WorldWideScience

Sample records for affects synapse function

  1. The protocadherin 17 gene affects cognition, personality, amygdala structure and function, synapse development and risk of major mood disorders.

    Science.gov (United States)

    Chang, H; Hoshina, N; Zhang, C; Ma, Y; Cao, H; Wang, Y; Wu, D-D; Bergen, S E; Landén, M; Hultman, C M; Preisig, M; Kutalik, Z; Castelao, E; Grigoroiu-Serbanescu, M; Forstner, A J; Strohmaier, J; Hecker, J; Schulze, T G; Müller-Myhsok, B; Reif, A; Mitchell, P B; Martin, N G; Schofield, P R; Cichon, S; Nöthen, M M; Walter, H; Erk, S; Heinz, A; Amin, N; van Duijn, C M; Meyer-Lindenberg, A; Tost, H; Xiao, X; Yamamoto, T; Rietschel, M; Li, M

    2017-01-10

    Major mood disorders, which primarily include bipolar disorder and major depressive disorder, are the leading cause of disability worldwide and pose a major challenge in identifying robust risk genes. Here, we present data from independent large-scale clinical data sets (including 29 557 cases and 32 056 controls) revealing brain expressed protocadherin 17 (PCDH17) as a susceptibility gene for major mood disorders. Single-nucleotide polymorphisms (SNPs) spanning the PCDH17 region are significantly associated with major mood disorders; subjects carrying the risk allele showed impaired cognitive abilities, increased vulnerable personality features, decreased amygdala volume and altered amygdala function as compared with non-carriers. The risk allele predicted higher transcriptional levels of PCDH17 mRNA in postmortem brain samples, which is consistent with increased gene expression in patients with bipolar disorder compared with healthy subjects. Further, overexpression of PCDH17 in primary cortical neurons revealed significantly decreased spine density and abnormal dendritic morphology compared with control groups, which again is consistent with the clinical observations of reduced numbers of dendritic spines in the brains of patients with major mood disorders. Given that synaptic spines are dynamic structures which regulate neuronal plasticity and have crucial roles in myriad brain functions, this study reveals a potential underlying biological mechanism of a novel risk gene for major mood disorders involved in synaptic function and related intermediate phenotypes.Molecular Psychiatry advance online publication, 10 January 2017; doi:10.1038/mp.2016.231.

  2. Relating structure and function of inner hair cell ribbon synapses.

    Science.gov (United States)

    Wichmann, C; Moser, T

    2015-07-01

    In the mammalian cochlea, sound is encoded at synapses between inner hair cells (IHCs) and type I spiral ganglion neurons (SGNs). Each SGN receives input from a single IHC ribbon-type active zone (AZ) and yet SGNs indefatigably spike up to hundreds of Hz to encode acoustic stimuli with submillisecond precision. Accumulating evidence indicates a highly specialized molecular composition and structure of the presynapse, adapted to suit these high functional demands. However, we are only beginning to understand key features such as stimulus-secretion coupling, exocytosis mechanisms, exo-endocytosis coupling, modes of endocytosis and vesicle reformation, as well as replenishment of the readily releasable pool. Relating structure and function has become an important avenue in addressing these points and has been applied to normal and genetically manipulated hair cell synapses. Here, we review some of the exciting new insights gained from recent studies of the molecular anatomy and physiology of IHC ribbon synapses.

  3. Cbln1 downregulates the formation and function of inhibitory synapses in mouse cerebellar Purkinje cells.

    Science.gov (United States)

    Ito-Ishida, Aya; Kakegawa, Wataru; Kohda, Kazuhisa; Miura, Eriko; Okabe, Shigeo; Yuzaki, Michisuke

    2014-04-01

    The formation of excitatory and inhibitory synapses must be tightly coordinated to establish functional neuronal circuitry during development. In the cerebellum, the formation of excitatory synapses between parallel fibers and Purkinje cells is strongly induced by Cbln1, which is released from parallel fibers and binds to the postsynaptic δ2 glutamate receptor (GluD2). However, Cbln1's role, if any, in inhibitory synapse formation has been unknown. Here, we show that Cbln1 downregulates the formation and function of inhibitory synapses between Purkinje cells and interneurons. Immunohistochemical analyses with an anti-vesicular GABA transporter antibody revealed an increased density of interneuron-Purkinje cell synapses in the cbln1-null cerebellum. Whole-cell patch-clamp recordings from Purkinje cells showed that both the amplitude and frequency of miniature inhibitory postsynaptic currents were increased in cbln1-null cerebellar slices. A 3-h incubation with recombinant Cbln1 reversed the increased amplitude of inhibitory currents in Purkinje cells in acutely prepared cbln1-null slices. Furthermore, an 8-day incubation with recombinant Cbln1 reversed the increased interneuron-Purkinje cell synapse density in cultured cbln1-null slices. In contrast, recombinant Cbln1 did not affect cerebellar slices from mice lacking both Cbln1 and GluD2. Finally, we found that tyrosine phosphorylation was upregulated in the cbln1-null cerebellum, and acute inhibition of Src-family kinases suppressed the increased inhibitory postsynaptic currents in cbln1-null Purkinje cells. These findings indicate that Cbln1-GluD2 signaling inhibits the number and function of inhibitory synapses, and shifts the excitatory-inhibitory balance towards excitation in Purkinje cells. Cbln1's effect on inhibitory synaptic transmission is probably mediated by a tyrosine kinase pathway.

  4. Astrocytes, Synapses and Brain Function: A Computational Approach

    Science.gov (United States)

    Nadkarni, Suhita

    2006-03-01

    Modulation of synaptic reliability is one of the leading mechanisms involved in long- term potentiation (LTP) and long-term depression (LTD) and therefore has implications in information processing in the brain. A recently discovered mechanism for modulating synaptic reliability critically involves recruitments of astrocytes - star- shaped cells that outnumber the neurons in most parts of the central nervous system. Astrocytes until recently were thought to be subordinate cells merely participating in supporting neuronal functions. New evidence, however, made available by advances in imaging technology has changed the way we envision the role of these cells in synaptic transmission and as modulator of neuronal excitability. We put forward a novel mathematical framework based on the biophysics of the bidirectional neuron-astrocyte interactions that quantitatively accounts for two distinct experimental manifestation of recruitment of astrocytes in synaptic transmission: a) transformation of a low fidelity synapse transforms into a high fidelity synapse and b) enhanced postsynaptic spontaneous currents when astrocytes are activated. Such a framework is not only useful for modeling neuronal dynamics in a realistic environment but also provides a conceptual basis for interpreting experiments. Based on this modeling framework, we explore the role of astrocytes for neuronal network behavior such as synchrony and correlations and compare with experimental data from cultured networks.

  5. Ultrastructural and functional fate of recycled vesicles in hippocampal synapses.

    Science.gov (United States)

    Rey, Stephanie A; Smith, Catherine A; Fowler, Milena W; Crawford, Freya; Burden, Jemima J; Staras, Kevin

    2015-01-01

    Efficient recycling of synaptic vesicles is thought to be critical for sustained information transfer at central terminals. However, the specific contribution that retrieved vesicles make to future transmission events remains unclear. Here we exploit fluorescence and time-stamped electron microscopy to track the functional and positional fate of vesicles endocytosed after readily releasable pool (RRP) stimulation in rat hippocampal synapses. We show that most vesicles are recovered near the active zone but subsequently take up random positions in the cluster, without preferential bias for future use. These vesicles non-selectively queue, advancing towards the release site with further stimulation in an actin-dependent manner. Nonetheless, the small subset of vesicles retrieved recently in the stimulus train persist nearer the active zone and exhibit more privileged use in the next RRP. Our findings reveal heterogeneity in vesicle fate based on nanoscale position and timing rules, providing new insights into the origins of future pool constitution.

  6. Structural and functional characterization of synapse-associated protein-97

    Science.gov (United States)

    Wang, Lei

    Synapse-associated protein-97 (SAP97) as a scaffold protein plays an important role in regulating neural signal transmission in the central nervous system by coupling with activated membrane receptors, ion channels, and downstream signaling proteins. SAP97 consists of six functional domains: L27, PDZ1, PDZ2, PDZ3, SH3, and GK. Each of these domains mediates the interactions of SAP97 with other proteins. Understanding the molecular mechanism of these interactions in neural signal transmission is a goal of this study. Here high-resolution nuclear magnetic resonance spectroscopy and fluorescence anisotropy are employed towards the goal of the structural and functional characterization of SAP97; specifically, we (a) characterize the binding of the PDZ domains of SAP97 with the C-terminus of NR2B, and determine the structure of the PDZ1-NR2B; (b) characterize the binding of the PDZ domains with the C-terminus of stargazin and multiple mutants, and identify the perturbed amino acids in PDZ2 upon the binding of stargazin; (c) characterize the binding specificity carried by the beta2/beta3 loop of the PDZ3 domain. These results provide insight into the molecular mechanism for the binding specificities of the PDZ domains of SAP97, thereby furthering the development of drugs that target these domains to treat neurological diseases.

  7. The gut-brain axis rewired: adding a functional vagal nicotinic "sensory synapse".

    Science.gov (United States)

    Perez-Burgos, Azucena; Mao, Yu-Kang; Bienenstock, John; Kunze, Wolfgang A

    2014-07-01

    It is generally accepted that intestinal sensory vagal fibers are primary afferent, responding nonsynaptically to luminal stimuli. The gut also contains intrinsic primary afferent neurons (IPANs) that respond to luminal stimuli. A psychoactive Lactobacillus rhamnosus (JB-1) that affects brain function excites both vagal fibers and IPANs. We wondered whether, contrary to its primary afferent designation, the sensory vagus response to JB-1 might depend on IPAN to vagal fiber synaptic transmission. We recorded ex vivo single- and multiunit afferent action potentials from mesenteric nerves supplying mouse jejunal segments. Intramural synaptic blockade with Ca(2+) channel blockers reduced constitutive or JB-1-evoked vagal sensory discharge. Firing of 60% of spontaneously active units was reduced by synaptic blockade. Synaptic or nicotinic receptor blockade reduced firing in 60% of vagal sensory units that were stimulated by luminal JB-1. In control experiments, increasing or decreasing IPAN excitability, respectively increased or decreased nerve firing that was abolished by synaptic blockade or vagotomy. We conclude that >50% of vagal afferents function as interneurons for stimulation by JB-1, receiving input from an intramural functional "sensory synapse." This was supported by myenteric plexus nicotinic receptor immunohistochemistry. These data offer a novel therapeutic target to modify pathological gut-brain axis activity.-Perez-Burgos, A., Mao, Y.-K., Bienenstock, J., Kunze, W. A. The gut-brain axis rewired: adding a functional vagal nicotinic "sensory synapse."

  8. Functional imaging of single synapses in brain slices.

    Science.gov (United States)

    Oertner, Thomas G

    2002-11-01

    The strength of synaptic connections in the brain is not fixed, but can be modulated by numerous mechanisms. Traditionally, electrophysiology has been used to characterize connections between neurons. Electrophysiology typically reports the activity of populations of synapses, while most mechanisms of plasticity are thought to operate at the level of single synapses. Recently, two-photon laser scanning microscopy has enabled us to perform optical quantal analysis of individual synapses in intact brain tissue. Here we introduce the basic principle of the two-photon microscope and discuss its main differences compared to the confocal microscope. Using calcium imaging in dendritic spines as an example, we explain the advantages of simultaneous dual-dye imaging for quantitative calcium measurements and address two common problems, dye saturation and background fluorescence subtraction.

  9. Caenorhabditis elegans glutamate transporters influence synaptic function and behavior at sites distant from the synapse.

    Science.gov (United States)

    Mano, Itzhak; Straud, Sarah; Driscoll, Monica

    2007-11-23

    To ensure precise neurotransmission and prevent neurotoxic accumulation, l-glutamate (Glu), the major excitatory neurotransmitter in the brain, is cleared from the synapse by glutamate transporters (GluTs). The molecular components of Glu synapses are highly conserved between Caenorhabditis elegans and mammals, yet the absence of synaptic insulation in C. elegans raises fundamental questions about Glu clearance strategies in the nematode nervous system. To gain insight into how Glu clearance is accomplished and how GluTs impact neurotransmission, we probed expression and function of all 6 GluTs found in the C. elegans genome. Disruption of each GluT impacts multiple Glu-dependent behaviors, with GluT combinations commonly increasing the severity of behavioral deficits. Interestingly, the sole GluT that we find expressed in neurons is localized predominantly in presynaptic neurons, in contrast to the postsynaptic concentration of neuronal GluTs typical in mammals. Moreover, 3 of the 6 GluT genes appear strongly expressed on the capillary excretory canal cell, where they affect Glu-dependent behaviors from positions distal to glutamatergic circuits. Indeed, our focused study of GLT-3, one of the distally expressed GluTs, shows that despite this distance, GLT-3 function can balance the activity mediated by synaptic release and synaptic receptors. The effects of distal GluTs on glutamatergic circuits support that Glu diffusion outside the vicinity of the synapse is a critical factor in C. elegans neurotransmission. Together with the presynaptic localization of neuronal GluTs, these observations suggest an unusual strategy for Glu clearance in C. elegans.

  10. Neuroligin-1 performs neurexin-dependent and neurexin-independent functions in synapse validation

    OpenAIRE

    2009-01-01

    Postsynaptic neuroligins are thought to perform essential functions in synapse validation and synaptic transmission by binding to, and dimerizing, presynaptic α- and β-neurexins. To test this hypothesis, we examined the functional effects of neuroligin-1 mutations that impair only α-neurexin binding, block both α- and β-neurexin binding, or abolish neuroligin-1 dimerization. Abolishing α-neurexin binding abrogated neuroligin-induced generation of neuronal synapses onto transfected non-neurona...

  11. Orchestrating cytoskeleton and intracellular vesicle traffic to build functional immunological synapses.

    Science.gov (United States)

    Soares, Helena; Lasserre, Rémi; Alcover, Andrés

    2013-11-01

    Immunological synapses are specialized cell-cell contacts formed between T lymphocytes and antigen-presenting cells. They are induced upon antigen recognition and are crucial for T-cell activation and effector functions. The generation and function of immunological synapses depend on an active T-cell polarization process, which results from a finely orchestrated crosstalk between the antigen receptor signal transduction machinery, the actin and microtubule cytoskeletons, and controlled vesicle traffic. Although we understand how some of these particular events are regulated, we still lack knowledge on how these multiple cellular elements are harmonized to ensure appropriate T-cell responses. We discuss here our view on how T-cell receptor signal transduction initially commands cytoskeletal and vesicle traffic polarization, which in turn sets the immunological synapse molecular design that regulates T-cell activation. We also discuss how the human immunodeficiency virus (HIV-1) hijacks some of these processes impairing immunological synapse generation and function.

  12. Early expression of KCC2 in rat hippocampal cultures augments expression of functional GABA synapses.

    Science.gov (United States)

    Chudotvorova, Ilona; Ivanov, Anton; Rama, Sylvain; Hübner, Christian A; Pellegrino, Christophe; Ben-Ari, Yehezkel; Medina, Igor

    2005-08-01

    The development of GABAergic synapses is associated with an excitatory to inhibitory shift of the actions of GABA because of a reduction of [Cl-]i. This is due to a delayed postnatal expression of the K+ -Cl- cotransporter KCC2, which has low levels at birth and peaks during the first few postnatal weeks. Whether the expression of the cotransporter and the excitatory to inhibitory shift have other consequences on the operation of GABA(A) receptors and synapses is not yet known. We have now expressed KCC2 in immature neurones at an early developmental stage and determined the consequences on the formation of GABA and glutamate synapses. We report that early expression of the cotransporter selectively enhances GABAergic synapses: there is a significant increase of the density of GABA(A) receptors and synapses and an increase of the frequency of GABAergic miniature postsynaptic currents. The density of glutamate synapses and frequency of AMPA miniature postsynaptic currents are not affected. We conclude that the expression of KCC2 and the reduction of [Cl-]i play a critical role in the construction of GABAergic networks that extends beyond the excitatory to inhibitory shift of the actions of GABA.

  13. Extracellular proteolysis in structural and functional plasticity of mossy fiber synapses in hippocampus.

    Science.gov (United States)

    Wiera, Grzegorz; Mozrzymas, Jerzy W

    2015-01-01

    Brain is continuously altered in response to experience and environmental changes. One of the underlying mechanisms is synaptic plasticity, which is manifested by modification of synapse structure and function. It is becoming clear that regulated extracellular proteolysis plays a pivotal role in the structural and functional remodeling of synapses during brain development, learning and memory formation. Clearly, plasticity mechanisms may substantially differ between projections. Mossy fiber synapses onto CA3 pyramidal cells display several unique functional features, including pronounced short-term facilitation, a presynaptically expressed long-term potentiation (LTP) that is independent of NMDAR activation, and NMDA-dependent metaplasticity. Moreover, structural plasticity at mossy fiber synapses ranges from the reorganization of projection topology after hippocampus-dependent learning, through intrinsically different dynamic properties of synaptic boutons to pre- and postsynaptic structural changes accompanying LTP induction. Although concomitant functional and structural plasticity in this pathway strongly suggests a role of extracellular proteolysis, its impact only starts to be investigated in this projection. In the present report, we review the role of extracellular proteolysis in various aspects of synaptic plasticity in hippocampal mossy fiber synapses. A growing body of evidence demonstrates that among perisynaptic proteases, tissue plasminogen activator (tPA)/plasmin system, β-site amyloid precursor protein-cleaving enzyme 1 (BACE1) and metalloproteinases play a crucial role in shaping plastic changes in this projection. We discuss recent advances and emerging hypotheses on the roles of proteases in mechanisms underlying mossy fiber target specific synaptic plasticity and memory formation.

  14. Extracellular proteolysis in structural and functional plasticity of mossy fiber synapses in hippocampus

    Directory of Open Access Journals (Sweden)

    Grzegorz eWiera

    2015-11-01

    Full Text Available Brain is continuously altered in response to experience and environmental changes. One of the underlying mechanisms is synaptic plasticity, which is manifested by modification of synapse structure and function. It is becoming clear that regulated extracellular proteolysis plays a pivotal role in the structural and functional remodeling of synapses during brain development, learning and memory formation. Clearly, plasticity mechanisms may substantially differ between projections. Mossy fiber synapses onto CA3 pyramidal cells display several unique functional features, including pronounced short-term facilitation, a presynaptically expressed LTP that is independent of NMDAR activation, and NMDA-dependent metaplasticity. Moreover, structural plasticity at mossy fiber synapses ranges from the reorganization of projection topology after hippocampus-dependent learning, through intrinsically different dynamic properties of synaptic boutons to pre- and postsynaptic structural changes accompanying LTP induction. Although concomitant functional and structural plasticity in this pathway strongly suggests a role of extracellular proteolysis, its impact only starts to be investigated in this projection. In the present report, we review the role of extracellular proteolysis in various aspects of synaptic plasticity in hippocampal mossy fiber synapses. A growing body of evidence demonstrates that among perisynaptic proteases, tPA/plasmin system, β-site amyloid precursor protein-cleaving enzyme 1 (BACE1 and metalloproteinases play a crucial role in shaping plastic changes in this projection. We discuss recent advances and emerging hypotheses on the roles of proteases in mechanisms underlying mossy fiber target specific synaptic plasticity and memory formation.

  15. Neuroligins and neurexins: linking cell adhesion, synapse formation and cognitive function.

    Science.gov (United States)

    Dean, Camin; Dresbach, Thomas

    2006-01-01

    Cell adhesion represents the most direct way of coordinating synaptic connectivity in the brain. Recent evidence highlights the importance of a trans-synaptic interaction between postsynaptic neuroligins and presynaptic neurexins. These transmembrane molecules bind each other extracellularly to promote adhesion between dendrites and axons. This signals the recruitment of presynaptic and postsynaptic molecules to form a functional synapse. Remarkably, neuroligins alone can induce the formation of fully functional presynaptic terminals in contacting axons. Conversely, neurexins alone can induce postsynaptic differentiation and clustering of receptors in dendrites. Therefore, the neuroligin-neurexin interaction has the unique ability to act as a bi-directional trigger of synapse formation. Here, we review several recent studies that offer clues as to how these proteins form synapses and how they might function in the brain to establish and modify neuronal network properties and cognition.

  16. Neuron-NG2 Cell Synapses: Novel Functions for Regulating NG2 Cell Proliferation and Differentiation

    Directory of Open Access Journals (Sweden)

    Qian-Kun Yang

    2013-01-01

    Full Text Available NG2 cells are a population of CNS cells that are distinct from neurons, mature oligodendrocytes, astrocytes, and microglia. These cells can be identified by their NG2 proteoglycan expression. NG2 cells have a highly branched morphology, with abundant processes radiating from the cell body, and express a complex set of voltage-gated channels, AMPA/kainate, and GABA receptors. Neurons notably form classical and nonclassical synapses with NG2 cells, which have varied characteristics and functions. Neuron-NG2 cell synapses could fine-tune NG2 cell activities, including the NG2 cell cycle, differentiation, migration, and myelination, and may be a novel potential therapeutic target for NG2 cell-related diseases, such as hypoxia-ischemia injury and periventricular leukomalacia. Furthermore, neuron-NG2 cell synapses may be correlated with the plasticity of CNS in adulthood with the synaptic contacts passing onto their progenies during proliferation, and synaptic contacts decrease rapidly upon NG2 cell differentiation. In this review, we highlight the characteristics of classical and nonclassical neuron-NG2 cell synapses, the potential functions, and the fate of synaptic contacts during proliferation and differentiation, with the emphasis on the regulation of the NG2 cell cycle by neuron-NG2 cell synapses and their potential underlying mechanisms.

  17. Spontaneous synaptic activity is required for the formation of functional GABAergic synapses in the developing rat hippocampus.

    Science.gov (United States)

    Colin-Le Brun, Isabelle; Ferrand, Nadine; Caillard, Olivier; Tosetti, Patrizia; Ben-Ari, Yehezkel; Gaïarsa, Jean-Luc

    2004-08-15

    Here we examine the role of the spontaneous synaptic activity generated by the developing rat hippocampus in the formation of functional gamma-aminobutyric acid (GABA) synapses. Intact hippocampal formations (IHFs) were dissected at birth and incubated for 1 day in control or tetrodotoxin (TTX)-supplemented medium at 25 degrees C. After the incubation, miniature GABA(A)-mediated postsynaptic currents (mGABA(A)-PSCs) were recorded in whole-cell voltage-clamped CA3 pyramidal neurones from IHF-derived slices. After 1 day in vitro in control medium, the frequency of mGABA(A)-PSCs was similar to that recorded in acute slices obtained 1 day after birth, but significantly higher than the frequency recorded from acute slices just after birth. These results suggest that the factors required in vivo for the formation of functional GABAergic synapses are preserved in the IHFs in vitro. The frequency increase was prevented when IHFs were incubated for 1 day with TTX. TTX treatment affected neither the morphology of CA3 pyramidal neurones nor cell viability. The TTX effects were reproduced when IHFs were incubated in the presence of glutamatergic or GABAergic ionotropic receptor antagonists or in high divalent cationic medium. The present results indicate that the spontaneous synaptic activity generated by the developing hippocampus is a key player in the formation of functional GABAergic synapses, possibly via network events requiring both glutamatergic and GABAergic receptors.

  18. Presynaptic [Ca2+] and GCAPs: aspects on the structure and function of photoreceptor ribbon synapses

    Directory of Open Access Journals (Sweden)

    Frank eSchmitz

    2014-02-01

    Full Text Available Changes in intracellular calcium ions [Ca2+] play important roles in photoreceptor signalling. Consequently, intracellular [Ca2+] levels need to be tightly controlled. In the light-sensitive outer segments (OS of photoreceptors, Ca2+ regulates the activity of retinal guanylate cyclases (ret-GCs thus playing a central role in phototransduction and light-adaptation by restoring light-induced decreases in cGMP. In the synaptic terminals, changes of intracellular Ca2+ trigger various aspects of neurotransmission. Photoreceptors employ tonically active ribbon synapses that encode light-induced, graded changes of membrane potential into different rates of synaptic vesicle exocytosis. The active zones of ribbon synapses contain large electron-dense structures, synaptic ribbons, that are associated with large numbers of synaptic vesicles. Synaptic coding at ribbon synapses differs from synaptic coding at conventional (phasic synapses. Recent studies revealed new insights how synaptic ribbons are involved in this process. This review focuses on the regulation of [Ca2+] in presynaptic photoreceptor terminals and on the function of a particular Ca2+-regulated protein, the neuronal calcium sensor protein GCAP2 (guanylate cyclase-activating protein-2 in the photoreceptor ribbon synapse. GCAP2, an EF hand-containing protein plays multiple roles in the OS and in the photoreceptor synapse. In the OS, GCAP2 works as a Ca2+-sensor within a Ca2+-regulated feedback loop that adjusts cGMP levels. In the photoreceptor synapse, GCAP2 binds to RIBEYE, a component of synaptic ribbons, and mediates Ca2+-dependent plasticity at that site. Possible mechanisms are discussed.

  19. Functional hallmarks of GABAergic synapse maturation and the diverse roles of neurotrophins

    Directory of Open Access Journals (Sweden)

    Rosemarie eGrantyn

    2011-07-01

    Full Text Available Functional impairment of the adult brain can result from deficits in the ontogeny of GABAergic synaptic transmission. Gene defects underlying autism spectrum disorders, Rett’s syndrome or some forms of epilepsy, but also a diverse set of syndromes accompanying perinatal trauma, hormonal imbalances, intake of sleep-inducing or mood-improving drugs or, quite common, alcohol intake during pregnancy can alter GABA signaling early in life. The search for therapeutically relevant endogenous molecules or exogenous compounds able to alleviate the consequences of dysfunction of GABAergic transmission in the embryonic or postnatal brain requires a clear understanding of its site- and state-dependent development. At the level of single synapses, it is necessary to discriminate between presynaptic and postsynaptic alterations, and to define parameters that can be regarded as both suitable and accessible for the quantification of developmental changes. Here we focus on the performance of GABAergic synapses in two brain structures, the hippocampus and the superior colliculus, describe some novel aspects of neurotrophin effects during the development of GABAergic synaptic transmission and examine the applicability of the following rules: 1 Synaptic transmission starts with GABA, 2 Nascent/immature GABAergic synapses operate in a ballistic mode (multivesicular release, 3 Immature synaptic terminals release vesicles with higher probability than mature synapses, 4 Immature GABAergic synapses are prone to paired pulse and tetanic depression, 5 Synapse maturation is characterized by an increasing dominance of synchronous over asynchronous release, 6 In immature neurons GABA acts as a depolarizing transmitter, 7 Synapse maturation implies IPSC shortening due to an increase in alpha1 subunit expression, 8 Extrasynaptic (tonic conductances can inhibit the development of synaptic (phasic GABA actions.

  20. The role of neurexins and neuroligins in the formation, maturation, and function of vertebrate synapses.

    Science.gov (United States)

    Krueger, Dilja D; Tuffy, Liam P; Papadopoulos, Theofilos; Brose, Nils

    2012-06-01

    Neurexins (NXs) and neuroligins (NLs) are transsynaptically interacting cell adhesion proteins that play a key role in the formation, maturation, activity-dependent validation, and maintenance of synapses. As complex alternative splicing processes in nerve cells generate a large number of NX and NLs variants, it has been proposed that a combinatorial interaction code generated by these variants may determine synapse identity and network connectivity during brain development. The functional importance of NXs and NLs is exemplified by the fact that mutations in NX and NL genes are associated with several neuropsychiatric disorders, most notably with autism. Accordingly, major research efforts have focused on the molecular mechanisms by which NXs and NLs operate at synapses. In this review, we summarize recent progress in this field and discuss emerging topics, such as the role of alternative interaction partners of NXs and NLs in synapse formation and function, and their relevance for synaptic plasticity in the mature brain. The novel findings highlight the fundamental importance of NX-NL interactions in a wide range of synaptic functions.

  1. Investigation of synapse formation and function in a glutamatergic-GABAergic two-neuron microcircuit.

    Science.gov (United States)

    Chang, Chia-Ling; Trimbuch, Thorsten; Chao, Hsiao-Tuan; Jordan, Julia-Christine; Herman, Melissa A; Rosenmund, Christian

    2014-01-15

    Neural circuits are composed of mainly glutamatergic and GABAergic neurons, which communicate through synaptic connections. Many factors instruct the formation and function of these synapses; however, it is difficult to dissect the contribution of intrinsic cell programs from that of extrinsic environmental effects in an intact network. Here, we perform paired recordings from two-neuron microculture preparations of mouse hippocampal glutamatergic and GABAergic neurons to investigate how synaptic input and output of these two principal cells develop. In our reduced preparation, we found that glutamatergic neurons showed no change in synaptic output or input regardless of partner neuron cell type or neuronal activity level. In contrast, we found that glutamatergic input caused the GABAergic neuron to modify its output by way of an increase in synapse formation and a decrease in synaptic release efficiency. These findings are consistent with aspects of GABAergic synapse maturation observed in many brain regions. In addition, changes in GABAergic output are cell wide and not target-cell specific. We also found that glutamatergic neuronal activity determined the AMPA receptor properties of synapses on the partner GABAergic neuron. All modifications of GABAergic input and output required activity of the glutamatergic neuron. Because our system has reduced extrinsic factors, the changes we saw in the GABAergic neuron due to glutamatergic input may reflect initiation of maturation programs that underlie the formation and function of in vivo neural circuits.

  2. Generation of functional inhibitory synapses incorporating defined combinations of GABA(A or glycine receptor subunits

    Directory of Open Access Journals (Sweden)

    Christine Laura Dixon

    2015-12-01

    Full Text Available Fast inhibitory neurotransmission in the brain is mediated by wide range of GABAA receptor (GABAAR and glycine receptor (GlyR isoforms, each with different physiological and pharmacological properties. Because multiple isoforms are expressed simultaneously in most neurons, it is difficult to define the properties of inhibitory postsynaptic currents mediated by individual isoforms in vivo. Although recombinant expression systems permit the expression of individual isoforms in isolation, they require exogenous agonist application which cannot mimic the dynamic neurotransmitter profile characteristic of native synapses. We describe a neuron-HEK293 cell co-culture technique for generating inhibitory synapses incorporating defined combinations of GABAAR or GlyR subunits. Primary neuronal cultures, prepared from embryonic rat cerebral cortex or spinal cord, are used to provide presynaptic GABAergic and glycinergic terminals, respectively. When the cultures are mature, HEK293 cells expressing the subunits of interest plus neuroligin 2A are plated onto the neurons, which rapidly form synapses onto HEK293 cells. Patch clamp electrophysiology is then used to analyze the physiological and pharmacological properties of the inhibitory postsynaptic currents mediated by the recombinant receptors. The method is suitable for investigating the kinetic properties or the effects of drugs on inhibitory postsynaptic currents mediated by defined GABAAR or GlyR isoforms of interest, the effects of hereditary disease mutations on the formation and function of both types of synapses, and synaptogenesis and synaptic clustering mechanisms. The entire cell preparation procedure takes 2 – 5 weeks.

  3. Loss of transforming growth factor-beta 2 leads to impairment of central synapse function

    Directory of Open Access Journals (Sweden)

    Rickmann Michael

    2008-10-01

    Full Text Available Abstract Background The formation of functional synapses is a crucial event in neuronal network formation, and with regard to regulation of breathing it is essential for life. Members of the transforming growth factor-beta (TGF-β superfamily act as intercellular signaling molecules during synaptogenesis of the neuromuscular junction of Drosophila and are involved in synaptic function of sensory neurons of Aplysia. Results Here we show that while TGF-β2 is not crucial for the morphology and function of the neuromuscular junction of the diaphragm muscle of mice, it is essential for proper synaptic function in the pre-Bötzinger complex, a central rhythm organizer located in the brainstem. Genetic deletion of TGF-β2 in mice strongly impaired both GABA/glycinergic and glutamatergic synaptic transmission in the pre-Bötzinger complex area, while numbers and morphology of central synapses of knock-out animals were indistinguishable from their wild-type littermates at embryonic day 18.5. Conclusion The results demonstrate that TGF-β2 influences synaptic function, rather than synaptogenesis, specifically at central synapses. The functional alterations in the respiratory center of the brain are probably the underlying cause of the perinatal death of the TGF-β2 knock-out mice.

  4. [An analysis of the functional heterogeneity of the sensory motor neuron synapse of the frog].

    Science.gov (United States)

    Ditiatev, A E

    1989-01-01

    Four models of the amplitude fluctuations of postsynaptic potentials have been compared. Better agreement of convolution of the two binomial distributions and beta-model as compared to the binomial model is demonstrated. The beta-model is based on the assumption that the probability of the transmitter quantum release is a random variable which has beta distribution. The number of the quantum generators estimated by the beta-model is close to the number of synaptic boutons in the sensory-motor synapses of the frog. Investigation of this model has shown that the number of generators estimated by the binomial model may be interpreted as the number of transmitter release sites functioning with probabilities exceeding 0.2. Results obtained confirm the hypothesis concerning the functional heterogeneity of release sites at the frog interneuronal synapses.

  5. Early sequential formation of functional GABA(A) and glutamatergic synapses on CA1 interneurons of the rat foetal hippocampus.

    Science.gov (United States)

    Hennou, Sonia; Khalilov, Ilgam; Diabira, Diabé; Ben-Ari, Yehezkel; Gozlan, Henri

    2002-07-01

    During postnatal development of CA1 pyramidal neurons, GABAergic synapses are excitatory and established prior to glutamatergic synapses. As interneurons are generated before pyramidal cells, we have tested the hypothesis that the GABAergic interneuronal network is operative before glutamate pyramidal neurons and provides the initial patterns of activity. We patch-clamp recorded interneurons in foetal (69 neurons) and neonatal P0 (162 neurons) hippocampal slices and performed a morphofunctional analysis of biocytin-filled neurons. At P0, three types of interneurons were found: (i) non-innervated "silent" interneurons (5%) with no spontaneous or evoked synaptic currents; (ii) G interneurons (17%) with GABA(A) synapses only; and (iii) GG interneurons with GABA and glutamatergic synapses (78%). Relying on the neuronal capacitance, cell body size and arborization of dendrites and axons, the three types of interneurons correspond to three stages of development with non-innervated neurons and interneurons with GABA(A) and glutamatergic synapses being, respectively, the least and the most developed. Recordings from both pyramidal neurons and interneurons in foetuses (E18-20) revealed that the majority of interneurons (65%) had functional synapses whereas nearly 90% of pyramidal neurons were quiescent. Therefore, interneurons follow the same GABA-glutamate sequence of synapse formation but earlier than the principal cells. Interneurons are the source and the target of the first synapses formed in the hippocampus and are thus in a position to modulate the development of the hippocampus in the foetal stage.

  6. Functional and structural remodeling of glutamate synapses in prefrontal and frontal cortex induced by behavioral stress

    Directory of Open Access Journals (Sweden)

    Laura eMusazzi

    2015-04-01

    Full Text Available Increasing evidence has shown that the pathophysiology of neuropsychiatric disorders, including mood disorders, is associated with abnormal function and regulation of the glutamatergic system. Consistently, preclinical studies on stress-based animal models of pathology showed that glucocorticoids and stress exert crucial effects on neuronal excitability and function, especially in cortical and limbic areas. In prefrontal and frontal cortex, acute stress was shown to induce enhancement of glutamate release/transmission dependent on activation of corticosterone receptors. Although the mechanisms whereby stress affects glutamate transmission have not yet been fully understood, it was shown that synaptic, non-genomic action of corticosterone is required to increase the readily releasable pool of glutamate vesicles but is not sufficient to enhance transmission in prefrontal and frontal cortex. Slower, partly genomic mechanisms are probably necessary for the enhancement of glutamate transmission induced by stress.Combined evidence has suggested that the changes in glutamate release and transmission are responsible for the dendritic remodeling and morphological changes induced by stress and it has been argued that sustained alterations of glutamate transmission may play a key role in the long-term structural/functional changes associated with mood disorders in patients. Intriguingly, modifications of the glutamatergic system induced by stress in the prefrontal cortex seem to be biphasic. Indeed, while the fast response to stress suggests an enhancement in the number of excitatory synapses, synaptic transmission and working memory, long-term adaptive changes -including those consequent to chronic stress- induce opposite effects. Better knowledge of the cellular effectors involved in this biphasic effect of stress may be useful to understand the pathophysiology of stress-related disorders, and open new paths for the development of therapeutic approaches.

  7. Neurotransmitter transporters expressed in glial cells as regulators of synapse function.

    Science.gov (United States)

    Eulenburg, Volker; Gomeza, Jesús

    2010-05-01

    Synaptic neurotransmission at high temporal and spatial resolutions requires efficient removal and/or inactivation of presynaptically released transmitter to prevent spatial spreading of transmitter by diffusion and allow for fast termination of the postsynaptic response. This action must be carefully regulated to result in the fine tuning of inhibitory and excitatory neurotransmission, necessary for the proper processing of information in the central nervous system. At many synapses, high-affinity neurotransmitter transporters are responsible for transmitter deactivation by removing it from the synaptic cleft. The most prevailing neurotransmitters, glutamate, which mediates excitatory neurotransmission, as well as GABA and glycine, which act as inhibitory neurotransmitters, use these uptake systems. Neurotransmitter transporters have been found in both neuronal and glial cells, thus suggesting high cooperativity between these cell types in the control of extracellular transmitter concentrations. The generation and analysis of animals carrying targeted disruptions of transporter genes together with the use of selective inhibitors have allowed examining the contribution of individual transporter subtypes to synaptic transmission. This revealed the predominant role of glial expressed transporters in maintaining low extrasynaptic neurotransmitter levels. Additionally, transport activity has been shown to be actively regulated on both transcriptional and post-translational levels, which has important implications for synapse function under physiological and pathophysiological conditions. The analysis of these mechanisms will enhance not only our understanding of synapse function but will reveal new therapeutic strategies for the treatment of human neurological diseases.

  8. Astrocytic Ca2+ signals are required for the functional integrity of tripartite synapses

    Directory of Open Access Journals (Sweden)

    Tanaka Mika

    2013-01-01

    Full Text Available Abstract Background Neuronal activity alters calcium ion (Ca2+ dynamics in astrocytes, but the physiologic relevance of these changes is controversial. To examine this issue further, we generated an inducible transgenic mouse model in which the expression of an inositol 1,4,5-trisphosphate absorbent, “IP3 sponge”, attenuates astrocytic Ca2+ signaling. Results Attenuated Ca2+ activity correlated with reduced astrocytic coverage of asymmetric synapses in the hippocampal CA1 region in these animals. The decreased astrocytic ‘protection’ of the synapses facilitated glutamate ‘spillover’, which was reflected by prolonged glutamate transporter currents in stratum radiatum astrocytes and enhanced N-methyl-D-aspartate receptor currents in CA1 pyramidal neurons in response to burst stimulation. These mice also exhibited behavioral impairments in spatial reference memory and remote contextual fear memory, in which hippocampal circuits are involved. Conclusions Our findings suggest that IP3-mediated astrocytic Ca2+ signaling correlates with the formation of functional tripartite synapses in the hippocampus.

  9. Ultrastructural and Functional Properties of a Giant Synapse Driving the Piriform Cortex to Mediodorsal Thalamus Projection.

    Science.gov (United States)

    Pelzer, Patric; Horstmann, Heinz; Kuner, Thomas

    2017-01-01

    Neocortico-thalamo-cortical loops represent a common, yet poorly understood, circuit employing giant synapses also referred to as "class I", giant, or driver synapses. Here, we characterize a giant synapse formed by projection neurons of the paleocortical piriform cortex (PIR) onto neurons of the mediodorsal thalamus (MD). Three-dimensional (3D) ultrastructure of labeled PIR-MD terminals, obtained by using serial-section scanning electron microscopy (EM) combined with photooxidation-based detection of labeled terminals, revealed a large terminal engulfing multiple postsynaptic dendritic excrescences. The terminal contained multiple synaptic contacts, a high density of synaptic vesicles and several central mitochondria. Using targeted stimulations of single identified PIR-MD terminals in combination with patch-clamp recordings from the connected MD neuron, we found large postsynaptic currents with fast kinetics and strong short-term depression, yet fast recovery upon repetitive stimulation. We conclude that the phylogenetically old paleocortex already developed giant synaptic connections exhibiting similar functional properties as connections formed by giant neocortico-thalamic projections.

  10. Ultrastructural and Functional Properties of a Giant Synapse Driving the Piriform Cortex to Mediodorsal Thalamus Projection

    Science.gov (United States)

    Pelzer, Patric; Horstmann, Heinz; Kuner, Thomas

    2017-01-01

    Neocortico-thalamo-cortical loops represent a common, yet poorly understood, circuit employing giant synapses also referred to as “class I”, giant, or driver synapses. Here, we characterize a giant synapse formed by projection neurons of the paleocortical piriform cortex (PIR) onto neurons of the mediodorsal thalamus (MD). Three-dimensional (3D) ultrastructure of labeled PIR-MD terminals, obtained by using serial-section scanning electron microscopy (EM) combined with photooxidation-based detection of labeled terminals, revealed a large terminal engulfing multiple postsynaptic dendritic excrescences. The terminal contained multiple synaptic contacts, a high density of synaptic vesicles and several central mitochondria. Using targeted stimulations of single identified PIR-MD terminals in combination with patch-clamp recordings from the connected MD neuron, we found large postsynaptic currents with fast kinetics and strong short-term depression, yet fast recovery upon repetitive stimulation. We conclude that the phylogenetically old paleocortex already developed giant synaptic connections exhibiting similar functional properties as connections formed by giant neocortico-thalamic projections. PMID:28197093

  11. Disrupted-in-schizophrenia (DISC1 functions presynaptically at glutamatergic synapses.

    Directory of Open Access Journals (Sweden)

    Brady J Maher

    Full Text Available The pathophysiology of schizophrenia is believed to involve defects in synaptic transmission, and the function of many schizophrenia-associated genes, including DISC1, have been linked to synaptic function at glutamatergic synapses. Here we develop a rodent model via in utero electroporation to assay the presynaptic function of DISC1 at glutamatergic synapses. We used a combination of mosaic transgene expression, RNAi knockdown and optogenetics to restrict both genetic manipulation and synaptic stimulation of glutamatergic neurons presynaptic to other layer 2/3 neocortical pyramidal neurons that were then targeted for whole-cell patch-clamp recording. We show that expression of the DISC1 c-terminal truncation variant that is associated with Schizophrenia alters the frequency of mEPSCs and the kinetics of evoked glutamate release. In addition, we show that expression level of DISC1 is correlated with the probability of glutamate release such that increased DISC1 expression results in paired-pulse depression and RNAi knockdown of DISC1 produces paired-pulse facilitation. Overall, our results support a direct presynaptic function for the schizophrenia-associated gene, DISC1.

  12. Contribution of plasma membrane Ca2+ ATPase to cerebellar synapse function

    Institute of Scientific and Technical Information of China (English)

    Helena; Huang; Raghavendra; Y; Nagaraja; Molly; L; Garside; Walther; Akemann; Thomas; Knpfel; Ruth; M; Empson

    2010-01-01

    The cerebellum expresses one of the highest levels of the plasma membrane Ca2+ATPase,isoform 2 in the mammalian brain.This highly efficient plasma membrane calcium transporter protein is enriched within the main output neurons of the cerebellar cortex;i.e. the Purkinje neurons(PNs) .Here we review recent evidence,including electrophysiological and calcium imaging approaches using the plasma membrane calcium ATPase 2(PMCA2) knockout mouse,to show that PMCA2 is critical for the physiological control of calcium at cerebellar synapses and cerebellar dependent behaviour.These studies have also revealed that deletionof PMCA2 throughout cerebellar development in the PMCA2 knockout mouse leads to permanent signalling and morphological alterations in the PN dendrites. Whilst these findings highlight the importance of PMCA2 during cerebellar synapse function and development,they also reveal some limitations in the use of the PMCA2 knockout mouse and the need for additional experimental approaches including cell-specific and reversible manipulation of PMCAs.

  13. Targeting CD28, CTLA-4 and PD-L1 costimulation differentially controls immune synapses and function of human regulatory and conventional T-cells.

    Directory of Open Access Journals (Sweden)

    Nahzli Dilek

    Full Text Available CD28, CTLA-4 and PD-L1, the three identified ligands for CD80/86, are pivotal positive and negative costimulatory molecules that, among other functions, control T cell motility and formation of immune synapse between T cells and antigen-presenting cells (APCs. What remains incompletely understood is how CD28 leads to the activation of effector T cells (Teff but inhibition of suppression by regulatory T cells (Tregs, while CTLA-4 and PD-L1 inhibit Teff function but are crucial for the suppressive function of Tregs. Using alloreactive human T cells and blocking antibodies, we show here by live cell dynamic microscopy that CD28, CTLA-4, and PD-L1 differentially control velocity, motility and immune synapse formation in activated Teff versus Tregs. Selectively antagonizing CD28 costimulation increased Treg dwell time with APCs and induced calcium mobilization which translated in increased Treg suppressive activity, in contrast with the dampening effect on Teff responses. The increase in Treg suppressive activity after CD28 blockade was also confirmed with polyclonal Tregs. Whereas CTLA-4 played a critical role in Teff by reversing TCR-induced STOP signals, it failed to affect motility in Tregs but was essential for formation of the Treg immune synapse. Furthermore, we identified a novel role for PD-L1-CD80 interactions in suppressing motility specifically in Tregs. Thus, our findings reveal that the three identified ligands of CD80/86, CD28, CTLA-4 and PD-L1, differentially control immune synapse formation and function of the human Teff and Treg cells analyzed here. Individually targeting CD28, CTLA-4 and PD-L1 might therefore represent a valuable therapeutic strategy to treat immune disorders where effector and regulatory T cell functions need to be differentially targeted.

  14. Extrinsic sound stimulations and development of periphery auditory synapses

    Institute of Scientific and Technical Information of China (English)

    Kun Hou; Shiming Yang; Ke Liu

    2015-01-01

    The development of auditory synapses is a key process for the maturation of hearing function. However, it is still on debate regarding whether the development of auditory synapses is dominated by acquired sound stimulations. In this review, we summarize relevant publications in recent decades to address this issue. Most reported data suggest that extrinsic sound stimulations do affect, but not govern the development of periphery auditory synapses. Overall, periphery auditory synapses develop and mature according to its intrinsic mechanism to build up the synaptic connections between sensory neurons and/or interneurons.

  15. MEF2C, a transcription factor that facilitates learning and memory by negative regulation of synapse numbers and function.

    Science.gov (United States)

    Barbosa, Ana C; Kim, Mi-Sung; Ertunc, Mert; Adachi, Megumi; Nelson, Erika D; McAnally, John; Richardson, James A; Kavalali, Ege T; Monteggia, Lisa M; Bassel-Duby, Rhonda; Olson, Eric N

    2008-07-08

    Learning and memory depend on the activity-dependent structural plasticity of synapses and changes in neuronal gene expression. We show that deletion of the MEF2C transcription factor in the CNS of mice impairs hippocampal-dependent learning and memory. Unexpectedly, these behavioral changes were accompanied by a marked increase in the number of excitatory synapses and potentiation of basal and evoked synaptic transmission. Conversely, neuronal expression of a superactivating form of MEF2C results in a reduction of excitatory postsynaptic sites without affecting learning and memory performance. We conclude that MEF2C limits excessive synapse formation during activity-dependent refinement of synaptic connectivity and thus facilitates hippocampal-dependent learning and memory.

  16. Regulation and functional roles of rebound potentiation at cerebellar stellate cell - Purkinje cell synapses

    Directory of Open Access Journals (Sweden)

    Tomoo eHirano

    2014-02-01

    Full Text Available Purkinje cells receive both excitatory and inhibitory synaptic inputs and send sole output from the cerebellar cortex. Long-term depression, a type of synaptic plasticity, at excitatory parallel fiber–Purkinje cell synapses has been studied extensively as a primary cellular mechanism of motor learning. On the other hand, at inhibitory synapses on a Purkinje cell, postsynaptic depolarization induces long-lasting potentiation of GABAergic synaptic transmission. This synaptic plasticity is called rebound potentiation (RP, and its molecular regulatory mechanisms have been studied. The increase in intracellular Ca2+ concentration caused by depolarization induces RP through enhancement of GABAA receptor (GABAAR responsiveness. RP induction depends on binding of GABAAR with GABAAR associated protein (GABARAP which is regulated by Ca2+/calmodulin-dependent kinase II (CaMKII. Whether RP is induced or not is determined by the balance between phosphorylation and de-phosphorylation activities regulated by intracellular Ca2+ and by metabotropic GABA and glutamate receptors. Recent studies have revealed that the subunit composition of CaMKII has significant impact on RP induction. A Purkinje cell expresses both alpha- and beta-CaMKII, and the latter has much higher affinity for Ca2+/calmodulin than the former. It was shown that when the relative amount of alpha- to beta-CaMKII is large, RP induction is suppressed. The functional significance of RP has also been studied using transgenic mice in which a peptide inhibiting association of GABARAP and GABAAR is expressed selectively in Purkinje cells. The transgenic mice show abrogation of RP and subnormal adaptation of vestibulo-ocular reflex, a type of motor learning. Thus, RP is involved in a certain type of motor learning.

  17. Synapse formation and remodeling

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Synapses are specialized structures that mediate information flow between neurons and target cells,and thus are the basis for neuronal system to execute various functions,including learning and memory.There are around 1011 neurons in the human brain,with each neuron receiving thousands of synaptic inputs,either excitatory or inhibitory.A synapse is an asymmetric structure that is composed of pre-synaptic axon terminals,synaptic cleft,and postsynaptic compartments.Synapse formation involves a number of cell adhesion molecules,extracellular factors,and intracellular signaling or structural proteins.After the establishment of synaptic connections,synapses undergo structural or functional changes,known as synaptic plasticity which is believed to be regulated by neuronal activity and a variety of secreted factors.This review summarizes recent progress in the field of synapse development,with particular emphasis on the work carried out in China during the past 10 years(1999-2009).

  18. Diet and energy-sensing inputs affect TorC1-mediated axon misrouting but not TorC2-directed synapse growth in a Drosophila model of tuberous sclerosis.

    Directory of Open Access Journals (Sweden)

    Brian Dimitroff

    Full Text Available The Target of Rapamycin (TOR growth regulatory system is influenced by a number of different inputs, including growth factor signaling, nutrient availability, and cellular energy levels. While the effects of TOR on cell and organismal growth have been well characterized, this pathway also has profound effects on neural development and behavior. Hyperactivation of the TOR pathway by mutations in the upstream TOR inhibitors TSC1 (tuberous sclerosis complex 1 or TSC2 promotes benign tumors and neurological and behavioral deficits, a syndrome known as tuberous sclerosis (TS. In Drosophila, neuron-specific overexpression of Rheb, the direct downstream target inhibited by Tsc1/Tsc2, produced significant synapse overgrowth, axon misrouting, and phototaxis deficits. To understand how misregulation of Tor signaling affects neural and behavioral development, we examined the influence of growth factor, nutrient, and energy sensing inputs on these neurodevelopmental phenotypes. Neural expression of Pi3K, a principal mediator of growth factor inputs to Tor, caused synapse overgrowth similar to Rheb, but did not disrupt axon guidance or phototaxis. Dietary restriction rescued Rheb-mediated behavioral and axon guidance deficits, as did overexpression of AMPK, a component of the cellular energy sensing pathway, but neither was able to rescue synapse overgrowth. While axon guidance and behavioral phenotypes were affected by altering the function of a Tor complex 1 (TorC1 component, Raptor, or a TORC1 downstream element (S6k, synapse overgrowth was only suppressed by reducing the function of Tor complex 2 (TorC2 components (Rictor, Sin1. These findings demonstrate that different inputs to Tor signaling have distinct activities in nervous system development, and that Tor provides an important connection between nutrient-energy sensing systems and patterning of the nervous system.

  19. Myosin VI is required for the proper maturation and function of inner hair cell ribbon synapses.

    Science.gov (United States)

    Roux, Isabelle; Hosie, Suzanne; Johnson, Stuart L; Bahloul, Amel; Cayet, Nadège; Nouaille, Sylvie; Kros, Corné J; Petit, Christine; Safieddine, Saaid

    2009-12-01

    The ribbon synapses of auditory inner hair cells (IHCs) undergo morphological and electrophysiological transitions during cochlear development. Here we report that myosin VI (Myo6), an actin-based motor protein involved in genetic forms of deafness, is necessary for some of these changes to occur. By using post-embedding immunogold electron microscopy, we showed that Myo6 is present at the IHC synaptic active zone. In Snell's waltzer mutant mice, which lack Myo6, IHC ionic currents and ribbon synapse maturation proceeded normally until at least post-natal day 6. In adult mutant mice, however, the IHCs displayed immature potassium currents and still fired action potentials, as normally only observed in immature IHCs. In addition, the number of ribbons per IHC was reduced by 30%, and 30% of the remaining ribbons were morphologically immature. Ca2+-dependent exocytosis probed by capacitance measurement was markedly reduced despite normal Ca2+ currents and the large proportion of morphologically mature synapses, which suggests additional defects, such as loose Ca2+-exocytosis coupling or inefficient vesicular supply. Finally, we provide evidence that Myo6 and otoferlin, a putative Ca2+ sensor of synaptic exocytosis also involved in a genetic form of deafness, interact at the IHC ribbon synapse, and we suggest that this interaction is involved in the recycling of synaptic vesicles. Our findings thus uncover essential roles for Myo6 at the IHC ribbon synapse, in addition to that proposed in membrane turnover and anchoring at the apical surface of the hair cells.

  20. Functional and structural deficits at accumbens synapses in a mouse model of Fragile X

    Directory of Open Access Journals (Sweden)

    Daniela eNeuhofer

    2015-03-01

    Full Text Available Fragile X is the most common cause of inherited intellectual disability and a leading cause of autism. The disease is caused by mutation of a single X-linked gene called fmr1 that codes for the Fragile X mental retardation protein (FMRP, a 71 kDa protein, which acts mainly as a translation inhibitor. Fragile X patients suffer from cognitive and emotional deficits that coincide with abnormalities in dendritic spines. Changes in spine morphology are often associated with altered excitatory transmission and long-term plasticity, the most prominent deficit in fmr1-/y mice. The nucleus accumbens, a central part of the mesocortico-limbic reward pathway, is now considered as a core structure in the control of social behaviors. Although the socio-affective impairments observed in Fragile X suggest dysfunctions in the accumbens, the impact of the lack of FMRP on accumbal synapses has scarcely been studied. Here we report for the first time a new spike timing-dependent plasticity paradigm that reliably triggers NMDAR-dependent long-term potentiation (LTP of excitatory afferent inputs of medium spiny neurons (MSN in the nucleus accumbens core region. Notably, we discovered that this LTP was completely absent in fmr1-/y mice. In the fmr1-/y accumbens intrinsic membrane properties of MSNs and basal excitatory neurotransmission remained intact in the fmr1-/y accumbens but the deficit in LTP was accompanied by an increase in evoked AMPA/NMDA ratio and a concomitant reduction of spontaneous NMDAR-mediated currents. In agreement with these physiological findings, we found significantly more filopodial spines in fmr1-/y mice by using an ultrastructural electron microscopic analysis of accumbens core medium spiny neuron spines. Surprisingly, spine elongation was specifically due to the longer longitudinal axis and larger area of spine necks, whereas spine head morphology and postsynaptic density size on spine heads remained unaffected in the fmr1-/y accumbens

  1. Adenosine gates synaptic plasticity at hippocampal mossy fiber synapses

    Science.gov (United States)

    Moore, Kimberly A.; Nicoll, Roger A.; Schmitz, Dietmar

    2003-11-01

    The release properties of synapses in the central nervous system vary greatly, not only across anatomically distinct types of synapses but also among the same class of synapse. This variation manifests itself in large part by differences in the probability of transmitter release, which affects such activity-dependent presynaptic forms of plasticity as paired-pulse facilitation and frequency facilitation. This heterogeneity in presynaptic function reflects differences in the intrinsic properties of the synaptic terminal and the activation of presynaptic neurotransmitter receptors. Here we show that the unique presynaptic properties of the hippocampal mossy fiber synapse are largely imparted onto the synapse by the continuous local action of extracellular adenosine at presynaptic A1 adenosine receptors, which maintains a low basal probability of transmitter release.

  2. Genetic targeting of NRXN2 in mice unveils role in excitatory cortical synapse function and social behaviors

    Directory of Open Access Journals (Sweden)

    Gesche eBorn

    2015-02-01

    Full Text Available Human genetics has identified rare copy number variations and deleterious mutations for all neurexin genes (NRXN1-3 in patients with neurodevelopmental diseases, and electrophysiological recordings in animal brains have shown that Nrxns are important for synaptic transmission. While several mouse models for Nrxn1α inactivation have previously been studied for behavioral changes, very little information is available for other variants. Here, we validate that mice lacking Nrxn2α exhibit behavioral abnormalities, characterized by social interaction deficits and increased anxiety-like behavior, which partially overlap, partially differ from Nrxn1α mutant behaviors. Using patch-clamp recordings in Nrxn2α knockout brains, we observe reduced spontaneous transmitter release at excitatory synapses in the neocortex. We also analyse at this cellular level a novel NRXN2 mouse model that carries a combined deletion of Nrxn2α and Nrxn2β. Electrophysiological analysis of this Nrxn2-mutant mouse shows surprisingly similar defects of excitatory release to Nrxn2α, indicating that the β-variant of Nrxn2 has no strong function in basic transmission at these synapses. Inhibitory transmission as well as synapse densities and ultrastructure remain unchanged in the neocortex of both models. Furthermore, at Nrxn2α and Nrxn2-mutant excitatory synapses we find an altered facilitation and N-methyl-D-aspartate receptor (NMDAR function because NMDAR-dependent decay time and NMDAR-mediated responses are reduced. As Nrxn can indirectly be linked to NMDAR via neuroligin and PSD-95, the trans-synaptic nature of this complex may help to explain occurrence of presynaptic and postsynaptic effects. Since excitatory/inhibitory imbalances and impairment of NMDAR function are alledged to have a role in autism and schizophrenia, our results support the idea of a related pathomechanism in these disorders.

  3. Food restriction modifies ultrastructure of hippocampal synapses.

    Science.gov (United States)

    Babits, Réka; Szőke, Balázs; Sótonyi, Péter; Rácz, Bence

    2016-04-01

    Consumption of high-energy diets may compromise health and may also impair cognition; these impairments have been linked to tasks that require hippocampal function. Conversely, food restriction has been shown to improve certain aspects of hippocampal function, including spatial memory and memory persistence. These diet-dependent functional changes raise the possibility that the synaptic structure underlying hippocampal function is also affected. To examine how short-term food restriction (FR) alters the synaptic structure of the hippocampus, we used quantitative electron microscopy to analyze the organization of neuropil in the CA1 stratum radiatum of the hippocampus in young rats, consequent to reduced food. While four weeks of FR did not modify the density, size, or shape of postsynaptic spines, the synapses established by these spines were altered, displaying increased mean length, and more frequent perforations of postsynaptic densities. That the number of perforated synapses (believed to be an indicator of synaptic enhancement) increased, and that the CA1 spine population had on average significantly longer PSDs suggests that synaptic efficacy of axospinous synapses also increased in the CA1. Taken together, our ultrastructural data reveal previously unrecognized structural changes at hippocampal synapses as a function of food restriction, supporting a link between metabolic balance and synaptic plasticity.

  4. Electrical synapses and synchrony: the role of intrinsic currents.

    Science.gov (United States)

    Pfeuty, Benjamin; Mato, Germán; Golomb, David; Hansel, David

    2003-07-16

    Electrical synapses are ubiquitous in the mammalian CNS. Particularly in the neocortex, electrical synapses have been shown to connect low-threshold spiking (LTS) as well as fast spiking (FS) interneurons. Experiments have highlighted the roles of electrical synapses in the dynamics of neuronal networks. Here we investigate theoretically how intrinsic cell properties affect the synchronization of neurons interacting by electrical synapses. Numerical simulations of a network of conductance-based neurons randomly connected with electrical synapses show that potassium currents promote synchrony, whereas the persistent sodium current impedes it. Furthermore, synchrony varies with the firing rate in qualitatively different ways depending on the intrinsic currents. We also study analytically a network of quadratic integrate-and-fire neurons. We relate the stability of the asynchronous state of this network to the phase-response function (PRF), which characterizes the effect of small perturbations on the firing timing of the neurons. In particular, we show that the greater the skew of the PRF toward the first half of the period, the more stable the asynchronous state. Combining our simulations with our analytical results, we establish general rules to predict the dynamic state of large networks of neurons coupled with electrical synapses. Our work provides a natural explanation for surprising experimental observations that blocking electrical synapses may increase the synchrony of neuronal activity. It also suggests different synchronization properties for LTS and FS cells. Finally, we propose to further test our predictions in experiments using dynamic clamp techniques.

  5. Remodeling and Tenacity of Inhibitory Synapses: Relationships with Network Activity and Neighboring Excitatory Synapses.

    Science.gov (United States)

    Rubinski, Anna; Ziv, Noam E

    2015-11-01

    Glutamatergic synapse size remodeling is governed not only by specific activity forms but also by apparently stochastic processes with well-defined statistics. These spontaneous remodeling processes can give rise to skewed and stable synaptic size distributions, underlie scaling of these distributions and drive changes in glutamatergic synapse size "configurations". Where inhibitory synapses are concerned, however, little is known on spontaneous remodeling dynamics, their statistics, their activity dependence or their long-term consequences. Here we followed individual inhibitory synapses for days, and analyzed their size remodeling dynamics within the statistical framework previously developed for glutamatergic synapses. Similar to glutamatergic synapses, size distributions of inhibitory synapses were skewed and stable; at the same time, however, sizes of individual synapses changed considerably, leading to gradual changes in synaptic size configurations. The suppression of network activity only transiently affected spontaneous remodeling dynamics, did not affect synaptic size configuration change rates and was not followed by the scaling of inhibitory synapse size distributions. Comparisons with glutamatergic synapses within the same dendrites revealed a degree of coupling between nearby inhibitory and excitatory synapse remodeling, but also revealed that inhibitory synapse size configurations changed at considerably slower rates than those of their glutamatergic neighbors. These findings point to quantitative differences in spontaneous remodeling dynamics of inhibitory and excitatory synapses but also reveal deep qualitative similarities in the processes that control their sizes and govern their remodeling dynamics.

  6. Function and Dynamics of Tetraspanins during Antigen Recognition and Immunological Synapse Formation

    Directory of Open Access Journals (Sweden)

    Vera eRocha-Perugini

    2016-01-01

    Full Text Available Tetraspanin-enriched microdomains (TEMs are specialized membrane platforms driven by protein-protein interactions that integrate membrane receptors and adhesion molecules. Tetraspanins participate in antigen recognition and presentation by antigen presenting cells (APCs through the organization of pattern recognition receptors (PRRs and their downstream induced-signaling, as well as the regulation of MHC-II-peptide trafficking. T lymphocyte activation is triggered upon specific recognition of antigens present on the APC surface during immunological synapse (IS formation. This dynamic process is characterized by a defined spatial organization involving the compartmentalization of receptors and adhesion molecules in specialized membrane domains that are connected to the underlying cytoskeleton and signaling molecules. Tetraspanins contribute to the spatial organization and maturation of the IS by controlling receptor clustering and local accumulation of adhesion receptors and integrins, their downstream signaling and linkage to the actin cytoskeleton. This review offers a perspective on the important role of TEMs in the regulation of antigen recognition and presentation, and in the dynamics of IS architectural organization.

  7. A Novel Topology of Proline-rich Transmembrane Protein 2 (PRRT2): HINTS FOR AN INTRACELLULAR FUNCTION AT THE SYNAPSE.

    Science.gov (United States)

    Rossi, Pia; Sterlini, Bruno; Castroflorio, Enrico; Marte, Antonella; Onofri, Franco; Valtorta, Flavia; Maragliano, Luca; Corradi, Anna; Benfenati, Fabio

    2016-03-18

    Proline-rich transmembrane protein 2 (PRRT2) has been identified as the single causative gene for a group of paroxysmal syndromes of infancy, including epilepsy, paroxysmal movement disorders, and migraine. On the basis of topology predictions, PRRT2 has been assigned to the recently characterized family of Dispanins, whose members share the two-transmembrane domain topology with a large N terminus and short C terminus oriented toward the outside of the cell. Because PRRT2 plays a role at the synapse, it is important to confirm the exact orientation of its N and C termini with respect to the plasma membrane to get clues regarding its possible function. Using a combination of different experimental approaches, including live immunolabeling, immunogold electron microscopy, surface biotinylation and computational modeling, we demonstrate a novel topology for this protein. PRRT2 is a type II transmembrane protein in which only the second hydrophobic segment spans the plasma membrane, whereas the first one is associated with the internal surface of the membrane and forms a helix-loop-helix structure without crossing it. Most importantly, the large proline-rich N-terminal domain is not exposed to the extracellular space but is localized intracellularly, and only the short C terminus is extracellular (N cyt/C exo topology). Accordingly, we show that PRRT2 interacts with the Src homology 3 domain-bearing protein Intersectin 1, an intracellular protein involved in synaptic vesicle cycling. These findings will contribute to the clarification of the role of PRRT2 at the synapse and the understanding of pathogenic mechanisms on the basis of PRRT2-related neurological disorders.

  8. Flat affect and social functioning

    DEFF Research Database (Denmark)

    Simonsen, Erik; Evensen, Julie; Røsberg, Jan Ivar;

    2012-01-01

    , predictors and outcome factors including social functioning. Methods: Three-hundred-and-one patients with FEP were included at baseline, 186 participated in the 10 year follow-up. These were followed on PANSS item N1 (FA) from baseline through 5 follow-up assessments over 10 years. Patients were grouped...... as having never-present, improving, deteriorating, fluctuating or enduring FA. The groups were compared on baseline variables, variables at 10 year follow-up, and social functioning throughout the follow-up period. Results: Twenty nine percent never displayed FA, 66% had improving, deteriorating...... or fluctuating FA, while 5% of patients had enduring FA. Premorbid social function predicted enduring FA. The patients with enduring, fluctuating and deteriorating FA did poorer on all outcome variables, including remission and recovery rates. The enduring FA group did significantly poorer in social functioning...

  9. ELKS controls the pool of readily releasable vesicles at excitatory synapses through its N-terminal coiled-coil domains.

    Science.gov (United States)

    Held, Richard G; Liu, Changliang; Kaeser, Pascal S

    2016-06-02

    In a presynaptic nerve terminal, synaptic strength is determined by the pool of readily releasable vesicles (RRP) and the probability of release (P) of each RRP vesicle. These parameters are controlled at the active zone and vary across synapses, but how such synapse specific control is achieved is not understood. ELKS proteins are enriched at vertebrate active zones and enhance P at inhibitory hippocampal synapses, but ELKS functions at excitatory synapses are not known. Studying conditional knockout mice for ELKS, we find that ELKS enhances the RRP at excitatory synapses without affecting P. Surprisingly, ELKS C-terminal sequences, which interact with RIM, are dispensable for RRP enhancement. Instead, the N-terminal ELKS coiled-coil domains that bind to Liprin-α and Bassoon are necessary to control RRP. Thus, ELKS removal has differential, synapse-specific effects on RRP and P, and our findings establish important roles for ELKS N-terminal domains in synaptic vesicle priming.

  10. Placebo Sleep Affects Cognitive Functioning

    Science.gov (United States)

    Draganich, Christina; Erdal, Kristi

    2014-01-01

    The placebo effect is any outcome that is not attributed to a specific treatment but rather to an individual's mindset (Benson & Friedman, 1996). This phenomenon can extend beyond its typical use in pharmaceutical drugs to involve aspects of everyday life, such as the effect of sleep on cognitive functioning. In 2 studies examining whether…

  11. The immunological synapse

    DEFF Research Database (Denmark)

    Klemmensen, Thomas; Pedersen, Lars Ostergaard; Geisler, Carsten

    2003-01-01

    The induction of a proper adaptive immune response is dependent on the correct transfer of information between antigen-presenting cells (APCs) and antigen-specific T cells. Defects in information transfer may result in the development of diseases, e.g. immunodeficiencies and autoimmunity. A disti......The induction of a proper adaptive immune response is dependent on the correct transfer of information between antigen-presenting cells (APCs) and antigen-specific T cells. Defects in information transfer may result in the development of diseases, e.g. immunodeficiencies and autoimmunity....... A distinct 3-dimensional supramolecular structure at the T cell/APC interface has been suggested to be involved in the information transfer. Due to its functional analogy to the neuronal synapse, the structure has been termed the "immunological synapse" (IS). Here, we review molecular aspects concerning...

  12. A multi nutrient concept to enhance synapse formation and function: science behind a medical food for Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Sijben John W.C.

    2011-09-01

    Full Text Available Alzheimer’s Disease (AD is the leading cause of dementia. Epidemiological studies suggest that AD is linked with poor status of nutrients including DHA, B-vitamins and the vitamins E and C. Ongoing neurodegeneration, particularly synaptic loss, leads to the classical clinical features of AD namely, memory impairment, language deterioration, and executive and visuospatial dysfunction. The main constituents of neural and synaptic membranes are phospholipids. Supplemenation of animals with three dietary precursors of phospholipids namely, DHA, uridine monophosphate and choline, results in increased levels of brain phospholipids, synaptic proteins, neurite outgrowth, dendritic spines formation (i.e. the anatomical precursors of new synapses and an improvement in learning and memory. Other nutrients act as co-factors in the synthesis pathway of neuronal membranes. For example B-vitamins are involved in methylation processes, thereby enhancing the availability of choline as a synaptic membrane precursor. A multi-nutrient concept that includes these nutrients may improve membrane integrity, thereby influencing membrane-dependent processes such as receptor function and amyloid precursor protein (APP processing, as shown by reduced amyloid production and amyloid β plaque burden, as well as toxicity. Together, these insights provided the basis for the development of a medical food for patients with AD, Souvenaid®, containing a specific combination of nutrients (Fortasyn™ Connect and designed to enhance synapse formation in AD. The effect of Souvenaid on memory and cognitive performance was recently assessed in a proof-of-concept study, SOUVENIR I, with 212 drug-naïve mild AD patients (MMSE 20-26. This proof-of-concept study demonstrated that oral nutritional supplementation with Souvenaid® for 12 weeks improves memory in patients with mild AD. To confirm and extend these findings, we have designed and initiated three additional studies. Two of

  13. The impact of sustained engagement on cognitive function in older adults: the Synapse Project.

    Science.gov (United States)

    Park, Denise C; Lodi-Smith, Jennifer; Drew, Linda; Haber, Sara; Hebrank, Andrew; Bischof, Gérard N; Aamodt, Whitley

    2014-01-01

    In the research reported here, we tested the hypothesis that sustained engagement in learning new skills that activated working memory, episodic memory, and reasoning over a period of 3 months would enhance cognitive function in older adults. In three conditions with high cognitive demands, participants learned to quilt, learned digital photography, or engaged in both activities for an average of 16.51 hr a week for 3 months. Results at posttest indicated that episodic memory was enhanced in these productive-engagement conditions relative to receptive-engagement conditions, in which participants either engaged in nonintellectual activities with a social group or performed low-demand cognitive tasks with no social contact. The findings suggest that sustained engagement in cognitively demanding, novel activities enhances memory function in older adulthood, but, somewhat surprisingly, we found limited cognitive benefits of sustained engagement in social activities.

  14. The Impact of Sustained Engagement on Cognitive Function in Older Adults: The Synapse Project

    OpenAIRE

    Park, Denise C.; Lodi-Smith, Jennifer; Drew, Linda; Haber, Sara; Hebrank, Andrew; Bischof, Gérard N.; Aamodt, Whitley

    2013-01-01

    In the research reported here, we tested the hypothesis that sustained engagement in learning new skills that activated working memory, episodic memory, and reasoning over a period of 3 months would enhance cognitive function in older adults. In three conditions with high cognitive demands, participants learned to quilt, learned digital photography, or engaged in both activities for an average of 16.51 hr a week for 3 months. Results at posttest indicated that episodic memory was enhanced in ...

  15. Dendrodendritic Synapses in the Mouse Olfactory Bulb External Plexiform Layer

    Science.gov (United States)

    Bartel, Dianna L.; Rela, Lorena; Hsieh, Lawrence; Greer, Charles A.

    2014-01-01

    Odor information relayed by olfactory bulb projection neurons, mitral and tufted cells (M/T), is modulated by pairs of reciprocal dendrodendritic synaptic circuits in the external plexiform layer (EPL). Interneurons, which are accounted for largely by granule cells, receive depolarizing input from M/T dendrites and in turn inhibit current spread in M/T dendrites via hyperpolarizing reciprocal dendrodendritic synapses. Because the location of dendrodendritic synapses may significantly affect the cascade of odor information, we assessed synaptic properties and density within sublaminae of the EPL and along the length of M/T secondary dendrites. In electron micrographs the M/T to granule cell synapse appeared to predominate and were equivalent in both the outer and inner EPL. However, the dendrodendritic synapses from granule cell spines onto M/T dendrites, were more prevalent in the outer EPL. In contrast, individual gephyrin-IR puncta, a postsynaptic scaffolding protein at inhibitory synapses used here as a proxy for the granule to M/T dendritic synapse was equally distributed throughout the EPL. Of significance to the organization of intrabulbar circuits, gephyrin-IR synapses are not uniformly distributed along M/T secondary dendrites. Synaptic density, expressed as a function of surface area, increases distal to the cell body. Furthermore, the distributions of gephyrin-IR puncta are heterogeneous and appear as clusters along the length of the M/T dendrites. Consistent with computational models, our data suggest that temporal coding in M/T cells is achieved by precisely located inhibitory input and that distance from the soma is compensated with an increase in synaptic density. PMID:25420934

  16. Age-related changes in cerebellar and hypothalamic function accompany non-microglial immune gene expression, altered synapse organization, and excitatory amino acid neurotransmission deficits

    Science.gov (United States)

    Bonasera, Stephen J.; Arikkath, Jyothi; Boska, Michael D.; Chaudoin, Tammy R.; DeKorver, Nicholas W.; Goulding, Evan H.; Hoke, Traci A.; Mojtahedzedah, Vahid; Reyelts, Crystal D.; Sajja, Balasrinivasa; Schenk, A. Katrin; Tecott, Laurence H.; Volden, Tiffany A.

    2016-01-01

    We describe age-related molecular and neuronal changes that disrupt mobility or energy balance based on brain region and genetic background. Compared to young mice, aged C57BL/6 mice exhibit marked locomotor (but not energy balance) impairments. In contrast, aged BALB mice exhibit marked energy balance (but not locomotor) impairments. Age-related changes in cerebellar or hypothalamic gene expression accompany these phenotypes. Aging evokes upregulation of immune pattern recognition receptors and cell adhesion molecules. However, these changes do not localize to microglia, the major CNS immunocyte. Consistent with a neuronal role, there is a marked age-related increase in excitatory synapses over the cerebellum and hypothalamus. Functional imaging of these regions is consistent with age-related synaptic impairments. These studies suggest that aging reactivates a developmental program employed during embryogenesis where immune molecules guide synapse formation and pruning. Renewed activity in this program may disrupt excitatory neurotransmission, causing significant behavioral deficits. PMID:27689748

  17. Chronic ethanol exposure decreases CB1 receptor function at GABAergic synapses in the rat central amygdala.

    Science.gov (United States)

    Varodayan, Florence P; Soni, Neeraj; Bajo, Michal; Luu, George; Madamba, Samuel G; Schweitzer, Paul; Parsons, Loren H; Roberto, Marisa

    2016-07-01

    The endogenous cannabinoids (eCBs) influence the acute response to ethanol and the development of tolerance, dependence and relapse. Chronic alcohol exposure alters eCB levels and Type 1 cannabinoid receptor (CB1 ) expression and function in brain regions associated with addiction. CB1 inhibits GABA release, and GABAergic dysregulation in the central nucleus of the amygdala (CeA) is critical in the transition to alcohol dependence. We investigated possible disruptions in CB1 signaling of rat CeA GABAergic transmission following intermittent ethanol exposure. In the CeA of alcohol-naive rats, CB1 agonist WIN 55,212-2 (WIN) decreased the frequency of spontaneous and miniature GABAA receptor-mediated inhibitory postsynaptic currents (s/mIPSCs). This effect was prevented by CB1 antagonism, but not Type 2 cannabinoid receptor (CB2 ) antagonism. After 2-3 weeks of intermittent ethanol exposure, these WIN inhibitory effects were attenuated, suggesting ethanol-induced impairments in CB1 function. The CB1 antagonist AM251 revealed a tonic eCB/CB1 control of GABAergic transmission in the alcohol-naive CeA that was occluded by calcium chelation in the postsynaptic cell. Chronic ethanol exposure abolished this tonic CB1 influence on mIPSC, but not sIPSC, frequency. Finally, acute ethanol increased CeA GABA release in both naive and ethanol-exposed rats. Although CB1 activation prevented this effect, the AM251- and ethanol-induced GABA release were additive, ruling out a direct participation of CB1 signaling in the ethanol effect. Collectively, these observations demonstrate an important CB1 influence on CeA GABAergic transmission and indicate that the CeA is particularly sensitive to alcohol-induced disruptions of CB1 signaling.

  18. Learning Discloses Abnormal Structural and Functional Plasticity at Hippocampal Synapses in the APP23 Mouse Model of Alzheimer's Disease

    Science.gov (United States)

    Middei, Silvia; Roberto, Anna; Berretta, Nicola; Panico, Maria Beatrice; Lista, Simone; Bernardi, Giorgio; Mercuri, Nicola B.; Ammassari-Teule, Martine; Nistico, Robert

    2010-01-01

    B6-Tg/Thy1APP23Sdz (APP23) mutant mice exhibit neurohistological hallmarks of Alzheimer's disease but show intact basal hippocampal neurotransmission and synaptic plasticity. Here, we examine whether spatial learning differently modifies the structural and electrophysiological properties of hippocampal synapses in APP23 and wild-type mice. While…

  19. Synapse clusters are preferentially formed by synapses with large recycling pool sizes.

    Directory of Open Access Journals (Sweden)

    Oliver Welzel

    Full Text Available Synapses are distributed heterogeneously in neural networks. The relationship between the spatial arrangement of synapses and an individual synapse's structural and functional features remains to be elucidated. Here, we examined the influence of the number of adjacent synapses on individual synaptic recycling pool sizes. When measuring the discharge of the styryl dye FM1-43 from electrically stimulated synapses in rat hippocampal tissue cultures, a strong positive correlation between the number of neighbouring synapses and recycling vesicle pool sizes was observed. Accordingly, vesicle-rich synapses were found to preferentially reside next to neighbours with large recycling pool sizes. Although these synapses with large recycling pool sizes were rare, they were densely arranged and thus exhibited a high amount of release per volume. To consolidate these findings, functional terminals were marked by live-cell antibody staining with anti-synaptotagmin-1-cypHer or overexpression of synaptopHluorin. Analysis of synapse distributions in these systems confirmed the results obtained with FM 1-43. Our findings support the idea that clustering of synapses with large recycling pool sizes is a distinct developmental feature of newly formed neural networks and may contribute to functional plasticity.

  20. Involvement of brain-derived neurotrophic factor (BDNF) in the functional elimination of synaptic contacts at polyinnervated neuromuscular synapses during development.

    Science.gov (United States)

    Garcia, N; Santafe, M M; Tomàs, M; Lanuza, M A; Besalduch, N; Tomàs, J

    2010-05-15

    We use immunohistochemistry to describe the localization of brain-derived neurotrophic factor (BDNF) and its receptors trkB and p75(NTR) in the neuromuscular synapses of postnatal rats (P6-P7) during the synapse elimination period. The receptor protein p75(NTR) is present in the nerve terminal, muscle cell and glial Schwann cell whereas BDNF and trkB proteins can be detected mainly in the pre- and postsynaptic elements. Exogenously applied BDNF (10 nM for 3 hr or 50 nM for 1 hr) increases ACh release from singly and dually innervated synapses. This effect may be specific for BDNF because the neurotrophin NT-4 (2-8 nM) does not modulate release at P6-P7. Blocking the receptors trkB and p75(NTR) (with K-252a and anti-p75-192-IgG, respectively) completely abolishes the potentiating effect of exogenous BDNF. In addition, exogenous BDNF transiently recruits functionally depressed silent terminals, and this effect seems to be mediated by trkB. Calcium ions, the L-type voltage-dependent calcium channels and protein kinase C are involved in BDNF-mediated nerve ending recruitment. Blocking experiments suggest that endogenous BDNF could operate through p75(NTR) receptors coupled to potentiate ACh release in all nerve terminals because the anti-p75-192-IgG reduces release. However, blocking the trkB receptor (K-252a) or neutralizing endogenous BDNF with the trkB-IgG fusion protein reveals a trkB-mediated release inhibition on almost mature strong endings in dual junctions. Taken together these results suggest that a BDNF-induced p75(NTR)-mediated ACh release potentiating mechanism and a BDNF-induced trkB-mediated release inhibitory mechanism may contribute to developmental synapse disconnection.

  1. Motor neuron synapse and axon defects in a C. elegans alpha-tubulin mutant.

    Directory of Open Access Journals (Sweden)

    Renee Baran

    Full Text Available Regulation of microtubule dynamics underlies many fundamental cellular mechanisms including cell division, cell motility, and transport. In neurons, microtubules play key roles in cell migration, axon outgrowth, control of axon and synapse growth, and the regulated transport of vesicles and structural components of synapses. Loss of synapse and axon integrity and disruption of axon transport characterize many neurodegenerative diseases. Recently, mutations that specifically alter the assembly or stability of microtubules have been found to directly cause neurodevelopmental defects or neurodegeneration in vertebrates. We report here the characterization of a missense mutation in the C-terminal domain of C. elegans alpha-tubulin, tba-1(ju89, that disrupts motor neuron synapse and axon development. Mutant ju89 animals exhibit reduction in the number and size of neuromuscular synapses, altered locomotion, and defects in axon extension. Although null mutations of tba-1 show a nearly wild-type pattern, similar axon outgrowth defects were observed in animals lacking the beta-tubulin TBB-2. Genetic analysis reveals that tba-1(ju89 affects synapse development independent of its role in axon outgrowth. tba-1(ju89 is an altered function allele that most likely perturbs interactions between TBA-1 and specific microtubule-associated proteins that control microtubule dynamics and transport of components needed for synapse and axon growth.

  2. Role of mental retardation-associated dystrophin-gene product Dp71 in excitatory synapse organization, synaptic plasticity and behavioral functions.

    Directory of Open Access Journals (Sweden)

    Fatma Daoud

    Full Text Available BACKGROUND: Duchenne muscular dystrophy (DMD is caused by deficient expression of the cytoskeletal protein, dystrophin. One third of DMD patients also have mental retardation (MR, likely due to mutations preventing expression of dystrophin and other brain products of the DMD gene expressed from distinct internal promoters. Loss of Dp71, the major DMD-gene product in brain, is thought to contribute to the severity of MR; however, the specific function of Dp71 is poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: Complementary approaches were used to explore the role of Dp71 in neuronal function and identify mechanisms by which Dp71 loss may impair neuronal and cognitive functions. Besides the normal expression of Dp71 in a subpopulation of astrocytes, we found that a pool of Dp71 colocalizes with synaptic proteins in cultured neurons and is expressed in synaptic subcellular fractions in adult brains. We report that Dp71-associated protein complexes interact with specialized modular scaffolds of proteins that cluster glutamate receptors and organize signaling in postsynaptic densities. We then undertook the first functional examination of the brain and cognitive alterations in the Dp71-null mice. We found that these mice display abnormal synapse organization and maturation in vitro, altered synapse density in the adult brain, enhanced glutamatergic transmission and reduced synaptic plasticity in CA1 hippocampus. Dp71-null mice show selective behavioral disturbances characterized by reduced exploratory and novelty-seeking behavior, mild retention deficits in inhibitory avoidance, and impairments in spatial learning and memory. CONCLUSIONS/SIGNIFICANCE: Results suggest that Dp71 expression in neurons play a regulatory role in glutamatergic synapse organization and function, which provides a new mechanism by which inactivation of Dp71 in association with that of other DMD-gene products may lead to increased severity of MR.

  3. Preoperative liver functional volumetry performed by 3D-99mTc-GSA scintigraphy/vascular fusion imaging using SYNAPSE VINCENT:a preliminary study

    Institute of Scientific and Technical Information of China (English)

    Hiroshi Yoshida; Hiroshi Makino; Tadashi Yokoyama; Hiroshi Maruyama; Atsushi Hirakata; Junji Ueda; Yasuhiro Mamada; Nobuhiko Taniai; Eiji Uchida

    2016-01-01

    Aim: The present study was designed to evaluate the feasibility of preoperative liver functional volumetry performed by 3D-technetium-99m-diethylenetriaminepentaacetic acid-galactosyl-human serum albumin (99mTc-GSA) scintigraphy/vascular fusion imaging using SYNAPSE VINCENT and to examine the discrepancy between conventional and functional volumetry.Methods: The study group comprised 15 patients who underwent preoperative 3-dimensional (3D)-99mTc-GSA scintigraphy/vascular fusion imaging using SYNAPSE VINCENT software before hepatectomy between July 2014 and August 2015. The diagnosis was hepatocelular carcinoma (n = 4), metastatic liver tumor (n = 10), or intrahepatic cholangiocarcinoma (n = 1). Right hepatectomy was performed in 2 patients, left hepatectomy in 3 patients, right posterior sectionectomy in 3 patients, segmentectomy in 2 patients, and partial hepatectomy in 4 patients. 99mTc-GSA scintigraphy and computed tomography (CT) were performed to construct 3D-99mTc-GSA scintigraphy/vascular fused images. The conventional volume ratio of the planned resection region without tumor (% CT), and the functional volume ratio of the planned resection region without tumor (% GSA) were calculated. The discrepancy ratio was calculated as folows: discrepancy ratio = 100 - % GSA/ % CT × 100 (%).Results: The % GSA (17.9 ± 16.7%) was signiifcantly lower than the % CT (21.5 ± 17.6%) (P < 0.036). In al except 2 patients, the % GSA was lower than the % CT. The discrepancy ratio ranged from -4% to 75% (median, 20.7%).Conclusion: 3D-99mTc-GSA scintigraphy/vascular fused images constructed using SYNAPSE VINCENT were useful for noninvasively performing functional liver volumetry in patients scheduled to undergo various patterns of hepatectomy. In planned resection regions without tumor, the functional volume ratio was about 20% lower than the conventional volume ratio.

  4. IgSF8: a developmentally and functionally regulated cell adhesion molecule in olfactory sensory neuron axons and synapses

    OpenAIRE

    Ray, Arundhati; Treloar, Helen B.

    2012-01-01

    Here, we investigated an Immunoglobulin (Ig) superfamily protein IgSF8 which is abundantly expressed in olfactory sensory neuron (OSN) axons and their developing synapses. We demonstrate that expression of IgSF8 within synaptic neuropil is transitory, limited to the period of glomerular formation. Glomerular expression decreases after synaptic maturation and compartmental glomerular organization is achieved, although expression is maintained at high levels within the olfactory nerve layer (ON...

  5. Ongoing intrinsic synchronous activity is required for the functional maturation of CA3-CA1 glutamatergic synapses.

    Science.gov (United States)

    Huupponen, Johanna; Molchanova, Svetlana M; Lauri, Sari E; Taira, Tomi

    2013-11-01

    Fine-tuning of synaptic connectivity during development is guided by intrinsic activity of the immature networks characteristically consisting of intermittent bursts of synchronous activity. However, the role of synchronous versus asynchronous activity in synapse maturation in the brain is unclear. Here, we have pharmacologically prevented generation of synchronous activity in the immature rat CA3-CA1 circuitry in a manner that preserves unitary activity. Long-term desynchronization of the network resulted in weakening of AMPA-receptor-mediated glutamatergic transmission in CA1 pyramidal cells. This weakening was dependent on protein phosphatases and mGluR activity, associated with an increase in the proportion of silent synapses and a decrease in the protein levels of GluA4 suggesting postsynaptic mechanisms of expression. The findings demonstrate that synchronous activity in the immature CA3-CA1 circuitry is critical for the induction and maintenance of glutamatergic synapses and underscores the importance of temporal activity patterns in shaping the synaptic circuitry during development.

  6. Shaping inhibition: activity dependent structural plasticity of GABAergic synapses

    Directory of Open Access Journals (Sweden)

    Carmen E Flores

    2014-10-01

    Full Text Available Inhibitory transmission through the neurotransmitter Ɣ-aminobutyric acid (GABA shapes network activity in the mammalian cerebral cortex by filtering synaptic incoming information and dictating the activity of principal cells. The incredibly diverse population of cortical neurons that use GABA as neurotransmitter shows an equally diverse range of mechanisms that regulate changes in the strength of GABAergic synaptic transmission and allow them to dynamically follow and command the activity of neuronal ensembles. Similarly to glutamatergic synaptic transmission, activity-dependent functional changes in inhibitory neurotransmission are accompanied by alterations in GABAergic synapse structure that range from morphological reorganization of postsynaptic density to de novo formation and elimination of inhibitory contacts. Here we review several aspects of structural plasticity of inhibitory synapses, including its induction by different forms of neuronal activity, behavioral and sensory experience and the molecular mechanisms and signaling pathways involved. We discuss the functional consequences of GABAergic synapse structural plasticity for information processing and memory formation in view of the heterogenous nature of the structural plasticity phenomena affecting inhibitory synapses impinging on somatic and dendritic compartments of cortical and hippocampal neurons.

  7. Functional expression of the GABAA receptor alpha2 and alpha3 subunits at synapses between intercalated medial paracapsular neurons of mouse amygdala

    Directory of Open Access Journals (Sweden)

    Raffaella eGeracitano

    2012-05-01

    Full Text Available In the amygdala, GABAergic neurons in the intercalated medial paracapsular cluster (Imp have been suggested to play a key role in fear learning and extinction. These neurons project to the central amygdaloid nucleus and to other areas within and outside the amygdala. In addition, they give rise to local collaterals that innervate other neurons in the Imp. Several drugs, including benzodiazepines, are allosteric modulators of GABA-A receptors. Benzodiazepines have both anxiolytic and sedative actions, which are mediated through GABA-A receptors containing alpha2/3 and alpha1 subunits, respectively. To establish whether alpha1 or alpha2/3 subunits are expressed at Imp cell synapses, we used paired recordings of anatomically-identified Imp neurons and high resolution immunocytochemistry in the mouse. We observed that a selective alpha3 subunit agonist, TP003 (100 nM, significantly increased the decay time constant of the unitary IPSCs. A similar effect was also induced by zolpidem (10 microM or by diazepam (1 microM. In contrast, lower doses of zolpidem (0.1-1 microM did not significantly alter the kinetics of the unitary IPSCs. Accordingly, immunocytochemical experiments established that the alpha2 and alpha3, but not the alpha1 subunits of the GABA-A receptors, were present at Imp cell synapses of the mouse amygdala. These results define, for the first time, some of the functional GABA-A receptor subunits expressed at synapses of Imp cells. The data also provide an additional rationale to prompt the search of GABA-A receptor alpha3 selective ligands as improved anxiolytic drugs.

  8. Zinc-Induced Polymerization of Killer-Cell Ig-like Receptor into Filaments Promotes Its Inhibitory Function at Cytotoxic Immunological Synapses.

    Science.gov (United States)

    Kumar, Santosh; Rajagopalan, Sumati; Sarkar, Pabak; Dorward, David W; Peterson, Mary E; Liao, Hsien-Shun; Guillermier, Christelle; Steinhauser, Matthew L; Vogel, Steven S; Long, Eric O

    2016-04-07

    The inhibitory function of killer cell immunoglobulin-like receptors (KIR) that bind HLA-C and block activation of human natural killer (NK) cells is dependent on zinc. We report that zinc induced the assembly of soluble KIR into filamentous polymers, as detected by electron microscopy, which depolymerized after zinc chelation. Similar KIR filaments were isolated from lysates of cells treated with zinc, and membrane protrusions enriched in zinc were detected on whole cells by scanning electron microscopy and imaging mass spectrometry. Two independent mutations in the extracellular domain of KIR, away from the HLA-C binding site, impaired zinc-driven polymerization and inhibitory function. KIR filaments formed spontaneously, without the addition of zinc, at functional inhibitory immunological synapses of NK cells with HLA-C(+) cells. Adding to the recent paradigm of signal transduction through higher order molecular assemblies, zinc-induced polymerization of inhibitory KIR represents an unusual mode of signaling by a receptor at the cell surface.

  9. Astrocyte-Synapse Structural Plasticity

    OpenAIRE

    2014-01-01

    The function and efficacy of synaptic transmission are determined not only by the composition and activity of pre- and postsynaptic components but also by the environment in which a synapse is embedded. Glial cells constitute an important part of this environment and participate in several aspects of synaptic functions. Among the glial cell family, the roles played by astrocytes at the synaptic level are particularly important, ranging from the trophic support to the fine-tuning of transmissi...

  10. Does selenium supplementation affect thyroid function?

    DEFF Research Database (Denmark)

    Winther, Kristian Hillert; Bonnema, Steen Joop; Cold, Frederik

    2015-01-01

    OBJECTIVE: Selenium is present in the active site of proteins important for thyroid hormone synthesis and metabolism. The objective of this study is to investigate the effect of selenium supplementation in different doses on thyroid function, under conditions of suboptimal dietary selenium intake....... DESIGN: The Danish PREvention of Cancer by Intervention with SElenium pilot study (DK-PRECISE) is a randomized, double-blinded, placebo-controlled trial. A total of 491 males and females aged 60-74 years were randomized to 100 μg (n=124), 200 μg (n=122), or 300 μg (n=119) selenium-enriched yeast......=0.015), respectively, per 100 μg/day increase, with insignificant differences between 6 months and 5 years. No significant effects were found for FT3 and FT3:FT4 ratio. CONCLUSIONS: In euthyroid subjects, selenium supplementation minutely and dose-dependently affects thyroid function, when compared...

  11. The Diversity of Cortical Inhibitory Synapses

    Directory of Open Access Journals (Sweden)

    Yoshiyuki eKubota

    2016-04-01

    Full Text Available The most typical and well known inhibitory action in the cortical microcircuit is a strong inhibition on the target neuron by axo-somatic synapses. However, it has become clear that synaptic inhibition in the cortex is much more diverse and complicated. Firstly, at least ten or more inhibitory non-pyramidal cell subtypes engage in diverse inhibitory functions to produce the elaborate activity characteristic of the different cortical states. Each distinct non-pyramidal cell subtype has its own independent inhibitory function. Secondly, the inhibitory synapses innervate different neuronal domains, such as axons, spines, dendrites and soma, and their IPSP size is not uniform. Thus cortical inhibition is highly complex, with a wide variety of anatomical and physiological modes. Moreover, the functional significance of the various inhibitory synapse innervation styles and their unique structural dynamic behaviors differ from those of excitatory synapses. In this review, we summarize our current understanding of the inhibitory mechanisms of the cortical microcircuit.

  12. ApoE receptor 2 regulates synapse and dendritic spine formation.

    Directory of Open Access Journals (Sweden)

    Sonya B Dumanis

    Full Text Available BACKGROUND: Apolipoprotein E receptor 2 (ApoEr2 is a postsynaptic protein involved in long-term potentiation (LTP, learning, and memory through unknown mechanisms. We examined the biological effects of ApoEr2 on synapse and dendritic spine formation-processes critical for learning and memory. METHODOLOGY/PRINCIPAL FINDINGS: In a heterologous co-culture synapse assay, overexpression of ApoEr2 in COS7 cells significantly increased colocalization with synaptophysin in primary hippocampal neurons, suggesting that ApoEr2 promotes interaction with presynaptic structures. In primary neuronal cultures, overexpression of ApoEr2 increased dendritic spine density. Consistent with our in vitro findings, ApoEr2 knockout mice had decreased dendritic spine density in cortical layers II/III at 1 month of age. We also tested whether the interaction between ApoEr2 and its cytoplasmic adaptor proteins, specifically X11α and PSD-95, affected synapse and dendritic spine formation. X11α decreased cell surface levels of ApoEr2 along with synapse and dendritic spine density. In contrast, PSD-95 increased cell surface levels of ApoEr2 as well as synapse and dendritic spine density. CONCLUSIONS/SIGNIFICANCE: These results suggest that ApoEr2 plays important roles in structure and function of CNS synapses and dendritic spines, and that these roles are modulated by cytoplasmic adaptor proteins X11α and PSD-95.

  13. Astrocyte-Synapse Structural Plasticity

    Directory of Open Access Journals (Sweden)

    Yann Bernardinelli

    2014-01-01

    Full Text Available The function and efficacy of synaptic transmission are determined not only by the composition and activity of pre- and postsynaptic components but also by the environment in which a synapse is embedded. Glial cells constitute an important part of this environment and participate in several aspects of synaptic functions. Among the glial cell family, the roles played by astrocytes at the synaptic level are particularly important, ranging from the trophic support to the fine-tuning of transmission. Astrocytic structures are frequently observed in close association with glutamatergic synapses, providing a morphological entity for bidirectional interactions with synapses. Experimental evidence indicates that astrocytes sense neuronal activity by elevating their intracellular calcium in response to neurotransmitters and may communicate with neurons. The precise role of astrocytes in regulating synaptic properties, function, and plasticity remains however a subject of intense debate and many aspects of their interactions with neurons remain to be investigated. A particularly intriguing aspect is their ability to rapidly restructure their processes and modify their coverage of the synaptic elements. The present review summarizes some of these findings with a particular focus on the mechanisms driving this form of structural plasticity and its possible impact on synaptic structure and function.

  14. Pulmonary Function Affects Language Performance in Aging

    Directory of Open Access Journals (Sweden)

    Lewina O Lee

    2014-04-01

    associated with better ES performance (B = 6.64, SE = 2.43, p = .01. Higher FVC and FEV1 were related to better MN performance, but this did not reach statistical significance (FVC: B = 3.68, SE = 2.16, p = .09; FEV1: B = 4.92, SE = 2.64, p = .06. Higher FVC (B = 3.98, SE = 1.44, p = .01 and FEV1 (B = 4.79, SE = 1.75, p = .01 were associated with better ANT performance. The positive association between PF and BNT performance was marginally significant (FVC: B = 4.19, SE = 2.18, p = .06; FEV1: B = 3.51, SE = 2.66, p = .10. Discussion and Conclusion Better PF was associated with higher accuracy on sentence processing and naming-based lexical retrieval tasks, consistent with the conclusion that pulmonary function affects older adults’ language performance. Our findings support the emerging thesis that language changes in aging are influenced by health-related physiological and neural mechanisms (e.g., Albert et al., 2009; Cahana-Amitay et al., 2013. From a clinical perspective, these findings highlight the promise of targeting PF as an intervention for improving language abilities among the elderly.

  15. Specific functions of synaptically localized potassium channels in synaptic transmission at the neocortical GABAergic fast-spiking cell synapse.

    Science.gov (United States)

    Goldberg, Ethan M; Watanabe, Shigeo; Chang, Su Ying; Joho, Rolf H; Huang, Z Josh; Leonard, Christopher S; Rudy, Bernardo

    2005-05-25

    Potassium (K+) channel subunits of the Kv3 subfamily (Kv3.1-Kv3.4) display a positively shifted voltage dependence of activation and fast activation/deactivation kinetics when compared with other voltage-gated K+ channels, features that confer on Kv3 channels the ability to accelerate the repolarization of the action potential (AP) efficiently and specifically. In the cortex, the Kv3.1 and Kv3.2 proteins are expressed prominently in a subset of GABAergic interneurons known as fast-spiking (FS) cells and in fact are a significant determinant of the fast-spiking discharge pattern. However, in addition to expression at FS cell somata, Kv3.1 and Kv3.2 proteins also are expressed prominently at FS cell terminals, suggesting roles for Kv3 channels in neurotransmitter release. We investigated the effect of 1.0 mM tetraethylammonium (TEA; which blocks Kv3 channels) on inhibitory synaptic currents recorded in layer II/III neocortical pyramidal cells. Spike-evoked GABA release by FS cells was enhanced nearly twofold by 1.0 mM TEA, with a decrease in the paired pulse ratio (PPR), effects not reproduced by blockade of the non-Kv3 subfamily K+ channels also blocked by low concentrations of TEA. Moreover, in Kv3.1/Kv3.2 double knock-out (DKO) mice, the large effects of TEA were absent, spike-evoked GABA release was larger, and the PPR was lower than in wild-type mice. Together, these results suggest specific roles for Kv3 channels at FS cell terminals that are distinct from those of Kv1 and large-conductance Ca2+-activated K+ channels (also present at the FS cell synapse). We propose that at FS cell terminals synaptically localized Kv3 channels keep APs brief, limiting Ca2+ influx and hence release probability, thereby influencing synaptic depression at a synapse designed for sustained high-frequency synaptic transmission.

  16. Comparative anatomy of phagocytic and immunological synapses

    Directory of Open Access Journals (Sweden)

    Florence eNiedergang

    2016-01-01

    Full Text Available The generation of phagocytic cups and immunological synapses are crucial events of the innate and adaptive immune responses, respectively. They are triggered by distinct immune receptors and performed by different cell types. However, growing experimental evidence shows that a very close series of molecular and cellular events control these two processes. Thus, the tight and dynamic interplay between receptor signaling, actin and microtubule cytoskeleton, and targeted vesicle traffic are all critical features to build functional phagosomes and immunological synapses. Interestingly, both phagocytic cups and immunological synapses display particular spatial and temporal patterns of receptors and signaling molecules, leading to the notion of phagocytic synapse. Here we discuss both types of structures, their organization and the mechanisms by which they are generated and regulated.

  17. Optogenetic mapping of cerebellar inhibitory circuitry reveals spatially biased coordination of interneurons via electrical synapses.

    Science.gov (United States)

    Kim, Jinsook; Lee, Soojung; Tsuda, Sachiko; Zhang, Xuying; Asrican, Brent; Gloss, Bernd; Feng, Guoping; Augustine, George J

    2014-06-12

    We used high-speed optogenetic mapping technology to examine the spatial organization of local inhibitory circuits formed by cerebellar interneurons. Transgenic mice expressing channelrhodopsin-2 exclusively in molecular layer interneurons allowed us to focally photostimulate these neurons, while measuring resulting responses in postsynaptic Purkinje cells. This approach revealed that interneurons converge upon Purkinje cells over a broad area and that at least seven interneurons form functional synapses with a single Purkinje cell. The number of converging interneurons was reduced by treatment with gap junction blockers, revealing that electrical synapses between interneurons contribute substantially to the spatial convergence. Remarkably, gap junction blockers affected convergence in sagittal slices, but not in coronal slices, indicating a sagittal bias in electrical coupling between interneurons. We conclude that electrical synapse networks spatially coordinate interneurons in the cerebellum and may also serve this function in other brain regions.

  18. A bionics chemical synapse.

    Science.gov (United States)

    Thanapitak, Surachoke; Toumazou, Christofer

    2013-06-01

    Implementation of the current mode CMOS circuit for chemical synapses (AMPA and NMDA receptors) with dynamic change of glutamate as the neurotransmitter input is presented in this paper. Additionally, circuit realisation for receptor GABA(A) and GABA(B) with an electrical signal which symbolises γ-Aminobutyric Acid (GABA) perturbation is introduced. The chemical sensor for glutamate sensing is the modified ISFET with enzyme (glutamate oxidase) immobilisation. The measured results from these biomimetics chemical synapse circuits closely match with the simulation result from the mathematical model. The total power consumption of the whole chip (four chemical synapse circuits and all auxiliary circuits) is 168.3 μW. The total chip area is 3 mm(2) in 0.35-μm AMS CMOS technology.

  19. Glutamatergic Signaling at the Vestibular Hair Cell Calyx Synapse

    NARCIS (Netherlands)

    Sadeghi, Soroush G.; Pyott, Sonja J.; Yu, Zhou; Glowatzki, Elisabeth

    2014-01-01

    In the vestibular periphery a unique postsynaptic terminal, the calyx, completely covers the basolateral walls of type I hair cells and receives input from multiple ribbon synapses. To date, the functional role of this specialized synapse remains elusive. There is limited data supporting glutamaterg

  20. Functional inactivation of a fraction of excitatory synapses in mice deficient for the active zone protein bassoon

    DEFF Research Database (Denmark)

    Altrock, Wilko D; tom Dieck, Susanne; Sokolov, Maxim;

    2003-01-01

    Mutant mice lacking the central region of the presynaptic active zone protein Bassoon were generated to establish the role of this protein in the assembly and function of active zones as sites of synaptic vesicle docking and fusion. Our data show that the loss of Bassoon causes a reduction in nor...

  1. CD103 or LFA-1 engagement at the immune synapse between cytotoxic T cells and tumor cells promotes maturation and regulates T-cell effector functions.

    Science.gov (United States)

    Franciszkiewicz, Katarzyna; Le Floc'h, Audrey; Boutet, Marie; Vergnon, Isabelle; Schmitt, Alain; Mami-Chouaib, Fathia

    2013-01-15

    T-cell adhesion/costimulatory molecules and their cognate receptors on target cells play a major role in T-cell receptor (TCR)-mediated activities. Here, we compared the involvement of CD103 and LFA-1, and their respective ligands, in the maturation of the cytotoxic immune synapse (cIS) and in the activation of CTL effector functions. Our results indicate that cytotoxicity toward cancer cells and, to a lesser extent, cytokine production by specific CTL require, together with TCR engagement, the interaction of either CD103 with E-cadherin or LFA-1 with ICAM-1. Flow-based adhesion assay showed that engagement of CD103 or LFA-1, together with TCR, enhances the strength of the T-cell/target cell interaction. Moreover, electron microscopic analyses showed that integrin-dependent mature cIS (mcIS) displays a cohesive ultrastructure, with tight membrane contacts separated by extensive clefts. In contrast, immature cIS (icIS), which is unable to trigger target cell lysis, is loose, with multiple protrusions in the effector cell membrane. Experiments using confocal microscopy revealed polarized cytokine release and degranulation at the mcIS associated with target cell killing, whereas icIS is characterized by failure of IFN-γ and granzyme B relocalization. Thus, interactive forces between CTL and epithelial tumor cells, mainly regulated by integrin engagement, correlate with maturity and the ultrastructure of the cIS and influence CTL effector functions. These results provide new insights into molecular mechanisms regulating antitumor CTL responses and may lead to the development of more efficient cancer immunotherapy strategies.

  2. Does Acquired Hypothyroidism Affect the Hearing Functions?

    Directory of Open Access Journals (Sweden)

    Ayşe Arduç

    2015-12-01

    Full Text Available Purpose: It is well known that congenital hypothyroidism can cause hearing loss. However, conflicting results were found in studies investigating hearing functions in acquired hypothyroidism. Therefore, we evaluated the audiometric findings in patients with acquired hypothyroidism. Material and Method: The study included 58 patients with hypothyroidism and age- and gender-matched 34 healthy controls. Twenty eight (48.27% patients had subclinical hypothyroidism, and 30 (51.73% had obvious hypothyroidism. All subjects had a normal otoscopic examination and tympanometry. Pure tone audiometry at 250, 500, 1000, 2000, 4000, 6000, and 8000 Hertz (Hz was performed in both groups. Blood pressure measurements and the levels of plasma electrolytes, lipids and vitamin B12 were available in all subjects. Results: Hypothyroidism group and control group were similar with respect to systolic and diastolic blood pressures and plasma glucose, lipid, vitamin B12, calcium, sodium, potassium, and chloride levels. Significantly higher audiometric thresholds (dB at 250 (10 (0-45 vs. 5 (0-15, p<0.001 and 500 Hz (10 (0-40 vs. 10 (-5-15, p=0.003 were recorded in hypothyroid patients compared to that in healthy controls. Hearing thresholds at 250 and 500 Hz correlated positively with thyroid-stimulating hormone (TSH, and negatively with free triiodothyronine and free thyroxine. Subclinical hypothyroid patients had a higher hearing threshold at 250 Hz than healthy controls (p=0.001. Discussion: Our study demonstrated that hearing ability decreases in hypothyroidism, even in subclinical hypothyroidism. The changes in TSH and thyroid hormone levels seem to be directly related to the hearing loss in this population of patients.

  3. Rhythmic Changes in Synapse Numbers in Drosophila melanogaster Motor Terminals

    Science.gov (United States)

    Ruiz, Santiago; Ferreiro, Maria Jose; Menhert, Kerstin I.; Casanova, Gabriela; Olivera, Alvaro; Cantera, Rafael

    2013-01-01

    Previous studies have shown that the morphology of the neuromuscular junction of the flight motor neuron MN5 in Drosophila melanogaster undergoes daily rhythmical changes, with smaller synaptic boutons during the night, when the fly is resting, than during the day, when the fly is active. With electron microscopy and laser confocal microscopy, we searched for a rhythmic change in synapse numbers in this neuron, both under light:darkness (LD) cycles and constant darkness (DD). We expected the number of synapses to increase during the morning, when the fly has an intense phase of locomotion activity under LD and DD. Surprisingly, only our DD data were consistent with this hypothesis. In LD, we found more synapses at midnight than at midday. We propose that under LD conditions, there is a daily rhythm of formation of new synapses in the dark phase, when the fly is resting, and disassembly over the light phase, when the fly is active. Several parameters appeared to be light dependent, since they were affected differently under LD or DD. The great majority of boutons containing synapses had only one and very few had either two or more, with a 70∶25∶5 ratio (one, two and three or more synapses) in LD and 75∶20∶5 in DD. Given the maintenance of this proportion even when both bouton and synapse numbers changed with time, we suggest that there is a homeostatic mechanism regulating synapse distribution among MN5 boutons. PMID:23840613

  4. Spatial distribution of excitatory synapses on the dendrites of ganglion cells in the mouse retina.

    Science.gov (United States)

    Chen, Yin-Peng; Chiao, Chuan-Chin

    2014-01-01

    Excitatory glutamatergic inputs from bipolar cells affect the physiological properties of ganglion cells in the mammalian retina. The spatial distribution of these excitatory synapses on the dendrites of retinal ganglion cells thus may shape their distinct functions. To visualize the spatial pattern of excitatory glutamatergic input into the ganglion cells in the mouse retina, particle-mediated gene transfer of plasmids expressing postsynaptic density 95-green fluorescent fusion protein (PSD95-GFP) was used to label the excitatory synapses. Despite wide variation in the size and morphology of the retinal ganglion cells, the expression of PSD95 puncta was found to follow two general rules. Firstly, the PSD95 puncta are regularly spaced, at 1-2 µm intervals, along the dendrites, whereby the presence of an excitatory synapse creates an exclusion zone that rules out the presence of other glutamatergic synaptic inputs. Secondly, the spatial distribution of PSD95 puncta on the dendrites of diverse retinal ganglion cells are similar in that the number of excitatory synapses appears to be less on primary dendrites and to increase to a plateau on higher branch order dendrites. These observations suggest that synaptogenesis is spatially regulated along the dendritic segments and that the number of synaptic contacts is relatively constant beyond the primary dendrites. Interestingly, we also found that the linear puncta density is slightly higher in large cells than in small cells. This may suggest that retinal ganglion cells with a large dendritic field tend to show an increased connectivity of excitatory synapses that makes up for their reduced dendrite density. Mapping the spatial distribution pattern of the excitatory synapses on retinal ganglion cells thus provides explicit structural information that is essential for our understanding of how excitatory glutamatergic inputs shape neuronal responses.

  5. SIFT: predicting amino acid changes that affect protein function

    OpenAIRE

    Ng, Pauline C.; Henikoff, Steven

    2003-01-01

    Single nucleotide polymorphism (SNP) studies and random mutagenesis projects identify amino acid substitutions in protein-coding regions. Each substitution has the potential to affect protein function. SIFT (Sorting Intolerant From Tolerant) is a program that predicts whether an amino acid substitution affects protein function so that users can prioritize substitutions for further study. We have shown that SIFT can distinguish between functionally neutral and deleterious amino acid changes in...

  6. Synapse formation on neurons born in the adult hippocampus.

    Science.gov (United States)

    Toni, Nicolas; Teng, E Matthew; Bushong, Eric A; Aimone, James B; Zhao, Chunmei; Consiglio, Antonella; van Praag, Henriette; Martone, Maryann E; Ellisman, Mark H; Gage, Fred H

    2007-06-01

    Although new and functional neurons are produced in the adult brain, little is known about how they integrate into mature networks. Here we explored the mechanisms of synaptogenesis on neurons born in the adult mouse hippocampus using confocal microscopy, electron microscopy and live imaging. We report that new neurons, similar to mature granule neurons, were contacted by axosomatic, axodendritic and axospinous synapses. Consistent with their putative role in synaptogenesis, dendritic filopodia were more abundant during the early stages of maturation and, when analyzed in three dimensions, the tips of all filopodia were found within 200 nm of preexisting boutons that already synapsed on other neurons. Furthermore, dendritic spines primarily synapsed on multiple-synapse boutons, suggesting that initial contacts were preferentially made with preexisting boutons already involved in a synapse. The connectivity of new neurons continued to change until at least 2 months, long after the formation of the first dendritic protrusions.

  7. Copper at synapse: Release, binding and modulation of neurotransmission.

    Science.gov (United States)

    D'Ambrosi, Nadia; Rossi, Luisa

    2015-11-01

    Over the last decade, a piece of the research studying copper role in biological systems was devoted to unravelling a still elusive, but extremely intriguing, aspect that is the involvement of copper in synaptic function. These studies were prompted to provide a rationale to the finding that copper is released in the synaptic cleft upon depolarization. The copper pump ATP7A, which mutations are responsible for diseases with a prominent neurodegenerative component, seems to play a pivotal role in the release of copper at synapses. Furthermore, it was found that, when in the synaptic cleft, copper can control, directly or indirectly, the activity of the neurotransmitter receptors (NMDA, AMPA, GABA, P2X receptors), thus affecting excitability. In turn, neurotransmission can affect copper trafficking and delivery in neuronal cells. Furthermore, it was reported that copper can also modulate synaptic vesicles trafficking and the interaction between proteins of the secretory pathways. Interestingly, proteins with a still unclear role in neuronal system though associated with the pathogenesis of neurodegenerative diseases (the amyloid precursor protein, APP, the prion protein, PrP, α-synuclein, α-syn) show copper-binding domains. They may act as copper buffer at synapses and participate in the interplay between copper and the neurotransmitters receptors. Given that copper dysmetabolism occurs in several diseases affecting central and peripheral nervous system, the findings on the contribution of copper in synaptic transmission, beside its more consolidate role as a neuronal enzymes cofactor, may open new insights for therapy interventions.

  8. New (but old) molecules regulating synapse integrity and plasticity: Cbln1 and the delta2 glutamate receptor.

    Science.gov (United States)

    Yuzaki, M

    2009-09-01

    The delta2 glutamate receptor (GluRdelta2) is predominantly expressed in cerebellar Purkinje cells and plays crucial roles in cerebellar functions: GluRdelta2-null mice display ataxia and impaired motor learning. Interestingly, the contact state of synapses between parallel fibers (PFs) and Purkinje cells is specifically and severely affected, and the number of normal PF synapses is markedly reduced in GluRdelta2-null Purkinje cells. Furthermore, long-term depression at PF-Purkinje cell synapses is abrogated. Cbln1, a member of the C1q/tumor necrosis factor (TNF) superfamily, is predominantly expressed and released from cerebellar granule cells. Unexpectedly, the behavioral, physiological and anatomical phenotypes of cbln1-null mice precisely mimic those of GluRdelta2-null mice. Thus, we propose that Cbln1, which is released from granule cells, and GluRdelta2, which is predominantly expressed in Purkinje cells, are involved in a common signaling pathway crucial for synapse formation/maintenance and plasticity in the cerebellum. Since molecules related to Cbln1 are expressed in various brain regions other than the cerebellum, other C1q/TNF superfamily proteins may also regulate various aspects of synapses in the CNS. Therefore, an understanding of the signaling mechanisms underlying Cbln1 and GluRdelta2 in the cerebellum will provide new insights into the roles of C1q/TNF superfamily proteins as new cytokines that regulate normal and abnormal brain functions.

  9. [A new role of GABA on synapses].

    Science.gov (United States)

    Hayama, Tatsuya; Kasai, Haruo

    2014-08-01

    Neurons connect and transmit information via synapses. The major excitatory and inhibitory (E-I) neurotransmitters are glutamate and γ-amino butyric acid (GABA), respectively. The E-I balance plays an important role in various brain functions. In this review, we summarize the role of GABA on synaptic integration and synaptic plasticity by introducing our own recent findings. In synaptic integration, GABA is considered to inhibit depolarization induced by glutamate and suppress action potentials. We found that GABA also has a more direct role on the synaptic plasticity of excitatory inputs. GABA effectively promotes the shrinkage and elimination of synapses by suppressing local dendritic Ca(2+) signaling, while keeping the Ca(2+) domain of the NMDA receptors intact. In this manner, GABA promoted the activation of calcineurin, which in turn activated cofilin. Interestingly, shrinkage tended to spread, likely due to the spread of cofilin, and induced competitive selection of synapses via its phosphorylation and dephosphorylation. The selection of synapses is key to the reorganization of the central nervous system during development and in adulthood, and GABA plays key roles in various mental disorders, such as autism and schizophrenia. Our results account well for the in vivo GABA functions on synaptic selection, and may help to develop new therapeutic compounds.

  10. Differential mechanisms of transmission at three types of mossy fiber synapse.

    Science.gov (United States)

    Toth, K; Suares, G; Lawrence, J J; Philips-Tansey, E; McBain, C J

    2000-11-15

    The axons of the dentate gyrus granule cells, the so-called mossy fibers, innervate their inhibitory interneuron and pyramidal neuron targets via both anatomically and functionally specialized synapses. Mossy fiber synapses onto inhibitory interneurons were comprised of either calcium-permeable (CP) or calcium-impermeable (CI) AMPA receptors, whereas only calcium-impermeable AMPA receptors existed at CA3 principal neuron synapses. In response to brief trains of high-frequency stimuli (20 Hz), pyramidal neuron synapses invariably demonstrated short-term facilitation, whereas interneuron EPSCs demonstrated either short-term facilitation or depression. Facilitation at all CI AMPA synapses was voltage independent, whereas EPSCs at CP AMPA synapses showed greater facilitation at -20 than at -80 mV, consistent with a role for the postsynaptic unblock of polyamines. At pyramidal cell synapses, mossy fiber EPSCs possessed marked frequency-dependent facilitation (commencing at stimulation frequencies >0.1 Hz), whereas EPSCs at either type of interneuron synapse showed only moderate frequency-dependent facilitation or underwent depression. Presynaptic metabotropic glutamate receptors (mGluRs) decreased transmission at all three synapse types in a frequency-dependent manner. However, after block of presynaptic mGluRs, transmission at interneuron synapses still did not match the dynamic range of EPSCs at pyramidal neuron synapses. High-frequency stimulation of mossy fibers induced long-term potentiation (LTP), long-term depression (LTD), or no change at pyramidal neuron synapses, interneuron CP AMPA synapses, and CI AMPA synapses, respectively. Induction of LTP or LTD altered the short-term plasticity of transmission onto both pyramidal cells and interneuron CP AMPA synapses by a mechanism consistent with changes in release probability. These data reveal differential mechanisms of transmission at three classes of mossy fiber synapse made onto distinct targets.

  11. Optical Mapping of Release Properties in Synapses

    OpenAIRE

    Pablo Ariel; Ryan, Timothy A.

    2010-01-01

    Synapses are important functional units that determine how information flows through the brain. Understanding their biophysical properties and the molecules that underpin them is an important goal of cellular neuroscience. Thus, it is of interest to develop protocols that allow easy measurement of synaptic parameters in model systems that permit molecular manipulations. Here, we used a sensitive and high-time resolution optical approach that allowed us to characterize two functional parameter...

  12. Toward a molecular catalogue of synapses.

    Science.gov (United States)

    Grant, Seth G N

    2007-10-01

    1906 was a landmark year in the history of the study of the nervous system, most notably for the first 'neuroscience' Nobel prize given to the anatomists Ramon Y Cajal and Camillo Golgi. 1906 is less well known for another event, also of great significance for neuroscience, namely the publication of Charles Sherrington's book 'The Integrative Action of the Nervous system'. It was Cajal and Golgi who debated the anatomical evidence for the synapse and it was Sherrington who laid its foundation in electrophysiological function. In tribute to these pioneers in synaptic biology, this article will address the issue of synapse diversity from the molecular point of view. In particular I will reflect upon efforts to obtain a complete molecular characterisation of the synapse and the unexpectedly high degree of molecular complexity found within it. A case will be made for developing approaches that can be used to generate a general catalogue of synapse types based on molecular markers, which should have wide application.

  13. International Workshop on Structural and Functional Aspects of the Cholinergic Synapse Held in Jerusalem, Israel on 30 August-4 September 1987

    Science.gov (United States)

    1987-09-04

    synapse and the tumor cells of the mouse neuroblastoma line N11-115. Conventional electrophysiological techniques and computer assisted analysis were...AChE catalytic subunit maMA transcripts during muscle development by Northern hybridization using a cDNA encoding the AChE catalytic subunit from...transcription of ChE genes in nervous system tumors . Previous studies have shown distinct patterns of ChE molecular forms in various brain tumors [14] as

  14. Affect integration and reflective function: clarification of central conceptual issues.

    Science.gov (United States)

    Solbakken, Ole André; Hansen, Roger Sandvik; Monsen, Jon Trygve

    2011-07-01

    The importance of affect regulation, modulation or integration for higher-order reflection and adequate functioning is increasingly emphasized across different therapeutic approaches and theories of change. These processes are probably central to any psychotherapeutic endeavor, whether explicitly conceptualized or not, and in recent years a number of therapeutic approaches have been developed that explicitly target them as a primary area of change. However, there still is important lack of clarity in the field regarding the understanding and operationalization of affect integration, particularly when it comes to specifying underlying mechanisms, the significance of different affect states, and the establishment of operational criteria for measurement. The conceptual relationship between affect integration and reflective function thus remains ambiguous. The present article addresses these topics, indicating ways in which a more complex and exhaustive understanding of integration of affect, cognition and behavior can be attained.

  15. SIFT: Predicting amino acid changes that affect protein function.

    Science.gov (United States)

    Ng, Pauline C; Henikoff, Steven

    2003-07-01

    Single nucleotide polymorphism (SNP) studies and random mutagenesis projects identify amino acid substitutions in protein-coding regions. Each substitution has the potential to affect protein function. SIFT (Sorting Intolerant From Tolerant) is a program that predicts whether an amino acid substitution affects protein function so that users can prioritize substitutions for further study. We have shown that SIFT can distinguish between functionally neutral and deleterious amino acid changes in mutagenesis studies and on human polymorphisms. SIFT is available at http://blocks.fhcrc.org/sift/SIFT.html.

  16. Recruitment of activation receptors at inhibitory NK cell immune synapses.

    Directory of Open Access Journals (Sweden)

    Nicolas Schleinitz

    Full Text Available Natural killer (NK cell activation receptors accumulate by an actin-dependent process at cytotoxic immune synapses where they provide synergistic signals that trigger NK cell effector functions. In contrast, NK cell inhibitory receptors, including members of the MHC class I-specific killer cell Ig-like receptor (KIR family, accumulate at inhibitory immune synapses, block actin dynamics, and prevent actin-dependent phosphorylation of activation receptors. Therefore, one would predict inhibition of actin-dependent accumulation of activation receptors when inhibitory receptors are engaged. By confocal imaging of primary human NK cells in contact with target cells expressing physiological ligands of NK cell receptors, we show here that this prediction is incorrect. Target cells included a human cell line and transfected Drosophila insect cells that expressed ligands of NK cell activation receptors in combination with an MHC class I ligand of inhibitory KIR. The two NK cell activation receptors CD2 and 2B4 accumulated and co-localized with KIR at inhibitory immune synapses. In fact, KIR promoted CD2 and 2B4 clustering, as CD2 and 2B4 accumulated more efficiently at inhibitory synapses. In contrast, accumulation of KIR and of activation receptors at inhibitory synapses correlated with reduced density of the integrin LFA-1. These results imply that inhibitory KIR does not prevent CD2 and 2B4 signaling by blocking their accumulation at NK cell immune synapses, but by blocking their ability to signal within inhibitory synapses.

  17. Transfer characteristics of a thermosensory synapse in Caenorhabditis elegans.

    Science.gov (United States)

    Narayan, Anusha; Laurent, Gilles; Sternberg, Paul W

    2011-06-07

    Caenorhabditis elegans is a compact, attractive system for neural circuit analysis. An understanding of the functional dynamics of neural computation requires physiological analyses. We undertook the characterization of transfer at a central synapse in C. elegans by combining optical stimulation of targeted neurons with electrophysiological recordings. We show that the synapse between AFD and AIY, the first stage in the thermotactic circuit, exhibits excitatory, tonic, and graded release. We measured the linear range of the input-output curve and estimate the static synaptic gain as 0.056 (<0.1). Release showed no obvious facilitation or depression. Transmission at this synapse is peptidergic. The AFD/AIY synapse thus seems to have evolved for reliable transmission of a scaled-down temperature signal from AFD, enabling AIY to monitor and integrate temperature with other sensory input. Combining optogenetics with electrophysiology is a powerful way to analyze C. elegans' neural function.

  18. Axonal synapses utilize multiple synaptic ribbons in the mammalian retina.

    Directory of Open Access Journals (Sweden)

    Hong-Lim Kim

    Full Text Available In the mammalian retina, bipolar cells and ganglion cells which stratify in sublamina a of the inner plexiform layer (IPL show OFF responses to light stimuli while those that stratify in sublamina b show ON responses. This functional relationship between anatomy and physiology is a key principle of retinal organization. However, there are at least three types of retinal neurons, including intrinsically photosensitive retinal ganglion cells (ipRGCs and dopaminergic amacrine cells, which violate this principle. These cell types have light-driven ON responses, but their dendrites mainly stratify in sublamina a of the IPL, the OFF sublayer. Recent anatomical studies suggested that certain ON cone bipolar cells make axonal or ectopic synapses as they descend through sublamina a, thus providing ON input to cells which stratify in the OFF sublayer. Using immunoelectron microscopy with 3-dimensional reconstruction, we have identified axonal synapses of ON cone bipolar cells in the rabbit retina. Ten calbindin ON cone bipolar axons made en passant ribbon synapses onto amacrine or ganglion dendrites in sublamina a of the IPL. Compared to the ribbon synapses made by bipolar terminals, these axonal ribbon synapses were characterized by a broad postsynaptic element that appeared as a monad and by the presence of multiple short synaptic ribbons. These findings confirm that certain ON cone bipolar cells can provide ON input to amacrine and ganglion cells whose dendrites stratify in the OFF sublayer via axonal synapses. The monadic synapse with multiple ribbons may be a diagnostic feature of the ON cone bipolar axonal synapse in sublamina a. The presence of multiple ribbons and a broad postsynaptic density suggest these structures may be very efficient synapses. We also identified axonal inputs to ipRGCs with the architecture described above.

  19. Agrin and the molecular choreography of synapse formation.

    Science.gov (United States)

    Nastuk, M A; Fallon, J R

    1993-02-01

    High concentrations of neurotransmitter receptors characterize neuromuscular junctions as well as neuron-neuron synapses in the brain and periphery. Synaptic function is critically dependent upon this marshalling of neurotransmitter receptors to the post-synaptic membrane. This review discusses agrin's role in orchestrating the molecular topography of the post-synaptic apparatus at nerve-muscle synapses and the emerging evidence suggesting a role for agrin in synaptogenesis in the brain.

  20. Transfer characteristics of a thermosensory synapse in Caenorhabditis elegans

    OpenAIRE

    Narayan, Anusha; Laurent, Gilles; Sternberg, Paul W.

    2011-01-01

    Caenorhabditis elegans is a compact, attractive system for neural circuit analysis. An understanding of the functional dynamics of neural computation requires physiological analyses. We undertook the characterization of transfer at a central synapse in C. elegans by combining optical stimulation of targeted neurons with electrophysiological recordings. We show that the synapse between AFD and AIY, the first stage in the thermotactic circuit, exhibits excitatory, tonic, and graded release. We...

  1. Function if Cooperative Learning in Developing Positive Affect

    Institute of Scientific and Technical Information of China (English)

    佟玉平

    2008-01-01

    This paper focus on the function of cooperative learning in developing positive affect, Including reducing anxiety, increasing motivation, facilitating the development of positive attitudes toward learning and language learning, promoting serf- esteem, as well as supporting different learning styles and encouraging perseverance in the difficult and confusing process of learning a foreign language.

  2. Double inverse stochastic resonance with dynamic synapses

    Science.gov (United States)

    Uzuntarla, Muhammet; Torres, Joaquin J.; So, Paul; Ozer, Mahmut; Barreto, Ernest

    2017-01-01

    We investigate the behavior of a model neuron that receives a biophysically realistic noisy postsynaptic current based on uncorrelated spiking activity from a large number of afferents. We show that, with static synapses, such noise can give rise to inverse stochastic resonance (ISR) as a function of the presynaptic firing rate. We compare this to the case with dynamic synapses that feature short-term synaptic plasticity and show that the interval of presynaptic firing rate over which ISR exists can be extended or diminished. We consider both short-term depression and facilitation. Interestingly, we find that a double inverse stochastic resonance (DISR), with two distinct wells centered at different presynaptic firing rates, can appear.

  3. Presynaptic nanodomains: a tale of two synapses

    Directory of Open Access Journals (Sweden)

    Lu-Yang eWANG

    2015-01-01

    Full Text Available Here we summarize the evidence from two giant presynaptic terminals - the squid giant synapse and the mammalian calyx of Held - supporting the involvement of nanodomain calcium signals in triggering of neurotransmitter release. At the squid synapse, there are three main lines of experimental evidence for nanodomain signaling. First, changing the size of the unitary calcium channel current by altering external calcium concentration causes a non-linear change in transmitter release, while changing the number of open channels by broadening the presynaptic action potential causes a linear change in release. Second, low-affinity calcium indicators, calcium chelators, and uncaging of calcium all suggest that presynaptic calcium concentrations are as high as hundreds of micromolar, which is more compatible with a nanodomain type of calcium signal. Finally, neurotransmitter release is much less affected by the slow calcium chelator, EGTA, in comparison to the rapid chelator BAPTA. Similarly, as the calyx of Held synapse matures, EGTA becomes less effective in attenuating transmitter release while the number of calcium channels required to trigger a single fusion event declines. This suggests a developmental transformation of microdomain to nanodomain coupling between calcium channels and transmitter release. Calcium imaging and uncaging experiments, in combination with simulations of calcium diffusion, indicate the peak calcium concentration seen by presynaptic calcium sensors reaches at least tens of micromolar. Taken together, data from these provide a compelling argument that nanodomain calcium signaling gates very rapid transmitter release.

  4. Coding deficits in noise-induced hidden hearing loss may stem from incomplete repair of ribbon synapses in the cochlea

    Directory of Open Access Journals (Sweden)

    Lijuan eShi

    2016-05-01

    Full Text Available Recent evidence has shown that noise-induced damage to the synapse between inner hair cells (IHCs and type I afferent auditory nerve fibers (ANFs may occur in the absence of permanent threshold shift (PTS, and that synapses connecting IHCs with low spontaneous rate (SR ANFs are disproportionately affected. Due to the functional importance of low-SR ANF units for temporal processing and signal coding in noisy backgrounds, deficits in cochlear coding associated with noise-induced damage may result in significant difficulties with temporal processing and hearing in noise (i.e., hidden hearing loss. However, significant noise-induced coding deficits have not been reported at the single unit level following the loss of low-SR units. We have found evidence to suggest that some aspects of neural coding are not significantly changed with the initial loss of low-SR ANFs, and that further coding deficits arise in association with the subsequent reestablishment of the synapses. This suggests that synaptopathy in hidden hearing loss may be the result of insufficient repair of disrupted synapses, and not simply due to the loss of low-SR units. These coding deficits include decreases in driven spike rate for intensity coding as well as several aspects of temporal coding: spike latency, peak-to-sustained spike ratio and the recovery of spike rate as a function of click-interval.

  5. Childhood trauma and cognitive function in first-episode affective and non-affective psychosis.

    LENUS (Irish Health Repository)

    Aas, Monica

    2011-06-01

    A history of childhood trauma is reportedly more prevalent in people suffering from psychosis than in the general population. Childhood trauma has also been linked to cognitive abnormalities in adulthood, and cognitive abnormalities, in turn, are one of the key clinical features of psychosis. Therefore, this study investigated whether there was a relationship between childhood trauma and cognitive function in patients with first-episode psychosis. The potential impact of diagnosis (schizophrenia or affective psychosis) and gender on this association was also examined.

  6. Cognitive function in the affective disorders: a prospective study.

    Science.gov (United States)

    Bulbena, A; Berrios, G E

    1993-01-01

    A prospective, controlled study of 50 subjects confirmed claims that major depression or mania may cause temporary disorders of attention, memory, visuo-spatial function, and choice reaction time, and cause-independently of medication-the appearance of glabellar tap, positive hand-face test, nuchocephalic reflex, and graphesthesia. On follow-up, all these phenomena either disappeared or markedly improved. Age and age of onset, but not pre-morbid intelligence or history of ECT, seemed to modulate the severity of the cognitive impairment. Presence of delusions predicted poor (but reversible) visuo-spatial function. Cognitive impairment accompanied by reversible soft neurological signs was more marked but patients thus affected surprisingly showed lower depressive scores; this was interpreted as representing a secondary, 'organic' form of affective disorder (i.e. a behavioural phenocopy of depression) characterised by a reduced capacity to experience depressive symptoms and by little improvement at follow-up.

  7. Downregulation of genes with a function in axon outgrowth and synapse formation in motor neurones of the VEGFδ/δ mouse model of amyotrophic lateral sclerosis

    Directory of Open Access Journals (Sweden)

    Lambrechts Diether

    2010-03-01

    Full Text Available Abstract Background Vascular endothelial growth factor (VEGF is an endothelial cell mitogen that stimulates vasculogenesis. It has also been shown to act as a neurotrophic factor in vitro and in vivo. Deletion of the hypoxia response element of the promoter region of the gene encoding VEGF in mice causes a reduction in neural VEGF expression, and results in adult-onset motor neurone degeneration that resembles amyotrophic lateral sclerosis (ALS. Investigating the molecular pathways to neurodegeneration in the VEGFδ/δ mouse model of ALS may improve understanding of the mechanisms of motor neurone death in the human disease. Results Microarray analysis was used to determine the transcriptional profile of laser captured spinal motor neurones of transgenic and wild-type littermates at 3 time points of disease. 324 genes were significantly differentially expressed in motor neurones of presymptomatic VEGFδ/δ mice, 382 at disease onset, and 689 at late stage disease. Massive transcriptional downregulation occurred with disease progression, associated with downregulation of genes involved in RNA processing at late stage disease. VEGFδ/δ mice showed reduction in expression, from symptom onset, of the cholesterol synthesis pathway, and genes involved in nervous system development, including axonogenesis, synapse formation, growth factor signalling pathways, cell adhesion and microtubule-based processes. These changes may reflect a reduced capacity of VEGFδ/δ mice for maintenance and remodelling of neuronal processes in the face of demands of neural plasticity. The findings are supported by the demonstration that in primary motor neurone cultures from VEGFδ/δ mice, axon outgrowth is significantly reduced compared to wild-type littermates. Conclusions Downregulation of these genes involved in axon outgrowth and synapse formation in adult mice suggests a hitherto unrecognized role of VEGF in the maintenance of neuronal circuitry. Dysregulation of

  8. Early maternal deprivation immunologically primes hippocampal synapses by redistributing interleukin-1 receptor type I in a sex dependent manner.

    Science.gov (United States)

    Viviani, Barbara; Boraso, Mariaserena; Valero, Manuel; Gardoni, Fabrizio; Marco, Eva Maria; Llorente, Ricardo; Corsini, Emanuela; Galli, Corrado Lodovico; Di Luca, Monica; Marinovich, Marina; López-Gallardo, Meritxell; Viveros, Maria-Paz

    2014-01-01

    Challenges experienced in early life cause an enduring phenotypical shift of immune cells towards a sensitised state that may lead to an exacerbated reaction later in life and contribute to increased vulnerability to neurological diseases. Peripheral and central inflammation may affect neuronal function through cytokines such as IL-1. The extent to which an early life challenge induces long-term alteration of immune receptors organization in neurons has not been shown. We investigated whether a single episode of maternal deprivation (MD) on post-natal day (PND) 9 affects: (i) the synapse distribution of IL-1RI together with subunits of NMDA and AMPA receptors; and (ii) the interactions between IL-1RI and the GluN2B subunit of the NMDAR in the long-term, at PND 45. MD increased IL-1RI levels and IL-1RI interactions with GluN2B at the synapse of male hippocampal neurons, without affecting the total number of IL-1RI or NMDAR subunits. Although GluN2B and GluN2A were slightly but not significantly changed at the synapse, their ratio was significantly decreased in the hippocampus of the male rats who had experienced MD; the levels of the GluA1 and GluA2 subunits of the AMPAR were also decreased. These changes were not observed immediately after the MD episode. None of the observed alterations occurred in the hippocampus of the females or in the prefrontal cortex of either sex. These data reveal a long-term, sex-dependent modification in receptor organisation at the hippocampal post-synapses following MD. We suggest that this effect might contribute to priming hippocampal synapses to the action of IL-1β.

  9. Elfn1 regulates target-specific release probability at CA1-interneuron synapses

    OpenAIRE

    Sylwestrak, Emily L.; Ghosh, Anirvan

    2012-01-01

    Although synaptic transmission may be unidirectional, the establishment of synaptic connections with specific properties can involve bidirectional signaling. Pyramidal neurons in the hippocampus form functionally distinct synapses onto two types of interneurons. Excitatory synapses onto oriens-lacunosum moleculare (O-LM) interneurons are facilitating and have a low release probability, whereas synapses onto parvalbumin interneurons are depressing and have a high release probability. Here, we ...

  10. Factors potentially affecting the function of kidney grafts

    Institute of Scientific and Technical Information of China (English)

    LIN Jun; ZHENG Xin; XIE Ze-lin; SUN Wen; ZHANG Lei; TIAN Ye; GUO Yu-wen

    2013-01-01

    Background Donor and recipient risk factors on graft function have been well characterized.The contribution of demographic factors,such as age,gender,and other potential factors of donor and recipient at the time of transplantation on the function of a graft is much less well understood.In this study,we analyzed the effects of factors such as age,gender,etc.,on the short-term and long-term graft function in kidney transplant recipients from living donor.Methods A total of 335 living donors and their recipients,who had kidney transplantation in our center from May 2004 to December 2009,were included.Serum creatinine level was used as the assessment criterion (serum creatinine level lower than 115 mmol/L is normal).Factors related to graft function such as age,gender,blood relation by consanguinity,human leukocyte antigen (HLA) mismatch,ABO type,etc.,were analyzed separately.Results Donor age is the key factor affecting both the short-term and long-term function of a grafted kidney from a living donor.The group with donors younger than 48 years showed the best kidney function post transplantation.Match of gender and age is another important factor that influences the function of grafted kidney from a living donor.The older donor to younger recipient group had the worst outcome after kidney transplantation.After 36 months post transplantation,female donor to male recipient group had worse kidney function compared to other groups.We also found that calcinerin inhibitor used in the maintenance period may influence the function of a grafted kidney.No significant statistical differences were found in consanguinity,blood type,and mismatch of HLA.Conclusions Donor age is an important factor affecting the function of a grafted kidney from a living donor.We also recommend taking nephron,immunology factor,infection,and demographic information all into consideration when assessing the outcome of kidney transplantation.

  11. Synapse rearrangements upon learning: from divergent-sparse connectivity to dedicated sub-circuits.

    Science.gov (United States)

    Caroni, Pico; Chowdhury, Ananya; Lahr, Maria

    2014-10-01

    Learning can involve formation of new synapses and loss of synapses, providing memory traces of learned skills. Recent findings suggest that these synapse rearrangements reflect assembly of task-related sub-circuits from initially broadly distributed and sparse connectivity in the brain. These local circuit remodeling processes involve rapid emergence of synapses upon learning, followed by protracted validation involving strengthening of some new synapses, and selective elimination of others. The timing of these consolidation processes can vary. Here, we review these findings, focusing on how molecular/cellular mechanisms of synapse assembly, strengthening, and elimination might interface with circuit/system mechanisms of learning and memory consolidation. An integrated understanding of these learning-related processes should provide a better basis to elucidate how experience, genetic background, and disease influence brain function.

  12. 内毛细胞带状突触结构及功能的研究进展%Progress of Research on the Structure and Function of Inner Hair Cell Ribbon Synapse

    Institute of Scientific and Technical Information of China (English)

    陈丽平

    2011-01-01

    在视网膜及内耳的带状突触通过紧张性释放神经递质传导不同强度的光和声音信息.突触上的囊泡通过快速同步化机制和缓慢但持久的模式释放神经递质.带状突触是一个大的电子致密体,并在突触前膜集结大量的囊泡,其主要结构蛋白是RIBEYE.该骨架结构提供了带状突触-相关蛋白的锚定位置.带状突触具有胞吐、包吞、突触膜融合等功能.现对带状突触结构和功能的最新研究进展予以综述.%Ribbon synapses in the retina and inner ear maintain tonic neurotransmitter release at high rates to transduce a broad bandwidth of light or sound intensities. In ribbon synapses , synaptic vesicles can be released by a slow , sustained mode and by fast ,synchronous mechanisms. Synaptic ribbons are large ,electrondense structures that immobilize numerous synaptic vesicles next to presynaptic release sites. A main component of synaptic ribbons is the protein RIBEYE that has the capability to build the scaffold of the synaptic ribbon via multiple RIBEYE-RIBEYE interactions. The scaffold of the synaptic rihbon provides a docking site for RIBEYE-associated proteins. Multiple functions have been assigned to synaptic ribbons including roles in exocytosis, endocytosis,and synaptic membrane trafficking. Here is to review the recent progress in structure and function of synaptic ribbons research.

  13. Tricornered Kinase Regulates Synapse Development by Regulating the Levels of Wiskott-Aldrich Syndrome Protein.

    Directory of Open Access Journals (Sweden)

    Rajalaxmi Natarajan

    Full Text Available Precise regulation of synapses during development is essential to ensure accurate neural connectivity and function of nervous system. Many signaling pathways, including the mTOR (mechanical Target of Rapamycin pathway operate in neurons to maintain genetically determined number of synapses during development. mTOR, a kinase, is shared between two functionally distinct multi-protein complexes- mTORC1 and mTORC2, that act downstream of Tuberous Sclerosis Complex (TSC. We and others have suggested an important role for TSC in synapse development at the Drosophila neuromuscular junction (NMJ synapses. In addition, our data suggested that the regulation of the NMJ synapse numbers in Drosophila largely depends on signaling via mTORC2. In the present study, we further this observation by identifying Tricornered (Trc kinase, a serine/threonine kinase as a likely mediator of TSC signaling. trc genetically interacts with Tsc2 to regulate the number of synapses. In addition, Tsc2 and trc mutants exhibit a dramatic reduction in synaptic levels of WASP, an important regulator of actin polymerization. We show that Trc regulates the WASP levels largely, by regulating the transcription of WASP. Finally, we show that overexpression of WASP (Wiskott-Aldrich Syndrome Protein in trc mutants can suppress the increase in the number of synapses observed in trc mutants, suggesting that WASP regulates synapses downstream of Trc. Thus, our data provide a novel insight into how Trc may regulate the genetic program that controls the number of synapses during development.

  14. Cognitive function in unaffected twins discordant for affective disorder

    DEFF Research Database (Denmark)

    Christensen, Maj Vinberg; Kyvik, Kirsten Ohm; Kessing, Lars Vedel

    2006-01-01

    is associated with cognitive impairment. METHOD: In a cross-sectional high-risk case-control study, healthy monozygotic (MZ) and dizygotic (DZ) twins with (High-Risk twins) and without (the control group/Low-Risk twins) a co-twin history of affective disorder were identified through nationwide registers....... Cognitive performance of 203 High-Risk and Low-Risk twins was compared. RESULTS: Healthy twins discordant for unipolar disorder showed lower performance on almost all measures of cognitive function: selective and sustained attention, executive function, language processing and working and declarative memory......, and also after adjustment for demographic variables, subclinical symptoms and minor psychopathology. Healthy twins discordant for bipolar disorder showed lower performance on tests measuring episodic and working memory, also after adjustment for the above-mentioned covariables. The discrete cognitive...

  15. Purinergic signaling at immunological synapses.

    Science.gov (United States)

    Dubyak, G R

    2000-07-01

    The early studies and hypotheses of Geoffrey Burnstock catalyzed intensive characterization of roles for nucleotides and P2 nucleotide receptors in neurotransmission and neuromodulation. These latter analyses have focused on the mechanisms of nucleotide release and action in the microenvironments of nerve endings and synapses. However, studies of various white blood cells, such as monocytes, neutrophils, and lymphocytes, suggest that locally released nucleotides also modulate intercellular signaling at so-called 'immunological synapses'. This communication describes recent findings and speculations regarding nucleotide release and signaling in several key phases of the immune and inflammatory responses.

  16. Synapse Pathology in Psychiatric and Neurologic Disease

    NARCIS (Netherlands)

    M. van Spronsen (Myrrhe); C.C. Hoogenraad (Casper)

    2010-01-01

    textabstractInhibitory and excitatory synapses play a fundamental role in information processing in the brain. Excitatory synapses usually are situated on dendritic spines, small membrane protrusions that harbor glutamate receptors and postsynaptic density components and help transmit electrical sig

  17. Dehydration affects brain structure and function in healthy adolescents.

    Science.gov (United States)

    Kempton, Matthew J; Ettinger, Ulrich; Foster, Russell; Williams, Steven C R; Calvert, Gemma A; Hampshire, Adam; Zelaya, Fernando O; O'Gorman, Ruth L; McMorris, Terry; Owen, Adrian M; Smith, Marcus S

    2011-01-01

    It was recently observed that dehydration causes shrinkage of brain tissue and an associated increase in ventricular volume. Negative effects of dehydration on cognitive performance have been shown in some but not all studies, and it has also been reported that an increased perceived effort may be required following dehydration. However, the effects of dehydration on brain function are unknown. We investigated this question using functional magnetic resonance imaging (fMRI) in 10 healthy adolescents (mean age = 16.8, five females). Each subject completed a thermal exercise protocol and nonthermal exercise control condition in a cross-over repeated measures design. Subjects lost more weight via perspiration in the thermal exercise versus the control condition (P Dehydration following the thermal exercise protocol led to a significantly stronger increase in fronto-parietal blood-oxygen-level-dependent (BOLD) response during an executive function task (Tower of London) than the control condition, whereas cerebral perfusion during rest was not affected. The increase in BOLD response after dehydration was not paralleled by a change in cognitive performance, suggesting an inefficient use of brain metabolic activity following dehydration. This pattern indicates that participants exerted a higher level of neuronal activity in order to achieve the same performance level. Given the limited availability of brain metabolic resources, these findings suggest that prolonged states of reduced water intake may adversely impact executive functions such as planning and visuo-spatial processing.

  18. Can the hydrophilicity of functional monomers affect chemical interaction?

    Science.gov (United States)

    Feitosa, V P; Ogliari, F A; Van Meerbeek, B; Watson, T F; Yoshihara, K; Ogliari, A O; Sinhoreti, M A; Correr, A B; Cama, G; Sauro, S

    2014-02-01

    The number of carbon atoms and/or ester/polyether groups in spacer chains may influence the interaction of functional monomers with calcium and dentin. The present study assessed the chemical interaction and bond strength of 5 standard-synthesized phosphoric-acid ester functional monomers with different spacer chain characteristics, by atomic absorption spectroscopy (AAS), ATR-FTIR, thin-film x-ray diffraction (TF-XRD), scanning electron microscopy (SEM), and microtensile bond strength (μTBS). The tested functional monomers were 2-MEP (two-carbon spacer chain), 10-MDP (10-carbon), 12-MDDP (12-carbon), MTEP (more hydrophilic polyether spacer chain), and CAP-P (intermediate hydrophilicity ester spacer). The intensity of monomer-calcium salt formation measured by AAS differed in the order of 12-MDDP=10-MDP>CAP-P>MTEP>2-MEP. FTIR and SEM analyses of monomer-treated dentin surfaces showed resistance to rinsing for all monomer-dentin bonds, except with 2-MEP. TF-XRD confirmed the weaker interaction of 2-MEP. Highest µTBS was observed for 12-MDDP and 10-MDP. A shorter spacer chain (2-MEP) of phosphate functional monomers induced formation of unstable monomer-calcium salts, and lower chemical interaction and dentin bond strength. The presence of ester or ether groups within longer spacer carbon chains (CAP-P and MTEP) may affect the hydrophilicity, μTBS, and also the formation of monomer-calcium salts.

  19. How does temperature affect the function of tissue macrophages?

    Science.gov (United States)

    Lee, Chen-Ting; Repasky, Elizabeth A.

    2011-03-01

    Macrophages create a major danger signal following injury or infection and upon activation release pro-inflammatory cytokines, which in turn help to generate febrile conditions. Thus, like other cells of the body, tissue macrophages are often exposed to naturally occurring elevations in tissue temperature during inflammation and fever. However, whether macrophages sense and respond to temperature changes in a specific manner which modulates their function is still not clear. In this brief review, we highlight recent studies which have analyzed the effects of temperatures on macrophage function, and summarize the possible underlying molecular mechanisms which have been identified. Mild, physiological range hyperthermia has been shown to have both pro- and anti-inflammatory roles in regulating macrophage inflammatory cytokine production and at the meeting presentation, we will show new data demonstrating that hyperthermia can indeed exert both positive and negative signals to macrophages. While some thermal effects are correlated with the induction of heat shock factors/heat shock proteins, overall it is not clear how mild hyperthermia can exert both pro- and anti-inflammatory functions. We also summarize data which shows that hyperthermia can affect other macrophage effector functions, including the anti-tumor cytotoxicity. Overall, these studies may help us to better understand the immunological role of tissue temperature and may provide important information needed to maximize the application of heat in the treatment of various diseases including cancer.

  20. Role of GABAA-Mediated Inhibition and Functional Assortment of Synapses onto Individual Layer 4 Neurons in Regulating Plasticity Expression in Visual Cortex.

    Science.gov (United States)

    Saez, Ignacio; Friedlander, Michael J

    2016-01-01

    Layer 4 (L4) of primary visual cortex (V1) is the main recipient of thalamocortical fibers from the dorsal lateral geniculate nucleus (LGNd). Thus, it is considered the main entry point of visual information into the neocortex and the first anatomical opportunity for intracortical visual processing before information leaves L4 and reaches supra- and infragranular cortical layers. The strength of monosynaptic connections from individual L4 excitatory cells onto adjacent L4 cells (unitary connections) is highly malleable, demonstrating that the initial stage of intracortical synaptic transmission of thalamocortical information can be altered by previous activity. However, the inhibitory network within L4 of V1 may act as an internal gate for induction of excitatory synaptic plasticity, thus providing either high fidelity throughput to supragranular layers or transmittal of a modified signal subject to recent activity-dependent plasticity. To evaluate this possibility, we compared the induction of synaptic plasticity using classical extracellular stimulation protocols that recruit a combination of excitatory and inhibitory synapses with stimulation of a single excitatory neuron onto a L4 cell. In order to induce plasticity, we paired pre- and postsynaptic activity (with the onset of postsynaptic spiking leading the presynaptic activation by 10ms) using extracellular stimulation (ECS) in acute slices of primary visual cortex and comparing the outcomes with our previously published results in which an identical protocol was used to induce synaptic plasticity between individual pre- and postsynaptic L4 excitatory neurons. Our results indicate that pairing of ECS with spiking in a L4 neuron fails to induce plasticity in L4-L4 connections if synaptic inhibition is intact. However, application of a similar pairing protocol under GABAARs inhibition by bath application of 2μM bicuculline does induce robust synaptic plasticity, long term potentiation (LTP) or long term

  1. Presynaptic nanodomains: a tale of two synapses.

    Science.gov (United States)

    Wang, Lu-Yang; Augustine, George J

    2014-01-01

    Here we summarize the evidence from two "giant" presynaptic terminals-the squid giant synapse and the mammalian calyx of Held-supporting the involvement of nanodomain calcium signals in triggering of neurotransmitter release. At the squid synapse, there are three main lines of experimental evidence for nanodomain signaling. First, changing the size of the unitary calcium channel current by altering external calcium concentration causes a non-linear change in transmitter release, while changing the number of open channels by broadening the presynaptic action potential causes a linear change in release. Second, low-affinity calcium indicators, calcium chelators, and uncaging of calcium all suggest that presynaptic calcium concentrations are as high as hundreds of micromolar, which is more compatible with a nanodomain type of calcium signal. Finally, neurotransmitter release is much less affected by the slow calcium chelator, ethylene glycol tetraacetic acid (EGTA), in comparison to the rapid chelator 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA). Similarly, as the calyx of Held synapse matures, EGTA becomes less effective in attenuating transmitter release while the number of calcium channels required to trigger a single fusion event declines. This suggests a developmental transformation of microdomain to nanodomain coupling between calcium channels and transmitter release. Calcium imaging and uncaging experiments, in combination with simulations of calcium diffusion, indicate the peak calcium concentration seen by presynaptic calcium sensors reaches at least tens of micromolar at the calyx of Held. Taken together, data from these provide a compelling argument that nanodomain calcium signaling gates very rapid transmitter release.

  2. Bisphenol A affects androgen receptor function via multiple mechanisms.

    Science.gov (United States)

    Teng, Christina; Goodwin, Bonnie; Shockley, Keith; Xia, Menghang; Huang, Ruili; Norris, John; Merrick, B Alex; Jetten, Anton M; Austin, Christopher P; Tice, Raymond R

    2013-05-25

    Bisphenol A (BPA), is a well-known endocrine disruptor compound (EDC) that affects the normal development and function of the female and male reproductive system, however the mechanisms of action remain unclear. To investigate the molecular mechanisms of how BPA may affect ten different nuclear receptors, stable cell lines containing individual nuclear receptor ligand binding domain (LBD)-linked to the β-Gal reporter were examined by a quantitative high throughput screening (qHTS) format in the Tox21 Screening Program of the NIH. The results showed that two receptors, estrogen receptor alpha (ERα) and androgen receptor (AR), are affected by BPA in opposite direction. To confirm the observed effects of BPA on ERα and AR, we performed transient transfection experiments with full-length receptors and their corresponding response elements linked to luciferase reporters. We also included in this study two BPA analogs, bisphenol AF (BPAF) and bisphenol S (BPS). As seen in African green monkey kidney CV1 cells, the present study confirmed that BPA and BPAF act as ERα agonists (half maximal effective concentration EC50 of 10-100 nM) and as AR antagonists (half maximal inhibitory concentration IC50 of 1-2 μM). Both BPA and BPAF antagonized AR function via competitive inhibition of the action of synthetic androgen R1881. BPS with lower estrogenic activity (EC50 of 2.2 μM), did not compete with R1881 for AR binding, when tested at 30 μM. Finally, the effects of BPA were also evaluated in a nuclear translocation assays using EGPF-tagged receptors. Similar to 17β-estradiol (E2) which was used as control, BPA was able to enhance ERα nuclear foci formation but at a 100-fold higher concentration. Although BPA was able to bind AR, the nuclear translocation was reduced. Furthermore, BPA was unable to induce functional foci in the nuclei and is consistent with the transient transfection study that BPA is unable to activate AR.

  3. Functional roles affect diversity-succession relationships for boreal beetles.

    Directory of Open Access Journals (Sweden)

    Heloise Gibb

    Full Text Available Species diversity commonly increases with succession and this relationship is an important justification for conserving large areas of old-growth habitats. However, species with different ecological roles respond differently to succession. We examined the relationship between a range of diversity measures and time since disturbance for boreal forest beetles collected over a 285 year forest chronosequence. We compared responses of "functional" groups related to threat status, dependence on dead wood habitats, diet and the type of trap in which they were collected (indicative of the breadth of ecologies of species. We examined fits of commonly used rank-abundance models for each age class and traditional and derived diversity indices. Rank abundance distributions were closest to the Zipf-Mandelbrot distribution, suggesting little role for competition in structuring most assemblages. Diversity measures for most functional groups increased with succession, but differences in slopes were common. Evenness declined with succession; more so for red-listed species than common species. Saproxylic species increased in diversity with succession while non-saproxylic species did not. Slopes for fungivores were steeper than other diet groups, while detritivores were not strongly affected by succession. Species trapped using emergence traps (log specialists responded more weakly to succession than those trapped using flight intercept traps (representing a broader set of ecologies. Species associated with microhabitats that accumulate with succession (fungi and dead wood thus showed the strongest diversity responses to succession. These clear differences between functional group responses to forest succession should be considered in planning landscapes for optimum conservation value, particularly functional resilience.

  4. Stabilization of memory States by stochastic facilitating synapses.

    Science.gov (United States)

    Miller, Paul

    2013-12-06

    Bistability within a small neural circuit can arise through an appropriate strength of excitatory recurrent feedback. The stability of a state of neural activity, measured by the mean dwelling time before a noise-induced transition to another state, depends on the neural firing-rate curves, the net strength of excitatory feedback, the statistics of spike times, and increases exponentially with the number of equivalent neurons in the circuit. Here, we show that such stability is greatly enhanced by synaptic facilitation and reduced by synaptic depression. We take into account the alteration in times of synaptic vesicle release, by calculating distributions of inter-release intervals of a synapse, which differ from the distribution of its incoming interspike intervals when the synapse is dynamic. In particular, release intervals produced by a Poisson spike train have a coefficient of variation greater than one when synapses are probabilistic and facilitating, whereas the coefficient of variation is less than one when synapses are depressing. However, in spite of the increased variability in postsynaptic input produced by facilitating synapses, their dominant effect is reduced synaptic efficacy at low input rates compared to high rates, which increases the curvature of neural input-output functions, leading to wider regions of bistability in parameter space and enhanced lifetimes of memory states. Our results are based on analytic methods with approximate formulae and bolstered by simulations of both Poisson processes and of circuits of noisy spiking model neurons.

  5. NKp46 clusters at the immune synapse and regulates NK cell polarization

    Directory of Open Access Journals (Sweden)

    Uzi eHadad

    2015-09-01

    Full Text Available Natural killer cells play an important role in first-line defense against tumor and virus-infected cells. The activity of NK cells is tightly regulated by a repertoire of cell-surface expressed inhibitory and activating receptors. NKp46 is a major NK cell activating receptor that is involved in the elimination of target cells. NK cells form different types of synapses that result in distinct functional outcomes: cytotoxic, inhibitory, and regulatory. Recent studies revealed that complex integration of NK receptor signaling controls cytoskeletal rearrangement and other immune synapse-related events. However the distinct nature by which NKp46 participates in NK immunological synapse formation and function remains unknown. In this study we determined that NKp46 forms microclusters structures at the immune synapse between NK cells and target cells. Over-expression of human NKp46 is correlated with increased accumulation of F-actin mesh at the immune synapse. Concordantly, knock-down of NKp46 in primary human NK cells decreased recruitment of F-actin to the synapse. Live cell imaging experiments showed a linear correlation between NKp46 expression and lytic granules polarization to the immune synapse. Taken together, our data suggest that NKp46 signaling directly regulates the NK lytic immune synapse from early formation to late function.

  6. Climbing fiber synapse elimination in cerebellar Purkinje cells.

    Science.gov (United States)

    Watanabe, Masahiko; Kano, Masanobu

    2011-11-01

    Innervation of Purkinje cells (PCs) by multiple climbing fibers (CFs) is refined into mono-innervation during the first three postnatal weeks of rodents' lives. In this review article, we will integrate the current knowledge on developmental process and mechanisms of CF synapse elimination. In the 'creeper' stage of CF innervation (postnatal day 0 (P0)∼), CFs creep among PC somata to form transient synapses on immature dendrites. In the 'pericellular nest' stage (P5∼), CFs densely surround and innervate PC somata. CF innervation is then displaced to the apical portion of PC somata in the 'capuchon' stage (P9∼), and translocate to dendrites in the 'dendritic' (P12∼) stage. Along with the developmental changes in CF wiring, functional and morphological distinctions become larger among CF inputs. PCs are initially innervated by more than five CFs with similar strengths (∼P3). During P3-7 only a single CF is selectively strengthened (functional differentiation), and it undergoes dendritic translocation from P9 on (dendritic translocation). Following the functional differentiation, perisomatic CF synapses are eliminated nonselectively; this proceeds in two distinct phases. The early phase (P7-11) is conducted independently of parallel fiber (PF)-PC synapse formation, while the late phase (P12-17) critically depends on it. The P/Q-type voltage-dependent Ca(2+) channel in PCs triggers selective strengthening of single CF inputs, promotes dendritic translocation of the strengthened CFs, and drives the early phase of CF synapse elimination. In contrast, the late phase is mediated by the mGluR1-Gαq-PLCβ4-PKCγ signaling cascade in PCs driven at PF-PC synapses, whose structural connectivity is stabilized and maintained by the GluRδ2-Cbln1-neurexin system.

  7. Intraflagellar transport: a new player at the immune synapse.

    Science.gov (United States)

    Finetti, Francesca; Paccani, Silvia Rossi; Rosenbaum, Joel; Baldari, Cosima T

    2011-04-01

    The assembly and maintenance of primary cilia, which orchestrate signaling pathways centrally implicated in cell proliferation, differentiation and migration, are ensured by multimeric protein particles in a process known as intraflagellar transport (IFT). It has recently been demonstrated that a number of IFT components are expressed in hematopoietic cells, which have no cilia. Here, we summarize data for an unexpected role of IFT proteins in immune synapse assembly and intracellular membrane trafficking in T lymphocytes, and discuss the hypothesis that the immune synapse could represent the functional homolog of the primary cilium in these cells.

  8. A New Efficient-Silicon Area MDAC Synapse

    Directory of Open Access Journals (Sweden)

    Zied Gafsi

    2007-01-01

    Full Text Available Using the binary representation in the Multiplier digital to analog converter (MDAC synapse designs have crucial drawbacks. Silicon area of transistors, constituting the MDAC circuit, increases exponentially according to the number of bits. This latter is generated by geometric progression of common ratio equal to 2. To reduce this exponential increase to a linear growth, a new synapse named Arithmetic MDAC (AMDAC is designed. It functions with a new representation based on arithmetic progressions. Using the AMS CMOS 0.35µm technology the silicon area is reduced by a factor of 40%.

  9. Modulation and metamodulation of synapses by adenosine.

    Science.gov (United States)

    Ribeiro, J A; Sebastião, A M

    2010-06-01

    The presence of adenosine in all nervous system cells (neurones and glia) together with its intensive release following insults makes adenosine as a sort of 'regulator' of synaptic communication, leading to the homeostatic coordination of brain function. Besides the direct actions of adenosine on the neurosecretory mechanisms, to tune neurotransmitter release, adenosine receptors interact with other receptors as well as with transporters as part of its attempt to fine-tune synaptic transmission. This review will focus on examples of the different ways adenosine can use to modulate or metamodulate synapses, in other words, to trigger or brake the action of some neurotransmitters and neuromodulators, to cross-talk with other G protein-coupled receptors, with ionotropic receptors and with receptor kinases as well as with transporters. Most of these interactions occur through A2A receptors, which in spite of their low density in some brain areas, such as the hippocampus, may function as amplifiers of the signalling of other mediators at synapses.

  10. Propriétés de la synapse cortico-sous-thalamique : étude optogénétique chez le rongeur

    OpenAIRE

    Froux, Lionel

    2014-01-01

    Basal ganglia (BG) are a group of subcortical nuclei involved in action selection and in cognitive and motivational aspects of motor behavior. Dopamine is essential for proper functioning of BG. The cortico-subthalamic (cortico-STN) synapse is a glutamatergic (excitatory) synapse involved in signal transmission from cortex to subthalamic nucleus (STN). The cortico-STN synapse is the first synapse in the hyperdirect pathway, one of the three pathways of BG. Even if the cortico-STN pathway is i...

  11. Synaptic competition sculpts the development of GABAergic axo-dendritic but not perisomatic synapses.

    Directory of Open Access Journals (Sweden)

    Elena Frola

    Full Text Available The neurotransmitter GABA regulates many aspects of inhibitory synapse development. We tested the hypothesis that GABAA receptors (GABAARs work together with the synaptic adhesion molecule neuroligin 2 (NL2 to regulate synapse formation in different subcellular compartments. We investigated mice ("γ2 knockdown mice" with an engineered allele of the GABAAR γ2 subunit gene which produced a mosaic expression of synaptic GABAARs in neighboring neurons, causing a strong imbalance in synaptic inhibition. Deletion of the γ2 subunit did not abolish synapse formation or the targeting of NL2 to distinct types of perisomatic and axo-dendritic contacts. Thus synaptic localization of NL2 does not require synaptic GABAARs. However, loss of the γ2 subunit caused a selective decrease in the number of axo-dendritic synapses on cerebellar Purkinje cells and cortical pyramidal neurons, whereas perisomatic synapses were not significantly affected. Notably, γ2-positive cells had increased axo-dendritic innervation compared with both γ2-negative and wild-type counterparts. Moreover heterologous synapses on spines, that are found after total deletion of GABAARs from all Purkinje cells, were rare in cerebella of γ2 knockdown mice. These findings reveal a selective role of γ2 subunit-containing GABAARs in regulating synapse development in distinct subcellular compartments, and support the hypothesis that the refinement of axo-dendritic synapses is regulated by activity-dependent competition between neighboring neurons.

  12. A Neuron- and a Synapse Chip for Artificial Neural Networks

    DEFF Research Database (Denmark)

    Lansner, John; Lehmann, Torsten

    1992-01-01

    A cascadable, analog, CMOS chip set has been developed for hardware implementations of artificial neural networks (ANN's):I) a neuron chip containing an array of neurons with hyperbolic tangent activation functions and adjustable gains, and II) a synapse chip (or a matrix-vector multiplier) where...

  13. A compound memristive synapse model for statistical learning through STDP in spiking neural networks

    Directory of Open Access Journals (Sweden)

    Johannes eBill

    2014-12-01

    Full Text Available Memristors have recently emerged as promising circuit elements to mimic the function of biological synapses in neuromorphic computing. The fabrication of reliable nanoscale memristive synapses, that feature continuous conductance changes based on the timing of pre- and postsynaptic spikes, has however turned out to be challenging. In this article, we propose an alternative approach, the compound memristive synapse, that circumvents this problem by the use of memristors with binary memristive states. A compound memristive synapse employs multiple bistable memristors in parallel to jointly form one synapse, thereby providing a spectrum of synaptic efficacies. We investigate the computational implications of synaptic plasticity in the compound synapse by integrating the recently observed phenomenon of stochastic filament formation into an abstract model of stochastic switching. Using this abstract model, we first show how standard pulsing schemes give rise to spike-timing dependent plasticity (STDP with a stabilizing weight dependence in compound synapses. In a next step, we study unsupervised learning with compound synapses in networks of spiking neurons organized in a winner-take-all architecture. Our theoretical analysis reveals that compound-synapse STDP implements generalized Expectation-Maximization in the spiking network. Specifically, the emergent synapse configuration represents the most salient features of the input distribution in a Mixture-of-Gaussians generative model. Furthermore, the network’s spike response to spiking input streams approximates a well-defined Bayesian posterior distribution. We show in computer simulations how such networks learn to represent high-dimensional distributions over images of handwritten digits with high fidelity even in presence of substantial device variations and under severe noise conditions. Therefore, the compound memristive synapse may provide a synaptic design principle for future neuromorphic

  14. Ultrastructural analysis of neuronal synapses using state-of-the-art nano-imaging techniques

    Institute of Scientific and Technical Information of China (English)

    Changlu Tao; Chenglong Xia; Xiaobing Chen; Z. Hong Zhou; Guoqiang Bi

    2012-01-01

    Neuronal synapses are functional nodes in neural circuits.Their organization and activity define an individual's level of intelligence,emotional state and mental health.Changes in the structure and efficacy of synapses are the biological basis of learning and memory.However,investigation of the molecular architecture of synapses has been impeded by the lack of efficient techniques with sufficient resolution.Recent developments in state-of-the-art nano-imaging techniques have opened up a new window for dissecting the molecular organization of neuronal synapses with unprecedented resolution.Here,we review recent technological advances in nano-imaging techniques as well as their applications to the study of synapses,emphasizing super-resolution light microscopy and 3-dimensional electron tomography.

  15. Laminins containing the beta2 chain modulate the precise organization of CNS synapses.

    Science.gov (United States)

    Egles, Christophe; Claudepierre, Thomas; Manglapus, Mary K; Champliaud, Marie-France; Brunken, William J; Hunter, Dale D

    2007-03-01

    Synapses are formed and stabilized by concerted interactions of pre-, intra-, and post-synaptic components; however, the precise nature of the intrasynaptic components in the CNS remains obscure. Potential intrasynaptic components include extracellular matrix molecules such as laminins; here, we isolate beta2-containing laminins, including perhaps laminins 13 (alpha3beta2gamma3) and 14 (alpha4beta2gamma3), from CNS synaptosomes suggesting a role for these molecules in synaptic organization. Indeed, hippocampal synapses that form in vivo in the absence of these laminins are malformed at the ultrastructural level and this malformation is replicated in synapses formed in vitro, where laminins are provided largely by the post-synaptic neuron. This recapitulation of the in vivo function of laminins in vitro suggests that the malformations are a direct consequence of the removal of laminins from the synapse. Together, these results support a role for neuronal laminins in the structural integrity of central synapses.

  16. F-actin-binding protein drebrin regulates CXCR4 recruitment to the immune synapse.

    Science.gov (United States)

    Pérez-Martínez, Manuel; Gordón-Alonso, Mónica; Cabrero, José Román; Barrero-Villar, Marta; Rey, Mercedes; Mittelbrunn, María; Lamana, Amalia; Morlino, Giulia; Calabia, Carmen; Yamazaki, Hiroyuki; Shirao, Tomoaki; Vázquez, Jesús; González-Amaro, Roberto; Veiga, Esteban; Sánchez-Madrid, Francisco

    2010-04-01

    The adaptive immune response depends on the interaction of T cells and antigen-presenting cells at the immune synapse. Formation of the immune synapse and the subsequent T-cell activation are highly dependent on the actin cytoskeleton. In this work, we describe that T cells express drebrin, a neuronal actin-binding protein. Drebrin colocalizes with the chemokine receptor CXCR4 and F-actin at the peripheral supramolecular activation cluster in the immune synapse. Drebrin interacts with the cytoplasmic tail of CXCR4 and both proteins redistribute to the immune synapse with similar kinetics. Drebrin knockdown in T cells impairs the redistribution of CXCR4 and inhibits actin polymerization at the immune synapse as well as IL-2 production. Our data indicate that drebrin exerts an unexpected and relevant functional role in T cells during the generation of the immune response.

  17. TwoB or not twoB: differential transmission at glutamatergic mossy fiber-interneuron synapses in the hippocampus.

    Science.gov (United States)

    Bischofberger, Josef; Jonas, Peter

    2002-12-01

    Mossy fiber (MF) synapses are key stations for flow of information through the hippocampal formation. A major component of the output of the MF system is directed towards inhibitory interneurons. Recent studies have revealed that the functional properties of MF-interneuron synapses differ substantially from those of MF-CA3 pyramidal neuron synapses. Mossy-fiber-interneuron synapses in the stratum lucidum represent a continuum of functional subtypes, in which the subunit composition of postsynaptic AMPA receptors and NMDA receptors appears to be regulated in a coordinated manner.

  18. Fear learning increases the number of polyribosomes associated with excitatory and inhibitory synapses in the barrel cortex.

    Directory of Open Access Journals (Sweden)

    Malgorzata Jasinska

    Full Text Available Associative fear learning, resulting from whisker stimulation paired with application of a mild electric shock to the tail in a classical conditioning paradigm, changes the motor behavior of mice and modifies the cortical functional representation of sensory receptors involved in the conditioning. It also induces the formation of new inhibitory synapses on double-synapse spines of the cognate barrel hollows. We studied density and distribution of polyribosomes, the putative structural markers of enhanced synaptic activation, following conditioning. By analyzing serial sections of the barrel cortex by electron microscopy and stereology, we found that the density of polyribosomes was significantly increased in dendrites of the barrel activated during conditioning. The results revealed fear learning-induced increase in the density of polyribosomes associated with both excitatory and inhibitory synapses located on dendritic spines (in both single- and double-synapse spines and only with the inhibitory synapses located on dendritic shafts. This effect was accompanied by a significant increase in the postsynaptic density area of the excitatory synapses on single-synapse spines and of the inhibitory synapses on double-synapse spines containing polyribosomes. The present results show that associative fear learning not only induces inhibitory synaptogenesis, as demonstrated in the previous studies, but also stimulates local protein synthesis and produces modifications of the synapses that indicate their potentiation.

  19. Trans-synaptic interaction of GluRdelta2 and Neurexin through Cbln1 mediates synapse formation in the cerebellum

    OpenAIRE

    Uemura, T; Lee, S. J.; Yasumura, M.; Takeuchi, T.; Yoshida, T.; Ra, M.; Taguchi, R.; Sakimura, K; Mishina, M.

    2010-01-01

    Elucidation of molecular mechanisms that regulate synapse formation is required for the understanding of neural wiring, higher brain functions, and mental disorders. Despite the wealth of in vitro information, fundamental questions about how glutamatergic synapses are formed in the mammalian brain remain unanswered. Glutamate receptor (GluR) δ2 is essential for cerebellar synapse formation in vivo. Here, we show that the N-terminal domain (NTD) of GluRδ2 interacts with presynaptic neurexins (...

  20. Proteomics, ultrastructure, and physiology of hippocampal synapses in a fragile X syndrome mouse model reveal presynaptic phenotype.

    Science.gov (United States)

    Klemmer, Patricia; Meredith, Rhiannon M; Holmgren, Carl D; Klychnikov, Oleg I; Stahl-Zeng, Jianru; Loos, Maarten; van der Schors, Roel C; Wortel, Joke; de Wit, Heidi; Spijker, Sabine; Rotaru, Diana C; Mansvelder, Huibert D; Smit, August B; Li, Ka Wan

    2011-07-22

    Fragile X syndrome (FXS), the most common form of hereditary mental retardation, is caused by a loss-of-function mutation of the Fmr1 gene, which encodes fragile X mental retardation protein (FMRP). FMRP affects dendritic protein synthesis, thereby causing synaptic abnormalities. Here, we used a quantitative proteomics approach in an FXS mouse model to reveal changes in levels of hippocampal synapse proteins. Sixteen independent pools of Fmr1 knock-out mice and wild type mice were analyzed using two sets of 8-plex iTRAQ experiments. Of 205 proteins quantified with at least three distinct peptides in both iTRAQ series, the abundance of 23 proteins differed between Fmr1 knock-out and wild type synapses with a false discovery rate (q-value) <5%. Significant differences were confirmed by quantitative immunoblotting. A group of proteins that are known to be involved in cell differentiation and neurite outgrowth was regulated; they included Basp1 and Gap43, known PKC substrates, and Cend1. Basp1 and Gap43 are predominantly expressed in growth cones and presynaptic terminals. In line with this, ultrastructural analysis in developing hippocampal FXS synapses revealed smaller active zones with corresponding postsynaptic densities and smaller pools of clustered vesicles, indicative of immature presynaptic maturation. A second group of proteins involved in synaptic vesicle release was up-regulated in the FXS mouse model. In accordance, paired-pulse and short-term facilitation were significantly affected in these hippocampal synapses. Together, the altered regulation of presynaptically expressed proteins, immature synaptic ultrastructure, and compromised short-term plasticity points to presynaptic changes underlying glutamatergic transmission in FXS at this stage of development.

  1. Target-cell specificity of kainate autoreceptor and Ca2+-store-dependent short-term plasticity at hippocampal mossy fiber synapses.

    Science.gov (United States)

    Scott, Ricardo; Lalic, Tatjana; Kullmann, Dimitri M; Capogna, Marco; Rusakov, Dmitri A

    2008-12-03

    Presynaptic kainate receptors (KARs) modulate transmission between dentate granule cells and CA3 pyramidal neurons. Whether presynaptic KARs affect other synapses made by granule cell axons [mossy fibers (MFs)], on hilar mossy cells or interneurons, is not known. Nor is it known whether glutamate release from a single MF is sufficient to activate these receptors. Here, we monitor Ca(2+) in identified MF boutons traced from granule cell bodies. We show that a single action potential in a single MF activates both presynaptic KARs and Ca(2+) stores, contributing to use-dependent facilitation at MF-CA3 pyramidal cell synapses. Rapid local application of kainate to the giant MF bouton has no detectable effect on the resting Ca(2+) but facilitates action-potential-evoked Ca(2+) entry through a Ca(2+) store-dependent mechanism. Localized two-photon uncaging of the Ca(2+) store receptor ligand IP(3) directly confirms the presence of functional Ca(2+) stores at these boutons. In contrast, presynaptic Ca(2+) kinetics at MF synapses on interneurons or mossy cells are insensitive to KAR blockade, to local kainate application or to photolytic release of IP(3). Consistent with this, postsynaptic responses evoked by activation of a single MF show KAR-dependent paired-pulse facilitation in CA3 pyramidal cells, but not in interneurons or mossy cells. Thus, KAR-Ca(2+) store coupling acts as a synapse-specific, short-range autoreceptor mechanism.

  2. Analog memristive synapse in spiking networks implementing unsupervised learning

    Directory of Open Access Journals (Sweden)

    Erika Covi

    2016-10-01

    Full Text Available Emerging brain-inspired architectures call for devices that can emulate the functionality of biological synapses in order to implement new efficient computational schemes able to solve ill-posed problems. Various devices and solutions are still under investigation and, in this respect, a challenge is opened to the researchers in the field. Indeed, the optimal candidate is a device able to reproduce the complete functionality of a synapse, i.e. the typical synaptic process underlying learning in biological systems (activity-dependent synaptic plasticity. This implies a device able to change its resistance (synaptic strength, or weight upon proper electrical stimuli (synaptic activity and showing several stable resistive states throughout its dynamic range (analog behavior. Moreover, it should be able to perform spike timing dependent plasticity (STDP, an associative homosynaptic plasticity learning rule based on the delay time between the two firing neurons the synapse is connected to. This rule is a fundamental learning protocol in state-of-art networks, because it allows unsupervised learning. Notwithstanding this fact, STDP-based unsupervised learning has been proposed several times mainly for binary synapses rather than multilevel synapses composed of many binary memristors. This paper proposes an HfO2-based analog memristor as a synaptic element which performs STDP within a small spiking neuromorphic network operating unsupervised learning for character recognition. The trained network is able to recognize five characters even in case incomplete or noisy characters are displayed and it is robust to a device-to-device variability of up to +/-30%.

  3. Cardiac fibroblasts regulate sympathetic nerve sprouting and neurocardiac synapse stability.

    Directory of Open Access Journals (Sweden)

    Céline Mias

    Full Text Available Sympathetic nervous system (SNS plays a key role in cardiac homeostasis and its deregulations always associate with bad clinical outcomes. To date, little is known about molecular mechanisms regulating cardiac sympathetic innervation. The aim of the study was to determine the role of fibroblasts in heart sympathetic innervation. RT-qPCR and western-blots analysis performed in cardiomyocytes and fibroblasts isolated from healthy adult rat hearts revealed that Pro-Nerve growth factor (NGF and pro-differentiating mature NGF were the most abundant neurotrophins expressed in cardiac fibroblasts while barely detectable in cardiomyocytes. When cultured with cardiac fibroblasts or fibroblast-conditioned medium, PC12 cells differentiated into/sympathetic-like neurons expressing axonal marker Tau-1 at neurites in contact with cardiomyocytes. This was prevented by anti-NGF blocking antibodies suggesting a paracrine action of NGF secreted by fibroblasts. When co-cultured with cardiomyocytes to mimic neurocardiac synapse, differentiated PC12 cells exhibited enhanced norepinephrine secretion as quantified by HPLC compared to PC12 cultured alone while co-culture with fibroblasts had no effect. However, when supplemented to PC12-cardiomyocytes co-culture, fibroblasts allowed long-term survival of the neurocardiac synapse. Activated fibroblasts (myofibroblasts isolated from myocardial infarction rat hearts exhibited significantly higher mature NGF expression than normal fibroblasts and also promoted PC12 cells differentiation. Within the ischemic area lacking cardiomyocytes and neurocardiac synapses, tyrosine hydroxylase immunoreactivity was increased and associated with local anarchical and immature sympathetic hyperinnervation but tissue norepinephrine content was similar to that of normal cardiac tissue, suggesting depressed sympathetic function. Collectively, these findings demonstrate for the first time that fibroblasts are essential for the setting of

  4. Cbln1 regulates rapid formation and maintenance of excitatory synapses in mature cerebellar Purkinje cells in vitro and in vivo.

    Science.gov (United States)

    Ito-Ishida, Aya; Miura, Eriko; Emi, Kyoichi; Matsuda, Keiko; Iijima, Takatoshi; Kondo, Tetsuro; Kohda, Kazuhisa; Watanabe, Masahiko; Yuzaki, Michisuke

    2008-06-04

    Although many synapse-organizing molecules have been identified in vitro, their functions in mature neurons in vivo have been mostly unexplored. Cbln1, which belongs to the C1q/tumor necrosis factor superfamily, is the most recently identified protein involved in synapse formation in the mammalian CNS. In the cerebellum, Cbln1 is predominantly produced and secreted from granule cells; cbln1-null mice show ataxia and a severe reduction in the number of synapses between Purkinje cells and parallel fibers (PFs), the axon bundle of granule cells. Here, we show that application of recombinant Cbln1 specifically and reversibly induced PF synapse formation in dissociated cbln1-null Purkinje cells in culture. Cbln1 also rapidly induced electrophysiologically functional and ultrastructurally normal PF synapses in acutely prepared cbln1-null cerebellar slices. Furthermore, a single injection of recombinant Cbln1 rescued severe ataxia in adult cbln1-null mice in vivo by completely, but transiently, restoring PF synapses. Therefore, Cbln1 is a unique synapse organizer that is required not only for the normal development of PF-Purkinje cell synapses but also for their maintenance in the mature cerebellum both in vitro and in vivo. Furthermore, our results indicate that Cbln1 can also rapidly organize new synapses in adult cerebellum, implying its therapeutic potential for cerebellar ataxic disorders.

  5. Morphological changes associated with the genesis and development of an excitatory glutemergic synapse: An integrated framework model

    Directory of Open Access Journals (Sweden)

    Venkateswaran Nagarajan

    2014-04-01

    Full Text Available The genesis of an excitatory synapse has its inception when a dendritic filopodium makes a tactile contact with a presynaptic specialisation (bouton. The subsequent maturation of the synapse takes place via a series of interrelated biochemical and biophysical signalling pathways which controls the actin polymerisation in the presynaptic and the postsynaptic sites. Although individual models of many of these signalling transductions have been proposed, a holistic model integrating the various signalling pathways to the morphological plasticity associated with the genesis and development of synapses has not. In this poster an attempt has been made towards establishing a framework for an integrated model such as the one aforementioned, encompassing several signalling pathways which control the morphology and the efficacy of the synapse. Predominant pathways include those triggered by NMDA and AMPA receptors, Trkb-BDNF, Integrin and Epherin. Also, steps towards a model that elucidates the change in shape of the synapse carried out by zonal actin polymerisation (ZAP governed by the "wastage" of neurotransmitters during exo cum endocytosis processes and the assimilation of the postsynaptic density (PSD and cell adhesion molecules with emphasis on Neurexin-Neuriligin, have been explored. The cannabinoid receptors in the PAZ have extracellular lipophilic domains. Endocannabinoid receptors are triggered by the retrograde signalling cues which negatively affect the cAMP dependent mechanisms. Apart from this, autoreceptors also pilot a feedback mechanism via secondary messengers with Ca 2+ ion concentration and neurotransmitter concentration in the synaptic cleft as its stakeholders. Feedback signals of autoreceptors which functions in accordance to “Lock and Key Mechanism” plays a vital role in fine-tuning the plasticity of the synapse and in controlling the presynaptic release probability by invoking PKA dependent pathways. In a future continuation

  6. Reduced cortical distribution volume of iodine-123 iomazenil in Alzheimer`s disease as a measure of loss of synapses

    Energy Technology Data Exchange (ETDEWEB)

    Soricelli, A. [Dept. of Diagnostic Imaging, Univ. of Naples Federico II, Nuclear Medicine Center of the National Research Council (Italy); Postiglione, A. [Dept. of Clinical and Experimental Medicine, Univ. of Naples Federico II (Italy); Grivet-Fojaja, M.R. [Dept. of Diagnostic Imaging, Univ. of Naples Federico II, Nuclear Medicine Center of the National Research Council (Italy); Mainenti, P.P. [Dept. of Diagnostic Imaging, Univ. of Naples Federico II, Nuclear Medicine Center of the National Research Council (Italy); Discepolo, A. [Dept. of Diagnostic Imaging, Univ. of Naples Federico II, Nuclear Medicine Center of the National Research Council (Italy); Varrone, A. [Dept. of Diagnostic Imaging, Univ. of Naples Federico II, Nuclear Medicine Center of the National Research Council (Italy); Salvatore, M. [Dept. of Diagnostic Imaging, Univ. of Naples Federico II, Nuclear Medicine Center of the National Research Council (Italy); Lassen, N.A. [Dept. of Nuclear Medicine/Clinical Physiology, Bispebjerg Hospital, Copenhagen (Denmark)

    1996-10-01

    Iodine-123 labelled iomazenil (IMZ) is a specific tracer for the GABA{sub A} receptor, the dominant inhibitory synapse of the brain. The cerebral distribution volume (V{sub d}) of IMZ may be taken as a quantitative measure of these synapses in Alzheimer`s disease (AD), where synaptic loss tends indiscriminately to affect all cortical neurons, albeit more so in some areas than in others. In this pilot study we measured V{sub d} in six patients with probable AD and in five age-matched controls using a brain-dedicated single-photon emission tomography scanner allowing all cortical levels to be sampled simultaneously. Reduced values were found in all regions except in the occipital (visual) cortex. In particular, temporal and parietal cortex V{sub d} was significantly (P<0.02) reduced: Temporal V{sub d} averaged 69 ml/ml in normals and 51 ml/ml in AD, and parietal V{sub d} averaged 71 ml/ml in normals and 48 ml/ml in AD. These results accord well with emission tomographic studies of blood flow or labelled glucose. This supports the idea that while only measuring a subpopulation of synapses, the IMZ method reflects synaptic loss and hence functional loss in AD. The method constitutes an in vivo version of synaptic quantitation that in histopathological studies has been shown to correlated closely with the mental deterioration in AD. (orig.)

  7. Emerging themes in GABAergic synapse development.

    Science.gov (United States)

    Kuzirian, Marissa S; Paradis, Suzanne

    2011-09-15

    Glutamatergic synapse development has been rigorously investigated for the past two decades at both the molecular and cell biological level yet a comparable intensity of investigation into the cellular and molecular mechanisms of GABAergic synapse development has been lacking until relatively recently. This review will provide a detailed overview of the current understanding of GABAergic synapse development with a particular emphasis on assembly of synaptic components, molecular mechanisms of synaptic development, and a subset of human disorders which manifest when GABAergic synapse development is disrupted. An unexpected and emerging theme from these studies is that glutamatergic and GABAergic synapse development share a number of overlapping molecular and cell biological mechanisms that will be emphasized in this review.

  8. Continuous theta burst transcranial magnetic stimulation affects brain functional connectivity.

    Science.gov (United States)

    Dan Cao; Yingjie Li; Ling Wei; Yingying Tang

    2016-08-01

    Prefrontal cortex (PFC) plays an important role in the emotional processing as well as in the functional brain network. Hyperactivity in the right dorsolateral prefrontal cortex (DLPFC) would be found in anxious participants. However, it is still unclear what the role of PFC played in a resting functional network. Continuous theta burst transcranial magnetic stimulation (cTBS) is an effective tool to create virtual lesions on brain regions. In this paper, we applied cTBS over right prefrontal area, and investigated the effects of cTBS on the brain activity for functional connectivity by the method of graph theory. We recorded 64-channels EEG on thirteen healthy participants in the resting condition and emotional tasks before and after 40 s of cTBS. This work focused on the effect of cTBS on cortical activities in the resting condition by calculating the coherence between EEG channels and building functional networks before and after cTBS in the delta, theta, alpha and beta bands. Results revealed that 1) The functional connectivity after cTBS was significantly increased compared with that before cTBS in delta, theta, alpha and beta bands in the resting condition; 2) The efficiency-cost reached the maximum before and after cTBS both with the cost about 0.3 in the bands above, which meant that the information transmission of functional brain network with this cost was highly efficient; 3) the clustering coefficient and path length after cTBS was significantly increased in delta, theta and beta bands. In conclusion, cTBS over PFC indeed enhanced the functional connectivity in the resting condition. In addition, the information transmission in the resting brain network was highly efficient with the cost about 0.3.

  9. Sequential generation of two distinct synapse-driven network patterns in developing neocortex.

    Science.gov (United States)

    Allène, Camille; Cattani, Adriano; Ackman, James B; Bonifazi, Paolo; Aniksztejn, Laurent; Ben-Ari, Yehezkel; Cossart, Rosa

    2008-11-26

    Developing cortical networks generate a variety of coherent activity patterns that participate in circuit refinement. Early network oscillations (ENOs) are the dominant network pattern in the rodent neocortex for a short period after birth. These large-scale calcium waves were shown to be largely driven by glutamatergic synapses albeit GABA is a major excitatory neurotransmitter in the cortex at such early stages, mediating synapse-driven giant depolarizing potentials (GDPs) in the hippocampus. Using functional multineuron calcium imaging together with single-cell and field potential recordings to clarify distinct network dynamics in rat cortical slices, we now report that the developing somatosensory cortex generates first ENOs then GDPs, both patterns coexisting for a restricted time period. These patterns markedly differ by their developmental profile, dynamics, and mechanisms: ENOs are generated before cortical GDPs (cGDPs) by the activation of glutamatergic synapses mostly through NMDARs; cENOs are low-frequency oscillations (approximately 0.01 Hz) displaying slow kinetics and gradually involving the entire network. At the end of the first postnatal week, GABA-driven cortical GDPs can be reliably monitored; cGDPs are recurrent oscillations (approximately 0.1 Hz) that repetitively synchronize localized neuronal assemblies. Contrary to cGDPs, cENOs were unexpectedly facilitated by short anoxic conditions suggesting a contribution of glutamate accumulation to their generation. In keeping with this, alterations of extracellular glutamate levels significantly affected cENOs, which are blocked by an enzymatic glutamate scavenger. Moreover, we show that a tonic glutamate current contributes to the neuronal membrane excitability when cENOs dominate network patterns. Therefore, cENOs and cGDPs are two separate aspects of neocortical network maturation that may be differentially engaged in physiological and pathological processes.

  10. Pathogenic SYNGAP1 mutations impair cognitive development by disrupting maturation of dendritic spine synapses.

    Science.gov (United States)

    Clement, James P; Aceti, Massimiliano; Creson, Thomas K; Ozkan, Emin D; Shi, Yulin; Reish, Nicholas J; Almonte, Antoine G; Miller, Brooke H; Wiltgen, Brian J; Miller, Courtney A; Xu, Xiangmin; Rumbaugh, Gavin

    2012-11-09

    Mutations that cause intellectual disability (ID) and autism spectrum disorder (ASD) are commonly found in genes that encode for synaptic proteins. However, it remains unclear how mutations that disrupt synapse function impact intellectual ability. In the SYNGAP1 mouse model of ID/ASD, we found that dendritic spine synapses develop prematurely during the early postnatal period. Premature spine maturation dramatically enhanced excitability in the developing hippocampus, which corresponded with the emergence of behavioral abnormalities. Inducing SYNGAP1 mutations after critical developmental windows closed had minimal impact on spine synapse function, whereas repairing these pathogenic mutations in adulthood did not improve behavior and cognition. These data demonstrate that SynGAP protein acts as a critical developmental repressor of neural excitability that promotes the development of life-long cognitive abilities. We propose that the pace of dendritic spine synapse maturation in early life is a critical determinant of normal intellectual development.

  11. The Cell Death Pathway Regulates Synapse Elimination through Cleavage of Gelsolin in Caenorhabditis elegans Neurons

    Directory of Open Access Journals (Sweden)

    Lingfeng Meng

    2015-06-01

    Full Text Available Synapse elimination occurs in development, plasticity, and disease. Although the importance of synapse elimination has been documented in many studies, the molecular mechanisms underlying this process are unclear. Here, using the development of C. elegans RME neurons as a model, we have uncovered a function for the apoptosis pathway in synapse elimination. We find that the conserved apoptotic cell death (CED pathway and axonal mitochondria are required for the elimination of transiently formed clusters of presynaptic components in RME neurons. This function of the CED pathway involves the activation of the actin-filament-severing protein, GSNL-1. Furthermore, we show that caspase CED-3 cleaves GSNL-1 at a conserved C-terminal region and that the cleaved active form of GSNL-1 promotes its actin-severing ability. Our data suggest that activation of the CED pathway contributes to selective elimination of synapses through disassembly of the actin filament network.

  12. A positive feedback synapse from retinal horizontal cells to cone photoreceptors.

    Directory of Open Access Journals (Sweden)

    Skyler L Jackman

    2011-05-01

    Full Text Available Cone photoreceptors and horizontal cells (HCs have a reciprocal synapse that underlies lateral inhibition and establishes the antagonistic center-surround organization of the visual system. Cones transmit to HCs through an excitatory synapse and HCs feed back to cones through an inhibitory synapse. Here we report that HCs also transmit to cone terminals a positive feedback signal that elevates intracellular Ca(2+ and accelerates neurotransmitter release. Positive and negative feedback are both initiated by AMPA receptors on HCs, but positive feedback appears to be mediated by a change in HC Ca(2+, whereas negative feedback is mediated by a change in HC membrane potential. Local uncaging of AMPA receptor agonists suggests that positive feedback is spatially constrained to active HC-cone synapses, whereas the negative feedback signal spreads through HCs to affect release from surrounding cones. By locally offsetting the effects of negative feedback, positive feedback may amplify photoreceptor synaptic release without sacrificing HC-mediated contrast enhancement.

  13. Factors affecting functional prognosis of patients with hip fracture

    DEFF Research Database (Denmark)

    Kristensen, M T

    2011-01-01

    Having a hip fracture is considered one of the most fatal fractures for elderly people, resulting in impaired function, and increased morbidity and mortality. This challenges clinicians in identifying patients at risk of worse outcome, in order to optimise and intensify treatment in these patient...

  14. Indoor Particles Affect Vascular Function in the Aged

    DEFF Research Database (Denmark)

    Bräuner, Elvira Vaclavik; Forchhammer, Lykke; Møller, Peter;

    2008-01-01

    -4058 and 7718-12988 particles per cm3, respectively) in their homes. Measurements and results. Microvascular function was assessed non-invasively by measuring digital peripheral artery tone following arm ischemia. Secondary endpoints included hemoglobin, red blood cells, platelet count, coagulation factors, P...

  15. Seed treatments affect functional and antinutritional properties of amaranth flours

    NARCIS (Netherlands)

    Gamel, T.H.; Linssen, J.P.H.; Mesallam, A.S.; Damir, A.A.; Shekib, L.A.

    2006-01-01

    The effects of seed treatments, including cooking, popping germination and flour air classification, on the functional properties and antinutritional factors of Amaranthus caudatus and Amaranthus cruentus seeds were studied. Thermal treatments increased the water absorption with a maximum value of 5

  16. Ectomycorrhizal symbiosis affects functional diversity of rhizosphere fluorescent pseudomonads

    NARCIS (Netherlands)

    Frey-Klett, P.; Chavatte, M.; Clausse, M.L.; Courrier, S.; Roux, Le C.; Raaijmakers, J.M.; Giovanna Martinotti, M.; Pierrat, J.C.; Garbaye, J.

    2005-01-01

    Here we characterized the effect of the ectomycorrhizal symbiosis on the genotypic and functional diversity of soil Pseudomonas fluorescens populations and analysed its possible consequences in terms of plant nutrition, development and health. ¿ Sixty strains of P. fluorescens were isolated from the

  17. Does vitamin C deficiency affect cognitive development and function?

    DEFF Research Database (Denmark)

    Hansen, Stine Normann; Tveden-Nyborg, Pernille; Lykkesfeldt, Jens

    2014-01-01

    Vitamin C is a pivotal antioxidant in the brain and has been reported to have numerous functions, including reactive oxygen species scavenging, neuromodulation, and involvement in angiogenesis. Absence of vitamin C in the brain has been shown to be detrimental to survival in newborn SVCT2(-/-) mi...

  18. Can dynamical synapses produce true self-organized criticality?

    Science.gov (United States)

    Costa, Ariadne de Andrade; Copelli, Mauro; Kinouchi, Osame

    2015-06-01

    Neuronal networks can present activity described by power-law distributed avalanches presumed to be a signature of a critical state. Here we study a random-neighbor network of excitable cellular automata coupled by dynamical synapses. The model exhibits a very similar to conservative self-organized criticality (SOC) models behavior even with dissipative bulk dynamics. This occurs because in the stationary regime the model is conservative on average, and, in the thermodynamic limit, the probability distribution for the global branching ratio converges to a delta-function centered at its critical value. So, this non-conservative model pertain to the same universality class of conservative SOC models and contrasts with other dynamical synapses models that present only self-organized quasi-criticality (SOqC). Analytical results show very good agreement with simulations of the model and enable us to study the emergence of SOC as a function of the parametric derivatives of the stationary branching ratio.

  19. Lipid Bilayer Composition Affects Transmembrane Protein Orientation and Function

    Directory of Open Access Journals (Sweden)

    Katie D. Hickey

    2011-01-01

    Full Text Available Sperm membranes change in structure and composition upon ejaculation to undergo capacitation, a molecular transformation which enables spermatozoa to undergo the acrosome reaction and be capable of fertilization. Changes to the membrane environment including lipid composition, specifically lipid microdomains, may be responsible for enabling capacitation. To study the effect of lipid environment on proteins, liposomes were created using lipids extracted from bull sperm membranes, with or without a protein (Na+ K+-ATPase or -amylase. Protein incorporation, function, and orientation were determined. Fluorescence resonance energy transfer (FRET confirmed protein inclusion in the lipid bilayer, and protein function was confirmed using a colourometric assay of phosphate production from ATP cleavage. In the native lipid liposomes, ATPase was oriented with the subunit facing the outer leaflet, while changing the lipid composition to 50% native lipids and 50% exogenous lipids significantly altered this orientation of Na+ K+-ATPase within the membranes.

  20. Experimental conditions affecting functional comparison of highly active glutathione transferases.

    Science.gov (United States)

    Fedulova, Natalia; Mannervik, Bengt

    2011-06-01

    Glutathione transferases (GSTs, EC 2.5.1.18) possess multiple functions and have potential applications in biotechnology. Direct evidence of underestimation of activity of human GST A3-3 and porcine GST A2-2 measured at submicromolar enzyme concentrations is reported here for the first time. The combination of time-dependent and enzyme concentration-dependent loss of activity and the choice of the organic solvent for substrates were found to cause irreproducibility of activity measurements of GSTs. These effects contribute to high variability of activity values of porcine GST A2-2 and human Alpha-class GSTs reported in the literature. Adsorption of GSTs to surfaces was found to be the main explanation of the observed phenomena. Several approaches to improved functional comparison of highly active GSTs are proposed.

  1. Alginate overproduction affects Pseudomonas aeruginosa biofilm structure and function

    DEFF Research Database (Denmark)

    Hentzer, Morten; Teitzel, G.M.; Balzer, G.J.;

    2001-01-01

    During the course of chronic cystic fibrosis (CF) infections, Pseudomonas aeruginosa undergoes a conversion to a mucoid phenotype, which is characterized by overproduction of the exopolysaccharide alginate. Chronic P. aeruginosa infections involve surface-attached, highly antibiotic-resistant com......During the course of chronic cystic fibrosis (CF) infections, Pseudomonas aeruginosa undergoes a conversion to a mucoid phenotype, which is characterized by overproduction of the exopolysaccharide alginate. Chronic P. aeruginosa infections involve surface-attached, highly antibiotic......-resistant communities of microorganisms organized in biofilms. Although biofilm formation and the conversion to mucoidy are both important aspects of CF pathogenesis, the relationship between them is at the present unclear. In this study, we report that the overproduction of alginate affects biofilm development...

  2. Genes affecting β-cell function in type 1 diabetes

    DEFF Research Database (Denmark)

    Fløyel, Tina; Kaur, Simranjeet; Pociot, Flemming

    2015-01-01

    Type 1 diabetes (T1D) is a multifactorial disease resulting from an immune-mediated destruction of the insulin-producing pancreatic β cells. Several environmental and genetic risk factors predispose to the disease. Genome-wide association studies (GWAS) have identified around 50 genetic regions...... that affect the risk of developing T1D, but the disease-causing variants and genes are still largely unknown. In this review, we discuss the current status of T1D susceptibility loci and candidate genes with focus on the β cell. At least 40 % of the genes in the T1D susceptibility loci are expressed in human...... islets and β cells, where they according to recent studies modulate the β-cell response to the immune system. As most of the risk variants map to noncoding regions of the genome, i.e., promoters, enhancers, intergenic regions, and noncoding genes, their possible involvement in T1D pathogenesis as gene...

  3. Risk factors affecting somatosensory function after sagittal split osteotomy

    DEFF Research Database (Denmark)

    Thygesen, Torben Henrik; Jensen, Allan Bardow; Helleberg, M;

    2008-01-01

    Purpose The aim of this study was to evaluate potential individual and intraoperative risk factors associated with bilateral sagittal split osteotomy (BSSO) and to correlate the findings with postoperative changes in somatosensory function. Patients and Methods A total of 18 men and 29 women (mean...... and free dissection of the inferior alveolar nerve during BSSO increased self-reported changes in lower lip sensation and lower lip tactile threshold after BSSO (P discrimination (P

  4. Does caregiving stress affect cognitive function in older women?

    Science.gov (United States)

    Lee, Sunmin; Kawachi, Ichiro; Grodstein, Francine

    2004-01-01

    Increasing numbers of women provide care to their ill spouses; however, no studies have examined possible effects of caregiving stress on cognitive function. We administered 6 tests of cognitive function to 13740 Nurses' Health Study participants aged 70-79 years. We collected information on caregiving and numerous potential confounding variables via biennial mailed questionnaires. After adjustment for potential confounders (age, education, mental health index, vitality index, use of antidepressants, and history of high blood pressure, diabetes, and heart disease), we found modest but significantly increased risks of low cognitive function on three of the cognitive tests among women who provided care to a disabled or ill spouse compared with women who did not provide any care. For example, on the TICS, a test of general cognition, the risk of a low score was 31% higher in women who provided care compared with women who did not (RR = 1.31, 95% CI 1.10, 1.56). We found a moderately increased risk of poor performance on several cognitive tests among women who provided care to their disabled or ill husbands.

  5. Prenatal drug exposure affects neonatal brain functional connectivity.

    Science.gov (United States)

    Salzwedel, Andrew P; Grewen, Karen M; Vachet, Clement; Gerig, Guido; Lin, Weili; Gao, Wei

    2015-04-01

    Prenatal drug exposure, particularly prenatal cocaine exposure (PCE), incurs great public and scientific interest because of its associated neurodevelopmental consequences. However, the neural underpinnings of PCE remain essentially uncharted, and existing studies in school-aged children and adolescents are confounded greatly by postnatal environmental factors. In this study, leveraging a large neonate sample (N = 152) and non-invasive resting-state functional magnetic resonance imaging, we compared human infants with PCE comorbid with other drugs (such as nicotine, alcohol, marijuana, and antidepressant) with infants with similar non-cocaine poly drug exposure and drug-free controls. We aimed to characterize the neural correlates of PCE based on functional connectivity measurements of the amygdala and insula at the earliest stage of development. Our results revealed common drug exposure-related connectivity disruptions within the amygdala-frontal, insula-frontal, and insula-sensorimotor circuits. Moreover, a cocaine-specific effect was detected within a subregion of the amygdala-frontal network. This pathway is thought to play an important role in arousal regulation, which has been shown to be irregular in PCE infants and adolescents. These novel results provide the earliest human-based functional delineations of the neural-developmental consequences of prenatal drug exposure and thus open a new window for the advancement of effective strategies aimed at early risk identification and intervention.

  6. Visual function affects prosocial behaviors in older adults.

    Science.gov (United States)

    Teoli, Dac A; Smith, Merideth D; Leys, Monique J; Jain, Priyanka; Odom, J Vernon

    2016-02-01

    Eye-related pathological conditions such as glaucoma, diabetic retinopathy, and age-related macular degeneration commonly lead to decreased peripheral/central field, decreased visual acuity, and increased functional disability. We sought to answer if relationships exist between measures of visual function and reported prosocial behaviors in an older adult population with eye-related diagnoses. The sample consisted of adults, aged ≥ 60 years old, at an academic hospital's eye institute. Vision ranged from normal to severe impairment. Medical charts determined the visual acuities, ocular disease, duration of disease (DD), and visual fields (VF). Measures of giving help were via validated questionnaires on giving formal support (GFS) and giving informal support; measures of help received were perceived support (PS) and informal support received (ISR). ISR had subscales: tangible support (ISR-T), emotional support (ISR-E), and composite (ISR-C). Visual acuities of the better and worse seeing eyes were converted to LogMAR values. VF information converted to a 4-point rating scale of binocular field loss severity. DD was in years. Among 96 participants (mean age 73.28; range 60-94), stepwise regression indicated a relationship of visual variables to GFS (p < 0.05; Multiple R (2) = 0.1679 with acuity-better eye, VF rating, and DD), PS (p < 0.05; Multiple R (2) = 0.2254 with acuity-better eye), ISR-C (p < 0.05; Multiple R (2) = 0.041 with acuity-better eye), and ISR-T (p < 0.05; Multiple R (2) = 0.1421 with acuity-better eye). The findings suggest eye-related conditions can impact levels and perceptions of support exchanges. Our data reinforces the importance of visual function as an influence on prosocial behavior in older adults.

  7. Efficient Associative Computation with Discrete Synapses.

    Science.gov (United States)

    Knoblauch, Andreas

    2016-01-01

    Neural associative networks are a promising computational paradigm for both modeling neural circuits of the brain and implementing associative memory and Hebbian cell assemblies in parallel VLSI or nanoscale hardware. Previous work has extensively investigated synaptic learning in linear models of the Hopfield type and simple nonlinear models of the Steinbuch/Willshaw type. Optimized Hopfield networks of size n can store a large number of about n(2)/k memories of size k (or associations between them) but require real-valued synapses, which are expensive to implement and can store at most C = 0.72 bits per synapse. Willshaw networks can store a much smaller number of about n(2)/k(2) memories but get along with much cheaper binary synapses. Here I present a learning model employing synapses with discrete synaptic weights. For optimal discretization parameters, this model can store, up to a factor ζ close to one, the same number of memories as for optimized Hopfield-type learning--for example, ζ = 0.64 for binary synapses, ζ = 0.88 for 2 bit (four-state) synapses, ζ = 0.96 for 3 bit (8-state) synapses, and ζ > 0.99 for 4 bit (16-state) synapses. The model also provides the theoretical framework to determine optimal discretization parameters for computer implementations or brainlike parallel hardware including structural plasticity. In particular, as recently shown for the Willshaw network, it is possible to store C(I) = 1 bit per computer bit and up to C(S) = log n bits per nonsilent synapse, whereas the absolute number of stored memories can be much larger than for the Willshaw model.

  8. [Physiology of synapse: from molecular modules to retrograde modulation].

    Science.gov (United States)

    Brezhestovskiĭ, P D

    2010-09-01

    Synapses are highly organized, specific structures assuring rapid and highly selective interactions between cells. Synaptic transmission involves the release of neurotransmitter from presynaptic neurons and its detection by specific ligand-gated ion channels at the surface membrane of postsynaptic neurons. The protenomic analysis shows that for self-formation and functioning of synapses nearly 2000 proteins are involved in mammalian brain. The core complex in excitatory synapses includes glutamate receptors, potassium channels, CaMKII, scaffolding protein and actin. These proteins exist as part of a highly organized protein complex known as the postsynaptic density (PSD). The coordinated functioning of the different PSD components determines the strength of signalling between the pre- and postsynaptic neurons. Synaptic plasticity is regulated by changes in the amount of receptors on the postsynaptic membrane, changes in the shape and size of dendritic spines, posttranslational modification of PSD components, modulation kinetics of synthesis and degradation of proteins. Integration of these processes leads to long-lasting changes in synaptic function and neuronal networks underlying learning-related plasticity, memory and information treatment in nervous system of multicellular organisms.

  9. Affected functional networks associated with sentence production in classic galactosemia.

    Science.gov (United States)

    Timmers, Inge; van den Hurk, Job; Hofman, Paul Am; Zimmermann, Luc Ji; Uludağ, Kâmil; Jansma, Bernadette M; Rubio-Gozalbo, M Estela

    2015-08-07

    Patients with the inherited metabolic disorder classic galactosemia have language production impairments in several planning stages. Here, we assessed potential deviations in recruitment and connectivity across brain areas responsible for language production that may explain these deficits. We used functional magnetic resonance imaging (fMRI) to study neural activity and connectivity while participants carried out a language production task. This study included 13 adolescent patients and 13 age- and gender-matched healthy controls. Participants passively watched or actively described an animated visual scene using two conditions, varying in syntactic complexity (single words versus a sentence). Results showed that patients recruited additional and more extensive brain regions during sentence production. Both groups showed modulations with syntactic complexity in left inferior frontal gyrus (IFG), a region associated with syntactic planning, and in right insula. In addition, patients showed a modulation with syntax in left superior temporal gyrus (STG), whereas the controls did not. Further, patients showed increased activity in right STG and right supplementary motor area (SMA). The functional connectivity data showed similar patterns, with more extensive connectivity with frontal and motor regions, and restricted and weaker connectivity with superior temporal regions. Patients also showed higher baseline cerebral blood flow (CBF) in right IFG and trends towards higher CBF in bilateral STG, SMA and the insula. Taken together, the data demonstrate that language abnormalities in classic galactosemia are associated with specific changes within the language network. These changes point towards impairments related to both syntactic planning and speech motor planning in these patients.

  10. Modeled Microgravity Affects Fibroblast Functions Related to Wound Healing

    Science.gov (United States)

    Cialdai, Francesca; Vignali, Leonardo; Morbidelli, Lucia; Colciago, Alessandra; Celotti, Fabio; Santi, Alice; Caselli, Anna; Cirri, Paolo; Monici, Monica

    2017-02-01

    Wound healing is crucial for the survival of an organism. Therefore, in the perspective of space exploration missions, it is important to understand if and how microgravity conditions affect the behavior of the cell populations involved in wound healing and the evolution of the process. Since fibroblasts are the major players in tissue repair, this study was focused on the behavior of fibroblasts in microgravity conditions, modeled by a RCCS. Cell cytoskeleton was studied by immunofluorescence microscopy, the ability to migrate was assessed by microchemotaxis and scratch assay, and the expression of markers of fibroblast activation, angiogenesis, and inflammation was assessed by western blot. Results revealed that after cell exposure to modeled microgravity conditions, a thorough rearrangement of microtubules occurred and α-SMA bundles were replaced by a tight network of faulty and disorganized filaments. Exposure to modeled microgravity induced a decrease in α-SMA and E-CAD expressions. Also, the expression of the pro-angiogenic protein VEGF decreased, while that of the inflammatory signal COX-2 increased. Fibroblast ability to adhere, migrate, and respond to chemoattractants (PRP), closely related to cytoskeleton integrity and membrane junctions, was significantly impaired. Nevertheless, PRP was able to partially restore fibroblast migration.

  11. Modeled Microgravity Affects Fibroblast Functions Related to Wound Healing

    Science.gov (United States)

    Cialdai, Francesca; Vignali, Leonardo; Morbidelli, Lucia; Colciago, Alessandra; Celotti, Fabio; Santi, Alice; Caselli, Anna; Cirri, Paolo; Monici, Monica

    2017-01-01

    Wound healing is crucial for the survival of an organism. Therefore, in the perspective of space exploration missions, it is important to understand if and how microgravity conditions affect the behavior of the cell populations involved in wound healing and the evolution of the process. Since fibroblasts are the major players in tissue repair, this study was focused on the behavior of fibroblasts in microgravity conditions, modeled by a RCCS. Cell cytoskeleton was studied by immunofluorescence microscopy, the ability to migrate was assessed by microchemotaxis and scratch assay, and the expression of markers of fibroblast activation, angiogenesis, and inflammation was assessed by western blot. Results revealed that after cell exposure to modeled microgravity conditions, a thorough rearrangement of microtubules occurred and α-SMA bundles were replaced by a tight network of faulty and disorganized filaments. Exposure to modeled microgravity induced a decrease in α-SMA and E-CAD expressions. Also, the expression of the pro-angiogenic protein VEGF decreased, while that of the inflammatory signal COX-2 increased. Fibroblast ability to adhere, migrate, and respond to chemoattractants (PRP), closely related to cytoskeleton integrity and membrane junctions, was significantly impaired. Nevertheless, PRP was able to partially restore fibroblast migration.

  12. Low level methylmercury exposure affects neuropsychological function in adults

    Directory of Open Access Journals (Sweden)

    Platt Illeane

    2003-06-01

    , consistent with a dose-dependent effect. Conclusions This study suggests that adults exposed to MeHg may be at risk for deficits in neurocognitive function. The functions disrupted in adults, namely attention, fine-motor function and verbal memory, are similar to some of those previously reported in children with prenatal exposures.

  13. Activation of α7-containing nicotinic receptors on astrocytes triggers AMPA receptor recruitment to glutamatergic synapses.

    Science.gov (United States)

    Wang, Xulong; Lippi, Giordano; Carlson, David M; Berg, Darwin K

    2013-12-01

    Astrocytes, an abundant form of glia, are known to promote and modulate synaptic signaling between neurons. They also express α7-containing nicotinic acetylcholine receptors (α7-nAChRs), but the functional relevance of these receptors is unknown. We show here that stimulation of α7-nAChRs on astrocytes releases components that induce hippocampal neurons to acquire more α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors post-synaptically at glutamatergic synapses. The increase is specific in that no change is seen in synaptic NMDA receptor clusters or other markers for glutamatergic synapses, or in markers for GABAergic synapses. Moreover, the increases in AMPA receptors on the neuron surface are accompanied by increases in the frequency of spontaneous miniature synaptic currents mediated by the receptors and increases in the ratio of evoked synaptic currents mediated by AMPA versus NMDA receptors. This suggests that stimulating α7-nAChRs on astrocytes can convert 'silent' glutamatergic synapses to functional status. Astrocyte-derived thrombospondin is necessary but not sufficient for the effect, while tumor necrosis factor-α is sufficient but not necessary. The results identify astrocyte α7-nAChRs as a novel pathway through which nicotinic cholinergic signaling can promote the development of glutamatergic networks, recruiting AMPA receptors to post-synaptic sites and rendering the synapses more functional. We find that activation of nicotinic receptors on astrocytes releases a component that specifically recruits AMPA receptors to glutamatergic synapses. The recruitment appears to occur preferentially at what may be 'silent synapses', that is, synapses that have all the components required for glutamatergic transmission (including NMDA receptors) but lack sufficient AMPA receptors to generate a response. The results are unexpected and open up new possibilities for mechanisms underlying network formation and synaptic plasticity.

  14. Neuroligin 2 is expressed in synapses established by cholinergic cells in the mouse brain.

    Directory of Open Access Journals (Sweden)

    Virág T Takács

    Full Text Available Neuroligin 2 is a postsynaptic protein that plays a critical role in the maturation and proper function of GABAergic synapses. Previous studies demonstrated that deletion of neuroligin 2 impaired GABAergic synaptic transmission, whereas its overexpression caused increased inhibition, which suggest that its presence strongly influences synaptic function. Interestingly, the overexpressing transgenic mouse line showed increased anxiety-like behavior and other behavioral phenotypes, not easily explained by an otherwise strengthened GABAergic transmission. This suggested that other, non-GABAergic synapses may also express neuroligin 2. Here, we tested the presence of neuroligin 2 at synapses established by cholinergic neurons in the mouse brain using serial electron microscopic sections double labeled for neuroligin 2 and choline acetyltransferase. We found that besides GABAergic synapses, neuroligin 2 is also present in the postsynaptic membrane of cholinergic synapses in all investigated brain areas (including dorsal hippocampus, somatosensory and medial prefrontal cortices, caudate putamen, basolateral amygdala, centrolateral thalamic nucleus, medial septum, vertical- and horizontal limbs of the diagonal band of Broca, substantia innominata and ventral pallidum. In the hippocampus, the density of neuroligin 2 labeling was similar in GABAergic and cholinergic synapses. Moreover, several cholinergic contact sites that were strongly labeled with neuroligin 2 did not resemble typical synapses, suggesting that cholinergic axons form more synaptic connections than it was recognized previously. We showed that cholinergic cells themselves also express neuroligin 2 in a subset of their input synapses. These data indicate that mutations in human neuroligin 2 gene and genetic manipulations of neuroligin 2 levels in rodents will potentially cause alterations in the cholinergic system as well, which may also have a profound effect on the functional properties

  15. Osmotic stress affects functional properties of human melanoma cell lines

    CERN Document Server

    La Porta, Caterina A M; Pasini, Maria; Laurson, Lasse; Alava, Mikko J; Zapperi, Stefano; Amar, Martine Ben

    2015-01-01

    Understanding the role of microenvironment in cancer growth and metastasis is a key issue for cancer research. Here, we study the effect of osmotic pressure on the functional properties of primary and metastatic melanoma cell lines. In particular, we experimentally quantify individual cell motility and transmigration capability. We then perform a circular scratch assay to study how a cancer cell front invades an empty space. Our results show that primary melanoma cells are sensitive to a low osmotic pressure, while metastatic cells are less. To better understand the experimental results, we introduce and study a continuous model for the dynamics of a cell layer and a stochastic discrete model for cell proliferation and diffusion. The two models capture essential features of the experimental results and allow to make predictions for a wide range of experimentally measurable parameters.

  16. Endocannabinoids affect the reproductive functions in teleosts and amphibians.

    Science.gov (United States)

    Cottone, E; Guastalla, A; Mackie, K; Franzoni, M F

    2008-04-16

    Following the discovery in the brain of the bonyfish Fugu rubripes of two genes encoding for type 1 cannabinoid receptors (CB1A and CB1B), investigations on the phylogeny of these receptors have indicated that the cannabinergic system is highly conserved. Among the multiple functions modulated by cannabinoids/endocannabinoids through the CB1 receptors one of the more investigated is the mammalian reproduction. Therefore, since studies performed in animal models other than mammals might provide further insight into the biology of these signalling molecules, the major aim of the present paper was to review the comparative data pointing toward the endocannabinoid involvement in the reproductive control of non-mammalian vertebrates, namely bonyfish and amphibians. The expression and distribution of CB1 receptors were investigated in the CNS and gonads of two teleosts, Pelvicachromis pulcher and Carassius auratus as well as in the anuran amphibians Xenopus laevis and Rana esculenta. In general the large diffusion of neurons targeted by cannabinoids in both fish and amphibian forebrain indicate endocannabinoids as pivotal local messengers in several neural circuits involved in either sensory integrative activities, like the olfactory processes (in amphibians) and food response (in bonyfish), or neuroendocrine machinery (in both). By using immunohistochemistry for CB1 and GnRH-I, the codistribution of the two signalling molecules was found in the fish basal telencephalon and preoptic area, which are key centers for gonadotropic regulation in all vertebrates. A similar topographical codistribution was observed also in the septum of the telencephalon in Rana esculenta and Xenopus laevis. Interestingly, the double standard immunofluorescence on the same brain section, aided with a laser confocal microscope, showed that in anurans a subset of GnRH-I neurons exhibited also the CB1 immunostaining. The fact that CB1-LI-IR was found indeed in the FSH gonadotrophs of the Xenopus

  17. Neuron-glia signaling: Implications for astrocyte differentiation and synapse formation.

    Science.gov (United States)

    Stipursky, Joice; Romão, Luciana; Tortelli, Vanessa; Neto, Vivaldo Moura; Gomes, Flávia Carvalho Alcantara

    2011-10-10

    Glial cells are currently viewed as active partners of neurons in synapse formation. The close proximity of astrocytes to the synaptic cleft implicates that they strongly influence synapse function as well as suggests that these cells might be potential targets for neuronal-released molecules. In this review, we discuss the signaling pathways of astrocyte generation and the role of astrocyte-derived molecules in synapse formation in the central nervous system. Further, we discuss the role of the excitatory neurotransmitter, glutamate and transforming growth factor beta 1 (TGF-β1) pathway in astrocyte generation and differentiation. We provide evidence that astrocytes surrounding synapses are target of neuronal activity and shed light into the role of astroglial cells into neurological disorders associated with glutamate neurotoxicity.

  18. Regulation of vesicular traffic at the T cell immune synapse: lessons from the primary cilium.

    Science.gov (United States)

    Finetti, Francesca; Onnis, Anna; Baldari, Cosima T

    2015-03-01

    The signals that orchestrate the process of T cell activation are coordinated at the specialized interface that forms upon contact with an antigen presenting cell displaying a specific MHC-associated peptide ligand, known as the immune synapse. The central role of vesicular traffic in the assembly of the immune synapse has emerged only in recent years with the finding that sustained T-cell receptor (TCR) signaling involves delivery of TCR/CD3 complexes from an intracellular pool associated with recycling endosomes. A number of receptors as well as membrane-associated signaling mediators have since been demonstrated to exploit this process to localize to the immune synapse. Here, we will review our current understanding of the mechanisms responsible for TCR recycling, with a focus on the intraflagellar transport system, a multimolecular complex that is responsible for the assembly and function of the primary cilium which we have recently implicated in polarized endosome recycling to the immune synapse.

  19. Dynamic changes in hair cell ribbon synapse induced by loss of spiral ganglion neurons in mice

    Institute of Scientific and Technical Information of China (English)

    Yuan Yasheng; Chi Fanglu

    2014-01-01

    Background Previous studies have suggested that primary degeneration of hair cells causes secondary degeneration of spiral ganglion neurons (SGNs),but the effect of SGN degeneration on hair cells has not been studied.In the adult mouse inner ear ouabain can selectively and permanently induce the degeneration of type 1 SGNs while leaving type 2 SGNs,efferent fibers,and sensory hair cells relatively intact.This study aimed to investigate the dynamic changes in hair cell ribbon synapse induced by loss of SGNs using ouabain application to the round window niche of adult mice.Methods In the analysis,24 CBA/CAJ mice aged 8-10 weeks,were used,of which 6 normal mice were used as the control group.After ouabain application in the round window niche 6 times in an hour,ABR threshold shifts at least 30 dB in the three experimental groups which had six mice for 1-week group,six for 1-month group,and six for 3-month group.All 24 animals underwent function test at 1 week and then immunostaining at 1 week,1 month,and 3 months.Results The loss of neurons was followed by degeneration of postsynaptic specializations at the afferent synapse with hair cells.One week after ouabain treatment,the nerve endings of type 1 SGNs and postsynaptic densities,as measured by Na/K ATPase and PSD-95,were affected but not entirely missing,but their partial loss had consequences for synaptic ribbons that form the presynaptic specialization at the synapse between hair cells and primary afferent neurons.Ribbon numbers in inner hair cells decreased (some of them broken and the ribbon number much decreased),and the arrangement of the synaptic ribbons had undergone a dynamic reorganization:ribbons with or without associated postsynaptic densities moved from their normal location in the basal membrane of the cell to a more apical location and the neural endings alone were also found at more apical locations without associated ribbons.After 1 month,when the neural postsynaptic densities had completed their

  20. A new measure for the strength of electrical synapses

    Directory of Open Access Journals (Sweden)

    Julie S Haas

    2015-09-01

    Full Text Available Electrical synapses, like chemical synapses, mediate intraneuronal communication. Electrical synapses are typically quantified by subthreshold measurements of coupling, which fall short in describing their impact on spiking activity in coupled neighbors. Here we describe a novel measurement for electrical synapse strength that directly evaluates the effect of synaptically transmitted activity on spike timing. This method, also applicable to neurotransmitter-based synapses, communicates the considerable strength of electrical synapses. For electrical synapses measured in rodent slices of the thalamic reticular nucleus, spike timing is modulated by tens of ms by activity in a coupled neighbor.

  1. Neurology of Affective Prosody and Its Functional-Anatomic Organization in Right Hemisphere

    Science.gov (United States)

    Ross, Elliott D.; Monnot, Marilee

    2008-01-01

    Unlike the aphasic syndromes, the organization of affective prosody in brain has remained controversial because affective-prosodic deficits may occur after left or right brain damage. However, different patterns of deficits are observed following left and right brain damage that suggest affective prosody is a dominant and lateralized function of…

  2. 67. Do prenatal intracardiac echogenic foci affect postnatal cardiac function?

    Directory of Open Access Journals (Sweden)

    R. Bader

    2016-07-01

    Full Text Available Echogenic foci in the prenatal hear is not an uncommon finding. To determine whether prenatally diagnosed intracardiac echogenic foci are associated with neonatal cardiac dysfunction and persistence. Fetuses in which intracardiac echogenic foci were shown on prenatal sonography at 1 perinatal center from (September 2009 to December 2013 underwent postnatal echocardiography at ages 1 month to1 year. A single pediatric cardiologist assessed cardiac function by measuring the left ventricular shortening fraction and myocardial performance index. The presence of tricuspid valve regurgitation was also sought. Prenatally 60 fetuses had intracardiac echogenic foci mean age ± SD at diagnosis (23 ± 3.1. 53 (88.3% had left ventricular intracardiac echogenic foci, and 7 (11.6% had right ventricular intracardiac echogenic foci. 12 preganant ladies were lost for follow up (2 fetuses of 7 (28.5% with right ventricular intracardiac echogenic foci., and 10 fetuses of 53 (18.8% with LV intracardiac echogenic foci %. Post natally, those infants, 32 (66.6% males and 16 (33.3% females were examined. At a mean age ± SD of 7.4 ± 3.1 months. Prenatally, all infants had a normal left ventricular shortening fraction. The overall mean left ventricular myocardial performance index (reference value, 0.36 ± 0.06, was normal for both infants with left ventricular intracardiac echogenic foci (0.32 ± 0.01 and those with right ventricular intracardiac echogenic foci (0.33 ± 0.05. Trace tricuspid valve regurgitation were noted in 15 (31% of the infants. Left ventricular intracardiac echogenic foci persisted in 15 infants (34.8%, whereas right ventricular intracardiac echogenic foci persisted in 1 infant (20%. Prenatally diagnosed intracardiac echogenic foci can be persistent but is not associated with myocardial dysfunction in the first year of life.

  3. Emerging Roles of BAI Adhesion-GPCRs in Synapse Development and Plasticity

    Directory of Open Access Journals (Sweden)

    Joseph G. Duman

    2016-01-01

    Full Text Available Synapses mediate communication between neurons and enable the brain to change in response to experience, which is essential for learning and memory. The sites of most excitatory synapses in the brain, dendritic spines, undergo rapid remodeling that is important for neural circuit formation and synaptic plasticity. Abnormalities in synapse and spine formation and plasticity are associated with a broad range of brain disorders, including intellectual disabilities, autism spectrum disorders (ASD, and schizophrenia. Thus, elucidating the mechanisms that regulate these neuronal processes is critical for understanding brain function and disease. The brain-specific angiogenesis inhibitor (BAI subfamily of adhesion G-protein-coupled receptors (adhesion-GPCRs has recently emerged as central regulators of synapse development and plasticity. In this review, we will summarize the current knowledge regarding the roles of BAIs at synapses, highlighting their regulation, downstream signaling, and physiological functions, while noting the roles of other adhesion-GPCRs at synapses. We will also discuss the relevance of BAIs in various neurological and psychiatric disorders and consider their potential importance as pharmacological targets in the treatment of these diseases.

  4. Opioids potentiate electrical transmission at mixed synapses on the Mauthner cell.

    Science.gov (United States)

    Cachope, Roger; Pereda, Alberto E

    2015-07-01

    Opioid receptors were shown to modulate a variety of cellular processes in the vertebrate central nervous system, including synaptic transmission. While the effects of opioid receptors on chemically mediated transmission have been extensively investigated, little is known of their actions on gap junction-mediated electrical synapses. Here we report that pharmacological activation of mu-opioid receptors led to a long-term enhancement of electrical (and glutamatergic) transmission at identifiable mixed synapses on the goldfish Mauthner cells. The effect also required activation of both dopamine D1/5 receptors and postsynaptic cAMP-dependent protein kinase A, suggesting that opioid-evoked actions are mediated indirectly via the release of dopamine from varicosities known to be located in the vicinity of the synaptic contacts. Moreover, inhibitory inputs situated in the immediate vicinity of these excitatory synapses on the lateral dendrite of the Mauthner cell were not affected by activation of mu-opioid receptors, indicating that their actions are restricted to electrical and glutamatergic transmissions co-existing at mixed contacts. Thus, as their chemical counterparts, electrical synapses can be a target for the modulatory actions of the opioid system. Because gap junctions at these mixed synapses are formed by fish homologs of the neuronal connexin 36, which is widespread in mammalian brain, it is likely that this regulatory property applies to electrical synapses elsewhere as well.

  5. Regulation of dopamine D1 receptor dynamics within the postsynaptic density of hippocampal glutamate synapses.

    Directory of Open Access Journals (Sweden)

    Laurent Ladepeche

    Full Text Available Dopamine receptor potently modulates glutamate signalling, synaptic plasticity and neuronal network adaptations in various pathophysiological processes. Although key intracellular signalling cascades have been identified, the cellular mechanism by which dopamine and glutamate receptor-mediated signalling interplay at glutamate synapse remain poorly understood. Among the cellular mechanisms proposed to aggregate D1R in glutamate synapses, the direct interaction between D1R and the scaffold protein PSD95 or the direct interaction with the glutamate NMDA receptor (NMDAR have been proposed. To tackle this question we here used high-resolution single nanoparticle imaging since it provides a powerful way to investigate at the sub-micron resolution the dynamic interaction between these partners in live synapses. We demonstrate in hippocampal neuronal networks that dopamine D1 receptors (D1R laterally diffuse within glutamate synapses, in which their diffusion is reduced. Disrupting the interaction between D1R and PSD95, through genetical manipulation and competing peptide, did not affect D1R dynamics in glutamatergic synapses. However, preventing the physical interaction between D1R and the GluN1 subunit of NMDAR abolished the synaptic stabilization of diffusing D1R. Together, these data provide direct evidence that the interaction between D1R and NMDAR in synapses participate in the building of the dopamine-receptor-mediated signalling, and most likely to the glutamate-dopamine cross-talk.

  6. Molecular defects in the ABCA1 pathway affect platelet function.

    Science.gov (United States)

    Schmitz, Gerd; Schambeck, Christian M

    2006-01-01

    Platelet function is sensitive to alterations in cholesterol metabolism, and hypercholesterolemia is associated with enhanced platelet reagibility. Atherogenic low-density lipoproteins (LDL), in particular oxidized LDL, activate src-kinase-family-dependent signalling. In contrast, antiatherogenic high-density lipoproteins(HDL) inhibit platelet aggregation and target the phosphatidylinositol phospholipase C (PI-PLC) pathway. Sphingosine 1-phosphate is a major HDL component and may be crucial for downstream reactions of collagen-induced glycoprotein VI signalling and phosphoinositide 3-kinase. The ATP-binding cassette transporter A1 (ABCA1) regulates cell membrane phospholipid and cholesterol homeostasis and their release to lipid-poor apolipoprotein AI to generate prebeta-HDL precursor particles. ABCA1 also interacts with modulators of vesicular trafficking and number and impaired release of dense bodies from platelets. The ABCA1-NH2-terminus-associated Syntaxin-13, a SNARE complex protein, interacts with syntaxin 13-interacting protein (pallidin) whose deficiency leads to impaired platelet granule release from the dense granule Adapter Protein-3 (AP-3)-related pathway. Interestingly, the cholesterol transporter ABCG1 in addition to ABCA1 is another constituent of the AP-3 pathway, and disorders of lysosome-related organelles such as the Hermansky-Pudlack syndrome complex, Chediak-Higashi syndrome and the ceroid lipofuscinoses provide new opportunities to understand AP-3 pathway-related disorders and the irrelation to membrane phospholipid processing. ABCA1 mutations are involved in dysregulated vesicular trafficking from the trans golgi compartment to the plasma membrane, and ABCA1 R1925Q was shown to contribute to Scott syndrome, a phospholipid-processing disorder of missing surface exposure of phosphatidlyserine. The P2Y12 receptor triggers dense granule secretion by downstream effectors including the G-protein-coupled inward rectifier K+ channel-4 (GIRK-4), and

  7. Familial clustering of executive functioning in affected sibling pair families with ADHD.

    NARCIS (Netherlands)

    Slaats-Willemse, D.I.; Swaab-Barneveld, H.J.; Sonneville, L.

    2005-01-01

    OBJECTIVE: To investigate familial clustering of executive functioning (i.e., response inhibition, fine visuomotor functioning, and attentional control) in attention-deficit/hyperactivity disorder (ADHD)-affected sibling pairs. METHOD: Fifty-two affected sibling pairs aged 6 to 18 years and diagnose

  8. Neuroligin-1 loss is associated with reduced tenacity of excitatory synapses.

    Directory of Open Access Journals (Sweden)

    Adel Zeidan

    Full Text Available Neuroligins (Nlgns are postsynaptic, integral membrane cell adhesion molecules that play important roles in the formation, validation, and maturation of synapses in the mammalian central nervous system. Given their prominent roles in the life cycle of synapses, it might be expected that the loss of neuroligin family members would affect the stability of synaptic organization, and ultimately, affect the tenacity and persistence of individual synaptic junctions. Here we examined whether and to what extent the loss of Nlgn-1 affects the dynamics of several key synaptic molecules and the constancy of their contents at individual synapses over time. Fluorescently tagged versions of the postsynaptic scaffold molecule PSD-95, the AMPA-type glutamate receptor subunit GluA2 and the presynaptic vesicle molecule SV2A were expressed in primary cortical cultures from Nlgn-1 KO mice and wild-type (WT littermates, and live imaging was used to follow the constancy of their contents at individual synapses over periods of 8-12 hours. We found that the loss of Nlgn-1 was associated with larger fluctuations in the synaptic contents of these molecules and a poorer preservation of their contents at individual synapses. Furthermore, rates of synaptic turnover were somewhat greater in neurons from Nlgn-1 knockout mice. Finally, the increased GluA2 redistribution rates observed in neurons from Nlgn-1 knockout mice were negated by suppressing spontaneous network activity. These findings suggest that the loss of Nlgn-1 is associated with some use-dependent destabilization of excitatory synapse organization, and indicate that in the absence of Nlgn-1, the tenacity of excitatory synapses might be somewhat impaired.

  9. Gliotransmission and the tripartite synapse.

    Science.gov (United States)

    Santello, Mirko; Calì, Corrado; Bezzi, Paola

    2012-01-01

    In the last years, the classical view of glial cells (in particular of astrocytes) as a simple supportive cell for neurons has been replaced by a new vision in which glial cells are active elements of the brain. Such a new vision is based on the existence of a bidirectional communication between astrocytes and neurons at synaptic level. Indeed, perisynaptic processes of astrocytes express active G-protein-coupled receptors that are able (1) to sense neurotransmitters released from the synapse during synaptic activity, (2) to increase cytosolic levels of calcium, and (3) to stimulate the release of gliotransmitters that in turn can interact with the synaptic elements. The mechanism(s) by which astrocytes can release gliotransmitter has been extensively studied during the last years. Many evidences have suggested that a fraction of astrocytes in situ release neuroactive substances both with calcium-dependent and calcium-independent mechanism(s); whether these mechanisms coexist and under what physiological or pathological conditions they occur, it remains unclear. However, the calcium-dependent exocytotic vesicular release has received considerable attention due to its potential to occur under physiological conditions via a finely regulated way. By releasing gliotransmitters in millisecond time scale with a specific vesicular apparatus, astrocytes can integrate and process synaptic information and control or modulate synaptic transmission and plasticity.

  10. Reevaluation of the role of parallel fiber synapses in delay eyeblink conditioning in mice using Cbln1 as a tool.

    Science.gov (United States)

    Emi, Kyoichi; Kakegawa, Wataru; Miura, Eriko; Ito-Ishida, Aya; Kohda, Kazuhisa; Yuzaki, Michisuke

    2013-01-01

    The delay eyeblink conditioning (EBC) is a cerebellum-dependent type of associative motor learning. However, the exact roles played by the various cerebellar synapses, as well as the underlying molecular mechanisms, remain to be determined. It is also unclear whether long-term potentiation (LTP) or long-term depression (LTD) at parallel fiber (PF)-Purkinje cell (PC) synapses is involved in EBC. In this study, to clarify the role of PF synapses in the delay EBC, we used mice in which a gene encoding Cbln1 was disrupted (cbln1(-/-) mice), which display severe reduction of PF-PC synapses. We showed that delay EBC was impaired in cbln1(-/-) mice. Although PF-LTD was impaired, PF-LTP was normally induced in cbln1(-/-) mice. A single recombinant Cbln1 injection to the cerebellar cortex in vivo completely, though transiently, restored the morphology and function of PF-PC synapses and delay EBC in cbln1(-/-) mice. Interestingly, the cbln1(-/-) mice retained the memory for at least 30 days, after the Cbln1 injection's effect on PF synapses had abated. Furthermore, delay EBC memory could be extinguished even after the Cbln1 injection's effect were lost. These results indicate that intact PF-PC synapses and PF-LTD, not PF-LTP, are necessary to acquire delay EBC in mice. In contrast, extracerebellar structures or remaining PF-PC synapses in cbln1(-/-) mice may be sufficient for the expression, maintenance, and extinction of its memory trace.

  11. Fundamental GABAergic amacrine cell circuitries in the retina: nested feedback, concatenated inhibition, and axosomatic synapses.

    Science.gov (United States)

    Marc, R E; Liu, W

    2000-10-01

    Presynaptic gamma-aminobutyrate-immunoreactive (GABA+) profiles were mapped in the cyprinid retina with overlay microscopy: a fusion of electron and optical imaging affording high-contrast ultrastructural and immunocytochemical visualization. GABA+ synapses, deriving primarily from amacrine cells (ACs), compose 92% of conventional synapses and 98% of the input to bipolar cells (BCs) in the inner plexiform layer. GABA+ AC synapses, the sign-inverting elements of signal processing, are deployed in micronetworks and distinctive synaptic source/target topologies. Nested feedback micronetworks are formed by three types of links (BC --> AC, reciprocal BC AC synapses) arranged as nested BC [AC --> AC] loops. Circuits using nested feedback can possess better temporal performance than those using simple reciprocal feedback loops. Concatenated GABA+ micronetworks of AC --> AC and AC --> AC --> AC chains are common and must be key elements for lateral spatial, temporal, and spectral signal processing. Concatenated inhibitions may represent exceptionally stable, low-gain, sign-conserving devices for receptive field construction. Some chain elements are GABA immunonegative (GABA-) and are, thus, likely glycinergic synapses. GABA+ synaptic baskets target the somas of certain GABA+ and GABA- cells, resembling cortical axosomatic synapses. Finally, all myelinated intraretinal profiles are GABA+, suggesting that some efferent systems are sources of GABAergic inhibition in the cyprinid retina and may comprise all axosomatic synapses. These micronetworks are likely the fundamental elements for receptive field shaping in the inner plexiform layer, although few receptive field models incorporate them as functional components. Conversely, simple feedback and feedforward synapses may often be chimeras: the result of an incomplete view of synaptic topology.

  12. Lack of Dietary Polyunsaturated Fatty Acids Causes Synapse Dysfunction in the Drosophila Visual System.

    Science.gov (United States)

    Ziegler, Anna B; Ménagé, Cindy; Grégoire, Stéphane; Garcia, Thibault; Ferveur, Jean-François; Bretillon, Lionel; Grosjean, Yael

    2015-01-01

    Polyunsaturated fatty acids (PUFAs) are essential nutrients for animals and necessary for the normal functioning of the nervous system. A lack of PUFAs can result from the consumption of a deficient diet or genetic factors, which impact PUFA uptake and metabolism. Both can cause synaptic dysfunction, which is associated with numerous disorders. However, there is a knowledge gap linking these neuronal dysfunctions and their underlying molecular mechanisms. Because of its genetic manipulability and its easy, fast, and cheap breeding, Drosophila melanogaster has emerged as an excellent model organism for genetic screens, helping to identify the genetic bases of such events. As a first step towards the understanding of PUFA implications in Drosophila synaptic physiology we designed a breeding medium containing only very low amounts of PUFAs. We then used the fly's visual system, a well-established model for studying signal transmission and neurological disorders, to measure the effects of a PUFA deficiency on synaptic function. Using both visual performance and eye electrophysiology, we found that PUFA deficiency strongly affected synaptic transmission in the fly's visual system. These defects were rescued by diets containing omega-3 or omega-6 PUFAs alone or in combination. In summary, manipulating PUFA contents in the fly's diet was powerful to investigate the role of these nutrients on the fly´s visual synaptic function. This study aims at showing how the first visual synapse of Drosophila can serve as a simple model to study the effects of PUFAs on synapse function. A similar approach could be further used to screen for genetic factors underlying the molecular mechanisms of synaptic dysfunctions associated with altered PUFA levels.

  13. Symmetric spike timing-dependent plasticity at CA3–CA3 synapses optimizes storage and recall in autoassociative networks

    OpenAIRE

    Mishra, Rajiv K; Kim, Sooyun; Guzman, Segundo J.; Jonas, Peter

    2016-01-01

    CA3–CA3 recurrent excitatory synapses are thought to play a key role in memory storage and pattern completion. Whether the plasticity properties of these synapses are consistent with their proposed network functions remains unclear. Here, we examine the properties of spike timing-dependent plasticity (STDP) at CA3–CA3 synapses. Low-frequency pairing of excitatory postsynaptic potentials (EPSPs) and action potentials (APs) induces long-term potentiation (LTP), independent of temporal order....

  14. GluN2B-containing NMDA receptors promote glutamate synapse development in hippocampal interneurons.

    Science.gov (United States)

    Kelsch, Wolfgang; Li, Zhijun; Wieland, Sebastian; Senkov, Oleg; Herb, Anne; Göngrich, Christina; Monyer, Hannah

    2014-11-26

    In postnatal development, GluN2B-containing NMDARs are critical for the functional maturation of glutamatergic synapses. GluN2B-containing NMDARs prevail until the second postnatal week when GluN2A subunits are progressively added, conferring mature properties to NMDARs. In cortical principal neurons, deletion of GluN2B results in an increase in functional AMPAR synapses, suggesting that GluN2B-containing NMDARs set a brake on glutamate synapse maturation. The function of GluN2B in the maturation of glutamatergic inputs to cortical interneurons is not known. To examine the function of GluN2B in interneurons, we generated mutant mice with conditional deletion of GluN2B in interneurons (GluN2B(ΔGAD67)). In GluN2B(ΔGAD67) mice interneurons distributed normally in cortical brain regions. After the second postnatal week, GluN2B(ΔGAD67) mice developed hippocampal seizures and died shortly thereafter. Before the onset of seizures, GluN2B-deficient hippocampal interneurons received fewer glutamatergic synaptic inputs than littermate controls, indicating that GluN2B-containing NMDARs positively regulate the maturation of glutamatergic input synapses in interneurons. These findings suggest that GluN2B-containing NMDARs keep the circuit activity under control by promoting the maturation of excitatory synapses in interneurons.

  15. Automated quantification of synapses by fluorescence microscopy.

    Science.gov (United States)

    Schätzle, Philipp; Wuttke, René; Ziegler, Urs; Sonderegger, Peter

    2012-02-15

    The quantification of synapses in neuronal cultures is essential in studies of the molecular mechanisms underlying synaptogenesis and synaptic plasticity. Conventional counting of synapses based on morphological or immunocytochemical criteria is extremely work-intensive. We developed a fully automated method which quantifies synaptic elements and complete synapses based on immunocytochemistry. Pre- and postsynaptic elements are detected by their corresponding fluorescence signals and their proximity to dendrites. Synapses are defined as the combination of a pre- and postsynaptic element within a given distance. The analysis is performed in three dimensions and all parameters required for quantification can be easily adjusted by a graphical user interface. The integrated batch processing enables the analysis of large datasets without any further user interaction and is therefore efficient and timesaving. The potential of this method was demonstrated by an extensive quantification of synapses in neuronal cultures from DIV 7 to DIV 21. The method can be applied to all datasets containing a pre- and postsynaptic labeling plus a dendritic or cell surface marker.

  16. Deviations in upper limb function of the less-affected side in congenital hemiparesis

    NARCIS (Netherlands)

    Steenbergen, B.; Meulenbroek, R.G.J.

    2006-01-01

    In the present study we examined upper-limb function of the less-affected side in young adolescents with congenital hemiparesis (cerebral palsy: CP). Five participants with hemiparetic CP and five control participants performed a cyclical reach-and-grasp task with the less-affected hand towards targ

  17. Development of Affective Theory of Mind Across Adolescence: Disentangling the Role of Executive Functions

    NARCIS (Netherlands)

    Vetter, N.C.; Altgassen, A.M.; Phillips, L.H.; Mahy, C.E.V.; Kliegel, M.

    2013-01-01

    Theory of mind, the ability to understand mental states, involves inferences about others' cognitive (cognitive theory of mind) and emotional (affective theory of mind) mental states. The current study explored the role of executive functions in developing affective theory of mind across adolescence

  18. Loss of SynDIG1 Reduces Excitatory Synapse Maturation But Not Formation In Vivo

    Science.gov (United States)

    Kaur, Inderpreet; Liu, Xiao-Bo; Kirk, Lyndsey M.; Speca, David J.; McMahon, Samuel A.; Zito, Karen

    2016-01-01

    Abstract Modification of the strength of excitatory synaptic connections is a fundamental mechanism by which neural circuits are refined during development and learning. Synapse Differentiation Induced Gene 1 (SynDIG1) has been shown to play a key role in regulating synaptic strength in vitro. Here, we investigated the role of SynDIG1 in vivo in mice with a disruption of the SynDIG1 gene rather than use an alternate loxP-flanked conditional mutant that we find retains a partial protein product. The gene-trap insertion with a reporter cassette mutant mice shows that the SynDIG1 promoter is active during embryogenesis in the retina with some activity in the brain, and postnatally in the mouse hippocampus, cortex, hindbrain, and spinal cord. Ultrastructural analysis of the hippocampal CA1 region shows a decrease in the average PSD length of synapses and a decrease in the number of synapses with a mature phenotype. Intriguingly, the total synapse number appears to be increased in SynDIG1 mutant mice. Electrophysiological analyses show a decrease in AMPA and NMDA receptor function in SynDIG1-deficient hippocampal neurons. Glutamate stimulation of individual dendritic spines in hippocampal slices from SynDIG1-deficient mice reveals increased short-term structural plasticity. Notably, the overall levels of PSD-95 or glutamate receptors enriched in postsynaptic biochemical fractions remain unaltered; however, activity-dependent synapse development is strongly compromised upon the loss of SynDIG1, supporting its importance for excitatory synapse maturation. Together, these data are consistent with a model in which SynDIG1 regulates the maturation of excitatory synapse structure and function in the mouse hippocampus in vivo.

  19. Perception of affective prosody in major depression: a link to executive functions?

    Science.gov (United States)

    Uekermann, Jennifer; Abdel-Hamid, Mona; Lehmkämper, Caroline; Vollmoeller, Wolfgang; Daum, Irene

    2008-07-01

    Major depression is associated with impairments of executive functions and affect perception deficits, both being linked to dysfunction of fronto-subcortical networks. So far, little is known about the relationship between cognitive and affective deficits in major depression. In the present investigation, affect perception and executive functions were assessed in 29 patients with a diagnosis of major depression (Dep) and 29 healthy controls (HC). Both groups were comparable on IQ, age, and gender distribution. Depressed patients showed deficits of perception of affective prosody, which were significantly related to inhibition, set shifting, and working memory. Our findings suggest a significant association between cognitive deficits and affect perception impairments in major depression, which may be of considerable clinical relevance and might be addressed in treatment approaches. Future studies are desirable to investigate the nature of the association in more detail.

  20. Negative affect predicts social functioning across schizophrenia and bipolar disorder: Findings from an integrated data analysis.

    Science.gov (United States)

    Grove, Tyler B; Tso, Ivy F; Chun, Jinsoo; Mueller, Savanna A; Taylor, Stephan F; Ellingrod, Vicki L; McInnis, Melvin G; Deldin, Patricia J

    2016-09-30

    Most people with a serious mental illness experience significant functional impairment despite ongoing pharmacological treatment. Thus, in order to improve outcomes, a better understanding of functional predictors is needed. This study examined negative affect, a construct comprised of negative emotional experience, as a predictor of social functioning across serious mental illnesses. One hundred twenty-seven participants with schizophrenia, 113 with schizoaffective disorder, 22 with psychosis not otherwise specified, 58 with bipolar disorder, and 84 healthy controls (N=404) completed self-report negative affect measures. Elevated levels of negative affect were observed in clinical participants compared with healthy controls. For both clinical and healthy control participants, negative affect measures were significantly correlated with social functioning, and consistently explained significant amounts of variance in functioning. For clinical participants, this relationship persisted even after accounting for cognition and positive/negative symptoms. The findings suggest that negative affect is a strong predictor of outcome across these populations and treatment of serious mental illnesses should target elevated negative affect in addition to cognition and positive/negative symptoms.

  1. Earthworm functional traits and interspecific interactions affect plant nitrogen acquisition and primary production

    NARCIS (Netherlands)

    Andriuzzi, Walter; Schmidt, Olaf; Brussaard, L.; Faber, J.H.; Bolger, T.

    2016-01-01

    We performed a greenhouse experiment to test how the functional diversity of earthworms, the dominant group of soil macro-invertebrates in many terrestrial ecosystems, affects nitrogen cycling and plant growth. Three species were chosen to represent a range of functional traits: Lumbricus terrestris

  2. The role of affect in attentional functioning for younger and older adults

    Directory of Open Access Journals (Sweden)

    Soo Rim eNoh

    2012-08-01

    Full Text Available Although previous research has shown that positive affect (PA and negative affect (NA modulate attentional functioning in distinct ways, few studies have considered whether the links between affect and attentional functioning may vary as a function of age. Using the Attention Network Test (Fan, McCandliss, Sommer, Raz, & Posner, 2002, we tested whether participants’ current state of PA and NA influenced distinct attentional functions (i.e., alerting, orienting, and executive attention and how the relationships between affective states and attentional functioning differ in younger (18-25 yrs and older (60-85 yrs age groups. The results revealed that higher PA was associated with lower alerting efficiency; however, this pattern did not vary by age group. While there were age differences in alerting efficiency, these age differences were mediated by PA, indicating that the higher state PA found in older adults may contribute to age differences in alerting. Furthermore, age group moderated the relationship between PA and orienting as well as NA and orienting. That is, higher levels of PA and lower levels of NA were associated with enhanced orienting efficiency in older adults. Neither PA nor NA had any influence on executive attention. The current results suggest that positive and negative affect may influence attentional functioning in distinct ways, but that these patterns may depend on age groups.

  3. Activity-dependent upregulation of presynaptic kainate receptors at immature CA3-CA1 synapses.

    Science.gov (United States)

    Clarke, Vernon R J; Molchanova, Svetlana M; Hirvonen, Teemu; Taira, Tomi; Lauri, Sari E

    2014-12-10

    Presynaptic kainate-type glutamate receptors (KARs) regulate glutamate release probability and short-term plasticity in various areas of the brain. Here we show that long-term depression (LTD) in the area CA1 of neonatal rodent hippocampus is associated with an upregulation of tonic inhibitory KAR activity, which contributes to synaptic depression and causes a pronounced increase in short-term facilitation of transmission. This increased KAR function was mediated by high-affinity receptors and required activation of NMDA receptors, nitric oxide (NO) synthetase, and postsynaptic calcium signaling. In contrast, KAR activity was irreversibly downregulated in response to induction of long-term potentiation in a manner that depended on activation of the TrkB-receptor of BDNF. Both tonic KAR activity and its plasticity were restricted to early stages of synapse development and were lost in parallel with maturation of the network due to ongoing BDNF-TrkB signaling. These data show that presynaptic KARs are targets for activity-dependent modulation via diffusible messengers NO and BDNF, which enhance and depress tonic KAR activity at immature synapses, respectively. The plasticity of presynaptic KARs in the developing network allows nascent synapses to shape their response to incoming activity. In particular, upregulation of KAR function after LTD allows the synapse to preferentially pass high-frequency afferent activity. This can provide a potential rescue from synapse elimination by uncorrelated activity and also increase the computational dynamics of the developing CA3-CA1 circuitry.

  4. Mammalian Cochlear Hair Cell Regeneration and Ribbon Synapse Reformation

    Directory of Open Access Journals (Sweden)

    Xiaoling Lu

    2016-01-01

    Full Text Available Hair cells (HCs are the sensory preceptor cells in the inner ear, which play an important role in hearing and balance. The HCs of organ of Corti are susceptible to noise, ototoxic drugs, and infections, thus resulting in permanent hearing loss. Recent approaches of HCs regeneration provide new directions for finding the treatment of sensor neural deafness. To have normal hearing function, the regenerated HCs must be reinnervated by nerve fibers and reform ribbon synapse with the dendrite of spiral ganglion neuron through nerve regeneration. In this review, we discuss the research progress in HC regeneration, the synaptic plasticity, and the reinnervation of new regenerated HCs in mammalian inner ear.

  5. Optical quantal analysis indicates that long-term potentiation at single hippocampal mossy fiber synapses is expressed through increased release probability, recruitment of new release sites, and activation of silent synapses.

    Science.gov (United States)

    Reid, Christopher A; Dixon, Don B; Takahashi, Michiko; Bliss, Tim V P; Fine, Alan

    2004-04-01

    It is generally believed that long-term potentiation (LTP) at hippocampal mossy fiber synapses between dentate granule and CA3 pyramidal cells is expressed through presynaptic mechanisms leading to an increase in quantal content. The source of this increase has remained undefined but could include enhanced probability of transmitter release at existing functional release sites or increases in the number of active release sites. We performed optical quantal analyses of transmission at individual mossy fiber synapses in cultured hippocampal slices, using confocal microscopy and intracellular fluorescent Ca(2+) indicators. Our results indicate that LTP is expressed at functional synapses by both increased probability of transmitter release and recruitment of new release sites, including the activation of previously silent synapses here visualized for the first time.

  6. Selective localization of Shanks to VGLUT1-positive excitatory synapses in the mouse hippocampus

    Directory of Open Access Journals (Sweden)

    Christopher eHeise

    2016-04-01

    Full Text Available AbstractMembers of the Shank family of multidomain proteins (Shank1, Shank2, and Shank3 are core components of the postsynaptic density (PSD of excitatory synapses. At synaptic sites Shanks serve as scaffolding molecules that cluster neurotransmitter receptors as well as cell adhesion molecules attaching them to the actin cytoskeleton. In this study we investigated the synapse specific localization of Shank1-3 and focused on well-defined synaptic contacts within the hippocampal formation. We found that all three family members are present only at VGLUT1-positive synapses, which is particularly visible at mossy fiber contacts. No costaining was found at VGLUT2-positive contacts indicating that the molecular organization of VGLUT2-associated PSDs diverges from classical VGLUT1-positive excitatory contacts in the hippocampus. In light of SHANK mutations in neuropsychiatric disorders, this study indicates which glutamatergic networks within the hippocampus will be primarily affected by shankopathies.

  7. Complex synchronous behavior in interneuronal networks with delayed inhibitory and fast electrical synapses

    Science.gov (United States)

    Guo, Daqing; Wang, Qingyun; Perc, Matjaž

    2012-06-01

    Networks of fast-spiking interneurons are crucial for the generation of neural oscillations in the brain. Here we study the synchronous behavior of interneuronal networks that are coupled by delayed inhibitory and fast electrical synapses. We find that both coupling modes play a crucial role by the synchronization of the network. In addition, delayed inhibitory synapses affect the emerging oscillatory patterns. By increasing the inhibitory synaptic delay, we observe a transition from regular to mixed oscillatory patterns at a critical value. We also examine how the unreliability of inhibitory synapses influences the emergence of synchronization and the oscillatory patterns. We find that low levels of reliability tend to destroy synchronization and, moreover, that interneuronal networks with long inhibitory synaptic delays require a minimal level of reliability for the mixed oscillatory pattern to be maintained.

  8. Espina: A Tool for the Automated Segmentation and Counting of Synapses in Large Stacks of Electron Microscopy Images

    Science.gov (United States)

    Morales, Juan; Alonso-Nanclares, Lidia; Rodríguez, José-Rodrigo; DeFelipe, Javier; Rodríguez, Ángel; Merchán-Pérez, Ángel

    2011-01-01

    The synapses in the cerebral cortex can be classified into two main types, Gray's type I and type II, which correspond to asymmetric (mostly glutamatergic excitatory) and symmetric (inhibitory GABAergic) synapses, respectively. Hence, the quantification and identification of their different types and the proportions in which they are found, is extraordinarily important in terms of brain function. The ideal approach to calculate the number of synapses per unit volume is to analyze 3D samples reconstructed from serial sections. However, obtaining serial sections by transmission electron microscopy is an extremely time consuming and technically demanding task. Using focused ion beam/scanning electron microscope microscopy, we recently showed that virtually all synapses can be accurately identified as asymmetric or symmetric synapses when they are visualized, reconstructed, and quantified from large 3D tissue samples obtained in an automated manner. Nevertheless, the analysis, segmentation, and quantification of synapses is still a labor intensive procedure. Thus, novel solutions are currently necessary to deal with the large volume of data that is being generated by automated 3D electron microscopy. Accordingly, we have developed ESPINA, a software tool that performs the automated segmentation and counting of synapses in a reconstructed 3D volume of the cerebral cortex, and that greatly facilitates and accelerates these processes. PMID:21633491

  9. HVEM serial-section analysis of rabbit foliate taste buds: I. Type III cells and their synapses.

    Science.gov (United States)

    Royer, S M; Kinnamon, J C

    1991-04-01

    Serially sectioned rabbit foliate taste buds were examined with high voltage electron microscopy (HVEM) and computer-assisted, three-dimensional reconstruction. This report focuses on the ultrastructure of the type III cells and their synapses with sensory nerve fibers. Type III cells have previously been proposed to be the primary gustatory receptor cells in taste buds of rabbits and other mammals. Within rabbit foliate taste buds, type III cells constitute a well-defined, easily recognizable class and are the only taste bud cells observed to form synapses with intragemmal nerve fibers. Among 18 type III cells reconstructed from serial sections, 11 formed from 1 to 6 synapses each with nerve fibers; 7 reconstructed type III cells formed no synapses. Examples of both convergence and divergence of synaptic input from type III cells onto nerve fibers were observed. The sizes of the active zones of the synapses and numbers of vesicles associated with the presynaptic membrane specializations were highly variable. Dense-cored vesicles 80-140 nm in diameter were often found among the 40-60 nm clear vesicles clustered at presynaptic sites. At some synapses, these large dense-cored vesicles appeared to be the predominant vesicle type. This observation suggests that there may be functionally different types of synapses in taste buds, distinguished by the prevalence of either clear or dense-cored vesicles. Previous investigations have indicated that the dense-cored vesicles in type III cells may be storage sites for biogenic amines.

  10. Genetic deletion of NR3A accelerates glutamatergic synapse maturation.

    Directory of Open Access Journals (Sweden)

    Maile A Henson

    Full Text Available Glutamatergic synapse maturation is critically dependent upon activation of NMDA-type glutamate receptors (NMDARs; however, the contributions of NR3A subunit-containing NMDARs to this process have only begun to be considered. Here we characterized the expression of NR3A in the developing mouse forebrain and examined the consequences of NR3A deletion on excitatory synapse maturation. We found that NR3A is expressed in many subcellular compartments, and during early development, NR3A subunits are particularly concentrated in the postsynaptic density (PSD. NR3A levels dramatically decline with age and are no longer enriched at PSDs in juveniles and adults. Genetic deletion of NR3A accelerates glutamatergic synaptic transmission, as measured by AMPAR-mediated postsynaptic currents recorded in hippocampal CA1. Consistent with the functional observations, we observed that the deletion of NR3A accelerated the expression of the glutamate receptor subunits NR1, NR2A, and GluR1 in the PSD in postnatal day (P 8 mice. These data support the idea that glutamate receptors concentrate at synapses earlier in NR3A-knockout (NR3A-KO mice. The precocious maturation of both AMPAR function and glutamate receptor expression are transient in NR3A-KO mice, as AMPAR currents and glutamate receptor protein levels are similar in NR3A-KO and wildtype mice by P16, an age when endogenous NR3A levels are normally declining. Taken together, our data support a model whereby NR3A negatively regulates the developmental stabilization of glutamate receptors involved in excitatory neurotransmission, synaptogenesis, and spine growth.

  11. Pan-neurexin perturbation results in compromised synapse stability and a reduction in readily releasable synaptic vesicle pool size

    Science.gov (United States)

    Quinn, Dylan P.; Kolar, Annette; Wigerius, Michael; Gomm-Kolisko, Rachel N.; Atwi, Hanine; Fawcett, James P.; Krueger, Stefan R.

    2017-01-01

    Neurexins are a diverse family of cell adhesion molecules that localize to presynaptic specializations of CNS neurons. Heterologous expression of neurexins in non-neuronal cells leads to the recruitment of postsynaptic proteins in contacting dendrites of co-cultured neurons, implicating neurexins in synapse formation. However, isoform-specific knockouts of either all α- or all β-neurexins show defects in synaptic transmission but an unaltered density of glutamatergic synapses, a finding that argues against an essential function of neurexins in synaptogenesis. To address the role of neurexin in synapse formation and function, we disrupted the function of all α- and β-neurexins in cultured hippocampal neurons by shRNA knockdown or by overexpressing a neurexin mutant that is unable to bind to postsynaptic neurexin ligands. We show that neurexin perturbation results in an attenuation of neurotransmitter release that is in large part due to a reduction in the number of readily releasable synaptic vesicles. We also find that neurexin perturbation fails to alter the ability of neurons to form synapses, but rather leads to more frequent synapse elimination. These experiments suggest that neurexins are dispensable for the formation of initial synaptic contacts, but play an essential role in the stabilization and functional maturation of synapses. PMID:28220838

  12. Interneurons are the source and the targets of the first synapses formed in the rat developing hippocampal circuit.

    Science.gov (United States)

    Gozlan, Henri; Ben-Ari, Yehezkel

    2003-06-01

    In hippocampal CA1 pyramidal neurons, GABAergic synapses are established before glutamatergic synapses. GABAergic interneurons should therefore develop and acquire synapses at an earlier stage to provide the source for GABAergic synapses. We now report that this is indeed the case. At birth and in utero, when nearly all pyramidal neurons are not yet functional, most interneurons have already either GABAergic only or GABAergic and glutamatergic postsynaptic currents. At birth, the morphological maturation of interneurons parallels their individual functional responses. In addition, the formation of functional interneurons types appears to be a sequential process. Interneurons that innervate other interneurons acquire GABA(A) synapses before peridendritic interneurons, but also before perisomatic interneurons that are not yet functional at birth. Therefore, interneurons are the source and the targets of the first synapses formed in the developing circuit. Since GABA was shown to be excitatory in utero, interneurons provide all the excitatory drive at a time when the principal cells are silent. They could therefore play a central role in the formation of the cortical circuit at early developmental stages.

  13. Impairment of executive function and attention predicts onset of affective disorder in healthy high-risk twins

    DEFF Research Database (Denmark)

    Vinberg, Maj; Miskowiak, Kamilla W; Kessing, Lars Vedel

    2013-01-01

    To investigate whether measures of cognitive function can predict onset of affective disorder in individuals at heritable risk.......To investigate whether measures of cognitive function can predict onset of affective disorder in individuals at heritable risk....

  14. Affect and the brain's functional organization: a resting-state connectivity approach.

    Directory of Open Access Journals (Sweden)

    Christiane S Rohr

    Full Text Available The question of how affective processing is organized in the brain is still a matter of controversial discussions. Based on previous initial evidence, several suggestions have been put forward regarding the involved brain areas: (a right-lateralized dominance in emotional processing, (b hemispheric dominance according to positive or negative valence, (c one network for all emotional processing and (d region-specific discrete emotion matching. We examined these hypotheses by investigating intrinsic functional connectivity patterns that covary with results of the Positive and Negative Affective Schedule (PANAS from 65 participants. This approach has the advantage of being able to test connectivity rather than activation, and not requiring a potentially confounding task. Voxelwise functional connectivity from 200 regions-of-interest covering the whole brain was assessed. Positive and negative affect covaried with functional connectivity involving a shared set of regions, including the medial prefrontal cortex, the anterior cingulate, the visual cortex and the cerebellum. In addition, each affective domain had unique connectivity patterns, and the lateralization index showed a right hemispheric dominance for negative affect. Therefore, our results suggest a predominantly right-hemispheric network with affect-specific elements as the underlying organization of emotional processes.

  15. Stochastic Properties of Neurotransmitter Release Expand the Dynamic Range of Synapses

    Science.gov (United States)

    Yang, Hua

    2013-01-01

    Release of neurotransmitter is an inherently random process, which could degrade the reliability of postsynaptic spiking, even at relatively large synapses. This is particularly important at auditory synapses, where the rate and precise timing of spikes carry information about sounds. However, the functional consequences of the stochastic properties of release are unknown. We addressed this issue at the mouse endbulb of Held synapse, which is formed by auditory nerve fibers onto bushy cells (BCs) in the anteroventral cochlear nucleus. We used voltage clamp to characterize synaptic variability. Dynamic clamp was used to compare BC spiking with stochastic or deterministic synaptic input. The stochastic component increased the responsiveness of the BC to conductances that were on average subthreshold, thereby increasing the dynamic range of the synapse. This had the benefit that BCs relayed auditory nerve activity even when synapses showed significant depression during rapid activity. However, the precision of spike timing decreased with stochastic conductances, suggesting a trade-off between encoding information in spike timing versus probability. These effects were confirmed in fiber stimulation experiments, indicating that they are physiologically relevant, and that synaptic randomness, dynamic range, and jitter are causally related. PMID:24005293

  16. Plant species and functional group combinations affect green roof ecosystem functions.

    Directory of Open Access Journals (Sweden)

    Jeremy Lundholm

    Full Text Available BACKGROUND: Green roofs perform ecosystem services such as summer roof temperature reduction and stormwater capture that directly contribute to lower building energy use and potential economic savings. These services are in turn related to ecosystem functions performed by the vegetation layer such as radiation reflection and transpiration, but little work has examined the role of plant species composition and diversity in improving these functions. METHODOLOGY/PRINCIPAL FINDINGS: We used a replicated modular extensive (shallow growing- medium green roof system planted with monocultures or mixtures containing one, three or five life-forms, to quantify two ecosystem services: summer roof cooling and water capture. We also measured the related ecosystem properties/processes of albedo, evapotranspiration, and the mean and temporal variability of aboveground biomass over four months. Mixtures containing three or five life-form groups, simultaneously optimized several green roof ecosystem functions, outperforming monocultures and single life-form groups, but there was much variation in performance depending on which life-forms were present in the three life-form mixtures. Some mixtures outperformed the best monocultures for water capture, evapotranspiration, and an index combining both water capture and temperature reductions. Combinations of tall forbs, grasses and succulents simultaneously optimized a range of ecosystem performance measures, thus the main benefit of including all three groups was not to maximize any single process but to perform a variety of functions well. CONCLUSIONS/SIGNIFICANCE: Ecosystem services from green roofs can be improved by planting certain life-form groups in combination, directly contributing to climate change mitigation and adaptation strategies. The strong performance by certain mixtures of life-forms, especially tall forbs, grasses and succulents, warrants further investigation into niche complementarity or

  17. Activity-dependent transmission and integration control the timescales of auditory processing at an inhibitory synapse.

    Science.gov (United States)

    Ammer, Julian J; Siveke, Ida; Felmy, Felix

    2015-06-15

    To capture the context of sensory information, neural networks must process input signals across multiple timescales. In the auditory system, a prominent change in temporal processing takes place at an inhibitory GABAergic synapse in the dorsal nucleus of the lateral lemniscus (DNLL). At this synapse, inhibition outlasts the stimulus by tens of milliseconds, such that it suppresses responses to lagging sounds, and is therefore implicated in echo suppression. Here, we untangle the cellular basis of this inhibition. We demonstrate with in vivo whole-cell patch-clamp recordings in Mongolian gerbils that the duration of inhibition increases with sound intensity. Activity-dependent spillover and asynchronous release translate the high presynaptic firing rates found in vivo into a prolonged synaptic output in acute slice recordings. A key mechanism controlling the inhibitory time course is the passive integration of the hyperpolarizing inhibitory conductance. This prolongation depends on the synaptic conductance amplitude. Computational modeling shows that this prolongation is a general mechanism and relies on a non-linear effect caused by synaptic conductance saturation when approaching the GABA reversal potential. The resulting hyperpolarization generates an efficient activity-dependent suppression of action potentials without affecting the threshold or gain of the input-output function. Taken together, the GABAergic inhibition in the DNLL is adjusted to the physiologically relevant duration by passive integration of inhibition with activity-dependent synaptic kinetics. This change in processing timescale combined with the reciprocal connectivity between the DNLLs implements a mechanism to suppress the distracting localization cues of echoes and helps to localize the initial sound source reliably.

  18. Mild Maternal Iron Deficiency Anemia Induces Hearing Impairment Associated with Reduction of Ribbon Synapse Density and Dysregulation of VGLUT3, Myosin VIIa, and Prestin Expression in Young Guinea Pigs.

    Science.gov (United States)

    Yu, Fei; Hao, Shuai; Yang, Bo; Zhao, Yue; Zhang, Wenyue; Yang, Jun

    2016-05-01

    Mild maternal iron deficiency anemia (IDA) adversely affects the development of cochlear hair cells of the young offspring, but the mechanisms underlying the association are incompletely understood. The aim of this study was to evaluate whether mild maternal IDA in guinea pigs could interrupt inner hair cell (IHC) ribbon synapse density and outer hair cell motility of the offspring. Here, we established a dietary restriction model that allows us to study quantitative changes in the number of IHC ribbon synapses and hearing impairment in response to mild maternal IDA in young guinea pig. The offspring were weaned on postnatal day (PND) 9 and then were given the iron-sufficient diet. On PND 24, pups were examined the hearing function by auditory brainstem response (ABR) and distortion product otoacoustic emission (DPOAE) measurements. Then, the cochleae were harvested for assessment of the number of IHC ribbon synapses by immunofluorescence, the morphology of cochlear hair cells, and spiral ganglion cells (SGCs) by scanning electron microscope and hematoxylin-eosin staining, the location, and expression of vesicular glutamate transporter (VGLUT) 3, myosin VIIa, and prestin by immunofluorescence and blotting. Here, we show that mild maternal IDA in guinea pigs induced elevated ABR threshold shifts, declined DPOAE level shifts, and reduced the number of ribbon synapses, impaired the morphology of cochlear hair cells and SGCs in offsprings. In addition, downregulation of VGLUT3 and myosin VIIa, and upregulation of prestin were observed in the cochlea of offsprings from mild maternal IDA in guinea pigs. These data indicate that mild maternal IDA in guinea pigs induced hearing impairment in offsprings, and this deficit may be attributed to the reduction of ribbon synapse density and dysregulation of VGLUT3, myosin VIIa, and prestin.

  19. Mechanisms of TSC-mediated control of synapse assembly and axon guidance.

    Directory of Open Access Journals (Sweden)

    Sarah Knox

    Full Text Available Tuberous sclerosis complex is a dominant genetic disorder produced by mutations in either of two tumor suppressor genes, TSC1 and TSC2; it is characterized by hamartomatous tumors, and is associated with severe neurological and behavioral disturbances. Mutations in TSC1 or TSC2 deregulate a conserved growth control pathway that includes Ras homolog enriched in brain (Rheb and Target of Rapamycin (TOR. To understand the function of this pathway in neural development, we have examined the contributions of multiple components of this pathway in both neuromuscular junction assembly and photoreceptor axon guidance in Drosophila. Expression of Rheb in the motoneuron, but not the muscle of the larval neuromuscular junction produced synaptic overgrowth and enhanced synaptic function, while reductions in Rheb function compromised synapse development. Synapse growth produced by Rheb is insensitive to rapamycin, an inhibitor of Tor complex 1, and requires wishful thinking, a bone morphogenetic protein receptor critical for functional synapse expansion. In the visual system, loss of Tsc1 in the developing retina disrupted axon guidance independently of cellular growth. Inhibiting Tor complex 1 with rapamycin or eliminating the Tor complex 1 effector, S6 kinase (S6k, did not rescue axon guidance abnormalities of Tsc1 mosaics, while reductions in Tor function suppressed those phenotypes. These findings show that Tsc-mediated control of axon guidance and synapse assembly occurs via growth-independent signaling mechanisms, and suggest that Tor complex 2, a regulator of actin organization, is critical in these aspects of neuronal development.

  20. Short-Term Plasticity and Long-Term Potentiation in Magnetic Tunnel Junctions: Towards Volatile Synapses

    Science.gov (United States)

    Sengupta, Abhronil; Roy, Kaushik

    2016-02-01

    Synaptic memory is considered to be the main element responsible for learning and cognition in humans. Although traditionally nonvolatile long-term plasticity changes are implemented in nanoelectronic synapses for neuromorphic applications, recent studies in neuroscience reveal that biological synapses undergo metastable volatile strengthening followed by a long-term strengthening provided that the frequency of the input stimulus is sufficiently high. Such "memory strengthening" and "memory decay" functionalities can potentially lead to adaptive neuromorphic architectures. In this paper, we demonstrate the close resemblance of the magnetization dynamics of a magnetic tunnel junction (MTJ) to short-term plasticity and long-term potentiation observed in biological synapses. We illustrate that, in addition to the magnitude and duration of the input stimulus, the frequency of the stimulus plays a critical role in determining long-term potentiation of the MTJ. Such MTJ synaptic memory arrays can be utilized to create compact, ultrafast, and low-power intelligent neural systems.

  1. Physical Realization of a Supervised Learning System Built with Organic Memristive Synapses

    Science.gov (United States)

    Lin, Yu-Pu; Bennett, Christopher H.; Cabaret, Théo; Vodenicarevic, Damir; Chabi, Djaafar; Querlioz, Damien; Jousselme, Bruno; Derycke, Vincent; Klein, Jacques-Olivier

    2016-09-01

    Multiple modern applications of electronics call for inexpensive chips that can perform complex operations on natural data with limited energy. A vision for accomplishing this is implementing hardware neural networks, which fuse computation and memory, with low cost organic electronics. A challenge, however, is the implementation of synapses (analog memories) composed of such materials. In this work, we introduce robust, fastly programmable, nonvolatile organic memristive nanodevices based on electrografted redox complexes that implement synapses thanks to a wide range of accessible intermediate conductivity states. We demonstrate experimentally an elementary neural network, capable of learning functions, which combines four pairs of organic memristors as synapses and conventional electronics as neurons. Our architecture is highly resilient to issues caused by imperfect devices. It tolerates inter-device variability and an adaptable learning rule offers immunity against asymmetries in device switching. Highly compliant with conventional fabrication processes, the system can be extended to larger computing systems capable of complex cognitive tasks, as demonstrated in complementary simulations.

  2. Developmental patterning of glutamatergic synapses onto retinal ganglion cells

    Directory of Open Access Journals (Sweden)

    Schubert Timm

    2008-03-01

    Full Text Available Abstract Background Neurons receive excitatory synaptic inputs that are distributed across their dendritic arbors at densities and with spatial patterns that influence their output. How specific synaptic distributions are attained during development is not well understood. The distribution of glutamatergic inputs across the dendritic arbors of mammalian retinal ganglion cells (RGCs has long been correlated to the spatial receptive field profiles of these neurons. Thus, determining how glutamatergic inputs are patterned onto RGC dendritic arbors during development could provide insight into the cellular mechanisms that shape their functional receptive fields. Results We transfected developing and mature mouse RGCs with plasmids encoding fluorescent proteins that label their dendrites and glutamatergic postsynaptic sites. We found that as dendritic density (dendritic length per unit area of dendritic field decreases with maturation, the density of synapses along the dendrites increases. These changes appear coordinated such that RGCs attain the mature average density of postsynaptic sites per unit area (areal density by the time synaptic function emerges. Furthermore, stereotypic centro-peripheral gradients in the areal density of synapses across the arbor of RGCs are established at an early developmental stage. Conclusion The spatial pattern of glutamatergic inputs onto RGCs arises early in synaptogenesis despite ensuing reorganization of dendritic structure. We raise the possibility that these early patterns of synaptic distributions may arise from constraints placed on the number of contacts presynaptic neurons are able to make with the RGCs.

  3. Transition of spatiotemporal patterns in neuronal networks with chemical synapses

    Science.gov (United States)

    Wang, Rong; Li, Jiajia; Du, Mengmeng; Lei, Jinzhi; Wu, Ying

    2016-11-01

    In mammalian neocortex plane waves, spiral and irregular waves appear alternately. In this paper, we study the transition of spatiotemporal patterns in neuronal networks in which neurons are coupled via two types of chemical synapses: fast excitatory synapse and fast inhibitory synapse. Our results indicate that the fast excitatory synapse connection is easier to induce regular spatiotemporal patterns than fast inhibitory synapse connection, and the mechanism is discussed through bifurcation analysis of a single neuron. We introduce the permutation entropy as a measure of network firing complexity to study the mechanisms of formation and transition of spatiotemporal patterns. Our calculations show that the spatiotemporal pattern transitions are closely connected to a sudden decrease in the firing complexity of neuronal networks, and the neuronal networks with fast excitatory synapses have higher firing complexity than those with fast inhibitory synapses.

  4. Centenary of the synapse: from Sherrington to the molecular biology of the synapse and beyond.

    Science.gov (United States)

    Shepherd, G M; Erulkar, S D

    1997-09-01

    Few concepts have meant more to neuroscience than the synapse, commonly understood to mean the junction between two excitable cells. The term was introduced by Charles Sherrington in 1897. The centenary of this event is an appropriate time to review the term's origins and utility. There are some surprises. The term didn't actually come from him. His concept was more functional than structural. The pioneering physiological and structural studies in the 1950s in fact did not lead to a rigorous definition. There is still confusion on how to define neurotransmitters. As molecular biological approaches are increasingly refining the concept of a fundamental synaptic unit, many types of neuronal interactions are appearing that do not fit with the synaptic concept. Are the neural circuits underlying behaviour strictly synaptic? In dealing with these questions, a longer perspective is useful for understanding how the term arose, how it has evolved to the present, and what kinds of challenges may be coming in the future.

  5. Visualizing the distribution of synapses from individual neurons in the mouse brain.

    Directory of Open Access Journals (Sweden)

    Ling Li

    Full Text Available BACKGROUND: Proper function of the mammalian brain relies on the establishment of highly specific synaptic connections among billions of neurons. To understand how complex neural circuits function, it is crucial to precisely describe neuronal connectivity and the distributions of synapses to and from individual neurons. METHODS AND FINDINGS: In this study, we present a new genetic synaptic labeling method that relies on expression of a presynaptic marker, synaptophysin-GFP (Syp-GFP in individual neurons in vivo. We assess the reliability of this method and use it to analyze the spatial patterning of synapses in developing and mature cerebellar granule cells (GCs. In immature GCs, Syp-GFP is distributed in both axonal and dendritic regions. Upon maturation, it becomes strongly enriched in axons. In mature GCs, we analyzed synapses along their ascending segments and parallel fibers. We observe no differences in presynaptic distribution between GCs born at different developmental time points and thus having varied depths of projections in the molecular layer. We found that the mean densities of synapses along the parallel fiber and the ascending segment above the Purkinje cell (PC layer are statistically indistinguishable, and higher than previous estimates. Interestingly, presynaptic terminals were also found in the ascending segments of GCs below and within the PC layer, with the mean densities two-fold lower than that above the PC layer. The difference in the density of synapses in these parts of the ascending segment likely reflects the regional differences in postsynaptic target cells of GCs. CONCLUSIONS: The ability to visualize synapses of single neurons in vivo is valuable for studying synaptogenesis and synaptic plasticity within individual neurons as well as information flow in neural circuits.

  6. DISC1 gene and affective psychopathology: a combined structural and functional MRI study.

    Science.gov (United States)

    Opmeer, Esther M; van Tol, Marie-José; Kortekaas, Rudie; van der Wee, Nic J A; Woudstra, Saskia; van Buchem, Mark A; Penninx, Brenda W; Veltman, Dick J; Aleman, André

    2015-02-01

    The gene Disrupted-In-Schizophrenia-1 (DISC1) has been indicated as a determinant of psychopathology, including affective disorders, and shown to influence prefrontal cortex (PFC) and hippocampus functioning, regions of major interest for affective disorders. We aimed to investigate whether DISC1 differentially modulates brain function during executive and memory processing, and morphology in regions relevant for depression and anxiety disorders (affective disorders). 128 participants, with (n = 103) and without (controls; n = 25) affective disorders underwent genotyping for Ser704Cys (with Cys-allele considered as risk-allele) and structural and functional (f) Magnetic Resonance Imaging (MRI) during visuospatial planning and emotional episodic memory tasks. For both voxel-based morphometry and fMRI analyses, we investigated the effect of genotype in controls and explored genotypeXdiagnosis interactions. Results are reported at p < 0.05 FWE small volume corrected. In controls, Cys-carriers showed smaller bilateral (para)hippocampal volumes compared with Ser-homozygotes, and lower activation in the anterior cingulate cortex (ACC) and dorsolateral PFC during visuospatial planning. In anxiety patients, Cys-carriers showed larger (para)hippocampal volumes and more ACC activation during visuospatial planning. In depressive patients, no effect of genotype was observed and overall, no effect of genotype on episodic memory processing was detected. We demonstrated that Ser704Cys-genotype influences (para)hippocampal structure and functioning the dorsal PFC during executive planning, most prominently in unaffected controls. Results suggest that presence of psychopathology moderates Ser704Cys effects.

  7. Inflammatory conditions affect gene expression and function of human adipose tissue-derived mesenchymal stem cells

    NARCIS (Netherlands)

    M.J. Crop (Meindert); C.C. Baan (Carla); S.S. Korevaar (Sander); J.N.M. IJzermans (Jan); M. Pescatori (Mario); A. Stubbs (Andrew); W.F.J. van IJcken (Wilfred); M.H. Dahlke (Marc); E. Eggenhofer (Elke); W. Weimar (Willem); M.J. Hoogduijn (Martin)

    2010-01-01

    textabstractThere is emerging interest in the application of mesenchymal stem cells (MSC) for the prevention and treatment of autoimmune diseases, graft-versus-host disease and allograft rejection. It is, however, unknown how inflammatory conditions affect phenotype and function of MSC. Adipose tiss

  8. Automatic Processing of Emotional Faces in High-Functioning Pervasive Developmental Disorders: An Affective Priming Study

    Science.gov (United States)

    Kamio, Yoko; Wolf, Julie; Fein, Deborah

    2006-01-01

    This study examined automatic processing of emotional faces in individuals with high-functioning Pervasive Developmental Disorders (HFPDD) using an affective priming paradigm. Sixteen participants (HFPDD and matched controls) were presented with happy faces, fearful faces or objects in both subliminal and supraliminal exposure conditions, followed…

  9. Shank-cortactin interactions control actin dynamics to maintain flexibility of neuronal spines and synapses

    NARCIS (Netherlands)

    Mac Gillavry, H.D.; Kerr, JM; Kassner, J; Frost, NA; Blanpied, TA

    2016-01-01

    The family of Shank scaffolding molecules (comprising Shank1, 2 and 3) are core components of the postsynaptic density (PSD) in neuronal synapses. Shanks link surface receptors to other scaffolding molecules within the PSD, as well as to the actin cytoskeleton. However, determining the function of S

  10. NeuroD2 regulates the development of hippocampal mossy fiber synapses

    Directory of Open Access Journals (Sweden)

    Wilke Scott A

    2012-02-01

    Full Text Available Abstract Background The assembly of neural circuits requires the concerted action of both genetically determined and activity-dependent mechanisms. Calcium-regulated transcription may link these processes, but the influence of specific transcription factors on the differentiation of synapse-specific properties is poorly understood. Here we characterize the influence of NeuroD2, a calcium-dependent transcription factor, in regulating the structural and functional maturation of the hippocampal mossy fiber (MF synapse. Results Using NeuroD2 null mice and in vivo lentivirus-mediated gene knockdown, we demonstrate a critical role for NeuroD2 in the formation of CA3 dendritic spines receiving MF inputs. We also use electrophysiological recordings from CA3 neurons while stimulating MF axons to show that NeuroD2 regulates the differentiation of functional properties at the MF synapse. Finally, we find that NeuroD2 regulates PSD95 expression in hippocampal neurons and that PSD95 loss of function in vivo reproduces CA3 neuron spine defects observed in NeuroD2 null mice. Conclusion These experiments identify NeuroD2 as a key transcription factor that regulates the structural and functional differentiation of MF synapses in vivo.

  11. The effect of affective bibliotherapy on clients' functioning in group therapy.

    Science.gov (United States)

    Shechtman, Zipora; Nir-Shfrir, Rivka

    2008-01-01

    Abstract The effect of affective group bibliotherapy (GB) was compared to affective group therapy (GT) on patients' functioning in therapy and their session impression. Three small groups totaling twenty-five in-patients in a hospital in Israel participated in the study. Clients concurrently participated in both group types, undergoing three sessions in each condition. In-therapy behaviors were assessed through the Client Behavior System (CBS; Hill & O'Brien, 1999). Results indicated that in the GB condition compared to the GT condition, clients showed less resistance, used simple responses less frequently, and expressed greater affective exploration. The Session Evaluation Questionnaire (SEQ; Stiles et al., 1994) was used to measure clients' impressions of the sessions. Results indicated that patients evaluated the two treatment conditions equally. Overall, the results support earlier findings, suggesting that affective bibliotherapy can be an effective method of treatment.

  12. Monoacylated Cellular Prion Proteins Reduce Amyloid-β-Induced Activation of Cytoplasmic Phospholipase A2 and Synapse Damage

    Directory of Open Access Journals (Sweden)

    Ewan West

    2015-06-01

    Full Text Available Alzheimer’s disease (AD is a progressive neurodegenerative disease characterized by the accumulation of amyloid-β (Aβ and the loss of synapses. Aggregation of the cellular prion protein (PrPC by Aβ oligomers induced synapse damage in cultured neurons. PrPC is attached to membranes via a glycosylphosphatidylinositol (GPI anchor, the composition of which affects protein targeting and cell signaling. Monoacylated PrPC incorporated into neurons bound “natural Aβ”, sequestering Aβ outside lipid rafts and preventing its accumulation at synapses. The presence of monoacylated PrPC reduced the Aβ-induced activation of cytoplasmic phospholipase A2 (cPLA2 and Aβ-induced synapse damage. This protective effect was stimulus specific, as treated neurons remained sensitive to α-synuclein, a protein associated with synapse damage in Parkinson’s disease. In synaptosomes, the aggregation of PrPC by Aβ oligomers triggered the formation of a signaling complex containing the cPLA2.a process, disrupted by monoacylated PrPC. We propose that monoacylated PrPC acts as a molecular sponge, binding Aβ oligomers at the neuronal perikarya without activating cPLA2 or triggering synapse damage.

  13. Whole organic electronic synapses for dopamine detection

    Science.gov (United States)

    Giordani, Martina; Di Lauro, Michele; Berto, Marcello; Bortolotti, Carlo A.; Vuillaume, Dominique; Gomes, Henrique L.; Zoli, Michele; Biscarini, Fabio

    2016-09-01

    A whole organic artificial synapse has been fabricated by patterning PEDOT:PSS electrodes on PDMS that are biased in frequency to yield a STP response. The timescale of the STP response is shown to be sensitive to the concentration of dopamine, DA, a neurotransmitter relevant for monitoring the development of Parkinson's disease and potential locoregional therapies. The sensitivity of the sensor towards DA has been validated comparing signal variation in the presence of DA and its principal interfering agent, ascorbic acid, AA. The whole organic synapse is biocompatible, soft and flexible, and is attractive for implantable devices aimed to real-time monitoring of DA concentration in bodily fluids. This may open applications in chronic neurodegenerative diseases such as Parkinson's disease.

  14. Prevention of Noise Damage to Cochlear Synapses

    Science.gov (United States)

    2015-10-01

    antibody blocking buffer 5% horse serum / 0.1% bovine serum albumin / 0.1% Triton / 0.02% NaN3 for 60 min at room temperature. Immunostaining: The hair...the possibility that osmotic stress is responsible in part for excitotoxic damage to synapses. Alternatively, it may be that the in vitro excitotoxic... stress is exceptionally strong and is not an accurate model of noise exposure in vivo. Methodology Using neonatal (postnatal day 5, P5) rat

  15. Neurotrophic regulation of synapse development and plasticity

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Neurotrophic factors are traditionally thought to be secretory proteins that regulate long-tern survival and differe, ntiation of neurons. Recent studies have revealed a previously unexpected role for these factors in synaptie de velopment ami plasticity in diverse neuronal populations. Here we review experimeuts carried oul in our own laboratory in the last few years.. We have made two important discoveries.First,we were among the first to report that brain-derived. neurotrophie faclor (BDNF) facilitates hippocampal hmg-term potentiation (LTP), a form of synaptic plaslicity believed to be involved in learning and memory. BDNF modulates LTP al CAI synapses by enhaneing synaptic responses to high frequency, tetanic slimulalion. This is achieved primafily by facilitating synaptie vesicle doeking, possibly due to an in crease in the levels of the vesicle prolein synaptobrevin and synaptoplysin in the nerve terminals. Gene knockout study demonstrates thai the effects of BDNF are primarily mediated through presynaptic mechanisms. Second, we demonstrated a form of long-term, neurotrophin-mediated synaptic regulation. We showed that long-term treatment of the neuromuscu lar synapses with neurotrophin-3 (NT3) resulted in an enhancement of both spontaneous and evoked synaptic currcuts, as well as profound changes in thc number of synaptic varicosities and syuaptic vesicle proteins in motoneurons, all of which are indicative of more mature synapses. Our current work addresses the following issues:(i) activity-dependent trafficking of neurotrophin receptors, and its role in synapse-specific modulation; (ii) signal transduction mechanisms medialing the acute enhancement of synaplic transmission by neurotrophins; (iii) acute and long-tenn synaptie actions of the GDNF family; (iv) role of BDNF in late-phase LTP and in the development of hippocampal circuit.

  16. Loss of protohaem IX farnesyltransferase in mature dentate granule cells impairs short‐term facilitation at mossy fibre to CA3 pyramidal cell synapses

    Science.gov (United States)

    Booker, Sam A.; Campbell, Graham R.; Mysiak, Karolina S.; Brophy, Peter J.; Kind, Peter C.

    2017-01-01

    Key points Neurodegenerative disorders can exhibit dysfunctional mitochondrial respiratory chain complex IV activity.Conditional deletion of cytochrome c oxidase, the terminal enzyme in the respiratory electron transport chain of mitochondria, from hippocampal dentate granule cells in mice does not affect low‐frequency dentate to CA3 glutamatergic synaptic transmission.High‐frequency dentate to CA3 glutamatergic synaptic transmission and feedforward inhibition are significantly attenuated in cytochrome c oxidase‐deficient mice.Intact presynaptic mitochondrial function is critical for the short‐term dynamics of mossy fibre to CA3 synaptic function. Abstract Neurodegenerative disorders are characterized by peripheral and central symptoms including cognitive impairments which have been associated with reduced mitochondrial function, in particular mitochondrial respiratory chain complex IV or cytochrome c oxidase activity. In the present study we conditionally removed a key component of complex IV, protohaem IX farnesyltransferase encoded by the COX10 gene, in granule cells of the adult dentate gyrus. Utilizing whole‐cell patch‐clamp recordings from morphologically identified CA3 pyramidal cells from control and complex IV‐deficient mice, we found that reduced mitochondrial function did not result in overt deficits in basal glutamatergic synaptic transmission at the mossy‐fibre synapse because the amplitude, input–output relationship and 50 ms paired‐pulse facilitation were unchanged following COX10 removal from dentate granule cells. However, trains of stimuli given at high frequency (> 20 Hz) resulted in dramatic reductions in short‐term facilitation and, at the highest frequencies (> 50 Hz), also reduced paired‐pulse facilitation, suggesting a requirement for adequate mitochondrial function to maintain glutamate release during physiologically relevant activity patterns. Interestingly, local inhibition was reduced, suggesting the effect

  17. MODULATING EXCITATION THROUGH PLASTICITY AT INHIBITORY SYNAPSES

    Directory of Open Access Journals (Sweden)

    Vivien eChevaleyre

    2014-03-01

    Full Text Available Learning is believed to depend on lasting changes in synaptic efficacy such as long-term potentiation and long-term depression. As a result, a profusion of studies has tried to elucidate the mechanisms underlying these forms of plasticity. Traditionally, experience-dependent changes at excitatory synapses were assumed to underlie learning and memory formation. However, with the relatively more recent investigation of inhibitory transmission, it had become evident that inhibitory synapses are not only plastic, but also provide an additional way to modulate excitatory transmission and the induction of plasticity at excitatory synapses.Thanks to recent technological advances, progress has been made in understanding synaptic transmission and plasticity from particular interneuron subtypes. In this review article, we will describe various forms of synaptic plasticity that have been ascribed to two fairly well characterized populations of interneurons in the hippocampus, those expressing cholecystokinin (CCK and parvalbumin (PV. We will discuss the resulting changes in the strength and plasticity of excitatory transmission that occur in the local circuit as a result of the modulation of inhibitory transmission. We will focus on the hippocampus because this region has a relatively well-understood circuitry, numerous forms of activity-dependent plasticity and a multitude of identified interneuron subclasses.

  18. Longer term improvement in neurocognitive functioning and affective distress among methamphetamine users who achieve stable abstinence.

    Science.gov (United States)

    Iudicello, Jennifer E; Woods, Steven P; Vigil, Ofilio; Scott, J Cobb; Cherner, Mariana; Heaton, Robert K; Atkinson, J Hampton; Grant, Igor

    2010-08-01

    Chronic use of methamphetamine (MA) is associated with neuropsychological dysfunction and affective distress. Some normalization of function has been reported after abstinence, but little in the way of data is available on the possible added benefits of long-term sobriety. To address this, we performed detailed neuropsychological and affective evaluations in 83 MA-dependent individuals at a baseline visit and following an average one-year interval period. Among the 83 MA-dependent participants, 25 remained abstinent, and 58 used MA at least once during the interval period. A total of 38 non-MA-addicted, demographically matched healthy comparison (i.e., HC) participants were also examined. At baseline, both MA-dependent participants who were able to maintain abstinence and those who were not performed significantly worse than the healthy comparison subjects on global neuropsychological functioning and were significantly more distressed. At the one-year follow-up, both the long-term abstainers and healthy comparison groups showed comparable global neuropsychological performance and affective distress levels, whereas the MA-dependent group who continued to use MA were worse than the comparison participants in terms of global neuropsychological functioning and affective distress. An interaction was observed between neuropsychological impairment at baseline, MA abstinence, and cognitive improvement, with abstinent MA-dependent participants who were neuropsychologically impaired at baseline demonstrating significantly and disproportionately greater improvement in processing speed and slightly greater improvement in motor abilities than the other participants. These results suggest partial recovery of neuropsychological functioning and improvement in affective distress upon sustained abstinence from MA that may extend beyond a year or more.

  19. An investigation on pharmacy functions and services affecting satisfaction of patients with prescriptions in community pharmacies.

    Science.gov (United States)

    Sakurai, Hidehiko; Nakajima, Fumio; Tada, Yuichirou; Yoshikawa, Emi; Iwahashi, Yoshiki; Fujita, Kenji; Hayase, Yukitoshi

    2009-05-01

    Various functions expected by patient expects are needed with progress in the system for separation of dispensing and prescribing functions. In this investigation, the relationship between patient satisfaction and pharmacy function were analyzed quantitatively. A questionnaire survey was conducted in 178 community pharmacies. Questions on pharmacy functions and services totaled 87 items concerning information service, amenities, safety, personnel training, etc. The questionnaires for patients had five-grade scales and composed 11 items (observed variables). Based on the results, "the percentage of satisfied patients" was determined. Multivariate analysis was performed to investigate the relationship between patient satisfaction and pharmacy functions or services provided, to confirm patient's evaluation of the pharmacy, and how factors affected comprehensive satisfaction. In correlation analysis, "the number of pharmacists" and "comprehensive satisfaction" had a negative correlation. Other interesting results were obtained. As a results of factor analysis, three latent factors were obtained: the "human factor," "patients' convenience," and "environmental factor," Multiple regression analysis showed that the "human factor" affected "comprehensive satisfaction" the most. Various pharmacy functions and services influence patient satisfaction, and improvement in their quality increases patient satisfaction. This will result in the practice of patient-centered medicine.

  20. Endocannabinoids and synaptic function in the CNS.

    Science.gov (United States)

    Hashimotodani, Yuki; Ohno-Shosaku, Takako; Kano, Masanobu

    2007-04-01

    Marijuana affects neural functions through the binding of its active component (Delta(9)-THC) to cannabinoid receptors in the CNS. Recent studies have elucidated that endogenous ligands for cannabinoid receptors, endocannabinoids, serve as retrograde messengers at central synapses. Endocannabinoids are produced on demand in activity-dependent manners and released from postsynaptic neurons. The released endocannabinoids travel backward across the synapse, activate presynaptic CB1 cannabinoid receptors, and modulate presynaptic functions. Retrograde endocannabinoid signaling is crucial for certain forms of short-term and long-term synaptic plasticity at excitatory or inhibitory synapses in many brain regions, and thereby contributes to various aspects of brain function including learning and memory. Molecular identities of the CB1 receptor and enzymes involved in production and degradation of endocannabinoids have been elucidated. Anatomical studies have demonstrated unique distributions of these molecules around synapses, which provide morphological bases for the roles of endocannabinoids as retrograde messengers. CB1-knockout mice exhibit various behavioral abnormalities and multiple defects in synaptic plasticity, supporting the notion that endocannabinoid signaling is involved in various aspects of neural function. In this review article, the authors describe molecular mechanisms of the endocannabinoid-mediated synaptic modulation and its possible physiological significance.

  1. Synapse formation and maintenance by C1q family proteins: a new class of secreted synapse organizers.

    Science.gov (United States)

    Yuzaki, Michisuke

    2010-07-01

    Several C1q family members, especially the Cbln and C1q-like subfamilies, are highly and predominantly expressed in the central nervous system. Cbln1, a member of the Cbln subfamily, plays two unique roles at parallel fiber (PF)-Purkinje cell synapses in the cerebellum: the formation and stabilization of synaptic contact, and the control of functional synaptic plasticity by regulating the postsynaptic endocytotic pathway. The delta2 glutamate receptor (GluD2), which is predominantly expressed in Purkinje cells, plays similar critical roles in the cerebellum. In addition, viral expression of GluD2 or the application of recombinant Cbln1 induces PF-Purkinje cell synaptogenesis in vitro and in vivo. Antigen-unmasking methods were necessary to reveal the immunoreactivities for endogenous Cbln1 and GluD2 at the synaptic junction of PF synapses. We propose that Cbln1 and GluD2 are located at the synaptic cleft, where various proteins undergo intricate molecular interactions with each other, and serve as a bidirectional synaptic organizer.

  2. Reevaluation of the role of parallel fiber synapses in delay eyeblink conditioning in mice using Cbln1 as a tool

    Directory of Open Access Journals (Sweden)

    Kyoichi eEmi

    2013-11-01

    Full Text Available The delay eyeblink conditioning (EBC is a cerebellum-dependent type of associative motor learning. However, the exact roles played by the various cerebellar synapses, as well as the underlying molecular mechanisms, remain to be determined. It is also unclear whether long-term potentiation (LTP or long-term depression (LTD at parallel fiber (PF–Purkinje cell synapses is involved in EBC. In this study, to clarify the role of PF synapses in the delay EBC, we used mice in which a gene encoding Cbln1 was disrupted (cbln1–/– mice, which display severe reduction of PF–Purkinje cell synapses. We showed that delay EBC was impaired in cbln1–/– mice. Although PF-LTD was impaired, PF-LTP was normally induced in cbln1–/– mice. A single recombinant Cbln1 injection to the cerebellar cortex in vivo completely, though transiently, restored the morphology and function of PF–Purkinje cell synapses and delay EBC in cbln1–/– mice. Interestingly, the cbln1–/– mice retained the memory for at least 30 d, after the Cbln1 injection’s effect on PF synapses had abated. Furthermore, delay EBC memory could be extinguished even after the Cbln1 injection’s effect were lost. These results indicate that intact PF–Purkinje cell synapses and PF-LTD, not PF-LTP, are necessary to acquire delay EBC in mice. In contrast, extracerebellar structures or remaining PF–Purkinje cell synapses in cbln1–/– mice may be sufficient for the expression, maintenance, and extinction of its memory trace.

  3. Fish oil affects immune function in 9 to 12 month old infants

    DEFF Research Database (Denmark)

    Damsgaard, Camilla Trab; Lauritzen, Lotte; Kjær, Tanja;

    Background - n-3 Polyunsaturated fatty acids (PUFA) are thought to affect immune function and may affect immune maturation in early life. Objective - To examine if fish oil supplementation in late infancy could modify immune function. Design - A 2×2 intervention with fish oil (3.4 ± 1.1 ml....../day) or no fish oil and cow’s milk or infant formula from 9 to 12 month of age in 64 healthy Danish infants. Before and after the intervention we measured the fatty acid composition of erythrocyte (RBC) membranes, plasma IgE levels, C-reactive protein and soluble IL-2 receptors (sIL-2R) as well as cytokine...... production in whole-blood cultures stimulated with lipopolysaccharide (LPS)/phytohaemaglutinin (PHA) or Lactobacillus paracasei for 22 h. IgA was measured in feces at 10 months of age. Results - Fish oil supplementation effectively raised RBC n-3 PUFA (p...

  4. The relationship between sleep-wake cycle and cognitive functioning in young people with affective disorders.

    Directory of Open Access Journals (Sweden)

    Joanne S Carpenter

    Full Text Available Although early-stage affective disorders are associated with both cognitive dysfunction and sleep-wake disruptions, relationships between these factors have not been specifically examined in young adults. Sleep and circadian rhythm disturbances in those with affective disorders are considerably heterogeneous, and may not relate to cognitive dysfunction in a simple linear fashion. This study aimed to characterise profiles of sleep and circadian disturbance in young people with affective disorders and examine associations between these profiles and cognitive performance. Actigraphy monitoring was completed in 152 young people (16-30 years; 66% female with primary diagnoses of affective disorders, and 69 healthy controls (18-30 years; 57% female. Patients also underwent detailed neuropsychological assessment. Actigraphy data were processed to estimate both sleep and circadian parameters. Overall neuropsychological performance in patients was poor on tasks relating to mental flexibility and visual memory. Two hierarchical cluster analyses identified three distinct patient groups based on sleep variables and three based on circadian variables. Sleep clusters included a 'long sleep' cluster, a 'disrupted sleep' cluster, and a 'delayed and disrupted sleep' cluster. Circadian clusters included a 'strong circadian' cluster, a 'weak circadian' cluster, and a 'delayed circadian' cluster. Medication use differed between clusters. The 'long sleep' cluster displayed significantly worse visual memory performance compared to the 'disrupted sleep' cluster. No other cognitive functions differed between clusters. These results highlight the heterogeneity of sleep and circadian profiles in young people with affective disorders, and provide preliminary evidence in support of a relationship between sleep and visual memory, which may be mediated by use of antipsychotic medication. These findings have implications for the personalisation of treatments and improvement

  5. The relationship between sleep-wake cycle and cognitive functioning in young people with affective disorders.

    Science.gov (United States)

    Carpenter, Joanne S; Robillard, Rébecca; Lee, Rico S C; Hermens, Daniel F; Naismith, Sharon L; White, Django; Whitwell, Bradley; Scott, Elizabeth M; Hickie, Ian B

    2015-01-01

    Although early-stage affective disorders are associated with both cognitive dysfunction and sleep-wake disruptions, relationships between these factors have not been specifically examined in young adults. Sleep and circadian rhythm disturbances in those with affective disorders are considerably heterogeneous, and may not relate to cognitive dysfunction in a simple linear fashion. This study aimed to characterise profiles of sleep and circadian disturbance in young people with affective disorders and examine associations between these profiles and cognitive performance. Actigraphy monitoring was completed in 152 young people (16-30 years; 66% female) with primary diagnoses of affective disorders, and 69 healthy controls (18-30 years; 57% female). Patients also underwent detailed neuropsychological assessment. Actigraphy data were processed to estimate both sleep and circadian parameters. Overall neuropsychological performance in patients was poor on tasks relating to mental flexibility and visual memory. Two hierarchical cluster analyses identified three distinct patient groups based on sleep variables and three based on circadian variables. Sleep clusters included a 'long sleep' cluster, a 'disrupted sleep' cluster, and a 'delayed and disrupted sleep' cluster. Circadian clusters included a 'strong circadian' cluster, a 'weak circadian' cluster, and a 'delayed circadian' cluster. Medication use differed between clusters. The 'long sleep' cluster displayed significantly worse visual memory performance compared to the 'disrupted sleep' cluster. No other cognitive functions differed between clusters. These results highlight the heterogeneity of sleep and circadian profiles in young people with affective disorders, and provide preliminary evidence in support of a relationship between sleep and visual memory, which may be mediated by use of antipsychotic medication. These findings have implications for the personalisation of treatments and improvement of functioning in

  6. The Relationship between Sleep-Wake Cycle and Cognitive Functioning in Young People with Affective Disorders

    Science.gov (United States)

    Carpenter, Joanne S.; Robillard, Rébecca; Lee, Rico S. C.; Hermens, Daniel F.; Naismith, Sharon L.; White, Django; Whitwell, Bradley; Scott, Elizabeth M.; Hickie, Ian B.

    2015-01-01

    Although early-stage affective disorders are associated with both cognitive dysfunction and sleep-wake disruptions, relationships between these factors have not been specifically examined in young adults. Sleep and circadian rhythm disturbances in those with affective disorders are considerably heterogeneous, and may not relate to cognitive dysfunction in a simple linear fashion. This study aimed to characterise profiles of sleep and circadian disturbance in young people with affective disorders and examine associations between these profiles and cognitive performance. Actigraphy monitoring was completed in 152 young people (16–30 years; 66% female) with primary diagnoses of affective disorders, and 69 healthy controls (18–30 years; 57% female). Patients also underwent detailed neuropsychological assessment. Actigraphy data were processed to estimate both sleep and circadian parameters. Overall neuropsychological performance in patients was poor on tasks relating to mental flexibility and visual memory. Two hierarchical cluster analyses identified three distinct patient groups based on sleep variables and three based on circadian variables. Sleep clusters included a ‘long sleep’ cluster, a ‘disrupted sleep’ cluster, and a ‘delayed and disrupted sleep’ cluster. Circadian clusters included a ‘strong circadian’ cluster, a ‘weak circadian’ cluster, and a ‘delayed circadian’ cluster. Medication use differed between clusters. The ‘long sleep’ cluster displayed significantly worse visual memory performance compared to the ‘disrupted sleep’ cluster. No other cognitive functions differed between clusters. These results highlight the heterogeneity of sleep and circadian profiles in young people with affective disorders, and provide preliminary evidence in support of a relationship between sleep and visual memory, which may be mediated by use of antipsychotic medication. These findings have implications for the personalisation of treatments

  7. Adaptation gap hypothesis: How differences between users’ expected and perceived agent functions affect their subjective impression

    Directory of Open Access Journals (Sweden)

    Takanori Komatsu

    2011-02-01

    Full Text Available We describe an “adaptation gap” that indicates the differences between the functions of artificial agents that users expect before starting their interactions and the functions they perceive after their interactions. We investigated the effect of this adaptation gap on users’ impressions of artificial agents because any variations in impression before and after the start of an interaction determines whether the user feels that this agent is worth interacting with. The results showed that positive or negative signs of the adaptation gap and subjective impression scores of agents before the experiment significantly affected the users’ final impressions of the agents.

  8. Testing two mechanisms by which rational and irrational beliefs may affect the functionality of inferences.

    Science.gov (United States)

    Bond, F W; Dryden, W; Briscoe, R

    1999-12-01

    This article describes a role playing experiment that examined the sufficiency hypothesis of Rational Emotive Behaviour Therapy (REBT). This proposition states that it is sufficient for rational and irrational beliefs to refer to preferences and musts, respectively, if those beliefs are to affect the functionality of inferences (FI). Consistent with the REBT literature (e.g. Dryden, 1994; Dryden & Ellis, 1988; Palmer, Dryden, Ellis & Yapp, 1995) results from this experiment showed that rational and irrational beliefs, as defined by REBT, do affect FI. Specifically, results showed that people who hold a rational belief form inferences that are significantly more functional than those that are formed by people who hold an irrational belief. Contrary to REBT theory, the sufficiency hypothesis was not supported. Thus, results indicated that it is not sufficient for rational and irrational beliefs to refer to preferences and musts, respectively, if those beliefs are to affect the FI. It appears, then, that preferences and musts are not sufficient mechanisms by which rational and irrational beliefs, respectively, affect the FI. Psychotherapeutic implications of these findings are considered.

  9. Amygdala perfusion is predicted by its functional connectivity with the ventromedial prefrontal cortex and negative affect.

    Directory of Open Access Journals (Sweden)

    Garth Coombs

    Full Text Available BACKGROUND: Previous studies have shown that the activity of the amygdala is elevated in people experiencing clinical and subclinical levels of anxiety and depression (negative affect. It has been proposed that a reduction in inhibitory input to the amygdala from the prefrontal cortex and resultant over-activity of the amygdala underlies this association. Prior studies have found relationships between negative affect and 1 amygdala over-activity and 2 reduced amygdala-prefrontal connectivity. However, it is not known whether elevated amygdala activity is associated with decreased amygdala-prefrontal connectivity during negative affect states. METHODS: Here we used resting-state arterial spin labeling (ASL and blood oxygenation level dependent (BOLD functional magnetic resonance imaging (fMRI in combination to test this model, measuring the activity (regional cerebral blood flow, rCBF and functional connectivity (correlated fluctuations in the BOLD signal of one subregion of the amygdala with strong connections with the prefrontal cortex, the basolateral nucleus (BLA, and subsyndromal anxiety levels in 38 healthy subjects. RESULTS: BLA rCBF was strongly correlated with anxiety levels. Moreover, both BLA rCBF and anxiety were inversely correlated with the strength of the functional coupling of the BLA with the caudal ventromedial prefrontal cortex. Lastly, BLA perfusion was found to be a mediator of the relationship between BLA-prefrontal connectivity and anxiety. CONCLUSIONS: These results show that both perfusion of the BLA and a measure of its functional coupling with the prefrontal cortex directly index anxiety levels in healthy subjects, and that low BLA-prefrontal connectivity may lead to increased BLA activity and resulting anxiety. Thus, these data provide key evidence for an often-cited circuitry model of negative affect, using a novel, multi-modal imaging approach.

  10. Large somatic synapses on neurons in the ventral lateral lemniscus work in pairs.

    Science.gov (United States)

    Berger, Christina; Meyer, Elisabeth M M; Ammer, Julian J; Felmy, Felix

    2014-02-26

    In the auditory system, large somatic synapses convey strong excitation that supports temporally precise information transfer. The information transfer of such synapses has predominantly been investigated in the endbulbs of Held in the anterior ventral cochlear nucleus and the calyx of Held in the medial nucleus of the trapezoid body. These large synapses either work as relays or integrate over a small number of inputs to excite the postsynaptic neuron beyond action potential (AP) threshold. In the monaural system, another large somatic synapse targets neurons in the ventral nucleus of the lateral lemniscus (VNLL). Here, we comparatively analyze the mechanisms of synaptic information transfer in endbulbs in the VNLL and the calyx of Held in juvenile Mongolian gerbils. We find that endbulbs in the VNLL are functionally surface-scaled versions of the calyx of Held with respect to vesicle availability, release efficacy, and synaptic peak currents. This functional scaling is achieved by different calcium current kinetics that compensate for the smaller AP in VNLL endbulbs. However, the average postsynaptic current in the VNLL fails to elicit APs in its target neurons, even though equal current suffices to generate APs in neurons postsynaptic to the calyx of Held. In the VNLL, a postsynaptic A-type outward current reduces excitability and prevents AP generation upon a single presynaptic input. Instead, coincidence detection of inputs from two converging endbulbs is ideal to reliably trigger APs. Thus, even large endbulbs do not guarantee one-to-one AP transfer. Instead, information flow appears regulated by circuit requirements.

  11. Signaling by postsynaptic AMPA receptors in glutamatergic synapse maturation

    OpenAIRE

    2010-01-01

    Excitatory transmission in the brain is largely mediated by synapses containing the neurotransmitter glutamate. Neuronal circuitry is first established early in brain development requiring the formation of vast numbers of glutamatergic synapses at individual sites of contact made between presynaptic axons and postsynaptic dendrites. Despite mounting efforts in the last decade to identify the complex molecular mechanisms underlying initial synaptogenesis and the subsequent steps of synapse m...

  12. The cytotoxic T lymphocyte immune synapse at a glance.

    Science.gov (United States)

    Dieckmann, Nele M G; Frazer, Gordon L; Asano, Yukako; Stinchcombe, Jane C; Griffiths, Gillian M

    2016-08-01

    The immune synapse provides an important structure for communication with immune cells. Studies on immune synapses formed by cytotoxic T lymphocytes (CTLs) highlight the dynamic changes and specialised mechanisms required to facilitate focal signalling and polarised secretion in immune cells. In this Cell Science at a Glance article and the accompanying poster, we illustrate the different steps that reveal the specialised mechanisms used to focus secretion at the CTL immune synapse and allow CTLs to be such efficient and precise serial killers.

  13. Affective response to a loved one's pain: insula activity as a function of individual differences.

    Directory of Open Access Journals (Sweden)

    Viridiana Mazzola

    Full Text Available Individual variability in emotion processing may be associated with genetic variation as well as with psychological predispositions such as dispositional affect styles. Our previous fMRI study demonstrated that amygdala reactivity was independently predicted by affective-cognitive styles (phobic prone or eating disorders prone and genotype of the serotonin transporter in a discrimination task of fearful facial expressions. Since the insula is associated with the subjective evaluation of bodily states and is involved in human feelings, we explored whether its activity could also vary in function of individual differences. In the present fMRI study, the association between dispositional affects and insula reactivity has been examined in two groups of healthy participants categorized according to affective-cognitive styles (phobic prone or eating disorders prone. Images of the faces of partners and strangers, in both painful and neutral situations, were used as visual stimuli. Interaction analyses indicate significantly different activations in the two groups in reaction to a loved one's pain: the phobic prone group exhibited greater activation in the left posterior insula. These results demonstrate that affective-cognitive style is associated with insula activity in pain empathy processing, suggesting a greater involvement of the insula in feelings for a certain cohort of people. In the mapping of individual differences, these results shed new light on variability in neural networks of emotion.

  14. Stimulation of neural cell adhesion molecule L1 to the formation of neurite and functional synapse%神经细胞黏附分子L1促进神经细胞突起和功能性突触的形成

    Institute of Scientific and Technical Information of China (English)

    钟振国

    2004-01-01

    BACKGROUND: Neural cell adhesion molecule L1 plays an important role on the origin, development of neural cells as well as the adhesion between nerves. However, the effect of L1 to the formation of neuritis and functional synapse is still uncertain.OBJECTIVE:To explore the effects of neural cell adhesion molecule L1 on forming neurites and functional synapses.DESIGN:Completely randomized controlled trial.SETTING and MATERIALS: Experiment was conducted in Neuroscience Research Institute of Guangxi College of Traditional Chinese Medicine.Materials include NG108-15 nerve cell strain, L1 cDNA, anti-L1 antibody:provided by Kanazawa University.METHODS: L1 cDNA was transfected into NG108-15 cells by lipid transfecting agent in vitro culture. Optical microscope was used to observe the cellular morphology. Electrophysiological technique was used to test the postsynaptic membrane potential of cell-muscular process.MAIN OUTCOME MEASURES: Cell process index; rate of synapse formation, frequency of miniatureplate potential.RESULTS: Four days after being processed by differentiation agent cAMP,the cells with protuberance and bifurcation in L1-transfection group accounted for(31 ±8)% of the total cells. This figure was much higher than that of non-transfection group ( 13 ± 2) % or Mock transfection group ( 15 ± 5 ) % ( P < 0.01). The average length of cell process was(142.5 ± 12.3) μm, it was higher than that of non-transfection group(94.2 ± 12. 3) μ m or Mock transfection group(86. 8 ± 6.7) μm( P < 0.05). The rate of synapse formation in L1 transfection group was(58.0±11.5)% , it was higher than that of non-transfection group ( 36.7 ± 0. 83 ) % or Mock-transfection group ( 39.2± 0. 84) % ( P < 0.01 ) . However, there was no significant difference between the postsynaptic membrane potential of three groups ( P > 0.05).CONCLUSION: The high expression of L1 in NG108 - 15 cells can enhance the formation of neural cell process and functional synapse induced by c

  15. Verbal marking of affect by children with Asperger Syndrome and high functioning autism during spontaneous interactions with family members.

    Science.gov (United States)

    Müller, Eve; Schuler, Adriana

    2006-11-01

    Verbal marking of affect by older children with Asperger Syndrome (AS) and high functioning autism (HFA) during spontaneous interactions is described. Discourse analysis of AS and HFA and typically developing children included frequency of affective utterances, affective initiations, affective labels and affective explanations, attribution of affective responses to self and others, and positive and negative markers of affect. Findings indicate that children with AS and HFA engaged in a higher proportion of affect marking and provided a higher proportion of affective explanations than typically developing children, yet were less likely to initiate affect marking sequences or talk about the affective responses of others. No significant differences were found between groups in terms of the marking of positive and negative affect.

  16. Analog VLSI Circuits for Short-Term Dynamic Synapses

    Directory of Open Access Journals (Sweden)

    Shih-Chii Liu

    2003-06-01

    Full Text Available Short-term dynamical synapses increase the computational power of neuronal networks. These synapses act as additional filters to the inputs of a neuron before the subsequent integration of these signals at its cell body. In this work, we describe a model of depressing and facilitating synapses derived from a hardware circuit implementation. This model is equivalent to theoretical models of short-term synaptic dynamics in network simulations. These circuits have been added to a network of leaky integrate-and-fire neurons. A cortical model of direction-selectivity that uses short-term dynamic synapses has been implemented with this network.

  17. Psychosocial Functioning in Depressive Patients: A Comparative Study between Major Depressive Disorder and Bipolar Affective Disorder

    Directory of Open Access Journals (Sweden)

    Shubham Mehta

    2014-01-01

    Full Text Available Introduction. Major depressive disorder (MDD and bipolar affective disorder (BAD are among the leading causes of disability. These are often associated with widespread impairments in all domains of functioning including relational, occupational, and social. The main aim of the study was to examine and compare nature and extent of psychosocial impairment of patients with MDD and BAD during depressive phase. Methodology. 96 patients (48 in MDD group and 48 in BAD group were included in the study. Patients were recruited in depressive phase (moderate to severe depression. Patients having age outside 18–45 years, psychotic symptoms, mental retardation, and current comorbid medical or axis-1 psychiatric disorder were excluded. Psychosocial functioning was assessed using Range of Impaired Functioning Tool (LIFE-RIFT. Results. Domains of work, interpersonal relationship, life satisfaction, and recreation were all affected in both groups, but the groups showed significant difference in global psychosocial functioning score only (P=0.031 with BAD group showing more severe impairment. Conclusion. Bipolar depression causes higher global psychosocial impairment than unipolar depression.

  18. Treating the Synapse in Major Psychiatric Disorders: The Role of Postsynaptic Density Network in Dopamine-Glutamate Interplay and Psychopharmacologic Drugs Molecular Actions

    Directory of Open Access Journals (Sweden)

    Carmine Tomasetti

    2017-01-01

    Full Text Available Dopamine-glutamate interplay dysfunctions have been suggested as pathophysiological key determinants of major psychotic disorders, above all schizophrenia and mood disorders. For the most part, synaptic interactions between dopamine and glutamate signaling pathways take part in the postsynaptic density, a specialized ultrastructure localized under the membrane of glutamatergic excitatory synapses. Multiple proteins, with the role of adaptors, regulators, effectors, and scaffolds compose the postsynaptic density network. They form structural and functional crossroads where multiple signals, starting at membrane receptors, are received, elaborated, integrated, and routed to appropriate nuclear targets. Moreover, transductional pathways belonging to different receptors may be functionally interconnected through postsynaptic density molecules. Several studies have demonstrated that psychopharmacologic drugs may differentially affect the expression and function of postsynaptic genes and proteins, depending upon the peculiar receptor profile of each compound. Thus, through postsynaptic network modulation, these drugs may induce dopamine-glutamate synaptic remodeling, which is at the basis of their long-term physiologic effects. In this review, we will discuss the role of postsynaptic proteins in dopamine-glutamate signals integration, as well as the peculiar impact of different psychotropic drugs used in clinical practice on postsynaptic remodeling, thereby trying to point out the possible future molecular targets of “synapse-based” psychiatric therapeutic strategies.

  19. The protective function of personal growth initiative among a genocide-affected population in Rwanda.

    Science.gov (United States)

    Blackie, Laura E R; Jayawickreme, Eranda; Forgeard, Marie J C; Jayawickreme, Nuwan

    2015-07-01

    The aim of the current study was to investigate the extent to which individual differences in personal growth initiative (PGI) were associated with lower reports of functional impairment of daily activities among a genocide-affected population in Rwanda. PGI measures an individual's motivation to develop as a person and the extent to which he or she is active in setting goals that work toward achieving self-improvement. We found that PGI was negatively associated with functional impairment when controlling for depression, posttraumatic stress disorder, and other demographic factors. Our results suggest that PGI may constitute an important mindset for facilitating adaptive functioning in the aftermath of adversity and in the midst of psychological distress, and as such they might have practical applications for the development of intervention programs.

  20. Plant diversity and functional groups affect Si and Ca pools in aboveground biomass of grassland systems.

    Science.gov (United States)

    Schaller, Jörg; Roscher, Christiane; Hillebrand, Helmut; Weigelt, Alexandra; Oelmann, Yvonne; Wilcke, Wolfgang; Ebeling, Anne; Weisser, Wolfgang W

    2016-09-01

    Plant diversity is an important driver of nitrogen and phosphorus stocks in aboveground plant biomass of grassland ecosystems, but plant diversity effects on other elements also important for plant growth are less understood. We tested whether plant species richness, functional group richness or the presence/absence of particular plant functional groups influences the Si and Ca concentrations (mmol g(-1)) and stocks (mmol m(-2)) in aboveground plant biomass in a large grassland biodiversity experiment (Jena Experiment). In the experiment including 60 temperate grassland species, plant diversity was manipulated as sown species richness (1, 2, 4, 8, 16) and richness and identity of plant functional groups (1-4; grasses, small herbs, tall herbs, legumes). We found positive species richness effects on Si as well as Ca stocks that were attributable to increased biomass production. The presence of particular functional groups was the most important factor explaining variation in aboveground Si and Ca stocks (mmol m(-2)). Grass presence increased the Si stocks by 140 % and legume presence increased the Ca stock by 230 %. Both the presence of specific plant functional groups and species diversity altered Si and Ca stocks, whereas Si and Ca concentration were affected mostly by the presence of specific plant functional groups. However, we found a negative effect of species diversity on Si and Ca accumulation, by calculating the deviation between mixtures and mixture biomass proportions, but in monoculture concentrations. These changes may in turn affect ecosystem processes such as plant litter decomposition and nutrient cycling in grasslands.

  1. Elastohydrodynamics and kinetics of protein patterning in the immunological synapse

    CERN Document Server

    Carlson, Andreas

    2015-01-01

    The cellular basis for the adaptive immune response during antigen recognition relies on a specialized protein interface known as the immunological synapse (IS). Understanding the biophysical basis for protein patterning by deciphering the quantitative rules for their formation and motion is an important aspect of characterizing immune cell recognition and thence the rules for immune system activation. We propose a minimal mathematical model for the physical basis of membrane protein patterning in the IS, which encompass membrane mechanics, protein binding kinetics and motion, and fluid flow in the synaptic cleft. Our theory leads to simple predictions for the spatial and temporal scales of protein cluster formation, growth and arrest as a function of membrane stiffness, rigidity and kinetics of the adhesive proteins, and the fluid in the synaptic cleft. Numerical simulations complement these scaling laws by quantifying the nucleation, growth and stabilization of proteins domains on the size of the cell. Dire...

  2. Spin switches for compact implementation of neuron and synapse

    Energy Technology Data Exchange (ETDEWEB)

    Quang Diep, Vinh, E-mail: vdiep@purdue.edu; Sutton, Brian; Datta, Supriyo [School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Behin-Aein, Behtash [GLOBALFOUNDRIES, Inc., Sunnyvale, California 94085 (United States)

    2014-06-02

    Nanomagnets driven by spin currents provide a natural implementation for a neuron and a synapse: currents allow convenient summation of multiple inputs, while the magnet provides the threshold function. The objective of this paper is to explore the possibility of a hardware neural network implementation using a spin switch (SS) as its basic building block. SS is a recently proposed device based on established technology with a transistor-like gain and input-output isolation. This allows neural networks to be constructed with purely passive interconnections without intervening clocks or amplifiers. The weights for the neural network are conveniently adjusted through analog voltages that can be stored in a non-volatile manner in an underlying CMOS layer using a floating gate low dropout voltage regulator. The operation of a multi-layer SS neural network designed for character recognition is demonstrated using a standard simulation model based on coupled Landau-Lifshitz-Gilbert equations, one for each magnet in the network.

  3. Arrival order among native plant functional groups does not affect invasibility of constructed dune communities.

    Science.gov (United States)

    Mason, T J; French, K; Jolley, D

    2013-10-01

    Different arrival order scenarios of native functional groups to a site may influence both resource use during development and final community structure. Arrival order may then indirectly influence community resistance to invasion. We present a mesocosm experiment of constructed coastal dune communities that monitored biotic and abiotic responses to different arrival orders of native functional groups. Constructed communities were compared with unplanted mesocosms. We then simulated a single invasion event by bitou (Chrysanthemoides monilifera ssp. rotundata), a dominant exotic shrub of coastal communities. We evaluated the hypothesis that plantings with simultaneous representation of grass, herb and shrub functional groups at the beginning of the experiment would more completely sequester resources and limit invasion than staggered plantings. Staggered plantings in turn would offer greater resource use and invasion resistance than unplanted mesocosms. Contrary to our expectations, there were few effects of arrival order on abiotic variables for the duration of the experiment and arrival order was unimportant in final community invasibility. All planted mesocosms supported significantly more invader germinants and significantly less invader abundance than unplanted mesocosms. Native functional group plantings may have a nurse effect during the invader germination and establishment phase and a competitive function during the invader juvenile and adult phase. Arrival order per se did not affect resource use and community invasibility in our mesocosm experiment. While grass, herb and shrub functional group plantings will not prevent invasion success in restored communities, they may limit final invader biomass.

  4. Functional connectivity of pain-mediated affect regulation in Borderline Personality Disorder.

    Directory of Open Access Journals (Sweden)

    Inga Niedtfeld

    Full Text Available Affective instability and self-injurious behavior are important features of Borderline Personality Disorder. Whereas affective instability may be caused by a pattern of limbic hyperreactivity paired with dysfunctional prefrontal regulation mechanisms, painful stimulation was found to reduce affective arousal at the neural level, possibly underlying the soothing effect of pain in BPD.We used psychophysiological interactions to analyze functional connectivity of (para- limbic brain structures (i.e. amygdala, insula, anterior cingulate cortex in Borderline Personality Disorder in response to painful stimulation. Therefore, we re-analyzed a dataset from 20 patients with Borderline Personality Disorder and 23 healthy controls who took part in an fMRI-task inducing negative (versus neutral affect and subsequently applying heat pain (versus warmth perception.Results suggest an enhanced negative coupling between limbic as well as paralimbic regions and prefrontal regions, specifically with the medial and dorsolateral prefrontal cortex, when patients experienced pain in addition to emotional arousing pictures. When neutral pictures were combined with painful heat sensation, we found positive connectivity in Borderline Personality Disorder between (para-limbic brain areas and parts of the basal ganglia (lentiform nucleus, putamen, as well areas involved in self-referential processing (precuneus and posterior cingulate.We found further evidence for alterations in the emotion regulation process in Borderline Personality Disorder, in the way that pain improves the inhibition of limbic activity by prefrontal areas. This study provides new insights in pain processing in BPD, including enhanced coupling of limbic structures and basal ganglia.

  5. Modulation of α power and functional connectivity during facial affect recognition.

    Science.gov (United States)

    Popov, Tzvetan; Miller, Gregory A; Rockstroh, Brigitte; Weisz, Nathan

    2013-04-03

    Research has linked oscillatory activity in the α frequency range, particularly in sensorimotor cortex, to processing of social actions. Results further suggest involvement of sensorimotor α in the processing of facial expressions, including affect. The sensorimotor face area may be critical for perception of emotional face expression, but the role it plays is unclear. The present study sought to clarify how oscillatory brain activity contributes to or reflects processing of facial affect during changes in facial expression. Neuromagnetic oscillatory brain activity was monitored while 30 volunteers viewed videos of human faces that changed their expression from neutral to fearful, neutral, or happy expressions. Induced changes in α power during the different morphs, source analysis, and graph-theoretic metrics served to identify the role of α power modulation and cross-regional coupling by means of phase synchrony during facial affect recognition. Changes from neutral to emotional faces were associated with a 10-15 Hz power increase localized in bilateral sensorimotor areas, together with occipital power decrease, preceding reported emotional expression recognition. Graph-theoretic analysis revealed that, in the course of a trial, the balance between sensorimotor power increase and decrease was associated with decreased and increased transregional connectedness as measured by node degree. Results suggest that modulations in α power facilitate early registration, with sensorimotor cortex including the sensorimotor face area largely functionally decoupled and thereby protected from additional, disruptive input and that subsequent α power decrease together with increased connectedness of sensorimotor areas facilitates successful facial affect recognition.

  6. New players tip the scales in the balance between excitatory and inhibitory synapses

    Directory of Open Access Journals (Sweden)

    El-Husseini Alaa

    2005-03-01

    Full Text Available Abstract Synaptogenesis is a highly controlled process, involving a vast array of players which include cell adhesion molecules, scaffolding and signaling proteins, neurotransmitter receptors and proteins associated with the synaptic vesicle machinery. These molecules cooperate in an intricate manner on both the pre- and postsynaptic sides to orchestrate the precise assembly of neuronal contacts. This is an amazing feat considering that a single neuron receives tens of thousands of synaptic inputs but virtually no mismatch between pre- and postsynaptic components occur in vivo. One crucial aspect of synapse formation is whether a nascent synapse will develop into an excitatory or inhibitory contact. The tight control of a balance between the types of synapses formed regulates the overall neuronal excitability, and is thus critical for normal brain function and plasticity. However, little is known about how this balance is achieved. This review discusses recent findings which provide clues to how neurons may control excitatory and inhibitory synapse formation, with focus on the involvement of the neuroligin family and PSD-95 in this process.

  7. Specific recycling receptors are targeted to the immune synapse by the intraflagellar transport system.

    Science.gov (United States)

    Finetti, Francesca; Patrussi, Laura; Masi, Giulia; Onnis, Anna; Galgano, Donatella; Lucherini, Orso Maria; Pazour, Gregory J; Baldari, Cosima T

    2014-05-01

    T cell activation requires sustained signaling at the immune synapse, a specialized interface with the antigen-presenting cell (APC) that assembles following T cell antigen receptor (TCR) engagement by major histocompatibility complex (MHC)-bound peptide. Central to sustained signaling is the continuous recruitment of TCRs to the immune synapse. These TCRs are partly mobilized from an endosomal pool by polarized recycling. We have identified IFT20, a component of the intraflagellar transport (IFT) system that controls ciliogenesis, as a central regulator of TCR recycling to the immune synapse. Here, we have investigated the interplay of IFT20 with the Rab GTPase network that controls recycling. We found that IFT20 forms a complex with Rab5 and the TCR on early endosomes. IFT20 knockdown (IFT20KD) resulted in a block in the recycling pathway, leading to a build-up of recycling TCRs in Rab5(+) endosomes. Recycling of the transferrin receptor (TfR), but not of CXCR4, was disrupted by IFT20 deficiency. The IFT components IFT52 and IFT57 were found to act together with IFT20 to regulate TCR and TfR recycling. The results provide novel insights into the mechanisms that control TCR recycling and immune synapse assembly, and underscore the trafficking-related function of the IFT system beyond ciliogenesis.

  8. In vivo knockdown of Piccolino disrupts presynaptic ribbon morphology in mouse photoreceptor synapses

    Directory of Open Access Journals (Sweden)

    Hanna eRegus-Leidig

    2014-09-01

    Full Text Available Piccolo is the largest known cytomatrix protein at active zones of chemical synapses. A growing number of studies on conventional chemical synapses assign Piccolo a role in the recruitment and integration of molecules relevant for both endo- and exocytosis of synaptic vesicles, the dynamic assembly of presynaptic F-actin, as well as the proteostasis of presynaptic proteins, yet a direct function in the structural organization of the active zone has not been uncovered in part due to the expression of multiple alternatively spliced isoforms. We recently identified Piccolino, a Piccolo splice variant specifically expressed in sensory ribbon synapses of the eye and ear. Here we down regulated Piccolino in vivo via an adeno-associated virus-based RNA interference approach and explored the impact on the presynaptic structure of mouse photoreceptor ribbon synapses. Detailed immunocytochemical light and electron microscopical analysis of Piccolino knockdown in photoreceptors revealed a hitherto undescribed photoreceptor ribbon synaptic phenotype with striking morphological changes of synaptic ribbon ultrastructure.

  9. Short-term plasticity and long-term potentiation mimicked in single inorganic synapses

    Science.gov (United States)

    Ohno, Takeo; Hasegawa, Tsuyoshi; Tsuruoka, Tohru; Terabe, Kazuya; Gimzewski, James K.; Aono, Masakazu

    2011-08-01

    Memory is believed to occur in the human brain as a result of two types of synaptic plasticity: short-term plasticity (STP) and long-term potentiation (LTP; refs , , , ). In neuromorphic engineering, emulation of known neural behaviour has proven to be difficult to implement in software because of the highly complex interconnected nature of thought processes. Here we report the discovery of a Ag2S inorganic synapse, which emulates the synaptic functions of both STP and LTP characteristics through the use of input pulse repetition time. The structure known as an atomic switch, operating at critical voltages, stores information as STP with a spontaneous decay of conductance level in response to intermittent input stimuli, whereas frequent stimulation results in a transition to LTP. The Ag2S inorganic synapse has interesting characteristics with analogies to an individual biological synapse, and achieves dynamic memorization in a single device without the need of external preprogramming. A psychological model related to the process of memorizing and forgetting is also demonstrated using the inorganic synapses. Our Ag2S element indicates a breakthrough in mimicking synaptic behaviour essential for the further creation of artificial neural systems that emulate characteristics of human memory.

  10. A machine learning method for the prediction of receptor activation in the simulation of synapses.

    Directory of Open Access Journals (Sweden)

    Jesus Montes

    Full Text Available Chemical synaptic transmission involves the release of a neurotransmitter that diffuses in the extracellular space and interacts with specific receptors located on the postsynaptic membrane. Computer simulation approaches provide fundamental tools for exploring various aspects of the synaptic transmission under different conditions. In particular, Monte Carlo methods can track the stochastic movements of neurotransmitter molecules and their interactions with other discrete molecules, the receptors. However, these methods are computationally expensive, even when used with simplified models, preventing their use in large-scale and multi-scale simulations of complex neuronal systems that may involve large numbers of synaptic connections. We have developed a machine-learning based method that can accurately predict relevant aspects of the behavior of synapses, such as the percentage of open synaptic receptors as a function of time since the release of the neurotransmitter, with considerably lower computational cost compared with the conventional Monte Carlo alternative. The method is designed to learn patterns and general principles from a corpus of previously generated Monte Carlo simulations of synapses covering a wide range of structural and functional characteristics. These patterns are later used as a predictive model of the behavior of synapses under different conditions without the need for additional computationally expensive Monte Carlo simulations. This is performed in five stages: data sampling, fold creation, machine learning, validation and curve fitting. The resulting procedure is accurate, automatic, and it is general enough to predict synapse behavior under experimental conditions that are different to the ones it has been trained on. Since our method efficiently reproduces the results that can be obtained with Monte Carlo simulations at a considerably lower computational cost, it is suitable for the simulation of high numbers of

  11. A Machine Learning Method for the Prediction of Receptor Activation in the Simulation of Synapses

    Science.gov (United States)

    Montes, Jesus; Gomez, Elena; Merchán-Pérez, Angel; DeFelipe, Javier; Peña, Jose-Maria

    2013-01-01

    Chemical synaptic transmission involves the release of a neurotransmitter that diffuses in the extracellular space and interacts with specific receptors located on the postsynaptic membrane. Computer simulation approaches provide fundamental tools for exploring various aspects of the synaptic transmission under different conditions. In particular, Monte Carlo methods can track the stochastic movements of neurotransmitter molecules and their interactions with other discrete molecules, the receptors. However, these methods are computationally expensive, even when used with simplified models, preventing their use in large-scale and multi-scale simulations of complex neuronal systems that may involve large numbers of synaptic connections. We have developed a machine-learning based method that can accurately predict relevant aspects of the behavior of synapses, such as the percentage of open synaptic receptors as a function of time since the release of the neurotransmitter, with considerably lower computational cost compared with the conventional Monte Carlo alternative. The method is designed to learn patterns and general principles from a corpus of previously generated Monte Carlo simulations of synapses covering a wide range of structural and functional characteristics. These patterns are later used as a predictive model of the behavior of synapses under different conditions without the need for additional computationally expensive Monte Carlo simulations. This is performed in five stages: data sampling, fold creation, machine learning, validation and curve fitting. The resulting procedure is accurate, automatic, and it is general enough to predict synapse behavior under experimental conditions that are different to the ones it has been trained on. Since our method efficiently reproduces the results that can be obtained with Monte Carlo simulations at a considerably lower computational cost, it is suitable for the simulation of high numbers of synapses and it is

  12. Differential changes in thalamic and cortical excitatory synapses onto striatal spiny projection neurons in a Huntington disease mouse model.

    Science.gov (United States)

    Kolodziejczyk, Karolina; Raymond, Lynn A

    2016-02-01

    Huntington disease (HD), a neurodegenerative disorder caused by CAG repeat expansion in the gene encoding huntingtin, predominantly affects the striatum, especially the spiny projection neurons (SPN). The striatum receives excitatory input from cortex and thalamus, and the role of the former has been well-studied in HD. Here, we report that mutated huntingtin alters function of thalamostriatal connections. We used a novel thalamostriatal (T-S) coculture and an established corticostriatal (C-S) coculture, generated from YAC128 HD and WT (FVB/NJ background strain) mice, to investigate excitatory neurotransmission onto striatal SPN. SPN in T-S coculture from WT mice showed similar mini-excitatory postsynaptic current (mEPSC) frequency and amplitude as in C-S coculture; however, both the frequency and amplitude were significantly reduced in YAC128 T-S coculture. Further investigation in T-S coculture showed similar excitatory synapse density in WT and YAC128 SPN dendrites by immunostaining, suggesting changes in total dendritic length or probability of release as possible explanations for mEPSC frequency changes. Synaptic N-methyl-D-aspartate receptor (NMDAR) current was similar, but extrasynaptic current, associated with cell death signaling, was enhanced in YAC128 SPN in T-S coculture. Employing optical stimulation of cortical versus thalamic afferents and recording from striatal SPN in brain slice, we found increased glutamate release probability and reduced AMPAR/NMDAR current ratios in thalamostriatal synapses, most prominently in YAC128. Enhanced extrasynaptic NMDAR current in YAC128 SPN was apparent with both cortical and thalamic stimulation. We conclude that thalamic afferents to the striatum are affected early, prior to an overt HD phenotype; however, changes in NMDAR localization in SPN are independent of the source of glutamatergic input.

  13. Analgesic nephropathy selectively affecting a unilateral non-functioning hypoplastic kidney.

    Science.gov (United States)

    Granese, J; Brightbill, K; Osborne, P; Cox, C E; Gaber, L W

    2007-08-01

    Analgesic nephropathy results from chronic abuse of non-narcotic analgesics, most frequently with the use of phenacetin and mixed analgesic preparations. Renal papillary necrosis and chronic interstitial nephritis with progressive scarring are characteristic of the histopathology of analgesic nephropathy. Typically, papillary necrosis in these patients is bilateral and affects almost all renal papillae. This report describes a case of severe analgesic nephropathy that discriminantly affected a unilateral non-functioning kidney and spared the contralateral normally developed kidney. The patient herein consumed therapeutic doses of acetaminophen and naproxen daily and for several years. We estimated the cumulative doses of acetaminophen and naproxen used by the patient during that period to be approximately 1.0 and 0.4 kg, respectively. The cumulative dose of acetaminophen is at the threshold of doses that were traditionally associated with an increased risk for end-stage kidney failure. Simultaneous intake of both analgesics could have had a synergetic adverse effect on renal function. This case also demonstrates that preexisting renal insufficiency is prerequisite to the development of analgesic nephropathy. Conversely, kidneys with normal function are resistant to the chronic nephrotoxicity associated with habitual analgesic use.

  14. Social-adaptive and psychological functioning of patients affected by Fabry disease.

    Science.gov (United States)

    Laney, Dawn Alyssia; Gruskin, Daniel J; Fernhoff, Paul M; Cubells, Joseph F; Ousley, Opal Y; Hipp, Heather; Mehta, Ami J

    2010-12-01

    Fabry disease (FD) is an X-linked lysosomal storage disorder caused by the deficiency of alpha-galactosidase A. In addition to the debilitating physical symptoms of FD, there are also under-recognized and poorly characterized psychiatric features. As a first step toward characterizing psychiatric features of FD, we administered the Achenbach adult self report questionnaire to 30 FD patients and the Achenbach adult behavior checklist questionnaire to 28 partners/parents/friends of FD patients. Data from at least one of the questionnaires were available on 33 subjects. Analysis focused on social-adaptive functioning in various aspects of daily life and on criteria related to the Diagnostic and statistical manual of mental disorders IV (DSM-IV). Adaptive functioning scale values, which primarily measure social and relationship functioning and occupational success, showed that eight FD patients (six female and two male) had mean adaptive functioning deficits as compared to population norms. Greater rates of depression (P personality (P Individuals affected by Fabry disease exhibited social-adaptive functioning deficits that were significantly correlated with anxiety, depression, antisocial behavior, and AD/H problems in a sampling of our male and female patients aged between 18 years and 59 years.

  15. Cure Kinetics of Epoxy Nanocomposites Affected by MWCNTs Functionalization: A Review

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Saeb

    2013-01-01

    Full Text Available The current paper provides an overview to emphasize the role of functionalization of multiwalled carbon nanotubes (MWCNTs in manipulating cure kinetics of epoxy nanocomposites, which itself determines ultimate properties of the resulting compound. In this regard, the most commonly used functionalization schemes, that is, carboxylation and amidation, are thoroughly surveyed to highlight the role of functionalized nanotubes in controlling the rate of autocatalytic and vitrification kinetics. The current literature elucidates that the mechanism of curing in epoxy/MWCNTs nanocomposites remains almost unaffected by the functionalization of carbon nanotubes. On the other hand, early stage facilitation of autocatalytic reactions in the presence of MWCNTs bearing amine groups has been addressed by several researchers. When carboxylated nanotubes were used to modify MWCNTs, the rate of such reactions diminished as a consequence of heterogeneous dispersion within the epoxy matrix. At later stages of curing, however, the prolonged vitrification was seen to be dominant. Thus, the type of functional groups covalently located on the surface of MWCNTs directly affects the degree of polymer-nanotube interaction followed by enhancement of curing reaction. Our survey demonstrated that most widespread efforts ever made to represent multifarious surface-treated MWCNTs have not been directed towards preparation of epoxy nanocomposites, but they could result in property synergism.

  16. Not committing barbarisms: Sherrington and the synapse, 1897.

    Science.gov (United States)

    Tansey, E M

    1997-01-01

    The word synapse first appeared in 1897, in the seventh edition of Michael Foster's Textbook of Physiology. Foster was assisted in writing the volume on the nervous system by Charles Sherrington, who can be credited with developing and advocating the physiological concept of a synapse. The word itself however, was derived by a Cambridge classicist, Arthur Verrall.

  17. Aging. Aging-induced type I interferon response at the choroid plexus negatively affects brain function.

    Science.gov (United States)

    Baruch, Kuti; Deczkowska, Aleksandra; David, Eyal; Castellano, Joseph M; Miller, Omer; Kertser, Alexander; Berkutzki, Tamara; Barnett-Itzhaki, Zohar; Bezalel, Dana; Wyss-Coray, Tony; Amit, Ido; Schwartz, Michal

    2014-10-03

    Aging-associated cognitive decline is affected by factors produced inside and outside the brain. By using multiorgan genome-wide analysis of aged mice, we found that the choroid plexus, an interface between the brain and the circulation, shows a type I interferon (IFN-I)-dependent gene expression profile that was also found in aged human brains. In aged mice, this response was induced by brain-derived signals, present in the cerebrospinal fluid. Blocking IFN-I signaling within the aged brain partially restored cognitive function and hippocampal neurogenesis and reestablished IFN-II-dependent choroid plexus activity, which is lost in aging. Our data identify a chronic aging-induced IFN-I signature, often associated with antiviral response, at the brain's choroid plexus and demonstrate its negative influence on brain function, thereby suggesting a target for ameliorating cognitive decline in aging.

  18. Developing fragility functions for the areas affected by the 2009 Samoa earthquake and tsunami

    Directory of Open Access Journals (Sweden)

    H. Gokon

    2014-01-01

    Full Text Available Fragility functions in terms of flow depth, flow velocity and hydrodynamic force are developed to evaluate structural vulnerability in the areas affected by the 2009 Samoa earthquake and tsunami. First, numerical simulations of tsunami propagation and inundation are conducted to reproduce the features of tsunami inundation. To validate the results, flow depths measured in field surveys and waveforms measured by Deep-ocean Assessment and Reporting of Tsunamis (DART gauges are utilized. Next, building damage is investigated by manually detecting changes between pre- and post-tsunami high-resolution satellite images. Finally, the data related to tsunami features and building damage are integrated using GIS, and tsunami fragility functions are developed based on the statistical analyses.

  19. Structural plasticity upon learning: regulation and functions.

    Science.gov (United States)

    Caroni, Pico; Donato, Flavio; Muller, Dominique

    2012-07-01

    Recent studies have provided long-sought evidence that behavioural learning involves specific synapse gain and elimination processes, which lead to memory traces that influence behaviour. The connectivity rearrangements are preceded by enhanced synapse turnover, which can be modulated through changes in inhibitory connectivity. Behaviourally related synapse rearrangement events tend to co-occur spatially within short stretches of dendrites, and involve signalling pathways partially overlapping with those controlling the functional plasticity of synapses. The new findings suggest that a mechanistic understanding of learning and memory processes will require monitoring ensembles of synapses in situ and the development of synaptic network models that combine changes in synaptic function and connectivity.

  20. Facilitation at single synapses probed with optical quantal analysis.

    Science.gov (United States)

    Oertner, Thomas G; Sabatini, Bernardo L; Nimchinsky, Esther A; Svoboda, Karel

    2002-07-01

    Many synapses can change their strength rapidly in a use-dependent manner, but the mechanisms of such short-term plasticity remain unknown. To understand these mechanisms, measurements of neurotransmitter release at single synapses are required. We probed transmitter release by imaging transient increases in [Ca(2+)] mediated by synaptic N-methyl-D-aspartate receptors (NMDARs) in individual dendritic spines of CA1 pyramidal neurons in rat brain slices, enabling quantal analysis at single synapses. We found that changes in release probability, produced by paired-pulse facilitation (PPF) or by manipulation of presynaptic adenosine receptors, were associated with changes in glutamate concentration in the synaptic cleft, indicating that single synapses can release a variable amount of glutamate per action potential. The relationship between release probability and response size is consistent with a binomial model of vesicle release with several (>5) independent release sites per active zone, suggesting that multivesicular release contributes to facilitation at these synapses.

  1. The secretory synapse: the secrets of a serial killer.

    Science.gov (United States)

    Bossi, Giovanna; Trambas, Christina; Booth, Sarah; Clark, Richard; Stinchcombe, Jane; Griffiths, Gillian M

    2002-11-01

    Cytotoxic T lymphocytes (CTLs) destroy their targets by a process involving secretion of specialized granules. The interactions between CTLs and target can be very brief; nevertheless, adhesion and signaling proteins segregate into an immunological synapse. Secretion occurs in a specialized secretory domain. Use of live and fixed cell microscopy allows this secretory synapse to be visualized both temporally and spatially. The combined use of confocal and electron microscopy has produced some surprising findings, which suggest that the secretory synapse may be important both in delivering the lethal hit and in facilitating membrane transfer from target to CTL. Studies on the secretory synapse in wild-type and mutant CTLs have been used to identify proteins involved in secretion. Further clues as to the signals required for secretion are emerging from comparisons of inhibitory and activating synapses formed by natural killer cells.

  2. The Drosophila larval neuromuscular junction as a model for scaffold complexes at glutamatergic synapses: benefits and limitations.

    Science.gov (United States)

    Thomas, Ulrich; Kobler, Oliver; Gundelfinger, Eckart D

    2010-09-01

    Based on unbeatable genetic accessibility and relative simplicity, the Drosophila larval neuromuscular junction has become a widely used model system for studying functional and structural aspects of excitatory glutamatergic synapses. Membrane-associated guanylate kinase-like proteins (MAGUKs) are first-order scaffolding molecules enriched at many cellular junctions, including synapses, where they coordinate multiple binding partners, including cell adhesion molecules and ion channels. The enrichment of the prototypic MAGUK Discs-Large at larval NMJs apparently parallels the high abundance of its homologs at excitatory synapses in the mammalian central nervous system. Here, the authors review selected aspects of the long-standing work on Dlg at fly neuromuscular junctions, thereby scrutinizing its subcellular localization, function, and regulation with regard to corresponding aspects of MAGUKs in vertebrate neurons.

  3. Thyroid, brain and mood modulation in affective disorder: insights from molecular research and functional brain imaging.

    Science.gov (United States)

    Bauer, M; London, E D; Silverman, D H; Rasgon, N; Kirchheiner, J; Whybrow, P C

    2003-11-01

    The efficacy resulting from adjunctive use of supraphysiological doses of levothyroxine has emerged as a promising approach to therapy and prophylaxis for refractory mood disorders. Most patients with mood disorders who receive treatment with supraphysiological doses of levothyroxine have normal peripheral thyroid hormone levels, and also respond differently to the hormone and tolerate it better than healthy individuals and patients with primary thyroid diseases. Progress in molecular and functional brain imaging techniques has provided a new understanding of these phenomena, illuminating the relationship between thyroid function, mood modulation and behavior. Thyroid hormones are widely distributed in the brain and have a multitude of effects on the central nervous system. Notably many of the limbic system structures where thyroid hormone receptors are prevalent have been implicated in the pathogenesis of mood disorders. The influence of the thyroid system on neurotransmitters (particularly serotonin and norepinephrine), which putatively play a major role in the regulation of mood and behavior, may contribute to the mechanisms of mood modulation. Recent functional brain imaging studies using positron emission tomography (PET) with [ (18)F]-fluorodeoxyglucose demonstrated that thyroid hormone treatment with levothyroxine affects regional brain metabolism in patients with hypothyroidism and bipolar disorder. Theses studies confirm that thyroid hormones are active in modulating metabolic function in the mature adult brain, and provide intriging neuroanatomic clues that may guide future research.

  4. No adverse affect after harvesting of free fibula osteoseptocutaneous flaps on gait function.

    Science.gov (United States)

    Maurer-Ertl, Werner; Glehr, Mathias; Friesenbichler, Joerg; Sadoghi, Patrick; Wiedner, Maria; Haas, Franz; Leithner, Andreas; Windhager, Reinhard; Zwick, Ernst B

    2012-07-01

    The aim of this study was to analyze gait function and muscular strength on donor site after harvesting of a vascularized fibula osteoseptocutaneous flap. Nine patients with a mean follow-up of 33 months (range, 7-59) and a mean resection length of the middle portion of the fibula of 18.0 cm (range, 14.0-23.0) underwent an instrumented three-dimensional gait analysis to evaluate gait function. Furthermore, CYBEX II extremity system was used for muscular strength measurements. Subjective muscle strength measurements were performed according to Kendall et al. and were classified according to the British Medical Research Council. Intraindividual comparison between the operated and the nonoperated leg revealed no significant differences for gait function parameters (cadence, velocity, and stride length, P > 1.00) and for muscular strength measurements for flexion (knee: P = 0.93, ankle: P = 0.54) and extension (knee: P = 0.97, ankle: P= 0.21), respectively. In conclusion, intraindividual comparison of the operated and nonoperated sides after harvesting of the middle portion of the fibula for gaining a free fibula osteoseptocutaneous flap has no adverse affect on gait function or muscular flexion and extension strength on donor site at a mean follow-up of 33 months.

  5. Arabidopsis AtADF1 is Functionally Affected by Mutations on Actin Binding Sites

    Institute of Scientific and Technical Information of China (English)

    Chun-Hai Dong; Wei-Ping Tang; Jia-Yao Liu

    2013-01-01

    The plant actin depolymerizing factor (ADF) binds to both monomeric and filamentous actin,and is directly involved in the depolymerization of actin filaments.To better understand the actin binding sites of the Arabidopsis thaliana L.AtADF1,we generated mutants of AtADF1 and investigated their functions in vitro and in vivo.Analysis of mutants harboring amino acid substitutions revealed that charged residues (Arg98 and Lys100) located at the α-helix 3 and forming an actin binding site together with the N-terminus are essential for both G-and F-actin binding.The basic residues on the β-strand 5 (K82/A) and the α-helix 4 (R135/A,R137/A) form another actin binding site that is important for F-actin binding.Using transient expression of CFP-tagged AtADF1 mutant proteins in onion (Allium cepa) peel epidermal cells and transgenic Arabidopsis thaliana L.plants overexpressing these mutants,we analyzed how these mutant proteins regulate actin organization and affect seedling growth.Our results show that the ADF mutants with a lower affinity for actin filament binding can still be functional,unless the affinity foractin monomers is also affected.The G-actin binding activity of the ADF plays an essential role in actin binding,depolymerization of actin polymers,and therefore in the control of actin organization.

  6. Attachment style predicts affect, cognitive appraisals, and social functioning in daily life.

    Science.gov (United States)

    Sheinbaum, Tamara; Kwapil, Thomas R; Ballespí, Sergi; Mitjavila, Mercè; Chun, Charlotte A; Silvia, Paul J; Barrantes-Vidal, Neus

    2015-01-01

    The way in which attachment styles are expressed in the moment as individuals navigate their real-life settings has remained an area largely untapped by attachment research. The present study examined how adult attachment styles are expressed in daily life using experience sampling methodology (ESM) in a sample of 206 Spanish young adults. Participants were administered the Attachment Style Interview (ASI) and received personal digital assistants that signaled them randomly eight times per day for 1 week to complete questionnaires about their current experiences and social context. As hypothesized, participants' momentary affective states, cognitive appraisals, and social functioning varied in meaningful ways as a function of their attachment style. Individuals with an anxious attachment, as compared with securely attached individuals, endorsed experiences that were congruent with hyperactivating tendencies, such as higher negative affect, stress, and perceived social rejection. By contrast, individuals with an avoidant attachment, relative to individuals with a secure attachment, endorsed experiences that were consistent with deactivating tendencies, such as decreased positive states and a decreased desire to be with others when alone. Furthermore, the expression of attachment styles in social contexts was shown to be dependent upon the subjective appraisal of the closeness of social contacts, and not merely upon the presence of social interactions. The findings support the ecological validity of the ASI and the person-by-situation character of attachment theory. Moreover, they highlight the utility of ESM for investigating how the predictions derived from attachment theory play out in the natural flow of real life.

  7. Chemical and Conformational Diversity of Modified Nucleosides Affects tRNA Structure and Function

    Directory of Open Access Journals (Sweden)

    Ville Y. P. Väre

    2017-03-01

    Full Text Available RNAs are central to all gene expression through the control of protein synthesis. Four major nucleosides, adenosine, guanosine, cytidine and uridine, compose RNAs and provide sequence variation, but are limited in contributions to structural variation as well as distinct chemical properties. The ability of RNAs to play multiple roles in cellular metabolism is made possible by extensive variation in length, conformational dynamics, and the over 100 post-transcriptional modifications. There are several reviews of the biochemical pathways leading to RNA modification, but the physicochemical nature of modified nucleosides and how they facilitate RNA function is of keen interest, particularly with regard to the contributions of modified nucleosides. Transfer RNAs (tRNAs are the most extensively modified RNAs. The diversity of modifications provide versatility to the chemical and structural environments. The added chemistry, conformation and dynamics of modified nucleosides occurring at the termini of stems in tRNA’s cloverleaf secondary structure affect the global three-dimensional conformation, produce unique recognition determinants for macromolecules to recognize tRNAs, and affect the accurate and efficient decoding ability of tRNAs. This review will discuss the impact of specific chemical moieties on the structure, stability, electrochemical properties, and function of tRNAs.

  8. Synapse-centric mapping of cortical models to the SpiNNaker neuromorphic architecture

    Directory of Open Access Journals (Sweden)

    James Courtney Knight

    2016-09-01

    Full Text Available While the adult human brain has approximately 8.8x10^10 neurons, this number is dwarfed by its 1x10^15 synapses. From the point of view of neuromorphic engineering and neural simulation in general this makes the simulation of these synapses a particularly complex problem. SpiNNaker is a digital, neuromorphic architecture designed for simulating large-scale spiking neural networks at speeds close to biological real-time. Current solutions for simulating spiking neural networks on SpiNNaker are heavily inspired by work on distributed high-performance computing. However, while SpiNNaker shares many characteristics with such distributed systems, its component nodes have much more limited resources and, as the system lacks global synchronization, the computation performed on each node must complete within a fixed time step. We first analyze the performance of the current SpiNNaker neural simulation software and identify several problems that occur when it is used to simulate networks of the type often used to model the cortex which contain large numbers of sparsely connected synapses. We then present a new, more flexible approach for mapping the simulation of such networks to SpiNNaker which solves many of these problems. Finally we analyze the performance of our new approach using both benchmarks, designed to represent cortical connectivity, and larger, functional cortical models. In a benchmark network where neurons receive input from 8000 STDP synapses, our new approach allows more neurons to be simulated on each SpiNNaker core than has been previously possible. We also demonstrate that the largest plastic neural network previously simulated on neuromorphic hardware can be run in real time using our new approach: double the speed that was previously achieved. Additionally this network contains two types of plastic synapse which previously had to be trained separately but, using our new approach, can be trained simultaneously.

  9. Synapse-Centric Mapping of Cortical Models to the SpiNNaker Neuromorphic Architecture.

    Science.gov (United States)

    Knight, James C; Furber, Steve B

    2016-01-01

    While the adult human brain has approximately 8.8 × 10(10) neurons, this number is dwarfed by its 1 × 10(15) synapses. From the point of view of neuromorphic engineering and neural simulation in general this makes the simulation of these synapses a particularly complex problem. SpiNNaker is a digital, neuromorphic architecture designed for simulating large-scale spiking neural networks at speeds close to biological real-time. Current solutions for simulating spiking neural networks on SpiNNaker are heavily inspired by work on distributed high-performance computing. However, while SpiNNaker shares many characteristics with such distributed systems, its component nodes have much more limited resources and, as the system lacks global synchronization, the computation performed on each node must complete within a fixed time step. We first analyze the performance of the current SpiNNaker neural simulation software and identify several problems that occur when it is used to simulate networks of the type often used to model the cortex which contain large numbers of sparsely connected synapses. We then present a new, more flexible approach for mapping the simulation of such networks to SpiNNaker which solves many of these problems. Finally we analyze the performance of our new approach using both benchmarks, designed to represent cortical connectivity, and larger, functional cortical models. In a benchmark network where neurons receive input from 8000 STDP synapses, our new approach allows 4× more neurons to be simulated on each SpiNNaker core than has been previously possible. We also demonstrate that the largest plastic neural network previously simulated on neuromorphic hardware can be run in real time using our new approach: double the speed that was previously achieved. Additionally this network contains two types of plastic synapse which previously had to be trained separately but, using our new approach, can be trained simultaneously.

  10. STN1 OB Fold Mutation Alters DNA Binding and Affects Selective Aspects of CST Function

    Science.gov (United States)

    Bhattacharjee, Anukana; Stewart, Jason; Chaiken, Mary; Price, Carolyn M.

    2016-01-01

    Mammalian CST (CTC1-STN1-TEN1) participates in multiple aspects of telomere replication and genome-wide recovery from replication stress. CST resembles Replication Protein A (RPA) in that it binds ssDNA and STN1 and TEN1 are structurally similar to RPA2 and RPA3. Conservation between CTC1 and RPA1 is less apparent. Currently the mechanism underlying CST action is largely unknown. Here we address CST mechanism by using a DNA-binding mutant, (STN1 OB-fold mutant, STN1-OBM) to examine the relationship between DNA binding and CST function. In vivo, STN1-OBM affects resolution of endogenous replication stress and telomere duplex replication but telomeric C-strand fill-in and new origin firing after exogenous replication stress are unaffected. These selective effects indicate mechanistic differences in CST action during resolution of different replication problems. In vitro binding studies show that STN1 directly engages both short and long ssDNA oligonucleotides, however STN1-OBM preferentially destabilizes binding to short substrates. The finding that STN1-OBM affects binding to only certain substrates starts to explain the in vivo separation of function observed in STN1-OBM expressing cells. CST is expected to engage DNA substrates of varied length and structure as it acts to resolve different replication problems. Since STN1-OBM will alter CST binding to only some of these substrates, the mutant should affect resolution of only a subset of replication problems, as was observed in the STN1-OBM cells. The in vitro studies also provide insight into CST binding mechanism. Like RPA, CST likely contacts DNA via multiple OB folds. However, the importance of STN1 for binding short substrates indicates differences in the architecture of CST and RPA DNA-protein complexes. Based on our results, we propose a dynamic DNA binding model that provides a general mechanism for CST action at diverse forms of replication stress. PMID:27690379

  11. Relationship of mercury to cognitive, affective and perceptual motor functioning in a normal sample in Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    Sine, L.F.

    1983-01-01

    Although the effects of toxic levels of mercury have been well documented, the effects of subclinical levels of mercury on normal populations have generally not been studied. The purpose of this investigation was to assess the impact of mercury risk factors on cognition, affect, psychopathology, and known mercury-related symptoms in a normal sample in Hawaii exposed to subclinical although elevated levels of elemental mercury through inhalation associated with volcanic activity and of methylmercury mostly through ingestion of large ocean species fish. The following summarizes the findings and conclusions of the study: 1) a four week test-retest reliability using 41 of the subjects showed that the 41 measures used in the study exhibited an average correlation of .78. Using all 413 subjects, the average internal consistency measured by Cronbach's ..cap alpha.. was .82 for the 17 affect, psychopathology, and symptom measures; 2) nine mercury source variables were used to predict the amount of total mercury in hair. Interestingly, none of the source variables predicted hair total mercury; 3) the source variables in addition to hair total mercury and statistical control variables were used to predict the twenty-two functioning variables in the four domains cited above with a relative absence of relationships noted. This finding indicates that the normal population in Hawaii appears not to be at risk; and 4) one historical mercury source variable, reported fish intake when young, related to six functioning variables - the psychopathology measures of Somatization, Obsessive-Compulsive and Anxiety as well as the Sensory, Affect and Mental symptoms - with Beta weights in the .15 to .20 range. The implications of the findings were discussed and suggestions offered for future research especially with respect to specific high risk subgroups.

  12. Sydnone SYD-1 affects the metabolic functions of isolated rat hepatocytes.

    Science.gov (United States)

    Brandt, Anna Paula; Pires, Amanda do Rocio Andrade; Rocha, Maria Eliane Merlin; Noleto, Guilhermina Rodrigues; Acco, Alexandra; de Souza, Carlos Eduardo Alves; Echevarria, Aurea; Canuto, André Vinícius dos Santos; Cadena, Sílvia Maria Suter Correia

    2014-07-25

    Previously, we demonstrated that sydnone SYD-1 (3-[4-chloro-3-nitrophenyl]-1,2,3-oxadiazolium-5-olate) impairs the mitochondrial functions linked to energy provision and suggested that this effect could be associated with its antitumor activity. Herein, we evaluated the effects of SYD-1 (25 and 50 μM) on rat hepatocytes to determine its cytotoxicity on non-tumor cells. SYD-1 (25 and 50 μM) did not affect the viability of hepatocytes in suspension after 1-40 min of incubation. However, the viability of the cultured hepatocytes was decreased by ∼66% as a consequence of treatment with SYD-1 (50 μM) for 18 h. Under the same conditions, SYD-1 promoted an increase in the release of LDH by ∼19%. The morphological changes in the cultured cells treated with SYD-1 (50 μM) were suggestive of cell distress, which was demonstrated by the presence of rounded hepatocytes, cell fragments and monolayer impairment. Furthermore, fluorescence microscopy showed an increase in the annexin label after treatment with SYD-1 (50 μM), suggesting that apoptosis had been induced in these cells. SYD-1 did not affect the states of respiration in the suspended hepatocytes, but the pyruvate levels were decreased by ∼36%, whereas the lactate levels were increased by ∼22% (for the 50 μM treatment). The basal and uncoupled states of respiration of the cultured hepatocytes were inhibited by ∼79% and ∼51%, respectively, by SYD-1 (50 μM). In these cells, SYD-1 (50 μM) increased the pyruvate and lactate levels by ∼84% and ∼16%, respectively. These results show that SYD-1 affects important metabolic functions related to energy provision in hepatocytes and that this effect was more pronounced on cells in culture than those in suspension.

  13. Breakfast staple types affect brain gray matter volume and cognitive function in healthy children.

    Science.gov (United States)

    Taki, Yasuyuki; Hashizume, Hiroshi; Sassa, Yuko; Takeuchi, Hikaru; Asano, Michiko; Asano, Kohei; Kawashima, Ryuta

    2010-12-08

    Childhood diet is important for brain development. Furthermore, the quality of breakfast is thought to affect the cognitive functioning of well-nourished children. To analyze the relationship among breakfast staple type, gray matter volume, and intelligence quotient (IQ) in 290 healthy children, we used magnetic resonance images and applied voxel-based morphometry. We divided subjects into rice, bread, and both groups according to their breakfast staple. We showed that the rice group had a significantly larger gray matter ratio (gray matter volume percentage divided by intracranial volume) and significantly larger regional gray matter volumes of several regions, including the left superior temporal gyrus. The bread group had significantly larger regional gray and white matter volumes of several regions, including the right frontoparietal region. The perceptual organization index (POI; IQ subcomponent) of the rice group was significantly higher than that of the bread group. All analyses were adjusted for age, gender, intracranial volume, socioeconomic status, average weekly frequency of having breakfast, and number of side dishes eaten for breakfast. Although several factors may have affected the results, one possible mechanism underlying the difference between the bread and the rice groups may be the difference in the glycemic index (GI) of these two substances; foods with a low GI are associated with less blood-glucose fluctuation than are those with a high GI. Our study suggests that breakfast staple type affects brain gray and white matter volumes and cognitive function in healthy children; therefore, a diet of optimal nutrition is important for brain maturation during childhood and adolescence.

  14. Breakfast staple types affect brain gray matter volume and cognitive function in healthy children.

    Directory of Open Access Journals (Sweden)

    Yasuyuki Taki

    Full Text Available Childhood diet is important for brain development. Furthermore, the quality of breakfast is thought to affect the cognitive functioning of well-nourished children. To analyze the relationship among breakfast staple type, gray matter volume, and intelligence quotient (IQ in 290 healthy children, we used magnetic resonance images and applied voxel-based morphometry. We divided subjects into rice, bread, and both groups according to their breakfast staple. We showed that the rice group had a significantly larger gray matter ratio (gray matter volume percentage divided by intracranial volume and significantly larger regional gray matter volumes of several regions, including the left superior temporal gyrus. The bread group had significantly larger regional gray and white matter volumes of several regions, including the right frontoparietal region. The perceptual organization index (POI; IQ subcomponent of the rice group was significantly higher than that of the bread group. All analyses were adjusted for age, gender, intracranial volume, socioeconomic status, average weekly frequency of having breakfast, and number of side dishes eaten for breakfast. Although several factors may have affected the results, one possible mechanism underlying the difference between the bread and the rice groups may be the difference in the glycemic index (GI of these two substances; foods with a low GI are associated with less blood-glucose fluctuation than are those with a high GI. Our study suggests that breakfast staple type affects brain gray and white matter volumes and cognitive function in healthy children; therefore, a diet of optimal nutrition is important for brain maturation during childhood and adolescence.

  15. Realistic changes in seaweed biodiversity affect multiple ecosystem functions on a rocky shore.

    Science.gov (United States)

    Bracken, Matthew E S; Williams, Susan L

    2013-09-01

    Given current threats to biodiversity, understanding the effects of diversity changes on the functions and services associated with intact ecosystems is of paramount importance. However, limited realism in most biodiversity studies makes it difficult to link the large and growing body of evidence for important functional consequences of biodiversity change to real-world losses of biodiversity. Here, we explored two methods of incorporating realism into biodiversity research: (1) the use of two-, five-, and eight-species assemblages that mimicked those that we observed in surveys of seaweed biodiversity patterns on a northern California (USA) rocky shore and the explicit comparison of those assemblages to random assemblages compiled from the same local species pool; and (2) the measurement of two fundamental ecosystem functions, nitrate uptake and photosynthesis, both of which contribute to growth of primary producers. Specifically, we measured nitrate uptake rates of seaweed assemblages as a function of initial nitrate concentrations and photosynthetic rates as a function of irradiance levels for both realistic and random assemblages of seaweeds. We only observed changes in ecosystem functioning along a richness gradient for realistic assemblages, and both maximum nitrate uptake rates (V(max)) and photosynthetic light use efficiency values (alpha(p) = P(max)/I(K)) were higher in realistic assemblages than in random assemblages. Furthermore, the parameter affected by changes in richness depended on the function being measured. Both V(max) and alpha(p) declined with increasing richness in nonrandom assemblages due to a combination of species identity effects (for V(max) and overyielding effects (for both V(max) and alpha(p)). In contrast, neither nitrate uptake efficiency values (alpha(N) = V(max)/K(s)), nor maximum photosynthetic rates (Pmax) changed along the gradient in seaweed species richness. Furthermore, overyielding was only evident in realistic assemblages

  16. Earthworm-Mycorrhiza Interactions Can Affect the Diversity, Structure and Functioning of Establishing Model Grassland Communities

    Science.gov (United States)

    Zaller, Johann G.; Heigl, Florian; Grabmaier, Andrea; Lichtenegger, Claudia; Piller, Katja; Allabashi, Roza; Frank, Thomas; Drapela, Thomas

    2011-01-01

    Both earthworms and arbuscular mycorrhizal fungi (AMF) are important ecosystem engineers co-occurring in temperate grasslands. However, their combined impacts during grassland establishment are poorly understood and have never been studied. We used large mesocosms to study the effects of different functional groups of earthworms (i.e., vertically burrowing anecics vs. horizontally burrowing endogeics) and a mix of four AMF taxa on the establishment, diversity and productivity of plant communities after a simulated seed rain of 18 grassland species comprising grasses, non-leguminous forbs and legumes. Moreover, effects of earthworms and/or AMF on water infiltration and leaching of ammonium, nitrate and phosphate were determined after a simulated extreme rainfall event (40 l m−2). AMF colonisation of all three plant functional groups was altered by earthworms. Seedling emergence and diversity was reduced by anecic earthworms, however only when AMF were present. Plant density was decreased in AMF-free mesocosms when both anecic and endogeic earthworms were active; with AMF also anecics reduced plant density. Plant shoot and root biomass was only affected by earthworms in AMF-free mesocosms: shoot biomass increased due to the activity of either anecics or endogeics; root biomass increased only when anecics were active. Water infiltration increased when earthworms were present in the mesocosms but remained unaffected by AMF. Ammonium leaching was increased only when anecics or a mixed earthworm community was active but was unaffected by AMF; nitrate and phosphate leaching was neither affected by earthworms nor AMF. Ammonium leaching decreased with increasing plant density, nitrate leaching decreased with increasing plant diversity and density. In order to understand the underlying processes of these interactions further investigations possibly under field conditions using more diverse belowground communities are required. Nevertheless, this study demonstrates that

  17. Earthworm-mycorrhiza interactions can affect the diversity, structure and functioning of establishing model grassland communities.

    Directory of Open Access Journals (Sweden)

    Johann G Zaller

    Full Text Available Both earthworms and arbuscular mycorrhizal fungi (AMF are important ecosystem engineers co-occurring in temperate grasslands. However, their combined impacts during grassland establishment are poorly understood and have never been studied. We used large mesocosms to study the effects of different functional groups of earthworms (i.e., vertically burrowing anecics vs. horizontally burrowing endogeics and a mix of four AMF taxa on the establishment, diversity and productivity of plant communities after a simulated seed rain of 18 grassland species comprising grasses, non-leguminous forbs and legumes. Moreover, effects of earthworms and/or AMF on water infiltration and leaching of ammonium, nitrate and phosphate were determined after a simulated extreme rainfall event (40 l m(-2. AMF colonisation of all three plant functional groups was altered by earthworms. Seedling emergence and diversity was reduced by anecic earthworms, however only when AMF were present. Plant density was decreased in AMF-free mesocosms when both anecic and endogeic earthworms were active; with AMF also anecics reduced plant density. Plant shoot and root biomass was only affected by earthworms in AMF-free mesocosms: shoot biomass increased due to the activity of either anecics or endogeics; root biomass increased only when anecics were active. Water infiltration increased when earthworms were present in the mesocosms but remained unaffected by AMF. Ammonium leaching was increased only when anecics or a mixed earthworm community was active but was unaffected by AMF; nitrate and phosphate leaching was neither affected by earthworms nor AMF. Ammonium leaching decreased with increasing plant density, nitrate leaching decreased with increasing plant diversity and density. In order to understand the underlying processes of these interactions further investigations possibly under field conditions using more diverse belowground communities are required. Nevertheless, this study

  18. Analysis of common and specific mechanisms of liver function affected by nitrotoluene compounds.

    Directory of Open Access Journals (Sweden)

    Youping Deng

    Full Text Available BACKGROUND: Nitrotoluenes are widely used chemical manufacturing and munitions applications. This group of chemicals has been shown to cause a range of effects from anemia and hypercholesterolemia to testicular atrophy. We have examined the molecular and functional effects of five different, but structurally related, nitrotoluenes on using an integrative systems biology approach to gain insight into common and disparate mechanisms underlying effects caused by these chemicals. METHODOLOGY/PRINCIPAL FINDINGS: Sprague-Dawley female rats were exposed via gavage to one of five concentrations of one of five nitrotoluenes [2,4,6-trinitrotoluene (TNT, 2-amino-4,6-dinitrotoluene (2ADNT 4-amino-2,6-dinitrotoulene (4ADNT, 2,4-dinitrotoluene (2,4DNT and 2,6-dinitrotoluene (2,6DNT] with necropsy and tissue collection at 24 or 48 h. Gene expression profile results correlated well with clinical data and liver histopathology that lead to the concept that hematotoxicity was followed by hepatotoxicity. Overall, 2,4DNT, 2,6DNT and TNT had stronger effects than 2ADNT and 4ADNT. Common functional terms, gene expression patterns, pathways and networks were regulated across all nitrotoluenes. These pathways included NRF2-mediated oxidative stress response, aryl hydrocarbon receptor signaling, LPS/IL-1 mediated inhibition of RXR function, xenobiotic metabolism signaling and metabolism of xenobiotics by cytochrome P450. One biological process common to all compounds, lipid metabolism, was found to be impacted both at the transcriptional and lipid production level. CONCLUSIONS/SIGNIFICANCE: A systems biology strategy was used to identify biochemical pathways affected by five nitroaromatic compounds and to integrate data that tie biochemical alterations to pathological changes. An integrative graphical network model was constructed by combining genomic, gene pathway, lipidomic, and physiological endpoint results to better understand mechanisms of liver toxicity and

  19. Mimicking Neurotransmitter Release in Chemical Synapses via Hysteresis Engineering in MoS2 Transistors.

    Science.gov (United States)

    Arnold, Andrew J; Razavieh, Ali; Nasr, Joseph R; Schulman, Daniel S; Eichfeld, Chad M; Das, Saptarshi

    2017-03-10

    Neurotransmitter release in chemical synapses is fundamental to diverse brain functions such as motor action, learning, cognition, emotion, perception, and consciousness. Moreover, improper functioning or abnormal release of neurotransmitter is associated with numerous neurological disorders such as epilepsy, sclerosis, schizophrenia, Alzheimer's disease, and Parkinson's disease. We have utilized hysteresis engineering in a back-gated MoS2 field effect transistor (FET) in order to mimic such neurotransmitter release dynamics in chemical synapses. All three essential features, i.e., quantal, stochastic, and excitatory or inhibitory nature of neurotransmitter release, were accurately captured in our experimental demonstration. We also mimicked an important phenomenon called long-term potentiation (LTP), which forms the basis of human memory. Finally, we demonstrated how to engineer the LTP time by operating the MoS2 FET in different regimes. Our findings could provide a critical component toward the design of next-generation smart and intelligent human-like machines and human-machine interfaces.

  20. Multiple facets of GABAergic neurons and synapses: multiple fates of GABA signalling in epilepsies.

    Science.gov (United States)

    Cossart, Rosa; Bernard, Christophe; Ben-Ari, Yehezkel

    2005-02-01

    Because blocking GABAergic neurotransmission in control tissue generates seizures and because GABA boosters control epilepsy in many patients, studies on epilepsies have been dominated by the axiom that seizures are generated by a failure of GABA-mediated inhibition. However, GABAergic interneurons and synapses are heterogeneous and have many roles that go beyond the straightforward concept of "inhibition of the target". Operation of such a diversified system cannot be ascribed to a single mechanism. In epileptic tissue, GABAergic networks undergo complex rewiring at the anatomical, physiological and functional levels; GABAergic synapses are still operative but show unique features, including excitatory effects. Therefore, inhibition is not a uniform notion and the concept of "failure" of inhibition in epilepsies must be reassessed. Seizures are not generated in a normal circuit in which GABA-mediated inhibition is simply impaired, but in a profoundly rewired network in which several properties of GABA function are altered. This review is part of the TINS Interneuron Diversity series.

  1. Analytical modelling of temperature effects on synapses

    CERN Document Server

    Kufel, Dominik S

    2016-01-01

    It was previously reported, that temperature may significantly influence neural dynamics on different levels of brain modelling. Due to this fact, while creating the model in computational neuroscience we would like to make it scalable for wide-range of various brain temperatures. However currently, because of a lack of experimental data and an absence of analytical model describing temperature influence on synapses, it is not possible to include temperature effects on multi-neuron modelling level. In this paper, we propose first step to deal with this problem: new analytical model of AMPA-type synaptic conductance, which is able to include temperature effects in low-frequency stimulations. It was constructed on basis of Markov model description of AMPA receptor kinetics and few simplifications motivated both experimentally and from Monte Carlo simulation of synaptic transmission. The model may be used for efficient and accurate implementation of temperature effects on AMPA receptor conductance in large scale...

  2. Organizing polarized delivery of exosomes at synapses.

    Science.gov (United States)

    Mittelbrunn, Maria; Vicente-Manzanares, Miguel; Sánchez-Madrid, Francisco

    2015-04-01

    Exosomes are extracellular vesicles that transport different molecules between cells. They are formed and stored inside multivesicular bodies (MVB) until they are released to the extracellular environment. MVB fuse along the plasma membrane, driving non-polarized secretion of exosomes. However, polarized signaling potentially directs MVBs to a specific point in the plasma membrane to mediate a focal delivery of exosomes. MVB polarization occurs across a broad set of cellular situations, e.g. in immune and neuronal synapses, cell migration and in epithelial sheets. In this review, we summarize the current state of the art of polarized MVB docking and the specification of secretory sites at the plasma membrane. The current view is that MVB positioning and subsequent exosome delivery requires a polarizing, cytoskeletal dependent-trafficking mechanism. In this context, we propose scenarios in which biochemical and mechanical signals could drive the polarized delivery of exosomes in highly polarized cells, such as lymphocytes, neurons and epithelia.

  3. Spine neck plasticity regulates compartmentalization of synapses.

    Science.gov (United States)

    Tønnesen, Jan; Katona, Gergely; Rózsa, Balázs; Nägerl, U Valentin

    2014-05-01

    Dendritic spines have been proposed to transform synaptic signals through chemical and electrical compartmentalization. However, the quantitative contribution of spine morphology to synapse compartmentalization and its dynamic regulation are still poorly understood. We used time-lapse super-resolution stimulated emission depletion (STED) imaging in combination with fluorescence recovery after photobleaching (FRAP) measurements, two-photon glutamate uncaging, electrophysiology and simulations to investigate the dynamic link between nanoscale anatomy and compartmentalization in live spines of CA1 neurons in mouse brain slices. We report a diversity of spine morphologies that argues against common categorization schemes and establish a close link between compartmentalization and spine morphology, wherein spine neck width is the most critical morphological parameter. We demonstrate that spine necks are plastic structures that become wider and shorter after long-term potentiation. These morphological changes are predicted to lead to a substantial drop in spine head excitatory postsynaptic potential (EPSP) while preserving overall biochemical compartmentalization.

  4. Plant species richness and functional traits affect community stability after a flood event.

    Science.gov (United States)

    Fischer, Felícia M; Wright, Alexandra J; Eisenhauer, Nico; Ebeling, Anne; Roscher, Christiane; Wagg, Cameron; Weigelt, Alexandra; Weisser, Wolfgang W; Pillar, Valério D

    2016-05-19

    Climate change is expected to increase the frequency and magnitude of extreme weather events. It is therefore of major importance to identify the community attributes that confer stability in ecological communities during such events. In June 2013, a flood event affected a plant diversity experiment in Central Europe (Jena, Germany). We assessed the effects of plant species richness, functional diversity, flooding intensity and community means of functional traits on different measures of stability (resistance, resilience and raw biomass changes from pre-flood conditions). Surprisingly, plant species richness reduced community resistance in response to the flood. This was mostly because more diverse communities grew more immediately following the flood. Raw biomass increased over the previous year; this resulted in decreased absolute value measures of resistance. There was no clear response pattern for resilience. We found that functional traits drove these changes in raw biomass: communities with a high proportion of late-season, short-statured plants with dense, shallow roots and small leaves grew more following the flood. Late-growing species probably avoided the flood, whereas greater root length density might have allowed species to better access soil resources brought from the flood, thus growing more in the aftermath. We conclude that resource inputs following mild floods may favour the importance of traits related to resource acquisition and be less associated with flooding tolerance.

  5. Aesthetic and Functional Rehabilitation of the Primary Dentition Affected by Amelogenesis Imperfecta

    Directory of Open Access Journals (Sweden)

    Maria Carolina Salomé Marquezin

    2015-01-01

    Full Text Available The objective of this case report was to describe the oral rehabilitation of a five-year-old boy patient diagnosed with amelogenesis imperfecta (AI in the primary dentition. AI is a group of hereditary disorders that affects the enamel structure. The patient was brought to the dental clinic complaining of tooth hypersensitivity during meals. The medical history and clinical examination were used to arrive at the diagnosis of AI. The treatment was oral rehabilitation of the primary molars with stainless steel crowns and resin-filled celluloid forms. The main objectives of the selected treatment were to enhance the esthetics, restore masticatory function, and eliminate the teeth sensitivity. The child was monitored in the pediatric dentistry clinic at four-month intervals until the mixed dentition stage. Treatment not only restored function and esthetic, but also showed a positive psychological impact and thereby improved perceived quality of life. The preventive, psychological, and curative measures of a young child with AI were successful. This result can encourage the clinicians to seek a cost-effective technique such as stainless steel crowns, and resin-filled celluloid forms to reestablish the oral functions and improve the child’s psychosocial development.

  6. A matter of balance: role of neurexin and neuroligin at the synapse.

    Science.gov (United States)

    Bang, Marie Louise; Owczarek, Sylwia

    2013-06-01

    Neurexins and neuroligins are synaptic cell adhesion molecules. Neurexins are primary located on the presynaptic membrane, whereas neuroligins are strictly postsynaptic proteins. Since their discovery, the knowledge of neurexins and neuroligins has expanded, implicating them in various neuronal processes, including the differentiation, maturation, stabilization, and plasticity of both inhibitory and excitatory synapses. Here, we review the most recent results regarding the structure and function of these cell adhesion molecules.

  7. Biphasic Alteration of the Inhibitory Synapse Scaffold Protein Gephyrin in Early and Late Stages of an Alzheimer Disease Model.

    Science.gov (United States)

    Kiss, Eva; Gorgas, Karin; Schlicksupp, Andrea; Groß, Dagmar; Kins, Stefan; Kirsch, Joachim; Kuhse, Jochen

    2016-09-01

    The pathogenesis of Alzheimer disease (AD) is thought to begin many years before the diagnosis of dementia. Accumulating evidence indicates the involvement of GABAergic neurotransmission in the physiopathology of AD. However, in comparison to excitatory synapses, the structural and functional alterations of inhibitory synapses in AD are less well characterized. We studied the expression and distribution of proteins specific for inhibitory synapses in hippocampal areas of APPPS1 mice at different ages. Interestingly, by immunoblotting and confocal fluorescence microscopy, we disclosed a robust increase in the expression of gephyrin, an organizer of ligand-gated ion channels at inhibitory synapses in hippocampus CA1 and dentate gyrus of young presymptomatic APPPS1 mice (1 to 3 months) as compared to controls. The postsynaptic γ2-GABA(A)-receptor subunit and the presynaptic vesicular inhibitory amino acid transporter protein showed similar expression patterns. In contrast, adult transgenic animals (12 months) displayed decreased levels of these proteins in comparison to wild type in hippocampus areas devoid of amyloid plaques. Within most plaques, strong gephyrin immunoreactivity was detected, partially colocalizing with vesicular amino acid transporter and GABA(A)-receptor γ2 subunit immunoreactivities. Our results indicate a biphasic alteration in expression of hippocampal inhibitory synapse components in AD. Altered inhibition of neurotransmission might be an early prognostic marker and might even be involved in the pathogenesis of AD.

  8. Cognitive and cognitive-motor interventions affecting physical functioning: A systematic review

    Directory of Open Access Journals (Sweden)

    Murer Kurt

    2011-06-01

    Full Text Available Abstract Background Several types of cognitive or combined cognitive-motor intervention types that might influence physical functions have been proposed in the past: training of dual-tasking abilities, and improving cognitive function through behavioral interventions or the use of computer games. The objective of this systematic review was to examine the literature regarding the use of cognitive and cognitive-motor interventions to improve physical functioning in older adults or people with neurological impairments that are similar to cognitive impairments seen in aging. The aim was to identify potentially promising methods that might be used in future intervention type studies for older adults. Methods A systematic search was conducted for the Medline/Premedline, PsycINFO, CINAHL and EMBASE databases. The search was focused on older adults over the age of 65. To increase the number of articles for review, we also included those discussing adult patients with neurological impairments due to trauma, as these cognitive impairments are similar to those seen in the aging population. The search was restricted to English, German and French language literature without any limitation of publication date or restriction by study design. Cognitive or cognitive-motor interventions were defined as dual-tasking, virtual reality exercise, cognitive exercise, or a combination of these. Results 28 articles met our inclusion criteria. Three articles used an isolated cognitive rehabilitation intervention, seven articles used a dual-task intervention and 19 applied a computerized intervention. There is evidence to suggest that cognitive or motor-cognitive methods positively affects physical functioning, such as postural control, walking abilities and general functions of the upper and lower extremities, respectively. The majority of the included studies resulted in improvements of the assessed functional outcome measures. Conclusions The current evidence on the

  9. Metacognitive Awareness of Facial Affect in Higher-Functioning Children and Adolescents with Autism Spectrum Disorder.

    Science.gov (United States)

    McMahon, Camilla M; Henderson, Heather A; Newell, Lisa; Jaime, Mark; Mundy, Peter

    2016-03-01

    Higher-functioning participants with and without autism spectrum disorder (ASD) viewed a series of face stimuli, made decisions regarding the affect of each face, and indicated their confidence in each decision. Confidence significantly predicted accuracy across all participants, but this relation was stronger for participants with typical development than participants with ASD. In the hierarchical linear modeling analysis, there were no differences in face processing accuracy between participants with and without ASD, but participants with ASD were more confident in their decisions. These results suggest that individuals with ASD have metacognitive impairments and are overconfident in face processing. Additionally, greater metacognitive awareness was predictive of better face processing accuracy, suggesting that metacognition may be a pivotal skill to teach in interventions.

  10. Hypoxia transiently affects skeletal muscle hypertrophy in a functional overload model.

    Science.gov (United States)

    Chaillou, Thomas; Koulmann, Nathalie; Simler, Nadine; Meunier, Adélie; Serrurier, Bernard; Chapot, Rachel; Peinnequin, Andre; Beaudry, Michèle; Bigard, Xavier

    2012-03-01

    Hypoxia induces a loss of skeletal muscle mass, but the signaling pathways and molecular mechanisms involved remain poorly understood. We hypothesized that hypoxia could impair skeletal muscle hypertrophy induced by functional overload (Ov). To test this hypothesis, plantaris muscles were overloaded during 5, 12, and 56 days in female rats exposed to hypobaric hypoxia (5,500 m), and then, we examined the responses of specific signaling pathways involved in protein synthesis (Akt/mTOR) and breakdown (atrogenes). Hypoxia minimized the Ov-induced hypertrophy at days 5 and 12 but did not affect the hypertrophic response measured at day 56. Hypoxia early reduced the phosphorylation levels of mTOR and its downstream targets P70(S6K) and rpS6, but it did not affect the phosphorylation levels of Akt and 4E-BP1, in Ov muscles. The role played by specific inhibitors of mTOR, such as AMPK and hypoxia-induced factors (i.e., REDD1 and BNIP-3) was studied. REDD1 protein levels were reduced by overload and were not affected by hypoxia in Ov muscles, whereas AMPK was not activated by hypoxia. Although hypoxia significantly increased BNIP-3 mRNA levels at day 5, protein levels remained unaffected. The mRNA levels of the two atrogenes MURF1 and MAFbx were early increased by hypoxia in Ov muscles. In conclusion, hypoxia induced a transient alteration of muscle growth in this hypertrophic model, at least partly due to a specific impairment of the mTOR/P70(S6K) pathway, independently of Akt, by an undefined mechanism, and increased transcript levels for MURF1 and MAFbx that could contribute to stimulate the proteasomal proteolysis.

  11. Identification and Functional Characterization of GAA Mutations in Colombian Patients Affected by Pompe Disease.

    Science.gov (United States)

    Niño, Mónica Yasmín; Mateus, Heidi Eliana; Fonseca, Dora Janeth; Kroos, Marian A; Ospina, Sandra Yaneth; Mejía, Juan Fernando; Uribe, Jesús Alfredo; Reuser, Arnold J J; Laissue, Paul

    2013-01-01

    Pompe disease (PD) is a recessive metabolic disorder characterized by acid α-glucosidase (GAA) deficiency, which results in lysosomal accumulation of glycogen in all tissues, especially in skeletal muscles. PD clinical course is mainly determined by the nature of the GAA mutations. Although ~400 distinct GAA sequence variations have been described, the genotype-phenotype correlation is not always evident.In this study, we describe the first clinical and genetic analysis of Colombian PD patients performed in 11 affected individuals. GAA open reading frame sequencing revealed eight distinct mutations related to PD etiology including two novel missense mutations, c.1106 T > C (p.Leu369Pro) and c.2236 T > C (p.Trp746Arg). In vitro functional studies showed that the structural changes conferred by both mutations did not inhibit the synthesis of the 110 kD GAA precursor form but affected the processing and intracellular transport of GAA. In addition, analysis of previously described variants located at this position (p.Trp746Gly, p.Trp746Cys, p.Trp746Ser, p.Trp746X) revealed new insights in the molecular basis of PD. Notably, we found that p.Trp746Cys mutation, which was previously described as a polymorphism as well as a causal mutation, displayed a mild deleterious effect. Interestingly and by chance, our study argues in favor of a remarkable Afro-American and European ancestry of the Colombian population. Taken together, our report provides valuable information on the PD genotype-phenotype correlation, which is expected to facilitate and improve genetic counseling of affected individuals and their families.

  12. How measurement artifacts affect cerebral autoregulation outcomes: A technical note on transfer function analysis.

    Science.gov (United States)

    Meel-van den Abeelen, Aisha S S; de Jong, Daan L K; Lagro, Joep; Panerai, Ronney B; Claassen, Jurgen A H R

    2016-05-01

    Cerebral autoregulation (CA) is the mechanism that aims to maintain adequate cerebral perfusion during changes in blood pressure (BP). Transfer function analysis (TFA), the most reported method in literature to quantify CA, shows large between-study variability in outcomes. The aim of this study is to investigate the role of measurement artifacts in this variation. Specifically, the role of distortion in the BP and/or CBFV measurementon TFA outcomes was investigated. The influence of three types of artifacts on TFA outcomes was studied: loss of signal, motion artifacts, and baseline drifts. TFA metrics of signals without the simulated artifacts were compared with those of signals with artifacts. TFA outcomes scattered highly when more than 10% of BP signal or over 8% of the CBFV signal was lost, or when measurements contained one or more artifacts resulting from head movement. Furthermore, baseline drift affected interpretation of TFA outcomes when the power in the BP signal was 5 times the power in the LF band. In conclusion, loss of signal in BP and loss in CBFV, affects interpretation of TFA outcomes. Therefore, it is vital to validate signal quality to the defined standards before interpreting TFA outcomes.

  13. Macrofauna assemblage composition and soil moisture interact to affect soil ecosystem functions

    Science.gov (United States)

    Collison, E. J.; Riutta, T.; Slade, E. M.

    2013-02-01

    Changing climatic conditions and habitat fragmentation are predicted to alter the soil moisture conditions of temperate forests. It is not well understood how the soil macrofauna community will respond to changes in soil moisture, and how changes to species diversity and community composition may affect ecosystem functions, such as litter decomposition and soil fluxes. Moreover, few studies have considered the interactions between the abiotic and biotic factors that regulate soil processes. Here we attempt to disentangle the interactive effects of two of the main factors that regulate soil processes at small scales - moisture and macrofauna assemblage composition. The response of assemblages of three common temperate soil invertebrates (Glomeris marginata Villers, Porcellio scaber Latreille and Philoscia muscorum Scopoli) to two contrasting soil moisture levels was examined in a series of laboratory mesocosm experiments. The contribution of the invertebrates to the leaf litter mass loss of two common temperate tree species of contrasting litter quality (easily decomposing Fraxinus excelsior L. and recalcitrant Quercus robur L.) and to soil CO2 fluxes were measured. Both moisture conditions and litter type influenced the functioning of the invertebrate assemblages, which was greater in high moisture conditions compared with low moisture conditions and on good quality vs. recalcitrant litter. In high moisture conditions, all macrofauna assemblages functioned at equal rates, whereas in low moisture conditions there were pronounced differences in litter mass loss among the assemblages. This indicates that species identity and assemblage composition are more important when moisture is limited. We suggest that complementarity between macrofauna species may mitigate the reduced functioning of some species, highlighting the importance of maintaining macrofauna species richness.

  14. Attachment Style Predicts Affect, Cognitive Appraisals, and Social Functioning in Daily Life

    Directory of Open Access Journals (Sweden)

    Tamara eSheinbaum

    2015-03-01

    Full Text Available The way in which attachment styles are expressed in the moment as individuals navigate their real-life settings has remained an area largely untapped by attachment research. The present study examined how adult attachment styles are expressed in daily life using Experience Sampling Methodology (ESM in a sample of 206 Spanish young adults. Participants were administered the Attachment Style Interview and received personal digital assistants that signaled them randomly eight times per day for one week to complete questionnaires about their current experiences and social context. As hypothesized, participants’ momentary affective states, cognitive appraisals, and social functioning varied in meaningful ways as a function of their attachment style. Individuals with an anxious attachment, as compared with securely attached individuals, endorsed experiences that were congruent with hyperactivating tendencies, such as higher negative affect, stress, and perceived social rejection. By contrast, individuals with an avoidant attachment, relative to individuals with a secure attachment, endorsed experiences that were consistent with deactivating tendencies, such as decreased positive states and a decreased desire to be with others when alone. Furthermore, the expression of attachment styles in social contexts was shown to be dependent upon the subjective appraisal of the closeness of social contacts, and not merely upon the presence of social interactions. The findings support the ecological validity of the Attachment Style Interview and the person-by-situation character of attachment theory. Moreover, they highlight the utility of ESM for investigating how the predictions derived from attachment theory play out in the natural flow of real life.

  15. Behavioral Functions of the Mesolimbic Dopaminergic System: an Affective Neuroethological Perspective

    Science.gov (United States)

    Alcaro, Antonio; Huber, Robert; Panksepp, Jaak

    2008-01-01

    The mesolimbic dopaminergic (ML-DA) system has been recognized for its central role in motivated behaviors, various types of reward, and, more recently, in cognitive processes. Functional theories have emphasized DA's involvement in the orchestration of goal-directed behaviors, and in the promotion and reinforcement of learning. The affective neuroethological perspective presented here, views the ML-DA system in terms of its ability to activate an instinctual emotional appetitive state (SEEKING) evolved to induce organisms to search for all varieties of life-supporting stimuli and to avoid harms. A description of the anatomical framework in which the ML system is embedded is followed by the argument that the SEEKING disposition emerges through functional integration of ventral basal ganglia (BG) into thalamocortical activities. Filtering cortical and limbic input that spread into BG, DA transmission promotes the “release” of neural activity patterns that induce active SEEKING behaviors when expressed at the motor level. Reverberation of these patterns constitutes a neurodynamic process for the inclusion of cognitive and perceptual representations within the extended networks of the SEEKING urge. In this way, the SEEKING disposition influences attention, incentive salience, associative learning, and anticipatory predictions. In our view, the rewarding properties of drugs of abuse are, in part, caused by the activation of the SEEKING disposition, ranging from appetitive drive to persistent craving depending on the intensity of the affect. The implications of such a view for understanding addiction are considered, with particular emphasis on factors predisposing individuals to develop compulsive drug seeking behaviors. PMID:17905440

  16. Differential mechanisms of transmission and plasticity at mossy fiber synapses.

    Science.gov (United States)

    McBain, Chris J

    2008-01-01

    The last few decades have seen the hippocampal formation at front and center in the field of synaptic transmission. However, much of what we know about hippocampal short- and long-term plasticity has been obtained from research at one particular synapse; the Schaffer collateral input onto principal cells of the CA1 subfield. A number of recent studies, however, have demonstrated that there is much to be learned about target-specific mechanisms of synaptic transmission by study of the lesser known synapse made between the granule cells of the dentate gyrus; the so-called mossy fiber synapse, and its targets both within the hilar region and the CA3 hippocampus proper. Indeed investigation of this synapse has provided an embarrassment of riches concerning mechanisms of transmission associated with feedforward excitatory and inhibitory control of the CA3 hippocampus. Importantly, work from a number of labs has revealed that mossy fiber synapses possess unique properties at both the level of their anatomy and physiology, and serve as an outstanding example of a synapse designed for target-specific compartmentalization of synaptic transmission. The purpose of the present review is to highlight several aspects of this synapse as they pertain to a novel mechanism of bidirectional control of synaptic plasticity at mossy fiber synapses made onto hippocampal stratum lucidum interneurons. It is not my intention to pour over all that is known regarding the mossy fiber synapse since many have explored this topic exhaustively in the past and interested readers are directed to other fine reviews (Henze et al., 2000; Urban et al., 2001; Lawrence and McBain, 2003; Bischofberger et al., 2006; Nicoll and Schmitz, 2005).

  17. Astroglial cradle in the life of the synapse.

    Science.gov (United States)

    Verkhratsky, Alexei; Nedergaard, Maiken

    2014-10-19

    Astroglial perisynaptic sheath covers the majority of synapses in the central nervous system. This glial coverage evolved as a part of the synaptic structure in which elements directly responsible for neurotransmission (exocytotic machinery and appropriate receptors) concentrate in neuronal membranes, whereas multiple molecules imperative for homeostatic maintenance of the synapse (transporters for neurotransmitters, ions, amino acids, etc.) are shifted to glial membranes that have substantially larger surface area. The astrocytic perisynaptic processes act as an 'astroglial cradle' essential for synaptogenesis, maturation, isolation and maintenance of synapses, representing the fundamental mechanism contributing to synaptic connectivity, synaptic plasticity and information processing in the nervous system.

  18. Ginkgolides protect against amyloid-β1–42-mediated synapse damage in vitro

    Directory of Open Access Journals (Sweden)

    Williams Alun

    2008-01-01

    Full Text Available Abstract Background The early stages of Alzheimer's disease (AD are closely associated with the production of the Aβ1–42 peptide, loss of synapses and gradual cognitive decline. Since some epidemiological studies showed that EGb 761, an extract from the leaves of the Ginkgo biloba tree, had a beneficial effect on mild forms of AD, the effects of some of the major components of the EGb 761 extract (ginkgolides A and B, myricetin and quercetin on synapse damage in response to Aβ1–42 were examined. Results The addition of Aβ1–42 to cortical or hippocampal neurons reduced the amounts of cell associated synaptophysin, a pre-synaptic membrane protein that is essential for neurotransmission, indicating synapse damage. The effects of Aβ1–42 on synapses were apparent at concentrations approximately 100 fold less than that required to kill neurons; the synaptophysin content of neuronal cultures was reduced by 50% by 50 nM Aβ1–42. Pre-treatment of cortical or hippocampal neuronal cultures with ginkgolides A or B, but not with myrecitin or quercetin, protected against Aβ1–42-induced loss of synaptophysin. This protective effect was achieved with nanomolar concentrations of ginkgolides. Previous studies indicated that the ginkgolides are platelet-activating factor (PAF receptor antagonists and here we show that Aβ1–42-induced loss of synaptophysin from neuronal cultures was also reduced by pre-treatment with other PAF antagonists (Hexa-PAF and CV6209. PAF, but not lyso-PAF, mimicked the effects Aβ1–42 and caused a dose-dependent reduction in the synaptophysin content of neurons. This effect of PAF was greatly reduced by pre-treatment with ginkgolide B. In contrast, ginkgolide B did not affect the loss of synaptophysin in neurons incubated with prostaglandin E2. Conclusion Pre-treatment with ginkgolides A or B protects neurons against Aβ1–42-induced synapse damage. These ginkgolides also reduced the effects of PAF, but not those of

  19. Rate dynamics of leaky integrate-and-fire neurons with strong synapses

    Directory of Open Access Journals (Sweden)

    Eilen Nordlie

    2010-12-01

    Full Text Available Firing-rate models provide a practical tool for studying the dynamics of trial- or population-averaged neuronal signals. A wealth of theoretical and experimental studies has been dedicated to the derivation or extraction of such models by investigating the firing-rate response characteristics of ensembles of neurons. The majority of these studies assumes that neurons receive input spikes at a high rate through weak synapses (diffusion approximation. For many biological neural systems, however, this assumption cannot be justified. So far, it is unclear how time-varying presynaptic firing rates are transmitted by a population of neurons if the diffusion assumption is dropped. Here, we numerically investigate the stationary and non-stationary firing-rate response properties of leaky integrate-and-fire (LIF neurons receiving input spikes through excitatory synapses with alpha-function shaped postsynaptic currents for strong synaptic weights. Input spike trains are modelled by inhomogeneous Poisson point-processes with sinusoidal rate. Average rates, modulation amplitudes and phases of the period-averaged spike responses are measured for a broad range of stimulus, synapse and neuron parameters. Across wide parameter regions, the resulting transfer functions can be approximated by a linear 1st-order low-pass filter. Below a critical synaptic weight, the cutoff frequencies are approximately constant and determined by the synaptic time constants. Only for synapses with unrealistically strong weights are the cutoff frequencies significantly increased. To account for stimuli with larger modulation depths, we combine the measured linear transfer function with the nonlinear response characteristics obtained for stationary inputs. The resulting linear-nonlinear model accurately predicts the population response for a variety of non-sinusoidal stimuli.

  20. Activity-dependent repression of Cbln1 expression: mechanism for developmental and homeostatic regulation of synapses in the cerebellum.

    Science.gov (United States)

    Iijima, Takatoshi; Emi, Kyoichi; Yuzaki, Michisuke

    2009-04-29

    Cbln1, which belongs to the C1q/tumor necrosis factor superfamily, is released from cerebellar granule cells and plays a crucial role in forming and maintaining excitatory synapses between parallel fibers (PFs; axons of granule cells) and Purkinje cells not only during development but also in the adult cerebellum. Although neuronal activity is known to cause morphological changes at synapses, how Cbln1 signaling is affected by neuronal activity remains unclear. Here, we show that chronic stimulation of neuronal activity by elevating extracellular K(+) levels or by adding kainate decreased the expression of cbln1 mRNA within several hours in mature granule cells in a manner dependent on L-type voltage-dependent Ca(2+) channels and calcineurin. Chronic activity also reduced Cbln1 protein levels within a few days, during which time the number of excitatory synapses on Purkinje cell dendrites was reduced; this activity-induced reduction of synapses was prevented by the addition of exogenous Cbln1 to the culture medium. Therefore, the activity-dependent downregulation of cbln1 may serve as a new presynaptic mechanism by which PF-Purkinje cell synapses adapt to chronically elevated activity, thereby maintaining homeostasis. In addition, the expression of cbln1 mRNA was prevented when immature granule cells were maintained in high-K(+) medium. Since immature granule cells are chronically depolarized before migrating to the internal granule layer, this depolarization-dependent regulation of cbln1 mRNA expression may also serve as a developmental switch to facilitate PF synapse formation in mature granule cells in the internal granule layer.

  1. Sensory integration dysfunction affects efficacy of speech therapy on children with functional articulation disorders

    Directory of Open Access Journals (Sweden)

    Tung LC

    2013-01-01

    = 70.393; P > 0.001 and interaction between the pre/post speech therapy treatment and groups (F = 11.119; P = 0.002.Conclusions: Speech therapy can improve the articulation performance of children who have functional articulation disorders whether or not they have SID, but it results in significantly greater improvement in children without SID. SID may affect the treatment efficiency of speech therapy in young children with articulation disorders.Keywords: children, functional articulation disorders, sensory integration dysfunction, speech therapy, efficacy

  2. Synapsin II desynchronizes neurotransmitter release at inhibitory synapses by interacting with presynaptic calcium channels.

    Science.gov (United States)

    Medrihan, Lucian; Cesca, Fabrizia; Raimondi, Andrea; Lignani, Gabriele; Baldelli, Pietro; Benfenati, Fabio

    2013-01-01

    In the central nervous system, most synapses show a fast mode of neurotransmitter release known as synchronous release followed by a phase of asynchronous release, which extends over tens of milliseconds to seconds. Synapsin II (SYN2) is a member of the multigene synapsin family (SYN1/2/3) of synaptic vesicle phosphoproteins that modulate synaptic transmission and plasticity, and are mutated in epileptic patients. Here we report that inhibitory synapses of the dentate gyrus of Syn II knockout mice display an upregulation of synchronous neurotransmitter release and a concomitant loss of delayed asynchronous release. Syn II promotes γ-aminobutyric acid asynchronous release in a Ca(2+)-dependent manner by a functional interaction with presynaptic Ca(2+) channels, revealing a new role in synaptic transmission for synapsins.

  3. Integrated plasticity at inhibitory and excitatory synapses in the cerebellar circuit

    Directory of Open Access Journals (Sweden)

    Lisa eMapelli

    2015-05-01

    Full Text Available The way long-term potentiation (LTP and depression (LTD are integrated within the different synapses of brain neuronal circuits is poorly understood. In order to progress beyond the identification of specific molecular mechanisms, a system in which multiple forms of plasticity can be correlated with large-scale neural processing is required. In this paper we take as an example the cerebellar network , in which extensive investigations have revealed LTP and LTD at several excitatory and inhibitory synapses. Cerebellar LTP and LTD occur in all three main cerebellar subcircuits (granular layer, molecular layer, deep cerebellar nuclei and correspondingly regulate the function of their three main neurons: granule cells (GrCs, Purkinje cells (PCs and deep cerebellar nuclear (DCN cells. All these neurons, in addition to be excited, are reached by feed-forward and feed-back inhibitory connections, in which LTP and LTD may either operate synergistically or homeostatically in order to control information flow through the circuit. Although the investigation of individual synaptic plasticities in vitro is essential to prove their existence and mechanisms, it is insufficient to generate a coherent view of their impact on network functioning in vivo. Recent computational models and cell-specific genetic mutations in mice are shedding light on how plasticity at multiple excitatory and inhibitory synapses might regulate neuronal activities in the cerebellar circuit and contribute to learning and memory and behavioral control.

  4. Integrated plasticity at inhibitory and excitatory synapses in the cerebellar circuit.

    Science.gov (United States)

    Mapelli, Lisa; Pagani, Martina; Garrido, Jesus A; D'Angelo, Egidio

    2015-01-01

    The way long-term potentiation (LTP) and depression (LTD) are integrated within the different synapses of brain neuronal circuits is poorly understood. In order to progress beyond the identification of specific molecular mechanisms, a system in which multiple forms of plasticity can be correlated with large-scale neural processing is required. In this paper we take as an example the cerebellar network, in which extensive investigations have revealed LTP and LTD at several excitatory and inhibitory synapses. Cerebellar LTP and LTD occur in all three main cerebellar subcircuits (granular layer, molecular layer, deep cerebellar nuclei) and correspondingly regulate the function of their three main neurons: granule cells (GrCs), Purkinje cells (PCs) and deep cerebellar nuclear (DCN) cells. All these neurons, in addition to be excited, are reached by feed-forward and feed-back inhibitory connections, in which LTP and LTD may either operate synergistically or homeostatically in order to control information flow through the circuit. Although the investigation of individual synaptic plasticities in vitro is essential to prove their existence and mechanisms, it is insufficient to generate a coherent view of their impact on network functioning in vivo. Recent computational models and cell-specific genetic mutations in mice are shedding light on how plasticity at multiple excitatory and inhibitory synapses might regulate neuronal activities in the cerebellar circuit and contribute to learning and memory and behavioral control.

  5. Extracellular matrix control of dendritic spine and synapse structure and plasticity in adulthood

    Directory of Open Access Journals (Sweden)

    Aaron D Levy

    2014-10-01

    Full Text Available Dendritic spines are the receptive contacts at most excitatory synapses in the central nervous system. Spines are dynamic in the developing brain, changing shape as they mature as well as appearing and disappearing as they make and break connections. Spines become much more stable in adulthood, and spine structure must be actively maintained to support established circuit function. At the same time, adult spines must retain some plasticity so their structure can be modified by activity and experience. As such, the regulation of spine stability and remodeling in the adult animal is critical for normal function, and disruption of these processes is associated with a variety of late onset diseases including schizophrenia and Alzheimer’s disease. The extracellular matrix (ECM, composed of a meshwork of proteins and proteoglycans, is a critical regulator of spine and synapse stability and plasticity. While the role of ECM receptors in spine regulation has been extensively studied, considerably less research has focused directly on the role of specific ECM ligands. Here, we review the evidence for a role of several brain ECM ligands and remodeling proteases in the regulation of dendritic spine and synapse formation, plasticity, and stability in adults.

  6. Positive and negative signaling through SLAM receptors regulate synapse organization and thresholds of cytolysis.

    Science.gov (United States)

    Zhao, Fang; Cannons, Jennifer L; Dutta, Mala; Griffiths, Gillian M; Schwartzberg, Pamela L

    2012-06-29

    X-linked lymphoproliferative syndrome, characterized by fatal responses to Epstein-Barr virus infection, is caused by mutations affecting the adaptor SAP, which links SLAM family receptors to downstream signaling. Although cytotoxic defects in SAP-deficient T cells are documented, the mechanism remains unclear. We show that SAP-deficient murine CD8(+) T cells exhibited normal cytotoxicity against fibrosarcoma targets, yet had impaired adhesion to and killing of B cell and low-avidity T cell targets. SAP-deficient cytotoxic lymphocytes showed specific defects in immunological synapse organization with these targets, resulting in inefficient actin clearance. In the absence of SAP, signaling through the SLAM family members Ly108 and 2B4 resulted in increased recruitment of the SHP-1 phosphatase, associated with altered SHP-1 localization and decreased activation of Src kinases at the synapse. Hence, SAP and SLAM receptors regulate positive and negative signals required for organizing the T cell:B cell synapse and setting thresholds for cytotoxicity against distinct cellular targets.

  7. Rapid formation and selective stabilization of synapses for enduring motor memories.

    Science.gov (United States)

    Xu, Tonghui; Yu, Xinzhu; Perlik, Andrew J; Tobin, Willie F; Zweig, Jonathan A; Tennant, Kelly; Jones, Theresa; Zuo, Yi

    2009-12-17

    Novel motor skills are learned through repetitive practice and, once acquired, persist long after training stops. Earlier studies have shown that such learning induces an increase in the efficacy of synapses in the primary motor cortex, the persistence of which is associated with retention of the task. However, how motor learning affects neuronal circuitry at the level of individual synapses and how long-lasting memory is structurally encoded in the intact brain remain unknown. Here we show that synaptic connections in the living mouse brain rapidly respond to motor-skill learning and permanently rewire. Training in a forelimb reaching task leads to rapid (within an hour) formation of postsynaptic dendritic spines on the output pyramidal neurons in the contralateral motor cortex. Although selective elimination of spines that existed before training gradually returns the overall spine density back to the original level, the new spines induced during learning are preferentially stabilized during subsequent training and endure long after training stops. Furthermore, we show that different motor skills are encoded by different sets of synapses. Practice of novel, but not previously learned, tasks further promotes dendritic spine formation in adulthood. Our findings reveal that rapid, but long-lasting, synaptic reorganization is closely associated with motor learning. The data also suggest that stabilized neuronal connections are the foundation of durable motor memory.

  8. The role of Cbln1 on Purkinje cell synapse formation.

    Science.gov (United States)

    Ito-Ishida, Aya; Okabe, Shigeo; Yuzaki, Michisuke

    2014-06-01

    Cbln1 is a glycoprotein which belongs to the C1q family. In the cerebellum, Cbln1 is produced and secreted from granule cells and works as a strong synapse organizer between Purkinje cells and parallel fibers, the axons of the granule cells. In this update article, we will describe the molecular mechanisms by which Cbln1 induces synapse formation and will review our findings on the axonal structural changes which occur specifically during this process. We will also describe our recent finding that Cbln1 has a suppressive role in inhibitory synapse formation between Purkinje cells and molecular layer interneurons. Our results have revealed that Cbln1 plays an essential role to establish parallel fiber-Purkinje cell synapses and to regulate balance between excitatory and inhibitory input on Purkinje cells.

  9. Electronic system with memristive synapses for pattern recognition

    Science.gov (United States)

    Park, Sangsu; Chu, Myonglae; Kim, Jongin; Noh, Jinwoo; Jeon, Moongu; Hun Lee, Byoung; Hwang, Hyunsang; Lee, Boreom; Lee, Byung-Geun

    2015-05-01

    Memristive synapses, the most promising passive devices for synaptic interconnections in artificial neural networks, are the driving force behind recent research on hardware neural networks. Despite significant efforts to utilize memristive synapses, progress to date has only shown the possibility of building a neural network system that can classify simple image patterns. In this article, we report a high-density cross-point memristive synapse array with improved synaptic characteristics. The proposed PCMO-based memristive synapse exhibits the necessary gradual and symmetrical conductance changes, and has been successfully adapted to a neural network system. The system learns, and later recognizes, the human thought pattern corresponding to three vowels, i.e. /a /, /i /, and /u/, using electroencephalography signals generated while a subject imagines speaking vowels. Our successful demonstration of a neural network system for EEG pattern recognition is likely to intrigue many researchers and stimulate a new research direction.

  10. Excitatory synapses are stronger in the hippocampus of Rett syndrome mice due to altered synaptic trafficking of AMPA-type glutamate receptors.

    Science.gov (United States)

    Li, Wei; Xu, Xin; Pozzo-Miller, Lucas

    2016-03-15

    Deficits in long-term potentiation (LTP) at central excitatory synapses are thought to contribute to cognitive impairments in neurodevelopmental disorders associated with intellectual disability and autism. Using the methyl-CpG-binding protein 2 (Mecp2) knockout (KO) mouse model of Rett syndrome, we show that naïve excitatory synapses onto hippocampal pyramidal neurons of symptomatic mice have all of the hallmarks of potentiated synapses. Stronger Mecp2 KO synapses failed to undergo LTP after either theta-burst afferent stimulation or pairing afferent stimulation with postsynaptic depolarization. On the other hand, basal synaptic strength and LTP were not affected in slices from younger presymptomatic Mecp2 KO mice. Furthermore, spine synapses in pyramidal neurons from symptomatic Mecp2 KO are larger and do not grow in size or incorporate GluA1 subunits after electrical or chemical LTP. Our data suggest that LTP is occluded in Mecp2 KO mice by already potentiated synapses. The higher surface levels of GluA1-containing receptors are consistent with altered expression levels of proteins involved in AMPA receptor trafficking, suggesting previously unidentified targets for therapeutic intervention for Rett syndrome and other MECP2-related disorders.

  11. Vulnerability-Based Critical Neurons, Synapses, and Pathways in the Caenorhabditis elegans Connectome

    Science.gov (United States)

    Kim, Seongkyun; Kim, Hyoungkyu; Kralik, Jerald D.; Jeong, Jaeseung

    2016-01-01

    Determining the fundamental architectural design of complex nervous systems will lead to significant medical and technological advances. Yet it remains unclear how nervous systems evolved highly efficient networks with near optimal sharing of pathways that yet produce multiple distinct behaviors to reach the organism’s goals. To determine this, the nematode roundworm Caenorhabditis elegans is an attractive model system. Progress has been made in delineating the behavioral circuits of the C. elegans, however, many details are unclear, including the specific functions of every neuron and synapse, as well as the extent the behavioral circuits are separate and parallel versus integrative and serial. Network analysis provides a normative approach to help specify the network design. We investigated the vulnerability of the Caenorhabditis elegans connectome by performing computational experiments that (a) “attacked” 279 individual neurons and 2,990 weighted synaptic connections (composed of 6,393 chemical synapses and 890 electrical junctions) and (b) quantified the effects of each removal on global network properties that influence information processing. The analysis identified 12 critical neurons and 29 critical synapses for establishing fundamental network properties. These critical constituents were found to be control elements—i.e., those with the most influence over multiple underlying pathways. Additionally, the critical synapses formed into circuit-level pathways. These emergent pathways provide evidence for (a) the importance of backward locomotion, avoidance behavior, and social feeding behavior to the organism; (b) the potential roles of specific neurons whose functions have been unclear; and (c) both parallel and serial design elements in the connectome—i.e., specific evidence for a mixed architectural design. PMID:27540747

  12. Astroglial cradle in the life of the synapse

    OpenAIRE

    2014-01-01

    Astroglial perisynaptic sheath covers the majority of synapses in the central nervous system. This glial coverage evolved as a part of the synaptic structure in which elements directly responsible for neurotransmission (exocytotic machinery and appropriate receptors) concentrate in neuronal membranes, whereas multiple molecules imperative for homeostatic maintenance of the synapse (transporters for neurotransmitters, ions, amino acids, etc.) are shifted to glial membranes that have substantia...

  13. Molecular mechanism of parallel fiber-Purkinje cell synapse formation.

    Science.gov (United States)

    Mishina, Masayoshi; Uemura, Takeshi; Yasumura, Misato; Yoshida, Tomoyuki

    2012-01-01

    The cerebellum receives two excitatory afferents, the climbing fiber (CF) and the mossy fiber-parallel fiber (PF) pathway, both converging onto Purkinje cells (PCs) that are the sole neurons sending outputs from the cerebellar cortex. Glutamate receptor δ2 (GluRδ2) is expressed selectively in cerebellar PCs and localized exclusively at the PF-PC synapses. We found that a significant number of PC spines lack synaptic contacts with PF terminals and some of residual PF-PC synapses show mismatching between pre- and postsynaptic specializations in conventional and conditional GluRδ2 knockout mice. Studies with mutant mice revealed that in addition to PF-PC synapse formation, GluRδ2 is essential for synaptic plasticity, motor learning, and the restriction of CF territory. GluRδ2 regulates synapse formation through the amino-terminal domain, while the control of synaptic plasticity, motor learning, and CF territory is mediated through the carboxyl-terminal domain. Thus, GluRδ2 is the molecule that bridges synapse formation and motor learning. We found that the trans-synaptic interaction of postsynaptic GluRδ2 and presynaptic neurexins (NRXNs) through cerebellin 1 (Cbln1) mediates PF-PC synapse formation. The synaptogenic triad is composed of one molecule of tetrameric GluRδ2, two molecules of hexameric Cbln1 and four molecules of monomeric NRXN. Thus, GluRδ2 triggers synapse formation by clustering four NRXNs. These findings provide a molecular insight into the mechanism of synapse formation in the brain.

  14. Molecular mechanism of parallel fiber-Purkinje cell synapse formation

    Directory of Open Access Journals (Sweden)

    Masayoshi eMishina

    2012-11-01

    Full Text Available The cerebellum receives two excitatory afferents, the climbing fiber (CF and the mossy fiber-parallel fiber (PF pathway, both converging onto Purkinje cells (PCs that are the sole neurons sending outputs from the cerebellar cortex. Glutamate receptor δ2 (GluRδ2 is expressed selectively in cerebellar PCs and localized exclusively at the PF-PC synapses. We found that a significant number of PC spines lack synaptic contacts with PF terminals and some of residual PF-PC synapses show mismatching between pre- and postsynaptic specializations in conventional and conditional GluRδ2 knockout mice. Studies with mutant mice revealed that in addition to PF-PC synapse formation, GluRδ2 is essential for synaptic plasticity, motor learning and the restriction of CF territory. GluRδ2 regulates synapse formation through the amino-terminal domain, while the control of synaptic plasticity, motor learning and CF territory is mediated through the carboxyl-terminal domain. Thus, GluRδ2 is the molecule that bridges synapse formation and motor learning. We found that the trans-synaptic interaction of postsynaptic GluRδ2 and presynaptic neurexins (NRXNs through Cbln1 mediates PF-PC synapse formation. The synaptogenic triad is composed of one molecule of tetrameric GluRδ2, two molecules of hexameric Cbln1 and four molecules of monomeric NRXN. Thus, GluRδ2 triggers synapse formation by clustering four NRXNs. These findings provide a molecular insight into the mechanism of synapse formation in the brain.

  15. Rett syndrome: genes, synapses, circuits and therapeutics

    Directory of Open Access Journals (Sweden)

    Abhishek eBanerjee

    2012-05-01

    Full Text Available Development of the nervous system proceeds through a set of complex checkpoints which arise from a combination of sequential gene expression and early neural activity sculpted by the environment. Genetic and environmental insults lead to neurodevelopmental disorders which encompass a large group of diseases that result from anatomical and physiological abnormalities during maturation and development of brain circuits. Rett syndrome (RTT is a postnatal neurological disorder of genetic origin, caused by mutations in the X-linked gene MECP2. It features neuropsychiatric abnormalities like motor dysfunctions and mild to severe cognitive impairment. This review discusses several key questions and attempts to evaluate recently developed animal models, cell-type specific function of MeCP2, defects in neural circuit plasticity and possible therapeutic strategies. Finally, we also discuss how genes, proteins and overlapping signaling pathways affect the molecular etiology of apparently unrelated neuropsychiatric disorders, an understanding of which can offer novel therapeutic strategies.

  16. Functional assessment of human coding mutations affecting skin pigmentation using zebrafish.

    Directory of Open Access Journals (Sweden)

    Zurab R Tsetskhladze

    Full Text Available A major challenge in personalized medicine is the lack of a standard way to define the functional significance of the numerous nonsynonymous, single nucleotide coding variants that are present in each human individual. To begin to address this problem, we have used pigmentation as a model polygenic trait, three common human polymorphisms thought to influence pigmentation, and the zebrafish as a model system. The approach is based on the rescue of embryonic zebrafish mutant phenotypes by "humanized" zebrafish orthologous mRNA. Two hypomorphic polymorphisms, L374F in SLC45A2, and A111T in SLC24A5, have been linked to lighter skin color in Europeans. The phenotypic effect of a second coding polymorphism in SLC45A2, E272K, is unclear. None of these polymorphisms had been tested in the context of a model organism. We have confirmed that zebrafish albino fish are mutant in slc45a2; wild-type slc45a2 mRNA rescued the albino mutant phenotype. Introduction of the L374F polymorphism into albino or the A111T polymorphism into slc24a5 (golden abolished mRNA rescue of the respective mutant phenotypes, consistent with their known contributions to European skin color. In contrast, the E272K polymorphism had no effect on phenotypic rescue. The experimental conclusion that E272K is unlikely to affect pigmentation is consistent with a lack of correlation between this polymorphism and quantitatively measured skin color in 59 East Asian humans. A survey of mutations causing human oculocutaneous albinism yielded 257 missense mutations, 82% of which are theoretically testable in zebrafish. The developed approach may be extended to other model systems and may potentially contribute to our understanding the functional relationships between DNA sequence variation, human biology, and disease.

  17. Role of Affective Self-Regulatory Efficacy in Diverse Spheres of Psychosocial Functioning.

    Science.gov (United States)

    Bandura, Albert; Caprara, Gian Vittorio; Barbaranelli, Claudio; Gerbino, Maria; Pastorelli, Concetta

    2003-01-01

    Examined influence of perceived self-efficacy for affect regulation with older adolescents. Found that self-efficacy to regulate affect related to high efficacy to manage academic development, resist social pressures for antisocial activities, and engage with empathy in others' emotional experiences. Perceived self-efficacy for affect regulation…

  18. Developing a function impairment measure for children affected by political violence: a mixed methods approach in Indonesia

    NARCIS (Netherlands)

    Tol, W.A.; Komproe, I.H.; Jordans, M.J.D.; Susanty, D.; de Jong, J.T.V.M.

    2011-01-01

    Objective: Practitioners in political violence-affected settings would benefit from rating scales that assess child function impairment in a reliable and valid manner when designing and evaluating interventions. We developed a procedure to construct child function impairment rating scales using reso

  19. The Extracellular and Cytoplasmic Domains of Syndecan Cooperate Postsynaptically to Promote Synapse Growth at the Drosophila Neuromuscular Junction.

    Directory of Open Access Journals (Sweden)

    Margaret U Nguyen

    Full Text Available The heparan sulfate proteoglycan (HSPG Syndecan (Sdc is a crucial regulator of synapse development and growth in both vertebrates and invertebrates. In Drosophila, Sdc binds via its extracellular heparan sulfate (HS sidechains to the receptor protein tyrosine phosphatase LAR to promote the morphological growth of the neuromuscular junction (NMJ. To date, however, little else is known about the molecular mechanisms by which Sdc functions to promote synapse growth. Here we show that all detectable Sdc found at the NMJ is provided by the muscle, strongly suggesting a post-synaptic role for Sdc. We also show that both the cytoplasmic and extracellular domains of Sdc are required to promote synapse growth or to rescue Sdc loss of function. We report the results of a yeast two-hybrid screen using the cytoplasmic domains of Sdc as bait, and identify several novel candidate binding partners for the cytoplasmic domains of Sdc. Together, these studies provide new insight into the mechanism of Sdc function at the NMJ, and provide enticing future directions for further exploring how Sdc promotes synapse growth.

  20. Characterization of physiological phenotypes of dentate gyrus synapses of PDZ1/2 domain-deficient PSD-95-knockin mice.

    Science.gov (United States)

    Nagura, Hitoshi; Doi, Tomoko; Fujiyoshi, Yoshinori

    2016-03-01

    The hippocampal formation is involved in several important brain functions of animals, such as memory formation and pattern separation, and the synapses in the dentate gyrus (DG) play critical roles as the first step in the hippocampal circuit. Previous studies have reported that mice with genetic modifications of the PDZ1/2 domains of postsynaptic density (PSD)-95 exhibit altered synaptic properties in the DG and impaired hippocampus-dependent behaviors. Based on the involvement of the DG in the regulation of behaviors, these data suggest that the abnormal behavior of these knockin (KI) mice is due partly to altered DG function. Precise understanding of the phenotypes of these mutant mice requires characterization of the synaptic properties of the DG, and here we provide detailed studies of DG synapses. We have demonstrated global changes in the PSD membrane-associated guanylate kinase expression pattern in the DG of mutant mice, and DG synapses in these mice exhibited increased long-term potentiation under a wide range of stimulus intensities, although the N-methyl-d-aspartic acid receptor dependence of the long-term potentiation was unchanged. Furthermore, our data also indicate increased silent synapses in the DG of the KI mice. These findings suggest that abnormal protein expression and physiological properties disrupt the function of DG neurons in these KI mice.

  1. Prospective associations between forms and functions of aggression and social and affective processes during early childhood.

    Science.gov (United States)

    Ostrov, Jamie M; Murray-Close, Dianna; Godleski, Stephanie A; Hart, Emily J

    2013-09-01

    The central goal of this study was to examine the prospective associations between forms (i.e., physical and relational) and functions (i.e., proactive and reactive) of aggressive behavior with social (i.e., peer rejection) and affective (i.e., anger, emotion regulation skills) processes during early childhood (N = 96, mean age = 42.80 months, SD = 7.57). A cross-lagged path analysis revealed that proactive relational aggression was uniquely associated with decreases in peer rejection, whereas reactive relational aggression was associated with increases in peer rejection over time. Proactive relational aggression predicted decreases in anger, whereas reactive relational aggression tended to be associated with increases in anger. Proactive relational aggression uniquely predicted increases in emotion regulation skills, whereas reactive relational aggression tended to be associated with decreases in emotion regulation skills over time. Finally, anger was significantly associated with increases in several subtypes of aggressive behavior. In sum, the findings provide further support for the distinction between subtypes of aggressive behavior in young children.

  2. Novel function of perforin in negatively regulating CD4+T cell activation by affecting calcium signaling

    Institute of Scientific and Technical Information of China (English)

    Enguang Bi; Kairui Mao; Jia Zou; Yuhan Zheng; Bing Sun; Chunjian Huang; Yu Hu; Xiaodong Wu; Weiwen Deng; Guomei Lin; Zhiduo Liu; Lin Tian; Shuhui Sun

    2009-01-01

    Perforin is a pore-forming protein engaged mainly in mediating target T cell death and is employed by cytotoxic Tlymphocytes (CTLs) and natural killer cells. However, whether it also plays a role in conventional CD4+ T cell func-tion remains unclear. Here we report that in perforin-deficient (PKO) mice, CD4+ T cells are hyperproliferative in response to T cell receptor (TCR) stimulation. This feature of hyperproliferation is accompanied by the enhancement both in cell division and in IL-2 secretion. It seems that the perforin deficiency does not influence T cell development in thymus spleen and lymph node. In vivo, perforin deficiency results in increased antigen-specific T cell prolifera-tion and antibody production. Furthermore, PKO mice are more susceptible to experimental autoimmune uveitis. To address the molecular mechanism, we found that after TCR stimulation, CD44 T cells from PKO mice display an increased intracellular calcium flux and subsequently enhance activation of transcription factor NFATI. Our results indicate that perforin plays a negative role in regulating CD4+ T cell activation and immune response by affecting TCR-dependent Ca2+ signaling.

  3. Identification of archaeal proteins that affect the exosome function in vitro

    Directory of Open Access Journals (Sweden)

    Palhano Fernando L

    2010-05-01

    Full Text Available Abstract Background The archaeal exosome is formed by a hexameric RNase PH ring and three RNA binding subunits and has been shown to bind and degrade RNA in vitro. Despite extensive studies on the eukaryotic exosome and on the proteins interacting with this complex, little information is yet available on the identification and function of archaeal exosome regulatory factors. Results Here, we show that the proteins PaSBDS and PaNip7, which bind preferentially to poly-A and AU-rich RNAs, respectively, affect the Pyrococcus abyssi exosome activity in vitro. PaSBDS inhibits slightly degradation of a poly-rA substrate, while PaNip7 strongly inhibits the degradation of poly-A and poly-AU by the exosome. The exosome inhibition by PaNip7 appears to depend at least partially on its interaction with RNA, since mutants of PaNip7 that no longer bind RNA, inhibit the exosome less strongly. We also show that FITC-labeled PaNip7 associates with the exosome in the absence of substrate RNA. Conclusions Given the high structural homology between the archaeal and eukaryotic proteins, the effect of archaeal Nip7 and SBDS on the exosome provides a model for an evolutionarily conserved exosome control mechanism.

  4. Personality, clinical features, and test instructions can affect executive functions in Eating Disorders.

    Science.gov (United States)

    Pignatti, Riccardo; Bernasconi, Valentina

    2013-04-01

    Cognitive deficits in Eating Disorders have been related to the executive function domain. Yet, to date, only few works investigated the relationship between neuropsychological and clinical issues, and these studies were separately conducted either on Anorexia Nervosa (AN) or Bulimia Nervosa (BN). In this study, three groups of AN, BN and matched controls were administered the Trail Making Test, the Wisconsin Card Sorting Test, and the Hayling Sentence Completion Test, in addition to personality and clinical assessments (Temperament and Character Inventory, SCL-90-R, EDI-2). Results from AN indicated a relationship between cognitive rigidity and fixed psychological traits. Conversely, BN showed broader correlations among slowness, inhibition, and psychopathology-state indexes, confirming the clear relation published in the literature. We also hypothesize that task peculiar characteristics can affect high-order attentional activities in Eating Disorders. In fact, these patients do not differ from controls when the examiner provides overt instruction and run-in examples, but they can find serious difficulties when the correct rule is to be derived and modified from feedbacks during the test, as in the Wisconsin Card Sorting Test. Perfectionist stable traits support this hypothesis, especially in AN, as excessive cognitive control can either improve or damage set-shifting and decision-making procedures.

  5. Naloxonazine, an Amastigote-Specific Compound, Affects Leishmania Parasites through Modulation of Host-Encoded Functions

    Science.gov (United States)

    Vanhollebeke, Benoit; Caljon, Guy; Wolfe, Alan R.; McKerrow, James; Dujardin, Jean-Claude

    2016-01-01

    Host-directed therapies (HDTs) constitute promising alternatives to traditional therapy that directly targets the pathogen but is often hampered by pathogen resistance. HDT could represent a new treatment strategy for leishmaniasis, a neglected tropical disease caused by the obligate intracellular parasite Leishmania. This protozoan develops exclusively within phagocytic cells, where infection relies on a complex molecular interplay potentially exploitable for drug targets. We previously identified naloxonazine, a compound specifically active against intracellular but not axenic Leishmania donovani. We evaluated here whether this compound could present a host cell-dependent mechanism of action. Microarray profiling of THP-1 macrophages treated with naloxonazine showed upregulation of vATPases, which was further linked to an increased volume of intracellular acidic vacuoles. Treatment of Leishmania-infected macrophages with the vATPase inhibitor concanamycin A abolished naloxonazine effects, functionally demonstrating that naloxonazine affects Leishmania amastigotes indirectly, through host cell vacuolar remodeling. These results validate amastigote-specific screening approaches as a powerful way to identify alternative host-encoded targets. Although the therapeutic value of naloxonazine itself is unproven, our results further demonstrate the importance of intracellular acidic compartments for host defense against Leishmania, highlighting the possibility of targeting this host cell compartment for anti-leishmanial therapy. PMID:28036391

  6. Inhibitory synapse dynamics: coordinated presynaptic and postsynaptic mobility and the major contribution of recycled vesicles to new synapse formation.

    Science.gov (United States)

    Dobie, Frederick A; Craig, Ann Marie

    2011-07-20

    Dynamics of GABAergic synaptic components have been studied previously over milliseconds to minutes, revealing mobility of postsynaptic scaffolds and receptors. Here we image inhibitory synapses containing fluorescently tagged postsynaptic scaffold Gephyrin, together with presynaptic vesicular GABA transporter (VGAT) or postsynaptic GABA(A) receptor γ2 subunit (GABA(A)Rγ2), over seconds to days in cultured rat hippocampal neurons, revealing modes of inhibitory synapse formation and remodeling. Entire synapses were mobile, translocating rapidly within a confined region and exhibiting greater nonstochastic motion over multihour periods. Presynaptic and postsynaptic components moved in unison, maintaining close apposition while translocating distances of several micrometers. An observed flux in the density of synaptic puncta partially resulted from the apparent merging and splitting of preexisting clusters. De novo formation of inhibitory synapses was observed, marked by the appearance of stably apposed Gephyrin and VGAT clusters at sites previously lacking either component. Coclustering of GABA(A)Rγ2 supports the identification of such new clusters as synapses. Nascent synapse formation occurred by gradual accumulation of components over several hours, with VGAT clustering preceding that of Gephyrin and GABA(A)Rγ2. Comparing VGAT labeling by active uptake of a luminal domain antibody with post hoc immunocytochemistry indicated that recycling vesicles from preexisting boutons significantly contribute to vesicle pools at the majority of new inhibitory synapses. Although new synapses formed primarily on dendrite shafts, some also formed on dendritic protrusions, without apparent interconversion. Altogether, the long-term imaging of GABAergic presynaptic and postsynaptic components reveals complex dynamics and perpetual remodeling with implications for mechanisms of assembly and synaptic integration.

  7. A decorin-deficient matrix affects skin chondroitin/dermatan sulfate levels and keratinocyte function

    Science.gov (United States)

    Nikolovska, Katerina; Renke, Jana K.; Jungmann, Oliver; Grobe, Kay; Iozzo, Renato V.; Zamfir, Alina D.; Seidler, Daniela G.

    2016-01-01

    Decorin is a small leucine-rich proteoglycan harboring a single glycosaminoglycan chain, which, in skin, is mainly composed of dermatan sulfate (DS). Mutant mice with targeted disruption of the decorin gene (Dcn−/−) exhibit an abnormal collagen architecture in the dermis and reduced tensile strength, collectively leading to a skin fragility phenotype. Notably, Ehlers-Danlos patients with mutations in enzymes involved in the biosynthesis of DS display a similar phenotype, and recent studies indicate that DS is involved in growth factor binding and signaling. To determine the impact of the loss of DS-decorin in the dermis, we analyzed the glycosaminoglycan content of Dcn−/− and wild-type mouse skin. The total amount of chondroitin/dermatan sulfate (CS/DS) was increased in the Dcn−/− skin, but was overall less sulfated with a significant reduction in bisulfated ΔDiS2,X (X=4 or 6) disaccharide units, due to the reduced expression of uronyl 2-O sulfotransferase (Ust). With increasing age, sulfation declined; however, Dcn−/− CS/DS was constantly undersulfated vis-à-vis wild-type. Functionally, we found altered fibroblast growth factor (Fgf)-7 and -2 binding due to changes in the micro-heterogeneity of skin Dcn−/− CS/DS. To better delineate the role of decorin, we used a 3D Dcn−/− fibroblast cell culture model. We found that the CS/DS extracts of wild-type and Dcn−/− fibroblasts were similar to the skin sugars, and this correlated with the lack of uronyl 2-O sulfotransferase in the Dcn−/− fibroblasts. Moreover, Ffg7 binding to total CS/DS was attenuated in the Dcn−/− samples. Surprisingly, wild-type CS/DS significantly reduced the binding of Fgf7 to keratinocytes in concentration dependent manner unlike the Dcn−/− CS/DS that only affected the binding at higher concentrations. Although binding to cell-surfaces was quite similar at higher concentrations, keratinocyte proliferation was differentially affected. Higher concentration of

  8. Pons to Posterior Cingulate Functional Projections Predict Affective Processing Changes in the Elderly Following Eight Weeks of Meditation Training.

    Science.gov (United States)

    Shao, Robin; Keuper, Kati; Geng, Xiujuan; Lee, Tatia M C

    2016-08-01

    Evidence indicates meditation facilitates affective regulation and reduces negative affect. It also influences resting-state functional connectivity between affective networks and the posterior cingulate (PCC)/precuneus, regions critically implicated in self-referential processing. However, no longitudinal study employing active control group has examined the effect of meditation training on affective processing, PCC/precuneus connectivity, and their association. Here, we report that eight-week meditation, but not relaxation, training 'neutralized' affective processing of positive and negative stimuli in healthy elderly participants. Additionally, meditation versus relaxation training increased the positive connectivity between the PCC/precuneus and the pons, the direction of which was largely directed from the pons to the PCC/precuneus, as revealed by dynamic causal modeling. Further, changes in connectivity between the PCC/precuneus and pons predicted changes in affective processing after meditation training. These findings indicate meditation promotes self-referential affective regulation based on increased regulatory influence of the pons on PCC/precuneus, which new affective-processing strategy is employed across both resting state and when evaluating affective stimuli. Such insights have clinical implications on interventions on elderly individuals with affective disorders.

  9. Production of adenosine from extracellular ATP at the striatal cholinergic synapse.

    Science.gov (United States)

    James, S; Richardson, P J

    1993-01-01

    The components of the ectonucleotidase pathway at the immunoaffinity-purified striatal cholinergic synapse have been studied. The ecto-ATPase (EC 3.6.1.15) had a Km of 131 microM, whereas the ecto-ADPase (EC 3.6.1.6) had a Km of 58 microM, was Ca(2+)-dependent, and was inhibited by the ATP analogue 5'-adenylylimidodiphosphate (AMPPNP). The ecto-5'-nucleotidase (EC 3.1.3.5) had a Km of 21 microM, was inhibited by AMPPNP and alpha,beta-methylene ADP, and by a specific antiserum. The Vmax values of the ATPase, ADPase, and 5'-nucleotidase enzymes present at this synapse were in a ratio of 30:14:1. Very little ecto-adenylate kinase activity was detected on these purified synapses. The intraterminal 5'-nucleotidase enzyme, which amounted to 40% of the total 5'-nucleotidase activity, was inhibited by AMPPNP, alpha,beta-methylene ADP, and the antiserum, and also had the same kinetic properties as the ectoenzyme. The time course of ATP degradation to adenosine outside the nerve terminals showed a delay, followed by a period of sustained adenosine production. The delay in adenosine production was proportional to the initial ATP concentration, was a consequence of feedforward inhibition of the ADPase and 5'-nucleotidase, and was inversely proportional to the ecto-5'-nucleotidase activity. The function and characteristics of this pathway and the central role of 5'-nucleotidase in the regulation of extraterminal adenosine concentrations are discussed.

  10. Short-term plasticity and modulation of synaptic transmission at mammalian inhibitory cholinergic olivocochlear synapses

    Directory of Open Access Journals (Sweden)

    Eleonora eKatz

    2014-12-01

    Full Text Available The organ of Corti, the mammalian sensory epithelium of the inner ear, has two types of mechanoreceptor cells, inner hair cells (IHCs and outer hair cells (OHCs. In this sensory epithelium, vibrations produced by sound waves are transformed into electrical signals. When depolarized by incoming sounds, IHCs release glutamate and activate auditory nerve fibers innervating them and OHCs, by virtue of their electromotile property, increase the amplification and fine tuning of sound signals. The medial olivocochlear (MOC system, an efferent feedback system, inhibits OHC activity and thereby reduces the sensitivity and sharp tuning of cochlear afferent fibers. During neonatal development, IHCs fire Ca2+ action potentials which evoke glutamate release promoting activity in the immature auditory system in the absence of sensory stimuli. During this period, MOC fibers also innervate IHCs and are thought to modulate their firing rate. Both the MOC-OHC and the MOC-IHC synapses are cholinergic, fast and inhibitory and mediated by the alpha9alpha10 nicotinic cholinergic receptor (nAChR coupled to the activation of calcium-activated potassium channels that hyperpolarize the hair cells.In this review we discuss the biophysical, functional and molecular data which demonstrate that at the synapses between MOC efferent fibers and cochlear hair cells, modulation of transmitter release as well as short-term synaptic plasticity mechanisms, operating both at the presynaptic terminal and at the postsynaptic hair-cell, determine the efficacy of these synapses and shape the hair cell response pattern.

  11. Multiple forms of long-term synaptic plasticity at hippocampal mossy fiber synapses on interneurons.

    Science.gov (United States)

    Galván, Emilio J; Cosgrove, Kathleen E; Barrionuevo, Germán

    2011-04-01

    The hippocampal mossy fiber (MF) pathway originates from the dentate gyrus granule cells and provides a powerful excitatory synaptic drive to neurons in the dentate gyrus hilus and area CA3. Much of the early work on the MF pathway focused on its electrophysiological properties, and ability to drive CA3 pyramidal cell activity. Over the last ten years, however, a new focus on the synaptic interaction between granule cells and inhibitory interneurons has emerged. These data have revealed an immense heterogeneity of long-term plasticity at MF synapses on various interneuron targets. Interestingly, these studies also indicate that the mechanisms of MF long-term plasticity in some interneuron subtypes may be more similar to pyramidal cells than previously appreciated. In this review, we first define the synapse types at each of the interneuron targets based on the receptors present. We then describe the different forms of long-term plasticity observed, and the mechanisms underlying each form as they are currently understood. Finally we highlight various open questions surrounding MF long-term plasticity in interneurons, focusing specifically on the induction and maintenance of LTP, and what the functional impact of persistent changes in efficacy at MF-interneuron synapses might be on the emergent properties of the inhibitory network dynamics in area CA3. This article is part of a Special Issue entitled 'Synaptic Plasticity & Interneurons'.

  12. Recurrent synapses and circuits in the CA3 region of the hippocampus: an associative network.

    Science.gov (United States)

    Le Duigou, Caroline; Simonnet, Jean; Teleñczuk, Maria T; Fricker, Desdemona; Miles, Richard

    2014-01-08

    In the CA3 region of the hippocampus, pyramidal cells excite other pyramidal cells and interneurons. The axons of CA3 pyramidal cells spread throughout most of the region to form an associative network. These connections were first drawn by Cajal and Lorente de No. Their physiological properties were explored to understand epileptiform discharges generated in the region. Synapses between pairs of pyramidal cells involve one or few release sites and are weaker than connections made by mossy fibers on CA3 pyramidal cells. Synapses with interneurons are rather effective, as needed to control unchecked excitation. We examine contributions of recurrent synapses to epileptiform synchrony, to the genesis of sharp waves in the CA3 region and to population oscillations at theta and gamma frequencies. Recurrent connections in CA3, as other associative cortices, have a lower connectivity spread over a larger area than in primary sensory cortices. This sparse, but wide-ranging connectivity serves the functions of an associative network, including acquisition of neuronal representations as activity in groups of CA3 cells and completion involving the recall from partial cues of these ensemble firing patterns.

  13. Recurrent synapses and circuits in the CA3 region of the hippocampus: an associative network.

    Directory of Open Access Journals (Sweden)

    Richard eMiles

    2014-01-01

    Full Text Available In the CA3 region of the hippocampus, pyramidal cells excite other pyramidal cells and interneurons. The axons of CA3 pyramidal cells spread throughout most of the region to form an associative network. These connections were first drawn by Cajal and Lorente de No. Their physiological properties were explored to understand epileptiform discharges generated in the region. Synapses between pairs of pyramidal cells involve one or few release sites and are weaker than connections made by mossy fibres on CA3 pyramidal cells. Synapses with interneurons are rather effective, as needed to control unchecked excitation. We examine contributions of recurrent synapses to epileptiform synchrony, to the genesis of sharp waves in the CA3 region and to population oscillations at theta and gamma frequencies. Recurrent connections in CA3, as other associative cortices, have a lower connectivity spread over a larger area than in primary sensory cortices. This sparse, but wide-ranging connectivity serves the functions of an associative network, including acquisition of neuronal representations as activity in groups of CA3 cells and completion involving the recall from partial cues of these ensemble firing patterns.

  14. Role of primary afferents in the developmental regulation of motor axon synapse numbers on Renshaw cells.

    Science.gov (United States)

    Siembab, Valerie C; Gomez-Perez, Laura; Rotterman, Travis M; Shneider, Neil A; Alvarez, Francisco J

    2016-06-15

    Motor function in mammalian species depends on the maturation of spinal circuits formed by a large variety of interneurons that regulate motoneuron firing and motor output. Interneuron activity is in turn modulated by the organization of their synaptic inputs, but the principles governing the development of specific synaptic architectures unique to each premotor interneuron are unknown. For example, Renshaw cells receive, at least in the neonate, convergent inputs from sensory afferents (likely Ia) and motor axons, raising the question of whether they interact during Renshaw cell development. In other well-studied neurons, such as Purkinje cells, heterosynaptic competition between inputs from different sources shapes synaptic organization. To examine the possibility that sensory afferents modulate synaptic maturation on developing Renshaw cells, we used three animal models in which afferent inputs in the ventral horn are dramatically reduced (ER81(-/-) knockout), weakened (Egr3(-/-) knockout), or strengthened (mlcNT3(+/-) transgenic). We demonstrate that increasing the strength of sensory inputs on Renshaw cells prevents their deselection and reduces motor axon synaptic density, and, in contrast, absent or diminished sensory afferent inputs correlate with increased densities of motor axons synapses. No effects were observed on other glutamatergic inputs. We conclude that the early strength of Ia synapses influences their maintenance or weakening during later development and that heterosynaptic influences from sensory synapses during early development regulates the density and organization of motor inputs on mature Renshaw cells.

  15. Specific disruption of hippocampal mossy fiber synapses in a mouse model of familial Alzheimer's disease.

    Science.gov (United States)

    Wilke, Scott A; Raam, Tara; Antonios, Joseph K; Bushong, Eric A; Koo, Edward H; Ellisman, Mark H; Ghosh, Anirvan

    2014-01-01

    The earliest stages of Alzheimer's disease (AD) are characterized by deficits in memory and cognition indicating hippocampal pathology. While it is now recognized that synapse dysfunction precedes the hallmark pathological findings of AD, it is unclear if specific hippocampal synapses are particularly vulnerable. Since the mossy fiber (MF) synapse between dentate gyrus (DG) and CA3 regions underlies critical functions disrupted in AD, we utilized serial block-face electron microscopy (SBEM) to analyze MF microcircuitry in a mouse model of familial Alzheimer's disease (FAD). FAD mutant MF terminal complexes were severely disrupted compared to control - they were smaller, contacted fewer postsynaptic spines and had greater numbers of presynaptic filopodial processes. Multi-headed CA3 dendritic spines in the FAD mutant condition were reduced in complexity and had significantly smaller sites of synaptic contact. Significantly, there was no change in the volume of classical dendritic spines at neighboring inputs to CA3 neurons suggesting input-specific defects in the early course of AD related pathology. These data indicate a specific vulnerability of the DG-CA3 network in AD pathogenesis and demonstrate the utility of SBEM to assess circuit specific alterations in mouse models of human disease.

  16. Specific disruption of hippocampal mossy fiber synapses in a mouse model of familial Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Scott A Wilke

    Full Text Available The earliest stages of Alzheimer's disease (AD are characterized by deficits in memory and cognition indicating hippocampal pathology. While it is now recognized that synapse dysfunction precedes the hallmark pathological findings of AD, it is unclear if specific hippocampal synapses are particularly vulnerable. Since the mossy fiber (MF synapse between dentate gyrus (DG and CA3 regions underlies critical functions disrupted in AD, we utilized serial block-face electron microscopy (SBEM to analyze MF microcircuitry in a mouse model of familial Alzheimer's disease (FAD. FAD mutant MF terminal complexes were severely disrupted compared to control - they were smaller, contacted fewer postsynaptic spines and had greater numbers of presynaptic filopodial processes. Multi-headed CA3 dendritic spines in the FAD mutant condition were reduced in complexity and had significantly smaller sites of synaptic contact. Significantly, there was no change in the volume of classical dendritic spines at neighboring inputs to CA3 neurons suggesting input-specific defects in the early course of AD related pathology. These data indicate a specific vulnerability of the DG-CA3 network in AD pathogenesis and demonstrate the utility of SBEM to assess circuit specific alterations in mouse models of human disease.

  17. Analog VLSI Biophysical Neurons and Synapses With Programmable Membrane Channel Kinetics.

    Science.gov (United States)

    Yu, Theodore; Cauwenberghs, Gert

    2010-06-01

    We present and characterize an analog VLSI network of 4 spiking neurons and 12 conductance-based synapses, implementing a silicon model of biophysical membrane dynamics and detailed channel kinetics in 384 digitally programmable parameters. Each neuron in the analog VLSI chip (NeuroDyn) implements generalized Hodgkin-Huxley neural dynamics in 3 channel variables, each with 16 parameters defining channel conductance, reversal potential, and voltage-dependence profile of the channel kinetics. Likewise, 12 synaptic channel variables implement a rate-based first-order kinetic model of neurotransmitter and receptor dynamics, accounting for NMDA and non-NMDA type chemical synapses. The biophysical origin of all 384 parameters in 24 channel variables supports direct interpretation of the results of adapting/tuning the parameters in terms of neurobiology. We present experimental results from the chip characterizing single neuron dynamics, single synapse dynamics, and multi-neuron network dynamics showing phase-locking behavior as a function of synaptic coupling strength. Uniform temporal scaling of the dynamics of membrane and gating variables is demonstrated by tuning a single current parameter, yielding variable speed output exceeding real time. The 0.5 CMOS chip measures 3 mm 3 mm, and consumes 1.29 mW.

  18. A 2-transistor/1-resistor artificial synapse capable of communication and stochastic learning in neuromorphic systems.

    Science.gov (United States)

    Wang, Zhongqiang; Ambrogio, Stefano; Balatti, Simone; Ielmini, Daniele

    2014-01-01

    Resistive (or memristive) switching devices based on metal oxides find applications in memory, logic and neuromorphic computing systems. Their small area, low power operation, and high functionality meet the challenges of brain-inspired computing aiming at achieving a huge density of active connections (synapses) with low operation power. This work presents a new artificial synapse scheme, consisting of a memristive switch connected to 2 transistors responsible for gating the communication and learning operations. Spike timing dependent plasticity (STDP) is achieved through appropriate shaping of the pre-synaptic and the post synaptic spikes. Experiments with integrated artificial synapses demonstrate STDP with stochastic behavior due to (i) the natural variability of set/reset processes in the nanoscale switch, and (ii) the different response of the switch to a given stimulus depending on the initial state. Experimental results are confirmed by model-based simulations of the memristive switching. Finally, system-level simulations of a 2-layer neural network and a simplified STDP model show random learning and recognition of patterns.

  19. A 2-transistor/1-resistor artificial synapse capable of communication and stochastic learning forneuromorphic systems

    Directory of Open Access Journals (Sweden)

    Zhongqiang eWang

    2015-01-01

    Full Text Available Resistive (or memristive switching devices based on metal oxides find applications in memory, logic and neuromorphic computing systems. Their small area, low power operation, and high functionality meet the challenges of brain-inspired computing aiming at achieving a huge density of active connections (synapses with low operation power. This work presents a new artificial synapse scheme, consisting of a memristive switch connected to 2 transistors responsible for gating the communication and learning operations. Spike timing dependent plasticity (STDP is achieved through appropriate shaping of the pre-synaptic and the post synaptic spikes. Experiments with integrated artificial synapses demonstrate STDP with stochastic behavior due to (i the natural variability of set/reset processes in the nanoscale switch, and (ii the different response of the switch to a given stimulus depending on the initial state. Experimental results are confirmed by model-based simulations of the memristive switching. Finally, system-level simulations of a 2-layer neural network and a simplified STDP model show random learning and recognition of patterns.

  20. GluRδ2 assembles four neurexins into trans-synaptic triad to trigger synapse formation.

    Science.gov (United States)

    Lee, Sung-Jin; Uemura, Takeshi; Yoshida, Tomoyuki; Mishina, Masayoshi

    2012-03-28

    Elucidation of molecular mechanisms of synapse formation is a prerequisite for the understanding of neural wiring, higher brain functions, and mental disorders. The trans-synaptic interaction of postsynaptic glutamate receptor δ2 (GluRδ2) and presynaptic neurexins (NRXNs) through cerebellin precursor protein 1 (Cbln1) mediates synapse formation in vivo in the cerebellum. Here, we asked how the trans-synaptic triad induces synapse formation. Native GluRδ2 existed as a tetramer in the membrane, whereas the N-terminal domain (NTD) of GluRδ2 formed a stable homodimer. When incubated with cultured mouse cerebellar granule cells (GCs), dimeric GluRδ2-NTD and Cbln1 exerted little effect on the accumulation of punctate immunostaining signals for Bassoon and vesicular glutamate transporter 1 in GC axons. However, tetramerized GluRδ2-NTD stimulated the accumulation of these presynaptic proteins in the axons. Analysis of Cbln1 mutants suggested that the binding sites of GluRδ2 and NRXN1β on Cbln1 are differential. Furthermore, there was no competition in the binding to Cbln1 between GluRδ2-NTD and the extracellular domain (ECD) of NRXN1β. Thus, GluRδ2 and Cbln1 interacted with each other rather independently of Cbln1-NRXN1β interaction and vice versa. Gel filtration and isothermal titration calorimetry analyses consistently showed that dimeric GluRδ2-NTD and hexameric Cbln1 assembled in the 1:1 ratio, whereas hexameric Cbln1 and the laminin-neurexin-sex hormone-binding globulin domain of NRXN1β-ECD assembled in the 1:2 ratio. Thus, the synaptogenic triad is assembled from tetrameric GluRδ2, hexameric Cbln1, and monomeric NRXN in the ratio of 1:2:4. These results suggest that GluRδ2 triggers synapse formation by clustering four NRXNs through triad formation.

  1. A cortical attractor network with Martinotti cells driven by facilitating synapses.

    Directory of Open Access Journals (Sweden)

    Pradeep Krishnamurthy

    Full Text Available The population of pyramidal cells significantly outnumbers the inhibitory interneurons in the neocortex, while at the same time the diversity of interneuron types is much more pronounced. One acknowledged key role of inhibition is to control the rate and patterning of pyramidal cell firing via negative feedback, but most likely the diversity of inhibitory pathways is matched by a corresponding diversity of functional roles. An important distinguishing feature of cortical interneurons is the variability of the short-term plasticity properties of synapses received from pyramidal cells. The Martinotti cell type has recently come under scrutiny due to the distinctly facilitating nature of the synapses they receive from pyramidal cells. This distinguishes these neurons from basket cells and other inhibitory interneurons typically targeted by depressing synapses. A key aspect of the work reported here has been to pinpoint the role of this variability. We first set out to reproduce quantitatively based on in vitro data the di-synaptic inhibitory microcircuit connecting two pyramidal cells via one or a few Martinotti cells. In a second step, we embedded this microcircuit in a previously developed attractor memory network model of neocortical layers 2/3. This model network demonstrated that basket cells with their characteristic depressing synapses are the first to discharge when the network enters an attractor state and that Martinotti cells respond with a delay, thereby shifting the excitation-inhibition balance and acting to terminate the attractor state. A parameter sensitivity analysis suggested that Martinotti cells might, in fact, play a dominant role in setting the attractor dwell time and thus cortical speed of processing, with cellular adaptation and synaptic depression having a less prominent role than previously thought.

  2. Anatomically detailed and large-scale simulations studying synapse loss and synchrony using NeuroBox

    Directory of Open Access Journals (Sweden)

    Markus eBreit

    2016-02-01

    Full Text Available The morphology of neurons and networks plays an important role in processing electrical and biochemical signals. Based on neuronal reconstructions, which are becoming abundantly available through databases such as NeuroMorpho.org, numerical simulations of Hodgkin-Huxley-type equations, coupled to biochemical models, can be performed in order to systematically investigate the influence of cellular morphology and the connectivity pattern in networks on the underlying function. Development in the area of synthetic neural network generation and morphology reconstruction from microscopy data has brought forth the software tool NeuGen. Coupling this morphology data (either from databases, synthetic or reconstruction to the simulation platform UG 4 (which harbors a neuroscientific portfolio and VRL-Studio, has brought forth the extendible toolbox NeuroBox. NeuroBox allows users to perform numerical simulations on hybrid-dimensional morphology representations. The code basis is designed in a modular way, such that e.g. new channel or synapse types can be added to the library. Workflows can be specified through scripts or through the VRL-Studio graphical workflow representation. Third-party tools, such as ImageJ, can be added to NeuroBox workflows. In this paper, NeuroBox is used to study the electrical and biochemical effects of synapse loss vs. synchrony in neurons, to investigate large morphology data sets within detailed biophysical simulations, and used to demonstrate the capability of utilizing high-performance computing infrastructure for large scale network simulations. Using new synapse distribution methods and Finite Volume based numerical solvers for compartment-type models, our results demonstrate how an increase in synaptic synchronization can compensate synapse loss at the electrical and calcium level, and how detailed neuronal morphology can be integrated in large-scale network simulations.

  3. The small GTPase Rab8 interacts with VAMP-3 to regulate the delivery of recycling T-cell receptors to the immune synapse.

    Science.gov (United States)

    Finetti, Francesca; Patrussi, Laura; Galgano, Donatella; Cassioli, Chiara; Perinetti, Giuseppe; Pazour, Gregory J; Baldari, Cosima T

    2015-07-15

    IFT20, a component of the intraflagellar transport (IFT) system that controls ciliogenesis, regulates immune synapse assembly in the non-ciliated T-cell by promoting T-cell receptor (TCR) recycling. Here, we have addressed the role of Rab8 (for which there are two isoforms Rab8a and Rab8b), a small GTPase implicated in ciliogenesis, in TCR traffic to the immune synapse. We show that Rab8, which colocalizes with IFT20 in Rab11(+) endosomes, is required for TCR recycling. Interestingly, as opposed to in IFT20-deficient T-cells, TCR(+) endosomes polarized normally beneath the immune synapse membrane in the presence of dominant-negative Rab8, but were unable to undergo the final docking or fusion step. This could be accounted for by the inability of the vesicular (v)-SNARE VAMP-3 to cluster at the immune synapse in the absence of functional Rab8, which is responsible for its recruitment. Of note, and similar to in T-cells, VAMP-3 interacts with Rab8 at the base of the cilium in NIH-3T3 cells, where it regulates ciliary growth and targeting of the protein smoothened. The results identify Rab8 as a new player in vesicular traffic to the immune synapse and provide insight into the pathways co-opted by different cell types for immune synapse assembly and ciliogenesis.

  4. Chronic Fluoxetine Induces the Enlargement of Perforant Path-Granule Cell Synapses in the Mouse Dentate Gyrus.

    Science.gov (United States)

    Kitahara, Yosuke; Ohta, Keisuke; Hasuo, Hiroshi; Shuto, Takahide; Kuroiwa, Mahomi; Sotogaku, Naoki; Togo, Akinobu; Nakamura, Kei-ichiro; Nishi, Akinori

    2016-01-01

    A selective serotonin reuptake inhibitor is the most commonly prescribed antidepressant for the treatment of major depression. However, the mechanisms underlying the actions of selective serotonin reuptake inhibitors are not fully understood. In the dentate gyrus, chronic fluoxetine treatment induces increased excitability of mature granule cells (GCs) as well as neurogenesis. The major input to the dentate gyrus is the perforant path axons (boutons) from the entorhinal cortex (layer II). Through voltage-sensitive dye imaging, we found that the excitatory neurotransmission of the perforant path synapse onto the GCs in the middle molecular layer of the mouse dentate gyrus (perforant path-GC synapse) is enhanced after chronic fluoxetine treatment (15 mg/kg/day, 14 days). Therefore, we further examined whether chronic fluoxetine treatment affects the morphology of the perforant path-GC synapse, using FIB/SEM (focused ion beam/scanning electron microscopy). A three-dimensional reconstruction of dendritic spines revealed the appearance of extremely large-sized spines after chronic fluoxetine treatment. The large-sized spines had a postsynaptic density with a large volume. However, chronic fluoxetine treatment did not affect spine density. The presynaptic boutons that were in contact with the large-sized spines were large in volume, and the volumes of the mitochondria and synaptic vesicles inside the boutons were correlated with the size of the boutons. Thus, the large-sized perforant path-GC synapse induced by chronic fluoxetine treatment contains synaptic components that correlate with the synapse size and that may be involved in enhanced glutamatergic neurotransmission.

  5. Functional dominance rather than taxonomic diversity and functional diversity mainly affects community aboveground biomass in the Inner Mongolia grassland.

    Science.gov (United States)

    Zhang, Qing; Buyantuev, Alexander; Li, Frank Yonghong; Jiang, Lin; Niu, Jianming; Ding, Yong; Kang, Sarula; Ma, Wenjing

    2017-03-01

    The relationship between biodiversity and productivity has been a hot topic in ecology. However, the relative importance of taxonomic diversity and functional characteristics (including functional dominance and functional diversity) in maintaining community productivity and the underlying mechanisms (including selection and complementarity effects) of the relationship between diversity and community productivity have been widely controversial. In this study, 194 sites were surveyed in five grassland types along a precipitation gradient in the Inner Mongolia grassland of China. The relationships between taxonomic diversity (species richness and the Shannon-Weaver index), functional dominance (the community-weighted mean of four plant traits), functional diversity (Rao's quadratic entropy), and community aboveground biomass were analyzed. The results showed that (1) taxonomic diversity, functional dominance, functional diversity, and community aboveground biomass all increased from low to high precipitation grassland types; (2) there were significant positive linear relationships between taxonomic diversity, functional dominance, functional diversity, and community aboveground biomass; (3) the effect of functional characteristics on community aboveground biomass is greater than that of taxonomic diversity; and (4) community aboveground biomass depends on the community-weighted mean plant height, which explained 57.1% of the variation in the community aboveground biomass. Our results suggested that functional dominance rather than taxonomic diversity and functional diversity mainly determines community productivity and that the selection effect plays a dominant role in maintaining the relationship between biodiversity and community productivity in the Inner Mongolia grassland.

  6. Land-use systems affect Archaeal community structure and functional diversity in western Amazon soils

    Directory of Open Access Journals (Sweden)

    Acácio Aparecido Navarrete

    2011-10-01

    Full Text Available The study of the ecology of soil microbial communities at relevant spatial scales is primordial in the wide Amazon region due to the current land use changes. In this study, the diversity of the Archaea domain (community structure and ammonia-oxidizing Archaea (richness and community composition were investigated using molecular biology-based techniques in different land-use systems in western Amazonia, Brazil. Soil samples were collected in two periods with high precipitation (March 2008 and January 2009 from Inceptisols under primary tropical rainforest, secondary forest (5-20 year old, agricultural systems of indigenous people and cattle pasture. Denaturing gradient gel electrophoresis of polymerase chain reaction-amplified DNA (PCR-DGGE using the 16S rRNA gene as a biomarker showed that archaeal community structures in crops and pasture soils are different from those in primary forest soil, which is more similar to the community structure in secondary forest soil. Sequence analysis of excised DGGE bands indicated the presence of crenarchaeal and euryarchaeal organisms. Based on clone library analysis of the gene coding the subunit of the enzyme ammonia monooxygenase (amoA of Archaea (306 sequences, the Shannon-Wiener function and Simpson's index showed a greater ammonia-oxidizing archaeal diversity in primary forest soils (H' = 2.1486; D = 0.1366, followed by a lower diversity in soils under pasture (H' = 1.9629; D = 0.1715, crops (H' = 1.4613; D = 0.3309 and secondary forest (H' = 0.8633; D = 0.5405. All cloned inserts were similar to the Crenarchaeota amoA gene clones (identity > 95 % previously found in soils and sediments and distributed primarily in three major phylogenetic clusters. The findings indicate that agricultural systems of indigenous people and cattle pasture affect the archaeal community structure and diversity of ammonia-oxidizing Archaea in western Amazon soils.

  7. Probability distribution functions of turbulence in seepage-affected alluvial channel

    Science.gov (United States)

    Sharma, Anurag; Kumar, Bimlesh

    2017-02-01

    The present experimental study is carried out on the probability distribution functions (PDFs) of turbulent flow characteristics within near-bed-surface and away-from-bed surfaces for both no seepage and seepage flow. Laboratory experiments were conducted in the plane sand bed for no seepage (NS), 10% seepage (10%S) and 15% seepage (15%) cases. The experimental calculation of the PDFs of turbulent parameters such as Reynolds shear stress, velocity fluctuations, and bursting events is compared with theoretical expression obtained by Gram-Charlier (GC)-based exponential distribution. Experimental observations follow the computed PDF distributions for both no seepage and seepage cases. Jensen-Shannon divergence (JSD) method is used to measure the similarity between theoretical and experimental PDFs. The value of JSD for PDFs of velocity fluctuation lies between 0.0005 to 0.003 while the JSD value for PDFs of Reynolds shear stress varies between 0.001 to 0.006. Even with the application of seepage, the PDF distribution of bursting events, sweeps and ejections are well characterized by the exponential distribution of the GC series, except that a slight deflection of inward and outward interactions is observed which may be due to weaker events. The value of JSD for outward and inward interactions ranges from 0.0013 to 0.032, while the JSD value for sweep and ejection events varies between 0.0001 to 0.0025. The theoretical expression for the PDF of turbulent intensity is developed in the present study, which agrees well with the experimental observations and JSD lies between 0.007 and 0.015. The work presented is potentially applicable to the probability distribution of mobile-bed sediments in seepage-affected alluvial channels typically characterized by the various turbulent parameters. The purpose of PDF estimation from experimental data is that it provides a complete numerical description in the areas of turbulent flow either at a single or finite number of points.

  8. First-episode medication-naive major depressive disorder is associated with altered resting brain function in the affective network.

    Directory of Open Access Journals (Sweden)

    Xiaocui Zhang

    Full Text Available BACKGROUND: Major depressive disorder (MDD has been associated with abnormal structure and function of the brain's affective network, including the amygdala and orbitofrontal cortex (OFC. However, it is unclear if alterations of resting-state function in this affective network are present at the initial onset of MDD. AIMS: To examine resting-state function of the brain's affective network in first-episode, medication-naive patients with MDD compared to healthy controls (HCs. METHODS: Resting-state functional magnetic resonance imaging (rs-fMRI was performed on 32 first-episode, medication-naive young adult patients with MDD and 35 matched HCs. The amplitude of low-frequency fluctuations (ALFF of the blood oxygen level-dependent (BOLD signal and amygdala-seeded functional connectivity (FC were investigated. RESULTS: Compared to HC, MDD patients showed reduced ALFF in the bilateral OFC and increased ALFF in the bilateral temporal lobe extending to the insular and left fusiform cortices. Enhanced anti-correlation of activity between the left amygdala seed and the left OFC was found in MDD patients but not in HCs. CONCLUSIONS: Reduced ALFF in the OFC suggests hypo-functioning of emotion regulation in the affective network. Enhanced anti-correlation of activity between the amygdala and OFC may reflect dysfunction of the amygdala-OFC network and additionally represent a pathological process of MDD.

  9. Emotional Processing in High-Functioning Autism--Physiological Reactivity and Affective Report

    Science.gov (United States)

    Bolte, Sven; Feineis-Matthews, Sabine; Poustka, Fritz

    2008-01-01

    This study examined physiological response and affective report in 10 adult individuals with autism and 10 typically developing controls. An emotion induction paradigm using stimuli from the International Affective Picture System was applied. Blood pressure, heart and self-ratings of experienced valence (pleasure), arousal and dominance (control)…

  10. Alcohol Use in College Students as a Function of Reinforcement Sensitivity, Life Events, and Affect

    Science.gov (United States)

    Lee, Hyoung Suk

    2010-01-01

    Mood has been commonly viewed as an important determinant of drinking, but studies of positive and negative affect and alcohol use have reported inconsistent results. It has been suggested that the relationship between negative affect and heavy drinking or drinking problems depends on individual vulnerability dimensions such as personality. Gray's…

  11. Predicting the Accuracy of Facial Affect Recognition: The Interaction of Child Maltreatment and Intellectual Functioning

    Science.gov (United States)

    Shenk, Chad E.; Putnam, Frank W.; Noll, Jennie G.

    2013-01-01

    Previous research demonstrates that both child maltreatment and intellectual performance contribute uniquely to the accurate identification of facial affect by children and adolescents. The purpose of this study was to extend this research by examining whether child maltreatment affects the accuracy of facial recognition differently at varying…

  12. Cationic influences upon synaptic transmission at the hair cell-afferent fiber synapse of the frog

    Science.gov (United States)

    Cochran, S. L.

    1995-01-01

    vertebrate neuromuscular junction. The major differences between these two synapses are the neurotransmitters and the higher resting release rate and higher sensitivity of release to increased K+ concentrations of the hair cells over that of motor nerve terminals. These differences reflect the functional roles of the two synapses: the motor nerve terminal response in an all-or-nothing signal consequent from action potential invasion, while the hair cell releases transmitter in a graded fashion, proportionate to the extent of stereocilial deflection. Despite these differences between the two junctions, the similar actions of these elemental cations upon synaptic function at each implies that these ions may participate similarly in the operations of other synapses, independent of the neurotransmitter type.(ABSTRACT TRUNCATED AT 400 WORDS).

  13. Syntaxin 1B, but not syntaxin 1A, is necessary for the regulation of synaptic vesicle exocytosis and of the readily releasable pool at central synapses.

    Directory of Open Access Journals (Sweden)

    Tatsuya Mishima

    Full Text Available Two syntaxin 1 (STX1 isoforms, HPC-1/STX1A and STX1B, are coexpressed in neurons and function as neuronal target membrane (t-SNAREs. However, little is known about their functional differences in synaptic transmission. STX1A null mutant mice develop normally and do not show abnormalities in fast synaptic transmission, but monoaminergic transmissions are impaired. In the present study, we found that STX1B null mutant mice died within 2 weeks of birth. To examine functional differences between STX1A and 1B, we analyzed the presynaptic properties of glutamatergic and GABAergic synapses in STX1B null mutant and STX1A/1B double null mutant mice. We found that the frequency of spontaneous quantal release was lower and the paired-pulse ratio of evoked postsynaptic currents was significantly greater in glutamatergic and GABAergic synapses of STX1B null neurons. Deletion of STX1B also accelerated synaptic vesicle turnover in glutamatergic synapses and decreased the size of the readily releasable pool in glutamatergic and GABAergic synapses. Moreover, STX1A/1B double null neurons showed reduced and asynchronous evoked synaptic vesicle release in glutamatergic and GABAergic synapses. Our results suggest that although STX1A and 1B share a basic function as neuronal t-SNAREs, STX1B but not STX1A is necessary for the regulation of spontaneous and evoked synaptic vesicle exocytosis in fast transmission.

  14. Synapse organization and modulation via C1q family proteins and their receptors in the central nervous system.

    Science.gov (United States)

    Matsuda, Keiko

    2016-11-12

    Several C1q family members, related to the C1q complement component are extensively expressed in the central nervous system. Cbln1, which belongs to the Cbln subfamily of C1q proteins and released from cerebellar granule cells, plays an indispensable role in the synapse formation and function at parallel fiber-Purkinje cell synapses. This is achieved by formation of a trans-synaptic tripartite complex which is composed of one unit of the Cbln1 hexamer, monomeric neurexin (NRX) containing a splice site 4 insertion at presynaptic terminals and the postsynaptic GluD2 dimers. Recently an increasing number of soluble or transmembrane proteins have been identified to bind directly to the amino-terminal domains of iGluR and regulate the recruitment and function of iGluRs at synapses. Especially at mossy fiber (MF)-CA3 synapses in the hippocampus, postsynaptic kainate-type glutamate receptors (KARs) are involved in synaptic network activity through their characteristic channel kinetics. C1ql2 and C1ql3, which belong to the C1q-like subfamily of C1q proteins, are produced by MFs and serve as extracellular organizers to recruit functional postsynaptic KAR complexes at MF-CA3 synapses via binding to the amino-terminal domains of GluK2 and GluK4 KAR subunits. In addition, C1ql2 and C1ql3 directly bind to NRX3 containing sequences encoded by exon 25b insertion at splice site 5. In the present review, we highlighted the generality of the strategy by tripartite complex formation of the specific type of NRX and iGluR via C1q family members.

  15. Accelerated intoxication of GABAergic synapses by botulinum neurotoxin A disinhibits stem cell-derived neuron networks prior to network silencing

    Directory of Open Access Journals (Sweden)

    Phillip H Beske

    2015-04-01

    Full Text Available Botulinum neurotoxins (BoNTs are extremely potent toxins that specifically cleave SNARE proteins in peripheral synapses, preventing neurotransmitter release. Neuronal responses to BoNT intoxication are traditionally studied by quantifying SNARE protein cleavage in vitro or monitoring physiological paralysis in vivo. Consequently, the dynamic effects of intoxication on synaptic behaviors are not well understood. We have reported that mouse embryonic stem cell-derived neurons (ESNs are highly sensitive to BoNT based on molecular readouts of intoxication. Here we study the time-dependent changes in synapse- and network-level behaviors following addition of BoNT/A to spontaneously active networks of glutamatergic and GABAergic ESNs. Whole-cell patch-clamp recordings indicated that BoNT/A rapidly blocked synaptic neurotransmission, confirming that ESNs replicate the functional pathophysiology responsible for clinical botulism. Quantitation of spontaneous neurotransmission in pharmacologically isolated synapses revealed accelerated silencing of GABAergic synapses compared to glutamatergic synapses, which was consistent with the selective accumulation of cleaved SNAP-25 at GAD1+ presynaptic terminals at early timepoints. Different latencies of intoxication resulted in complex network responses to BoNT/A addition, involving rapid disinhibition of stochastic firing followed by network silencing. Synaptic activity was found to be highly sensitive to SNAP-25 cleavage, reflecting the functional consequences of the localized cleavage of the small subpopulation of SNAP-25 that is engaged in neurotransmitter release in the nerve terminal. Collectively these findings illustrate that use of synaptic function assays in networked neurons cultures offers a novel and highly sensitive approach for mechanistic studies of toxin:neuron interactions and synaptic responses to BoNT.

  16. BK potassium channels control transmitter release at CA3-CA3 synapses in the rat hippocampus.

    Science.gov (United States)

    Raffaelli, Giacomo; Saviane, Chiara; Mohajerani, Majid H; Pedarzani, Paola; Cherubini, Enrico

    2004-05-15

    Large conductance calcium- and voltage-activated potassium channels (BK channels) activate in response to calcium influx during action potentials and contribute to the spike repolarization and fast afterhyperpolarization. BK channels targeted to active zones in presynaptic nerve terminals have been shown to limit calcium entry and transmitter release by reducing the duration of the presynaptic spike at neurosecretory nerve terminals and at the frog neuromuscular junction. However, their functional role in central synapses is still uncertain. In the hippocampus, BK channels have been proposed to act as an 'emergency brake' that would control transmitter release only under conditions of excessive depolarization and accumulation of intracellular calcium. Here we demonstrate that in the CA3 region of hippocampal slice cultures, under basal experimental conditions, the selective BK channel blockers paxilline (10 microM) and iberiotoxin (100 nM) increase the frequency, but not the amplitude, of spontaneously occurring action potential-dependent EPSCs. These drugs did not affect miniature currents recorded in the presence of tetrodotoxin, suggesting that their action was dependent on action potential firing. Moreover, in double patch-clamp recordings from monosynaptically interconnected CA3 pyramidal neurones, blockade of BK channels enhanced the probability of transmitter release, as revealed by the increase in success rate, EPSC amplitude and the concomitant decrease in paired-pulse ratio in response to pairs of presynaptic action potentials delivered at a frequency of 0.05 Hz. BK channel blockers also enhanced the appearance of delayed responses, particularly following the second action potential in the paired-pulse protocol. These results are consistent with the hypothesis that BK channels are powerful modulators of transmitter release and synaptic efficacy in central neurones.

  17. Managing diversity : How leaders' multiculturalism and colorblindness affect work group functioning

    NARCIS (Netherlands)

    Meeussen, Loes; Otten, Sabine; Phalet, Karen

    2014-01-01

    Workforces are becoming increasingly diverse and leaders face the challenge of managing their groups to minimize costs and maximize benefits of diversity. This paper investigates how leaders' multiculturalism and colorblindness affect cultural minority and majority members' experiences of connectedn

  18. Does neurocognitive function affect cognitive bias toward an emotional stimulus? Association between general attentional ability and attentional bias toward threat

    OpenAIRE

    2014-01-01

    Background: Although poorer cognitive performance has been found to be associated with anxiety, it remains unclear whether neurocognitive function affects biased cognitive processing toward emotional information. We investigated whether general cognitive function evaluated with a standard neuropsychological test predicts biased cognition, focusing on attentional bias toward threat. Methods: One hundred and five healthy young adults completed a dot-probe task measuring attentional bias and ...

  19. Alcohol Impairs Long-Term Depression at the Cerebellar Parallel Fiber–Purkinje Cell Synapse

    Science.gov (United States)

    Belmeguenai, Amor; Botta, Paolo; Weber, John T.; Carta, Mario; De Ruiter, Martijn; De Zeeuw, Chris I.; Valenzuela, C. Fernando; Hansel, Christian

    2008-01-01

    Acute alcohol consumption causes deficits in motor coordination and gait, suggesting an involvement of cerebellar circuits, which play a role in the fine adjustment of movements and in motor learning. It has previously been shown that ethanol modulates inhibitory transmission in the cerebellum and affects synaptic transmission and plasticity at excitatory climbing fiber (CF) to Purkinje cell synapses. However, it has not been examined thus far how acute ethanol application affects long-term depression (LTD) and long-term potentiation (LTP) at excitatory parallel fiber (PF) to Purkinje cell synapses, which are assumed to mediate forms of cerebellar motor learning. To examine ethanol effects on PF synaptic transmission and plasticity, we performed whole cell patch-clamp recordings from Purkinje cells in rat cerebellar slices. We found that ethanol (50 mM) selectively blocked PF–LTD induction, whereas it did not change the amplitude of excitatory postsynaptic currents at PF synapses. In contrast, ethanol application reduced voltage-gated calcium currents and type 1 metabotropic glutamate receptor (mGluR1)–dependent responses in Purkinje cells, both of which are involved in PF–LTD induction. The selectivity of these effects is emphasized by the observation that ethanol did not impair PF–LTP and that PF–LTP could readily be induced in the presence of the group I mGluR antagonist AIDA or the mGluR1a antagonist LY367385. Taken together, these findings identify calcium currents and mGluR1-dependent signaling pathways as potential ethanol targets and suggest that an ethanol-induced blockade of PF–LTD could contribute to the motor coordination deficits resulting from alcohol consumption. PMID:18922952

  20. Trans-synaptic interaction of GluRdelta2 and Neurexin through Cbln1 mediates synapse formation in the cerebellum.

    Science.gov (United States)

    Uemura, Takeshi; Lee, Sung-Jin; Yasumura, Misato; Takeuchi, Tomonori; Yoshida, Tomoyuki; Ra, Moonjin; Taguchi, Ryo; Sakimura, Kenji; Mishina, Masayoshi

    2010-06-11

    Elucidation of molecular mechanisms that regulate synapse formation is required for the understanding of neural wiring, higher brain functions, and mental disorders. Despite the wealth of in vitro information, fundamental questions about how glutamatergic synapses are formed in the mammalian brain remain unanswered. Glutamate receptor (GluR) delta2 is essential for cerebellar synapse formation in vivo. Here, we show that the N-terminal domain (NTD) of GluRdelta2 interacts with presynaptic neurexins (NRXNs) through cerebellin 1 precursor protein (Cbln1). The synaptogenic activity of GluRdelta2 is abolished in cerebellar primary cultures from Cbln1 knockout mice and is restored by recombinant Cbln1. Knockdown of NRXNs in cerebellar granule cells also hinders the synaptogenic activity of GluRdelta2. Both the NTD of GluRdelta2 and the extracellular domain of NRXN1beta suppressed the synaptogenic activity of Cbln1 in cerebellar primary cultures and in vivo. These results suggest that GluRdelta2 mediates cerebellar synapse formation by interacting with presynaptic NRXNs through Cbln1.

  1. Imaging and analysis of evoked excitatory-postsynaptic-calcium-transients by individual presynaptic-boutons of cultured Aplysia sensorimotor synapse.

    Science.gov (United States)

    Malkinson, Guy; Spira, Micha E

    2010-04-01

    The use of the sensory-motor (SN-MN) synapse of the Aplysia gill withdrawal reflex has contributed immensely to the understanding of synaptic transmission, learning and memory acquisition processes. Whereas the majority of the studies focused on analysis of the presynaptic mechanisms, recent studies indicated that as in mammalian synapses, long term potentiation (LTP) formed by Aplysia SN-MN synapse depends on elevation of the postsynaptic free intracellular calcium concentration ([Ca2+](i)). Consistently, injection of the fast calcium chelator BAPTA to the MN prevents the formation of serotonin-induced LTP. Nevertheless, currently there are no published reports that directly examine and document whether evoked synaptic transmission is associated with transient increase in the postsynaptic [Ca2+](i). In the present study we imaged, for the first time, alterations in the postsynaptic [Ca2+](i) in response to presynaptic stimulation and analyzed the underlying mechanisms. Using live imaging of the postsynaptic [Ca2+](i) while monitoring the EPSP, we found that evoked transmitter release generates excitatory postsynaptic calcium concentration transients (EPSCaTs) by two mechanisms: (a) activation of DNQX-sensitive postsynaptic receptors-gated calcium influx and (b) calcium influx through nitrendipine-sensitive voltage-gated calcium channels (VGCCs). Concomitant confocal imaging of presynaptic boutons and EPSCaTs revealed that approximately 86% of the presynaptic boutons are associated with functional synapses.

  2. Changes in Synapses and Axons Demonstrated by Synaptophysin Immunohistochemistry Following Spinal Cord Compression Trauma in the Rat and Mouse

    Institute of Scientific and Technical Information of China (English)

    GUI-LIN LI; MOHAMMAD FAROOQUE; JONAS ISAKSSON; YNGVE OLSSON

    2004-01-01

    and methods To evaluate synaptic changes using synaptophysin immunohistochemstry in rat and mouse, which spinal cords were subjected to graded compression trauma at the level of Th8-9. Results Normal animals showed numerous fine dots of synaptophysin immunoreactivity in the gray matter. An increase in synaptophysin immunoreactivity was observed in the neuropil and synapses at the surface of motor neurons of the anterior horns in the Th8-9 segments lost immunoreactivity at 4-hour point after trauma. The immunoreactive synapses reappeared around motor neurons at 9-day point. Unexpected accumulation of synaptophysin immunoreactivity occurred in injured axons of the white matter of the compressed spinal cord. Conclusion Synaptic changes were important components of secondary injuries in spinal cord trauma. Loss of synapses on motor neurons may be one of the factors causing motor dysfunction of hind limbs and formation of new synapses may play an important role in recovery of motor function. Synaptophysin immunohistochemistry is also a good tool for studies of axonal swellings in spinal cord injuries.

  3. Complexin 3 Increases the Fidelity of Signaling in a Retinal Circuit by Regulating Exocytosis at Ribbon Synapses

    Directory of Open Access Journals (Sweden)

    Lena S. Mortensen

    2016-06-01

    Full Text Available Complexin (Cplx proteins modulate the core SNARE complex to regulate exocytosis. To understand the contributions of Cplx to signaling in a well-characterized neural circuit, we investigated how Cplx3, a retina-specific paralog, shapes transmission at rod bipolar (RB→AII amacrine cell synapses in the mouse retina. Knockout of Cplx3 strongly attenuated fast, phasic Ca2+-dependent transmission, dependent on local [Ca2+] nanodomains, but enhanced slower Ca2+-dependent transmission, dependent on global intraterminal [Ca2+] ([Ca2+]I. Surprisingly, coordinated multivesicular release persisted at Cplx3−/− synapses, although its onset was slowed. Light-dependent signaling at Cplx3−/− RB→AII synapses was sluggish, owing largely to increased asynchronous release at light offset. Consequently, propagation of RB output to retinal ganglion cells was suppressed dramatically. Our study links Cplx3 expression with synapse and circuit function in a specific retinal pathway and reveals a role for asynchronous release in circuit gain control.

  4. Quantitative analysis of ribbons, vesicles, and cisterns at the cat inner hair cell synapse: correlations with spontaneous rate.

    Science.gov (United States)

    Kantardzhieva, Albena; Liberman, M Charles; Sewell, William F

    2013-10-01

    Cochlear hair cells form ribbon synapses with terminals of the cochlear nerve. To test the hypothesis that one function of the ribbon is to create synaptic vesicles from the cisternal structures that are abundant at the base of hair cells, we analyzed the distribution of vesicles and cisterns around ribbons from serial sections of inner hair cells in the cat, and compared data from low and high spontaneous rate (SR) synapses. Consistent with the hypothesis, we identified a "sphere of influence" of 350 nm around the ribbon, with fewer cisterns and many more synaptic vesicles. Although high- and low-SR ribbons tended to be longer and thinner than high-SR ribbons, the total volume of the two ribbon types was similar. There were almost as many vesicles docked at the active zone as attached to the ribbon. The major SR-related difference was that low-SR ribbons had more synaptic vesicles intimately associated with them. Our data suggest a trend in which low-SR synapses had more vesicles attached to the ribbon (51.3 vs. 42.8), more docked between the ribbon and the membrane (12 vs. 8.2), more docked at the active zone (56.9 vs. 44.2), and more vesicles within the "sphere of influence" (218 vs. 166). These data suggest that the structural differences between high- and low-SR synapses may be more a consequence, than a determinant, of the physiological differences.

  5. MicroRNA-8 promotes robust motor axon targeting by coordinate regulation of cell adhesion molecules during synapse development.

    Science.gov (United States)

    Lu, Cecilia S; Zhai, Bo; Mauss, Alex; Landgraf, Matthias; Gygi, Stephen; Van Vactor, David

    2014-09-26

    Neuronal connectivity and specificity rely upon precise coordinated deployment of multiple cell-surface and secreted molecules. MicroRNAs have tremendous potential for shaping neural circuitry by fine-tuning the spatio-temporal expression of key synaptic effector molecules. The highly conserved microRNA miR-8 is required during late stages of neuromuscular synapse development in Drosophila. However, its role in initial synapse formation was previously unknown. Detailed analysis of synaptogenesis in this system now reveals that miR-8 is required at the earliest stages of muscle target contact by RP3 motor axons. We find that the localization of multiple synaptic cell adhesion molecules (CAMs) is dependent on the expression of miR-8, suggesting that miR-8 regulates the initial assembly of synaptic sites. Using stable isotope labelling in vivo and comparative mass spectrometry, we find that miR-8 is required for normal expression of multiple proteins, including the CAMs Fasciclin III (FasIII) and Neuroglian (Nrg). Genetic analysis suggests that Nrg and FasIII collaborate downstream of miR-8 to promote accurate target recognition. Unlike the function of miR-8 at mature larval neuromuscular junctions, at the embryonic stage we find that miR-8 controls key effectors on both sides of the synapse. MiR-8 controls multiple stages of synapse formation through the coordinate regulation of both pre- and postsynaptic cell adhesion proteins.

  6. A computational study on plasticity during theta cycles at Schaffer collateral synapses on CA1 pyramidal cells in the hippocampus.

    Science.gov (United States)

    Saudargiene, Ausra; Cobb, Stuart; Graham, Bruce P

    2015-02-01

    Cellular activity in the CA1 area of the hippocampus waxes and wanes at theta frequency (4-8 Hz) during exploratory behavior of rats. Perisomatic inhibition onto pyramidal cells tends to be strongest out of phase with pyramidal cell activity, whereas dendritic inhibition is strongest in phase with pyramidal cell activity. Synaptic plasticity also varies across the theta cycle, from strong long-term potentiation (LTP) to long-term depression (LTD), putatively corresponding to encoding and retrieval phases for information patterns encoded by pyramidal cell activity (Hasselmo et al. (2002a) Neural Comput 14:793-817). The mechanisms underpinning the phasic changes in plasticity are not clear, but it is likely that inhibition plays a role by affecting levels of electrical activity and calcium concentration at synapses. We explore the properties of synaptic plasticity during theta at Schaffer collateral synapses on CA1 pyramidal neurons and the influence of spatially and temporally targeted inhibition using a detailed multicompartmental model of the CA1 pyramidal neuron microcircuit and a phenomenological model of synaptic plasticity. The results suggest CA3-CA1 synapses are potentiated on one phase of theta due to high calcium levels provided by paired weak CA3 and layer III entorhinal cortex (EC) inputs even when somatic spiking is inhibited by perisomatic interneuron activity. Weak CA3 inputs alone induce lower calcium transients and result in depression of the CA3-CA1 synapses. These synapses are depressed if activated in phase with dendritic inhibition as strong CA3 inputs alone are not able to cause high calcium in this theta phase even though the CA1 pyramidal neuron shows somatic spiking. Dendritic inhibition acts as a switch that prevents LTP and promotes LTD during the retrieval phases of the theta rhythm in CA1 pyramidal cell. This may be important for not overly reinforcing recalled memories and in forgetting no longer relevant memories.

  7. Impaired presynaptic cytosolic and mitochondrial calcium dynamics in aged compared to young adult hippocampal CA1 synapses ameliorated by calcium chelation.

    Science.gov (United States)

    Tonkikh, A A; Carlen, P L

    2009-04-10

    Impaired regulation of presynaptic intracellular calcium is thought to adversely affect synaptic plasticity and cognition in the aged brain. We studied presynaptic cytosolic and mitochondrial calcium (Ca) dynamics using axonally loaded Calcium Green-AM and Rhod-2 AM fluorescence respectively in young (2-3 months) and aged (23-26 months) CA3 to CA1 Schaffer collateral excitatory synapses in hippocampal brain slices from Fisher 344 rats. After a tetanus (100 Hz, 200 ms), the presynaptic cytosolic Ca peaked at approximately 10 s in the young and approximately 12 s in the aged synapses. Administration of the membrane permeant Ca chelator, bis (O-aminophenoxy)-ethane-N,N,N,N-tetraacetic acid (BAPTA-AM), significantly attenuated the Ca response in the aged slices, but not in the young slices. The presynaptic mitochondrial Ca signal was much slower, peaking at approximately 90 s in both young and aged synapses, returning to baseline by 300 s. BAPTA-AM significantly attenuated the mitochondrial calcium signal only in the young synapses. Uncoupling mitochondrial respiration by carbonyl cyanide m-chlorophenylhydrazone (CCCP) application evoked a massive intracellular cytosolic Ca increase and a significant drop of mitochondrial Ca, especially in aged slices wherein the cytosolic Ca signal disappeared after approximately 150 s of washout and the mitochondrial Ca signal disappeared after 25 s of washout. These signals were preserved in aged slices by BAPTA-AM. Five minutes of oxygen glucose deprivation (OGD) was associated with a significant increase in cytosolic Ca in both young and aged synapses, which was irreversible in the aged synapses. These responses were significantly attenuated by BAPTA-AM in both the young and aged synapses. These results support the hypothesis that increasing intracellular calcium neuronal buffering in aged rats ameliorates age-related impaired presynaptic Ca regulation.

  8. An NMDA Receptor-Dependent Mechanism Underlies Inhibitory Synapse Development

    Directory of Open Access Journals (Sweden)

    Xinglong Gu

    2016-01-01

    Full Text Available In the mammalian brain, GABAergic synaptic transmission provides inhibitory balance to glutamatergic excitatory drive and controls neuronal output. The molecular mechanisms underlying the development of GABAergic synapses remain largely unclear. Here, we report that NMDA-type ionotropic glutamate receptors (NMDARs in individual immature neurons are the upstream signaling molecules essential for GABAergic synapse development, which requires signaling via Calmodulin binding motif in the C0 domain of the NMDAR GluN1 subunit. Interestingly, in neurons lacking NMDARs, whereas GABAergic synaptic transmission is strongly reduced, the tonic inhibition mediated by extrasynaptic GABAA receptors is increased, suggesting a compensatory mechanism for the lack of synaptic inhibition. These results demonstrate a crucial role for NMDARs in specifying the development of inhibitory synapses, and suggest an important mechanism for controlling the establishment of the balance between synaptic excitation and inhibition in the developing brain.

  9. Does introduction of clover in an agricultural grassland affect the food base and functional diversity of Collembola?

    DEFF Research Database (Denmark)

    D'Annibale, Alessandra; Sechi, Valentina; Larsen, Thomas

    2016-01-01

    Introduction of legumes (i.e. white clover) in agricultural grasslands is a common practice to improve yields, but how this affects soil fauna populations, particularly mesofauna, is still poorly understood. We investigated taxonomical and functional differences of Collembola communities between ...

  10. Detecting Differential Item Functioning in the Japanese Version of the Multiple Affect Adjective Check List--Revised

    Science.gov (United States)

    Yasuda, Tomoyuki; Lei, Pui-Wa; Suen, Hoi K.

    2007-01-01

    This study examines the differential item functioning (DIF) of the English version and the Japanese-translated version of the Multiple Affect Adjective Check List--Revised (MAACL-R) using the logistic regression (LR) procedure. The results of the LR are supplemented by multiple group confirmatory factor analysis (MGCFA). A total of five items are…

  11. Factors Affecting the Functionality of Postgraduate Programs in Natural Sciences and Engineering in a Northwest State in Mexico

    Science.gov (United States)

    Valdés Cuervo, Angel Alberto; Estévez Nenninger, Etty Haydeé; Wendlandt Amezaga, Teodoro Rafael; Vera Noriega, José Ángel

    2015-01-01

    From the researchers' perspective, the study aimed to identify factors affecting the functionality of postgraduate programs in natural sciences and engineering in a north-western Mexican state. Through the typical cases method, 25 researchers who worked in six doctorate programs in the region were selected. From the perception of these…

  12. Microglial interactions with synapses are modulated by visual experience.

    Directory of Open Access Journals (Sweden)

    Marie-Ève Tremblay

    Full Text Available Microglia are the immune cells of the brain. In the absence of pathological insult, their highly motile processes continually survey the brain parenchyma and transiently contact synaptic elements. Aside from monitoring, their physiological roles at synapses are not known. To gain insight into possible roles of microglia in the modification of synaptic structures, we used immunocytochemical electron microscopy, serial section electron microscopy with three-dimensional reconstructions, and two-photon in vivo imaging to characterize microglial interactions with synapses during normal and altered sensory experience, in the visual cortex of juvenile mice. During normal visual experience, most microglial processes displayed direct apposition with multiple synapse-associated elements, including synaptic clefts. Microglial processes were also distinctively surrounded by pockets of extracellular space. In terms of dynamics, microglial processes localized to the vicinity of small and transiently growing dendritic spines, which were typically lost over 2 d. When experience was manipulated through light deprivation and reexposure, microglial processes changed their morphology, showed altered distributions of extracellular space, displayed phagocytic structures, apposed synaptic clefts more frequently, and enveloped synapse-associated elements more extensively. While light deprivation induced microglia to become less motile and changed their preference of localization to the vicinity of a subset of larger dendritic spines that persistently shrank, light reexposure reversed these behaviors. Taken together, these findings reveal different modalities of microglial interactions with synapses that are subtly altered by sensory experience. These findings suggest that microglia may actively contribute to the experience-dependent modification or elimination of a specific subset of synapses in the healthy brain.

  13. Electrolyte-gated organic synapse transistor interfaced with neurons

    CERN Document Server

    Desbief, Simon; Casalini, Stefano; Guerin, David; Tortorella, Silvia; Barbalinardo, Marianna; Kyndiah, Adrica; Murgia, Mauro; Cramer, Tobias; Biscarini, Fabio; Vuillaume, Dominique

    2016-01-01

    We demonstrate an electrolyte-gated hybrid nanoparticle/organic synapstor (synapse-transistor, termed EGOS) that exhibits short-term plasticity as biological synapses. The response of EGOS makes it suitable to be interfaced with neurons: short-term plasticity is observed at spike voltage as low as 50 mV (in a par with the amplitude of action potential in neurons) and with a typical response time in the range of tens milliseconds. Human neuroblastoma stem cells are adhered and differentiated into neurons on top of EGOS. We observe that the presence of the cells does not alter short-term plasticity of the device.

  14. Meet the players: local translation at the synapse

    Directory of Open Access Journals (Sweden)

    Sandra eFernandez Moya

    2014-11-01

    Full Text Available It is widely believed that activity-dependent synaptic plasticity is the basis for learning and memory. Both processes are dependent on new protein synthesis at the synapse. Here, we describe a mechanism how dendritic mRNAs are transported and subsequently translated at activated synapses. Furthermore, we present the players involved in the regulation of local dendritic translation upon neuronal stimulation and their molecular interplay that maintain local proteome homeostasis. Any dysregulation causes several types of neurological disorders including muscular atrophies, cancers, neuropathies, neurodegenerative and cognitive disorders.

  15. The formation of synapses in amphibian striated muscle during development.

    Science.gov (United States)

    Bennett, M R; Pettigrew, A G

    1975-10-01

    1. A study has been made of the formation of synapses in developing reinnervated and cross-reinnervated amphibian twitch muscles which receive either a focal (iliofibularis) or a distributed (sartorius) innervation from 'en plaque' nerve terminals using histological, ultrastructural and electrophysiological techniques. 2. During the development of the tadpole through metamorphosis to the adult frog, the sartorius myofibres increased in length at about twice the rate of the iliofibularis myofibres, due to a fast rate of growth at their insertions on to the pelvic tendon. 3. The short iliofibularis and sartorius myofibres of young tadpoles (800 mum long) possessed only a single synapse and the iliofibularis myofibres did not receive any further innervation during development. However the sartorius myofibres received further transient innervation on the new muscle laid down during development at the fast growing pelvic insertion, until the distance between the original synapse formed on the myofibres and the synapse at the pelvic end of the muscle was about 12 mm. 4. During development synapses possessed either skewed, multimodal, or unimodal m.e.p.p. amplitude-frequency distributions; the intervals between m.e.p.p.s. were not distributed randomly according to a Poisson process, as m.e.p.p.s. of similar amplitudes tended to be separated by very short intervals; the unit-size e.p.p. had a similar amplitude-frequency distribution as the m.e.p.p.s. if these had a unimodal distribution. 5. Reinnervation or cross-reinnervation of the sartorius and the iliofibularis muscles in adults or at a late stage of development simply reconstituted the normal focal and distributed innervation patterns of the muscles, as found in the control muscles of the contralateral and unoperated legs. 6. These observations on synapse formation in amphibia are consistent with the hypothesis that during development the axon making the initial synaptic contact on the muscle cells induces a property

  16. Homeostatic regulation of excitatory synapses on striatal medium spiny neurons expressing the D2 dopamine receptor.

    Science.gov (United States)

    Thibault, Dominic; Giguère, Nicolas; Loustalot, Fabien; Bourque, Marie-Josée; Ducrot, Charles; El Mestikawy, Salah; Trudeau, Louis-Éric

    2016-05-01

    Striatal medium spiny neurons (MSNs) are contacted by glutamatergic axon terminals originating from cortex, thalamus and other regions. The striatum is also innervated by dopaminergic (DAergic) terminals, some of which release glutamate as a co-transmitter. Despite evidence for functional DA release at birth in the striatum, the role of DA in the establishment of striatal circuitry is unclear. In light of recent work suggesting activity-dependent homeostatic regulation of glutamatergic terminals on MSNs expressing the D2 DA receptor (D2-MSNs), we used primary co-cultures to test the hypothesis that stimulation of DA and glutamate receptors regulates the homeostasis of glutamatergic synapses on MSNs. Co-culture of D2-MSNs with mesencephalic DA neurons or with cortical neurons produced an increase in spines and functional glutamate synapses expressing VGLUT2 or VGLUT1, respectively. The density of VGLUT2-positive terminals was reduced by the conditional knockout of this gene from DA neurons. In the presence of both mesencephalic and cortical neurons, the density of synapses reached the same total, compatible with the possibility of a homeostatic mechanism capping excitatory synaptic density. Blockade of D2 receptors increased the density of cortical and mesencephalic glutamatergic terminals, without changing MSN spine density or mEPSC frequency. Combined blockade of AMPA and NMDA glutamate receptors increased the density of cortical terminals and decreased that of mesencephalic VGLUT2-positive terminals, with no net change in total excitatory terminal density or in mEPSC frequency. These results suggest that DA and glutamate signaling regulate excitatory inputs to striatal D2-MSNs at both the pre- and postsynaptic level, under the influence of a homeostatic mechanism controlling functional output of the circuit.

  17. miR-8 controls synapse structure by repression of the actin regulator enabled.

    Science.gov (United States)

    Loya, Carlos M; McNeill, Elizabeth M; Bao, Hong; Zhang, Bing; Van Vactor, David

    2014-05-01

    MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression that play important roles in nervous system development and physiology. However, our understanding of the strategies by which miRNAs control synapse development is limited. We find that the highly conserved miRNA miR-8 regulates the morphology of presynaptic arbors at the Drosophila neuromuscular junction (NMJ) through a postsynaptic mechanism. Developmental analysis shows that miR-8 is required for presynaptic expansion that occurs in response to larval growth of the postsynaptic muscle targets. With an in vivo sensor, we confirm our hypothesis that the founding member of the conserved Ena/VASP (Enabled/Vasodilator Activated Protein) family is regulated by miR-8 through a conserved site in the Ena 3' untranslated region (UTR). Synaptic marker analysis and localization studies suggest that Ena functions within the subsynaptic reticulum (SSR) surrounding presynaptic terminals. Transgenic lines that express forms of a conserved mammalian Ena ortholog further suggest that this localization and function of postsynaptic Ena/VASP family protein is dependent on conserved C-terminal domains known to mediate actin binding and assembly while antagonizing actin-capping proteins. Ultrastructural analysis demonstrates that miR-8 is required for SSR morphogenesis. As predicted by our model, we find that Ena is both sufficient and necessary to account for miR-8-mediated regulation of SSR architecture, consistent with its localization in this compartment. Finally, electrophysiological analysis shows that miR-8 is important for spontaneous neurotransmitter release frequency and quantal content. However, unlike the structural phenotypes, increased expression of Ena fails to mimic the functional defects observed in miR-8-null animals. Together, these findings suggest that miR-8 limits the expansion of presynaptic terminals during larval synapse development through regulation of postsynaptic actin assembly that

  18. Quantification of synapse formation and maintenance in vivo in the absence of synaptic release

    NARCIS (Netherlands)

    Bouwman, J.J.; Maia, A.S.; Camoletto, P.G.; Posthuma, G.; Roubos, E.W.; Oorschot, V.M.J.; Klumperman, J.; Verhage, M.

    2004-01-01

    Outgrowing axons in the developing nervous system secrete neurotransmitters and neuromodulatory substances, which is considered to stimulate synaptogenesis. However, some synapses develop independent of presynaptic secretion. To investigate the role of secretion in synapse formation and maintenance

  19. Genetic variation in serotonin transporter function affects human fear expression indexed by fear-potentiated startle

    NARCIS (Netherlands)

    Klumpers, F.; Heitland, I.; Oosting, R.S.; Kenemans, J.L.; Baas, J.M.

    2012-01-01

    The serotonin transporter (SERT) plays a crucial role in anxiety. Accordingly, variance in SERT functioning appears to constitute an important pathway to individual differences in anxiety. The current study tested the hypothesis that genetic variation in SERT function is associated with variability

  20. How Do Cognitive Function and Knowledge Affect Heart Failure Self-Care?

    Science.gov (United States)

    Dickson, Victoria Vaughan; Lee, Christopher S.; Riegel, Barbara

    2011-01-01

    Despite extensive patient education, few heart failure (HF) patients master self-care. Impaired cognitive function may explain why patient education is ineffective. A concurrent triangulation mixed methods design was used to explore how knowledge and cognitive function influence HF self-care. A total of 41 adults with HF participated in interviews…

  1. PLATELET-FUNCTION ANALYSIS AFTER IN-VITRO TREATMENT WITH HEMOSTASIS-AFFECTING COMPONENTS

    NARCIS (Netherlands)

    TIGCHELAAR, [No Value; MONNINK, SHJ; HAAN, J; TABUCHI, N; VANOEVEREN, W

    1995-01-01

    An overall platelet function test in whole blood, which simulates conditions under arterial pressure, is useful in measuring the effect of polymer materials on blood hemostatic function. We performed biocompatibility tests with materials or plasma substitutes by interaction of blood from healthy vol

  2. Disruption of ArhGAP15 results in hyperactive Rac1, affects the architecture and function of hippocampal inhibitory neurons and causes cognitive deficits

    Science.gov (United States)

    Zamboni, Valentina; Armentano, Maria; Sarò, Gabriella; Ciraolo, Elisa; Ghigo, Alessandra; Germena, Giulia; Umbach, Alessandro; Valnegri, Pamela; Passafaro, Maria; Carabelli, Valentina; Gavello, Daniela; Bianchi, Veronica; D’Adamo, Patrizia; de Curtis, Ivan; El-Assawi, Nadia; Mauro, Alessandro; Priano, Lorenzo; Ferri, Nicola; Hirsch, Emilio; Merlo, Giorgio R.

    2016-01-01

    During brain development, the small GTPases Rac1/Rac3 play key roles in neuronal migration, neuritogenesis, synaptic formation and plasticity, via control of actin cytoskeleton dynamic. Their activity is positively and negatively regulated by GEFs and GAPs molecules, respectively. However their in vivo roles are poorly known. The ArhGAP15 gene, coding for a Rac-specific GAP protein, is expressed in both excitatory and inhibitory neurons of the adult hippocampus, and its loss results in the hyperactivation of Rac1/Rac3. In the CA3 and dentate gyrus (DG) regions of the ArhGAP15 mutant hippocampus the CR+, PV+ and SST+ inhibitory neurons are reduced in number, due to reduced efficiency and directionality of their migration, while pyramidal neurons are unaffected. Loss of ArhGAP15 alters neuritogenesis and the balance between excitatory and inhibitory synapses, with a net functional result consisting in increased spike frequency and bursts, accompanied by poor synchronization. Thus, the loss of ArhGAP15 mainly impacts on interneuron-dependent inhibition. Adult ArhGAP15−/− mice showed defective hippocampus-dependent functions such as working and associative memories. These findings indicate that a normal architecture and function of hippocampal inhibitory neurons is essential for higher hippocampal functions, and is exquisitely sensitive to ArhGAP15-dependent modulation of Rac1/Rac3. PMID:27713499

  3. Affective dysfunctions in adolescents at risk for psychosis : Emotion awareness and social functioning

    NARCIS (Netherlands)

    van Rijn, Sophie; Schothorst, Patricia; van 't Wout, Mascha; Sprong, Mirjam; Ziermans, Tim; van Engeland, Herman; Aleman, Andre; Swaab, Hanna

    2011-01-01

    Studies of individuals at ultra high risk (UHR) for psychosis have revealed deviations in cognitive and neural development before the onset of psychosis. As affective impairments are among the core dysfunctions in psychotic disorders such as schizophrenia, this study assessed emotion processing and

  4. Functional Richness and Identity Do Not Strongly Affect Invasibility of Constructed Dune Communities.

    Science.gov (United States)

    Mason, Tanya J; French, Kristine; Jolley, Dianne F

    2017-01-01

    Biotic effects are often used to explain community structure and invasion resistance. We evaluated the contribution of functional richness and identity to invasion resistance and abiotic resource availability using a mesocosm experiment. We predicted that higher functional richness would confer greater invasion resistance through greater resource sequestration. We also predicted that niche pre-emption and invasion resistance would be higher in communities which included functional groups similar to the invader than communities where all functional groups were distinct from the invader. We constructed communities of different functional richness and identity but maintained constant species richness and numbers of individuals in the resident community. The constructed communities represented potential fore dune conditions following invader control activities along the Australian east coast. We then simulated an invasion event by bitou (Chrysanthemoides monilifera ssp. rotundata DC. Norl.), a South African shrub invader. We used the same bitou propagule pressure across all treatments and monitored invasion success and resource availability for 13 months. Contrary to our predictions, we found that functional richness did not mediate the number of bitou individuals or bitou cover and functional identity had little effect on invasion success: there was a trend for the grass single functional group treatment to supress bitou individuals, but this trend was obscured when grasses were in multi functional group treatments. We found that all constructed communities facilitated bitou establishment and suppressed bitou cover relative to unplanted mesocosms. Abiotic resource use was either similar among planted communities, or differences did not relate to invasion success (with the exception of light availability). We attribute invasion resistance to bulk plant biomass across planted treatments rather than their functional group arrangement.

  5. Brain-derived neurotrophic factor controls activity-dependent maturation of CA1 synapses by downregulating tonic activation of presynaptic kainate receptors.

    Science.gov (United States)

    Sallert, Marko; Rantamäki, Tomi; Vesikansa, Aino; Anthoni, Heidi; Harju, Kirsi; Yli-Kauhaluoma, Jari; Taira, Tomi; Castren, Eero; Lauri, Sari E

    2009-09-09

    Immature hippocampal synapses express presynaptic kainate receptors (KARs), which tonically inhibit glutamate release. Presynaptic maturation involves activity-dependent downregulation of the tonic KAR activity and consequent increase in release probability; however, the molecular mechanisms underlying this developmental process are unknown. Here, we have investigated whether brain derived neurotrophic factor (BDNF), a secreted protein implicated in developmental plasticity in several areas of the brain, controls presynaptic maturation by regulating KARs. Application of BDNF in neonate hippocampal slices resulted in increase in synaptic transmission that fully occluded the immature-type KAR activity in area CA1. Conversely, genetic ablation of BDNF was associated with delayed synaptic maturation and persistent presynaptic KAR activity, suggesting a role for endogenous BDNF in the developmental regulation of KAR function. In addition, our data suggests a critical role for BDNF TrkB signaling in fast activity-dependent regulation of KARs. Selective acute inhibition of TrkB receptors using a chemical-genetic approach prevented rapid change in synapse dynamics and loss of tonic KAR activity that is typically seen in response to induction of LTP at immature synapses. Together, these data show that BDNF-TrkB-dependent maturation of glutamatergic synapses is tightly associated with a loss of endogenous KAR activity. The coordinated action of these two receptor mechanisms has immediate physiological relevance in controlling presynaptic efficacy and transmission dynamics at CA3-CA1 synapses at a stage of development when functional contact already exists but transmission is weak.

  6. Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor.

    Science.gov (United States)

    Parkhurst, Christopher N; Yang, Guang; Ninan, Ipe; Savas, Jeffrey N; Yates, John R; Lafaille, Juan J; Hempstead, Barbara L; Littman, Dan R; Gan, Wen-Biao

    2013-12-19

    Microglia are the resident macrophages of the CNS, and their functions have been extensively studied in various brain pathologies. The physiological roles of microglia in brain plasticity and function, however, remain unclear. To address this question, we generated CX3CR1(CreER) mice expressing tamoxifen-inducible Cre recombinase that allow for specific manipulation of gene function in microglia. Using CX3CR1(CreER) to drive diphtheria toxin receptor expression in microglia, we found that microglia could be specifically depleted from the brain upon diphtheria toxin administration. Mice depleted of microglia showed deficits in multiple learning tasks and a significant reduction in motor-learning-dependent synapse formation. Furthermore, Cre-dependent removal of brain-derived neurotrophic factor (BDNF) from microglia largely recapitulated the effects of microglia depletion. Microglial BDNF increases neuronal tropomyosin-related kinase receptor B phosphorylation, a key mediator of synaptic plasticity. Together, our findings reveal that microglia serve important physiological functions in learning and memory by promoting learning-related synapse formation through BDNF signaling.

  7. Functional Correlates of childhood maltreatment and symptom severity during affective theory of mind tasks in chronic depression.

    Science.gov (United States)

    Hentze, Charlotte; Walter, Henrik; Schramm, Elisabeth; Drost, Sarah; Schoepf, Dieter; Fangmeier, Thomas; Mattern, Margarete; Normann, Claus; Zobel, Ingo; Schnell, Knut

    2016-04-30

    Among multiple etiological factors of depressive disorders, childhood maltreatment (CM) gains increasing attention as it confers susceptibility for depression and predisposes to chronicity. CM assumedly inhibits social-cognitive development, entailing interactional problems as observed in chronic depression (CD), especially in affective theory of mind (ToM). However, the extent of CM among CD patients varies notably as does the severity of depressive symptoms. We tested whether the extent of CM or depressive symptoms correlates with affective ToM functions in CD patients. Regional brain activation measured by functional magnetic resonance imaging during an affective ToM task was tested for correlation with CM, assessed by the Childhood Trauma Questionnaire (CTQ), and symptom severity, assessed by the Montgomery-Åsberg Depression Rating Scale (MADRS), in 25 unmedicated CD patients (mean age 41.52, SD 11.13). Amygdala activation during affective ToM correlated positively with CTQ total scores, while (para)hippocampal response correlated negatively with MADRS scores. Our findings suggest that differential amygdala activation in affective ToM in CD is substantially modulated by previous CM and not by the pathophysiological equivalents of current depressive symptoms. This illustrates the amygdala's role in the mediation of CM effects. The negative correlation of differential (para)hippocampal activation and depressive symptom severity indicates reduced integration of interactional experiences during depressive states.

  8. Ecological Momentary Assessment of social functioning in schizophrenia: impact of performance appraisals and affect on social interactions.

    Science.gov (United States)

    Granholm, Eric; Ben-Zeev, Dror; Fulford, Daniel; Swendsen, Joel

    2013-04-01

    Research concerning the complex interplay between factors that contribute to poor social functioning in schizophrenia has been hampered by limitations of traditional measures, most notably the ecological validity and accuracy of retrospective self-report and interview measures. Computerized Ecological Momentary Assessment (EMAc) permits the real-time assessment of relationships between daily life experiences, thoughts, feelings, and behaviors. In the current study, EMAc was used to record daily social interactions, subjective performance appraisals of these interactions (e.g., "I succeeded/failed"; "I was liked/rejected"), and affect in 145 individuals with schizophrenia or schizoaffective disorder. Participants completed electronic questionnaires on a personal digital assistant (PDA) four times per day for one week. Time-lagged multilevel modeling of the data revealed that more positive interaction appraisals at any point in a day were associated with greater positive affect which, in turn, was a strong predictor of more social interactions over subsequent hours. Social functioning, therefore, was linked to positive performance beliefs about social interactions that were associated with greater positive affect. The findings suggest a useful treatment target for cognitive behavioral therapy and other psychosocial interventions that can be used to challenge defeatist beliefs and increase positive affect to enhance social functioning in schizophrenia.

  9. Children with cerebral palsy and periventricular white matter injury: does gestational age affect functional outcome?

    Science.gov (United States)

    Harvey, Adrienne R; Randall, Melinda; Reid, Susan M; Lee, Katherine J; Imms, Christine; Rodda, Jillian; Eldridge, Beverley; Orsini, Francesca; Reddihough, Dinah

    2013-09-01

    This study aimed to determine differences in functional profiles and movement disorder patterns in children aged 4-12 years with cerebral palsy (CP) and periventricular white matter injury (PWMI) born >34 weeks gestation compared with those born earlier. Eligible children born between 1999 and 2006 were recruited through the Victorian CP register. Functional profiles were determined using the Gross Motor Function Classification System (GMFCS), Manual Abilities Classification System (MACS), Communication Function Classification System (CFCS), Functional Mobility Scale (FMS) and Bimanual Fine Motor Function (BFMF). Movement disorder and topography were classified using the Surveillance of Cerebral Palsy in Europe (SCPE) classification. 49 children born >34 weeks (65% males, mean age 8 y 9 mo [standard deviation (SD) 2 y 2 mo]) and 60 children born ≤ 34 weeks (62% males, mean age 8 y 2 mo [SD 2 y 2 mo]) were recruited. There was evidence of differences between the groups for the GMFCS (p=0.003), FMS 5, 50 and 500 (p=0.003, 0.002 and 0.012), MACS (p=0.04) and CFCS (p=0.035), with a greater number of children born ≤ 34 weeks more severely impaired compared with children born later. Children with CP and PWMI born >34 weeks gestation had milder limitations in gross motor function, mobility, manual ability and communication compared with those born earlier.

  10. miR-125b affects mitochondrial biogenesis and impairs brite adipocyte formation and function

    Directory of Open Access Journals (Sweden)

    Maude Giroud

    2016-08-01

    Conclusion: Collectively, our results demonstrate that miR-125b-5p plays an important role in the repression of brite adipocyte function by modulating oxygen consumption and mitochondrial gene expression.

  11. Restoration of hip architecture with bipolar hemiarthroplasty in the elderly : does it affect early functional outcome?

    NARCIS (Netherlands)

    Hartel, Maximilian; Arndt, Marius; Eulenburg, Christine Zu; Petersen, Jan Philipp; Rueger, Johannes M.; Hoffmann, Michael

    2014-01-01

    Reconstruction of the anatomic architecture correlates with functional outcome in patients receiving elective total hip arthroplasty. In theory similar rules should apply for bipolar hemiarthroplasty in femoral neck fractures. The influence of anatomic restoration after bipolar hemiarthroplasty on s

  12. Sevoflurane exposure in 7-day-old rats affects neurogenesis,neurodegeneration and neurocognitive function

    Institute of Scientific and Technical Information of China (English)

    Fang Fang; Zhanggang Xue; Jing Cang

    2012-01-01

    Objective Sevoflurane is widely used in pediatric anesthesia and former studies showed that it causes neurodegeneration in the developing brain.The present study was carried out to investigate the effects of sevoflurane on neurogenesis,neurodegeneration and behavior.Methods We administered 5-bromodeoxyuridine,an S-phase marker,before,during,and after 4 h of sevoflurane given to rats on postnatal day 7 to assess dentate gyrus progenitor proliferation and Fluoro-Jade staining for degeneration.Spatial reference memory was tested 2 and 6 weeks after anesthesia.Results Sevoflurane decreased progenitor proliferation and increased cell death until at least 4 days after anesthesia.Spatial reference memory was not affected at 2 weeks but was affected at 6 weeks after sevoflurane administration.Conclusion Sevoflurane reduces neurogenesis and increases the death of progenitor cells in developing brain.This might mediate the lateonset neurocognitive outcome after sevoflurane application.

  13. The putative cannabinoid receptor GPR55 affects osteoclast function in vitro and bone mass in vivo

    OpenAIRE

    Whyte, Lauren S.; Ryberg, Erik; Sims, Natalie A.; Ridge, Susan A.; Mackie, Ken; Greasley, Peter J.; Ross, Ruth A.; Rogers, Michael J

    2009-01-01

    GPR55 is a G protein-coupled receptor recently shown to be activated by certain cannabinoids and by lysophosphatidylinositol (LPI). However, the physiological role of GPR55 remains unknown. Given the recent finding that the cannabinoid receptors CB1 and CB2 affect bone metabolism, we examined the role of GPR55 in bone biology. GPR55 was expressed in human and mouse osteoclasts and osteoblasts; expression was higher in human osteoclasts than in macrophage progenitors. Although the GPR55 agonis...

  14. Aesthetic And Functional Rehabilitation Of The Primary Dentition Affected By Amelogenesis Imperfecta.

    OpenAIRE

    Maria Carolina Salomé Marquezin; Bruna Raquel Zancopé; Larissa Ferreira Pacheco; Maria Beatriz Duarte Gavião; Fernanda Miori Pascon

    2015-01-01

    The objective of this case report was to describe the oral rehabilitation of a five-year-old boy patient diagnosed with amelogenesis imperfecta (AI) in the primary dentition. AI is a group of hereditary disorders that affects the enamel structure. The patient was brought to the dental clinic complaining of tooth hypersensitivity during meals. The medical history and clinical examination were used to arrive at the diagnosis of AI. The treatment was oral rehabilitation of the primary molars wit...

  15. Maternal early-life trauma and affective parenting style: the mediating role of HPA-axis function.

    Science.gov (United States)

    Juul, Sarah H; Hendrix, Cassandra; Robinson, Brittany; Stowe, Zachary N; Newport, D Jeffrey; Brennan, Patricia A; Johnson, Katrina C

    2016-02-01

    A history of childhood trauma is associated with increased risk for psychopathology and interpersonal difficulties in adulthood and, for those who have children, impairments in parenting and increased risk of negative outcomes in offspring. Physiological and behavioral mechanisms are poorly understood. In the current study, maternal history of childhood trauma was hypothesized to predict differences in maternal affect and HPA axis functioning. Mother-infant dyads (N = 255) were assessed at 6 months postpartum. Mothers were videotaped during a 3-min naturalistic interaction, and their behavior was coded for positive, neutral, and negative affect. Maternal salivary cortisol was measured six times across the study visit, which also included an infant stressor paradigm. Results showed that childhood trauma history predicted increased neutral affect and decreased mean cortisol in the mothers and that cortisol mediated the association between trauma history and maternal affect. Maternal depression was not associated with affective measures or cortisol. Results suggest that early childhood trauma may disrupt the development of the HPA axis, which in turn impairs affective expression during mother-infant interactions in postpartum women. Interventions aimed at treating psychiatric illness in postpartum women may benefit from specific components to assess and treat trauma-related symptoms and prevent secondary effects on parenting.

  16. Aging affects epidermal Langerhans cell development and function and alters their miRNA gene expression profile.

    Science.gov (United States)

    Xu, Ying-Ping; Qi, Rui-Qun; Chen, Wenbin; Shi, Yuling; Cui, Zhi-Zhong; Gao, Xing-Hua; Chen, Hong-Duo; Zhou, Li; Mi, Qing-Sheng

    2012-11-01

    Immunosenescence is a result of progressive decline in immune system function with advancing age. Epidermal Langerhans cells (LCs), belonging to the dendritic cell (DC) family, act as sentinels to play key roles in the skin immune responses. However, it has not been fully elucidated how aging affects development and function of LCs. Here, we systemically analyzed LC development and function during the aging process in C57BL/6J mice, and performed global microRNA (miRNA) gene expression profiles in aged and young LCs. We found that the frequency and maturation of epidermal LCs were significantly reduced in aged mice starting at 12 months of age, while the Langerin expression and ability to phagocytose Dextran in aged LCs were increased compared to LCs from aged and young mice. Functionally, aged LCs were impaired in their capacity to induce OVA-specific CD4+ and CD8+ T cell proliferation. Furthermore, the expression of miRNAs in aged epidermal LCs showed a distinct profile compared to young LCs. Most interestingly, aging-regulated miRNAs potentially target TGF-β-dependent and non- TGF-β-dependent signal pathways related to LCs. Overall, our data suggests that aging affects LCs development and function, and that age-regulated miRNAs may contribute to the LC developmental and functional changes in aging.

  17. Dopamine synapse is a neuroligin-2-mediated contact between dopaminergic presynaptic and GABAergic postsynaptic structures.

    Science.gov (United States)

    Uchigashima, Motokazu; Ohtsuka, Toshihisa; Kobayashi, Kazuto; Watanabe, Masahiko

    2016-04-12

    Midbrain dopamine neurons project densely to the striatum and form so-called dopamine synapses on medium spiny neurons (MSNs), principal neurons in the striatum. Because dopamine receptors are widely expressed away from dopamine synapses, it remains unclear how dopamine synapses are involved in dopaminergic transmission. Here we demonstrate that dopamine synapses are contacts formed between dopaminergic presynaptic and GABAergic postsynaptic structures. The presynaptic structure expressed tyrosine hydroxylase, vesicular monoamine transporter-2, and plasmalemmal dopamine transporter, which are essential for dopamine synthesis, vesicular filling, and recycling, but was below the detection threshold for molecules involving GABA synthesis and vesicular filling or for GABA itself. In contrast, the postsynaptic structure of dopamine synapses expressed GABAergic molecules, including postsynaptic adhesion molecule neuroligin-2, postsynaptic scaffolding molecule gephyrin, and GABAA receptor α1, without any specific clustering of dopamine receptors. Of these, neuroligin-2 promoted presynaptic differentiation in axons of midbrain dopamine neurons and striatal GABAergic neurons in culture. After neuroligin-2 knockdown in the striatum, a significant decrease of dopamine synapses coupled with a reciprocal increase of GABAergic synapses was observed on MSN dendrites. This finding suggests that neuroligin-2 controls striatal synapse formation by giving competitive advantage to heterologous dopamine synapses over conventional GABAergic synapses. Considering that MSN dendrites are preferential targets of dopamine synapses and express high levels of dopamine receptors, dopamine synapse formation may serve to increase the specificity and potency of dopaminergic modulation of striatal outputs by anchoring dopamine release sites to dopamine-sensing targets.

  18. Multisensory Bayesian Inference Depends on Synapse Maturation during Training: Theoretical Analysis and Neural Modeling Implementation.

    Science.gov (United States)

    Ursino, Mauro; Cuppini, Cristiano; Magosso, Elisa

    2017-03-01

    Recent theoretical and experimental studies suggest that in multisensory conditions, the brain performs a near-optimal Bayesian estimate of external events, giving more weight to the more reliable stimuli. However, the neural mechanisms responsible for this behavior, and its progressive maturation in a multisensory environment, are still insufficiently understood. The aim of this letter is to analyze this problem with a neural network model of audiovisual integration, based on probabilistic population coding-the idea that a population of neurons can encode probability functions to perform Bayesian inference. The model consists of two chains of unisensory neurons (auditory and visual) topologically organized. They receive the corresponding input through a plastic receptive field and reciprocally exchange plastic cross-modal synapses, which encode the spatial co-occurrence of visual-auditory inputs. A third chain of multisensory neurons performs a simple sum of auditory and visual excitations. The work includes a theoretical part and a computer simulation study. We show how a simple rule for synapse learning (consisting of Hebbian reinforcement and a decay term) can be used during training to shrink the receptive fields and encode the unisensory likelihood functions. Hence, after training, each unisensory area realizes a maximum likelihood estimate of stimulus position (auditory or visual). In cross-modal conditions, the same learning rule can encode information on prior probability into the cross-modal synapses. Computer simulations confirm the theoretical results and show that the proposed network can realize a maximum likelihood estimate of auditory (or visual) positions in unimodal conditions and a Bayesian estimate, with moderate deviations from optimality, in cross-modal conditions. Furthermore, the model explains the ventriloquism illusion and, looking at the activity in the multimodal neurons, explains the automatic reweighting of auditory and visual inputs

  19. Progressive alterations of hippocampal CA3-CA1 synapses in an animal model of depression.

    Science.gov (United States)

    Qiao, Hui; An, Shu-Cheng; Ren, Wei; Ma, Xin-Ming

    2014-12-15

    Major depressive disorder is the most prevalent psychiatric condition, but the cellular and molecular mechanisms underlying this disorder are largely unknown, although multiple hypotheses have been proposed. The aim of this study was to characterize the progressive alteration of neuronal plasticity in the male rat hippocampus during depression induced by chronic unpredictable mild stress (CUMS), an established animal model of depression. The data in the hippocampus were collected on days 7, 14 and 21 after the onset of three-week CUMS. When analyzed on day 21, three-week CUMS induced typically depressive-like behaviors, impaired LTP induction, and decreased basal synaptic transmission at hippocampal CA3-CA1 synapses recorded in vivo, which was accompanied by decreased density of dendritic spines in CA1 and CA3 pyramidal neurons. The levels of both Kalirin-7 and brain-derived neurotrophic factor (BDNF) in the hippocampus were decreased at the same time. On day 14 (middle phase), some depressive-like behaviors were observed, which was accompanied by depressed basal synaptic transmission and enhanced LTP induction at the CA3-CA1 synapses. However, BDNF expression was decreased without alteration of Kalirin7 expression in comparison with no-stress control. Depressed basal synaptic transmission occurred in the middle phase of CUMS may contribute to decreased expression of BDNF. On day 7, depressive-like behaviors were not observed, and LTP induction, spine density, Kalirin-7 and BDNF expression were not altered by CUMS in comparison with no-stress control. These results showed that the functional changes at CA3-CA1synapses occurred earlier than the structural alteration during three-week CUMS as a strategy of neural adaptation, and rats required three weeks to develop depressive-like behaviors during CUMS. Our results suggest an important role of Kalirin-7 in CUMS-mediated alterations in spine density, synaptic function and overall depressive-like behaviors on day 21.

  20. Efficient supervised learning in networks with binary synapses

    CERN Document Server

    Baldassi, Carlo; Brunel, Nicolas; Zecchina, Riccardo

    2007-01-01

    Recent experimental studies indicate that synaptic changes induced by neuronal activity are discrete jumps between a small number of stable states. Learning in systems with discrete synapses is known to be a computationally hard problem. Here, we study a neurobiologically plausible on-line learning algorithm that derives from Belief Propagation algorithms. We show that it performs remarkably well in a model neuron with binary synapses, and a finite number of `hidden' states per synapse, that has to learn a random classification task. Such system is able to learn a number of associations close to the theoretical limit, in time which is sublinear in system size. This is to our knowledge the first on-line algorithm that is able to achieve efficiently a finite number of patterns learned per binary synapse. Furthermore, we show that performance is optimal for a finite number of hidden states which becomes very small for sparse coding. The algorithm is similar to the standard `perceptron' learning algorithm, with a...

  1. A New Mechanism for Neuron-synapse Maturation Discovered

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ A group of CAS scientists recently made a research breakthrough in the development of synapse, the key structure of the nervous system that transmits signals from one nerve cell to another. This work was reported as a cover story in the May 4th issue of prestigious journal Neuron.

  2. Linking Mitochondria to Synapses: New Insights for Stress-Related Neuropsychiatric Disorders

    Directory of Open Access Journals (Sweden)

    Freddy Jeanneteau

    2016-01-01

    Full Text Available The brain evolved cellular mechanisms for adapting synaptic function to energy supply. This is particularly evident when homeostasis is challenged by stress. Signaling loops between the mitochondria and synapses scale neuronal connectivity with bioenergetics capacity. A biphasic “inverted U shape” response to the stress hormone glucocorticoids is demonstrated in mitochondria and at synapses, modulating neural plasticity and physiological responses. Low dose enhances neurotransmission, synaptic growth, mitochondrial functions, learning, and memory whereas chronic, higher doses produce inhibition of these functions. The range of physiological effects by stress and glucocorticoid depends on the dose, duration, and context at exposure. These criteria are met by neuronal activity and the circadian, stress-sensitive and ultradian, stress-insensitive modes of glucocorticoid secretion. A major hallmark of stress-related neuropsychiatric disorders is the disrupted glucocorticoid rhythms and tissue resistance to signaling with the glucocorticoid receptor (GR. GR resistance could result from the loss of context-dependent glucocorticoid signaling mediated by the downregulation of the activity-dependent neurotrophin BDNF. The coincidence of BDNF and GR signaling changes glucocorticoid signaling output with consequences on mitochondrial respiration efficiency, synaptic plasticity, and adaptive trajectories.

  3. Affecting Rhomboid-3 function causes a dilated heart in adult Drosophila.

    Directory of Open Access Journals (Sweden)

    Lin Yu

    2010-05-01

    Full Text Available Drosophila is a well recognized model of several human diseases, and recent investigations have demonstrated that Drosophila can be used as a model of human heart failure. Previously, we described that optical coherence tomography (OCT can be used to rapidly examine the cardiac function in adult, awake flies. This technique provides images that are similar to echocardiography in humans, and therefore we postulated that this approach could be combined with the vast resources that are available in the fly community to identify new mutants that have abnormal heart function, a hallmark of certain cardiovascular diseases. Using OCT to examine the cardiac function in adult Drosophila from a set of molecularly-defined genomic deficiencies from the DrosDel and Exelixis collections, we identified an abnormally enlarged cardiac chamber in a series of deficiency mutants spanning the rhomboid 3 locus. Rhomboid 3 is a member of a highly conserved family of intramembrane serine proteases and processes Spitz, an epidermal growth factor (EGF-like ligand. Using multiple approaches based on the examination of deficiency stocks, a series of mutants in the rhomboid-Spitz-EGF receptor pathway, and cardiac-specific transgenic rescue or dominant-negative repression of EGFR, we demonstrate that rhomboid 3 mediated activation of the EGF receptor pathway is necessary for proper adult cardiac function. The importance of EGF receptor signaling in the adult Drosophila heart underscores the concept that evolutionarily conserved signaling mechanisms are required to maintain normal myocardial function. Interestingly, prior work showing the inhibition of ErbB2, a member of the EGF receptor family, in transgenic knock-out mice or individuals that received herceptin chemotherapy is associated with the development of dilated cardiomyopathy. Our results, in conjunction with the demonstration that altered ErbB2 signaling underlies certain forms of mammalian cardiomyopathy, suggest

  4. Gravitational environment produced by a superconducting magnet affects osteoblast morphology and functions

    Science.gov (United States)

    Qian, Airong; Zhang, Wei; Weng, Yuanyuan; Tian, Zongcheng; Di, Shengmeng; Yang, Pengfei; Yin, Dachuan; Hu, Lifang; Wang, Zhe; Xu, Huiyun; Shang, Peng

    The aims of this study are to investigate the effects of gravitational environment produced by a superconducting magnet on osteoblast morphology, proliferation and adhesion. A superconducting magnet which can produce large gradient high magnetic field (LGHMF) and provide three apparent gravity levels (0g,1gand2g) was employed to simulate space gravity environment. The effects of LGHMF on osteoblast morphology, proliferation, adhesion and the gene expression of fibronectin and collagen I were detected by scanning electron microscopy, immunocytochemistry, adhesion assays and real time PCR, respectively, after exposure of osteoblasts to LGHMF for 24 h. Osteoblast morphology was affected by LGHMF (0g,1gand2g) and the most evident morphology alteration was observed at 0g condition. Proliferative abilities of MC3T3 and MG-63 cell were affected under LGHMF (0g,1gand2g) conditions compared to control condition. The adhesive abilities of MC3T3 and MG-63 cells to extracellular matrix (ECM) proteins (fibronectin, laminin, collagen IV) were also affected by LGHMF (0g,1gand2g), moreover, the effects of LGHMF on osteoblast adhesion to different ECM proteins were different. Fibronectin gene expression in MG63 cells under zero gravity condition was increased significantly compared to other conditions. Collagen I gene expression in MG-63 and MC3T3 cells was altered by both magnetic field and alerted gravity. The study indicates that the superconducting magnet which can produce LGHMF may be a novel ground-based space gravity simulator and can be used for biological experiment at cellular level.

  5. Deficient fear conditioning in psychopathy as a function of interpersonal and affective disturbances

    Directory of Open Access Journals (Sweden)

    Ralf eVeit

    2013-10-01

    Full Text Available The diminished fear reactivity is one of the most valid physiological findings in psychopathy research. In a fear conditioning paradigm, with faces as conditioned stimulus (CS and electric shock as unconditioned stimulus (US, we investigated a sample of 14 high psychopathic violent offenders. Event related potentials, skin conductance responses (SCR as well as subjective ratings of the CSs were collected. This study assessed to which extent the different facets of the psychopathy construct contribute to the fear conditioning deficits observed in psychopaths. Participants with high scores on the affective facet subscale of the Psychopathy Checklist-Revised (PCL-R showed weaker conditioned fear responses and lower N100 amplitudes compared to low scorers. In contrast, high scorers on the affective facet rated the CS+ (paired more negatively than low scorers regarding the CS- (unpaired. Regarding the P300, high scores on the interpersonal facet were associated with increased amplitudes to the CS+ compared to the CS-, while the opposed pattern was found with the antisocial facet. Both, the initial and terminal contingent negative variation indicated a divergent pattern: participants with pronounced interpersonal deficits, showed increased cortical negativity to the CS+ compared to the CS-, whereas a reversed CS+/CS- differentiation was found in offenders scoring high on the antisocial facet. The present study revealed that deficient fear conditioning in psychopathy was most pronounced in offenders with high scores on the affective facet. Event related potentials suggest that participants with distinct interpersonal deficits showed increased information processing, whereas the antisocial facet was linked to decreased attention and interest to the CS+. These data indicate that an approach to the facets of psychopathy can help to resolve ambiguous findings in psychopathy research and enables a more precise and useful description of this disorder.

  6. The regulation of SIRT2 function by cyclin-dependent kinases affects cell motility.

    NARCIS (Netherlands)

    Pandithage, R.; Lilischkis, R.; Harting, K.; Wolf, A.; Jedamzik, B.; Luscher-Firzlaff, J.; Vervoorts, J.; Lasonder, E.; Kremmer, E.; Knoll, B.; Luscher, B.

    2008-01-01

    Cyclin-dependent kinases (Cdks) fulfill key functions in many cellular processes, including cell cycle progression and cytoskeletal dynamics. A limited number of Cdk substrates have been identified with few demonstrated to be regulated by Cdk-dependent phosphorylation. We identify on protein express

  7. Elucidating How Surface Functionalization of Multiwalled Carbon Nanotube Affects Nanostructured MWCNT/Titania Hybrid Materials

    Directory of Open Access Journals (Sweden)

    Cheng-Fu Yang

    2015-01-01

    Full Text Available The new class of multiwalled carbon nanotube (MWCNT/titania nanocomposites was prepared using a sol-gel technique. The addition of titania to MWCNTs has the potential to provide new capability for the development of electrical devices by taking advantage of the favorable electric characteristics of MWCNTs. MWCNTs were first functionalized with carboxyl, acyl chloride, amine, and hydroxyl groups and were then dispersed in a tetraisopropyl titanate (TIPT solution via ultrasonic processing. After gelation, well-dispersed titania in the MWCNT/titania nanocomposites was obtained. Functionalized MWCNTs with varied functional groups were proved by Fourier transform infrared spectroscopy (FT-IR. For the nanocomposites, the degree of the sol-gel process were proved by Raman spectroscopy and wide-angle X-ray diffraction (WAXD. Furthermore, the morphology of the MWCNT/titania nanocomposites was observed using transmission electron microscopy (TEM. In the sol-gel process, the functionalized MWCNTs with carboxyl, acyl chloride, amine, and hydroxyl groups have resulted in the carbon nanotube-graft-titania nanocomposites with a network structure of titania between the carbon nanotubes.

  8. Does Gender-Specific Differential Item Functioning Affect the Structure in Vocational Interest Inventories?

    Science.gov (United States)

    Beinicke, Andrea; Pässler, Katja; Hell, Benedikt

    2014-01-01

    The study investigates consequences of eliminating items showing gender-specific differential item functioning (DIF) on the psychometric structure of a standard RIASEC interest inventory. Holland's hexagonal model was tested for structural invariance using a confirmatory methodological approach (confirmatory factor analysis and randomization…

  9. Age and environment affect constitutive immune function in Red Knots (Calidris canutus)

    NARCIS (Netherlands)

    Buehler, Deborah M.; Tieleman, B. Irene; Piersma, Theunis; Guglielmo, C.G.

    2009-01-01

    We studied subspecies, age and environmental effects on constitutive immune function (natural antibody and complement titres, haptoglobin activity and leukocyte concentrations) in Red Knots (Calidris canutus). We compared C. c. islandica and C. c. canutus in the Wadden Sea and found no difference in

  10. Can focused US with a diagnostic US contrast agent favorably affect renal function?

    Science.gov (United States)

    Sica, Domenic A

    2009-12-01

    Focused ultrasonography (US) with simultaneous administration of a US microbubble contrast agent was used to transiently increase the glomerular filtration rate while altering the sieving properties of glomeruli in normal rabbits. In its current form, this process has very limited application potential to states of abnormal renal function.

  11. Preterm Birth Affects Dorsal-Stream Functioning Even after Age 6

    Science.gov (United States)

    Santos, A.; Duret, M.; Mancini, J.; Gire, C.; Deruelle, C.

    2009-01-01

    With increasing numbers of preterm infants surviving, the impact of preterm birth on later cognitive development presents a major interest. This study investigates the impact of preterm birth on later dorsal- and ventral-stream functioning. An atypical pattern of performance was found for preterm children relative to full-term controls, but in the…

  12. The parasitic copepod Lernaeocera branchialis negatively affects cardiorespiratory function in Gadus morhua

    DEFF Research Database (Denmark)

    Behrens, Jane W.; Seth, H.; Axelsson, M.

    2014-01-01

    The parasitic copepod Lernaeocera branchialis had a negative effect on cardiorespiratory function in Atlantic cod Gadus morhua such that it caused pronounced cardiac dysfunction with irregular rhythm and reduced stroke amplitude compared with uninfected fish. In addition, parasite infection...... depressed the postprandial cardiac output and oxygen consumption...

  13. Functional Measurement Analysis of Brand Equity: Does Brand Name Affect Perceptions of Quality?

    Science.gov (United States)

    Hilgenkamp, Heather; Shanteau, James

    2010-01-01

    This research project used Functional Measurement to examine how the brand name of consumer products impacts intended purchasing decisions. Thirty undergraduate students tested actual products from three different product categories (crayons, tissues, and tortilla chips). Each product category consisted of three different brands; one with high…

  14. Essential Role for Vav GEFs in Brain-derived Neurotrophic Factor (BDNF)-induced Dendritic Spine Growth and Synapse Plasticity

    OpenAIRE

    Hale, Carly F.; Dietz, Karen C.; Varela, Juan A.; Wood, Cody B.; Zirlin, Benjamin C.; Leah S. Leverich; Greene, Robert W.; Cowan, Christopher W.

    2011-01-01

    Brain-derived neurotrophic factor (BDNF) and its cognate receptor, TrkB, regulate a wide range of cellular processes, including dendritic spine formation and functional synapse plasticity. However, the signaling mechanisms that link BDNF-activated TrkB to F-actin remodeling enzymes and dendritic spine morphological plasticity remain poorly understood. We report here that BDNF/TrkB signaling in neurons activates the Vav family of Rac/RhoA guanine nucleotide exchange factors (GEFs) through a no...

  15. Representations of modality-specific affective processing for visual and auditory stimuli derived from functional magnetic resonance imaging data.

    Science.gov (United States)

    Shinkareva, Svetlana V; Wang, Jing; Kim, Jongwan; Facciani, Matthew J; Baucom, Laura B; Wedell, Douglas H

    2014-07-01

    There is converging evidence that people rapidly and automatically encode affective dimensions of objects, events, and environments that they encounter in the normal course of their daily routines. An important research question is whether affective representations differ with sensory modality. This research examined the nature of the dependency of affect and sensory modality at a whole-brain level of analysis in an incidental affective processing paradigm. Participants were presented with picture and sound stimuli that differed in positive or negative valence in an event-related functional magnetic resonance imaging experiment. Global statistical tests, applied at a level of the individual, demonstrated significant sensitivity to valence within modality, but not valence across modalities. Modality-general and modality-specific valence hypotheses predict distinctly different multidimensional patterns of the stimulus conditions. Examination of lower dimensional representation of the data demonstrated separable dimensions for valence processing within each modality. These results provide support for modality-specific valence processing in an incidental affective processing paradigm at a whole-brain level of analysis. Future research should further investigate how stimulus-specific emotional decoding may be mediated by the physical properties of the stimuli.

  16. Genes that affect brain structure and function identified by rare variant analyses of Mendelian neurologic disease

    Science.gov (United States)

    Karaca, Ender; Harel, Tamar; Pehlivan, Davut; Jhangiani, Shalini N.; Gambin, Tomasz; Akdemir, Zeynep Coban; Gonzaga-Jauregui, Claudia; Erdin, Serkan; Bayram, Yavuz; Campbell, Ian M.; Hunter, Jill V.; Atik, Mehmed M.; Van Esch, Hilde; Yuan, Bo; Wiszniewski, Wojciech; Isikay, Sedat; Yesil, Gozde; Yuregir, Ozge O.; Bozdogan, Sevcan Tug; Aslan, Huseyin; Aydin, Hatip; Tos, Tulay; Aksoy, Ayse; De Vivo, Darryl C.; Jain, Preti; Geckinli, B. Bilge; Sezer, Ozlem; Gul, Davut; Durmaz, Burak; Cogulu, Ozgur; Ozkinay, Ferda; Topcu, Vehap; Candan, Sukru; Cebi, Alper Han; Ikbal, Mevlit; Gulec, Elif Yilmaz; Gezdirici, Alper; Koparir, Erkan; Ekici, Fatma; Coskun, Salih; Cicek, Salih; Karaer, Kadri; Koparir, Asuman; Duz, Mehmet Bugrahan; Kirat, Emre; Fenercioglu, Elif; Ulucan, Hakan; Seven, Mehmet; Guran, Tulay; Elcioglu, Nursel; Yildirim, Mahmut Selman; Aktas, Dilek; Alikaşifoğlu, Mehmet; Ture, Mehmet; Yakut, Tahsin; Overton, John D.; Yuksel, Adnan; Ozen, Mustafa; Muzny, Donna M.; Adams, David R.; Boerwinkle, Eric; Chung, Wendy K.; Gibbs, Richard A.; Lupski, James R

    2015-01-01

    Development of the human nervous system involves complex interactions between fundamental cellular processes and requires a multitude of genes, many of which remain to be associated with human disease. We applied whole exome sequencing to 128 mostly consanguineous families with neurogenetic disorders that often included brain malformations. Rare variant analyses for both single nucleotide variant (SNV) and copy number variant (CNV) alleles allowed for identification of 45 novel variants in 43 known disease genes, 41 candidate genes, and CNVs in 10 families, with an overall potential molecular cause identified in >85% of families studied. Among the candidate genes identified, we found PRUNE, VARS, and DHX37 in multiple families, and homozygous loss of function variants in AGBL2, SLC18A2, SMARCA1, UBQLN1, and CPLX1. Neuroimaging and in silico analysis of functional and expression proximity between candidate and known disease genes allowed for further understanding of genetic networks underlying specific types of brain malformations. PMID:26539891

  17. The new PR of states: How nation branding practices affect the security function of public diplomacy

    DEFF Research Database (Denmark)

    Rasmussen, Rasmus Kjærgaard; Merkelsen, Henrik

    2012-01-01

    terrorism to national security initially served as a catalyst for new public diplomacy initiatives. But as the initiatives were implemented within a framework of nation branding the focus on risk reduction became subjected to a marketing logic and a new focus on economic objectives took over. The paper......This paper investigates how the role of public relations practice in public diplomacy is undergoing a transformation as a consequence of the influence from nation branding. A case study of the Danish government's response to the so-called Cartoon Crisis illustrates how the threat from international...... points to a possible future status of public diplomacy under the influence of nation branding: Public diplomacy may maintain a function pertinent to national security but as this function is incapable of managing real risks it will only serve as auto-communication that legitimizes security policy towards...

  18. Telomerase RNA stem terminus element affects template boundary element function, telomere sequence, and shelterin binding.

    Science.gov (United States)

    Webb, Christopher J; Zakian, Virginia A

    2015-09-08

    The stem terminus element (STE), which was discovered 13 y ago in human telomerase RNA, is required for telomerase activity, yet its mode of action is unknown. We report that the Schizosaccharomyces pombe telomerase RNA, TER1 (telomerase RNA 1), also contains a STE, which is essential for telomere maintenance. Cells expressing a partial loss-of-function TER1 STE allele maintained short stable telomeres by a recombination-independent mechanism. Remarkably, the mutant telomere sequence was different from that of wild-type cells. Generation of the altered sequence is explained by reverse transcription into the template boundary element, demonstrating that the STE helps maintain template boundary element function. The altered telomeres bound less Pot1 (protection of telomeres 1) and Taz1 (telomere-associated in Schizosaccharomyces pombe 1) in vivo. Thus, the S. pombe STE, although distant from the template, ensures proper telomere sequence, which in turn promotes proper assembly of the shelterin complex.

  19. The direct and indirect effects of the negative affectivity trait on self reported physical function among patients with upper extremity conditions.

    Science.gov (United States)

    Talaei-Khoei, Mojtaba; Mohamadi, Amin; Mellema, Jos J; Tourjee, Stephen M; Ring, David; Vranceanu, Ana-Maria

    2016-12-30

    Negative affectivity is a personality trait that predisposes people to psychological distress and low life satisfaction. Negative affectivity may also affect pain intensity and physical function in patients with musculoskeletal conditions. We explored the association of negative affectivity to pain intensity and self-reported physical function, and tested whether pain intensity mediates the effect of negative affectivity on physical function. In a cross-sectional study, 102 patients with upper extremity musculoskeletal conditions presenting to an orthopedic surgeon completed self-report measures of negative affectivity, pain intensity, and physical function in addition to demographic and injury information. We used the Preacher and Hayes' bootstrapping approach to quantify the indirect effect of negative affectivity on physical function through pain intensity. Negative affectivity correlated with greater pain intensity and lower self-reported physical function significantly. Also, pain intensity mediated the association of negative affectivity with physical function. The indirect effect accounted for one-third of the total effect. To conclude, negative affectivity is associated with decreased engagement in daily life activities both directly, but also indirectly through increased pain intensity. Treatments targeting negative affectivity may be more economical and efficient for alleviation of pain and limitations associated with musculoskeletal illness than those addressing coping strategies or psychological distress.

  20. Can common functional gene variants affect visual discrimination in metacontrast masking?

    Directory of Open Access Journals (Sweden)

    Margus Maksimov

    Full Text Available Mechanisms of visual perception should be robustly fast and provide veridical information about environmental objects in order to facilitate survival and successful coping. Because species-specific brain mechanisms for fast vision must have evolved under heavy pressure for efficiency, it has been held that different human individuals see the physical world in the same way and produce psychophysical functions of visual discrimination that are qualitatively the same. For many years, this assumption has been implicitly accepted in vision research studying extremely fast, basic visual processes, including studies of visual masking. However, in recent studies of metacontrast masking surprisingly robust individual differences in the qualitative aspects of subjects' performance have been found. As the basic species-specific visual functions very likely are based on universal brain mechanisms of vision, these differences probably are the outcome of variability in ontogenetic development (i.e., formation of idiosyncrasic skills of perception. Such developmental differences can be brought about by variants of genes that are differentially expressed in the course of CNS development. The objective of this study was to assess whether visual discrimination in metacontrast masking is related to three widely studied genetic polymorphisms implicated in brain function and used here as independent variables. The findings suggest no main effects of BDNF Val66Met, NRG1/rs6994992, or 5-HTTLPR polymorphisms on metacontrast performance, but several notable interactions of genetic variables with gender, stage of the sequence of experimental trials, perceptual strategies, and target/mask shape congruence were found. Thus, basic behavioral functions of fast vision may be influenced by common genetic variability. Also, when left uncontrolled, genetic factors may seriously confound variables in vision research using masking, obscure clear theoretical interpretation, lead to

  1. Elementary Neurocognitive Function, Facial Affect Recognition and Social-skills in Schizophrenia

    OpenAIRE

    Meyer, Melissa B.; Kurtz, Matthew M.

    2009-01-01

    Social-skill deficits are pervasive in schizophrenia and negatively impact many key aspects of functioning. Prior studies have found that measures of elementary neurocognition and social cognition are related to social-skills. In the present study we selected a range of neurocognitive measures and examined their relationship with identification of happy and sad faces and performance-based social-skills. Fifty-three patients with schizophrenia or schizoaffective disorder participated. Results ...

  2. A loss-of-function mutation in Calmodulin2 gene affects pollen germination in Arabidopsis thaliana.

    Science.gov (United States)

    Landoni, Michela; De Francesco, Alessandra; Galbiati, Massimo; Tonelli, Chiara

    2010-10-01

    Calmodulin (CAM) is an ubiquitous calcium binding protein whose function is to translate the signals, perceived as calcium concentration variations, into the appropriate cellular responses. In Arabidopsis thaliana there are 4 CAM isoforms which are highly similar, encoded by 7 genes, and one possible explanation proposed for the evolutionary conservation of the CAM gene family is that the different genes have acquired different functions so that they play possibly overlapping but non-identical roles. Here we report the characterization of the Arabidopsis mutant cam2-2, identified among the lines of the gene-trapping collection EXOTIC because of a distorted segregation of kanamycin resistance. Phenotypic analysis showed that in normal growth conditions cam2-2 plants were indistinguishable from the wild type while genetic analysis showed a reduced transmission of the cam2-2 allele through the male gametophyte and in vitro pollen germination revealed a reduced level of germination in comparison with the wild type. These results provide genetic evidence of the involvement of a CAM gene in pollen germination and support the theory of functional diversification of the CAM gene family.

  3. Viewing nature scenes positively affects recovery of autonomic function following acute-mental stress.

    Science.gov (United States)

    Brown, Daniel K; Barton, Jo L; Gladwell, Valerie F

    2013-06-04

    A randomized crossover study explored whether viewing different scenes prior to a stressor altered autonomic function during the recovery from the stressor. The two scenes were (a) nature (composed of trees, grass, fields) or (b) built (composed of man-made, urban scenes lacking natural characteristics) environments. Autonomic function was assessed using noninvasive techniques of heart rate variability; in particular, time domain analyses evaluated parasympathetic activity, using root-mean-square of successive differences (RMSSD). During stress, secondary cardiovascular markers (heart rate, systolic and diastolic blood pressure) showed significant increases from baseline which did not differ between the two viewing conditions. Parasympathetic activity, however, was significantly higher in recovery following the stressor in the viewing scenes of nature condition compared to viewing scenes depicting built environments (RMSSD; 50.0 ± 31.3 vs 34.8 ± 14.8 ms). Thus, viewing nature scenes prior to a stressor alters autonomic activity in the recovery period. The secondary aim was to examine autonomic function during viewing of the two scenes. Standard deviation of R-R intervals (SDRR), as change from baseline, during the first 5 min of viewing nature scenes was greater than during built scenes. Overall, this suggests that nature can elicit improvements in the recovery process following a stressor.

  4. Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers

    Science.gov (United States)

    Simonin, Marie; Richaume, Agnès; Guyonnet, Julien P.; Dubost, Audrey; Martins, Jean M. F.; Pommier, Thomas

    2016-01-01

    Soils are facing new environmental stressors, such as titanium dioxide nanoparticles (TiO2-NPs). While these emerging pollutants are increasingly released into most ecosystems, including agricultural fields, their potential impacts on soil and its function remain to be investigated. Here we report the response of the microbial community of an agricultural soil exposed over 90 days to TiO2-NPs (1 and 500 mg kg−1 dry soil). To assess their impact on soil function, we focused on the nitrogen cycle and measured nitrification and denitrification enzymatic activities and by quantifying specific representative genes (amoA for ammonia-oxidizers, nirK and nirS for denitrifiers). Additionally, diversity shifts were examined in bacteria, archaea, and the ammonia-oxidizing clades of each domain. With strong negative impacts on nitrification enzyme activities and the abundances of ammonia-oxidizing microorganism, TiO2-NPs triggered cascading negative effects on denitrification enzyme activity and a deep modification of the bacterial community structure after just 90 days of exposure to even the lowest, realistic concentration of NPs. These results appeal further research to assess how these emerging pollutants modify the soil health and broader ecosystem function. PMID:27659196

  5. Silver Nanoparticles Affect Functional Bioenergetic Traits in the Invasive Red Sea Mussel Brachidontes pharaonis

    Science.gov (United States)

    Saggese, Ilenia; Sarà, Gianluca

    2016-01-01

    We investigated the functional trait responses to 5 nm metallic silver nanoparticle (AgNPs) exposure in the Lessepsian-entry bivalve B. pharaonis. Respiration rate (oxygen consumption), heartbeat rate, and absorption efficiency were evaluated across an 8-day exposure period in mesocosmal conditions. Basal reference values from not-exposed specimens were statistically compared with those obtained from animals treated with three sublethal nanoparticle concentrations (2 μg L−1, 20 μg L−1, and 40 μg L−1). Our data showed statistically significant effects on the average respiration rate of B. pharaonis. Moreover, complex nonlinear dynamics were observed as a function of the concentration level and time. Heartbeat rates largely increased with no acclimation in animals exposed to the two highest levels with similar temporal dynamics. Eventually, a decreasing trend for absorption efficiency might indicate energetic constraints. In general, these data support the possible impact of engineered nanomaterials in marine environments and support the relevance of functional trait assessment in present and future ecotoxicological studies.

  6. Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers

    Science.gov (United States)

    Simonin, Marie; Richaume, Agnès; Guyonnet, Julien P.; Dubost, Audrey; Martins, Jean M. F.; Pommier, Thomas

    2016-09-01

    Soils are facing new environmental stressors, such as titanium dioxide nanoparticles (TiO2-NPs). While these emerging pollutants are increasingly released into most ecosystems, including agricultural fields, their potential impacts on soil and its function remain to be investigated. Here we report the response of the microbial community of an agricultural soil exposed over 90 days to TiO2-NPs (1 and 500 mg kg‑1 dry soil). To assess their impact on soil function, we focused on the nitrogen cycle and measured nitrification and denitrification enzymatic activities and by quantifying specific representative genes (amoA for ammonia-oxidizers, nirK and nirS for denitrifiers). Additionally, diversity shifts were examined in bacteria, archaea, and the ammonia-oxidizing clades of each domain. With strong negative impacts on nitrification enzyme activities and the abundances of ammonia-oxidizing microorganism, TiO2-NPs triggered cascading negative effects on denitrification enzyme activity and a deep modification of the bacterial community structure after just 90 days of exposure to even the lowest, realistic concentration of NPs. These results appeal further research to assess how these emerging pollutants modify the soil health and broader ecosystem function.

  7. Disruption of dopaminergic transmission remodels tripartite synapse morphology and astrocytic calcium activity within substantia nigra pars reticulata.

    Science.gov (United States)

    Bosson, Anthony; Boisseau, Sylvie; Buisson, Alain; Savasta, Marc; Albrieux, Mireille

    2015-04-01

    The substantia nigra pars reticulata (SNr) is a major output nucleus of the basal ganglia circuitry particularly sensitive to pathological dopamine depletion. Indeed, hyperactivity of SNr neurons is known to be responsible for some motor disorders characteristic of Parkinson's disease. The neuronal processing of basal ganglia dysfunction is well understood but, paradoxically, the role of astrocytes in the regulation of SNr activity has rarely been considered. We thus investigated the influence of the disruption of dopaminergic transmission on plastic changes at tripartite glutamatergic synapses in the rat SNr and on astrocyte calcium activity. In 6-hydroxydopamine-lesioned rats, we observed structural plastic changes of tripartite glutamatergic synapses and perisynaptic astrocytic processes. These findings suggest that subthalamonigral synapses undergo morphological changes that accompany the pathophysiological processes of Parkinson's disease. The pharmacological blockade of dopaminergic transmission (with sulpiride and SCH-23390) increased astrocyte calcium excitability, synchrony and gap junction coupling within the SNr, suggesting a functional adaptation of astrocytes to dopamine transmission disruption in this output nucleus. This hyperactivity is partly reversed by subthalamic nucleus high-frequency stimulation which has emerged as an efficient symptomatic treatment for Parkinson's disease. Therefore, our results demonstrate structural and functional reshaping of neuronal and glial elements highlighting a functional plasticity of neuroglial interactions when dopamine transmission is disrupted.

  8. "Hybrid" synapses formed by foreign innervation of parasympathetic neurons: a model for selectivity during competitive reinnervation.

    Science.gov (United States)

    Proctor, W; Frenk, S; Taylor, B; Roper, S

    1979-01-01

    Selectivity of synapse formation after nerve regeneration was tested in the parasympathetic cardiac ganglion of frogs (Rana pipiens). First, we tested the ability of somatic motor axons to establish synaptic connections with denervated ganglion cells by implanting the hypoglossus nerve into the vagotomized heart. After several weeks, stimulation of the implanted hypoglossus mediated a parasympathetic-like inhibition of the heart rate, and synaptic responses produced by hypoglossal stimulation were recorded intracellularly in ganglion cells. Light and electron microscopy indicated that implanted hypoglossal nerve terminals contacted parasympathetic ganglion cells only on their axons and not on the cell body (where most vagal synapses are found in control animals). Second, we tested whether regenerating vagal preganglionic axons would complete with foreign (hypoglossal) terminals for innervation of cardiac ganglion cells. We allowed the vagus nerve to regenerate in animals in which the implanted hypoglossus had established functional contacts with the cardiac ganglion. Vagal axons were able to reinnervate the heart and reestablish synaptic connections on the cell bodies of ganglion cells. Furthermore, functional transmission at the foriegn (hypoglossal) terminals disappeared concomitant with vagal reinnervation. Images PMID:315564

  9. Synaptic Conversion of Chloride-Dependent Synapses in Spinal Nociceptive Circuits: Roles in Neuropathic Pain

    Directory of Open Access Journals (Sweden)

    Mark S. Cooper

    2011-01-01

    Full Text Available Electrophysiological conversion of chloride-dependent synapses from inhibitory to excitatory function, as a result of aberrant neuronal chloride homeostasis, is a known mechanism for the genesis of neuropathic pain. This paper examines theoretically how this type of synaptic conversion can disrupt circuit logic in spinal nociceptive circuits. First, a mathematical scaling factor is developed to represent local aberration in chloride electrochemical driving potential. Using this mathematical scaling factor, electrophysiological symbols are developed to represent the magnitude of synaptic conversion within nociceptive circuits. When inserted into a nociceptive circuit diagram, these symbols assist in understanding the generation of neuropathic pain associated with the collapse of transmembrane chloride gradients. A more generalized scaling factor is also derived to represent the interplay of chloride and bicarbonate driving potentials on the function of GABAergic and glycinergic synapses. These mathematical and symbolic representations of synaptic conversion help illustrate the critical role that anion driving potentials play in the transduction of pain. Using these representations, we discuss ramifications of glial-mediated synaptic conversion in the genesis, and treatment, of neuropathic pain.

  10. Megakaryocytes and platelets express nicotinic acetylcholine receptors but nicotine does not affect megakaryopoiesis or platelet function.

    Science.gov (United States)

    Schedel, Angelika; Kaiser, Kerstin; Uhlig, Stefanie; Lorenz, Florian; Sarin, Anip; Starigk, Julian; Hassmann, Dennis; Bieback, Karen; Bugert, Peter

    2016-01-01

    In our previous investigations we have shown that platelets and their precursors express nicotinic α7 acetylcholine receptors (nAChRα7) that are involved in platelet function and in vitro differentiation of the megakaryoblastic cell line MEG-01. In this study, we were interested in the expression analysis of additional nAChR and the effects of nicotine in an ex vivo model using megakaryocytic cells differentiated from cord blood derived CD34(+) cells (CBMK) and an in vivo model using blood samples from smokers. CBMK were differentiated with thrombopoietin (TPO) for up to 17 days. Quantitative real-time PCR (QRT-PCR), Western blot analysis and flow cytometry were used to investigate nAChR expression (nAChRα7, nAChRα4, nAChRβ2) and nicotine effects. In blood samples of 15 nonsmokers and 16 smokers platelet parameters (count, mean platelet volume--MPV and platelet distribution width--PDW) were determined as indicators for changes of in vivo megakaryopoiesis. Platelet function was determined by the use of whole blood aggregometry and flow cytometry. The functional role of nAChR was evaluated using specific antagonists in aggregometry. CHRNA7, CHRNA4 and CHRNB2 gene transcripts and the corresponding proteins could be identified in CBMK during all stages of differentiation. Platelets contain nAChRα7 and nAChRβ2 but not nAChRα4. Nicotine had no effect on TPO-induced differentiation of CBMK. There was no significant difference in all platelet parameters of the smokers compared to the nonsmokers. In line with this, cholinergic gene transcripts as well as the encoded proteins were equally expressed in both the study groups. Despite our observation of nAChR expression in megakaryopoiesis and platelets, we were not able to detect effects of nicotine in our ex vivo and in vivo models. Thus, the functional role of the nAChR in these cells remains open.

  11. Urokinase plasminogen activator receptor affects bone homeostasis by regulating osteoblast and osteoclast function

    DEFF Research Database (Denmark)

    Furlan, Federico; Galbiati, Clara; Jørgensen, Niklas R;

    2007-01-01

    reorganization in mature osteoclasts. INTRODUCTION: Urokinase receptor (uPAR) is actively involved in the regulation of important cell functions, such as proliferation, adhesion, and migration. It was previously shown that the major players in bone remodeling, osteoblasts and osteoclasts, express u...... with other osteoblasts markers. On the resorptive side, the number of osteoclasts formed in vitro from uPAR KO monocytes was decreased. Podosome imaging in uPAR KO osteoclasts revealed a defect in actin ring formation. CONCLUSIONS: The defective proliferation and differentiation of bone cells, coincident...

  12. Defects in the COG complex and COG-related trafficking regulators affect neuronal Golgi function.

    Directory of Open Access Journals (Sweden)

    Leslie K Climer

    2015-10-01

    Full Text Available The Conserved Oligomeric Golgi (COG complex is an evolutionarily conserved hetero-octameric protein complex that has been proposed to organize vesicle tethering at the Golgi apparatus. Defects in seven of the eight COG subunits are linked to Congenital Disorders of Glycosylation (CDG-type II, a family of rare diseases involving misregulation of protein glycosylation, alterations in Golgi structure, variations in retrograde trafficking through the Golgi and system-wide clinical pathologies. A troublesome aspect of these diseases are the neurological pathologies such as low IQ, microcephaly and cerebellar atrophy. The essential function of the COG complex is dependent upon interactions with other components of trafficking machinery, such as Rab-GTPases and SNAREs. COG-interacting Rabs and SNAREs have been implicated in neurodegenerative diseases like Alzheimer’s disease and Parkinson’s disease. Defects in Golgi maintenance disrupts trafficking and processing of essential proteins, frequently associated with and contributing to compromised neuron function and human disease. Despite the recent advances in molecular neuroscience, the subcellular bases for most neurodegenerative diseases are poorly understood. This article gives an overview of the potential contributions of the COG complex and its Rab and SNARE partners in the pathogenesis of different neurodegenerative disorders.

  13. Starch, functional properties, and microstructural characteristics in chickpea and lentil as affected by thermal processing.

    Science.gov (United States)

    Aguilera, Yolanda; Esteban, Rosa M; Benítez, Vanesa; Mollá, Esperanza; Martín-Cabrejas, María A

    2009-11-25

    Changes in starch, functional, and microstructural characteristics that occurred in chickpea and lentil under soaking, cooking, and industrial dehydration processing were evaluated. Available starch in raw legumes represented 57-64%, and resistant starch (RS) is a significant component. As a result of cooking, available starch contents of soaked chickpea and lentil were significantly increased (21 and 12%, respectively) and RS decreased (65 and 49%, respectively) compared to raw flours. A similar trend was exhibited by dehydration, being more relevant in lentil (73% of RS decrease). The minimum nitrogen solubility of raw flours was at pH 3, and a high degree of protein insolubilization (80%) was observed in dehydrated flours. The raw legume flours exhibited low oil-holding capacities, 0.95-1.10 mL/g, and did not show any change by thermal processing, whereas water-holding capacities rose to 4.80-4.90 mL/g of sample. Emulsifying activity and foam capacity exhibited reductions as a result of cooking and industrial dehydration processing. The microstructural observations were consistent with the chemical results. Thus, the obtained cooked and dehydrated legume flours could be considered as functional ingredients for food formulation.

  14. Mexico City air pollution adversely affects olfactory function and intranasal trigeminal sensitivity.

    Science.gov (United States)

    Guarneros, Marco; Hummel, Thomas; Martínez-Gómez, Margaríta; Hudson, Robyn

    2009-11-01

    Surprisingly little is known about the effects of big-city air pollution on olfactory function and even less about its effects on the intranasal trigeminal system, which elicits sensations like burning, stinging, pungent, or fresh and contributes to the overall chemosensory experience. Using the Sniffin' Sticks olfactory test battery and an established test for intranasal trigeminal perception, we compared the olfactory performance and trigeminal sensitivity of residents of Mexico City, a region with high air pollution, with the performance of a control population from the Mexican state of Tlaxcala, a geographically comparable but less polluted region. We compared the ability of 30 young adults from each location to detect a rose-like odor (2-phenyl ethanol), to discriminate between different odorants, and to identify several other common odorants. The control subjects from Tlaxcala detected 2-phenyl ethanol at significantly lower concentrations than the Mexico City subjects, they could discriminate between odorants significantly better, and they performed significantly better in the test of trigeminal sensitivity. We conclude that Mexico City air pollution impairs olfactory function and intranasal trigeminal sensitivity, even in otherwise healthy young adults.

  15. Socio-dramatic affective-relational intervention for adolescents with asperger syndrome & high functioning autism: pilot study.

    Science.gov (United States)

    Lerner, Matthew D; Mikami, Amori Yee; Levine, Karen

    2011-01-01

    This study examined the effectiveness of a novel intervention called 'socio-dramatic affective-relational intervention' (SDARI), intended to improve social skills among adolescents with Asperger syndrome and high functioning autism diagnoses. SDARI adapts dramatic training activities to focus on in vivo practice of areas of social skill deficit among this population. SDARI was administered as a six-week summer program in a community human service agency. Nine SDARI participants and eight age- and diagnosis-group matched adolescents not receiving SDARI were compared on child- and parent-report of social functioning at three week intervals beginning six weeks prior to intervention and ending six weeks post-intervention. Hierarchical Linear Modeling (HLM) was used to estimate growth trends between groups to assess treatment outcomes and post-treatment maintenance. Results indicated significant improvement and post-treatment maintenance among SDARI participants on several measures of child social functioning. Implications for practice and research are discussed.

  16. Land Management Effects on Biogeochemical Functioning of Salt-Affected Paddy Soils

    Institute of Scientific and Technical Information of China (English)

    C.QUANTIN; O.GRUNBERGER; N.SUVANNANG; E.BOURDON

    2008-01-01

    Most lowlands in Northeast Thailand (Isaan region) are cultivated with rice and large areas are affected by salinity,which drastically limits rice production.A field experiment was conducted during the 2003 rainy season to explore the interactions between salinity and land management in two fields representative of two farming practices:an intensively managed plot with organic inputs and efficient water management,and one without organic matter addition.Field measurements,including pH,Eh,electrical conductivity (EC),and soil solution chemistry,were performed at three depths,with a particular focus on Fe dynamics,inside and outside saline patches.High reducing conditions appeared after flooding particularly in plots receiving organic matter and reduction processes leading to oxide reduction and to the release of Fe and,to a lesser extend,Mn to the soil solution.Oxide reduction led to the consumption of H+ and the more the Fe reduction was,the higher the pH was,up to 6.5.Formation of hydroxy-green rust were likely to be at the origin of the pH stabilization.In the absence of organic amendments,high salinity prevented the establishment of the reduction processes and pH value remained around 4.Even under high reduction conditions,the Fe concentrations in the soil solution were below commonly observed toxic values and the amended plot had better rice production yield.

  17. Citrus limon extract: possible inhibitory mechanisms affecting testicular functions and fertility in male mice.

    Science.gov (United States)

    Singh, Nidhi; Singh, Shio Kumar

    2016-01-01

    The effect of oral administration of 50% ethanolic leaf extract of Citrus limon (500 and 1,000 mg/kg body weight/day) for 35 days on fertility and various male reproductive endpoints was evaluated in Parkes strain of mice. Testicular indices such as histology, 3β- and 17β-HSD enzymes activity, immunoblot expression of StAR and P450scc, and germ cell apoptosis by TUNEL and CASP- 3 expression were assessed. Motility, viability, and number of spermatozoa in the cauda epididymidis, level of serum testosterone, fertility indices, and toxicological parameters were also evaluated. Histologically, testes in extract-treated mice showed nonuniform degenerative changes in the seminiferous tubules. Treatment had adverse effects on steroidogenic markers in the testis and induced germ cell apoptosis. Significant reductions were noted in epididymal sperm parameters and serum level of testosterone in Citrus-treated mice compared to controls. Fertility of the extract-treated males was also suppressed, but libido remained unaffected. By 56 days of treatment withdrawal, alterations induced in the above parameters returned to control levels suggesting that Citrus treatment causes reversible suppression of spermatogenesis and fertility in Parkes mice. Suppression of spermatogenesis may result from germ cell apoptosis because of decreased production of testosterone. The present work indicated that Citrus leaves can affect male reproduction.

  18. Performance of Music Elevates Pain Threshold and Positive Affect: Implications for the Evolutionary Function of Music

    Directory of Open Access Journals (Sweden)

    R.I.M. Dunbar

    2012-10-01

    Full Text Available It is well known that music arouses emotional responses. In addition, it has long been thought to play an important role in creating a sense of community, especially in small scale societies. One mechanism by which it might do this is through the endorphin system, and there is evidence to support this claim. Using pain threshold as an assay for CNS endorphin release, we ask whether it is the auditory perception of music that triggers this effect or the active performance of music. We show that singing, dancing and drumming all trigger endorphin release (indexed by an increase in post-activity pain tolerance in contexts where merely listening to music and low energy musical activities do not. We also confirm that music performance results in elevated positive (but not negative affect. We conclude that it is the active performance of music that generates the endorphin high, not the music itself. We discuss the implications of this in the context of community bonding mechanisms that commonly involve dance and music-making.

  19. Zebra pattern in rocks as a function of grain growth affected by second-phase particles

    Directory of Open Access Journals (Sweden)

    Ulrich eKelka

    2015-09-01

    Full Text Available In this communication we present a simple microdynamic model which can explain the beginning of the zebra pattern formation in rocks. The two dimensional model consists of two main processes, mineral replacement along a reaction front, and grain boundary migration affected by impurities. In the numerical model we assume that an initial distribution of second-phase particles is present due to sedimentary layering. The reaction front percolates the model and redistributes second-phase particles by shifting them until the front is saturated and drops the particles again. This produces and enhances initial layering. Grain growth is hindered in layers with high second-phase particle concentrations whereas layers with low concentrations coarsen. Due to the grain growth activity in layers with low second-phase particle concentrations these impurities are collected at grain boundaries and the crystals become very clean. Therefore the white layers in the pattern contain large grains with low concentration of second-phase particles, whereas the dark layers contain small grains with a large second-phase particle concentration.

  20. Performance of music elevates pain threshold and positive affect: implications for the evolutionary function of music.

    Science.gov (United States)

    Dunbar, R I M; Kaskatis, Kostas; MacDonald, Ian; Barra, Vinnie

    2012-10-22

    It is well known that music arouses emotional responses. In addition, it has long been thought to play an important role in creating a sense of community, especially in small scale societies. One mechanism by which it might do this is through the endorphin system, and there is evidence to support this claim. Using pain threshold as an assay for CNS endorphin release, we ask whether it is the auditory perception of music that triggers this effect or the active performance of music. We show that singing, dancing and drumming all trigger endorphin release (indexed by an increase in post-activity pain tolerance) in contexts where merely listening to music and low energy musical activities do not. We also confirm that music performance results in elevated positive (but not negative) affect. We conclude that it is the active performance of music that generates the endorphin high, not the music itself. We discuss the implications of this in the context of community bonding mechanisms that commonly involve dance and music-making.

  1. Maternal separation affects dopamine transporter function in the Spontaneously Hypertensive Rat: An in vivo electrochemical study

    Directory of Open Access Journals (Sweden)

    Womersley Jacqueline S

    2011-12-01

    Full Text Available Abstract Background Attention-deficit/hyperactivity disorder (ADHD is a developmental disorder characterised by symptoms of inattention, impulsivity and hyperactivity. The spontaneously hypertensive rat (SHR is a well-characterised model of this disorder and has been shown to exhibit dopamine dysregulation, one of the hypothesised causes of ADHD. Since stress experienced in the early stages of life can have long-lasting effects on behaviour, it was considered that early life stress may alter development of the dopaminergic system and thereby contribute to the behavioural characteristics of SHR. It was hypothesized that maternal separation would alter dopamine regulation by the transporter (DAT in ways that distinguish SHR from control rat strains. Methods SHR and control Wistar-Kyoto (WKY rats were subjected to maternal separation for 3 hours per day from postnatal day 2 to 14. Rats were tested for separation-induced anxiety-like behaviour followed by in vivo chronoamperometry to determine whether changes had occurred in striatal clearance of dopamine by DAT. The rate of disappearance of ejected dopamine was used as a measure of DAT function. Results Consistent with a model for ADHD, SHR were more active than WKY in the open field. SHR entered the inner zone more frequently and covered a significantly greater distance than WKY. Maternal separation increased the time that WKY spent in the closed arms and latency to enter the open arms of the elevated plus maze, consistent with other rat strains. Of note is that, maternal separation failed to produce anxiety-like behaviour in SHR. Analysis of the chronoamperometric data revealed that there was no difference in DAT function in the striatum of non-separated SHR and WKY. Maternal separation decreased the rate of dopamine clearance (k-1 in SHR striatum. Consistent with this observation, the dopamine clearance time (T100 was increased in SHR. These results suggest that the chronic mild stress of

  2. Severity of negative symptoms significantly affects cognitive functioning in patients with chronic schizophrenia: the slowing in cognitive processing

    Directory of Open Access Journals (Sweden)

    Flavia S. Galaverna

    2014-09-01

    Full Text Available Background and Objectives: Studies in patients with schizophrenia have shown a decreased overall cognitive performance, and it was found that processing speed and working memory functions are affected. The aim of this study was to describe the general cognitive performance of patients with chronic schizophrenia and analyze its relationship with the severity of psychotic symptoms. Methods: Forty-eight patients diagnosed with DSM IV-TR schizophrenia disorder were examined for symptom improvement, measured by scales SAPS and SANS. Participants also completed the full scale WAIS-III. Results: The results show a generalized cognitive deficit, reflected in the low level of general intelligence, as well as the different index that comprise the scale. The most compromised index was the processing speed. The correlations showed that the overall severity of negative symptoms significantly affects cognitive functioning of chronic patients. The formal thought disorder and alogia significantly correlated with almost all the WAIS-III measures. Conclusions: Multiple studies of specific cognitive domains in schizophrenia have shown that deficits in processing speed are the core element of cognitive impairment in schizophrenia. We support the hypothesis about the slowing in cognitive processing affect both the performance of the basic and more complex cognitive task.

  3. Zebrafish: A Model for the Study of Toxicants Affecting Muscle Development and Function

    Science.gov (United States)

    Dubińska-Magiera, Magda; Daczewska, Małgorzata; Lewicka, Anna; Migocka-Patrzałek, Marta; Niedbalska-Tarnowska, Joanna; Jagla, Krzysztof

    2016-01-01

    The rapid progress in medicine, agriculture, and allied sciences has enabled the development of a large amount of potentially useful bioactive compounds, such as drugs and pesticides. However, there is another side of this phenomenon, which includes side effects and environmental pollution. To avoid or minimize the uncontrollable consequences of using the newly developed compounds, researchers seek a quick and effective means of their evaluation. In achieving this goal, the zebrafish (Danio rerio) has proven to be a highly useful tool, mostly because of its fast growth and development, as well as the ability to absorb the molecules diluted in water through its skin and gills. In this review, we focus on the reports concerning the application of zebrafish as a model for assessing the impact of toxicants on skeletal muscles, which share many structural and functional similarities among vertebrates, including zebrafish and humans. PMID:27869769

  4. Zebrafish: A Model for the Study of Toxicants Affecting Muscle Development and Function

    Directory of Open Access Journals (Sweden)

    Magda Dubińska-Magiera

    2016-11-01

    Full Text Available The rapid progress in medicine, agriculture, and allied sciences has enabled the development of a large amount of potentially useful bioactive compounds, such as drugs and pesticides. However, there is another side of this phenomenon, which includes side effects and environmental pollution. To avoid or minimize the uncontrollable consequences of using the newly developed compounds, researchers seek a quick and effective means of their evaluation. In achieving this goal, the zebrafish (Danio rerio has proven to be a highly useful tool, mostly because of its fast growth and development, as well as the ability to absorb the molecules diluted in water through its skin and gills. In this review, we focus on the reports concerning the application of zebrafish as a model for assessing the impact of toxicants on skeletal muscles, which share many structural and functional similarities among vertebrates, including zebrafish and humans.

  5. Urokinase plasminogen activator receptor affects bone homeostasis by regulating osteoblast and osteoclast function

    DEFF Research Database (Denmark)

    Furlan, Federico; Galbiati, Clara; Jørgensen, Niklas R;

    2007-01-01

    reorganization in mature osteoclasts. INTRODUCTION: Urokinase receptor (uPAR) is actively involved in the regulation of important cell functions, such as proliferation, adhesion, and migration. It was previously shown that the major players in bone remodeling, osteoblasts and osteoclasts, express u...... to mechanical tests. UPAR KO calvaria osteoblasts were characterized by proliferation assays, RT-PCR for important proteins secreted during differentiation, and immunoblot for activator protein 1 (AP-1) family members. In vitro osteoclast formation was tested with uPAR KO bone marrow monocytes in the presence...... a proliferative advantage with no difference in apoptosis, higher matrix mineralization, and earlier appearance of alkaline phosphatase (ALP). Surface RANKL expression at different stages of differentiation was not altered. AP-1 components, such as JunB and Fra-1, were upregulated in uPAR KO osteoblasts, along...

  6. Citral exerts its antifungal activity against Penicillium digitatum by affecting the mitochondrial morphology and function.

    Science.gov (United States)

    Zheng, Shiju; Jing, Guoxing; Wang, Xiao; Ouyang, Qiuli; Jia, Lei; Tao, Nengguo

    2015-07-01

    This work investigated the effect of citral on the mitochondrial morphology and function of Penicillium digitatum. Citral at concentrations of 2.0 or 4.0 μL/mL strongly damaged mitochondria of test pathogen by causing the loss of matrix and increase of irregular mitochondria. The deformation extent of the mitochondria of P. digitatum enhanced with increasing concentrations of citral, as evidenced by a decrease in intracellular ATP content and an increase in extracellular ATP content of P. digitatum cells. Oxygen consumption showed that citral resulted in an inhibition in the tricarboxylic acid cycle (TCA) pathway of P. digitatum cells, induced a decrease in activities of citrate synthetase, isocitrate dehydrogenase, α-ketoglutarate dehydrogenase, succinodehydrogenase and the content of citric acid, while enhancing the activity of malic dehydrogenase in P. digitatum cells. Our present results indicated that citral could damage the mitochondrial membrane permeability and disrupt the TCA pathway of P. digitatum.

  7. Progress in reading and spelling of dyslexic children is not affected by executive functioning.

    Science.gov (United States)

    Walda, Sietske A E; van Weerdenburg, Marjolijn; Wijnants, Maarten L; Bosman, Anna M T

    2014-12-01

    Although poor reading and spelling skills have been associated with weak skills of executive functioning (EF), its role in literacy is not undisputed. Because EF has different theoretical underpinnings, methods of analysis and of assessing, it has led to varying and often contrasting results in its effects in children with dyslexia. The present study has two goals. The first goal is to establish the relationship between a large number of EF tasks and reading and spelling skills in a large number of Dutch dyslexic children (n = 229). More interesting, however, is the second aim. To what extent do EF skills predict progress in reading and spelling in dyslexic children who attended a remediation programme? The results revealed small, but significant relationships between EF and reading and spelling skills, but no relationships between EF and progress in reading and spelling. It is concluded that training EF skills is unlikely to enhance reading and spelling skills.

  8. Morpho-functional characteristics of rat fetal thyroid gland are affected by prenatal dexamethasone exposure.

    Science.gov (United States)

    Manojlović-Stojanoski, Milica N; Filipović, Branko R; Nestorović, Nataša M; Šošić-Jurjević, Branka T; Ristić, Nataša M; Trifunović, Svetlana L; Milošević, Verica Lj

    2014-06-01

    Thyroid hormones (TH) and glucocorticoids strongly contribute to the maturation of fetal tissues in the preparation for extrauterine life. Influence of maternal dexamethasone (Dx) administration on thyroid glands morpho-functional characteristics of near term rat fetuses was investigated applying unbiased stereology. On the 16th day of pregnancy dams received 1.0mg/Dx/kg/b.w., followed by 0.5mg/Dx/kg/b.w. on the 17th and 18th days of gestation. The control females received the same volume of saline. The volume of fetal thyroid was estimated using Cavalieri's principle; the physical/fractionator design was applied for the determination of absolute number of follicular cells in mitosis and immunohistochemically labeled C cells; C cell volume was measured using the planar rotator. The functional activity of thyroid tissue was provided from thyroglobulin (Tg) and thyroperoxidase (TPO) immunohistochemical staining. Applying these design-based modern stereological methods it was shown that Dx treatment of gravid females led to a significant decrease of fetal thyroid gland volume in 19- and 21-day-old fetuses, due to decreased proliferation of follicular cells. The Tg and TPO immunohistochemistry demonstrated that intensive TH production starts and continues during the examined period in control and Dx-exposed fetuses. Under the influence of Dx the absolute number of C cells was lower in both groups of near term fetuses, although unchanged relation between the two populations of endocrine cells, follicular and C cells suggesting that structural relationships within the gland are preserved. In conclusion maternal glucocorticoid administration at the thyroid gland level exerts growth-inhibitory and maturational promoting effects in near term rat fetuses.

  9. Phosphorylation of Staphylococcus aureus Protein-Tyrosine Kinase Affects the Function of Glucokinase and Biofilm Formation

    Science.gov (United States)

    Vasu, Dudipeta; Kumar, Pasupuleti Santhosh; Prasad, Uppu Venkateswara; Swarupa, Vimjam; Yeswanth, Sthanikam; Srikanth, Lokanathan; Sunitha, Manne Mudhu; Choudhary, Abhijith; Krishna Sarma, Potukuchi Venkata Gurunadha

    2017-01-01

    Background: When Staphylococcus aureus is grown in the presence of high concentration of external glucose, this sugar is phosphorylated by glucokinase (glkA) to form glucose-6-phosphate. This product subsequently enters into anabolic phase, which favors biofilm formation. The presence of ROK (repressor protein, open reading frame, sugar kinase) motif, phosphate-1 and -2 sites, and tyrosine kinase sites in glkA of S. aureus indicates that phosphorylation must regulate the glkA activity. The aim of the present study was to identify the effect of phosphorylation on the function of S. aureus glkA and biofilm formation. Methods: Pure glkA and protein-tyrosine kinase (BYK) of S. aureus ATCC 12600 were obtained by fractionating the cytosolic fractions of glkA1 and BYK-1 expressing recombinant clones through nickel metal chelate column. The pure glkA was used as a substrate for BYK, and the phosphorylation of glkA was confirmed by treating with reagent A and resolving in SDS-PAGE, as well as staining with reagent A. The kinetic parameters of glkA and phosphorylated glkA were determined spectrophotometrically, and in silico tools were used for validation. S. aureus was grown in brain heart infusion broth, which was supplemented with glucose, and then biofilm units were calculated. Results: Fourfold elevated glkA activity was observed upon the phosphorylation by BYK. Protein-protein docking analysis revealed that glkA structure docked close to the adenosine triphosphate-binding site of BYK structure corroborating the kinetic results. Further, S. aureus grown in the presence of elevated glucose concentration exhibited an increase in the rate of biofilm formation. Conclusion: The elevated function of glkA is an essential requirement for increased biofilm units in S. aureus, a key pathogenic factor that helps its survival and the progress of infection. PMID:27695030

  10. Functional polymorphisms of interferon-gamma affect pneumonia-induced sepsis.

    Directory of Open Access Journals (Sweden)

    Ding Wang

    Full Text Available OBJECTIVE: Sepsis is an inflammatory syndrome caused by infection, and both its incidence and mortality are high. Because interferon-gamma (IFN-γ plays an important role in inflammation, this work assessed IFN-γ single nucleotide polymorphism (SNPs that may be associated with sepsis. METHODS: A total of 196 patients with pneumonia-induced sepsis and 213 age- and sex-matched healthy volunteers participated in our study from July 2012 to July 2013 in Guangzhou, China. Patient clinical information was collected. Clinical pathology was assessed in subgroups defined based on clinical criteria, APACHE II (acute physiology and chronic health evaluation and SOFA (sepsis-related organ failure assessment scores and discharge rate. Four functional SNPs, -1616T/C (rs2069705, -764G/C (rs2069707, +874A/T (rs2430561 and +3234C/T (rs2069718, were genotyped by Snapshot in both sepsis patients and healthy controls. Pearson's chi-square test or Fisher's exact test were used to analyze the distribution of the SNPs, and the probability values (P values, odds ratios (OR and 95% confidence intervals (CIs were calculated. RESULTS: No mutations in the IFN-γ -764G/C SNP were detected among the participants in our study. The +874A/T and +3234C/T SNPs were in strong linkage disequilibrium (LD (r(2 = 0.894. The -1616 TC+TT, +874 AT+AA genotype and the TAC haplotype were significantly associated with sepsis susceptibility, while the CTT haplotype was associated with protection against sepsis incidence. Genotype of -1616 TT wasn't only protective against severity of sepsis, but also against higher APACHE II and SOFA scores as +874 AA and +3234 CC. The TAC haplotype was was protective against progression to severe sepsis either. CONCLUSION: Our results suggest that functional IFN-γ SNPs and their haplotypes are associated with pneumonia-induced sepsis.

  11. NORMAL VALUES AND FACTORS AFFECTING FUNCTIONAL REACH TEST IN SAUDI ARABIA SCHOOL CHILDREN WITH TYPICAL DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Hatem A. Emara

    2015-10-01

    Full Text Available Background: The most critical feature of motor development is the ability to balance the body in sitting or standing. Impaired balance limits a child’s ability to recover from unexpected threats to stability. The functional reach test (FRT defines the maximal distance an individual is able to reach forward beyond arm’s length in a standing position without loss of balance, taking a step, or touching the wall. The Purpose of this study was to establish the normal values for FRT in Saudi Arabia school children with typical development and to study the correlation of anthropometric measures with FRT values. Methods: This cross-sectional study was conducted in Almadinah Almonawarah, Kingdom of Saudi Arabia. A total of 280 children without disabilities aged 6 to 12 years were randomly selected. Functional reach was assessed by having subjects extend their arms to 90 degrees and reach as far forward as they could without taking a step. Reach distance was recorded by noting the beginning and final position of the subject's extended arm parallel to a yard stick attached to the wall. Three successive trials of FRT were performed and the mean of the three trials was calculated. Pearson product moment correlation was used to examine the association of FR to age, and anthropometric measures. Results: Normal mean values of FR ranged from 24.2cm to 33.95cm. Age, height and weight significantly correlate with FRT. Conclusion: The FRT is a feasible test to examine the balance of 6-12 year-old children. FRT may be useful for detecting balance impairment, change in balance performance over time.

  12. Hyaluronate degradation affects ventricular function of the early postlooped embryonic rat heart in situ.

    Science.gov (United States)

    Baldwin, H S; Lloyd, T R; Solursh, M

    1994-02-01

    Hyaluronic acid is the major glycosaminoglycan of the early cardiac extracellular matrix or "cardiac jelly," yet little is known about its role in the ontogeny of early ventricular performance. To investigate the in situ effect of hyaluronate degradation on ventricular function, whole rat embryos were cultured in rat serum alone (control embryos) or rat serum plus 20 TRU/mL of Streptomyces hyaluronidase (treatment embryos) from gestational day 9.5 (before formation of the heart tube) through initial looping of the heart. Cardiac function was measured before looping (24 hours in culture) and immediately after looping (36 hours in culture) by video motion analysis of the external wall motion of the bulbus cordis and primitive ventricle. Degradation of hyaluronic acid in the treated embryos was confirmed by Alcian blue staining at pH 2.5. Significant increases in heart rate, circumferential shortening fraction, maximum velocity of circumferential contraction, and maximum velocity of circumferential relaxation were observed with looping in both control and treatment embryos. Although there was minimal difference in ventricular performance between control and treatment embryos before looping, there was a significant increase in all parameters of ventricular performance in the hyaluronidase-treated embryos immediately after looping of the heart. Endocardial cushions were absent in hyaluronidase-treated embryos, and an additional group of embryos cultured in the presence of Streptomyces hyaluronidase for 48 to 72 hours failed to develop endocardial cushions. These experiments are the first to (1) document a quantifiable increase in ventricular performance during early cardiac looping and (2) demonstrate that hyaluronate degradation results in abnormal endocardial cushion formation and altered ventricular performance of the postlooped heart.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. The Strip-Hippo Pathway Regulates Synaptic Terminal Formation by Modulating Actin Organization at the Drosophila Neuromuscular Synapses

    Directory of Open Access Journals (Sweden)

    Chisako Sakuma

    2016-08-01

    Full Text Available Synapse formation requires the precise coordination of axon elongation, cytoskeletal stability, and diverse modes of cell signaling. The underlying mechanisms of this interplay, however, remain unclear. Here, we demonstrate that Strip, a component of the striatin-interacting phosphatase and kinase (STRIPAK complex that regulates these processes, is required to ensure the proper development of synaptic boutons at the Drosophila neuromuscular junction. In doing so, Strip negatively regulates the activity of the Hippo (Hpo pathway, an evolutionarily conserved regulator of organ size whose role in synapse formation is currently unappreciated. Strip functions genetically with Enabled, an actin assembly/elongation factor and the presumptive downstream target of Hpo signaling, to modulate local actin organization at synaptic termini. This regulation occurs independently of the transcriptional co-activator Yorkie, the canonical downstream target of the Hpo pathway. Our study identifies a previously unanticipated role of the Strip-Hippo pathway in synaptic development, linking cell signaling to actin organization.

  14. Paracrine intercellular communication by a Ca2+- and SNARE-independent release of GABA and glutamate prior to synapse formation.

    Science.gov (United States)

    Demarque, Michael; Represa, Alfonso; Becq, Hélène; Khalilov, Ilgam; Ben-Ari, Yehezkel; Aniksztejn, Laurent

    2002-12-19

    GABA and glutamate receptors are expressed in immature "silent" CA1 pyramidal neurons prior to synapse formation, but their function is unknown. We now report the presence of tonic, spontaneous, and evoked currents in embryonic and neonatal CA1 neurons mediated primarily by the activation of GABA(A) receptors. These currents are mediated by a nonconventional release of transmitters, as they persist in the presence of calcium channel blockers or botulinium toxin and are observed in Munc18-1-deficient mice in which vesicular release is abolished. This paracrine communication is modulated by glutamate but not GABA transporters, which do not operate during this period of life. Thus, a Ca(2+)- and SNARE-independent release of transmitters underlies a paracrine mode of communication before synapse formation.

  15. Diverse Short-Term Dynamics of Inhibitory Synapses Converging on Striatal Projection Neurons: Differential Changes in a Rodent Model of Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Janet Barroso-Flores

    2015-01-01

    Full Text Available Most neurons in the striatum are projection neurons (SPNs which make synapses with each other within distances of approximately 100 µm. About 5% of striatal neurons are GABAergic interneurons whose axons expand hundreds of microns. Short-term synaptic plasticity (STSP between fast-spiking (FS interneurons and SPNs and between SPNs has been described with electrophysiological and optogenetic techniques. It is difficult to obtain pair recordings from some classes of interneurons and due to limitations of actual techniques, no other types of STSP have been described on SPNs. Diverse STSPs may reflect differences in presynaptic release machineries. Therefore, we focused the present work on answering two questions: Are there different identifiable classes of STSP between GABAergic synapses on SPNs? And, if so, are synapses exhibiting different classes of STSP differentially affected by dopamine depletion? Whole-cell voltage-clamp recordings on SPNs revealed three classes of STSPs: depressing, facilitating, and biphasic (facilitating-depressing, in response to stimulation trains at 20 Hz, in a constant ionic environment. We then used the 6-hydroxydopamine (6-OHDA rodent model of Parkinson’s disease to show that synapses with different STSPs are differentially affected by dopamine depletion. We propose a general model of STSP that fits all the dynamics found in our recordings.

  16. Does Severe Maternal Morbidity Affect Female Sexual Activity and Function? Evidence from a Brazilian Cohort Study

    Science.gov (United States)

    Andreucci, Carla B.; Cecatti, José G.; Pacagnella, Rodolfo C.; Silveira, Carla; Parpinelli, Mary A.; Ferreira, Elton C.; Angelini, Carina R.; Santos, Juliana P.; Zanardi, Dulce M.; Bussadori, Jamile C.; Cecchino, Gustavo N.; Souza, Renato T.; Sousa, Maria H.; Costa, Maria L.

    2015-01-01

    Objective to assess Female Sexual Function Index (FSFI) scores and delay to resume sexual activity associated with a previous severe maternal morbidity. Method This was a multidimensional retrospective cohort study. Women who gave birth at a Brazilian tertiary maternity between 2008 and 2012 were included, with data extraction from the hospital information system. Those with potentially life-threatening conditions and maternal near miss episodes (severe maternal morbidity) were considered the exposed group. The control group was a random sample of women who had had uncomplicated pregnancy. Female sexual function was evaluated through FSFI questionnaire, and general and reproductive aspects were addressed through specific questions. Statistical analyses were performed using Mann-Whitney and Pearson´s Chi-square for bivariate analyses. Logistic regression was used to identify variables independently associated with lower FSFI scores. Results 638 women were included (315 at exposed and 323 at not exposed groups). The majority of women were under 30 years-old in the control group and between 30 and 46 years-old in the exposed group (p = 0.003). Women who experienced severe maternal morbidity (SMM) had statistically significant differences regarding cesarean section (82.4% versus 47.1% among deliveries without complications, p<0.001), and some previous pathological conditions. FSFI mean scores were similar among groups ranging from 24.39 to 24.42. It took longer for exposed women to resume sexual activity after index pregnancy (mean 84 days after SMM and 65 days for control group, p = 0.01). Multiple analyses showed no significant association of FSFI below cut-off value with any predictor. Conclusion FSFI scores were not different in both groups. However, they were lower than expected. SMM delayed resumption of sexual activity after delivery, beyond postpartum period. However, the proportion of women in both groups having sex at 3 months after delivery was similar

  17. Intermittent hypoxia leads to functional reorganization of mitochondria and affects cellular bioenergetics in marine molluscs.

    Science.gov (United States)

    Ivanina, Anna V; Nesmelova, Irina; Leamy, Larry; Sokolov, Eugene P; Sokolova, Inna M

    2016-06-01

    Fluctuations in oxygen (O2) concentrations represent a major challenge to aerobic organisms and can be extremely damaging to their mitochondria. Marine intertidal molluscs are well-adapted to frequent O2 fluctuations, yet it remains unknown how their mitochondrial functions are regulated to sustain energy metabolism and prevent cellular damage during hypoxia and reoxygenation (H/R). We used metabolic control analysis to investigate the mechanisms of mitochondrial responses to H/R stress (18 h at <0.1% O2 followed by 1 h of reoxygenation) using hypoxia-tolerant intertidal clams Mercenaria mercenaria and hypoxia-sensitive subtidal scallops Argopecten irradians as models. We also assessed H/R-induced changes in cellular energy balance, oxidative damage and unfolded protein response to determine the potential links between mitochondrial dysfunction and cellular injury. Mitochondrial responses to H/R in scallops strongly resembled those in other hypoxia-sensitive organisms. Exposure to hypoxia followed by reoxygenation led to a strong decrease in the substrate oxidation (SOX) and phosphorylation (PHOS) capacities as well as partial depolarization of mitochondria of scallops. Elevated mRNA expression of a reactive oxygen species-sensitive enzyme aconitase and Lon protease (responsible for degradation of oxidized mitochondrial proteins) during H/R stress was consistent with elevated levels of oxidative stress in mitochondria of scallops. In hypoxia-tolerant clams, mitochondrial SOX capacity was enhanced during hypoxia and continued rising during the first hour of reoxygenation. In both species, the mitochondrial PHOS capacity was suppressed during hypoxia, likely to prevent ATP wastage by the reverse action of FO,F1-ATPase. The PHOS capacity recovered after 1 h of reoxygenation in clams but not in scallops. Compared with scallops, clams showed a greater suppression of energy-consuming processes (such as protein turnover and ion transport) during hypoxia, indicated

  18. Does Severe Maternal Morbidity Affect Female Sexual Activity and Function? Evidence from a Brazilian Cohort Study.

    Directory of Open Access Journals (Sweden)

    Carla B Andreucci

    Full Text Available to assess Female Sexual Function Index (FSFI scores and delay to resume sexual activity associated with a previous severe maternal morbidity.This was a multidimensional retrospective cohort study. Women who gave birth at a Brazilian tertiary maternity between 2008 and 2012 were included, with data extraction from the hospital information system. Those with potentially life-threatening conditions and maternal near miss episodes (severe maternal morbidity were considered the exposed group. The control group was a random sample of women who ha