisation was confirmed by detection of the uptake of propidium iodine and 23 nm fluorescent silica nanospheres using transmission electron microscopy (TEM and confocal laser scanning microscopy (CLSM. Upon EMF exposure, the bacterial cell membranes are believed to become permeable through quasi-endocytosis processes. The dosimetry analysis revealed that the EMF threshold level required to induce the uptake of the large (46 nm nanopsheres was between three and six EMF doses, with a specific absorption rate (SAR of 3 kW/kg and 5 kW/kg per exposure, respectively, depending on the bacterial taxa being studied. It is suggested that the taxonomic affiliation and lipid composition (e.g. the presence of phosphatidyl-glycerol and/or pentadecanoic fatty acid may affect the extent of uptake of the large nanospheres (46 nm. Multiple 18 GHz EMF exposures over a one-hour period induced periodic anomalous increases in the cell growth behavior of two Staphylococcus aureus strains, namely ATCC 25923 and CIP 65.8T.

  20. Change in activity of serine palmitoyltransferase affects sensitivity to syringomycin E in yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Toume, Moeko; Tani, Motohiro

    2014-09-01

    Syringomycin E is a cyclic lipodepsipeptide produced by strains of the plant bacterium Pseudomonas syringae pv. syringae. Genetic studies involving the yeast Saccharomyces cerevisiae have revealed that complex sphingolipids play important roles in the action of syringomycin E. Here, we found a novel mutation that confers resistance to syringomycin E on yeast; that is, a deletion mutant of ORM1 and ORM2, which encode negative regulators of serine palmitoyltransferase catalyzing the initial step of sphingolipid biosynthesis, exhibited resistance to syringomycin E. On the contrary, overexpression of Orm2 resulted in high sensitivity to the toxin. Moreover, overexpression of Lcb1 and Lcb2, catalytic subunits of serine palmitoyltransferase, causes resistance to the toxin, whereas partial repression of expression of Lcb1 had the opposite effect. Partial reduction of complex sphingolipids by repression of expression of Aur1, an inositol phosphorylceramide synthase, also resulted in high sensitivity to the toxin. These results suggested that an increase in sphingolipid biosynthesis caused by a change in the activity of serine palmitoyltransferase causes resistance to syringomycin E.

  1. Mutant allele of rna14 in fission yeast affects pre-mRNA splicing

    Indian Academy of Sciences (India)

    SUDHANSHU YADAV; AMIT SONKAR; NAFEES AHAMAD; SHAKIL AHMED

    2016-06-01

    complex removes noncoding introns, while 3'end processing involves in cleavage and addition of poly(A) tails to the nascent transcript. Rna14 protein in budding yeast has been implicated in cleavage and polyadenylation of mRNA in the nucleus but their role in the pre-mRNA splicing has not been studied. Here, we report the isolation of a mutant allele of rna14 in fission yeast,Schizosaccharomyces pombe that exhibits reduction in protein level of Chk1 at the nonpermissive temperature, primarily due to the defects in posttranscriptional processing. Reverse transcriptase-polymerase chain reaction analysis reveals defective splicing of the chk1¹+transcript at the nonpermissive temperature. Apart from chk1¹+, the splicing of some other genes were also found to be defective at the nonpermissive temperature suggesting that Rna14 might be involved in pre-mRNA splicing. Subsequently, genetic interaction of Rna14 with prp1 and physical interactions with Prp28 suggest that the Rna14 might be part of a larger protein complex responsible for the pre-mRNA maturation.

  2. Simple and reliable procedure for PCR amplification of genomic DNA from yeast cells using short sequencing primers

    DEFF Research Database (Denmark)

    Haaning, J; Oxvig, C; Overgaard, Michael Toft;

    1997-01-01

    Yeast is widely used in molecular biology. Heterologous expression of recombinant proteins in yeast involves screening of a large number of recombinants. We present an easy and reliable procedure for amplifying genomic DNA from freshly grown cells of the methylotrophic yeast Pichia pastoris...... by means of PCR without any prior DNA purification steps. This method involves a simple boiling step of whole yeast cells in the presence of detergent, and subsequent amplification of genomic DNA using short sequencing primers in a polymerase chain reaction assay with a decreasing annealing temperature...

  3. Glycerol production by fermenting yeast cells is essential for optimal bread dough fermentation.

    Science.gov (United States)

    Aslankoohi, Elham; Rezaei, Mohammad Naser; Vervoort, Yannick; Courtin, Christophe M; Verstrepen, Kevin J

    2015-01-01

    Glycerol is the main compatible solute in yeast Saccharomyces cerevisiae. When faced with osmotic stress, for example during semi-solid state bread dough fermentation, yeast cells produce and accumulate glycerol in order to prevent dehydration by balancing the intracellular osmolarity with that of the environment. However, increased glycerol production also results in decreased CO2 production, which may reduce dough leavening. We investigated the effect of yeast glycerol production level on bread dough fermentation capacity of a commercial bakery strain and a laboratory strain. We find that Δgpd1 mutants that show decreased glycerol production show impaired dough fermentation. In contrast, overexpression of GPD1 in the laboratory strain results in increased fermentation rates in high-sugar dough and improved gas retention in the fermenting bread dough. Together, our results reveal the crucial role of glycerol production level by fermenting yeast cells in dough fermentation efficiency as well as gas retention in dough, thereby opening up new routes for the selection of improved commercial bakery yeasts.

  4. Palytoxin induces K+ efflux from yeast cells expressing the mammalian sodium pump.

    Science.gov (United States)

    Scheiner-Bobis, G; Meyer zu Heringdorf, D; Christ, M; Habermann, E

    1994-06-01

    Palytoxin causes potassium efflux and sodium influx in all investigated animals cells. Much evidence points to the sodium pump (Na+/K(+)-ATPase) as the target of the toxin. A heterologous expression system for mammalian Na+/K(+)-ATPase in the brewers yeast Saccharomyces cerevisiae has been used to test this hypothesis. Yeast cells do not contain endogenous sodium pumps but can be transformed with vectors coding for the alpha and beta subunits of the mammalian sodium pump. We now show that transformed yeast cells expressing both alpha and beta subunits of Na+/K(+)-ATPase are highly sensitive to the toxin, as measured by the loss of intracellular potassium. Palytoxin-induced potassium efflux is completely inhibited by 500 microM ouabain. In contrast, nontransformed yeast cells or cells expressing either the alpha or beta subunits are insensitive to palytoxin. Thus, the alpha/beta heterodimer of the sodium pump is required for the release of potassium induced by palytoxin. The results suggest that palytoxin converts the sodium pump into an open channel, allowing the passage of alkali ions.

  5. A comparative study of neodymium sorption by yeast cells

    Energy Technology Data Exchange (ETDEWEB)

    Vlachou, A.; Symeopoulos, B.D. [Univ. of Patras, Dept. of Chemistry (Greece); Koutinas, A.A. [Univ. of Patras, Dept. of Chemistry, Food Biotechnology Group (Greece)

    2009-07-01

    An approximate comparison of neodymium sorption at pH = 1.5, between the well studied Saccharomyces cerevisiae and three other related microorganisms (Kluyveromyces marxianus, Candida colliculosa and Debaromyces hansenii) was made. Although big differences were not observed, a slightly higher neodymium uptake was attained by the latter three kinds of yeasts. Their adsorption isotherms, varying the initial metal concentration from 10 to 200 mg/L, at constant ionic strength (I = 0.1 mol/L), could be fitted equally well, either to Langmuir or Freundlich adsorption model. Their estimated values of q{sub max} and K{sub f}, which are related to adsorption capacity, ranged from 10-12 mg/g and 0.90-1.2 respectively. The corresponding Scatchard plots suggest two types of bonding sites for all yeast studied and common receptor sites between C. colliculosa and D. hansenii. It is also discussed, the feasibility of using all these microorganisms, as potential detoxification tools, wherever contamination of foodstuffs by radionuclides, seems to be probable. (orig.)

  6. An integrative model and analysis of cell cycle in fission yeast

    Institute of Scientific and Technical Information of China (English)

    TENG Hu; HUANG Xun; XIU Zhilong; FENG Enmin

    2005-01-01

    According to the recent investigation on cell cycle of fission yeast, a mathematical dynamic model is formulated. Four cyclins, e.g. Puc1, Cig1, Cig2 and Cdc13, are investigated here. The interacting networks between the cyclins and the process of cell cycle are mathematically described. The functions of these cyclins are particularly analyzed. Comparison among different mutants indicates that the cyclins play an important role in cell cycle.

  7. A high-throughput method for quantifying metabolically active yeast cells

    DEFF Research Database (Denmark)

    Nandy, Subir Kumar; Knudsen, Peter Boldsen; Rosenkjær, Alexander;

    2015-01-01

    By redesigning the established methylene blue reduction test for bacteria and yeast, we present a cheap and efficient methodology for quantitative physiology of eukaryotic cells applicable for high-throughput systems. Validation of themethod in fermenters and highthroughput systems proved...... equivalent, displaying reduction curves that interrelated directly with CFU counts. For growth rate estimation, the methylene blue reduction test (MBRT) proved superior, since the discriminatory nature of the method allowed for the quantification of metabolically active cells only, excluding dead cells...

  8. Mutations and environmental factors affecting regulation of riboflavin synthesis and iron assimilation also cause oxidative stress in the yeast Pichia guilliermondii.

    Science.gov (United States)

    Boretsky, Yuriy R; Protchenko, Olga V; Prokopiv, Tetiana M; Mukalov, Igor O; Fedorovych, Daria V; Sibirny, Andriy A

    2007-10-01

    Iron deficiency causes oversynthesis of riboflavin in several yeast species, known as flavinogenic yeasts. However, the mechanisms of such regulation are not known. We found that mutations causing riboflavin overproduction and iron hyperaccumulation (rib80, rib81 and hit1), as well as cobalt excess or iron deficiency all provoke oxidative stress in the Pichia guilliermondii yeast. Iron content in the cells, production both of riboflavin and malondialdehyde by P. guilliermondii wild type and hit1 mutant strains depend on a type of carbon source used in cultivation media. The data suggest that the regulation of riboflavin biosynthesis and iron assimilation in P. guilliermondii are linked with cellular oxidative state.

  9. Metabolism of benzoquinone by yeast cells and oxidative characteristics of corresponding hydroquinone: application to highly sensitive measurement of yeast cell density by using benzoquinone and a chemiluminescent probe.

    Science.gov (United States)

    Tsukatani, Tadayuki; Ide, Seiji; Ukeda, Hiroyuki; Matsumoto, Kiyoshi

    2004-07-01

    The metabolic efficiency of seven derivatives of 1,4-benzoquinone (BQ) by yeast cells and the oxidative characteristics of the corresponding hydroquinones (HQs) were studied by electrochemical, spectrophotometric and chemiluminescent methods. The spectrophotometric method was based on the reduction of a tetrazolium salt to formazan dye during the autoxidation of HQs generated by yeast cells under alkaline conditions. The amounts of HQs detected directly by the electrochemical method did not agree with those calculated from the formazan dye obtained by the spectrophotometric method. A tetrazolium salt was reduced to a formazan dye by both the superoxide anion radical (O2-*) generated during the autoxidation of 2,3,5,6-tetramethyl-1,4-HQ and by HQ itself. Little formazan dye was formed, and hydrogen peroxide (H2O2) was then finally produced during the autoxidation of 1,4-HQ or 2-methyl-1,4-HQ. Formazan dye and H2O2 were generated at a certain ratio during the autoxidation of derivatives of dimethyl-1,4-HQ or 2,3,5-trimethyl-1,4-HQ. The analytical method based on chemiluminescence with lucigenin and 2,3,5,6-tetramethyl-1,4-BQ was applied to highly sensitive measurement of the yeast cell density. A linear relationship between the chemiluminescence intensity and viable cell density was obtained in the range of 1.2 x 10(3) - 4.8 x 10(4) cells/ml. The detection limit was 4.8 x 10(2) cells/ml.

  10. An Imaging Flow Cytometry-based approach to analyse the fission yeast cell cycle in fixed cells.

    Science.gov (United States)

    Patterson, James O; Swaffer, Matthew; Filby, Andrew

    2015-07-01

    Fission yeast (Schizosaccharomyces pombe) is an excellent model organism for studying eukaryotic cell division because many of the underlying principles and key regulators of cell cycle biology are conserved from yeast to humans. As such it can be employed as tool for understanding complex human diseases that arise from dis-regulation in cell cycle controls, including cancers. Conventional Flow Cytometry (CFC) is a high-throughput, multi-parameter, fluorescence-based single cell analysis technology. It is widely used for studying the mammalian cell cycle both in the context of the normal and disease states by measuring changes in DNA content during the transition through G1, S and G2/M using fluorescent DNA-binding dyes. Unfortunately analysis of the fission yeast cell cycle by CFC is not straightforward because, unlike mammalian cells, cytokinesis occurs after S-phase meaning that bi-nucleated G1 cells have the same DNA content as mono-nucleated G2 cells and cannot be distinguished using total integrated fluorescence (pulse area). It has been elegantly shown that the width of the DNA pulse can be used to distinguish G2 cells with a single 2C foci versus G1 cells with two 1C foci, however the accuracy of this measurement is dependent on the orientation of the cell as it traverses the laser beam. To this end we sought to improve the accuracy of the fission yeast cell cycle analysis and have developed an Imaging Flow Cytometry (IFC)-based method that is able to preserve the high throughput, objective analysis afforded by CFC in combination with the spatial and morphometric information provide by microscopy. We have been able to derive an analysis framework for subdividing the yeast cell cycle that is based on intensiometric and morphometric measurements and is thus robust against orientation-based miss-classification. In addition we can employ image-based metrics to define populations of septated/bi-nucleated cells and measure cellular dimensions. To our knowledge

  11. Comparison of Yeast Cell Protein Solubilization Procedures for Two-dimensional Electrophoresis

    DEFF Research Database (Denmark)

    Harder, A; Wildgruber, R; Nawrocki, A;

    1999-01-01

    Three different procedures for the solubilization of yeast (S. cerevisiae) cell proteins were compared on the basis of the obtained two-dimensional (2-D) polypeptide patterns. Major emphasis was laid on minimizing handling steps, protein modification or degradation, and quantitative loss of high ...

  12. Yeast cell wall supplementation alters the metabolic responses of crossbred heifers to an endotoxin challenge

    Science.gov (United States)

    This study examined the effect of feeding yeast cell wall (YCW) products on the metabolic responses of newly-received heifers to endotoxin challenge. Heifers (n = 24; 219 ± 2.4 kg) were separated into treatment groups receiving a Control diet (n = 8), YCW-A (2.5 grams/heifer/d; n = 8) or YCW-C (2.5 ...

  13. Development of a yeast cell factory for production of aromatic products

    DEFF Research Database (Denmark)

    Rodriguez Prado, Edith Angelica; Kildegaard, Kanchana Rueksomtawin; Li, Mingji

    2014-01-01

    There is much interest in aromatic chemicals in the chemical industry as these can be used for production of dyes, anti-oxidants, nutraceuticals and food ingredients. Yeast is a widely used cell factory and it is particularly well suited for production of aromatic chemicals via complex biosynthetic...

  14. Problem-Solving Test: Analysis of DNA Damage Recognizing Proteins in Yeast and Human Cells

    Science.gov (United States)

    Szeberenyi, Jozsef

    2013-01-01

    The experiment described in this test was aimed at identifying DNA repair proteins in human and yeast cells. Terms to be familiar with before you start to solve the test: DNA repair, germline mutation, somatic mutation, inherited disease, cancer, restriction endonuclease, radioactive labeling, [alpha-[superscript 32]P]ATP, [gamma-[superscript…

  15. The use of scFv-displaying yeast in mammalian cell surface selections.

    Science.gov (United States)

    Wang, Xin Xiang; Shusta, Eric V

    2005-09-01

    Yeast surface display has proven to be a powerful tool for the directed evolution of immunological proteins when soluble ligands are available (Cho, B.K., Kieke, M.C., Boder, E.T., Wittrup, K.D., Kranz, D.M., 1998. A yeast surface display system for the discovery of ligands that trigger cell activation. J. Immunol. Methods 220, 179; Boder, E.T., Midelfort, K.S., Wittrup, K.D., 2000. Directed evolution of antibody fragments with monovalent femtomolar antigen-binding affinity. Proc. Natl. Acad. Sci. U. S. A. 97, 10701; Shusta, E.V., Holler, P.D., Kieke, M.C., Kranz, D.M., Wittrup, K.D., 2000. Directed evolution of a stable scaffold for T-cell receptor engineering. Nat. Biotechnol. 18, 754; Esteban, O., Zhao, H., 2004. Directed evolution of soluble single-chain human class II MHC molecules. J. Mol. Biol. 340, 81). This investigation extends the utility of this display platform by demonstrating its capacity for use in cell panning selections. This was accomplished by employing a model single-chain antibody (scFv)-hapten system that allowed for detailed investigation of the factors governing panning success. Yeast displaying anti-fluorescein scFv (4-4-20) exhibited specific interactions with the fluoresceinated endothelial cells and could be recovered from large backgrounds of irrelevant yeast in just three rounds. Successful selections required as few as 1700 fluorescein ligands per cell, and a three-round enrichment ratio of 10(6) was possible. These results indicate that yeast surface display is a viable option for use in cell or tissue-based selections.

  16. Chemical responses of single yeast cells studied by fluorescence microspectroscopy under solution-flow conditions.

    Science.gov (United States)

    Kogi, Osamu; Kim, Haeng-Boo; Kitamura, Noboru

    2002-07-01

    A microspectroscopy system combined with a fluid manifold was developed to manipulate and analyze "single" living cells. A sample buffer solution containing living cells was introduced into a flow cell set on a thermostated microscope stage and a few cells were allowed to attach to the bottom wall of the flow cell. With these living cells being attached to the wall, other floating cells were pumped out by flowing a buffer solution. These procedures made it possible to keep a few cells in the flow cell and to analyze single cells by fluorescence microspectroscopy. The technique was applied to study the time course of staining processes of single living yeast (Saccharomyces cerevisiae) cells by using two types of a fluorescent probe. The present methodology was shown to be of primary importance for obtaining biochemical/physiological information on single living cells and also for studying cell-to-cell variations in several characteristics.

  17. Systematic identification of yeast cell cycle transcription factors using multiple data sources

    Directory of Open Access Journals (Sweden)

    Li Wen-Hsiung

    2008-12-01

    Full Text Available Abstract Background Eukaryotic cell cycle is a complex process and is precisely regulated at many levels. Many genes specific to the cell cycle are regulated transcriptionally and are expressed just before they are needed. To understand the cell cycle process, it is important to identify the cell cycle transcription factors (TFs that regulate the expression of cell cycle-regulated genes. Results We developed a method to identify cell cycle TFs in yeast by integrating current ChIP-chip, mutant, transcription factor binding site (TFBS, and cell cycle gene expression data. We identified 17 cell cycle TFs, 12 of which are known cell cycle TFs, while the remaining five (Ash1, Rlm1, Ste12, Stp1, Tec1 are putative novel cell cycle TFs. For each cell cycle TF, we assigned specific cell cycle phases in which the TF functions and identified the time lag for the TF to exert regulatory effects on its target genes. We also identified 178 novel cell cycle-regulated genes, among which 59 have unknown functions, but they may now be annotated as cell cycle-regulated genes. Most of our predictions are supported by previous experimental or computational studies. Furthermore, a high confidence TF-gene regulatory matrix is derived as a byproduct of our method. Each TF-gene regulatory relationship in this matrix is supported by at least three data sources: gene expression, TFBS, and ChIP-chip or/and mutant data. We show that our method performs better than four existing methods for identifying yeast cell cycle TFs. Finally, an application of our method to different cell cycle gene expression datasets suggests that our method is robust. Conclusion Our method is effective for identifying yeast cell cycle TFs and cell cycle-regulated genes. Many of our predictions are validated by the literature. Our study shows that integrating multiple data sources is a powerful approach to studying complex biological systems.

  18. In cellulo serial crystallography of alcohol oxidase crystals inside yeast cells

    Directory of Open Access Journals (Sweden)

    Arjen J. Jakobi

    2016-03-01

    Full Text Available The possibility of using femtosecond pulses from an X-ray free-electron laser to collect diffraction data from protein crystals formed in their native cellular organelle has been explored. X-ray diffraction of submicrometre-sized alcohol oxidase crystals formed in peroxisomes within cells of genetically modified variants of the methylotrophic yeast Hansenula polymorpha is reported and characterized. The observations are supported by synchrotron radiation-based powder diffraction data and electron microscopy. Based on these findings, the concept of in cellulo serial crystallography on protein targets imported into yeast peroxisomes without the need for protein purification as a requirement for subsequent crystallization is outlined.

  19. Yeast Genetics for Delineating Bax/Bcl Pathway of Cell Death Regulation.

    Science.gov (United States)

    1998-07-01

    270, 11962- 11968 (1995). 5. Q. Xu, J. C. Reed, Molecular Cell 1, 337-346 (1998). 6. S. Matsuyama, Q. Xu, J. Velours, J. C. Reed, Mol Cell 1, 327... Molecular Cell , Vol. 1, 337-346, February, 1998 2. "The Mitochondrial F0F1-ATPase Proton Pump is Required for Function of the Proapoptotic Protein Bax in...Yeast and Mammalian Cell" Matsuyama, S., Xu, Q., Velours, J., and Reed, J.C. Molecular Cell , Vol. 1, 327-336, February, 1998 3. "Bax- and Bak-induced Cell

  20. Current progress in high cell density yeast bioprocesses for bioethanol production.

    Science.gov (United States)

    Westman, Johan O; Franzén, Carl Johan

    2015-08-01

    High capital costs and low reaction rates are major challenges for establishment of fermentation-based production systems in the bioeconomy. Using high cell density cultures is an efficient way to increase the volumetric productivity of fermentation processes, thereby enabling faster and more robust processes and use of smaller reactors. In this review, we summarize recent progress in the application of high cell density yeast bioprocesses for first and second generation bioethanol production. High biomass concentrations obtained by retention of yeast cells in the reactor enables easier cell reuse, simplified product recovery and higher dilution rates in continuous processes. High local cell density cultures, in the form of encapsulated or strongly flocculating yeast, furthermore obtain increased tolerance to convertible fermentation inhibitors and utilize glucose and other sugars simultaneously, thereby overcoming two additional hurdles for second generation bioethanol production. These effects are caused by local concentration gradients due to diffusion limitations and conversion of inhibitors and sugars by the cells, which lead to low local concentrations of inhibitors and glucose. Quorum sensing may also contribute to the increased stress tolerance. Recent developments indicate that high cell density methodology, with emphasis on high local cell density, offers significant advantages for sustainable second generation bioethanol production.

  1. A model of yeast cell-cycle regulation based on multisite phosphorylation

    Science.gov (United States)

    Barik, Debashis; Baumann, William T; Paul, Mark R; Novak, Bela; Tyson, John J

    2010-01-01

    In order for the cell's genome to be passed intact from one generation to the next, the events of the cell cycle (DNA replication, mitosis, cell division) must be executed in the correct order, despite the considerable molecular noise inherent in any protein-based regulatory system residing in the small confines of a eukaryotic cell. To assess the effects of molecular fluctuations on cell-cycle progression in budding yeast cells, we have constructed a new model of the regulation of Cln- and Clb-dependent kinases, based on multisite phosphorylation of their target proteins and on positive and negative feedback loops involving the kinases themselves. To account for the significant role of noise in the transcription and translation steps of gene expression, the model includes mRNAs as well as proteins. The model equations are simulated deterministically and stochastically to reveal the bistable switching behavior on which proper cell-cycle progression depends and to show that this behavior is robust to the level of molecular noise expected in yeast-sized cells (∼50 fL volume). The model gives a quantitatively accurate account of the variability observed in the G1-S transition in budding yeast, which is governed by an underlying sizer+timer control system. PMID:20739927

  2. Cell cycle arrest promotes trans-hammerhead ribozyme action in yeast.

    Science.gov (United States)

    Ferbeyre, G; Bratty, J; Chen, H; Cedergren, R

    1996-08-09

    A hammerhead ribozyme designed to cleave the yeast ADE1 mRNA has been expressed in yeast under the control of a galactose-inducible promoter. RNA prepared from the galactose-induced yeast cultures possesses an activity that cleaves ADE1 mRNA in vitro. However, in spite of high expression levels of the ribozyme, no cleavage activity could be demonstrated in vivo. On the other hand, when the yeast cells expressing hammerhead RNA were treated with the alpha-factor mating pheromone, the level of ADE1 mRNA was reduced by 50%. Similar reductions were observed when this strain was cultured in the presence of lithium acetate or in nitrogen-free medium. Moreover, control experiments in which disabled hammerhead genes were expressed showed no such reductions. Extension of the length of the flanking recognition arms of the ribozyme from a total of 10 to 16 or 24 nucleotides diminished the inhibitory effect of the ribozyme. These data suggest that ribozymes are able to cleave a trans-RNA target in yeast.

  3. Adsorption of ochratoxin A from grape juice by yeast cells immobilised in calcium alginate beads.

    Science.gov (United States)

    Farbo, Maria Grazia; Urgeghe, Pietro Paolo; Fiori, Stefano; Marceddu, Salvatore; Jaoua, Samir; Migheli, Quirico

    2016-01-18

    Grape juice can be easily contaminated with ochratoxin A (OTA), one of the known mycotoxins with the greatest public health significance. Among the different approaches to decontaminate juice from this mycotoxin, microbiological methods proved efficient, inexpensive and safe, particularly the use of yeast or yeast products. To ascertain whether immobilisation of the yeast biomass would lead to successful decontamination, alginate beads encapsulating Candida intermedia yeast cells were used in our experiments to evaluate their OTA-biosorption efficacy. Magnetic calcium alginate beads were also prepared by adding magnetite in the formulation to allow fast removal from the aqueous solution with a magnet. Calcium alginate beads were added to commercial grape juice spiked with 20 μg/kg OTA and after 48 h of incubation a significant reduction (>80%), of the total OTA content was achieved, while in the subsequent phases (72-120 h) OTA was slowly released into the grape juice by alginate beads. Biosorption properties of alginate-yeast beads were tested in a prototype bioreactor consisting in a glass chromatography column packed with beads, where juice amended with OTA was slowly flowed downstream. The adoption of an interconnected scaled-up bioreactor as an efficient and safe tool to remove traces of OTA from liquid matrices is discussed.

  4. Lactic acid-producing yeast cells having nonfunctional L- or D-lactate:ferricytochrome C oxidoreductase cells

    Science.gov (United States)

    Miller, Matthew [Boston, MA; Suominen, Pirkko [Maple Grove, MN; Aristidou, Aristos [Highland Ranch, CO; Hause, Benjamin Matthew [Currie, MN; Van Hoek, Pim [Camarillo, CA; Dundon, Catherine Asleson [Minneapolis, MN

    2012-03-20

    Yeast cells having an exogenous lactate dehydrogenase gene ae modified by reducing L- or D-lactate:ferricytochrome c oxidoreductase activity in the cell. This leads to reduced consumption of lactate by the cell and can increase overall lactate yields in a fermentation process. Cells having the reduced L- or D-lactate:ferricytochrome c oxidoreductase activity can be screened for by resistance to organic acids such as lactic or glycolic acid.

  5. Ceramide Accumulation in Yeast Yarrowia lipolitica

    Institute of Scientific and Technical Information of China (English)

    周全; 陈国强

    2005-01-01

    Ceramides are a class of lipid molecules widely distributed in eukaryotic cells in small amount. To investigate the possibility of ceramide production by yeast, a yeast strain Yarrowia lipolitica was grown under different conditions including changing carbon/nitrogen ratio, and serine concentration, dissolved oxygen and presence of ethanol. It was found that increased dissolved oxygen supply increased the ceramide content in the yeast 2.5 fold of its normal control level. Ethanol treatment could also enhance ceramide accumulation by 3.3 fold compared with the control although the cell growth was negatively affected. Cellular redox potential was shown to affect ceramide accumulation by the yeast. This was possibly related to the cellular reactive oxygen species presented in the yeast.

  6. RNA interference regulates the cell cycle checkpoint through the RNA export factor, Ptr1, in fission yeast

    Energy Technology Data Exchange (ETDEWEB)

    Iida, Tetsushi, E-mail: tiida@nig.ac.jp [Division of Cytogenetics, National Institute of Genetics, Mishima, 1111 Yata, Mishima 411-8540 (Japan); The Graduate University for Advanced Studies, Sokendai, Mishima, 1111 Yata, Mishima 411-8540 (Japan); Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8, Honcho, Kawaguchi-shi, Saitama 332-0012 (Japan); Iida, Naoko [Division of Mutagenesis, National Institute of Genetics, Mishima, 1111 Yata, Mishima 411-8540 (Japan); Tsutsui, Yasuhiro [Department of Life Science, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsuda-cho, Midori-ku, Yokohama 226-8501 (Japan); Yamao, Fumiaki [Division of Mutagenesis, National Institute of Genetics, Mishima, 1111 Yata, Mishima 411-8540 (Japan); The Graduate University for Advanced Studies, Sokendai, Mishima, 1111 Yata, Mishima 411-8540 (Japan); Kobayashi, Takehiko [Division of Cytogenetics, National Institute of Genetics, Mishima, 1111 Yata, Mishima 411-8540 (Japan); The Graduate University for Advanced Studies, Sokendai, Mishima, 1111 Yata, Mishima 411-8540 (Japan)

    2012-10-12

    Highlights: Black-Right-Pointing-Pointer RNAi is linked to the cell cycle checkpoint in fission yeast. Black-Right-Pointing-Pointer Ptr1 co-purifies with Ago1. Black-Right-Pointing-Pointer The ptr1-1 mutation impairs the checkpoint but does not affect gene silencing. Black-Right-Pointing-Pointer ago1{sup +} and ptr1{sup +} regulate the cell cycle checkpoint via the same pathway. Black-Right-Pointing-Pointer Mutations in ago1{sup +} and ptr1{sup +} lead to the nuclear accumulation of poly(A){sup +} RNAs. -- Abstract: Ago1, an effector protein of RNA interference (RNAi), regulates heterochromatin silencing and cell cycle arrest in fission yeast. However, the mechanism by which Ago1 controls cell cycle checkpoint following hydroxyurea (HU) treatment has not been elucidated. In this study, we show that Ago1 and other RNAi factors control cell cycle checkpoint following HU treatment via a mechanism independent of silencing. While silencing requires dcr1{sup +}, the overexpression of ago1{sup +} alleviated the cell cycle defect in dcr1{Delta}. Ago1 interacted with the mRNA export factor, Ptr1. The ptr1-1 mutation impaired cell cycle checkpoint but gene silencing was unaffected. Genetic analysis revealed that the regulation of cell cycle checkpoint by ago1{sup +} is dependent on ptr1{sup +}. Nuclear accumulation of poly(A){sup +} RNAs was detected in mutants of ago1{sup +} and ptr1{sup +}, suggesting there is a functional link between the cell cycle checkpoint and RNAi-mediated RNA quality control.

  7. Uptake of yeast cells in the Atlantic salmon (Salmo salar L.) intestine.

    Science.gov (United States)

    Løkka, Guro; Falk, Knut; Austbø, Lars; Koppang, Erling Olaf

    2014-11-01

    The intestinal mucosa is an important port of entry for many pathogens. Information of antigen uptake mechanisms is essential to understand and to possibly prevent infections. In teleosts, several studies have aimed at investigating particulate uptake in the gastrointestinal system that seems to vary dependent on fish species and antigen. In the present study, particulate uptake in the Atlantic salmon intestine by anal intubation of yeast cells has been investigated. In the anal intubated fish, yeast were found in the epithelium close to nuclei of macrophage-like cells and inside large mononuclear cells in the intestinal lumen, indicating uptake and possible transport of large antigen particles over the epithelium by macrophage-like cells.

  8. Aureobasidin A arrests growth of yeast cells through both ceramide intoxication and deprivation of essential inositolphosphorylceramides

    DEFF Research Database (Denmark)

    Cerantola, Vanessa; Guillas, Isabelle; Roubaty, Carole

    2009-01-01

    , 2Delta.YDC1 cells stop growing when exposed to Aureobasidin A (AbA), an inhibitor of the inositolphosphorylceramide synthase AUR1, yet their ceramide levels remain very low. This finding argues against a current hypothesis saying that yeast cells do not require inositolphosphorylceramides and die...... in the presence of AbA only because ceramides build up to toxic concentrations. Moreover, W303lag1Delta lac1Delta ypc1Delta ydc1Delta cells, reported to be AbA resistant, stop growing on AbA after a certain number of cell divisions, most likely because AbA blocks the biosynthesis of anomalous...... inositolphosphorylsphingosides. Thus, data argue that inositolphosphorylceramides of yeast, the equivalent of mammalian sphingomyelins, are essential for growth. Data also clearly confirm that wild-type strains, when exposed to AbA, immediately stop growing because of ceramide intoxication, long before...

  9. Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells.

    Science.gov (United States)

    Carlile, Thomas M; Rojas-Duran, Maria F; Zinshteyn, Boris; Shin, Hakyung; Bartoli, Kristen M; Gilbert, Wendy V

    2014-11-01

    Post-transcriptional modification of RNA nucleosides occurs in all living organisms. Pseudouridine, the most abundant modified nucleoside in non-coding RNAs, enhances the function of transfer RNA and ribosomal RNA by stabilizing the RNA structure. Messenger RNAs were not known to contain pseudouridine, but artificial pseudouridylation dramatically affects mRNA function--it changes the genetic code by facilitating non-canonical base pairing in the ribosome decoding centre. However, without evidence of naturally occurring mRNA pseudouridylation, its physiological relevance was unclear. Here we present a comprehensive analysis of pseudouridylation in Saccharomyces cerevisiae and human RNAs using Pseudo-seq, a genome-wide, single-nucleotide-resolution method for pseudouridine identification. Pseudo-seq accurately identifies known modification sites as well as many novel sites in non-coding RNAs, and reveals hundreds of pseudouridylated sites in mRNAs. Genetic analysis allowed us to assign most of the new modification sites to one of seven conserved pseudouridine synthases, Pus1-4, 6, 7 and 9. Notably, the majority of pseudouridines in mRNA are regulated in response to environmental signals, such as nutrient deprivation in yeast and serum starvation in human cells. These results suggest a mechanism for the rapid and regulated rewiring of the genetic code through inducible mRNA modifications. Our findings reveal unanticipated roles for pseudouridylation and provide a resource for identifying the targets of pseudouridine synthases implicated in human disease.

  10. Use of yeast cell walls and Yucca schidigera extract in layer hens’ diets

    Directory of Open Access Journals (Sweden)

    Yasemin Oznurlu

    2011-04-01

    Full Text Available This research was conducted to determine the impact of diet supplementation with yeast cell walls (YCW and Yucca schidigera extract (YE on performance, egg weight, specific gravity, body weight, and intestinal tissue hist­ology in layer hens. White, 48-week-old, Hy-line hybrid hens (n=320 were divided into four main groups, each comprising eight groups of 10 hens: (1 control, (2 500 mg/kg YCW added, (3 500 mg/kg YE added and (4 250 mg/kg YE plus 2500 mg/kg YCW added. While the egg production and feed intake of the hens was significantly affected, overall feed efficiency, damaged-egg ratio, dirty-egg ratio, egg weight and specific gravity did not differ between the control group and the YCW, YE or YCW+YE groups. Final body weight was higher in the YCW, YE and YCW+YE groups than in the control group. There were differences in the width, muscle layer thickness and height/crypt depth ratio of the duodenal villus and the width of the ileal villus among the four groups. It can be concluded that YCW and YCW+YE supplementation for layer hens are beneficial for egg production.

  11. Pregnancy persistently affects memory T cell populations.

    Science.gov (United States)

    Kieffer, Tom E C; Faas, Marijke M; Scherjon, Sicco A; Prins, Jelmer R

    2017-02-01

    Pregnancy is an immune challenge to the maternal immune system. The effects of pregnancy on maternal immunity and particularly on memory T cells during and after pregnancy are not fully known. This observational study aims to show the short term and the long term effects of pregnancy on the constitution, size and activation status of peripheral human memory T-lymphocyte populations. Effector memory (EM) and central memory (CM) T-lymphocytes were analyzed using flow cytometry of peripheral blood from 14 nulligravid, 12 primigravid and 15 parous women that were on average 18 months postpartum. The short term effects were shown by the significantly higher CD4+ EM cell and activated CD4+ memory cell proportions in primigravid women compared to nulligravid women. The persistent effects found in this study were the significantly higher proportions of CD4+ EM, CD4+ CM and activated memory T cells in parous women compared to nulligravid women. In contrast to CD4+ cells, activation status of CD8+ memory cells did not differ between the groups. This study shows that pregnancy persistently affects the pre-pregnancy CD4+ memory cell pool in human peripheral blood. During pregnancy, CD4+ T-lymphocytes might differentiate into EM cells followed by persistent higher proportions of CD4+ CM and EM cells postpartum. The persistent effects of pregnancy on memory T cells found in this study support the hypothesis that memory T cells are generated during pregnancy and that these cells could be involved in the lower complication risks in multiparous pregnancies in humans.

  12. Funneled landscape leads to robustness of cell networks: yeast cell cycle.

    Directory of Open Access Journals (Sweden)

    Jin Wang

    2006-11-01

    Full Text Available We uncovered the underlying energy landscape for a cellular network. We discovered that the energy landscape of the yeast cell-cycle network is funneled towards the global minimum (G0/G1 phase from the experimentally measured or inferred inherent chemical reaction rates. The funneled landscape is quite robust against random perturbations. This naturally explains robustness from a physical point of view. The ratio of slope versus roughness of the landscape becomes a quantitative measure of robustness of the network. The funneled landscape can be seen as a possible realization of the Darwinian principle of natural selection at the cellular network level. It provides an optimal criterion for network connections and design. Our approach is general and can be applied to other cellular networks.

  13. Involvement of flocculin in negative potential-applied ITO electrode adhesion of yeast cells

    Science.gov (United States)

    Koyama, Sumihiro; Tsubouchi, Taishi; Usui, Keiko; Uematsu, Katsuyuki; Tame, Akihiro; Nogi, Yuichi; Ohta, Yukari; Hatada, Yuji; Kato, Chiaki; Miwa, Tetsuya; Toyofuku, Takashi; Nagahama, Takehiko; Konishi, Masaaki; Nagano, Yuriko; Abe, Fumiyoshi

    2015-01-01

    The purpose of this study was to develop novel methods for attachment and cultivation of specifically positioned single yeast cells on a microelectrode surface with the application of a weak electrical potential. Saccharomyces cerevisiae diploid strains attached to an indium tin oxide/glass (ITO) electrode to which a negative potential between −0.2 and −0.4 V vs. Ag/AgCl was applied, while they did not adhere to a gallium-doped zinc oxide/glass electrode surface. The yeast cells attached to the negative potential-applied ITO electrodes showed normal cell proliferation. We found that the flocculin FLO10 gene-disrupted diploid BY4743 mutant strain (flo10Δ /flo10Δ) almost completely lost the ability to adhere to the negative potential-applied ITO electrode. Our results indicate that the mechanisms of diploid BY4743 S. cerevisiae adhesion involve interaction between the negative potential-applied ITO electrode and the Flo10 protein on the cell wall surface. A combination of micropatterning techniques of living single yeast cell on the ITO electrode and omics technologies holds potential of novel, highly parallelized, microchip-based single-cell analysis that will contribute to new screening concepts and applications. PMID:26187908

  14. Growth pattern of single fission yeast cells is bilinear and depends on temperature and DNA synthesis.

    Science.gov (United States)

    Baumgärtner, Stephan; Tolić-Nørrelykke, Iva M

    2009-05-20

    Cell growth and division have to be tightly coordinated to keep the cell size constant over generations. Changes in cell size can be easily studied in the fission yeast Schizosaccharomyces pombe because these cells have a cylindrical shape and grow only at the cell ends. However, the growth pattern of single cells is currently unclear. Linear, exponential, and bilinear growth models have been proposed. Here we measured the length of single fission yeast cells with high spatial precision and temporal resolution over the whole cell cycle by using time-lapse confocal microscopy of cells with green fluorescent protein-labeled plasma membrane. We show that the growth profile between cell separation and the subsequent mitosis is bilinear, consisting of two linear segments separated by a rate-change point (RCP). The change in growth rate occurred at the same relative time during the cell cycle and at the same relative extension for different temperatures. The growth rate before the RCP was independent of temperature, whereas the growth rate after the RCP increased with an increase in temperature, leading to clear bilinear growth profiles at higher temperatures. The RCP was not directly related to the initiation of growth at the new end (new end take-off). When DNA synthesis was inhibited by hydroxyurea, the RCP was not detected. This result suggests that completion of DNA synthesis is required for the increase in growth rate. We conclude that the growth of fission yeast cells is not a simple exponential growth, but a complex process with precise rates regulated by the events during the cell cycle.

  15. Natural sequence variants of yeast environmental sensors confer cell-to-cell expression variability.

    Science.gov (United States)

    Fehrmann, Steffen; Bottin-Duplus, Hélène; Leonidou, Andri; Mollereau, Esther; Barthelaix, Audrey; Wei, Wu; Steinmetz, Lars M; Yvert, Gaël

    2013-10-08

    Living systems may have evolved probabilistic bet hedging strategies that generate cell-to-cell phenotypic diversity in anticipation of environmental catastrophes, as opposed to adaptation via a deterministic response to environmental changes. Evolution of bet hedging assumes that genotypes segregating in natural populations modulate the level of intraclonal diversity, which so far has largely remained hypothetical. Using a fluorescent P(met17)-GFP reporter, we mapped four genetic loci conferring to a wild yeast strain an elevated cell-to-cell variability in the expression of MET17, a gene regulated by the methionine pathway. A frameshift mutation in the Erc1p transmembrane transporter, probably resulting from a release of laboratory strains from negative selection, reduced P(met17)-GFP expression variability. At a second locus, cis-regulatory polymorphisms increased mean expression of the Mup1p methionine permease, causing increased expression variability in trans. These results demonstrate that an expression quantitative trait locus (eQTL) can simultaneously have a deterministic effect in cis and a probabilistic effect in trans. Our observations indicate that the evolution of transmembrane transporter genes can tune intraclonal variation and may therefore be implicated in both reactive and anticipatory strategies of adaptation.

  16. Heavy ion induced DNA-DSB in yeast and mammalian cells

    Science.gov (United States)

    Loebrich, M.; Ikpeme, S.; Kiefer, J.

    1994-01-01

    Molecular changes at the DNA are assumed to be the main cause for radiation effects in a number of organisms. During the course of the last decades techniques have been developed for measuring DNA double-strand breaks (dsb), generally assumed to be the most critical DNA lesions. The outcome of all those different approaches portrays a collection of data useful for a theoretical description of radiation action mechanisms. However, in the case of heavy ion induced DNA dsb the picture is not quite clear yet and further projects and strategies have to be developed. The biological systems studied in our group are yeast and mammalian cells. While in the case of yeast cells technical and methodical reasons highlight these organisms mammalian cells reach greater importance when dsb repair studies are performed. In both types of organisms the technique of pulsed-field gel electrophoresis (PFGE) is applied, although with different modifications and evaluation procedures mainly due to the different genome sizes.

  17. Cryptococcal cell morphology affects host cell interactions and pathogenicity.

    Directory of Open Access Journals (Sweden)

    Laura H Okagaki

    Full Text Available Cryptococcus neoformans is a common life-threatening human fungal pathogen. The size of cryptococcal cells is typically 5 to 10 microm. Cell enlargement was observed in vivo, producing cells up to 100 microm. These morphological changes in cell size affected pathogenicity via reducing phagocytosis by host mononuclear cells, increasing resistance to oxidative and nitrosative stress, and correlated with reduced penetration of the central nervous system. Cell enlargement was stimulated by coinfection with strains of opposite mating type, and ste3aDelta pheromone receptor mutant strains had reduced cell enlargement. Finally, analysis of DNA content in this novel cell type revealed that these enlarged cells were polyploid, uninucleate, and produced daughter cells in vivo. These results describe a novel mechanism by which C. neoformans evades host phagocytosis to allow survival of a subset of the population at early stages of infection. Thus, morphological changes play unique and specialized roles during infection.

  18. Cell organisation, sulphur metabolism and ion transport-related genes are differentially expressed in Paracoccidioides brasiliensis mycelium and yeast cells

    Directory of Open Access Journals (Sweden)

    Passos Geraldo AS

    2006-08-01

    Full Text Available Abstract Background Mycelium-to-yeast transition in the human host is essential for pathogenicity by the fungus Paracoccidioides brasiliensis and both cell types are therefore critical to the establishment of paracoccidioidomycosis (PCM, a systemic mycosis endemic to Latin America. The infected population is of about 10 million individuals, 2% of whom will eventually develop the disease. Previously, transcriptome analysis of mycelium and yeast cells resulted in the assembly of 6,022 sequence groups. Gene expression analysis, using both in silico EST subtraction and cDNA microarray, revealed genes that were differential to yeast or mycelium, and we discussed those involved in sugar metabolism. To advance our understanding of molecular mechanisms of dimorphic transition, we performed an extended analysis of gene expression profiles using the methods mentioned above. Results In this work, continuous data mining revealed 66 new differentially expressed sequences that were MIPS(Munich Information Center for Protein Sequences-categorised according to the cellular process in which they are presumably involved. Two well represented classes were chosen for further analysis: (i control of cell organisation – cell wall, membrane and cytoskeleton, whose representatives were hex (encoding for a hexagonal peroxisome protein, bgl (encoding for a 1,3-β-glucosidase in mycelium cells; and ags (an α-1,3-glucan synthase, cda (a chitin deacetylase and vrp (a verprolin in yeast cells; (ii ion metabolism and transport – two genes putatively implicated in ion transport were confirmed to be highly expressed in mycelium cells – isc and ktp, respectively an iron-sulphur cluster-like protein and a cation transporter; and a putative P-type cation pump (pct in yeast. Also, several enzymes from the cysteine de novo biosynthesis pathway were shown to be up regulated in the yeast form, including ATP sulphurylase, APS kinase and also PAPS reductase. Conclusion Taken

  19. [Study on CTP production from CMP by beer yeast cell immobilized in PVA].

    Science.gov (United States)

    Yang, Hong-Yi; Qian, Shi-Jun; Li, Gao-Wo

    2007-03-01

    With PVA as the carrier, the frozen beer yeast cells were immobilized for production of CTP from CMP. we explored the optimal condition of the immobilization from the aspects of the type, concentration of the PVA, and the immobilizing methods of cells In all 8 continuous batch of fermentation under the reactional condition of the immobilized cells, the conversion rate of CTP were maintained about 85% - 95%. Moreever, the storage stability of immobilized cells were investigated, and the products was also isolated and identifided by HPLC.

  20. Studies on regulation of the cell cycle in fission yeast.

    Directory of Open Access Journals (Sweden)

    Miroslava Požgajová

    2015-05-01

    Full Text Available All living organisms including plants and animals are composed of millions of cells. These cells perform different functions for the organism although they possess the same chromosomes and carry the same genetic information. Thus, to be able to understand multicellular organism we need to understand the life cycle of individual cells from which the organism comprises. The cell cycle is the life cycle of a single cell in the plant or animal body. It involves series of events in which components of the cell doubles and afterwards equally segregate into daughter cells. Such process ensures growth of the organism, and specialized reductional cell division which leads to production of gamets, assures sexual reproduction. Cell cycle is divided in the G1, S, G2 and M phase. Two gap-phases (G1 and G2 separate S phase (or synthesis and M phase which stays either for mitosis or meiosis. Essential for normal life progression and reproduction is correct chromosome segregation during mitosis and meiosis. Defects in the division program lead to aneuploidy, which in turn leads to birth defects, miscarriages or cancer. Even thou, researchers invented much about the regulation of the cell cycle, there is still long way to understand the complexity of the regulatory machineries that ensure proper segregation of chromosomes. In this paper we would like to describe techniques and materials we use for our studies on chromosome segregation in the model organism Schizosaccharomyces pombe.

  1. Effects of hydrolysed Saccharomyces cerevisiae yeast and yeast cell wall components on live performance, intestinal histo-morphology and humoral immune response of broilers.

    Science.gov (United States)

    Muthusamy, N; Haldar, S; Ghosh, T K; Bedford, M R

    2011-12-01

    1. The effects of enzymatically hydrolysed whole Saccharomyces cerevisiae yeast (HY) and the pellets of yeast cell wall (YCW) on production traits, the microbiology and histo-morphology of the small intestine, and humoral immune responses against Newcastle disease virus (NDV), of Ross 308 broilers were investigated. 2. The control group received a maize-soyabean meal based basal diet for 42 days. In the treated groups the basal diet was supplemented with 1 g/kg of HY and YCW. There were 8 replicate pens per group (n = 12 birds/pen). 3. HY and YCW supplementation improved live weight (P = 0·006) and FCR (P = 0·003) at 42-d as compared with the control group. 4. In the small intestine, Salmonella spp and Escherichia coli numbers were higher (P = 0·01) in the mucosa and lower (P = 0·01) in the digesta of the HY and the YCW fed groups at 25 d of age. Lactobacillus in the duodenal and jejunal digesta was higher (P yeast cell wall may be a better dietary tool than the hydrolysed whole yeast cell as a performance enhancer for broilers.

  2. Application in the Ethanol Fermentation of Immobilized Yeast Cells in Matrix of Alginate/Magnetic Nanoparticles, on Chitosan-Magnetite Microparticles and Cellulose-coated Magnetic Nanoparticles

    CERN Document Server

    Ivanova, Viara; Hristov, Jordan

    2011-01-01

    Saccharomyces cerevisiae cells were entrapped in matrix of alginate and magnetic nanoparticles and covalently immobilized on magnetite-containing chitosan and cellulose-coated magnetic nanoparticles. Cellulose-coated magnetic nanoparticles with covalently immobilized thermostable {\\alpha}-amylase and chitosan particles with immobilized glucoamylase were also prepared. The immobilized cells and enzymes were applied in column reactors - 1/for simultaneous corn starch saccharification with the immobilized glucoamylase and production of ethanol with the entrapped or covalently immobilized yeast cells, 2/ for separate ethanol fermentation of the starch hydrolysates with the fixed yeasts. Hydrolysis of corn starch with the immobilized {\\alpha}-amylase and glucoamylase, and separate hydrolysis with the immobilized {\\alpha}-amylase were also examined. In the first reactor the ethanol yield reached approx. 91% of the theoretical; the yield was approx. 86% in the second. The ethanol fermentation was affected by the typ...

  3. Genomic saturation mutagenesis and polygenic analysis identify novel yeast genes affecting ethyl acetate production, a non-selectable polygenic trait

    Directory of Open Access Journals (Sweden)

    Tom Den Abt

    2016-03-01

    Full Text Available Isolation of mutants in populations of microorganisms has been a valuable tool in experimental genetics for decades. The main disadvantage, however, is the inability of isolating mutants in non-selectable polygenic traits. Most traits of organisms, however, are non-selectable and polygenic, including industrially important properties of microorganisms. The advent of powerful technologies for polygenic analysis of complex traits has allowed simultaneous identification of multiple causative mutations among many thousands of irrelevant mutations. We now show that this also applies to haploid strains of which the genome has been loaded with induced mutations so as to affect as many non-selectable, polygenic traits as possible. We have introduced about 900 mutations into single haploid yeast strains using multiple rounds of EMS mutagenesis, while maintaining the mating capacity required for genetic mapping. We screened the strains for defects in flavor production, an important non-selectable, polygenic trait in yeast alcoholic beverage production. A haploid strain with multiple induced mutations showing reduced ethyl acetate production in semi-anaerobic fermentation, was selected and the underlying quantitative trait loci (QTLs were mapped using pooled-segregant whole-genome sequence analysis after crossing with an unrelated haploid strain. Reciprocal hemizygosity analysis and allele exchange identified PMA1 and CEM1 as causative mutant alleles and TPS1 as a causative genetic background allele. The case of CEM1 revealed that relevant mutations without observable effect in the haploid strain with multiple induced mutations (in this case due to defective mitochondria can be identified by polygenic analysis as long as the mutations have an effect in part of the segregants (in this case those that regained fully functional mitochondria. Our results show that genomic saturation mutagenesis combined with complex trait polygenic analysis could be used

  4. Yeast Cell Trapping In Ultrasonic Wave Field Using Ultrasonic Contrast Agent

    Science.gov (United States)

    Yamakoshi, Yoshiki; Koitabashi, Yusuke; Nakajima, Naritsugu; Miwa, Takashi

    2006-05-01

    Microobject manipulation using ultrasonic waves is expected to play important roles in constructing future drug or gene delivery systems. The acoustic radiation force, which is applied to microobjects, traps the objects at the desired position. A microjet, which is produced by bubble explosion under high-intensity ultrasonic waves, creates microholes through the cell membrane (sonoporation), which is considered as a sophisticated method of improving the doses of drugs or genes injected into a tissue. Aiming at increasing the trapping force in micro bubble manipulation using ultrasonic waves, we have proposed a novel method based on the self-organization of microbubbles. This method uses seed bubbles in order to trap the target bubbles. In this study, the proposed method is applied to yeast cell trapping using ultrasonic waves. An ultrasonic wave contrast agent (Levovist; Shering A.G., Germany) is used as a seed bubble. It is shown that the number of trapped yeast cells depends on the preparation of the yeast cells. In order to evaluate the result, two additional experiments are carried out by changing the internal gas of the seed bubbles and by using bubbles with a polymer shell.

  5. Production of fatty acid-derived oleochemicals and biofuels by synthetic yeast cell factories.

    Science.gov (United States)

    Zhou, Yongjin J; Buijs, Nicolaas A; Zhu, Zhiwei; Qin, Jiufu; Siewers, Verena; Nielsen, Jens

    2016-01-01

    Sustainable production of oleochemicals requires establishment of cell factory platform strains. The yeast Saccharomyces cerevisiae is an attractive cell factory as new strains can be rapidly implemented into existing infrastructures such as bioethanol production plants. Here we show high-level production of free fatty acids (FFAs) in a yeast cell factory, and the production of alkanes and fatty alcohols from its descendants. The engineered strain produces up to 10.4 g l(-1) of FFAs, which is the highest reported titre to date. Furthermore, through screening of specific pathway enzymes, endogenous alcohol dehydrogenases and aldehyde reductases, we reconstruct efficient pathways for conversion of fatty acids to alkanes (0.8 mg l(-1)) and fatty alcohols (1.5 g l(-1)), to our knowledge the highest titres reported in S. cerevisiae. This should facilitate the construction of yeast cell factories for production of fatty acids derived products and even aldehyde-derived chemicals of high value.

  6. Tolerance of yeast biofilm cells towards systemic antifungals

    DEFF Research Database (Denmark)

    Bojsen, Rasmus Kenneth

    was the only tested drug with activity against both growth arrested biofilm and planktonic cells but was found to only kill ~95 % of the cells. By using a collection of barcode tagged deletion mutants, we were identified that defects in protein synthesis, intracellular transport, cell cycle and lipid...... metabolism resulted in increased amphotericin B tolerance in both biofilm and planktonic cells. We furthermore observed that the tolerance level could be enhanced by nutrient starvation and inhibition of the TOR pathway. In conclusion, antifungal tolerance is the combined effect of the physiological state......Fungal infections have become a major problem in the hospital sector in the past decades due to the increased number of immune compromised patients susceptible to mycosis. Most human infections are believed to be associated with biofilm forming cells that are up to 1000-fold more tolerant...

  7. Production of fatty acid-derived oleochemicals and biofuels by synthetic yeast cell factories

    DEFF Research Database (Denmark)

    Zhou, Yongjin J.; Buijs, Nicolaas A; Zhu, Zhiwei

    2016-01-01

    -level production of free fatty acids (FFAs) in a yeast cell factory, and the production of alkanes and fatty alcohols from its descendants. The engineered strain produces up to 10.4 g l−1 of FFAs, which is the highest reported titre to date. Furthermore, through screening of specific pathway enzymes, endogenous...... alcohol dehydrogenases and aldehyde reductases, we reconstruct efficient pathways for conversion of fatty acids to alkanes (0.8 mg l−1) and fatty alcohols (1.5 g l−1), to our knowledge the highest titres reported in S. cerevisiae. This should facilitate the construction of yeast cell factories...... for production of fatty acids derived products and even aldehyde-derived chemicals of high value....

  8. Growth promoting effects of prebiotic yeast cell wall products in starter broilers under an immune stress and Clostridium perfringens challenge

    Science.gov (United States)

    This study was designed to investigate the growth promoting effects of supplementing different sources and concentrations of prebiotic yeast cell wall (YCW) products containing mannanoligosaccharides in starter broilers under an immune stress and Clostridium perfringens challenge. Through a series ...

  9. Effect of inactive yeast cell wall on growth performance, survival rate and immune parameters in Pacific White Shrimp (Litopenaeus vannamei

    Directory of Open Access Journals (Sweden)

    Rutchanee Chotikachinda

    2008-10-01

    Full Text Available Effects of dietary inactive yeast cell wall on growth performance, survival rate, and immune parameters in pacific white shrimp (Litopenaeus vannamei was investigated. Three dosages of inactive yeast cell wall (0, 1, and 2 g kg-1 were tested in three replicate groups of juvenile shrimps with an average initial weight of 7.15±0.05 g for four weeks. There was no significant difference in final weight, survival rate, specific growth rate, feed conversion ratio, feed intake, protein efficiency ratio, and apparent net protein utilization of each treatments. However, different levels of inactive yeast cell wall showed an effect on certain immune parameters (p<0.05. Total hemocyte counts, granular hemocyte count, and bacterial clearance were better in shrimp fed diets supplemented with 1 and 2 g kg-1 inactive yeast cell wall as compared with thecontrol group.

  10. Calorie restriction-mediated replicative lifespan extension in yeast is non-cell autonomous.

    Directory of Open Access Journals (Sweden)

    Szu-Chieh Mei

    2015-01-01

    Full Text Available In laboratory yeast strains with Sir2 and Fob1 function, wild-type NAD+ salvage is required for calorie restriction (CR to extend replicative lifespan. CR does not significantly alter steady state levels of intracellular NAD+ metabolites. However, levels of Sir2 and Pnc1, two enzymes that sequentially convert NAD+ to nicotinic acid (NA, are up-regulated during CR. To test whether factors such as NA might be exported by glucose-restricted mother cells to survive later generations, we developed a replicative longevity paradigm in which mother cells are moved after 15 generations on defined media. The experiment reveals that CR mother cells lose the longevity benefit of CR when evacuated from their local environment to fresh CR media. Addition of NA or nicotinamide riboside (NR allows a moved mother to maintain replicative longevity despite the move. Moreover, conditioned medium from CR-treated cells transmits the longevity benefit of CR to moved mother cells. Evidence suggests the existence of a longevity factor that is dialyzable but is neither NA nor NR, and indicates that Sir2 is not required for the longevity factor to be produced or to act. Data indicate that the benefit of glucose-restriction is transmitted from cell to cell in budding yeast, suggesting that glucose restriction may benefit neighboring cells and not only an individual cell.

  11. Awa1p on the cell surface of sake yeast inhibits biofilm formation and the co-aggregation between sake yeasts and Lactobacillus plantarum ML11-11.

    Science.gov (United States)

    Hirayama, Satoru; Shimizu, Masashi; Tsuchiya, Noriko; Furukawa, Soichi; Watanabe, Daisuke; Shimoi, Hitoshi; Takagi, Hiroshi; Ogihara, Hirokazu; Morinaga, Yasushi

    2015-05-01

    We examined mixed-species biofilm formation between Lactobacillus plantarum ML11-11 and both foaming and non-foaming mutant strains of Saccharomyces cerevisiae sake yeasts. Wild-type strains showed significantly lower levels of biofilm formation compared with the non-foaming mutants. Awa1p, a protein involved in foam formation during sake brewing, is a glycosylphosphatidylinositol (GPI)-anchored protein and is associated with the cell wall of sake yeasts. The AWA1 gene of the non-foaming mutant strain Kyokai no. 701 (K701) has lost the C-terminal sequence that includes the GPI anchor signal. Mixed-species biofilm formation and co-aggregation of wild-type strain Kyokai no. 7 (K7) were significantly lower than K701 UT-1 (K701 ura3/ura3 trp1/trp1), while the levels of strain K701 UT-1 carrying the AWA1 on a plasmid were comparable to those of K7. The levels of biofilm formation and co-aggregation of the strain K701 UT-1 harboring AWA1 with a deleted GPI anchor signal were similar to those of K701 UT-1. These results clearly demonstrate that Awa1p present on the surface of sake yeast strain K7 inhibits adhesion between yeast cells and L. plantarum ML11-11, consequently impeding mixed-species biofilm formation.

  12. Quantitative phase imaging of cell division in yeast cells and E.coli using digital holographic microscopy

    Science.gov (United States)

    Pandiyan, Vimal Prabhu; John, Renu

    2015-12-01

    Digital holographic microscope (DHM) is an emerging quantitative phase imaging technique with unique imaging scales and resolutions leading to multitude of applications. DHM is promising as a novel investigational and applied tool for cell imaging, studying the morphology and real time dynamics of cells and a number of related applications. The use of numerical propagation and computational digital optics offer unique flexibility to tune the depth of focus, and compensate for image aberrations. In this work, we report imaging the dynamics of cell division in E.coli and yeast cells using a DHM platform. We demonstrate 3-D and depth imaging as well as reconstruction of phase profiles of E.coli and yeast cells using the system. We record a digital hologram of E.coli and yeast cells and reconstruct the image using Fresnel propagation algorithm. We also use aberration compensation algorithms for correcting the aberrations that are introduced by the microscope objective in the object path using linear least square fitting techniques. This work demonstrates the strong potential of a DHM platform in 3-D live cell imaging, fast clinical quantifications and pathological applications.

  13. The yeast I-Sce I meganuclease induces site-directed chromosomal recombination in mammalian cells.

    Science.gov (United States)

    Choulika, A; Perrin, A; Dujon, B; Nicolas, J F

    1994-11-01

    Double-strand breaks in genomic DNA stimulate recombination. Until now it was not possible to induce in vivo site-directed double-strand breaks in a mammalian chromosomal target. In this article we describe the use of I-Sce I meganuclease, a very rare cutter yeast endonuclease, to induce site-directed double-strand breaks mediated recombination. The results demonstrate the potential of the I-Sce I system for chromosome manipulation in mammalian cells.

  14. Environmental control of the Pom1-dependent cell-size regulation pathway in fission yeast

    OpenAIRE

    Kelkar, M.

    2015-01-01

    Cells couple their growth and division rate in response to nutrient availability to maintain a constant size. This co-ordination happens either at the G1-S or the G2-M transition of the cell cycle. In the rod-shaped fission yeast, size regulation happens at the G2-M transition prior to mitotic commitment. Recent studies have focused on the role of the DYRK-family protein kinase Pom1, which forms gradients emanating from cell poles and inhibits the mitotic activator kinase Cdr2, present at the...

  15. Together we are strong--cell wall integrity sensors in yeasts.

    Science.gov (United States)

    Rodicio, Rosaura; Heinisch, Jürgen J

    2010-08-01

    The integrity of the fungal cell wall is ensured by a signal transduction pathway, the so-called CWI pathway, which has best been studied in the model yeast Saccharomyces cerevisiae. In this context, environmental stress and other perturbations at the cell surface are detected by a small set of plasma membrane-spanning sensors, viz. Wsc1, Wsc2, Wsc3, Mid2 and Mtl1. This review covers the recent advances in sensor structure, sensor mechanics, their cellular distribution and their in vivo functions, obtained from genetic, biochemical, cell biological and biophysical investigations.

  16. Protein feature based identification of cell cycle regulated proteins in yeast

    DEFF Research Database (Denmark)

    de Lichtenberg, Ulrik; Jensen, Thomas Skøt; Jensen, Lars Juhl;

    2003-01-01

    DNA microarrays have been used extensively to identify cell cycle regulated genes in yeast; however, the overlap in the genes identified is surprisingly small. We show that certain protein features can be used to distinguish cell cycle regulated genes from other genes with high confidence (features...... include protein phosphorylation, glycosylation, subcellular location and instability/degradation). We demonstrate that co-expressed, periodic genes encode proteins which share combinations of features, and provide an overview of the proteome dynamics during the cycle. A large set of novel putative cell...... cycle regulated proteins were identified, many of which have no known function....

  17. Cell-autonomous mechanisms of chronological aging in the yeast Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Anthony Arlia-Ciommo

    2014-05-01

    Full Text Available A body of evidence supports the view that the signaling pathways governing cellular aging – as well as mechanisms of their modulation by longevity-extending genetic, dietary and pharmacological interventions - are conserved across species. The scope of this review is to critically analyze recent advances in our understanding of cell-autonomous mechanisms of chronological aging in the budding yeast Saccharomyces cerevisiae. Based on our analysis, we propose a concept of a biomolecular network underlying the chronology of cellular aging in yeast. The concept posits that such network progresses through a series of lifespan checkpoints. At each of these checkpoints, the intracellular concentrations of some key intermediates and products of certain metabolic pathways - as well as the rates of coordinated flow of such metabolites within an intricate network of intercompartmental communications - are monitored by some checkpoint-specific ′′master regulator′′ proteins. The concept envisions that a synergistic action of these master regulator proteins at certain early-life and late-life checkpoints modulates the rates and efficiencies of progression of such processes as cell metabolism, growth, proliferation, stress resistance, macromolecular homeostasis, survival and death. The concept predicts that, by modulating these vital cellular processes throughout lifespan (i.e., prior to an arrest of cell growth and division, and following such arrest, the checkpoint-specific master regulator proteins orchestrate the development and maintenance of a pro- or anti-aging cellular pattern and, thus, define longevity of chronologically aging yeast.

  18. Characteristics of an immobilized yeast cell system using very high gravity for the fermentation of ethanol.

    Science.gov (United States)

    Ji, Hairui; Yu, Jianliang; Zhang, Xu; Tan, Tianwei

    2012-09-01

    The characteristics of ethanol production by immobilized yeast cells were investigated for both repeated batch fermentation and continuous fermentation. With an initial sugar concentration of 280 g/L during the repeated batch fermentation, more than 98% of total sugar was consumed in 65 h with an average ethanol concentration and ethanol yield of 130.12 g/L and 0.477 g ethanol/g consumed sugar, respectively. The immobilized yeast cell system was reliable for at least 10 batches and for a period of 28 days without accompanying the regeneration of Saccharomyces cerevisiae inside the carriers. The multistage continuous fermentation was carried out in a five-stage column bioreactor with a total working volume of 3.75 L. The bioreactor was operated for 26 days at a dilution rate of 0.015 h(-1). The ethanol concentration of the effluent reached 130.77 g/L ethanol while an average 8.18 g/L residual sugar remained. Due to the high osmotic pressure and toxic ethanol, considerable yeast cells died without regeneration, especially in the last two stages, which led to the breakdown of the whole system of multistage continuous fermentation.

  19. Isolation of anti-T cell receptor scFv mutants by yeast surface display.

    Science.gov (United States)

    Kieke, M C; Cho, B K; Boder, E T; Kranz, D M; Wittrup, K D

    1997-11-01

    Yeast surface display and sorting by flow cytometry have been used to isolate mutants of an scFv that is specific for the Vbeta8 region of the T cell receptor. Selection was based on equilibrium binding by two fluorescently labeled probes, a soluble Vbeta8 domain and an antibody to the c-myc epitope tag present at the carboxy-terminus of the scFv. The mutants that were selected in this screen included a scFv with threefold increased affinity for the Vbeta8 and scFv clones that were bound with reduced affinities by the anti-c-myc antibody. The latter finding indicates that the yeast display system may be used to map conformational epitopes, which cannot be revealed by standard peptide screens. Equilibrium antigen binding constants were estimated within the surface display format, allowing screening of isolated mutants without necessitating subcloning and soluble expression. Only a relatively small library of yeast cells (3 x 10[5]) displaying randomly mutagenized scFv was screened to identify these mutants, indicating that this system will provide a powerful tool for engineering the binding properties of eucaryotic secreted and cell surface proteins.

  20. A novel yeast cell-based screen identifies flavone as a tankyrase inhibitor

    Energy Technology Data Exchange (ETDEWEB)

    Yashiroda, Yoko, E-mail: ytyy@riken.jp [Chemical Genomics Research Group/Chemical Genetics Laboratory, RIKEN Advanced Science Institute, Wako, Saitama 351-0198 (Japan); Okamoto, Reika [Chemical Genomics Research Group/Chemical Genetics Laboratory, RIKEN Advanced Science Institute, Wako, Saitama 351-0198 (Japan); Japan Biological Informatics Consortium (JBIC), Koto-ku, Tokyo 135-8073 (Japan); Hatsugai, Kaori [Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550 (Japan); Division of Chemotherapy, Graduate School of Pharmaceutical Sciences, Keio University, Minato-ku, Tokyo 105-8512 (Japan); Takemoto, Yasushi [Chemical Genomics Research Group/Chemical Genetics Laboratory, RIKEN Advanced Science Institute, Wako, Saitama 351-0198 (Japan); Goshima, Naoki [National Institute of Advanced Industrial Science and Technology, Koto-ku, Tokyo 135-0064 (Japan); Saito, Tamio [Chemical Biology Core Facility/Antibiotics Laboratory, RIKEN Advanced Science Institute, Wako, Saitama 351-0198 (Japan); Hamamoto, Makiko [Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571 (Japan); Sugimoto, Yoshikazu [Division of Chemotherapy, Graduate School of Pharmaceutical Sciences, Keio University, Minato-ku, Tokyo 105-8512 (Japan); Osada, Hiroyuki [Chemical Biology Core Facility/Antibiotics Laboratory, RIKEN Advanced Science Institute, Wako, Saitama 351-0198 (Japan); Seimiya, Hiroyuki [Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550 (Japan); Yoshida, Minoru [Chemical Genomics Research Group/Chemical Genetics Laboratory, RIKEN Advanced Science Institute, Wako, Saitama 351-0198 (Japan); CREST Research Project, Japan Science and Technology Corporation, Saitama 332-0012 (Japan)

    2010-04-09

    The telomere-associated protein tankyrase 1 is a poly(ADP-ribose) polymerase and is considered to be a promising target for cancer therapy, especially for BRCA-associated cancers. However, an efficient assay system for inhibitor screening has not been established, mainly due to the difficulty of efficient preparation of the enzyme and its substrate. Here, we report a cell-based assay system for detecting inhibitory activity against tankyrase 1. We found that overexpression of the human tankyrase 1 gene causes a growth defect in the fission yeast Schizosaccharomyces pombe. Chemicals that restore the growth defect phenotype can be identified as potential tankyrase 1 inhibitors. We performed a high-throughput screen using this system, and identified flavone as a compound that restores the growth of yeast cells overexpressing tankyrase 1. Indeed, flavone inhibited poly(ADP-ribosyl)ation of proteins caused by overexpression of tankyrase 1 in yeast cells. This system allows rapid identification of inhibitory activity against tankyrase 1 and is amenable to high-throughput screening using robotics.

  1. Intracellular trehalose and sorbitol synergistically promoting cell viability of a biocontrol yeast, Pichia anomala, for aflatoxin reduction.

    Science.gov (United States)

    Hua, Sui Sheng T; Hernlem, Bradley J; Yokoyama, Wallace; Sarreal, Siov Bouy L

    2015-05-01

    Pichia anomala (Wickerhamomyces anomalus) WRL-076 was discovered by a visual screening bioassay for its antagonism against Aspergillus flavus. The yeast was shown to significantly inhibit aflatoxin production and the growth of A. flavus. P. anomala is a potential biocontrol agent for reduction of aflatoxin in the food chain. Maintaining the viability of biocontrol agents in formulated products is a great challenge for commercial applications. Four media, NYG, NYGS, NYGT and NYGST are described which support good growth of yeast cells and were tested as storage formulations. Post growth supplement of 5 % trehalose to NYGST resulted in 83 % viable yeast cells after 12 months in cold storage. Intracellular sorbitol and trehalose concentrations were determined by HPLC analysis at the beginning of the storage and at the end of 12 month. Correlation of cell viability to both trehalose and sorbitol suggested a synergistic effect. Bonferroni (Dunn) t Test, Tukey's Studentized Range (HSD) Test and Duncan's Multiple Range Test, all showed that yeast cell viability in samples with both intracellular trehalose and sorbitol were significantly higher than those with either or none, at a 95 % confidence level. DiBAC4(5) and CFDA-AM were used as the membrane integrity fluorescent stains to create a two-color vital staining scheme with red and green fluorescence, respectively. Yeast cells stored in formulations NYG and NYGS with no detectable trehalose, displayed mostly red fluorescence. Yeast cells in NYGST+5T showed mostly green fluorescence.

  2. Adhesion to the yeast cell surface as a mechanism for trapping pathogenic bacteria by Saccharomyces probiotics.

    Science.gov (United States)

    Tiago, F C P; Martins, F S; Souza, E L S; Pimenta, P F P; Araujo, H R C; Castro, I M; Brandão, R L; Nicoli, Jacques R

    2012-09-01

    Recently, much attention has been given to the use of probiotics as an adjuvant for the prevention or treatment of gastrointestinal pathology. The great advantage of therapy with probiotics is that they have few side effects such as selection of resistant bacteria or disturbance of the intestinal microbiota, which occur when antibiotics are used. Adhesion of pathogenic bacteria onto the surface of probiotics instead of onto intestinal receptors could explain part of the probiotic effect. Thus, this study evaluated the adhesion of pathogenic bacteria onto the cell wall of Saccharomyces boulardii and Saccharomyces cerevisiae strains UFMG 905, W303 and BY4741. To understand the mechanism of adhesion of pathogens to yeast, cell-wall mutants of the parental strain of Saccharomyces cerevisiae BY4741 were used because of the difficulty of mutating polyploid yeast, as is the case for Saccharomyces cerevisiae and Saccharomyces boulardii. The tests of adhesion showed that, among 11 enteropathogenic bacteria tested, only Escherichia coli, Salmonella Typhimurium and Salmonella Typhi adhered to the surface of Saccharomyces boulardii, Saccharomyces cerevisiae UFMG 905 and Saccharomyces cerevisiae BY4741. The presence of mannose, and to some extent bile salts, inhibited this adhesion, which was not dependent on yeast viability. Among 44 cell-wall mutants of Saccharomyces cerevisiae BY4741, five lost the ability to fix the bacteria. Electron microscopy showed that the phenomenon of yeast-bacteria adhesion occurred both in vitro and in vivo (in the digestive tract of dixenic mice). In conclusion, some pathogenic bacteria were captured on the surface of Saccharomyces boulardii, Saccharomyces cerevisiae UFMG 905 and Saccharomyces cerevisiae BY4741, thus preventing their adhesion to specific receptors on the intestinal epithelium and their subsequent invasion of the host.

  3. Bioethanol Production from Uncooked Raw Starch by Immobilized Surface-engineered Yeast Cells

    Science.gov (United States)

    Chen, Jyh-Ping; Wu, Kuo-Wei; Fukuda, Hideki

    Surface-engineered yeast Saccharomyces cerevisiae codisplaying Rhizopus oryzae glucoamylase and Streptococcus bovis α-amylase on the cell surface was used for direct production of ethanol from uncooked raw starch. By using 50 g/L cells during batch fermentation, ethanol concentration could reach 53 g/L in 7 days. During repeated batch fermentation, the production of ethanol could be maintained for seven consecutive cycles. For cells immobilized in loofa sponge, the concentration of ethanol could reach 42 g/L in 3 days in a circulating packed-bed bioreactor. However, the production of ethanol stopped thereafter because of limited contact between cells and starch. The bioreactor could be operated for repeated batch production of ethanol, but ethanol concentration dropped to 55% of its initial value after five cycles because of a decrease in cell mass and cell viability in the bioreactor. Adding cells to the bioreactor could partially restore ethanol production to 75% of its initial value.

  4. Quantification and characterization of cell wall polysaccharides released by non-Saccharomyces yeast strains during alcoholic fermentation.

    Science.gov (United States)

    Giovani, Giovanna; Rosi, Iolanda; Bertuccioli, Mario

    2012-11-15

    In order to improve knowledge about the oenological characteristics of non-Saccharomyces yeast strains, and to reconsider their contribution to wine quality, we studied the release of polysaccharides by 13 non-Saccharomyces strains of different species (three wine yeasts, six grape yeasts, and three spoilage yeasts) during alcoholic fermentation in synthetic must. Three Saccharomyces cerevisiae strains were included for comparison. All of the non-Saccharomyces strains released polysaccharides into fermentation medium; the amount released depended on the yeast species, the number of cells formed and their physiological conditions. Normalizing the quantity of macromolecules released to the cell biomass revealed that most non-Saccharomyces strains produced a greater quantity of polysaccharides compared to S. cerevisiae strains after 7 and 14days of fermentation. This capacity was particularly expressed in the studied wine spoilage yeasts (Saccharomycodes ludwigii, Zygosaccharomyces bailii, and Brettanomyces bruxellensis). Chemical characterization of exocellular polysaccharides produced by non-Saccharomyces yeasts revealed them to essentially be mannoproteins with high mannose contents, ranging from 93% for S'codes. ludwigii to 73-74% for Pichia anomala and Starmerella bombicola. Protein contents varied from 9% for P. anomala to 29% for Z. bailii. These compositions were very similar to those of the S. cerevisiae strains, and to the chemical composition of the cell wall mannoproteins of different yeast species. The presence of galactose, in addition to mannose and glucose, in the exocellular polysaccharides released by Schizosaccharomyces pombe, confirmed the parietal nature of the polysaccharides released by non-Saccharomyces yeasts; only this species has a galactomannan located in the outer layer of the cell wall.

  5. Genome-wide survey of yeast mutations leading to activation of the yeast cell integrity MAPK pathway: Novel insights into diverse MAPK outcomes

    Directory of Open Access Journals (Sweden)

    Arias Patricia

    2011-08-01

    Full Text Available Abstract Background The yeast cell wall integrity mitogen-activated protein kinase (CWI-MAPK pathway is the main regulator of adaptation responses to cell wall stress in yeast. Here, we adopt a genomic approach to shed light on two aspects that are only partially understood, namely, the characterization of the gene functional catalog associated with CWI pathway activation and the extent to which MAPK activation correlates with transcriptional outcomes. Results A systematic yeast mutant deletion library was screened for constitutive transcriptional activation of the CWI-related reporter gene MLP1. Monitoring phospho-Slt2/Mpk1 levels in the identified mutants revealed sixty-four deletants with high levels of phosphorylation of this MAPK, including mainly genes related to cell wall construction and morphogenesis, signaling, and those with unknown function. Phenotypic analysis of the last group of mutants suggests their involvement in cell wall homeostasis. A good correlation between levels of Slt2 phosphorylation and the magnitude of the transcriptional response was found in most cases. However, the expression of CWI pathway-related genes was enhanced in some mutants in the absence of significant Slt2 phosphorylation, despite the fact that functional MAPK signaling through the pathway was required. CWI pathway activation was associated to increased deposition of chitin in the cell wall - a known survival compensatory mechanism - in about 30% of the mutants identified. Conclusion We provide new insights into yeast genes related to the CWI pathway and into how the state of activation of the Slt2 MAPK leads to different outcomes, discovering the versatility of this kind of signaling pathways. These findings potentially have broad implications for understanding the functioning of other eukaryotic MAPKs.

  6. A Stochastic Model of the Yeast Cell Cycle Reveals Roles for Feedback Regulation in Limiting Cellular Variability.

    Science.gov (United States)

    Barik, Debashis; Ball, David A; Peccoud, Jean; Tyson, John J

    2016-12-01

    The cell division cycle of eukaryotes is governed by a complex network of cyclin-dependent protein kinases (CDKs) and auxiliary proteins that govern CDK activities. The control system must function reliably in the context of molecular noise that is inevitable in tiny yeast cells, because mistakes in sequencing cell cycle events are detrimental or fatal to the cell or its progeny. To assess the effects of noise on cell cycle progression requires not only extensive, quantitative, experimental measurements of cellular heterogeneity but also comprehensive, accurate, mathematical models of stochastic fluctuations in the CDK control system. In this paper we provide a stochastic model of the budding yeast cell cycle that accurately accounts for the variable phenotypes of wild-type cells and more than 20 mutant yeast strains simulated in different growth conditions. We specifically tested the role of feedback regulations mediated by G1- and SG2M-phase cyclins to minimize the noise in cell cycle progression. Details of the model are informed and tested by quantitative measurements (by fluorescence in situ hybridization) of the joint distributions of mRNA populations in yeast cells. We use the model to predict the phenotypes of ~30 mutant yeast strains that have not yet been characterized experimentally.

  7. Optimized extract preparation methods and reaction conditions for improved yeast cell-free protein synthesis.

    Science.gov (United States)

    Hodgman, C Eric; Jewett, Michael C

    2013-10-01

    Cell-free protein synthesis (CFPS) has emerged as a powerful platform technology to help satisfy the growing demand for simple, affordable, and efficient protein production. In this article, we describe a novel CFPS platform derived from the popular bio-manufacturing organism Saccharomyces cerevisiae. By developing a streamlined crude extract preparation protocol and optimizing the CFPS reaction conditions we were able to achieve active firefly luciferase synthesis yields of 7.7 ± 0.5 µg mL(-1) with batch reactions lasting up to 2 h. This duration of synthesis is the longest ever reported for a yeast CFPS batch reaction. Furthermore, by removing extraneous processing steps and eliminating expensive reagents from the cell-free reaction, we have increased relative product yield (µg protein synthesized per $ reagent cost) over an alternative commonly used method up to 2000-fold from ∼2 × 10(-4) to ∼4 × 10(-1)  µg $(-1) , which now puts the yeast CPFS platform on par with other eukaryotic CFPS platforms commercially available. Our results set the stage for developing a yeast CFPS platform that provides for high-yielding and cost-effective expression of a variety of protein therapeutics and protein libraries.

  8. Convergence of Ubiquitylation and Phosphorylation Signaling in Rapamycin-Treated Yeast Cells

    DEFF Research Database (Denmark)

    Iesmantavicius, Vytautas; Weinert, Brian Tate; Choudhary, Chuna Ram

    2014-01-01

    The target of rapamycin (TOR) kinase senses the availability of nutrients and coordinates cellular growth and proliferation with nutrient abundance. Inhibition of TOR mimics nutrient starvation and leads to the reorganization of many cellular processes, including autophagy, protein translation......, phosphorylation, and proteome changes in rapamycin-treated yeast cells. Our data constitutes a detailed proteomic analysis of rapamycin-treated yeast with 3,590 proteins, 8,961 phosphorylation sites, and 2,498 di-Gly modified lysines (putative ubiquitylation sites) quantified. The phosphoproteome was extensively...... modulated by rapamycin treatment, with more than 900 up-regulated sites one hour after rapamycin treatment. Dynamically regulated phosphoproteins were involved in diverse cellular processes, prominently including transcription, membrane organization, vesicle-mediated transport, and autophagy. Several...

  9. Human pancreatic triglyceride lipase expressed in yeast cells: purification and characterization.

    Science.gov (United States)

    Yang, Y; Lowe, M E

    1998-06-01

    A cDNA clone encoding human pancreatic triglyceride lipase was cloned into a yeast expression vector so that the yeast PHO1 signal peptide replaced the native signal peptide. Pichia pastoris cells were transfected with the vector, and clones expressing human pancreatic triglyceride lipase were isolated. Recombinant human pancreatic lipase was expressed in broth cultures and was purified from the medium by DEAE blue Sepharose and hydroxyapatite chromatography. The highly purified lipase had specific activities for various triglyceride substrates identical to those of tissue-purified human pancreatic triglyceride lipase; it was inhibited by bile salts, required colipase for activity, and demonstrated interfacial activation. This expression system is suitable for the rapid, efficient production of human pancreatic triglyceride lipase in amounts adequate for biophysical studies.

  10. On the Doublet Formation in the Flocculation Process of the Yeast Cells

    CERN Document Server

    Stan, S; Stan, Silvia; Despa, Florin

    2000-01-01

    The combination of single cells to form doublets is regarded as the rate-limiting step of flocculation and requires the presence of surface proteins in active form. The process of activation of the flocculation proteins of yeast cells is described in the frame of the autocrine interaction regime (Cantrell, D. A. and Smith, K. A., 1984, Science 224, 1312-1316). The influence of several effectors (the cell efficiency to use sugars, the calcium content in the external medium and the probability that free cells collide each other under thermal motion conditions) on the initial rate of flocculation and on the fraction of remaining free cells in the steady state is briefly discussed in the paper. The present model offers an useful tool for further quantitative investigations in this topic. Also, it indicates qualitatively a way in which the regulation of flocculation might be controlled at the level of the expression of cell-surface activation abilities. Keywords: flocculation; yeast; autocrine binding; lectin hypo...

  11. Fission yeast cells undergo nuclear division in the absence of spindle microtubules.

    Directory of Open Access Journals (Sweden)

    Stefania Castagnetti

    Full Text Available Mitosis in eukaryotic cells employs spindle microtubules to drive accurate chromosome segregation at cell division. Cells lacking spindle microtubules arrest in mitosis due to a spindle checkpoint that delays mitotic progression until all chromosomes have achieved stable bipolar attachment to spindle microtubules. In fission yeast, mitosis occurs within an intact nuclear membrane with the mitotic spindle elongating between the spindle pole bodies. We show here that in fission yeast interference with mitotic spindle formation delays mitosis only briefly and cells proceed to an unusual nuclear division process we term nuclear fission, during which cells perform some chromosome segregation and efficiently enter S-phase of the next cell cycle. Nuclear fission is blocked if spindle pole body maturation or sister chromatid separation cannot take place or if actin polymerization is inhibited. We suggest that this process exhibits vestiges of a primitive nuclear division process independent of spindle microtubules, possibly reflecting an evolutionary intermediate state between bacterial and Archeal chromosome segregation where the nucleoid divides without a spindle and a microtubule spindle-based eukaryotic mitosis.

  12. Highly efficient transformation of intact yeast-like conidium cells of Tremella fuciformin by electroporation

    Institute of Scientific and Technical Information of China (English)

    GUO LiQiong; LIU Yong; ZHAO ShuXian; LIU ErXian; LIU JunFang

    2008-01-01

    Tremella fuciformis is one of higher basidiomycetes. Its basidiospore can reproduce yeast-like conidia, also called the blastospore by budding. The yeast-like conidia of T. Fuciformis is monokaryotic and easy to culture by submerged fermentation similar to yeast. So it is a good recipient cell for exogenous gone expression. In this study, two expression vectors pGIg-gfp containing gpd-GI promoter and gfp gone and pGIg-hph containing gpd-GI promoter and hph gone were constructed. The lowest sensitive concentration of hygromycin for the blastospore was determined on three types of media. Our ex-perimenta showed that the lowest sensitive concentration of hygromycin for the blastospore was 5 μg/mL on MA medium. The intact blastospores were transformed with the expression vector pGIg-hph by electroporation. The putative transformants were obtained by the MA selective medium. Experi-mental results showed that the most effective parameters for the electroporation of intact blastospores were obtained by using STM buffer, 1.0×108 cells/mL of blastospores, 200 μL in transformation volume, 6 μg plasmid, 2.0 kV/cm of electric pulse voltage, stillness culturing on MB liquid medium for 48 h after electroporation. In these transformation conditions, the efficiency reached 277 colonies/μg DNA. With the optimal parameters. The putative co-transformants were obtained by the MA selective medium. Eight randomly selected colonies from the vast putative co-transformants were analyzed by PCR de-tection and Southern blotting. The experiments showed that the gfp was integrated into the genomes of three transformants. The co-transformation efficiency was 37.5%. Green fluorescence was observed under laser scanning confocal microscope in these gfp positive transformants. This indicates that the exogenous gfp can be expressed effectively in the yeast-like conidia of T. Fuciformis.

  13. STUDY ON ALCOHOLIC FERMENTATION IN A STATIONARY BASKET BIOREACTOR WITH IMMOBILIZED YEAST CELLS

    Directory of Open Access Journals (Sweden)

    Dan Caşcaval

    2011-02-01

    Full Text Available The use of a stationary basket bioreactor with immobilized S. cerevisiae cells indicated the possibility to extend the number of alcoholic fermentation cycles that can be carried out with the same biocatalysts to over nine. Although the rates of glucose consumption and ethanol production were lower than those recorded for the mobile beds of immobilized yeast cells, the mechanical lysis of the biocatalysts is avoided in the case of basket bed. Due to the substrate and product accumulation inside the basket bed, the fermentation process can be improved by washing out the biocatalysts bed over two or four cycles.

  14. Synthetic yeast based cell factories for vanillin-glucoside production

    DEFF Research Database (Denmark)

    Strucko, Tomas

    allowing for the introduction of large and complex metabolic pathways need to be added to the existing repertoire. To reduce the number of gene engineering steps required for cell factory construction, a new set of integrative “EasyClone” vectors have been developed in this study. This platform enables...... simultaneous integration of multiple genes with an option of recycling selection markers. Moreover, EasyClone vectors combine the advantage of efficient uracil-excision reaction based cloning that allows integration of one or two genes per plasmid and Cre-LoxP mediated marker recycling system. As a proof...... of concept, it was demonstrated that using EasyClone system it is possible to simultaneously integrate three DNA fragments carrying genes encoding for either yellow, cyan or red fluorescent proteins. In addition, all genetic markers were successfully removed using Cre-mediated recombination without...

  15. Microfluidic platforms for generating dynamic environmental perturbations to study the responses of single yeast cells.

    Science.gov (United States)

    Bisaria, Anjali; Hersen, Pascal; McClean, Megan N

    2014-01-01

    Microfluidic platforms are ideal for generating dynamic temporal and spatial perturbations in extracellular environments. Single cells and organisms can be trapped and maintained in microfluidic platforms for long periods of time while their responses to stimuli are measured using appropriate fluorescence reporters and time-lapse microscopy. Such platforms have been used to study problems as diverse as C. elegans olfaction (Chronis et al. Nature Methods 4:727-731, 2007), cancer cell migration (Huang et al. Biomicrofluidics 5:13412, 2011), and E. coli chemotaxis (Ahmed et al. Integr Biol 2:604-629, 2010). In this paper we describe how to construct and use a microfluidic chip to study the response of single yeast cells to dynamic perturbations of their fluid environment. The method involves creation of a photoresist master mold followed by subsequent creation of a polydimethylsiloxane (PDMS) microfluidic chip for maintaining live yeast cells in a channel with two inputs for stimulating the cells. We emphasize simplicity and the methods discussed here are accessible to the average biological laboratory. We cover the basic toolbox for making microfluidic lab-on-a-chip devices, and the techniques discussed serve as a starting point for creating sophisticated microfluidic devices capable of implementing more complicated experimental protocols.

  16. Induced mutations in yeast cell populations adapting to an unforeseen challenge.

    Science.gov (United States)

    Moore, Lindsay S; Wei, Wu; Stolovicki, Elad; Benbenishty, Tamar; Wilkening, Stefan; Steinmetz, Lars M; Braun, Erez; David, Lior

    2014-01-01

    The modern evolutionary synthesis assumes that mutations occur at random, independently of the environment in which they confer an advantage. However, there are indications that cells facing challenging conditions can adapt rapidly, utilizing processes beyond selection of pre-existing genetic variation. Here, we show that a strong regulatory challenge can induce mutations in many independent yeast cells, in the absence of general mutagenesis. Whole genome sequencing of cell lineages reveals a repertoire of independent mutations within a single lineage that arose only after the cells were exposed to the challenging environment, while other cells in the same lineage adapted without any mutation in their genomes. Thus, our experiments uncovered multiple alternative routes for heritable adaptation that were all induced in the same lineage during a short time period. Our results demonstrate the existence of adaptation mechanisms beyond random mutation, suggesting a tight connection between physiological and genetic processes.

  17. Detecting estrogenic activity in water samples withestrogen-sensitive yeast cells using spectrophotometry and fluorescencemicroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wozei, E.; Holman, H-Y.N.; Hermanowicz, S.W.; Borglin S.

    2006-03-15

    Environmental estrogens are environmental contaminants that can mimic the biological activities of the female hormone estrogen in the endocrine system, i.e. they act as endocrine disrupters. Several substances are reported to have estrogen-like activity or estrogenic activity. These include steroid hormones, synthetic estrogens (xenoestrogens), environmental pollutants and phytoestrogens (plant estrogens). Using the chromogenic substrate ortho-nitrophenyl-{beta}-D-galactopyranoside (ONPG) we show that an estrogen-sensitive yeast strain RMY/ER-ERE, with human estrogen receptor (hER{alpha}) gene and the lacZ gene which encodes the enzyme {beta}-galactosidase, is able to detect estrogenic activity in water samples over a wide range of spiked concentrations of the hormonal estrogen 17{beta}-estradiol (E2). Ortho-nitrophenol (ONP), the yellow product of this assay can be detected using spectrophotometry but requires cell lysis to release the enzyme and allow product formation. We improved this aspect in a fluorogenic assay by using fluorescein di-{beta}-D-galactopyranoside (FDG) as a substrate. The product was visualized using fluorescence microscopy without the need to kill, fix or lyse the cells. We show that in live yeast cells, the uptake of E2 and the subsequent production of {beta}-galactosidase enzyme occur quite rapidly, with maximum enzyme-catalyzed fluorescent product formation evident after about 30 minutes of exposure to E2. The fluorogenic assay was applied to a selection of estrogenic compounds and the Synchrotron-based Fourier transform infrared (SR-FTIR) spectra of the cells obtained to better understand the yeast whole cell response to the compounds. The fluorogenic assay is most sensitive to E2, but the SR-FTIR spectra suggest that the cells respond to all the estrogenic compounds tested even when no fluorescent response was detected. These findings are promising and may shorten the duration of environmental water screening and monitoring regimes using

  18. Substrate replenishment and byproduct removal improve yeast cell-free protein synthesis.

    Science.gov (United States)

    Schoborg, Jennifer A; Hodgman, C Eric; Anderson, Mark J; Jewett, Michael C

    2014-05-01

    Cell-free protein synthesis (CFPS) platforms are now considered a powerful tool for synthesizing a variety of proteins at scales from pL to 100 L with accelerated process development pipelines. We previously reported the advancement of a novel yeast-based CFPS platform. Here, we studied factors that cause termination of yeast CFPS batch reactions. Specifically, we characterized the substrate and byproduct concentrations in batch, fed-batch, and semi-continuous reaction formats through high-performance liquid chromatography (HPLC) and chemical assays. We discovered that creatine phosphate, the secondary energy substrate, and nucleoside triphosphates were rapidly degraded during batch CFPS, causing a significant drop in the reaction's energy charge (E.C.) and eventual termination of protein synthesis. As a consequence of consuming creatine phosphate, inorganic phosphate accumulated as a toxic byproduct. Additionally, we measured amino acid concentrations and found that aspartic acid was rapidly consumed. By adopting a semi-continuous reaction format, where passive diffusion enables substrate replenishment and byproduct removal, we achieved over a 70% increase in active superfolder green fluorescent protein (sfGFP) as compared with the batch system. This study identifies targets for the future improvement of the batch yeast CFPS reaction. Moreover, it outlines a detailed, generalized method to characterize and improve other CFPS platforms.

  19. Monitoring the biomass accumulation of recombinant yeast cultures: offline estimations of dry cell mass and cell counts.

    Science.gov (United States)

    Palmer, Shane M; Kunji, Edmund R S

    2012-01-01

    Biomass is one of the most important parameters for process optimization, scale-up and control in recombinant protein production experiments. However, a standard unit of biomass remains elusive. Methods of biomass monitoring have increasingly been developed towards online, in situ techniques in order to advance process analysis and control. Offline, ex situ methods, such as dry cell mass determination and direct cell counts, remain the reference for determining cell mass and number, respectively, but this type of analysis is time consuming. In this chapter, protocols are presented for determining these offline measures of the biomass yield of recombinant yeast cultures.

  20. Yeast That Smell

    Directory of Open Access Journals (Sweden)

    Eugenia Y Xu

    2008-08-01

    Full Text Available The fundamental mechanism of olfactory receptor activation has been conserved from yeast to humans. Engineered yeast cells can smell some of the same odorants as humans can, which makes yeast an ideal model system for studying human olfaction. Furthermore, if engineered yeast cells are incorporated into sensory arrays, they can be used as biosensors or artificial noses.Keywords: Yeast, olfactory receptor, G protein-coupled receptor, biosensor, smellReceived: 31 July 2008 / Received in revised form: 6 August 2008, Accepted: 13 August 2008, Published online: 17 August 2008

  1. Selection of functional T cell receptor mutants from a yeast surface-display library.

    Science.gov (United States)

    Kieke, M C; Shusta, E V; Boder, E T; Teyton, L; Wittrup, K D; Kranz, D M

    1999-05-11

    The heterodimeric alphabeta T cell receptor (TCR) for antigen is the key determinant of T cell specificity. The structure of the TCR is very similar to that of antibodies, but the engineering of TCRs by directed evolution with combinatorial display libraries has not been accomplished to date. Here, we report that yeast surface display of a TCR was achieved only after the mutation of specific variable region residues. These residues are located in two regions of the TCR, at the interface of the alpha- and beta-chains and in the beta-chain framework region that is thought to be in proximity to the CD3 signal-transduction complex. The mutations are encoded naturally in many antibody variable regions, indicating specific functional differences that have not been appreciated between TCRs and antibodies. The identification of these residues provides an explanation for the inherent difficulties in the display of wild-type TCRs compared with antibodies. Yeast-displayed mutant TCRs bind specifically to the peptide/MHC antigen, enabling engineering of soluble T cell receptors as specific T cell antagonists. This strategy of random mutagenesis followed by selection for surface expression may be of general use in the directed evolution of other eukaryotic proteins that are refractory to display.

  2. Comparison of methods used for assessing the viability and vitality of yeast cells.

    Science.gov (United States)

    Kwolek-Mirek, Magdalena; Zadrag-Tecza, Renata

    2014-11-01

    Determination of cell viability is the most commonly used method for assessing the impact of various types of stressors in toxicity research and in industrial microbiology studies. Viability is defined as a percentage of live cells in a whole population. Although cell death is one of the consequences of toxicity, chemical or physical factors may exert their toxic effects through a number of cellular alterations that may compromise cell ability to divide without necessarily leading to cell death. This aspect represents the term 'cell vitality' defined as physiological capabilities of cells. It is important to note that cell viability and cell vitality represent two different aspects of cell functions, and both are required for the estimation of the physiological state of a cell after exposure to various types of stressors and chemical or physical factors. In this paper, we introduced a classification of available methods for estimating both viability and vitality in Saccharomyces cerevisiae yeast cells (wild-type and Δsod1 mutant) in which the effects of selected oxidants causing oxidative stress is evaluated. We present the advantages as well as disadvantages of the selected methods and assess their usefulness in different types of research.

  3. Preferential retrotransposition in aging yeast mother cells is correlated with increased genome instability.

    Science.gov (United States)

    Patterson, Melissa N; Scannapieco, Alison E; Au, Pak Ho; Dorsey, Savanna; Royer, Catherine A; Maxwell, Patrick H

    2015-10-01

    Retrotransposon expression or mobility is increased with age in multiple species and could promote genome instability or altered gene expression during aging. However, it is unclear whether activation of retrotransposons during aging is an indirect result of global changes in chromatin and gene regulation or a result of retrotransposon-specific mechanisms. Retromobility of a marked chromosomal Ty1 retrotransposon in Saccharomyces cerevisiae was elevated in mother cells relative to their daughter cells, as determined by magnetic cell sorting of mothers and daughters. Retromobility frequencies in aging mother cells were significantly higher than those predicted by cell age and the rate of mobility in young populations, beginning when mother cells were only several generations old. New Ty1 insertions in aging mothers were more strongly correlated with gross chromosome rearrangements than in young cells and were more often at non-preferred target sites. Mother cells were more likely to have high concentrations and bright foci of Ty1 Gag-GFP than their daughter cells. Levels of extrachromosomal Ty1 cDNA were also significantly higher in aged mother cell populations than their daughter cell populations. These observations are consistent with a retrotransposon-specific mechanism that causes retrotransposition to occur preferentially in yeast mother cells as they begin to age, as opposed to activation by phenotypic changes associated with very old age. These findings will likely be relevant for understanding retrotransposons and aging in many organisms, based on similarities in regulation and consequences of retrotransposition in diverse species.

  4. Transmembrane protein 85 from both human (TMEM85) and yeast (YGL231c) inhibit hydrogen peroxide mediated cell death in yeast.

    Science.gov (United States)

    Ring, Giselle; Khoury, Chamel M; Solar, Aidan J; Yang, Zhao; Mandato, Craig A; Greenwood, Michael T

    2008-07-23

    Anti-apoptotic proteins are involved in modulating the process of apoptosis. Here, we report the identification of the previously uncharacterized transmembrane domain protein 85 (TMEM85) as a novel anti-apoptotic sequence. Using growth and viability assays, we demonstrate that the heterologous expression of human TMEM85 in yeast promotes growth and prevents cell death in response to oxidative stress. Overexpression of the yeast TMEM85 ortholog (YGL231c) also leads to increased resistance to oxidative stress. Analysis of the existing TMEM85 DNA complimentary to mRNAs revealed that the human TMEM85 gene is alternatively spliced to produce multiple transcripts and proteins. Thus TMEM85 is a complex gene that encodes a novel conserved anti-apoptotic protein.

  5. Fundamental mechanisms of telomerase action in yeasts and mammals: understanding telomeres and telomerase in cancer cells

    Science.gov (United States)

    Armstrong, Christine A.

    2017-01-01

    Aberrant activation of telomerase occurs in 85–90% of all cancers and underpins the ability of cancer cells to bypass their proliferative limit, rendering them immortal. The activity of telomerase is tightly controlled at multiple levels, from transcriptional regulation of the telomerase components to holoenzyme biogenesis and recruitment to the telomere, and finally activation and processivity. However, studies using cancer cell lines and other model systems have begun to reveal features of telomeres and telomerase that are unique to cancer. This review summarizes our current knowledge on the mechanisms of telomerase recruitment and activation using insights from studies in mammals and budding and fission yeasts. Finally, we discuss the differences in telomere homeostasis between normal cells and cancer cells, which may provide a foundation for telomere/telomerase targeted cancer treatments. PMID:28330934

  6. Engineering the supply chain for protein production/secretion in yeasts and mammalian cells.

    Science.gov (United States)

    Klein, Tobias; Niklas, Jens; Heinzle, Elmar

    2015-03-01

    Metabolic bottlenecks play an increasing role in yeasts and mammalian cells applied for high-performance production of proteins, particularly of pharmaceutical ones that require complex posttranslational modifications. We review the present status and developments focusing on the rational metabolic engineering of such cells to optimize the supply chain for building blocks and energy. Methods comprise selection of beneficial genetic modifications, rational design of media and feeding strategies. Design of better producer cells based on whole genome-wide metabolic network analysis becomes increasingly possible. High-resolution methods of metabolic flux analysis for the complex networks in these compartmented cells are increasingly available. We discuss phenomena that are common to both types of organisms but also those that are different with respect to the supply chain for the production and secretion of pharmaceutical proteins.

  7. Up against the wall: is yeast cell wall integrity ensured by mechanosensing in plasma membrane microdomains?

    Science.gov (United States)

    Kock, Christian; Dufrêne, Yves F; Heinisch, Jürgen J

    2015-02-01

    Yeast cell wall integrity (CWI) signaling serves as a model of the regulation of fungal cell wall synthesis and provides the basis for the development of antifungal drugs. A set of five membrane-spanning sensors (Wsc1 to Wsc3, Mid2, and Mtl1) detect cell surface stress and commence the signaling pathway upon perturbations of either the cell wall structure or the plasma membrane. We here summarize the latest advances in the structure/function relationship primarily of the Wsc1 sensor and critically review the evidence that it acts as a mechanosensor. The relevance and physiological significance of the information obtained for the function of the other CWI sensors, as well as expected future developments, are discussed.

  8. Cell cycle- and chaperone-mediated regulation of H3K56ac incorporation in yeast.

    Directory of Open Access Journals (Sweden)

    Tommy Kaplan

    2008-11-01

    Full Text Available Acetylation of histone H3 lysine 56 is a covalent modification best known as a mark of newly replicated chromatin, but it has also been linked to replication-independent histone replacement. Here, we measured H3K56ac levels at single-nucleosome resolution in asynchronously growing yeast cultures, as well as in yeast proceeding synchronously through the cell cycle. We developed a quantitative model of H3K56ac kinetics, which shows that H3K56ac is largely explained by the genomic replication timing and the turnover rate of each nucleosome, suggesting that cell cycle profiles of H3K56ac should reveal most first-time nucleosome incorporation events. However, since the deacetylases Hst3/4 prevent use of H3K56ac as a marker for histone deposition during M phase, we also directly measured M phase histone replacement rates. We report a global decrease in turnover rates during M phase and a further specific decrease in turnover at several early origins of replication, which switch from rapidly replaced in G1 phase to stably bound during M phase. Finally, by measuring H3 replacement in yeast deleted for the H3K56 acetyltransferase Rtt109 and its two co-chaperones Asf1 and Vps75, we find evidence that Rtt109 and Asf1 preferentially enhance histone replacement at rapidly replaced nucleosomes, whereas Vps75 appears to inhibit histone turnover at those loci. These results provide a broad perspective on histone replacement/incorporation throughout the cell cycle and suggest that H3K56 acetylation provides a positive-feedback loop by which replacement of a nucleosome enhances subsequent replacement at the same location.

  9. Studying p53 family proteins in yeast: Induction of autophagic cell death and modulation by interactors and small molecules

    Energy Technology Data Exchange (ETDEWEB)

    Leão, Mariana; Gomes, Sara; Bessa, Cláudia; Soares, Joana; Raimundo, Liliana [REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n. 164, 4050-313 Porto (Portugal); Monti, Paola; Fronza, Gilberto [Mutagenesis Unit, Istituto di Ricerca e Cura a Carattere Scientifico Azienda Ospedaliera Universitaria San Martino-IST-Istituto Nazionale per la Ricerca sul Cancro, 16132 Genoa (Italy); Pereira, Clara [REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n. 164, 4050-313 Porto (Portugal); Saraiva, Lucília, E-mail: lucilia.saraiva@ff.up.pt [REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n. 164, 4050-313 Porto (Portugal)

    2015-01-01

    In this work, the yeast Saccharomyces cerevisiae was used to individually study human p53, p63 (full length and truncated forms) and p73. Using this cell system, the effect of these proteins on cell proliferation and death, and the influence of MDM2 and MDMX on their activities were analyzed. When expressed in yeast, wild-type p53, TAp63, ΔNp63 and TAp73 induced growth inhibition associated with S-phase cell cycle arrest. This growth inhibition was accompanied by reactive oxygen species production and autophagic cell death. Furthermore, they stimulated rapamycin-induced autophagy. On the contrary, none of the tested p53 family members induced apoptosis either per se or after apoptotic stimuli. As previously reported for p53, also TAp63, ΔNp63 and TAp73 increased actin expression levels and its depolarization, suggesting that ACT1 is also a p63 and p73 putative yeast target gene. Additionally, MDM2 and MDMX inhibited the activity of all tested p53 family members in yeast, although the effect was weaker on TAp63. Moreover, Nutlin-3a and SJ-172550 were identified as potential inhibitors of the p73 interaction with MDM2 and MDMX, respectively. Altogether, the yeast-based assays herein developed can be envisaged as a simplified cell system to study the involvement of p53 family members in autophagy, the modulation of their activities by specific interactors (MDM2 and MDMX), and the potential of new small molecules to modulate these interactions. - Highlights: • p53, p63 and p73 are individually studied in the yeast S. cerevisiae. • p53 family members induce ROS production, cell cycle arrest and autophagy in yeast. • p53 family members increase actin depolarization and expression levels in yeast. • MDM2 and MDMX inhibit the activity of p53 family members in yeast. • Yeast can be a useful tool to study the biology and drugability of p53, p63 and p73.

  10. Trophic effect of a methanol yeast extract on 3T3 fibroblast cells.

    Science.gov (United States)

    Gallo, Dominique; Dillemans, Monique; Allardin, David; Priem, Fabian; Van Nedervelde, Laurence

    2014-01-01

    With regard to the increase of human life expectancy, interest for topical treatments aimed to counteract skin aging is still growing. Hence, research for bioactive compounds able to stimulate skin fibroblast activity is an attractive topic. Having previously described the effects of a new methanol yeast extract on growth and metabolic activity of Saccharomyces cerevisiae, we studied its effects on 3T3 fibroblasts to evaluate its potential antiaging property. This investigation demonstrates that this extract increases proliferation as well as migration of 3T3 cells and decreases their entrance in senescence and apoptosis phases. Altogether, these results open new perspectives for the formulation of innovative antiaging topical treatments.

  11. Non-Conventional Yeasts Whole Cells as Efficient Biocatalysts for the Production of Flavors and Fragrances

    Directory of Open Access Journals (Sweden)

    Luca Forti

    2015-06-01

    Full Text Available The rising consumer requests for natural flavors and fragrances have generated great interest in the aroma industry to seek new methods to obtain fragrance and flavor compounds naturally. An alternative and attractive route for these compounds is based on bio-transformations. In this review, the application of biocatalysis by Non Conventional Yeasts (NCYs whole cells for the production of flavor and fragrances is illustrated by a discussion of the production of different class of compounds, namely Aldehydes, Ketones and related compounds, Alcohols, Lactones, Terpenes and Terpenoids, Alkenes, and Phenols.

  12. Non-Conventional Yeasts Whole Cells as Efficient Biocatalysts for the Production of Flavors and Fragrances.

    Science.gov (United States)

    Forti, Luca; Di Mauro, Simone; Cramarossa, Maria Rita; Filippucci, Sara; Turchetti, Benedetta; Buzzini, Pietro

    2015-06-04

    The rising consumer requests for natural flavors and fragrances have generated great interest in the aroma industry to seek new methods to obtain fragrance and flavor compounds naturally. An alternative and attractive route for these compounds is based on bio-transformations. In this review, the application of biocatalysis by Non Conventional Yeasts (NCYs) whole cells for the production of flavor and fragrances is illustrated by a discussion of the production of different class of compounds, namely Aldehydes, Ketones and related compounds, Alcohols, Lactones, Terpenes and Terpenoids, Alkenes, and Phenols.

  13. A novel engineered meganuclease induces homologous recombination in yeast and mammalian cells.

    Science.gov (United States)

    Epinat, Jean-Charles; Arnould, Sylvain; Chames, Patrick; Rochaix, Pascal; Desfontaines, Dominique; Puzin, Clémence; Patin, Amélie; Zanghellini, Alexandre; Pâques, Frédéric; Lacroix, Emmanuel

    2003-06-01

    Homologous gene targeting is the ultimate tool for reverse genetics, but its use is often limited by low efficiency. In a number of recent studies, site- specific DNA double-strand breaks (DSBs) have been used to induce efficient gene targeting. Engineering highly specific, dedicated DNA endonucleases is the key to a wider usage of this technology. In this study, we present two novel, chimeric meganucleases, derived from homing endonucleases. The first one is able to induce recombination in yeast and mammalian cells, whereas the second cleaves a novel (chosen) DNA target site. These results are a first step toward the generation of custom endonucleases for the purpose of targeted genome engineering.

  14. Characterization of a transcription factor involved in mother cell specific transcription of the yeast HO gene.

    OpenAIRE

    Stillman, D J; Bankier, A T; Seddon, A; Groenhout, E G; Nasmyth, K A

    1988-01-01

    The yeast HO gene, which encodes an endonuclease involved in initiating mating type interconversion, is expressed in mother cells but not in daughters. It has been demonstrated that the SWI5 gene, which is an activator of HO expression, plays a critical role in this differential mother/daughter expression of HO. In this paper we describe the cloning and sequencing of the SWI5 gene. The predicted amino acid sequence derived from the cloned SWI5 gene shows homology with the repeated DNA-binding...

  15. Direct conversion of inulin into cell lipid by an inulinase-producing yeast Rhodosporidium toruloides 2F5.

    Science.gov (United States)

    Wang, Zhi-Peng; Fu, Wen-Juan; Xu, Hong-Mei; Chi, Zhen-Ming

    2014-06-01

    In this study, an inulinase-producing yeast strain 2F5 of Rhodosporidium toruloides was obtained. It was found that the yeast strain 2F5 could produce higher amount of oil from inulin and larger lipid bodies in its cells than any other yeast strains tested in this study. Under the optimal conditions, 62.14% (w/w) of lipid based on cell dry weight and 15.82g/l of the dry cell mass were produced from 6.0% (w/v) inulin at flask level, leaving 0.92% (w/v) of total sugar in the fermented medium. During 2-l fermentation, 70.36% (w/w) of lipid based on cell dry weight and 15.64g/l of the dry cell mass were produced from 6.0% (w/v) inulin. Over 99.09% of the fatty acids from the yeast strain 2F5 grown on inulin was C16:0, C18:0, C18:1 and C18:2, especially C18:1 (52.2%). The biodiesel prepared using the lipids produced by the yeast strain 2F5 could be burnt well.

  16. Molecular tools and protocols for engineering the acid-tolerant yeast Zygosaccharomyces bailii as a potential cell factory.

    Science.gov (United States)

    Branduardi, Paola; Dato, Laura; Porro, Danilo

    2014-01-01

    Microorganisms offer a tremendous potential as cell factories, and they are indeed used by humans for centuries for biotransformations. Among them, yeasts combine the advantage of unicellular state with a eukaryotic organization, and, in the era of biorefineries, their biodiversity can offer solutions to specific process constraints. Zygosaccharomyces bailii, an ascomycetales budding yeast, is widely known for its peculiar tolerance to various stresses, among which are organic acids. Despite the possibility to apply with this yeast some of the molecular tools and protocols routinely used to manipulate Saccharomyces cerevisiae, adjustments and optimizations are necessary. Here, we describe in detail protocols for transformation, for target gene disruption or gene integration, and for designing episomal expression plasmids helpful for developing and further studying the yeast Z. bailii.

  17. Synthesis of polypyrrole within the cell wall of yeast by redox-cycling of [Fe(CN)6](3-)/[Fe(CN)6](4-).

    Science.gov (United States)

    Ramanavicius, Arunas; Andriukonis, Eivydas; Stirke, Arunas; Mikoliunaite, Lina; Balevicius, Zigmas; Ramanaviciene, Almira

    2016-02-01

    Yeast cells are often used as a model system in various experiments. Moreover, due to their high metabolic activity, yeast cells have a potential to be applied as elements in the design of biofuel cells and biosensors. However a wider application of yeast cells in electrochemical systems is limited due to high electric resistance of their cell wall. In order to reduce this problem we have polymerized conducting polymer polypyrrole (Ppy) directly in the cell wall and/or within periplasmic membrane. In this research the formation of Ppy was induced by [Fe(CN)6](3-)ions, which were generated from K4[Fe(CN)6], which was initially added to polymerization solution. The redox process was catalyzed by oxido-reductases, which are present in the plasma membrane of yeast cells. The formation of Ppy was confirmed by spectrophotometry and atomic force microscopy. It was confirmed that the conducting polymer polypyrrole was formed within periplasmic space and/or within the cell wall of yeast cells, which were incubated in solution containing pyrrole, glucose and [Fe(CN)6](4-). After 24h drying at room temperature we have observed that Ppy-modified yeast cell walls retained their initial spherical form. In contrast to Ppy-modified cells, the walls of unmodified yeast have wrinkled after 24h drying. The viability of yeast cells in the presence of different pyrrole concentrations has been evaluated.

  18. Non-targeted identification of prions and amyloid-forming proteins from yeast and mammalian cells.

    Science.gov (United States)

    Kryndushkin, Dmitry; Pripuzova, Natalia; Burnett, Barrington G; Shewmaker, Frank

    2013-09-20

    The formation of amyloid aggregates is implicated both as a primary cause of cellular degeneration in multiple human diseases and as a functional mechanism for providing extraordinary strength to large protein assemblies. The recent identification and characterization of several amyloid proteins from diverse organisms argues that the amyloid phenomenon is widespread in nature. Yet identifying new amyloid-forming proteins usually requires a priori knowledge of specific candidates. Amyloid fibers can resist heat, pressure, proteolysis, and denaturation by reagents such as urea or sodium dodecyl sulfate. Here we show that these properties can be exploited to identify naturally occurring amyloid-forming proteins directly from cell lysates. This proteomic-based approach utilizes a novel purification of amyloid aggregates followed by identification by mass spectrometry without the requirement for special genetic tools. We have validated this technique by blind identification of three amyloid-based yeast prions from laboratory and wild strains and disease-related polyglutamine proteins expressed in both yeast and mammalian cells. Furthermore, we found that polyglutamine aggregates specifically recruit some stress granule components, revealing a possible mechanism of toxicity. Therefore, core amyloid-forming proteins as well as strongly associated proteins can be identified directly from cells of diverse origin.

  19. Raspberry wine fermentation with suspended and immobilized yeast cells of two strains of Saccharomyces cerevisiae.

    Science.gov (United States)

    Djordjević, Radovan; Gibson, Brian; Sandell, Mari; de Billerbeck, Gustavo M; Bugarski, Branko; Leskošek-Čukalović, Ida; Vunduk, Jovana; Nikićević, Ninoslav; Nedović, Viktor

    2015-01-01

    The objectives of this study were to assess the differences in fermentative behaviour of two different strains of Saccharomyces cerevisiae (EC1118 and RC212) and to determine the differences in composition and sensory properties of raspberry wines fermented with immobilized and suspended yeast cells of both strains at 15 °C. Analyses of aroma compounds, glycerol, acetic acid and ethanol, as well as the kinetics of fermentation and a sensory evaluation of the wines, were performed. All fermentations with immobilized yeast cells had a shorter lag phase and faster utilization of sugars and ethanol production than those fermented with suspended cells. Slower fermentation kinetics were observed in all the samples that were fermented with strain RC212 (suspended and immobilized) than in samples fermented with strain EC1118. Significantly higher amounts of acetic acid were detected in all samples fermented with strain RC212 than in those fermented with strain EC1118 (0.282 and 0.602 g/l, respectively). Slightly higher amounts of glycerol were observed in samples fermented with strain EC1118 than in those fermented with strain RC212.

  20. The indentation of pressurized elastic shells: from polymeric capsules to yeast cells

    KAUST Repository

    Vella, D.

    2011-08-10

    Pressurized elastic capsules arise at scales ranging from the 10 m diameter pressure vessels used to store propane at oil refineries to the microscopic polymeric capsules that may be used in drug delivery. Nature also makes extensive use of pressurized elastic capsules: plant cells, bacteria and fungi have stiff walls, which are subject to an internal turgor pressure. Here, we present theoretical, numerical and experimental investigations of the indentation of a linearly elastic shell subject to a constant internal pressure. We show that, unlike unpressurized shells, the relationship between force and displacement demonstrates two linear regimes. We determine analytical expressions for the effective stiffness in each of these regimes in terms of the material properties of the shell and the pressure difference. As a consequence, a single indentation experiment over a range of displacements may be used as a simple assay to determine both the internal pressure and elastic properties of capsules. Our results are relevant for determining the internal pressure in bacterial, fungal or plant cells. As an illustration of this, we apply our results to recent measurements of the stiffness of baker\\'s yeast and infer from these experiments that the internal osmotic pressure of yeast cells may be regulated in response to changes in the osmotic pressure of the external medium.

  1. Absence of Btn1p in the yeast model for juvenile Batten disease may cause arginine to become toxic to yeast cells.

    Science.gov (United States)

    Vitiello, Seasson Phillips; Wolfe, Devin M; Pearce, David A

    2007-05-01

    Lymphoblast cell lines established from individuals with juvenile Batten disease (JNCL) bearing mutations in CLN3 and yeast strains lacking Btn1p (btn1-Delta), the homolog to CLN3, have decreased intracellular levels of arginine and defective lysosomal/vacuolar transport of arginine. It is important to establish the basis for this decrease in arginine levels and whether restoration of arginine levels would be of therapeutic value for Batten disease. Previous studies have suggested that synthesis and degradation of arginine are unaltered in btn1-Delta. Using the yeast model for the Batten disease, we have determined that although btn1-Delta results in decreased intracellular arginine levels, it does not result from altered arginine uptake, arginine efflux or differences in arginine incorporation into peptides. However, expression of BTN1 is dependent on arginine and Gcn4p, the master regulator of amino acid biosynthesis. Moreover, deletion of GCN4 (gcn4-Delta), in combination with btn1-Delta, results in a very specific growth requirement for arginine. In addition, increasing the intracellular levels of arginine through overexpression of Can1p, the plasma membrane basic amino acid permease, results in increased cell volume and a severe growth defect specific to basic amino acid availability for btn1-Delta, but not wild-type cells. Therefore, elevation of intracellular levels of arginine in btn1-Delta cells is detrimental and is suggestive that btn1-Delta and perhaps mutation of CLN3 predispose cells to keep arginine levels lower than normal.

  2. Isolation of cellular lipid droplets: two purification techniques starting from yeast cells and human placentas.

    Science.gov (United States)

    Mannik, Jaana; Meyers, Alex; Dalhaimer, Paul

    2014-04-01

    Lipid droplets are dynamic organelles that can be found in most eukaryotic and certain prokaryotic cells. Structurally, the droplets consist of a core of neutral lipids surrounded by a phospholipid monolayer. One of the most useful techniques in determining the cellular roles of droplets has been proteomic identification of bound proteins, which can be isolated along with the droplets. Here, two methods are described to isolate lipid droplets and their bound proteins from two wide-ranging eukaryotes: fission yeast and human placental villous cells. Although both techniques have differences, the main method-- density gradient centrifugation--is shared by both preparations. This shows the wide applicability of the presented droplet isolation techniques. In the first protocol, yeast cells are converted into spheroplasts by enzymatic digestion of their cell walls. The resulting spheroplasts are then gently lysed in a loose-fitting homogenizer. Ficoll is added to the lysate to provide a density gradient, and the mixture is centrifuged three times. After the first spin, the lipid droplets are localized to the white-colored floating layer of the centrifuge tubes along with the endoplasmic reticulum (ER), the plasma membrane, and vacuoles. Two subsequent spins are used to remove these other three organelles. The result is a layer that has only droplets and bound proteins. In the second protocol, placental villous cells are isolated from human term placentas by enzymatic digestion with trypsin and DNase I. The cells are homogenized in a loose-fitting homogenizer. Low-speed and medium-speed centrifugation steps are used to remove unbroken cells, cellular debris, nuclei, and mitochondria. Sucrose is added to the homogenate to provide a density gradient and the mixture is centrifuged to separate the lipid droplets from the other cellular fractions. The purity of the lipid droplets in both protocols is confirmed by Western Blot analysis. The droplet fractions from both preps

  3. Rapid and serial quantification of adhesion forces of yeast and Mammalian cells.

    Directory of Open Access Journals (Sweden)

    Eva Potthoff

    Full Text Available Cell adhesion to surfaces represents the basis for niche colonization and survival. Here we establish serial quantification of adhesion forces of different cell types using a single probe. The pace of single-cell force-spectroscopy was accelerated to up to 200 yeast and 20 mammalian cells per probe when replacing the conventional cell trapping cantilever chemistry of atomic force microscopy by underpressure immobilization with fluidic force microscopy (FluidFM. In consequence, statistically relevant data could be recorded in a rapid manner, the spectrum of examinable cells was enlarged, and the cell physiology preserved until approached for force spectroscopy. Adhesion forces of Candida albicans increased from below 4 up to 16 nN at 37°C on hydrophobic surfaces, whereas a Δhgc1-mutant showed forces consistently below 4 nN. Monitoring adhesion of mammalian cells revealed mean adhesion forces of 600 nN of HeLa cells on fibronectin and were one order of magnitude higher than those observed for HEK cells.

  4. Industrial systems biology and its impact on synthetic biology of yeast cell factories.

    Science.gov (United States)

    Fletcher, Eugene; Krivoruchko, Anastasia; Nielsen, Jens

    2016-06-01

    Engineering industrial cell factories to effectively yield a desired product while dealing with industrially relevant stresses is usually the most challenging step in the development of industrial production of chemicals using microbial fermentation processes. Using synthetic biology tools, microbial cell factories such as Saccharomyces cerevisiae can be engineered to express synthetic pathways for the production of fuels, biopharmaceuticals, fragrances, and food flavors. However, directing fluxes through these synthetic pathways towards the desired product can be demanding due to complex regulation or poor gene expression. Systems biology, which applies computational tools and mathematical modeling to understand complex biological networks, can be used to guide synthetic biology design. Here, we present our perspective on how systems biology can impact synthetic biology towards the goal of developing improved yeast cell factories. Biotechnol. Bioeng. 2016;113: 1164-1170. © 2015 Wiley Periodicals, Inc.

  5. Biphenyl synthase from yeast-extract-treated cell cultures of Sorbus aucuparia.

    Science.gov (United States)

    Liu, Benye; Beuerle, Till; Klundt, Tim; Beerhues, Ludger

    2004-01-01

    Biphenyls and dibenzofurans are the phytoalexins of the Maloideae, a subfamily of the economically important Rosaceae. The biphenyl aucuparin accumulated in Sorbus aucuparia L. cell cultures in response to yeast extract treatment. Incubation of cell-free extracts from challenged cell cultures with benzoyl-CoA and malonyl-CoA led to the formation of 3,5-dihydroxybiphenyl. This reaction was catalysed by a novel polyketide synthase, which will be named biphenyl synthase. The most efficient starter substrate for the enzyme was benzoyl-CoA. Relatively high activity was also observed with 2-hydroxybenzoyl-CoA but, instead of the corresponding biphenyl, the derailment product 2-hydroxybenzoyltriacetic acid lactone was formed.

  6. Increased longevity mediated by yeast NDI1 expression in Drosophila intestinal stem and progenitor cells.

    Science.gov (United States)

    Hur, Jae H; Bahadorani, Sepehr; Graniel, Jacqueline; Koehler, Christopher L; Ulgherait, Matthew; Rera, Michael; Jones, D Leanne; Walker, David W

    2013-09-01

    A functional decline in tissue stem cells and mitochondrial dysfunction have each been linked to aging and multiple aging-associated pathologies. However, the interplay between energy homeostasis, stem cells, and organismal aging remains poorly understood. Here, we report that expression of the single-subunit yeast alternative NADH dehydrogenase, ndi1, in Drosophila intestinal stem and progenitor cells delays the onset of multiple markers of intestinal aging and extends lifespan. In addition, expression of ndi1 in the intestine increases feeding behavior and results in organismal weight gain. Consistent with increased nutrient uptake, flies expressing ndi1 in the digestive tract display a systemic reduction in the activity of AMP-activated protein kinase (AMPK), a key cellular energy sensor. Together, these results demonstrate that ndi1 expression in the intestinal epithelium is an effective strategy to delay tissue and organismal aging.

  7. Development of Crystalline Peroxisomes in Methanol-Grown Cells of the Yeast Hansenula polymorpha and Its Relation to Environmental Conditions

    NARCIS (Netherlands)

    Veenhuis, M.; Dijken, J.P. van; Pilon, S.A.F.; Harder, W.

    1978-01-01

    The development of peroxisomes has been studied in cells of the yeast Hansenula polymorpha during growth on methanol in batch and chemostat cultures. During bud formation, new peroxisomes were generated by the separation of small peroxisomes from mature organelles in the mother cells. The number of

  8. Ethanol production from concentrated food waste hydrolysates with yeast cells immobilized on corn stalk.

    Science.gov (United States)

    Yan, Shoubao; Chen, Xiangsong; Wu, Jingyong; Wang, Pingchao

    2012-05-01

    The aim of the present study was to examine ethanol production from concentrated food waste hydrolysates using whole cells of S. cerevisiae immobilized on corn stalks. In order to improve cell immobilization efficiency, biological modification of the carrier was carried out by cellulase hydrolysis. The results show that proper modification of the carrier with cellulase hydrolysis was suitable for cell immobilization. The mechanism proposed, cellulase hydrolysis, not only increased the immobilized cell concentration, but also disrupted the sleek surface to become rough and porous, which enhanced ethanol production. In batch fermentation with an initial reducing sugar concentration of 202.64 ± 1.86 g/l, an optimal ethanol concentration of 87.91 ± 1.98 g/l was obtained using a modified corn stalk-immobilized cell system. The ethanol concentration produced by the immobilized cells was 6.9% higher than that produced by the free cells. Ethanol production in the 14th cycle repeated batch fermentation demonstrated the enhanced stability of the immobilized yeast cells. Under continuous fermentation in an immobilized cell reactor, the maximum ethanol concentration of 84.85 g/l, and the highest ethanol yield of 0.43 g/g (of reducing sugar) were achieved at hydraulic retention time (HRT) of 3.10 h, whereas the maximum volumetric ethanol productivity of 43.54 g/l/h was observed at a HRT of 1.55 h.

  9. Non-Saccharomyces yeasts protect against epithelial cell barrier disruption induced by Salmonella enterica subsp. enterica serovar Typhimurium

    DEFF Research Database (Denmark)

    Smith, Ida Mosbech; Baker, A; Arneborg, Nils

    2015-01-01

    UNLABELLED: The human gastrointestinal epithelium makes up the largest barrier separating the body from the external environment. Whereas invasive pathogens cause epithelial barrier disruption, probiotic micro-organisms modulate tight junction regulation and improve epithelial barrier function....... In addition, probiotic strains may be able to reduce epithelial barrier disruption caused by pathogenic species. The aim of this study was to explore non-Saccharomyces yeast modulation of epithelial cell barrier function in vitro. Benchmarking against established probiotic strains, we evaluated the ability......). In addition, our data demonstrate significant yeast-mediated modulation of Salmonella-induced epithelial cell barrier disruption and identify K. marxianus and Metschnikowia gruessii as two non-Saccharomyces yeasts capable of protecting human epithelial cells from pathogen invasion. SIGNIFICANCE AND IMPACT...

  10. A comparative study on glycerol metabolism to erythritol and citric acid in Yarrowia lipolytica yeast cells.

    Science.gov (United States)

    Tomaszewska, Ludwika; Rakicka, Magdalena; Rymowicz, Waldemar; Rywińska, Anita

    2014-09-01

    Citric acid and erythritol biosynthesis from pure and crude glycerol by three acetate-negative mutants of Yarrowia lipolytica yeast was investigated in batch cultures in a wide pH range (3.0-6.5). Citric acid biosynthesis was the most effective at pH 5.0-5.5 in the case of Wratislavia 1.31 and Wratislavia AWG7. With a decreasing pH value, the direction of biosynthesis changed into erythritol synthesis accompanied by low production of citric acid. Pathways of glycerol conversion into erythritol and citric acid were investigated in Wratislavia K1 cells. Enzymatic activity was compared in cultures run at pH 3.0 and 4.5, that is, under conditions promoting the production of erythritol and citric acid, respectively. The effect of pH value (3.0 and 4.5) and NaCl presence on the extracellular production and intracellular accumulation of citric acid and erythritol was compared as well. Low pH and NaCl resulted in diminished activity of glycerol kinase, whereas such conditions stimulated the activity of glycerol-3-phosphate dehydrogenase. The presence of NaCl strongly influenced enzymes activity - the effective erythritol production was correlated with a high activity of transketolase and erythrose reductase. Therefore, presented results confirmed that transketolase and erythrose reductase are involved in the overproduction of erythritol in the cells of Y. lipolytica yeast.

  11. Ethanol Effects Involve Non-canonical Unfolded Protein Response Activation in Yeast Cells

    Science.gov (United States)

    Navarro-Tapia, Elisabet; Pérez-Torrado, Roberto; Querol, Amparo

    2017-01-01

    The unfolded protein response (UPR) is a conserved intracellular signaling pathway that controls transcription of endoplasmic reticulum (ER) homeostasis related genes. Ethanol stress has been recently described as an activator of the UPR response in yeast Saccharomyces cerevisiae, but very little is known about the causes of this activation. Although some authors ensure that the UPR is triggered by the unfolded proteins generated by ethanol in the cell, there are studies which demonstrate that protein denaturation occurs at higher ethanol concentrations than those used to trigger the UPR. Here, we studied UPR after ethanol stress by three different approaches and we concluded that unfolded proteins do not accumulate in the ER under. We also ruled out inositol depletion as an alternative mechanism to activate the UPR under ethanol stress discarding that ethanol effects on the cell decreased inositol levels by different methods. All these data suggest that ethanol, at relatively low concentrations, does not cause unfolded proteins in the yeasts and UPR activation is likely due to other unknown mechanism related with a restructuring of ER membrane due to the effect of ethanol. PMID:28326077

  12. Transcription factor genes essential for cell proliferation and replicative lifespan in budding yeast

    Energy Technology Data Exchange (ETDEWEB)

    Kamei, Yuka; Tai, Akiko; Dakeyama, Shota; Yamamoto, Kaori; Inoue, Yamato; Kishimoto, Yoshifumi; Ohara, Hiroya; Mukai, Yukio, E-mail: y_mukai@nagahama-i-bio.ac.jp

    2015-07-31

    Many of the lifespan-related genes have been identified in eukaryotes ranging from the yeast to human. However, there is limited information available on the longevity genes that are essential for cell proliferation. Here, we investigated whether the essential genes encoding DNA-binding transcription factors modulated the replicative lifespan of Saccharomyces cerevisiae. Heterozygous diploid knockout strains for FHL1, RAP1, REB1, and MCM1 genes showed significantly short lifespan. {sup 1}H-nuclear magnetic resonance analysis indicated a characteristic metabolic profile in the Δfhl1/FHL1 mutant. These results strongly suggest that FHL1 regulates the transcription of lifespan related metabolic genes. Thus, heterozygous knockout strains could be the potential materials for discovering further novel lifespan genes. - Highlights: • Involvement of yeast TF genes essential for cell growth in lifespan was evaluated. • The essential TF genes, FHL1, RAP1, REB1, and MCM1, regulate replicative lifespan. • Heterozygous deletion of FHL1 changes cellular metabolism related to lifespan.

  13. Construction and Identification of a Yeast Two-Hybrid Bait Vector and Its Effect on the Growth of Yeast Cells and the Self-Activating Function of Reporter Genes for Screening of HPV18 E6-Interacting Protein

    Institute of Scientific and Technical Information of China (English)

    梅泉; 李双; 刘萍; 奚玲; 王世宣; 孟玉菡; 刘杰; 杨欣慰; 卢运萍; 汪辉

    2010-01-01

    By using a yeast two-hybrid system,a yeast two-hybrid bait vector was constructed and identified for screening of the HPV18 E6-interacting proteins,and its effects on the growth of yeast cells and the activation of reporter genes were investigated.Total mRNA extracted from Hela cells was reversely transcribed into cDNA.Fragment of HPV18 E6 cDNA was amplified using RT-PCR and directly ligated to the pGBKT7 vector.The recombinant plasmid was confirmed by restriction endonuclease analysis and DNA sequencing.Th...

  14. Highly efficient transformation of intact yeast-like conidium cells of Tremella fuciformis by electroporation

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Tremella fuciformis is one of higher basidiomycetes. Its basidiospore can reproduce yeast-like conidia, also called the blastospore by budding. The yeast-like conidia of T. fuciformis is monokaryotic and easy to culture by submerged fermentation similar to yeast. So it is a good recipient cell for exogenous gene expression. In this study, two expression vectors pGlg-gfp containing gpd-Gl promoter and gfp gene and pGlg-hph containing gpd-Gl promoter and hph gene were constructed. The lowest sensitive concentration of hygromycin for the blastospore was determined on three types of media. Our ex- periments showed that the lowest sensitive concentration of hygromycin for the blastospore was 5 μg/mL on MA medium. The intact blastospores were transformed with the expression vector pGlg-hph by electroporation. The putative transformants were obtained by the MA selective medium. Experi- mental results showed that the most effective parameters for the electroporation of intact blastospores were obtained by using STM buffer, 1.0×108 cells/mL of blastospores, 200 μL in transformation volume, 6 μg plasmid, 2.0 kV/cm of electric pulse voltage, stillness culturing on MB liquid medium for 48 h after electroporation. In these transformation conditions, the efficiency reached 277 colonies/μg DNA. Co-transformation of plasmid pGlg-gfp and pGlg-hph with ratio of 1:1 was performed by electroporation with the optimal parameters. The putative co-transformants were obtained by the MA selective medium. Eight randomly selected colonies from the vast putative co-transformants were analyzed by PCR de- tection and Southern blotting. The experiments showed that the gfp was integrated into the genomes of three transformants. The co-transformation efficiency was 37.5%. Green fluorescence was observed under laser scanning confocal microscope in these gfp positive transformants. This indicates that the exogenous gfp can be expressed effectively in the yeast-like conidia of T. fuciformis.

  15. A vibrating membrane bioreactor operated at supra- and sub-critical flux: Influence of extracellular polymeric substances from yeast cells

    DEFF Research Database (Denmark)

    Beier, Søren Prip; Jonsson, Gunnar Eigil

    2007-01-01

    A vibrating membrane bioreactor, in which the fouling problems are reduced by vibrating a hollow fiber membrane module, has been tested in constant flux microfiltration above (supra-critical) and below (sub-critical) an experimentally determined critical flux. Suspensions of bakers yeast cells were...... chosen as filtration medium (dry weight 4 g/l). The influence of extracellular polymeric substances (EPS) from the yeast cells is evaluated by UV absorbance measurements of the bulk supernatant during filtration. The critical flux seems to be an interval or a relative value rather than an absolute value...

  16. Expression of Bax in yeast affects not only the mitochondria but also vacuolar integrity and intracellular protein traffic

    DEFF Research Database (Denmark)

    Dimitrova, Irina; Toby, Garabet G; Tili, Esmerina;

    2004-01-01

    Bax-induced lethality in yeast is accompanied by morphological changes in mitochondria, giving rise to a reduced number of swollen tubules. Although these changes are completely abolished upon coexpression of the Bax inhibitor, Bcl-2, coexpression of Bax with Bax inhibiting-glutathione S-transfer...

  17. Time scale and dimension analysis of a budding yeast cell cycle model

    Directory of Open Access Journals (Sweden)

    Novák Béla

    2006-11-01

    Full Text Available Abstract Background The progress through the eukaryotic cell division cycle is driven by an underlying molecular regulatory network. Cell cycle progression can be considered as a series of irreversible transitions from one steady state to another in the correct order. Although this view has been put forward some time ago, it has not been quantitatively proven yet. Bifurcation analysis of a model for the budding yeast cell cycle has identified only two different steady states (one for G1 and one for mitosis using cell mass as a bifurcation parameter. By analyzing the same model, using different methods of dynamical systems theory, we provide evidence for transitions among several different steady states during the budding yeast cell cycle. Results By calculating the eigenvalues of the Jacobian of kinetic differential equations we have determined the stability of the cell cycle trajectories of the Chen model. Based on the sign of the real part of the eigenvalues, the cell cycle can be divided into excitation and relaxation periods. During an excitation period, the cell cycle control system leaves a formerly stable steady state and, accordingly, excitation periods can be associated with irreversible cell cycle transitions like START, entry into mitosis and exit from mitosis. During relaxation periods, the control system asymptotically approaches the new steady state. We also show that the dynamical dimension of the Chen's model fluctuates by increasing during excitation periods followed by decrease during relaxation periods. In each relaxation period the dynamical dimension of the model drops to one, indicating a period where kinetic processes are in steady state and all concentration changes are driven by the increase of cytoplasmic growth. Conclusion We apply two numerical methods, which have not been used to analyze biological control systems. These methods are more sensitive than the bifurcation analysis used before because they identify those

  18. [Hybridization of cells of the same mating type in Saccharomyces yeasts].

    Science.gov (United States)

    Inge-Vechtomov, S G; Repnevskaia, M V; Karpova, T S

    1986-11-01

    The problem of mating-type switches in heterothallic yeast cells was investigated. 93% of non-mating hybrids were obtained in a X a crosses. The hybrids obtained in alpha X alpha crosses expressed alpha-mating type predominantly. Hybrids with no major rearrangements or loss of chromosome III were detected among these hybrids. In the selective system for cytoduction in a X a crosses the significant part of all cytoductants were alpha-maters, i.e. those originated through a----alpha switches. In alpha X alpha crosses alpha cytoductants were predominantly obtained either spontaneously or after UV-irradiation, though the frequency of cytoductants after UV-irradiation exceeded the control value several times. So, we developed the method for selection of mating-type "switchers" (a in equilibrium alpha), avoiding the diploid stage, and demonstrated the possibility of hybridization among the alpha-cells without hereditary changes at the MAT locus.

  19. Components of yeast (Sacchromyces cervisiae) extract as defined media additives that support the growth and productivity of CHO cells.

    Science.gov (United States)

    Spearman, Maureen; Chan, Sarah; Jung, Vince; Kowbel, Vanessa; Mendoza, Meg; Miranda, Vivian; Butler, Michael

    2016-09-10

    Yeast and plant hydrolysates are used as media supplements to support the growth and productivity of CHO cultures for biopharmaceutical production. Through fractionation of a yeast lysate and metabolic analysis of a fraction that had bioactivity equivalent to commercial yeast extract (YE), bioactive components were identified that promoted growth and productivity of two recombinant CHO cell lines (CHO-Luc and CHO-hFcEG2) equivalent to or greater than YE-supplemented media. Autolysis of the yeast lysate was not necessary for full activity, suggesting that the active components are present in untreated yeast cells. A bioactive fraction (3KF) of the yeast lysate was isolated from the permeate using a 3kDa molecular weight cut-off (MWCO) filter. Supplementation of this 3KF fraction into the base media supported growth of CHO-Luc cells over eight passages equivalent to YE-supplemented media. The 3KF fraction was fractionated further by a cation exchange spin column using a stepwise pH elution. Metabolomic analysis of a bioactive fraction isolated at high pH identified several arginine and lysine-containing peptides as well as two polyamines, spermine and spermidine, with 3.5× and 4.5× higher levels compared to a fraction showing no bioactivity. The addition of a mixture of polyamines and their precursors (putrescine, spermine, spermidine, ornithine and citrulline) as well as increasing the concentration of some of the components of the original base medium resulted in a chemically-defined (CD) formulation that produced an equivalent viable cell density (VCD) and productivity of the CHO-Luc cells as the YE-supplemented medium. The VCD of the CHO-hFcEG2 culture in the CD medium was 1.9× greater and with equivalent productivity to the YE-supplemented media.

  20. Characterization of winemaking yeast by cell number-size distribution analysis through flow field-flow fractionation with multi-wavelength turbidimetric detection.

    Science.gov (United States)

    Zattoni, Andrea; Melucci, Dora; Reschiglian, Pierluigi; Sanz, Ramsés; Puignou, Lluís; Galceran, Maria Teresa

    2004-10-29

    Yeasts are widely used in several areas of food industry, e.g. baking, beer brewing, and wine production. Interest in new analytical methods for quality control and characterization of yeast cells is thus increasing. The biophysical properties of yeast cells, among which cell size, are related to yeast cell capabilities to produce primary and secondary metabolites during the fermentation process. Biophysical properties of winemaking yeast strains can be screened by field-flow fractionation (FFF). In this work we present the use of flow FFF (FlFFF) with turbidimetric multi-wavelength detection for the number-size distribution analysis of different commercial winemaking yeast varieties. The use of a diode-array detector allows to apply to dispersed samples like yeast cells the recently developed method for number-size (or mass-size) analysis in flow-assisted separation techniques. Results for six commercial winemaking yeast strains are compared with data obtained by a standard method for cell sizing (Coulter counter). The method here proposed gives, at short analysis time, accurate information on the number of cells of a given size, and information on the total number of cells.

  1. A newly identified essential complex, Dre2-Tah18, controls mitochondria integrity and cell death after oxidative stress in yeast.

    Directory of Open Access Journals (Sweden)

    Laurence Vernis

    Full Text Available A mutated allele of the essential gene TAH18 was previously identified in our laboratory in a genetic screen for new proteins interacting with the DNA polymerase delta in yeast [1]. The present work shows that Tah18 plays a role in response to oxidative stress. After exposure to lethal doses of H(2O(2, GFP-Tah18 relocalizes to the mitochondria and controls mitochondria integrity and cell death. Dre2, an essential Fe/S cluster protein and homologue of human anti-apoptotic Ciapin1, was identified as a molecular partner of Tah18 in the absence of stress. Moreover, Ciapin1 is able to replace yeast Dre2 in vivo and physically interacts with Tah18. Our results are in favour of an oxidative stress-induced cell death in yeast that involves mitochondria and is controlled by the newly identified Dre2-Tah18 complex.

  2. Gis1 and Rph1 regulate glycerol and acetate metabolism in glucose depleted yeast cells.

    Directory of Open Access Journals (Sweden)

    Jakub Orzechowski Westholm

    Full Text Available Aging in organisms as diverse as yeast, nematodes, and mammals is delayed by caloric restriction, an effect mediated by the nutrient sensing TOR, RAS/cAMP, and AKT/Sch9 pathways. The transcription factor Gis1 functions downstream of these pathways in extending the lifespan of nutrient restricted yeast cells, but the mechanisms involved are still poorly understood. We have used gene expression microarrays to study the targets of Gis1 and the related protein Rph1 in different growth phases. Our results show that Gis1 and Rph1 act both as repressors and activators, on overlapping sets of genes as well as on distinct targets. Interestingly, both the activities and the target specificities of Gis1 and Rph1 depend on the growth phase. Thus, both proteins are associated with repression during exponential growth, targeting genes with STRE or PDS motifs in their promoters. After the diauxic shift, both become involved in activation, with Gis1 acting primarily on genes with PDS motifs, and Rph1 on genes with STRE motifs. Significantly, Gis1 and Rph1 control a number of genes involved in acetate and glycerol formation, metabolites that have been implicated in aging. Furthermore, several genes involved in acetyl-CoA metabolism are downregulated by Gis1.

  3. Role of intracellular freezing in the death of cells cooled at supraoptimal rates. [Preservation of erythrocytes, bone marrow cells, and yeasts by freezing

    Energy Technology Data Exchange (ETDEWEB)

    Mazur, P.

    1976-01-01

    Cooling velocity is one of the major factors that determines whether viable cells can be frozen to temperatures that permit indefinite storage. Cooling either too slowly or too rapidly tends to be damaging. Optimum cooling rates are reported for mouse marrow stem cells, yeast, and human red cells.

  4. Compartmentalization of ER-Bound Chaperone Confines Protein Deposit Formation to the Aging Yeast Cell.

    Science.gov (United States)

    Saarikangas, Juha; Caudron, Fabrice; Prasad, Rupali; Moreno, David F; Bolognesi, Alessio; Aldea, Martí; Barral, Yves

    2017-03-20

    In order to produce rejuvenated daughters, dividing budding yeast cells confine aging factors, including protein aggregates, to the aging mother cell. The asymmetric inheritance of these protein deposits is mediated by organelle and cytoskeletal attachment and by cell geometry. Yet it remains unclear how deposit formation is restricted to the aging lineage. Here, we show that selective membrane anchoring and the compartmentalization of the endoplasmic reticulum (ER) membrane confine protein deposit formation to aging cells during division. Supporting the idea that the age-dependent deposit forms through coalescence of smaller aggregates, two deposits rapidly merged when placed in the same cell by cell-cell fusion. The deposits localized to the ER membrane, primarily to the nuclear envelope (NE). Strikingly, weakening the diffusion barriers that separate the ER membrane into mother and bud compartments caused premature formation of deposits in the daughter cells. Detachment of the Hsp40 protein Ydj1 from the ER membrane elicited a similar phenotype, suggesting that the diffusion barriers and farnesylated Ydj1 functioned together to confine protein deposit formation to mother cells during division. Accordingly, fluorescence correlation spectroscopy measurements in dividing cells indicated that a slow-diffusing, possibly client-bound Ydj1 fraction was asymmetrically enriched in the mother compartment. This asymmetric distribution depended on Ydj1 farnesylation and intact diffusion barriers. Taking these findings together, we propose that ER-anchored Ydj1 binds deposit precursors and prevents them from spreading into daughter cells during division by subjecting them to the ER diffusion barriers. This ensures that the coalescence of precursors into a single deposit is restricted to the aging lineage.

  5. Ultrasonic manipulation of yeast cells in suspension for absorption spectroscopy with an immersible mid-infrared fiberoptic probe.

    Science.gov (United States)

    Koch, Cosima; Brandstetter, Markus; Lendl, Bernhard; Radel, Stefan

    2013-06-01

    Recent advances in combining ultrasonic particle manipulation with attenuated total reflection infrared spectroscopy of yeast suspensions are presented. Infrared spectroscopy provides highly specific molecular information about the sample. It has not been applicable to in-line monitoring of cells during fermentation, however, because positioning cells in the micron-thin measurement region of the attenuated total reflection probe was not possible. Ultrasonic radiation forces exerted on suspended particles by an ultrasonic standing wave can result in the buildup of agglomerates in the nodal planes, hence enabling the manipulation of suspended cells on the microscopic scale. When a chamber setup and a prototype in-line applicable probe were used, successful control over the position of the yeast cells relative to the attenuated total reflection sensor surface could be proven. Both rate of increase and maximum mid-infrared absorption of yeast-specific bands during application of a pushing frequency (chamber setup: 1.863 MHz, in-line probe: 1.990 MHz) were found to correlate with yeast cell concentration.

  6. The oxidative stress response in yeast cells involves changes in the stability of Aft1 regulon mRNAs.

    Science.gov (United States)

    Castells-Roca, Laia; Mühlenhoff, Ulrich; Lill, Roland; Herrero, Enrique; Bellí, Gemma

    2011-07-01

    Saccharomyces cerevisiae can import iron through a high-affinity system consisting of the Ftr1/Fet3-mediated reductive pathway and the siderophore-mediated non-reductive one. Expression of components of the high-affinity system is controlled by the Aft1 transcriptional factor. In this study we show that, upon oxidative stress, Aft1 is transitorily internalized into the nucleus, followed by transcription activation of components of its regulon. In these conditions, the mRNA levels of the genes of the non-reductive pathway become increased, while those of FTR1 and FET3 remain low because of destabilization of the mRNAs. Consequently, the respective protein levels also remain low. Such mRNA destabilization is mediated by the general 5'-3' mRNA decay pathway and is independent of the RNA binding protein Cth2. Yeast cells are hypersensitive to peroxides in growth conditions where only the high-affinity reductive pathway is functional for iron assimilation. On the contrary, peroxide does not affect growth when iron uptake occurs exclusively through the non-reductive pathway. This reinforces the idea that upon oxidative stress S. cerevisiae cells redirect iron assimilation through the non-reductive pathway to minimize oxidative damage by the ferrous ions, which are formed during iron import through the Ftr1/Fet3 complexes.

  7. Connectivity in the yeast cell cycle transcription network: inferences from neural networks.

    Directory of Open Access Journals (Sweden)

    Christopher E Hart

    2006-12-01

    Full Text Available A current challenge is to develop computational approaches to infer gene network regulatory relationships based on multiple types of large-scale functional genomic data. We find that single-layer feed-forward artificial neural network (ANN models can effectively discover gene network structure by integrating global in vivo protein:DNA interaction data (ChIP/Array with genome-wide microarray RNA data. We test this on the yeast cell cycle transcription network, which is composed of several hundred genes with phase-specific RNA outputs. These ANNs were robust to noise in data and to a variety of perturbations. They reliably identified and ranked 10 of 12 known major cell cycle factors at the top of a set of 204, based on a sum-of-squared weights metric. Comparative analysis of motif occurrences among multiple yeast species independently confirmed relationships inferred from ANN weights analysis. ANN models can capitalize on properties of biological gene networks that other kinds of models do not. ANNs naturally take advantage of patterns of absence, as well as presence, of factor binding associated with specific expression output; they are easily subjected to in silico "mutation" to uncover biological redundancies; and they can use the full range of factor binding values. A prominent feature of cell cycle ANNs suggested an analogous property might exist in the biological network. This postulated that "network-local discrimination" occurs when regulatory connections (here between MBF and target genes are explicitly disfavored in one network module (G2, relative to others and to the class of genes outside the mitotic network. If correct, this predicts that MBF motifs will be significantly depleted from the discriminated class and that the discrimination will persist through evolution. Analysis of distantly related Schizosaccharomyces pombe confirmed this, suggesting that network-local discrimination is real and complements well-known enrichment of

  8. Enhanced arsenic accumulation by engineered yeast cells expressing Arabidopsis thaliana phytochelatin synthase.

    Science.gov (United States)

    Singh, Shailendra; Lee, Wonkyu; Dasilva, Nancy A; Mulchandani, Ashok; Chen, Wilfred

    2008-02-01

    Phytochelatins (PCs) are naturally occurring peptides with high-binding capabilities for a wide range of heavy metals including arsenic (As). PCs are enzymatically synthesized by phytochelatin synthases and contain a (gamma-Glu-Cys)(n) moiety terminated by a Gly residue that makes them relatively proteolysis resistant. In this study, PCs were introduced by expressing Arabidopsis thaliana Phytochelatin Synthase (AtPCS) in the yeast Saccharomyces cerevisiae for enhanced As accumulation and removal. PCs production in yeast resulted in six times higher As accumulation as compared to the control strain under a wide range of As concentrations. For the high-arsenic concentration, PCs production led to a substantial decrease in levels of PC precursors such as glutathione (GSH) and gamma-glutamyl cysteine (gamma-EC). The levels of As(III) accumulation were found to be similar between AtPCS-expressing wild type strain and AtPCS-expressing acr3Delta strain lacking the arsenic efflux system, suggesting that the arsenic uptake may become limiting. This is further supported by the roughly 1:3 stoichiometric ratio between arsenic and PC2 (n = 2) level (comparing with a theoretical value of 1:2), indicating an excess availability of PCs inside the cells. However, at lower As(III) concentration, PC production became limiting and an additive effect on arsenic accumulation was observed for strain lacking the efflux system. More importantly, even resting cells expressing AtPCS pre-cultured in Zn(2+) enriched media showed PCs production and two times higher arsenic removal than the control strain. These results open up the possibility of using cells expressing AtPCS as an inexpensive sorbent for the removal of toxic arsenic.

  9. Single cell analysis of yeast replicative aging using a new generation of microfluidic device.

    Directory of Open Access Journals (Sweden)

    Yi Zhang

    Full Text Available A major limitation to yeast aging study has been the inability to track mother cells and observe molecular markers during the aging process. The traditional lifespan assay relies on manual micro-manipulation to remove daughter cells from the mother, which is laborious, time consuming, and does not allow long term tracking with high resolution microscopy. Recently, we have developed a microfluidic system capable of retaining mother cells in the microfluidic chambers while removing daughter cells automatically, making it possible to observe fluorescent reporters in single cells throughout their lifespan. Here we report the development of a new generation of microfluidic device that overcomes several limitations of the previous system, making it easier to fabricate and operate, and allowing functions not possible with the previous design. The basic unit of the device consists of microfluidic channels with pensile columns that can physically trap the mother cells while allowing the removal of daughter cells automatically by the flow of the fresh media. The whole microfluidic device contains multiple independent units operating in parallel, allowing simultaneous analysis of multiple strains. Using this system, we have reproduced the lifespan curves for the known long and short-lived mutants, demonstrating the power of the device for automated lifespan measurement. Following fluorescent reporters in single mother cells throughout their lifespan, we discovered a surprising change of expression of the translation elongation factor TEF2 during aging, suggesting altered translational control in aged mother cells. Utilizing the capability of the new device to trap mother-daughter pairs, we analyzed mother-daughter inheritance and found age dependent asymmetric partitioning of a general stress response reporter between mother and daughter cells.

  10. Two isoforms of trimming glucosidase II exist in mammalian tissues and cell lines but not in yeast and insect cells.

    Science.gov (United States)

    Ziak, M; Meier, M; Etter, K S; Roth, J

    2001-01-12

    We previously cloned glucosidase II and provided in vivo evidence for its involvement in protein folding quality control. DNA-sequencing of different clones demonstrated the existence of two isoforms of glucosidase II which differed by 66 nucleotides due to alternative splicing. The existence of two enzyme isoforms in various organs of pig and rat as well as human, bovine, rat, and mouse cell lines could be demonstrated by RT-PCR and Western blotting. Furthermore, the two isoforms of glucosidase II could be detected in embryonic and postnatal rat kidney and liver. In yeast, Saccharomyces cerevisiae, and in insects, Drosophila S2 cells, only one isoforms of the enzyme was detectable. The ubiquitous occurrence of the two glucosidase II isoforms in mammalian tissues and cell lines might be indicative of a special function of each isoform.

  11. A direct droplet digital PCR method for quantification of residual DNA in protein drugs produced in yeast cells.

    Science.gov (United States)

    Hussain, Musaddeq; Fantuzzo, Rebecca; Mercorelli, Suzanne; Cullen, Constance

    2016-05-10

    Yeast cells, in particular Pichia pastoris, are the host cell of choice for manufacturing several protein therapeutic agents in the biopharmaceutical industry. Host cell DNA is an impurity of such manufacturing process and the residual DNA after the purification process of the drug must be monitored to ensure drug purity and safety. Currently, real-time PCR (qPCR) based methods are widely employed for quantification of host residual DNA. At the same time the digital PCR technology is coming into prominence with promise of higher sensitivity. Here we report a method where the protein drug is directly added to the droplet digital PCR (ddPCR) reaction including yeast-specific primers and fluorescent-tagged probe and nanoliter-sized droplets are generated. The droplets are then subjected to PCR followed by analysis for fluorescence. This Pichia residual DNA direct ddPCR method for yeast can be used to test higher amount of drug compared to the corresponding qPCR method thereby increasing sensitivity, retaining high precision and accuracy and has a wide linear range of determination. The method has been successfully tested with three batches of a recombinant human IgG1-Fc-based drug (RP-1) and with commercially available human insulin, both manufactured in yeast cells. This method simplifies the residual DNA quantification protocol by eliminating DNA extraction or protease digestion and eliminates use of DNA standards in day-to-day running of the method.

  12. The effect of yeast cell wall supplementation on the physiological and acute phase responses of crossbred heifers to endotoxin challenge

    Science.gov (United States)

    A study was conducted to determine the effect of feeding yeast cell wall (YCW) products on the physiological and acute phase responses of crossbred newly-received heifers to endotoxin (lipopolysaccharide; LPS) challenge. Heifers (n=24; 218.9+/-2.4 kg) were obtained from commercial sale barns and tra...

  13. The effect of yeast cell wall supplementation on the metabolic responses of crossbred heifers to endotoxin challenge

    Science.gov (United States)

    This study examined the effect of feeding yeast cell wall (YCW) products on the metabolic responses of newly-received heifers to endotoxin (lipopolysaccharide; LPS) challenge. Heifers (n=24; 218.9±2.4 kg) were obtained from commercial sale barns and transported to the Texas Tech University Beef Cent...

  14. Yeast cell wall supplementation alters the physiological and acute phase responses of crossbred heifers to an endotoxin challenge

    Science.gov (United States)

    A study was conducted to determine the effect of feeding yeast cell wall (YCW) products on the physiological and acute phase responses of crossbred newly-received heifers to an endotoxin challenge. Heifers (n = 24; 219 ± 2.4 kg) were separated into treatment groups receiving a Control diet (n = 8), ...

  15. Use of yeast cell wall extract as a tool to reduce the impact of necrotic enteritis in broilers.

    Science.gov (United States)

    M'Sadeq, Shawkat A; Wu, Shu-Biao; Choct, Mingan; Forder, Rebecca; Swick, Robert A

    2015-05-01

    The use of a yeast cell wall extract derived from Saccharomyces cerevisiae (Actigen(®)) has been proposed as an alternative to in-feed antibiotics. This experiment was conducted to investigate the efficacy of yeast cell extract as an alternative to zinc bacitracin or salinomycin using a necrotic enteritis challenge model. A feeding study was conducted using 480-day-old male Ross 308 chicks assigned to 48 floor pens. A 2 × 4 factorial arrangement of treatments was employed. The factors were: challenge (- or +) and feed additive (control, zinc bacitracin at 100/50 mg/kg, yeast cell wall extract at 400/800/200 mg/kg, or salinomycin at 60 mg/kg in starter, grower, and finisher, respectively). Diets based on wheat, sorghum, soybean meal, meat and bone meal, and canola meal were formulated according to the Ross 308 nutrient specifications. Birds were challenged using a previously established protocol (attenuated Eimeria spp oocysts) on d 9 and 10(8) to 10(9) Clostridium perfringens (type A strain EHE-NE18) on d 14 and 15). Challenged and unchallenged birds were partitioned to avoid cross contamination. Challenged birds had lower weight gain, feed intake and livability compared to unchallenged birds on d 24 and d 35 (P enteritis lesion scores in the small intestine sections when compared to unchallenged birds (P enteritis in the current study. This study indicates that yeast cell wall extract has promise as a tool for controlling necrotic enteritis.

  16. Chemical treatment and chitosan coating of yeast cells to improve the encapsulation and controlled release of bovine serum albumin.

    Science.gov (United States)

    Shi, Guorong; Liu, Yating; He, Zijun; Zhou, Jihen

    2016-08-10

    We investigate the encapsulation of bovine serum albumin (BSA) in chemical-treated and chitosan-coated yeast cells, Saccharomyces cerevisiae (S. cerevisiae), for the controlled release of BSA. The chemical treatment can sufficiently enlarge the small-sized cell-wall cavities and/or break the integrity for the entrance of BSA to the interior of yeast cells, and the additional chitosan coating can well prevent the rapid release of encapsulated BSA from the yeast-derived microcapsules. The sodium hydroxide pretreated S. cerevisiae gives a maximum encapsulation yield of (10.1 ± 0.2)% for BSA. An additional coating of S. cerevisiae with chitosan can reduce the initial burst release of BSA and extend the release period from 24 h in the chitosan-free case to 48 h in phosphate buffer at pH 7.4. The prepared microcapsules can well keep the shapes and sizes of yeast cells and thus show uniform sizes of 3.85 ± 0.81 μm. The encapsulated BSA well retains its pristine ultraviolet spectroscopic and chromatographic behaviors. The present microencapsulation protocol has the advantages of convenient and mild operation, high encapsulation efficiency, and organic solvent-free nature, which is of reference value for establishing high-performance controllable biomacromolecule-delivery systems.

  17. Disruption of Protein Mannosylation Affects Candida guilliermondii Cell Wall, Immune Sensing, and Virulence

    Directory of Open Access Journals (Sweden)

    María J. Navarro-Arias

    2016-12-01

    Full Text Available The fungal cell wall contains glycoproteins that interact with the host immune system. In the prominent pathogenic yeast Candida albicans, Pmr1 acts as a Golgi-resident ion pump that provides cofactors to mannosyltransferases, regulating the synthesis of mannans attached to glycoproteins. To gain insight into a putative conservation of such a crucial process within opportunistic yeasts, we were particularly interested in studying the role of the PMR1 homolog in a low-virulent species that rarely causes candidiasis, Candida guilliermondii. We disrupted C. guilliermondii PMR1 and found that loss of Pmr1 affected cell growth and morphology, biofilm formation, susceptibility to cell wall perturbing agents, mannan levels, and the wall composition and organization. Despite there was a significant increment in the amount of β1,3-glucan exposed at the wall surface, this positively influenced only the ability of the mutant to stimulate IL-10 production by human monocytes, suggesting that recognition of both mannan and β1,3-glucan, is required to stimulate strong levels of pro-inflammatory cytokines. Accordingly, our results indicate C. guilliermondii sensing by monocytes was critically dependent on the recognition of N-linked mannans and β1,3-glucan, as reported in other Candida species. In addition, chemical remotion of cell wall O-linked mannans was found to positively influence the recognition of C. guilliermondii by human monocytes, suggesting that O-linked mannans mask other cell wall components from immune cells. This observation contrasts with that reported in C. albicans. Finally, mice infected with C. guilliermondii pmr1 null mutant cells had significantly lower fungal burdens compared to animals challenged with the parental strain. Accordingly, the null mutant showed inability to kill larvae in the Galleria mellonella infection model. This study thus demonstrates that mannans are relevant for the C. guilliermondii-host interaction, with

  18. Disruption of Protein Mannosylation Affects Candida guilliermondii Cell Wall, Immune Sensing, and Virulence

    Science.gov (United States)

    Navarro-Arias, María J.; Defosse, Tatiana A.; Dementhon, Karine; Csonka, Katalin; Mellado-Mojica, Erika; Dias Valério, Aline; González-Hernández, Roberto J.; Courdavault, Vincent; Clastre, Marc; Hernández, Nahúm V.; Pérez-García, Luis A.; Singh, Dhirendra K.; Vizler, Csaba; Gácser, Attila; Almeida, Ricardo S.; Noël, Thierry; López, Mercedes G.; Papon, Nicolas; Mora-Montes, Héctor M.

    2016-01-01

    The fungal cell wall contains glycoproteins that interact with the host immune system. In the prominent pathogenic yeast Candida albicans, Pmr1 acts as a Golgi-resident ion pump that provides cofactors to mannosyltransferases, regulating the synthesis of mannans attached to glycoproteins. To gain insight into a putative conservation of such a crucial process within opportunistic yeasts, we were particularly interested in studying the role of the PMR1 homolog in a low-virulent species that rarely causes candidiasis, Candida guilliermondii. We disrupted C. guilliermondii PMR1 and found that loss of Pmr1 affected cell growth and morphology, biofilm formation, susceptibility to cell wall perturbing agents, mannan levels, and the wall composition and organization. Despite the significant increment in the amount of β1,3-glucan exposed at the wall surface, this positively influenced only the ability of the mutant to stimulate IL-10 production by human monocytes, suggesting that recognition of both mannan and β1,3-glucan, is required to stimulate strong levels of pro-inflammatory cytokines. Accordingly, our results indicate C. guilliermondii sensing by monocytes was critically dependent on the recognition of N-linked mannans and β1,3-glucan, as reported in other Candida species. In addition, chemical remotion of cell wall O-linked mannans was found to positively influence the recognition of C. guilliermondii by human monocytes, suggesting that O-linked mannans mask other cell wall components from immune cells. This observation contrasts with that reported in C. albicans. Finally, mice infected with C. guilliermondii pmr1Δ null mutant cells had significantly lower fungal burdens compared to animals challenged with the parental strain. Accordingly, the null mutant showed inability to kill larvae in the Galleria mellonella infection model. This study thus demonstrates that mannans are relevant for the C. guilliermondii-host interaction, with an atypical role for O

  19. Single molecule narrowfield microscopy of protein-DNA binding dynamics in glucose signal transduction of live yeast cells

    CERN Document Server

    Wollman, Adam J M

    2016-01-01

    Single-molecule narrowfield microscopy is a versatile tool to investigate a diverse range of protein dynamics in live cells and has been extensively used in bacteria. Here, we describe how these methods can be extended to larger eukaryotic, yeast cells, which contain sub-cellular compartments. We describe how to obtain single-molecule microscopy data but also how to analyse these data to track and obtain the stoichiometry of molecular complexes diffusing in the cell. We chose glucose mediated signal transduction of live yeast cells as the system to demonstrate these single-molecule techniques as transcriptional regulation is fundamentally a single molecule problem - a single repressor protein binding a single binding site in the genome can dramatically alter behaviour at the whole cell and population level.

  20. Pulse-transmission Oscillators: Autonomous Boolean Models and the Yeast Cell Cycle

    Science.gov (United States)

    Sevim, Volkan; Gong, Xinwei; Socolar, Joshua

    2010-03-01

    Models of oscillatory gene expression typically involve a constitutively expressed or positively autoregulated gene which is repressed by a negative feedback loop. In Boolean representations of such systems, which include the repressilator and relaxation oscillators, dynamical stability stems from the impossibility of satisfying all of the Boolean rules at once. We consider a different class of networks, in which oscillations are due to the transmission of a pulse of gene activation around a ring. Using autonomous Boolean modeling methods, we show how the circulating pulse can be stabilized by decoration of the ring with certain feedback and feed-forward motifs. We then discuss the relation of these models to ODE models of transcriptional networks, emphasizing the role of explicit time delays. Finally, we show that a network recently proposed as a generator of cell cycle oscillations in yeast contains the motifs required to support stable transmission oscillations.

  1. Stress-induced nuclear RNA degradation pathways regulate yeast bromodomain factor 2 to promote cell survival.

    Directory of Open Access Journals (Sweden)

    Kevin Roy

    2014-09-01

    Full Text Available Bromodomain proteins are key regulators of gene expression. How the levels of these factors are regulated in specific environmental conditions is unknown. Previous work has established that expression of yeast Bromodomain factor 2 (BDF2 is limited by spliceosome-mediated decay (SMD. Here we show that BDF2 is subject to an additional layer of post-transcriptional control through RNase III-mediated decay (RMD. We found that the yeast RNase III Rnt1p cleaves a stem-loop structure within the BDF2 mRNA to down-regulate its expression. However, these two nuclear RNA degradation pathways play distinct roles in the regulation of BDF2 expression, as we show that the RMD and SMD pathways of the BDF2 mRNA are differentially activated or repressed in specific environmental conditions. RMD is hyper-activated by salt stress and repressed by hydroxyurea-induced DNA damage while SMD is inactivated by salt stress and predominates during DNA damage. Mutations of cis-acting signals that control SMD and RMD rescue numerous growth defects of cells lacking Bdf1p, and show that SMD plays an important role in the DNA damage response. These results demonstrate that specific environmental conditions modulate nuclear RNA degradation pathways to control BDF2 expression and Bdf2p-mediated gene regulation. Moreover, these results show that precise dosage of Bromodomain factors is essential for cell survival in specific environmental conditions, emphasizing their importance for controlling chromatin structure and gene expression in response to environmental stress.

  2. Overexpression of stress-related genes enhances cell viability and velum formation in Sherry wine yeasts.

    Science.gov (United States)

    Fierro-Risco, Jesús; Rincón, Ana María; Benítez, Tahía; Codón, Antonio C

    2013-08-01

    Flor formation and flor endurance have been related to ability by Saccharomyces cerevisiae flor yeasts to resist hostile conditions such as oxidative stress and the presence of acetaldehyde and ethanol. Ethanol and acetaldehyde toxicity give rise to formation of reactive oxygen species (ROS) and loss of cell viability. Superoxide dismutases Sod1p and Sod2p and other proteins such as Hsp12p are involved in oxidative stress tolerance. In this study, genes SOD1, SOD2, and HSP12 were overexpressed in flor yeast strains FJF206, FJF414 and B16. In the SOD1 and SOD2 transformant strains superoxide dismutases encoded by genes SOD1 and SOD2 increased their specific activity considerably as a direct result of overexpression of genes SOD1 and SOD2, indirectly, catalase, glutathione reductase, and glutathione peroxidase activities increased too. The HSP12 transformant strains showed higher levels of glutathione peroxidase and reductase activities. These transformant strains showed an increase in intracellular glutathione content, a reduction in peroxidized lipid concentration, and higher resistance to oxidative stress conditions. As a result, flor formation by these strains took place more rapidly than by their parental strains, velum being thicker and with higher percentages of viable cells. In addition, a slight decrease in ethanol and glycerol concentrations, and an increase in acetaldehyde were detected in wines matured under velum formed by transformant strains, as compared to their parental strains. In the industry, velum formed by transformant strains with increased viability may result in acceleration of both metabolism and wine aging, thus reducing time needed for wine maturation.

  3. Yeast cell wall integrity sensors form specific plasma membrane microdomains important for signalling.

    Science.gov (United States)

    Kock, Christian; Arlt, Henning; Ungermann, Christian; Heinisch, Jürgen J

    2016-09-01

    The cell wall integrity (CWI) pathway of the yeast Saccharomyces cerevisiae relies on the detection of cell surface stress by five sensors (Wsc1, Wsc2, Wsc3, Mid2, Mtl1). Each sensor contains a single transmembrane domain and a highly mannosylated extracellular region, and probably detects mechanical stress in the cell wall or the plasma membrane. We here studied the distribution of the five sensors at the cell surface by using fluorescently tagged variants in conjunction with marker proteins for established membrane compartments. We find that each of the sensors occupies a specific microdomain at the plasma membrane. The novel punctate 'membrane compartment occupied by Wsc1' (MCW) shows moderate overlap with other Wsc-type sensors, but not with those of the Mid-type sensors or other established plasma membrane domains. We further observed that sensor density and formation of the MCW compartment depends on the cysteine-rich head group near the N-terminus of Wsc1. Yet, signalling capacity depends more on the sensor density in the plasma membrane than on clustering within its microcompartment. We propose that the MCW microcompartment provides a quality control mechanism for retaining functional sensors at the plasma membrane to prevent them from endocytosis.

  4. Attachment of MAL32-encoded maltase on the outside of yeast cells improves maltotriose utilization.

    Science.gov (United States)

    Dietvorst, J; Blieck, L; Brandt, R; Van Dijck, P; Steensma, H Y

    2007-01-01

    The fermentation of maltotriose, the second most abundant fermentable sugar in wort, is often incomplete during high-gravity brewing. Poor maltotriose consumption is due to environmental stress conditions during high-gravity fermentation and especially to a low uptake of this sugar by some industrial strains. In this study we investigated whether the use of strains with an alpha-glucosidase attached to the outside of the cell might be a possible way to reduce residual maltotriose. To this end, the N-terminal leader sequence of Kre1 and the carboxy-terminal anchoring domain of either Cwp2 or Flo1 were used to target maltase encoded by MAL32 to the cell surface. We showed that Mal32 displayed on the cell surface of Saccharomyces cerevisiae laboratory strains was capable of hydrolysis of alpha-1,4-linkages, and that it increased the ability of a strain lacking a functional maltose permease to grow on maltotriose. Moreover, the enzyme was also expressed and found to be active in an industrial strain. These data show that expressing a suitable maltase on the cell surface might provide a means of modifying yeast for more complete maltotriose utilization in brewing and other fermentation applications.

  5. Selective inhibition of purified human phosphodiesterase 4A expressed in yeast cell GL62 by ciclamilast, piclamilast, and rolipram

    Institute of Scientific and Technical Information of China (English)

    Jun-chun CHEN; Ji-qiang CHEN; Qiang-min Xie; Yi-liang ZHU

    2004-01-01

    AIM: To improve the specific activity of human phosphodiesterase 4A (PDE4A) expressed in yeast cell GL62 and investigate the effects of selective phosphodiesterase 4 (PDE4) inhibitors (ciclamilast, piclamilast, and rolipram),selective phosphodiesterase 5 (PDES) inhibitor zaprinast, and cyclooxygenase (COX) inhibitors (aspirin, indomethacin)on human PDE4A activity expressed in yeast cell GL62. METHODS: Human PDE4A was expressed in yeast cell GL62 after CuSO4 induction and the specific activity of human PDE4A was improved by ammonium sulfate fractionation, DEAE Sephadex A-50 chromatography, and Sephadex G-100 chromatography. The activity of PDE4A was measured by high performance liquid chromatography (HPLC). RESULTS: Induced PDE4A activity expressed in crude yeast cell GL62 supernatant and pellet was (340±21) nmol.g-1.min-1 and (250±25) nmol.g-1.min-lrespectively. The specific activity of recombinant PDE4A in supernatant was improved 6.4 fold. Ciclamilast,piclamilast, and rolipram could inhibit PDE4A activity. The ICs0 values (95 % confidence limits) of ciclamilast,piclamilast, and rolipram were 1.27 (0.84-1.91), 66.4 (33.3-132.2), and 3.73 (2.51-5.53) μmol/L respectively.Zaprinast, aspirin, and indomethacin had no obvious inhibitory effect on PDE4A activity. CONCLUSION: The specific activity of PDE4A expressed in yeast cell GL62 can be improved by ammonium sulfate fractionation,DEAE Sephadex A-50 chromatography, and Sephadex G-100 chromatography. Ciclamilast, piclamilast, and rolipram can inhibit PDE4A activity while zaprinast, aspirin, and indomethacin have no obvious inhibitory effect on PDE4A activity. Human PDE4A expressed in GL62 might be useful in the research and screening of new selective PDE4 inhibitors.

  6. Zinc up-regulated the expression of the rice metallonthionein gene family and enhanced the zinc tolerance of yeast cells

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Northern blot and functional complementation assay were employed to analyze the effects of zinc on expression of ten rice metallothionein genes (OsMT-Is) in rice seedlings and the growth of yeast cells transformed with OsMT-Is. Northern blot revealed that in shoots of the rice seedlings treated with different Zn2+ concentrations, expression of most members of OsMT-I family was increased, except the type 4 OsMT-Is (OsMT-I-4a, 4b and 4c). In roots, Zn2+ significantly increased the transcription of OsMT-I-1b and OsMT-I-2c, but reduced the trascription of OsMT-I-1a and OsMT-I-3a. When these ten cDNAs were heterologously expressed in zinc sensitive yeast mutant, all transgenic yeasts showed increased tolerance to Zn2+, and zinc accumulation in these yeast cells also increased.These indicated that OsMT-I family members might respond to extra Zn2+, and they could enhance Zn2+ tolerance of cells by direct binding Zn2+.

  7. A Nonlinear Mixed Effects Approach for Modeling the Cell-To-Cell Variability of Mig1 Dynamics in Yeast.

    Science.gov (United States)

    Almquist, Joachim; Bendrioua, Loubna; Adiels, Caroline Beck; Goksör, Mattias; Hohmann, Stefan; Jirstrand, Mats

    2015-01-01

    The last decade has seen a rapid development of experimental techniques that allow data collection from individual cells. These techniques have enabled the discovery and characterization of variability within a population of genetically identical cells. Nonlinear mixed effects (NLME) modeling is an established framework for studying variability between individuals in a population, frequently used in pharmacokinetics and pharmacodynamics, but its potential for studies of cell-to-cell variability in molecular cell biology is yet to be exploited. Here we take advantage of this novel application of NLME modeling to study cell-to-cell variability in the dynamic behavior of the yeast transcription repressor Mig1. In particular, we investigate a recently discovered phenomenon where Mig1 during a short and transient period exits the nucleus when cells experience a shift from high to intermediate levels of extracellular glucose. A phenomenological model based on ordinary differential equations describing the transient dynamics of nuclear Mig1 is introduced, and according to the NLME methodology the parameters of this model are in turn modeled by a multivariate probability distribution. Using time-lapse microscopy data from nearly 200 cells, we estimate this parameter distribution according to the approach of maximizing the population likelihood. Based on the estimated distribution, parameter values for individual cells are furthermore characterized and the resulting Mig1 dynamics are compared to the single cell times-series data. The proposed NLME framework is also compared to the intuitive but limited standard two-stage (STS) approach. We demonstrate that the latter may overestimate variabilities by up to almost five fold. Finally, Monte Carlo simulations of the inferred population model are used to predict the distribution of key characteristics of the Mig1 transient response. We find that with decreasing levels of post-shift glucose, the transient response of Mig1 tend

  8. A Nonlinear Mixed Effects Approach for Modeling the Cell-To-Cell Variability of Mig1 Dynamics in Yeast.

    Directory of Open Access Journals (Sweden)

    Joachim Almquist

    Full Text Available The last decade has seen a rapid development of experimental techniques that allow data collection from individual cells. These techniques have enabled the discovery and characterization of variability within a population of genetically identical cells. Nonlinear mixed effects (NLME modeling is an established framework for studying variability between individuals in a population, frequently used in pharmacokinetics and pharmacodynamics, but its potential for studies of cell-to-cell variability in molecular cell biology is yet to be exploited. Here we take advantage of this novel application of NLME modeling to study cell-to-cell variability in the dynamic behavior of the yeast transcription repressor Mig1. In particular, we investigate a recently discovered phenomenon where Mig1 during a short and transient period exits the nucleus when cells experience a shift from high to intermediate levels of extracellular glucose. A phenomenological model based on ordinary differential equations describing the transient dynamics of nuclear Mig1 is introduced, and according to the NLME methodology the parameters of this model are in turn modeled by a multivariate probability distribution. Using time-lapse microscopy data from nearly 200 cells, we estimate this parameter distribution according to the approach of maximizing the population likelihood. Based on the estimated distribution, parameter values for individual cells are furthermore characterized and the resulting Mig1 dynamics are compared to the single cell times-series data. The proposed NLME framework is also compared to the intuitive but limited standard two-stage (STS approach. We demonstrate that the latter may overestimate variabilities by up to almost five fold. Finally, Monte Carlo simulations of the inferred population model are used to predict the distribution of key characteristics of the Mig1 transient response. We find that with decreasing levels of post-shift glucose, the transient

  9. Endocytic Ark/Prk kinases play a critical role in adriamycin resistance in both yeast and mammalian cells.

    Science.gov (United States)

    Takahashi, Tsutomu; Furuchi, Takemitsu; Naganuma, Akira

    2006-12-15

    To elucidate the mechanism of acquired resistance to Adriamycin, we searched for genes that, when overexpressed, render Saccharomyces cerevisiae resistant to Adriamycin. We identified AKL1, a gene of which the function is unknown but is considered, nonetheless, to be a member of the Ark/Prk kinase family, which is involved in the regulation of endocytosis, on the basis of its deduced amino acid sequence. Among tested members of the Ark/Prk kinase family (Ark1, Prk1, and Akl1), overexpressed Prk1 also conferred Adriamycin resistance on yeast cells. Prk1 is known to dissociate the Sla1/Pan1/End3 complex, which is involved in endocytosis, by phosphorylating Sla1 and Pan1 in the complex. We showed that Akl1 promotes phosphorylation of Pan1 in this complex and reduces the endocytic ability of the cell, as does Prk1. Sla1- and End3-defective yeast cells were also resistant to Adriamycin and overexpression of Akl1 in these defective cells did not increase the degree of Adriamycin resistance, suggesting that Akl1 might reduce Adriamycin toxicity by reducing the endocytic ability of cells via a mechanism that involves the Sla1/Pan1/End3 complex and the phosphorylation of Pan1. We also found that HEK293 cells that overexpressed AAK1, a member of the human Ark/Prk family, were Adriamycin resistant. Our findings suggest that endocytosis might be involved in the mechanism of Adriamycin toxicity in yeast and human cells.

  10. Yeast Endocytic Adaptor AP-2 Binds the Stress Sensor Mid2 and Functions in Polarized Cell Responses

    Science.gov (United States)

    Chapa-y-Lazo, Bernardo; Allwood, Ellen G; Smaczynska-de Rooij, Iwona I; Snape, Mary L; Ayscough, Kathryn R

    2014-01-01

    The AP-2 complex is a heterotetrameric endocytic cargo-binding adaptor that facilitates uptake of membrane proteins during mammalian clathrin-mediated endocytosis. While budding yeast has clear homologues of all four AP-2 subunits which form a complex and localize to endocytic sites in vivo, the function of yeast AP-2 has remained enigmatic. Here, we demonstrate that AP-2 is required for hyphal growth in Candida albicans and polarized cell responses in Saccharomyces cerevisiae. Deletion of APM4, the cargo-binding mu subunit of AP-2, causes defects in pseudohyphal growth, generation of a mating projection and the cell wall damage response. In an apm4 null mutant, the cell wall stress sensor Mid2 is unable to relocalize to the tip of a mating projection following pheromone addition, or to the mother bud neck in response to cell wall damage. A direct binding interaction between Mid2 and the mu homology domain of Apm4 further supports a model in which AP-2 binds Mid2 to facilitate its internalization and relocalization in response to specific signals. Thus, Mid2 is the first cargo for AP-2 identified in yeast. We propose that endocytic recycling of Mid2 and other components is required for polarized cell responses ensuring cell wall deposition and is tightly monitored during cell growth. PMID:24460703

  11. H/KDEL receptors mediate host cell intoxication by a viral A/B toxin in yeast

    Science.gov (United States)

    Becker, Björn; Blum, Andrea; Gießelmann, Esther; Dausend, Julia; Rammo, Domenik; Müller, Nina C.; Tschacksch, Emilia; Steimer, Miriam; Spindler, Jenny; Becherer, Ute; Rettig, Jens; Breinig, Frank; Schmitt, Manfred J.

    2016-01-01

    A/B toxins such as cholera toxin, Pseudomonas exotoxin and killer toxin K28 contain a KDEL-like amino acid motif at one of their subunits which ensures retrograde toxin transport through the secretory pathway of a target cell. As key step in host cell invasion, each toxin binds to distinct plasma membrane receptors that are utilized for cell entry. Despite intensive efforts, some of these receptors are still unknown. Here we identify the yeast H/KDEL receptor Erd2p as membrane receptor of K28, a viral A/B toxin carrying an HDEL motif at its cell binding β-subunit. While initial toxin binding to the yeast cell wall is unaffected in cells lacking Erd2p, binding to spheroplasts and in vivo toxicity strongly depend on the presence of Erd2p. Consistently, Erd2p is not restricted to membranes of the early secretory pathway but extends to the plasma membrane where it binds and internalizes HDEL-cargo such as K28 toxin, GFPHDEL and Kar2p. Since human KDEL receptors are fully functional in yeast and restore toxin sensitivity in the absence of endogenous Erd2p, toxin uptake by H/KDEL receptors at the cell surface might likewise contribute to the intoxication efficiency of A/B toxins carrying a KDEL-motif at their cytotoxic A-subunit(s). PMID:27493088

  12. Evaluation of the sensitivity of bacterial and yeast cells to cold atmospheric plasma jet treatments.

    Science.gov (United States)

    Sharkey, Michael A; Chebbi, Ahmed; McDonnell, Kevin A; Staunton, Claire; Dowling, Denis P

    2015-06-07

    The focus of this research was first to determine the influence of the atmospheric plasma drive frequency on the generation of atomic oxygen species and its correlation with the reduction of bacterial load after treatment in vitro. The treatments were carried out using a helium-plasma jet source called PlasmaStream™. The susceptibility of multiple microbial cell lines was investigated in order to compare the response of gram-positive and gram-negative bacteria, as well as a yeast cell line to the atmospheric plasma treatment. It was observed for the source evaluated that at a frequency of 160 kHz, increased levels of oxygen-laden active species (i.e., OH, NO) were generated. At this frequency, the maximum level of bacterial inactivation in vitro was also achieved. Ex vivo studies (using freshly excised porcine skin as a human analog) were also carried out to verify the antibacterial effect of the plasma jet treatment at this optimal operational frequency and to investigate the effect of treatment duration on the reduction of bacterial load. The plasma jet treatment was found to yield a 4 log reduction in bacterial load after 6 min of treatment, with no observable adverse effects on the treatment surface. The gram-negative bacterial cell lines were found to be far more susceptible to the atmospheric plasma treatments than the gram-positive bacteria. Flow cytometric analysis of plasma treated bacterial cells (Escherichia coli) was conducted in order to attain a fundamental understanding of the mode of action of the treatment on bacteria at a cellular level. This study showed that after treatment with the plasma jet, E. coli cells progressed through the following steps of cell death; the inactivation of transport systems, followed by depolarization of the cytoplasmic membrane, and finally permeabilization of the cell wall.

  13. Hsp90 orchestrates transcriptional regulation by Hsf1 and cell wall remodelling by MAPK signalling during thermal adaptation in a pathogenic yeast.

    Directory of Open Access Journals (Sweden)

    Michelle D Leach

    2012-12-01

    Full Text Available Thermal adaptation is essential in all organisms. In yeasts, the heat shock response is commanded by the heat shock transcription factor Hsf1. Here we have integrated unbiased genetic screens with directed molecular dissection to demonstrate that multiple signalling cascades contribute to thermal adaptation in the pathogenic yeast Candida albicans. We show that the molecular chaperone heat shock protein 90 (Hsp90 interacts with and down-regulates Hsf1 thereby modulating short term thermal adaptation. In the longer term, thermal adaptation depends on key MAP kinase signalling pathways that are associated with cell wall remodelling: the Hog1, Mkc1 and Cek1 pathways. We demonstrate that these pathways are differentially activated and display cross talk during heat shock. As a result ambient temperature significantly affects the resistance of C. albicans cells to cell wall stresses (Calcofluor White and Congo Red, but not osmotic stress (NaCl. We also show that the inactivation of MAP kinase signalling disrupts this cross talk between thermal and cell wall adaptation. Critically, Hsp90 coordinates this cross talk. Genetic and pharmacological inhibition of Hsp90 disrupts the Hsf1-Hsp90 regulatory circuit thereby disturbing HSP gene regulation and reducing the resistance of C. albicans to proteotoxic stresses. Hsp90 depletion also affects cell wall biogenesis by impairing the activation of its client proteins Mkc1 and Hog1, as well as Cek1, which we implicate as a new Hsp90 client in this study. Therefore Hsp90 modulates the short term Hsf1-mediated activation of the classic heat shock response, coordinating this response with long term thermal adaptation via Mkc1- Hog1- and Cek1-mediated cell wall remodelling.

  14. HSC90 is required for nascent hepatitis C virus core protein stability in yeast cells.

    Science.gov (United States)

    Kubota, Naoko; Inayoshi, Yasutaka; Satoh, Naoko; Fukuda, Takashi; Iwai, Kenta; Tomoda, Hiroshi; Kohara, Michinori; Kataoka, Kazuhiro; Shimamoto, Akira; Furuichi, Yasuhiro; Nomoto, Akio; Naganuma, Akira; Kuge, Shusuke

    2012-07-30

    Hepatitis C virus core protein (Core) contributes to HCV pathogenicity. Here, we demonstrate that Core impairs growth in budding yeast. We identify HSP90 inhibitors as compounds that reduce intracellular Core protein level and restore yeast growth. Our results suggest that HSC90 (Hsc82) may function in the protection of the nascent Core polypeptide against degradation in yeast and the C-terminal region of Core corresponding to the organelle-interaction domain was responsible for Hsc82-dependent stability. The yeast system may be utilized to select compounds that can direct the C-terminal region to reduce the stability of Core protein.

  15. Detailed search for protein kinase(s) involved in plasma membrane H+-ATPase activity regulation of yeast cells.

    Science.gov (United States)

    Pereira, Renata R; Castanheira, Diogo; Teixeira, Janaina A; Bouillet, Leoneide E M; Ribeiro, Erica M C; Trópia, Maria M J; Alvarez, Florencia; Correa, Lygia F M; Mota, Bruno E F; Conceição, Luis Eduardo F R; Castro, Ieso M; Brandão, Rogelio L

    2015-03-01

    This study displays a screening using yeast strains deficient in protein kinases known to exist in Saccharomyces cerevisiae. From 95 viable single mutants, 20 mutants appear to be affected in the glucose-induced extracellular acidification. The mutants that are unaffected in calcium signaling were tested for their sensitivity to hygromycin B. Furthermore, we verified whether the remaining mutants produced enzymes that are appropriately incorporated at plasma membrane. Finally, we measure the kinetic properties of the enzyme in purified plasma membranes from glucose-starved as well as glucose-fermenting cells. We confirmed the kinase Ptk2 involvement in H(+)-ATPase regulation (increase of affinity for ATP). However, the identification of the kinase(s) responsible for phosphorylation that leads to an increase in Vmax appears to be more complex. Complementary experiments were performed to check how those protein kinases could be related to the control of the plasma membrane H(+)-ATPase and/or the potential membrane. In summary, our results did not permit us to identify the protein kinase(s) involved in regulating the catalytic efficiency of the plasma membrane H(+)-ATPase. Therefore, our results indicate that the current regulatory model based on the phosphorylation of two different sites located in the C-terminus tail of the enzyme could be inappropriate.

  16. Modification of aflatoxin B1 and ochratoxin A toxicokinetics in rats administered a yeast cell wall preparation

    OpenAIRE

    2010-01-01

    Abstract The cell wall of Saccharomyces cerevisiae can bind mycotoxins in vitro but there is scarce information on whether this property decreases the absorption of mycotoxins in vivo. The effect of a yeast cell wall preparation (YCW) on toxicokinetics and balance excretion (urine and faeces) of aflatoxin B1 (AFB1) and ochratoxin A (OTA) was tested in rats after oral administration of each toxin. The 3H-labelled mycotoxins were used at low doses. Co-administration of YCW with AF...

  17. REAL-Select: full-length antibody display and library screening by surface capture on yeast cells.

    Science.gov (United States)

    Rhiel, Laura; Krah, Simon; Günther, Ralf; Becker, Stefan; Kolmar, Harald; Hock, Björn

    2014-01-01

    We describe a novel approach named REAL-Select for the non-covalent display of IgG-molecules on the surface of yeast cells for the purpose of antibody engineering and selection. It relies on the capture of secreted native full-length antibodies on the cell surface via binding to an externally immobilized ZZ domain, which tightly binds antibody Fc. It is beneficial for high-throughput screening of yeast-displayed IgG-libraries during antibody discovery and development. In a model experiment, antibody-displaying yeast cells were isolated from a 1:1,000,000 mixture with control cells confirming the maintenance of genotype-phenotype linkage. Antibodies with improved binding characteristics were obtained by affinity maturation using REAL-Select, demonstrating the ability of this system to display antibodies in their native form and to detect subtle changes in affinity by flow cytometry. The biotinylation of the cell surface followed by functionalization with a streptavidin-ZZ fusion protein is an approach that is independent of the genetic background of the antibody-producing host and therefore can be expected to be compatible with other eukaryotic expression hosts such as P. pastoris or mammalian cells.

  18. REAL-Select: full-length antibody display and library screening by surface capture on yeast cells.

    Directory of Open Access Journals (Sweden)

    Laura Rhiel

    Full Text Available We describe a novel approach named REAL-Select for the non-covalent display of IgG-molecules on the surface of yeast cells for the purpose of antibody engineering and selection. It relies on the capture of secreted native full-length antibodies on the cell surface via binding to an externally immobilized ZZ domain, which tightly binds antibody Fc. It is beneficial for high-throughput screening of yeast-displayed IgG-libraries during antibody discovery and development. In a model experiment, antibody-displaying yeast cells were isolated from a 1:1,000,000 mixture with control cells confirming the maintenance of genotype-phenotype linkage. Antibodies with improved binding characteristics were obtained by affinity maturation using REAL-Select, demonstrating the ability of this system to display antibodies in their native form and to detect subtle changes in affinity by flow cytometry. The biotinylation of the cell surface followed by functionalization with a streptavidin-ZZ fusion protein is an approach that is independent of the genetic background of the antibody-producing host and therefore can be expected to be compatible with other eukaryotic expression hosts such as P. pastoris or mammalian cells.

  19. Evaluation of estrogenic potential of flavonoids using a recombinant yeast strain and MCF7/BUS cell proliferation assay.

    Science.gov (United States)

    Resende, Flávia A; de Oliveira, Ana Paula S; de Camargo, Mariana S; Vilegas, Wagner; Varanda, Eliana A

    2013-01-01

    Phytoestrogens are of interest because of their reported beneficial effects on many human maladies including cancer, neurodegeneration, cardiovascular disease and diabetes. Furthermore, there is a search for compounds with estrogenic activity that can replace estrogen in hormone replacement therapy during menopause, without the undesirable effects of estrogen, such as the elevation of breast cancer occurrence. Thus, the principal objective of this study was to assess the estrogenic activity of flavonoids with different hydroxylation patterns: quercetin, kaempferol, luteolin, fisetin, chrysin, galangin, flavone, 3-hydroxyflavone, 5-hydroxyflavone and 7-hydroxyflavone via two different in vitro assays, the recombinant yeast assay (RYA) and the MCF-7 proliferation assay (E-screen), since the most potent phytoestrogens are members of the flavonoid family. In these assays, kaempferol was the only compound that showed ERα-dependent transcriptional activation activity by RYA, showing 6.74±1.7 nM EEQ, besides acting as a full agonist for the stimulation of proliferation of MCF-7/BUS cells. The other compounds did not show detectable levels of interaction with ER under the conditions used in the RYA. However, in the E-screen assay, compounds such as galangin, luteolin and fisetin also stimulated the proliferation of MCF-7/BUS cells, acting as partial agonists. In the evaluation of antiestrogenicity, the compounds quercetin, chrysin and 3-hydroxyflavone significantly inhibited the cell proliferation induced by 17-β-estradiol in the E-screen assay, indicating that these compounds may act as estrogen receptor antagonists. Overall, it became clear in the assay results that the estrogenic activity of flavonoids was affected by small structural differences such as the number of hydroxyl groups, especially those on the B ring of the flavonoid.

  20. Evaluation of estrogenic potential of flavonoids using a recombinant yeast strain and MCF7/BUS cell proliferation assay.

    Directory of Open Access Journals (Sweden)

    Flávia A Resende

    Full Text Available Phytoestrogens are of interest because of their reported beneficial effects on many human maladies including cancer, neurodegeneration, cardiovascular disease and diabetes. Furthermore, there is a search for compounds with estrogenic activity that can replace estrogen in hormone replacement therapy during menopause, without the undesirable effects of estrogen, such as the elevation of breast cancer occurrence. Thus, the principal objective of this study was to assess the estrogenic activity of flavonoids with different hydroxylation patterns: quercetin, kaempferol, luteolin, fisetin, chrysin, galangin, flavone, 3-hydroxyflavone, 5-hydroxyflavone and 7-hydroxyflavone via two different in vitro assays, the recombinant yeast assay (RYA and the MCF-7 proliferation assay (E-screen, since the most potent phytoestrogens are members of the flavonoid family. In these assays, kaempferol was the only compound that showed ERα-dependent transcriptional activation activity by RYA, showing 6.74±1.7 nM EEQ, besides acting as a full agonist for the stimulation of proliferation of MCF-7/BUS cells. The other compounds did not show detectable levels of interaction with ER under the conditions used in the RYA. However, in the E-screen assay, compounds such as galangin, luteolin and fisetin also stimulated the proliferation of MCF-7/BUS cells, acting as partial agonists. In the evaluation of antiestrogenicity, the compounds quercetin, chrysin and 3-hydroxyflavone significantly inhibited the cell proliferation induced by 17-β-estradiol in the E-screen assay, indicating that these compounds may act as estrogen receptor antagonists. Overall, it became clear in the assay results that the estrogenic activity of flavonoids was affected by small structural differences such as the number of hydroxyl groups, especially those on the B ring of the flavonoid.

  1. Chemical form of selenium affects its uptake, transport, and glutathione peroxidase activity in the human intestinal Caco-2 cell model.

    Science.gov (United States)

    Zeng, Huawei; Jackson, Matthew I; Cheng, Wen-Hsing; Combs, Gerald F

    2011-11-01

    Determining the effect of selenium (Se) chemical form on uptake, transport, and glutathione peroxidase activity in human intestinal cells is critical to assess Se bioavailability at nutritional doses. In this study, we found that two sources of L-selenomethionine (SeMet) and Se-enriched yeast each increased intracellular Se content more effectively than selenite or methylselenocysteine (SeMSC) in the human intestinal Caco-2 cell model. Interestingly, SeMSC, SeMet, and digested Se-enriched yeast were transported at comparable efficacy from the apical to basolateral sides, each being about 3-fold that of selenite. In addition, these forms of Se, whether before or after traversing from apical side to basolateral side, did not change the potential to support glutathione peroxidase (GPx) activity. Although selenoprotein P has been postulated to be a key Se transport protein, its intracellular expression did not differ when selenite, SeMSC, SeMet, or digested Se-enriched yeast was added to serum-contained media. Taken together, our data show, for the first time, that the chemical form of Se at nutritional doses can affect the absorptive (apical to basolateral side) efficacy and retention of Se by intestinal cells; but that, these effects are not directly correlated to the potential to support GPx activity.

  2. Dietary Yeast Cell Wall Extract Alters the Proteome of the Skin Mucous Barrier in Atlantic Salmon (Salmo salar): Increased Abundance and Expression of a Calreticulin-Like Protein.

    Science.gov (United States)

    Micallef, Giulia; Cash, Phillip; Fernandes, Jorge M O; Rajan, Binoy; Tinsley, John W; Bickerdike, Ralph; Martin, Samuel A M; Bowman, Alan S

    2017-01-01

    In order to improve fish health and reduce use of chemotherapeutants in aquaculture production, the immunomodulatory effect of various nutritional ingredients has been explored. In salmon, there is evidence that functional feeds can reduce the abundance of sea lice. This study aimed to determine if there were consistent changes in the skin mucus proteome that could serve as a biomarker for dietary yeast cell wall extract. The effect of dietary yeast cell wall extract on the skin mucus proteome of Atlantic salmon was examined using two-dimensional gel electrophoresis. Forty-nine spots showed a statistically significant change in their normalised volumes between the control and yeast cell wall diets. Thirteen spots were successfully identified by peptide fragment fingerprinting and LC-MS/MS and these belonged to a variety of functions and pathways. To assess the validity of the results from the proteome approach, the gene expression of a selection of these proteins was studied in skin mRNA from two different independent feeding trials using yeast cell wall extracts. A calreticulin-like protein increased in abundance at both the protein and transcript level in response to dietary yeast cell wall extract. The calreticulin-like protein was identified as a possible biomarker for yeast-derived functional feeds since it showed the most consistent change in expression in both the mucus proteome and skin transcriptome. The discovery of such a biomarker is expected to quicken the pace of research in the application of yeast cell wall extracts.

  3. Dietary Yeast Cell Wall Extract Alters the Proteome of the Skin Mucous Barrier in Atlantic Salmon (Salmo salar): Increased Abundance and Expression of a Calreticulin-Like Protein

    Science.gov (United States)

    Micallef, Giulia; Cash, Phillip; Fernandes, Jorge M. O.; Rajan, Binoy; Tinsley, John W.; Bickerdike, Ralph

    2017-01-01

    In order to improve fish health and reduce use of chemotherapeutants in aquaculture production, the immunomodulatory effect of various nutritional ingredients has been explored. In salmon, there is evidence that functional feeds can reduce the abundance of sea lice. This study aimed to determine if there were consistent changes in the skin mucus proteome that could serve as a biomarker for dietary yeast cell wall extract. The effect of dietary yeast cell wall extract on the skin mucus proteome of Atlantic salmon was examined using two-dimensional gel electrophoresis. Forty-nine spots showed a statistically significant change in their normalised volumes between the control and yeast cell wall diets. Thirteen spots were successfully identified by peptide fragment fingerprinting and LC-MS/MS and these belonged to a variety of functions and pathways. To assess the validity of the results from the proteome approach, the gene expression of a selection of these proteins was studied in skin mRNA from two different independent feeding trials using yeast cell wall extracts. A calreticulin-like protein increased in abundance at both the protein and transcript level in response to dietary yeast cell wall extract. The calreticulin-like protein was identified as a possible biomarker for yeast-derived functional feeds since it showed the most consistent change in expression in both the mucus proteome and skin transcriptome. The discovery of such a biomarker is expected to quicken the pace of research in the application of yeast cell wall extracts. PMID:28046109

  4. SiRNA In Vivo-Targeted Delivery to Murine Dendritic Cells by Oral Administration of Recombinant Yeast.

    Science.gov (United States)

    Xu, Kun; Liu, Zhongtian; Zhang, Long; Zhang, Tingting; Zhang, Zhiying

    2016-01-01

    SiRNA therapeutics promise a future where any target in the transcriptome could be potentially addressed. However, the delivery of SiRNAs and targeting of particular cell types or organs are major challenges. A novel, efficient, and safe delivery system for promising the introduction of SiRNAs into particular cell types within living organisms is of great significance. Our previous studies have proved that recombinant protein (MSTN) and exogenous gene (EGFP) as vaccines, and furthermore functional CD40 shRNA expression can be delivered into dendritic cells (DCs) in mouse by oral administration of recombinant yeast (Saccharomyces cerevisiae). Here, we describe the details of the promising and innovative approach based on oral administration of recombinant yeast that allows in vivo-targeted delivery of functional SiRNA to murine intestinal DCs.

  5. L-Lactate-selective microbial sensor based on flavocytochrome b2-enriched yeast cells using recombinant and nanotechnology approaches.

    Science.gov (United States)

    Karkovska, Maria; Smutok, Oleh; Stasyuk, Nataliya; Gonchar, Mykhailo

    2015-11-01

    In the recent years, nanotechnology is the most developing branch due to a wide variety of potential applications in biomedical, biotechnological and agriculture fields. The binding nanoparticles with various biological molecules makes them attractive candidates for using in sensor technologies. The particularly actual is obtaining the bionanomembranes based on biocatalytic elements with improved sensing characteristics. The aim of this investigation is to study the properties of microbial L-lactate-selective sensor based on using the recombinant Hansenula polymorpha yeast cells overproducing flavocytochrome b2 (FC b2), as well as additionally enriched by the enzyme bound with gold nanoparticles (FC b2-nAu). Although, the high permeability of the living cells to nanoparticles is being intensively studied (mostly for delivery of drugs), the idea of using both recombinant technology and nanotechnology to increase the amount of the target enzyme in the biosensing layer is really novel. The FC b2-nAu-enriched living and permeabilized yeast cells were used for construction of a bioselective membrane of microbial L-lactate-selective amperometric biosensor. Phenazine methosulphate was served as a free defusing electron transfer mediator which provides effective electron transfer from the reduced enzyme to the electrode surface. It was shown that the output to L-lactate of FC b2-nAu-enriched permeabilized yeast cells is 2.5-fold higher when compared to the control cells. The obtained results confirm that additional enrichment of the recombinant yeast cell by the enzyme bound with nanoparticles improves the analytical parameters of microbial sensor.

  6. Preservation of cell viability and protein conformation on immobilization within nanofibers via electrospinning functionalized yeast.

    Science.gov (United States)

    Canbolat, M Fatih; Gera, Nimish; Tang, Christina; Monian, Brinda; Rao, Balaji M; Pourdeyhimi, Behnam; Khan, Saad A

    2013-10-09

    We investigate the immobilization of a model system of functionalized yeast that surface-display enhanced green fluorescent protein (eGFP) within chemically crosslinked polyvinyl alcohol (PVA) nanofibers. Yeast is incorporated into water insoluble nanofibrous materials by direct electrospinning with PVA followed by vapor phase chemical crosslinking of the polymer. Incorporation of yeast into the fibers is confirmed by elemental analysis and the viability is indicated by live/dead staining. Following electrospinning and crosslinking, we confirm that the yeast maintains its viability as well as the ability to express eGFP in the correct conformation. This method of processing functionalized yeast may thus be a powerful tool in the direct immobilization of properly folded, active enzymes within electrospun nanofibers with potential applications in biocatalysis.

  7. Biphenyl Phytoalexin in Sorbus pohuashanensis Suspension Cell Induced by Yeast Extract.

    Science.gov (United States)

    Zhou, Liangyun; Yang, Jian; Yang, Guang; Kang, Chuanzhi; Xiao, Wenjuan; Lv, Chaogeng; Wang, Sheng; Tang, Jinfu; Guo, Lanping

    2016-09-14

    Biphenyls are unique phytoalexins de novo synthesized in plants in response to pathogen attack. These compounds are found in Maloideae, a subfamily of the Rosaceae. The anti-microbial activities of biphenyls have been reported in a number of studies and they appear to represent an important defense strategy against pathogens common in the Maloideae, such as species in Malus, Pyrus, Sorbus, and Chaenomeles. Here, cell suspension cultures of Sorbus pohuashanensis were established to study biphenyl phytoalexins formation after yeast extract (YE) treatment. An ultra-performance liquid chromatography (UPLC) method coupled with quadrupole time of flight mass spectrometry (Q-TOF-MS) LC-MS/MS was applied to determine the time course of these biphenyl biomarkers accumulation in YE-treated S. pohuashanensis suspension cells. The results of quantitative analyses show the content of Noraucuparin, 2'-Hydroxyaucuparin, and their glycosides initially increased, then decreased over time. The Noraucuparin content reached its highest (225.76 μg·g(-1)) at 18 h after treatment, 6 hours earlier than that of Noraucuparin 5-O-β-d-glucopyranoside. The content of 2'-Hydroxyaucuparin reached its highest (422.75 μg·g(-1)) at 30 h after treatment, also earlier than that of its glycoside. The understanding of phytoalexin metabolism in this study may provide a basis for improving Maloideae resistance to pathogens.

  8. Biphenyl Phytoalexin in Sorbus pohuashanensis Suspension Cell Induced by Yeast Extract

    Directory of Open Access Journals (Sweden)

    Liangyun Zhou

    2016-09-01

    Full Text Available Biphenyls are unique phytoalexins de novo synthesized in plants in response to pathogen attack. These compounds are found in Maloideae, a subfamily of the Rosaceae. The anti-microbial activities of biphenyls have been reported in a number of studies and they appear to represent an important defense strategy against pathogens common in the Maloideae, such as species in Malus, Pyrus, Sorbus, and Chaenomeles. Here, cell suspension cultures of Sorbus pohuashanensis were established to study biphenyl phytoalexins formation after yeast extract (YE treatment. An ultra-performance liquid chromatography (UPLC method coupled with quadrupole time of flight mass spectrometry (Q-TOF-MS LC−MS/MS was applied to determine the time course of these biphenyl biomarkers accumulation in YE-treated S. pohuashanensis suspension cells. The results of quantitative analyses show the content of Noraucuparin, 2′-Hydroxyaucuparin, and their glycosides initially increased, then decreased over time. The Noraucuparin content reached its highest (225.76 μg·g−1 at 18 h after treatment, 6 hours earlier than that of Noraucuparin 5-O-β-d-glucopyranoside. The content of 2′-Hydroxyaucuparin reached its highest (422.75 μg·g−1 at 30 h after treatment, also earlier than that of its glycoside. The understanding of phytoalexin metabolism in this study may provide a basis for improving Maloideae resistance to pathogens.

  9. Synthesis of green note aroma compounds by biotransformation of fatty acids using yeast cells coexpressing lipoxygenase and hydroperoxide lyase.

    Science.gov (United States)

    Buchhaupt, Markus; Guder, Jan Christopher; Etschmann, Maria Magdalena Walburga; Schrader, Jens

    2012-01-01

    Green notes are substances that characterize the aroma of freshly cut grass, cucumbers, green apples, and foliage. In plants, they are synthesized by conversion of linolenic or linoleic acid via the enzymes lipoxygenase (LOX) and hydroperoxide lyase (HPL) to short-chained aldehydes. Current processes for production of natural green notes rely on plant homogenates as enzyme sources but are limited by low enzyme concentration and low specificity. In an alternative approach, soybean LOX2 and watermelon HPL were overexpressed in Saccharomyces cerevisiae. After optimization of the expression constructs, a yeast strain coexpressing LOX and HPL was applied in whole cell biotransformation experiments. Whereas addition of linolenic acid to growing cultures of this strain yielded no products, we were able to identify high green note concentrations when resting cells were used. The primary biotransformation product was 3(Z)-hexenal, a small amount of which isomerized to 2(E)-hexenal. Furthermore, both aldehydes were reduced to the corresponding green note alcohols by endogenous yeast alcohol dehydrogenase to some extent. As the cosolvent ethanol was the source of reducing equivalents for green note alcohol formation, the hexenal/hexenol ratio could be influenced by the use of alternative cosolvents. Further investigations to identify the underlying mechanism of the rather low biocatalyst stability revealed a high toxicity of linolenic acid to yeast cells. The whole cell catalyst containing LOX and HPL enzyme activity described here can be a promising approach towards a highly efficient microbial green note synthesis process.

  10. Beta-glucan-depleted, glycopeptide-rich extracts from Brewer's and Baker's yeast (Saccharomyces cerevisiae) lower interferon-gamma production by stimulated human blood cells in vitro.

    Science.gov (United States)

    Williams, Roderick; Dias, Daniel A; Jayasinghe, Nirupama; Roessner, Ute; Bennett, Louise E

    2016-04-15

    Regulation of the human immune system requires controlled pro- and anti-inflammatory responses for host defence against infection and disease states. Yeasts (Saccharomyces cerevisiae), as used in brewing and baking, are mostly known for ability to stimulate the human immune-system predominantly reflecting the pro-inflammatory cell wall β-glucans. However, in this study, using food-compatible processing methods, glycopeptide-enriched and β-glucan-depleted products were each prepared from Brewer's and Baker's yeasts, which suppressed production of interferon-γ (IFN-γ) in human whole blood cell assay, signifying that anti-inflammatory factors are also present in yeast. Anti-inflammatory bioactivities of products prepared from Brewer's and Baker's yeast were compared with the commercial yeast product, Epicor®. While unfractionated Epicor was inactive, the C18 resin-binding fractions of Brewer's and Baker's yeast products and Epicor dose-dependently lowered IFN-γ, demonstrating that Epicor also contained both pro-inflammatory (β-glucans) and anti-inflammatory components. Anti-inflammatory activity was attributed to C18 resin-binding species glyco-peptides in Epicor and experimental yeast products. This study demonstrated that pro- and anti-inflammatory factors could be resolved and enriched in yeasts by suitable processing, with potential to improve specific activities.

  11. Engineered yeast whole-cell biocatalyst for direct degradation of alginate from macroalgae and production of non-commercialized useful monosaccharide from alginate.

    Science.gov (United States)

    Takagi, Toshiyuki; Yokoi, Takahiro; Shibata, Toshiyuki; Morisaka, Hironobu; Kuroda, Kouichi; Ueda, Mitsuyoshi

    2016-02-01

    Alginate is a major component of brown macroalgae. In macroalgae, an endolytic alginate lyase first degrades alginate into oligosaccharides. These oligosaccharides are further broken down into monosaccharides by an exolytic alginate lyase. In this study, genes encoding various alginate lyases derived from alginate-assimilating marine bacterium Saccharophagus degradans were isolated, and their enzymes were displayed using the yeast cell surface display system. Alg7A-, Alg7D-, and Alg18J-displaying yeasts showed endolytic alginate lyase activity. On the other hand, Alg7K-displaying yeast showed exolytic alginate lyase activity. Alg7A, Alg7D, Alg7K, and Alg18J, when displayed on yeast cell surface, demonstrated both polyguluronate lyase and polymannuronate lyase activities. Additionally, polyguluronic acid could be much easily degraded by Alg7A, Alg7K, and Alg7D than polymannuronic acid. In contrast, polymannuronic acid could be much easily degraded by Alg18J than polyguluronic acid. We further constructed yeasts co-displaying endolytic and exolytic alginate lyases. Degradation efficiency by the co-displaying yeasts were significantly higher than single alginate lyase-displaying yeasts. Alg7A/Alg7K co-displaying yeast had maximum alginate degrading activity, with production of 1.98 g/L of reducing sugars in a 60-min reaction. This system developed, along with our findings, will contribute to the efficient utilization and production of useful and non-commercialized monosaccharides from alginate by Saccharomyces cerevisiae.

  12. Yeast flocculation: what brewers should know.

    Science.gov (United States)

    Verstrepen, K J; Derdelinckx, G; Verachtert, H; Delvaux, F R

    2003-05-01

    For many industrial applications in which the yeast Saccharomyces cerevisiae is used, e.g. beer, wine and alcohol production, appropriate flocculation behaviour is certainly one of the most important characteristics of a good production strain. Yeast flocculation is a very complex process that depends on the expression of specific flocculation genes such as FLO1, FLO5, FLO8 and FLO11. The transcriptional activity of the flocculation genes is influenced by the nutritional status of the yeast cells as well as other stress factors. Flocculation is also controlled by factors that affect cell wall composition or morphology. This implies that, during industrial fermentation processes, flocculation is affected by numerous parameters such as nutrient conditions, dissolved oxygen, pH, fermentation temperature, and yeast handling and storage conditions. Theoretically, rational use of these parameters offers the possibility of gaining control over the flocculation process. However, flocculation is a very strain-specific phenomenon, making it difficult to predict specific responses. In addition, certain genes involved in flocculation are extremely variable, causing frequent changes in the flocculation profile of some strains. Therefore, both a profound knowledge of flocculation theory as well as close monitoring and characterisation of the production strain are essential in order to gain maximal control over flocculation. In this review, the various parameters that influence flocculation in real-scale brewing are critically discussed. However, many of the conclusions will also be useful in various other industrial processes where control over yeast flocculation is desirable.

  13. Increased availability of NADH in metabolically engineered baker's yeast improves transaminase-oxidoreductase coupled asymmetric whole-cell bioconversion

    DEFF Research Database (Denmark)

    Knudsen, Jenny Dahl; Hägglöf, Cecilia; Weber, Nora

    2016-01-01

    yeast for transamination-reduction coupled asymmetric one-pot conversion was investigated. RESULTS: A series of active whole-cell biocatalysts were constructed by over-expressing the (S)-selective ω-transaminase (VAMT) from Capsicum chinense together with the NADH-dependent (S)-selective alcohol...... dehydrogenase (SADH) originating from Rhodococcus erythropolis in strains with or without deletion of glycerol-3-phosphate dehydrogenases 1 and 2 (GPD1 and GPD2). The yeast strains were evaluated as catalysts for simultaneous: (a) kinetic resolution of the racemic mixture to (R)-1-phenylethylamine, and (b......) reduction of the produced acetophenone to (S)-1-phenylethanol. For the gpd1Δgpd2Δ strain, cell metabolism was effectively used for the supply of both amine acceptors and the co-factor pyridoxal-5'-phosphate (PLP) for the ω-transaminase, as well as for regenerating NADH for the reduction. In contrast...

  14. Analysis of Schizosaccharomyces pombe mediator reveals a set of essential subunits conserved between yeast and metazoan cells

    DEFF Research Database (Denmark)

    Spåhr, H; Samuelsen, C O; Baraznenok, V;

    2001-01-01

    essential genes conserved between S. pombe and S. cerevisiae also have a metazoan homolog, indicating that an evolutionary conserved Mediator core is present in all eukaryotic cells. Our data suggest a closer functional relationship between yeast and metazoan Mediator than previously anticipated....... to any of the 10 S. cerevisiae components encoded by nonessential genes. S. pombe Mediator instead contains three unique components (Pmc2, -3, and -6), which lack homologs in other cell types. Presently, pmc2(+) and pmc3(+) have been shown to be nonessential genes. The data suggest that S. pombe and S....... cerevisiae share an essential protein module, which associates with nonessential speciesspecific subunits. In support of this view, sequence analysis of the conserved yeast Mediator components Med4 and Med8 reveals sequence homology to the metazoan Mediator components Trap36 and Arc32. Therefore, 8 of 10...

  15. Forces in yeast flocculation.

    Science.gov (United States)

    El-Kirat-Chatel, Sofiane; Beaussart, Audrey; Vincent, Stéphane P; Abellán Flos, Marta; Hols, Pascal; Lipke, Peter N; Dufrêne, Yves F

    2015-02-07

    In the baker's yeast Saccharomyces cerevisiae, cell-cell adhesion ("flocculation") is conferred by a family of lectin-like proteins known as the flocculin (Flo) proteins. Knowledge of the adhesive and mechanical properties of flocculins is important for understanding the mechanisms of yeast adhesion, and may help controlling yeast behaviour in biotechnology. We use single-molecule and single-cell atomic force microscopy (AFM) to explore the nanoscale forces engaged in yeast flocculation, focusing on the role of Flo1 as a prototype of flocculins. Using AFM tips labelled with mannose, we detect single flocculins on Flo1-expressing cells, showing they are widely exposed on the cell surface. When subjected to force, individual Flo1 proteins display two distinct force responses, i.e. weak lectin binding forces and strong unfolding forces reflecting the force-induced extension of hydrophobic tandem repeats. We demonstrate that cell-cell adhesion bonds also involve multiple weak lectin interactions together with strong unfolding forces, both associated with Flo1 molecules. Single-molecule and single-cell data correlate with microscale cell adhesion behaviour, suggesting strongly that Flo1 mechanics is critical for yeast flocculation. These results favour a model in which not only weak lectin-sugar interactions are involved in yeast flocculation but also strong hydrophobic interactions resulting from protein unfolding.

  16. Characterization of the minimum domain required for targeting budding yeast myosin II to the site of cell division

    Directory of Open Access Journals (Sweden)

    Tolliday Nicola J

    2006-06-01

    Full Text Available Abstract Background All eukaryotes with the exception of plants use an actomyosin ring to generate a constriction force at the site of cell division (cleavage furrow during mitosis and meiosis. The structure and filament forming abilities located in the C-terminal or tail region of one of the main components, myosin II, are important for localising the molecule to the contractile ring (CR during cytokinesis. However, it remains poorly understood how myosin II is recruited to the site of cell division and how this recruitment relates to myosin filament assembly. Significant conservation between species of the components involved in cytokinesis, including those of the CR, allows the use of easily genetically manipulated organisms, such as budding yeast (Saccharomyces cerevisiae, in the study of cytokinesis. Budding yeast has a single myosin II protein, named Myo1. Unlike most other class II myosins, the tail of Myo1 has an irregular coiled coil. In this report we use molecular genetics, biochemistry and live cell imaging to characterize the minimum localisation domain (MLD of budding yeast Myo1. Results We show that the MLD is a small region in the centre of the tail of Myo1 and that it is both necessary and sufficient for localisation of Myo1 to the yeast bud neck, the pre-determined site of cell division. Hydrodynamic measurements of the MLD, purified from bacteria or yeast, show that it is likely to exist as a trimer. We also examine the importance of a small region of low coiled coil forming probability within the MLD, which we call the hinge region. Removal of the hinge region prevents contraction of the CR. Using fluorescence recovery after photobleaching (FRAP, we show that GFP-tagged MLD is slightly more dynamic than the GFP-tagged full length molecule but less dynamic than the GFP-tagged Myo1 construct lacking the hinge region. Conclusion Our results define the intrinsic determinant for the localization of budding yeast myosin II and show

  17. The small GTPase Rab5 homologue Ypt5 regulates cell morphology, sexual development, ion-stress response and vacuolar formation in fission yeast

    Energy Technology Data Exchange (ETDEWEB)

    Tsukamoto, Yuta; Katayama, Chisako [Graduate School of Science, Kobe University, 1-1 Rokkodai-cho Nada, Kobe 657-8501 (Japan); Shinohara, Miki; Shinohara, Akira [Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Maekawa, Shohei [Graduate School of Science, Kobe University, 1-1 Rokkodai-cho Nada, Kobe 657-8501 (Japan); Miyamoto, Masaaki, E-mail: miya@kobe-u.ac.jp [Graduate School of Science, Kobe University, 1-1 Rokkodai-cho Nada, Kobe 657-8501 (Japan); Center for Supports to Research and Education Activities, Kobe University, 1-1 Rokkodai-cho Nada, Kobe 657-8501 (Japan)

    2013-11-29

    Highlights: •Multiple functions of Rab5 GTPase in fission yeast were found. •Roles of Rab5 in fission yeast were discussed. •Relation between Rab5 and actin cytoskeleton were discussed. -- Abstract: Inner-membrane transport is critical to cell function. Rab family GTPases play an important role in vesicle transport. In mammalian cells, Rab5 is reported to be involved in the regulation of endosome formation, phagocytosis and chromosome alignment. Here, we examined the role of the fission yeast Rab5 homologue Ypt5 using a point mutant allele. Mutant cells displayed abnormal cell morphology, mating, sporulation, endocytosis, vacuole fusion and responses to ion stress. Our data strongly suggest that fission yeast Rab5 is involved in the regulation of various types of cellular functions.

  18. Polyelectrolyte multilayer surface functionalization of poly(dimethylsiloxane) (PDMS) for reduction of yeast cell adhesion in microfluidic devices

    OpenAIRE

    Schmolke, Hannah; Demming, Stefanie; Edlich, Astrid; Magdanz, Veronika; Büttgenbach, Stephanus; Franco-Lara, Ezequiel; Krull, Rainer; Klages, Claus-Peter

    2010-01-01

    Polyelectrolyte multilayers (PEMs) based on the combinations poly(diallyldimethylammonium chloride)∕poly(acrylic acid) (PDADMAC∕PAA) and poly(allylamine hydrochloride)∕PAA (PAH∕PAA) were adsorbed on poly(dimethylsiloxane) (PDMS) and tested for nonspecific surface attachment of hydrophobic yeast cells using a parallel plate flow chamber. A custom-made graft copolymer containing poly(ethylene glycol) (PEG) side chains (PAA-g-PEG) was additionally adsorbed on the PEMs as a terminal layer. A suit...

  19. Application of microbial electrolysis cells to treat spent yeast from an alcoholic fermentation.

    Science.gov (United States)

    Sosa-Hernández, Ornella; Popat, Sudeep C; Parameswaran, Prathap; Alemán-Nava, Gibrán Sidney; Torres, César I; Buitrón, Germán; Parra-Saldívar, Roberto

    2016-01-01

    Spent yeast (SY), a major challenge for the brewing industry, was treated using a microbial electrolysis cell to recover energy. Concentrations of SY from bench alcoholic fermentation and ethanol were tested, ranging from 750 to 1500mgCOD/L and 0 to 2400mgCOD/L respectively. COD removal efficiency (RE), coulombic efficiency (CE), coulombic recovery (CR), hydrogen production and current density were evaluated. The best treatment condition was 750mgCOD/LSY+1200mgCOD/L ethanol giving higher COD RE, CE, CR (90±1%, 90±2% and 81±1% respectively), as compared with 1500mgCOD/LSY (76±2%, 63±7% and 48±4% respectively); ethanol addition was significantly favorable (p value=0.011), possibly due to electron availability and SY autolysis. 1500mgCOD/LSY+1200mgCOD/L ethanol achieved higher current density (222.0±31.3A/m(3)) and hydrogen production (2.18±0.66 [Formula: see text] ) but with lower efficiencies (87±2% COD RE, 71.0±.4% CE). Future work should focus on electron sinks, acclimation and optimizing SY breakdown.

  20. Cell mass and cell cycle dynamics of an asynchronous budding yeast population

    DEFF Research Database (Denmark)

    Lencastre Fernandes, Rita; Carlquist, Magnus; Lundin, Luisa

    2013-01-01

    consumption observed during batch cultivation. The good agreement between the proposed multi-scale model (a population balance model [PBM] coupled to an unstructured model) and experimental data (both the overall physiology and cell size and cell cycle distributions) indicates that a mechanistic model...... of model predictions for cell property distributions against experimental data is scarce. This study focuses on the experimental and mathematical description of the dynamics of cell size and cell cycle position distributions, of a population of Saccharomyces cerevisiae, in response to the substrate......Despite traditionally regarded as identical, cells in a microbial cultivation present a distribution of phenotypic traits, forming a heterogeneous cell population. Moreover, the degree of heterogeneity is notably enhanced by changes in micro-environmental conditions. A major development...

  1. Modeling brewers' yeast flocculation

    Science.gov (United States)

    van Hamersveld EH; van der Lans RG; Caulet; Luyben

    1998-02-01

    Flocculation of yeast cells occurs during the fermentation of beer. Partway through the fermentation the cells become flocculent and start to form flocs. If the environmental conditions, such as medium composition and fluid velocities in the tank, are optimal, the flocs will grow in size large enough to settle. After settling of the main part of the yeast the green beer is left, containing only a small amount of yeast necessary for rest conversions during the next process step, the lagering. The physical process of flocculation is a dynamic equilibrium of floc formation and floc breakup resulting in a bimodal size distribution containing single cells and flocs. The floc size distribution and the single cell amount were measured under the different conditions that occur during full scale fermentation. Influences on flocculation such as floc strength, specific power input, and total number of yeast cells in suspension were studied. A flocculation model was developed, and the measured data used for validation. Yeast floc formation can be described with the collision theory assuming a constant collision efficiency. The breakup of flocs appears to occur mainly via two mechanisms, the splitting of flocs and the erosion of yeast cells from the floc surface. The splitting rate determines the average floc size and the erosion rate determines the number of single cells. Regarding the size of the flocs with respect to the scale of turbulence, only the viscous subrange needs to be considered. With the model, the floc size distribution and the number of single cells can be predicted at a certain point during the fermentation. For this, the bond strength between the cells, the fractal dimension of the yeast, the specific power input in the tank and the number of yeast cells that are in suspension in the tank have to be known. Copyright 1998 John Wiley & Sons, Inc.

  2. Analysis of the structural integrity of YACs comprising human immunoglobulin genes in yeast and in embryonic stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Mendez, M.J.; Abderrahim, H.; Noguchi, M. [Cell Genesys, Inc., Foster City, CA (United States)] [and others

    1995-03-20

    With the goal of creating a strain of mice capable of producing human antibodies, we are cloning and reconstructing the human immunoglobulin germline repertoire in yeast artificial chromosomes (YACs). We describe the identification of YACs containing variable and constant region sequences from the human heavy chain (IgH) and kappa light chain (IgK) loci and the characterization of their integrity in yeast and in mouse embryonic stem (ES) cells. The IgH locus-derived YAC contains five variable (V{sub H}) genes, the major diversity (D) gene cluster, the joining (J{sub H}) genes, the intronic enhancer (E{sub H}), and the constant region genes, mu (C{mu}) and delta (C{delta}). Two IgK locus-derived YACs each contain three variable (V{kappa}) genes, the joining (J{kappa}) region, the intronic enhancer (E{kappa}), the constant gene (C{kappa}), and the kappa deleting element (kde). The IgH YAC was unstable in yeast, generating a variety of deletion derivatives, whereas both IgK YACs were stable. YACs encoding heavy chain and kappa light chain, retrofitted with the mammalian selectable marker, hypoxanthine phosphoribosyltransferase (HPRT), were each introduced into HPRT-deficient mouse ES cells. Analysis of YAC integrity in ES cell lines revealed that the majority of DNA inserts were integrated in substantially intact form. 78 refs., 7 figs.

  3. The golden root, Rhodiola rosea, prolongs lifespan but decreases oxidative stress resistance in yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Bayliak, Maria M; Lushchak, Volodymyr I

    2011-11-15

    The effect of aqueous extract from R. rosea root on lifespan and the activity of antioxidant enzymes in budding yeast Saccharomyces cerevisiae have been studied. The supplementation of the growth medium with R. rosea extract decreased survival of exponentially growing S. cerevisiae cells under H(2)O(2)-induced oxidative stress, but increased viability and reproduction success of yeast cells in stationary phase. The extract did not significantly affect catalase activity and decreased SOD activity in chronologically aged yeast population. These results suggest that R. rosea acts as a stressor for S. cerevisiae cells, what sensitizes yeast cells to oxidative stress at exponential phase, but induces adaptation in stationary phase cells demonstrating the positive effect on yeast survival without activation of major antioxidant enzymes.

  4. Tomography of a Cryo-immobilized Yeast Cell Using Ptychographic Coherent X-Ray Diffractive Imaging.

    Science.gov (United States)

    Giewekemeyer, K; Hackenberg, C; Aquila, A; Wilke, R N; Groves, M R; Jordanova, R; Lamzin, V S; Borchers, G; Saksl, K; Zozulya, A V; Sprung, M; Mancuso, A P

    2015-11-03

    The structural investigation of noncrystalline, soft biological matter using x-rays is of rapidly increasing interest. Large-scale x-ray sources, such as synchrotrons and x-ray free electron lasers, are becoming ever brighter and make the study of such weakly scattering materials more feasible. Variants of coherent diffractive imaging (CDI) are particularly attractive, as the absence of an objective lens between sample and detector ensures that no x-ray photons scattered by a sample are lost in a limited-efficiency imaging system. Furthermore, the reconstructed complex image contains quantitative density information, most directly accessible through its phase, which is proportional to the projected electron density of the sample. If applied in three dimensions, CDI can thus recover the sample's electron density distribution. As the extension to three dimensions is accompanied by a considerable dose applied to the sample, cryogenic cooling is necessary to optimize the structural preservation of a unique sample in the beam. This, however, imposes considerable technical challenges on the experimental realization. Here, we show a route toward the solution of these challenges using ptychographic CDI (PCDI), a scanning variant of coherent imaging. We present an experimental demonstration of the combination of three-dimensional structure determination through PCDI with a cryogenically cooled biological sample--a budding yeast cell (Saccharomyces cerevisiae)--using hard (7.9 keV) synchrotron x-rays. This proof-of-principle demonstration in particular illustrates the potential of PCDI for highly sensitive, quantitative three-dimensional density determination of cryogenically cooled, hydrated, and unstained biological matter and paves the way to future studies of unique, nonreproducible biological cells at higher resolution.

  5. Extraction of cell surface-associated proteins from living yeast cells.

    NARCIS (Netherlands)

    F.M. Klis; M. de Jong; S. Brul; P.W.J. de Groot

    2007-01-01

    To extract cell surface-associated proteins from living fungal cells, reducing agents such as beta-mercaptoethanol and dithiothreitol are often used. We show here that both compounds are moderately lipophilic and may perturb the plasma membrane, thus causing the release of cytosolic proteins, especi

  6. A Model of Yeast Cell-Cycle Regulation Based on a Standard Component Modeling Strategy for Protein Regulatory Networks

    Science.gov (United States)

    Laomettachit, Teeraphan; Chen, Katherine C.; Baumann, William T.

    2016-01-01

    To understand the molecular mechanisms that regulate cell cycle progression in eukaryotes, a variety of mathematical modeling approaches have been employed, ranging from Boolean networks and differential equations to stochastic simulations. Each approach has its own characteristic strengths and weaknesses. In this paper, we propose a “standard component” modeling strategy that combines advantageous features of Boolean networks, differential equations and stochastic simulations in a framework that acknowledges the typical sorts of reactions found in protein regulatory networks. Applying this strategy to a comprehensive mechanism of the budding yeast cell cycle, we illustrate the potential value of standard component modeling. The deterministic version of our model reproduces the phenotypic properties of wild-type cells and of 125 mutant strains. The stochastic version of our model reproduces the cell-to-cell variability of wild-type cells and the partial viability of the CLB2-dbΔ clb5Δ mutant strain. Our simulations show that mathematical modeling with “standard components” can capture in quantitative detail many essential properties of cell cycle control in budding yeast. PMID:27187804

  7. In vitro formation of the anthranoid scaffold by cell-free extracts from yeast-extract-treated Cassia bicapsularis cell cultures.

    Science.gov (United States)

    Abdel-Rahman, Iman A M; Beuerle, Till; Ernst, Ludger; Abdel-Baky, Afaf M; Desoky, Ezz El-Din K; Ahmed, Amany S; Beerhues, Ludger

    2013-04-01

    The anthranoid skeleton is believed to be formed by octaketide synthase (OKS), a member of the type III polyketide synthase (PKS) superfamily. Recombinant OKSs catalyze stepwise condensation of eight acetyl units to form a linear octaketide intermediate which, however, is incorrectly folded and cyclized to give the shunt products SEK4 and SEK4b. Here we report in vitro formation of the anthranoid scaffold by cell-free extracts from yeast-extract-treated Cassia bicapsularis cell cultures. Unlike field- and in vitro-grown shoots which accumulate anthraquinones, cell cultures mainly contained tetrahydroanthracenes, formation of which was increased 2.5-fold by the addition of yeast extract. The elicitor-stimulated accumulation of tetrahydroanthracenes was preceded by an approx. 35-fold increase in OKS activity. Incubation of cell-free extracts from yeast-extract-treated cell cultures with acetyl-CoA and [2-(14)C]malonyl-CoA led to formation of torosachrysone (tetrahydroanthracene) and emodin anthrone, beside two yet unidentified products. No product formation occurred in the absence of acetyl-CoA as starter substrate. To confirm the identities of the enzymatic products, cell-free extracts were incubated with acetyl-CoA and [U-(13)C(3)]malonyl-CoA and (13)C incorporation was analyzed by ESI-MS/MS. Detection of anthranoid biosynthesis in cell-free extracts indicates in vitro cooperation of OKS with a yet unidentified factor or enzyme for octaketide cyclization.

  8. A model for cell wall dissolution in mating yeast cells: polarized secretion and restricted diffusion of cell wall remodeling enzymes induces local dissolution.

    Directory of Open Access Journals (Sweden)

    Lori B Huberman

    Full Text Available Mating of the budding yeast, Saccharomyces cerevisiae, occurs when two haploid cells of opposite mating types signal using reciprocal pheromones and receptors, grow towards each other, and fuse to form a single diploid cell. To fuse, both cells dissolve their cell walls at the point of contact. This event must be carefully controlled because the osmotic pressure differential between the cytoplasm and extracellular environment causes cells with unprotected plasma membranes to lyse. If the cell wall-degrading enzymes diffuse through the cell wall, their concentration would rise when two cells touched each other, such as when two pheromone-stimulated cells adhere to each other via mating agglutinins. At the surfaces that touch, the enzymes must diffuse laterally through the wall before they can escape into the medium, increasing the time the enzymes spend in the cell wall, and thus raising their concentration at the point of attachment and restricting cell wall dissolution to points where cells touch each other. We tested this hypothesis by studying pheromone treated cells confined between two solid, impermeable surfaces. This confinement increases the frequency of pheromone-induced cell death, and this effect is diminished by reducing the osmotic pressure difference across the cell wall or by deleting putative cell wall glucanases and other genes necessary for efficient cell wall fusion. Our results support the model that pheromone-induced cell death is the result of a contact-driven increase in the local concentration of cell wall remodeling enzymes and suggest that this process plays an important role in regulating cell wall dissolution and fusion in mating cells.

  9. A model for cell wall dissolution in mating yeast cells: polarized secretion and restricted diffusion of cell wall remodeling enzymes induces local dissolution.

    Science.gov (United States)

    Huberman, Lori B; Murray, Andrew W

    2014-01-01

    Mating of the budding yeast, Saccharomyces cerevisiae, occurs when two haploid cells of opposite mating types signal using reciprocal pheromones and receptors, grow towards each other, and fuse to form a single diploid cell. To fuse, both cells dissolve their cell walls at the point of contact. This event must be carefully controlled because the osmotic pressure differential between the cytoplasm and extracellular environment causes cells with unprotected plasma membranes to lyse. If the cell wall-degrading enzymes diffuse through the cell wall, their concentration would rise when two cells touched each other, such as when two pheromone-stimulated cells adhere to each other via mating agglutinins. At the surfaces that touch, the enzymes must diffuse laterally through the wall before they can escape into the medium, increasing the time the enzymes spend in the cell wall, and thus raising their concentration at the point of attachment and restricting cell wall dissolution to points where cells touch each other. We tested this hypothesis by studying pheromone treated cells confined between two solid, impermeable surfaces. This confinement increases the frequency of pheromone-induced cell death, and this effect is diminished by reducing the osmotic pressure difference across the cell wall or by deleting putative cell wall glucanases and other genes necessary for efficient cell wall fusion. Our results support the model that pheromone-induced cell death is the result of a contact-driven increase in the local concentration of cell wall remodeling enzymes and suggest that this process plays an important role in regulating cell wall dissolution and fusion in mating cells.

  10. [Analysis of the mechanism of intensification of fermentation process using yeast cells in a suspension of high-dispersed oxides].

    Science.gov (United States)

    Bagatskaya, A N; Mazurenko, R V; Makhno, S N; Gorbik, P P

    2014-01-01

    The differential microcalorimetry was used to explore an influence of particles of silicon dioxide, and also other high-dispersed oxides (0.05% of masses.) in water suspension of yeast cells on intensification of the process of their fermentation in endogenous metabolic conditions. It was shown that intensification of the processes of the vital activity of yeast microorganisms was observed in the specified interval of the concentration of silicon dioxide hydrosol particles. Mechanisms of interaction between SiO2 particles and a surface of a cellular organism, as well as interaction between SiO2 particles and one of metabolism products--carbon dioxide were studied. It was found out, that Al2O3, TiO2 hydrosols also had a stimulating effect, but it is lower compared to that of SiO2.

  11. Novel method to reduce fishy aftertaste in wine and seafood pairing using alcohol-treated yeast cells.

    Science.gov (United States)

    Tsuji, Toshikazu; Kanai, Keiko; Yokoyama, Aki; Tamura, Takayuki; Hanamure, Kenichi; Sasaki, Kanako; Takata, Ryoji; Yoshida, Satoshi

    2012-06-20

    "Fishy aftertaste" is sometimes perceived in wine consumed with seafood. Iron in wine has been reported to be a key compound that produces fishy aftertaste. However, cost-effective methods to remove iron from wine have not been developed. Here, we describe a cost-effective and safe iron adsorbent consisting of alcohol-treated yeast (ATY) cells based on the observation that nonviable cells adsorbed iron after completion of fermentation. Treatment of cells with more than 40% (v/v) ethanol killed them without compromising their ability to adsorb iron. Drying the ATY cells did not reduce iron adsorption. Use of ATY cells together with phytic acid had a synergistic effect on iron removal. We term this means of removing iron the "ATY-PA" method. Sensory analysis indicated that fishy aftertaste in wine-seafood pairings was not perceived if the wine had been pretreated with both ATY cells and phytic acid.

  12. A ~35 kDa polypeptide from insect cells binds to yeast ACS like elements in the presence of ATP

    Directory of Open Access Journals (Sweden)

    Soni Rajesh K

    2002-08-01

    Full Text Available Abstract Background The S. cerevisiae origin recognition complex binds to the ARS consensus sequence in an ATP dependent fashion. Recently, the yeast Cdc6 has been reported to have DNA binding activity. Conservation of replication proteins among different species strongly supports their functional similarity. Here we report the results of an investigation into the DNA binding activity of human Cdc6 protein. Cdc6 was expressed and purified from baculovirus infected Sf9 (Spodoptera frugiperda insect cells as GST fusion protein (GST-Cdc6 and its DNA binding activity was tested. Results Partially purified fractions containing GSTCdc6 or GST showed an ACS binding activity in an ATP dependent manner. However, further purification revealed the presence of a putative 35 kDa insect cell protein (p35 which was found responsible for the DNA binding activity. A close match to the 9/11 bases of the ARS consensus sequence was sufficient for p35 binding activity. A DNA fragment from the human c-myc origin region containing yeast ACS like elements also showed p35 binding activity. Conclusions We have identified a Spodoptera frugiperda protein with ATP dependent DNA binding activity to ACS like elements. ACS like elements have been reported to be essential for ORC binding and replication initiation in yeast but their role in higher eukaryotes still remains elusive. Like the ARS consensus sequence elements of yeast, ACS like elements found in c-myc and lamin beta 2 origin regions may play similar roles in replication and indicate a conserved role for this DNA motif among eukaryotes.

  13. Improvement in organophosphorus hydrolase activity of cell surface-engineered yeast strain using Flo1p anchor system

    OpenAIRE

    Fukuda, Takeshi; Tsuchiyama, Kouta; Makishima, Hirokazu; Takayama, Katsumi; Mulchandani, Ashok; Kuroda, Kouichi; Ueda, Mitsuyoshi; Suye, Shin-ichiro

    2010-01-01

    Organophosphorus hydrolase (OPH) hydrolyzes organophosphorus esters. We constructed the yeast-displayed OPH using Flo1p anchor system. In this system, the N-terminal region of the protein was fused to Flo1p and the fusion protein was displayed on the cell surface. Hydrolytic reactions with paraoxon were carried out during 24 h of incubation of OPH-displaying cells at 30°C. p-Nitrophenol produced in the reaction mixture was detected by HPLC. The strain with highest activity showed 8-fold great...

  14. Large-scale phenotypic analysis reveals identical contributions to cell functions of known and unknown yeast genes.

    Science.gov (United States)

    Bianchi, M M; Ngo, S; Vandenbol, M; Sartori, G; Morlupi, A; Ricci, C; Stefani, S; Morlino, G B; Hilger, F; Carignani, G; Slonimski, P P; Frontali, L

    2001-11-01

    Sequencing of the yeast genome has shown that about one-third of the yeast ORFs code for unknown proteins. Many other have similarity to known genes, but still the cellular functions of the gene products are unknown. The aim of the B1 Consortium of the EUROFAN project was to perform a qualitative phenotypic analysis on yeast strains deleted for functionally orphan genes. To this end we set up a simple approach to detect growth defects of a relatively large number of strains in the presence of osmolytes, ethanol, high temperature, inhibitory compounds or drugs affecting protein biosynthesis, phosphorylation level or nucleic acids biosynthesis. We have now developed this procedure to a semi-quantitative level, we have included new inhibitors, such as hygromycin B, benomyl, metals and additional drugs interfering with synthesis of nucleic acids, and we have performed phenotypic analysis on the deleted strains of 564 genes poorly characterized in respect to their cellular functions. About 30% of the deleted strains showed at least one phenotype: many of them were pleiotropic. For many gene deletions, the linkage between the deletion marker and the observed phenotype(s) was studied by tetrad analysis and their co-segregation was demonstrated. Co-segregation was found in about two-thirds of the analysed strains showing phenotype(s).

  15. Sporothrix schenckii yeasts induce ERK pathway activation and secretion of IL-6 and TNF-α in rat mast cells, but no degranulation.

    Science.gov (United States)

    Romo-Lozano, Yolanda; Hernández-Hernández, Francisca; Salinas, Eva

    2014-11-01

    Sporothrix schenckii is a dimorphic fungus that causes sporotrichosis, a subcutaneous mycosis found throughout the world in humans and other mammals. After contact with conidia, transition to the yeast stage is required for establishment of infection. Mast cells are one of the first components of the immune system to make contact with invading pathogens. They release potent mediators that are decisive in initiating and directing the course of immune and inflammatory responses in the host. It remains unknown whether or not yeast cells of S. schenckii activate mast cells. Our aim in this study was to evaluate the in vitro response of mast cells to S. schenckii yeasts cells. Mast cells became activated after interaction with the yeasts, although exocytosis of preformed mediators was not stimulated. Sporothrix schenckii yeasts induced the release of early response cytokines such as tumor necrosis factor alpha (TNF-α) and interleukin (IL)-6 and activation of the extracellular signal-regulated kinase (ERK) signaling pathway in mast cells. As TNF-α and IL-6 are considered crucial mediators in the defense of the host against fungal disease, the release of both mediators from mast cells may contribute to the overall response of the host immune system during S. schenckii infection.

  16. The FRIABLE1 gene product affects cell adhesion in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Lutz Neumetzler

    Full Text Available Cell adhesion in plants is mediated predominantly by pectins, a group of complex cell wall associated polysaccharides. An Arabidopsis mutant, friable1 (frb1, was identified through a screen of T-DNA insertion lines that exhibited defective cell adhesion. Interestingly, the frb1 plants displayed both cell and organ dissociations and also ectopic defects in organ separation. The FRB1 gene encodes a Golgi-localized, plant specific protein with only weak sequence similarities to known proteins (DUF246. Unlike other cell adhesion deficient mutants, frb1 mutants do not have reduced levels of adhesion related cell wall polymers, such as pectins. Instead, FRB1 affects the abundance of galactose- and arabinose-containing oligosaccharides in the Golgi. Furthermore, frb1 mutants displayed alteration in pectin methylesterification, cell wall associated extensins and xyloglucan microstructure. We propose that abnormal FRB1 action has pleiotropic consequences on wall architecture, affecting both the extensin and pectin matrices, with consequent changes to the biomechanical properties of the wall and middle lamella, thereby influencing cell-cell adhesion.

  17. Acrolein-Induced Oxidative Stress and Cell Death Exhibiting Features of Apoptosis in the Yeast Saccharomyces cerevisiae Deficient in SOD1.

    Science.gov (United States)

    Kwolek-Mirek, Magdalena; Zadrąg-Tęcza, Renata; Bednarska, Sabina; Bartosz, Grzegorz

    2015-04-01

    The yeast Saccharomyces cerevisiae is a useful eukaryotic model to study the toxicity of acrolein, an important environmental toxin and endogenous product of lipid peroxidation. The study was aimed at elucidation of the cytotoxic effect of acrolein on the yeast deficient in SOD1, Cu, Zn-superoxide dismutase which is hypersensitive to aldehydes. Acrolein generated within the cell from its precursor allyl alcohol caused growth arrest and cell death of the yeast cells. The growth inhibition involved an increase in production of reactive oxygen species and high level of protein carbonylation. DNA condensation and fragmentation, exposition of phosphatidylserine at the cell surface as well as decreased dynamic of actin microfilaments and mitochondria disintegration point to the induction of apoptotic-type cell death besides necrotic cell death.

  18. Yeast and carbon nanotube based biocatalyst developed by synergetic effects of covalent bonding and hydrophobic interaction for performance enhancement of membraneless microbial fuel cell.

    Science.gov (United States)

    Christwardana, Marcelinus; Kwon, Yongchai

    2017-02-01

    Membraneless microbial fuel cell (MFC) employing new microbial catalyst formed as yeast cultivated from Saccharomyces cerevisiae and carbon nanotube (yeast/CNT) is suggested. To analyze its catalytic activity and performance and stability of MFC, several characterizations are performed. According to the characterizations, the catalyst shows excellent catalytic activities by facile transfer of electrons via reactions of NAD, FAD, cytochrome c and cytochrome a3, while it induces high maximum power density (MPD) (344mW·m(-2)). It implies that adoption of yeast induces increases in catalytic activity and MFC performance. Furthermore, MPD is maintained to 86% of initial value even after eight days, showing excellent MFC stability.

  19. SCYL1-BP1 affects cell cycle arrest in human hepatocellular carcinoma cells via Cyclin F and RRM2.

    Science.gov (United States)

    Wang, Yang; Zhi, Qiaoming; Ye, Qin; Zhou, Chengyuan; Zhang, Lei; Yan, Wei; Wu, Qun; Zhang, Di; Li, Pu; Huo, Keke

    2016-01-01

    The cell cycle is regulated via important biological mechanisms. Controlled expression of cell cycle regulatory proteins is crucial to maintain cell cycle progression. However, unbalanced protein expression leads to many diseases, such as cancer. Previous research suggests that SCYL1-BP1 function might be related to cell cycle progression and SCYL1-BP1 dysfunction to diseases through undefined mechanisms. In this research, an unbiased yeast two-hybrid screen was used to find protein(s) with potential biological relevance to SCYL1-BP1 function, and a novel interaction was recognized between SCYL1-BP1 and Cyclin F. This interaction was chosen as a paradigm to study SCYL1-BP1 function in cell cycle progression and its possible role in tumorigenesis. We found that SCYL1-BP1 binds to Cyclin F both in vivo and in vitro. SCYL1-BP1 overexpression promoted expression of the CCNF gene and simultaneously delayed Cyclin F protein degradation. SCYL1-BP1 knockdown reduced the expression of endogenous Cyclin F. It was also demonstrated in functional assays that SCYL1-BP1 overexpression induces G2/M arrest in cultured liver cells. Furthermore, SCYL1-BP1 sustained RRM2 protein expression by reducing its ubiquitination. Thus, we propose that SCYL1- BP1 affects the cell cycle through increasing steady state levels of Cyclin F and RRM2 proteins, thus constituting a dual regulatory circuit. This study provides a possible mechanism for SCYL1-BP1-mediated cell cycle regulation and related diseases.

  20. Fission yeast Sec3 and Exo70 are transported on actin cables and localize the exocyst complex to cell poles.

    Directory of Open Access Journals (Sweden)

    Felipe O Bendezú

    Full Text Available The exocyst complex is essential for many exocytic events, by tethering vesicles at the plasma membrane for fusion. In fission yeast, polarized exocytosis for growth relies on the combined action of the exocyst at cell poles and myosin-driven transport along actin cables. We report here the identification of fission yeast Schizosaccharomyces pombe Sec3 protein, which we identified through sequence homology of its PH-like domain. Like other exocyst subunits, sec3 is required for secretion and cell division. Cells deleted for sec3 are only conditionally lethal and can proliferate when osmotically stabilized. Sec3 is redundant with Exo70 for viability and for the localization of other exocyst subunits, suggesting these components act as exocyst tethers at the plasma membrane. Consistently, Sec3 localizes to zones of growth independently of other exocyst subunits but depends on PIP(2 and functional Cdc42. FRAP analysis shows that Sec3, like all other exocyst subunits, localizes to cell poles largely independently of the actin cytoskeleton. However, we show that Sec3, Exo70 and Sec5 are transported by the myosin V Myo52 along actin cables. These data suggest that the exocyst holocomplex, including Sec3 and Exo70, is present on exocytic vesicles, which can reach cell poles by either myosin-driven transport or random walk.

  1. Asymmetric bioreduction of acetophenones by Baker's yeast and its cell-free extract encapsulated in sol-gel silica materials

    Science.gov (United States)

    Kato, Katsuya; Nakamura, Hitomi; Nakanishi, Kazuma

    2014-02-01

    Baker's yeast (BY) encapsulated in silica materials was synthesized using a yeast cell suspension and its cell-free extract during a sol-gel reaction of tetramethoxysilane with nitric acid as a catalyst. The synthesized samples were fully characterized using various methods, such as scanning electron microscopy, nitrogen adsorption-desorption, Fourier transform infrared spectroscopy, thermogravimetry, and differential thermal analysis. The BY cells were easily encapsulated inside silica-gel networks, and the ratio of the cells in the silica gel was approximately 75 wt%, which indicated that a large volume of BY was trapped with a small amount of silica. The enzyme activity (asymmetric reduction of prochiral ketones) of BY and its cell-free extract encapsulated in silica gel was investigated in detail. The activities and enantioselectivities of free and encapsulated BY were similar to those of acetophenone and its fluorine derivatives, which indicated that the conformation structure of BY enzymes inside silica-gel networks did not change. In addition, the encapsulated BY exhibited considerably better solvent (methanol) stability and recyclability compared to free BY solution. We expect that the development of BY encapsulated in sol-gel silica materials will significantly impact the industrial-scale advancement of high-efficiency and low-cost biocatalysts for the synthesis of valuable chiral alcohols.

  2. Self-organization of yeast cells on modified polymer surfaces after dewetting: new perspectives in cellular patterning

    Energy Technology Data Exchange (ETDEWEB)

    Carnazza, S [Department of Microbiological, Genetic and Molecular Sciences, University of Messina, Messina (Italy); Satriano, S [Department of Chemical Sciences, University of Catania, Catania (Italy); Guglielmino, S [Department of Microbiological, Genetic and Molecular Sciences, University of Messina, Messina (Italy)

    2006-08-23

    In recent years, biological micro-electro-mechanical systems (commonly referred to as BioMEMS) have found widespread use, becoming increasingly prevalent in diagnostics and therapeutics. Cell-based sensors are nowadays gaining increasing attention, due to cellular built-in natural selectivity and physiologically relevant response to biologically active chemicals. On the other hand, surrogate microbial systems, including yeast models, have become a useful alternative to animal and mammalian cell systems for high-throughput screening for the identification of new pharmacological agents. A main obstacle in biosensor device fabrication is the need for localized geometric confinement of cells, without losing cell viability and sensing capability. Here we illustrate a new approach for cellular patterning using dewetting processes to control cell adhesion and spatial confinement on modified surfaces. By the control of simple system parameters, a rich variety of morphologies, ranging through hexagonal arrays, polygonal networks, bicontinuous structures, and elongated fingers, can be obtained.

  3. Effect of yeast storage temperature and flour composition on fermentative activities of baker's yeast

    Directory of Open Access Journals (Sweden)

    Pejin Dušanka J.

    2009-01-01

    Full Text Available Baker's yeast is a set of living cells of Saccharomyces cerevisiae. It contains around 70-72% of water, 42-45% of proteins, around 40% of carbohydrates, around 7.5% of lipids (based on dry matter, and vitamin B-complex. On the basis of yeast cell analysis it can be concluded that yeast is a complex biological system which changes in time. The intensity of the changes depends on temperature. Yeast sample was stored at 4°C i 24°C for 12 days. During storage at 4°C, the content of total carbohydrates decreased from 48.81% to 37.50% (dry matter, whereas carbohydrate loss ranged from 40.81% to 29.28% at 24°C. The content of trehalose was 12.33% in the yeast sample stored at 4°C and 0.24% at 24°C. Loss of fermentative activity was 81.76% in the sample stored at 24°C for 12 days. The composition of five samples of 1st category flour was investigated. It was found that flours containing more reducing sugars and maltose enable higher fermentation activities. The flours with higher ash content (in the range 0.5-0.94% had higher contents of phytic acid. Higher ash and phytic contents in flour increased the yeast fermentative efficiency. In bakery industry, a range of ingredients has been applied to improve the product's quality such as surface active substances (emulsifiers, enzymes, sugars and fats. In the paper, the effect of some ingredients added to dough (margarine, saccharose, sodium chloride and malted barley on the yeast fermentative activity was studied. The mentioned ingredients were added to dough at different doses: 0.5, 1.0, 1.5 and 2.0%, flour basis. It was found that the investigated ingredients affected the fermentative activity of yeast and improved the bread quality.

  4. Portable, Cost-effective, and Rapid Yeast Cell Concentration and Viability Measurement using Lensless On-chip Microscopy and Support Vector Machine Classification

    OpenAIRE

    2016-01-01

    The monitoring of yeast cell concentration and viability is essential for beer-brewing and biofuel production industries. However, the current methods of measuring viability and concentration are relatively bulky, costly, and/or tedius. We have developed an Automatic Yeast Analysis Platform (AYAP) that performs portable, cost-effective, and rapid measurement of these conditions using a lensless microscope based on partially-coherent in-line holography. This microscope weighs 70 g, has dimensi...

  5. Influence of Selenium Content in the Culture Medium on Protein Profile of Yeast Cells Candida utilis ATCC 9950

    Directory of Open Access Journals (Sweden)

    Marek Kieliszek

    2015-01-01

    Full Text Available Selenium is an essential trace element for human health and it has been recognized as a component of several selenoproteins with crucial biological functions. It has been identified as a component of active centers of many enzymes, as well as integral part of biologically active complexes. The aim of the study was to evaluate the protein content and amino acid profile of the protein of fodder yeast Candida utilis ATCC 9950 cultured in media control and experimental enriched selenium. Protein analysis was performed using SDS-PAGE method consisting of polyacrylamide gel electrophoresis in the presence of SDS. The highest contents of soluble protein (49,5 mg/g were found in yeast cells after 24-hour culture conducted in control (YPD medium. In the presence of selenium there were determined small amounts of protein content. With increasing time of yeast culture (to 72 hours the control and experimental media were reported to reduce soluble protein content. In electropherogram proteins from control cultures was observed the presence of 10 protein fractions, but in all the experimental cultures (containing 20, 30, and 40 mg/L selenium of 14 protein fractions. On the basis of the molecular weights of proteins, it can be concluded that they were among others: selenoprotein 15 kDa and selenoprotein 18 kDa.

  6. Influence the oxidant action of selenium in radiosensitivity induction and cell death in yeast Saccharomyces cerevisiae; Influencia da acao oxidante do selenio na inducao da radiossensibilidade e morte celular na levedura Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Porto, Barbara Abranches de Araujo

    2012-07-01

    Ionizing radiations are from both natural sources such as from anthropogenic sources. Recently, radiotherapy has emerged as one of the most common therapies against cancer. Co-60 irradiators (cobalt-60 linear accelerators) are used to treat of malignant tumors routinely in hospitals around the world. Exposure to ionizing radiation can induce changes in cellular macromolecules and affect its functions, because they cause radiolysis of the water molecule generating reactive oxygen species, which can cause damage to virtually all organelles and cell components known as oxidative damage that can culminate in oxidative stress. Oxidative stress is a situation in which the balance between oxidants and antioxidants is broken resulting in excessive production of reactive species, it is not accompanied by the increase in antioxidant capacity, making it impossible to neutralize them. Selenium is a micronutrient considered as antioxidant, antiinflammatory, which could prevent cancer. Selenium in biological system exists as seleno proteins. Nowadays, 25 human seleno proteins have been identified, including glutathione peroxidase, an antioxidant enzyme. Yeasts have the ability to incorporate various metals such as iron, cadmium, zinc and selenium, as well as all biological organisms. The yeast Saccharomyces cerevisiae, unlike mammalian cells is devoid of seleno proteins, being considered as a practical model for studies on the toxicity of selenium, without any interference from the metabolism of seleno proteins. Moreover, yeast cells proliferate through the fermentation, the microbial equivalent of aerobic glycolysis in mammals and the process is also used by tumors. Several reports show that the pro-oxidante effects and induced toxic selenium compounds occur at lower doses and in malignant cells compared with benign cells. Therefore selenium giving a great therapeutic potential in cancer treatment .Our objective was to determine whether selenium is capable to sensitize yeasts

  7. Yeast Extract and Silver Nitrate Induce the Expression of Phenylpropanoid Biosynthetic Genes and Induce the Accumulation of Rosmarinic Acid in Agastache rugosa Cell Culture.

    Science.gov (United States)

    Park, Woo Tae; Arasu, Mariadhas Valan; Al-Dhabi, Naif Abdullah; Yeo, Sun Kyung; Jeon, Jin; Park, Jong Seok; Lee, Sook Young; Park, Sang Un

    2016-01-01

    The present study aimed to investigate the role of yeast extract and silver nitrate on the enhancement of phenylpropanoid pathway genes and accumulation of rosmarinic acid in Agastache rugosa cell cultures. The treatment of cell cultures with yeast extract (500 mg/L) and silver nitrate (30 mg/L) for varying times enhanced the expression of genes in the phenylpropanoid pathway and the production of rosmarinic acid. The results indicated that the expression of RAS and HPPR was proportional to the amount of yeast extract and silver nitrate. The transcript levels of HPPR under yeast extract treatment were 1.84-, 1.97-, and 2.86-fold higher than the control treatments after 3, 6, and 12 h, respectively, whereas PAL expression under silver nitrate treatment was 52.31-fold higher than in the non-treated controls after 24 h of elicitation. The concentration of rosmarinic acid was directly proportional to the concentration of the applied elicitors. Yeast extract supplementation documented the highest amount of rosmarinic acid at 4.98 mg/g, whereas silver nitrate addition resulted in a comparatively lower amount of rosmarinic acid at 0.65 mg/g. In conclusion, addition of yeast extract to the cell cultures enhanced the accumulation of rosmarinic acid, which was evidenced by the expression levels of the phenylpropanoid biosynthetic pathway genes in A. rugosa.

  8. Assessment of yeast cell wall as replacements for antibiotic growth promoters in broiler diets: effects on performance, intestinal histo-morphology and humoral immune responses.

    Science.gov (United States)

    Ghosh, T K; Haldar, S; Bedford, M R; Muthusami, N; Samanta, I

    2012-04-01

    The study compared the effects of an antibiotic growth promoter (AGP), yeast (Saccharomyces cerevisiae) and yeast cell wall (YCW) on performance, microbiology and histo-morphology of the small intestine and humoral immune responses in Ross 308 broilers. The treatments (eight replicates/treatment, n = 12/replicate) were negative control (NC, without AGP), positive control (PC, supplemented with bacitracin methylene disalicylate, 400 mg/kg), Y and YCW (supplemented with yeast and YCW, respectively, 1000 mg/kg). Live weight at 42 days improved (p = 0.086) in the PC, Y and YCW groups. Feed conversion ratio was better (p = 0.039) in the YCW group compared with the other groups. Antibiotic growth promoter in the PC group shortened the villi in duodenum (p = 0.044). Mucosal Escherichia coli number was higher in the PC group (p Yeast cell wall -treated birds exhibited better (p yeast and the yeast cell wall may have effects identical to BMD on performance of broilers and thus may constitute an effective replacement strategy in the dietary regimens for broiler chickens.

  9. Tris-sucrose buffer system: a new specially designed medium for extracellular invertase production by immobilized cells of isolated yeast Cryptococcus laurentii MT-61.

    Science.gov (United States)

    Aydogan, Mehmet Nuri; Taskin, Mesut; Canli, Ozden; Arslan, Nazli Pinar; Ortucu, Serkan

    2014-01-01

    The aims of the present study were to isolate new yeasts with high extracellular (exo) invertase activity and to investigate the usability of buffer systems as invertase production media by immobilized yeast cells. Among 70 yeast isolates, Cryptococcus laurentii MT-61 had the highest exo-invertase activity. Immobilization of yeast cells was performed using sodium alginate. Higher exo-invertase activity for immobilized cells was achieved in tris-sucrose buffer system (TSBS) compared to sodium acetate buffer system and potassium phosphate buffer system. TSBS was prepared by dissolving 30 g of sucrose in 1 L of tris buffer solution. The optimum pH, temperature, and incubation time for invertase production with immobilized cells were determined as 8.0, 35 °C and 36 h in TSBS, respectively. Under optimized conditions, maximum exo-invertase activity was found to be 28.4 U/mL in sterile and nonsterile TSBS. Immobilized cells could be reused in 14 and 12 successive cycles in sterile and nonsterile TSBS without any loss in the maximum invertase activity, respectively. This is the first report which showed that immobilized microbial cells could be used as a biocatalyst for exo-invertase production in buffer system. As an additional contribution, a new yeast strain with high invertase activity was isolated.

  10. Yeast whole-cell biocatalyst constructed by intracellular overproduction of Rhizopus oryzae lipase is applicable to biodiesel fuel production

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, T.; Fukuda, H. [Kobe University, Kobe (Japan). Graduate School of Science and Technology, Division of Molecular Science; Takahashi, S.; Ueda, M.; Tanaka, A. [Kyoto University, Kyoto (Japan). Dept. of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering; Kaieda, M.; Kondo, A. [Kobe University, Kobe (Japan). Faculty of Engineering, Dept. of Chemical Science and Engineering

    2001-07-01

    Yeast whole-cell biocatalysts for lipase-catalyzed reactions were constructed by intracellularly overproducing Rhizopus oryzae lipase (ROL) in Saccharomyces cerevisiae MT8-1. The gene encoding lipase from R. oryzae IFO4697 was cloned, and intracellular overproduction systems of a recombinant ROL with a pro-sequence (rPRoROL) were constructed. When rProROL from R. oryzae IFO4697 was produced under the control of the 5'-upstream region of the isocitrate lyase gene of Candida tropicalis (UPR-ICL) at 30 C for 98 h by two-stage cultivation using SDC medium (SD medium with 2% casamino acids) containing 2.0% and 0.5% glucose, intracellular lipase activity reached levels up to 474.5 IU/l. These whole-cell biocatalysts were permeabilized by air-drying and used for the synthesis of methyl esters (MEs), a potential biodiesel fuel, from plant oil and methanol in a solvent-free and water-containing system. The ME content in the reaction mixture was 71 wt% after a 165-h reaction at 37 C with stepwise addition of methanol. These results indicate that an efficient whole-cell biocatalyst can be prepared by intracellular overproduction of lipase in yeast cells and their permeabilization. (orig.)

  11. The serine/threonine phosphatase DhSIT4 modulates cell cycle, salt tolerance and cell wall integrity in halo tolerant yeast Debaryomyces hansenii.

    Science.gov (United States)

    Chawla, Srishti; Kundu, Debasree; Randhawa, Anmoldeep; Mondal, Alok K

    2017-03-30

    The highly conserved family of Phosphoprotein phosphatases (PPP) regulates several major physiological processes in yeast. However, very little is known about the PPP orthologs from the yeast species inhabiting extreme environmental niches. In the present study we have identified DhSIT4, a member of PPP6 class of serine threonine phosphatases from the halotolerant yeast Debaryomyces hansenii. Deletion of DhSIT4 in D. hansenii was not lethal but the mutant exhibited reduced growth due to its effect on the cell cycle. The knock out mutant Dhsit4Δ showed sensitivity towards Li(+), Na(+) and cell wall damaging agents. The expression of DhSit4p rescued salt, caffeine and calcofluor white sensitivity of Dhmpk1Δ strain and thereby indicating a genetic interaction of this phosphatase with the cell wall integrity pathway in this species. Our study also demonstrated the antagonistic roles of DhSit4p and DhPpz1p in maintaining the cell cycle and ion homeostasis in D. hansenii.

  12. Improvement in organophosphorus hydrolase activity of cell surface-engineered yeast strain using Flo1p anchor system.

    Science.gov (United States)

    Fukuda, Takeshi; Tsuchiyama, Kouta; Makishima, Hirokazu; Takayama, Katsumi; Mulchandani, Ashok; Kuroda, Kouichi; Ueda, Mitsuyoshi; Suye, Shin-ichiro

    2010-05-01

    Organophosphorus hydrolase (OPH) hydrolyzes organophosphorus esters. We constructed the yeast-displayed OPH using Flo1p anchor system. In this system, the N-terminal region of the protein was fused to Flo1p and the fusion protein was displayed on the cell surface. Hydrolytic reactions with paraoxon were carried out during 24 h of incubation of OPH-displaying cells at 30 degrees C. p-Nitrophenol produced in the reaction mixture was detected by HPLC. The strain with highest activity showed 8-fold greater OPH activity compared with cells engineered using glycosylphosphatidylinositol anchor system, and showed 20-fold greater activity than Escherichia coli using the ice nucleation protein anchor system. These results indicate that Flo1p anchor system is suitable for display of OPH in the cell surface-expression systems.

  13. The power of yeast to model diseases of the powerhouse of the cell.

    Science.gov (United States)

    Baile, Matthew G; Claypool, Steven M

    2013-01-01

    Mitochondria participate in a variety of cellular functions. As such, mitochondrial diseases exhibit numerous clinical phenotypes. Because mitochondrial functions are highly conserved between humans and Saccharomyces cerevisiae, yeast are an excellent model to study mitochondrial disease, providing insight into both physiological and pathophysiological processes.

  14. Unscheduled DNA synthesis in xeroderma pigmentosum cells after microinjection of yeast photoreactivating enzyme.

    NARCIS (Netherlands)

    J.C.M. Zwetsloot; J.H.J. Hoeijmakers (Jan); W. Vermeulen (Wim); A.P.M. Eker (André); D. Bootsma (Dirk)

    1986-01-01

    textabstractPhotoreactivating enzyme (PRE) from yeast causes a light-dependent reduction of UV-induced unscheduled DNA synthesis (UDS) when injected into the cytoplasm of repair-proficieint human fibroblasts (Zwetsloot et al., 1985). This result indicates that the exogenous PRE monomerizers UV-induc

  15. Critical assessment of the formation of hydrogen peroxide in dough by fermenting yeast cells.

    Science.gov (United States)

    Rezaei, Mohammad N; Dornez, Emmie; Verstrepen, Kevin J; Courtin, Christophe M

    2015-02-01

    Fermentation of bread dough leads to strengthening of the dough matrix. This effect has previously been ascribed to the action of hydrogen peroxide (H2O2) produced by yeast in dough. In this study, we re-evaluate the production of H2O2 by yeast in dough and aqueous fermentation broth. Results show that the previously reported high levels of H2O2 in fermenting dough were most probably due to the lack of specificity of the potassium dichromate/acetic acid-based method used. Using the chemiluminescent HyPerBlu assay, no yeast H2O2 production could be detected in fermented dough or broth. Even though the formation of low levels of H2O2 cannot be ruled out due to the presence of catalase in flour and the fast reaction of H2O2 with gluten proteins, our results suggest that the changes in dough matrix rheological properties upon fermentation are not due to production of H2O2 by yeast.

  16. Quantitation of (a)symmetric inheritance of functional and of oxidatively damaged mitochondrial aconitase in the cell division of old yeast mother cells.

    Science.gov (United States)

    Klinger, Harald; Rinnerthaler, Mark; Lam, Yuen T; Laun, Peter; Heeren, Gino; Klocker, Andrea; Simon-Nobbe, Birgit; Dickinson, J Richard; Dawes, Ian W; Breitenbach, Michael

    2010-08-01

    Asymmetric segregation of oxidatively damaged proteins is discussed in the literature as a mechanism in cell division cycles which at the same time causes rejuvenation of the daughter cell and aging of the mother cell. This process must be viewed as cooperating with the cellular degradation processes like autophagy, proteasomal degradation and others. Together, these two mechanisms guarantee survival of the species and prevent clonal senescence of unicellular organisms, like yeast. It is widely believed that oxidative damage to proteins is primarily caused by oxygen radicals and their follow-up products produced in the mitochondria. As we have shown previously, old yeast mother cells in contrast to young cells contain reactive oxygen species and undergo programmed cell death. Here we show that aconitase of the mitochondrial matrix is readily inactivated by oxidative stress, but even in its inactive form is relatively long-lived and retains fluorescence in the Aco1p-eGFP form. The fluorescent protein is distributed between old mothers and their daughters approximately corresponding to the different sizes of mother and daughter cells. However, the remaining active enzyme is primarily inherited by the daughter cells. This indicates that asymmetric distribution of the still active enzyme takes place and a mechanism for discrimination between active and inactive enzyme must exist. As the aconitase remains mitochondrial during aging and cell division, our findings could indicate discrimination between active and no longer active mitochondria during the process.

  17. Identification of a 49-kDa hydrophobic cell wall mannoprotein present in velum yeast which may be implicated in velum formation.

    Science.gov (United States)

    Alexandre, H; Blanchet, S; Charpentier, C

    2000-04-15

    Analysis of velum-forming yeast cell wall components released by beta-1,3-glucanase treatment were compared with those of a non velum-forming yeast. SDS-PAGE electrophoresis and Western blotting with ConA-peroxidase staining of mannoproteins allowed us to identify a 49-kDa mannoprotein present in the cell wall of the velum-forming yeast and hardly visible in the control. The cell wall nature of this protein was confirmed by labelling with the non-permeable sulfosuccinimydiyl-6-(biotinamido)hexanoate reagent. A partial purification of this mannoprotein by anion exchange HPLC followed by surface hydrophobicity determination revealed that the fraction containing the 49-kDa mannoprotein was the most hydrophobic. Since cell surface hydrophobicity plays an important role in aggregate formation, it is likely that this mannoprotein is involved in velum formation.

  18. Rec-8 dimorphism affects longevity, stress resistance and X-chromosome nondisjunction in C. elegans, and replicative lifespan in yeast

    Directory of Open Access Journals (Sweden)

    Srinivas eAyyadevara

    2014-08-01

    Full Text Available A quantitative trait locus (QTL in the nematode C. elegans, lsq4, was recently implicated by mapping longevity genes. QTLs for lifespan and 3 stress-resistance traits coincided within a span of <300 kbp, later narrowed to <200 kbp. A single gene in this interval is now shown to modulate all lsq4-associated traits. Full-genome analysis of transcript levels indicates that lsq4 contains a dimorphic gene governing expression of sperm-specific genes, suggesting effects on spermatogenesis. Quantitation of allele-specific transcripts encoded within the lsq4 interval revealed significant, 2- to 15-fold expression differences for 10 of 33 genes. Fourteen genes, implicated by both position and expression, were tested for RNA-interference effects on QTL-linked traits. In a strain carrying the shorter-lived allele, knockdown of rec-8 (encoding a meiotic cohesin reduced its transcripts 4-fold, to a level similar to the longer-lived strain, and extended lifespan 25–26% whether begun before fertilization or at maturity. The short-lived lsq4 allele also conferred sensitivity to oxidative and thermal stresses, and lower male frequency, traits reversed uniquely by rec-8 knockdown. A strain bearing the longer-lived lsq4 allele, differing from the short-lived strain at <0.3% of its genome, derived no lifespan or stress-survival benefit from rec-8 knockdown. We consider two possible explanations: high rec-8 expression may include increased leaky expression in mitotic cells, leading to deleterious destabilization of somatic genomes; or REC-8 may act entirely in germ-line meiotic cells to reduce aberrations such as nondisjunction, thereby blunting a stress-resistance response mediated by innate immunity. Replicative lifespan was extended 20% in haploid S. cerevisiae (BY4741 by deletion of REC8, orthologous to nematode rec-8, implying that REC8 disruption of mitotic-cell survival is widespread, reflecting antagonistic pleiotropy and/or balancing selection.

  19. Evidence for a second messenger function of dUTP during Bax mediated apoptosis of yeast and mammalian cells.

    Science.gov (United States)

    Williams, Drew; Norman, Grant; Khoury, Chamel; Metcalfe, Naomi; Briard, Jennie; Laporte, Aimee; Sheibani, Sara; Portt, Liam; Mandato, Craig A; Greenwood, Michael T

    2011-02-01

    The identification of novel anti-apoptotic sequences has lead to new insights into the mechanisms involved in regulating different forms of programmed cell death. For example, the anti-apoptotic function of free radical scavenging proteins supports the pro-apoptotic function of Reactive Oxygen Species (ROS). Using yeast as a model of eukaryotic mitochondrial apoptosis, we show that a cDNA corresponding to the mitochondrial variant of the human DUT gene (DUT-M) encoding the deoxyuridine triphosphatase (dUTPase) enzyme can prevent apoptosis in yeast in response to internal (Bax expression) and to exogenous (H(2)O(2) and cadmium) stresses. Of interest, cell death was not prevented under culture conditions modeling chronological aging, suggesting that DUT-M only protects dividing cells. The anti-apoptotic function of DUT-M was confirmed by demonstrating that an increase in dUTPase protein levels is sufficient to confer increased resistance to H(2)O(2) in cultured C2C12 mouse skeletal myoblasts. Given that the function of dUTPase is to decrease the levels of dUTP, our results strongly support an emerging role for dUTP as a pro-apoptotic second messenger in the same vein as ROS and ceramide.

  20. Effect of GbKTN1 from Gossypium barbadense on cell elongation of fission yeast(Schizosaccharomyces pombe)

    Institute of Scientific and Technical Information of China (English)

    LI Weimin; WANG Zhixing; JIA Shirong

    2004-01-01

    The GbKTN1 gene was isolated from 10 DPA fiber cells of Gossypium barbadense using 5′RACE/3′RACE. Full-length cDNA of this gene is 2006 bp, including a 113 bp of 5′untranslated region, a 1563 bp of an open reading frame (ORF), and a 327 bp of 3′untranslated region (excluding the stop codon TAA). The ORF of GbKTN1 encodes a 521-amino acid protein with a predicted size of 55 kD. Near C-terminal of the deduced protein there is a putative ATP binding site between amino acid residues from 233 to 414. Southern blot analysis indicated that the GbKTN1 was a single copy gene in G. barbadense. Combining semi-quantitative RT-PCR with Southern blot hybridization revealed that GbKTN1 expressed in all the organs detected such as roots, stems, leaves and fibers. However, the mRNA of GbKTN1 was the most abundant in fiber cells, while it was the lowest in leaves. The GbKTN1 cDNA was transformed into S. pombe to verify its function on cell elongation. Results showed that most yeast cells over expressing GbKTN1 gene were elongated dramatically with an average length increase of 2.18 times than that of the non-induced cells. Even the morphology of some yeast cells appeared irregularly. To the best of our knowledge this is the first evidence that KTN1 is correlated with cell elongation in vivo.

  1. Genes affecting β-cell function in type 1 diabetes

    DEFF Research Database (Denmark)

    Fløyel, Tina; Kaur, Simranjeet; Pociot, Flemming

    2015-01-01

    Type 1 diabetes (T1D) is a multifactorial disease resulting from an immune-mediated destruction of the insulin-producing pancreatic β cells. Several environmental and genetic risk factors predispose to the disease. Genome-wide association studies (GWAS) have identified around 50 genetic regions...... that affect the risk of developing T1D, but the disease-causing variants and genes are still largely unknown. In this review, we discuss the current status of T1D susceptibility loci and candidate genes with focus on the β cell. At least 40 % of the genes in the T1D susceptibility loci are expressed in human...... islets and β cells, where they according to recent studies modulate the β-cell response to the immune system. As most of the risk variants map to noncoding regions of the genome, i.e., promoters, enhancers, intergenic regions, and noncoding genes, their possible involvement in T1D pathogenesis as gene...

  2. Nitrile Metabolizing Yeasts

    Science.gov (United States)

    Bhalla, Tek Chand; Sharma, Monica; Sharma, Nitya Nand

    Nitriles and amides are widely distributed in the biotic and abiotic components of our ecosystem. Nitrile form an important group of organic compounds which find their applications in the synthesis of a large number of compounds used as/in pharmaceutical, cosmetics, plastics, dyes, etc>. Nitriles are mainly hydro-lyzed to corresponding amide/acid in organic chemistry. Industrial and agricultural activities have also lead to release of nitriles and amides into the environment and some of them pose threat to human health. Biocatalysis and biotransformations are increasingly replacing chemical routes of synthesis in organic chemistry as a part of ‘green chemistry’. Nitrile metabolizing organisms or enzymes thus has assumed greater significance in all these years to convert nitriles to amides/ acids. The nitrile metabolizing enzymes are widely present in bacteria, fungi and yeasts. Yeasts metabolize nitriles through nitrilase and/or nitrile hydratase and amidase enzymes. Only few yeasts have been reported to possess aldoxime dehydratase. More than sixty nitrile metabolizing yeast strains have been hither to isolated from cyanide treatment bioreactor, fermented foods and soil. Most of the yeasts contain nitrile hydratase-amidase system for metabolizing nitriles. Transformations of nitriles to amides/acids have been carried out with free and immobilized yeast cells. The nitrilases of Torulopsis candida>and Exophiala oligosperma>R1 are enantioselec-tive and regiospecific respectively. Geotrichum>sp. JR1 grows in the presence of 2M acetonitrile and may have potential for application in bioremediation of nitrile contaminated soil/water. The nitrilase of E. oligosperma>R1 being active at low pH (3-6) has shown promise for the hydroxy acids. Immobilized yeast cells hydrolyze some additional nitriles in comparison to free cells. It is expected that more focus in future will be on purification, characterization, cloning, expression and immobilization of nitrile metabolizing

  3. Effects of yeast extract and methyl jasmonate on the enhancement of solasodine biosynthesis in cell cultures of Solanum hainanense Hance

    Directory of Open Access Journals (Sweden)

    NGUYEN HOANG LOC

    2014-04-01

    Full Text Available In this work, the effects of the elicitors methyl jasmonate (MeJA and yeast extract (YE on the growth and solasodine production of Solanum hainanense cells were investigated. The results showed that various concentrations of MeJA (50-250 µM and YE (1-4 g/L have different eliciting influences. The increase of solasodine content induced by the elicitation of 3 g/L of YE and 50 µM of MeJA at the beginning of cell culture was about 1.9- and 1.3-fold, respectively, as compared with that of the non-elicitated cells. In general, YE (biotic elicitor was more effective in enhancing solasodine production than MeJA (abiotic elicitor.

  4. Bright fluorescence monitoring system utilizing Zoanthus sp. green fluorescent protein (ZsGreen for human G-protein-coupled receptor signaling in microbial yeast cells.

    Directory of Open Access Journals (Sweden)

    Yasuyuki Nakamura

    Full Text Available G-protein-coupled receptors (GPCRs are currently the most important pharmaceutical targets for drug discovery because they regulate a wide variety of physiological processes. Consequently, simple and convenient detection systems for ligands that regulate the function of GPCR have attracted attention as powerful tools for new drug development. We previously developed a yeast-based fluorescence reporter ligand detection system using flow cytometry. However, using this conventional detection system, fluorescence from a cell expressing GFP and responding to a ligand is weak, making detection of these cells by fluorescence microscopy difficult. We here report improvements to the conventional yeast fluorescence reporter assay system resulting in the development of a new highly-sensitive fluorescence reporter assay system with extremely bright fluorescence and high signal-to-noise (S/N ratio. This new system allowed the easy detection of GPCR signaling in yeast using fluorescence microscopy. Somatostatin receptor and neurotensin receptor (implicated in Alzheimer's disease and Parkinson's disease, respectively were chosen as human GPCR(s. The facile detection of binding to these receptors by cognate peptide ligands was demonstrated. In addition, we established a highly sensitive ligand detection system using yeast cell surface display technology that is applicable to peptide screening, and demonstrate that the display of various peptide analogs of neurotensin can activate signaling through the neurotensin receptor in yeast cells. Our system could be useful for identifying lead peptides with agonistic activity towards targeted human GPCR(s.

  5. UV-dependent production of 25-hydroxyvitamin D{sub 2} in the recombinant yeast cells expressing human CYP2R1

    Energy Technology Data Exchange (ETDEWEB)

    Yasuda, Kaori; Endo, Mariko; Ikushiro, Shinichi; Kamakura, Masaki [Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398 (Japan); Ohta, Miho [Department of Food and Nutrition Management Studies, Faculty of Human Development, Soai University, 4-4-1 Nanko-naka, Suminoe-ku, Osaka 559-0033 (Japan); Sakaki, Toshiyuki, E-mail: tsakaki@pu-toyama.ac.jp [Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398 (Japan)

    2013-05-03

    Highlights: •We produce 25-hydroxyvitamin D in the recombinant yeast expressing human CYP2R1. •Vitamin D2 is produced in yeast from endogenous ergosterol with UV irradiation. •We produce 25-hydroxyvitamin D2 in the recombinant yeast without added substrate. -- Abstract: CYP2R1 is known to be a physiologically important vitamin D 25-hydroxylase. We have successfully expressed human CYP2R1 in Saccharomyces cerevisiae to reveal its enzymatic properties. In this study, we examined production of 25-hydroxylated vitamin D using whole recombinant yeast cells that expressed CYP2R1. When vitamin D{sub 3} or vitamin D{sub 2} was added to the cell suspension of CYP2R1-expressing yeast cells in a buffer containing glucose and β-cyclodextrin, the vitamins were converted into their 25-hydroxylated products. Next, we irradiated the cell suspension with UVB and incubated at 37 °C. Surprisingly, the 25-hydroxy vitamin D{sub 2} was produced without additional vitamin D{sub 2}. Endogenous ergosterol was likely converted into vitamin D{sub 2} by UV irradiation and thermal isomerization, and then the resulting vitamin D{sub 2} was converted to 25-hydroxyvitamin D{sub 2} by CYP2R1. This novel method for producing 25-hydroxyvitamin D{sub 2} without a substrate could be useful for practical purposes.

  6. A Western Blot-based Investigation of the Yeast Secretory Pathway Designed for an Intermediate-Level Undergraduate Cell Biology Laboratory

    Science.gov (United States)

    Hood-DeGrenier, Jennifer K.

    2008-01-01

    The movement of newly synthesized proteins through the endomembrane system of eukaryotic cells, often referred to generally as the secretory pathway, is a topic covered in most intermediate-level undergraduate cell biology courses. An article previously published in this journal described a laboratory exercise in which yeast mutants defective in…

  7. Extracellular DNA affects NO content in human endothelial cells.

    Science.gov (United States)

    Efremova, L V; Alekseeva, A Yu; Konkova, M S; Kostyuk, S V; Ershova, E S; Smirnova, T D; Konorova, I L; Veiko, N N

    2010-08-01

    Fragments of extracellular DNA are permanently released into the blood flow due to cell apoptosis and possible de novo DNA synthesis. To find out whether extracellular DNA can affect the synthesis of nitric oxide (NO), one of key vascular tone regulators, we studied in vitro effects of three artificial DNA probes with different sequences and 10 samples of extracellular DNA (obtained from healthy people and patients with hypertension and atherosclerosis) on NO synthesis in endothelial cell culture (HUVEC). For detection of NO in live cells and culture medium, we used a NO-specific agent CuFL penetrating into the cells and forming a fluorescent product FL-NO upon interaction with NO. Human genome DNA fragments affected the content of NO in endothelial cells; this effect depended on both the base sequence and concentration of DNA fragments. Addition of artificial DNA and extracellular DNA from healthy people into the cell culture in a low concentration (5 ng/ml) increased the detected NO concentration by 4-fold at most. Cytosine-guanine (CG)-rich fragment of the transcribed sequence of ribosomal repeat was the most powerful NO-inductor. The effect of DNA fragments on NO synthesis was comparable with that of low doses of oxidizing agents, H(2)O(2) and 17β-estradiol. Extracellular DNA samples obtained from patients with hypertension and atherosclerosis decreased NO content in cells and medium by 1.3-28 times compared to the control; the effect correlated with the content of CG-rich sequences.

  8. Yeast genome sequencing:

    DEFF Research Database (Denmark)

    Piskur, Jure; Langkjær, Rikke Breinhold

    2004-01-01

    For decades, unicellular yeasts have been general models to help understand the eukaryotic cell and also our own biology. Recently, over a dozen yeast genomes have been sequenced, providing the basis to resolve several complex biological questions. Analysis of the novel sequence data has shown...... of closely related species helps in gene annotation and to answer how many genes there really are within the genomes. Analysis of non-coding regions among closely related species has provided an example of how to determine novel gene regulatory sequences, which were previously difficult to analyse because...... they are short and degenerate and occupy different positions. Comparative genomics helps to understand the origin of yeasts and points out crucial molecular events in yeast evolutionary history, such as whole-genome duplication and horizontal gene transfer(s). In addition, the accumulating sequence data provide...

  9. Cell factory applications of the yeast Kluyveromyces marxianus for the biotechnological production of natural flavour and fragrance molecules.

    Science.gov (United States)

    Morrissey, John P; Etschmann, Maria M W; Schrader, Jens; de Billerbeck, Gustavo M

    2015-01-01

    Kluyveromyces marxianus is emerging as a new platform organism for the production of flavour and fragrance (F&F) compounds. This food-grade yeast has advantageous traits, such as thermotolerance and rapid growth, that make it attractive for cell factory applications. The major impediment to its development has been limited fundamental knowledge of its genetics and physiology, but this is rapidly changing. K. marxianus produces a wide array of volatile molecules and contributes to the flavour of a range of different fermented beverages. Advantage is now being taken of this to develop strains for the production of metabolites such as 2-phenylethanol and ethyl acetate. Strains that were selected from initial screens were used to optimize processes for production of these F&F molecules. Most developments have focused on optimizing growth conditions and the fermentation process, including product removal, with future advancement likely to involve development of new strains through the application of evolutionary or rational engineering strategies. This is being facilitated by new genomic and molecular tools. Furthermore, synthetic biology offers a route to introduce new biosynthetic pathways into this yeast for F&F production. Consumer demand for biologically-synthesized molecules for use in foods and other products creates an opportunity to exploit the unique potential of K. marxianus for this cell factory application.

  10. Enhancing thermostability of a Rhizomucor miehei lipase by engineering a disulfide bond and displaying on the yeast cell surface.

    Science.gov (United States)

    Han, Zhen-lin; Han, Shuang-yan; Zheng, Sui-ping; Lin, Ying

    2009-11-01

    To increase the thermostability of Rhizomucor miehei lipase, the software Disulfide by Design was used to engineer a novel disulfide bond between residues 96 and 106, and the corresponding double cysteine mutants were constructed. The R. miehei lipase mutant could be expressed by Pichia pastoris in a free secreted form or could be displayed on the cell surface. The new disulfide bond spontaneously formed in the mutant R. miehei lipase. Thermostability was examined by measuring of hydrolysis activity using 4-nitrophenyl caprylate as a substrate. The engineered disulfide bond contributed to thermostability in the free form of the R. miehei lipase variant. The variant displayed on the yeast cell surface had significantly increased residual hydrolytic activity in aqueous solution after incubation at 60 degrees C for 5 h and increased synthetic activity in organic solvent at 60 degrees C. These results indicated that yeast surface display might improve the stability of R. miehei lipase, as well as amplifying the thermostability through the engineered disulfide bond.

  11. Factors affecting daughter cells' arrangement during the early bacterial divisions.

    Directory of Open Access Journals (Sweden)

    Pin-Tzu Su

    Full Text Available On agar plates, daughter cells of Escherichia coli mutually slide and align side-by-side in parallel during the first round of binary fission. This phenomenon has been previously attributed to an elastic material that restricts apparently separated bacteria from being in string. We hypothesize that the interaction between bacteria and the underneath substratum may affect the arrangement of the daughter bacteria. To test this hypothesis, bacterial division on hyaluronic acid (HA gel, as an alternative substratum, was examined. Consistent with our proposition, the HA gel differs from agar by suppressing the typical side-by-side alignments to a rare population. Examination of bacterial surface molecules that may contribute to the daughter cells' arrangement yielded an observation that, with disrupted lpp, the E. coli daughter cells increasingly formed non-typical patterns, i.e. neither sliding side-by-side in parallel nor forming elongated strings. Therefore, our results suggest strongly that the early cell patterning is affected by multiple interaction factors. With oscillatory optical tweezers, we further demonstrated that the interaction force decreased in bacteria without Lpp, a result substantiating our notion that the side-by-side sliding phenomenon directly reflects the strength of in-situ interaction between bacteria and substratum.

  12. Culture materials affect ex vivo expansion of hematopoietic progenitor cells.

    Science.gov (United States)

    LaIuppa, J A; McAdams, T A; Papoutsakis, E T; Miller, W M

    1997-09-01

    Ex vivo expansion of hematopoietic cells is important for applications such as cancer treatment, gene therapy, and transfusion medicine. While cell culture systems are widely used to evaluate the biocompatibility of materials for implantation, the ability of materials to support proliferation of primary human cells in cultures for reinfusion into patients has not been addressed. We screened a variety of commercially available polymer (15 types), metal (four types), and glass substrates for their ability to support expansion of hematopoietic cells when cultured under conditions that would be encountered in a clinical setting. Cultures of peripheral blood (PB) CD34+ cells and mononuclear cells (MNC) were evaluated for expansion of total cells and colony-forming unit-granulocyte monocyte (CFU-GM; progenitors committed to the granulocyte and/or monocyte lineage). Human hematopoietic cultures in serum-free medium were found to be extremely sensitive to the substrate material. The only materials tested that supported expansion at or near the levels of polystyrene were tissue culture polystyrene, Teflon perfluoroalkoxy, Teflon fluorinated ethylene propylene, cellulose acetate, titanium, new polycarbonate, and new polymethylpentene. MNC were less sensitive to the substrate materials than the primitive CD34+ progenitors, although similar trends were seen for expansion of the two cell populations on the substrates tested. CFU-GM expansion was more sensitive to substrate materials than was total cell expansion. The detrimental effects of a number of the materials on hematopoietic cultures appear to be caused by protein adsorption and/or leaching of toxins. Factors such as cleaning, sterilization, and reuse significantly affected the performance of some materials as culture substrates. We also used PB CD34+ cell cultures to examine the biocompatibility of gas-permeable cell culture and blood storage bags and several types of tubing commonly used with biomedical equipment

  13. Biotechnical Microbiology, yeast and bacteria

    DEFF Research Database (Denmark)

    Villadsen, Ingrid Stampe

    1999-01-01

    This section contains the following single lecture notes: Eukaryotic Cell Biology. Kingdom Fungi. Cell Division. Meiosis and Recombination. Genetics of Yeast. Organisation of the Chromosome. Organization and genetics of the mitochondrial Geneme. Regulatio of Gene Expression. Intracellular Compart...

  14. V-ATPase-dependent luminal acidification is required for endocytic recycling of a yeast cell wall stress sensor, Wsc1p

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, Kazuma; Saito, Mayu; Nagashima, Makiko; Kojima, Ai; Nishinoaki, Show [Department of Biological Science and Technology, Tokyo University of Science, Niijuku 6-3-1, Katsushika-ku, Tokyo 125-8585 (Japan); Toshima, Junko Y., E-mail: yama_jun@aoni.waseda.jp [Faculty of Science and Engineering, Waseda University, Wakamatsu-cho 2-2, Shinjuku-ku, Tokyo 162-8480 (Japan); Research Center for RNA Science, RIST, Tokyo University of Science, Niijuku 6-3-1, Katsushika-ku, Tokyo 125-8585 (Japan); Toshima, Jiro, E-mail: jtosiscb@rs.noda.tus.ac.jp [Department of Biological Science and Technology, Tokyo University of Science, Niijuku 6-3-1, Katsushika-ku, Tokyo 125-8585 (Japan); Research Center for RNA Science, RIST, Tokyo University of Science, Niijuku 6-3-1, Katsushika-ku, Tokyo 125-8585 (Japan)

    2014-01-10

    Highlights: •A targeted genome screen identified 5 gene groups affecting Wsc1p recycling. •V-ATPase-dependent luminal acidification is required for Wsc1p recycling. •Activity of V-ATPase might be required for cargo recognition by the retromer complex. -- Abstract: Wsc1p is a major cell wall sensor protein localized at the polarized cell surface. The localization of Wsc1p is maintained by endocytosis and recycling from endosomes back to the cell surface, but changes to the vacuole when cells are subjected to heat stress. Exploiting this unique property of Wsc1p, we screened for yeast single-gene deletion mutants exhibiting defects in Wsc1p trafficking. By expressing 3GFP-tagged Wsc1p in mutants with deleted genes whose function is related to intracellular trafficking, we identified 5 gene groups affecting Wsc1p trafficking, impaired respectively in endocytic internalization, multivesicular body sorting, the GARP complex, endosomal maturation/vacuolar fusion, and V-ATPase. Interestingly, deletion of the VPH1 gene, encoding the V{sub o} subunit of vacuolar-type H{sup +}-ATPase (V-ATPase), led to mis-localization of Wsc1p from the plasma membrane to the vacuole. In addition, disruption of other V-ATPase subunits (vma mutants) also caused defects of Wsc1p trafficking and vacuolar acidification similar to those seen in the vph1Δ mutant. Moreover, we found that deletion of the VPS26 gene, encoding a subunit of the retromer complex, also caused a defect in Wsc1p recycling and mis-localization of Wsc1p to the vacuole. These findings clarified the previously unidentified Wsc1p recycling pathway and requirement of V-ATPase-dependent luminal acidification for Wsc1p recycling.

  15. A multivariate approach using attenuated total reflectance mid-infrared spectroscopy to measure the surface mannoproteins and β-glucans of yeast cell walls during wine fermentations.

    Science.gov (United States)

    Moore, John P; Zhang, Song-Lei; Nieuwoudt, Hélène; Divol, Benoit; Trygg, Johan; Bauer, Florian F

    2015-11-18

    Yeast cells possess a cell wall comprising primarily glycoproteins, mannans, and glucan polymers. Several yeast phenotypes relevant for fermentation, wine processing, and wine quality are correlated with cell wall properties. To investigate the effect of wine fermentation on cell wall composition, a study was performed using mid-infrared (MIR) spectroscopy coupled with multivariate methods (i.e., PCA and OPLS-DA). A total of 40 yeast strains were evaluated, including Saccharomyces strains (laboratory and industrial) and non-Saccharomyces species. Cells were fermented in both synthetic MS300 and Chardonnay grape must to stationery phase, processed, and scanned in the MIR spectrum. PCA of the fingerprint spectral region showed distinct separation of Saccharomyces strains from non-Saccharomyces species; furthermore, industrial wine yeast strains separated from laboratory strains. PCA loading plots and the use of OPLS-DA to the data sets suggested that industrial strains were enriched with cell wall proteins (e.g., mannoproteins), whereas laboratory strains were composed mainly of mannan and glucan polymers.

  16. Performance of a magnetically stabilized bed reactor with immobilized yeast cells.

    Science.gov (United States)

    Ivanova, V; Hristov, J; Dobreva, E; al-Hassan, Z; Penchev, I

    1996-05-01

    This paper is focused on the possibility to apply the magnetic stabilization technique in bioprocessing. The feasibility of a continuous ethanol fermentation process with immobilized Saccharomyces cerevisiae cells in a magnetically stabilized bed (MSB) was demonstrated. The fermentation processes were carried out in an external magnetic field, transverse to the fluid flow. The flexibility to change the bed expansion owing to the independent change of the fluid flow and the field intensity (the "magnetization FIRST" mode) permitted the creation of fixed beds with different particle arrangements, which affected the bed porosity, the effective fluid-particle contact area, and the mass transfer processes on the particle-fluid interface. As a result, higher ethanol concentration, ethanol production, and glucose uptake rates than in conventional packed bed reactor were reached.

  17. The Natural Product Resveratrol Inhibits Yeast Cell Separation by Extensively Modulating the Transcriptional Landscape and Reprogramming the Intracellular Metabolome.

    Directory of Open Access Journals (Sweden)

    Zhe Wang

    Full Text Available An increasing number of studies have shown that the promising compound resveratrol treats multiple diseases, such as cancer and aging; however, the resveratrol mode-of-action (MoA remains largely unknown. Here, by virtue of multiple omics approaches, we adopted fission yeast as a model system with the goal of dissecting the common MoA of the anti-proliferative activity of resveratrol. We found that the anti-proliferative activity of resveratrol is mainly due to its unique role of inhibiting the separation of sister cells, similar phenotype with the C2H2 zinc finger transcription factor Ace2 knock-out strain. Microarray analysis shown that resveratrol has extensive impact on the fission yeast transcription levels. Among the changed gene's list, 40% of up-regulated genes are Core Environmental Stress Responses genes, and 57% of the down-regulated genes are periodically expressed. Moreover, resveratrol leverages the metabolome, which unbalances the intracellular pool sizes of several classes of amino acids, nucleosides, sugars and lipids, thus reflecting the remodulated metabolic networks. The complexity of the resveratrol MoA displayed in previous reports and our work demonstrates that multiple omics approaches must be applied together to obtain a complete picture of resveratrol's anti-proliferative function.

  18. Genome-wide mutation avalanches induced in diploid yeast cells by a base analog or an APOBEC deaminase.

    Directory of Open Access Journals (Sweden)

    Artem G Lada

    Full Text Available Genetic information should be accurately transmitted from cell to cell; conversely, the adaptation in evolution and disease is fueled by mutations. In the case of cancer development, multiple genetic changes happen in somatic diploid cells. Most classic studies of the molecular mechanisms of mutagenesis have been performed in haploids. We demonstrate that the parameters of the mutation process are different in diploid cell populations. The genomes of drug-resistant mutants induced in yeast diploids by base analog 6-hydroxylaminopurine (HAP or AID/APOBEC cytosine deaminase PmCDA1 from lamprey carried a stunning load of thousands of unselected mutations. Haploid mutants contained almost an order of magnitude fewer mutations. To explain this, we propose that the distribution of induced mutation rates in the cell population is uneven. The mutants in diploids with coincidental mutations in the two copies of the reporter gene arise from a fraction of cells that are transiently hypersensitive to the mutagenic action of a given mutagen. The progeny of such cells were never recovered in haploids due to the lethality caused by the inactivation of single-copy essential genes in cells with too many induced mutations. In diploid cells, the progeny of hypersensitive cells survived, but their genomes were saturated by heterozygous mutations. The reason for the hypermutability of cells could be transient faults of the mutation prevention pathways, like sanitization of nucleotide pools for HAP or an elevated expression of the PmCDA1 gene or the temporary inability of the destruction of the deaminase. The hypothesis on spikes of mutability may explain the sudden acquisition of multiple mutational changes during evolution and carcinogenesis.

  19. An optical tweezers, epi-fluorescence/spinning disk confocal- and microfluidic-setup for synchronization studies of glycolytic oscillations in living yeast cells

    Science.gov (United States)

    Mojica-Benavides, Martin; Adiels, Caroline B.; Goksör, Mattias

    2016-09-01

    Due to the significant importance of glycolytic oscillations studies and the recent breakthroughs on single cell analysis, a further interest arrives with intracellular and intercellular responses. Understanding cell-cell communication can give insight to oscillatory behaviors in biological systems, such as insulin secretion from pancreatic β-cells. The aim of this work consists on the manipulation of living yeast cells to study propagation and synchronization of induced glycolytic oscillations. A setup, consisting of an optical tweezers system and microfluidic devices coupled with fluorescence imaging was designed to perform a time dependent observation during artificially induced glycolytic oscillations. Multi-channel flow devices and diffusion chambers were fabricated using soft lithography. Automatized pumps controlled specific flow rates of infused glucose and cyanide solutions, used to induce the oscillations. Flow and diffusion in the microfluidic devices were simulated to assure experimentally the desired coverage of the solutions across the yeast cells, a requirement for time dependent measurements. Using near infrared optical tweezers, yeast cells were trapped and positioned in array configurations, ranging from a single cell to clusters of various symmetries, in order to obtain information about cell-cell communications during the metabolic cycles. Confocal illumination of an entire focal plane using a spinning disk, will allow acquirement of NADH periodic fluorescence signals during glycolytic oscillations. This method permits an improvement of the 2D projection images obtained with wide field microscopy to a tomographic description of the subcellular propagation of the oscillations.

  20. Genome rearrangement affects RNA virus adaptability on prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Kendra ePesko

    2015-04-01

    Full Text Available Gene order is often highly conserved within taxonomic groups, such that organisms with rearranged genomes tend to be less fit than wildtype gene orders, and suggesting natural selection favors genome architectures that maximize fitness. But it is unclear whether rearranged genomes hinder adaptability: capacity to evolutionarily improve in a new environment. Negative-sense nonsegmented RNA viruses (order Mononegavirales have specific genome architecture: 3′ UTR – core protein genes – envelope protein genes – RNA-dependent RNA-polymerase gene – 5′ UTR. To test how genome architecture affects RNA virus evolution, we examined vesicular stomatitis virus (VSV variants with the nucleocapsid (N gene moved sequentially downstream in the genome. Because RNA polymerase stuttering in VSV replication causes greater mRNA production in upstream genes, N-gene translocation towards the 5’ end leads to stepwise decreases in N transcription, viral replication and progeny production, and also impacts the activation of type 1 interferon mediated antiviral responses. We evolved VSV gene-order variants in two prostate cancer cell lines: LNCap cells deficient in innate immune response to viral infection, and PC3 cells that mount an IFN stimulated anti-viral response to infection. We observed that gene order affects phenotypic adaptability (reproductive growth; viral suppression of immune function, especially on PC3 cells that strongly select against virus infection. Overall, populations derived from the least-fit ancestor (most-altered N position architecture adapted fastest, consistent with theory predicting populations with low initial fitness should improve faster in evolutionary time. Also, we observed correlated responses to selection, where viruses improved across both hosts, rather than suffer fitness trade-offs on unselected hosts. Whole genomics revealed multiple mutations in evolved variants, some of which were conserved across selective

  1. Detection of weak estrogenic flavonoids using a recombinant yeast strain and a modified MCF7 cell proliferation assay.

    Science.gov (United States)

    Breinholt, V; Larsen, J C

    1998-06-01

    A newly developed recombinant yeast strain, in which the human estrogen receptor has been stably integrated into the genome of the yeast, was used to gain information on the estrogenic activity of a large series of dietary flavonoids. Among 23 flavonoids investigated, 8 were found to markedly stimulate the transcriptional activity of the human estrogen receptor in the yeast assay increasing transcriptional activity 5-13-fold above background level, corresponding to EC50 values between 0.1 and 25 microM. Five compounds increased the transcriptional activity 2-5-fold over the control, with EC50 values ranging from 84 to 102 microM, whereas the remaining flavonoids were devoid of activity. The most potent flavonoid estrogens tested were naringenin, apigenin, kaempferol, phloretin, and the four isoflavonoids equol, genistein, daidzein, and biochanin A. With the exception of biochanin A, the main feature required to confer estrogenicity was the presence of a single hydroxyl group in the 4'-position of the B-ring of the flavan nucleus, corresponding to the 4-position on phloretin. The estrogenic potency of the flavonoids was found to be 4 000-4 000 000 times lower than that observed for 17beta-estradiol, when compared on the basis of EC50 values. The estrogenic activity of the dietary flavonoids was further investigated in estrogen-dependent human MCF7 breast cancer cells. In this system several of the flavonoids were likewise capable of mimicking natural estrogens and thereby induce cell proliferation. Similar structural requirements for estrogenic activity were found for the two assays. The present results provide evidence that several of the flavo-estrogens possess estrogenic properties comparable in activity to the well-established isoflavonoid estrogens. The use of Alamar Blue, a vital dye which is metabolically reduced by cellular enzymes to a fluorescent product, was found to greatly simplify the MCF7 cell-based estrogen screen, making this mammalian assay

  2. Whole-cell imaging of the budding yeast Saccharomyces cerevisiae by high-voltage scanning transmission electron tomography

    Energy Technology Data Exchange (ETDEWEB)

    Murata, Kazuyoshi, E-mail: kazum@nips.ac.jp [National Institute for Physiological Sciences, Okazaki, Aichi 444-8585 (Japan); Esaki, Masatoshi; Ogura, Teru [Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811 (Japan); Arai, Shigeo; Yamamoto, Yuta; Tanaka, Nobuo [Ecotopia Science Institute, Nagoya University, Nagoya, Aichi 464-8603 (Japan)

    2014-11-15

    Electron tomography using a high-voltage electron microscope (HVEM) provides three-dimensional information about cellular components in sections thicker than 1 μm, although in bright-field mode image degradation caused by multiple inelastic scattering of transmitted electrons limit the attainable resolution. Scanning transmission electron microscopy (STEM) is believed to give enhanced contrast and resolution compared to conventional transmission electron microscopy (CTEM). Samples up to 1 μm in thickness have been analyzed with an intermediate-voltage electron microscope because inelastic scattering is not a critical limitation, and probe broadening can be minimized. Here, we employed STEM at 1 MeV high-voltage to extend the useful specimen thickness for electron tomography, which we demonstrate by a seamless tomographic reconstruction of a whole, budding Saccharomyces cerevisiae yeast cell, which is ∼3 μm in thickness. High-voltage STEM tomography, especially in the bright-field mode, demonstrated sufficiently enhanced contrast and intensity, compared to CTEM tomography, to permit segmentation of major organelles in the whole cell. STEM imaging also reduced specimen shrinkage during tilt-series acquisition. The fidelity of structural preservation was limited by cytoplasmic extraction, and the spatial resolution was limited by the relatively large convergence angle of the scanning probe. However, the new technique has potential to solve longstanding problems of image blurring in biological specimens beyond 1 μm in thickness, and may facilitate new research in cellular structural biology. - Highlights: • High voltage TEM and STEM tomography were compared to visualize whole yeast cells. • 1-MeV STEM-BF tomography had significant improvements in image contrast and SNR. • 1-MeV STEM tomography showed less specimen shrinkage than the TEM tomography. • KMnO{sub 4} post-treatment permitted segmenting the major cellular components.

  3. LEM2 recruits CHMP7 for ESCRT-mediated nuclear envelope closure in fission yeast and human cells.

    Science.gov (United States)

    Gu, Mingyu; LaJoie, Dollie; Chen, Opal S; von Appen, Alexander; Ladinsky, Mark S; Redd, Michael J; Nikolova, Linda; Bjorkman, Pamela J; Sundquist, Wesley I; Ullman, Katharine S; Frost, Adam

    2017-03-14

    Endosomal sorting complexes required for transport III (ESCRT-III) proteins have been implicated in sealing the nuclear envelope in mammals, spindle pole body dynamics in fission yeast, and surveillance of defective nuclear pore complexes in budding yeast. Here, we report that Lem2p (LEM2), a member of the LEM (Lap2-Emerin-Man1) family of inner nuclear membrane proteins, and the ESCRT-II/ESCRT-III hybrid protein Cmp7p (CHMP7), work together to recruit additional ESCRT-III proteins to holes in the nuclear membrane. In Schizosaccharomyces pombe, deletion of the ATPase vps4 leads to severe defects in nuclear morphology and integrity. These phenotypes are suppressed by loss-of-function mutations that arise spontaneously in lem2 or cmp7, implying that these proteins may function upstream in the same pathway. Building on these genetic interactions, we explored the role of LEM2 during nuclear envelope reformation in human cells. We found that CHMP7 and LEM2 enrich at the same region of the chromatin disk periphery during this window of cell division and that CHMP7 can bind directly to the C-terminal domain of LEM2 in vitro. We further found that, during nuclear envelope formation, recruitment of the ESCRT factors CHMP7, CHMP2A, and IST1/CHMP8 all depend on LEM2 in human cells. We conclude that Lem2p/LEM2 is a conserved nuclear site-specific adaptor that recruits Cmp7p/CHMP7 and downstream ESCRT factors to the nuclear envelope.

  4. Effects of N-acetyl-L-cysteine on gene expression of antioxidant enzymes in yeast cells after irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Kyu; Park, Ji Young; Ryu, Tae Ho; Roh, Chang Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Nili, Mohammad [Dawnesh Radiation Research Institute, Barcelona (Spain)

    2012-04-15

    Ionizing radiation induces water radiolysis, which generates highly reactive hydroxyl radicals. Reactive oxygen species (ROS) cause apoptosis and cell damage. When exposed to ionizing radiation, cells activates ROS scavenging detoxifying enzymes such as superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase. SOD scavenges superoxide radicals by catalyzing the conversion of two of these radicals into hydrogen peroxide and molecular oxygen. The hydrogen peroxide formed by superoxide dismutase and by other processes is scavenged by catalase, a ubiquitous heme protein that catalyzes the dismutation of hydrogen peroxide into water and molecular oxygen. Yeast has two catalase and three GPx proteins. The biochemical function of GPx is to reduce lipid-hydroperoxides to their corresponding alcohols and to reduce free hydrogen peroxide to water. N-acetylL-cysteine (NAC) having a thiol, a precursor for glutathione (GSH), is known as one of the antioxidants. NAC prevents the depletion of GSH by radiation, increases the production of GSH, and improves enzymes activity and alkaline phosphatase. In this study, the role of NAC as an antioxidant and a radioprotector was examined on cell survival, transcriptional level, and protein level. through observing viability of cells, analyzing the gene expression of antioxidant enzyme, measuring the SOD activity and intracellular GSH levels in yeast W303-1A strain The cell viability of haploid S. cerevisiae W303-1A strain was reduced significantly at the low dose (10∼30 Gy). The half-lethal dose of the strain was about 20 Gy. The CFU assay result confirmed that NAC could not rescue the cells from radiation-induced death. When irradiated with 100 Gy, an increase in the transcriptional expression was observed in the antioxicant genes. The expression of these genes decreased by treatment of NAC in irradiated cells. NAC decline SOD activity and intracellular GSH levels. The present study shows that NAC can directly scavenge

  5. [Fructose transporter in yeasts].

    Science.gov (United States)

    Lazar, Zbigniew; Dobrowolski, Adam; Robak, Małgorzata

    2014-01-01

    Study of hexoses transporter started with discovery of galactose permease in Saccharomyces cerevisiae. Glucose, fructose and mannose assimilation is assumed by numerous proteins encoded by different genes. To date over 20 hexoses transporters, belonging to Sugar Porter family and to Major Facilitator Superfamily, were known. Genome sequence analysis of Candida glabrata, Kluyveromyces lactis, Yarrowia lipolytica, S. cerevisaie and Debaryomyces hansenii reveled potential presence of 17-48 sugar porter proteins. Glucose transporters in S. cerevisiae have been already characterized. In this paper, hexoses transporters, responsible for assimilation of fructose by cells, are presented and compared. Fructose specific transporter are described for yeasts: Zygosaccharomyces rouxii, Zygosaccharomyces bailli, K. lactis, Saccharomyces pastorianus, S. cerevisiae winemaking strain and for fungus Botritys cinerea and human (Glut5p). Among six yeasts transporters, five are fructose specific, acting by facilitated diffusion or proton symport. Yeasts monosaccharides transporter studies allow understanding of sugars uptake and metabolism important aspects, even in higher eukaryotes cells.

  6. A rapid method for the differentiation of yeast cells grown under carbon and nitrogen-limited conditions by means of partial least squares discriminant analysis employing infrared micro-spectroscopic data of entire yeast cells

    Science.gov (United States)

    Kuligowski, Julia; Quintás, Guillermo; Herwig, Christoph; Lendl, Bernhard

    2012-01-01

    This paper shows the ease of application and usefulness of mid-IR measurements for the investigation of orthogonal cell states on the example of the analysis of Pichia pastoris cells. A rapid method for the discrimination of entire yeast cells grown under carbon and nitrogen-limited conditions based on the direct acquisition of mid-IR spectra and partial least squares discriminant analysis (PLS-DA) is described. The obtained PLS-DA model was extensively validated employing two different validation strategies: (i) statistical validation employing a method based on permutation testing and (ii) external validation splitting the available data into two independent sub-sets. The Variable Importance in Projection scores of the PLS-DA model provided deeper insight into the differences between the two investigated states. Hence, we demonstrate the feasibility of a method which uses IR spectra from intact cells that may be employed in a second step as an in-line tool in process development and process control along Quality by Design principles. PMID:22967595

  7. Influence of N-glycans on Expression of Cell Wall Remodeling Related Genes in Paracoccidioides brasiliensis Yeast Cells

    Science.gov (United States)

    Almeida, Fausto; Antoniêto, Amanda Cristina Campos; Pessoni, André Moreira; Monteiro, Valdirene Neves; Alegre-Maller, Ana Claudia Paiva; Pigosso, Laurine Lacerda; Pereira, Maristela; Soares, Célia Maria de Almeida; Roque-Barreira, Maria Cristina

    2016-01-01

    Paracoccidioidomycosis is the most prevalent systemic mycosis in Latin America. It is caused by the temperature-dependent dimorphic fungus Paracoccidioides brasiliensis. The P. brasiliensis cell wall is a dynamic outer structure, composed of a network of glycoproteins and polysaccharides, such as chitin, glucan and N-glycosylated proteins. These glycoproteins can interact with the host to affect infection rates, and are known to perform other functions. We inhibited N-linked glycosylation using tunicamycin (TM), and then evaluated the expression of P. brasiliensis genes related to cell wall remodeling. Our results suggest that cell wall synthesis related genes, such as β-1,3-glucanosyltransferase (PbGEL3), 1,3-β-D-glucan synthase (PbFKS1), and α-1,4-amylase (PbAMY), as well as cell wall degrading related genes, such as N-acetyl-β-D-glucosaminidase (PbNAG1), α-1,3-glucanase (PbAGN), and β-1,3-glucanase (PbBGN1 and PbBGN2), have their expression increased by the N-glycosylation inhibition, as detected by qRT-PCR. The observed increases in gene expression levels reveal possible compensatory mechanisms for diminished enzyme activity due to the lack of glycosylation caused by TM. PMID:27226767

  8. Fractionation of yeast extract by nanofiltration process to assess key compounds involved in CHO cell culture improvement.

    Science.gov (United States)

    Mosser, Mathilde; Kapel, Romain; Chevalot, Isabelle; Olmos, Eric; Marc, Ivan; Marc, Annie; Oriol, Eric

    2015-01-01

    Yeast extract (YE) is known to greatly enhance mammalian cell culture performances, but its undefined composition decreases process reliability. Accordingly, in the present study, the nature of YE compounds involved in the improvement of recombinant CHO cell growth and IgG production was investigated. First, the benefits of YE were verified, revealing that it increased maximal concentrations of viable cells and IgG up to 73 and 60%, respectively compared to a reference culture. Then, the analyses of YE composition highlighted the presence of molecules such as amino acids, vitamins, salts, nucleobase, and glucose that were contained in reference medium, while others including peptides, trehalose, polysaccharides, and nucleic acids were not. Consequently, YE was fractionated by a nanofiltration process to deeper evaluate its effects on CHO cell cultures. The YE molecules already contained in reference medium were mainly isolated in the permeate fraction together with trehalose and short peptides, while other molecules were concentrated in the retentate. Permeate, which was free of macromolecules, exhibited a similar positive effect than raw YE on maximal concentrations. Additional studies on cell energetic metabolism underlined that dipeptides and tripeptides in permeate were used as an efficient source of nitrogenous substrates.

  9. Involvement of yeast HSP90 isoforms in response to stress and cell death induced by acetic acid.

    Science.gov (United States)

    Silva, Alexandra; Sampaio-Marques, Belém; Fernandes, Angela; Carreto, Laura; Rodrigues, Fernando; Holcik, Martin; Santos, Manuel A S; Ludovico, Paula

    2013-01-01

    Acetic acid-induced apoptosis in yeast is accompanied by an impairment of the general protein synthesis machinery, yet paradoxically also by the up-regulation of the two isoforms of the heat shock protein 90 (HSP90) chaperone family, Hsc82p and Hsp82p. Herein, we show that impairment of cap-dependent translation initiation induced by acetic acid is caused by the phosphorylation and inactivation of eIF2α by Gcn2p kinase. A microarray analysis of polysome-associated mRNAs engaged in translation in acetic acid challenged cells further revealed that HSP90 mRNAs are over-represented in this polysome fraction suggesting preferential translation of HSP90 upon acetic acid treatment. The relevance of HSP90 isoform translation during programmed cell death (PCD) was unveiled using genetic and pharmacological abrogation of HSP90, which suggests opposing roles for HSP90 isoforms in cell survival and death. Hsc82p appears to promote survival and its deletion leads to necrotic cell death, while Hsp82p is a pro-death molecule involved in acetic acid-induced apoptosis. Therefore, HSP90 isoforms have distinct roles in the control of cell fate during PCD and their selective translation regulates cellular response to acetic acid stress.

  10. The oxidative stress responsive transcription factor Pap1 confers DNA damage resistance on checkpoint-deficient fission yeast cells.

    Directory of Open Access Journals (Sweden)

    Carrie Belfield

    Full Text Available Eukaryotic cells invoke mechanisms to promote survival when confronted with cellular stress or damage to the genome. The protein kinase Chk1 is an integral and conserved component of the DNA damage response pathway. Mutation or inhibition of Chk1 results in mitotic death when cells are exposed to DNA damage. Oxidative stress activates a pathway that results in nuclear accumulation of the bZIP transcription factor Pap1. We report the novel finding that fission yeast Pap1 confers resistance to drug- and non-drug-induced DNA damage even when the DNA damage checkpoint is compromised. Multi-copy expression of Pap1 restores growth to chk1-deficient cells exposed to camptothecin or hydroxyurea. Unexpectedly, increased Pap1 expression also promotes survival of chk1-deficient cells with mutations in genes encoding DNA ligase (cdc17 or DNA polymerase δ (cdc6, but not DNA replication initiation mutants. The ability of Pap1 to confer resistance to DNA damage was not specific to chk1 mutants, as it also improved survival of rad1- and rad9-deficient cells in the presence of CPT. To confer resistance to DNA damage Pap1 must localize to the nucleus and be transcriptionally active.

  11. 21 CFR 73.355 - Phaffia yeast.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Phaffia yeast. 73.355 Section 73.355 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.355 Phaffia yeast. (a) Identity. (1) The color additive phaffia yeast consists of the killed, dried cells of a nonpathogenic and nontoxicogenic strain of...

  12. Production of N2O in soil during decomposition of dead yeast cells with different spatial distributions

    DEFF Research Database (Denmark)

    Ambus, P.

    1996-01-01

    Production and sources of N2O were determined in soil columns amended with autoclaved yeast cells either mixed into or added as 0.5 cm(3) lumps to the soil in combination with no or 200 mu g NO3--Ng(-1). At four occasions over a two-week study period, subsets of cores were measured for N2O...... production during 4-hour incubations under atmospheres of ambient air, 10 Pa of C2H2, and N-2, respectively. Denitrification enzyme activity (DEA) was assessed in subsamples of cores that had been incubated continuously under air. Autoclaved yeast provided a C-source readily available for denitrifying...

  13. Discrimination of intra- and extracellular 23Na + signals in yeast cell suspensions using longitudinal magnetic resonance relaxography

    Science.gov (United States)

    Zhang, Yajie; Poirer-Quinot, Marie; Springer, Charles S.; Balschi, James A.

    2010-07-01

    This study tested the ability of MR relaxography (MRR) to discriminate intra- (Nai+) and extracellular (Nae+)23Na + signals using their longitudinal relaxation time constant ( T1) values. Na +-loaded yeast cell ( Saccharomyces cerevisiae) suspensions were investigated. Two types of compartmental 23Na +T1 differences were examined: a selective Nae+T1 decrease induced by an extracellular relaxation reagent (RR e), GdDOTP 5-; and, an intrinsic T1 difference. Parallel studies using the established method of 23Na MRS with an extracellular shift reagent (SR e), TmDOTP 5-, were used to validate the MRR measurements. With 12.8 mM RR e, the 23Nae+T1 was 2.4 ms and the 23Nai+T1 was 9.5 ms (9.4T, 24 °C). The Na + amounts and spontaneous efflux rate constants were found to be identical within experimental error whether measured by MRR/RR e or by MRS/SR e. Without RR e, the Na +-loaded yeast cell suspension 23Na MR signal exhibited two T1 values, 9.1 (±0.3) ms and 32.7 (±2.3) ms, assigned to 23Nai+ and 23Nae+, respectively. The Nai+ content measured was lower, 0.88 (±0.06); while Nae+ was higher, 1.43 (±0.12) compared with MRS/SR e measures on the same samples. However, the measured efflux rate constant was identical. T1 MRR potentially may be used for Nai+ determination in vivo and Na + flux measurements; with RR e for animal studies and without RR e for humans.

  14. 8-aminoquinoline functionalized silica nanoparticles: a fluorescent nanosensor for detection of divalent zinc in aqueous and in yeast cell suspension.

    Science.gov (United States)

    Rastogi, Shiva K; Pal, Parul; Aston, D Eric; Bitterwolf, Thomas E; Branen, A Larry

    2011-05-01

    Zinc is one of the most important transition metal of physiological importance, existing primarily as a divalent cation. A number of sensors have been developed for Zn(II) detection. Here, we present a novel fluorescent nanosensor for Zn(II) detection using a derivative of 8-aminoquinoline (N-(quinolin-8-yl)-2-(3 (triethoxysilyl)propylamino)acetamide (QTEPA) grafted on silica nanoparticles (SiNPs). These functionalized SiNPs were used to demonstrate specific detection of Zn(II) in tris-HCl buffer (pH 7.22), in yeast cell (Saccharomyces cerevisiae) suspension, and in tap water. The silane QTEPA, SiNPs and final product were characterized using solution and solid state nuclear magnetic resonance, Fourier transform infrared, ultraviolet-visible absorption spectroscopy, transmission electron microscopy, elemental analysis, thermogravimetric techniques, and fluorescence spectroscopy. The nanosensor shows almost 2.8-fold fluorescence emission enhancement and about 55 nm red-shift upon excitation with 330 ± 5 nm wavelength in presence of 1 μM Zn(II) ions in tris-HCl (pH 7.22). The presence of other metal ions has no observable effect on the sensitivity and selectivity of nanosensor. This sensor selectively detects Zn(II) ions with submicromolar detection to a limit of 0.1 μM. The sensor shows good applicability in the determination of Zn(II) in tris-HCl buffer and yeast cell environment. Further, it shows enhancement in fluorescence intensity in tap water samples.

  15. Loss of Gadkin Affects Dendritic Cell Migration In Vitro.

    Directory of Open Access Journals (Sweden)

    Hannah Schachtner

    Full Text Available Migration is crucial for the function of dendritic cells (DCs, which act as outposts of the immune system. Upon detection of pathogens, skin- and mucosa-resident DCs migrate to secondary lymphoid organs where they activate T cells. DC motility relies critically on the actin cytoskeleton, which is regulated by the actin-related protein 2/3 (ARP2/3 complex, a nucleator of branched actin networks. Consequently, loss of ARP2/3 stimulators and upstream Rho family GTPases dramatically impairs DC migration. However, nothing is known yet about the relevance of ARP2/3 inhibitors for DC migration. We previously demonstrated that the AP-1-associated adaptor protein Gadkin inhibits ARP2/3 by sequestering it on intracellular vesicles. Consistent with a role of Gadkin in DC physiology, we here report Gadkin expression in bone marrow-derived DCs and show that its protein level and posttranslational modification are regulated upon LPS-induced DC maturation. DCs derived from Gadkin-deficient mice were normal with regards to differentiation and maturation, but displayed increased actin polymerization. While the actin-dependent processes of macropinocytosis and cell spreading were not affected, loss of Gadkin significantly impaired DC migration in vitro, however, in vivo DC migration was unperturbed suggesting the presence of compensatory mechanisms.

  16. The physiological characteristics of the yeast Dekkera bruxellensis in fully fermentative conditions with cell recycling and in mixed cultures with Saccharomyces cerevisiae.

    Science.gov (United States)

    Pereira, Luciana Filgueira; Bassi, Ana Paula Guarnieri; Avansini, Simoni Helena; Neto, Adauto Gomes Barbosa; Brasileiro, Bereneuza Tavares Ramos Valente; Ceccato-Antonini, Sandra Regina; de Morais, Marcos Antonio

    2012-03-01

    The yeast Dekkera bruxellensis plays an important role in industrial fermentation processes, either as a contaminant or as a fermenting yeast. In this study, an analysis has been conducted of the fermentation characteristics of several industrial D. bruxellensis strains collected from distilleries from the Southeast and Northeast of Brazil, compared with Saccharomyces cerevisiae. It was found that all the strains of D. bruxellensis showed a lower fermentative capacity as a result of inefficient sugar assimilation, especially sucrose, under anaerobiosis, which is called the Custer effect. In addition, most of the sugar consumed by D. bruxellensis seemed to be used for biomass production, as was observed by the increase of its cell population during the fermentation recycles. In mixed populations, the surplus of D. bruxellensis over S. cerevisiae population could not be attributed to organic acid production by the first yeast, as previously suggested. Moreover, both yeast species showed similar sensitivity to lactic and acetic acids and were equally resistant to ethanol, when added exogenously to the fermentation medium. Thus, the effects that lead to the employment of D. bruxellensis in an industrial process and its effects on the production of ethanol are multivariate. The difficulty of using this yeast for ethanol production is that it requires the elimination of the Custer effect to allow an increase in the assimilation of sugar under anaerobic conditions.

  17. Selenium speciation and isotope composition in 77Se-enriched yeast using gradient elution HPLC separation and ICP-dynamic reaction cell-MS

    DEFF Research Database (Denmark)

    Larsen, Erik Huusfeldt; Sloth, Jens Jørgen; Hansen, M.

    2003-01-01

    A batch of Se-77-labelled and enriched yeast was characterised with regard to isotopic composition and content of selenium species for later use in a human absorption study based on the method of enriched stable isotopes. The abundance of the six stable selenium isotopes was determined by ICP- MS...... equipped with a dynamic reaction cell (DRC). The results showed that the Se-77 isotope was enriched to 98.5 atom-%, whereas the remaining selenium was present as the other five isotopes at low abundance. The low-molecular Se-77 containing species, which were biosynthesised by the yeast during fermentation...... to the separation of over 30 selenium species occurring in the hydrolysates by applying gradient elution using pyridinium formate as mobile phase. The quantitative results obtained by detection with ICP-DRC-MS of Se-77 and Se-80 showed that both enzymatic sample preparation systems released 90 - 95% of the yeast...

  18. Non-homologous end joining dependency of {gamma}-irradiation-induced adaptive frameshift mutation formation in cell cycle-arrested yeast cells

    Energy Technology Data Exchange (ETDEWEB)

    Heidenreich, Erich [Institute of Cancer Research, Division of Molecular Genetics, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna (Austria)]. E-mail: erich.heidenreich@meduniwien.ac.at; Eisler, Herfried [Institute of Cancer Research, Division of Molecular Genetics, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna (Austria)

    2004-11-22

    There is a strong selective pressure favoring adaptive mutations which relieve proliferation-limiting adverse living conditions. Due to their importance for evolution and pathogenesis, we are interested in the mechanisms responsible for the formation of such adaptive, gain-of-fitness mutations in stationary-phase cells. During previous studies on the occurrence of spontaneous reversions of an auxotrophy-causing frameshift allele in the yeast Saccharomyces cerevisiae, we noticed that about 50% of the adaptive reversions depended on a functional non-homologous end joining (NHEJ) pathway of DNA double-strand break (DSB) repair. Here, we show that the occasional NHEJ component Pol4, which is the yeast ortholog of mammalian DNA polymerase lambda, is not required for adaptive mutagenesis. An artificially imposed excess of DSBs by {gamma}-irradiation resulted in a dramatic increase in the incidence of adaptive, cell cycle arrest-releasing frameshift reversions. By the use of DNA ligase IV-deficient strains we detected that the majority of the {gamma}-induced adaptive mutations were also dependent on a functional NHEJ pathway. This suggests that the same mutagenic NHEJ mechanism acts on spontaneously arising as well as on ionizing radiation-induced DSBs. Inaccuracy of the NHEJ repair pathway may extensively contribute to the incidence of frameshift mutations in resting (non-dividing) eukaryotic cells, and thus act as a driving force in tumor development.

  19. Optimization of temperature, sugar concentration, and inoculum size to maximize ethanol production without significant decrease in yeast cell viability.

    Science.gov (United States)

    Laluce, Cecilia; Tognolli, João Olimpio; de Oliveira, Karen Fernanda; Souza, Crisla Serra; Morais, Meline Rezende

    2009-06-01

    Aiming to obtain rapid fermentations with high ethanol yields and a retention of high final viabilities (responses), a 2(3) full-factorial central composite design combined with response surface methodology was employed using inoculum size, sucrose concentration, and temperature as independent variables. From this statistical treatment, two well-fitted regression equations having coefficients significant at the 5% level were obtained to predict the viability and ethanol production responses. Three-dimensional response surfaces showed that increasing temperatures had greater negative effects on viability than on ethanol production. Increasing sucrose concentrations improved both ethanol production and viability. The interactions between the inoculum size and the sucrose concentrations had no significant effect on viability. Thus, the lowering of the process temperature is recommended in order to minimize cell mortality and maintain high levels of ethanol production when the temperature is on the increase in the industrial reactor. Optimized conditions (200 g/l initial sucrose, 40 g/l of dry cell mass, 30 degrees C) were experimentally confirmed and the optimal responses are 80.8 +/- 2.0 g/l of maximal ethanol plus a viability retention of 99.0 +/- 3.0% for a 4-h fermentation period. During consecutive fermentations with cell reuse, the yeast cell viability has to be kept at a high level in order to prevent the collapse of the process.

  20. The contribution of glutathione to the destabilizing effect of yeast on wheat dough.

    Science.gov (United States)

    Verheyen, C; Albrecht, A; Herrmann, J; Strobl, M; Jekle, M; Becker, T

    2015-04-15

    Any factor which impairs the development of the gluten network affects the gas retention capacity and the overall baking performance. This study aimed to examine why rising yeast concentrations (Saccharomyces cerevisiae) decrease the dough elasticity in an asymptotic manner. Since in 27 commercial fresh and dry yeasts up to 81 mg glutathione (GSH) per 1g dry sample were found. Through the addition of reduced GSH in dough without yeast, the extent of dough weakening was analysed. Indeed rheological measurements confirmed that yeast-equivalent levels of GSH had a softening effect and during 3h fermentation the weakening coefficient increased from 0.3% to 20.4% in a Rheofermentometer. The present results indicate that free -SH compounds, as represented by GSH, considerably contribute to the softening of dough through dead yeast cells.

  1. Displaying Lipase B from Candida antarctica in Pichia pastoris Using the Yeast Surface Display Approach: Prospection of a New Anchor and Characterization of the Whole Cell Biocatalyst

    Science.gov (United States)

    Moura, Marcelo Victor Holanda; da Silva, Giulia Pontes; Machado, Antônio Carlos de Oliveira; Torres, Fernando Araripe Gonçalves; Freire, Denise Maria Guimarães; Almeida, Rodrigo Volcan

    2015-01-01

    Yeast Surface Display (YSD) is a strategy to anchor proteins on the yeast cell wall which has been employed to increase enzyme stability thus decreasing production costs. Lipase B from Candida antarctica (LipB) is one of the most studied enzymes in the context of industrial biotechnology. This study aimed to assess the biochemical features of this important biocatalyst when immobilized on the cell surface of the methylotrophic yeast Pichia pastoris using the YSD approach. For that purpose, two anchors were tested. The first (Flo9) was identified after a prospection of the P. pastoris genome being related to the family of flocculins similar to Flo1 but significantly smaller. The second is the Protein with Internal Repeats (Pir1) from P. pastoris. An immunolocalization assay showed that both anchor proteins were able to display the reporter protein EGFP in the yeast outer cell wall. LipB was expressed in P. pastoris fused either to Flo9 (FLOLIPB) or Pir1 (PIRLIPB). Both constructions showed hydrolytic activity towards tributyrin (>100 U/mgdcw and >80 U/mgdcw, respectively), optimal hydrolytic activity around 45°C and pH 7.0, higher thermostability at 45°C and stability in organic solvents when compared to a free lipase. PMID:26510006

  2. Displaying Lipase B from Candida antarctica in Pichia pastoris Using the Yeast Surface Display Approach: Prospection of a New Anchor and Characterization of the Whole Cell Biocatalyst.

    Directory of Open Access Journals (Sweden)

    Marcelo Victor Holanda Moura

    Full Text Available Yeast Surface Display (YSD is a strategy to anchor proteins on the yeast cell wall which has been employed to increase enzyme stability thus decreasing production costs. Lipase B from Candida antarctica (LipB is one of the most studied enzymes in the context of industrial biotechnology. This study aimed to assess the biochemical features of this important biocatalyst when immobilized on the cell surface of the methylotrophic yeast Pichia pastoris using the YSD approach. For that purpose, two anchors were tested. The first (Flo9 was identified after a prospection of the P. pastoris genome being related to the family of flocculins similar to Flo1 but significantly smaller. The second is the Protein with Internal Repeats (Pir1 from P. pastoris. An immunolocalization assay showed that both anchor proteins were able to display the reporter protein EGFP in the yeast outer cell wall. LipB was expressed in P. pastoris fused either to Flo9 (FLOLIPB or Pir1 (PIRLIPB. Both constructions showed hydrolytic activity towards tributyrin (>100 U/mgdcw and >80 U/mgdcw, respectively, optimal hydrolytic activity around 45°C and pH 7.0, higher thermostability at 45°C and stability in organic solvents when compared to a free lipase.

  3. Displaying Lipase B from Candida antarctica in Pichia pastoris Using the Yeast Surface Display Approach: Prospection of a New Anchor and Characterization of the Whole Cell Biocatalyst.

    Science.gov (United States)

    Moura, Marcelo Victor Holanda; da Silva, Giulia Pontes; Machado, Antônio Carlos de Oliveira; Torres, Fernando Araripe Gonçalves; Freire, Denise Maria Guimarães; Almeida, Rodrigo Volcan

    2015-01-01

    Yeast Surface Display (YSD) is a strategy to anchor proteins on the yeast cell wall which has been employed to increase enzyme stability thus decreasing production costs. Lipase B from Candida antarctica (LipB) is one of the most studied enzymes in the context of industrial biotechnology. This study aimed to assess the biochemical features of this important biocatalyst when immobilized on the cell surface of the methylotrophic yeast Pichia pastoris using the YSD approach. For that purpose, two anchors were tested. The first (Flo9) was identified after a prospection of the P. pastoris genome being related to the family of flocculins similar to Flo1 but significantly smaller. The second is the Protein with Internal Repeats (Pir1) from P. pastoris. An immunolocalization assay showed that both anchor proteins were able to display the reporter protein EGFP in the yeast outer cell wall. LipB was expressed in P. pastoris fused either to Flo9 (FLOLIPB) or Pir1 (PIRLIPB). Both constructions showed hydrolytic activity towards tributyrin (>100 U/mgdcw and >80 U/mgdcw, respectively), optimal hydrolytic activity around 45°C and pH 7.0, higher thermostability at 45°C and stability in organic solvents when compared to a free lipase.

  4. Recovery from rapamycin: drug-insensitive activity of yeast target of rapamycin complex 1 (TORC1) supports residual proliferation that dilutes rapamycin among progeny cells.

    Science.gov (United States)

    Evans, Stephanie K; Burgess, Karl E V; Gray, Joseph V

    2014-09-19

    The target of rapamycin complex 1 (TORC1) is a key conserved regulator of eukaryotic cell growth. The xenobiotic rapamycin is a potent inhibitor of the yeast complex. Surprisingly, the EGO complex, a nonessential in vivo activator of TORC1, is somehow required for yeast cells to recover efficiently from a period of treatment with rapamycin. Why? Here, we found that rapamycin is only a partial inhibitor of TORC1. We confirmed that saturating amounts of rapamycin do not fully inhibit proliferation of wild-type cells, and we found that the residual proliferation in the presence of the drug is dependent on the EGO complex and on the activity of TORC1. We found that this residual TORC1-dependent proliferation is key to recovery from rapamycin treatment. First, the residual proliferation rate correlates with the ability of cells to recover from treatment. Second, the residual proliferation rate persists long after washout of the drug and until cells recover. Third, the total observable pool of cell-associated rapamycin is extremely stable and decreases only with increasing cell number after washout of the drug. Finally, consideration of the residual proliferation rate alone accurately and quantitatively accounts for the kinetics of recovery of wild-type cells and for the nature and severity of the ego- mutant defect. Overall, our results revealed that rapamycin is a partial inhibitor of yeast TORC1, that persistence of the drug limits recovery, and that rapamycin is not detoxified by yeast but is passively diluted among progeny cells because of residual proliferation.

  5. A kinetic study of the oxidation by molecular oxygen of the cytochrome chain of intact yeast cells, Acetobacter suboxydans cells, and of particulate suspensions of heart muscle.

    Science.gov (United States)

    Ludwig, G D; Kuby, S A; Edelman, G M; Chance, B

    1983-01-01

    The pre-steady state kinetics of the cytochrome c oxidase reaction with oxygen were studied by a variation in the reaction time between approximately 6 and 25 ms at oxygen concentrations less than 6 mumol/l. For baker's yeast, a pseudo-first-order velocity constant of approximately 150 s-1 at 1.3 mumol/l O2 was obtained corresponding to a second-order reaction between O2 and a3 at a forward velocity constant (k+1) of approximately 3 X 10(7) liter equiv.-1s-1. Thus, the membrane-bound oxidase in the intact cell exhibits one of the most rapid enzyme-substrate reactions to be reported. The value is identical with that of Greenwood and Gibson on an isolated, solubilized cytochrome c oxidase. Similar values of k+1 are calculated from the turnover numbers [k+2 (a+2)] divided by the Km values (formula; see text) measured for these yeast preparations, which points to an almost negligible reverse reaction (k-1) compared to k+2(a+2). Similar calculations for the membrane-bound cytochrome c oxidase of heart muscle give a value of k+1 approximately equal to 10(7) liter equiv.-1s-1. The concordance of the different values of k+1 supports the view that the yeast cell wall does not impart a significant diffusion barrier to the transport of molecular oxygen. In contrast, Acetobacter suboxydans exhibits a much larger value for Km, and has a terminal oxidase of different kinetic parameters.

  6. Yeast NDI1 Improve Oxidative Phosphorylation Capacity and Increases Protection Against Oxidative Stress and Cell Death in Cells Carrying a Leber’s Hereditary Optic Neuropathy Mutation

    Science.gov (United States)

    Park, Jeong Soon; Li, You-fen; Bai, Yidong

    2007-01-01

    G11778A in the subunit ND4 gene of NADH dehydrogenase complex is the most common primary mutation found in Leber’s hereditary optic neuropathy (LHON) patients. The NDI1 gene, which encodes the internal NADH -quinone oxidoreductase in Saccharomyces cerevisiae, was introduced into the nuclear genome of a mitochondrial defective human cell line, Le1.3.1, carrying the G11778A mutation. In transformant cell lines, LeNDI1-1 and -2, total and complex I-dependent respiration were fully restored and largely resistant to complex I inhibitor, rotenone, indicating a dominant role of NDI1 in the transfer of electrons in the host cells. Whereas the original mutant Le1.3.1 cell grows poorly in medium containing galactose, the transformants have a fully restored growth capacity in galactose medium, although the ATP production was not totally recovered. Furthermore, the increased oxidative stress in the cells carrying the G11778A mutation was alleviated in transformants, demonstrated by a decreased reactive oxygen species (ROS) level. Finally, transformants were also shown to be desensitized to induction to apoptosis and also exhibit greater resistance to paraquat-induced cell death. It is concluded that the yeast ND11 enzyme can improve the oxidative phosphorylation capacity in cells carrying the G11778A mutation and protect the cells from oxidative stress and cell death. PMID:17320357

  7. Yeast NDI1 improves oxidative phosphorylation capacity and increases protection against oxidative stress and cell death in cells carrying a Leber's hereditary optic neuropathy mutation.

    Science.gov (United States)

    Park, Jeong Soon; Li, You-Fen; Bai, Yidong

    2007-05-01

    G11778A in the subunit ND4 gene of NADH dehydrogenase complex is the most common primary mutation found in Leber's hereditary optic neuropathy (LHON) patients. The NDI1 gene, which encodes the internal NADH-quinone oxidoreductase in Saccharomyces cerevisiae, was introduced into the nuclear genome of a mitochondrial defective human cell line, Le1.3.1, carrying the G11778A mutation. In transformant cell lines, LeNDI1-1 and -2, total and complex I-dependent respiration were fully restored and largely resistant to complex I inhibitor, rotenone, indicating a dominant role of NDI1 in the transfer of electrons in the host cells. Whereas the original mutant Le1.3.1 cell grows poorly in medium containing galactose, the transformants have a fully restored growth capacity in galactose medium, although the ATP production was not totally recovered. Furthermore, the increased oxidative stress in the cells carrying the G11778A mutation was alleviated in transformants, demonstrated by a decreased reactive oxygen species (ROS) level. Finally, transformants were also shown to be desensitized to induction to apoptosis and also exhibit greater resistance to paraquat-induced cell death. It is concluded that the yeast NDI1 enzyme can improve the oxidative phosphorylation capacity in cells carrying the G11778A mutation and protect the cells from oxidative stress and cell death.

  8. An Intracellular Arrangement of Histoplasma capsulatum Yeast-Aggregates Generates Nuclear Damage to the Cultured Murine Alveolar Macrophages

    Science.gov (United States)

    Pitangui, Nayla de Souza; Sardi, Janaina de Cássia Orlandi; Voltan, Aline R.; dos Santos, Claudia T.; da Silva, Julhiany de Fátima; da Silva, Rosangela A. M.; Souza, Felipe O.; Soares, Christiane P.; Rodríguez-Arellanes, Gabriela; Taylor, Maria Lucia; Mendes-Giannini, Maria J. S.; Fusco-Almeida, Ana M.

    2016-01-01

    Histoplasma capsulatum is responsible for a human systemic mycosis that primarily affects lung tissue. Macrophages are the major effector cells in humans that respond to the fungus, and the development of respiratory disease depends on the ability of Histoplasma yeast cells to survive and replicate within alveolar macrophages. Therefore, the interaction between macrophages and H. capsulatum is a decisive step in the yeast dissemination into host tissues. Although the role played by components of cell-mediated immunity in the host's defense system and the mechanisms used by the pathogen to evade the host immune response are well understood, knowledge regarding the effects induced by H. capsulatum in host cells at the nuclear level is limited. According to the present findings, H. capsulatum yeast cells display a unique architectural arrangement during the intracellular infection of cultured murine alveolar macrophages, characterized as a formation of aggregates that seem to surround the host cell nucleus, resembling a “crown.” This extranuclear organization of yeast-aggregates generates damage on the nucleus of the host cell, producing DNA fragmentation and inducing apoptosis, even though the yeast cells are not located inside the nucleus and do not trigger changes in nuclear proteins. The current study highlights a singular intracellular arrangement of H. capsulatum yeast near to the nucleus of infected murine alveolar macrophages that may contribute to the yeast's persistence under intracellular conditions, since this fungal pathogen may display different strategies to prevent elimination by the host's phagocytic mechanisms. PMID:26793172

  9. Comparing the sugar profiles and primary structures of alkali-extracted water-soluble polysaccharides in cell wall between the yeast and mycelial phases from Tremella fuciformis.

    Science.gov (United States)

    Zhu, Hanyu; Yuan, Yuan; Liu, Juan; Zheng, Liesheng; Chen, Liguo; Ma, Aimin

    2016-05-01

    To gain insights into dimorphism, cell wall polysaccharides from Tremella fuciformis strains were obtained from alkali-extracted water-soluble fractions PTF-M38 (from the mycelial form), PTF-Y3 and PTF-Y8 (from the yeast form) of T. fuciformis strains were used to gain some insights into dimorphism study. Their chemical properties and structural features were investigated using gel permeation chromatography, gas chromatography, UV and IR spectrophotometry and Congo red binding reactions. The results indicated that the backbones of PTF-M38, PTF-Y3 and PTF-Y8 were configured with α-linkages with average molecular weights of 1.24, 1.08, and 1.19 kDa, respectively. PTF-M38 was mainly composed of xylose, mannose, glucose, and galactose in a ratio of 1:1.47:0.48:0.34, while PTF-Y3 and PTF-Y8 were mainly composed of xylose, mannose and glucose in a ratio of 1:1.65:4.06 and 1:1.21:0.44, respectively. The sugar profiles of PTF-M38, PTF-Y3 and PTF-Y8 were also established for further comparison. These profiles showed that all three polysaccharides contained the same sugars but in different ratios, and the carbon sources (xylose, mannose, glucose, and galactose) affected the sugar ratios within the polysaccharides.

  10. Improving the performance of industrial ethanol-producing yeast by expressing the aspartyl protease on the cell surface.

    Science.gov (United States)

    Guo, Zhong-peng; Zhang, Liang; Ding, Zhong-yang; Wang, Zheng-Xiang; Shi, Gui-Yang

    2010-12-01

    The yeasts used in fuel ethanol manufacture are unable to metabolize soluble proteins. The PEP4 gene, encoding a vacuolar aspartyl protease in Saccharomyces cerevisiae, was either secretively or cell-surface anchored expressed in industrial ethanol-producing S. cerevisiae. The obtained recombinant strains APA (expressing the protease secretively) and APB (expressing the protease on the cell wall) were studied under ethanol fermentation conditions in feed barley cultures. The effects of expression of the protease on product formation, growth and cell protein content were measured. The biomass yield of the wild-type was clearly lower than that of the recombinant strains (0.578 ± 0.12 g biomass/g glucose for APA and 0.582 ± 0.08 g biomass/g glucose for APB). In addition, nearly 98-99% of the theoretical maximum level of ethanol yield was achieved (relative to the amount of substrate consumed) for the recombinant strains, while limiting the nitrogen source resulted in dissatisfactory fermentation for the wild-type and more than 30 g/l residual sugar was detected at the end of fermentation. In addition, higher growth rate, viability and lower yields of byproducts such as glycerol and pyruvic acid for recombinant strains were observed. Expressing acid protease can be expected to lead to a significant increase in ethanol productivity.

  11. Reduced stability and increased dynamics in the human proliferating cell nuclear antigen (PCNA relative to the yeast homolog.

    Directory of Open Access Journals (Sweden)

    Alfredo De Biasio

    Full Text Available Proliferating Cell Nuclear Antigen (PCNA is an essential factor for DNA replication and repair. PCNA forms a toroidal, ring shaped structure of 90 kDa by the symmetric association of three identical monomers. The ring encircles the DNA and acts as a platform where polymerases and other proteins dock to carry out different DNA metabolic processes. The amino acid sequence of human PCNA is 35% identical to the yeast homolog, and the two proteins have the same 3D crystal structure. In this report, we give evidence that the budding yeast (sc and human (h PCNAs have highly similar structures in solution but differ substantially in their stability and dynamics. hPCNA is less resistant to chemical and thermal denaturation and displays lower cooperativity of unfolding as compared to scPCNA. Solvent exchange rates measurements show that the slowest exchanging backbone amides are at the β-sheet, in the structure core, and not at the helices, which line the central channel. However, all the backbone amides of hPCNA exchange fast, becoming undetectable within hours, while the signals from the core amides of scPCNA persist for longer times. The high dynamics of the α-helices, which face the DNA in the PCNA-loaded form, is likely to have functional implications for the sliding of the PCNA ring on the DNA since a large hole with a flexible wall facilitates the establishment of protein-DNA interactions that are transient and easily broken. The increased dynamics of hPCNA relative to scPCNA may allow it to acquire multiple induced conformations upon binding to its substrates enlarging its binding diversity.

  12. Depletion of eIF4G from yeast cells narrows the range of translational efficiencies genome-wide

    Directory of Open Access Journals (Sweden)

    Hinnebusch Alan G

    2011-01-01

    Full Text Available Abstract Background Eukaryotic translation initiation factor 4G (eIF4G is thought to influence the translational efficiencies of cellular mRNAs by its roles in forming an eIF4F-mRNA-PABP mRNP that is competent for attachment of the 43S preinitiation complex, and in scanning through structured 5' UTR sequences. We have tested this hypothesis by determining the effects of genetically depleting eIF4G from yeast cells on global translational efficiencies (TEs, using gene expression microarrays to measure the abundance of mRNA in polysomes relative to total mRNA for ~5900 genes. Results Although depletion of eIF4G is lethal and reduces protein synthesis by ~75%, it had small effects (less than a factor of 1.5 on the relative TE of most genes. Within these limits, however, depleting eIF4G narrowed the range of translational efficiencies genome-wide, with mRNAs of better than average TE being translated relatively worse, and mRNAs with lower than average TE being translated relatively better. Surprisingly, the fraction of mRNAs most dependent on eIF4G display an average 5' UTR length at or below the mean for all yeast genes. Conclusions This finding suggests that eIF4G is more critical for ribosome attachment to mRNAs than for scanning long, structured 5' UTRs. Our results also indicate that eIF4G, and the closed-loop mRNP it assembles with the m7 G cap- and poly(A-binding factors (eIF4E and PABP, is not essential for translation of most (if not all mRNAs but enhances the differentiation of translational efficiencies genome-wide.

  13. Interaction Between Yeasts and Zinc

    Science.gov (United States)

    Nicola, Raffaele De; Walker, Graeme

    Zinc is an essential trace element in biological systems. For example, it acts as a cellular membrane stabiliser, plays a critical role in gene expression and genome modification and activates nearly 300 enzymes, including alcohol dehydrogenase. The present chapter will be focused on the influence of zinc on cell physiology of industrial yeast strains of Saccharomyces cerevisiae, with special regard to the uptake and subsequent utilisation of this metal. Zinc uptake by yeast is metabolism-dependent, with most of the available zinc translocated very quickly into the vacuole. At cell division, zinc is distributed from mother to daughter cells and this effectively lowers the individual cellular zinc concentration, which may become zinc depleted at the onset of the fermentation. Zinc influences yeast fermentative performance and examples will be provided relating to brewing and wine fermentations. Industrial yeasts are subjected to several stresses that may impair fermentation performance. Such stresses may also impact on yeast cell zinc homeostasis. This chapter will discuss the practical implications for the correct management of zinc bioavailability for yeast-based biotechnologies aimed at improving yeast growth, viability, fermentation performance and resistance to environmental stresses

  14. Effects of the strain background and autolysis process on the composition and biophysical properties of the cell wall from two different industrial yeasts.

    Science.gov (United States)

    Schiavone, Marion; Sieczkowski, Nathalie; Castex, Mathieu; Dague, Etienne; Marie François, Jean

    2015-03-01

    The Saccharomyces cerevisiae cell surface is endowed with some relevant technological properties, notably antimicrobial and biosorption activities. For these purposes, yeasts are usually processed and packaged in an 'autolysed/dried' formula, which may have some impacts on cell surface properties. In this report, we showed using a combination of biochemical, biophysical and molecular methods that the composition of the cell wall of two wine yeast strains was not altered by the autolysis process. In contrast, this process altered the nanomechanical properties as shown by a 2- to 4-fold increased surface roughness and to a higher adhesion to the atomic force microscope tips of the autolysed cells as compared to live yeast cells. Besides, we found that the two strains harboured differences in biomechanical properties that could be due in part to higher levels of mannan in one of them, and to the fact that the surface of this mannan-enriched strain is decorated with highly adhesive patches forming nanodomains. The presence of these nanodomains could be correlated with the upregulation of flocculin encoding FLO11 as well as to higher expression of few other genes encoding cell wall mannoproteins in this mannan-enriched strain as compared to the other strain.

  15. Cell surface-engineered yeast displaying a histidine oligopeptide (hexa-His) has enhanced adsorption of and tolerance to heavy metal ions.

    Science.gov (United States)

    Kuroda, K; Shibasaki, S; Ueda, M; Tanaka, A

    2001-12-01

    A histidine oligopeptide (hexa-His) with the ability to chelate divalent heavy metal ions was displayed on the yeast cell surface for the purpose of enhanced adsorption of heavy metal ions. We genetically fused a hexa-His-encoding gene with the gene encoding the C-terminal half of alpha-agglutinin that includes a glycosylphosphatidylinositol anchor attachment signal sequence and attached the hexa-His peptide on the cell wall of Saccharomyces cerevisiae. This surface-engineered yeast adsorbed three to eight times more copper ions than the parent strain and was more resistant to copper (4 mM) than the parent (below 1 mM at pH 7.8). It was possible to recover about a half of the copper ions adsorbed by whole cells with EDTA treatment without disintegrating the cells. Thus, we succeeded in constructing a novel yeast cell with both tolerance to toxic contaminants and enhanced adsorption of metal ions onto the cell surface.

  16. Metamorphosis of the Basidiomycota Ustilago maydis: transformation of yeast-like cells into basidiocarps.

    Science.gov (United States)

    Cabrera-Ponce, José L; León-Ramírez, Claudia G; Verver-Vargas, Aurora; Palma-Tirado, Lourdes; Ruiz-Herrera, José

    2012-10-01

    Ustilago maydis (DC) Cda., a phytopathogenic Basidiomycota, is the causal agent of corn smut. During its life cycle U. maydis alternates between a yeast-like, haploid nonpathogenic stage, and a filamentous, dikaryotic pathogenic form that invades the plant and induces tumor formation. As all the members of the Subphylum Ustilaginomycotina, U. maydis is unable to form basidiocarps, instead it produces teliospores within the tumors that germinate forming a septate basidium (phragmobasidium). We have now established conditions allowing a completely different developmental program of U. maydis when grown on solid medium containing auxins in dual cultures with maize embryogenic calli. Under these conditions U. maydis forms large hemi-spheroidal structures with all the morphological and structural characteristics of gastroid-type basidiocarps. These basidiocarps are made of three distinct hyphal layers, the most internal of which (hymenium) contains non-septate basidia (holobasidia) from which four basidiospores develop. In basidiocarps meiosis and genetic recombination occur, and meiotic products (basidiospores) segregate in a Mendelian fashion. These results are evidence of sexual cycle completion of an Ustilaginomycotina in vitro, and the demonstration that, besides its quasi-obligate biotrophic pathogenic mode of life, U. maydis possesses the genetic program to form basidiocarps as occurs in saprophytic Basidiomycota species.

  17. Oriented cell division affects the global stress and cell packing geometry of a monolayer under stretch.

    Science.gov (United States)

    Xu, Guang-Kui; Liu, Yang; Zheng, Zhaoliang

    2016-02-01

    Cell division plays a vital role in tissue morphogenesis and homeostasis, and the division plane is crucial for cell fate. For isolated cells, extensive studies show that the orientation of divisions is sensitive to cell shape and the direction of extrinsic mechanical forces. However, it is poorly understood that how the cell divides within a cell monolayer and how the local stress change, due to the division, affects the global stress of epithelial monolayers. Here, we use the vertex dynamics models to investigate the effects of division orientation on the configurations and mechanics of a cell monolayer under stretch. We examine three scenarios of the divisions: dividing along the stretch axis, dividing along the geometric long axis of cells, and dividing at a random angle. It is found that the division along the long cell axis can induce the minimal energy difference, and the global stress of the monolayer after stretch releases more rapidly in this case. Moreover, the long-axis division can result in more random cell orientations and more isotropic cell shapes within the monolayer, comparing with other two cases. This study helps understand the division orientation of cells within a monolayer under mechanical stimuli, and may shed light on linking individual cell's behaviors to the global mechanics and patterns of tissues.

  18. The yeast three-hybrid system as an experimental platform to identify proteins interacting with small signaling molecules in plant cells: Potential and limitations

    Directory of Open Access Journals (Sweden)

    Stéphanie eCottier

    2011-12-01

    Full Text Available Chemical genetics is a powerful scientific strategy that utilizes small bioactive molecules as experimental tools to unravel biological processes. Bioactive compounds occurring in nature represent an enormous diversity of structures that can be used to dissect functions of biological systems. Once the bioactivity of a natural or synthetic compound has been critically evaluated the challenge remains to identify its molecular target and mode of action, which usually is a time consuming and labor-intensive process. To facilitate this task, we decided to implement the yeast three-hybrid (Y3H technology as a general experimental platform to scan the whole Arabidopsis proteome for targets of small signaling molecules. The Y3H technology is based on the yeast two-hybrid system and allows direct cloning of proteins that interact in vivo with a synthetic hybrid ligand, which comprises the biologically active molecule of interest covalently linked to methotrexate (Mtx. In yeast nucleus the hybrid ligand connects two fusion proteins: the Mtx part binding to dihydrofolate reductase fused to a DNA binding domain (encoded in the yeast strain, and the bioactive molecule part binding to its potential protein target fused to a DNA activating domain (encoded on a cDNA expression vector. During cDNA library screening, the formation of this ternary, transcriptional activator complex leads to reporter gene activation in yeast cells, and thereby allows selection of the putative targets of small bioactive molecules of interest. Here we present the strategy and experimental details for construction and application of a Y3H platform, including chemical synthesis of different hybrid ligands, construction of suitable cDNA libraries, the choice of yeast strains, and appropriate screening conditions. Based on the results obtained and the current literature we discussed the perspectives and limitations of the Y3H approach for identifying targets of small bioactive molecules.

  19. Evaluation of Relative Yeast Cell Surface Hydrophobicity Measured by Flow Cytometry

    Directory of Open Access Journals (Sweden)

    Lisa Colling

    2005-01-01

    Full Text Available Objective: To develop an efficient method for evaluating cell surface hydrophobicity and to apply the method to demonstrate the effects of fungal growth conditions on cell surface properties.

  20. Immunization with Paracoccidioides brasiliensis radioattenuated yeast cells induces Th1 immune response in Balb/C mice

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Estefania M.N.; Andrade, Antero S.R. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN-CNEN/MG), Belo Horizonte, MG (Brazil)], e-mail: estefaniabio@yahoo.com.br, e-mail: antero@cdtn.br; Resende, Maria Aparecida de [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Microbiologia], e-mail: maresend@mono.icb.ufmg.br; Reis, Bernardo S.; Goes, Alfredo M. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Bioquimica e Imunologia], e-mail: goes@mono.icb.ufmg.br, e-mail: brsgarbi@mono.icb.ufmg.br

    2009-07-01

    Paracoccidioides brasiliensis is the agent of paracoccidioidomycosis, the most prevalent mycosis in Latin America. To date, there is no effective vaccine. In our laboratory yeast cells of P. brasiliensis were attenuated by gamma irradiation. We defined an absorbed dose in which the pathogen loses the reproductive ability, while retaining the morphology, the synthesis and secretion of proteins and the oxidative metabolism. The immunization with these cells was able to confer protection in BALB/c mice. The aim of the present work was evaluate the immune response pathway activated in mice immunized with P. brasiliensis radioattenuated yeast cells. The protector effect was evaluated in BALB/c mice groups immunized once or twice, respectively. Each group was divided in three sub groups that were challenge 30, 45 or 60 days after the immunization. These groups were called G1A, G1B and G1C in the group immunized once and G2A, G2B and G2C in the group immunized twice. Recovery of CFUs and cytokines determination (IFN - {gamma}, IL - 10 and IL IV 4) were performed three months post challenge. Quantitative RT-PCR was the method of choice used to quantify the expression of cytokines. The sera were collected weekly to evaluate the IgG antibody titers and the IgG1 and IgG2a pattern in the course of infection. A significant reduction in CFUs recovery was verified 90 days post challenge in mice submitted to one immunization: 73.0%, 96.0% and 76.3% for sub-groups G1A, G1B and G1C, respectively. In the group submitted to two immunizations, a remarkable increase in the protection was obtained. No CFUs was recovered from sub-groups G2B and G2C and very few CFUs (reduction of 98.6%) were recovered from the lungs of sub group G2A. In mice submitted to one immunization, Th1 and Th2 cytokines were simultaneously produced. In the group submitted to two immunizations, levels of IL-10 and IL-4 were very low, while IFN-{gamma} production was maintained indicating that a Th1 pattern was

  1. Time-dependent regulation of yeast glycolysis upon nitrogen starvation depends on cell history

    NARCIS (Netherlands)

    van Eunen, K.; Dool, P.; Canelas, A. B.; Kiewiet, J.; Bouwman, J.; van Gulik, W. M.; Westerhoff, H. V.; Bakker, B. M.

    2010-01-01

    In this study, the authors investigated how the glycolytic flux was regulated in time upon nitrogen starvation of cells with different growth histories. We have compared cells grown in glucose-limited chemostat cultures under respiratory conditions (low dilution rate of 0.1/h) to cells grown under r

  2. Mass Spectrometric Method for Analyzing Metabolites in Yeast with Single Cell Sensitivity

    NARCIS (Netherlands)

    Amantonico, Andrea; Oh, Joo Yeon; Sobek, Jens; Heinemann, Matthias; Zenobi, Renato

    2008-01-01

    Getting a look-in: An optimized MALDI-MS procedure has been developed to detect endogenous primary metabolites directly in the cell extract. A detection limit corresponding to metabolites from less than a single cell has been attained, opening the door to single-cell metabolomics by mass spectrometr

  3. Ethanol production by a flocculant yeast strain in a CSTR type fermentor with cell recycling.

    Science.gov (United States)

    Hojo, O; Hokka, C O; Major, A M

    1999-01-01

    Tests were performed in a continuous stirred tank reactor (CSTR), with and without cell recycling, to produce ethanol. The reactor without cell recycling produced the kinetic model of ethanol production, whereas the reactor with cell recycling allowed for a study of process stability. The Levenspiel kinetic model was adopted; however, in the case of fermentation with cell recycling, the coefficient of cell death was added. It was observed that cellular viability varied greatly throughout the fermenting process and that microaeration is of fundamental importance in maintaining the stability of the process.

  4. The glucose metabolite methylglyoxal inhibits expression of the glucose transporter genes by inactivating the cell surface glucose sensors Rgt2 and Snf3 in yeast.

    Science.gov (United States)

    Roy, Adhiraj; Hashmi, Salman; Li, Zerui; Dement, Angela D; Cho, Kyu Hong; Kim, Jeong-Ho

    2016-03-01

    Methylglyoxal (MG) is a cytotoxic by-product of glycolysis. MG has inhibitory effect on the growth of cells ranging from microorganisms to higher eukaryotes, but its molecular targets are largely unknown. The yeast cell-surface glucose sensors Rgt2 and Snf3 function as glucose receptors that sense extracellular glucose and generate a signal for induction of expression of genes encoding glucose transporters (HXTs). Here we provide evidence that these glucose sensors are primary targets of MG in yeast. MG inhibits the growth of glucose-fermenting yeast cells by inducing endocytosis and degradation of the glucose sensors. However, the glucose sensors with mutations at their putative ubiquitin-acceptor lysine residues are resistant to MG-induced degradation. These results suggest that the glucose sensors are inactivated through ubiquitin-mediated endocytosis and degraded in the presence of MG. In addition, the inhibitory effect of MG on the glucose sensors is greatly enhanced in cells lacking Glo1, a key component of the MG detoxification system. Thus the stability of these glucose sensors seems to be critically regulated by intracellular MG levels. Taken together, these findings suggest that MG attenuates glycolysis by promoting degradation of the cell-surface glucose sensors and thus identify MG as a potential glycolytic inhibitor.

  5. Enzymatic oxidation of cephalosporin C using whole cells of the yeast Triginopsis variabilis within a "cross-flow filter-reactor".

    Science.gov (United States)

    Vicenzi, J T; Hansen, G J

    1993-04-01

    An economical process for the enzymatic oxidation of cephalosporin C to glutaryl-7-ACA was developed at a pilot plant scale. The process utilized nonviable whole cells of the yeast Triginopsis variabilis containing high levels of D-amino acid oxidase. Prior to use, the whole cells were permeabilized with a 25% acetone/water solution which enhanced their apparent activity by 20- to 50-fold. After permeabilization, the whole cells were incubated at pH 11, which served to selectively deactivate catalase which was present in very large quantities. Deactivation of catalase was critical to achieving high reaction yields. The whole cells were utilized within a "cross-flow filter-reactor" which allowed easy and economical recycle of the cells for repeated use. The overall yield of glutaryl-7-ACA from cephalosporin C was 90-95%. The overall productivity of the yeast was 13 kg cephalosporin C oxidized per kilogram yeast (dry basis). The reaction was run at a concentration of 40 g cephalosporin CL-1 and the overall reactor productivity was 11 g glutaryl-7-ACA l-1 h-1. The process has been thoroughly demonstrated on a 35-l scale, and it should be directly scaleable to 10,000 l or more.

  6. [Demonstration of β-1,2 mannan structures expressed on the cell wall of Candida albicans yeast form but not on the hyphal form by using monoclonal antibodies].

    Science.gov (United States)

    Aydın, Cevahir; Ataoğlu, Haluk

    2015-01-01

    Candida albicans is a polymorphic fungus that may be observed as both commensal and opportunistic pathogen in humans. As one of the major components of Candida cell wall structure, mannan plays an important role in the fungus-host cell interaction and in virulence. The ability to switch from yeast to hypha form of microorganism is crutial in the development of C.albicans infections. Hyphal form has different antigenic properties compared to yeast form and structural changes occur in the yeast cell wall during transition from yeast to hypha form. Although there are several factors associated with this transition process, sufficient information is not available. The aim of this study was to investigate the change of configuration in mannan structure found in C.albicans cell wall by using monoclonal antibodies. C.albicans (NIHA 207) serotype A strains were used as test strains throughout the study, together with Salmonella choleraesuis 211 and Salmonella infantis as controls with similar cell wall structures to that of C.albicans. Cultures were maintained on YPD-agar medium by incubating at 28°C for yeast forms, and on YPD-broth medium in a shaking incubator at 37°C for 3-4 hours for the growth of hyphal forms. Cells were harvested in the exponential phase, and after being washed, the mannan content from C.albicans were extracted from pellet by heating in 20 mM sodium citrate buffer for 90 minutes at 125°C. Hybridoma technique was used for the production of monoclonal antibodies. After immunizing the Balb/C mice with antigen, the splenocytes were harvested and fusion was performed between spleen cells and F0 myeloma cells. The clones grown in HAT medium were screened for the presence of antibody producing hybrid cells by ELISA method. The antibody isotypes were determined by using a commercial kit (Pierce Biotechnology, ABD). The culture supernatants which contained monoclonal antibodies were collected and purified according to the ammonium sulphate method

  7. Factors affecting the cryosurvival of mouse two-cell embryos.

    Science.gov (United States)

    Critser, J K; Arneson, B W; Aaker, D V; Huse-Benda, A R; Ball, G D

    1988-01-01

    A series of 4 experiments was conducted to examine factors affecting the survival of frozen-thawed 2-cell mouse embryos. Rapid addition of 1.5 M-DMSO (20 min equilibration at 25 degrees C) and immediate, rapid removal using 0.5 M-sucrose did not alter the frequency (mean +/- s.e.m.) of blastocyst development in vitro when compared to untreated controls (90.5 +/- 2.7% vs 95.3 +/- 2.8%). There was an interaction between the temperature at which slow cooling was terminated and thawing rate. Termination of slow cooling (-0.3 degrees C/min) at -40 degrees C with subsequent rapid thawing (approximately 1500 degrees C/min) resulted in a lower frequency of blastocyst development than did termination of slow cooling at -80 degrees C with subsequent slow thawing (+8 degrees C/min) (36.8 +/- 5.6% vs 63.9 +/- 5.7%). When slow cooling was terminated between -40 and -60 degrees C, higher survival rates were achieved with rapid thawing. When slow cooling was terminated below -60 degrees C, higher survival rates were obtained with slow thawing rates. In these comparisons absolute survival rates were highest among embryos cooled below -60 degrees C and thawed slowly. However, when slow cooling was terminated at -32 degrees C, with subsequent rapid warming, survival rates were not different from those obtained when embryos were cooled to -80 degrees C and thawed slowly (52.4 +/- 9.5%, 59.5 +/- 8.6%). These results suggest that optimal cryosurvival rates may be obtained from 2-cell mouse embryos by a rapid or slow thawing procedure, as has been found for mouse preimplantation embryos at later stages.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Isolation of mRNAs encoding peroxisomal proteins from yeast using a combined cell fractionation and affinity purification procedure.

    Science.gov (United States)

    Zipor, Gadi; Brocard, Cecile; Gerst, Jeffrey E

    2011-01-01

    Targeted mRNA localization to distinct subcellular sites occurs throughout the eukaryotes and presumably allows for the localized translation of proteins near their site of function. Specific mRNAs have been localized in cells using a variety of reliable methods, such as fluorescence in situ hybridization with labeled RNA probes, mRNA tagging using RNA aptamers and fluorescent proteins that recognize these aptamers, and quenched fluorescent RNA probes that become activated upon binding to mRNAs. However, fluorescence-based RNA localization studies can be strengthened when coupled with cell fractionation and membrane isolation techniques in order to identify mRNAs associated with specific organelles or other subcellular structures. Here we describe a novel method to isolate mRNAs associated with peroxisomes in the yeast, Saccharomyces cerevisiae. This method employs a combination of density gradient centrifugation and affinity purification to yield a highly enriched peroxisome fraction suitable for RNA isolation and reverse transcription-polymerase chain reaction detection of mRNAs bound to peroxisome membranes. The method is presented for the analysis of peroxisome-associated mRNAs; however it is applicable to studies on other subcellular compartments.

  9. Human Immunodeficiency Syndromes Affecting Human Natural Killer Cell Cytolytic Activity

    OpenAIRE

    Ham, Hyoungjun; Billadeau, Daniel D.

    2014-01-01

    Natural killer (NK) cells are lymphocytes of the innate immune system that secrete cytokines upon activation and mediate the killing of tumor cells and virus-infected cells, especially those that escape the adaptive T cell response caused by the down regulation of MHC-I. The induction of cytotoxicity requires that NK cells contact target cells through adhesion receptors, and initiate activation signaling leading to increased adhesion and accumulation of F-actin at the NK cell cytotoxic synaps...

  10. rRNA maturation in yeast cells depleted of large ribosomal subunit proteins.

    Directory of Open Access Journals (Sweden)

    Gisela Pöll

    Full Text Available The structural constituents of the large eukaryotic ribosomal subunit are 3 ribosomal RNAs, namely the 25S, 5.8S and 5S rRNA and about 46 ribosomal proteins (r-proteins. They assemble and mature in a highly dynamic process that involves more than 150 proteins and 70 small RNAs. Ribosome biogenesis starts in the nucleolus, continues in the nucleoplasm and is completed after nucleo-cytoplasmic translocation of the subunits in the cytoplasm. In this work we created 26 yeast strains, each of which conditionally expresses one of the large ribosomal subunit (LSU proteins. In vivo depletion of the analysed LSU r-proteins was lethal and led to destabilisation and degradation of the LSU and/or its precursors. Detailed steady state and metabolic pulse labelling analyses of rRNA precursors in these mutant strains showed that LSU r-proteins can be grouped according to their requirement for efficient progression of different steps of large ribosomal subunit maturation. Comparative analyses of the observed phenotypes and the nature of r-protein-rRNA interactions as predicted by current atomic LSU structure models led us to discuss working hypotheses on i how individual r-proteins control the productive processing of the major 5' end of 5.8S rRNA precursors by exonucleases Rat1p and Xrn1p, and ii the nature of structural characteristics of nascent LSUs that are required for cytoplasmic accumulation of nascent subunits but are nonessential for most of the nuclear LSU pre-rRNA processing events.

  11. Cell density-correlated induction of pyruvate decarboxylase under aerobic conditions in the yeast Pichia stipitis.

    Science.gov (United States)

    Mergler, M; Klinner, U

    2001-01-01

    During the aerobic batch cultivation of P. stipitis CBS 5776 with glucose, pyruvate decarboxylase was activated in a cell number-correlated manner. Activation started when a cell number between 7 x 10(7) and x 10(8) cells ml(-1) was reached and the enzyme activity increased during further cultivation. This induction might have been triggered either by an unknown quorum sensing system or by a shortage of cytoplasmic acetyl-CoA.

  12. Caloric restriction extends yeast chronological lifespan by altering a pattern of age-related changes in trehalose concentration

    Directory of Open Access Journals (Sweden)

    Pavlo eKyryakov

    2012-07-01

    Full Text Available The nonreducing disaccharide trehalose has been long considered only as a reserve carbohydrate. However, recent studies in yeast suggested that this osmolyte can protect cells and cellular proteins from oxidative damage elicited by exogenously added reactive oxygen species (ROS. Trehalose has been also shown to affect stability, folding and aggregation of bacterial and firefly proteins heterologously expressed in heat-shocked yeast cells. Our recent investigation of how a lifespan-extending caloric restriction (CR diet alters the metabolic history of chronologically aging yeast suggested that their longevity is programmed by the level of metabolic capacity - including trehalose biosynthesis and degradation - that yeast cells developed prior to entry into quiescence. To investigate whether trehalose homeostasis in chronologically aging yeast may play a role in longevity extension by CR, in this study we examined how single-gene-deletion mutations affecting trehalose biosynthesis and degradation impact 1 the age-related dynamics of changes in trehalose concentration; 2 yeast chronological lifespan under CR conditions; 3 the chronology of oxidative protein damage, intracellular ROS level and protein aggregation; and 4 the timeline of thermal inactivation of a protein in heat-shocked yeast cells and its subsequent reactivation in yeast returned to low temperature. Our data imply that CR extends yeast chronological lifespan in part by altering a pattern of age-related changes in trehalose concentration. We outline a model for molecular mechanisms underlying the essential role of trehalose in defining yeast longevity by modulating protein folding, misfolding, unfolding, refolding, oxidative damage, solubility and aggregation throughout lifespan.

  13. To nick or not to nick: comparison of I-SceI single- and double-strand break-induced recombination in yeast and human cells.

    Directory of Open Access Journals (Sweden)

    Samantha S Katz

    Full Text Available Genetic modification of a chromosomal locus to replace an existing dysfunctional allele with a corrected sequence can be accomplished through targeted gene correction using the cell's homologous recombination (HR machinery. Gene targeting is stimulated by generation of a DNA double-strand break (DSB at or near the site of correction, but repair of the break via non-homologous end-joining without using the homologous template can lead to deleterious genomic changes such as in/del mutations, or chromosomal rearrangements. By contrast, generation of a DNA single-strand break (SSB, or nick, can stimulate gene correction without the problems of DSB repair because the uncut DNA strand acts as a template to permit healing without alteration of genetic material. Here, we examine the ability of a nicking variant of the I-SceI endonuclease (K223I I-SceI to stimulate gene targeting in yeast Saccharomyces cerevisiae and in human embryonic kidney (HEK-293 cells. K223I I-SceI is proficient in both yeast and human cells and promotes gene correction up to 12-fold. We show that K223I I-SceI-driven recombination follows a different mechanism than wild-type I-SceI-driven recombination, thus indicating that the initial DNA break that stimulates recombination is not a low-level DSB but a nick. We also demonstrate that K223I I-SceI efficiently elevates gene targeting at loci distant from the break site in yeast cells. These findings establish the capability of the I-SceI nickase to enhance recombination in yeast and human cells, strengthening the notion that nicking enzymes could be effective tools in gene correction strategies for applications in molecular biology, biotechnology, and gene therapy.

  14. Isolation of a cdc28 mutation that abrogates the dependence of S phase on completion of M phase of the budding yeast cell cycle

    Indian Academy of Sciences (India)

    Santanu Kumar Ghosh; Pratima Sinha

    2000-01-01

    We have isolated a mutation in the budding yeast Saccharomyces cerevisisae CDC28 gene that allows cdc13 cells, carrying damaged DNA, to continue with the cell division cycle. While cdc13 mutant cells are arrested as large-budded cells at the nonpermissive temperature 37°C, the cdc13 cdc28 double mutant culture showed cells with one or more buds, most of which showed apical growth. The additional buds emerged without the intervening steps of nuclear division and cell separation. We suggest that the cdc28 mutation abrogates a checkpoint function and allows cells with damaged or incompletely replicated DNA an entry to another round of cell cycle and bypasses the mitotic phase of the cell cycle.

  15. The budding yeast Cdc48(Shp1 complex promotes cell cycle progression by positive regulation of protein phosphatase 1 (Glc7.

    Directory of Open Access Journals (Sweden)

    Stefanie Böhm

    Full Text Available The conserved, ubiquitin-selective AAA ATPase Cdc48 regulates numerous cellular processes including protein quality control, DNA repair and the cell cycle. Cdc48 function is tightly controlled by a multitude of cofactors mediating substrate specificity and processing. The UBX domain protein Shp1 is a bona fide substrate-recruiting cofactor of Cdc48 in the budding yeast S. cerevisiae. Even though Shp1 has been proposed to be a positive regulator of Glc7, the catalytic subunit of protein phosphatase 1 in S. cerevisiae, its cellular functions in complex with Cdc48 remain largely unknown. Here we show that deletion of the SHP1 gene results in severe growth defects and a cell cycle delay at the metaphase to anaphase transition caused by reduced Glc7 activity. Using an engineered Cdc48 binding-deficient variant of Shp1, we establish the Cdc48(Shp1 complex as a critical regulator of mitotic Glc7 activity. We demonstrate that shp1 mutants possess a perturbed balance of Glc7 phosphatase and Ipl1 (Aurora B kinase activities and show that hyper-phosphorylation of the kinetochore protein Dam1, a key mitotic substrate of Glc7 and Ipl1, is a critical defect in shp1. We also show for the first time a physical interaction between Glc7 and Shp1 in vivo. Whereas loss of Shp1 does not significantly affect Glc7 protein levels or localization, it causes reduced binding of the activator protein Glc8 to Glc7. Our data suggest that the Cdc48(Shp1 complex controls Glc7 activity by regulating its interaction with Glc8 and possibly further regulatory subunits.

  16. Continuous ethanol production from pineapple cannery waste using immobilized yeast cells.

    Science.gov (United States)

    Nigam, J N

    2000-06-23

    The cells of Saccharomyces cerevisiae ATCC 24553, were immobilized in k-carrageenan and packed in a tapered glass column reactor for ethanol production from pineapple cannery waste at temperature 30 degrees C and pH 4.5. The maximum productivity was 42.8 g ethanol 1(-1) h(-1) at a dilution rate of 1.5 h(-1). The volumetric ethanol productivity of the immobilized cells was ca. 11.5 times higher than the free cells. The immobilized cell reactor was operated over a period of 87 days at a dilution rate of 1.0 h(-1), without any loss in the immobilized cell activity. The maximum specific ethanol productivity and specific sugar uptake rate of the immobilized cells were 1.2 g ethanol g(-1) dry wt. cell h(-1) and 2.6 g sugar g(-1) dry wt. cell h(-1), respectively, at a dilution rate of 1.5 h(-1).

  17. Ceramide Accumulation in Yeast Yarrowia lipolitica%解脂假丝酵母中神经酰胺的积累研究

    Institute of Scientific and Technical Information of China (English)

    周全; 陈国强

    2005-01-01

    Ceramides are a class of lipid molecules widely distributed in eukaryotic cells in small amount. To investigate the possibility of ceramide production by yeast, a yeast strain Yarrowia lipolitica was grown under different conditions including changing carbon/nitrogen ratio, and serine concentration, dissolved oxygen and presence of ethanol It was found that increased dissolved oxygen supply increased the ceramide content in the yeast 2.5 fold of its normal control level. Ethanol treatment could also enhance ceramide accumulation by 3.3 fold compared with the control although the cell growth was negatively affected. Cellular redox potential was shown to affect ceramide accumulation by the yeast. This was possibly related to the cellular reactive oxygen species presented in the yeast.

  18. Polypeptone induces dramatic cell lysis in ura4 deletion mutants of fission yeast.

    Directory of Open Access Journals (Sweden)

    Yuzy Matsuo

    Full Text Available Polypeptone is widely excluded from Schizosaccharomyces pombe growth medium. However, the reasons why polypeptone should be avoided have not been documented. Polypeptone dramatically induced cell lysis in the ura4 deletion mutant when cells approached the stationary growth phase, and this phenotype was suppressed by supplementation of uracil. To determine the specificity of this cell lysis phenotype, we created deletion mutants of other genes involved in de novo biosynthesis of uridine monophosphate (ura1, ura2, ura3, and ura5. Cell lysis was not observed in these gene deletion mutants. In addition, concomitant disruption of ura1, ura2, ura3, or ura5 in the ura4 deletion mutant suppressed cell lysis, indicating that cell lysis induced by polypeptone is specific to the ura4 deletion mutant. Furthermore, cell lysis was also suppressed when the gene involved in coenzyme Q biosynthesis was deleted. This is likely because Ura3 requires coenzyme Q for its activity. The ura4 deletion mutant was sensitive to zymolyase, which mainly degrades (1,3-beta-D glucan, when grown in the presence of polypeptone, and cell lysis was suppressed by the osmotic stabiliser, sorbitol. Finally, the induction of cell lysis in the ura4 deletion mutant was due to the accumulation of orotidine-5-monophosphate. Cell wall integrity was dramatically impaired in the ura4 deletion mutant when grown in the presence of polypeptone. Because ura4 is widely used as a selection marker in S. pombe, caution needs to be taken when evaluating phenotypes of ura4 mutants.

  19. Effect of temperature on replicative aging of the budding yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Molon, Mateusz; Zadrag-Tecza, Renata

    2016-04-01

    The use of the budding yeast Saccharomyces cerevisiae in gerontological studies was based on the assumption that the reproduction limit of a single cell (replicative aging) is a consequence of accumulation of a hypothetical universal "senescence factor" within the mother cell. However, some evidence suggests that molecules or structures proposed as the "aging factor", such as rDNA circles, oxidatively damaged proteins (with carbonyl groups) or mitochondria, have little effect on replicative lifespan of yeast cells. Our results also suggest that protein aggregates associated with Hsp104, treated as a marker of yeast aging, do not seem to affect the numeric value of replicative lifespan of yeast. What these results indicate, however, is the need for finding a different way of expressing age and longevity of yeast cells instead of the commonly used number of daughters produced over units of time, as in the case of other organisms. In this paper, we show that the temperature has a stronger influence on the time of life (the total lifespan) than on the reproductive potential of yeast cells.

  20. Systematic analysis of asymmetric partitioning of yeast proteome between mother and daughter cells reveals "aging factors" and mechanism of lifespan asymmetry.

    Science.gov (United States)

    Yang, Jing; McCormick, Mark A; Zheng, Jiashun; Xie, Zhengwei; Tsuchiya, Mitsuhiro; Tsuchiyama, Scott; El-Samad, Hana; Ouyang, Qi; Kaeberlein, Matt; Kennedy, Brian K; Li, Hao

    2015-09-22

    Budding yeast divides asymmetrically, giving rise to a mother cell that progressively ages and a daughter cell with full lifespan. It is generally assumed that mother cells retain damaged, lifespan limiting materials ("aging factors") through asymmetric division. However, the identity of these aging factors and the mechanisms through which they limit lifespan remain poorly understood. Using a flow cytometry-based, high-throughput approach, we quantified the asymmetric partitioning of the yeast proteome between mother and daughter cells during cell division, discovering 74 mother-enriched and 60 daughter-enriched proteins. While daughter-enriched proteins are biased toward those needed for bud construction and genome maintenance, mother-enriched proteins are biased towards those localized in the plasma membrane and vacuole. Deletion of 23 of the 74 mother-enriched proteins leads to lifespan extension, a fraction that is about six times that of the genes picked randomly from the genome. Among these lifespan-extending genes, three are involved in endosomal sorting/endosome to vacuole transport, and three are nitrogen source transporters. Tracking the dynamic expression of specific mother-enriched proteins revealed that their concentration steadily increases in the mother cells as they age, but is kept relatively low in the daughter cells via asymmetric distribution. Our results suggest that some mother-enriched proteins may increase to a concentration that becomes deleterious and lifespan-limiting in aged cells, possibly by upsetting homeostasis or leading to aberrant signaling. Our study provides a comprehensive resource for analyzing asymmetric cell division and aging in yeast, which should also be valuable for understanding similar phenomena in other organisms.

  1. Blad-Containing Oligomer Fungicidal Activity on Human Pathogenic Yeasts. From the Outside to the Inside of the Target Cell

    Science.gov (United States)

    Pinheiro, Ana M.; Carreira, Alexandra; Rollo, Filipe; Fernandes, Rui; Ferreira, Ricardo B.; Monteiro, Sara A.

    2016-01-01

    Blad polypeptide comprises residues 109–281 of Lupinus albus β-conglutin precursor. It occurs naturally as a major subunit of an edible, 210 kDa oligomer which accumulates to high levels, exclusively in the cotyledons of Lupinus seedlings between the 4th and 14th day after the onset of germination. Blad-containing oligomer (BCO) exhibits a potent and broad spectrum fungicide activity toward plant pathogens and is now on sale in the US under the tradename FractureTM. In this work we demonstrate its antifungal activity toward human pathogens and provide some insights on its mode of action. BCO bioactivity was evaluated in eight yeast species and compared to that of amphotericin B (AMB). BCO behaved similarly to AMB in what concerns both cellular inhibition and cellular death. As a lectin, BCO binds strongly to chitin. In addition, BCO is known to possess ‘exochitinase’ and ‘endochitosanase’ activities. However, no clear disruption was visualized at the cell wall after exposure to a lethal BCO concentration, except in cell buds. Immunofluorescent and immunogold labeling clearly indicate that BCO enters the cell, and membrane destabilization was also demonstrated. The absence of haemolytic activity, its biological origin, and its extraordinary antifungal activity are the major outcomes of this work, and provide a solid background for a future application as a new antifungal therapeutic drug. Furthermore, its predictable multisite mode of action suggests a low risk of inducing resistance mechanisms, which are now a major problem with other currently available antifungal drugs. PMID:27933037

  2. Inferring yeast cell cycle regulators and interactions using transcription factor activities

    Directory of Open Access Journals (Sweden)

    Galbraith Simon J

    2005-06-01

    Full Text Available Abstract Background Since transcription factors are often regulated at the post-transcriptional level, their activities, rather than expression levels may provide valuable information for investigating functions and their interactions. The recently developed Network Component Analysis (NCA and its generalized form (gNCA provide a robust framework for deducing the transcription factor activities (TFAs from various types of DNA microarray data and transcription factor-gene connectivity. The goal of this work is to demonstrate the utility of TFAs in inferring transcription factor functions and interactions in Saccharomyces cerevisiae cell cycle regulation. Results Using gNCA, we determined 74 TFAs from both wild type and fkh1 fkh2 deletion mutant microarray data encompassing 1529 ORFs. We hypothesized that transcription factors participating in the cell cycle regulation exhibit cyclic activity profiles. This hypothesis was supported by the TFA profiles of known cell cycle factors and was used as a basis to uncover other potential cell cycle factors. By combining the results from both cluster analysis and periodicity analysis, we recovered nearly 90% of the known cell cycle regulators, and identified 5 putative cell cycle-related transcription factors (Dal81, Hap2, Hir2, Mss11, and Rlm1. In addition, by analyzing expression data from transcription factor knockout strains, we determined 3 verified (Ace2, Ndd1, and Swi5 and 4 putative interaction partners (Cha4, Hap2, Fhl1, and Rts2 of the forkhead transcription factors. Sensitivity of TFAs to connectivity errors was determined to provide confidence level of these predictions. Conclusion By subjecting TFA profiles to analyses based upon physiological signatures we were able to identify cell cycle related transcription factors consistent with current literature, transcription factors with potential cell cycle dependent roles, and interactions between transcription factors.

  3. Involvement of GDH3-encoded NADP+-dependent glutamate dehydrogenase in yeast cell resistance to stress-induced apoptosis in stationary phase cells.

    Science.gov (United States)

    Lee, Yong Joo; Kim, Kyung Jin; Kang, Hong Yong; Kim, Hye-Rim; Maeng, Pil Jae

    2012-12-28

    Glutamate metabolism is linked to a number of fundamental metabolic pathways such as amino acid metabolism, the TCA cycle, and glutathione (GSH) synthesis. In the yeast Saccharomyces cerevisiae, glutamate is synthesized from α-ketoglutarate by two NADP(+)-dependent glutamate dehydrogenases (NADP-GDH) encoded by GDH1 and GDH3. Here, we report the relationship between the function of the NADP-GDH and stress-induced apoptosis. Gdh3-null cells showed accelerated chronological aging and hypersusceptibility to thermal and oxidative stress during stationary phase. Upon exposure to oxidative stress, Gdh3-null strains displayed a rapid loss in viability associated with typical apoptotic hallmarks, i.e. reactive oxygen species accumulation, nuclear fragmentation, DNA breakage, and phosphatidylserine translocation. In addition, Gdh3-null cells, but not Gdh1-null cells, had a higher tendency toward GSH depletion and subsequent reactive oxygen species accumulation than did WT cells. GSH depletion was rescued by exogenous GSH or glutamate. The hypersusceptibility of stationary phase Gdh3-null cells to stress-induced apoptosis was suppressed by deletion of GDH2. Promoter swapping and site-directed mutagenesis of GDH1 and GDH3 indicated that the necessity of GDH3 for the resistance to stress-induced apoptosis and chronological aging is due to the stationary phase-specific expression of GDH3 and concurrent degradation of Gdh1 in which the Lys-426 residue plays an essential role.

  4. Involvement of GDH3-encoded NADP+-dependent Glutamate Dehydrogenase in Yeast Cell Resistance to Stress-induced Apoptosis in Stationary Phase Cells*

    Science.gov (United States)

    Lee, Yong Joo; Kim, Kyung Jin; Kang, Hong Yong; Kim, Hye-Rim; Maeng, Pil Jae

    2012-01-01

    Glutamate metabolism is linked to a number of fundamental metabolic pathways such as amino acid metabolism, the TCA cycle, and glutathione (GSH) synthesis. In the yeast Saccharomyces cerevisiae, glutamate is synthesized from α-ketoglutarate by two NADP+-dependent glutamate dehydrogenases (NADP-GDH) encoded by GDH1 and GDH3. Here, we report the relationship between the function of the NADP-GDH and stress-induced apoptosis. Gdh3-null cells showed accelerated chronological aging and hypersusceptibility to thermal and oxidative stress during stationary phase. Upon exposure to oxidative stress, Gdh3-null strains displayed a rapid loss in viability associated with typical apoptotic hallmarks, i.e. reactive oxygen species accumulation, nuclear fragmentation, DNA breakage, and phosphatidylserine translocation. In addition, Gdh3-null cells, but not Gdh1-null cells, had a higher tendency toward GSH depletion and subsequent reactive oxygen species accumulation than did WT cells. GSH depletion was rescued by exogenous GSH or glutamate. The hypersusceptibility of stationary phase Gdh3-null cells to stress-induced apoptosis was suppressed by deletion of GDH2. Promoter swapping and site-directed mutagenesis of GDH1 and GDH3 indicated that the necessity of GDH3 for the resistance to stress-induced apoptosis and chronological aging is due to the stationary phase-specific expression of GDH3 and concurrent degradation of Gdh1 in which the Lys-426 residue plays an essential role. PMID:23105103

  5. The resistance of the yeast Saccharomyces cerevisiae to the biocide polyhexamethylene biguanide: involvement of cell wall integrity pathway and emerging role for YAP1

    Directory of Open Access Journals (Sweden)

    de Morais Marcos A

    2011-08-01

    Full Text Available Abstract Background Polyhexamethylene biguanide (PHMB is an antiseptic polymer that is mainly used for cleaning hospitals and pools and combating Acantamoeba infection. Its fungicide activity was recently shown by its lethal effect on yeasts that contaminate the industrial ethanol process, and on the PE-2 strain of Saccharomyces cerevisiae, one of the main fermenting yeasts in Brazil. This pointed to the need to know the molecular mechanism that lay behind the cell resistance to this compound. In this study, we examined the factors involved in PHMB-cell interaction and the mechanisms that respond to the damage caused by this interaction. To achieve this, two research strategies were employed: the expression of some genes by RT-qPCR and the analysis of mutant strains. Results Cell Wall integrity (CWI genes were induced in the PHMB-resistant Saccharomyces cerevisiae strain JP-1, although they are poorly expressed in the PHMB-sensitive Saccharomyces cerevisiae PE2 strain. This suggested that PHMB damages the glucan structure on the yeast cell wall. It was also confirmed by the observed sensitivity of the yeast deletion strains, Δslg1, Δrom2, Δmkk2, Δslt2, Δknr4, Δswi4 and Δswi4, which showed that the protein kinase C (PKC regulatory mechanism is involved in the response and resistance to PHMB. The sensitivity of the Δhog1 mutant was also observed. Furthermore, the cytotoxicity assay and gene expression analysis showed that the part played by YAP1 and CTT1 genes in cell resistance to PHMB is unrelated to oxidative stress response. Thus, we suggested that Yap1p can play a role in cell wall maintenance by controlling the expression of the CWI genes. Conclusion The PHMB treatment of the yeast cells activates the PKC1/Slt2 (CWI pathway. In addition, it is suggested that HOG1 and YAP1 can play a role in the regulation of CWI genes.

  6. Multiple abiotic stress tolerance of the transformants yeast cells and the transgenic Arabidopsis plants expressing a novel durum wheat catalase.

    Science.gov (United States)

    Feki, Kaouthar; Kamoun, Yosra; Ben Mahmoud, Rihem; Farhat-Khemakhem, Ameny; Gargouri, Ali; Brini, Faiçal

    2015-12-01

    Catalases are reactive oxygen species scavenging enzymes involved in response to abiotic and biotic stresses. In this study, we described the isolation and functional characterization of a novel catalase from durum wheat, designed TdCAT1. Molecular Phylogeny analyses showed that wheat TdCAT1 exhibited high amino acids sequence identity to other plant catalases. Sequence homology analysis showed that TdCAT1 protein contained the putative calmodulin binding domain and a putative conserved internal peroxisomal targeting signal PTS1 motif around its C-terminus. Predicted three-dimensional structural model revealed the presence of four putative distinct structural regions which are the N-terminal arm, the β-barrel, the wrapping and the α-helical domains. TdCAT1 protein had the heme pocket that was composed by five essential residues. TdCAT1 gene expression analysis showed that this gene was induced by various abiotic stresses in durum wheat. The expression of TdCAT1 in yeast cells and Arabidopsis plants conferred tolerance to several abiotic stresses. Compared with the non-transformed plants, the transgenic lines maintained their growth and accumulated more proline under stress treatments. Furthermore, the amount of H2O2 was lower in transgenic lines, which was due to the high CAT and POD activities. Taken together, these data provide the evidence for the involvement of durum wheat catalase TdCAT1 in tolerance to multiple abiotic stresses in crop plants.

  7. Macrophage Interaction with Paracoccidioides brasiliensis Yeast Cells Modulates Fungal Metabolism and Generates a Response to Oxidative Stress

    Science.gov (United States)

    Parente-Rocha, Juliana Alves; Parente, Ana Flávia Alves; Baeza, Lilian Cristiane; Bonfim, Sheyla Maria Rondon Caixeta; Hernandez, Orville; McEwen, Juan G.; Bailão, Alexandre Melo; Taborda, Carlos Pelleschi; Borges, Clayton Luiz; Soares, Célia Maria de Almeida

    2015-01-01

    Macrophages are key players during Paracoccidioides brasiliensis infection. However, the relative contribution of the fungal response to counteracting macrophage activity remains poorly understood. In this work, we evaluated the P. brasiliensis proteomic response to macrophage internalization. A total of 308 differentially expressed proteins were detected in P. brasiliensis during infection. The positively regulated proteins included those involved in alternative carbon metabolism, such as enzymes involved in gluconeogenesis, beta-oxidation of fatty acids and amino acids catabolism. The down-regulated proteins during P. brasiliensis internalization in macrophages included those related to glycolysis and protein synthesis. Proteins involved in the oxidative stress response in P. brasiliensis yeast cells were also up-regulated during macrophage infection, including superoxide dismutases (SOD), thioredoxins (THX) and cytochrome c peroxidase (CCP). Antisense knockdown mutants evaluated the importance of CCP during macrophage infection. The results suggested that CCP is involved in a complex system of protection against oxidative stress and that gene silencing of this component of the antioxidant system diminished the survival of P. brasiliensis in macrophages and in a murine model of infection. PMID:26360774

  8. Yeast cell wall extract induces disease resistance against bacterial and fungal pathogens in Arabidopsis thaliana and Brassica crop.

    Directory of Open Access Journals (Sweden)

    Mari Narusaka

    Full Text Available Housaku Monogatari (HM is a plant activator prepared from a yeast cell wall extract. We examined the efficacy of HM application and observed that HM treatment increased the resistance of Arabidopsis thaliana and Brassica rapa leaves to bacterial and fungal infections. HM reduced the severity of bacterial leaf spot and anthracnose on A. thaliana and Brassica crop leaves with protective effects. In addition, gene expression analysis of A. thaliana plants after treatment with HM indicated increased expression of several plant defense-related genes. HM treatment appears to induce early activation of jasmonate/ethylene and late activation of salicylic acid (SA pathways. Analysis using signaling mutants revealed that HM required SA accumulation and SA signaling to facilitate resistance to the bacterial pathogen Pseudomonas syringae pv. maculicola and the fungal pathogen Colletotrichum higginsianum. In addition, HM-induced resistance conferred chitin-independent disease resistance to bacterial pathogens in A. thaliana. These results suggest that HM contains multiple microbe-associated molecular patterns that activate defense responses in plants. These findings suggest that the application of HM is a useful tool that may facilitate new disease control methods.

  9. Deoxygenation affects tyrosine phosphoproteome of red cell membrane from patients with sickle cell disease.

    Science.gov (United States)

    Siciliano, Angela; Turrini, Franco; Bertoldi, Mariarita; Matte, Alessandro; Pantaleo, Antonella; Olivieri, Oliviero; De Franceschi, Lucia

    2010-04-15

    Sickle cell disease (SCD) is a worldwide distributed hereditary red cell disorder related to the production of a defective form of hemoglobin, hemoglobin S (HbS). One of the hallmarks of SCD is the presence of dense, dehydrate highly adhesive sickle red blood cells (RBCs) that result from persistent membrane damage associated with HbS polymerization, abnormal activation of membrane cation transports and generation of distorted and rigid red cells with membrane perturbation and cytoskeleton dysfunction. Although modulation of phosphorylation state of the proteins from membrane and cytoskeleton networks has been proposed to participate in red cell homeostasis, much still remains to be investigated in normal and diseased red cells. Here, we report that tyrosine (Tyr-) phosphoproteome of sickle red cells was different from normal controls and was affected by deoxygenation. We found proteins, p55 and band 4.1, from the junctional complex, differently Tyr-phosphorylated in SCD RBCs compared to normal RBCs under normoxia and modulated by deoxygenation, while band 4.2 was similarly Tyr-phosphorylated in both conditions. In SCD RBCs we identified the phosphopeptides for protein 4.1R located in the protein FERM domain (Tyr-13) and for alpha-spectrin located near or in a linker region (Tyr-422 and Tyr-1498) involving protein areas crucial for their functions in the context of red cell membrane properties, suggesting that Tyr-phosphorylation may be part of the events involved in maintaining membrane mechanical stability in SCD red cells.

  10. Molecular systems biology of Sic1 in yeast cell cycle regulation through multiscale modeling.

    Science.gov (United States)

    Barberis, Matteo

    2012-01-01

    Cell cycle control is highly regulated to guarantee the precise timing of events essential for cell growth, i.e., DNA replication onset and cell division. Failure of this control plays a role in cancer and molecules called cyclin-dependent kinase (Cdk) inhibitors (Ckis) exploit a critical function in cell cycle timing. Here we present a multiscale modeling where experimental and computational studies have been employed to investigate structure, function and temporal dynamics of the Cki Sic1 that regulates cell cycle progression in Saccharomyces cerevisiae. Structural analyses reveal molecular details of the interaction between Sic1 and Cdk/cyclin complexes, and biochemical investigation reveals Sic1 function in analogy to its human counterpart p27(Kip1), whose deregulation leads to failure in timing of kinase activation and, therefore, to cancer. Following these findings, a bottom-up systems biology approach has been developed to characterize modular networks addressing Sic1 regulatory function. Through complementary experimentation and modeling, we suggest a mechanism that underlies Sic1 function in controlling temporal waves of cyclins to ensure correct timing of the phase-specific Cdk activities.

  11. Modulation of GLO1 Expression Affects Malignant Properties of Cells

    Science.gov (United States)

    Hutschenreuther, Antje; Bigl, Marina; Hemdan, Nasr Y. A.; Debebe, Tewodros; Gaunitz, Frank; Birkenmeier, Gerd

    2016-01-01

    The energy metabolism of most tumor cells relies on aerobic glycolysis (Warburg effect) characterized by an increased glycolytic flux that is accompanied by the increased formation of the cytotoxic metabolite methylglyoxal (MGO). Consequently, the rate of detoxification of this reactive glycolytic byproduct needs to be increased in order to prevent deleterious effects to the cells. This is brought about by an increased expression of glyoxalase 1 (GLO1) that is the rate-limiting enzyme of the MGO-detoxifying glyoxalase system. Here, we overexpressed GLO1 in HEK 293 cells and silenced it in MCF-7 cells using shRNA. Tumor-related properties of wild type and transformed cells were compared and key glycolytic enzyme activities assessed. Furthermore, the cells were subjected to hypoxic conditions to analyze the impact on cell proliferation and enzyme activities. Our results demonstrate that knockdown of GLO1 in the cancer cells significantly reduced tumor-associated properties such as migration and proliferation, whereas no functional alterations where found by overexpression of GLO1 in HEK 293 cells. In contrast, hypoxia caused inhibition of cell growth of all cells except of those overexpressing GLO1. Altogether, we conclude that GLO1 on one hand is crucial to maintaining tumor characteristics of malignant cells, and, on the other hand, supports malignant transformation of cells in a hypoxic environment when overexpressed. PMID:27999356

  12. Modulation of GLO1 Expression Affects Malignant Properties of Cells

    Directory of Open Access Journals (Sweden)

    Antje Hutschenreuther

    2016-12-01

    Full Text Available The energy metabolism of most tumor cells relies on aerobic glycolysis (Warburg effect characterized by an increased glycolytic flux that is accompanied by the increased formation of the cytotoxic metabolite methylglyoxal (MGO. Consequently, the rate of detoxification of this reactive glycolytic byproduct needs to be increased in order to prevent deleterious effects to the cells. This is brought about by an increased expression of glyoxalase 1 (GLO1 that is the rate-limiting enzyme of the MGO-detoxifying glyoxalase system. Here, we overexpressed GLO1 in HEK 293 cells and silenced it in MCF-7 cells using shRNA. Tumor-related properties of wild type and transformed cells were compared and key glycolytic enzyme activities assessed. Furthermore, the cells were subjected to hypoxic conditions to analyze the impact on cell proliferation and enzyme activities. Our results demonstrate that knockdown of GLO1 in the cancer cells significantly reduced tumor-associated properties such as migration and proliferation, whereas no functional alterations where found by overexpression of GLO1 in HEK 293 cells. In contrast, hypoxia caused inhibition of cell growth of all cells except of those overexpressing GLO1. Altogether, we conclude that GLO1 on one hand is crucial to maintaining tumor characteristics of malignant cells, and, on the other hand, supports malignant transformation of cells in a hypoxic environment when overexpressed.

  13. Yeast Lab

    OpenAIRE

    Lewis, Matt; Powell, Jim

    2016-01-01

    Yeast are grown in a small, capped ask, generating carbon dioxide which is trapped in an inverted jar full of colored water. The volume of carbon dioxide produced can either be measured directly or using time-lapse imagery on an iPad or similar. Students are then challenged to model the resulting data. From this exercise students gain greater understand- ing of ODE compartment models, parameter estimation, population dynamics and limiting factors.

  14. Adsorption of anthocyanins by yeast cell walls during the fermentation of red wines.

    Science.gov (United States)

    Morata, A; Gómez-Cordovés, M C; Suberviola, J; Bartolomé, B; Colomo, B; Suárez, J A

    2003-07-02

    This paper reports the anthocyanin adsorption profiles of the cell walls of different Saccharomyces strains isolated from grapes collected in the Spanish appellation controlée regions of La Rioja, Navarra, and Ribera del Duero. These strains are habitually used in red wine-making. The acyl derivatives of anthocyanins (acetyl and p-coumaryl compounds) were more strongly adsorbed than nonacyl derivatives. Peonidin-3G was also strongly adsorbed, as were its acyl derivatives. The greater presence of acetyl derivatives in the cell wall adsorbate leads to an increase in yellow color and a reduction in blue color with respect to the corresponding wine.

  15. Proteolytic activities in yeast.

    Science.gov (United States)

    Saheki, T; Holzer, H

    1975-03-28

    Studies on the mechanism and time course of the activation of proteinases A (EC 3.4.23.8), B (EC 3.4.22.9) and C (EC 3.4.12.--) in crude yeast extracts at pH 5.1 and 25 degrees C showed that the increase in proteinase B activity is paralleled with the disappearance of proteinase B inhibitor. Addition of purified proteinase A to fresh crude extracts accelerates the inactivation of the proteinase B inhibitor and the appearance of maximal activities of proteinases B and C. The decrease of proteinase B inhibitor activity and the increase of proteinase B activity are markedly retarded by the addition of pepstatin. Because 10-minus 7 M pepstatin completely inhibits proteinase A without affecting proteinase B activity, this is another indication for the role of proteinase A during the activation of proteinase B. Whereas extracts of yeast grown on minimal medium reached maximal activation of proteinases B and C after 20 h of incubation at pH 5.1 and 25 degrees C, extracts of yeast grown on complete medium had to be incubated for about 100 h. In the latter case, the addition of proteinas A results in maximal activation of proteinases B and C and disappearance of proteinase B inhibitor activity only after 10--20 h of incubation. With the optimal conditions, the maximal activities of proteinases A, B and C, as well as of the proteinase B inhibitor, were determined in crude extracts of yeast that had been grown batchwise for different lengths of time either on minimal or on complete medium. Upon incubation, all three proteinases were activated by several times their initial activity. This reflects the existence of proteolytically degradable inhibitors of the three proteinases and together with the above mentioned observations it demonstrates that the "activation" of yeast proteinases A, B and C upon incubation results from the proteolytic digestion of inhibitors rather than from activation of inactive zymogens by limited proteolysis.

  16. High-cell-density cultivation of oleaginous yeast Cryptococcus curvatus for biodiesel production using organic waste from the brewery industry.

    Science.gov (United States)

    Ryu, Byung-Gon; Kim, Jungmin; Kim, Kyochan; Choi, Yoon-E; Han, Jong-In; Yang, Ji-Won

    2013-05-01

    Waste spent yeast from brewery industry was used as a sole growth substrate to grow an oleaginous yeast Cryptococcus curvatus for the purpose of biodiesel production. Approximately 7 g/l/d of biomass productivity was obtained using only spent yeast (30 g/l) without additional nutrients and pretreatment of any kind. To make best use of available nutrients in the spent yeast, stepwise cultivation was carried out in a batch culture mode and the highest biomass and lipid content, which were 50.4 g/l and 37.7%, respectively, were obtained at 35:1 of C/N ratio. Lipid from C. curvatus was found to be a quality-sufficient source of oil as a transportation fuel in terms of cetane, iodine values, and oxidation stability, although the values of cold filter plugging point were less desirable. Economic evaluation revealed that the use of the spent yeast could significantly reduce the unit cost of yeast-based biodiesel production.

  17. Studies of yeast cell oxygenation and energetics by laser fluorometry of reduced nicotinamide adenine dinucleotide

    Science.gov (United States)

    Pan, Fu-shih; Chen, Stephen; Mintzer, Robert A.; Chen, Chin-Tu; Schumacker, Paul

    1991-03-01

    It is of fundamental importance for biological scientists to assess cellular energetics. Under aerobic conditions, the tricarboxylic acid cycle (TCA cycle) is coupled with the mitochondrial electron cascade pathway to provide the cell with energy. The nicotinamide adenine dinucleotide-conjugated pair (NAD and NADH) is the coenzyme in numerous important biomedical reactions which include several important dehydrogenase reactions in the TCA cycle. Based on Le Chatelier's principle, NADH will accumulate when this energy production mechanism is impaired. The relative amounts of NAD and NADH in a cell are defined as the redox state of the cell (Williamson et.al. 1967) which provides a valuable index of cellular energetics. The sum of the amounts of NAD and NADH in a cell may be assumed to be constant during a finite time; therefore, a reliable means of measuring the NADH concentration would provide us with a useful indicator of tissue viability. Traditionally, the quantities of NADH and NAD may be measured by chemical assay methods. We can avoid these tediois analyses by exploiting the significant difference between the ultraviolet absorption spectra of this redox pair. However, because of the opacity of biological samples and the interference of other biochemicals that also absorb ultraviolet radiation, measurement of NADH and NAD+ concentrations in vivo by absorption spectroscopy is not feasible.

  18. High-resolution transcription atlas of the mitotic cell cycle in budding yeast

    DEFF Research Database (Denmark)

    Granovskaia, Marina V; Jensen, Lars J; Ritchie, Matthew E

    2010-01-01

    Extensive transcription of non-coding RNAs has been detected in eukaryotic genomes and is thought to constitute an additional layer in the regulation of gene expression. Despite this role, their transcription through the cell cycle has not been studied; genome-wide approaches have only focused on...

  19. Oral bacteria and yeasts in relationship to oral ulcerations in hematopoietic stem cell transplant recipients

    NARCIS (Netherlands)

    Laheij, A.M.G.A.; de Soet, J.J.; von dem Borne, P.A.; Kuijper, E.J.; Kraneveld, E.A.; van Loveren, C.; Raber-Durlacher, J.E.

    2012-01-01

    BACKGROUND: Oral mucositis is a serious and debilitating side effect of conditioning regimens for hematopoietic stem cell transplant (HSCT). Through HSCT, the homeostasis in the oral cavity is disrupted. The contribution of the oral microflora to mucositis remains to be clarified. The aim of our stu

  20. Piper and Vismia species from Colombian Amazonia differentially affect cell proliferation of hepatocarcinoma cells.

    Science.gov (United States)

    Lizcano, Leandro J; Siles, Maite; Trepiana, Jenifer; Hernández, M Luisa; Navarro, Rosaura; Ruiz-Larrea, M Begoña; Ruiz-Sanz, José Ignacio

    2014-12-30

    There is an increasing interest to identify plant-derived natural products with antitumor activities. In this work, we have studied the effects of aqueous leaf extracts from Amazonian Vismia and Piper species on human hepatocarcinoma cell toxicity. Results showed that, depending on the cell type, the plants displayed differential effects; thus, Vismia baccifera induced the selective killing of HepG2, while increasing cell growth of PLC-PRF and SK-HEP-1. In contrast, these two last cell lines were sensitive to the toxicity by Piper krukoffii and Piper putumayoense, while the Piperaceae did not affect HepG2 growth. All the extracts induced cytotoxicity to rat hepatoma McA-RH7777, but were innocuous (V. baccifera at concentrations Piper genera with opposite effects as a model system to study the mechanisms of the antitumoral activity against different types of hepatocarcinoma.

  1. Transformation of deoxynivalenol and its acetylated derivatives in Chinese steamed bread making, as affected by pH, yeast, and steaming time.

    Science.gov (United States)

    Wu, Li; Wang, Bujun

    2016-07-01

    We hereby report the transformation of deoxynivalenol (DON) and its acetylated derivatives (3-ADON and 15-ADON) by spiking targeted mycotoxins to Fusarium mycotoxin-free flour in the process of making Chinese steamed bread (CSB). The impacts of pH, yeast level, and steaming time on the transformation of 3-ADON to DON were investigated. DON, 3-ADON, and 15-ADON were analyzed by UPLC-MS/MS. Spiked DON was stable throughout the CSB making process. Spiked 3-ADON and 15-ADON were partially deacetylated and transformed to DON during kneading (54.1-60.0% and 59.3-77.5%, respectively), fermentation (64.0-76.9% and 78.2-91.6%, respectively), and steaming (47.2-52.7% and 52.4-61.9%, respectively). The ADONs level increased after steaming compared with their level in the previous step. The pH level and steaming duration significantly (Pprocess. Briefly, alkaline conditions and short steaming times favored the deacetylation of 3-ADON. The level of yeast did not remarkably (Ptransformation between ADONs and DON.

  2. Genetic and physiological alterations occurring in a yeast population continuously propagated at increasing temperatures with cell recycling.

    Science.gov (United States)

    Souza, Crisla S; Thomaz, Daniel; Cides, Elaine R; Oliveira, Karen F; Tognolli, João O; Laluce, Cecilia

    2007-12-01

    This work investigated the effects of increasing temperature from 30°C to 47°C on the physiological and genetic characteristics of Saccharomyces cerevisiae strain 63M after continuous fermentation with cell recycling in a system of five reactors in series. Steady state was attained at 30°C, and then the temperature of the system was raised so it ranged from 35°C in the last reactor to 43°C in the first reactor or feeding reactor with a 2°C difference between reactors. After 15 days at steady state, the temperature was raised from 37°C to 45°C for 25 days at steady state, then from 39°C to 47°C for 20 days at steady state. Starter strain 63M was a hybrid strain constructed to have a MAT a/α, LYS/lys, URA/ura genotype. This hybrid yeast showed vigorous growth on plates at 40°C, weak growth at 41°C, positive assimilation of melibiose, positive fermentation of galactose, raffinose and sucrose. Of 156 isolates obtained from this system at the end of the fermentation process, only 17.3% showed the same characteristics as starter strain 63M. Alterations in mating type reaction and in utilization of raffinose, melibiose, and sucrose were identified. Only 1.9% of the isolates lost the ability to grow at 40°C. Isolates showing requirements for lysine and uracil were also obtained. In addition, cell survival was observed at 39-47°C, but no isolates showing growth above 41°C were obtained.

  3. Quantifying transient 3D dynamical phenomena of single mRNA particles in live yeast cell measurements.

    Science.gov (United States)

    Calderon, Christopher P; Thompson, Michael A; Casolari, Jason M; Paffenroth, Randy C; Moerner, W E

    2013-12-12

    Single-particle tracking (SPT) has been extensively used to obtain information about diffusion and directed motion in a wide range of biological applications. Recently, new methods have appeared for obtaining precise (10s of nm) spatial information in three dimensions (3D) with high temporal resolution (measurements obtained every 4 ms), which promise to more accurately sense the true dynamical behavior in the natural 3D cellular environment. Despite the quantitative 3D tracking information, the range of mathematical methods for extracting information about the underlying system has been limited mostly to mean-squared displacement analysis and other techniques not accounting for complex 3D kinetic interactions. There is a great need for new analysis tools aiming to more fully extract the biological information content from in vivo SPT measurements. High-resolution SPT experimental data has enormous potential to objectively scrutinize various proposed mechanistic schemes arising from theoretical biophysics and cell biology. At the same time, methods for rigorously checking the statistical consistency of both model assumptions and estimated parameters against observed experimental data (i.e., goodness-of-fit tests) have not received great attention. We demonstrate methods enabling (1) estimation of the parameters of 3D stochastic differential equation (SDE) models of the underlying dynamics given only one trajectory; and (2) construction of hypothesis tests checking the consistency of the fitted model with the observed trajectory so that extracted parameters are not overinterpreted (the tools are applicable to linear or nonlinear SDEs calibrated from nonstationary time series data). The approach is demonstrated on high-resolution 3D trajectories of single ARG3 mRNA particles in yeast cells in order to show the power of the methods in detecting signatures of transient directed transport. The methods presented are generally relevant to a wide variety of 2D and 3D SPT

  4. Effects of background fluid on the efficiency of inactivating yeast with non-thermal atmospheric pressure plasma.

    Directory of Open Access Journals (Sweden)

    Young-Hyo Ryu

    Full Text Available Non-thermal plasma at atmospheric pressure has been actively applied to sterilization. However, its efficiency for inactivating microorganisms often varies depending on microbial species and environments surrounding the microorganisms. We investigated the influence of environmental factors (surrounding media on the efficiency of microbial inactivation by plasma using an eukaryotic model microbe, Saccharomyces cerevisiae, to elucidate the mechanisms for differential efficiency of sterilization by plasma. Yeast cells treated with plasma in water showed the most severe damage in viability and cell morphology as well as damage to membrane lipids, and genomic DNA. Cells in saline were less damaged compared to those in water, and those in YPD (Yeast extract, Peptone, Dextrose were least impaired. HOG1 mitogen activated protein kinase was activated in cells exposed to plasma in water and saline. Inactivation of yeast cells in water and saline was due to the acidification of the solutions by plasma, but higher survival of yeast cells treated in saline may have resulted from the additional effect related to salt strength. Levels of hydroxyl radical (OH· produced by plasma were the highest in water and the lowest in YPD. This may have resulted in differential inactivation of yeast cells in water, saline, and YPD by plasma. Taken together, our data suggest that the surrounding media (environment can crucially affect the outcomes of yeast cell plasma treatment because plasma modulates vital properties of media, and the toxic nature of plasma can also be altered by the surrounding media.

  5. Effects of background fluid on the efficiency of inactivating yeast with non-thermal atmospheric pressure plasma.

    Science.gov (United States)

    Ryu, Young-Hyo; Kim, Yong-Hee; Lee, Jin-Young; Shim, Gun-Bo; Uhm, Han-Sup; Park, Gyungsoon; Choi, Eun Ha

    2013-01-01

    Non-thermal plasma at atmospheric pressure has been actively applied to sterilization. However, its efficiency for inactivating microorganisms often varies depending on microbial species and environments surrounding the microorganisms. We investigated the influence of environmental factors (surrounding media) on the efficiency of microbial inactivation by plasma using an eukaryotic model microbe, Saccharomyces cerevisiae, to elucidate the mechanisms for differential efficiency of sterilization by plasma. Yeast cells treated with plasma in water showed the most severe damage in viability and cell morphology as well as damage to membrane lipids, and genomic DNA. Cells in saline were less damaged compared to those in water, and those in YPD (Yeast extract, Peptone, Dextrose) were least impaired. HOG1 mitogen activated protein kinase was activated in cells exposed to plasma in water and saline. Inactivation of yeast cells in water and saline was due to the acidification of the solutions by plasma, but higher survival of yeast cells treated in saline may have resulted from the additional effect related to salt strength. Levels of hydroxyl radical (OH·) produced by plasma were the highest in water and the lowest in YPD. This may have resulted in differential inactivation of yeast cells in water, saline, and YPD by plasma. Taken together, our data suggest that the surrounding media (environment) can crucially affect the outcomes of yeast cell plasma treatment because plasma modulates vital properties of media, and the toxic nature of plasma can also be altered by the surrounding media.

  6. An intracellular arrangement of Histoplasma capsulatum yeast-aggregates generates nuclear damage to the cultured murine alveolar macrophages

    Directory of Open Access Journals (Sweden)

    Nayla De Souza Pitangui

    2016-01-01

    Full Text Available Histoplasma capsulatum is responsible for a human systemic mycosis that primarily affects lung tissue. Macrophages are the major effector cells in humans that respond to the fungus, and the development of respiratory disease depends on the ability of Histoplasma yeast cells to survive and replicate within alveolar macrophages. Therefore, the interaction between macrophages and H. capsulatum is a decisive step in the yeast dissemination into host tissues. Although the role played by components of cell-mediated immunity in the host's defense system and the mechanisms used by the pathogen to evade the host immune response are well understood, knowledge regarding the effects induced by H. capsulatum in host cells at the nuclear level is limited. According to the present findings, H. capsulatum yeast cells display a unique architectural arrangement during the intracellular infection of cultured murine alveolar macrophages, characterized as a formation of aggregates that seem to surround the host cell nucleus, resembling a crown. This extranuclear organization of yeast-aggregates generates damage on the nucleus of the host cell, producing DNA fragmentation and inducing apoptosis, even though the yeast cells are not located inside the nucleus and do not trigger changes in nuclear proteins. The current study highlights a singular intracellular arrangement of H. capsulatum yeast near to the nucleus of infected murine alveolar macrophages that may contribute to the yeast’s persistence under intracellular conditions, since this fungal pathogen may display different strategies to prevent elimination by the host's phagocytic mechanisms.

  7. Osmotic stress affects functional properties of human melanoma cell lines

    CERN Document Server

    La Porta, Caterina A M; Pasini, Maria; Laurson, Lasse; Alava, Mikko J; Zapperi, Stefano; Amar, Martine Ben

    2015-01-01

    Understanding the role of microenvironment in cancer growth and metastasis is a key issue for cancer research. Here, we study the effect of osmotic pressure on the functional properties of primary and metastatic melanoma cell lines. In particular, we experimentally quantify individual cell motility and transmigration capability. We then perform a circular scratch assay to study how a cancer cell front invades an empty space. Our results show that primary melanoma cells are sensitive to a low osmotic pressure, while metastatic cells are less. To better understand the experimental results, we introduce and study a continuous model for the dynamics of a cell layer and a stochastic discrete model for cell proliferation and diffusion. The two models capture essential features of the experimental results and allow to make predictions for a wide range of experimentally measurable parameters.

  8. Industrial systems biology and its impact on synthetic biology of yeast cell factories

    DEFF Research Database (Denmark)

    Fletcher, Eugene; Krivoruchko, Anastasia; Nielsen, Jens

    2016-01-01

    Engineering industrial cell factories to effectively yield a desired product while dealing with industrially relevant stresses is usually the most challenging step in the development of industrial production of chemicals using microbial fermentation processes. Using synthetic biology tools......, microbial cell factories such as Saccharomyces cerevisiae can be engineered to express synthetic pathways for the production of fuels, biopharmaceuticals, fragrances, and food flavors. However, directing fluxes through these synthetic pathways towards the desired product can be demanding due to complex...... regulation or poor gene expression. Systems biology, which applies computational tools and mathematical modeling to understand complex biological networks, can be used to guide synthetic biology design. Here, we present our perspective on how systems biology can impact synthetic biology towards the goal...

  9. Systems biology of yeast: enabling technology for development of cell factories for production of advanced biofuels.

    Science.gov (United States)

    de Jong, Bouke; Siewers, Verena; Nielsen, Jens

    2012-08-01

    Transportation fuels will gradually shift from oil based fuels towards alternative fuel resources like biofuels. Current bioethanol and biodiesel can, however, not cover the increasing demand for biofuels and there is therefore a need for advanced biofuels with superior fuel properties. Novel cell factories will provide a production platform for advanced biofuels. However, deep cellular understanding is required for improvement of current biofuel cell factories. Fast screening and analysis (-omics) methods and metabolome-wide mathematical models are promising techniques. An integrated systems approach of these techniques drives diversity and quantity of several new biofuel compounds. This review will cover the recent technological developments that support improvement of the advanced biofuels 1-butanol, biodiesels and jetfuels.

  10. A Preliminary Study of Europium Uptake by Yeast Cells. The Case of Kluveromyces Marxianus

    Science.gov (United States)

    Anagnostopoulos, V.; Symeopoulos, B.

    2008-08-01

    The objective of the present work is an exploration of a cost effective recovery of lanthanides, either for minimizing the industrial processes losses, or for reasons related to Radioactive Waste Management. Specifically, the uptake of europium from aqueous solutions by Kluveromyces marxianus cells was studied. Moreover, this biotechnological approach turns out to be environmental friendly, considering that cells of Kluveromyces marxianus are readily available as wastes from food fermentation industries. Europium [152Eu+154Eu]-labelled solutions were used providing better accuracy and reproducibility of measurements, mainly in low concentration range. The effect of pH, contact time and europium initial concentration were investigated. Adsorption data were fitted to Langmuir and Freundlich sorption models and Scatchard plots were used to reveal the existence of at least two types of binding sites.

  11. Biphenyl Phytoalexin in Sorbus pohuashanensis Suspension Cell Induced by Yeast Extract

    OpenAIRE

    Liangyun Zhou; Jian Yang; Guang Yang; Chuanzhi Kang; Wenjuan Xiao; Chaogeng Lv; Sheng Wang; Jinfu Tang; Lanping Guo

    2016-01-01

    Biphenyls are unique phytoalexins de novo synthesized in plants in response to pathogen attack. These compounds are found in Maloideae, a subfamily of the Rosaceae. The anti-microbial activities of biphenyls have been reported in a number of studies and they appear to represent an important defense strategy against pathogens common in the Maloideae, such as species in Malus, Pyrus, Sorbus, and Chaenomeles. Here, cell suspension cultures of Sorbus pohuashanensis were established to study biphe...

  12. Spontaneous telomere to telomere fusions occur in unperturbed fission yeast cells

    OpenAIRE

    Almeida, H.; Godinho Ferreira, M.

    2013-01-01

    Telomeres protect eukaryotic chromosomes from illegitimate end-to-end fusions. When this function fails, dicentric chromosomes are formed, triggering breakage-fusion-bridge cycles and genome instability. How efficient is this protection mechanism in normal cells is not fully understood. We created a positive selection assay aimed at capturing chromosome-end fusions in Schizosaccharomyces pombe. We placed telomere sequences with a head to head arrangement in an intron of a selectable marker co...

  13. Molecular mechanism of extrinsic factors affecting antiagingof stem cells

    Institute of Scientific and Technical Information of China (English)

    Tzyy Yue Wong; Mairim Alexandra Solis; Ying-Hui Chen; Lynn Ling-Huei Huang

    2015-01-01

    Scientific evidence suggests that stem cells possessthe anti-aging ability to self-renew and maintaindifferentiation potentials, and quiescent state. Theobjective of this review is to discuss the microenvironmentwhere stem cells reside in vivo , thesecreted factors to which stem cells are exposed, thehypoxic environment, and intracellular factors includinggenome stability, mitochondria integrity, epigeneticregulators, calorie restrictions, nutrients, and vitaminD. Secreted tumor growth factor-β and fibroblastgrowth factor-2 are reported to play a role in stem cellquiescence. Extracellular matrices may interact withcaveolin-1, the lipid raft on cell membrane to regulatequiescence. N-cadherin, the adhesive protein on nichecells provides support for stem cells. The hypoxicmicro-environment turns on hypoxia-inducible factor-1to prevent mesenchymal stem cells aging throughp16 and p21 down-regulation. Mitochondria expressglucosephosphate isomerase to undergo glycolysisand prevent cellular aging. Epigenetic regulators suchas p300, protein inhibitors of activated Stats and H19help maintain stem cell quiescence. In addition, calorierestriction may lead to secretion of paracrines cyclicADP-ribose by intestinal niche cells, which help maintainintestinal stem cells. In conclusion, it is crucial tounderstand the anti-aging phenomena of stem cells atthe molecular level so that the key to solving the agingmystery may be unlocked.

  14. How does cell size regulation affect population growth?

    CERN Document Server

    Lin, Jie

    2016-01-01

    The proliferation of a growing microbial colony is well characterized by the population growth rate. However, at the single-cell level, isogenic cells often exhibit different cell-cycle durations. For evolutionary dynamics, it is thus important to establish the connection between the population growth rate and the heterogeneous single-cell generation time. Existing theories often make the assumption that the generation times of mother and daughter cells are independent. However, it has been shown that to maintain a bounded cell size distribution, cells that grow exponentially at the single-cell level need to adopt cell size regulation, leading to a negative correlation of mother-daughter generation time. In this work, we construct a general framework to describe the population growth in the presence of size regulation. We derive a formula for the population growth rate, which only depends on the variability of single-