WorldWideScience

Sample records for affects proteasome interacting

  1. Effects of ethanol on the proteasome interacting proteins

    Institute of Scientific and Technical Information of China (English)

    Fawzia; Bardag-Gorce

    2010-01-01

    Proteasome dysfunction has been repeatedly reported in alcoholic liver disease. Ethanol metabolism endproducts affect the structure of the proteasome, and, therefore, change the proteasome interaction with its regulatory complexes 19S and PA28, as well as its interacting proteins. Chronic ethanol feeding alters the ubiquitin-proteasome activity by altering the interaction between the 19S and the 20S proteasome interaction. The degradation of oxidized and damaged proteins is thus decreased and leads to accum...

  2. Proteins interacting with the 26S proteasome

    DEFF Research Database (Denmark)

    Hartmann-Petersen, R; Gordon, C

    2004-01-01

    The 26S proteasome is the multi-protein protease that recognizes and degrades ubiquitinylated substrates targeted for destruction by the ubiquitin pathway. In addition to the well-documented subunit organization of the 26S holoenzyme, it is clear that a number of other proteins transiently...... associate with the 26S complex. These transiently associated proteins confer a number of different roles such as substrate presentation, cleavage of the multi-ubiquitin chain from the protein substrate and turnover of misfolded proteins. Such activities are essential for the 26S proteasome to efficiently...... fulfill its intracellular function in protein degradation....

  3. Integral UBL domain proteins: a family of proteasome interacting proteins

    DEFF Research Database (Denmark)

    Hartmann-Petersen, Rasmus; Gordon, Colin

    2004-01-01

    The family of ubiquitin-like (UBL) domain proteins (UDPs) comprises a conserved group of proteins involved in a multitude of different cellular activities. However, recent studies on UBL-domain proteins indicate that these proteins appear to share a common property in their ability to interact with......-domain proteins catalyse the formation of ubiquitin-protein conjugates, whereas others appear to target ubiquitinated proteins for degradation and interact with chaperones. Hence, by binding to the 26S proteasome the UBL-domain proteins seem to tailor and direct the basic proteolytic functions of the particle to...... 26S proteasomes. The 26S proteasome is a multisubunit protease which is responsible for the majority of intracellular proteolysis in eukaryotic cells. Before degradation commences most proteins are first marked for destruction by being coupled to a chain of ubiquitin molecules. Some UBL...

  4. Inhibition of Nek2 by Small Molecules Affects Proteasome Activity

    Directory of Open Access Journals (Sweden)

    Lingyao Meng

    2014-01-01

    Full Text Available Background. Nek2 is a serine/threonine kinase localized to the centrosome. It promotes cell cycle progression from G2 to M by inducing centrosome separation. Recent studies have shown that high Nek2 expression is correlated with drug resistance in multiple myeloma patients. Materials and Methods. To investigate the role of Nek2 in bortezomib resistance, we ectopically overexpressed Nek2 in several cancer cell lines, including multiple myeloma lines. Small-molecule inhibitors of Nek2 were discovered using an in-house library of compounds. We tested the inhibitors on proteasome and cell cycle activity in several cell lines. Results. Proteasome activity was elevated in Nek2-overexpressing cell lines. The Nek2 inhibitors inhibited proteasome activity in these cancer cell lines. Treatment with these inhibitors resulted in inhibition of proteasome-mediated degradation of several cell cycle regulators in HeLa cells, leaving them arrested in G2/M. Combining these Nek2 inhibitors with bortezomib increased the efficacy of bortezomib in decreasing proteasome activity in vitro. Treatment with these novel Nek2 inhibitors successfully mitigated drug resistance in bortezomib-resistant multiple myeloma. Conclusion. Nek2 plays a central role in proteasome-mediated cell cycle regulation and in conferring resistance to bortezomib in cancer cells. Taken together, our results introduce Nek2 as a therapeutic target in bortezomib-resistant multiple myeloma.

  5. Experiencing affective interactive art

    NARCIS (Netherlands)

    Bialoskorski, Leticia S.S.; Westerink, Joyce H.D.M.; Broek, van den Egon L.

    2010-01-01

    The progress in the field of affective computing enables the realization of affective art. This paper describes the affective interactive art system Mood Swings, which interprets and visualizes affect expressed by a person. Mood Swings is founded on the integration of a framework for affective move

  6. Interaction between misfolded PrP and the ubiquitin-proteasome system in prion-mediated neurodegeneration

    Institute of Scientific and Technical Information of China (English)

    Zhu Lin; Deming Zhao; Lifeng Yang

    2013-01-01

    Prion diseases are associated with the conformational conversion of cellular prion protein (PrPC) to pathological β-sheet isoforms (PrpSc),which is the infectious agent beyond comprehension.Increasing evidence indicated that an unknown toxic gain of function of PrPSc underlies neuronal death.Conversely,strong evidence indicated that cellular prion protein might be directly cytotoxic by mediating neurotoxic signaling of β-sheet-rich conformers independent of prion replication.Furthermore,the common properties of β-sheet-rich isoform such as PrPSc and β amyloid protein become the lynchpin that interprets the general pathological mechanism of protein misfolding diseases.Dysfunction of the ubiquitin-proteasome system (UPS) has been implicated in various protein misfolding diseases.However,the mechanisms of this impairment remain unknown in many cases.In prion disease,prioninfected mouse brains have increased levels of ubiquitin conjugates,which correlate with decreased proteasome function.Both PrPC and PrPsc accumulate in cells after proteasome inhibition,which leads to increased cell death.A direct interaction between 20S core particle and PrP isoforms was demonstrated.Here we review the ability of misfolded PrP and UPS to affect each other,which might contribute to the pathological features of prion-mediated neurodegeneration.

  7. Gel-based chemical cross-linking analysis of 20S proteasome subunit-subunit interactions in breast cancer.

    Science.gov (United States)

    Song, Hai; Xiong, Hua; Che, Jing; Xi, Qing-Song; Huang, Liu; Xiong, Hui-Hua; Zhang, Peng

    2016-08-01

    The ubiquitin-proteasome system plays a pivotal role in breast tumorigenesis by controlling transcription factors, thus promoting cell cycle growth, and degradation of tumor suppressor proteins. However, breast cancer patients have failed to benefit from proteasome inhibitor treatment partially due to proteasome heterogeneity, which is poorly understood in malignant breast neoplasm. Chemical crosslinking is an increasingly important tool for mapping protein three-dimensional structures and proteinprotein interactions. In the present study, two cross-linkers, bis (sulfosuccinimidyl) suberate (BS(3)) and its water-insoluble analog disuccinimidyl suberate (DSS), were used to map the subunit-subunit interactions in 20S proteasome core particle (CP) from MDA-MB-231 cells. Different types of gel electrophoresis technologies were used. In combination with chemical cross-linking and mass spectrometry, we applied these gel electrophoresis technologies to the study of the noncovalent interactions among 20S proteasome subunits. Firstly, the CP subunit isoforms were profiled. Subsequently, using native/SDSPAGE, it was observed that 0.5 mmol/L BS(3) was a relatively optimal cross-linking concentration for CP subunit-subunit interaction study. 2-DE analysis of the cross-linked CP revealed that α1 might preinteract with α2, and α3 might pre-interact with α4. Moreover, there were different subtypes of α1α2 and α3α4 due to proteasome heterogeneity. There was no significant difference in cross-linking pattern for CP subunits between BS(3) and DSS. Taken together, the gel-based characterization in combination with chemical cross-linking could serve as a tool for the study of subunit interactions within a multi-subunit protein complex. The heterogeneity of 20S proteasome subunit observed in breast cancer cells may provide some key information for proteasome inhibition strategy. PMID:27465334

  8. Proteasome β5i Subunit Deficiency Affects Opsonin Synthesis and Aggravates Pneumococcal Pneumonia.

    Science.gov (United States)

    Kirschner, Felicia; Reppe, Katrin; Andresen, Nadine; Witzenrath, Martin; Ebstein, Frédéric; Kloetzel, Peter-Michael

    2016-01-01

    Immunoproteasomes, harboring the active site subunits β5i/LMP7, β1i/LMP2, and β2i/MECL1 exert protective, regulatory or modulating functions during infection-induced immune responses. Immunoproteasomes are constitutively expressed in hematopoietic derived cells, constituting the first line of defense against invading pathogens. To clarify the impact of immunoproteasomes on the innate immune response against Streptococcus pneumoniae, we characterized the progression of disease and analyzed the systemic immune response in β5i/LMP7-/- mice. Our data show that β5i/LMP7 deficiency, which affected the subunit composition of proteasomes in murine macrophages and liver, was accompanied by reduced transcription of genes encoding immune modulating molecules such as pentraxins, ficolins, and collectins. The diminished opsonin expression suggested an impaired humoral immune response against invading pneumococci resulting in an aggravated systemic dissemination of S. pneumoniae in β5i/LMP7-/- mice. The impaired bacterial elimination in β5i/LMP7-/- mice was accompanied by an aggravated course of pneumonia with early mortality as a consequence of critical illness during the late phase of disease. In summary our results highlight an unsuspected role for immuno-subunits in modulating the innate immune response to extracellular bacterial infections. PMID:27100179

  9. SIAH-1 interacts with alpha-tubulin and degrades the kinesin Kid by the proteasome pathway during mitosis.

    Science.gov (United States)

    Germani, A; Bruzzoni-Giovanelli, H; Fellous, A; Gisselbrecht, S; Varin-Blank, N; Calvo, F

    2000-12-01

    SIAH-1, a human homologue of the Drosophila seven in absentia (Sina), has been implicated in ubiquitin-mediated proteolysis of different target proteins through its N-terminal RING finger domain. SIAH-1 is also induced during p53-mediated apoptosis. Furthermore, SIAH-1-transfected breast cancer cell line MCF-7 exhibits an altered mitotic process resulting in multinucleated giant cells. Now, using the two-hybrid system, we identified two new SIAH interacting proteins: Kid (kinesin like DNA binding protein) and alpha-tubulin. We demonstrate that SIAH is involved in the degradation of Kid via the ubiquitin-proteasome pathway. Our results suggest that SIAH-1 but not its N-terminal deletion mutant, affects the mitosis by an enhanced reduction of kinesin levels. Our results imply, for the first time, SIAH-1 in regulating the degradation of proteins directly implicated in the mitotic process. PMID:11146551

  10. HIV-1 replication through hHR23A-mediated interaction of Vpr with 26S proteasome.

    Directory of Open Access Journals (Sweden)

    Ge Li

    Full Text Available HIV-1 Vpr is a virion-associated protein. Its activities link to viral pathogenesis and disease progression of HIV-infected patients. In vitro, Vpr moderately activates HIV-1 replication in proliferating T cells, but it is required for efficient viral infection and replication in vivo in non-dividing cells such as macrophages. How exactly Vpr contributes to viral replication remains elusive. We show here that Vpr stimulates HIV-1 replication at least in part through its interaction with hHR23A, a protein that binds to 19S subunit of the 26S proteasome and shuttles ubiquitinated proteins to the proteasome for degradation. The Vpr-proteasome interaction was initially discovered in fission yeast, where Vpr was shown to associate with Mts4 and Mts2, two 19S-associated proteins. The interaction of Vpr with the 19S subunit of the proteasome was further confirmed in mammalian cells where Vpr associates with the mammalian orthologues of fission yeast Mts4 and S5a. Consistently, depletion of hHR23A interrupts interaction of Vpr with proteasome in mammalian cells. Furthermore, Vpr promotes hHR23A-mediated protein-ubiquitination, and down-regulation of hHR23A using RNAi significantly reduced viral replication in non-proliferating MAGI-CCR5 cells and primary macrophages. These findings suggest that Vpr-proteasome interaction might counteract certain host restriction factor(s to stimulate viral replication in non-dividing cells.

  11. Interaction of Plasminogen Activator Inhibitor-2 and Proteasome Subunit, Beta Type 1

    Institute of Scientific and Technical Information of China (English)

    Jing FAN; Yu-Qing ZHANG; Ping LI; Min HOU; Li TAN; Xia WANG; Yun-Song ZHU

    2004-01-01

    The apoptosis protection by plasminogen activator inhibitor-2(PAI-2) is dependent on a 33 amino acid fragment between helix C and D of PAI-2 which is probably due to the interaction of PAI-2 with unknown intracellular proteins. In this study, we used the fragment between helix C and D of PAI-2 as bait to screen a HeLa cell cDNA library constructed during apoptosis in a yeast two-hybrid system and retrieved a clone encoding 241 amino acids of proteasome (prosome, macropain) subunit, beta type 1(PSMβ1) which plays important roles in NF-κB activation. GST-pulldown experiments confirmed the interaction between PAI-2 and PSMβ1 in vitro. These data suggest that the antiapoptosis activity of PAI-2 is probably related to its interation with PSMβ1.

  12. ahg12 is a dominant proteasome mutant that affects multiple regulatory systems for germination of Arabidopsis.

    Science.gov (United States)

    Hayashi, Shimpei; Hirayama, Takashi

    2016-01-01

    The ubiquitin-proteasome system is fundamentally involved in myriad biological phenomena of eukaryotes. In plants, this regulated protein degradation system has a pivotal role in the cellular response mechanisms for both internal and external stimuli, such as plant hormones and environmental stresses. Information about substrate selection by the ubiquitination machinery has accumulated, but there is very little information about selectivity for substrates at the proteasome. Here, we report characterization of a novel abscisic acid (ABA)-hypersensitive mutant named ABA hypersensitive germination12 (ahg12) in Arabidopsis. The ahg12 mutant showed a unique pleiotropic phenotype, including hypersensitivity to ABA and ethylene, and hyposensitivity to light. Map-based cloning identified the ahg12 mutation to cause an amino acid conversion in the L23 loop of RPT5a, which is predicted to form the pore structure of the 19S RP complex of the proteasome. Transient expression assays demonstrated that some plant-specific signaling components accumulated at higher levels in the ahg12 mutant. These results suggest that the ahg12 mutation led to changes in the substrate preference of the 26S proteasome. The discovery of the ahg12 mutation thus will contribute to elucidate the characteristics of the regulated protein degradation system. PMID:27139926

  13. Mouse homologue of yeast Prp19 interacts with mouse SUG1, the regulatory subunit of 26S proteasome

    International Nuclear Information System (INIS)

    Yeast Prp19 has been shown to involve in pre-mRNA splicing and DNA repair as well as being an ubiquitin ligase. Mammalian homologue of yeast Prp19 also plays on similar functional activities in cells. In the present study, we isolated mouse SUG1 (mSUG1) as binding partner of mouse Prp19 (mPrp19) by the yeast two-hybrid system. We confirmed the interaction of mPrp9 with mSUG1 by GST pull-down assay and co-immunoprecipitation assay. The N-terminus of mPrp19 including U-box domain was associated with the C-terminus of mSUG1. Although, mSUG1 is a regulatory subunit of 26S proteasome, mPrp19 was not degraded in the proteasome-dependent pathway. Interestingly, GFP-mPrp19 fusion protein was co-localized with mSUG1 protein in cytoplasm as the formation of the speckle-like structures in the presence of a proteasome inhibitor MG132. In addition, the activity of proteasome was increased in cells transfected with mPrp19. Taken together, these results suggest that mPrp19 involves the regulation of protein turnover and may transport its substrates to 26S proteasome through mSUG1 protein

  14. Cytoplasmic Trafficking of Minute Virus of Mice: Low-pH Requirement, Routing to Late Endosomes, and Proteasome Interaction

    Science.gov (United States)

    Ros, Carlos; Burckhardt, Christoph J.; Kempf, Christoph

    2002-01-01

    The cytoplasmic trafficking of the prototype strain of minute virus of mice (MVMp) was investigated by analyzing and quantifying the effect of drugs that reduce or abolish specific cellular functions on the accumulation of viral macromolecules. With this strategy, it was found that a low endosomal pH is required for the infection, since bafilomycin A1 and chloroquine, two pH-interfering drugs, were similarly active against MVMp. Disruption of the endosomal network by brefeldin A interfered with MVMp infection, indicating that viral particles are routed farther than the early endocytic compartment. Pulse experiments with endosome-interfering drugs showed that the bulk of MVMp particles remained in the endosomal compartment for several hours before its release to the cytosol. Drugs that block the activity of the proteasome by different mechanisms, such as MG132, lactacystin, and epoxomicin, all strongly blocked MVMp infection. Pulse experiments with the proteasome inhibitor MG132 indicated that MVMp interacts with cellular proteasomes after endosomal escape. The chymotrypsin-like but not the trypsin-like activity of the proteasome is required for the infection, since the chymotrypsin inhibitors N-tosyl-l-phenylalanine chloromethyl ketone and aclarubicin were both effective in blocking MVMp infection. However, the trypsin inhibitor Nα-p-tosyl-l-lysine chloromethyl ketone had no effect. These results suggest that the ubiquitin-proteasome pathway plays an essential role in the MVMp life cycle, probably assisting at the stages of capsid disassembly and/or nuclear translocation. PMID:12438589

  15. Interactive effects of CO2 and trace metals on the proteasome activity and cellular stress response of marine bivalves Crassostrea virginica and Mercenaria mercenaria

    International Nuclear Information System (INIS)

    Highlights: • Elevated PCO2 enhanced accumulation of Cu and Cd in the gills of mollusks. • The proteasome activities were affected by metals but robust to elevated PCO2. • Exposure to Cd and Cu had opposite effects on the proteasome activity. • Combined exposure to Cu and elevated PCO2 negatively affected energy status. - Abstract: Increased anthropogenic emission of CO2 changes the carbonate chemistry and decreases the pH of the ocean. This can affect the speciation and the bioavailability of metals in polluted habitats such as estuaries. However, the effects of acidification on metal accumulation and stress response in estuarine organisms including bivalves are poorly understood. We studied the interactive effects of CO2 and two common metal pollutants, copper (Cu) and cadmium (Cd), on metal accumulation, intracellular ATP/ubiquitin-dependent protein degradation, stress response and energy metabolism in two common estuarine bivalves—Crassostrea virginica (eastern oyster) and Mercenaria mercenaria (hard shell clam). Bivalves were exposed for 4–5 weeks to clean seawater (control) and to either 50 μg L−1 Cu or 50 μg L−1 Cd at one of three partial pressures of CO2 (PCO2 ∼395, ∼800 and ∼1500 μatm) representative of the present-day conditions and projections of the Intergovernmental Panel for Climate Change (IPCC) for the years 2100 and 2250, respectively. Clams accumulated lower metal burdens than oysters, and elevated PCO2 enhanced the Cd and Cu accumulation in mantle tissues in both species. Higher Cd and Cu burdens were associated with elevated mRNA expression of metal binding proteins metallothionein and ferritin. In the absence of added metals, proteasome activities of clams and oysters were robust to elevated PCO2, but PCO2 modulated the proteasome response to metals. Cd exposure stimulated the chymotrypsin-like activity of the oyster proteasome at all CO2 levels. In contrast, trypsin- and caspase-like activities of the oyster proteasome

  16. Interactive effects of CO₂ and trace metals on the proteasome activity and cellular stress response of marine bivalves Crassostrea virginica and Mercenaria mercenaria

    Energy Technology Data Exchange (ETDEWEB)

    Götze, Sandra [Alfred Wegener Institute, Helmholtz Centre for Polar, Marine Research, Functional Ecology, 27570 Bremerhaven (Germany); Department of Biology, University of North Carolina at Charlotte, Charlotte, NC 28223 (United States); Matoo, Omera B. [Department of Biology, University of North Carolina at Charlotte, Charlotte, NC 28223 (United States); Beniash, Elia [Department of Oral Biology, University of Pittsburgh, Pittsburgh, PA (United States); Saborowski, Reinhard [Alfred Wegener Institute, Helmholtz Centre for Polar, Marine Research, Functional Ecology, 27570 Bremerhaven (Germany); Sokolova, Inna M., E-mail: isokolov@uncc.edu [Department of Biology, University of North Carolina at Charlotte, Charlotte, NC 28223 (United States)

    2014-04-01

    Highlights: • Elevated PCO₂ enhanced accumulation of Cu and Cd in the gills of mollusks. • The proteasome activities were affected by metals but robust to elevated PCO₂. • Exposure to Cd and Cu had opposite effects on the proteasome activity. • Combined exposure to Cu and elevated PCO₂ negatively affected energy status. - Abstract: Increased anthropogenic emission of CO₂ changes the carbonate chemistry and decreases the pH of the ocean. This can affect the speciation and the bioavailability of metals in polluted habitats such as estuaries. However, the effects of acidification on metal accumulation and stress response in estuarine organisms including bivalves are poorly understood. We studied the interactive effects of CO₂ and two common metal pollutants, copper (Cu) and cadmium (Cd), on metal accumulation, intracellular ATP/ubiquitin-dependent protein degradation, stress response and energy metabolism in two common estuarine bivalves—Crassostrea virginica (eastern oyster) and Mercenaria mercenaria (hard shell clam). Bivalves were exposed for 4–5 weeks to clean seawater (control) and to either 50 μg L⁻¹ Cu or 50 μg L⁻¹ Cd at one of three partial pressures of CO₂ PCO₂ ~395, ~800 and ~1500 μatm) representative of the present-day conditions and projections of the Intergovernmental Panel for Climate Change (IPCC) for the years 2100 and 2250, respectively. Clams accumulated lower metal burdens than oysters, and elevated PCO₂ enhanced the Cd and Cu accumulation in mantle tissues in both species. Higher Cd and Cu burdens were associated with elevated mRNA expression of metal binding proteins metallothionein and ferritin. In the absence of added metals, proteasome activities of clams and oysters were robust to elevated PCO₂, but PCO₂ modulated the proteasome response to metals. Cd exposure stimulated the chymotrypsin-like activity of the oyster proteasome

  17. The role of the ubiquitination-proteasome pathway in breast cancer: Applying drugs that affect the ubiquitin-proteasome pathway to the therapy of breast cancer

    International Nuclear Information System (INIS)

    The ubiquitin-proteasome pathway is responsible for most eukaryotic intracellular protein degradation. This pathway has been validated as a target for antineoplastic therapy using both in vitro and preclinical models of human malignancies, and is influenced as part of the mechanism of action of certain chemotherapeutic agents. Drugs whose primary action involves modulation of ubiquitin-proteasome activity, most notably the proteasome inhibitor PS-341, are currently being evaluated in clinical trials, and have already been found to have significant antitumor efficacy. On the basis of the known mechanisms by which these agents work, and the available clinical data, they would seem to be well suited for the treatment of breast neoplasms. Such drugs, alone and especially in combination with current chemotherapeutics, may well represent important advances in the therapy of patients with breast cancer

  18. Affective Computing and Intelligent Interaction

    CERN Document Server

    2012-01-01

    2012 International Conference on Affective Computing and Intelligent Interaction (ICACII 2012) was the most comprehensive conference focused on the various aspects of advances in Affective Computing and Intelligent Interaction. The conference provided a rare opportunity to bring together worldwide academic researchers and practitioners for exchanging the latest developments and applications in this field such as Intelligent Computing, Affective Computing, Machine Learning, Business Intelligence and HCI.   This volume is a collection of 119 papers selected from 410 submissions from universities and industries all over the world, based on their quality and relevancy to the conference. All of the papers have been peer-reviewed by selected experts.  

  19. Subunit interaction maps for the regulatory particle of the 26S proteasome and the COP9 signalosome.

    Science.gov (United States)

    Fu, H; Reis, N; Lee, Y; Glickman, M H; Vierstra, R D

    2001-12-17

    The 26S proteasome plays a major role in eukaryotic protein breakdown, especially for ubiquitin-tagged proteins. Substrate specificity is conferred by the regulatory particle (RP), which can dissociate into stable lid and base subcomplexes. To help define the molecular organization of the RP, we tested all possible paired interactions among subunits from Saccharomyces cerevisiae by yeast two-hybrid analysis. Within the base, a Rpt4/5/3/6 interaction cluster was evident. Within the lid, a structural cluster formed around Rpn5/11/9/8. Interactions were detected among synonymous subunits (Csn4/5/7/6) from the evolutionarily related COP9 signalosome (CSN) from Arabidopsis, implying a similar quaternary arrangement. No paired interactions were detected between lid, base or core particle subcomplexes, suggesting that stable contacts between them require prior assembly. Mutational analysis defined the ATPase, coiled-coil, PCI and MPN domains as important for RP assembly. A single residue in the vWA domain of Rpn10 is essential for amino acid analog resistance, for degrading a ubiquitin fusion degradation substrate and for stabilizing lid-base association. Comprehensive subunit interaction maps for the 26S proteasome and CSN support the ancestral relationship of these two complexes. PMID:11742986

  20. Protein Interaction between Ameloblastin and Proteasome Subunit α Type 3 Can Facilitate Redistribution of Ameloblastin Domains within Forming Enamel.

    Science.gov (United States)

    Geng, Shuhui; White, Shane N; Paine, Michael L; Snead, Malcolm L

    2015-08-21

    Enamel is a bioceramic tissue composed of thousands of hydroxyapatite crystallites aligned in parallel within boundaries fabricated by a single ameloblast cell. Enamel is the hardest tissue in the vertebrate body; however, it starts development as a self-organizing assembly of matrix proteins that control crystallite habit. Here, we examine ameloblastin, a protein that is initially distributed uniformly across the cell boundary but redistributes to the lateral margins of the extracellular matrix following secretion thus producing cell-defined boundaries within the matrix and the mineral phase. The yeast two-hybrid assay identified that proteasome subunit α type 3 (Psma3) interacts with ameloblastin. Confocal microscopy confirmed Psma3 co-distribution with ameloblastin at the ameloblast secretory end piece. Co-immunoprecipitation assay of mouse ameloblast cell lysates with either ameloblastin or Psma3 antibody identified each reciprocal protein partner. Protein engineering demonstrated that only the ameloblastin C terminus interacts with Psma3. We show that 20S proteasome digestion of ameloblastin in vitro generates an N-terminal cleavage fragment consistent with the in vivo pattern of ameloblastin distribution. These findings suggest a novel pathway participating in control of protein distribution within the extracellular space that serves to regulate the protein-mineral interactions essential to biomineralization. PMID:26070558

  1. Inhibition of proteasomal proteolysis affects expression of extracellular matrix components and steroidogenesis in porcine oocyte-cumulus complexes

    Czech Academy of Sciences Publication Activity Database

    Nagyová, Eva; Scsuková, S.; Němcová, Lucie; Mlynarčíková, A.; Yi, Y.J.; Sutovky, M.; Sutovsky, P.

    2012-01-01

    Roč. 42, č. 1 (2012), s. 50-62. ISSN 0739-7240 R&D Projects: GA ČR GAP502/11/0593 Institutional research plan: CEZ:AV0Z50450515 Keywords : Oocyte-cumulus complex * TNFAIP6 * HAS2 * Progesterone * Ubiquitin * Proteasome Subject RIV: ED - Physiology Impact factor: 2.377, year: 2012

  2. Come, see and experience affective interactive art

    NARCIS (Netherlands)

    Bialoskorski, Leticia S.S.; Westerink, Joyce H.D.M.; Broek, van den Egon L.; Nijholt, Anton; Reidsma, Dennis; Hondorp, Hendri

    2009-01-01

    The progress in the field of affective computing enables the realization of affective consumer products, affective games, and affective art. This paper describes the affective interactive art system Mood Swings, which interprets and visualizes affect expressed by a person. Mood Swings is founded on

  3. Mood Swings: An Affective Interactive Art System

    NARCIS (Netherlands)

    Bialoskorski, Leticia S.S.; Westerink, Joyce H.D.M.; Broek, van den Egon L.; Nijholt, Anton; Reidsma, Dennis; Hondorp, Hendri

    2009-01-01

    The progress in the field of affective computing enables the realization of affective consumer products, affective games, and affective art. This paper describes the affective interactive art system Mood Swings, which interprets and visualizes affect expressed by a person. Mood Swings is founded on

  4. Come, See and Experience Affective Interactive Art

    NARCIS (Netherlands)

    Bialoskorski, Leticia S.S.; Westerink, Joyce H.D.M.; Broek, van den Egon L.; Nijholt, A.; Reidsma, D.; Hondorp, G.H.W.

    2009-01-01

    The progress in the field of affective computing enables the realization of affective consumer products, affective games, and affective art. This paper describes the affective interactive art system Mood Swings, which interprets and visualizes affect expressed by a person. Mood Swings is founded on

  5. Interaction of the anaphase-promoting complex/cyclosome and proteasome protein complexes with multiubiquitin chain-binding proteins

    DEFF Research Database (Denmark)

    Seeger, Michael; Hartmann-Petersen, Rasmus; Wilkinson, Caroline R M; Wallace, Mairi; Samejima, Itaru; Taylor, Martin S; Gordon, Colin

    2003-01-01

    Fission yeast Rhp23 and Pus1 represent two families of multiubiquitin chain-binding proteins that associate with the proteasome. We show that both proteins bind to different regions of the proteasome subunit Mts4. The binding site for Pus1 was mapped to a cluster of repetitive sequences also foun...

  6. The T210M Substitution in the HLA-a*02:01 gp100 Epitope Strongly Affects Overall Proteasomal Cleavage Site Usage and Antigen Processing.

    Science.gov (United States)

    Textoris-Taube, Kathrin; Keller, Christin; Liepe, Juliane; Henklein, Petra; Sidney, John; Sette, Alessandro; Kloetzel, Peter M; Mishto, Michele

    2015-12-18

    MHC class I-restricted epitopes, which carry a tumor-specific mutation resulting in improved MHC binding affinity, are preferred T cell receptor targets in innovative adoptive T cell therapies. However, T cell therapy requires efficient generation of the selected epitope. How such mutations may affect proteasome-mediated antigen processing has so far not been studied. Therefore, we analyzed by in vitro experiments the effect on antigen processing and recognition of a T210M exchange, which previously had been introduced into the melanoma gp100209-217 tumor epitope to improve the HLA-A*02:01 binding and its immunogenicity. A quantitative analysis of the main steps of antigen processing shows that the T210M exchange affects proteasomal cleavage site usage within the mutgp100201-230 polypeptide, leading to the generation of an unique set of cleavage products. The T210M substitution qualitatively affects the proteasome-catalyzed generation of spliced and non-spliced peptides predicted to bind HLA-A or -B complexes. The T210M substitution also induces an enhanced production of the mutgp100209-217 epitope and its N-terminally extended peptides. The T210M exchange revealed no effect on ERAP1-mediated N-terminal trimming of the precursor peptides. However, mutant N-terminally extended peptides exhibited significantly increased HLA-A*02:01 binding affinity and elicited CD8(+) T cell stimulation in vitro similar to the wtgp100209-217 epitope. Thus, our experiments demonstrate that amino acid exchanges within an epitope can result in the generation of an altered peptide pool with new antigenic peptides and in a wider CD8(+) T cell response also towards N-terminally extended versions of the minimal epitope. PMID:26507656

  7. Mood Swings: An Affective Interactive Art System

    Science.gov (United States)

    Bialoskorski, Leticia S. S.; Westerink, Joyce H. D. M.; van den Broek, Egon L.

    The progress in the field of affective computing enables the realization of affective consumer products, affective games, and affective art. This paper describes the affective interactive art system Mood Swings, which interprets and visualizes affect expressed by a person. Mood Swings is founded on the integration of a framework for affective movements and a color model. This enables Mood Swings to recognize affective movement characteristics as expressed by a person and display a color that matches the expressed emotion. With that, a unique interactive system is introduced, which can be considered as art, a game, or a combination of both.

  8. Nonverbal synchrony and affect in dyadic interactions

    Directory of Open Access Journals (Sweden)

    Wolfgang eTschacher

    2014-11-01

    Full Text Available In an experiment on dyadic social interaction, we invited participants to verbal interactions in cooperative, competitive, and 'fun task' conditions. We focused on the link between interactants' affectivity and their nonverbal synchrony, and explored which further variables contributed to affectivity: interactants' personality traits, sex, and the prescribed interaction tasks. Nonverbal synchrony was quantified by the coordination of interactants' body movement, using an automated video-analysis algorithm (Motion Energy Analysis, MEA. Traits were assessed with standard questionnaires of personality, attachment, interactional style, psychopathology and interpersonal reactivity. We included 168 previously unacquainted individuals who were randomly allocated to same-sex dyads (84 females, 84 males, mean age 27.3 years. Dyads discussed four topics of general interest drawn from an urn of eight topics, and finally engaged in a fun interaction. Each interaction lasted five minutes. In between interactions, participants repeatedly assessed their affect. Using hierarchical linear modeling, we found moderate to strong effect sizes for synchrony to occur, especially in competitive and fun task conditions. Positive affect was associated positively with synchrony, negative affect was associated negatively. As for causal direction, data supported the interpretation that synchrony entailed affect rather than vice versa. The link between nonverbal synchrony and affect was strongest in female dyads. The findings extend previous reports of synchrony and mimicry associated with emotion in relationships and suggest a possible mechanism of the synchrony-affect correlation.

  9. Urban Interaction and Affective Experience

    DEFF Research Database (Denmark)

    Fritsch, Jonas; Brynskov, Martin

    2008-01-01

    As interactive digital technologies become a still more integrated and complex part of the everyday physical, social and cultural spaces we inhabit, research into these spaces’ dynamics and struc-tures needs to formulate adequate methods of analysis and dis-course. In this position paper we argue...

  10. Treatment of Plasmodium chabaudi Parasites with Curcumin in Combination with Antimalarial Drugs: Drug Interactions and Implications on the Ubiquitin/Proteasome System

    OpenAIRE

    Zoraima Neto; Marta Machado; Ana Lindeza; Virgílio do Rosário; Gazarini, Marcos L.; Dinora Lopes

    2013-01-01

    Antimalarial drug resistance remains a major obstacle in malaria control. Evidence from Southeast Asia shows that resistance to artemisinin combination therapy (ACT) is inevitable. Ethnopharmacological studies have confirmed the efficacy of curcumin against Plasmodium spp. Drug interaction assays between curcumin/piperine/chloroquine and curcumin/piperine/artemisinin combinations and the potential of drug treatment to interfere with the ubiquitin proteasome system (UPS) were analyzed. In vivo...

  11. Inhibition of the host proteasome facilitates papaya ringspot virus accumulation and proteosomal catalytic activity is modulated by viral factor HcPro.

    Directory of Open Access Journals (Sweden)

    Nandita Sahana

    Full Text Available The ubiquitin/26S proteasome system plays an essential role not only in maintaining protein turnover, but also in regulating many other plant responses, including plant-pathogen interactions. Previous studies highlighted different roles of the 20S proteasome in plant defense during virus infection, either indirectly through viral suppressor-mediated degradation of Argonaute proteins, affecting the RNA interference pathway, or directly through modulation of the proteolytic and RNase activity of the 20S proteasome, a component of the 20S proteasome, by viral proteins, affecting the levels of viral proteins and RNAs. Here we show that MG132, a cell permeable proteasomal inhibitor, caused an increase in papaya ringspot virus (PRSV accumulation in its natural host papaya (Carica papaya. We also show that the PRSV HcPro interacts with the papaya homologue of the Arabidopsis PAA (α1 subunit of the 20S proteasome, but not with the papaya homologue of Arabidopsis PAE (α5 subunit of the 20S proteasome, associated with the RNase activity, although the two 20S proteasome subunits interacted with each other. Mutated forms of PRSV HcPro showed that the conserved KITC54 motif in the N-terminal domain of HcPro was necessary for its binding to PAA. Co-agroinfiltration assays demonstrated that HcPro expression mimicked the action of MG132, and facilitated the accumulation of bothtotal ubiquitinated proteins and viral/non-viral exogenous RNA in Nicotiana benthamiana leaves. These effects were not observed by using an HcPro mutant (KITS54, which impaired the HcPro - PAA interaction. Thus, the PRSV HcPro interacts with a proteasomal subunit, inhibiting the action of the 20S proteasome, suggesting that HcPro might be crucial for modulating its catalytic activities in support of virus accumulation.

  12. HUWE1 interacts with BRCA1 and promotes its degradation in the ubiquitin–proteasome pathway (Biochemical and Biophysical Research Communications, v. 444 issue 3)

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaozhen [Department of Cell Biology, Peking University Health Science Center, Beijing 100191 (China); Institute of Systems Biology, Peking University, Beijing 100191 (China); Lu, Guang; Li, Li; Yi, Juan; Yan, Kaowen; Wang, Yaqing; Zhu, Baili; Kuang, Jingyu; Lin, Ming; Zhang, Sha [Department of Cell Biology, Peking University Health Science Center, Beijing 100191 (China); Shao, Genze, E-mail: gzshao@bjmu.edu.cn [Department of Cell Biology, Peking University Health Science Center, Beijing 100191 (China); Institute of Systems Biology, Peking University, Beijing 100191 (China)

    2014-02-14

    Highlights: • The 2000–2634 aa region of HUWE1 mediates the interaction with BRCA1 degron. • HUWE1 promotes the degradation of BRCA1 through the ubiquitin–proteasome pathway. • HUWE1 expression is inversely correlated with BRCA1 in breast cancer cells. • RNAi inhibition of HUWE1 confers increased resistance of MCF-10F cells to IR and MMC. - Abstract: The cellular BRCA1 protein level is essential for its tumor suppression activity and is tightly regulated through multiple mechanisms including ubiquitn–proteasome system. E3 ligases are involved to promote BRCA1 for ubiquitination and degradation. Here, we identified HUWE1/Mule/ARF-BP1 as a novel BRCA1-interacting protein involved in the control of BRCA1 protein level. HUWE1binds BRCA1 through its N-terminus degron domain. Depletion of HUWE1 by siRNA-mediated interference significantly increases BRCA1 protein levels and prolongs the half-life of BRCA1. Moreover, exogenous expression of HUWE1 promotes BRCA1 degradation through the ubiquitin–proteasome pathway, which could explain an inverse correlation between HUWE1 and BRCA1 levels in MCF10F, MCF7 and MDA-MB-231 breast cancer cells. Consistent with a functional role for HUWE1 in regulating BRCA1-mediated cellular response to DNA damage, depletion of HUWE1 by siRNA confers increased resistance to ionizing radiation and mitomycin. These data indicate that HUWE1 is a critical negative regulator of BRCA1 and suggest a new molecular mechanism for breast cancer pathogenesis.

  13. HUWE1 interacts with BRCA1 and promotes its degradation in the ubiquitin–proteasome pathway (Biochemical and Biophysical Research Communications, v. 444, isse 4)

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaozhen [Department of Cell Biology, Peking University Health Science Center, Beijing 100191 (China); Institute of Systems Biology, Peking University, Beijing 100191 (China); Lu, Guang; Li, Li; Yi, Juan; Yan, Kaowen; Wang, Yaqing; Zhu, Baili; Kuang, Jingyu; Lin, Ming; Zhang, Sha [Department of Cell Biology, Peking University Health Science Center, Beijing 100191 (China); Shao, Genze, E-mail: gzshao@bjmu.edu.cn [Department of Cell Biology, Peking University Health Science Center, Beijing 100191 (China); Institute of Systems Biology, Peking University, Beijing 100191 (China)

    2014-02-21

    Highlights: • The 2000–2634aa region of HUWE1 mediates the interaction with BRCA1 degron. • HUWE1 promotes the degradation of BRCA1 through the ubiquitin–proteasome pathway. • HUWE1 expression is inversely correlated with BRCA1 in breast cancer cells. • RNAi inhibition of HUWE1 confers increased resistance of MCF-10F cells to IR and MMC. - Abstract: The cellular BRCA1 protein level is essential for its tumor suppression activity and is tightly regulated through multiple mechanisms including ubiquitn–proteasome system. E3 ligases are involved to promote BRCA1 for ubiquitination and degradation. Here, we identified HUWE1/Mule/ARF-BP1 as a novel BRCA1-interacting protein involved in the control of BRCA1 protein level. HUWE1 binds BRCA1 through its N-terminus degron domain. Depletion of HUWE1 by siRNA-mediated interference significantly increases BRCA1 protein levels and prolongs the half-life of BRCA1. Moreover, exogenous expression of HUWE1 promotes BRCA1 degradation through the ubiquitin–proteasome pathway, which could explain an inverse correlation between HUWE1 and BRCA1 levels in MCF10F, MCF7 and MDA-MB-231 breast cancer cells. Consistent with a functional role for HUWE1 in regulating BRCA1-mediated cellular response to DNA damage, depletion of HUWE1 by siRNA confers increased resistance to ionizing radiation and mitomycin. These data indicate that HUWE1 is a critical negative regulator of BRCA1 and suggest a new molecular mechanism for breast cancer pathogenesis.

  14. HUWE1 interacts with BRCA1 and promotes its degradation in the ubiquitin–proteasome pathway (Biochemical and Biophysical Research Communications, v. 444, isse 4)

    International Nuclear Information System (INIS)

    Highlights: • The 2000–2634aa region of HUWE1 mediates the interaction with BRCA1 degron. • HUWE1 promotes the degradation of BRCA1 through the ubiquitin–proteasome pathway. • HUWE1 expression is inversely correlated with BRCA1 in breast cancer cells. • RNAi inhibition of HUWE1 confers increased resistance of MCF-10F cells to IR and MMC. - Abstract: The cellular BRCA1 protein level is essential for its tumor suppression activity and is tightly regulated through multiple mechanisms including ubiquitn–proteasome system. E3 ligases are involved to promote BRCA1 for ubiquitination and degradation. Here, we identified HUWE1/Mule/ARF-BP1 as a novel BRCA1-interacting protein involved in the control of BRCA1 protein level. HUWE1 binds BRCA1 through its N-terminus degron domain. Depletion of HUWE1 by siRNA-mediated interference significantly increases BRCA1 protein levels and prolongs the half-life of BRCA1. Moreover, exogenous expression of HUWE1 promotes BRCA1 degradation through the ubiquitin–proteasome pathway, which could explain an inverse correlation between HUWE1 and BRCA1 levels in MCF10F, MCF7 and MDA-MB-231 breast cancer cells. Consistent with a functional role for HUWE1 in regulating BRCA1-mediated cellular response to DNA damage, depletion of HUWE1 by siRNA confers increased resistance to ionizing radiation and mitomycin. These data indicate that HUWE1 is a critical negative regulator of BRCA1 and suggest a new molecular mechanism for breast cancer pathogenesis

  15. HUWE1 interacts with BRCA1 and promotes its degradation in the ubiquitin–proteasome pathway (Biochemical and Biophysical Research Communications, v. 444 issue 3)

    International Nuclear Information System (INIS)

    Highlights: • The 2000–2634 aa region of HUWE1 mediates the interaction with BRCA1 degron. • HUWE1 promotes the degradation of BRCA1 through the ubiquitin–proteasome pathway. • HUWE1 expression is inversely correlated with BRCA1 in breast cancer cells. • RNAi inhibition of HUWE1 confers increased resistance of MCF-10F cells to IR and MMC. - Abstract: The cellular BRCA1 protein level is essential for its tumor suppression activity and is tightly regulated through multiple mechanisms including ubiquitn–proteasome system. E3 ligases are involved to promote BRCA1 for ubiquitination and degradation. Here, we identified HUWE1/Mule/ARF-BP1 as a novel BRCA1-interacting protein involved in the control of BRCA1 protein level. HUWE1binds BRCA1 through its N-terminus degron domain. Depletion of HUWE1 by siRNA-mediated interference significantly increases BRCA1 protein levels and prolongs the half-life of BRCA1. Moreover, exogenous expression of HUWE1 promotes BRCA1 degradation through the ubiquitin–proteasome pathway, which could explain an inverse correlation between HUWE1 and BRCA1 levels in MCF10F, MCF7 and MDA-MB-231 breast cancer cells. Consistent with a functional role for HUWE1 in regulating BRCA1-mediated cellular response to DNA damage, depletion of HUWE1 by siRNA confers increased resistance to ionizing radiation and mitomycin. These data indicate that HUWE1 is a critical negative regulator of BRCA1 and suggest a new molecular mechanism for breast cancer pathogenesis

  16. Proteasome inhibitor treatment in alcoholic liver disease

    Institute of Scientific and Technical Information of China (English)

    Fawzia Bardag-Gorce

    2011-01-01

    Oxidative stress, generated by chronic ethanol consumption, is a major cause of hepatotoxicity and liver injury. Increased production of oxygen-derived free radicals due to ethanol metabolism by CYP2E1 is principally located in the cytoplasm and in the mitochondria, which does not only injure liver cells, but also other vital organs, such as the heart and the brain. Therefore, there is a need for better treatment to enhance the antioxidant response elements. To date, there is no established treatment to attenuate high levels of oxidative stress in the liver of alcoholic patients. To block this oxidative stress, proteasome inhibitor treatment has been found to significantly enhance the antioxidant response elements of hepatocytes exposed to ethanol. Recent studies have shown in an experimental model of alcoholic liver disease that proteasome inhibitor treatment at low dose has cytoprotective effects against ethanol-induced oxidative stress and liver steatosis. The beneficial effects of proteasome inhibitor treatment against oxidative stress occurred because antioxidant response elements (glutathione peroxidase 2, superoxide dismutase 2, glutathione synthetase, glutathione reductase, and GCLC) were upregulated when rats fed alcohol were treated with a low dose of PS-341 (Bortezomib, Velcade(r)). This is an important finding because proteasome inhibitor treatment up-regulated reactive oxygen species removal and glutathione recycling enzymes, while ethanol feeding alone down-regulated these antioxidant elements. For the first time, it was shown that proteasome inhibition by a highly specific and reversible inhibitor is different from the chronic ethanol feeding-induced proteasome inhibition. As previously shown by our group, chronic ethanol feeding causes a complex dysfunction in the ubiquitin proteasome pathway, which affects the proteasome system, as well as the ubiquitination system. The beneficial effects of proteasome inhibitor treatment in alcoholic liver disease

  17. Affective loop experiences: designing for interactional embodiment.

    Science.gov (United States)

    Höök, Kristina

    2009-12-12

    Involving our corporeal bodies in interaction can create strong affective experiences. Systems that both can be influenced by and influence users corporeally exhibit a use quality we name an affective loop experience. In an affective loop experience, (i) emotions are seen as processes, constructed in the interaction, starting from everyday bodily, cognitive or social experiences; (ii) the system responds in ways that pull the user into the interaction, touching upon end users' physical experiences; and (iii) throughout the interaction the user is an active, meaning-making individual choosing how to express themselves-the interpretation responsibility does not lie with the system. We have built several systems that attempt to create affective loop experiences with more or less successful results. For example, eMoto lets users send text messages between mobile phones, but in addition to text, the messages also have colourful and animated shapes in the background chosen through emotion-gestures with a sensor-enabled stylus pen. Affective Diary is a digital diary with which users can scribble their notes, but it also allows for bodily memorabilia to be recorded from body sensors mapping to users' movement and arousal and placed along a timeline. Users can see patterns in their bodily reactions and relate them to various events going on in their lives. The experiences of building and deploying these systems gave us insights into design requirements for addressing affective loop experiences, such as how to design for turn-taking between user and system, how to create for 'open' surfaces in the design that can carry users' own meaning-making processes, how to combine modalities to create for a 'unity' of expression, and the importance of mirroring user experience in familiar ways that touch upon their everyday social and corporeal experiences. But a more important lesson gained from deploying the systems is how emotion processes are co-constructed and experienced

  18. CaMKII, but not protein kinase A, regulates Rpt6 phosphorylation and proteasome activity during the formation of long-term memories

    Directory of Open Access Journals (Sweden)

    Timothy J Jarome

    2013-08-01

    Full Text Available CaMKII and Protein Kinase A (PKA are thought to be critical for synaptic plasticity and memory formation through their regulation of protein synthesis. Consistent with this, numerous studies have reported that CaMKII, PKA and protein synthesis are critical for long-term memory formation. Recently, we found that protein degradation through the ubiquitin-proteasome system is also critical for long-term memory formation in the amygdala. However, the mechanism by which ubiquitin-proteasome activity is regulated during memory formation and how protein degradation interacts with known intracellular signaling pathways important for learning remain unknown. Recently, evidence has emerged suggesting that both CaMKII and PKA are capable of regulating proteasome activity in vitro through the phosphorylation of proteasome regulatory subunit Rpt6 at Serine-120, though whether they regulate Rpt6 phosphorylation and proteasome function in vivo remains unknown. In the present study we demonstrate for the first time that fear conditioning transiently modifies a proteasome regulatory subunit and proteasome catalytic activity in the mammalian brain in a CaMKII-dependent manner. We found increases in the phosphorylation of proteasome ATPase subunit Rpt6 at Serine-120 and an enhancement in proteasome activity in the amygdala following fear conditioning. Pharmacological manipulation of CaMKII, but not PKA, in vivo significantly reduced both the learning-induced increase in Rpt6 Serine-120 phosphorylation and the increase in proteasome activity without directly affecting protein polyubiquitination levels. These results indicate a novel role for CaMKII in memory formation through its regulation of protein degradation and suggest that CaMKII regulates Rpt6 phosphorylation and proteasome function both in vitro and in vivo.

  19. Genetics of Proteasome Diseases

    Directory of Open Access Journals (Sweden)

    Aldrin V. Gomes

    2013-01-01

    Full Text Available The proteasome is a large, multiple subunit complex that is capable of degrading most intracellular proteins. Polymorphisms in proteasome subunits are associated with cardiovascular diseases, diabetes, neurological diseases, and cancer. One polymorphism in the proteasome gene PSMA6 (−8C/G is associated with three different diseases: type 2 diabetes, myocardial infarction, and coronary artery disease. One type of proteasome, the immunoproteasome, which contains inducible catalytic subunits, is adapted to generate peptides for antigen presentation. It has recently been shown that mutations and polymorphisms in the immunoproteasome catalytic subunit PSMB8 are associated with several inflammatory and autoinflammatory diseases including Nakajo-Nishimura syndrome, CANDLE syndrome, and intestinal M. tuberculosis infection. This comprehensive review describes the disease-related polymorphisms in proteasome genes associated with human diseases and the physiological modulation of proteasome function by these polymorphisms. Given the large number of subunits and the central importance of the proteasome in human physiology as well as the fast pace of detection of proteasome polymorphisms associated with human diseases, it is likely that other polymorphisms in proteasome genes associated with diseases will be detected in the near future. While disease-associated polymorphisms are now readily discovered, the challenge will be to use this genetic information for clinical benefit.

  20. Treatment of Plasmodium chabaudi Parasites with Curcumin in Combination with Antimalarial Drugs: Drug Interactions and Implications on the Ubiquitin/Proteasome System

    Directory of Open Access Journals (Sweden)

    Zoraima Neto

    2013-01-01

    Full Text Available Antimalarial drug resistance remains a major obstacle in malaria control. Evidence from Southeast Asia shows that resistance to artemisinin combination therapy (ACT is inevitable. Ethnopharmacological studies have confirmed the efficacy of curcumin against Plasmodium spp. Drug interaction assays between curcumin/piperine/chloroquine and curcumin/piperine/artemisinin combinations and the potential of drug treatment to interfere with the ubiquitin proteasome system (UPS were analyzed. In vivo efficacy of curcumin was studied in BALB/c mice infected with Plasmodium chabaudi clones resistant to chloroquine and artemisinin, and drug interactions were analyzed by isobolograms. Subtherapeutic doses of curcumin, chloroquine, and artemisinin were administered to mice, and mRNA was collected following treatment for RT-PCR analysis of genes encoding deubiquitylating enzymes (DUBs. Curcumin was found be nontoxic in BALB/c mice. The combination of curcumin/chloroquine/piperine reduced parasitemia to 37% seven days after treatment versus the control group’s 65%, and an additive interaction was revealed. Curcumin/piperine/artemisinin combination did not show a favorable drug interaction in this murine model of malaria. Treatment of mice with subtherapeutic doses of the drugs resulted in a transient increase in genes encoding DUBs indicating UPS interference. If curcumin is to join the arsenal of available antimalarial drugs, future studies exploring suitable drug partners would be of interest.

  1. Mood swings: design and evaluation of affective interactive art

    NARCIS (Netherlands)

    Bialoskorski, Leticia S.S.; Westerink, Joyce H.D.M.; Broek, van den Egon L.

    2009-01-01

    The field of affective computing is concerned with developing emphatic products, such as affective consumer products, affective games, and affective art. This paper describes Mood Swings, an affective interactive art system, which interprets and visualizes affect expressed by a person. Mood Swings c

  2. E3 ubiquitin ligase CHIP interacts with C-type lectin-like receptor CLEC-2 and promotes its ubiquitin-proteasome degradation.

    Science.gov (United States)

    Shao, Miaomiao; Li, Lili; Song, Shushu; Wu, Weicheng; Peng, Peike; Yang, Caiting; Zhang, Mingming; Duan, Fangfang; Jia, Dongwei; Zhang, Jie; Wu, Hao; Zhao, Ran; Wang, Lan; Ruan, Yuanyuan; Gu, Jianxin

    2016-10-01

    C-type lectin-like receptor 2 (CLEC-2) was originally identified as a member of non-classical C-type lectin-like receptors in platelets and immune cells. Activation of CLEC-2 is involved in thrombus formation, lymphatic/blood vessel separation, platelet-mediated tumor metastasis and immune response. Nevertheless, the regulation of CLEC-2 expression is little understood. In this study, we identified that the C terminus of Hsc70-interacting protein (CHIP) interacted with CLEC-2 by mass spectrometry analysis, and CHIP decreased the protein expression of CLEC-2 through lysine-48-linked ubiquitination and proteasomal degradation. Deleted and point mutation also revealed that CHIP controlled CLEC-2 protein expression via both tetratricopeptide repeats (TPR) domain and Ubox domain in a HSP70/90-independent manner. Moreover, reduced CHIP expression was associated with decreased CLEC-2 polyubiquitination and increased CLEC-2 protein levels in PMA-induced differentiation of THP-1 monocytes into macrophages. These results indicate that CLEC-2 is the target substrate of E3 ubiquitin ligase CHIP, and suggest that the CHIP/CLEC-2 axis may play an important role in the modulation of immune response. PMID:27443248

  3. Oxidation and interaction of DJ-1 with 20S proteasome in the erythrocytes of early stage Parkinson’s disease patients

    Science.gov (United States)

    Saito, Yoshiro; Akazawa-Ogawa, Yoko; Matsumura, Akihiro; Saigoh, Kazumasa; Itoh, Sayoko; Sutou, Kenta; Kobayashi, Mayuka; Mita, Yuichiro; Shichiri, Mototada; Hisahara, Shin; Hara, Yasuo; Fujimura, Harutoshi; Takamatsu, Hiroyuki; Hagihara, Yoshihisa; Yoshida, Yasukazu; Hamakubo, Takao; Kusunoki, Susumu; Shimohama, Shun; Noguchi, Noriko

    2016-01-01

    Parkinson’s disease (PD) is a progressive, age-related, neurodegenerative disorder, and oxidative stress is an important mediator in its pathogenesis. DJ-1, the product of the causative gene of a familial form of PD, plays a significant role in anti-oxidative defence to protect cells from oxidative stress. DJ-1 undergoes preferential oxidation at the cysteine residue at position 106 (Cys-106) under oxidative stress. Here, using specific antibodies against Cys-106-oxidized DJ-1 (oxDJ-1), it was found that the levels of oxDJ-1 in the erythrocytes of unmedicated PD patients (n = 88) were higher than in those of medicated PD patients (n = 62) and healthy control subjects (n = 33). Elevated oxDJ-1 levels were also observed in a non-human primate PD model. Biochemical analysis of oxDJ-1 in erythrocyte lysates showed that oxDJ-1 formed dimer and polymer forms, and that the latter interacts with 20S proteasome. These results clearly indicate a biochemical alteration in the blood of PD patients, which could be utilized as an early diagnosis marker for PD. PMID:27470541

  4. Negative Affect in Human Robot Interaction

    DEFF Research Database (Denmark)

    Rehm, Matthias; Krogsager, Anders

    2013-01-01

    The vision of social robotics sees robots moving more and more into unrestricted social environments, where robots interact closely with users in their everyday activities, maybe even establishing relationships with the user over time. In this paper we present a field trial with a robot in a semi...

  5. Sequence analysis of β-subunit genes of the 20S proteasome in patients with relapsed multiple myeloma treated with bortezomib or dexamethasone

    NARCIS (Netherlands)

    D.I. Lichter (David); H. Danaee (Hadi); M.D. Pickard (Michael); O. Tayber (Olga); M. Sintchak (Michael); H. Shi (Hongliang); P.G. Richardson (Paul Gerard); J. Cavenagh (Jamie); J. Bladé (Joan); T. Facon (Thierry); R. Niesvizky; M. Alsina (Melissa); W. Dalton (William); P. Sonneveld (Pieter); S. Lonial (Sagar); H. van de Velde (Helgi); D. Ricci (Deborah); D.-L. Esseltine (Dixie-Lee); W.L. Trepicchio (William); G. Mulligan (George); K.C. Anderson (Kenneth Carl)

    2012-01-01

    textabstractVariations within proteasome β (PSMB) genes, which encode the β subunits of the 20S proteasome, may affect proteasome function, assembly, and/or binding of proteasome inhibitors. To investigate the potential association between PSMB gene variants and treatment-emergent resistance to bort

  6. Affective Computing used in an imaging interaction paradigm

    DEFF Research Database (Denmark)

    Schultz, Nette

    2003-01-01

    This paper combines affective computing with an imaging interaction paradigm. An imaging interaction paradigm means that human and computer communicates primarily by images. Images evoke emotions in humans, so the computer must be able to behave emotionally intelligent. An affective image selection...

  7. Drug-drug interactions affecting fluoroquinolones.

    Science.gov (United States)

    Wijnands, G J; Vree, T B; Janssen, T J; Guelen, P J

    1989-12-29

    In a three-week study, the metabolism of the bronchodilator theophylline and its major metabolites formed by C-8 oxidation (1,3-dimethyluric acid) and N-demethylation (3-methylxanthine and 1-methyluric acid) was investigated in two healthy volunteers. Metabolic studies were performed following intravenous infusion of a single 6 mg/kg dose of aminophylline. During Week 1, theophylline was given alone (blank period), and during Weeks 2 and 3 it was given during oral coadministration of ofloxacin and enoxacin, respectively. Dosage of each quinolone was 200 mg twice daily for four days, starting three days prior to the theophylline infusion. During enoxacin coadministration, elimination half-lives of theophylline increased from 8.7 to 17.4 hours and from 6.1 to 12.3 hours, respectively. Total body clearance of theophylline decreased in both volunteers, whereas renal clearance did not alter. From this it was concluded that the decreased elimination results from a reduced metabolic clearance. During enoxacin coadministration, the formation of the metabolites 1-methyluric acid and 3-methylxanthine clearly was decreased, whereas the formation of 1,3-dimethyluric acid was less affected compared with the blank period. Interference with theophylline disposition by enoxacin is based predominantly on inhibition of microsomal N-demethylation. Ofloxacin comedication did not cause a change in the plasma parameters or renal excretion of theophylline and its metabolites compared with the blank period. PMID:2603893

  8. Nuclear Import of Yeast Proteasomes

    Directory of Open Access Journals (Sweden)

    Julianne Burcoglu

    2015-08-01

    Full Text Available Proteasomes are highly conserved protease complexes responsible for the degradation of aberrant and short-lived proteins. In highly proliferating yeast and mammalian cells, proteasomes are predominantly nuclear. During quiescence and cell cycle arrest, proteasomes accumulate in granules in close proximity to the nuclear envelope/ER. With prolonged quiescence in yeast, these proteasome granules pinch off as membraneless organelles, and migrate as stable entities through the cytoplasm. Upon exit from quiescence, the proteasome granules clear and the proteasomes are rapidly transported into the nucleus, a process reflecting the dynamic nature of these multisubunit complexes. Due to the scarcity of studies on the nuclear transport of mammalian proteasomes, we summarised the current knowledge on the nuclear import of yeast proteasomes. This pathway uses canonical nuclear localisation signals within proteasomal subunits and Srp1/Kap95, and the canonical import receptor, named importin/karyopherin αβ. Blm10, a conserved 240 kDa protein, which is structurally related to Kap95, provides an alternative import pathway. Two models exist upon which either inactive precursor complexes or active holo-enzymes serve as the import cargo. Here, we reconcile both models and suggest that the import of inactive precursor complexes predominates in dividing cells, while the import of mature enzymes mainly occurs upon exit from quiescence.

  9. Affect Control Processes: Intelligent Affective Interaction using a Partially Observable Markov Decision Process

    OpenAIRE

    Hoey, Jesse; Schroeder, Tobias; Alhothali, Areej

    2013-01-01

    This paper describes a novel method for building affectively intelligent human-interactive agents. The method is based on a key sociological insight that has been developed and extensively verified over the last twenty years, but has yet to make an impact in artificial intelligence. The insight is that resource bounded humans will, by default, act to maintain affective consistency. Humans have culturally shared fundamental affective sentiments about identities, behaviours, and objects, and th...

  10. Thiacloprid affects trophic interaction between gammarids and mayflies

    International Nuclear Information System (INIS)

    Neonicotinoid insecticides like thiacloprid enter agricultural surface waters, where they may affect predator–prey-interactions, which are of central importance for ecosystems as well as the functions these systems provide. The effects of field relevant thiacloprid concentrations on the leaf consumption of Gammarus fossarum (Amphipoda) were assessed over 96 h (n = 13–17) in conjunction with its predation on Baetis rhodani (Ephemeroptera) nymphs. The predation by Gammarus increased significantly at 0.50–1.00 μg/L. Simultaneously, its leaf consumption decreased with increasing thiacloprid concentration. As a consequence of the increased predation at 1.00 μg/L, gammarids' dry weight rose significantly by 15% compared to the control. At 4.00 μg/L, the reduced leaf consumption was not compensated by an increase in predation causing a significantly reduced dry weight of Gammarus (∼20%). These results may finally suggest that thiacloprid adversely affects trophic interactions, potentially translating into alterations in ecosystem functions, like leaf litter breakdown and aquatic-terrestrial subsidies. - Highlights: ► Field relevant thiacloprid concentrations affected gammarid and mayfly interaction. ► Gammarus leaf consumption and predation success is adversely affected. ► Gammarus growth increased due to higher predation at 1.0 μg thiacloprid/L. ► The study's results are discussed in the context of ecosystem functions. - Field relevant thiacloprid concentrations affect species interactions, which may translate to alterations in ecosystem functions.

  11. FMRI scanner noise interaction with affective neural processes.

    Directory of Open Access Journals (Sweden)

    Stavros Skouras

    Full Text Available The purpose of the present study was the investigation of interaction effects between functional MRI scanner noise and affective neural processes. Stimuli comprised of psychoacoustically balanced musical pieces, expressing three different emotions (fear, neutral, joy. Participants (N=34, 19 female were split into two groups, one subjected to continuous scanning and another subjected to sparse temporal scanning that features decreased scanner noise. Tests for interaction effects between scanning group (sparse/quieter vs continuous/noisier and emotion (fear, neutral, joy were performed. Results revealed interactions between the affective expression of stimuli and scanning group localized in bilateral auditory cortex, insula and visual cortex (calcarine sulcus. Post-hoc comparisons revealed that during sparse scanning, but not during continuous scanning, BOLD signals were significantly stronger for joy than for fear, as well as stronger for fear than for neutral in bilateral auditory cortex. During continuous scanning, but not during sparse scanning, BOLD signals were significantly stronger for joy than for neutral in the left auditory cortex and for joy than for fear in the calcarine sulcus. To the authors' knowledge, this is the first study to show a statistical interaction effect between scanner noise and affective processes and extends evidence suggesting scanner noise to be an important factor in functional MRI research that can affect and distort affective brain processes.

  12. Voluntary exercise may engage proteasome function to benefit the brain after trauma

    OpenAIRE

    Szabo, Zsofia; Ying, Zhe; Radak, Zsolt; Gomez-Pinilla, Fernando

    2009-01-01

    Brain trauma is associated with long-term decrements in synaptic plasticity and cognitive function, which likely reside on the acute effects of the injury on protein structure and function. Based on the action of proteasome on protein synthesis and degradation we have examined the effects of brain injury on proteasome level/activity and the potential of exercise to interact with the effects of the injury. Exercise has a healing ability but its action on proteasome function is not understood. ...

  13. Locomotion in Stroke Subjects: Interactions between Unaffected and Affected Sides

    Science.gov (United States)

    Kloter, Evelyne; Wirz, Markus; Dietz, Volker

    2011-01-01

    The aim of this study was to evaluate the sensorimotor interactions between unaffected and affected sides of post-stroke subjects during locomotion. In healthy subjects, stimulation of the tibial nerve during the mid-stance phase is followed by electromyography responses not only in the ipsilateral tibialis anterior, but also in the proximal arm…

  14. The ubiquitin-proteasome system

    Indian Academy of Sciences (India)

    Dipankar Nandi; Pankaj Tahiliani; Anujith Kumar; Dilip Chandu

    2006-03-01

    The 2004 Nobel Prize in chemistry for the discovery of protein ubiquitination has led to the recognition of cellular proteolysis as a central area of research in biology. Eukaryotic proteins targeted for degradation by this pathway are first ‘tagged’ by multimers of a protein known as ubiquitin and are later proteolyzed by a giant enzyme known as the proteasome. This article recounts the key observations that led to the discovery of ubiquitin-proteasome system (UPS). In addition, different aspects of proteasome biology are highlighted. Finally, some key roles of the UPS in different areas of biology and the use of inhibitors of this pathway as possible drug targets are discussed.

  15. Immersion in a virtual world interactive drama and affective sciences

    CERN Document Server

    Mayr, Simon

    2014-01-01

    Interactive drama is more than just a new breed of entertainment software. As different research projects have shown, these systems can also be used for pedagogical and therapeutic purposes. The goal of these systems is to teach sophisticated problem solving skills by allowing the user to interact with compelling stories that have didactic purpose.One of the main attractions of narratives, independent of the medium in which they are presented, is that they elicit emotional response in their audiences. They have an affective impact and only engineers and authors who understand how the emotion s

  16. PIAS1-mediated sumoylation promotes STUbL-dependent proteasomal degradation of the human telomeric protein TRF2.

    Science.gov (United States)

    Her, Joonyoung; Jeong, Yu Young; Chung, In Kwon

    2015-10-24

    The human telomeric protein TRF2 protects chromosome ends by facilitating their organization into the protective capping structure. Here we show that the stability of TRF2 is regulated via modification by the small ubiquitin-like modifiers (SUMO). TRF2 specifically interacts with and is sumoylated by PIAS1 in mammalian cells. The proteasome inhibitor stabilizes SUMO-conjugated TRF2 without affecting the level of unmodified TRF2, suggesting that SUMO conjugation is required for proteasomal degradation of TRF2. We also show that RNF4, a mammalian SUMO-targeted ubiquitin ligase, interacts with TRF2 in a SUMO-dependent manner and preferentially targets SUMO-conjugated TRF2 for ubiquitination. Collectively, our data demonstrate that the PIAS1-mediated sumoylation status of TRF2 serves as a molecular switch that controls the level of TRF2 at telomeres. PMID:26450775

  17. Proteasome Assay in Cell Lysates

    Science.gov (United States)

    Maher, Pamela

    2016-01-01

    The ubiquitin-proteasome system (UPS) mediates the majority of the proteolysis seen in the cytoplasm and nucleus of mammalian cells. As such it plays an important role in the regulation of a variety of physiological and pathophysiological processes including tumorigenesis, inflammation and cell death (Ciechanover, 2005; Kisselev and Goldberg, 2001). A number of recent studies have shown that proteasome activity is decreased in a variety of neurological disorders including Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis and stroke as well as during normal aging (Chung et al., 2001; Ciechanover and Brundin, 2003; Betarbet et al., 2005). This decrease in proteasome activity is thought to play a critical role in the accumulation of abnormal and oxidized proteins. Protein clearance by the UPS involves two sequential reactions. The first is the tagging of protein lysine residues with ubiquitin (Ub) and the second is the subsequent degradation of the tagged proteins by the proteasome. We herein describe an assay for the second of these two reactions (Valera et al., 2013). This assay uses fluorogenic substrates for each of the three activities of the proteasome: chymotrypsin-like activity, trypsin-like activity and caspase-like activity. Cleavage of the fluorophore from the substrate by the proteasome results in fluorescence that can be detected with a fluorescent plate reader.

  18. Genetic by environment interactions affect plant–soil linkages

    OpenAIRE

    Pregitzer, Clara C; Joseph K Bailey; Schweitzer, Jennifer A.

    2013-01-01

    The role of plant intraspecific variation in plant–soil linkages is poorly understood, especially in the context of natural environmental variation, but has important implications in evolutionary ecology. We utilized three 18- to 21-year-old common gardens across an elevational gradient, planted with replicates of five Populus angustifolia genotypes each, to address the hypothesis that tree genotype (G), environment (E), and G × E interactions would affect soil carbon and nitrogen dynamics be...

  19. Pesticide interactions with soils affected by olive oil mill wastewater

    Science.gov (United States)

    Keren, Yonatan; Bukhanovsky, Nadezhda; Borisover, Mikhail

    2013-04-01

    Soil pesticide sorption is well known to affect the fate of pesticides, their bioavailability and the potential to contaminate air and water. Soil - pesticide interactions may be strongly influenced by soil organic matter (SOM) and organic matter (OM)-rich soil amendments. One special OM source in soils is related to olive oil production residues that may include both solid and liquid wastes. In the Mediterranean area, the olive oil production is considered as an important field in the agricultural sector. Due to the significant rise in olive oil production, the amount of wastes is growing respectively. Olive oil mill waste water (OMWW) is the liquid byproduct in the so-called "three phase" technological process. Features of OMWW include the high content of fatty aliphatic components and polyphenols and their often-considered toxicity. One way of OMWW disposal is the land spreading, e.g., in olive orchards. The land application of OMWW (either controlled or not) is supposed to affect the multiple soil properties, including hydrophobicity and the potential of soils to interact with pesticides. Therefore, there is both basic and applied interest in elucidating the interactions between organic compounds and soils affected by OMWW. However, little is known about the impact of OMWW - soil interactions on sorption of organic compounds, and specifically, on sorption of agrochemicals. This paper reports an experimental study of sorption interactions of a series of organic compounds including widely used herbicides such as diuron and simazine, in a range of soils that were affected by OMWW (i) historically or (ii) in the controlled land disposal experiments. It is demonstrated that there is a distinct increase in apparent sorption of organic chemicals in soils affected by OMWW. In selected systems, this increase may be explained by increase in SOM content. However, the SOM quality places a role: the rise in organic compound - soil interactions may both exceed the SOM

  20. Paradoxical resistance of multiple myeloma to proteasome inhibitors by decreased levels of 19S proteasomal subunits

    DEFF Research Database (Denmark)

    Acosta-Alvear, Diego; Cho, Min Y; Wild, Thomas;

    2015-01-01

    Hallmarks of cancer, including rapid growth and aneuploidy, can result in non-oncogene addiction to the proteostasis network that can be exploited clinically. The defining example is the exquisite sensitivity of multiple myeloma (MM) to 20S proteasome inhibitors, such as carfilzomib. However, MM...... patients invariably acquire resistance to these drugs. Using a next-generation shRNA platform, we found that proteostasis factors, including chaperones and stress-response regulators, controlled the response to carfilzomib. Paradoxically, 19S proteasome regulator knockdown induced resistance to carfilzomib...... in MM and non-MM cells. 19S subunit knockdown did not affect the activity of the 20S subunits targeted by carfilzomib nor their inhibition by the drug, suggesting an alternative mechanism, such as the selective accumulation of protective factors. In MM patients, lower 19S levels predicted a...

  1. Can the hydrophilicity of functional monomers affect chemical interaction?

    Science.gov (United States)

    Feitosa, V P; Ogliari, F A; Van Meerbeek, B; Watson, T F; Yoshihara, K; Ogliari, A O; Sinhoreti, M A; Correr, A B; Cama, G; Sauro, S

    2014-02-01

    The number of carbon atoms and/or ester/polyether groups in spacer chains may influence the interaction of functional monomers with calcium and dentin. The present study assessed the chemical interaction and bond strength of 5 standard-synthesized phosphoric-acid ester functional monomers with different spacer chain characteristics, by atomic absorption spectroscopy (AAS), ATR-FTIR, thin-film x-ray diffraction (TF-XRD), scanning electron microscopy (SEM), and microtensile bond strength (μTBS). The tested functional monomers were 2-MEP (two-carbon spacer chain), 10-MDP (10-carbon), 12-MDDP (12-carbon), MTEP (more hydrophilic polyether spacer chain), and CAP-P (intermediate hydrophilicity ester spacer). The intensity of monomer-calcium salt formation measured by AAS differed in the order of 12-MDDP=10-MDP>CAP-P>MTEP>2-MEP. FTIR and SEM analyses of monomer-treated dentin surfaces showed resistance to rinsing for all monomer-dentin bonds, except with 2-MEP. TF-XRD confirmed the weaker interaction of 2-MEP. Highest µTBS was observed for 12-MDDP and 10-MDP. A shorter spacer chain (2-MEP) of phosphate functional monomers induced formation of unstable monomer-calcium salts, and lower chemical interaction and dentin bond strength. The presence of ester or ether groups within longer spacer carbon chains (CAP-P and MTEP) may affect the hydrophilicity, μTBS, and also the formation of monomer-calcium salts. PMID:24284259

  2. Fate of pup inside the Mycobacterium proteasome studied by in-cell NMR.

    Directory of Open Access Journals (Sweden)

    Andres Y Maldonado

    Full Text Available The Mycobacterium tuberculosis proteasome is required for maximum virulence and to resist killing by the host immune system. The prokaryotic ubiquitin-like protein, Pup-GGE, targets proteins for proteasome-mediated degradation. We demonstrate that Pup-GGQ, a precursor of Pup-GGE, is not a substrate for proteasomal degradation. Using STINT-NMR, an in-cell NMR technique, we studied the interactions between Pup-GGQ, mycobacterial proteasomal ATPase, Mpa, and Mtb proteasome core particle (CP inside a living cell at amino acid residue resolution. We showed that under in-cell conditions, in the absence of the proteasome CP, Pup-GGQ interacts with Mpa only weakly, primarily through its C-terminal region. When Mpa and non-stoichiometric amounts of proteasome CP are present, both the N-terminal and C-terminal regions of Pup-GGQ bind strongly to Mpa. This suggests a mechanism by which transient binding of Mpa to the proteasome CP controls the fate of Pup.

  3. Proteasome Inhibition Suppresses Dengue Virus Egress in Antibody Dependent Infection.

    Directory of Open Access Journals (Sweden)

    Milly M Choy

    2015-11-01

    Full Text Available The mosquito-borne dengue virus (DENV is a cause of significant global health burden, with an estimated 390 million infections occurring annually. However, no licensed vaccine or specific antiviral treatment for dengue is available. DENV interacts with host cell factors to complete its life cycle although this virus-host interplay remains to be fully elucidated. Many studies have identified the ubiquitin proteasome pathway (UPP to be important for successful DENV production, but how the UPP contributes to DENV life cycle as host factors remains ill defined. We show here that proteasome inhibition decouples infectious virus production from viral RNA replication in antibody-dependent infection of THP-1 cells. Molecular and imaging analyses in β-lactone treated THP-1 cells suggest that proteasome function does not prevent virus assembly but rather DENV egress. Intriguingly, the licensed proteasome inhibitor, bortezomib, is able to inhibit DENV titers at low nanomolar drug concentrations for different strains of all four serotypes of DENV in primary monocytes. Furthermore, bortezomib treatment of DENV-infected mice inhibited the spread of DENV in the spleen as well as the overall pathological changes. Our findings suggest that preventing DENV egress through proteasome inhibition could be a suitable therapeutic strategy against dengue.

  4. Proteasome Inhibition Suppresses Dengue Virus Egress in Antibody Dependent Infection.

    Science.gov (United States)

    Choy, Milly M; Zhang, Summer L; Costa, Vivian V; Tan, Hwee Cheng; Horrevorts, Sophie; Ooi, Eng Eong

    2015-11-01

    The mosquito-borne dengue virus (DENV) is a cause of significant global health burden, with an estimated 390 million infections occurring annually. However, no licensed vaccine or specific antiviral treatment for dengue is available. DENV interacts with host cell factors to complete its life cycle although this virus-host interplay remains to be fully elucidated. Many studies have identified the ubiquitin proteasome pathway (UPP) to be important for successful DENV production, but how the UPP contributes to DENV life cycle as host factors remains ill defined. We show here that proteasome inhibition decouples infectious virus production from viral RNA replication in antibody-dependent infection of THP-1 cells. Molecular and imaging analyses in β-lactone treated THP-1 cells suggest that proteasome function does not prevent virus assembly but rather DENV egress. Intriguingly, the licensed proteasome inhibitor, bortezomib, is able to inhibit DENV titers at low nanomolar drug concentrations for different strains of all four serotypes of DENV in primary monocytes. Furthermore, bortezomib treatment of DENV-infected mice inhibited the spread of DENV in the spleen as well as the overall pathological changes. Our findings suggest that preventing DENV egress through proteasome inhibition could be a suitable therapeutic strategy against dengue. PMID:26565697

  5. Ubiquitin and proteasomes in transcription.

    Science.gov (United States)

    Geng, Fuqiang; Wenzel, Sabine; Tansey, William P

    2012-01-01

    Regulation of gene transcription is vitally important for the maintenance of normal cellular homeostasis. Failure to correctly regulate gene expression, or to deal with problems that arise during the transcription process, can lead to cellular catastrophe and disease. One of the ways cells cope with the challenges of transcription is by making extensive use of the proteolytic and nonproteolytic activities of the ubiquitin-proteasome system (UPS). Here, we review recent evidence showing deep mechanistic connections between the transcription and ubiquitin-proteasome systems. Our goal is to leave the reader with a sense that just about every step in transcription-from transcription initiation through to export of mRNA from the nucleus-is influenced by the UPS and that all major arms of the system--from the first step in ubiquitin (Ub) conjugation through to the proteasome-are recruited into transcriptional processes to provide regulation, directionality, and deconstructive power. PMID:22404630

  6. SPR imaging biosensor for the 20S proteasome: Sensor development and application to measurement of proteasomes in human blood plasma

    International Nuclear Information System (INIS)

    The 20S proteasome is a multicatalytic enzyme complex responsible for intracellular protein degradation in mammalian cells. Its antigen level or enzymatic activity in blood plasma are potentially useful markers for various malignant and nonmalignant diseases. We have developed a method for highly selective determination of the 20S proteasome using a Surface Plasmon Resonance Imaging (SPRI) technique. It is based on the highly selective interaction between the proteasome's catalytic β5 subunit and immobilized inhibitors (the synthetic peptide PSI and epoxomicin). Inhibitor concentration and pH were optimized. Analytical responses, linear ranges, accuracy, precision and interferences were investigated. Biosensors based on either PSI and epoxomicin were found to be suitable for quantitative determination of the proteasome, with a precision of ±10% for each, and recoveries of 102% and 113%, respectively, and with little interference by albumin, trypsin, chymotrypsin, cathepsin B and papain. The proteasome also was determined in plasma of healthy subjects and of patients suffering from acute leukemia. Both biosensors gave comparable results (2860 ng.mL-1 on average for control, and 42300 ng.mL-1 on average for leukemia patients). (author)

  7. Characterization and role of protozoan parasite proteasomes.

    Science.gov (United States)

    Paugam, André; Bulteau, Anne Laure; Dupouy-Camet, Jean; Creuzet, Claudine; Friguet, Bertrand

    2003-02-01

    The proteasome, a large non-lysosomal multi-subunit protease complex, is ubiquitous in eukaryotic cells. In protozoan parasites, the proteasome is involved in cell differentiation and replication, and could therefore be a promising therapeutic target. This article reviews the present knowledge of proteasomes in protozoan parasites of medical importance such as Giardia, Entamoeba, Leishmania, Trypanosoma, Plasmodium and Toxoplasma spp. PMID:12586468

  8. Factors affecting interaction of radiocesium with freshwater solids Pt. 2

    International Nuclear Information System (INIS)

    The paper aims at the analysis of principal factors affecting the interaction of radiocesium with freshwater solids, important for the migration of radiocesium in rivers. Uptake and release of radiocesium by bottom sediment and suspended solids from a small stream were studied as a function of contact time during the uptake and release, of concentration of the solid phase and of temperature, using laboratory model experiments. Kinetics of the uptake were found to be significantly affected by temperature and concentration of the solid phase. The kinetics and the concentration effect can be quantitatively described using kinetic model of two parallel or consecutive reactions. Kinetic parameters for the model were determined. Distribution coefficient Kd is independent of sediment concentration in the range of 20-70mg·dm-3 but passes through a maximum at higher concentration values. Release of radiocesium absorbed on the freshwater solids was observed. The amount released decreased with increasing contact time of radiocesium with solid phase. Quantitative evaluation of the release revealed partial irreversibility of radiocesium uptake on the solids studied. Results obtained are compared with literature data and conclusions are drawn on the importance of the factors studied for modeling of radiocesium migration in rivers. (author) 40 refs.; 7 figs.; 6 tabs

  9. Characterisation of 20S Proteasome in Tritrichomonas foetus and Its Role during the Cell Cycle and Transformation into Endoflagellar Form.

    Directory of Open Access Journals (Sweden)

    Antonio Pereira-Neves

    Full Text Available Proteasomes are intracellular complexes that control selective protein degradation in organisms ranging from Archaea to higher eukaryotes. These structures have multiple proteolytic activities that are required for cell differentiation, replication and maintaining cellular homeostasis. Here, we document the presence of the 20S proteasome in the protist parasite Tritrichomonas foetus. Complementary techniques, such as a combination of whole genome sequencing technologies, bioinformatics algorithms, cell fractionation and biochemistry and microscopy approaches were used to characterise the 20S proteasome of T. foetus. The 14 homologues of the typical eukaryotic proteasome subunits were identified in the T. foetus genome. Alignment analyses showed that the main regulatory and catalytic domains of the proteasome were conserved in the predicted amino acid sequences from T. foetus-proteasome subunits. Immunofluorescence assays using an anti-proteasome antibody revealed a labelling distributed throughout the cytosol as punctate cytoplasmic structures and in the perinuclear region. Electron microscopy of a T. foetus-proteasome-enriched fraction confirmed the presence of particles that resembled the typical eukaryotic 20S proteasome. Fluorogenic assays using specific peptidyl substrates detected presence of the three typical peptidase activities of eukaryotic proteasomes in T. foetus. As expected, these peptidase activities were inhibited by lactacystin, a well-known specific proteasome inhibitor, and were not affected by inhibitors of serine or cysteine proteases. During the transformation of T. foetus to endoflagellar form (EFF, also known as pseudocyst, we observed correlations between the EFF formation rates, increases in the proteasome activities and reduced levels of ubiquitin-protein conjugates. The growth, cell cycle and EFF transformation of T. foetus were inhibited after treatment with lactacystin in a dose-dependent manner. Lactacystin

  10. What Makes Sports Fans Interactive? Identifying Factors Affecting Chat Interactions in Online Sports Viewing.

    Directory of Open Access Journals (Sweden)

    Minsam Ko

    Full Text Available Sports fans are able to watch games from many locations using TV services while interacting with other fans online. In this paper, we identify the factors that affect sports viewers' online interactions. Using a large-scale dataset of more than 25 million chat messages from a popular social TV site for baseball, we extract various game-related factors, and investigate the relationships between these factors and fans' interactions using a series of multiple regression analyses. As a result, we identify several factors that are significantly related to viewer interactions. In addition, we determine that the influence of these factors varies according to the user group; i.e., active vs. less active users, and loyal vs. non-loyal users.

  11. Tumor cells with low proteasome subunit expression predict overall survival in head and neck cancer patients

    International Nuclear Information System (INIS)

    Experimental and clinical data suggest that solid cancers contain treatment-resistant cancer stem cells that will impair treatment efficacy. The objective of this study was to investigate if head and neck squamous cell carcinoma (HNSCC) also contain cancer stem cells that can be identified by low 26S proteasome activity and if their presence correlates to clinical outcome. Human HNSCC cells, engineered to report lack of proteasome activity based on accumulation of a fluorescent fusion protein, were separated based on high (ZsGreen-cODCneg) or low (ZsGreen-cODCpos) proteasome activity. Self-renewal capacity, tumorigenicity and radioresistance were assessed. Proteasome subunit expression was analyzed in tissue microarrays and correlated to survival and locoregional cancer control of 174 patients with HNSCC. HNSCC cells with low proteasome activity showed a significantly higher self-renewal capacity and increased tumorigenicity. Irradiation enriched for ZsGreen-cODCpos cells. The survival probability of 82 patients treated with definitive radio- or chemo-radiotherapy exhibiting weak, intermediate, or strong proteasome subunit expression were 21.2, 28.8 and 43.8 months (p = 0.05), respectively. Locoregional cancer control was comparably affected. Subpopulations of HNSCC display stem cell features that affect patients’ tumor control and survival. Evaluating cancer tissue for expression of the proteasome subunit PSMD1 may help identify patients at risk for relapse

  12. Affective and Cognitive Information Behavior: Interaction Effects in Internet Use

    OpenAIRE

    Nahl, Diane

    2005-01-01

    The presence and influence of affective variables in information behavior was studied. Affective load (AL), a compound variable consisting of uncertainty and technophobia measures, was found to be present in a variety of simple and complex information tasks integrated into upper-division, disciplinary coursework. Affective load was higher in those who reported low values of affective coping skills and who had either high or low cognitive assessment scores. Affective coping skills (ACS) consi...

  13. Interaction Between Optical and Neural Factors Affecting Visual Performance

    Science.gov (United States)

    Sabesan, Ramkumar

    The human eye suffers from higher order aberrations, in addition to conventional spherical and cylindrical refractive errors. Advanced optical techniques have been devised to correct them in order to achieve superior retinal image quality. However, vision is not completely defined by the optical quality of the eye, but also depends on how the image quality is processed by the neural system. In particular, how neural processing is affected by the past visual experience with optical blur has remained largely unexplored. The objective of this thesis was to investigate the interaction of optical and neural factors affecting vision. To achieve this goal, pathological keratoconic eyes were chosen as the ideal population to study since they are severely afflicted by degraded retinal image quality due to higher order aberrations and their neural system has been exposed to that habitually for a long period of time. Firstly, we have developed advanced customized ophthalmic lenses for correcting the higher order aberration of keratoconic eyes and demonstrated their feasibility in providing substantial visual benefit over conventional corrective methodologies. However, the achieved visual benefit was significantly smaller than that predicted optically. To better understand this, the second goal of the thesis was set to investigate if the neural system optimizes its underlying mechanisms in response to the long-term visual experience with large magnitudes of higher order aberrations. This study was facilitated by a large-stroke adaptive optics vision simulator, enabling us to access the neural factors in the visual system by manipulating the limit imposed by the optics of the eye. Using this instrument, we have performed a series of experiments to establish that habitual exposure to optical blur leads to an alteration in neural processing thereby alleviating the visual impact of degraded retinal image quality, referred to as neural compensation. However, it was also found that

  14. 26 S proteasomes function as stable entities

    DEFF Research Database (Denmark)

    Hendil, Klavs B; Hartmann-Petersen, Rasmus; Tanaka, Keiji

    2002-01-01

    Most proteins in eukaryotic cells are degraded by 26-S proteasomes, usually after being conjugated to ubiquitin. In the absence of ATP, 26-S proteasomes fall apart into their two sub-complexes, 20-S proteasomes and PA700, which reassemble upon addition of ATP. Conceivably, 26-S proteasomes...... dissociate and reassemble during initiation of protein degradation in a ternary complex with the substrate, as in the dissociation-reassembly cycles found for ribosomes and the chaperonin GroEL/GroES. Here we followed disassembly and assembly of 26-S proteasomes in cell extracts as the exchange of PA700...... subunits between mouse and human 26-S proteasomes. Compared to the rate of proteolysis in the same extract, the disassembly-reassembly cycle was much too slow to present an obligatory step in a degradation cycle. It has been suggested that subunit S5a (Mcb1, Rpn10), which binds poly-ubiquitin substrates...

  15. The proteasome and the degradation of oxidized proteins: Part I—structure of proteasomes

    Directory of Open Access Journals (Sweden)

    Tobias Jung

    2013-01-01

    Full Text Available The main machinery responsible for cellular protein maintenance is the ubiquitin-proteasomal system, with its core particle the 20S proteasome. The main task of the system is a fast and efficient degradation of proteins not needed anymore in cellular metabolism. For this aim a complex system of regulators evolved, modifying the function of the 20S core proteasome. Here we summarize shortly the structure of the 20S proteasome as well as its associated regulator proteins.

  16. The proteasomal and apoptotic phenotype determine bortezomib sensitivity of non-small cell lung cancer cells

    Directory of Open Access Journals (Sweden)

    Chęcińska Agnieszka

    2007-11-01

    Full Text Available Abstract Bortezomib is a novel anti-cancer agent which has shown promising activity in non-small lung cancer (NSCLC patients. However, only a subset of patients respond to this treatment. We show that NSCLC cell lines are differentially sensitive to bortezomib, IC50 values ranging from 5 to 83 nM. The apoptosis-inducing potential of bortezomib in NSCLC cells was found to be dependent not only on the apoptotic phenotype but also on the proteasomal phenotype of individual cell lines. Upon effective proteasome inhibition, H460 cells were more susceptible to apoptosis induction by bortezomib than SW1573 cells, indicating a different apoptotic phenotype. However, exposure to a low dose of bortezomib did only result in SW1573 cells, and not in H460 cells, in inhibition of proteasome activity and subsequent apoptosis. This suggests a different proteasomal phenotype as well. Additionally, overexpression of anti-apoptotic protein Bcl-2 in H460 cells did not affect the proteasomal phenotype of H460 cells but did result in decreased bortezomib-induced apoptosis. In conclusion, successful proteasome-inhibitor based treatment strategies in NSCLC face the challenge of having to overcome apoptosis resistance as well as proteasomal resistance of individual lung cancer cells. Further studies in NSCLC are warranted to elucidate underlying mechanisms.

  17. Modeling proteasome dynamics in Parkinson's disease.

    Science.gov (United States)

    Sneppen, Kim; Lizana, Ludvig; Jensen, Mogens H; Pigolotti, Simone; Otzen, Daniel

    2009-01-01

    In Parkinson's disease (PD), there is evidence that alpha-synuclein (alphaSN) aggregation is coupled to dysfunctional or overburdened protein quality control systems, in particular the ubiquitin-proteasome system. Here, we develop a simple dynamical model for the on-going conflict between alphaSN aggregation and the maintenance of a functional proteasome in the healthy cell, based on the premise that proteasomal activity can be titrated out by mature alphaSN fibrils and their protofilament precursors. In the presence of excess proteasomes the cell easily maintains homeostasis. However, when the ratio between the available proteasome and the alphaSN protofilaments is reduced below a threshold level, we predict a collapse of homeostasis and onset of oscillations in the proteasome concentration. Depleted proteasome opens for accumulation of oligomers. Our analysis suggests that the onset of PD is associated with a proteasome population that becomes occupied in periodic degradation of aggregates. This behavior is found to be the general state of a proteasome/chaperone system under pressure, and suggests new interpretations of other diseases where protein aggregation could stress elements of the protein quality control system. PMID:19411740

  18. Modeling proteasome dynamics in Parkinson's disease

    International Nuclear Information System (INIS)

    In Parkinson's disease (PD), there is evidence that α-synuclein (αSN) aggregation is coupled to dysfunctional or overburdened protein quality control systems, in particular the ubiquitin–proteasome system. Here, we develop a simple dynamical model for the on-going conflict between αSN aggregation and the maintenance of a functional proteasome in the healthy cell, based on the premise that proteasomal activity can be titrated out by mature αSN fibrils and their protofilament precursors. In the presence of excess proteasomes the cell easily maintains homeostasis. However, when the ratio between the available proteasome and the αSN protofilaments is reduced below a threshold level, we predict a collapse of homeostasis and onset of oscillations in the proteasome concentration. Depleted proteasome opens for accumulation of oligomers. Our analysis suggests that the onset of PD is associated with a proteasome population that becomes occupied in periodic degradation of aggregates. This behavior is found to be the general state of a proteasome/chaperone system under pressure, and suggests new interpretations of other diseases where protein aggregation could stress elements of the protein quality control system

  19. Proteasome- and Ethanol-Dependent Regulation of HCV-Infection Pathogenesis

    Directory of Open Access Journals (Sweden)

    Natalia A. Osna

    2014-09-01

    Full Text Available This paper reviews the role of the catabolism of HCV and signaling proteins in HCV protection and the involvement of ethanol in HCV-proteasome interactions. HCV specifically infects hepatocytes, and intracellularly expressed HCV proteins generate oxidative stress, which is further exacerbated by heavy drinking. The proteasome is the principal proteolytic system in cells, and its activity is sensitive to the level of cellular oxidative stress. Not only host proteins, but some HCV proteins are degraded by the proteasome, which, in turn, controls HCV propagation and is crucial for the elimination of the virus. Ubiquitylation of HCV proteins usually leads to the prevention of HCV propagation, while accumulation of undegraded viral proteins in the nuclear compartment exacerbates infection pathogenesis. Proteasome activity also regulates both innate and adaptive immunity in HCV-infected cells. In addition, the proteasome/immunoproteasome is activated by interferons, which also induce “early” and “late” interferon-sensitive genes (ISGs with anti-viral properties. Cleaving viral proteins to peptides in professional immune antigen presenting cells and infected (“target” hepatocytes that express the MHC class I-antigenic peptide complex, the proteasome regulates the clearance of infected hepatocytes by the immune system. Alcohol exposure prevents peptide cleavage by generating metabolites that impair proteasome activity, thereby providing escape mechanisms that interfere with efficient viral clearance to promote the persistence of HCV-infection.

  20. The ubiquitin proteasome system and efficacy of proteasome inhibitors in diseases.

    Science.gov (United States)

    Chitra, Selvarajan; Nalini, Ganesan; Rajasekhar, Gopalakrishnan

    2012-06-01

    In eukaryotes the ubiquitin proteasome pathway plays an important role in cellular homeostasis and also it exerts a critical role in regulating a wide variety of cellular pathways, including cell growth and proliferation, apoptosis, DNA repair, transcription and immune response. Defects in these pathways have been implicated in a number of human pathologies. Inhibition of the ubiquitin proteasome pathway by proteasome inhibitors may be a rational therapeutic approach for various diseases, such as cancer and inflammatory diseases. Many of the critical cytokine and chemokine mediators of the progression of rheumatoid arthritis are regulated by nuclear factor kappa B (NF-κB). In peptidoglycan/polysaccharide-induced polyarthritis, proteasome inhibitors limit the overall inflammation, reduce NF-κB activation, decrease cellular adhesion molecule expression, inhibit nitric oxide synthase, attenuate circulating levels of proinflammatory cytokine interleukin-6 and reduce the arthritis index and swelling in the joints of the animals. Since proteasome inhibitors exhibit anti-inflammatory and anti proliferative effects, diseases characterized by both of these processes such as rheumatoid arthritis might also represent clinical opportunities for such drugs. The regulation of the proteasomal complex by proteasome inhibitors also has implications and potential benefits for the treatment of rheumatoid arthritis. This review summarizes the ubiquitin proteasome pathway, the structure of 26S proteasomes and types of proteasome inhibitors, with their actions, and clinical applications of proteasome inhibitors in various diseases. PMID:22709487

  1. Mobile Education: Towards Affective Bi-modal Interaction for Adaptivity

    Directory of Open Access Journals (Sweden)

    Efthymios Alepis

    2009-04-01

    Full Text Available One important field where mobile technology can make significant contributions is education. However one criticism in mobile education is that students receive impersonal teaching. Affective computing may give a solution to this problem. In this paper we describe an affective bi-modal educational system for mobile devices. In our research we describe a novel approach of combining information from two modalities namely the keyboard and the microphone through a multi-criteria decision making theory.

  2. Affective Ludology : Scientific Measurement of User Experience in Interactive Entertainment

    OpenAIRE

    Nacke, Lennart

    2009-01-01

    Digital games provide the most engaging interactive experiences. Researching gameplay experience is done mainly in the science and technology (e.g., human-computer interaction, physiological and entertainment computing) and social science (e.g., media psychology, psychophysiology, and communication sciences) research communities. This thesis is located at the intersection of these research areas, bringing together emerging methodological and scientific approaches from these multi-faceted comm...

  3. Structural basis for proteasome formation controlled by an assembly chaperone nas2.

    Science.gov (United States)

    Satoh, Tadashi; Saeki, Yasushi; Hiromoto, Takeshi; Wang, Ying-Hui; Uekusa, Yoshinori; Yagi, Hirokazu; Yoshihara, Hidehito; Yagi-Utsumi, Maho; Mizushima, Tsunehiro; Tanaka, Keiji; Kato, Koichi

    2014-05-01

    Proteasome formation does not occur due to spontaneous self-organization but results from a highly ordered process assisted by several assembly chaperones. The assembly of the proteasome ATPase subunits is assisted by four client-specific chaperones, of which three have been structurally resolved. Here, we provide the structural basis for the working mechanisms of the last, hereto structurally uncharacterized assembly chaperone, Nas2. We revealed that Nas2 binds to the Rpt5 subunit in a bivalent mode: the N-terminal helical domain of Nas2 masks the Rpt1-interacting surface of Rpt5, whereas its C-terminal PDZ domain caps the C-terminal proteasome-activating motif. Thus, Nas2 operates as a proteasome activation blocker, offering a checkpoint during the formation of the 19S ATPase prior to its docking onto the proteolytic 20S core particle. PMID:24685148

  4. Temperature affects microbial abundance, activity and interactions in anaerobic digestion.

    Science.gov (United States)

    Lin, Qiang; De Vrieze, Jo; Li, Jiabao; Li, Xiangzhen

    2016-06-01

    Temperature is a major factor determining the performance of the anaerobic digestion process. The microbial abundance, activity and interactional networks were investigated under a temperature gradient from 25°C to 55°C through amplicon sequencing, using 16S ribosomal RNA and 16S rRNA gene-based approaches. Comparative analysis of past accumulative elements presented by 16S rRNA gene-based analysis, and the in-situ conditions presented by 16S rRNA-based analysis, provided new insights concerning the identification of microbial functional roles and interactions. The daily methane production and total biogas production increased with temperature up to 50°C, but decreased at 55°C. Increased methanogenesis and hydrolysis at 50°C were main factors causing higher methane production which was also closely related with more well-defined methanogenic and/or related modules with comprehensive interactions and increased functional orderliness referred to more microorganisms participating in interactions. This research demonstrated the importance of evaluating functional roles and interactions of microbial community. PMID:26970926

  5. Divergent tissue and sex effects of rapamycin on the proteasome-chaperone network of old mice

    Directory of Open Access Journals (Sweden)

    Karl Andrew Rodriguez

    2014-11-01

    Full Text Available Rapamycin, an allosteric inhibitor of the mTOR kinase, increases longevity in mice in a sex-specific manner. In contrast to the widely accepted theory that a loss of proteasome activity is detrimental to both life- and healthspan, biochemical studies in vitro reveal that rapamycin inhibits 20S proteasome peptidase activity. We tested if this unexpected finding is also evident after chronic rapamycin treatment in vivo by measuring peptidase activities for both the 26S and 20S proteasome in liver, fat, and brain tissues of old, male and female mice fed encapsulated chow containing 2.24mg/kg (14 ppm rapamycin for 6 months. Further we assessed if rapamycin altered expression of the chaperone proteins known to interact with the proteasome-mediated degradation system (PMDS, heat shock factor 1 (HSF1, and the levels of key mTOR pathway proteins. Rapamycin had little effect on liver proteasome activity in either gender, but increased proteasome activity in female brain lysates and lowered its activity in female fat tissue. Rapamycin-induced changes in molecular chaperone levels were also more substantial in tissues from female animals. Furthermore, mTOR pathway proteins showed more significant changes in female tissues compared to those from males. These data show collectively that there are divergent tissue and sex effects of rapamycin on the proteasome-chaperone network and that these may be linked to the disparate effects of rapamycin on males and females. Further our findings suggest that rapamycin induces indirect regulation of the PMDS/heat-shock response through its modulation of the mTOR pathway rather than via direct interactions between rapamycin and the proteasome.

  6. Wash interacts with lamin and affects global nuclear organization

    OpenAIRE

    Verboon, Jeffrey M; Rincon-Arano, Hector; Werwie, Timothy R.; Delrow, Jeffrey J.; Scalzo, David; Nandakumar, Vivek; Groudine, Mark; Parkhurst, Susan M.

    2015-01-01

    The cytoplasmic functions of Wiskott-Aldrich Syndrome family (WAS) proteins are well established and include roles in cytoskeleton reorganization and membrane-cytoskeletal interactions important for membrane/vesicle trafficking, morphogenesis, immune response and signal transduction. Mis-regulation of these proteins is associated with immune deficiency and metastasis [1-4]. Cytoplasmic WAS proteins act as effectors of Rho family GTPases and polymerize branched actin through the Arp2/3 complex...

  7. Social interactions affecting caste development through physiological actions in termites

    Directory of Open Access Journals (Sweden)

    DaiWatanabe

    2014-04-01

    Full Text Available A colony of social insects is not only an aggregation of individuals but also a functional unit. To achieve adaptive social behavior in fluctuating environmental conditions, in addition to coordination of physiological status in each individual, the whole colony is coordinated by interactions among colony members. The study on the regulation of social-insect colonies is termed “social physiology”. Termites, a major group of social insects, exhibit many interesting phenomena related to social physiology, such as mechanisms of caste regulation in a colony. In their colonies, there are different types of individuals, i.e., castes, which show distinctive phenotypes specialized in specific colony tasks. Termite castes comprise reproductives, soldiers and workers, and the caste composition can be altered depending on circumstances. For the regulation of caste compositions, interactions among individuals, i.e. social interactions, are thought to be important. In this article, we review previous studies on the adaptive meanings and those on the proximate mechanisms of the caste regulation in termites, and try to understand those comprehensively in terms of social physiology. Firstly, we summarize classical studies on the social interactions. Secondly, previous studies on the pheromone substances that mediate the caste regulatory mechanisms are overviewed. Then, we discuss the roles of a physiological factor, juvenile hormone (JH in the regulation of caste differentiation. Finally, we introduce the achievements of molecular studies on the animal sociality (i.e. sociogenomics in terms of social physiology. By comparing the proximate mechanisms of social physiology in termites with those in hymenopterans, we try to get insights into the general principles of social physiology in social animals.

  8. Epistatic Interactions between CREB and CREM Variants in Affective Disorder

    OpenAIRE

    Chiesa, Alberto; Marsano, Agnese; Han, Changsu; Lee, Soo-Jung; Patkar, Ashwin A.; Pae, Chi-Un; Serretti, Alessandro

    2014-01-01

    The aim of the present work is to investigate the existence of epistatic interactions possibly influencing psychotropic agents' response between rs6740584 within Cyclic adenosine monophosphate Response Element Binding (CREB) and rs12775799 within cAMP response element-modulator (CREM) variants in bipolar disorder (BD) and major depressive disorder (MDD). All BD and MDD patients were administered with the Young Mania Rating Scale (YMRS) and Hamilton Depression Rating Scale (HAMD) at baseline a...

  9. Identification of interspecies interactions affecting Porphyromonas gingivalis virulence phenotypes

    Directory of Open Access Journals (Sweden)

    Elizabeth L. Tenorio

    2011-10-01

    Full Text Available Background: Periodontitis is recognized as a complex polymicrobial disease, however, the impact of the bacterial interactions among the 700–1,000 different species of the oral microbiota remains poorly understood. We conducted an in vitro screen for oral bacteria that mitigate selected virulence phenotypes of the important periodontal pathogen, Porphyromonas gingivalis. Methods: We isolated and identified oral anaerobic bacteria from subgingival plaque of dental patients. When cocultured with P. gingivalis W83, specific isolates reduced the cytopathogenic effects of P. gingivalis on oral epithelial cells. Results: In an initial screen of 103 subgingival isolates, we identified 19 distinct strains from nine species of bacteria (including Actinomyces naeslundii, Streptococcus oralis, Streptococcus mitis, and Veilonella dispar that protect oral epithelial cells from P. gingivalis-induced cytotoxicity. We found that some of these strains inhibited P. gingivalis growth in plate assays through the production of organic acids, whereas some decreased the gingipain activity of P. gingivalis in coculture or mixing experiments. Conclusion: In summary, we identified 19 strains isolated from human subgingival plaque that interacted with P. gingivalis, resulting in mitigation of its cytotoxicity to oral epithelial cells, inhibition of growth, and/or reduction of gingipain activity. Understanding the mechanisms of interaction between bacteria in the oral microbial community may lead to the development of new probiotic agents and new strategies for interrupting the development of periodontal disease.

  10. Dopamine D4 receptor polymorphism and sex interact to predict children’s affective knowledge

    OpenAIRE

    Ben-Israel, Sharon; Uzefovsky, Florina; Ebstein, Richard P.; Knafo-Noam, Ariel

    2015-01-01

    Affective knowledge, the ability to understand others’ emotional states, is considered to be a fundamental part in efficient social interaction. Affective knowledge can be seen as related to cognitive empathy, and in the framework of theory of mind (ToM) as affective ToM. Previous studies found that cognitive empathy and ToM are heritable, yet little is known regarding the specific genes involved in individual variability in affective knowledge. Investigating the genetic basis of affective kn...

  11. Use of proteasome inhibitors in anticancer therapy

    Directory of Open Access Journals (Sweden)

    Sara M. Schmitt

    2011-10-01

    Full Text Available The importance of the ubiquitin-proteasome pathway to cellular function has brought it to the forefront in the search for new anticancer therapies. The ubiquitin-proteasome pathway has proven promising in targeting various human cancers. The approval of the proteasome inhibitor bortezomib for clinical treatment of relapsed/refractory multiple myeloma and mantle cell lymphoma has validated the ubiquitin-proteasome as a rational target. Bortezomib has shown positive results in clinical use but some toxicity and side effects, as well as resistance, have been observed, indicating that further development of novel, less toxic drugs is necessary. Because less toxic drugs are necessary and drug development can be expensive and time-consuming, using existing drugs that can target the ubiquitin-proteasome pathway in new applications, such as cancer therapy, may be effective in expediting the regulatory process and bringing new drugs to the clinic. Toward this goal, previously approved drugs, such as disulfiram, as well as natural compounds found in common foods, such as green tea polyphenol (--EGCG and the flavonoid apigenin, have been investigated for their possible proteasome inhibitory and cell death inducing abilities. These compounds proved quite promising in preclinical studies and have now moved into clinical trials, with preliminary results that are encouraging. In addition to targeting the catalytic activity of the proteasome pathway, upstream regulators, such as the 19S regulatory cap, as well as E1, E2, and E3, are now being investigated as potential drug targets. This review outlines the development of novel proteasome inhibitors from preclinical to clinical studies, highlighting their abilities to inhibit the tumor proteasome and induce apoptosis in several human cancers.

  12. Defective Proteasome Delivery of Polyubiquitinated Proteins by Ubiquilin-2 Proteins Containing ALS Mutations.

    Directory of Open Access Journals (Sweden)

    Lydia Chang

    Full Text Available Ubiquilin proteins facilitate delivery of ubiquitinated proteins to the proteasome for degradation. Interest in the proteins has been heightened by the discovery that gene mutations in UBQLN2 cause dominant inheritance of amyotrophic lateral sclerosis (ALS. However, the mechanisms by which the mutations cause ALS are not known. Here we report on the underlying defect of ubiquilin-2 proteins containing ALS-linked mutations in affecting proteasome-mediated degradation. We found that overexpression of ubiquilin-2 proteins containing any one of five different ALS mutations slow degradation of Myc, a prototypic proteasome substrate. Examination of coprecipitating proteins indicated that the mutant proteins are generally capable of binding polyubiquitinated proteins, but defective in binding the proteasome. GST-pulldown studies revealed that many of the mutants bind weaker to the S5a subunit of the proteasome, compared with wild type (WT ubiquilin-2 protein. The results suggest the mutant proteins are unable to deliver their captured cargo to the proteasome for degradation, which presumably leads to toxicity. Quantification of cell death is consistent with this idea. Measurement of protein turnover further indicated the mutant proteins have longer half-lives than WT ubiquilin-2. Our studies provide novel insight into the mechanism by which ALS-linked mutations in UBQLN2 interfere with protein degradation.

  13. Biochemical and Biophysical Characterization of Recombinant Yeast Proteasome Maturation Factor UMP1

    Directory of Open Access Journals (Sweden)

    Bebiana Sá-Moura

    2013-04-01

    Full Text Available Protein degradation is essential for maintaining cellular homeostasis. The proteasome is the central enzyme responsible for non-lysosomal protein degradation in eukaryotic cells. Although proteasome assembly is not yet completely understood, a number of cofactors required for proper assembly and maturation have been identified. Ump1 is a short-lived maturation factor required for the efficient biogenesis of the 20S proteasome. Upon the association of the two precursor complexes, Ump1 is encased and is rapidly degraded after the proteolytic sites in the interior of the nascent proteasome are activated. In order to further understand the mechanisms behind proteasomal maturation, we expressed and purified yeast Ump1 in E. coli for biophysical and structural analysis.We show that recombinant Ump1 is purified as a mixture of different oligomeric species and that oligomerization is mediated by intermolecular disulfide bond formation involving the only cysteine residue present in the protein. Furthermore, a combination of bioinformatics tools, biochemical and structural analysis revealed that Ump1 shows characteristics of an intrinsically disordered protein, which might become structured only upon interaction with the proteasome subunits.

  14. Regulators of the proteasome pathway, Uch37 and Rpn13, play distinct roles in mouse development.

    Directory of Open Access Journals (Sweden)

    Amin Al-Shami

    Full Text Available Rpn13 is a novel mammalian proteasomal receptor that has recently been identified as an amplification target in ovarian cancer. It can interact with ubiquitin and activate the deubiquitinating enzyme Uch37 at the 26S proteasome. Since neither Rpn13 nor Uch37 is an integral proteasomal subunit, we explored whether either protein is essential for mammalian development and survival. Deletion of Uch37 resulted in prenatal lethality in mice associated with severe defect in embryonic brain development. In contrast, the majority of Rpn13-deficient mice survived to adulthood, although they were smaller at birth and fewer in number than wild-type littermates. Absence of Rpn13 produced tissue-specific effects on proteasomal function: increased proteasome activity in adrenal gland and lymphoid organs, and decreased activity in testes and brain. Adult Rpn13(-/- mice reached normal body weight but had increased body fat content and were infertile due to defective gametogenesis. Additionally, Rpn13(-/- mice showed increased T-cell numbers, resembling growth hormone-mediated effects. Indeed, serum growth hormone and follicular stimulating hormone levels were significantly increased in Rpn13(-/- mice, while growth hormone receptor expression was reduced in the testes. In conclusion, this is the first report characterizing the physiological roles of Uch37 and Rpn13 in murine development and implicating a non-ATPase proteasomal protein, Rpn13, in the process of gametogenesis.

  15. Regulation of Sperm Capacitation by the 26S Proteasome: An Emerging New Paradigm in Spermatology.

    Science.gov (United States)

    Kerns, Karl; Morales, Patricio; Sutovsky, Peter

    2016-05-01

    The ubiquitin proteasome system (UPS) participates in many biological processes ranging from cell cycle and antigen processing to cellular defense and signaling. Work of the last decade has made it evident that the UPS is involved in many sperm-related processes leading up to and as part of fertilization. The current knowledge of UPS involvement and changes during sperm capacitation are reviewed together with a list of known proteasome-associated sperm proteins and a discussion of the relationships between these proteins and the proteasome. Proteasomal inhibitors such as MG-132 and epoxomicin significantly alter capacitation and prevent acrosome reaction. The 26S proteasome degrades AKAP3, an A-kinase anchoring protein, partially regulating the release of protein-kinase A (PKA), a vital component necessary for the steps leading up to capacitation. Further, changes occur in 20S core subunit localization and abundance throughout capacitation. Proteasome-interacting valosine-containing protein (VCP) undergoes tyrosine phosphorylation; however, its physiological roles in capacitation and fertilization remain unknown. The E1-type ubiquitin-activating enzyme (UBA1) inhibitor PYR-41 also alters acrosomal membrane remodeling during capacitation. Furthermore, after capacitation, the acrosomal proteasomes facilitate the degradation of zona pellucida glycoproteins leading up to fertilization. Methods to modulate the sperm proteasome activity during sperm storage and capacitation may translate to increased reproductive efficiency in livestock animals. Human male infertility diagnostics may benefit from incorporation of research outcomes built upon relationships between UPS and capacitation. Altogether, the studies reviewed here support the involvement of UPS in sperm capacitation and present opportunities for new discoveries. PMID:27053366

  16. Identification and Characterisation of a Proteasome -

    DEFF Research Database (Denmark)

    Andersen, Katrine Mølgaard

    domain. A txl1 yeast knockout mutant displays a synthetic growth defect with a cut8 knockout, whereas the txc1 knockout does not. In fission yeast, Cut8 is a nuclear protein that tethers the 26S proteasome to the nuclear membrane. In both wild type cells and in a cut8 null mutant Txl1 co-localises with...... the proteasome at the nuclear rim, whereas Txc1 is distributed throughout the cytoplasm and nucleus. This indicates that Txl1 is closely associated with the 26S proteasome while Txc1 is perhaps only transiently bound to the complex. A slight stabilisation of ubiquitin conjugates was observed upon...

  17. Arsenic-Microbe-Mineral Interactions in Mining-Affected Environments

    Directory of Open Access Journals (Sweden)

    Karen A. Hudson-Edwards

    2013-10-01

    Full Text Available The toxic element arsenic (As occurs widely in solid and liquid mine wastes. Aqueous forms of arsenic are taken up in As-bearing sulfides, arsenides, sulfosalts, oxides, oxyhydroxides, Fe-oxides, -hydroxides, -oxyhydroxides and -sulfates, and Fe-, Ca-Fe- and other arsenates. Although a considerable body of research has demonstrated that microbes play a significant role in the precipitation and dissolution of these As-bearing minerals, and in the alteration of the redox state of As, in natural and simulated mining environments, the molecular-scale mechanisms of these interactions are still not well understood. Further research is required using traditional and novel mineralogical, spectroscopic and microbiological techniques to further advance this field, and to help design remediation schemes.

  18. Temporal factors affecting somatosensory-auditory interactions in speech processing

    Directory of Open Access Journals (Sweden)

    Takayuki eIto

    2014-11-01

    Full Text Available Speech perception is known to rely on both auditory and visual information. However, sound specific somatosensory input has been shown also to influence speech perceptual processing (Ito et al., 2009. In the present study we addressed further the relationship between somatosensory information and speech perceptual processing by addressing the hypothesis that the temporal relationship between orofacial movement and sound processing contributes to somatosensory-auditory interaction in speech perception. We examined the changes in event-related potentials in response to multisensory synchronous (simultaneous and asynchronous (90 ms lag and lead somatosensory and auditory stimulation compared to individual unisensory auditory and somatosensory stimulation alone. We used a robotic device to apply facial skin somatosensory deformations that were similar in timing and duration to those experienced in speech production. Following synchronous multisensory stimulation the amplitude of the event-related potential was reliably different from the two unisensory potentials. More importantly, the magnitude of the event-related potential difference varied as a function of the relative timing of the somatosensory-auditory stimulation. Event-related activity change due to stimulus timing was seen between 160-220 ms following somatosensory onset, mostly around the parietal area. The results demonstrate a dynamic modulation of somatosensory-auditory convergence and suggest the contribution of somatosensory information for speech processing process is dependent on the specific temporal order of sensory inputs in speech production.

  19. Redox Control of 20S Proteasome Gating

    OpenAIRE

    Silva, Gustavo M.; Netto, Luis E. S.; Simões, Vanessa; Santos, Luiz F.A.; Gozzo, Fabio C.; Demasi, Marcos A.A.; de Oliveira, Cristiano L P; Renata N. Bicev; Klitzke, Clécio F.; Sogayar, Mari C; Demasi, Marilene

    2012-01-01

    The proteasome is the primary contributor in intracellular proteolysis. Oxidized or unstructured proteins can be degraded via a ubiquitin- and ATP-independent process by the free 20S proteasome (20SPT). The mechanism by which these proteins enter the catalytic chamber is not understood thus far, although the 20SPT gating conformation is considered to be an important barrier to allowing proteins free entrance. We have previously shown that S-glutathiolation of the 20SPT is a post-translational...

  20. A New Approach to Implicit Human-Robot Interaction Using Affective Cues

    OpenAIRE

    Rani, Pramila; Sarkar, Nilanjan

    2006-01-01

    An approach to human-robot interaction that can utilize implicit affective communication along with explicit communication is presented. In this work we focus on the state of anxiety as the target affective state. A set of physiological indices have been presented that showed good correlation with anxiety. The affect recognition technique infers the underlying affective state of the human from peripheral physiological signals using regression theoretic methodology. A control architecture is p...

  1. Affective Interaction with a Virtual Character through an fNIRS Brain-Computer Interface

    OpenAIRE

    Aranyi, Gabor; Pecune, Florian; Charles, Fred; Pelachaud, Catherine; Cavazza, Marc

    2016-01-01

    Affective brain-computer interfaces (BCI) harness Neuroscience knowledge to develop affective interaction from first principles. In this article, we explore affective engagement with a virtual agent through Neurofeedback (NF). We report an experiment where subjects engage with a virtual agent by expressing positive attitudes towards her under a NF paradigm. We use for affective input the asymmetric activity in the dorsolateral prefrontal cortex (DL-PFC), which has been previously found to be ...

  2. Interactions between Artificial Gravity, Affected Physiological Systems, and Nutrition

    Science.gov (United States)

    Heer, Martina; Baecker, Natalie; Zwart, Sara; Smith, Scott M.

    2007-01-01

    Malnutrition, either by insufficient supply of some nutrients or by overfeeding has a profound effect on the health of an organism. Therefore, optimal nutrition is mandatory on Earth (1 g), in microgravity and also when applying artificial gravity to the human system. Immobilization like in microgravity or bed rest also has a profound effect on different physiological systems, like body fluid regulation, the cardiovascular, the musculoskeletal, the immunological system and others. Up to now there is no countermeasure available which is effective to counteract cardiovascular deconditioning (rf. Chapter 5) together with maintenance of the musculoskeletal system in a rather short period of time. Gravity seems therefore to be one of the main stimuli to keep these systems and application of certain duration of artificial gravity per day by centrifugation has often been proposed as a very potential countermeasure against the weakening of the physiological systems. Up to now, neither optimal intensity nor optimal length of application of artificial gravity has been studied sufficiently to recommend a certain, effective and efficient protocol. However, as shown in chapter 5 on cardiovascular system, in chapter 6 on the neuromuscular system and chapter 7 (bone and connective system) artificial gravity has a very high potential to counteract any degradation caused by immobilization. But, nutrient supply -which ideally should match the actual needs- will interact with these changes and therefore has also to be taken into account. It is well known that astronauts beside the Skylab missions- were and are still not optimally nourished during their stay in space (Bourland et al. 2000;Heer et al. 1995;Heer et al. 2000b;Smith et al. 1997;Smith & Lane 1999;Smith et al. 2001;Smith et al. 2005). It has also been described anecdotally that astronauts have lower appetites. One possible explanation could be altered taste and smell sensations during space flight, although in some early

  3. An atomic model AAA-ATPase/20S core particle sub-complex of the 26S proteasome

    OpenAIRE

    Förster, Friedrich; Lasker, Keren; Beck, Florian; Nickell, Stephan; Sali, Andrej; Baumeister, Wolfgang

    2009-01-01

    The 26S proteasome is the most downstream element of the ubiquitin-proteasome pathway of protein degradation. It is composed of the 20S core particle (CP) and the 19S regulatory particle (RP). The RP consists of 6 AAA-ATPases and at least 13 non-ATPase subunits. Based on a cryo-EM map of the 26S proteasome, structures of homologs, and physical protein-protein interactions we derive an atomic model of the AAA-ATPase-CP sub-complex. The ATPase order in our model (Rpt1/Rpt2/Rpt6/Rpt3/Rpt4/Rpt5) ...

  4. Implication of altered proteasome function in alcoholic liver injury

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The proteasome is a major protein-degrading enzyme,which catalyzes degradation of oxidized and aged proteins, signal transduction factors and cleaves peptides for antigen presentation. Proteasome exists in the equilibrium of 26S and 20S particles. Proteasome function is altered by ethanol metabolism, depending on oxidative stress levels: low oxidative stress induces proteasome activity, while high oxidative stress reduces it. The proposed mechanisms for modulation of proteasome activity are related to oxidative modification of proteasomal proteins with primary and secondary products derived from ethanol oxidation.Decreased proteolysis by the proteasome results in the accumulation of insoluble protein aggregates, which cannot be degraded by proteasome and which further inhibit proteasome function. Mallory bodies, a common signature of alcoholic liver diseases, are formed by liver cells, when proteasome is unable to remove cytokeratins.Proteasome inhibition by ethanol also promotes the accumulation of pro-apoptotic factors in mitochondria of ethanol-metabolizing liver cells that are normally degraded by proteasome. In addition, decreased proteasome function also induces accumulation of the negative regulators of cytokine signaling (Ⅰ-κB and SOCS), thereby blocking cytokine signal transduction.Finally, ethanol-elicited blockade of interferon type 1 and 2 signaling and decreased proteasome function impairs generation of peptides for MHC class Ⅰ-restricted antigen presentation.

  5. The role of the ubiquitin-proteasome proteolytic pathway in the anabolic drive of nutrition

    International Nuclear Information System (INIS)

    Full text: The ubiquitin-proteasome pathway is largely responsible for the increased muscle proteolysis in many muscle wasting conditions. However, the influence of nutrition on this pathway has been poorly described. Thus, the aim of this study was to measure the short-term affect of nutrient intake on proteasome-dependent proteolysis in skeletal muscle and the small intestine. Simultaneous measurements of protein synthesis and proteolysis were performed ex vivo in muscles (extensor digitorum longus and soleus) from 48h starved, 48h starved-refed and 48h starved-amino-acid-infused (AA) (4h IV, standard parenteral nutrition solution) male Wistar rats (95-100g). Intact muscles were incubated at resting length in an oxygenated (95% O2:5% CO2) physiological Krebs medium. Protein synthesis was measured as uptake of 14C-phenylalanine into muscle protein and tyrosine release (corrected for reutilisation for protein synthesis) was used as an indicator of protein breakdown. Proteasome-dependent proteolysis was measured using the specific proteasome inhibitor MG132. The mRNA content of ubiquitin-proteasome pathway components in tibialis anterior muscles and whole jejunum was measured by Northern blot. ANOVA followed by Tukey's post-hoc analysis were used to assess statistical significance between groups (a-Level = 0.05). Four-hours of refeeding or AA-infusion increased plasma AA and insulin concentrations (P<0.001), stimulated muscle protein synthesis (P<0.001), but had no effect on either total or proteasome-dependent proteolysis, despite the decrease in plasma corticosterone concentrations (P<0.01). Enhanced muscle proteasome-dependent proteolysis was not suppressed until 10h of refeeding, and only correlated with normalised expression of 14-kDa E2 (a critical enzyme in protein ubiquitinylation) and the MSS1 subunit of the 19S complex (the regulator of 26S proteasome activities). In contrast, the starvation-induced increase in mRNA levels for ubiquitin and 20S proteasome

  6. Elevated CO2 Affects Predator-Prey Interactions through Altered Performance

    OpenAIRE

    Bridie J. M. Allan; Paolo Domenici; McCormick, Mark I.; Sue-Ann Watson; Munday, Philip L.

    2013-01-01

    Recent research has shown that exposure to elevated carbon dioxide (CO2) affects how fishes perceive their environment, affecting behavioral and cognitive processes leading to increased prey mortality. However, it is unclear if increased mortality results from changes in the dynamics of predator-prey interactions or due to prey increasing activity levels. Here we demonstrate that ocean pCO2 projected to occur by 2100 significantly effects the interactions of a predator-prey pair of common ree...

  7. ROS inhibitor N-acetyl-L-cysteine antagonizes the activity of proteasome inhibitors.

    Science.gov (United States)

    Halasi, Marianna; Wang, Ming; Chavan, Tanmay S; Gaponenko, Vadim; Hay, Nissim; Gartel, Andrei L

    2013-09-01

    NAC (N-acetyl-L-cysteine) is commonly used to identify and test ROS (reactive oxygen species) inducers, and to inhibit ROS. In the present study, we identified inhibition of proteasome inhibitors as a novel activity of NAC. Both NAC and catalase, another known scavenger of ROS, similarly inhibited ROS levels and apoptosis associated with H₂O₂. However, only NAC, and not catalase or another ROS scavenger Trolox, was able to prevent effects linked to proteasome inhibition, such as protein stabilization, apoptosis and accumulation of ubiquitin conjugates. These observations suggest that NAC has a dual activity as an inhibitor of ROS and proteasome inhibitors. Recently, NAC was used as a ROS inhibitor to functionally characterize a novel anticancer compound, piperlongumine, leading to its description as a ROS inducer. In contrast, our own experiments showed that this compound depicts features of proteasome inhibitors including suppression of FOXM1 (Forkhead box protein M1), stabilization of cellular proteins, induction of ROS-independent apoptosis and enhanced accumulation of ubiquitin conjugates. In addition, NAC, but not catalase or Trolox, interfered with the activity of piperlongumine, further supporting that piperlongumine is a proteasome inhibitor. Most importantly, we showed that NAC, but not other ROS scavengers, directly binds to proteasome inhibitors. To our knowledge, NAC is the first known compound that directly interacts with and antagonizes the activity of proteasome inhibitors. Taken together, the findings of the present study suggest that, as a result of the dual nature of NAC, data interpretation might not be straightforward when NAC is utilized as an antioxidant to demonstrate ROS involvement in drug-induced apoptosis. PMID:23772801

  8. Understanding the Role of Interaction from Linguistic, Affective, and Social Perspectives

    Science.gov (United States)

    Xu, Guang

    2010-01-01

    This study was conducted to broaden the scope of studies on interaction. It examined the role of interaction in terms of linguistic, affective, and social aspects. A questionnaire was administered and intensive interviews conducted to reveal the reality of communication between Chinese ESL students and Canadian native English speakers and how…

  9. In Search of the Affective Subject Interacting in the ROODA Virtual Learning Environment

    OpenAIRE

    Longhi, Magalí Teresinha; Behar, Patricia Alejandra; Bercht, Magda

    2010-01-01

    This paper examines elements from Piaget's and Scherer's theories that are able to offer subsidies for the specification of the affective aspects involved in Virtual Learning Environments (VLE). The affective dimension is characterized by the moods manifested during interactions in virtual space by affective portion of psychological subject. To figure moods out is a way to personalize the pedagogical activities and to understand the student's actions and competence.

  10. Effect of proteasome inhibition on toxicity and CYP3A23 induction in cultured rat hepatocytes: Comparison with arsenite

    International Nuclear Information System (INIS)

    Previous work in our laboratory has shown that acute exposure of primary rat hepatocyte cultures to non-toxic concentrations of arsenite causes major decreases in the DEX-mediated induction of CYP3A23 protein, with minor decreases in CYP3A23 mRNA. To elucidate the mechanism for these effects of arsenite, the effects of arsenite and proteasome inhibition, separately and in combination, on induction of CYP3A23 protein were compared. The proteasome inhibitor, MG132, inhibited proteasome activity, but also decreased CYP3A23 mRNA and protein. Lactacystin, another proteasome inhibitor, decreased CYP3A23 protein without affecting CYP3A23 mRNA at a concentration that effectively inhibited proteasome activity. This result, suggesting that the action of lactacystin is similar to arsenite and was post-transcriptional, was confirmed by the finding that lactacystin decreased association of DEX-induced CYP3A23 mRNA with polyribosomes. Both MG132 and lactacystin inhibited total protein synthesis, but did not affect MTT reduction. Arsenite had no effect on ubiquitination of proteins, nor did arsenite significantly affect proteasomal activity. These results suggest that arsenite and lactacystin act by similar mechanisms to inhibit translation of CYP3A23

  11. Radiation inhibits proteasomes and increases ubiquitinated proteins

    International Nuclear Information System (INIS)

    Full text: Exposure of cells to ionizing radiation results in accumulation of a number of short lived proteins that mediate cell survival/death, proliferation, repair, and differentiation. Expression of most of these proteins, including p53, mdm2, p21, c-jun, IkB-a, bcl-2, bax, cyclins A, B, E, Cdc25A, DNA-PKcs, and caspase-3 is regulated at the post-transcriptional level through ubiquitin/26S proteasome pathway. Several previous studies have shown that inhibition of proteasome activity by drugs leads to accumulation of ubiquitinated proteins. In this study we show that irradiation can do the same due to its inhibitory effect on 26S, but not 20S, proteasome activity. Two prostate cancer cell lines, murine TRAMP-C1 and human PC3, were used to examine the effect of ionizing radiation on the catalytic activity of the 26S proteasome. Cells were irradiated with different doses ranging from 0.25 to 20 Gy and lysed at different time points after irradiation. Crude extracts of both cell lines showed a rapid 30-50% decrease in chymotryptic activity of the 26S proteasome, as measured by a fluorogenic assay. The same level of inhibition was observed if purified 26S proteasomes were themselves irradiated, indicating that radiation has direct effects on this multicatalytic enzyme complex. Neither direct irradiation of proteasomes or cells had effect on 20S catalytic activity, suggesting that radiation selectively acts on 26S structure. Next, we examined whether this partial inhibition had any effect on ability of 26S proteasome to efficiently remove ubiquitinated proteins. Cells were irradiated with 10Gy and lysed at different time points. Ubiquitinated proteins were precipitated and examined by Western blot. Levels of ubiquitinated conjugates slowly increased over time and peaked at 7h post-irradiation. Accumulation of ubiquitinated conjugates has been shown to lead to formation of protein aggregates which can induce cell death. It has also been shown that monoubiquitination

  12. Proteomics of the 26S proteasome in Spodoptera frugiperda cells infected with the nucleopolyhedrovirus, AcMNPV.

    Science.gov (United States)

    Lyupina, Yulia V; Zatsepina, Olga G; Serebryakova, Marina V; Erokhov, Pavel A; Abaturova, Svetlana B; Kravchuk, Oksana I; Orlova, Olga V; Beljelarskaya, Svetlana N; Lavrov, Andrey I; Sokolova, Olga S; Mikhailov, Victor S

    2016-06-01

    Baculoviruses are large DNA viruses that infect insect species such as Lepidoptera and are used in biotechnology for protein production and in agriculture as insecticides against crop pests. Baculoviruses require activity of host proteasomes for efficient reproduction, but how they control the cellular proteome and interact with the ubiquitin proteasome system (UPS) of infected cells remains unknown. In this report, we analyzed possible changes in the subunit composition of 26S proteasomes of the fall armyworm, Spodoptera frugiperda (Sf9), cells in the course of infection with the Autographa californica multiple nucleopolyhedrovirus (AcMNPV). 26S proteasomes were purified from Sf9 cells by an immune affinity method and subjected to 2D gel electrophoresis followed by MALDI-TOF mass spectrometry and Mascot search in bioinformatics databases. A total of 34 homologues of 26S proteasome subunits of eukaryotic species were identified including 14 subunits of the 20S core particle (7 α and 7 β subunits) and 20 subunits of the 19S regulatory particle (RP). The RP contained homologues of 11 of RPN-type and 6 of RPT-type subunits, 2 deubiquitinating enzymes (UCH-14/UBP6 and UCH-L5/UCH37), and thioredoxin. Similar 2D-gel maps of 26S proteasomes purified from uninfected and AcMNPV-infected cells at 48hpi confirmed the structural integrity of the 26S proteasome in insect cells during baculovirus infection. However, subtle changes in minor forms of some proteasome subunits were detected. A portion of the α5(zeta) cellular pool that presumably was not associated with the proteasome underwent partial proteolysis at a late stage in infection. PMID:26945516

  13. Physiological levels of ATP Negatively Regulate Proteasome Function

    OpenAIRE

    Huang, Hongbiao; Zhang, Xiaoyan; Li, Shujue; Liu, Ningning; Lian, Wen; McDowell, Emily; Zhou, Ping; Zhao, Canguo; Guo, Haiping; Zhang, Change; Yang, Changshan; Wen, Guangmei; Dong, Xiaoxian; Lu, Li; Ma, Ningfang

    2010-01-01

    Intracellular protein degradation by the ubiquitin-proteasome system is ATP-dependent and the optimal ATP concentration to activate proteasome function in vitro is ~100 μM. Intracellular ATP levels are generally in the low millimolar range but ATP at a level within this range was shown to inhibit proteasome peptidase activities in vitro. Here we report new evidence that supports a hypothesis that intracellular ATP at the physiological levels bidirectionally regulates 26S proteasome proteolyti...

  14. An ALS disease mutation in Cdc48/p97 impairs 20S proteasome binding and proteolytic communication.

    Science.gov (United States)

    Barthelme, Dominik; Jauregui, Ruben; Sauer, Robert T

    2015-09-01

    Cdc48 (also known as p97 or VCP) is an essential and highly abundant, double-ring AAA+ ATPase, which is ubiquitous in archaea and eukaryotes. In archaea, Cdc48 ring hexamers play a direct role in quality control by unfolding and translocating protein substrates into the degradation chamber of the 20S proteasome. Whether Cdc48 and 20S cooperate directly in protein degradation in eukaryotic cells is unclear. Two regions of Cdc48 are important for 20S binding, the pore-2 loop at the bottom of the D2 AAA+ ring and a C-terminal tripeptide. Here, we identify an aspartic acid in the pore-2 loop as an important element in 20S recognition. Importantly, mutation of this aspartate in human Cdc48 has been linked to familial amyotrophic lateral sclerosis (ALS). In archaeal or human Cdc48 variants, we find that mutation of this pore-2 residue impairs 20S binding and proteolytic communication but does not affect the stability of the hexamer or rates of ATP hydrolysis and protein unfolding. These results suggest that human Cdc48 interacts functionally with the 20S proteasome. PMID:26134898

  15. Automatic Control of Contextual Interaction Integrated with Affection and Architectural Attentional Control

    Directory of Open Access Journals (Sweden)

    Yanrong Jiang

    2013-03-01

    Full Text Available It is still a challenge for robots to interact with complex environments in a smooth and natural manner. The robot should be aware of its surroundings and inner status to make decisions accordingly and appropriately. Contexts benefit the interaction a lot, such as avoiding frequent interruptions (e.g., the explicit inputting requests and thus are essential for interaction. Other challenges, such as shifting attentional focus to a more important stimulus, etc., are also crucial in interaction control. This paper presents a hybrid automatic control approach for interaction, as well as its integration, with these multiple important factors, aiming at performing natural, human‐like interactions in robots. In particular, a novel approach of architectural attentional control, based on affection is presented, which attempts to shift the attentional focus in a natural manner. Context‐aware computing is combined with interaction to endow the robot with proactive abilities. The long‐term interaction control approaches are described. Emotion and personality are introduced into the interaction and their influence mechanism on interaction is explored. We implemented the proposal in an interactive head robot (IHR and the experimental results indicate the effectiveness.

  16. Affective Interaction with a Virtual Character Through an fNIRS Brain-Computer Interface.

    Science.gov (United States)

    Aranyi, Gabor; Pecune, Florian; Charles, Fred; Pelachaud, Catherine; Cavazza, Marc

    2016-01-01

    Affective brain-computer interfaces (BCI) harness Neuroscience knowledge to develop affective interaction from first principles. In this article, we explore affective engagement with a virtual agent through Neurofeedback (NF). We report an experiment where subjects engage with a virtual agent by expressing positive attitudes towards her under a NF paradigm. We use for affective input the asymmetric activity in the dorsolateral prefrontal cortex (DL-PFC), which has been previously found to be related to the high-level affective-motivational dimension of approach/avoidance. The magnitude of left-asymmetric DL-PFC activity, measured using functional near infrared spectroscopy (fNIRS) and treated as a proxy for approach, is mapped onto a control mechanism for the virtual agent's facial expressions, in which action units (AUs) are activated through a neural network. We carried out an experiment with 18 subjects, which demonstrated that subjects are able to successfully engage with the virtual agent by controlling their mental disposition through NF, and that they perceived the agent's responses as realistic and consistent with their projected mental disposition. This interaction paradigm is particularly relevant in the case of affective BCI as it facilitates the volitional activation of specific areas normally not under conscious control. Overall, our contribution reconciles a model of affect derived from brain metabolic data with an ecologically valid, yet computationally controllable, virtual affective communication environment. PMID:27462216

  17. The Interactive Effects of Affect Lability, Negative Urgency, and Sensation Seeking on Young Adult Problematic Drinking

    OpenAIRE

    Kenny Karyadi; Ayca Coskunpinar; Dir, Allyson L.; Cyders, Melissa A.

    2013-01-01

    Prior studies have suggested that affect lability might reduce the risk for problematic drinking among sensation seekers by compensating for their deficiencies in emotional reactivity and among individuals high on negative urgency by disrupting stable negative emotions. Due to the high prevalence of college drinking, this study examined whether affect lability interacted with sensation seeking and negative urgency to influence college student problematic drinking. 414 college drinkers (mean a...

  18. Potential role of 20S proteasome in maintaining stem cell integrity of human bone marrow stromal cells in prolonged culture expansion

    International Nuclear Information System (INIS)

    Highlights: ► Prolonged culture expansion retards proliferation and induces senescence of hBMSCs. ► Reduced 20S proteasomal activity and expression potentially contribute to cell aging. ► MG132-mediated 20S proteasomal inhibition induces senescence-like phenotype. ► 18α-GA stimulates proteasomal activity and restores replicative senescence. ► 18α-GA retains differentiation without affecting stem cell characterizations. -- Abstract: Human bone marrow stromal cells (hBMSCs) could be used in clinics as precursors of multiple cell lineages following proper induction. Such application is impeded by their characteristically short lifespan, together with the increasing loss of proliferation capability and progressive reduction of differentiation potential after the prolonged culture expansion. In the current study, we addressed the possible role of 20S proteasomes in this process. Consistent with prior reports, long-term in vitro expansion of hBMSCs decreased cell proliferation and increased replicative senescence, accompanied by reduced activity and expression of the catalytic subunits PSMB5 and PSMB1, and the 20S proteasome overall. Application of the proteasome inhibitor MG132 produced a senescence-like phenotype in early passages, whereas treating late-passage cells with 18α-glycyrrhetinic acid (18α-GA), an agonist of 20S proteasomes, delayed the senescence progress, enhancing the proliferation and recovering the capability of differentiation. The data demonstrate that activation of 20S proteasomes assists in counteracting replicative senescence of hBMSCs expanded in vitro.

  19. Proteasome as a Molecular Target of Microcystin-LR

    Directory of Open Access Journals (Sweden)

    Zhu Zhu

    2015-06-01

    Full Text Available Proteasome degrades proteins in eukaryotic cells. As such, the proteasome is crucial in cell cycle and function. This study proved that microcystin-LR (MC-LR, which is a toxic by-product of algal bloom, can target cellular proteasome and selectively inhibit proteasome trypsin-like (TL activity. MC-LR at 1 nM can inhibit up to 54% of the purified 20S proteasome TL activity and 43% of the proteasome TL activity in the liver of the cyprinid rare minnow (Gobiocypris rarus. Protein degradation was retarded in GFP-CL1-transfected PC-3 cells because MC-LR inhibited the proteasome TL activity. Docking studies indicated that MC-LR blocked the active site of the proteasome β2 subunit; thus, the proteasome TL activity was inhibited. In conclusion, MC-LR can target proteasome, selectively inhibit proteasome TL activity, and retard protein degradation. This study may be used as a reference of future research on the toxic mechanism of MC-LR.

  20. Dopamine D4 Receptor Polymorphism and Sex Interact to Predict Children's Affective Knowledge

    Directory of Open Access Journals (Sweden)

    Sharon eBen-Israel

    2015-06-01

    Full Text Available Affective knowledge, the ability to understand others’ emotional states, is considered to be a fundamental part in efficient social interaction. Affective knowledge can be seen as related to cognitive empathy, and in the framework of Theory of Mind (ToM as affective ToM. Previous studies found that cognitive empathy and ToM are heritable, yet little is known regarding the specific genes involved in individual variability in affective knowledge. Investigating the genetic basis of affective knowledge is important for understanding brain mechanisms underlying socio-cognitive abilities. The 7-repeat (7R allele within the third exon of the Dopamine D4 receptor gene (DRD4-III has been a focus of interest, due to accumulated knowledge regarding its relevance to individual differences in prosocial behavior. A recent study suggests that an interaction between the DRD4-III polymorphism and sex is associated with cognitive empathy among adults. We aimed to examine the same association in two childhood age groups. Children (N = 280, age 3.5 years, N = 283, age 5 years participated as part of the Longitudinal Israel Study of Twins (LIST. Affective knowledge was assessed through children’s responses to an illustrated story describing different emotional situations, told in a laboratory setting. The findings suggest a significant interaction between sex and the DRD4-III polymorphism, replicated in both age groups. Boy carriers of the 7R allele had higher affective knowledge scores than girls, whereas in the absence of the 7R there was no significant sex effect on affective knowledge. The results support the importance of DRD4-III polymorphism and sex differences to social development. Possible explanations for differences from adult findings are discussed, as are pathways for future studies.

  1. Interaction between Task Oriented and Affective Information Processing in Cognitive Robotics

    Science.gov (United States)

    Haazebroek, Pascal; van Dantzig, Saskia; Hommel, Bernhard

    There is an increasing interest in endowing robots with emotions. Robot control however is still often very task oriented. We present a cognitive architecture that allows the combination of and interaction between task representations and affective information processing. Our model is validated by comparing simulation results with empirical data from experimental psychology.

  2. Approaches to Affective Computing and Learning towards Interactive Decision Making in Process Control Engineering

    Institute of Scientific and Technical Information of China (English)

    SU Chong; LI Hong-Guang

    2013-01-01

    Numerous multi-objective decision-making problems related to industrial process control engineering such as control and operation performance evaluation are being resolved through human-computer interactions.With regard to the problems that traditional interactive evolutionary computing approaches suffer i.e.,limited searching ability and human's strong subjectivity in multi-objective-attribute decision-making,a novel affective computing and learning solution adapted to human-computer interaction mechanism is explicitly proposed.Therein,a kind of stimulating response based affective computing model (STAM) is constructed,along with quantitative relations between affective space and human's subjective preferences.Thereafter,affective learning strategies based on genetic algorithms are introduced which are responsible for gradually grasping essentials in human's subjective judgments in decision-making,reducing human's subjective fatigue as well as making the decisions more objective and scientific.Affective learning algorithm's complexity and convergence analysis are shown in Appendices A and B.To exemplify applications of the proposed methods,ad-hoc test functions and PID parameter tuning are suggested as case studies,giving rise to satisfying results and showing validity of the contributions.

  3. Toward interactive context-aware affective educational recommendations in computer-assisted language learning

    Science.gov (United States)

    Santos, Olga C.; Saneiro, Mar; Boticario, Jesus G.; Rodriguez-Sanchez, M. C.

    2016-01-01

    This work explores the benefits of supporting learners affectively in a context-aware learning situation. This features a new challenge in related literature in terms of providing affective educational recommendations that take advantage of ambient intelligence and are delivered through actuators available in the environment, thus going beyond previous approaches which provided computer-based recommendation that present some text or tell aloud the learner what to do. To address this open issue, we have applied TORMES elicitation methodology, which has been used to investigate the potential of ambient intelligence for making more interactive recommendations in an emotionally challenging scenario (i.e. preparing for the oral examination of a second language learning course). Arduino open source electronics prototyping platform is used both to sense changes in the learners' affective state and to deliver the recommendation in a more interactive way through different complementary sensory communication channels (sight, hearing, touch) to cope with a universal design. An Ambient Intelligence Context-aware Affective Recommender Platform (AICARP) has been built to support the whole experience, which represents a progress in the state of the art. In particular, we have come up with what is most likely the first interactive context-aware affective educational recommendation. The value of this contribution lies in discussing methodological and practical issues involved.

  4. Population variation affects interactions between two California salt marsh plant species more than precipitation.

    Science.gov (United States)

    Noto, Akana E; Shurin, Jonathan B

    2016-02-01

    Species that occur along broad environmental gradients often vary in phenotypic traits that make them better adapted to local conditions. Variation in species interactions across gradients could therefore be due to either phenotypic differences among populations or environmental conditions that shift the balance between competition and facilitation. To understand how the environment (precipitation) and variation among populations affect species interactions, we conducted a common garden experiment using two common salt marsh plant species, Salicornia pacifica and Jaumea carnosa, from six salt marshes along the California coast encompassing a large precipitation gradient. Plants were grown alone or with an individual of the opposite species from the same site and exposed to one of three precipitation regimes. J. carnosa was negatively affected in the presence of S. pacifica, while S. pacifica was facilitated by J. carnosa. The strength of these interactions varied by site of origin but not by precipitation treatment. These results suggest that phenotypic variation among populations can affect interaction strength more than environment, despite a threefold difference in precipitation. Geographic intraspecific variation may therefore play an important role in determining the strength of interactions in communities. PMID:26481794

  5. Acidification and warming affect both a calcifying predator and prey, but not their interaction

    DEFF Research Database (Denmark)

    Landes, Anja; Zimmer, Martin

    2012-01-01

    Both ocean warming and acidification have been demonstrated to affect the growth, performance and reproductive success of calcifying invertebrates. However, relatively little is known regarding how such environmental change may affect interspecific interactions. We separately treated green crabs...... Carcinus maenas and periwinkles Littorina littorea under conditions that mimicked either ambient conditions (control) or warming and acidification, both separately and in combination, for 5 mo. After 5 mo, the predators, prey and predator-prey interactions were screened for changes in response to...... environmental change. Acidification negatively affected the closer-muscle length of the crusher chela and correspondingly the claw-strength increment in C. maenas. The effects of warming and/or acidification on L. littorea were less consistent but indicated weaker shells in response to acidification. On the...

  6. Interactive effects of trait and state affect on top-down control of attention.

    Science.gov (United States)

    Hur, Juyoen; Miller, Gregory A; McDavitt, Jenika R B; Spielberg, Jeffrey M; Crocker, Laura D; Infantolino, Zachary P; Towers, David N; Warren, Stacie L; Heller, Wendy

    2015-08-01

    Few studies have investigated how attentional control is affected by transient affective states while taking individual differences in affective traits into consideration. In this study, participants completed a color-word Stroop task immediately after undergoing a positive, neutral or negative affective context manipulation (ACM). Behavioral performance was unaffected by any ACM considered in isolation. For individuals high in trait negative affect (NA), performance was impaired by the negative but not the positive or neutral ACM. Neuroimaging results indicate that activity in primarily top-down control regions of the brain (inferior frontal gyrus and dorsal anterior cingulate cortex) was suppressed in the presence of emotional arousal (both negative and positive ACMs). This effect appears to have been exacerbated or offset by co-occurring activity in other top-down control regions (parietal) and emotion processing regions (orbitofrontal cortex, amygdala and nucleus accumbens) as a function of the valence of state affect (positive or negative) and trait affect (trait NA or trait PA). Neuroimaging results are consistent with behavioral findings. In combination, they indicate both additive and interactive influences of trait and state affect on top-down control of attention. PMID:25556211

  7. Synergistic apoptosis induction in leukemic cells by the phosphatase inhibitor salubrinal and proteasome inhibitors.

    Directory of Open Access Journals (Sweden)

    Hannes C A Drexler

    Full Text Available BACKGROUND: Cells adapt to endoplasmic reticulum (ER-stress by arresting global protein synthesis while simultaneously activating specific transcription factors and their downstream targets. These processes are mediated in part by the phosphorylation-dependent inactivation of the translation initiation factor eIF2alpha. Following restoration of homeostasis protein synthesis is resumed when the serine/threonine-protein phosphatase PP1 dephosphorylates and reactivates eIF2alpha. Proteasome inhibitors, used to treat multiple myeloma patients evoke ER-stress and apoptosis by blocking the ER-associated degradation of misfolded proteins (ERAD, however, the role of eIF2alpha phosphorylation in leukemic cells under conditions of proteasome inhibitor-mediated ER stress is currently unclear. METHODOLOGY AND PRINCIPAL FINDINGS: Bcr-Abl-positive and negative leukemic cell lines were used to investigate the functional implications of PP1-related phosphatase activities on eIF2alpha phosphorylation in proteasome inhibitor-mediated ER stress and apoptosis. Rather unexpectedly, salubrinal, a recently identified PP1 inhibitor capable to protect against ER stress in various model systems, strongly synergized with proteasome inhibitors to augment apoptotic death of different leukemic cell lines. Salubrinal treatment did not affect the phosphorlyation status of eIF2alpha. Furthermore, the proapoptotic effect of salubrinal occurred independently from the chemical nature of the proteasome inhibitor, was recapitulated by a second unrelated phosphatase inhibitor and was unaffected by overexpression of a dominant negative eIF2alpha S51A variant that can not be phosphorylated. Salubrinal further aggravated ER-stress and proteotoxicity inflicted by the proteasome inhibitors on the leukemic cells since characteristic ER stress responses, such as ATF4 and CHOP synthesis, XBP1 splicing, activation of MAP kinases and eventually apoptosis were efficiently abrogated by the

  8. Cytonuclear interactions affect adaptive traits of the annual plant Arabidopsis thaliana in the field.

    Science.gov (United States)

    Roux, Fabrice; Mary-Huard, Tristan; Barillot, Elise; Wenes, Estelle; Botran, Lucy; Durand, Stéphanie; Villoutreix, Romain; Martin-Magniette, Marie-Laure; Camilleri, Christine; Budar, Françoise

    2016-03-29

    Although the contribution of cytonuclear interactions to plant fitness variation is relatively well documented at the interspecific level, the prevalence of cytonuclear interactions at the intraspecific level remains poorly investigated. In this study, we set up a field experiment to explore the range of effects that cytonuclear interactions have on fitness-related traits inArabidopsis thaliana To do so, we created a unique series of 56 cytolines resulting from cytoplasmic substitutions among eight natural accessions reflecting within-species genetic diversity. An assessment of these cytolines and their parental lines scored for 28 adaptive whole-organism phenotypes showed that a large proportion of phenotypic traits (23 of 28) were affected by cytonuclear interactions. The effects of these interactions varied from slight but frequent across cytolines to strong in some specific parental pairs. Two parental pairs accounted for half of the significant pairwise interactions. In one parental pair, Ct-1/Sha, we observed symmetrical phenotypic responses between the two nuclear backgrounds when combined with specific cytoplasms, suggesting nuclear differentiation at loci involved in cytonuclear epistasis. In contrast, asymmetrical phenotypic responses were observed in another parental pair, Cvi-0/Sha. In the Cvi-0 nuclear background, fecundity and phenology-related traits were strongly affected by the Sha cytoplasm, leading to a modified reproductive strategy without penalizing total seed production. These results indicate that natural variation in cytoplasmic and nuclear genomes interact to shape integrative traits that contribute to adaptation, thereby suggesting that cytonuclear interactions can play a major role in the evolutionary dynamics ofA. thaliana. PMID:26979961

  9. Biotic interactions affect the colonization behavior of aquatic detritivorous macroinvertebrates in a heterogeneous environment

    Science.gov (United States)

    Verschut, Thomas A.; Meineri, Eric; Basset, Alberto

    2015-05-01

    It has previously been suggested that macroinvertebrates actively search for suitable patches to colonize. However, it is not well understood how the spatial arrangement of patches can affect colonization rates. In this study, we determined the importance of the environmental factors (distance, connectivity and resource availability) for patch colonization in an experimental system using Gammarus aequicauda (Amphipoda), Lekanesphaera hookeri (Isopoda) and Ecrobia ventrosa (Gastropoda). Furthermore, we also assessed how the relative importance of each of these environmental factors differed in interactions between the three species. The single species experiments showed that distance was the most important factor for G. aequicauda and E. ventrosa. However, while E. ventrosa preferred patches close to the release point, G. aequicauda strongly preferred patches further from the release point. High resource availability was a strong determinant for the patch colonization of G. aequicauda and L. hookeri. Connectivity was only of moderate importance in the study system for L. hookeri and E. ventrosa. The effects of the environmental factors were strongly affected by interspecific interactions in the multispecies experiments. For G. aequicauda, the distance preference was lowered in the presence of E. ventrosa. Moreover, while for L. hookeri the effect of resource availability was ruled out by the species interactions, resource availability gained importance for E. ventrosa in the presence of any of the other species. Our results suggest a strong link between environmental factors and biotic interactions in the colonization of habitat patches and indicate that the effect of biotic interactions is especially important for species sharing similar traits.

  10. Normal and mutant HTT interact to affect clinical severity and progression in Huntington disease

    DEFF Research Database (Denmark)

    Aziz, N A; Jurgens, C K; Landwehrmeyer, G B;

    2009-01-01

    OBJECTIVE: Huntington disease (HD) is an autosomal dominant neurodegenerative disorder caused by a CAG repeat expansion in the HD gene (HTT). We aimed to assess whether interaction between CAG repeat sizes in the mutant and normal allele could affect disease severity and progression. METHODS: Using...... less severe symptoms and pathology. CONCLUSIONS: Increasing CAG repeat size in normal HTT diminishes the association between mutant CAG repeat size and disease severity and progression in Huntington disease. The underlying mechanism may involve interaction of the polyglutamine domains of normal and...

  11. Network Regulation and Support Schemes - How Policy Interactions Affect the Integration of Distributed Generation

    DEFF Research Database (Denmark)

    Ropenus, Stephanie; Jacobsen, Henrik; Schröder, Sascha Thorsten

    2011-01-01

    This article seeks to investigate the interactions between the policy dimensions of support schemes and network regulation and how they affect distributed generation. Firstly, the incentives of distributed generators and distribution system operators are examined. Frequently there exists a trade......-off between the incentives for these two market agents to facilitate the integration of distributed generation. Secondly, the interaction of these policy dimensions is analyzed, including case studies based on five EU Member States. Aspects of operational nature and investments in grid and distributed...

  12. Differential regulation of the REGγ–proteasome pathway by p53/TGF-β signalling and mutant p53 in cancer cells

    OpenAIRE

    Ali, Amjad; Wang, Zhuo; Fu, Junjiang; Lei, Ji; Liu, Jiang; Lei, Li; Wang,; Chen, Jiwu; Caulin, Carlos; Jeffrey, N. Myers; Zhang, Pei; Xiao, Jianru; Zhang, Bianhong; Li, Xiaotao

    2013-01-01

    Proteasome activity is frequently enhanced in cancer to accelerate metastasis and tumorigenesis. REGγ, a proteasome activator known to promote p53/p21/p16 degradation, is often overexpressed in cancer cells. Here we show that p53/TGF-β signalling inhibits the REGγ–20S proteasome pathway by repressing REGγ expression. Smad3 and p53 interact on the REGγ promoter via the p53RE/SBE region. Conversely, mutant p53 binds to the REGγ promoter and recruits p300. Importantly, mutant p53 prevents Smad3/...

  13. The Ubiquitin-Proteasome System Meets Angiogenesis

    OpenAIRE

    Rahimi, Nader

    2012-01-01

    A strict physiological balance between endogenous pro-angiogenic and anti-angiogenic factors control endothelial cell functions, such that endothelial cell growth is normally restrained. However, in pathologic angiogenesis a shift occurs in the balance of regulators favoring endothelial growth. Much of control of angiogenic events is instigated through hypoxia-induced VEGF expression. Ubiquitin-proteasome system plays a central role in fine-tuning function of core pro-angiogenic proteins incl...

  14. Nuclear effects of ethanol-induced proteasome inhibition in liver cells

    Institute of Scientific and Technical Information of China (English)

    Fawzia Bardag-Gorce

    2009-01-01

    Alcohol ingestion causes alteration in several cellular mechanisms, and leads to inflammation, apoptosis,immunological response defects, and fibrosis. These phenomena are associated with significant changes in the epigenetic mechanisms, and subsequently,to liver cell memory. The ubiquitin-proteasome pathway is one of the vital pathways in the cell that becomes dysfunctionial as a result of chronic ethanol consumption. Inhibition of the proteasome activity in the nucleus causes changes in the turnover of transcriptional factors, histone modifying enzymes,and therefore, affects epigenetic mechanisms.Alcohol consumption has been associated with an increase in histone acetylation and a decrease in histone methylation, which leads to gene expression changes. DNA and histone modifications that result from ethanol-induced proteasome inhibition are key players in regulating gene expression, especially genes involved in the cell cycle, immunological responses,and metabolism of ethanol. The present review highlights the consequences of ethanol-induced proteasome inhibition in the nucleus of liver cells that are chronically exposed to ethanol.

  15. Population variation affects interactions between two California salt marsh plant species more than precipitation

    OpenAIRE

    Noto, AE; Shurin, JB

    2016-01-01

    © 2015 Springer-Verlag Berlin Heidelberg Species that occur along broad environmental gradients often vary in phenotypic traits that make them better adapted to local conditions. Variation in species interactions across gradients could therefore be due to either phenotypic differences among populations or environmental conditions that shift the balance between competition and facilitation. To understand how the environment (precipitation) and variation among populations affect species interac...

  16. "God of Small Things": Service Interaction's Roots in Regulatory Focus and Affectivity

    OpenAIRE

    Tali Seger-Guttmann; Iris Vilnai-Yavetz

    2014-01-01

    We link regulatory focus, positive and negative affective states, and service behaviors to suggest that, salespersons' service interactions depend on their motivation (promotion- or prevention-focused) and their emotional responses during the service encounter. Based on in-depth interviews with salespeople, a questionnaire applying the concepts of 'skeleton' (the core of exchange relations) and 'tissue' (informal social behaviors) was administered to 90 salespeople in apparel stores. Results ...

  17. The ubiquitin–proteasome system as a molecular target in solid tumors: an update on bortezomib

    Directory of Open Access Journals (Sweden)

    A Milano

    2009-06-01

    Full Text Available A Milano,1 F Perri,2 F Caponigro21Sandro Pitigliani Medical Oncology Unit, Department of Oncology, Hospital of Prato, Istituto Toscano Tumori, Prato, Italy; 2Head and Neck Medical Oncology Unit, National Tumour institute of Naples, Naples, ItalyAbstract: The ubiquitin–proteasome system has become a promising molecular target in cancer therapy due to its critical role in cellular protein degradation, interaction with cell cycle and apoptosis regulation, and unique mechanism of action. Bortezomib (PS-341 is a potent and specific reversible proteasome inhibitor, which has shown strong in vitro antitumor activity as single agent and in combination with other cytotoxic drugs in a broad spectrum of hematological and solid malignancies. In preclinical studies, bortezomib induced apoptosis of malignant cells through the inhibition of NF-κB and stabilization of pro-apoptotic proteins. Bortezomib also promotes chemo- and radiosensitization of malignant cells in vitro and inhibits tumor growth in murine xenograft models. The proteasome has been established as a relevant target in hematologic malignancies and bortezomib has been approved for the treatment of multiple myeloma. This review summarizes recent data from clinical trials in solid tumors. Keywords: proteasome, bortezomib, NF-κB, clinical studies, solid tumors

  18. Suppression of the Oncogenic Transcription Factor FOXM1 by Proteasome Inhibitors

    Directory of Open Access Journals (Sweden)

    Andrei L. Gartel

    2014-01-01

    Full Text Available The oncogenic transcription factor FOXM1 is one of the key regulators of tumorigenesis. We found that FOXM1 upregulates its own transcription and its protein stability depends on its interaction with the chaperone nucleophosmin. We also determined that FOXM1 is negatively regulated by the tumor suppressor p53. We identified the thiazole antibiotics Siomycin A and thiostrepton as inhibitors of transcriptional activity and FOXM1 expression via proteasome inhibition. In addition, we found that all tested proteasome inhibitors target FOXM1. We showed synergy between thiostrepton and bortezomib in different human cancer cell lines and in vivo. We generated isogenic human cancer cell lines of different origin with wild-type p53 or p53 knockdown and we demonstrated that proteasome inhibitors induce p53-independent apoptosis in these cells. Using RNA-interference or proteasome inhibitors to inhibit FOXM1 we found that suppression of FOXM1 sensitized human cancer cells to apoptosis induced by DNA-damaging agents or oxidative stress. We encapsulated thiostrepton into micelle-nanoparticles and after injection we detected accumulation of nanoparticles in tumors and in the livers of treated mice. This treatment led to inhibition of human xenograft tumor growth in nude mice. Our data indicate that targeting FOXM1 increases apoptosis and inhibits tumor growth.

  19. The recognition of ubiquitinated proteins by the proteasome.

    Science.gov (United States)

    Grice, Guinevere L; Nathan, James A

    2016-09-01

    The ability of ubiquitin to form up to eight different polyubiquitin chain linkages generates complexity within the ubiquitin proteasome system, and accounts for the diverse roles of ubiquitination within the cell. Understanding how each type of ubiquitin linkage is correctly interpreted by ubiquitin binding proteins provides important insights into the link between chain recognition and cellular fate. A major function of ubiquitination is to signal degradation of intracellular proteins by the 26S proteasome. Lysine-48 (K48) linked polyubiquitin chains are well established as the canonical signal for proteasomal degradation, but recent studies show a role for other ubiquitin linked chains in facilitating degradation by the 26S proteasome. Here, we review how different types of polyubiquitin linkage bind to ubiquitin receptors on the 26S proteasome, how they signal degradation and discuss the implications of ubiquitin chain linkage in regulating protein breakdown by the proteasome. PMID:27137187

  20. The Interactive Effects of Affect Lability, Negative Urgency, and Sensation Seeking on Young Adult Problematic Drinking

    Directory of Open Access Journals (Sweden)

    Kenny Karyadi

    2013-01-01

    Full Text Available Prior studies have suggested that affect lability might reduce the risk for problematic drinking among sensation seekers by compensating for their deficiencies in emotional reactivity and among individuals high on negative urgency by disrupting stable negative emotions. Due to the high prevalence of college drinking, this study examined whether affect lability interacted with sensation seeking and negative urgency to influence college student problematic drinking. 414 college drinkers (mean age: 20, 77% female, and 74% Caucasian from a US Midwestern University completed self-administered questionnaires online. Consistent with our hypotheses, our results indicated that the effects of sensation seeking and negative urgency on problematic drinking weakened at higher levels of affect lability. These findings emphasize the importance of considering specific emotional contexts in understanding how negative urgency and sensation seeking create risk for problematic drinking among college students. These findings might also help us better understand how to reduce problematic drinking among sensation seekers and individuals high on negative urgency.

  1. Relative abundance of an invasive alien plant affects insect-flower interaction networks in Ireland

    Science.gov (United States)

    Stout, Jane C.; Casey, Leanne M.

    2014-02-01

    Invasive alien flowering plants may affect native plant pollinator interactions and have knock on impacts on populations of native plants and animals. The magnitude of these impacts, however, may be modified by the relative abundance of the invasive plant and the number of flowers it presents.We tested this by examining the structure of insect-flower interaction networks in six sites with increasing levels of invasion by Rhododendron ponticum in Ireland.Neither flower-visiting insect abundance, species richness nor diversity were related to R. ponticum flower abundance, but the composition of insect communities was. The total number of flowers in a site increased with the relative abundance of R. ponticum flowers but the number of co-flowering native plant species in these sites was low (interaction networks relatively small.As a result, changes in interaction network properties (connectance, interaction evenness and network level specialisation), which correlated with R. ponticum flower abundance, were a result of the small network size rather than due to changes in the resilience of networks.Overall, we conclude that the impacts of invasive alien plants on native plant-pollinator interactions are not only species specific, but site specific, according to the abundance of flowers produced by both the invasive and the native plants.

  2. "God of Small Things": Service Interaction's Roots in Regulatory Focus and Affectivity

    Directory of Open Access Journals (Sweden)

    Tali Seger-Guttmann

    2014-06-01

    Full Text Available We link regulatory focus, positive and negative affective states, and service behaviors to suggest that, salespersons' service interactions depend on their motivation (promotion- or prevention-focused and their emotional responses during the service encounter. Based on in-depth interviews with salespeople, a questionnaire applying the concepts of 'skeleton' (the core of exchange relations and 'tissue' (informal social behaviors was administered to 90 salespeople in apparel stores. Results supported our main assumption that salespeople interact with customers based on their regulatory focus (Promotion and Prevention and affectivity (PA and NA. Promotion focus was positively related to positive tissue behaviors (i.e., extra-role behaviors and to positive affect (PA and negatively related to negative affect (NA. Promotion-focused salespeople are more likely to demonstrate PA and high-quality service performance by adopting extra-role (tissue behaviors. PA and NA fully mediated the relationship between promotion focus and positive tissue behaviors I. Prevention focus was found to be positively correlated with skeleton behaviors (i.e., core behaviors and NA. No relationship was found between prevention focus and PA.

  3. 26S Proteasome: Hunter and Prey in Auxin Signaling.

    Science.gov (United States)

    Kong, Xiangpei; Zhang, Liangran; Ding, Zhaojun

    2016-07-01

    Auxin binds to TRANSPORT INHIBITOR RESPONSE 1 and AUXIN SIGNALLING F-BOX proteins (TIR1/AFBs) and promotes the degradation of Aux/IAA transcriptional repressors. The proteasome regulator PROTEASOME REGULATOR1 (PTRE1) has now been shown to be required for auxin-mediated repression of 26S proteasome activity, thus providing new insights into the fine-tuning of the homoeostasis of Aux/IAA proteins and auxin signaling. PMID:27246455

  4. A new method of purification of proteasome substrates reveals polyubiquitination of 20 S proteasome subunits

    OpenAIRE

    Ventadour, Sophie; Jarzaguet, Marianne; Simon S. Wing; Chambon, Christophe; Combaret, Lydie; Béchet, Daniel; Attaix, Didier; Taillandier, Daniel

    2007-01-01

    The 26 S proteasome is implicated in the control of many major biological functions but a reliable method for the identification of its major substrates, i.e. polyubiquitin (Ub) conjugates, is still lacking. Based on the steps present in cells, i.e. recognition and deubiquitination, we developed an affinity matrix-based purification of polyUb conjugates suitable for any biological sample. Ub-conjugates were first purified from proteasome inhibitor-treated C2C12 cells using the Ub binding doma...

  5. Insulin alleviates degradation of skeletal muscle protein by inhibiting the ubiquitin-proteasome system in septic rats

    Directory of Open Access Journals (Sweden)

    Gao Tao

    2011-06-01

    Full Text Available Abstract Hypercatabolism is common under septic conditions. Skeletal muscle is the main target organ for hypercatabolism, and this phenomenon is a vital factor in the deterioration of recovery in septic patients. In skeletal muscle, activation of the ubiquitin-proteasome system plays an important role in hypercatabolism under septic status. Insulin is a vital anticatabolic hormone and previous evidence suggests that insulin administration inhibits various steps in the ubiquitin-proteasome system. However, whether insulin can alleviate the degradation of skeletal muscle protein by inhibiting the ubiquitin-proteasome system under septic condition is unclear. This paper confirmed that mRNA and protein levels of the ubiquitin-proteasome system were upregulated and molecular markers of skeletal muscle proteolysis (tyrosine and 3-methylhistidine simultaneously increased in the skeletal muscle of septic rats. Septic rats were infused with insulin at a constant rate of 2.4 mU.kg-1.min-1 for 8 hours. Concentrations of mRNA and proteins of the ubiquitin-proteasome system and molecular markers of skeletal muscle proteolysis were mildly affected. When the insulin infusion dose increased to 4.8 mU.kg-1.min-1, mRNA for ubiquitin, E2-14 KDa, and the C2 subunit were all sharply downregulated. At the same time, the levels of ubiquitinated proteins, E2-14KDa, and the C2 subunit protein were significantly reduced. Tyrosine and 3-methylhistidine decreased significantly. We concluded that the ubiquitin-proteasome system is important skeletal muscle hypercatabolism in septic rats. Infusion of insulin can reverse the detrimental metabolism of skeletal muscle by inhibiting the ubiquitin-proteasome system, and the effect is proportional to the insulin infusion dose.

  6. Sorption interactions of organic compounds with soils affected by agricultural olive mill wastewater.

    Science.gov (United States)

    Keren, Yonatan; Borisover, Mikhail; Bukhanovsky, Nadezhda

    2015-11-01

    The organic compound-soil interactions may be strongly influenced by changes in soil organic matter (OM) which affects the environmental fate of multiple organic pollutants. The soil OM changes may be caused by land disposal of various OM-containing wastes. One unique type of OM-rich waste is olive mill-related wastewater (OMW) characterized by high levels of OM, the presence of fatty aliphatics and polyphenolic aromatics. The systematic data on effects of the land-applied OMW on organic compound-soil interactions is lacking. Therefore, aqueous sorption of simazine and diuron, two herbicides, was examined in batch experiments onto three soils, including untreated and OMW-affected samples. Typically, the organic compound-soil interactions increased following the prior land application of OMW. This increase is associated with the changes in sorption mechanisms and cannot be attributed solely to the increase in soil organic carbon content. A novel observation is that the OMW application changes the soil-sorbent matrix in such a way that the solute uptake may become cooperative or the existing ability of a soil sorbent to cooperatively sorb organic molecules from water may become characterized by a larger affinity. The remarkable finding of this study was that in some cases a cooperative uptake of organic molecules by soils makes itself evident in distinct sigmoidal sorption isotherms rarely observed in soil sorption of non-ionized organic compounds; the cooperative herbicide-soil interactions may be characterized by the Hill model coefficients. However, no single trend was found for the effect of applied OMW on the mechanisms of organic compound-soil interactions. PMID:26183941

  7. Motion and emotion: depression reduces psychomotor performance and alters affective movements in caregiving interactions

    Directory of Open Access Journals (Sweden)

    Katherine S Young

    2015-02-01

    Full Text Available Background: Impaired social functioning is a well-established feature of depression. Evidence to date suggests that disrupted processing of emotional cues may constitute part of this impairment. Beyond processing of emotional cues, fluent social interactions require that people physically move in synchronised, contingent ways. Disruptions to physical movements are a diagnostic feature of depression (psychomotor disturbance but have not previously been assessed in the context of social functioning. Here we investigated the impact of psychomotor disturbance in depression on physical responsive behaviour in both an experimental and observational setting.Methods: In Experiment 1, we examined motor disturbance in depression in response to salient emotional sounds, using a laboratory-based effortful motor task. In Experiment 2, we explored whether psychomotor disturbance was apparent in real-life social interactions. Using mother-infant interactions as a model affective social situation, we compared physical behaviours of mothers with and without postnatal depression (PND.Results: We found impairments in precise, controlled psychomotor performance in adults with depression relative to healthy adults (Experiment 1. Despite this disruption, all adults showed enhanced performance following exposure to highly salient emotional cues (infant cries. Examining real-life interactions, we found differences in physical movements, namely reduced affective touching, in mothers with PND responding to their infants, compared to healthy mothers (Experiment 2.Conclusions: Together, these findings suggest that psychomotor disturbance may be an important feature of depression that can impair social functioning. Future work investigating whether improvements in physical movement in depression could have a positive impact on social interactions would be of much interest.

  8. Dendrite Development Regulated by the Schizophrenia-Associated Gene FEZ1 Involves the Ubiquitin Proteasome System

    Directory of Open Access Journals (Sweden)

    Yasuhito Watanabe

    2014-04-01

    Full Text Available Downregulation of the schizophrenia-associated gene DISC1 and its interacting protein FEZ1 positively regulates dendrite growth in young neurons. However, little is known about the mechanism that controls these molecules during neuronal development. Here, we identify several components of the ubiquitin proteasome system and the cell-cycle machinery that act upstream of FEZ1. We demonstrate that the ubiquitin ligase cell division cycle 20/anaphase-promoting complex (Cdc20/APC controls dendrite growth by regulating the degradation of FEZ1. Furthermore, dendrite growth is modulated by BubR1, whose known function so far has been restricted to control Cdc20/APC activity during the cell cycle. The modulatory function of BubR1 is dependent on its acetylation status. We show that BubR1 is deacetylated by Hdac11, thereby disinhibiting the Cdc20/APC complex. Because dendrite growth is affected both in hippocampal dentate granule cells and olfactory bulb neurons upon modifying expression of these genes, we conclude that the proposed mechanism governs neuronal development in a general fashion.

  9. Mathematics for Maths Anxious Tertiary Students: Integrating the cognitive and affective domains using interactive multimedia

    Directory of Open Access Journals (Sweden)

    Janet Taylor

    2011-04-01

    Full Text Available Today, commencing university students come from a diversity of backgrounds and have a broad range of abilities and attitudes. It is well known that attitudes towards mathematics, especially mathematics anxiety, can affect students’ performance to the extent that mathematics is often seen as a barrier to success by many. This paper reports on the design, development and evaluation of an interactive multimedia resource designed to explicitly address students’ beliefs and attitudes towards mathematics by following five characters as they progress through the highs and low of studying a preparatory mathematics course. The resource was built within two theoretical frameworks, one related to effective numeracy teaching (Marr and Helme 1991 and the other related to effective educational technology development (Laurillard 2002. Further, it uses a number of multimedia alternatives (video, audio, animations, diarying, interactive examples and self assessment to encourage students to feel part of a group, to reflect on their feelings and beliefs about mathematics, to expose students to authentic problem solving and generally build confidence through practice and self-assessment. Evaluation of the resource indicated that it encouraged students to value their own mathematical ability and helped to build confidence, while developing mathematical problem solving skills. The evaluation clearly demonstrated that it is possible to address the affective domain through multimedia initiatives and that this can complement the current focus on computer mediated communication as the primary method of addressing affective goals within the online environment.

  10. Using Bayesian Nonparametric Hidden Semi-Markov Models to Disentangle Affect Processes during Marital Interaction.

    Directory of Open Access Journals (Sweden)

    William A Griffin

    Full Text Available Sequential affect dynamics generated during the interaction of intimate dyads, such as married couples, are associated with a cascade of effects-some good and some bad-on each partner, close family members, and other social contacts. Although the effects are well documented, the probabilistic structures associated with micro-social processes connected to the varied outcomes remain enigmatic. Using extant data we developed a method of classifying and subsequently generating couple dynamics using a Hierarchical Dirichlet Process Hidden semi-Markov Model (HDP-HSMM. Our findings indicate that several key aspects of existing models of marital interaction are inadequate: affect state emissions and their durations, along with the expected variability differences between distressed and nondistressed couples are present but highly nuanced; and most surprisingly, heterogeneity among highly satisfied couples necessitate that they be divided into subgroups. We review how this unsupervised learning technique generates plausible dyadic sequences that are sensitive to relationship quality and provide a natural mechanism for computational models of behavioral and affective micro-social processes.

  11. Using Bayesian Nonparametric Hidden Semi-Markov Models to Disentangle Affect Processes during Marital Interaction.

    Science.gov (United States)

    Griffin, William A; Li, Xun

    2016-01-01

    Sequential affect dynamics generated during the interaction of intimate dyads, such as married couples, are associated with a cascade of effects-some good and some bad-on each partner, close family members, and other social contacts. Although the effects are well documented, the probabilistic structures associated with micro-social processes connected to the varied outcomes remain enigmatic. Using extant data we developed a method of classifying and subsequently generating couple dynamics using a Hierarchical Dirichlet Process Hidden semi-Markov Model (HDP-HSMM). Our findings indicate that several key aspects of existing models of marital interaction are inadequate: affect state emissions and their durations, along with the expected variability differences between distressed and nondistressed couples are present but highly nuanced; and most surprisingly, heterogeneity among highly satisfied couples necessitate that they be divided into subgroups. We review how this unsupervised learning technique generates plausible dyadic sequences that are sensitive to relationship quality and provide a natural mechanism for computational models of behavioral and affective micro-social processes. PMID:27187319

  12. Using Bayesian Nonparametric Hidden Semi-Markov Models to Disentangle Affect Processes during Marital Interaction

    Science.gov (United States)

    Griffin, William A.; Li, Xun

    2016-01-01

    Sequential affect dynamics generated during the interaction of intimate dyads, such as married couples, are associated with a cascade of effects—some good and some bad—on each partner, close family members, and other social contacts. Although the effects are well documented, the probabilistic structures associated with micro-social processes connected to the varied outcomes remain enigmatic. Using extant data we developed a method of classifying and subsequently generating couple dynamics using a Hierarchical Dirichlet Process Hidden semi-Markov Model (HDP-HSMM). Our findings indicate that several key aspects of existing models of marital interaction are inadequate: affect state emissions and their durations, along with the expected variability differences between distressed and nondistressed couples are present but highly nuanced; and most surprisingly, heterogeneity among highly satisfied couples necessitate that they be divided into subgroups. We review how this unsupervised learning technique generates plausible dyadic sequences that are sensitive to relationship quality and provide a natural mechanism for computational models of behavioral and affective micro-social processes. PMID:27187319

  13. Seasonal Influences on Ground-Surface Water Interactions in an Arsenic-Affected Aquifer in Cambodia

    Science.gov (United States)

    Richards, L. A.; Magnone, D.; Van Dongen, B.; Bryant, C.; Boyce, A.; Ballentine, C. J.; Polya, D. A.

    2015-12-01

    Millions of people in South and Southeast Asia consume drinking water daily which contains dangerous levels of arsenic exceeding health-based recommendations [1]. A key control on arsenic mobilization in aquifers in these areas has been controversially identified as the interaction of 'labile' organic matter contained in surface waters with groundwaters and sediments at depth [2-4], which may trigger the release of arsenic from the solid- to aqueous-phase via reductive dissolution of iron-(hyr)oxide minerals [5]. In a field site in Kandal Province, Cambodia, which is an arsenic-affected area typical to others in the region, there are strong seasonal patterns in groundwater flow direction, which are closely related to monsoonal rains [6] and may contribute to arsenic release in this aquifer. The aim of this study is to explore the implications of the high susceptibility of this aquifer system to seasonal changes on potential ground-surface water interactions. The main objectives are to (i) identify key zones where there are likely ground-surface water interactions, (ii) assess the seasonal impact of such interactions and (iii) quantify the influence of interactions using geochemical parameters (such as As, Fe, NO3, NH4, 14C, 3T/3He, δ18O, δ2H). Identifying the zones, magnitude and seasonal influence of ground-surface water interactions elucidates new information regarding potential locations/pathways of arsenic mobilization and/or transport in affected aquifers and may be important for water management strategies in affected areas. This research is supported by NERC (NE/J023833/1) to DP, BvD and CJB and a NERC PhD studentship (NE/L501591/1) to DM. References: [1] World Health Organization, 2008. [2] Charlet & Polya (2006), Elements, 2, 91-96. [3] Harvey et al. (2002), Science, 298, 1602-1606. [4] Lawson et al. (2013), Env. Sci. Technol. 47, 7085 - 7094. [5] Islam et al. (2004), Nature, 430, 68-71. [6] Benner et al. (2008) Appl. Geochem. 23(11), 3072 - 3087.

  14. Lamins, laminopathies and disease mechanisms: Possible role for proteasomal degradation of key regulatory proteins

    Indian Academy of Sciences (India)

    Veena K Parnaik; Pankaj Chaturvedi; B H Muralikrishna

    2011-08-01

    Lamins are major structural proteins of the nucleus and are essential for nuclear integrity and organization of nuclear functions. Mutations in the human lamin genes lead to highly degenerative genetic diseases that affect a number of different tissues such as muscle, adipose or neuronal tissues, or cause premature ageing syndromes. New findings on the role of lamins in cellular signalling pathways, as well as in ubiquitin-mediated proteasomal degradation, have given important insights into possible mechanisms of pathogenesis.

  15. Glyphosate herbicide affects belowground interactions between earthworms and symbiotic mycorrhizal fungi in a model ecosystem

    Science.gov (United States)

    Zaller, Johann G.; Heigl, Florian; Ruess, Liliane; Grabmaier, Andrea

    2014-07-01

    Herbicides containing glyphosate are widely used in agriculture and private gardens, however, surprisingly little is known on potential side effects on non-target soil organisms. In a greenhouse experiment with white clover we investigated, to what extent a globally-used glyphosate herbicide affects interactions between essential soil organisms such as earthworms and arbuscular mycorrhizal fungi (AMF). We found that herbicides significantly decreased root mycorrhization, soil AMF spore biomass, vesicles and propagules. Herbicide application and earthworms increased soil hyphal biomass and tended to reduce soil water infiltration after a simulated heavy rainfall. Herbicide application in interaction with AMF led to slightly heavier but less active earthworms. Leaching of glyphosate after a simulated rainfall was substantial and altered by earthworms and AMF. These sizeable changes provide impetus for more general attention to side-effects of glyphosate-based herbicides on key soil organisms and their associated ecosystem services.

  16. Indirect trophic interactions with an invasive species affect phenotypic divergence in a top consumer.

    Science.gov (United States)

    Hirsch, P E; Eklöv, P; Svanbäck, R

    2013-05-01

    While phenotypic responses to direct species interactions are well studied, we know little about the consequences of indirect interactions for phenotypic divergence. In this study we used lakes with and without the zebra mussel to investigate effects of indirect trophic interactions on phenotypic divergence between littoral and pelagic perch. We found a greater phenotypic divergence between littoral and pelagic individuals in lakes with zebra mussels and propose a mussel-mediated increase in pelagic and benthic resource availability as a major factor underlying this divergence. Lakes with zebra mussels contained higher densities of large plankton taxa and large invertebrates. We suggest that this augmented resource availability improved perch foraging opportunities in both the littoral and pelagic zones. Perch in both habitats could hence express a more specialized foraging morphology, leading to an increased divergence of perch forms in lakes with zebra mussels. As perch do not prey on mussels directly, we conclude that the increased divergence results from indirect interactions with the mussels. Our results hence suggest that species at lower food web levels can indirectly affect phenotypic divergence in species at the top of the food chain. PMID:23463242

  17. Impaired proteasome function in sporadic amyotrophic lateral sclerosis.

    Science.gov (United States)

    Kabashi, Edor; Agar, Jeffrey N; Strong, Michael J; Durham, Heather D

    2012-06-01

    Abstract The ubiquitin-proteasome system, important for maintaining protein quality control, is compromised in experimental models of familial ALS. The objective of this study was to determine if proteasome function is impaired in sporadic ALS. Proteasomal activities and subunit composition were evaluated in homogenates of spinal cord samples obtained at autopsy from sporadic ALS and non-neurological control cases, compared to cerebellum as a clinically spared tissue. The level of 20S α structural proteasome subunits was assessed in motor neurons by immunohistochemistry. Catalysis of peptide substrates of the three major proteasomal activities was substantially reduced in ALS thoracic spinal cord, but not in cerebellum, accompanied by alterations in the constitutive proteasome machinery. Chymotrypsin-like activity was decreased to 60% and 65% of control in ventral and dorsal spinal cord, respectively, concomitant with reduction in the β5 subunit with this catalytic activity. Caspase- and trypsin-like activities were reduced to a similar extent (46% - 68% of control). Proteasome levels, although generally maintained, appeared reduced specifically in motor neurons by immunolabelling. In conclusion, there are commonalities of findings in sporadic ALS patients and presymptomatic SOD1-G93A transgenic mice and these implicate inadequate proteasome function in the pathogenesis of both familial and sporadic ALS. PMID:22632443

  18. Predicting proteasomal cleavage sites: a comparison of available methods

    DEFF Research Database (Denmark)

    Saxova, P.; Buus, S.; Brunak, Søren;

    2003-01-01

    The proteasome plays an essential role in the immune responses of vertebrates. By degrading intercellular proteins from self and non-self, the proteasome produces the majority of the peptides that are presented to cytotoxic T cells (CTL). There is accumulating evidence that the C-terminal, in par...

  19. Detection of antibodies to the 20s proteasome by ELISA

    DEFF Research Database (Denmark)

    Jørgensen, Karin Meinike; Frederiksen, Jette Lautrup; Nielsen, Christoffer Tandrup;

    2013-01-01

    The presence of antibodies against the 20S proteasome has been correlated with diseases like multiple sclerosis (MS) and systemic lupus erythematosus (SLE) but no definite association has been established. In order to investigate this further, we optimized an ELISA for proteasome antibodies and...

  20. Activity and regulation of the centrosome-associated proteasome.

    Science.gov (United States)

    Fabunmi, R P; Wigley, W C; Thomas, P J; DeMartino, G N

    2000-01-01

    Regulated proteolysis is important for maintaining appropriate cellular levels of many proteins. The bulk of intracellular protein degradation is catalyzed by the proteasome. Recently, the centrosome was identified as a novel site for concentration of the proteasome and associated regulatory proteins (Wigley, W. C., Fabunmi, R. P., Lee, M. G., Marino, C. R., Muallem, S., DeMartino, G. N., and Thomas, P. J. (1999) J. Cell Biol. 145, 481-490). Here we provide evidence that centrosomes contain the active 26 S proteasome that degrades ubiquitinated-protein and proteasome-specific peptide substrates. Moreover, the centrosomes contain an ubiquitin isopeptidase activity. The proteolytic activity is ATP-dependent and is inhibited by proteasome inhibitors. Notably, treatment of cells with inhibitors of proteasome activity promotes redistribution of the proteasome and associated regulatory proteins to the centrosome independent of an intact microtubule system. These data provide biochemical evidence for active proteasomal complexes at the centrosome, highlighting a novel function for this organizing structure. PMID:10617632

  1. An atomic model AAA-ATPase/20S core particle sub-complex of the 26S proteasome.

    Science.gov (United States)

    Förster, Friedrich; Lasker, Keren; Beck, Florian; Nickell, Stephan; Sali, Andrej; Baumeister, Wolfgang

    2009-10-16

    The 26S proteasome is the most downstream element of the ubiquitin-proteasome pathway of protein degradation. It is composed of the 20S core particle (CP) and the 19S regulatory particle (RP). The RP consists of 6 AAA-ATPases and at least 13 non-ATPase subunits. Based on a cryo-EM map of the 26S proteasome, structures of homologs, and physical protein-protein interactions we derive an atomic model of the AAA-ATPase-CP sub-complex. The ATPase order in our model (Rpt1/Rpt2/Rpt6/Rpt3/Rpt4/Rpt5) is in excellent agreement with the recently identified base-precursor complexes formed during the assembly of the RP. Furthermore, the atomic CP-AAA-ATPase model suggests that the assembly chaperone Nas6 facilitates CP-RP association by enhancing the shape complementarity between Rpt3 and its binding CP alpha subunits partners. PMID:19653995

  2. An atomic model AAA-ATPase/20S core particle sub-complex of the 26S proteasome

    International Nuclear Information System (INIS)

    The 26S proteasome is the most downstream element of the ubiquitin-proteasome pathway of protein degradation. It is composed of the 20S core particle (CP) and the 19S regulatory particle (RP). The RP consists of 6 AAA-ATPases and at least 13 non-ATPase subunits. Based on a cryo-EM map of the 26S proteasome, structures of homologs, and physical protein-protein interactions we derive an atomic model of the AAA-ATPase-CP sub-complex. The ATPase order in our model (Rpt1/Rpt2/Rpt6/Rpt3/Rpt4/Rpt5) is in excellent agreement with the recently identified base-precursor complexes formed during the assembly of the RP. Furthermore, the atomic CP-AAA-ATPase model suggests that the assembly chaperone Nas6 facilitates CP-RP association by enhancing the shape complementarity between Rpt3 and its binding CP alpha subunits partners.

  3. An atomic model AAA-ATPase/20S core particle sub-complex of the 26S proteasome

    Energy Technology Data Exchange (ETDEWEB)

    Foerster, Friedrich [Department of Structural Biology, Max-Planck-Institute of Biochemistry, D-82152 Martinsried (Germany); Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, and California Institute for Quantitative Biosciences (QB3), University of California at San Francisco, San Francisco (United States); Lasker, Keren [Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, and California Institute for Quantitative Biosciences (QB3), University of California at San Francisco, San Francisco (United States); Blavatnik School of Computer Science, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv (Israel); Beck, Florian; Nickell, Stephan [Department of Structural Biology, Max-Planck-Institute of Biochemistry, D-82152 Martinsried (Germany); Sali, Andrej [Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, and California Institute for Quantitative Biosciences (QB3), University of California at San Francisco, San Francisco (United States); Baumeister, Wolfgang, E-mail: baumeist@biochem.mpg.de [Department of Structural Biology, Max-Planck-Institute of Biochemistry, D-82152 Martinsried (Germany)

    2009-10-16

    The 26S proteasome is the most downstream element of the ubiquitin-proteasome pathway of protein degradation. It is composed of the 20S core particle (CP) and the 19S regulatory particle (RP). The RP consists of 6 AAA-ATPases and at least 13 non-ATPase subunits. Based on a cryo-EM map of the 26S proteasome, structures of homologs, and physical protein-protein interactions we derive an atomic model of the AAA-ATPase-CP sub-complex. The ATPase order in our model (Rpt1/Rpt2/Rpt6/Rpt3/Rpt4/Rpt5) is in excellent agreement with the recently identified base-precursor complexes formed during the assembly of the RP. Furthermore, the atomic CP-AAA-ATPase model suggests that the assembly chaperone Nas6 facilitates CP-RP association by enhancing the shape complementarity between Rpt3 and its binding CP alpha subunits partners.

  4. Neural systems supporting cognitive-affective interactions in adolescence: The role of puberty and implications for affective disorders

    Directory of Open Access Journals (Sweden)

    Cecile D. Ladouceur

    2012-08-01

    Full Text Available Evidence from longitudinal studies suggests that adolescence may represent a period of vulnerability that, in the context of adverse events, could contribute to developmental trajectories toward behavioral and emotional health problems, including affective disorders. Adolescence is also a sensitive period for the development of neural systems supporting cognitive-affective processes, which have been implicated in the pathophysiology of affective disorders such as anxiety and mood disorders. In particular, the onset of puberty brings about a cascade of physical, hormonal, psychological, and social changes that contribute in complex ways to the development of these systems. This article provides a brief overview of neuroimaging research pertaining to the development of cognitive-affective processes in adolescence. It also includes a brief review of evidence from animal and human neuroimaging studies suggesting that sex steroids influence the connectivity between prefrontal cortical and subcortical limbic regions in ways that contribute to increased reactivity to emotionally salient stimuli. We integrate these findings in the context of a developmental affective neuroscience framework suggesting that the impact of rising levels of sex steroids during puberty on fronto-limbic connectivity may be even greater in the context of protracted development of prefrontal cortical regions in adolescence. We conclude by discussing the implications of these findings for future research aimed at identifying neurodevelopmental markers of risk for future onset of affective disorders.

  5. Conserved mosquito/parasite interactions affect development of Plasmodium falciparum in Africa.

    Directory of Open Access Journals (Sweden)

    Antonio M Mendes

    2008-05-01

    Full Text Available In much of sub-Saharan Africa, the mosquito Anopheles gambiae is the main vector of the major human malaria parasite, Plasmodium falciparum. Convenient laboratory studies have identified mosquito genes that affect positively or negatively the developmental cycle of the model rodent parasite, P. berghei. Here, we use transcription profiling and reverse genetics to explore whether five disparate mosquito gene regulators of P. berghei development are also pertinent to A. gambiae/P. falciparum interactions in semi-natural conditions, using field isolates of this parasite and geographically related mosquitoes. We detected broadly similar albeit not identical transcriptional responses of these genes to the two parasite species. Gene silencing established that two genes affect similarly both parasites: infections are hindered by the intracellular local activator of actin cytoskeleton dynamics, WASP, but promoted by the hemolymph lipid transporter, ApoII/I. Since P. berghei is not a natural parasite of A. gambiae, these data suggest that the effects of these genes have not been drastically altered by constant interaction and co-evolution of A. gambiae and P. falciparum; this conclusion allowed us to investigate further the mode of action of these two genes in the laboratory model system using a suite of genetic tools and infection assays. We showed that both genes act at the level of midgut invasion during the parasite's developmental transition from ookinete to oocyst. ApoII/I also affects the early stages of oocyst development. These are the first mosquito genes whose significant effects on P. falciparum field isolates have been established by direct experimentation. Importantly, they validate for semi-field human malaria transmission the concept of parasite antagonists and agonists.

  6. Imaging Imageability: Behavioral Effects and Neural Correlates of Its Interaction with Affect and Context

    Science.gov (United States)

    Westbury, Chris F.; Cribben, Ivor; Cummine, Jacqueline

    2016-01-01

    The construct of imageability refers to the extent to which a word evokes a tangible sensation. Previous research (Westbury et al., 2013) suggests that the behavioral effects attributed to a word's imageability can be largely or wholly explained by two objective constructs, contextual density and estimated affect. Here, we extend these previous findings in two ways. First, we show that closely matched stimuli on the three measures of contextual density, estimated affect, and human-judged imageability show a three-way interaction in explaining variance in LD RTs, but that imagebility accounts for no additional variance after contextual density and estimated affect are entered first. Secondly, we demonstrate that the loci and functional connectivity (via graphical models) of the brain regions implicated in processing the three variables during that task are largely over-lapping and similar. These two lines of evidence support the conclusion that the effect usually attributed to human-judged imageability is largely or entirely due to the effects of other correlated measures that are directly computable. PMID:27471455

  7. Phenological mismatch and ontogenetic diet shifts interactively affect offspring condition in a passerine.

    Science.gov (United States)

    Samplonius, Jelmer M; Kappers, Elena F; Brands, Stef; Both, Christiaan

    2016-09-01

    Climate change may cause phenological asynchrony between trophic levels, which can lead to mismatched reproduction in animals. Although indirect effects of mismatch on fitness are well described, direct effects on parental prey choice are not. Moreover, direct effects of prey variation on offspring condition throughout their early development are understudied. Here, we used camera trap data collected over 2 years to study the effects of trophic mismatch and nestling age on prey choice in pied flycatchers (Ficedula hypoleuca). Furthermore, we studied the effect of mismatch and variation in nestling diet on offspring condition. Both experimentally induced and natural mismatches with the caterpillar peak negatively affected absolute and relative numbers of caterpillars and offspring condition (mass, tarsus and wing length) and positively affected absolute and relative numbers of flying insects in the nestling diet. Feeding more flying insects was negatively correlated with nestling day 12 mass. Both descriptive and experimental data showed preferential feeding of spiders when nestlings were spiders during this phase was positively correlated with tarsus growth. These results highlight the need for a more inclusive framework to study phenological mismatch in nature. The general focus on only one prey type, the rarity of studies that measure environmental abundance of prey, and the lack of timing experiments in dietary studies currently hamper understanding of the actual trophic interactions that affect fitness under climate change. PMID:27263989

  8. Some interactive factors affecting trench-cover integrity on low-level waste sites

    International Nuclear Information System (INIS)

    This paper describes important mechanisms by which radionuclide can be transported from low-level waste disposal sites into biological pathways, discuss interactions of abiotic and biotic processes, and recommends environmental characteristics that should be measured to design sites that minimize this transport. Past experience at shallow land burial sites for low-level radioactive wastes suggest that occurrences of waste exposure and radionuclide transport are often related to inadequate trench cover designs. Meeting performance standards at low-level waste sites can only be achieved by recognizing that physical, chemical, and biological processes operating on and in a trench cover profile are highly interactive. Failure to do so can lead to improper design criteria and subsequent remedial action procedures that can adversely affect site stability. Based upon field experiments and computer modeling, recommendations are made on site characteristics that require measurement in order to design systems that reduce surface runoff and erosion, manage soil moisture and biota in the cover profile to maximize evapotranspiration and minimize percolation, and place bounds on the intrusion potential of plants and animals into the waste material. Major unresolved problems include developing probabilistic approaches that include climatic variability, improved knowledge of soil-water-plant-erosion relationships, development of practical vegetation establishment and maintenance procedures, prediction and quantification of site potential and plant succession, and understanding the interaction of processes occurring on and in the cover profile with deeper subsurface processes

  9. Chemical interactions and gel properties of black carp actomyosin affected by MTGase and their relationships.

    Science.gov (United States)

    Jia, Dan; Huang, Qilin; Xiong, Shanbai

    2016-04-01

    Partial least squares regression (PLSR) was applied to evaluate and correlate chemical interactions (-NH2 content, S-S bonds, four non-covalent interactions) with gel properties (dynamic rheological properties and cooking loss (CL)) of black carp actomyosin affected by microbial transglutaminase (MTGase) at suwari and kamaboko stages. The G' and CL were significantly enhanced by MTGase and their values in kamaboko gels were higher than those in suwari gels at the same MTGase concentration. The γ-carboxyamide and amino cross-links, catalyzed by MTGase, were constructed at suwari stage and contributed to the network formation, while disulfide bonds were formed not only in suwari gels but also in kamaboko gels, further enhancing the gel network. PLSR analysis revealed that 86.6-90.3% of the variation of G' and 91.8-94.4% of the variation of CL were best explained by chemical interactions. G' mainly depended on covalent cross-links and gave positive correlation. CL was positively correlated with covalent cross-links, but negatively related to non-covalent bonds, indicating that covalent bonds promoted water extrusion, whereas non-covalent bonds were beneficial for water-holding. PMID:26593605

  10. Phosphorylation of the C-terminal tail of proteasome subunit α7 is required for binding of the proteasome quality control factor Ecm29

    Science.gov (United States)

    Wani, Prashant S.; Suppahia, Anjana; Capalla, Xavier; Ondracek, Alex; Roelofs, Jeroen

    2016-01-01

    The proteasome degrades many short-lived proteins that are labeled with an ubiquitin chain. The identification of phosphorylation sites on the proteasome subunits suggests that degradation of these substrates can also be regulated at the proteasome. In yeast and humans, the unstructured C-terminal region of α7 contains an acidic patch with serine residues that are phosphorylated. Although these were identified more than a decade ago, the molecular implications of α7 phosphorylation have remained unknown. Here, we showed that yeast Ecm29, a protein involved in proteasome quality control, requires the phosphorylated tail of α7 for its association with proteasomes. This is the first example of proteasome phosphorylation dependent binding of a proteasome regulatory factor. Ecm29 is known to inhibit proteasomes and is often found enriched on mutant proteasomes. We showed that the ability of Ecm29 to bind to mutant proteasomes requires the α7 tail binding site, besides a previously characterized Rpt5 binding site. The need for these two binding sites, which are on different proteasome subcomplexes, explains the specificity of Ecm29 for proteasome holoenzymes. We propose that alterations in the relative position of these two sites in different conformations of the proteasome provides Ecm29 the ability to preferentially bind specific proteasome conformations. PMID:27302526

  11. Proteasome activation as a novel anti-aging strategy.

    Science.gov (United States)

    Gonos, Efstathios

    2014-10-01

    Aging and longevity are two multifactorial biological phenomena whose knowledge at molecular level is still limited. We have studied proteasome function in replicative senescence and cell survival (Mol Aspects Med 35, 1-71, 2014). We have observed reduced levels of proteasome content and activities in senescent cells due to the down-regulation of the catalytic subunits of the 20S complex (J Biol Chem 278, 28026-28037, 2003). In support, partial inhibition of proteasomes in young cells by specific inhibitors induces premature senescence which is p53 dependent (Aging Cell 7, 717-732, 2008). Stable over-expression of catalytic subunits or POMP resulted in enhanced proteasome assembly and activities and increased cell survival following treatments with various oxidants. Importantly, the developed "proteasome activated" human fibroblasts cell lines exhibit a delay of senescence by approximately 15% (J Biol Chem 280, 11840-11850, 2005; J Biol Chem 284, 30076-30086, 2009). Our current work proposes that proteasome activation is an evolutionary conserved mechanism, as it can delay aging in various in vivo systems. Moreover, additional findings indicate that the recorded proteasome activation by many inducers is Nrf2-dependent (J Biol Chem 285, 8171-8184, 2010). Finally, we have studied the proteolysis processes of various age-related proteins and we have identified that CHIP is a major p53 E3 ligase in senescent fibroblasts (Free Rad Biol Med 50, 157-165, 2011). PMID:26461417

  12. Proteasome inhibitors promote the sequestration of PrPSc into aggresomes within the cytosol of prion-infected CAD neuronal cells.

    Science.gov (United States)

    Dron, Michel; Dandoy-Dron, Françoise; Farooq Salamat, Muhammad Khalid; Laude, Hubert

    2009-08-01

    Dysfunction of the endoplasmic reticulum associated protein degradation/proteasome system is believed to contribute to the initiation or aggravation of neurodegenerative disorders associated with protein misfolding, and there is some evidence to suggest that proteasome dysfunctions might be implicated in prion disease. This study investigated the effect of proteasome inhibitors on the biogenesis of both the cellular (PrP(C)) and abnormal (PrP(Sc)) forms of prion protein in CAD neuronal cells, a newly introduced prion cell system. In uninfected cells, proteasome impairment altered the intracellular distribution of PrP(C), leading to a strong accumulation in the Golgi apparatus. Moreover, a detergent-insoluble and weakly protease-resistant PrP species of 26 kDa, termed PrP(26K), accumulated in the cells, whether they were prion-infected or not. However, no evidence was found that, in infected cells, this PrP(26K) species converts into the highly proteinase K-resistant PrP(Sc). In the infected cultures, proteasome inhibition caused an increased intracellular aggregation of PrP(Sc) that was deposited into large aggresomes. These findings strengthen the view that, in neuronal cells expressing wild-type PrP(C) from the natural promoter, proteasomal impairment may affect both the process of PrP(C) biosynthesis and the subcellular sites of PrP(Sc) accumulation, despite the fact that these two effects could essentially be disconnected. PMID:19339478

  13. Proteasome activity or expression is not altered by activation of the heat shock transcription factor Hsf1 in cultured fibroblasts or myoblasts.

    Science.gov (United States)

    Taylor, David M; Kabashi, Edor; Agar, Jeffrey N; Minotti, Sandra; Durham, Heather D

    2005-01-01

    Heat shock proteins (Hsps) with chaperoning function work together with the ubiquitin-proteasome pathway to prevent the accumulation of misfolded, potentially toxic proteins, as well as to control catabolism of the bulk of cytoplasmic, cellular protein. There is evidence for the involvement of both systems in neurodegenerative disease, and a therapeutic target is the heat shock transcription factor, Hsf1, which mediates upregulation of Hsps in response to cellular stress. The mechanisms regulating expression of proteasomal proteins in mammalian cells are less well defined. To assess any direct effect of Hsf1 on expression of proteasomal subunits and activity in mammalian cells, a plasmid encoding a constitutively active form of Hsf1 (Hsf1act) was expressed in mouse embryonic fibroblasts lacking Hsf1 and in cultured human myoblasts. Plasmid encoding an inactivatible form of Hsf1 (Hsf1inact) served as control. In cultures transfected with plasmid hsf1act, robust expression of the major stress-inducible Hsp, Hsp70, occurred but not in cultures transfected with hsf1inact. No significant changes in the level of expression of representative proteasomal proteins (structural [20Salpha], a nonpeptidase beta subunit [20Sbeta3], or 2 regulatory subunits [19S subunit 6b, 11 Salpha]) or in chymotrypsin-, trypsin-, and caspaselike activities of the proteasome were measured. Thus, stress-induced or pharmacological activation of Hsf1 in mammalian cells would upregulate Hsps but not directly affect expression or activity of proteasomes. PMID:16184768

  14. Potential role of 20S proteasome in maintaining stem cell integrity of human bone marrow stromal cells in prolonged culture expansion

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Li, E-mail: luli7300@126.com [Department of Anatomy, Shanxi Medical University, Taiyuan 030001 (China); Song, Hui-Fang; Zhang, Wei-Guo; Liu, Xue-Qin; Zhu, Qian; Cheng, Xiao-Long; Yang, Gui-Jiao [Department of Anatomy, Shanxi Medical University, Taiyuan 030001 (China); Li, Ang [Department of Anatomy, University of Hong Kong, Hong Kong Special Administrative Region (Hong Kong); Xiao, Zhi-Cheng, E-mail: zhicheng.xiao@monash.edu [Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical College, Kunming 650031 (China); Monash Immunology and Stem Cell Laboratories, Monash University, Clayton, Melbourne 3800 (Australia)

    2012-05-25

    Highlights: Black-Right-Pointing-Pointer Prolonged culture expansion retards proliferation and induces senescence of hBMSCs. Black-Right-Pointing-Pointer Reduced 20S proteasomal activity and expression potentially contribute to cell aging. Black-Right-Pointing-Pointer MG132-mediated 20S proteasomal inhibition induces senescence-like phenotype. Black-Right-Pointing-Pointer 18{alpha}-GA stimulates proteasomal activity and restores replicative senescence. Black-Right-Pointing-Pointer 18{alpha}-GA retains differentiation without affecting stem cell characterizations. -- Abstract: Human bone marrow stromal cells (hBMSCs) could be used in clinics as precursors of multiple cell lineages following proper induction. Such application is impeded by their characteristically short lifespan, together with the increasing loss of proliferation capability and progressive reduction of differentiation potential after the prolonged culture expansion. In the current study, we addressed the possible role of 20S proteasomes in this process. Consistent with prior reports, long-term in vitro expansion of hBMSCs decreased cell proliferation and increased replicative senescence, accompanied by reduced activity and expression of the catalytic subunits PSMB5 and PSMB1, and the 20S proteasome overall. Application of the proteasome inhibitor MG132 produced a senescence-like phenotype in early passages, whereas treating late-passage cells with 18{alpha}-glycyrrhetinic acid (18{alpha}-GA), an agonist of 20S proteasomes, delayed the senescence progress, enhancing the proliferation and recovering the capability of differentiation. The data demonstrate that activation of 20S proteasomes assists in counteracting replicative senescence of hBMSCs expanded in vitro.

  15. Ecological Interactions Affecting the Efficacy of Aphidius colemani in Greenhouse Crops

    Directory of Open Access Journals (Sweden)

    Sara G. Prado

    2015-06-01

    Full Text Available Aphidius colemani Viereck (Hymenoptera: Braconidae is a solitary endoparasitoid used for biological control of many economically important pest aphids. Given its widespread use, a vast array of literature on this natural enemy exists. Though often highly effective for aphid suppression, the literature reveals that A. colemani efficacy within greenhouse production systems can be reduced by many stressors, both biotic (plants, aphid hosts, other natural enemies and abiotic (climate and lighting. For example, effects from 3rd and 4th trophic levels (fungal-based control products, hyperparasitoids can suddenly decimate A. colemani populations. But, the most chronic negative effects (reduced parasitoid foraging efficiency, fitness seem to be from stressors at the first trophic level. Negative effects from the 1st trophic level are difficult to mediate since growers are usually constrained to particular plant varieties due to market demands. Major research gaps identified by our review include determining how plants, aphid hosts, and A. colemani interact to affect the net aphid population, and how production conditions such as temperature, humidity and lighting affect both the population growth rate of A. colemani and its target pest. Decades of research have made A. colemani an essential part of biological control programs in greenhouse crops. Future gains in A. colemani efficacy and aphid biological control will require an interdisciplinary, systems approach that considers plant production and climate effects at all trophic levels.

  16. Interaction with therapeutic soft contact lenses affects the intraocular efficacy of tropicamide and latanoprost in dogs.

    Science.gov (United States)

    Hatzav, M; Bdolah-Abram, T; Ofri, R

    2016-04-01

    Therapeutic soft contact lenses (TSCLs) are frequently used to support or protect the cornea during healing. Our aim was to quantitatively evaluate the efficacy of topical medications in TSCL-fitted dogs and determine whether it is affected by the presence of TSCLs. In Phase I, pupil diameter was measured in eyes treated with tropicamide and in eyes covered with TSCLs and then treated with tropicamide, with 1-week intervals between sessions. In Phase II, intraocular pressure (IOP) was measured in uncovered and TSCL-covered eyes treated with latanoprost, with 1-week intervals between sessions. Tropicamide caused significant mydriasis in both uncovered and TSCL-covered eyes (P = 0.005). On the other hand, latanoprost caused a significant decrease in IOP when applied to uncovered eyes (P = 0.002), but had no significant effect on IOP when applied to TSCL-covered eyes (P = 0.7). As we used the same dogs and identical TSCLs throughout the study, we conclude that the different outcomes of the two drugs are due to properties of the drugs themselves, or their formulations, affecting their interaction with the TSCLs. The clinical efficacy of topical drugs applied to TSCL-covered eyes may have to be determined for each drug and/or formulation. PMID:26411631

  17. The ubiquitin-proteasome system meets angiogenesis.

    Science.gov (United States)

    Rahimi, Nader

    2012-03-01

    A strict physiological balance between endogenous proangiogenic and antiangiogenic factors controls endothelial cell functions, such that endothelial cell growth is normally restrained. However, in pathologic angiogenesis, a shift occurs in the balance of regulators, favoring endothelial growth. Much of the control of angiogenic events is instigated through hypoxia-induced VEGF expression. The ubiquitin-proteasome system (UPS) plays a central role in fine-tuning the functions of core proangiogenic proteins, including VEGF, VEGFR-2, angiogenic signaling proteins (e.g., the PLCγ1 and PI3 kinase/AKT pathways), and other non-VEGF angiogenic pathways. The emerging mechanisms by which ubiquitin modification of angiogenic proteins control angiogenesis involve both proteolytic and nonproteolytic functions. Here, I review recent advances that link the UPS to regulation of angiogenesis and highlight the potential therapeutic value of the UPS in angiogenesis-associated diseases. PMID:22357635

  18. Catechol-O-methyltransferase val158met Polymorphism Interacts with Sex to Affect Face Recognition Ability

    Science.gov (United States)

    Lamb, Yvette N.; McKay, Nicole S.; Singh, Shrimal S.; Waldie, Karen E.; Kirk, Ian J.

    2016-01-01

    The catechol-O-methyltransferase (COMT) val158met polymorphism affects the breakdown of synaptic dopamine. Consequently, this polymorphism has been associated with a variety of neurophysiological and behavioral outcomes. Some of the effects have been found to be sex-specific and it appears estrogen may act to down-regulate the activity of the COMT enzyme. The dopaminergic system has been implicated in face recognition, a form of cognition for which a female advantage has typically been reported. This study aimed to investigate potential joint effects of sex and COMT genotype on face recognition. A sample of 142 university students was genotyped and assessed using the Faces I subtest of the Wechsler Memory Scale – Third Edition (WMS-III). A significant two-way interaction between sex and COMT genotype on face recognition performance was found. Of the male participants, COMT val homozygotes and heterozygotes had significantly lower scores than met homozygotes. Scores did not differ between genotypes for female participants. While male val homozygotes had significantly lower scores than female val homozygotes, no sex differences were observed in the heterozygotes and met homozygotes. This study contributes to the accumulating literature documenting sex-specific effects of the COMT polymorphism by demonstrating a COMT-sex interaction for face recognition, and is consistent with a role for dopamine in face recognition. PMID:27445927

  19. Use of multiple correspondence analysis (MCA) to identify interactive meteorological conditions affecting relative throughfall

    Science.gov (United States)

    Van Stan, John T.; Gay, Trent E.; Lewis, Elliott S.

    2016-02-01

    Forest canopies alter rainfall reaching the surface by redistributing it as throughfall. Throughfall supplies water and nutrients to a variety of ecohydrological components (soil microbial communities, stream water discharge/chemistry, and stormflow pathways) and is controlled by canopy structural interactions with meteorological conditions across temporal scales. This work introduces and applies multiple correspondence analyses (MCAs) to a range of meteorological thresholds (median intensity, median absolute deviation (MAD) of intensity, median wind-driven droplet inclination angle, and MAD of wind speed) for an example throughfall problem: identification of interacting storm conditions corresponding to temporal concentration in relative throughfall beyond the median observation (⩾73% of rain). MCA results from the example show that equalling or exceeding rain intensity thresholds (median and MAD) corresponded with temporal concentration of relative throughfall across all storms. Under these intensity conditions, two wind mechanisms produced significant correspondences: (1) high, steady wind-driven droplet inclination angles increased surface wetting; and (2) sporadic winds shook entrained droplets from surfaces. A discussion is provided showing that these example MCA findings agree well with previous work relying on more historically common methods (e.g., multiple regression and analytical models). Meteorological threshold correspondences to temporal concentration of relative throughfall at our site may be a function of heavy Tillandsia usneoides coverage. Applications of MCA within other forests may provide useful insights to how temporal throughfall dynamics are affected for drainage pathways dependent on different structures (leaves, twigs, branches, etc.).

  20. Factors affecting mito-nuclear codon usage interactions in the OXPHOS system of Drosophila melanogaster

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Codon usage bias varies considerably among genomes and even within the genes of the same genome.In eukaryotic organisms,energy production in the form of oxidative phosphorylation(OXPHOS)is the only process under control of both nuclear and mitochondrial genomes.Although factors affecting codon usage in a single genome have been studied,this has not occurred when both interactional genomes are involved.Consequently, we investigated whether or not other factors influence codon usage of coevolved genes.We used Drosophila melanogaster as a model organism.Our χ2 test on the number of codons of nuclear and mitochondrial genes involved in the OXPHOS system was significantly different (χ2=7945.16,P<0.01).A plot of effective number of codons against GC3s content of nuclear genes showed that few genes lie on the expected curve,indicating that codon usage was random.Correspondence analysis indicated a significant correlation between axis 1 and codon adaptation index(R=0.947,P<0.01)in every nuclear gene sequence.Thus,codon usage bias of nuclear genes appeared to be affected by translational selection.Correlation between axis 1 coordinates and GC content(R=0.814.P<0.01)indicated that the codon usage of nuclear genes was also affected by GC composition.Analysis of mitochondrial genes did not reveal a significant correlation between axis 1 and any parameter.Statistical analyses indicated that codon usages of both nDNA and mtDNA were subjected to context-dependent mutations.

  1. Aging perturbs 26S proteasome assembly in Drosophila melanogaster

    OpenAIRE

    Vernace, Vita A.; Arnaud, Lisette; Schmidt-Glenewinkel, Thomas; Figueiredo-Pereira, Maria E.

    2007-01-01

    Aging is associated with loss of quality control in protein turnover. The ubiquitin-proteasome pathway is critical to this quality control process as it degrades mutated and damaged proteins. We identified a unique aging-dependent mechanism that contributes to proteasome dysfunction in Drosophila melanogaster. Our studies are the first to show that the major proteasome form in old (43–47 days old) female and male flies is the weakly active 20S core particle, while in younger (1–32 days old) f...

  2. Prediction of proteasome cleavage motifs by neural networks

    DEFF Research Database (Denmark)

    Kesimir, C.; Nussbaum, A.K.; Schild, H.;

    2002-01-01

    We present a predictive method that can simulate an essential step in the antigen presentation in higher vertebrates, namely the step involving the proteasomal degradation of polypeptides into fragments which have the potential to bind to MHC Class I molecules. Proteasomal cleavage prediction...... the prediction of MHC Class I ligand boundaries more accurate: 65% of the cleavage sites and 85% of the non-cleavage sites are correctly determined. Moreover, we show that the neural networks trained on the constitutive proteasome data learns a specificity that differs from that of the networks...

  3. Diversity and Moral Reasoning: How Negative Diverse Peer Interactions Affect the Development of Moral Reasoning in Undergraduate Students

    Science.gov (United States)

    Mayhew, Matthew J.; Engberg, Mark E.

    2010-01-01

    How do interactions with diverse peers affect moral reasoning development? Results from a longitudinal study of 171 students enrolled in an Intergroup Dialogue or Introduction to Sociology course indicate that students who experience more negative interactions with diverse peers report lower developmental gains in moral reasoning, although the…

  4. Arabidopsis PROTEASOME REGULATOR1 is required for auxin-mediated suppression of proteasome activity and regulates auxin signalling.

    Science.gov (United States)

    Yang, Bao-Jun; Han, Xin-Xin; Yin, Lin-Lin; Xing, Mei-Qing; Xu, Zhi-Hong; Xue, Hong-Wei

    2016-01-01

    The plant hormone auxin is perceived by the nuclear F-box protein TIR1 receptor family and regulates gene expression through degradation of Aux/IAA transcriptional repressors. Several studies have revealed the importance of the proteasome in auxin signalling, but details on how the proteolytic machinery is regulated and how this relates to degradation of Aux/IAA proteins remains unclear. Here we show that an Arabidopsis homologue of the proteasome inhibitor PI31, which we name PROTEASOME REGULATOR1 (PTRE1), is a positive regulator of the 26S proteasome. Loss-of-function ptre1 mutants are insensitive to auxin-mediated suppression of proteasome activity, show diminished auxin-induced degradation of Aux/IAA proteins and display auxin-related phenotypes. We found that auxin alters the subcellular localization of PTRE1, suggesting this may be part of the mechanism by which it reduces proteasome activity. Based on these results, we propose that auxin regulates proteasome activity via PTRE1 to fine-tune the homoeostasis of Aux/IAA repressor proteins thus modifying auxin activity. PMID:27109828

  5. The effects of proteasome inhibitor lactacystin on mouse oocyte meiosis and first cleavage

    Institute of Scientific and Technical Information of China (English)

    TAN; Xin; PENG; An; WANG; Yongchao; TANG; Zuoqing

    2005-01-01

    In order to study the effects of ubiquitin-proteasome pathway (UPP) on mouse oocyte meiosis and cleavage, oocytes undergoing maturation and parthenogenetic activation and 1-cell embryos were treated with lactacystin, a specific inhibitor of proteasome. The results indicared that the rate of GVBD was not influenced by the treatment, but polar body extrusion, parthenogenesis and first cleavage were inhibited. Immunofluorescent staining using anti β-tubulin antibody indicated that the continuous treatment of lactacystin from GV stage disorganized microtubules and spindle assembly. When metaphase stage oocytes were treated with the drug,the already formed spindle structure was not affected, but the oocytes were arrested at metaphases. The 1-cell embryos were arrested at interphase or metaphase of first mitosis when they were incubated in the drug. Proteasome regulatory subunit PA700 was located in the spindle region, as indicated by immunofluorescence. These results suggest that UPP has effects on the process of oocyte meiosis and early cleavage in many aspects, including normal organization of spindle at prophase and segregation of chromosomes at anaphase for normal meiosis.

  6. Isolation and characterization of a novel endogenous inhibitor of the proteasome

    Energy Technology Data Exchange (ETDEWEB)

    Xiaochong Li (New York Medical Coll., Valhalla (United States) State Univ. of New York, Brooklyn (United States)); Gu, M.; Etlinger, J.D. (New York Medical Coll., Valhalla (United States))

    1991-10-08

    A novel endogenous inhibitor of the proteasome (high molecular weight multicatalytic protease) has been isolated and characterized from human erythrocytes. After purification by ion-exchange and sizing chromatography, the inhibitor displayed a native molecular mass of approximately 200 kDa and contained a single subunit of 50 kDa with an isoelectric point of 6.9. Although the inhibitor noncompetitively blocks proteolysis of (methyl-{sup 14}C)-{alpha}-casein and inhibits hydrolysis of Suc-Leu-Leu-Val-Tyr-AMC, it did not affect hydrolysis of other peptide substrates, such as MeOSuc-Phe-Leu-Phe-MNA and Z-Ala-Arg-Arg-MNA. To further characterize the 50-kDa inhibitor, a monoclonal antibody (MI-8) was generated that showed specific binding upon Western blot analysis of both native PAGE and SDS-PAGE. Immunoprecipitation with MI-8 specifically removed inhibitor activity against the proteasome. The 50-kDa inhibitor is distinct from a previously described 40-kDa inhibitor of the proteasome on the basis of lack of cross-reactivity with MI-8 and dissimilar peptide digest patterns. It is suggested that these endogenous inhibitors may have a role in ATP/ubiquitin-dependent proteolysis and/or other cellular functions involving this protease.

  7. The Ginkgo biloba Extract EGb 761 Modulates Proteasome Activity and Polyglutamine Protein Aggregation

    Directory of Open Access Journals (Sweden)

    Marcel Stark

    2014-01-01

    Full Text Available The standardized Ginkgo biloba extract EGb 761 has well-described antioxidative activities and effects on different cytoprotective signaling pathways. Consequently, a potential use of EGb 761 in neurodegenerative diseases has been proposed. A common characteristic feature of a variety of such disorders is the pathologic formation of protein aggregates, suggesting a crucial role for protein homeostasis. In this study, we show that EGb 761 increased the catalytic activity of the proteasome and enhanced protein degradation in cultured cells. We further investigated this effect in a cellular model of Huntington’s disease (HD by employing cells expressing pathologic variants of a polyglutamine protein (polyQ protein. We show that EGb 761 affected these cells by (i increasing proteasome activity and (ii inducing a more efficient degradation of aggregation-prone proteins. These results demonstrate a novel activity of EGb 761 on protein aggregates by enhancing proteasomal protein degradation, suggesting a therapeutic use in neurodegenerative disorders with a disturbed protein homeostasis.

  8. Regulation of c-Myc protein stability by proteasome activator REGγ.

    Science.gov (United States)

    Li, S; Jiang, C; Pan, J; Wang, X; Jin, J; Zhao, L; Pan, W; Liao, G; Cai, X; Li, X; Xiao, J; Jiang, J; Wang, P

    2015-06-01

    c-Myc is a key transcriptional factor that has a prominent role in cell growth, differentiation and tumor development. Its protein levels are tightly controlled by ubiquitin-proteasome pathway and frequently deregulated in various cancers. Here, we report that the 11S proteasomal activator REGγ is a novel regulator of c-Myc abundance in cells. We showed that overexpression of wild-type REGγ, but not inactive mutants including N151Y and G250S, significantly promoted the degradation of c-Myc. Depletion of REGγ markedly increased the protein stability of c-Myc. REGγ interacts with the C-terminal region of c-Myc and regulates c-Myc protein turnover. Functionally, REGγ negatively regulates c-Myc-mediated cell proliferation. Interestingly, depletion of the Drosophila Reg homolog (dReg) in developing wings induced the upregulation of Drosophila Myc, which contributes to cell death. Collectively, these results suggest that REGγ proteasome has a conserved role in the regulation of Myc abundance in both mammalian cells and Drosophila. PMID:25412630

  9. Integrated analysis of microarray data of atherosclerotic plaques: modulation of the ubiquitin-proteasome system.

    Directory of Open Access Journals (Sweden)

    Zhe Wang

    Full Text Available Atherosclerosis is a typical complex multi-factorial disease and many molecules at different levels and pathways were involved in its development. Some studies have investigated the dysregulation in atherosclerosis at mRNA, miRNA or DNA methylation level, respectively. However, to our knowledge, the studies that integrated these data and revealed the abnormal networks of atherosclerosis have not been reported. Using microarray technology, we analyzed the omics data in atherosclerosis at mRNA, miRNA and DNA methylation levels. Our results demonstrated that the global DNA methylation and expression of miRNA/mRNA were significantly decreased in atherosclerotic plaque than in normal vascular tissue. The interaction network constructed using the integrative data revealed many genes, cellular processes and signaling pathways which were widely considered to play crucial roles in atherosclerosis and also revealed some genes, miRNAs or signaling pathways which have not been investigated in atherosclerosis until now (e.g. miR-519d and SNTB2. Moreover, the overall protein ubiquitination in atherosclerotic plaque was significantly increased. The proteasome activity was increased early but decreased in advanced atherosclerosis. Our study revealed many classic and novel genes and miRNAs involved in atherosclerosis and indicated the effects of ubiquitin-proteasome system on atherosclerosis might be closely related to the course of atherosclerosis. However, the efficacy of proteasome inhibitors in the treatment of atherosclerosis still needs more research.

  10. Cytoplasmic proteasomes are not indispensable for cell growth in Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchiya, Hikaru; Arai, Naoko; Tanaka, Keiji, E-mail: tanaka-kj@igakuken.or.jp; Saeki, Yasushi, E-mail: saeki-ys@igakuken.or.jp

    2013-07-05

    Highlights: •We succeeded to control the proteasome localization by the anchor-away technique. •Nuclear proteasome-depleted cells showed a lethal phenotype. •Cytoplasmic proteasomes are not indispensable for cell growth in dividing cells. -- Abstract: The 26S proteasome is an essential protease complex responsible for the degradation of ubiquitinated proteins in eukaryotic cells. In rapidly proliferating yeast cells, proteasomes are mainly localized in the nucleus, but the biological significance of the proteasome localization is still unclear. In this study, we investigated the relationship between the proteasome localization and the functions by the anchor-away technique, a ligand-dependent sequestration of a target protein into specific compartment(s). Anchoring of the proteasome to the plasma membrane or the ribosome resulted in conditional depletion of the nuclear proteasomes, whereas anchoring to histone resulted in the proteasome sequestration into the nucleus. We observed that the accumulation of ubiquitinated proteins in all the proteasome-targeted cells, suggesting that both the nuclear and cytoplasmic proteasomes have proteolytic functions and that the ubiquitinated proteins are produced and degraded in each compartment. Consistent with previous studies, the nuclear proteasome-depleted cells exhibited a lethal phenotype. In contrast, the nuclear sequestration of the proteasome resulted only in a mild growth defect, suggesting that the cytoplasmic proteasomes are not basically indispensable for cell growth in rapidly growing yeast cells.

  11. Reversible 26S Proteasome Disassembly upon Mitochondrial Stress

    Directory of Open Access Journals (Sweden)

    Nurit Livnat-Levanon

    2014-06-01

    Full Text Available In eukaryotic cells, proteasomes exist primarily as 26S holoenzymes, the most efficient configuration for ubiquitinated protein degradation. Here, we show that acute oxidative stress caused by environmental insults or mitochondrial defects results in rapid disassembly of 26S proteasomes into intact 20S core and 19S regulatory particles. Consequently, polyubiquitinated substrates accumulate, mitochondrial networks fragment, and cellular reactive oxygen species (ROS levels increase. Oxidation of cysteine residues is sufficient to induce proteasome disassembly, and spontaneous reassembly from existing components is observed both in vivo and in vitro upon reduction. Ubiquitin-dependent substrate turnover also resumes after treatment with antioxidants. Reversible attenuation of 26S proteasome activity induced by acute mitochondrial or oxidative stress may be a short-term response distinct from adaptation to long-term ROS exposure or changes during aging.

  12. Stress and affective disorders: animal models elucidating the molecular basis of neuroendocrine-behavior interactions.

    Science.gov (United States)

    Touma, C

    2011-05-01

    Profound dysfunctions in several neuroendocrine systems have been described in patients suffering from affective disorders such as major depression. In order to elucidate the mechanisms underlying these functional alterations, animal models including mice genetically modified by either direct gene-targeting or by selective breeding approaches have been used exceedingly, revealing valuable insights into neuroendocrine pathways conserved between rodents and men. This review focuses on altered function and regulation of the hypothalamic-pituitary-adrenocortical axis, including its involvement in emotionality and stress responsiveness. In this context, the corticotropin-releasing hormone system and disturbances in glucocorticoid receptor signaling seem to be of central importance. However, changes in the expression and release patterns of vasopressin, dopamine and serotonin have also been shown to contribute to variation in emotionality, stress coping, cognitive functions and social behaviors. Affective disorders show a high degree of complexity, involving a multitude of molecular, neuroendocrine, and behavioral alterations as well as an intense gene-environment interaction, making it difficult to dissociate the primary causes from secondary consequences of the disease. Thus, interdisciplinary research, as applied in the emerging field of systems biology, involving adequate animal models and combined methodologies can significantly contribute to our understanding regarding the transmission of genetic predispositions into clinically relevant endophenotypes. It is only with deep insight into the mechanisms by which the stress hormone systems are regulated that novel treatment strategies and promising targets for therapeutic interventions can be developed in the future. Such in-depth understanding is ultimately essential to realizing our goal of predictive, preventive, and personalized medicine. PMID:21544741

  13. Earthworm-mycorrhiza interactions can affect the diversity, structure and functioning of establishing model grassland communities.

    Directory of Open Access Journals (Sweden)

    Johann G Zaller

    Full Text Available Both earthworms and arbuscular mycorrhizal fungi (AMF are important ecosystem engineers co-occurring in temperate grasslands. However, their combined impacts during grassland establishment are poorly understood and have never been studied. We used large mesocosms to study the effects of different functional groups of earthworms (i.e., vertically burrowing anecics vs. horizontally burrowing endogeics and a mix of four AMF taxa on the establishment, diversity and productivity of plant communities after a simulated seed rain of 18 grassland species comprising grasses, non-leguminous forbs and legumes. Moreover, effects of earthworms and/or AMF on water infiltration and leaching of ammonium, nitrate and phosphate were determined after a simulated extreme rainfall event (40 l m(-2. AMF colonisation of all three plant functional groups was altered by earthworms. Seedling emergence and diversity was reduced by anecic earthworms, however only when AMF were present. Plant density was decreased in AMF-free mesocosms when both anecic and endogeic earthworms were active; with AMF also anecics reduced plant density. Plant shoot and root biomass was only affected by earthworms in AMF-free mesocosms: shoot biomass increased due to the activity of either anecics or endogeics; root biomass increased only when anecics were active. Water infiltration increased when earthworms were present in the mesocosms but remained unaffected by AMF. Ammonium leaching was increased only when anecics or a mixed earthworm community was active but was unaffected by AMF; nitrate and phosphate leaching was neither affected by earthworms nor AMF. Ammonium leaching decreased with increasing plant density, nitrate leaching decreased with increasing plant diversity and density. In order to understand the underlying processes of these interactions further investigations possibly under field conditions using more diverse belowground communities are required. Nevertheless, this study

  14. Blm10 facilitates nuclear import of proteasome core particles

    OpenAIRE

    Weberruss, Marion H; Savulescu, Anca F; Jando, Julia; Bissinger, Thomas; Harel, Amnon; Glickman, Michael H.; Enenkel, Cordula

    2013-01-01

    Short-lived proteins are degraded by proteasome complexes, which contain a proteolytic core particle (CP) but differ in the number of regulatory particles (RPs) and activators. A recently described member of conserved proteasome activators is Blm10. Blm10 contains 32 HEAT-like modules and is structurally related to the nuclear import receptor importin/karyopherin β. In proliferating yeast, RP-CP assemblies are primarily nuclear and promote cell division. During quiescence, RP-CP assemblies di...

  15. The ubiquitin proteasome system in human cardiomyopathies and heart failure

    OpenAIRE

    Day, Sharlene M.

    2013-01-01

    Maintenance of protein quality control is a critical function of the ubiquitin proteasome system (UPS). Evidence is rapidly mounting to link proteasome dysfunction with a multitude of cardiac diseases, including ischemia, reperfusion, atherosclerosis, hypertrophy, heart failure, and cardiomyopathies. Recent studies have demonstrated a remarkable level of complexity in the regulation of the UPS in the heart and suggest that our understanding of how UPS dysfunction might contribute to the patho...

  16. Dynamic Association of Proteasomal Machinery with the Centrosome

    OpenAIRE

    Christian Wigley, W.; Fabunmi, Rosalind P.; Lee, Min Goo; Marino, Christopher R.; Muallem, Shmuel; DeMartino, George N.; Thomas, Philip J.

    1999-01-01

    Although the number of pathologies known to arise from the inappropriate folding of proteins continues to grow, mechanisms underlying the recognition and ultimate disposition of misfolded polypeptides remain obscure. For example, how and where such substrates are identified and processed is unknown. We report here the identification of a specific subcellular structure in which, under basal conditions, the 20S proteasome, the PA700 and PA28 (700- and 180-kD proteasome activator complexes, resp...

  17. Proteasomal regulation of caspase-8 in cancer cell apoptosis

    OpenAIRE

    Fiandalo, Michael V.; Schwarze, Steven R.; Kyprianou, Natasha

    2013-01-01

    Previous studies demonstrated that proteasome inhibition sensitizes TRAIL resistant prostate cancer cells to TRAIL-mediated apoptosis via stabilization of the active p18 subunit of caspase-8. The present study investigated the impact of proteasome inhibition on caspase-8 stability, ubiquitination, trafficking, and activation in cancer cells. Using caspase-8 deficient neuroblastoma (NB7) cells for reconstituting non-cleavable mutant forms of caspase-8, we demonstrated that the non-cleavable fo...

  18. Anti-tumor Action and Clinical Application of Proteasome Inhibitor

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yong-ming; YU Mei-xia; LONG Hui; HUANG Shi-ang

    2008-01-01

    Ubiquitin-proteasome pathway mediates the degradation of cell protein,and cell cycle,gene translation and expression,antigen presentation and inflammatory development.Proteasome inhibitor Call inhibit growth and proliferation of tumor cell,induce apoptosis and reverse multipledrug resistance of tumor cell,increase the sensitivity of other chemomerapeutic drugs and radiotherapy,and is a novel class of potent anti-tumor agents.

  19. Keeper-Animal Interactions: Differences between the Behaviour of Zoo Animals Affect Stockmanship.

    Science.gov (United States)

    Ward, Samantha J; Melfi, Vicky

    2015-01-01

    Stockmanship is a term used to describe the management of animals with a good stockperson someone who does this in a in a safe, effective, and low-stress manner for both the stock-keeper and animals involved. Although impacts of unfamiliar zoo visitors on animal behaviour have been extensively studied, the impact of stockmanship i.e familiar zoo keepers is a new area of research; which could reveal significant ramifications for zoo animal behaviour and welfare. It is likely that different relationships are formed dependant on the unique keeper-animal dyad (human-animal interaction, HAI). The aims of this study were to (1) investigate if unique keeper-animal dyads were formed in zoos, (2) determine whether keepers differed in their interactions towards animals regarding their attitude, animal knowledge and experience and (3) explore what factors affect keeper-animal dyads and ultimately influence animal behaviour and welfare. Eight black rhinoceros (Diceros bicornis), eleven Chapman's zebra (Equus burchellii), and twelve Sulawesi crested black macaques (Macaca nigra) were studied in 6 zoos across the UK and USA. Subtle cues and commands directed by keepers towards animals were identified. The animals latency to respond and the respective behavioural response (cue-response) was recorded per keeper-animal dyad (n = 93). A questionnaire was constructed following a five-point Likert Scale design to record keeper demographic information and assess the job satisfaction of keepers, their attitude towards the animals and their perceived relationship with them. There was a significant difference in the animals' latency to appropriately respond after cues and commands from different keepers, indicating unique keeper-animal dyads were formed. Stockmanship style was also different between keepers; two main components contributed equally towards this: "attitude towards the animals" and "knowledge and experience of the animals". In this novel study, data demonstrated unique dyads

  20. Keeper-Animal Interactions: Differences between the Behaviour of Zoo Animals Affect Stockmanship.

    Directory of Open Access Journals (Sweden)

    Samantha J Ward

    Full Text Available Stockmanship is a term used to describe the management of animals with a good stockperson someone who does this in a in a safe, effective, and low-stress manner for both the stock-keeper and animals involved. Although impacts of unfamiliar zoo visitors on animal behaviour have been extensively studied, the impact of stockmanship i.e familiar zoo keepers is a new area of research; which could reveal significant ramifications for zoo animal behaviour and welfare. It is likely that different relationships are formed dependant on the unique keeper-animal dyad (human-animal interaction, HAI. The aims of this study were to (1 investigate if unique keeper-animal dyads were formed in zoos, (2 determine whether keepers differed in their interactions towards animals regarding their attitude, animal knowledge and experience and (3 explore what factors affect keeper-animal dyads and ultimately influence animal behaviour and welfare. Eight black rhinoceros (Diceros bicornis, eleven Chapman's zebra (Equus burchellii, and twelve Sulawesi crested black macaques (Macaca nigra were studied in 6 zoos across the UK and USA. Subtle cues and commands directed by keepers towards animals were identified. The animals latency to respond and the respective behavioural response (cue-response was recorded per keeper-animal dyad (n = 93. A questionnaire was constructed following a five-point Likert Scale design to record keeper demographic information and assess the job satisfaction of keepers, their attitude towards the animals and their perceived relationship with them. There was a significant difference in the animals' latency to appropriately respond after cues and commands from different keepers, indicating unique keeper-animal dyads were formed. Stockmanship style was also different between keepers; two main components contributed equally towards this: "attitude towards the animals" and "knowledge and experience of the animals". In this novel study, data demonstrated

  1. Macrofauna assemblage composition and soil moisture interact to affect soil ecosystem functions

    Science.gov (United States)

    Collison, E. J.; Riutta, T.; Slade, E. M.

    2013-02-01

    Changing climatic conditions and habitat fragmentation are predicted to alter the soil moisture conditions of temperate forests. It is not well understood how the soil macrofauna community will respond to changes in soil moisture, and how changes to species diversity and community composition may affect ecosystem functions, such as litter decomposition and soil fluxes. Moreover, few studies have considered the interactions between the abiotic and biotic factors that regulate soil processes. Here we attempt to disentangle the interactive effects of two of the main factors that regulate soil processes at small scales - moisture and macrofauna assemblage composition. The response of assemblages of three common temperate soil invertebrates (Glomeris marginata Villers, Porcellio scaber Latreille and Philoscia muscorum Scopoli) to two contrasting soil moisture levels was examined in a series of laboratory mesocosm experiments. The contribution of the invertebrates to the leaf litter mass loss of two common temperate tree species of contrasting litter quality (easily decomposing Fraxinus excelsior L. and recalcitrant Quercus robur L.) and to soil CO2 fluxes were measured. Both moisture conditions and litter type influenced the functioning of the invertebrate assemblages, which was greater in high moisture conditions compared with low moisture conditions and on good quality vs. recalcitrant litter. In high moisture conditions, all macrofauna assemblages functioned at equal rates, whereas in low moisture conditions there were pronounced differences in litter mass loss among the assemblages. This indicates that species identity and assemblage composition are more important when moisture is limited. We suggest that complementarity between macrofauna species may mitigate the reduced functioning of some species, highlighting the importance of maintaining macrofauna species richness.

  2. The intracellular domain of Dumbfounded affects myoblast fusion efficiency and interacts with Rolling pebbles and Loner.

    Directory of Open Access Journals (Sweden)

    Sarada Bulchand

    Full Text Available Drosophila body wall muscles are multinucleated syncytia formed by successive fusions between a founder myoblast and several fusion competent myoblasts. Initial fusion gives rise to a bi/trinucleate precursor followed by more fusion cycles forming a mature muscle. This process requires the functions of various molecules including the transmembrane myoblast attractants Dumbfounded (Duf and its paralogue Roughest (Rst, a scaffold protein Rolling pebbles (Rols and a guanine nucleotide exchange factor Loner. Fusion completely fails in a duf, rst mutant, and is blocked at the bi/trinucleate stage in rols and loner single mutants. We analysed the transmembrane and intracellular domains of Duf, by mutating conserved putative signaling sites and serially deleting the intracellular domain. These were tested for their ability to translocate and interact with Rols and Loner and to rescue the fusion defect in duf, rst mutant embryos. Studying combinations of double mutants, further tested the function of Rols, Loner and other fusion molecules. Here we show that serial truncations of the Duf intracellular domain successively compromise its function to translocate and interact with Rols and Loner in addition to affecting myoblast fusion efficiency in embryos. Putative phosphorylation sites function additively while the extreme C terminus including a PDZ binding domain is dispensable for its function. We also show that fusion is completely blocked in a rols, loner double mutant and is compromised in other double mutants. These results suggest an additive function of the intracellular domain of Duf and an early function of Rols and Loner which is independent of Duf.

  3. Nearest Neighbor Interactions Affect the Conformational Distribution in the Unfolded State of Peptides

    Science.gov (United States)

    Toal, Siobhan; Schweitzer-Stenner, Reinhard; Rybka, Karin; Schwalbe, Hardol

    2013-03-01

    In order to enable structural predictions of intrinsically disordered proteins (IDPs) the intrinsic conformational propensities of amino acids must be complimented by information on nearest-neighbor interactions. To explore the influence of nearest-neighbors on conformational distributions, we preformed a joint vibrational (Infrared, Vibrational Circular Dichroism (VCD), polarized Raman) and 2D-NMR study of selected GxyG host-guest peptides: GDyG, GSyG, GxLG, GxVG, where x/y ={A,K,LV}. D and S (L and V) were chosen at the x (y) position due to their observance to drastically change the distribution of alanine in xAy tripeptide sequences in truncated coil libraries. The conformationally sensitive amide' profiles of the respective spectra were analyzed in terms of a statistical ensemble described as a superposition of 2D-Gaussian functions in Ramachandran space representing sub-ensembles of pPII-, β-strand-, helical-, and turn-like conformations. Our analysis and simulation of the amide I' band profiles exploits excitonic coupling between the local amide I' vibrational modes in the tetra-peptides. The resulting distributions reveal that D and S, which themselves have high propensities for turn-structures, strongly affect the conformational distribution of their downstream neighbor. Taken together, our results indicate that Dx and Sx motifs might act as conformational randomizers in proteins, attenuating intrinsic propensities of neighboring residues. Overall, our results show that nearest neighbor interactions contribute significantly to the Gibbs energy landscape of disordered peptides and proteins.

  4. Dynamic association of proteasomal machinery with the centrosome.

    Science.gov (United States)

    Wigley, W C; Fabunmi, R P; Lee, M G; Marino, C R; Muallem, S; DeMartino, G N; Thomas, P J

    1999-05-01

    Although the number of pathologies known to arise from the inappropriate folding of proteins continues to grow, mechanisms underlying the recognition and ultimate disposition of misfolded polypeptides remain obscure. For example, how and where such substrates are identified and processed is unknown. We report here the identification of a specific subcellular structure in which, under basal conditions, the 20S proteasome, the PA700 and PA28 (700- and 180-kD proteasome activator complexes, respectively), ubiquitin, Hsp70 and Hsp90 (70- and 90-kD heat shock protein, respectively) concentrate in HEK 293 and HeLa cells. The structure is perinuclear, surrounded by endoplasmic reticulum, adjacent to the Golgi, and colocalizes with gamma-tubulin, an established centrosomal marker. Density gradient fractions containing purified centrosomes are enriched in proteasomal components and cell stress chaperones. The centrosome-associated structure enlarges in response to inhibition of proteasome activity and the level of misfolded proteins. For example, folding mutants of CFTR form large inclusions which arise from the centrosome upon inhibition of proteasome activity. At high levels of misfolded protein, the structure not only expands but also extensively recruits the cytosolic pools of ubiquitin, Hsp70, PA700, PA28, and the 20S proteasome. Thus, the centrosome may act as a scaffold, which concentrates and recruits the systems which act as censors and modulators of the balance between folding, aggregation, and degradation. PMID:10225950

  5. Maternal depression and the heart of parenting: respiratory sinus arrhythmia and affective dynamics during parent-adolescent interactions.

    Science.gov (United States)

    Connell, Arin M; Hughes-Scalise, Abigail; Klostermann, Susan; Azem, Talla

    2011-10-01

    Maternal depression is associated with problematic parenting and the development of emotional and behavior problems in children and adolescents. While emotional regulatory abilities are likely to influence emotional exchanges between parents and teens, surprisingly little is known about the role of emotion regulation during parent-child interactions, particularly in high-risk families. Respiratory sinus arrhythmia (RSA) has been widely linked to emotion regulatory abilities in recent research, and the current study investigated RSA and maternal depression in relation to dyadic flexibility, as well as mutuality of negative and positive affect displayed during three discussion tasks between 59 mother-adolescent pairs (age 11-17 years). Dyadic flexibility was predicted by the interaction of maternal depression, maternal RSA, and teen RSA, with higher maternal RSA predicting greater dyadic flexibility, particularly in highest risk dyads (i.e., elevated maternal depression and lower teen RSA). Teen RSA interacted with maternal depression to predict mutual negative affect, serving as a protective factor. Finally, maternal and teen RSA interacted to predict mutual positive affect, with maternal RSA buffering against low teen RSA to predict higher mutual positive affect. Results support the role of RSA in affectively laden interactions between parents and adolescents, particularly in the face of maternal depression. PMID:21875198

  6. Zn—Cu Interaction Affecting Zn Adsorption and Plant Availability in a Metal—Contaminated Soil

    Institute of Scientific and Technical Information of China (English)

    D.L.Rimmer; LuoYongming

    1996-01-01

    In a previous greenhouse experiment,we showed that there was an interaction between cu and Zn,which affected growth and metal uptake by young barley plants grown on soil to which Cd,Cu,Pb,and Zn had been added.We suggested that the underlying mechanism was the control of the amount of plant-available Zn by competitive adsorption between Cu and Zn,In order to test this hypothesis,the adsorption of Zn alone,and in the presence of added Cd,Cu and Pb,has been measured using the same soil.Following adsorption,the extractability of the Zn in CaCl2 solution was measured .The adsorption isotherms showed that of the added metals only Cu had a large effect on Zn adsorption.The effect of Cu was to reduce Zn adsoption and to increase the amount of CaCl2-extractable(i.e.plant-available) Zn,in agreement with the conclusions from the greenhouse experiment.The magnitude of the effect of Cu on plant-avalilable Zn was similar in both experiments.

  7. Interactions of warming and exposure affect susceptibility to parasite infection in a temperate fish species.

    Science.gov (United States)

    Sheath, Danny J; Andreou, Demetra; Britton, J Robert

    2016-09-01

    Predicting how elevated temperatures from climate change alter host-parasite interactions requires understandings of how warming affects host susceptibility and parasite virulence. Here, the effect of elevated water temperature and parasite exposure level was tested on parasite prevalence, abundance and burden, and on fish growth, using Pomphorhynchus laevis and its fish host Squalius cephalus. At 60 days post-exposure, prevalence was higher at the elevated temperature (22 °C) than ambient temperature (18 °C), with infections achieved at considerably lower levels of exposure. Whilst parasite number was significantly higher in infected fish at 22 °C, both mean parasite weight and parasite burden was significantly higher at 18 °C. There were, however, no significant relationships between fish growth rate and temperature, parasite exposure, and the infection parameters. Thus, whilst elevated temperature significantly influenced parasite infection rates, it also impacted parasite development rates, suggesting warming could have complex implications for parasite dynamics and host resistance. PMID:27225942

  8. Disruption of adult neurogenesis in the olfactory bulb affects social interaction but not maternal behavior

    Directory of Open Access Journals (Sweden)

    Claudia E Feierstein

    2010-12-01

    Full Text Available Adult-born neurons arrive to the olfactory bulb and integrate into the existing circuit throughout life. Despite the prevalence of this phenomenon, its functional impact is still poorly understood. Recent studies point to the importance of newly generated neurons to olfactory learning and memory. Adult neurogenesis is regulated by a variety of factors, notably by instances related to reproductive behavior, such as exposure to mating partners, pregnancy and lactation, and exposure to offspring. To study the contribution of olfactory neurogenesis to maternal behavior and social recognition, here we selectively disrupted olfactory bulb neurogenesis using focal irradiation of the subventricular zone in adult female mice. We show that reduction of olfactory neurogenesis results in an abnormal social interaction pattern with male, but not female, conspecifics; we suggest that this effect could result from inability to detect or discriminate male odors and could therefore have implications for the recognition of potential mating partners. Disruption of olfactory bulb neurogenesis, however, neither impaired maternal-related behaviors, nor did it affect the ability of mothers to discriminate their own progeny from others.

  9. Nutrient demand interacts with forage family to affect digestion responses in dairy cows.

    Science.gov (United States)

    Kammes, K L; Allen, M S

    2012-06-01

    Effects of forage family on dry matter intake (DMI), milk production, ruminal pool sizes, digestion and passage kinetics, and chewing activity and the relationship of these effects with preliminary DMI (pDMI), an index of nutrient demand, were evaluated using 13 ruminally and duodenally cannulated Holstein cows in a crossover design with a 14-d preliminary period and two 18-d treatment periods. During the preliminary period, pDMI of individual cows ranged from 19.6 to 29.5 kg/d (mean=25.9 kg/d) and 3.5% fat-corrected milk yield ranged from 24.3 to 60.3 kg/d (mean=42.1 kg/d). Experimental treatments were diets containing either a) alfalfa silage (AL) or b) orchardgrass silage (OG) as the sole forage. Alfalfa and orchardgrass contained 42.3 and 58.2% neutral detergent fiber (NDF) and 22.5 and 11.4% crude protein, respectively. Forage:concentrate ratios were 60:40 and 43:57 for AL and OG, respectively; both diets contained approximately 25% forage NDF and 30% total NDF. Preliminary DMI was determined during the last 4 d of the preliminary period when cows were fed a common diet and used as a covariate. Main effects of forage family and their interaction with pDMI were tested by ANOVA. Forage family and its interaction with pDMI did not affect feed intake, milk yield, or milk composition. The AL diet increased indigestible NDF (iNDF) intake and decreased potentially digestible NDF (pdNDF) intake compared with OG. The AL diet increased ruminal pH, digestion rates of pdNDF and starch, and passage rates of pdNDF and iNDF compared with OG, which affected ruminal digestibility. Passage rate of iNDF was related to pDMI; AL increased iNDF passage rate and OG decreased it as pDMI increased. The AL diet decreased ruminal pool sizes of pdNDF, starch, organic matter, dry matter, and rumen digesta wet weight and volume compared with OG. The AL diet decreased ruminating time per unit of forage NDF consumed compared with OG, indicating that alfalfa provided less physically effective

  10. Nutrient demand interacts with legume maturity to affect rumen pool sizes in dairy cows.

    Science.gov (United States)

    Kammes, K L; Ying, Y; Allen, M S

    2012-05-01

    Effects of legume maturity on dry matter intake (DMI), milk production, ruminal fermentation and pool sizes, and digestion and passage kinetics, and the relationship of these effects with preliminary DMI (pDMI) were evaluated using 16 ruminally and duodenally cannulated Holstein cows in a crossover design with a 14-d preliminary period and two 17-d treatment periods. During the preliminary period, the pDMI of individual cows ranged from 22.9 to 30.0 kg/d (mean=25.9 kg/d) and the 3.5% fat-corrected milk yield ranged from 34.1 to 68.2 kg/d (mean=43.7 kg/d). Experimental treatments were diets containing alfalfa silage harvested either a) early-cut, less mature (EC) or b) late-cut, more mature (LC) as the sole forage. Early- and late-cut alfalfa contained 40.8 and 53.1% neutral detergent fiber (NDF) and 23.7 and 18.1% crude protein, respectively. Forage:concentrate ratios were 53:47 and 42:58 for EC and LC, respectively; both diets contained approximately 22% forage NDF and 27% total NDF. Preliminary DMI, an index of nutrient demand, was determined during the last 4d of the preliminary period when cows were fed a common diet and used as a covariate. Main effects of alfalfa maturity and their interaction with pDMI were tested by ANOVA. Alfalfa maturity and its interaction with pDMI did not affect milk yield but EC increased DMI compared with LC; thus, EC had lower efficiency of milk production than LC. The EC diet decreased milk fat concentration more per kilogram of pDMI increase than the LC diet, but milk fat yield was not affected. The lower concentration and faster passage rate of indigestible NDF for EC resulted in lower rumen pools of indigestible NDF, total NDF, and dry matter than did LC, which EC increased at a slower rate than did LC as pDMI increased. The EC diet decreased starch intake and increased ruminal pH compared with the LC diet. The rate of ruminal starch digestion was related to level of intake, but this did not affect ruminal or postruminal starch

  11. How Levels of Interactivity in Tutorials Affect Students' Learning of Modeling Transportation Problems in a Spreadsheet

    Science.gov (United States)

    Seal, Kala Chand; Przasnyski, Zbigniew H.; Leon, Linda A.

    2010-01-01

    Do students learn to model OR/MS problems better by using computer-based interactive tutorials and, if so, does increased interactivity in the tutorials lead to better learning? In order to determine the effect of different levels of interactivity on student learning, we used screen capture technology to design interactive support materials for…

  12. The dynamic reactance interaction – How vested interests affect people’s experience, behavior, and cognition in social interactions

    Directory of Open Access Journals (Sweden)

    Christina eSteindl

    2015-11-01

    Full Text Available In social interactions, individuals may sometimes pursue their own interests at the expense of their interaction partner. Such self-interested behaviors impose a threat to the interaction partner’s freedom to act. The current article investigates this threat in the context of interdependence and reactance theory. We explore how vested interests influence reactance process stages of an advisor-client interaction. We aim to explore the interactional process that evolves. In two studies, participants took the perspective of a doctor (advisor or a patient (client. In both studies we incorporated a vested interest. In Study 1 (N=82 we found that in response to a vested interest of their interaction partner, patients indicated a stronger experience of reactance, more aggressive behavioral intentions, and more biased cognitions than doctors. A serial multiple mediation revealed that a vested interest engendered mistrust toward the interaction partner and this mistrust led to an emerging reactance process. Study 2 (N=207 further demonstrated that doctors expressed their reactance in a subtle way: They revealed a classic confirmation bias when searching for additional information on their preliminary decision preference, indicating stronger defense motivation. We discuss how these findings can help us to understand how social interactions develop dynamically.

  13. The Dynamic Reactance Interaction – How Vested Interests Affect People’s Experience, Behavior, and Cognition in Social Interactions

    Science.gov (United States)

    Steindl, Christina; Jonas, Eva

    2015-01-01

    In social interactions, individuals may sometimes pursue their own interests at the expense of their interaction partner. Such self-interested behaviors impose a threat to the interaction partner’s freedom to act. The current article investigates this threat in the context of interdependence and reactance theory. We explore how vested interests influence reactance process stages of an advisor–client interaction. We aim to explore the interactional process that evolves. In two studies, participants took the perspective of a doctor (advisor) or a patient (client). In both studies we incorporated a vested interest. In Study 1 (N = 82) we found that in response to a vested interest of their interaction partner, patients indicated a stronger experience of reactance, more aggressive behavioral intentions, and more biased cognitions than doctors. A serial multiple mediation revealed that a vested interest engendered mistrust toward the interaction partner and this mistrust led to an emerging reactance process. Study 2 (N = 207) further demonstrated that doctors expressed their reactance in a subtle way: they revealed a classic confirmation bias when searching for additional information on their preliminary decision preference, indicating stronger defense motivation. We discuss how these findings can help us to understand how social interactions develop dynamically. PMID:26640444

  14. Proteasome inhibition mediates p53 reactivation and anti-cancer activity of 6-Gingerol in cervical cancer cells

    Science.gov (United States)

    Rastogi, Namrata; Duggal, Shivali; Singh, Shailendra Kumar; Porwal, Konica; Srivastava, Vikas Kumar; Maurya, Rakesh; Bhatt, Madan L.B.; Mishra, Durga Prasad

    2015-01-01

    Human papilloma virus (HPV) expressing E6 and E7 oncoproteins, is known to inactivate the tumor suppressor p53 through proteasomal degradation in cervical cancers. Therefore, use of small molecules for inhibition of proteasome function and induction of p53 reactivation is a promising strategy for induction of apoptosis in cervical cancer cells. The polyphenolic alkanone, 6-Gingerol (6G), present in the pungent extracts of ginger (Zingiber officinale Roscoe) has shown potent anti-tumorigenic and pro-apoptotic activities against a variety of cancers. In this study we explored the molecular mechanism of action of 6G in human cervical cancer cells in vitro and in vivo. 6G potently inhibited proliferation of the HPV positive cervical cancer cells. 6G was found to: (i) inhibit the chymotrypsin activity of proteasomes, (ii) induce reactivation of p53, (iii) increase levels of p21, (iv) induce DNA damage and G2/M cell cycle arrest, (v) alter expression levels of p53-associated apoptotic markers like, cleaved caspase-3 and PARP, and (vi) potentiate the cytotoxicity of cisplatin. 6G treatment induced significant reduction of tumor volume, tumor weight, proteasome inhibition and p53 accumulation in HeLa xenograft tumor cells in vivo. The 6G treatment was devoid of toxic effects as it did not affect body weights, hematological and osteogenic parameters. Taken together, our data underscores the therapeutic and chemosensitizing effects of 6G in the management and treatment of cervical cancer. PMID:26621832

  15. A heterodimeric complex that promotes the assembly of mammalian 20S proteasomes

    DEFF Research Database (Denmark)

    Hirano, Yoko; Hendil, Klavs B.; Yashiroda, Hideki;

    2005-01-01

    The 26S proteasome is a multisubunit protease responsible for regulated proteolysis in eukaryotic cells 1, 2 . It comprises one catalytic 20S proteasome and two axially positioned 19S regulatory complexes 3 . The 20S proteasome is composed of 28 subunits arranged in a cylindrical particle as four...... proteasomes. Furthermore, the PAC complex provides a scaffold for -ring formation and keeps the -rings competent for the subsequent formation of half-proteasomes. Thus, our results identify a mechanism for the correct assembly of 20S proteasomes....... PAC2 associate as heterodimers with proteasome precursors and are degraded after formation of the 20S proteasome is completed. Overexpression of PAC1 or PAC2 accelerates the formation of precursor proteasomes, whereas knockdown by short interfering RNA impairs it, resulting in poor maturation of 20S...

  16. Social Requests and Social Affordances: How They Affect the Kinematics of Motor Sequences during Interactions between Conspecifics

    OpenAIRE

    Francesca Ferri; Giovanna Cristina Campione; Riccardo Dalla Volta; Claudia Gianelli; Maurizio Gentilucci

    2011-01-01

    The present study aimed at determining whether and what factors affect the control of motor sequences related to interactions between conspecifics. Experiment 1 demonstrated that during interactions between conspecifics guided by the social intention of feeding, a social affordance was activated, which modified the kinematics of sequences constituted by reaching-grasping and placing. This was relative to the same sequence directed to an inanimate target. Experiments 2 and 4 suggested that the...

  17. Examination of the Impact of Using an Interactive Electronic Textbook on the Affective Learning of Prospective Mathematics Teachers

    OpenAIRE

    Sakine Öngöz; Adnan Baki

    2011-01-01

    This semi-experimental study aims to examine the impact of a learning environment that uses interactive electronic textbook on the affective learning of prospective mathematics teachers. The study group consisted of 64 prospective teachers attending the Mathematics Teaching program at Karadeniz Technical University, Turkey. For 14 weeks, experimental group received the Development and Learning course in a blended learning environment, in which an interactive e-textbook was used inside and out...

  18. A Possible Mechanism of the Impact of Atmosphere-Ocean Interaction on the Activity of Tropical Cyclones Affecting China

    Institute of Scientific and Technical Information of China (English)

    REN Fumin; BAI Lina; WU Guoxiong; WANG Zaizhi; WANG Yuan

    2012-01-01

    In this study,tropical cyclone data from China Meteorological Administration (CMA) and the ECMWF reanalysis data for the period 1958 2001 was used to propose a possible mechanism for the impacts of airsea interaction on the activity of tropical cyclones (TCs) affecting China.The frequency of TCs affecting China over past 40 years has trended downward,while during the same period,the air sea interaction in the two key areas of the Pacific region has significantly weakened.Our diagnoses and simulations suggest that air sea interactions in the central North Pacific tropics and subtropics (Area 1) have an important role in adjusting typhoon activities in the Northwest Pacific in general,and especially in TC activity affecting China.On the contrary,impacts of the air-sea interaction in the eastern part of the South Pacific tropics (Area 2) were found to be rather limited.As both observational analysis and modeling studies show that,in the past four decades and beyond,the weakening trend of the latent heat released from Area 1 matched well with the decreasing Northwest Pacific TC frequency derived from CMA datasets.Results also showed that the weakening trend of latent heat flux in the area was most likely due to the decreasing TC frequency over the Northwest Pacific,including those affecting China.Although our preliminary analysis revealed a possible mechanism through which the air sea interaction may adjust the genesis conditions for TCs,which eventually affect China,other relevant questions,such as how TC tracks and impacts are affected by these trends,remain unanswered.Further in-depth investigations are required.

  19. Genotype-environment interactions affecting preflowering physiological and morphological traits of Brassica rapa grown in two watering regimes

    NARCIS (Netherlands)

    El-Soda, M.; Boer, M.P.; Bagheri, H.; Hanhart, C.J.; Koornneef, M.; Aarts, M.G.M.

    2014-01-01

    Plant growth and productivity are greatly affected by drought, which is likely to become more threatening with the predicted global temperature increase. Understanding the genetic architecture of complex quantitative traits and their interaction with water availability may lead to improved crop adap

  20. Interactions between polymorphisms in the aryl hydrocarbon receptor signalling pathway and exposure to persistent organochlorine pollutants affect human semen quality

    DEFF Research Database (Denmark)

    Brokken, L J S; Lundberg, P J; Spanò, M;

    2014-01-01

    Persistent organic pollutants (POPs) may affect male reproductive function. Many dioxin-like POPs exert their effects by activation of the aryl hydrocarbon receptor (AHR) signalling pathway. We analysed whether gene-environment interactions between polymorphisms in AHR (R554K) and AHR repressor (...

  1. The murine cardiac 26S proteasome: an organelle awaiting exploration.

    Science.gov (United States)

    Gomes, Aldrin V; Zong, Chenggong; Edmondson, Ricky D; Berhane, Beniam T; Wang, Guang-Wu; Le, Steven; Young, Glen; Zhang, Jun; Vondriska, Thomas M; Whitelegge, Julian P; Jones, Richard C; Joshua, Irving G; Thyparambil, Sheeno; Pantaleon, Dawn; Qiao, Joe; Loo, Joseph; Ping, Peipei

    2005-06-01

    Multiprotein complexes have been increasingly recognized as essential functional units for a variety of cellular processes, including the protein degradation system. Selective degradation of proteins in eukaryotes is primarily conducted by the ubiquitin proteasome system. The current knowledge base, pertaining to the proteasome complexes in mammalian cells, relies largely upon information gained in the yeast system, where the 26S proteasome is hypothesized to contain a 20S multiprotein core complex and one or two 19S regulatory complexes. To date, the molecular structure of the proteasome system, the proteomic composition of the entire 26S multiprotein complexes, and the specific designated function of individual components within this essential protein degradation system in the heart remain virtually unknown. A functional proteomic approach, employing multidimensional chromatography purification combined with liquid chromatography tandem mass spectrometry and protein chemistry, was utilized to explore the murine cardiac 26S proteasome system. This article presents an overview on the subject of protein degradation in mammalian cells. In addition, this review shares the limited information that has been garnered thus far pertaining to the molecular composition, function, and regulation of this important organelle in the cardiac cells. PMID:16093497

  2. Yeast Interacting Proteins Database: YGR048W, YBR170C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available YGR048W UFD1 Protein that interacts with Cdc48p and Npl4p, involved in recognition of polyubiqui ... tinated proteins and their presentation ... to the 26S proteasome for degradation; involved in ... ecognition of polyubiquitinated proteins and their presentation ... to the 26S proteasome for degradation; involved in ...

  3. Yeast Interacting Proteins Database: YIL007C, YOR117W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available YIL007C NAS2 Proteasome-interacting protein involved in the assembly of the base su... - - - - - 0 0 3 4 Show YIL007C Bait ORF YIL007C Bait gene name NAS2 Bait description Proteasome-interacti

  4. Differences between silica and limestone concretes that may affect their interaction with corium

    International Nuclear Information System (INIS)

    Recent Molten Core Concrete Interaction tests performed at Argonne National Laboratory and at CEA Cadarache have shown that, whereas the ablation of limestone-rich concretes is almost isotropic, the ablation of silica-rich concretes is much faster towards the sides than towards the bottom of the cavity. The following differences exists between limestone-rich and silica-rich concretes: limestone concretes liberate about twice as much gas, at a given ablation rate than siliceous concretes (more than 50% more at constant heat flux) and this can affect pool hydraulics and crust stability: limestone concrete has a higher liquidus temperature than siliceous concrete and molten limestone concrete has a larger diffusion coefficient and can more easily dissolve a corium crust than siliceous melt; limestone aggregates are destroyed by de-carbonation at around 1000 K while silica aggregates melt only above 2000 K, so that floating silica aggregates can form cold spots increasing corium solidification near the interface; de-carbonation of limestone leads to a significant shrinkage of concrete melt volume compared to the cold solid that hampers the mechanical stability of overlying crusts; the chemical composition of molten mortar (sand + cement) and concrete (sand + gravel + cement) is close for limestone-rich concretes while it is different for siliceous concretes, so that the melt composition may vary significantly in case of non-simultaneous melting of the siliceous concrete constituents; molten silicates have a large viscosity, so that transport properties are different for the two types of concretes. The small range of plant concrete compositions that have been considered for MCCI experiments has not yet been found sufficient to determine which of the above-mentioned differences is paramount to explain the observed difference in ablation patterns. Separate Effect Tests using specially-designed 'artificial concretes' and prototypic corium would provide the necessary

  5. The ubiquitin–proteasome system as a molecular target in solid tumors: an update on bortezomib

    OpenAIRE

    Caponigro, Francesco

    2009-01-01

    A Milano,1 F Perri,2 F Caponigro21Sandro Pitigliani Medical Oncology Unit, Department of Oncology, Hospital of Prato, Istituto Toscano Tumori, Prato, Italy; 2Head and Neck Medical Oncology Unit, National Tumour institute of Naples, Naples, ItalyAbstract: The ubiquitin–proteasome system has become a promising molecular target in cancer therapy due to its critical role in cellular protein degradation, interaction with cell cycle and apoptosis regulation, and unique mechanism of action...

  6. The Proteasome Inhibitor MG-132 Protects Hypoxic SiHa Cervical Carcinoma Cells after Cyclic Hypoxia/Reoxygenation from Ionizing Radiation

    Directory of Open Access Journals (Sweden)

    Frank Pajonk

    2006-12-01

    Full Text Available INTRODUCTION: Transient hypoxia and subsequent reoxygenation are common phenomena in solid tumors that greatly influence the outcome of radiation therapy. This study was designed to determine how varying cycles of hypoxia/reoxygenation affect the response of cervical carcinoma cells irradiated under oxic and hypoxic conditions and whether this could be modulated by proteasome inhibition. MATERIALS AND METHODS: Plateau-phase SiHa cervical carcinoma cells in culture were exposed to varying numbers of 30-minute cycles of hypoxia/reoxygenation directly before irradiation under oxic or hypoxic conditions. 26S Proteasome activity was blocked by addition of MG-132. Clonogenic survival was measured by a colonyforming assay. RESULTS: Under oxic conditions, repeated cycles of hypoxia/reoxygenation decreased the clonogenic survival of SiHa cells. This effect was even more pronounced after the inhibition of 26S proteasome complex. In contrast, under hypoxic conditions, SiHa cells were radioresistant, as expected, but this was increased by proteasome inhibition. CONCLUSIONS: Proteasome inhibition radiosensitizes oxygenated tumor cells but may also protect tumor cells from ionizing radiation under certain hypoxic conditions.

  7. Predicting the Accuracy of Facial Affect Recognition: The Interaction of Child Maltreatment and Intellectual Functioning

    Science.gov (United States)

    Shenk, Chad E.; Putnam, Frank W.; Noll, Jennie G.

    2013-01-01

    Previous research demonstrates that both child maltreatment and intellectual performance contribute uniquely to the accurate identification of facial affect by children and adolescents. The purpose of this study was to extend this research by examining whether child maltreatment affects the accuracy of facial recognition differently at varying…

  8. Predictors of pre- and post-competition affective states in male martial artists: a multilevel interactional approach.

    Science.gov (United States)

    Cerin, E; Barnett, A

    2011-02-01

    The aims of this study were to examine (a) the effects of competition-related and competition-extraneous concerns on affective states; (b) the relationships of primary and secondary appraisal with affective states and (c) the main and moderating effects of personality traits on pre- and post-competition affects. Thirty-nine male elite martial artists were assessed on 12 affective states, concerns and dimensions of primary and secondary appraisal at five random times a day across 1 week before and 3 days after a competition. On the competition day, they were assessed 1 h before and immediately after the contest. Competitive trait anxiety, neuroticism and extraversion were measured at the start of the study. The competition was the most significant and stressful event experienced in the examined period and had a pervasive influence on athletes' affective states. All examined appraisal and personality factors were somewhat associated with pre- and post-competition affective states. Competitive trait anxiety was a key moderator of the relationship between cognitive appraisal and affective states. This study supports the idea that cognitive appraisal and situational and personality factors exert main and interactive effects on athletes' pre- and post-competition affects. These factors need to be accounted for in planning of emotion regulation interventions. PMID:19883381

  9. Yeast Interacting Proteins Database: YLR377C, YLR377C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available sed by (YPD) - Not affected by(YPD) - Interologs - Expression similarity (BRITE) - Alternative path with 1 intervening pr...gradation depending on growth conditions; interacts with Vid30p Rows with this prey as pre...d for glucose metabolism; undergoes either proteasome-mediated or autophagy-mediated degradation depending on...gulatory enzyme in the gluconeogenesis pathway, required for glucose metabolism; undergoes either proteaso... (0 or 1,YPD) 0 Complex (0 or 1,YPD) 0 Synthetic lethality (0 or 1,YPD) 0 Co-induced by (YPD) - Co-repres

  10. Validation of the 2nd Generation Proteasome Inhibitor Oprozomib for Local Therapy of Pulmonary Fibrosis

    OpenAIRE

    Semren, Nora; Habel-Ungewitter, Nunja C.; Fernandez, Isis E.; Königshoff, Melanie; Eickelberg, Oliver; Stöger, Tobias; Meiners, Silke

    2015-01-01

    Proteasome inhibition has been shown to prevent development of fibrosis in several organs including the lung. However, effects of proteasome inhibitors on lung fibrosis are controversial and cytotoxic side effects of the overall inhibition of proteasomal protein degradation cannot be excluded. Therefore, we hypothesized that local lung-specific application of a novel, selective proteasome inhibitor, oprozomib (OZ), provides antifibrotic effects without systemic toxicity in a mouse model of lu...

  11. Failure of Amino Acid Homeostasis Causes Cell Death following Proteasome Inhibition

    OpenAIRE

    Suraweera, Amila; Münch, Christian; Hanssum, Ariane; Bertolotti, Anne

    2012-01-01

    Summary The ubiquitin-proteasome system targets many cellular proteins for degradation and thereby controls most cellular processes. Although it is well established that proteasome inhibition is lethal, the underlying mechanism is unknown. Here, we show that proteasome inhibition results in a lethal amino acid shortage. In yeast, mammalian cells, and flies, the deleterious consequences of proteasome inhibition are rescued by amino acid supplementation. In all three systems, this rescuing effe...

  12. [Antiatherogenic characteristics of korvitin: effect on proteasome activity of the aorta, heart, and blood cells].

    Science.gov (United States)

    Pashevin, D O; Dosenko, B Ie; Byts', Iu V; Moĭbenko, O O

    2009-01-01

    We studied the changes in proteasomal proteolisis during modelling of rabbit cholesterol-induced atherosclerosis. It was determined that in aorta the TL activity of proteasome increased 2.4-fold (P quercetine) followed by considerable decrease of proteasomal activity both in tissues (aorta and heart) and leucocytes. The intensity ofatherosclerotic changes in aorta was significantly smaller. Obtained data suggest that "Korvitin" reveales angioprotective properties mediated by it effect on proteasomal proteolisis. PMID:19827630

  13. Changes in proteasome structure and function caused by HAMLET in tumor cells.

    OpenAIRE

    Lotta Gustafsson; Sonja Aits; Patrik Onnerfjord; Maria Trulsson; Petter Storm; Catharina Svanborg

    2009-01-01

    BACKGROUND: Proteasomes control the level of endogenous unfolded proteins by degrading them in the proteolytic core. Insufficient degradation due to altered protein structure or proteasome inhibition may trigger cell death. This study examined the proteasome response to HAMLET, a partially unfolded protein-lipid complex, which is internalized by tumor cells and triggers cell death. METHODOLOGY/PRINCIPAL FINDINGS: HAMLET bound directly to isolated 20S proteasomes in vitro and in tumor cells si...

  14. Structural analysis of the 26S proteasome by cryoelectron tomography

    International Nuclear Information System (INIS)

    The 26S proteasome is the key enzyme of intracellular protein degradation in eukaryotic cells. It is a multisubunit complex of 2.5 MDa confining the proteolytic action to an inner compartment with tightly controlled access. Structural studies of this intriguing molecular machine have been hampered by its intrinsic instability and its dynamics. Here we have used an unconventional approach to obtain a three-dimensional structure of the holocomplex uncompromised by preparation-induced alterations and unbiased by any starting model. We have performed a tomographic reconstruction, followed by averaging over approx. 150 individual reconstructions, of Drosophila 26S proteasomes suspended in a thin layer of amorphous ice

  15. Nicotiana tabacum Tsip1-Interacting Ferredoxin 1 Affects Biotic and Abiotic Stress Resistance

    OpenAIRE

    Huh, Sung Un; Lee, In-Ju; Ham, Byung-Kook; Paek, Kyung-Hee

    2012-01-01

    Tsip1, a Zn finger protein that was isolated as a direct interactor with tobacco stress-induced 1 (Tsi1), plays an important role in both biotic and abiotic stress signaling. To further understand Tsip1 function, we searched for more Tsip1-interacting proteins by yeast two-hybrid screening using a tobacco cDNA library. Screening identified a new Tsip1-interacting protein, Nicotiana tabacum Tsip1-interacting ferredoxin 1 (NtTfd1), and binding specificity was confirmed both in vitro and in vivo...

  16. Affect-modulated startle: interactive influence of catechol-O-methyltransferase Val158Met genotype and childhood trauma.

    Directory of Open Access Journals (Sweden)

    Benedikt Klauke

    Full Text Available The etiology of emotion-related disorders such as anxiety or affective disorders is considered to be complex with an interaction of biological and environmental factors. Particular evidence has accumulated for alterations in the dopaminergic and noradrenergic system--partly conferred by catechol-O-methyltransferase (COMT gene variation--for the adenosinergic system as well as for early life trauma to constitute risk factors for those conditions. Applying a multi-level approach, in a sample of 95 healthy adults, we investigated effects of the functional COMT Val158Met polymorphism, caffeine as an adenosine A2A receptor antagonist (300 mg in a placebo-controlled intervention design and childhood maltreatment (CTQ as well as their interaction on the affect-modulated startle response as a neurobiologically founded defensive reflex potentially related to fear- and distress-related disorders. COMT val/val genotype significantly increased startle magnitude in response to unpleasant stimuli, while met/met homozygotes showed a blunted startle response to aversive pictures. Furthermore, significant gene-environment interaction of COMT Val158Met genotype with CTQ was discerned with more maltreatment being associated with higher startle potentiation in val/val subjects but not in met carriers. No main effect of or interaction effects with caffeine were observed. Results indicate a main as well as a GxE effect of the COMT Val158Met variant and childhood maltreatment on the affect-modulated startle reflex, supporting a complex pathogenetic model of the affect-modulated startle reflex as a basic neurobiological defensive reflex potentially related to anxiety and affective disorders.

  17. Alteration of Proteasome System in Aging and Aging-Associated Disorders

    Directory of Open Access Journals (Sweden)

    Qunxing Ding

    2015-11-01

    Full Text Available The proteasome system is crucial in protein metabolism involving in physiological and pathological developments, especially in aging and agingrelated disorders. Here we discussed the relationship of proteasome with other metabolic systems such as lysosome and ribosome as well as the alteration of proteasome system under oxidative stress, aging and other pathological conditions

  18. Designing finger touch gestures for affective and expressive interaction on mobile social networking sites

    OpenAIRE

    Amoor Pour, Sepehr

    2014-01-01

    This thesis project is an interaction design study, which studies how finger touch gestures can be used as expressive alternatives to text comments on social networking sites. In the study qualitative research methods and a user-centred approach are used. The study collects literature on how emotion is modeled in Human-computer Interaction and how emotion can be expressed through touch. The popular social networking site Facebook is used as a case study of user behavior on social networking s...

  19. Temperature : diet interactions affect survival through foraging behavior in a bromeliad-dwelling predator

    OpenAIRE

    Dezerald, O.; Cereghino, R.; Corbara, B.; Dejean, A; Leroy, Céline

    2015-01-01

    Temperature, food quantity and quality play important roles in insect growth and survival, influencing population dynamics as well as interactions with other community members. However, the interaction between temperature and diet and its ecological consequences have been poorly documented. Toxorhynchites are well-known biocontrol agents for container-inhabiting mosquito larvae. We found that Toxorhynchites haemorrhoidalis larvae (Diptera: Culicidae) inhabiting water-filled rosettes of tank b...

  20. Hydroxyl Density Affects the Interaction of Fibrinogen with Silica Nanoparticles at Physiological Concentration

    OpenAIRE

    Marucco, Arianna; Turci, Francesco; O'Neill, Luke; Byrne, Hugh; Fubini, Bice; Fenoglio, Ivana

    2013-01-01

    An increasing interest in the interaction between blood serum proteins and nanoparticles has emerged over the last years. In fact, this process plays a key role in the biological response to nanoparticles. The behavior of proteins at the biofluid/material interface is driven by the physico-chemical properties of the surface. However, much research is still needed to gain insight into the process at a molecular level. In this study, the effect of silanol density on the interaction of fibrinog...

  1. BRCA1 affects protein phosphatase 6 signalling through its interaction with ANKRD28.

    Science.gov (United States)

    Vincent, Anne; Berthel, Elise; Dacheux, Estelle; Magnard, Clémence; Venezia, Nicole L Dalla

    2016-04-01

    The tumour suppressor BRCA1 (breast and ovarian cancer-susceptibility gene 1) is implicated in several nuclear processes including DNA repair, transcription regulation and chromatin remodelling. BRCA1 also has some cytoplasmic functions including a pro-apoptotic activity. We identified ANKRD28 (ankyrin repeat domain 28) as a novel BRCA1-interacting protein in a yeast two-hybrid screen and confirmed this interaction by reciprocal immunoprecipitations of the two overexpressed proteins. Endogenous interaction between BRCA1 and ANKRD28 was also observed by co-immunoprecipitation and located in the cytoplasm by proximity ligation assay. The main site of interaction of ANKRD28 on BRCA1 is located in its intrinsically disordered scaffold central region. Whereas ANKRD28 silencing results in a destabilization of IκBε (inhibitor of nuclear factor κBε) through its activation of PP6 (protein phosphatase 6) co-regulator upon TNFα (tumour necrosis factor α) stimulation, BRCA1 overexpression stabilizes IκBε. A truncated form of BRCA1 that does not interact with ANKRD28 has no such effect. Our findings suggest that BRCA1 is a novel modulator of PP6 signalling via its interaction with ANKRD28. This new cytoplasmic process might participate in BRCA1 tumour-suppressor function. PMID:27026398

  2. The environment affects epistatic interactions to alter the topology of an empirical fitness landscape.

    Directory of Open Access Journals (Sweden)

    Kenneth M Flynn

    2013-04-01

    Full Text Available The fitness effect of mutations can be influenced by their interactions with the environment, other mutations, or both. Previously, we constructed 32 ( = 2⁵ genotypes that comprise all possible combinations of the first five beneficial mutations to fix in a laboratory-evolved population of Escherichia coli. We found that (i all five mutations were beneficial for the background on which they occurred; (ii interactions between mutations drove a diminishing returns type epistasis, whereby epistasis became increasingly antagonistic as the expected fitness of a genotype increased; and (iii the adaptive landscape revealed by the mutation combinations was smooth, having a single global fitness peak. Here we examine how the environment influences epistasis by determining the interactions between the same mutations in two alternative environments, selected from among 1,920 screened environments, that produced the largest increase or decrease in fitness of the most derived genotype. Some general features of the interactions were consistent: mutations tended to remain beneficial and the overall pattern of epistasis was of diminishing returns. Other features depended on the environment; in particular, several mutations were deleterious when added to specific genotypes, indicating the presence of antagonistic interactions that were absent in the original selection environment. Antagonism was not caused by consistent pleiotropic effects of individual mutations but rather by changing interactions between mutations. Our results demonstrate that understanding adaptation in changing environments will require consideration of the combined effect of epistasis and pleiotropy across environments.

  3. [Structures and functions of the 26S proteasome Rpn10 family].

    Science.gov (United States)

    Kawahara, Hiroyuki

    2002-09-01

    The ubiquitin-dependent proteolytic pathway is thought to be one of the vital systems for cellular regulations, including control of the cell cycle, differentiation and apoptosis. In this pathway, poly-ubiquitinated proteins are selectively degraded by the 26S proteasome, a multisubunit proteolytic machinery. Recognition of the poly-ubiquitin chain by the 26S proteasome should be a key step leading to the selective degradation of target proteins, and the Rpn10 subunit of the 26S proteasome has been shown to preferentially bind the poly-ubiquitin chain in vitro. We previously reported that the mouse Rpn10 mRNA family is generated from a single gene by developmentally regulated, alternative splicing. To determine whether such alternative splicing mechanisms occur in organisms other than the mouse, we searched for Rpn10 isoforms in various species. Here we summarize the gene organization of the Rpn10 in lower species and provide evidence that the competence for generating all distinct forms of Rpn10 alternative splicing has expanded through evolution. Some of the Rpn10 family genes were found to be expressed in distinct developmental stages, suggesting that they have distinct functions during embryogenesis. For example, Rpn10c and Rpn10e were exclusively expressed at specific developmental stages and in specific tissues, while Rpn10a was expressed constitutively. Our experimental results indicate that the respective Rpn10 proteins possess distinct roles in the progression of development. Furthermore, some of the Rpn10 variants specifically interacted with important developmental regulators. PMID:12235853

  4. From facilitation to competition: temperature-driven shift in dominant plant interactions affects population dynamics in seminatural grasslands.

    Science.gov (United States)

    Olsen, Siri L; Töpper, Joachim P; Skarpaas, Olav; Vandvik, Vigdis; Klanderud, Kari

    2016-05-01

    Biotic interactions are often ignored in assessments of climate change impacts. However, climate-related changes in species interactions, often mediated through increased dominance of certain species or functional groups, may have important implications for how species respond to climate warming and altered precipitation patterns. We examined how a dominant plant functional group affected the population dynamics of four co-occurring forb species by experimentally removing graminoids in seminatural grasslands. Specifically, we explored how the interaction between dominants and subordinates varied with climate by replicating the removal experiment across a climate grid consisting of 12 field sites spanning broad-scale temperature and precipitation gradients in southern Norway. Biotic interactions affected population growth rates of all study species, and the net outcome of interactions between dominants and subordinates switched from facilitation to competition with increasing temperature along the temperature gradient. The impacts of competitive interactions on subordinates in the warmer sites could primarily be attributed to reduced plant survival. Whereas the response to dominant removal varied with temperature, there was no overall effect of precipitation on the balance between competition and facilitation. Our findings suggest that global warming may increase the relative importance of competitive interactions in seminatural grasslands across a wide range of precipitation levels, thereby favouring highly competitive dominant species over subordinate species. As a result, seminatural grasslands may become increasingly dependent on disturbance (i.e. traditional management such as grazing and mowing) to maintain viable populations of subordinate species and thereby biodiversity under future climates. Our study highlights the importance of population-level studies replicated under different climatic conditions for understanding the underlying mechanisms of climate

  5. [Maternal affect regulation of mothers with a history of abuse in mother-infant-interaction].

    Science.gov (United States)

    Kress, Sandra; Cierpka, Manfred; Möhler, Eva; Resch, Franz

    2012-01-01

    Maternal intuitive skills can be threatened as a result of severe deprivation or unresolved trauma in the own childhood and can even be inaccessible to the mother. A mother's own childhood experience of abuse maybe a risk factor for repeated child abuse. As a follow-up study to assess the emotional availability of abused mothers it was investigated how a physical or sexual abuse appears in the mother-child interaction and communication in the context of "cycle of abuse" and whether it could give effect to it. Interactions of mothers with abuse experience were compared with those of mothers without an abuse experience and evaluated five months postpartum with the Munich clinical communication scale (MKK). The results suggest that maltreatment experienced mothers show less emotion tuning to their child in a standardized interaction sequence. PMID:22957399

  6. A doubly robust test for gene–environment interaction in family-based studies of affected offspring

    OpenAIRE

    Moerkerke, Beatrijs; Vansteelandt, Stijn; Lange, Christoph

    2010-01-01

    We develop a locally efficient test for (multiplicative) gene–environment interaction in family studies that collect genotypic information and environmental exposures for affected offspring along with genotypic information for their parents or relatives. The proposed test does not require modeling the effects of environmental exposures and is doubly robust in the sense of being valid if either a model for the main genetic effect holds or a model for the expected environmental exposure (given ...

  7. Soil fauna and organic amendment interactions affect soil carbon and crop performance in semi-arid West Africa

    OpenAIRE

    Ouédraogo, E.; Brussaard, L.; Stroosnijder, L.

    2007-01-01

    A field experiment was conducted at Kaibo in southern Burkina Faso on an Eutric Cambisol during the 2000 rainy season to assess the interaction of organic amendment quality and soil fauna, affecting soil organic carbon and sorghum ( Sorghum bicolor L. Moench) performance. Plots were treated with the pesticides Dursban and Endosulfan to exclude soil fauna or left untreated. Sub-treatments consisted of surface-placed maize straw ( C/N ratio= 58), Andropogon straw ( C/N ratio= 153), cattle dung ...

  8. Affect-Modulated Startle: Interactive Influence of Catechol-O-Methyltransferase Val158Met Genotype and Childhood Trauma

    OpenAIRE

    Klauke, Benedikt; Winter, Bernward; Gajewska, Agnes; Zwanzger, Peter; Reif, Andreas; Herrmann, Martin J.; Dlugos, Andrea; Warrings, Bodo; Jacob, Christian; Mühlberger, Andreas; Arolt, Volker; Pauli, Paul; Deckert, Jürgen; Domschke, Katharina

    2012-01-01

    The etiology of emotion-related disorders such as anxiety or affective disorders is considered to be complex with an interaction of biological and environmental factors. Particular evidence has accumulated for alterations in the dopaminergic and noradrenergic system – partly conferred by catechol-O-methyltransferase (COMT) gene variation – for the adenosinergic system as well as for early life trauma to constitute risk factors for those conditions. Applying a multi-level approach, in a sample...

  9. Contamination by uranium mine drainages affects fungal growth and interactions between fungal species and strains.

    Science.gov (United States)

    Ferreira, Verónica; Gonçalves, Ana Lúcia; Pratas, João; Canhoto, Cristina

    2010-01-01

    The presence of aquatic hyphomycetes has been reported for several heavy metal-contaminated waters. Tolerance probably is one adaptation to coping with heavy metals. To help clarify this issue strains of two species of aquatic hyphomycetes (Tricladium splendens Ingold and Varicosporium elodeae Kegel) were isolated from a reference stream and a stream contaminated with heavy metals and grown on malt extract agar prepared with reference and contaminated water to characterize colony morphology, growth rate, growth inhibition and interaction among species and strains. In V. elodeae the morphology of colonies differed between strains. Colony diameter increased linearly over time with growth rates being lower for strains isolated from contaminated than from reference streams (mostly for V. elodeae). Strains from the contaminated stream grew faster in medium prepared with contaminated water than in medium prepared with reference water, while for strains from the reference stream there was no significant difference in growth rates on the two media. In interacting isolates radial growth toward the opposing colony was generally lower than toward the dish edge. Percentage growth inhibition was higher for isolates in intraspecific interactions (13-37%) than in interspecific interactions (3-27%). However differences in growth inhibition experienced by interacting isolates were observed only in three cases out of 16. The difference between the percentage inhibition caused and experienced by a given isolate was highest in interactions involving isolates with distinct growth rates. Our results suggest that strains from the reference stream tolerate heavy metals while strains from the contaminated stream seem to be adapted to contaminated waters. We hypothesize that in natural environments fungal species-specific limits of tolerance to metal contamination might determine an abrupt or gradual response of the original fungal community to mine pollution giving origin to a poorer

  10. Dietary interactions and interventions affecting Escherichia coli 0157 colonization and shedding in cattle

    Science.gov (United States)

    Escherichia coli O157 is an important foodborne pathogen affecting human health and the beef cattle industry. Contamination of carcasses at slaughter is correlated to the prevalence of E. coli O157 in cattle feces. Many associations have been made between dietary factors and E. coli O157 prevalenc...

  11. Proteasome function shapes innate and adaptive immune responses.

    Science.gov (United States)

    Kammerl, Ilona E; Meiners, Silke

    2016-08-01

    The proteasome system degrades more than 80% of intracellular proteins into small peptides. Accordingly, the proteasome is involved in many essential cellular functions, such as protein quality control, transcription, immune responses, cell signaling, and apoptosis. Moreover, degradation products are loaded onto major histocompatibility class I molecules to communicate the intracellular protein composition to the immune system. The standard 20S proteasome core complex contains three distinct catalytic active sites that are exchanged upon stimulation with inflammatory cytokines to form the so-called immunoproteasome. Immunoproteasomes are constitutively expressed in immune cells and have different proteolytic activities compared with standard proteasomes. They are rapidly induced in parenchymal cells upon intracellular pathogen infection and are crucial for priming effective CD8(+) T-cell-mediated immune responses against infected cells. Beyond shaping these adaptive immune reactions, immunoproteasomes also regulate the function of immune cells by degradation of inflammatory and immune mediators. Accordingly, they emerge as novel regulators of innate immune responses. The recently unraveled impairment of immunoproteasome function by environmental challenges and by genetic variations of immunoproteasome genes might represent a currently underestimated risk factor for the development and progression of lung diseases. In particular, immunoproteasome dysfunction will dampen resolution of infections, thereby promoting exacerbations, may foster autoimmunity in chronic lung diseases, and possibly contributes to immune evasion of tumor cells. Novel pharmacological tools, such as site-specific inhibitors of the immunoproteasome, as well as activity-based probes, however, hold promises as innovative therapeutic drugs for respiratory diseases and biomarker profiling, respectively. PMID:27343191

  12. Antitumorigenic effect of proteasome inhibitors on insulinoma cells

    DEFF Research Database (Denmark)

    Størling, Joachim; Allaman-Pillet, Nathalie; Karlsen, Allan E; Billestrup, Nils; Bonny, Christophe; Mandrup-Poulsen, Thomas

    2004-01-01

    Malignant insulinoma is a critical cancer form with a poor prognosis. Because cure by surgery is infrequent, effective chemotherapy is in demand. Induction of cell death in tumor cells by proteasome inhibitors is emerging as a potential strategy in cancer therapy. Here we investigated whether...

  13. The Ubiquitin-Proteasome Pathway and Synaptic Plasticity

    Science.gov (United States)

    Hegde, Ashok N.

    2010-01-01

    Proteolysis by the ubiquitin-proteasome pathway (UPP) has emerged as a new molecular mechanism that controls wide-ranging functions in the nervous system, including fine-tuning of synaptic connections during development and synaptic plasticity in the adult organism. In the UPP, attachment of a small protein, ubiquitin, tags the substrates for…

  14. Sediment-water interactions affect assessments of metals discharges at electric utilities

    International Nuclear Information System (INIS)

    The authors present three examples to show the importance of sediment-water interactions to electric utilities: (1) Selenium (Se), in ash pond effluent, has caused declines in fish populations in North Carolina. A biogeochemistry model appears to explain Se dynamics for several reservoirs. However, further work on sediment water interactions is needed to predict the speed of reservoir Se declines following cessation of inputs; (2) Mercury (Hg), volatilized in stack gases from coal fired power plants, is a public and wildlife health concern. Sediments play a major role in the biogeochemistry of Hg as documented in the Mercury Cycling Model (MCM); As with Se, questions about sediment water interactions limit the confidence in predictions about dynamics and effects of Hg; and (3) One of the recommendations from a recent Pellston Conference was to evaluate the use of a new paradigm as a basis for metals regulations. Under this new paradigm, effects of surface active metals (Ag, Al, Cd, Cu, Ni and Zn) on fish can be viewed as dependent on competition between the gill, a 'biotic ligand', and other environmental ligands for metals in discharges. Under this new paradigm, then, the mechanics of toxicity can be viewed as analogous to interactions at the sediment-water interface. It is clear from these three examples that fostering discussion among chemists and toxicologists, through joint participation at meeting and publication in journal used by both fields, is critical for development of accurate assessment capabilities and support of cost effective decision making. 35 refs., 5 figs., 1 tab

  15. The interaction between epiphytic algae, a parasitic fungus and Sphagnum as affected by N. and P.

    NARCIS (Netherlands)

    Limpens, J.; Jeffrey, T.A.G.; Baar, J.; Berendse, F.; Zijlstra, J.D.

    2003-01-01

    We report the effects of fertilisation with N and P on the infection of Sphagnum by its fungal parasite Lyophyllum palustre, the expansion of epiphytic algae and the interaction between the latter two from 1998 to 2001. We added 40 kg N ha(-1) yr(-1) or 3 kg P ha(-1) yr(-1) in a full factorial desig

  16. Calcium and protons affect the interaction of neurotransmitters and anesthetics with anionic lipid membranes.

    Science.gov (United States)

    Pérez-Isidoro, Rosendo; Ruiz-Suárez, J C

    2016-09-01

    We study how zwitterionic and anionic biomembrane models interact with neurotransmitters (NTs) and anesthetics (ATs) in the presence of Ca(2+) and different pH conditions. As NTs we used acetylcholine (ACh), γ-aminobutyric acid (GABA), and l-glutamic acid (LGlu). As ATs, tetracaine (TC), and pentobarbital (PB) were employed. By using differential scanning calorimetry (DSC), we analyzed the changes such molecules produce in the thermal properties of the membranes. We found that calcium and pH play important roles in the interactions of NTs and ATs with the anionic lipid membranes. Changes in pH promote deprotonation of the phosphate groups in anionic phospholipids inducing electrostatic interactions between them and NTs; but if Ca(2+) ions are in the system, these act as bridges. Such interactions impact the physical properties of the membranes in a similar manner that anesthetics do. Beyond the usual biochemical approach, we claim that these effects should be taken into account to understand the excitatory-inhibitory orchestrated balance in the nervous system. PMID:27362370

  17. Albumin Supplement Affects the Metabolism and Metabolism-Related Drug-Drug Interaction of Fenoprofen Enantiomers.

    Science.gov (United States)

    Wang, Nan; Wang, Feng; Meng, Yu; Yang, Guo-Hui; Chen, Ju-Wu; Wang, Jia-Xiang

    2015-07-01

    The influence of albumin towards the metabolism behavior of fenoprofen enantiomers and relevant drug-drug interaction was investigated in the present study. The metabolic behavior of fenoprofen enantiomers was compared in a phase II metabolic incubation system with and without bovine serum albumin (BSA). BSA supplement increased the binding affinity parameter (Km) of (R)-fenoprofen towards human liver microsomes (HLMs) from 148.3 to 214.4 μM. In contrast, BSA supplement decreased the Km of (S)-fenoprofen towards HLMs from 218.2 to 123.5 μM. For maximum reaction velocity (Vmax), the addition of BSA increased the Vmax of (R)-fenoprofen from 1.3 to 1.6 nmol/min/mg protein. In the contrast, BSA supplement decreased the Vmax value from 3.3 to 1.5 nmol/min/mg protein. Andrographolide-fenoprofen interaction was used as an example to investigate the influence of BSA supplement towards fenoprofen-relevant drug-drug interaction. The addition of 0.2% BSA in the incubation system significantly decreased the inhibition potential of andrographolide towards (R)-fenoprofen metabolism (P andrographolide towards the metabolism of (S)-fenoprofen. BSA supplement also changed the inhibition kinetic type and parameter of andrographolide towards the metabolism of (S)-fenoprofen. In conclusion, albumin supplement changes the metabolic behavior of fenoprofen enantiomers and the fenoprofen-andrographolide interaction. PMID:26037509

  18. Overexpression of Dsk2/dUbqln results in severe developmental defects and lethality in Drosophila melanogaster that can be rescued by overexpression of the p54/Rpn10/S5a proteasomal subunit.

    Science.gov (United States)

    Lipinszki, Zoltán; Pál, Margit; Nagy, Olga; Deák, Péter; Hunyadi-Gulyas, Eva; Udvardy, Andor

    2011-12-01

    Polyubiquitin receptors execute the targeting of polyubiquitylated proteins to the 26S proteasome. In vitro studies indicate that disturbance of the physiological balance among different receptor proteins impairs the proteasomal degradation of polyubiquitylated proteins. To study the physiological consequences of shifting the in vivo equilibrium between the p54/Rpn10 proteasomal and the Dsk2/dUbqln extraproteasomal polyubiquitin receptors, transgenic Drosophila lines were constructed in which the overexpression or RNA interference-mediated silencing of these receptors can be induced. Flies overexpressing Flag-p54 were viable and fertile, without any detectable morphological abnormalities, although detectable accumulation of polyubiquitylated proteins demonstrated a certain level of proteolytic disturbance. Flag-p54 was assembled into the 26S proteasome and could fully complement the lethal phenotype of a p54 null mutant Drosophila line. The overexpression of Dsk2 caused severe morphological abnormalities in the late pupal stages, leading to pharate adult lethality, accompanied by a huge accumulation of highly polyubiquitylated proteins. The lethal phenotype of Dsk2 overexpression could be rescued in a double transgenic line coexpressing Flag-Dsk2 and Flag-p54. Although the double transgenic line was viable and fertile, it did not restore the proteolytic defects; the accumulation of the highly polyubiquitylated proteins was even more severe in the double transgenic line. Significant differences were found in the Dsk2-26S proteasome interaction in Drosophila melanogaster as compared with Saccharomyces cerevisiae. In yeast, Dsk2 can interact only with ΔRpn10 proteasomes and not with the wild-type one. In Drosophila, Dsk2 does not interact with Δp54 proteasomes, but the interaction can be fully restored by complementing the Δp54 deletion with Flag-p54. PMID:21973017

  19. Proteasome nuclear import mediated by Arc3 can influence efficient DNA damage repair and mitosis in Schizosaccharomyces pombe

    DEFF Research Database (Denmark)

    Cabrera, Alvaro R. Fuentes; Sha, Zhe; Vadakkan, Tegy J;

    2010-01-01

    Proteasomes must remove regulatory molecules and abnormal proteins throughout the cell, but how proteasomes can do so efficiently remains unclear. We have isolated a subunit of the Arp2/3 complex, Arc3, which binds proteasomes. When overexpressed, Arc3 rescues phenotypes associated with proteasom...

  20. Factors affecting virus dynamics and microbial host-virus interactions in marine environments

    OpenAIRE

    K. D. A. Mojica; Brussaard, C.P.D.

    2014-01-01

    Marine microorganisms constitute the largest percentage of living biomass and serve as the major driving force behind nutrient and energy cycles. While viruses only comprise a small percentage of this biomass (i.e., 5%), they dominate in numerical abundance and genetic diversity. Through host infection and mortality, viruses affect microbial population dynamics, community composition, genetic evolution, and biogeochemical cycling. However, the field of marine viral ecology is currently limite...

  1. Distance to edges, edge contrast and landscape fragmentation: interactions affecting farmland birds arounf forest plantations

    OpenAIRE

    Fabião, António; Reino, Luís; Osborne, Patrick E.; Beja, Pedro; Morgado, Rui; Rotenberry, John T

    2009-01-01

    Afforestation often causes direct habitat losses for farmland birds of conservation concern, but it is uncertain whether negative effects also extend significantly into adjacent open land. Information is thus required on how these species react to wooded edges, and how their responses are affected by edge and landscape characteristics. These issues were examined in Mediterranean arable farmland, using bird counts at 0, 100, 200, 300 and >300 m from oak, pine and eucalyptus edge...

  2. Sediment-water interaction in a water reservoir affected by acid mine drainage : experimental and modeling

    OpenAIRE

    Torres Sánchez, Ester

    2013-01-01

    The discharge of acid mine drainage into a water reservoir may seriously affect the water quality. In this setting, sediment is commonly thought to act as a sink for pollutants. However, redox oscillations in the bottom water promoted by stratification-turnover events may significantly alter the metal cycling. A new sequential extraction procedure has been developed to study the metal partitioning in the sediment. The new scheme for iron, sulfur and organic carbon rich sediments was evaluated...

  3. Protein-binding RNA aptamers affect molecular interactions distantly from their binding sites

    DEFF Research Database (Denmark)

    Dupont, Daniel Miotto; Thuesen, Cathrine K; Bøtkjær, Kenneth A;

    2015-01-01

    Nucleic acid aptamer selection is a powerful strategy for the development of regulatory agents for molecular intervention. Accordingly, aptamers have proven their diligence in the intervention with serine protease activities, which play important roles in physiology and pathophysiology. Nonetheless......, there are only a few studies on the molecular basis underlying aptamer-protease interactions and the associated mechanisms of inhibition. In the present study, we use site-directed mutagenesis to delineate the binding sites of two 2´-fluoropyrimidine RNA aptamers (upanap-12 and upanap-126) with...... therapeutic potential, both binding to the serine protease urokinase-type plasminogen activator (uPA). We determine the subsequent impact of aptamer binding on the well-established molecular interactions (plasmin, PAI-1, uPAR, and LRP-1A) controlling uPA activities. One of the aptamers (upanap-126) binds to...

  4. Coordination and Crystallization Molecules: Their Interactions Affecting the Dimensionality of Metalloporphyrinic SCFs

    Directory of Open Access Journals (Sweden)

    Arkaitz Fidalgo-Marijuan

    2015-04-01

    Full Text Available Synthetic metalloporphyrin complexes are often used as analogues of natural systems, and they can be used for the preparation of new Solid Coordination Frameworks (SCFs. In this work, a series of six metalloporphyrinic compounds constructed from different meso substituted metalloporphyrins (phenyl, carboxyphenyl and sulfonatophenyl have been structurally characterized by means of single crystal X-ray diffraction, IR spectroscopy and elemental analysis. The compounds were classified considering the dimensionality of the crystal array, referred just to coordination bonds, into 0D, 1D and 2D compounds. This way, the structural features and relationships of those crystal structures were analyzed, in order to extract conclusions not only about the dimensionality of the networks but also about possible applications of the as-obtained compounds, focusing the interest on the interactions of coordination and crystallization molecules. These interactions provide the coordination bonds and the cohesion forces which produce SCFs with different dimensionalities.

  5. How parental dietary behavior and food parenting practices affect children's dietary behavior. Interacting sources of influence?

    Science.gov (United States)

    Larsen, Junilla K; Hermans, Roel C J; Sleddens, Ester F C; Engels, Rutger C M E; Fisher, Jennifer O; Kremers, Stef P J

    2015-06-01

    Until now, the literatures on the effects of food parenting practices and parents' own dietary behavior on children's dietary behavior have largely been independent from one another. Integrating findings across these areas could provide insight on simultaneous and interacting influences on children's food intake. In this narrative review, we provide a conceptual model that bridges the gap between both literatures and consists of three main hypotheses. First, parental dietary behavior and food parenting practices are important interactive sources of influence on children's dietary behavior and Body Mass Index (BMI). Second, parental influences are importantly mediated by changes in the child's home food environment. Third, parenting context (i.e., parenting styles and differential parental treatment) moderates effects of food parenting practices, whereas child characteristics (i.e., temperament and appetitive traits) mainly moderate effects of the home food environment. Future studies testing (parts of) this conceptual model are needed to inform effective parent-child overweight preventive interventions. PMID:25681294

  6. Interactions among flavonoids of propolis affect antibacterial activity against the honeybee pathogen Paenibacillus larvae.

    Science.gov (United States)

    Mihai, Cristina Manuela; Mărghitaş, Liviu Al; Dezmirean, Daniel S; Chirilă, Flore; Moritz, Robin F A; Schlüns, Helge

    2012-05-01

    Propolis is derived from plant resins, collected by honeybees (Apis mellifera) and renown for its antibacterial properties. Here we test the antibacterial effects of ethanolic extracts of propolis from different origins on Paenibacillus larvae, the bacterial pathogen that causes American Foulbrood, a larval disease that can kill the honeybee colony. All tested propolis samples inhibited significantly the growth of P. larvae tested in vitro. The extracts showed major differences in the content of total flavonoids (ranging from 2.4% to 16.4%) and the total polyphenols (ranging between 23.3% and 63.2%). We found that it is not only the content of compounds in propolis, which influences the strength of antimicrobial effects but there is also a significant interaction effect among flavonoids of the propolis extracts. We propose that interaction effects among the various chemical compounds in propolis should be taken into account when considering the antibacterial effects against honeybee pathogens. PMID:22386493

  7. Timing and Duration of Drug Exposure Affects Outcomes of a Drug-Nutrient Interaction During Ontogeny

    Directory of Open Access Journals (Sweden)

    Jane Alcorn

    2010-10-01

    Full Text Available Significant drug-nutrient interactions are possible when drugs and nutrients share the same absorption and disposition mechanisms. During postnatal development, the outcomes of drug-nutrient interactions may change with postnatal age since these processes undergo ontogenesis through the postnatal period. Our study investigated the dependence of a significant drug-nutrient interaction (cefepime-carnitine on the timing and duration of drug exposure relative to postnatal age. Rat pups were administered cefepime (5 mg/kg twice daily subcutaneously according to different dosing schedules (postnatal day 1-4, 1-8, 8-11, 8-20, or 1-20. Cefepime significantly reduced serum and heart L-carnitine levels in postnatal day 1-4, 1-8 and 8-11 groups and caused severe degenerative changes in ventricular myocardium in these groups. Cefepime also altered the ontogeny of several key L-carnitine homeostasis pathways. The qualitative and quantitative changes in levels of hepatic γ-butyrobetaine hydroxylase mRNA and activity, hepatic trimethyllysine hydroxlase mRNA, intestinal organic cation/carnitine transporter (Octn mRNA, and renal Octn2 mRNA depended on when during postnatal development the cefepime exposure occurred and duration of exposure. Despite lower levels of heart L-carnitine in earlier postnatal groups, levels of carnitine palmitoyltransferase mRNA and activity, heart Octn2 mRNA and ATP levels in all treatment groups remained unchanged with cefepime exposure. However, changes in other high energy phosphate substrates were noted and reductions in the phosphocreatine/ATP ratio were found in rat pups with normal serum L-carnitine levels. In summary, our data suggest a significant drug-nutrient transport interaction in developing neonates, the nature of which depends on the timing and duration of exposure relative to postnatal age.

  8. Motion and emotion: depression reduces psychomotor performance and alters affective movements in caregiving interactions

    OpenAIRE

    Young, Katherine S.; Parsons, Christine E.; Alan eStein; Kringelbach, Morten L.

    2015-01-01

    Background: Impaired social functioning is a well-established feature of depression. Evidence to date suggests that disrupted processing of emotional cues may constitute part of this impairment. Beyond processing of emotional cues, fluent social interactions require that people physically move in synchronized, contingent ways. Disruptions to physical movements are a diagnostic feature of depression (psychomotor disturbance) but have not previously been assessed in the context of social functi...

  9. Host protein Snapin interacts with human cytomegalovirus pUL130 and affects viral DNA replication.

    Science.gov (United States)

    Wang, Guili; Ren, Gaowei; Cui, Xin; Lu, Zhitao; Ma, Yanpin; Qi, Ying; Huang, Yujing; Liu, Zhongyang; Sun, Zhengrong; Ruan, Qiang

    2016-06-01

    The interplay between the host and Human cytomegalovirus (HCMV) plays a pivotal role in the outcome of an infection. HCMV growth in endothelial and epithelial cells requires expression of viral proteins UL128, UL130, and UL131 proteins (UL128-131), of which UL130 is the largest gene and the only one that is not interrupted by introns.Mutation of the C terminus of the UL130 protein causes reduced tropism of endothelial cells (EC). However, very few host factors have been identified that interact with the UL130 protein. In this study, HCMV UL130 protein was shown to directly interact with the human protein Snapin in human embryonic kidney HEK293 cells by Yeast two-hybrid screening, in vitro glutathione S-transferase (GST) pull-down, and co-immunoprecipitation. Additionally, heterologous expression of protein UL130 revealed co-localization with Snapin in the cell membrane and cytoplasm of HEK293 cells using fluorescence confocal microscopy. Furthermore, decreasing the level of Snapin via specific small interfering RNAs decreased the number of viral DNA copies and titer inHCMV-infected U373-S cells. Taken together, these results suggest that Snapin, the pUL130 interacting protein, has a role in modulating HCMV DNA synthesis. PMID:27240978

  10. Host protein Snapin interacts with human cytomegalovirus pUL130 and affects viral DNA replication

    Indian Academy of Sciences (India)

    Guili Wang; Gaowei Ren; Xin Cui; Yanpin Ma; Ying Qi; Yujing Huang; Zhongyang Liu; Zhengrong Sun; Qiang Ruan

    2016-06-01

    The interplay between the host and Human cytomegalovirus (HCMV) plays a pivotal role in the outcome of an infection. HCMV growth in endothelial and epithelial cells requires expression of viral proteins UL128, UL130, and UL131 proteins (UL128-131), of which UL130 is the largest gene and the only one that is not interrupted by introns. Mutation of the C terminus of the UL130 protein causes reduced tropism of endothelial cells (EC). However, very few host factors have been identified that interact with the UL130 protein. In this study, HCMV UL130 protein was shown to directly interact with the human protein Snapin in human embryonic kidney HEK293 cells by Yeast two-hybrid screening, in vitro glutathione S-transferase (GST) pull-down, and co-immunoprecipitation. Additionally, heterologous expression of protein UL130 revealed co-localization with Snapin in the cell membrane and cytoplasm of HEK293 cells using fluorescence confocal microscopy. Furthermore, decreasing the level of Snapin via specific small interfering RNAs decreased the number of viral DNA copies and titer in HCMV-infected U373-S cells. Taken together, these results suggest that Snapin, the pUL130 interacting protein, has a role in modulating HCMV DNA synthesis.

  11. Habitat traits and species interactions differentially affect abundance and body size in pond-breeding amphibians.

    Science.gov (United States)

    Ousterhout, Brittany H; Anderson, Thomas L; Drake, Dana L; Peterman, William E; Semlitsch, Raymond D

    2015-07-01

    In recent studies, habitat traits have emerged as stronger predictors of species occupancy, abundance, richness and diversity than competition. However, in many cases, it remains unclear whether habitat also mediates processes more subtle than competitive exclusion, such as growth, or whether intra- and interspecific interactions among individuals of different species may be better predictors of size. To test whether habitat traits are a stronger predictor of abundance and body size than intra- and interspecific interactions, we measured the density and body size of three species of larval salamanders in 192 ponds across a landscape. We found that the density of larvae was best predicted by models that included habitat features, while models incorporating interactions among individuals of different species best explained the body size of larvae. Additionally, we found a positive relationship between focal species density and congener density, while focal species body size was negatively related to congener density. We posit that salamander larvae may not experience competitive exclusion and thus reduced densities, but instead compensate for increased competition behaviourally (e.g. reduced foraging), resulting in decreased growth. The discrepancy between larval density and body size, a strong predictor of fitness in this system, also highlights a potential shortcoming in using density or abundance as a metric of habitat quality or population health. PMID:25643605

  12. Land management practices interactively affect wetland beetle ecological and phylogenetic community structure.

    Science.gov (United States)

    Kelly, Sandor L; Song, Hojun; Jenkins, David G

    2015-06-01

    Management practices can disturb ecological communities in grazing lands, which represent one-quarter of land surface. But three knowledge gaps exist regarding disturbances: disturbances potentially interact but are most often studied singly; experiments with multiple ecosystems as treatment units are rare; and relatively new metrics of phylogenetic community structure have not been widely applied. We addressed all three of these needs with a factorial experiment; 40 seasonal wetlands embedded in a Florida ranch were treated with pasture intensification, cattle exclosure, and prescribed fire. Treatment responses were evaluated through four years for aquatic beetle (Coleoptera: Adephaga) assemblages using classic ecological metrics (species richness, diversity) and phylogenetic community structure (PCS) metrics. Adephagan assemblages consisted of 23 genera representing three families in a well-resolved phylogeny. Prescribed fire significantly reduced diversity one year post-fire, followed by a delayed pasture X fire interaction. Cattle exclosure significantly reduced one PCS metric after one year and a delayed pasture x fence x fire interaction was detected with another PCs metric. Overall, effects of long-term pasture intensification were modified by cattle exclosure and prescribed fire. Also, PCS metrics revealed effects otherwise undetected by classic ecological metrics. Management strategies (e.g., "flash grazing," prescribed fires) in seasonal wetlands may successfully balance economic gains from high forage quality with ecological benefits of high wetland diversity in otherwise simplified grazing lands. Effects are likely taxon specific; multiple taxa should be similarly evaluated. PMID:26465031

  13. Expression change of Nicastrin in the neuronal cells and its relationship with Aβ generation after proteasomal inhibitor treatment%蛋白酶体抑制剂处理神经细胞系后Nicastrin的表达变化及其与Aβ的关系

    Institute of Scientific and Technical Information of China (English)

    龙志敏; 赵蕾; 骆世芳; 汪克建; 贺桂琼

    2011-01-01

    Objective To explore whether Nicastrin undergoes ubiquitination before proteasomal degradation, as well as the relationship between Nicastrin protein level and Aβ generation. Methods Cell fractionation, Western blot, immunoprecipitation as well as ELISA were used to check the expression of NCT and Aβ level. Results NCr distributes primarily in ER and Golgi apparatus but less in lysosome. Increased NCT accumulates was found in the ER and Golgi apparatus after proteasomal inhibition. NCT and ubiquitin colocalized and interacted with each other in cells. The degradation of NCT was not affected by PS. Overexpression of NCT by transient NCT plasmid transfection or inhibition of NCT proteasomal degradation can decrease substrate of γ-secretase, C99 and C83, and increase production of γ-secretase, Aβ40 and Aβ42( P <0.01 ). Conclusion The degradation of NCT is resulted from ubiquitin-proteasome pathway. The expression of NCT is increased following proteasomal inhibition, and over-expression of NCT facilitates APP processing and Aβ generation.%目的 探讨蛋白酶体抑制剂处理后神经细胞内Nicastrin(NCT)的表达变化,及其与γ-分泌酶活性和Aβ生成的关系.方法 运用亚细胞器分级分离技术、免疫共沉淀、Western blot和ELISA等检测神经细胞内NCT的表达及Aβ水平.结果 正常情况下NCT主要分布于内质网和高尔基复合体,极少量分布于溶酶体,蛋白酶体抑制剂Lactacystin处理后NCT水平升高(P<0.001),且细胞内增多的NCT也主要聚集在内质网和高尔基复合体;NCT与泛素在细胞内共存;NCT的蛋白降解不受PS的影响;NCT降解受阻可引起细胞内γ-分泌酶的底物C99、C83显著减少,而γ-分泌酶的产物Aβ40、Aβ42的生成显著增多(P<0.01).结论 NCT的降解可通过泛素-蛋白酶体途径实现,蛋白酶体抑制剂处理后神经细胞内NCT水平升高,且增多的NCT可促进APP的代谢及Aβ的生成.

  14. Hepatic expression of proteasome subunit alpha type-6 is upregulated during viral hepatitis and putatively regulates the expression of ISG15 ubiquitin-like modifier, a proviral host gene in hepatitis C virus infection.

    Science.gov (United States)

    Broering, R; Trippler, M; Werner, M; Real, C I; Megger, D A; Bracht, T; Schweinsberg, V; Sitek, B; Eisenacher, M; Meyer, H E; Baba, H A; Weber, F; Hoffmann, A-C; Gerken, G; Schlaak, J F

    2016-05-01

    The interferon-stimulated gene 15 (ISG15) plays an important role in the pathogenesis of hepatitis C virus (HCV) infection. ISG15-regulated proteins have previously been identified that putatively affect this proviral interaction. The present observational study aimed to elucidate the relation between ISG15 and these host factors during HCV infection. Transcriptomic and proteomic analyses were performed using liver samples of HCV-infected (n = 54) and uninfected (n = 10) or HBV-infected controls (n = 23). Primary human hepatocytes (PHH) were treated with Toll-like receptor ligands, interferons and kinase inhibitors. Expression of ISG15 and proteasome subunit alpha type-6 (PSMA6) was suppressed in subgenomic HCV replicon cell lines using specific siRNAs. Comparison of hepatic expression patterns revealed significantly increased signals for ISG15, IFIT1, HNRNPK and PSMA6 on the protein level as well as ISG15, IFIT1 and PSMA6 on the mRNA level in HCV-infected patients. In contrast to interferon-stimulated genes, PSMA6 expression occurred independent of HCV load and genotype. In PHH, the expression of ISG15 and PSMA6 was distinctly induced by poly(I:C), depending on IRF3 activation or PI3K/AKT signalling, respectively. Suppression of PSMA6 in HCV replicon cells led to significant induction of ISG15 expression, thus combined knock-down of both genes abrogated the antiviral effect induced by the separate suppression of ISG15. These data indicate that hepatic expression of PSMA6, which is upregulated during viral hepatitis, likely depends on TLR3 activation. PSMA6 affects the expression of immunoregulatory ISG15, a proviral factor in the pathogenesis of HCV infection. Therefore, the proteasome might be involved in the enigmatic interaction between ISG15 and HCV. PMID:26833585

  15. Impaired enzymatic defensive activity, mitochondrial dysfunction and proteasome activation are involved in RTT cell oxidative damage.

    Science.gov (United States)

    Cervellati, Carlo; Sticozzi, Claudia; Romani, Arianna; Belmonte, Giuseppe; De Rasmo, Domenico; Signorile, Anna; Cervellati, Franco; Milanese, Chiara; Mastroberardino, Pier Giorgio; Pecorelli, Alessandra; Savelli, Vinno; Forman, Henry J; Hayek, Joussef; Valacchi, Giuseppe

    2015-10-01

    A strong correlation between oxidative stress (OS) and Rett syndrome (RTT), a rare neurodevelopmental disorder affecting females in the 95% of the cases, has been well documented although the source of OS and the effect of a redox imbalance in this pathology has not been yet investigated. Using freshly isolated skin fibroblasts from RTT patients and healthy subjects, we have demonstrated in RTT cells high levels of H2O2 and HNE protein adducts. These findings correlated with the constitutive activation of NADPH-oxidase (NOX) and that was prevented by a NOX inhibitor and iron chelator pre-treatment, showing its direct involvement. In parallel, we demonstrated an increase in mitochondrial oxidant production, altered mitochondrial biogenesis and impaired proteasome activity in RTT samples. Further, we found that the key cellular defensive enzymes: glutathione peroxidase, superoxide dismutase and thioredoxin reductases activities were also significantly lower in RTT. Taken all together, our findings suggest that the systemic OS levels in RTT can be a consequence of both: increased endogenous oxidants as well as altered mitochondrial biogenesis with a decreased activity of defensive enzymes that leads to posttranslational oxidant protein modification and a proteasome activity impairment. PMID:26189585

  16. The ubiquitin proteasome system in glia and its role in neurodegenerative disease

    Directory of Open Access Journals (Sweden)

    Anne H.P. Jansen

    2014-08-01

    Full Text Available The ubiquitin proteasome system (UPS is crucial for intracellular protein homeostasis and for degradation of aberrant and damaged proteins. The accumulation of ubiquitinated proteins is a hallmark of many neurodegenerative diseases, including Amyotrophic lateral sclerosis, Alzheimer’s, Parkinson’s and Huntington’s disease, leading to the hypothesis that proteasomal impairment is contributing to these diseases. So far, most research related to the UPS in neurodegenerative diseases has been focused on neurons, while glial cells have been largely disregarded in this respect. However, glial cells are essential for proper neuronal functioning and adopt a reactive phenotype in neurodegenerative diseases, thereby contributing to an inflammatory response. This process is called reactive gliosis, which in turn affects UPS functioning in glial cells. In many neurodegenerative diseases, mostly neurons show accumulation and aggregation of ubiquitinated proteins, suggesting that glial cells may be better equipped to maintain proper protein homeostasis. During an inflammatory reaction, the immunoproteasome is induced in glia, which may contribute to a more efficient degradation of disease-related proteins. Here we review the role of the UPS in glial cells in various neurodegenerative diseases, and we discuss how studying glial cell functioning might provide essential information in unraveling mechanisms of neurodegenerative diseases.

  17. Intracellular sodium affects ouabain interaction with the Na/K pump in cultured chick cardiac myocytes

    OpenAIRE

    1990-01-01

    Whether a given dose of ouabain will produce inotropic or toxic effects depends on factors that affect the apparent affinity (K0.5) of the Na/K pump for ouabain. To accurately resolve these factors, especially the effect of intracellular Na concentration (Nai), we have applied three complementary techniques for measuring the K0.5 for ouabain in cultured embryonic chick cardiac myocytes. Under control conditions with 5.4 mM Ko, the value of the K0.5 for ouabain was 20.6 +/- 1.2, 12.3 +/- 1.7, ...

  18. Protein-binding RNA aptamers affect molecular interactions distantly from their binding sites.

    Directory of Open Access Journals (Sweden)

    Daniel M Dupont

    Full Text Available Nucleic acid aptamer selection is a powerful strategy for the development of regulatory agents for molecular intervention. Accordingly, aptamers have proven their diligence in the intervention with serine protease activities, which play important roles in physiology and pathophysiology. Nonetheless, there are only a few studies on the molecular basis underlying aptamer-protease interactions and the associated mechanisms of inhibition. In the present study, we use site-directed mutagenesis to delineate the binding sites of two 2´-fluoropyrimidine RNA aptamers (upanap-12 and upanap-126 with therapeutic potential, both binding to the serine protease urokinase-type plasminogen activator (uPA. We determine the subsequent impact of aptamer binding on the well-established molecular interactions (plasmin, PAI-1, uPAR, and LRP-1A controlling uPA activities. One of the aptamers (upanap-126 binds to the area around the C-terminal α-helix in pro-uPA, while the other aptamer (upanap-12 binds to both the β-hairpin of the growth factor domain and the kringle domain of uPA. Based on the mapping studies, combined with data from small-angle X-ray scattering analysis, we construct a model for the upanap-12:pro-uPA complex. The results suggest and highlight that the size and shape of an aptamer as well as the domain organization of a multi-domain protein such as uPA, may provide the basis for extensive sterical interference with protein ligand interactions considered distant from the aptamer binding site.

  19. Phosphocreatine interacts with phospholipids, affects membrane properties and exerts membrane-protective effects.

    Directory of Open Access Journals (Sweden)

    Malgorzata Tokarska-Schlattner

    Full Text Available A broad spectrum of beneficial effects has been ascribed to creatine (Cr, phosphocreatine (PCr and their cyclic analogues cyclo-(cCr and phospho-cyclocreatine (PcCr. Cr is widely used as nutritional supplement in sports and increasingly also as adjuvant treatment for pathologies such as myopathies and a plethora of neurodegenerative diseases. Additionally, Cr and its cyclic analogues have been proposed for anti-cancer treatment. The mechanisms involved in these pleiotropic effects are still controversial and far from being understood. The reversible conversion of Cr and ATP into PCr and ADP by creatine kinase, generating highly diffusible PCr energy reserves, is certainly an important element. However, some protective effects of Cr and analogues cannot be satisfactorily explained solely by effects on the cellular energy state. Here we used mainly liposome model systems to provide evidence for interaction of PCr and PcCr with different zwitterionic phospholipids by applying four independent, complementary biochemical and biophysical assays: (i chemical binding assay, (ii surface plasmon resonance spectroscopy (SPR, (iii solid-state (31P-NMR, and (iv differential scanning calorimetry (DSC. SPR revealed low affinity PCr/phospholipid interaction that additionally induced changes in liposome shape as indicated by NMR and SPR. Additionally, DSC revealed evidence for membrane packing effects by PCr, as seen by altered lipid phase transition. Finally, PCr efficiently protected against membrane permeabilization in two different model systems: liposome-permeabilization by the membrane-active peptide melittin, and erythrocyte hemolysis by the oxidative drug doxorubicin, hypoosmotic stress or the mild detergent saponin. These findings suggest a new molecular basis for non-energy related functions of PCr and its cyclic analogue. PCr/phospholipid interaction and alteration of membrane structure may not only protect cellular membranes against various insults

  20. Sea Breezes over the Red Sea: Affect of topography and interaction with Desert Convective Boundary Layer

    Science.gov (United States)

    Khan, Basit A.; Stenchikov, Georgiy; Abualnaja, Yasser

    2014-05-01

    Thermodynamic structure of sea-breeze, its interaction with coastal mountains, desert plateau and desert convective boundary layer have been investigated in the middle region of the Red Sea around 25°N, at the Western coast of Saudi Arabia. Sea and land breeze is a common meteorological phenomenon in most of the coastal regions around the world. Sea-Breeze effects the local meteorology and cause changes in wind speed, direction, cloud cover and sometimes precipitation. The occurrence of sea-breeze, its intensity and landward propagation are important for wind energy resource assessment, load forecasting for existing wind farms, air pollution, marine and aviation applications. The thermally induced mesoscale circulation of sea breeze modifies the desert Planetary Boundary Layer (PBL) by forming Convective Internal Boundary Layer (CIBL), and propagates inland as a density current. The leading edge of the denser marine air rapidly moves inland undercutting the hot and dry desert air mass. The warm air lifts up along the frontal boundary and if contains enough moisture a band of clouds is formed along the sea breeze front (SBF). This study focuses on the thermodynamic structure of sea-breeze as it propagates over coastal rocky mountain range of Al-Sarawat, east of the Red Sea coast, and the desert plateau across the mountain range. Additional effects of topographical gaps such as Tokar gap on the dynamics of sea-land breezes have also been discussed. Interaction of SBF with the desert convective boundary layer provide extra lifting that could further enhance the convective instability along the frontal boundary. This study provides a detailed analysis of the thermodynamics of interaction of the SBF and convective internal boundary layer over the desert. Observational data from a buoy and meteorological stations have been utilized while The Advanced Research WRF (ARW) modeling system has been employed in real and 2D idealized configuration.

  1. Divalent Ion Parameterization Strongly Affects Conformation and Interactions of an Anionic Biomimetic Polymer

    Energy Technology Data Exchange (ETDEWEB)

    Daily, Michael D.; Baer, Marcel D.; Mundy, Christopher J.

    2016-03-10

    The description of peptides and the use of molecular dynamics simulations to refine structures and investigate the dynamics on an atomistic scale are well developed. Through a consensus in this community over multiple decades, parameters were developed for molecular interactions that only require the sequence of amino-acids and an initial guess for the three-dimensional structure. The recent discovery of peptoids will require a retooling of the currently available interaction potentials in order to have the same level of confidence in the predicted structures and pathways as there is presently in the peptide counterparts. Here we present modeling of peptoids using a combination of ab initio molecular dynamics (AIMD) and atomistic resolution classical forcefield (FF) to span the relevant time and length scales. To properly account for the dominant forces that stabilize ordered structures of peptoids, namely steric-, electrostatic, and hydrophobic interactions mediated through sidechain-sidechain interactions in the FF model, those have to be first mapped out using high fidelity atomistic representations. A key feature here is not only to use gas phase quantum chemistry tools, but also account for solvation effects in the condensed phase through AIMD. One major challenge is to elucidate ion binding to charged or polar regions of the peptoid and its concomitant role in the creation of local order. Here, similar to proteins, a specific ion effect is observed suggesting that both the net charge and the precise chemical nature of the ion will need to be described. MDD was supported by MS3 (Materials Synthesis and Simulation Across Scales) Initiative at Pacific Northwest National Laboratory. Research was funded by the Laboratory Directed Research and Development program at Pacific Northwest National Laboratory. MDB acknowledges support from US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Material & Engineering. CJM acknowledges

  2. Proteasome dysfunction in Drosophila signals to an Nrf2-dependent regulatory circuit aiming to restore proteostasis and prevent premature aging

    OpenAIRE

    Tsakiri, Eleni N.; Sykiotis, Gerasimos P.; Papassideri, Issidora S.; Terpos, Evangelos; Dimopoulos, Meletios A; Gorgoulis, Vassilis G.; Bohmann, Dirk; Trougakos, Ioannis P.

    2013-01-01

    The ubiquitin–proteasome system is central to the regulation of cellular proteostasis. Nevertheless, the impact of in vivo proteasome dysfunction on the proteostasis networks and the aging processes remains poorly understood. We found that RNAi-mediated knockdown of 20S proteasome subunits in Drosophila melanogaster resulted in larval lethality. We therefore studied the molecular effects of proteasome dysfunction in adult flies by developing a model of dose-dependent pharmacological proteasom...

  3. Examination of the Impact of Using an Interactive Electronic Textbook on the Affective Learning of Prospective Mathematics Teachers

    Directory of Open Access Journals (Sweden)

    Sakine Öngöz

    2011-01-01

    Full Text Available This semi-experimental study aims to examine the impact of a learning environment that uses interactive electronic textbook on the affective learning of prospective mathematics teachers. The study group consisted of 64 prospective teachers attending the Mathematics Teaching program at Karadeniz Technical University, Turkey. For 14 weeks, experimental group received the Development and Learning course in a blended learning environment, in which an interactive e-textbook was used inside and outside the classroom. In this period, only face to face education was conducted with the control group in the classroom environment. A course attitude scale and a blended learning environment satisfaction scale were employed for the purpose of data collection. In addition, observations were conducted with both of the groups during the application. The analysis of the findings indicated that there was a significant increase between pre- and post-course attitude scores of experimental group students, the students were satisfied with the learning environment formed, and the electronic text book increased interest in the course.Key Words: Interactive electronic textbook, prospective mathematics teachers, blended learning model, affective learning

  4. Molecular analyses of nuclear-cytoplasmic interactions affecting plant growth and yield. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Newton, K.J.

    1998-11-01

    Mitochondria have a central role in the production of cellular energy. The biogenesis and functioning of mitochondria depends on the expression of both mitochondrial and nuclear genes. One approach to investigating the role of nuclear-mitochondrial cooperation in plant growth and development is to identify combinations of nuclear and mitochondrial genomes that result in altered but sublethal phenotypes. Plants that have certain maize nuclear genotypes in combination with cytoplasmic genomes from more distantly-related teosintes can exhibit incompatible phenotypes, such as reduced plant growth and yield and cytoplasmic male sterility, as well as altered mitochondrial gene expression. The characterization of these nuclear-cytoplasmic interactions was the focus of this grant. The authors were investigating the effects of two maize nuclear genes, RcmI and Mct, on mitochondrial function and gene expression. Plants with the teosinte cytoplasms and homozygous for the recessive rcm allele are small (miniature) and-slow-growing and the kernels are reduced in size. The authors mapped this locus to molecular markers on chromosome 7 and attempted to clone this locus by transposon tagging. The effects of the nuclear-cytoplasmic interaction on mitochondrial function and mitochondrial protein profiles were also studied.

  5. Inhibition of polyamine oxidase activity affects tumor development during the maize-Ustilago maydis interaction.

    Science.gov (United States)

    Jasso-Robles, Francisco Ignacio; Jiménez-Bremont, Juan Francisco; Becerra-Flora, Alicia; Juárez-Montiel, Margarita; Gonzalez, María Elisa; Pieckenstain, Fernando Luis; García de la Cruz, Ramón Fernando; Rodríguez-Kessler, Margarita

    2016-05-01

    Ustilago maydis is a biotrophic plant pathogenic fungus that leads to tumor development in the aerial tissues of its host, Zea mays. These tumors are the result of cell hypertrophy and hyperplasia, and are accompanied by the reprograming of primary and secondary metabolism of infected plants. Up to now, little is known regarding key plant actors and their role in tumor development during the interaction with U. maydis. Polyamines are small aliphatic amines that regulate plant growth, development and stress responses. In a previous study, we found substantial increases of polyamine levels in tumors. In the present work, we describe the maize polyamine oxidase (PAO) gene family, its contribution to hydrogen peroxide (H2O2) production and its possible role in tumor development induced by U. maydis. Histochemical analysis revealed that chlorotic lesions and maize tumors induced by U. maydis accumulate H2O2 to significant levels. Maize plants inoculated with U. maydis and treated with the PAO inhibitor 1,8-diaminooctane exhibit a notable reduction of H2O2 accumulation in infected tissues and a significant drop in PAO activity. This treatment also reduced disease symptoms in infected plants. Finally, among six maize PAO genes only the ZmPAO1, which encodes an extracellular enzyme, is up-regulated in tumors. Our data suggest that H2O2 produced through PA catabolism by ZmPAO1 plays an important role in tumor development during the maize-U. maydis interaction. PMID:26926794

  6. Radiative and Physiological Effects of Increased CO2: How Does This Interaction Affect Climate?

    Science.gov (United States)

    Bounoua, Lahouari

    2011-01-01

    Several climate models indicate that in a 2xCO2 environment, temperature and precipitation would increase and runoff would increase faster than precipitation. These models, however, did not allow the vegetation to increase its leaf density as a response to the physiological effects of increased CO2 and consequent changes in climate. Other assessments included these interactions but did not account for the vegetation downregulation to reduce plant's photosynthetic activity and as such resulted in a weak vegetation negative response. When we combine these interactions in climate simulations with 2xCO2, the associated increase in precipitation contributes primarily to increase evapotranspiration rather than surface runoff, consistent with observations, and results in an additional cooling effect not fully accounted for in previous 2xCO2 simulations. By accelerating the water cycle, this feedback slows but does not alleviate the projected warming, reducing the land surface warming by 0.6 C. Compared to previous studies, these results imply that long term negative feedback from CO2-induced increases in vegetation density could reduce temperature following a stabilization of CO2 concentration.

  7. Biochemical and toxicological evaluation of nano-heparins in cell functional properties, proteasome activation and expression of key matrix molecules.

    Science.gov (United States)

    Piperigkou, Zoi; Karamanou, Konstantina; Afratis, Nikolaos A; Bouris, Panagiotis; Gialeli, Chrysostomi; Belmiro, Celso L R; Pavão, Mauro S G; Vynios, Dimitrios H; Tsatsakis, Aristidis M

    2016-01-01

    The glycosaminoglycan heparin and its derivatives act strongly on blood coagulation, controlling the activity of serine protease inhibitors in plasma. Nonetheless, there is accumulating evidence highlighting different anticancer activities of these molecules in numerous types of cancer. Nano-heparins may have great biological significance since they can inhibit cell proliferation and invasion as well as inhibiting proteasome activation. Moreover, they can cause alterations in the expression of major modulators of the tumor microenvironment, regulating cancer cell behavior. In the present study, we evaluated the effects of two nano-heparin formulations: one isolated from porcine intestine and the other from the sea squirt Styela plicata, on a breast cancer cell model. We determined whether these nano-heparins are able to affect cell proliferation, apoptosis and invasion, as well as proteasome activity and the expression of extracellular matrix molecules. Specifically, we observed that nano-Styela compared to nano-Mammalian analogue has higher inhibitory role on cell proliferation, invasion and proteasome activity. Moreover, nano-Styela regulates cell apoptosis, expression of inflammatory molecules, such as IL-6 and IL-8 and reduces the expression levels of extracellular matrix macromolecules, such as the proteolytic enzymes MT1-MMP, uPA and the cell surface proteoglycans syndecan-1 and -2, but not on syndecan-4. The observations reported in the present article indicate that nano-heparins and especially ascidian heparin are effective agents for heparin-induced effects in critical cancer cell functions, providing an important possibility in pharmacological targeting. PMID:26476401

  8. TSGΔ154-1054 splice variant increases TSG101 oncogenicity by inhibiting its E3-ligase-mediated proteasomal degradation

    Science.gov (United States)

    Weng, Pei-Lun; Yeh, Te-Huei

    2016-01-01

    Tumor susceptibility gene 101 (TSG101) elicits an array of cellular functions, including promoting cytokinesis, cell cycle progression and proliferation, as well as facilitating endosomal trafficking and viral budding. TSG101 protein is highly and aberrantly expressed in various human cancers. Specifically, a TSG101 splicing variant missing nucleotides 154 to 1054 (TSGΔ154-1054), which is linked to progressive tumor-stage and metastasis, has puzzled investigators for more than a decade. TSG101-associated E3 ligase (Tal)- and MDM2-mediated proteasomal degradation are the two major routes for posttranslational regulation of the total amount of TSG101. We reveal that overabundance of TSG101 results from TSGΔ154-1054 stabilizing the TSG101 protein by competitively binding to Tal, but not MDM2, thereby perturbing the Tal interaction with TSG101 and impeding subsequent polyubiquitination and proteasomal degradation of TSG101. TSGΔ154-1054 therefore specifically enhances TSG101-stimulated cell proliferation, clonogenicity, and tumor growth in nude mice. This finding shows the functional significance of TSGΔ154-1054 in preventing the ubiquitin-proteasome proteolysis of TSG101, which increases tumor malignancy and hints at its potential as a therapeutic target in cancer treatment. PMID:26811492

  9. Interactions between major chlorogenic acid isomers and chemical changes in coffee brew that affect antioxidant activities.

    Science.gov (United States)

    Liang, Ningjian; Xue, Wei; Kennepohl, Pierre; Kitts, David D

    2016-12-15

    Coffee bean source and roasting conditions significantly (p<0.05) affected the content of chlorogenic acid (CGA) isomers, several indices of browning and subsequent antioxidant values. Principal component analysis was used to interpret the correlations between physiochemical and antioxidant parameters of coffee. CGA isomer content was positively correlated (p<0.001) to capacity of coffee to reduce nitric oxide and scavenge Frémy's salt. Indices of browning in roasted coffee were positively correlated (p<0.001) to ABTS and TEMPO radical scavenging capacity, respectively. Only the CGA content of coffee corresponded to intracellular antioxidant capacity measured in Caco-2 intestinal cells. This study concluded that the intracellular antioxidant capacity that best describes potential health benefits of coffee positively corresponds best with CGA content. PMID:27451179

  10. Pain and affective memory biases interact to predict depressive symptoms in multiple sclerosis.

    Science.gov (United States)

    Bruce, J M; Polen, D; Arnett, P A

    2007-01-01

    A large literature supports a direct relationship between pain and depressive symptoms among various patient populations. Patients with multiple sclerosis (MS) frequently experience both pain and depression. Despite this, no relationship between pain and depression has been found in MS. The present investigation explored the relationship between pain and depression in a sample of patients with MS. Consistent with cognitive theories of depression, results supported the hypothesis that pain would only contribute to depression when MS patients exhibited a concomitant cognitive vulnerability. Cognitive vulnerability to depression was measured using a performance based affective memory bias (AMB) task. Patients with high levels of pain and negative AMB reported more depressive symptoms compared to patients with pain and positive AMB. Implications for the identification and treatment of depression in MS are discussed. PMID:17294612

  11. Characterization of a Proteasome and TAP-independent Presentation of Intracellular Epitopes by HLA-B27 Molecules

    KAUST Repository

    Magnacca, A.

    2012-07-17

    Nascent HLA-class I molecules are stabilized by proteasome-derived peptides in the ER and the new complexes proceed to the cell surface through the post-ER vesicles. It has been shown, however, that less stable complexes can exchange peptides in the Trans Golgi Network (TGN). HLA-B27 are the most studied HLA-class I molecules due to their association with Ankylosing Spondylitis (AS). Chimeric proteins driven by TAT of HIV have been exploited by us to deliver viral epitopes, whose cross-presentation by the HLA-B27 molecules was proteasome and TAP-independent and not restricted to Antigen-Presenting Cells (APC). Here, using these chimeric proteins as epitope suppliers, we compared with each other and with the HLA-A2 molecules, the two HLA-B*2705 and B*2709 alleles differing at residue 116 (D116H) and differentially associated with AS. We found that the antigen presentation by the two HLA-B27 molecules was proteasome-, TAP-, and APC-independent whereas the presentation by the HLA-A2 molecules required proteasome, TAP and professional APC. Assuming that such difference could be due to the unpaired, highly reactive Cys-67 distinguishing the HLA-B27 molecules, C67S mutants in HLA-B*2705 and B*2709 and V67C mutant in HLA-A*0201 were also analyzed. The results showed that this mutation did not influence the HLA-A2-restricted antigen presentation while it drastically affected the HLA-B27-restricted presentation with, however, remarkable differences between B*2705 and B*2709. The data, together with the occurrence on the cell surface of unfolded molecules in the case of C67S-B*2705 mutant but not in that of C67S-B*2709 mutant, indicates that Cys-67 has a more critical role in stabilizing the B*2705 rather than the B*2709 complexes.

  12. Mode of heparin attachment to nanocrystalline hydroxyapatite affects its interaction with bone morphogenetic protein-2.

    Science.gov (United States)

    Goonasekera, Chandhi S; Jack, Kevin S; Bhakta, Gajadhar; Rai, Bina; Luong-Van, Emma; Nurcombe, Victor; Cool, Simon M; Cooper-White, Justin J; Grøndahl, Lisbeth

    2015-01-01

    Heparin has a high affinity for bone morphogenetic protein-2 (BMP-2), which is a key growth factor in bone regeneration. The aim of this study was to investigate how the rate of release of BMP-2 was affected when adsorbed to nanosized hydroxyapatite (HAP) particles functionalized with heparin by different methods. Heparin was attached to the surface of HAP, either via adsorption or covalent coupling, via a 3-aminopropyltriethoxysilane (APTES) layer. The chemical composition of the particles was evaluated using X-ray photoelectron spectroscopy and elemental microanalysis, revealing that the heparin grafting densities achieved were dependent on the curing temperature used in the fabrication of APTES-modified HAP. Comparable amounts of heparin were attached via both covalent coupling and adsorption to the APTES-modified particles, but characterization of the particle surfaces by zeta potential and Brunauer-Emmett-Teller measurements indicated that the conformation of the heparin on the surface was dependent on the method of attachment, which in turn affected the stability of heparin on the surface. The release of BMP-2 from the particles after 7 days in phosphate-buffered saline found that 31% of the loaded BMP-2 was released from the APTES-modified particles with heparin covalently attached, compared to 16% from the APTES-modified particles with the heparin adsorbed. Moreover, when heparin was adsorbed onto pure HAP, it was found that the BMP-2 released after 7 days was 5% (similar to that from unmodified HAP). This illustrates that by altering the mode of attachment of heparin to HAP the release profile and total release of BMP-2 can be manipulated. Importantly, the BMP-2 released from all the heparin particle types was found by the SMAD 1/5/8 phosphorylation assay to be biologically active. PMID:26474791

  13. Variable gene dispersal conditions and spatial deforestation patterns can interact to affect tropical tree conservation outcomes.

    Directory of Open Access Journals (Sweden)

    Yamini Kashimshetty

    Full Text Available Tropical lowland rain forest (TLRF biodiversity is under threat from anthropogenic factors including deforestation which creates forest fragments of different sizes that can further undergo various internal patterns of logging. Such interventions can modify previous equilibrium abundance and spatial distribution patterns of offspring recruitment and/or pollen dispersal. Little is known about how these aspects of deforestation and fragmentation might synergistically affect TLRF tree recovery demographics and population genetics in newly formed forest fragments. To investigate these TLRF anthropogenic disturbance processes we used the computer program NEWGARDEN (NG, which models spatially-explicit, individual-based plant populations, to simulate 10% deforestation in six different spatial logging patterns for the plant functional type of a long-lived TLRF canopy tree species. Further, each logging pattern was analyzed under nine varying patterns of offspring versus pollen dispersal distances that could have arisen post-fragmentation. Results indicated that gene dispersal condition (especially via offspring had a greater effect on population growth and genetic diversity retention (explaining 98.5% and 88.8% of the variance respectively than spatial logging pattern (0.2% and 4.7% respectively, with 'Near' distance dispersal maximizing population growth and genetic diversity relative to distant dispersal. Within logged regions of the fragment, deforestation patterns closer to fragment borders more often exhibited lower population recovery rates and founding genetic diversity retention relative to more centrally located logging. These results suggest newly isolated fragments have populations that are more sensitive to the way in which their offspring and pollen dispersers are affected than the spatial pattern in which subsequent logging occurs, and that large variation in the recovery rates of different TLRF tree species attributable to altered gene

  14. Apoptosis and radiosensitization of Hodgkin cells by proteasome inhibition

    International Nuclear Information System (INIS)

    Purpose: Malignant cells from Hodgkin's disease have been reported to be defective in regulation of NF-κB activity. Ionizing radiation is known to activate NF-κB, and it has been suggested that this pathway may protect cells from apoptosis following exposure to radiation and other therapeutic agents. Defective NF-κB regulation in Hodgkin cells could therefore dictate the response of this disease to therapy, as well as be responsible for maintaining the malignant phenotype. The purpose of this study was to explore whether NF-κB activity could be modulated in Hodgkin cells and whether it determines the response of these cells to treatment with ionizing radiation and/or dexamethasone. Methods and Materials: Activation of NF-κB in cells is accomplished in large part by degradation of its inhibitor IκB through the 26s proteasome. HD-My-Z Hodgkin cells were treated with the proteasome inhibitor MG-132 or transduced with a dominant negative super-repressor IκBα. Clonogenic survival, apoptosis, proteasome activity, and NF-κB binding activity were monitored in response to ionizing radiation and/or dexamethasone treatment. Results: HD-My-Z Hodgkin cells had modest NF-κB levels but, unlike other cell types, did not decrease their level of constitutively active NF-κB in response to proteasome inhibition with MG-132. In contrast, transduction with a non-phosphorable IκBα construct abolished expression. MG-132 did, however, induce apoptosis in HD-My-Z cells and sensitized them to ionizing radiation. Dexamethasone treatment had no effect on NF-κB activity or clonogenic survival of Hodgkin cells, but protected them from irradiation. Conclusion: We conclude that inhibition of 26s proteasome activity can induce apoptosis in HD-My-Z Hodgkin cells and radiosensitize them, in spite of the fact that their constitutively active NF-κB levels are unaltered. The proteasome may be a promising new therapeutic target for intervention in this disease. In contrast, the use of

  15. Biofilm history and oxygen availability interact to affect habitat selection in a marine invertebrate.

    Science.gov (United States)

    Lagos, Marcelo E; White, Craig R; Marshall, Dustin J

    2016-07-01

    In marine systems, oxygen availability varies at small temporal and spatial scales, such that current oxygen levels may not reflect conditions of the past. Different studies have shown that marine invertebrate larvae can select settlement sites based on local oxygen levels and oxygenation history of the biofilm, but no study has examined the interaction of both. The influence of normoxic and hypoxic water and oxygenation history of biofilms on pre-settlement behavior and settlement of the bryozoan Bugula neritina was tested. Larvae used cues in a hierarchical way: the oxygen levels in the water prime larvae to respond, the response to different biofilms is contingent on oxygen levels in the water. When oxygen levels varied throughout biofilm formation, larvae responded differently depending on the history of the biofilm. It appears that B. neritina larvae integrate cues about current and historical oxygen levels to select the appropriate microhabitat and maximize their fitness. PMID:27169475

  16. Short-Time Critical Behavior Affected by Weakly Long-Range Interactions

    Institute of Scientific and Technical Information of China (English)

    CHEN Yuan; GUO Shuo-Hong; LI Zhi-Bing

    2001-01-01

    The theoretic renormalization group approach is applied to the study of short-time critical behavior of the Ginzburg-Landau model with weakly long-range interactions pσsps-p. The system initially at a high temperature is firstly quenched to the critical temperature Tc and then released to an evolution with a model A dynamics. A double expansion in ∈ = 2σ-d and α = 1 -σ/2 with α of order ∈ is employed, where d is the spatial dimension. The asymptotic scaling laws and the initial slip exponents θ' and θ for the order parameter and the response function respectively are calculated to the second order in ∈ for σ close to 2.

  17. Waves affect predator-prey interactions between fish and benthic invertebrates.

    Science.gov (United States)

    Gabel, Friederike; Stoll, Stefan; Fischer, Philipp; Pusch, Martin T; Garcia, Xavier-François

    2011-01-01

    Little is known about the effects of waves on predator-prey interactions in the littoral zones of freshwaters. We conducted a set of mesocosm experiments to study the differential effects of ship- and wind-induced waves on the foraging success of littoral fish on benthic invertebrates. Experiments were conducted in a wave tank with amphipods (Gammarus roeseli) as prey, and age-0 bream (Abramis brama, B0), age-0 and age-1 dace (Leuciscus leuciscus, D0 and D1) as predators. The number of gammarids suspended in the water column was higher in the wave treatments compared to a no-wave control treatment, especially during pulse waves mimicking ship-induced waves in comparison to continuous waves mimicking wind-induced waves. The resulting higher prey accessibility in the water column was differently exploited by the three types of predatory fish. D0 and D1 showed significantly higher foraging success in the pulse wave treatment than in the continuous and control treatments. The foraging success of D0 appears to be achieved more easily, since significantly higher swimming activity and more foraging attempts were recorded only for D1 under the wave treatments. In contrast, B0 consumed significantly fewer gammarids in both wave treatments than in the control. Hence, waves influenced predator-prey interactions differently depending on wave type and fish type. It is expected that regular exposure to ship-induced waves can alter littoral invertebrate and fish assemblages by increasing the predation risk for benthic invertebrates that are suspended in the water column, and by shifting fish community compositions towards species that benefit from waves. PMID:21104276

  18. Muecas: A Multi-Sensor Robotic Head for Affective Human Robot Interaction and Imitation

    Directory of Open Access Journals (Sweden)

    Felipe Cid

    2014-04-01

    Full Text Available This paper presents a multi-sensor humanoid robotic head for human robot interaction. The design of the robotic head, Muecas, is based on ongoing research on the mechanisms of perception and imitation of human expressions and emotions. These mechanisms allow direct interaction between the robot and its human companion through the different natural language modalities: speech, body language and facial expressions. The robotic head has 12 degrees of freedom, in a human-like configuration, including eyes, eyebrows, mouth and neck, and has been designed and built entirely by IADeX (Engineering, Automation and Design of Extremadura and RoboLab. A detailed description of its kinematics is provided along with the design of the most complex controllers. Muecas can be directly controlled by FACS (Facial Action Coding System, the de facto standard for facial expression recognition and synthesis. This feature facilitates its use by third party platforms and encourages the development of imitation and of goal-based systems. Imitation systems learn from the user, while goal-based ones use planning techniques to drive the user towards a final desired state. To show the flexibility and reliability of the robotic head, the paper presents a software architecture that is able to detect, recognize, classify and generate facial expressions in real time using FACS. This system has been implemented using the robotics framework, RoboComp, which provides hardware-independent access to the sensors in the head. Finally, the paper presents experimental results showing the real-time functioning of the whole system, including recognition and imitation of human facial expressions.

  19. Disruption of NAD~+ binding site in glyceraldehyde 3-phosphate dehydrogenase affects its intranuclear interactions

    Institute of Scientific and Technical Information of China (English)

    Manali; Phadke; Natalia; Krynetskaia; Anurag; Mishra; Carlos; Barrero; Salim; Merali; Scott; A; Gothe; Evgeny; Krynetskiy

    2015-01-01

    AIM:To characterize phosphorylation of human glyceraldehyde 3-phosphate dehydrogenase(GAPDH),and mobility of GAPDH in cancer cells treated with chemotherapeutic agents. METHODS:We used proteomics analysis to detect and characterize phosphorylation sites within human GAPDH. Site-specific mutagenesis and alanine scanning was then performed to evaluate functional significance of phosphorylation sites in the GAPDH polypeptide chain. Enzymatic properties of mutated GAPDH variants were assessed using kinetic studies. Intranuclear dynamics parameters(diffusion coefficient and the immobile fraction) were estimated using fluorescence recovery after photobleaching(FRAP) experiments and confocal microscopy. Molecular modeling experiments were performed to estimate the effects of mutations on NAD+ cofactor binding.RESULTS:Using MALDI-TOF analysis,we identified novel phosphorylation sites within the NAD+ binding center of GAPDH at Y94,S98,and T99. Using polyclonal antibody specific to phospho-T99-containing peptide within GAPDH,we demonstrated accumulation of phospho-T99-GAPDH inthe nuclear fractions of A549,HCT116,and SW48 cancer cel s after cytotoxic stress. We performed site-mutagenesis,and estimated enzymatic properties,intranuclear distribution,and intranuclear mobility of GAPDH mutated variants. Site-mutagenesis at positions S98 and T99 in the NAD+ binding center reduced enzymatic activity of GAPDH due to decreased affinity to NAD+(Km = 741 ± 257 μmol/L in T99 I vs 57 ± 11.1 μmol/L in wild type GAPDH. Molecular modeling experiments revealed the effect of mutations on NAD+ binding with GAPDH. FRAP(fluorescence recovery after photo bleaching) analysis showed that mutations in NAD+ binding center of GAPDH abrogated its intranuclear interactions. CONCLUSION:Our results suggest an important functional role of phosphorylated amino acids in the NAD+ binding center in GAPDH interactions with its intranuclear partners.

  20. Processes and features affecting the near field hydrochemistry. Groundwater-bentonite interaction

    International Nuclear Information System (INIS)

    This report discusses in a quantitative manner the evolution of the near field aqueous chemistry as a result of the interactions between three different intruding groundwaters (Aespoe, Gideaa and Finnsjoen) with the MX-80 bentonite buffer material. The main emphasis has been placed on studying the evolution of the main chemical buffers of the system (alkalinity and redox capacities) and the resulting master variables (pH and pe). The calculations have been done by using a set of thermodynamic and kinetic parameters previously calibrated against experimental data on bentonite/granitic groundwater interactions, in combination with the PHREEQC geochemical code. The results of the calculations indicate that the alkalinity buffer capacity is mainly exerted by the accessory content of carbonate minerals (calcite) in the bentonite system, while the ion exchange process plays a secondary (but not negligible) role. The Ca(II) content of the intruding groundwater has an impact on the resulting pH. For Ca(II) rich waters, like Aespoe, the resulting pH remains in the range of granitic groundwaters (7.5-9.5) during the overall repository lifetime (1 million years). For Ca(II) poor groundwaters, the systems evolves to high alkalinity (pH : 10.5 - 10.8) due to the depletion of calcite and the release of carbonate in to the near field aqueous chemistry. Concerning the reducing capacity of the system, this is mainly controlled by the accessory pyrite content, although the Fe(II) content in montmorillonite and in the carbonates cannot be disregarded. Reducing conditions in the bentonite/groundwater system are ensured throughout the lifetime of the repository system unless this is placed in direct and lifetime contact with the atmosphere (surface storage)

  1. How social interactions affect emotional memory accuracy: Evidence from collaborative retrieval and social contagion paradigms.

    Science.gov (United States)

    Kensinger, Elizabeth A; Choi, Hae-Yoon; Murray, Brendan D; Rajaram, Suparna

    2016-07-01

    In daily life, emotional events are often discussed with others. The influence of these social interactions on the veracity of emotional memories has rarely been investigated. The authors (Choi, Kensinger, & Rajaram Memory and Cognition, 41, 403-415, 2013) previously demonstrated that when the categorical relatedness of information is controlled, emotional items are more accurately remembered than neutral items. The present study examined whether emotion would continue to improve the accuracy of memory when individuals discussed the emotional and neutral events with others. Two different paradigms involving social influences were used to investigate this question and compare evidence. In both paradigms, participants studied stimuli that were grouped into conceptual categories of positive (e.g., celebration), negative (e.g., funeral), or neutral (e.g., astronomy) valence. After a 48-hour delay, recognition memory was tested for studied items and categorically related lures. In the first paradigm, recognition accuracy was compared when memory was tested individually or in a collaborative triad. In the second paradigm, recognition accuracy was compared when a prior retrieval session had occurred individually or with a confederate who supplied categorically related lures. In both of these paradigms, emotional stimuli were remembered more accurately than were neutral stimuli, and this pattern was preserved when social interaction occurred. In fact, in the first paradigm, there was a trend for collaboration to increase the beneficial effect of emotion on memory accuracy, and in the second paradigm, emotional lures were significantly less susceptible to the "social contagion" effect. Together, these results demonstrate that emotional memories can be more accurate than nonemotional ones even when events are discussed with others (Experiment 1) and even when that discussion introduces misinformation (Experiment 2). PMID:26907480

  2. GxE Interactions Between FOXO Genotypes and Tea Drinking Significantly Affect Cognitive Disability at Advanced Ages in China

    DEFF Research Database (Denmark)

    Zeng, Yi; Chen, Huashuai; Ni, Ting;

    2014-01-01

    Logistic regression analysis based on data from 822 Han Chinese oldest old aged 92+ demonstrated that interactions between carrying FOXO1A-266 or FOXO3-310 or FOXO3-292 and tea drinking at around age 60 or at present time were significantly associated with lower risk of cognitive disability at...... advanced ages. Associations between tea drinking and reduced cognitive disability were much stronger among carriers of the genotypes of FOXO1A-266 or FOXO3-310 or FOXO3-292 compared with noncarriers, and it was reconfirmed by analysis of three-way interactions across FOXO genotypes, tea drinking at around...... age 60, and at present time. Based on prior findings from animal and human cell models, we postulate that intake of tea compounds may activate FOXO gene expression, which in turn may positively affect cognitive function in the oldest old population. Our empirical findings imply that the health...

  3. Influences of a Socially Interactive Robot on the Affective Behavior of Young Children with Disabilities. Social Robots Research Reports, Number 3

    Science.gov (United States)

    Dunst, Carl J.; Prior, Jeremy; Hamby, Deborah W.; Trivette, Carol M.

    2013-01-01

    Findings from two studies of 11 young children with autism, Down syndrome, or attention deficit disorders investigating the effects of Popchilla, a socially interactive robot, on the children's affective behavior are reported. The children were observed under two conditions, child-toy interactions and child-robot interactions, and ratings of child…

  4. Plasma membrane lipid-protein interactions affect signaling processes in sterol-biosynthesis mutants of Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Henrik eZauber

    2014-03-01

    Full Text Available The plasma membrane is an important organelle providing structure, signaling and transport as major biological functions. Being composed of lipids and proteins with different physicochemical properties, the biological functions of membranes depend on specific protein-protein and protein-lipid interactions. Interactions of proteins with their specific sterol and lipid environment were shown to be important factors for protein recruitment into sub-compartmental structures of the plasma membrane. System-wide implications of altered endogenous sterol levels for membrane functions in living cells were not studied in higher plant cells. In particular, little is known how alterations in membrane sterol composition affect protein and lipid organization and interaction within membranes. Here, we conducted a comparative analysis of the plasma membrane protein and lipid composition in Arabidopsis sterol-biosynthesis mutants smt1 and ugt80A2;B1. smt1 shows general alterations in sterol composition while ugt80A2;B1 is significantly impaired in sterol glycosylation. By systematically analyzing different cellular fractions and combining proteomic with lipidomic data we were able to reveal contrasting alterations in lipid-protein interactions in both mutants, with resulting differential changes in plasma membrane signaling status.

  5. Role of the Ubiquitin-Proteasome Systems in the Biology and Virulence of Protozoan Parasites

    Directory of Open Access Journals (Sweden)

    Christian Muñoz

    2015-01-01

    Full Text Available In eukaryotic cells, proteasomes perform crucial roles in many cellular pathways by degrading proteins to enforce quality control and regulate many cellular processes such as cell cycle progression, signal transduction, cell death, immune responses, metabolism, protein-quality control, and development. The catalytic heart of these complexes, the 20S proteasome, is highly conserved in bacteria, yeast, and humans. However, until a few years ago, the role of proteasomes in parasite biology was completely unknown. Here, we summarize findings about the role of proteasomes in protozoan parasites biology and virulence. Several reports have confirmed the role of proteasomes in parasite biological processes such as cell differentiation, cell cycle, proliferation, and encystation. Proliferation and cell differentiation are key steps in host colonization. Considering the importance of proteasomes in both processes in many different parasites such as Trypanosoma, Leishmania, Toxoplasma, and Entamoeba, parasite proteasomes might serve as virulence factors. Several pieces of evidence strongly suggest that the ubiquitin-proteasome pathway is also a viable parasitic therapeutic target. Research in recent years has shown that the proteasome is a valid drug target for sleeping sickness and malaria. Then, proteasomes are a key organelle in parasite biology and virulence and appear to be an attractive new chemotherapeutic target.

  6. Complex trait subtypes identification using transcriptome profiling reveals an interaction between two QTL affecting adiposity in chicken

    Directory of Open Access Journals (Sweden)

    Blum Yuna

    2011-11-01

    Full Text Available Abstract Background Integrative genomics approaches that combine genotyping and transcriptome profiling in segregating populations have been developed to dissect complex traits. The most common approach is to identify genes whose eQTL colocalize with QTL of interest, providing new functional hypothesis about the causative mutation. Another approach includes defining subtypes for a complex trait using transcriptome profiles and then performing QTL mapping using some of these subtypes. This approach can refine some QTL and reveal new ones. In this paper we introduce Factor Analysis for Multiple Testing (FAMT to define subtypes more accurately and reveal interaction between QTL affecting the same trait. The data used concern hepatic transcriptome profiles for 45 half sib male chicken of a sire known to be heterozygous for a QTL affecting abdominal fatness (AF on chromosome 5 distal region around 168 cM. Results Using this methodology which accounts for hidden dependence structure among phenotypes, we identified 688 genes that are significantly correlated to the AF trait and we distinguished 5 subtypes for AF trait, which are not observed with gene lists obtained by classical approaches. After exclusion of one of the two lean bird subtypes, linkage analysis revealed a previously undetected QTL on chromosome 5 around 100 cM. Interestingly, the animals of this subtype presented the same q paternal haplotype at the 168 cM QTL. This result strongly suggests that the two QTL are in interaction. In other words, the "q configuration" at the 168 cM QTL could hide the QTL existence in the proximal region at 100 cM. We further show that the proximal QTL interacts with the previous one detected on the chromosome 5 distal region. Conclusion Our results demonstrate that stratifying genetic population by molecular phenotypes followed by QTL analysis on various subtypes can lead to identification of novel and interacting QTL.

  7. Distinct specificities of Mycobacterium tuberculosis and mammalian proteasomes for N-acetyl tripeptide substrates.

    Science.gov (United States)

    Lin, Gang; Tsu, Christopher; Dick, Lawrence; Zhou, Xi K; Nathan, Carl

    2008-12-01

    The proteasome of Mycobacterium tuberculosis (Mtb) is a validated and drug-treatable target for therapeutics. To lay ground-work for developing peptide-based inhibitors with a useful degree of selectivity for the Mtb proteasome over those of the host, we used a library of 5,920 N-acetyl tripeptide-aminomethylcoumarins to contrast the substrate preferences of the recombinant Mtb proteasome wild type and open gate mutant, the Rhodococcus erythropolis proteasome, and the bovine proteasome with activator PA28. The Mtb proteasome was distinctive in strictly preferring P1 = tryptophan, particularly in combination with P3 = glycine, proline, lysine or arginine. Screening results were validated with Michalis-Menten kinetic analyses of 21 oligopeptide aminomethyl-coumarin substrates. Bortezomib, a proteasome inhibitor in clinical use, and 17 analogs varying only at P1 were used to examine the differential impact of inhibitors on human and Mtb proteasomes. The results with the inhibitor panel confirmed those with the substrate panel in demonstrating differential preferences of Mtb and mammalian proteasomes at the P1 amino acid. Changing P1 in bortezomib from Leu to m-CF(3)-Phe led to a 220-fold increase in IC(50) against the human proteasome, whereas changing a P1 Ala to m-F-Phe decreased the IC(50) 400-fold against the Mtb proteasome. The change of a P1 Ala to m-Cl-Phe led to an 8000-fold shift in inhibitory potency in favor of the Mtb proteasome, resulting in 8-fold selectivity. Combinations of preferred amino acids at different sites may thus improve the species selectivity of peptide-based inhibitors that target the Mtb proteasome. PMID:18829465

  8. Working with interpreters: how student behavior affects quality of patient interaction when using interpreters

    Directory of Open Access Journals (Sweden)

    Cha-Chi Fung

    2010-06-01

    Full Text Available Background: Despite the prevalence of medical interpreting in the clinical environment, few medical professionals receive training in best practices when using an interpreter. We designed and implemented an educational workshop on using interpreters as part of the cultural competency curriculum for second year medical students (MSIIs at David Geffen School of Medicine at UCLA. The purpose of this study is two-fold: first, to evaluate the effectiveness of the workshop and second, if deficiencies are found, to investigate whether the deficiencies affected the quality of the patient encounter when using an interpreter. Methods: A total of 152 MSIIs completed the 3-hour workshop and a 1-station objective-structured clinical examination, 8 weeks later to assess skills. Descriptive statistics and independent sample t-tests were used to assess workshop effectiveness. Results: Based on a passing score of 70%, 39.4% of the class failed. Two skills seemed particularly problematic: assuring confidentiality (missed by 50% and positioning the interpreter (missed by 70%. While addressing confidentiality did not have a significant impact on standardized patient satisfaction, interpreter position did. Conclusion: Instructing the interpreter to sit behind the patient helps sustain eye contact between clinician and patient, while assuring confidentiality is a tenet of quality clinical encounters. Teaching students and faculty to emphasize both is warranted to improve cross-language clinical encounters.

  9. Ecology of conflict: marine food supply affects human-wildlife interactions on land.

    Science.gov (United States)

    Artelle, Kyle A; Anderson, Sean C; Reynolds, John D; Cooper, Andrew B; Paquet, Paul C; Darimont, Chris T

    2016-01-01

    Human-wildlife conflicts impose considerable costs to people and wildlife worldwide. Most research focuses on proximate causes, offering limited generalizable understanding of ultimate drivers. We tested three competing hypotheses (problem individuals, regional population saturation, limited food supply) that relate to underlying processes of human-grizzly bear (Ursus arctos horribilis) conflict, using data from British Columbia, Canada, between 1960-2014. We found most support for the limited food supply hypothesis: in bear populations that feed on spawning salmon (Oncorhynchus spp.), the annual number of bears/km(2) killed due to conflicts with humans increased by an average of 20% (6-32% [95% CI]) for each 50% decrease in annual salmon biomass. Furthermore, we found that across all bear populations (with or without access to salmon), 81% of attacks on humans and 82% of conflict kills occurred after the approximate onset of hyperphagia (July 1(st)), a period of intense caloric demand. Contrary to practices by many management agencies, conflict frequency was not reduced by hunting or removal of problem individuals. Our finding that a marine resource affects terrestrial conflict suggests that evidence-based policy for reducing harm to wildlife and humans requires not only insight into ultimate drivers of conflict, but also management that spans ecosystem and jurisdictional boundaries. PMID:27185189

  10. Some factors affecting the dynamics of a plasma-wall interaction simulator

    International Nuclear Information System (INIS)

    Isotope mixing and thermal desorption from samples exposed in a glow discharge apparatus were used to study the factors affecting hydrogen recycle and wall inventory. Conditions were chosen to be similar to those expected at the walls in today's experimental fusion devices. The size and nature of the hydrogen reservoir in the wall after plasma pulses was investigated by thermal desorption techniques. Large amounts of deuterium, i.e., 5 x 1015 D cm-2 remain in the sample 4 min after a single 200 ms plasma pulse. While this result may be explained by a model using bulk diffusion and traps, it is suggested that either a spectrum of desorption energies, or a concentration dependent recombination coefficient, may also be useful in describing the thermal desorption processes. Experiments with various pumping conditions show that readsorption of molecular hydrogen isotopes on the wall should be considered in modeling hydrogen recycle and isotope changeover processes. HD formation without plasmas confirms the role readsorption plays. (orig.)

  11. Nitrogen-15 recovery fraction in flooded tropical rice as affected by Added Nitrogen Interaction

    International Nuclear Information System (INIS)

    The application of N fertilizer has been shown to cause an apparent increase in the uptake of native soil N via an effect termed ‘Added nitrogen interaction’ (ANI). This ANI caused by pool-substitution, can affect the 'IN-recovery fraction (NRF) by plants as calculated by the isotope-dilution method. The ANI effect was studied in a field experiment with transplanted and direct seeded flooded rice, comparing three methods of N-application (broadcast and incorporation of prilled urea ; band placement of urea solution ; and point placement of urea supergranules). ANI's for broadcast and incorporation treatments were generally greater than those for band and point placement treatments. The values for NRF calculated by the isotope-dilution method were lower than those of the apparent N-recovery fracton (ARF) as calculated by the difference method. Most of the discrepancy between plant nitrogen recoveries estimated by the isotope-dilution and the difference method could be explained by fertilizer losses and by pool-substitution, which means that fertilizer N stands proxy for soil N. (author)

  12. The interactive effects of affect and shopping goal on information search and product evaluations.

    Science.gov (United States)

    Chen, Fangyuan; Wyer, Robert S; Shen, Hao

    2015-12-01

    Although shoppers often want to evaluate products to make a purchase decision, they can also shop for enjoyment. In each case, the amount of time they spend on shopping and the number of options they consider can depend on the mood they happen to be in. We predicted that mood can signal whether the goal has been attained and when people should stop processing information. When people are primarily motivated to purchase a particular type of product, positive mood signals that they have done enough. Thus, they consider less information if they are happy than if they are unhappy. When people shop for enjoyment, however, positive mood signals that they are still having fun. Thus, they consider more information when they are happy than when they are not. Four experiments among university students (N = 827) examined these possibilities. Experiment 1 provided initial evidence for the interactive effects of mood and goals on search behavior and product evaluation. Other studies examined the implications of this conceptualization for different domains: (a) the relative impact of brand and attribute information on judgments (Experiment 2), (b) gender differences in shopping behavior (Experiment 3), and (c) the number of options that people review in an actual online shopping website (Experiment 4). PMID:26460676

  13. HOST PATHOGEN INTERACTION STUDY IN MALFORMED AFFECTED TISSUES OF MANGIFERA INDICA L.

    Directory of Open Access Journals (Sweden)

    Pradeep Kumar

    2013-01-01

    Full Text Available The malformation disease of mango by Fusarium moniliforme var. subglutinan is one of the major causes of huge economical loss every year. Early diagnosis of the pathogens can help cultivators to protect the mango orchid and fruits from successive and secondary infection. The molecular detection is one of the better choices among available techniques for diagnosis. But the farmers or individual cultivars from tropical and subtropical countries like India, Pakistan, Malaysia, Vietnam, Philippines, have lots of limitation to use molecular method. Another problem with this pathogen is lack of specific biomarker. Thus the present study was designed to develop a morphological and histopathological methodology to detect Fusarium moniliforme var. subglutinans and its host-pathogen interaction between fungus and hot tissues. Fresh and preserved (Formaldehyde: Acetic Acid: Alcohol (FAA solution tissues were used to check the efficacy of the method. The inter and intracellular distribution of fungal hyphae, in various tissue like cortex, phloem and parenchymatous pith cell, was clearly revealed by this method. The characteristics which were observed like detection of the mycelium threads at the juncture of the shoot tip, axillary buds, petels and sepals axis of the malformed or infected tissues. The Resin accumulation in the parenchymatous and other cells of vegetative tissue was also found as characteristics of this pathogen infection. This study is being also important in terms of identification and growth behavior of the pathogen.

  14. Salts affect the interaction of ZnO or CuO nanoparticles with wheat.

    Science.gov (United States)

    Stewart, Jacob; Hansen, Trevor; McLean, Joan E; McManus, Paul; Das, Siddhartha; Britt, David W; Anderson, Anne J; Dimkpa, Christian O

    2015-09-01

    Exposure to nanoparticles (NPs) that release metals with potential phytotoxicity could pose problems in agriculture. The authors of the present study used growth in a model growth matrix, sand, to examine the influence of 5 mmol/kg of Na, K, or Ca (added as Cl salts) and root exudates on transformation and changes to the bioactivity of copper(II) oxide (CuO) and zinc oxide (ZnO) NPs on wheat. These salt levels are found in saline agricultural soils. After 14 d of seedling growth, particles with crystallinity typical of CuO or ZnO remained in the aqueous fraction from the sand; particles had negative surface charges that differed with NP type and salt, but salt did not alter particle agglomeration. Reduction in shoot and root elongation and lateral root induction by ZnO NPs were mitigated by all salts. However, whereas Na and K promoted Zn loading into shoots, Ca reduced loading, suggesting that competition with Zn ions for uptake occurred. With CuO NPs, plant growth and loading was modified equally by all salts, consistent with major interaction with the plant with CuO rather than Cu ions. Thus, for both NPs, loading into plant tissues was not solely dependent on ion solubility. These findings indicated that salts in agricultural soils could modify the phytotoxicity of NPs. PMID:25917258

  15. Do interactions of land use and climate affect productivity of waterbirds and prairie-pothole wetlands?

    Science.gov (United States)

    Anteau, Michael J.

    2012-01-01

    Availability of aquatic invertebrates on migration and breeding areas influences recruitment of ducks and shorebirds. In wetlands of Prairie Pothole Region (PPR), aquatic invertebrate production primarily is driven by interannual fluctuations of water levels in response to wet-dry cycles in climate. However, this understanding comes from studying basins that are minimally impacted by agricultural landscape modifications. In the past 100–150 years, a large proportion of wetlands within the PPR have been altered; often water was drained from smaller to larger wetlands at lower elevations creating consolidated, interconnected basins. Here I present a case study and I hypothesize that large basins receiving inflow from consolidation drainage have reduced water-level fluctuations in response to climate cycles than those in undrained landscapes, resulting in relatively stable wetlands that have lower densities of invertebrate forage for ducks and shorebirds and also less foraging habitat, especially for shorebirds. Furthermore, stable water-levels and interconnected basins may favor introduced or invasive species (e.g., cattail [Typha spp.] or fish) because native communities "evolved" in a dynamic and isolated system. Accordingly, understanding interactions between water-level fluctuations and landscape modifications is a prerequisite step to modeling effects of climate change on wetland hydrology and productivity and concomitant recruitment of waterbirds.

  16. Role of the Ubiquitin Proteasome System in Regulating Skin Pigmentation

    Directory of Open Access Journals (Sweden)

    Hideya Ando

    2009-10-01

    Full Text Available Pigmentation of the skin, hair and eyes is regulated by tyrosinase, the critical rate-limiting enzyme in melanin synthesis by melanocytes. Tyrosinase is degraded endogenously, at least in part, by the ubiquitin proteasome system (UPS. Several types of inherited hypopigmentary diseases, such as oculocutaneous albinism and Hermansky-Pudlak syndrome, involve the aberrant processing and/or trafficking of tyrosinase and its subsequent degradation which can occur due to the quality-control machinery. Studies on carbohydrate modifications have revealed that tyrosinase in the endoplasmic reticulum (ER is proteolyzed via ER-associated protein degradation and that tyrosinase degradation can also occur following its complete maturation in the Golgi. Among intrinsic factors that regulate the UPS, fatty acids have been shown to modulate tyrosinase degradation in contrasting manners through increased or decreased amounts of ubiquitinated tyrosinase that leads to its accelerated or decelerated degradation by proteasomes.

  17. E1AF degradation by a ubiquitin-proteasome pathway

    International Nuclear Information System (INIS)

    E1AF is a member of the ETS family of transcription factors. In mammary tumors, overexpression of E1AF is associated with tumorigenesis, but E1AF protein has hardly been detected and its degradation mechanism is not yet clear. Here we show that E1AF protein is stabilized by treatment with the 26S protease inhibitor MG132. We found that E1AF was modified by ubiquitin through the C-terminal region and ubiquitinated E1AF aggregated in nuclear dots, and that the inhibition of proteasome-activated transcription from E1AF target promoters. These results suggest that E1AF is degraded via the ubiquitin-proteasome pathway, which has some effect on E1AF function

  18. The Role of Ubiquitine Proteasome Pathway in Carcinogenesis

    Directory of Open Access Journals (Sweden)

    N.Ceren Sumer Turanligil

    2010-02-01

    Full Text Available Ubiquitin works as a marker protein which targets misfolded or injured proteins to cellular degradation. It brings the abnormal proteins to a subcellular organelle named proteasome and it maintains the degradation of proteins in limited lenghts of peptides by leaving the process withuout being changed. Mistakes in ubiquitin-dependent proteolysis in various steps of carcinogenesis is known. In this review, we dealed with the effects of ubiquitin-proteasome pathway (UPP on carcinogenesis via intercellular signaling molecules like Ras, transcription factors like NF-kB, cytokines like TNF-alfa Tumor necrosis factor, protooncogenes like p53 and MDM2(murine double minute 2, components of cell cycle and DNA repair proteins like BRCA1. We also focused on the relationship of UPP on antigen presentation which is active in immune response and its place in the aetiology of colon cancer to provide a specific example. [Archives Medical Review Journal 2010; 19(1.000: 36-55

  19. Snowpack, fire, and forest disturbance: interactions affect montane invasions by non-native shrubs.

    Science.gov (United States)

    Stevens, Jens T; Latimer, Andrew M

    2015-06-01

    Montane regions worldwide have experienced relatively low plant invasion rates, a trend attributed to increased climatic severity, low rates of disturbance, and reduced propagule pressure relative to lowlands. Manipulative experiments at elevations above the invasive range of non-native species can clarify the relative contributions of these mechanisms to montane invasion resistance, yet such experiments are rare. Furthermore, global climate change and land use changes are expected to cause decreases in snowpack and increases in disturbance by fire and forest thinning in montane forests. We examined the importance of these factors in limiting montane invasions using a field transplant experiment above the invasive range of two non-native lowland shrubs, Scotch broom (Cytisus scoparius) and Spanish broom (Spartium junceum), in the rain-snow transition zone of the Sierra Nevada of California. We tested the effects of canopy closure, prescribed fire, and winter snow depth on demographic transitions of each species. Establishment of both species was most likely at intermediate levels of canopy disturbance, but at this intermediate canopy level, snow depth had negative effects on winter survival of seedlings. We used matrix population models to show that an 86% reduction in winter snowfall would cause a 2.8-fold increase in population growth rates in Scotch broom and a 3.5-fold increase in Spanish broom. Fall prescribed fire increased germination rates, but decreased overall population growth rates by reducing plant survival. However, at longer fire return intervals, population recovery between fires is likely to keep growth rates high, especially under low snowpack conditions. Many treatment combinations had positive growth rates despite being above the current invasive range, indicating that propagule pressure, disturbance, and climate can all strongly affect plant invasions in montane regions. We conclude that projected reductions in winter snowpack and increases in

  20. Schwann cell interactions with polymer films are affected by groove geometry and film hydrophilicity

    International Nuclear Information System (INIS)

    We have developed a biodegradable polymer scaffold made of a polycaprolactone/polylactic acid (PCL/PLA) film. Surface properties such as topography and chemistry have a vital influence on cell–material interactions. Surface modifications of PCL/PLA films were performed using topographical cues and UV–ozone treatment to improve Schwann cell organisation and behaviour. Schwann cell attachment, alignment and proliferation were evaluated on the grooved UV–ozone treated and non-treated films. Solvent casting of the polymer solution on patterned silicon substrates resulted in films with different groove shapes: V (V), sloped (SL) and square (SQ) shapes. Pitted films, with no grooves, were prepared as a negative control. The UV–ozone treatment was performed to increase hydrophilicity. The process specifications for UV–ozone treatment were evaluated and 5 min radiation time and 6 cm distance to the UV source were suggested as the optimal practise. When cultured on grooved films, Schwann cells elongated on the V and SL shape grooves without crossing over, and grew in the direction of the grooves. However, there was less elongation with more crossing over on the SQ shape grooves. The maximum cell length (511 μm) was observed on the treated V-grooved films. The cells cultured on pitted UV–ozone treated surfaces showed random arrangements with no increase in length. We have demonstrated that the synergic effects of physical cues combined with UV–ozone treatment have the potential to enhance Schwann cell morphology and alignment. (paper)

  1. Feeding History Affects Intraguild Interactions between Harmonia axyridis (Coleoptera: Coccinellidae and Episyrphus balteatus (Diptera: Syrphidae.

    Directory of Open Access Journals (Sweden)

    Brecht Ingels

    Full Text Available While the effect of several factors such as predator and prey size, morphology and developmental stage on intraguild predation (IGP is widely investigated, little is known about the influence of diet on the occurrence and outcome of IGP. In the present study, the effect of the diet experienced during larval development on IGP between the ladybird Harmonia axyridis and the syrphid Episyrphus balteatus is investigated. Four diets were tested for H. axyridis: eggs of the Mediterranean flour moth Ephestia kuehniella, pea aphids, Acyrthosiphon pisum, in an ad libitum amount, pea aphids in a limited amount, and honey bee pollen. For E. balteatus only the two aphid diets were tested. First, experiments were performed to determine the quality of the various diets for development of both predators. Second, IGP experiments between H. axyridis and E. balteatus were performed both in Petri dishes and on potted pepper plants. The diet of both species influenced the incidence of IGP between H. axyridis and E. balteatus both in Petri dishes and on potted plants. In general, smaller larvae of H. axyridis (those fed on poor or restricted diet fed more on hoverflies than large (well-nourished ladybird larvae. Further, poorly nourished (smaller larvae of E. balteatus were more susceptible to predation than well-fed (larger hoverfly larvae. The observed effects were not only due to the lower fitness of larvae of both predators reared on an inferior quality diet but also to changes in predator behaviour. The results from this study show that IGP interactions are influenced by a multitude of factors, including feeding history of the organisms involved, and emphasize the importance of taking these factors into account in order to fully understand the ecological relevance of IGP.

  2. Neurophysiological processing of emotion and parenting interact to predict inhibited behavior: an affective-motivational framework.

    Science.gov (United States)

    Kessel, Ellen M; Huselid, Rebecca F; Decicco, Jennifer M; Dennis, Tracy A

    2013-01-01

    Although inhibited behavior problems are prevalent in childhood, relatively little is known about the intrinsic and extrinsic factors that predict a child's ability to regulate inhibited behavior during fear- and anxiety-provoking tasks. Inhibited behavior may be linked to both disruptions in avoidance-related processing of aversive stimuli and in approach-related processing of appetitive stimuli, but previous findings are contradictory and rarely integrate consideration of the socialization context. The current exploratory study used a novel combination of neurophysiological and observation-based methods to examine whether a neurophysiological measure sensitive to approach- and avoidance-oriented emotional processing, the late positive potential (LPP), interacted with observed approach- (promotion) and avoidance- (prevention) oriented parenting practices to predict children's observed inhibited behavior. Participants were 5- to 7-year-old (N = 32) typically-developing children (M = 75.72 months, SD = 6.01). Electroencephalography was continuously recorded while children viewed aversive, appetitive, or neutral images, and the LPP was generated to each picture type separately. Promotion and prevention parenting were observed during an emotional challenge with the child. Child inhibited behavior was observed during a fear and a social evaluation task. As predicted, larger LPPs to aversive images predicted more inhibited behavior during both tasks, but only when parents demonstrated low promotion. In contrast, larger LPPs to appetitive images predicted less inhibited behavior during the social evaluative task, but only when parents demonstrated high promotion; children of high promotion parents showing smaller LPPs to appetitive images showed the greatest inhibition. Parent-child goodness-of-fit and the LPP as a neural biomarker for emotional processes related to inhibited behavior are discussed. PMID:23847499

  3. Neurophysiological Processing of Emotion and Parenting Interact to Predict Inhibited Behavior: An Affective-Motivational Framework

    Directory of Open Access Journals (Sweden)

    Ellen M Kessel

    2013-07-01

    Full Text Available Although inhibited behavior problems are prevalent in childhood, relatively little is known about the intrinsic and extrinsic factors that predict a child’s ability to regulate inhibited behavior during fear- and anxiety-provoking tasks. Inhibited behavior may be linked to both disruptions in avoidance-related processing of aversive stimuli and in approach-related processing of appetitive stimuli, but previous findings are contradictory and rarely integrate consideration of the socialization context. The current exploratory study used a novel combination of neurophysiological and observation-based methods to examine whether a neurophysiological measure sensitive to approach- and avoidance-oriented emotional processing, the late positive potential (LPP, interacted with observed approach- (promotion and avoidance- (prevention oriented parenting practices to predict children’s observed inhibited behavior. Participants were 5- to 7-year-old (N = 32 typically-developing children (M = 75.72 months, SD = 6.01. Electroencephalography was continuously recorded while children viewed aversive, appetitive, or neutral images, and the LPP was generated to each picture type separately. Promotion and prevention parenting were observed during an emotional challenge with the child. Child inhibited behavior was observed during a fear and a social evaluation task. As predicted, larger LPPs to aversive images predicted more inhibited behavior during both tasks, but only when parents demonstrated low promotion. In contrast, larger LPPs to appetitive images predicted less inhibited behavior during the social evaluative task, but only when parents demonstrated high promotion; children of high promotion parents showing smaller LPPs to appetitive images showed the greatest inhibition. Parent-child goodness-of-fit and the LPP as a neural biomarker for emotional processes related to inhibited behavior are discussed.

  4. Rootstock-scion interaction affecting citrus response to CTV infection: a proteomic view.

    Science.gov (United States)

    Laino, Paolo; Russo, Maria P; Guardo, Maria; Reforgiato-Recupero, Giuseppe; Valè, Giampiero; Cattivelli, Luigi; Moliterni, Vita M C

    2016-04-01

    Citrus tristeza virus (CTV) is the causal agent of various diseases with dramatic effects on citrus crops worldwide. Most Citrus species, grown on their own roots, are symptomless hosts for many CTV isolates. However, depending on different scion-rootstock combination, CTV infection should result in distinct syndromes, being 'tristeza' the more severe one, leading to a complete decline of the susceptible plants in a few weeks. Transcriptomic analyses revealed several genes involved either in defense response, or systemic acquired resistance, as well as transcription factors and components of the phosphorylation cascades, to be differentially regulated during CTV infection in Citrus aurantifolia species. To date little is known about the molecular mechanism of this host-pathogen interaction, and about the rootstock effect on citrus response to CTV infection. In this work, the response to CTV infection has been investigated in tolerant and susceptible scion-rootstock combinations by two-dimensional gel electrophoresis (2DE). A total of 125 protein spots have been found to be differently accumulated and/or phosphorylated between the two rootstock combinations. Downregulation in tolerant plants upon CTV infection was detected for proteins involved in reactive oxygen species (ROS) scavenging and defense response, suggesting a probable acclimation response able to minimize the systemic effects of virus infection. Some of these proteins resulted to be modulated also in absence of virus infection, revealing a rootstock effect on scion proteome modulation. Moreover, the phospho-modulation of proteins involved in ROS scavenging and defense response, further supports their involvement either in scion-rootstock crosstalk or in the establishment of tolerance/susceptibility to CTV infection. PMID:26459956

  5. Benthic Trophic Interactions in an Antarctic Shallow Water Ecosystem Affected by Recent Glacier Retreat.

    Directory of Open Access Journals (Sweden)

    Francesca Pasotti

    Full Text Available The western Antarctic Peninsula is experiencing strong environmental changes as a consequence of ongoing regional warming. Glaciers in the area are retreating rapidly and increased sediment-laden meltwater runoff threatens the benthic biodiversity at shallow depths. We identified three sites with a distinct glacier-retreat related history and different levels of glacial influence in the inner part of Potter Cove (King George Island, South Shetland Islands, a fjord-like embayment impacted since the 1950s by a tidewater glacier retreat. We compared the soft sediment meio- and macrofauna isotopic niche widths (δ13C and δ15N stable isotope analysis at the three sites to investigate possible glacier retreat-related influences on benthic trophic interactions. The isotopic niches were locally shaped by the different degrees of glacier retreat-related disturbance within the Cove. Wider isotopic niche widths were found at the site that has become ice-free most recently, and narrower niches at the older ice-free sites. At an intermediate state of glacier retreat-related disturbance (e.g. via ice-growler scouring species with different strategies could settle. The site at the earliest stage of post-retreat development was characterized by an assemblage with lower trophic redundancy. Generally, the isotopic niche widths increased with increasing size spectra of organisms within the community, excepting the youngest assemblage, where the pioneer colonizer meiofauna size class displayed the highest isotopic niche width. Meiofauna at all sites generally occupied positions in the isotopic space that suggested a detrital-pool food source and/or the presence of predatory taxa. In general ice scour and glacial impact appeared to play a two-fold role within the Cove: i either stimulating trophic diversity by allowing continuous re-colonization of meiofaunal species or, ii over time driving the benthic assemblages into a more compact trophic structure with

  6. Disturbace events affect interactions amoung four different hydrolytic enzymes in arid soils

    Science.gov (United States)

    Warnock, D.; Litvak, M. E.; Sinsabaugh, R. L.

    2014-12-01

    Global change processes are significantly altering key ecosystem processes in arid ecosystems. Such phenomena are also likely to influence the functional behaviors of resident soil microbial communities, and the magnitude of biogeochemical processes, including, soil organic matter turnover, soil nutrient cycling and soil carbon storage. To assess the aggregate influences of tree mortality, woody plant encroachment, fire, and drought, on soil microbial community activity and functionality, we collected soil samples from beneath plant canopies, and from adjacent bare soils. We sampled from two different piñon-juniper woodland sites. One had many dead piñons, while the other did not, a burned and an unburned grassland, a shrub site, a shrub/grass ecotone, and a juniper savannah. We analyzed eleven soil physicochemical properties, none of which showed any significant trends across our different sampling locations, fungal biomass, and the activities of alanine aminopeptidase, alkaline phosphatase, β-D-glucosidase, and β-N-acetyl glucosaminidase (NAGase). One-wayANOVA results showed that enzyme activity patterns were largely consistent across field sites, while multivariate analyses showed a variety of interactive responses by individual enzymes,with respect to disturbance events. For example, at the burned grassland, all four enzymes activities were strongly correlated, while at the unburned grassland, relationships between peptidase:NAGase and peptidase:β-D-glucosidase were weak, with both R2 ≤ 0.08. Additionally in the shrub-grass ecotone, the correlation among enzyme activities and soil nutrient availabilities were up to 8x stronger than those observed at either grassland site. These results show that disturbance alters the number of functional dimensions needed to describe enzymatic C, N and P acquisition, which may be an indication of shifts in microbial community organization.

  7. MG132, a proteasome inhibitor, induces apoptosis in tumor cells.

    Science.gov (United States)

    Guo, Na; Peng, Zhilan

    2013-03-01

    The balance between cell proliferation and apoptosis is critical for normal development and for the maintenance of homeostasis in adult organisms. Disruption of this balance has been implicated in a large number of disease processes, ranging from autoimmunity and neurodegenerative disorders to cancer. The ubiquitin-proteasome pathway, responsible for mediating the majority of intracellular proteolysis, plays a crucial role in the regulation of many normal cellular processes, including the cell cycle, differentiation and apoptosis. Apoptosis in cancer cells is closely connected with the activity of ubiquitin-proteasome pathway. The peptide-aldehyde proteasome inhibitor MG132 (carbobenzoxyl-L-leucyl-L-leucyl-L-leucine) induces the apoptosis of cells by a different intermediary pathway. Although the pathway of induction of apoptosis is different, it plays a crucial role in anti-tumor treatment. There are many cancer-related molecules in which the protein levels present in cells are regulated by a proteasomal pathway; for example, tumor inhibitors (P53, E2A, c-Myc, c-Jun, c-Fos), transcription factors (transcription factor nuclear factor-kappa B, IκBα, HIFI, YYI, ICER), cell cycle proteins (cyclin A and B, P27, P21, IAP1/3), MG132 induces cell apoptosis through formation of reactive oxygen species or the upregulation and downregulation of these factors, which is ultimately dependent upon the activation of the caspase family of cysteine proteases. In this article we review the mechanism of the induction of apoptosis in order to provide information required for research. PMID:22897979

  8. Proteasomal diseases are a new branch of autoinflammatory pathology

    OpenAIRE

    Evgeny Stanislavovich Fedorov

    2013-01-01

    The paper deals with a new autoinflammatory disease entity that is proteasomal diseases. The latter include three nosological entities: Nakajo–Nishimura syndrome (NNS), Japanese autoinflammatory syndrome with lipodystrophy; chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature (CANDLE syndrome); joint contractures, muscular atrophy, microcytic anemia, and panniculitisinduced lipodystrophy (JMP syndrome). All the three conditions are caused by mutations in one PS...

  9. Structure-Driven Developments of 26S Proteasome Inhibitors.

    Science.gov (United States)

    Śledź, Paweł; Baumeister, Wolfgang

    2016-01-01

    The 26S proteasome is a 2.5-MDa complex, and it operates at the executive end of the ubiquitin-proteasome pathway. It is a proven target for therapeutic agents for the treatment of some cancers and autoimmune diseases, and moreover, it has potential as a target of antibacterial agents. Most inhibitors, including all molecules approved for clinical use, target the 20S proteolytic core complex; its structure was determined two decades ago. Hitherto, efforts to develop inhibitors targeting the 19S regulatory particle subunits have been less successful. This is, in part, because the molecular architecture of this subcomplex has been, until recently, poorly understood, and high-resolution structures have been available only for a few subunits. In this review, we describe, from a structural perspective, the development of inhibitory molecules that target both the 20S and 19S subunits of the proteasome. We highlight the recent progress achieved in structure-based drug-discovery approaches, and we discuss the prospects for further improvement. PMID:26738474

  10. Quantitative phosphoproteomics of proteasome inhibition in multiple myeloma cells.

    Directory of Open Access Journals (Sweden)

    Feng Ge

    Full Text Available BACKGROUND: The proteasome inhibitor bortezomib represents an important advance in the treatment of multiple myeloma (MM. Bortezomib inhibits the activity of the 26S proteasome and induces cell death in a variety of tumor cells; however, the mechanism of cytotoxicity is not well understood. METHODOLOGY/PRINCIPAL FINDINGS: We investigated the differential phosphoproteome upon proteasome inhibition by using stable isotope labeling by amino acids in cell culture (SILAC in combination with phosphoprotein enrichment and LC-MS/MS analysis. In total 233 phosphoproteins were identified and 72 phosphoproteins showed a 1.5-fold or greater change upon bortezomib treatment. The phosphoproteins with expression alterations encompass all major protein classes, including a large number of nucleic acid binding proteins. Site-specific phosphopeptide quantitation revealed that Ser38 phosphorylation on stathmin increased upon bortezomib treatment, suggesting new mechanisms associated to bortezomib-induced apoptosis in MM cells. Further studies demonstrated that stathmin phosphorylation profile was modified in response to bortezomib treatment and the regulation of stathmin by phosphorylation at specific Ser/Thr residues participated in the cellular response induced by bortezomib. CONCLUSIONS/SIGNIFICANCE: Our systematic profiling of phosphorylation changes in response to bortezomib treatment not only advanced the global mechanistic understanding of the action of bortezomib on myeloma cells but also identified previously uncharacterized signaling proteins in myeloma cells.

  11. The 26S Proteasome Degrades the Soluble but Not the Fibrillar Form of the Yeast Prion Ure2p In Vitro.

    Directory of Open Access Journals (Sweden)

    Kai Wang

    Full Text Available Yeast prions are self-perpetuating protein aggregates that cause heritable and transmissible phenotypic traits. Among these, [PSI+] and [URE3] stand out as the most studied yeast prions, and result from the self-assembly of the translation terminator Sup35p and the nitrogen catabolism regulator Ure2p, respectively, into insoluble fibrillar aggregates. Protein quality control systems are well known to govern the formation, propagation and transmission of these prions. However, little is known about the implication of the cellular proteolytic machineries in their turnover. We previously showed that the 26S proteasome degrades both the soluble and fibrillar forms of Sup35p and affects [PSI+] propagation. Here, we show that soluble native Ure2p is degraded by the proteasome in an ubiquitin-independent manner. Proteasomal degradation of Ure2p yields amyloidogenic N-terminal peptides and a C-terminal resistant fragment. In contrast to Sup35p, fibrillar Ure2p resists proteasomal degradation. Thus, structural variability within prions may dictate their ability to be degraded by the cellular proteolytic systems.

  12. Myxoma virus attenuates expression of activating transcription factor 4 (ATF4 which has implications for the treatment of proteasome inhibitor–resistant multiple myeloma

    Directory of Open Access Journals (Sweden)

    Dunlap KM

    2015-01-01

    Full Text Available Katherine M Dunlap, Mee Y Bartee, Eric Bartee Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA Abstract: The recent development of chemotherapeutic proteasome inhibitors, such as bortezomib, has improved the outcomes of patients suffering from the plasma cell malignancy multiple myeloma. Unfortunately, many patients treated with these drugs still suffer relapsing disease due to treatment-induced upregulation of the antiapoptotic protein Mcl1. We have recently demonstrated that an oncolytic poxvirus, known as myxoma, can rapidly eliminate primary myeloma cells by inducing cellular apoptosis. The efficacy of myxoma treatment on proteasome inhibitor–relapsed or –refractory myeloma, however, remains unknown. We now demonstrate that myxoma-based elimination of myeloma is not affected by cellular resistance to proteasome inhibitors. Additionally, myxoma virus infection specifically prevents expression of Mcl1 following induction of the unfolded protein response, by blocking translation of the unfolded protein response activating transcription factor (ATF4. These results suggest that myxoma-based oncolytic therapy represents an attractive option for myeloma patients whose disease is refractory to chemotherapeutic proteasome inhibitors due to upregulation of Mcl1. Keywords: drug resistance, oncolytic

  13. Computational Approaches for the Discovery of Human Proteasome Inhibitors: An Overview.

    Science.gov (United States)

    Guedes, Romina A; Serra, Patrícia; Salvador, Jorge A R; Guedes, Rita C

    2016-01-01

    Proteasome emerged as an important target in recent pharmacological research due to its pivotal role in degrading proteins in the cytoplasm and nucleus of eukaryotic cells, regulating a wide variety of cellular pathways, including cell growth and proliferation, apoptosis, DNA repair, transcription, immune response, and signaling processes. The last two decades witnessed intensive efforts to discover 20S proteasome inhibitors with significant chemical diversity and efficacy. To date, the US FDA approved to market three proteasome inhibitors: bortezomib, carfilzomib, and ixazomib. However new, safer and more efficient drugs are still required. Computer-aided drug discovery has long being used in drug discovery campaigns targeting the human proteasome. The aim of this review is to illustrate selected in silico methods like homology modeling, molecular docking, pharmacophore modeling, virtual screening, and combined methods that have been used in proteasome inhibitors discovery. Applications of these methods to proteasome inhibitors discovery will also be presented and discussed to raise improvements in this particular field. PMID:27438821

  14. Calcium-dependent proteasome activation is required for axonal neurofilament degradation

    Institute of Scientific and Technical Information of China (English)

    Joo Youn Park; So Young Jang; Yoon Kyung Shin; Duk Joon Suh; Hwan Tae Park

    2013-01-01

    Even though many studies have identified roles of proteasomes in axonal degeneration, the mo-lecular mechanisms by which axonal injury regulates proteasome activity are stil unclear. In the present study, we found evidence indicating that extracellular calcium influx is an upstream regula-tor of proteasome activity during axonal degeneration in injured peripheral nerves. In degenerating axons, the increase in proteasome activity and the degradation of ubiquitinated proteins were sig-nificantly suppressed by extracellular calcium chelation. In addition, electron microscopic findings revealed selective inhibition of neurofilament degradation, but not microtubule depolymerization or mitochondrial swel ing, by the inhibition of calpain and proteasomes. Taken together, our findings suggest that calcium increase and subsequent proteasome activation are an essential initiator of neurofilament degradation in Wal erian degeneration.

  15. Calcium-dependent proteasome activation is required for axonal neurofilament degradation.

    Science.gov (United States)

    Park, Joo Youn; Jang, So Young; Shin, Yoon Kyung; Suh, Duk Joon; Park, Hwan Tae

    2013-12-25

    Even though many studies have identified roles of proteasomes in axonal degeneration, the molecular mechanisms by which axonal injury regulates proteasome activity are still unclear. In the present study, we found evidence indicating that extracellular calcium influx is an upstream regulator of proteasome activity during axonal degeneration in injured peripheral nerves. In degenerating axons, the increase in proteasome activity and the degradation of ubiquitinated proteins were significantly suppressed by extracellular calcium chelation. In addition, electron microscopic findings revealed selective inhibition of neurofilament degradation, but not microtubule depolymerization or mitochondrial swelling, by the inhibition of calpain and proteasomes. Taken together, our findings suggest that calcium increase and subsequent proteasome activation are an essential initiator of neurofilament degradation in Wallerian degeneration. PMID:25206662

  16. 1.15 Å resolution structure of the proteasome-assembly chaperone Nas2 PDZ domain

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Chingakham R. [Kansas State University, 338 Ackert Hall, Manhattan, KS 66506 (United States); Lovell, Scott; Mehzabeen, Nurjahan [University of Kansas, Del Shankel Structural Biology Center, Lawrence, KS 66047 (United States); Chowdhury, Wasimul Q.; Geanes, Eric S. [Kansas State University, 338 Ackert Hall, Manhattan, KS 66506 (United States); Battaile, Kevin P. [IMCA-CAT Hauptman–Woodward Medical Research Institute, 9700 South Cass Avenue, Building 435A, Argonne, IL 60439 (United States); Roelofs, Jeroen, E-mail: jroelofs@ksu.edu [Kansas State University, 338 Ackert Hall, Manhattan, KS 66506 (United States)

    2014-03-25

    The proteasome-assembly chaperone Nas2 binds to the proteasome subunit Rpt5 using its PDZ domain. The structure of the Nas2 PDZ domain has been determined. The 26S proteasome is a 2.5 MDa protease dedicated to the degradation of ubiquitinated proteins in eukaryotes. The assembly of this complex containing 66 polypeptides is assisted by at least nine proteasome-specific chaperones. One of these, Nas2, binds to the proteasomal AAA-ATPase subunit Rpt5. The PDZ domain of Nas2 binds to the C-terminal tail of Rpt5; however, it does not require the C-terminus of Rpt5 for binding. Here, the 1.15 Å resolution structure of the PDZ domain of Nas2 is reported. This structure will provide a basis for further insights regarding the structure and function of Nas2 in proteasome assembly.

  17. Profiling human protein degradome delineates cellular responses to proteasomal inhibition and reveals a feedback mechanism in regulating proteasome homeostasis

    OpenAIRE

    Yu, Tao; Tao, Yonghui; Yang, Meiqiang; Chen, Peng; Gao, XiaoBo; Zhang, Yanbo; Zhang,Tao; Chen, Zi; Hou, Jian; Zhang, Yan; Ruan, Kangcheng; Wang, Hongyan; Hu, Ronggui

    2014-01-01

    Global change in protein turnover (protein degradome) constitutes a central part of cellular responses to intrinsic or extrinsic stimuli. However, profiling protein degradome remains technically challenging. Recently, inhibition of the proteasome, e.g., by using bortezomib (BTZ), has emerged as a major chemotherapeutic strategy for treating multiple myeloma and other human malignancies, but systematic understanding of the mechanisms for BTZ drug action and tumor drug resistance is yet to be a...

  18. The proteasome cap RPT5/Rpt5p subunit prevents aggregation of unfolded ricin A chain

    DEFF Research Database (Denmark)

    Pietroni, Paola; Vasisht, Nishi; Cook, Jonathan P;

    2013-01-01

    model is that the bulk of ER-dislocated RTA is degraded by proteasomes. We show here that the proteasome has a more complex role in ricin intoxication than previously recognised, that the previously reported increase in sensitivity of mammalian cells to ricin in the presence of proteasome inhibitors......5p in the triage of substrates in which either activation (folding) or inactivation (degradation) pathways may be initiated....

  19. Cooperation of multiple chaperones required for the assembly of mammalian 20S proteasomes

    DEFF Research Database (Denmark)

    Hirano, Y.; Hayashi, H.; Iemura, S.; Hendil, K. B.; Niwa, S.; Kishimoto, T.; Natsume, T.; Tanaka, K.; Murata, S.

    2006-01-01

    proteasomes is assisted by proteasome-specific chaperones, named PAC1, PAC2, and hUmp1, but the details are still unknown. Here, we report the identification of a chaperone, designated PAC3, as a component of a rings. Although it can intrinsically bind directly to both a and ß subunits, PAC3 dissociates...... describe a cooperative system of multiple chaperones involved in the correct assembly of mammalian 20S proteasomes....

  20. Clinical Use of Proteasome Inhibitors in the Treatment of Multiple Myeloma

    Directory of Open Access Journals (Sweden)

    Noah M. Merin

    2014-12-01

    Full Text Available Multiple myeloma (MM is an incurable hematological malignancy characterized by the clonal proliferation of neoplastic plasma cells. The use of proteasome inhibitors in the treatment of MM has led to significant improvements in outcomes. This article reviews data on the use of the two approved proteasome inhibitors (bortezomib and carlfilzomib, as well as newer agents under development. Emphasis is placed on the clinical use of proteasome inhibitors, including management of side effects and combination with other agents.

  1. Focal dysfunction of the proteasome: a pathogenic factor in a mouse model of amyotrophic lateral sclerosis.

    Science.gov (United States)

    Kabashi, Edor; Agar, Jeffrey N; Taylor, David M; Minotti, Sandra; Durham, Heather D

    2004-06-01

    Mutations in the Cu/Zn-superoxide dismutase (SOD-1) gene are responsible for a familial form of amyotrophic lateral sclerosis (fALS). The present study demonstrated impaired proteasomal function in the lumbar spinal cord of transgenic mice expressing human SOD-1 with the ALS-causing mutation G93A (SOD-1(G93A)) compared to non-transgenic littermates (LM) and SOD-1(WT) transgenic mice. Chymotrypsin-like activity was decreased as early as 45 days of age. By 75 days, chymotrypsin-, trypsin-, and caspase-like activities of the proteasome were impaired, at about 50% of control activity in lumbar spinal cord, but unchanged in thoracic spinal cord and liver. Both total and specific activities of the proteasome were reduced to a similar extent, indicating that a change in proteasome function, rather than a decrease in proteasome levels, had occurred. Similar decreases of total and specific activities of the proteasome were observed in NIH 3T3 cell lines expressing fALS mutants SOD-1(G93A) and SOD-1(G41S), but not in SOD-1(WT) controls. Although overall levels of proteasome were maintained in spinal cord of SOD-1(G93A) transgenic mice, the level of 20S proteasome was substantially reduced in lumbar spinal motor neurons relative to the surrounding neuropil. It is concluded that impairment of the proteasome is an early event and contributes to ALS pathogenesis. PMID:15189335

  2. Structural analysis of the dodecameric proteasome activator PafE in Mycobacterium tuberculosis.

    Science.gov (United States)

    Bai, Lin; Hu, Kuan; Wang, Tong; Jastrab, Jordan B; Darwin, K Heran; Li, Huilin

    2016-04-01

    The human pathogen Mycobacterium tuberculosis (Mtb) requires a proteasome system to cause lethal infections in mice. We recently found that proteasome accessory factor E (PafE, Rv3780) activates proteolysis by the Mtb proteasome independently of adenosine triphosphate (ATP). Moreover, PafE contributes to the heat-shock response and virulence of Mtb Here, we show that PafE subunits formed four-helix bundles similar to those of the eukaryotic ATP-independent proteasome activator subunits of PA26 and PA28. However, unlike any other known proteasome activator, PafE formed dodecamers with 12-fold symmetry, which required a glycine-XXX-glycine-XXX-glycine motif that is not found in previously described activators. Intriguingly, the truncation of the PafE carboxyl-terminus resulted in the robust binding of PafE rings to native proteasome core particles and substantially increased proteasomal activity, suggesting that the extended carboxyl-terminus of this cofactor confers suboptimal binding to the proteasome core particle. Collectively, our data show that proteasomal activation is not limited to hexameric ATPases in bacteria. PMID:27001842

  3. Different effect of proteasome inhibition on vesicular stomatitis virus and poliovirus replication.

    Directory of Open Access Journals (Sweden)

    Nickolay Neznanov

    Full Text Available Proteasome activity is an important part of viral replication. In this study, we examined the effect of proteasome inhibitors on the replication of vesicular stomatitis virus (VSV and poliovirus. We found that the proteasome inhibitors significantly suppressed VSV protein synthesis, virus accumulation, and protected infected cells from toxic effect of VSV replication. In contrast, poliovirus replication was delayed, but not diminished in the presence of the proteasome inhibitors MG132 and Bortezomib. We also found that inhibition of proteasomes stimulated stress-related processes, such as accumulation of chaperone hsp70, phosphorylation of eIF2alpha, and overall inhibition of translation. VSV replication was sensitive to this stress with significant decline in replication process. Poliovirus growth was less sensitive with only delay in replication. Inhibition of proteasome activity suppressed cellular and VSV protein synthesis, but did not reduce poliovirus protein synthesis. Protein kinase GCN2 supported the ability of proteasome inhibitors to attenuate general translation and to suppress VSV replication. We propose that different mechanisms of translational initiation by VSV and poliovirus determine their sensitivity to stress induced by the inhibition of proteasomes. To our knowledge, this is the first study that connects the effect of stress induced by proteasome inhibition with the efficiency of viral infection.

  4. Altered functional interaction hub between affective network and cognitive control network in patients with major depressive disorder.

    Science.gov (United States)

    Wang, Ya-li; Yang, Shu-zhen; Sun, Wei-li; Shi, Yu-zhong; Duan, Hui-feng

    2016-02-01

    Emotional and cognitive dysregulation in major depressive disorder (MDD) have been consistently considered to be attributed to structural and functional abnormalities in affective network (AN) and cognitive control network (CCN). This study was to investigate the functional connectivity (FC) patterns and altered functional interactions between both networks in MDD. We investigated resting-state functional connectivity magnetic resonance imaging in the AN and the CCN in 25 MDD and 35 healthy controls (HC). The seeds were from voxel-based morphometry (VBM) analysis results. Then FC within the AN was assessed from a seed placed in the left amygdala (AMG) and FC within CCN was determined by placing seeds in the right dorsolateral prefrontal cortex (DLPFC). Compared with HC, MDD showed reduced FC between left AMG and bilateral precuneus and right anterior cingulated cortex (ACC) within AN and reduced FC between right DLPFC and left cuneus, left lingual gyrus, and right ACC within CCN. An interaction hub of altered FC in MDD between AN and CCN located in the right ACC. Interestingly, the altered FC between right ACC and left AMG was negatively correlated with depressive symptom score while the altered FC between right ACC and DLPFC was positively correlated the executive function in MDD. The right ACC not only supports the cognitive and emotional processes, but also is an altered functional interaction hub between AN and CCN in MDD. It further suggest multiple sources of dysregulation in AN and CCN implicate both top-down cognitive control and bottom-up emotional expression dysfunction in MDD. PMID:26519557

  5. Seed trait-mediated selection by rodents affects mutualistic interactions and seedling recruitment of co-occurring tree species.

    Science.gov (United States)

    Zhang, Hongmao; Yan, Chuan; Chang, Gang; Zhang, Zhibin

    2016-02-01

    As mutualists, seed dispersers may significantly affect mutualistic interactions and seedling recruitment of sympatric plants that share similar seed dispersers, but studies are rare. Here, we compared seed dispersal fitness in two co-occurring plant species (Armeniaca sibirica and Amygdalus davidiana) that inhabit warm temperate deciduous forest in northern China. We tested the hypothesis that seed trait-mediated selection by rodents may influence mutualistic interactions with rodents and then seedling establishment of co-occurring plant species. A. davidiana seeds are larger and harder (thick endocarps) than A. sibirica seeds, but they have similar levels of nutrients (crude fat, crude protein), caloric value and tannin. More A. sibirica seedlings are found in the field. Semi-natural enclosure tests indicated that the two seed species were both harvested by the same six rodent species, but that A. sibirica had mutualistic interactions (scatter hoarding) with four rodent species (Apodemus peninsulae, A. agrarius, Sciurotamias davidianus, Tamias sibiricus), and A. davidiana with only one (S. davidianus). Tagged seed dispersal experiments in the field indicated that more A. sibirica seeds were scatter-hoarded by rodents, and more A. sibirica seeds survived to the next spring and became seedlings. A. sibirica seeds derive more benefit from seed dispersal by rodents than A. davidiana seeds, particularly in years with limited seed dispersers, which well explained the higher seedling recruitment of A. sibirica compared with that of A. davidiana under natural conditions. Our results suggest that seed dispersers may play a significant role in seedling recruitment and indirect competition between co-occurring plant species. PMID:26546082

  6. Structure- and function-based design of Plasmodium-selective proteasome inhibitors.

    Science.gov (United States)

    Li, Hao; O'Donoghue, Anthony J; van der Linden, Wouter A; Xie, Stanley C; Yoo, Euna; Foe, Ian T; Tilley, Leann; Craik, Charles S; da Fonseca, Paula C A; Bogyo, Matthew

    2016-02-11

    The proteasome is a multi-component protease complex responsible for regulating key processes such as the cell cycle and antigen presentation. Compounds that target the proteasome are potentially valuable tools for the treatment of pathogens that depend on proteasome function for survival and replication. In particular, proteasome inhibitors have been shown to be toxic for the malaria parasite Plasmodium falciparum at all stages of its life cycle. Most compounds that have been tested against the parasite also inhibit the mammalian proteasome, resulting in toxicity that precludes their use as therapeutic agents. Therefore, better definition of the substrate specificity and structural properties of the Plasmodium proteasome could enable the development of compounds with sufficient selectivity to allow their use as anti-malarial agents. To accomplish this goal, here we use a substrate profiling method to uncover differences in the specificities of the human and P. falciparum proteasome. We design inhibitors based on amino-acid preferences specific to the parasite proteasome, and find that they preferentially inhibit the β2-subunit. We determine the structure of the P. falciparum 20S proteasome bound to the inhibitor using cryo-electron microscopy and single-particle analysis, to a resolution of 3.6 Å. These data reveal the unusually open P. falciparum β2 active site and provide valuable information about active-site architecture that can be used to further refine inhibitor design. Furthermore, consistent with the recent finding that the proteasome is important for stress pathways associated with resistance of artemisinin family anti-malarials, we observe growth inhibition synergism with low doses of this β2-selective inhibitor in artemisinin-sensitive and -resistant parasites. Finally, we demonstrate that a parasite-selective inhibitor could be used to attenuate parasite growth in vivo without appreciable toxicity to the host. Thus, the Plasmodium proteasome is a

  7. Enhanced proteasome degradation extends Caenorhabditis elegans lifespan and alleviates aggregation-related pathologies.

    Science.gov (United States)

    Chondrogianni, Niki; Georgila, Konstantina; Kourtis, Nikos; Tavernarakis, Nektarios; Gonos Efstathios, S

    2014-10-01

    Collapse of proteostasis and accumulation of damaged macromolecules have been recognized as hallmarks of aging and age-related diseases. The proteasome is the major cellular protease responsible for intracellular protein degradation, having an impaired function during aging. We have previously shown that proteasome activation through overexpression of β5 proteasome subunit delays replicative senescence and confers resistance to oxidative stress in primary fibroblasts. Herein, we have investigated the impact of enhanced proteasome function on organismal longevity and aggregation-related pathologies by employing Caenorhabditis elegans as a model system. We have found that overexpression of a core 20S proteasome subunit in wild type worms extends lifespan, healthspan and survival under proteotoxic conditions. The longevity prolonging effect of the proteasome subunit overexpression was found to depend on the FOXO transcription factor DAF-16 and was associated with its elevated transcriptional activity. We have also uncovered a major role of enhanced proteasome activity in aggregation-related pathologies underlying neurodegenerative diseases. Genetic activation of the proteasome minimized the detrimental effect of polyglutamine-induced toxicity mimicking Huntington's disease, whereas knock-down of the proteasome component exaggerated the disease phenotypes. Similar results were obtained by using a C.elegans model of Amyloid beta (Αβ) -induced toxicity mimicking Alzheimer's disease. Collectively, these findings demonstrate that enhanced proteasome function alleviates proteotoxicity and promotes longevity in synergy with other nodes of lifespan regulation in C.elegans. Understanding the mechanism by which preservation of proteostasis via enhancement of proteasome function, decelerates the aging process and alleviates age-related pathologies may assist in the rational design of therapeutic and anti-aging interventions. PMID:26461298

  8. Identifying candidate genes affecting developmental time in Drosophila melanogaster: pervasive pleiotropy and gene-by-environment interaction

    Directory of Open Access Journals (Sweden)

    Hasson Esteban

    2008-08-01

    Full Text Available Abstract Background Understanding the genetic architecture of ecologically relevant adaptive traits requires the contribution of developmental and evolutionary biology. The time to reach the age of reproduction is a complex life history trait commonly known as developmental time. In particular, in holometabolous insects that occupy ephemeral habitats, like fruit flies, the impact of developmental time on fitness is further exaggerated. The present work is one of the first systematic studies of the genetic basis of developmental time, in which we also evaluate the impact of environmental variation on the expression of the trait. Results We analyzed 179 co-isogenic single P[GT1]-element insertion lines of Drosophila melanogaster to identify novel genes affecting developmental time in flies reared at 25°C. Sixty percent of the lines showed a heterochronic phenotype, suggesting that a large number of genes affect this trait. Mutant lines for the genes Merlin and Karl showed the most extreme phenotypes exhibiting a developmental time reduction and increase, respectively, of over 2 days and 4 days relative to the control (a co-isogenic P-element insertion free line. In addition, a subset of 42 lines selected at random from the initial set of 179 lines was screened at 17°C. Interestingly, the gene-by-environment interaction accounted for 52% of total phenotypic variance. Plastic reaction norms were found for a large number of developmental time candidate genes. Conclusion We identified components of several integrated time-dependent pathways affecting egg-to-adult developmental time in Drosophila. At the same time, we also show that many heterochronic phenotypes may arise from changes in genes involved in several developmental mechanisms that do not explicitly control the timing of specific events. We also demonstrate that many developmental time genes have pleiotropic effects on several adult traits and that the action of most of them is sensitive

  9. Association of Obesity with Proteasomal Gene Polymorphisms in Children

    OpenAIRE

    Sarmite Kupca; Tatjana Sjakste; Natalija Paramonova; Olga Sugoka; Irena Rinkuza; Ilva Trapina; Ilva Daugule; Sipols, Alfred J.; Ingrida Rumba-Rozenfelde

    2013-01-01

    The aim of this study was to ascertain possible associations between childhood obesity, its anthropometric and clinical parameters, and three loci of proteasomal genes rs2277460 (PSMA6 c.-110C>A), rs1048990 (PSMA6 c.-8C>G), and rs2348071 (PSMA3 c. 543+138G>A) implicated in obesity-related diseases. Obese subjects included 94 otherwise healthy children in Latvia. Loci were genotyped and then analyzed using polymerase chain reactions, with results compared to those of 191 nonobese controls. PSM...

  10. FAT10, a Ubiquitin-Independent Signal for Proteasomal Degradation

    OpenAIRE

    Hipp, Mark Steffen; Kalveram, Birte; Raasi, Shahri; Groettrup, Marcus; Schmidtke, Gunter

    2005-01-01

    FAT10 is a small ubiquitin-like modifier that is encoded in the major histocompatibility complex and is synergistically inducible by tumor necrosis factor alpha and gamma interferon. It is composed of two ubiquitin-like domains and possesses a free C-terminal diglycine motif that is required for the formation of FAT10 conjugates. Here we show that unconjugated FAT10 and a FAT10 conjugate were rapidly degraded by the proteasome at a similar rate. Fusion of FAT10 to the N terminus of very long-...

  11. Redox control of the ubiquitin-proteasome system

    DEFF Research Database (Denmark)

    Kriegenburg, Franziska; Poulsen, Esben G; Koch, Annett;

    2011-01-01

    is characteristic of many diseases and during aging. To counter the adverse effects of oxidative stress, cells can initiate an antioxidative response in an attempt to repair the damage, or rapidly channel the damaged proteins for degradation by the ubiquitin-proteasome system (UPS). Recent studies...... associated with a thioredoxin and other cofactors that may adjust the particle's response during an oxidative challenge. Here, we give an overview of the UPS and a detailed description of the degradation of oxidized proteins and of the crosstalk between oxidative stress and protein degradation in health and...

  12. The ubiquitin proteasome system plays a role in venezuelan equine encephalitis virus infection.

    Directory of Open Access Journals (Sweden)

    Moushimi Amaya

    Full Text Available Many viruses have been implicated in utilizing or modulating the Ubiquitin Proteasome System (UPS to enhance viral multiplication and/or to sustain a persistent infection. The mosquito-borne Venezuelan equine encephalitis virus (VEEV belongs to the Togaviridae family and is an important biodefense pathogen and select agent. There are currently no approved vaccines or therapies for VEEV infections; therefore, it is imperative to identify novel targets for therapeutic development. We hypothesized that a functional UPS is required for efficient VEEV multiplication. We have shown that at non-toxic concentrations Bortezomib, a FDA-approved inhibitor of the proteasome, proved to be a potent inhibitor of VEEV multiplication in the human astrocytoma cell line U87MG. Bortezomib inhibited the virulent Trinidad donkey (TrD strain and the attenuated TC-83 strain of VEEV. Additional studies with virulent strains of Eastern equine encephalitis virus (EEEV and Western equine encephalitis virus (WEEV demonstrated that Bortezomib is a broad spectrum inhibitor of the New World alphaviruses. Time-of-addition assays showed that Bortezomib was an effective inhibitor of viral multiplication even when the drug was introduced many hours post exposure to the virus. Mass spectrometry analyses indicated that the VEEV capsid protein is ubiquitinated in infected cells, which was validated by confocal microscopy and immunoprecipitation assays. Subsequent studies revealed that capsid is ubiquitinated on K48 during early stages of infection which was affected by Bortezomib treatment. This study will aid future investigations in identifying host proteins as potential broad spectrum therapeutic targets for treating alphavirus infections.

  13. Characterization of the proteasome from the extremely halophilic archaeon Haloarcula marismortui

    Directory of Open Access Journals (Sweden)

    B. Franzetti

    2002-01-01

    Full Text Available A 20S proteasome, comprising two subunits α and β, was purified from the extreme halophilic archaeon Haloarcula marismortui, which grows only in saturated salt conditions. The three-dimensional reconstruction of the H. marismortui proteasome (Hm proteasome, obtained from negatively stained electron micrographs, is virtually identical to the structure of a thermophilic proteasome filtered to the same resolution. The stability of the Hm proteasome was found to be less salt-dependent than that of other halophilic enzymes previously described. The proteolytic activity of the Hm proteasome was investigated using the malate dehydrogenase from H. marismortui (HmMalDH as a model substrate. The HmMalDH denatures when the salt concentration is decreased below 2 M. Under these conditions, the proteasome efficiently cleaves HmMalDH during its denaturation process, but the fully denatured HmMalDH is poorly degraded. These in vitro experiments show that, at low salt concentrations, the 20S proteasome from halophilic archaea eliminates a misfolded protein.

  14. Structure of the Mycobacterium tuberculosis proteasome and mechanism of inhibition by a peptidyl boronate.

    Science.gov (United States)

    Hu, Guiqing; Lin, Gang; Wang, Ming; Dick, Lawrence; Xu, Rui-Ming; Nathan, Carl; Li, Huilin

    2006-03-01

    Mycobacterium tuberculosis (Mtb) has the remarkable ability to resist killing by human macrophages. The 750 kDa proteasome, not available in most eubacteria except Actinomycetes, appears to contribute to Mtb's resistance. The crystal structure of the Mtb proteasome at 3.0 A resolution reveals a substrate-binding pocket with composite features of the distinct beta1, beta2 and beta5 substrate binding sites of eukaryotic proteasomes, accounting for the broad specificity of the Mtb proteasome towards oligopeptides described in the companion article [Lin et al. (2006), Mol Microbiol doi:10.1111/j.1365-2958.2005.05035.x]. The substrate entrance at the end of the cylindrical proteasome appears open in the crystal structure due to partial disorder of the alpha-subunit N-terminal residues. However, cryo-electron microscopy of the core particle reveals a closed end, compatible with the density observed in negative-staining electron microscopy that depended on the presence of the N-terminal octapetides of the alpha-subunits in the companion article, suggesting that the Mtb proteasome has a gated structure. We determine for the first time the proteasomal inhibition mechanism of the dipeptidyl boronate N-(4-morpholine)carbonyl-beta-(1-naphthyl)-L-alanine-L-leucine boronic acid (MLN-273), an analogue of the antimyeloma drug bortezomib. The structure improves prospects for designing Mtb-specific proteasomal inhibitors as a novel approach to chemotherapy of tuberculosis. PMID:16468986

  15. Structure of the Mycobacterium tuberculosis proteasome and mechanism of inhibition by a peptidyl boronate

    Energy Technology Data Exchange (ETDEWEB)

    Hu,G.; Lin, G.; Wang, M.; Dick, L.; Xu, R.; Nathan, C.; Li, H.

    2006-01-01

    Mycobacterium tuberculosis (Mtb) has the remarkable ability to resist killing by human macrophages. The 750 kDa proteasome, not available in most eubacteria except Actinomycetes, appears to contribute to Mtb's resistance. The crystal structure of the Mtb proteasome at 3.0 Angstroms resolution reveals a substrate-binding pocket with composite features of the distinct {beta}1, {beta}2 and {beta}5 substrate binding sites of eukaryotic proteasomes, accounting for the broad specificity of the Mtb proteasome towards oligopeptides described in the companion article [Lin et al. (2006), Mol Microbiol doi:10.1111/j.1365-2958.2005.05035.x]. The substrate entrance at the end of the cylindrical proteasome appears open in the crystal structure due to partial disorder of the a-subunit N-terminal residues. However, cryo-electron microscopy of the core particle reveals a closed end, compatible with the density observed in negative-staining electron microscopy that depended on the presence of the N-terminal octapeptides of the a-subunits in the companion article, suggesting that the Mtb proteasome has a gated structure. We determine for the first time the proteasomal inhibition mechanism of the dipeptidyl boronate N-(4-morpholine)carbonyl-{beta}-(1-naphthyl)-l-alanine-l-leucine boronic acid (MLN-273), an analogue of the antimyeloma drug bortezomib. The structure improves prospects for designing Mtb-specific proteasomal inhibitors as a novel approach to chemotherapy of tuberculosis.

  16. Secomycalolide A: A New Proteasome Inhibitor Isolated from a Marine Sponge of the Genus Mycale

    Directory of Open Access Journals (Sweden)

    Sachiko Tsukamoto

    2005-06-01

    Full Text Available A new oxazole-containing proteasome inhibitor, secomycalolide A, together with known mycalolide A and 30-hydroxymycalolide A, was isolated from a marine sponge of the genus Mycale. They showed proteasome inhibitory activities with IC50 values of 11-45 μg/mL.

  17. The effects of anti-DNA topoisomerase II drugs, etoposide and ellipticine, are modified in root meristem cells of Allium cepa by MG132, an inhibitor of 26S proteasomes.

    Science.gov (United States)

    Żabka, Aneta; Winnicki, Konrad; Polit, Justyna Teresa; Maszewski, Janusz

    2015-11-01

    DNA topoisomerase II (Topo II), a highly specialized nuclear enzyme, resolves various entanglement problems concerning DNA that arise during chromatin remodeling, transcription, S-phase replication, meiotic recombination, chromosome condensation and segregation during mitosis. The genotoxic effects of two Topo II inhibitors known as potent anti-cancer drugs, etoposide (ETO) and ellipticine (EPC), were assayed in root apical meristem cells of Allium cepa. Despite various types of molecular interactions between these drugs and DNA-Topo II complexes at the chromatin level, which have a profound negative impact on the genome integrity (production of double-strand breaks, chromosomal bridges and constrictions, lagging fragments of chromosomes and their uneven segregation to daughter cell nuclei), most of the elicited changes were apparently similar, regarding both their intensity and time characteristics. No essential changes between ETO- and EPC-treated onion roots were noticed in the frequency of G1-, S-, G2-and M-phase cells, nuclear morphology, chromosome structures, tubulin-microtubule systems, extended distribution of mitosis-specific phosphorylation sites of histone H3, and the induction of apoptosis-like programmed cell death (AL-PCD). However, the important difference between the effects induced by the ETO and EPC concerns their catalytic activities in the presence of MG132 (proteasome inhibitor engaged in Topo II-mediated formation of cleavage complexes) and relates to the time-variable changes in chromosomal aberrations and AL-PCD rates. This result implies that proteasome-dependent mechanisms may contribute to the course of physiological effects generated by DNA lesions under conditions that affect the ability of plant cells to resolve topological problems that associated with the nuclear metabolic activities. PMID:26233708

  18. Evidence for the existence of a proteasome in Toxoplasma gondii: intracellular localization and specific peptidase activities.

    Science.gov (United States)

    Paugam, A; Creuzet, C; Dupouy-Camet, J; Roisin, M P

    2001-12-01

    The proteasome is a large intracellular protein complex whose main function is proteolytic removal of damaged proteins. It has recently been shown that the proteasome has a crucial role in the pathogenesis of protozoan parasites. We attempted to characterize the proteasome of T. gondii (RH strain). In immunoblot experiments, we showed that MCP231 monoclonal antibody, directed against the human 20S proteasome, labelled homologous proteins in T. gondii with a pattern similar to that observed in mammalian cells. The study of in vitro proteolytic activities showed that chymotrypsin-like activity (the only activity obtained with archaebacteria) was present in Toxoplasma, with Km and specific activity values close to those observed with eukaryotic cells. Immunofluorescence studies showed that the Toxoplasma proteasome predominated in the cytosol. PMID:11802263

  19. Variation in the Williams syndrome GTF2I gene and anxiety proneness interactively affect prefrontal cortical response to aversive stimuli.

    Science.gov (United States)

    Jabbi, M; Chen, Q; Turner, N; Kohn, P; White, M; Kippenhan, J S; Dickinson, D; Kolachana, B; Mattay, V; Weinberger, D R; Berman, K F

    2015-01-01

    Characterizing the molecular mechanisms underlying the heritability of complex behavioral traits such as human anxiety remains a challenging endeavor for behavioral neuroscience. Copy-number variation (CNV) in the general transcription factor gene, GTF2I, located in the 7q11.23 chromosomal region that is hemideleted in Williams syndrome and duplicated in the 7q11.23 duplication syndrome (Dup7), is associated with gene-dose-dependent anxiety in mouse models and in both Williams syndrome and Dup7. Because of this recent preclinical and clinical identification of a genetic influence on anxiety, we examined whether sequence variation in GTF2I, specifically the single-nucleotide polymorphism rs2527367, interacts with trait and state anxiety to collectively impact neural response to anxiety-laden social stimuli. Two hundred and sixty healthy adults completed the Tridimensional Personality Questionnaire Harm Avoidance (HA) subscale, a trait measure of anxiety proneness, and underwent functional magnetic resonance imaging (fMRI) while matching aversive (fearful or angry) facial identity. We found an interaction between GTF2I allelic variations and HA that affects brain response: in individuals homozygous for the major allele, there was no correlation between HA and whole-brain response to aversive cues, whereas in heterozygotes and individuals homozygous for the minor allele, there was a positive correlation between HA sub-scores and a selective dorsolateral prefrontal cortex (DLPFC) responsivity during the processing of aversive stimuli. These results demonstrate that sequence variation in the GTF2I gene influences the relationship between trait anxiety and brain response to aversive social cues in healthy individuals, supporting a role for this neurogenetic mechanism in anxiety. PMID:26285132

  20. Txl1 and Txc1 are co-factors of the 26S proteasome in fission yeast

    DEFF Research Database (Denmark)

    Andersen, Katrine M; Jensen, Camilla; Kriegenburg, Franziska;

    2011-01-01

    proteasomes. A txl1 null mutant, but not a txc1 null, displayed a synthetic growth defect with cut8, encoding a protein that tethers the proteasome to the nuclear membrane. Txc1 is present throughout the cytoplasm and nucleus, whereas Txl1 co-localizes with 26S proteasomes in both wild-type cells and in cut8...

  1. Proteasome nuclear import mediated by Arc3 can influence efficient DNA damage repair and mitosis in Schizosaccharomyces pombe

    DEFF Research Database (Denmark)

    Cabrera, Rodrigo; Sha, Zhe; Vadakkan, Tegy J.;

    2010-01-01

    . Proteasome nuclear import is reduced when Arc3 is inactivated, leading to hypersensitivity to DNA damage and inefficient cyclin-B degradation, two events occurring in the nucleus. These data suggest that proteasomes display Arc3-dependent mobility in the cell, and mobile proteasomes can efficiently access...

  2. Puromycin induces SUMO and ubiquitin redistribution upon proteasome inhibition.

    Science.gov (United States)

    Matsumoto, Hotaru; Saitoh, Hisato

    2016-07-29

    We have previously reported the co-localization of O-propargyl-puromycin (OP-Puro) with SUMO-2/3 and ubiquitin at promyelocytic leukemia-nuclear bodies (PML-NBs) in the presence of the proteasome inhibitor MG132, implying a role for the ubiquitin family in sequestering OP-puromycylated immature polypeptides to the nucleus during impaired proteasome activity. Here, we found that as expected puromycin induced SUMO-1/2/3 accumulation with ubiquitin at multiple nuclear foci in HeLa cells when co-exposed to MG132. Co-administration of puromycin and MG132 also facilitated redistribution of PML and the SUMO-targeted ubiquitin ligase RNF4 concurrently with SUMO-2/3. As removal of the drugs from the medium led to disappearance of the SUMO-2/3-ubiquitin nuclear foci, our findings indicated that nuclear assembly/disassembly of SUMO-2/3 and ubiquitin was pharmacologically manipulable, supporting our previous observation on OP-Puro, which predicted the ubiquitin family function in sequestrating aberrant proteins to the nucleus. PMID:27181354

  3. Disease-proportional proteasomal degradation of missense dystrophins.

    Science.gov (United States)

    Talsness, Dana M; Belanto, Joseph J; Ervasti, James M

    2015-10-01

    The 427-kDa protein dystrophin is expressed in striated muscle where it physically links the interior of muscle fibers to the extracellular matrix. A range of mutations in the DMD gene encoding dystrophin lead to a severe muscular dystrophy known as Duchenne (DMD) or a typically milder form known as Becker (BMD). Patients with nonsense mutations in dystrophin are specifically targeted by stop codon read-through drugs, whereas out-of-frame deletions and insertions are targeted by exon-skipping therapies. Both treatment strategies are currently in clinical trials. Dystrophin missense mutations, however, cause a wide range of phenotypic severity in patients. The molecular and cellular consequences of such mutations are not well understood, and there are no therapies specifically targeting this genotype. Here, we have modeled two representative missense mutations, L54R and L172H, causing DMD and BMD, respectively, in full-length dystrophin. In vitro, the mutation associated with the mild phenotype (L172H) caused a minor decrease in tertiary stability, whereas the L54R mutation associated with a severe phenotype had a more dramatic effect. When stably expressed in mammalian muscle cells, the mutations caused steady-state decreases in dystrophin protein levels inversely proportional to the tertiary stability and directly caused by proteasomal degradation. Both proteasome inhibitors and heat shock activators were able to increase mutant dystrophin to WT levels, establishing the new cell lines as a platform to screen for potential therapeutics personalized to patients with destabilized dystrophin. PMID:26392559

  4. Exposure of hydrophobic moieties promotes the selective degradation of hydrogen peroxide-modified hemoglobin by the multicatalytic proteinase complex, proteasome.

    Science.gov (United States)

    Giulivi, C; Pacifici, R E; Davies, K J

    1994-06-01

    The physiologically relevant stress of a flux of H2O2 increased hemoglobin (Hb) degradation in red blood cells (RBC) and increased the proteolytic susceptibility of Hb in vitro. After exposure to low H2O2 flux rates (6-32 microM/min) Hb exhibited increased exposure of hydrophobic (Trp, Met) and basic (Lys) amino acid R groups, increased hydrophobicity, and increased proteolytic susceptibility during subsequent incubation with RBC extracts, a partially purified preparation called Fraction II (which retains all of the proteolytic activities of RBC extracts), or the purified 670-kDa RBC multicatalytic proteinase complex proteasome. Hydrophobicity was measured by butyl-Sepharose hydrophobic interaction chromatography, by the free energy of transfer from water to ethanol, and by heat denaturation assays. Proteolytic susceptibility was measured by release of free alanine, by fluorescamine-reactive free amino groups, and by release of acid-soluble radioactivity from radiolabeled Hb. Low H2O2 flux rates also caused significant charge changes in Hb (isoelectric focusing gels) and extensive noncovalent aggregation (presumably due to increased hydrophobic interactions) but only limited covalent cross-linking (comparison of sodium dodecyl sulfate-polyacylamide gel electrophoresis (SDS-PAGE) and nondenaturing PAGE). Exposure to higher H2O2 flux rates (56-120 microM/min) caused progressive oxidative destruction of exposed hydrophobic amino acids, decreased hydrophobicity as judged by butyl-Sepharose chromatography and heat denaturation assays, increased hydrophilicity as judged by measurements of the free energy of transfer (delta G') from water to ethanol, and decreased proteolytic susceptibility during incubation with RBC extracts, Fraction II, or purified proteasome. High H2O2 flux rates also caused further charge changes and the extensive formation of covalently cross-linked Hb molecules. Linear regression analyses revealed correlations of 0.8-0.99 for the relationship

  5. 26S Proteasome regulation of Ankrd1/CARP in adult rat ventricular myocytes and human microvascular endothelial cells

    International Nuclear Information System (INIS)

    Highlights: ► The 26S proteasome regulates Ankrd1 levels in cardiomyocytes and endothelial cells. ► Ankrd1 protein degrades 60-fold faster in endothelial cells than cardiomyocytes. ► Differential degradation appears related to nuclear vs. sarcolemmal localization. ► Endothelial cell density shows uncoupling of Ankrd1 mRNA and protein levels. -- Abstract: Ankyrin repeat domain 1 protein (Ankrd1), also known as cardiac ankyrin repeat protein (CARP), increases dramatically after tissue injury, and its overexpression improves aspects of wound healing. Reports that Ankrd1/CARP protein stability may affect cardiovascular organization, together with our findings that the protein is crucial to stability of the cardiomyocyte sarcomere and increased in wound healing, led us to compare the contribution of Ankrd1/CARP stability to its abundance. We found that the 26S proteasome is the dominant regulator of Ankrd1/CARP degradation, and that Ankrd1/CARP half-life is significantly longer in cardiomyocytes (h) than endothelial cells (min). In addition, higher endothelial cell density decreased the abundance of the protein without affecting steady state mRNA levels. Taken together, our data and that of others indicate that Ankrd1/CARP is highly regulated at multiple levels of its expression. The striking difference in protein half-life between a muscle and a non-muscle cell type suggests that post-translational proteolysis is correlated with the predominantly structural versus regulatory role of the protein in the two cell types.

  6. Interactions between Bifidobacterium and Bacteroides species in cofermentations are affected by carbon sources, including exopolysaccharides produced by bifidobacteria.

    Science.gov (United States)

    Rios-Covian, David; Arboleya, Silvia; Hernandez-Barranco, Ana M; Alvarez-Buylla, Jorge R; Ruas-Madiedo, Patricia; Gueimonde, Miguel; de los Reyes-Gavilan, Clara G

    2013-12-01

    Cocultures of strains from two Bifidobacterium and two Bacteroides species were performed with exopolysaccharides (EPS) previously purified from bifidobacteria, with inulin, or with glucose as the carbon source. Bifidobacterium longum NB667 and Bifidobacterium breve IPLA20004 grew in glucose but showed poor or no growth in complex carbohydrates (inulin, EPS E44, and EPS R1), whereas Bacteroides grew well in the four carbon sources tested. In the presence of glucose, the growth of Bacteroides thetaiotaomicron DSM-2079 was inhibited by B. breve, whereas it remained unaffected in the presence of B. longum. Ba. fragilis DSM-2151 contributed to a greater survival of B. longum, promoting changes in the synthesis of short-chain fatty acids (SCFA) and organic acids in coculture with respect to monocultures. In complex carbohydrates, cocultures of bifidobacterium strains with Ba. thetaiotaomicron did not modify the behavior of Bacteroides nor improve the poor growth of bifidobacteria. The metabolic activity of Ba. fragilis in coculture with bifidobacteria was not affected by EPS, but greater survival of bifidobacteria at late stages of incubation occurred in cocultures than in monocultures, leading to a higher production of acetic acid than in monocultures. Therefore, cocultures of Bifidobacterium and Bacteroides can behave differently against fermentable carbohydrates as a function of the specific characteristics of the strains from each species. These results stress the importance of considering specific species and strain interactions and not simply higher taxonomic divisions in the relationship among intestinal microbial populations and their different responses to probiotics and prebiotics. PMID:24077708

  7. Nutrient demand interacts with legume particle length to affect digestion responses and rumen pool sizes in dairy cows.

    Science.gov (United States)

    Kammes, K L; Ying, Y; Allen, M S

    2012-05-01

    Effects of legume particle length on dry matter intake (DMI), milk production, ruminal fermentation and pool sizes, and digestion and passage kinetics, and the relationship of these effects with preliminary DMI (pDMI) were evaluated using 13 ruminally and duodenally cannulated Holstein cows in a crossover design with a 14-d preliminary period and two 19-d treatment periods. During the preliminary period, pDMI of individual cows ranged from 22.8 to 32.4 kg/d (mean=26.5 kg/d) and 3.5% fat-corrected milk yield ranged from 22.9 to 62.4 kg/d (mean=35.1 kg/d). Experimental treatments were diets containing alfalfa silage chopped to (1) 19 mm (long cut, LC) or (2) 10 mm (short cut, SC) theoretical length of cut as the sole forage. Alfalfa silages contained approximately 43% neutral detergent fiber (NDF); diets contained approximately 47% forage and 20% forage NDF. Preliminary DMI, an index of nutrient demand, was determined during the last 4 d of the preliminary period, when cows were fed a common diet, and used as a covariate. Main effects of legume particle length and their interaction with pDMI were tested by ANOVA. Alfalfa particle length and its interaction with pDMI did not affect milk yield or rumen pH. The LC diet decreased milk fat concentration more per kilogram of pDMI increase than the SC diet and increased yields of milk fat and fat-corrected milk less per kilogram of pDMI increase than the SC diet, resulting in a greater benefit for LC at low pDMI and for SC at high pDMI. The LC diet tended to decrease DMI compared with the SC diet. Ruminal digestion and passage rates of feed fractions did not differ between LC and SC and were not related to level of intake. The LC diet tended to decrease the rate of ruminal turnover for NDF but increased NDF rumen pools at a slower rate than the SC diet as pDMI increased. This indicated that the faster NDF turnover rate did not counterbalance the higher DMI for SC, resulting in larger NDF rumen pools for SC than LC. As p

  8. Melatonin-Induced Temporal Up-Regulation of Gene Expression Related to Ubiquitin/Proteasome System (UPS in the Human Malaria Parasite Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Fernanda C. Koyama

    2014-12-01

    Full Text Available There is an increasing understanding that melatonin and the ubiquitin/ proteasome system (UPS interact to regulate multiple cellular functions. Post-translational modifications such as ubiquitination are important modulators of signaling processes, cell cycle and many other cellular functions. Previously, we reported a melatonin-induced upregulation of gene expression related to ubiquitin/proteasome system (UPS in Plasmodium falciparum, the human malaria parasite, and that P. falciparum protein kinase 7 influences this process. This implies a role of melatonin, an indolamine, in modulating intraerythrocytic development of the parasite. In this report we demonstrate by qPCR analysis, that melatonin induces gene upregulation in nine out of fourteen genes of the UPS, consisting of the same set of genes previously reported, between 4 to 5 h after melatonin treatment. We demonstrate that melatonin causes a temporally controlled gene expression of UPS members.

  9. Multi-scale interactions affecting transport, storage, and processing of solutes and sediments in stream corridors (Invited)

    Science.gov (United States)

    Harvey, J. W.; Packman, A. I.

    2010-12-01

    Surface water and groundwater flow interact with the channel geomorphology and sediments in ways that determine how material is transported, stored, and transformed in stream corridors. Solute and sediment transport affect important ecological processes such as carbon and nutrient dynamics and stream metabolism, processes that are fundamental to stream health and function. Many individual mechanisms of transport and storage of solute and sediment have been studied, including surface water exchange between the main channel and side pools, hyporheic flow through shallow and deep subsurface flow paths, and sediment transport during both baseflow and floods. A significant challenge arises from non-linear and scale-dependent transport resulting from natural, fractal fluvial topography and associated broad, multi-scale hydrologic interactions. Connections between processes and linkages across scales are not well understood, imposing significant limitations on system predictability. The whole-stream tracer experimental approach is popular because of the spatial averaging of heterogeneous processes; however the tracer results, implemented alone and analyzed using typical models, cannot usually predict transport beyond the very specific conditions of the experiment. Furthermore, the results of whole stream tracer experiments tend to be biased due to unavoidable limitations associated with sampling frequency, measurement sensitivity, and experiment duration. We recommend that whole-stream tracer additions be augmented with hydraulic and topographic measurements and also with additional tracer measurements made directly in storage zones. We present examples of measurements that encompass interactions across spatial and temporal scales and models that are transferable to a wide range of flow and geomorphic conditions. These results show how the competitive effects between the different forces driving hyporheic flow, operating at different spatial scales, creates a situation

  10. Degradation of gap junction connexins is regulated by the interaction with Cx43-interacting protein of 75 kDa (CIP75)

    OpenAIRE

    Kopanic, Jennifer L.; Schlingmann, Barbara; Koval, Michael; LAU, ALAN F.; Sorgen, Paul L.; Su, Vivian F

    2015-01-01

    Connexins are a family of transmembrane proteins that form gap junction channels. These proteins undergo both proteasomal and lysosomal degradation, mechanisms that serve to regulate connexin levels. Our previous work described CIP75 [connexin43 (Cx43)-interacting protein of 75 kDa], a protein involved in proteasomal degradation, as a novel Cx43-interacting protein. We have discovered two additional connexins, connexin40 (Cx40) and connexin45 (Cx45), that interact with CIP75. Nuclear magnetic...

  11. Human-Robot Interaction: Does Robotic Guidance Force Affect Gait-Related Brain Dynamics during Robot-Assisted Treadmill Walking?

    Directory of Open Access Journals (Sweden)

    Kristel Knaepen

    Full Text Available In order to determine optimal training parameters for robot-assisted treadmill walking, it is essential to understand how a robotic device interacts with its wearer, and thus, how parameter settings of the device affect locomotor control. The aim of this study was to assess the effect of different levels of guidance force during robot-assisted treadmill walking on cortical activity. Eighteen healthy subjects walked at 2 km.h-1 on a treadmill with and without assistance of the Lokomat robotic gait orthosis. Event-related spectral perturbations and changes in power spectral density were investigated during unassisted treadmill walking as well as during robot-assisted treadmill walking at 30%, 60% and 100% guidance force (with 0% body weight support. Clustering of independent components revealed three clusters of activity in the sensorimotor cortex during treadmill walking and robot-assisted treadmill walking in healthy subjects. These clusters demonstrated gait-related spectral modulations in the mu, beta and low gamma bands over the sensorimotor cortex related to specific phases of the gait cycle. Moreover, mu and beta rhythms were suppressed in the right primary sensory cortex during treadmill walking compared to robot-assisted treadmill walking with 100% guidance force, indicating significantly larger involvement of the sensorimotor area during treadmill walking compared to robot-assisted treadmill walking. Only marginal differences in the spectral power of the mu, beta and low gamma bands could be identified between robot-assisted treadmill walking with different levels of guidance force. From these results it can be concluded that a high level of guidance force (i.e., 100% guidance force and thus a less active participation during locomotion should be avoided during robot-assisted treadmill walking. This will optimize the involvement of the sensorimotor cortex which is known to be crucial for motor learning.

  12. Low-dose aspartame consumption differentially affects gut microbiota-host metabolic interactions in the diet-induced obese rat.

    Directory of Open Access Journals (Sweden)

    Marie S A Palmnäs

    Full Text Available Aspartame consumption is implicated in the development of obesity and metabolic disease despite the intention of limiting caloric intake. The mechanisms responsible for this association remain unclear, but may involve circulating metabolites and the gut microbiota. Aims were to examine the impact of chronic low-dose aspartame consumption on anthropometric, metabolic and microbial parameters in a diet-induced obese model. Male Sprague-Dawley rats were randomized into a standard chow diet (CH, 12% kcal fat or high fat (HF, 60% kcal fat and further into ad libitum water control (W or low-dose aspartame (A, 5-7 mg/kg/d in drinking water treatments for 8 week (n = 10-12 animals/treatment. Animals on aspartame consumed fewer calories, gained less weight and had a more favorable body composition when challenged with HF compared to animals consuming water. Despite this, aspartame elevated fasting glucose levels and an insulin tolerance test showed aspartame to impair insulin-stimulated glucose disposal in both CH and HF, independently of body composition. Fecal analysis of gut bacterial composition showed aspartame to increase total bacteria, the abundance of Enterobacteriaceae and Clostridium leptum. An interaction between HF and aspartame was also observed for Roseburia ssp wherein HF-A was higher than HF-W (P<0.05. Within HF, aspartame attenuated the typical HF-induced increase in the Firmicutes:Bacteroidetes ratio. Serum metabolomics analysis revealed aspartame to be rapidly metabolized and to be associated with elevations in the short chain fatty acid propionate, a bacterial end product and highly gluconeogenic substrate, potentially explaining its negative affects on insulin tolerance. How aspartame influences gut microbial composition and the implications of these changes on the development of metabolic disease require further investigation.

  13. Proteasome Inhibition Contributed to the Cytotoxicity of Arenobufagin after Its Binding with Na, K-ATPase in Human Cervical Carcinoma HeLa Cells.

    Directory of Open Access Journals (Sweden)

    Qingxi Yue

    Full Text Available Although the possibility of developing cardiac steroids/cardiac glycosides as novel cancer therapeutic agents has been recognized, the mechanism of their anticancer activity is still not clear enough. Toad venom extract containing bufadienolides, which belong to cardiac steroids, has actually long been used as traditional Chinese medicine in clinic for cancer therapy in China. The cytotoxicity of arenobufagin, a bufadienolide isolated from toad venom, on human cervical carcinoma HeLa cells was checked. And, the protein expression profile of control HeLa cells and HeLa cells treated with arenobufagin for 48 h was analyzed using two-dimensional electrophoresis, respectively. Differently expressed proteins in HeLa cells treated with arenobufagin were identified and the pathways related to these proteins were mapped from KEGG database. Computational molecular docking was performed to verify the binding of arenobufagin and Na, K-ATPase. The effects of arenobufagin on Na, K-ATPase activity and proteasome activity of HeLa cells were checked. The protein-protein interaction network between Na, K-ATPase and proteasome was constructed and the expression of possible intermediate proteins ataxin-1 and translationally-controlled tumor protein in HeLa cells treated with arenobufagin was then checked. Arenobufagin induced apoptosis and G2/M cell cycle arrest in HeLa cells. The cytotoxic effect of arenobufagin was associated with 25 differently expressed proteins including proteasome-related proteins, calcium ion binding-related proteins, oxidative stress-related proteins, metabolism-related enzymes and others. The results of computational molecular docking revealed that arenobufagin was bound in the cavity formed by the transmembrane alpha subunits of Na, K-ATPase, which blocked the pathway of extracellular Na+/K+ cation exchange and inhibited the function of ion exchange. Arenobufagin inhibited the activity of Na, K-ATPase and proteasome, decreased the

  14. Proteasomal diseases are a new branch of autoinflammatory pathology

    Directory of Open Access Journals (Sweden)

    Evgeny Stanislavovich Fedorov

    2013-01-01

    Full Text Available The paper deals with a new autoinflammatory disease entity that is proteasomal diseases. The latter include three nosological entities: Nakajo–Nishimura syndrome (NNS, Japanese autoinflammatory syndrome with lipodystrophy; chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature (CANDLE syndrome; joint contractures, muscular atrophy, microcytic anemia, and panniculitisinduced lipodystrophy (JMP syndrome. All the three conditions are caused by mutations in one PSMB8 gene encoding the immunoproteasome subunit β5i. Unlike other autoinflammatory syndromes that are mainly IL-1-dependent, the leading component of the pathogenesis of these diseases is IL-6/γ−interferonі system hyperactivation. These diseases are characterized by childhoodonset, retarded physical development, different skin and muscular lesions, lipodystrophy, joint contractures, and hypochromic anemia, as well as elevated levels of acutephase markers; autoimmune disorders may joint in time.

  15. Proteasomal diseases are a new branch of autoinflammatory pathology

    Directory of Open Access Journals (Sweden)

    Evgeny Stanislavovich Fedorov

    2013-12-01

    Full Text Available The paper deals with a new autoinflammatory disease entity that is proteasomal diseases. The latter include three nosological entities: Nakajo–Nishimura syndrome (NNS, Japanese autoinflammatory syndrome with lipodystrophy; chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature (CANDLE syndrome; joint contractures, muscular atrophy, microcytic anemia, and panniculitisinduced lipodystrophy (JMP syndrome. All the three conditions are caused by mutations in one PSMB8 gene encoding the immunoproteasome subunit β5i. Unlike other autoinflammatory syndromes that are mainly IL-1-dependent, the leading component of the pathogenesis of these diseases is IL-6/γ−interferonі system hyperactivation. These diseases are characterized by childhoodonset, retarded physical development, different skin and muscular lesions, lipodystrophy, joint contractures, and hypochromic anemia, as well as elevated levels of acutephase markers; autoimmune disorders may joint in time.

  16. The ubiquitin-proteasome system in glioma cell cycle control

    Directory of Open Access Journals (Sweden)

    Vlachostergios Panagiotis J

    2012-07-01

    Full Text Available Abstract A major determinant of cell fate is regulation of cell cycle. Tight regulation of this process is lost during the course of development and progression of various tumors. The ubiquitin-proteasome system (UPS constitutes a universal protein degradation pathway, essential for the consistent recycling of a plethora of proteins with distinct structural and functional roles within the cell, including cell cycle regulation. High grade tumors, such as glioblastomas have an inherent potential of escaping cell cycle control mechanisms and are often refractory to conventional treatment. Here, we review the association of UPS with several UPS-targeted proteins and pathways involved in regulation of the cell cycle in malignant gliomas, and discuss the potential role of UPS inhibitors in reinstitution of cell cycle control.

  17. Legionella metaeffector exploits host proteasome to temporally regulate cognate effector.

    Directory of Open Access Journals (Sweden)

    Tomoko Kubori

    Full Text Available Pathogen-associated secretion systems translocate numerous effector proteins into eukaryotic host cells to coordinate cellular processes important for infection. Spatiotemporal regulation is therefore important for modulating distinct activities of effectors at different stages of infection. Here we provide the first evidence of "metaeffector," a designation for an effector protein that regulates the function of another effector within the host cell. Legionella LubX protein functions as an E3 ubiquitin ligase that hijacks the host proteasome to specifically target the bacterial effector protein SidH for degradation. Delayed delivery of LubX to the host cytoplasm leads to the shutdown of SidH within the host cells at later stages of infection. This demonstrates a sophisticated level of coevolution between eukaryotic cells and L. pneumophila involving an effector that functions as a key regulator to temporally coordinate the function of a cognate effector protein.

  18. The proteasome 11S regulator subunit REG alpha (PA28 alpha) is a heptamer.

    OpenAIRE

    Johnston, S.C.; Whitby, F G; Realini, C.; Rechsteiner, M; Hill, C. P.

    1997-01-01

    Activity of the 20S proteasome, which performs much of the cytosolic and nuclear proteolysis in eukaryotic cells, is controlled by regulatory complexes that bind to one or both ends of the cylindrical proteasome. One of these complexes, the 11S regulator (REG), is a complex of 28 kDa subunits that is thought to activate proteasomes toward the production of antigenic peptides. REG, purified from red blood cells, is a complex of REG alpha and REG beta subunits. We have crystallized recombinant ...

  19. Ubiquitin-proteasome system involvement in Huntington’s disease

    Directory of Open Access Journals (Sweden)

    Zaira Ortega

    2014-09-01

    Full Text Available Huntington’s disease (HD is a genetic autosomal dominant neurodegenerative disease caused by the expansion of a CAG repeat in the huntingtin (htt gene. This triplet expansion encodes a polyglutamine stretch (polyQ in the N-terminus of the high molecular weight (348-kDa and ubiquitously expressed protein huntingtin (htt. Normal individuals have between 6 and 35 CAG triplets, while expansions longer than 40 repeats lead to HD. The onset and severity of the disease depend on the length of the polyQ tract: the longer the polyQ is, the earlier the disease begins and the more severe the symptoms are. One of the main histopathological hallmarks of HD is the presence of intraneuronal proteinaceous inclusion bodies (IBs, whose prominent and invariant feature is the presence of Ubiquitin (Ub; therefore, they can be detected with anti-ubiquitin and anti-proteasome antibodies. This, together with the observation that mutations in components of the Ubiquitin Proteasome system (UPS give rise to some neurodegenerative diseases, suggests that UPS impairment may be causative of HD. Even though the link between disrupted Ub homeostasis and protein aggregation to HD is undisputed, the functional significance of these correlations and their mechanistic implications remains unresolved. Moreover, there is no consistent evidence documenting an accompanying decrease in levels of free Ub or disruption of Ub pool dynamics in neurodegenerative disease or models thus suggesting that the Ub-conjugate accumulation may be benign and just underlie lesion in 26S function. In this chapter we will elaborate on the different studies that have been performed using different experimental approaches, in order to shed light to this matter.

  20. Preclinical evaluation of the proteasome inhibitor bortezomib in cancer therapy

    Directory of Open Access Journals (Sweden)

    Morgan Gareth

    2005-06-01

    Full Text Available Abstract Bortezomib is a highly selective, reversible inhibitor of the 26S proteasome that is indicated for single-agent use in the treatment of patients with multiple myeloma who have received at least 2 prior therapies and are progressing on their most recent therapy. Clinical investigations have been completed or are under way to evaluate the safety and efficacy of bortezomib alone or in combination with chemotherapy in multiple myeloma, both at relapse and presentation, as well as in other cancer types. The antiproliferative, proapoptotic, antiangiogenic, and antitumor activities of bortezomib result from proteasome inhibition and depend on the altered degradation of a host of regulatory proteins. Exposure to bortezomib has been shown to stabilize p21, p27, and p53, as well as the proapoptotic Bid and Bax proteins, caveolin-1, and inhibitor κB-α, which prevents activation of nuclear factor κB-induced cell survival pathways. Bortezomib also promoted the activation of the proapoptotic c-Jun-NH2 terminal kinase, as well as the endoplasmic reticulum stress response. The anticancer effects of bortezomib as a single agent have been demonstrated in xenograft models of multiple myeloma, adult T-cell leukemia, lung, breast, prostate, pancreatic, head and neck, and colon cancer, and in melanoma. In these preclinical in vivo studies, bortezomib treatment resulted in decreased tumor growth, angiogenesis, and metastasis, as well as increased survival and tumor apoptosis. In several in vitro and/or in vivo cancer models, bortezomib has also been shown to enhance the antitumor properties of several antineoplastic treatments. Importantly, bortezomib was generally well tolerated and did not appear to produce additive toxicities when combined with other therapies in the dosing regimens used in these preclinical in vivo investigations. These findings provide a rationale for further clinical trials using bortezomib alone or in combination regimens with

  1. RNF4 and VHL regulate the proteasomal degradation of SUMO-conjugated Hypoxia-Inducible Factor-2alpha.

    Science.gov (United States)

    van Hagen, Martijn; Overmeer, René M; Abolvardi, Sharareh S; Vertegaal, Alfred C O

    2010-04-01

    Hypoxia-inducible factors (HIFs) are critical transcription factors that mediate cell survival during reduced oxygen conditions (hypoxia). At regular oxygen conditions (normoxia), HIF-1alpha and HIF-2alpha are continuously synthesized in cells and degraded via the ubiquitin-proteasome pathway. During hypoxia, these proteins are stabilized and translocate to the nucleus to activate transcription of target genes that enable cell survival at reduced oxygen levels. HIF proteins are tightly regulated via post-translational modifications including phosphorylation, acetylation, prolyl-hydroxylation and ubiquitination. Here we show for the first time that exogenous and endogenous HIF-2alpha are also regulated via the ubiquitin-like modifier small ubiquitin-like modifiers (SUMO). Using mutational analysis, we found that K394, which is situated in the sumoylation consensus site LKEE, is the major SUMO acceptor site in HIF-2alpha. Functionally, sumoylation reduced the transcriptional activity of HIF-2alpha. Similar to HIF-1alpha, HIF-2alpha is regulated by the SUMO protease SENP1. The proteasome inhibitor MG132 strongly stabilized SUMO-2-conjugated HIF-2alpha during hypoxia but did not affect the total level of HIF-2alpha. The ubiquitin E3 ligases von Hippel-Lindau and RNF4 control the levels of sumoylated HIF-2alpha, indicating that sumoylated HIF-2alpha is degraded via SUMO-targeted ubiquitin ligases. PMID:20026589

  2. Complex Interactions: How Non-Traditional Security Factors Affect Security Sector Reform, Cooperative Engagement for Partnership Capacity: Africa as a Model for Whole of Government [video

    OpenAIRE

    de Klerk, Eldred; Crevello, Stacy; Harris, Stayce; Dachos, Sarah

    2011-01-01

    Complex Interactions: How Non-Traditional Security Factors Affect Security Sector Reform, Cooperative Engagement for Partnership Capacity: Africa as a Model for Whole of Government. U.S. Partnership for Peace Training & Education Center, Naval Postgraduate School. Cultural and Organizational Awareness Forum

  3. Amino acids and insulin act additively to regulate components of the ubiquitin-proteasome pathway in C2C12 myotubes

    Directory of Open Access Journals (Sweden)

    Lomax Michael A

    2007-03-01

    Full Text Available Abstract Background The ubiquitin-proteasome system is the predominant pathway for myofibrillar proteolysis but a previous study in C2C12 myotubes only observed alterations in lysosome-dependent proteolysis in response to complete starvation of amino acids or leucine from the media. Here, we determined the interaction between insulin and amino acids in the regulation of myotube proteolysis Results Incubation of C2C12 myotubes with 0.2 × physiological amino acids concentration (0.2 × PC AA, relative to 1.0 × PC AA, significantly increased total proteolysis and the expression of 14-kDa E2 ubiquitin conjugating enzyme (p Conclusion In a C2C12 myotube model of myofibrillar protein turnover, amino acid limitation increases proteolysis in a ubiquitin-proteasome-dependent manner. Increasing amino acids or leucine alone, act additively with insulin to down regulate proteolysis and expression of components of ubiquitin-proteasome pathway. The effects of amino acids on proteolysis but not insulin and leucine, are blocked by inhibition of the mTOR signalling pathway.

  4. The proteasome immunosubunits, PA28 and ER-aminopeptidase 1 protect melanoma cells from efficient MART-126-35 -specific T-cell recognition.

    Science.gov (United States)

    Keller, Martin; Ebstein, Frédéric; Bürger, Elke; Textoris-Taube, Kathrin; Gorny, Xenia; Urban, Sabrina; Zhao, Fang; Dannenberg, Tanja; Sucker, Antje; Keller, Christin; Saveanu, Loredana; Krüger, Elke; Rothkötter, Hermann-Josef; Dahlmann, Burkhardt; Henklein, Petra; Voigt, Antje; Kuckelkorn, Ulrike; Paschen, Annette; Kloetzel, Peter-Michael; Seifert, Ulrike

    2015-12-01

    The immunodominant MART-1(26(27)-35) epitope, liberated from the differentiation antigen melanoma antigen recognized by T cells/melanoma antigen A (MART-1/Melan-A), has been frequently targeted in melanoma immunotherapy, but with limited clinical success. Previous studies suggested that this is in part due to an insufficient peptide supply and epitope presentation, since proteasomes containing the immunosubunits β5i/LMP7 (LMP, low molecular weight protein) or β1i/LMP2 and β5i/LMP7 interfere with MART-1(26-35) epitope generation in tumor cells. Here, we demonstrate that in addition the IFN-γ-inducible proteasome subunit β2i/MECL-1 (multicatalytic endopeptidase complex-like 1), proteasome activator 28 (PA28), and ER-resident aminopeptidase 1 (ERAP1) impair MART-1(26-35) epitope generation. β2i/MECL-1 and PA28 negatively affect C- and N-terminal cleavage and therefore epitope liberation from the proteasome, whereas ERAP1 destroys the MART-1(26-35) epitope by overtrimming activity. Constitutive expression of PA28 and ERAP1 in melanoma cells indicate that both interfere with MART-1(26-35) epitope generation even in the absence of IFN-γ. In summary, our results provide first evidence that activities of different antigen-processing components contribute to an inefficient MART-1(26-35) epitope presentation, suggesting the tumor cell's proteolytic machinery might have an important impact on the outcome of epitope-specific immunotherapies. PMID:26399368

  5. The Relation between Language, Affection, and Cognition in Bilingualism. Quantitative Assessments of the Interrelationships. Educational and Psychological Interactions No. 113.

    Science.gov (United States)

    Ekstrand, Lars Henric

    Assumptions of strong, causal relations between cognition, language, and affection are often made in general and in bilingualism in particular. This paper presents first a set of hypotheses concerning the relation between affection and language in bilingualism. One subset is concerned with language learning, language maintenance, and mental health…

  6. Novel internally quenched substrate of the trypsin-like subunit of 20S eukaryotic proteasome.

    Science.gov (United States)

    Gruba, Natalia; Wysocka, Magdalena; Brzezińska, Magdalena; Debowski, Dawid; Rolka, Krzysztof; Martin, Nathaniel I; Lesner, Adam

    2016-09-01

    This article describes the synthesis, using combinatorial chemistry, of internally quenched substrates of the trypsin-like subunit of human 20S proteasome. Such substrates were optimized in both the nonprime and prime regions of the peptide chain. Two were selected as the most susceptible for proteasomal proteolysis with excellent kinetic parameters: (i) ABZ-Val-Val-Ser-Arg-Ser-Leu-Gly-Tyr(3-NO2)-NH2 (kcat/KM = 934,000 M(-1) s(-1)) and (ii) ABZ-Val-Val-Ser-GNF-Ala-Met-Gly-Tyr(3-NO2)-NH2 (kcat/KM = 1,980,000 M(-1) s(-1)). Both compounds were efficiently hydrolyzed by the 20S proteasome at picomolar concentrations, demonstrating significant selectivity over other proteasome entities. PMID:26314791

  7. Secondary Metabolites Produced by an Endophytic Fungus Pestalotiopsis sydowiana and Their 20S Proteasome Inhibitory Activities.

    Science.gov (United States)

    Xia, Xuekui; Kim, Soonok; Liu, Changheng; Shim, Sang Hee

    2016-01-01

    Fungal endophytes have attracted attention due to their functional diversity. Secondary metabolites produced by Pestalotiopsis sydowiana from a halophyte, Phragmites communis Trinus, were investigated. Eleven compounds, including four penicillide derivatives (1-4) and seven α-pyrone analogues (5-10) were isolated from cultures of P. sydowiana. The compounds were identified based on spectroscopic data. The inhibitory activities against the 20S proteasome were evaluated. Compounds 1-3, 5, and 9-10 showed modest proteasome inhibition activities, while compound 8 showed strong activity with an IC50 of 1.2 ± 0.3 μM. This is the first study on the secondary metabolites produced by P. sydowiana and their proteasome inhibitory activities. The endophytic fungus P. sydowiana might be a good resource for proteasome inhibitors. PMID:27447600

  8. Aggresome-like structure induced by isothiocyanates is novel proteasome-dependent degradation machinery

    Energy Technology Data Exchange (ETDEWEB)

    Mi, Lixin, E-mail: lm293@georgetown.edu [Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057 (United States); Gan, Nanqin; Chung, Fung-Lung [Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057 (United States)

    2009-10-16

    Unwanted or misfolded proteins are either refolded by chaperones or degraded by the ubiquitin-proteasome system (UPS). When UPS is impaired, misfolded proteins form aggregates, which are transported along microtubules by motor protein dynein towards the juxta-nuclear microtubule-organizing center to form aggresome, a single cellular garbage disposal complex. Because aggresome formation results from proteasome failure, aggresome components are degraded through the autophagy/lysosome pathway. Here we report that small molecule isothiocyanates (ITCs) can induce formation of aggresome-like structure (ALS) through covalent modification of cytoplasmic {alpha}- and {beta}-tubulin. The formation of ALS is related to neither proteasome inhibition nor oxidative stress. ITC-induced ALS is a proteasome-dependent assembly for emergent removal of misfolded proteins, suggesting that the cell may have a previously unknown strategy to cope with misfolded proteins.

  9. Search for Inhibitors of the Ubiquitin-Proteasome System from Natural Sources for Cancer Therapy.

    Science.gov (United States)

    Tsukamoto, Sachiko

    2016-01-01

    Since the approval of the proteasome inhibitor, Velcade(®), by the Food and Drug Administration (FDA) for the treatment of relapsed multiple myeloma, inhibitors of the ubiquitin-proteasome system have been attracting increasing attention as promising drug leads for cancer therapy. While the development of drugs for diseases related to this proteolytic system has mainly been achieved by searching libraries of synthetic small molecules or chemical modifications to drug leads, limited searches have been conducted on natural sources. We have been searching natural sources for inhibitors that target this proteolytic system through in-house screening. Our recent studies on the search for natural inhibitors of the ubiquitin-proteasome system, particularly, inhibitors against the proteasome, E1 enzyme (Uba1), E2 enzyme (Ubc13-Uev1A heterodimer), and E3 enzyme (Hdm2), and also those against deubiquitinating enzyme (USP7), are reviewed here. PMID:26833439

  10. Proteasome inhibition as a new strategy in cancer therapy and chemoprevention 

    Directory of Open Access Journals (Sweden)

    Michał Maliński

    2013-02-01

    Full Text Available  The ubiquitin-proteasome system is one of the main pathways involved in degradation of cellular proteins and regulation of most biochemical processes critical for maintaining cellular homeostasis. Among proteins that undergo proteasomal degradation are those involved in signal transduction, metabolism regulation, cell cycle control and apoptosis. Therefore, inhibition of the ubiquitin-proteasome system causes inhibition of cell proliferation and induction of apoptosis, especially in cancer cells, which makes it a promising strategy of cancer therapy that is already supported by clinical trials. This article summarizes reports of known proteasome inhibitors, differing in chemical structure and mechanism of action, emphasizing their effects on intracellular phenomena related to apoptosis and cell cycle control.

  11. ROS inhibitor N-acetyl-l-cysteine antagonizes the activity of proteasome inhibitors

    OpenAIRE

    Halasi, Marianna; Wang, Ming; Chavan, Tanmay S.; Gaponenko, Vadim; Hay, Nissim; Gartel, Andrei L.

    2013-01-01

    NAC (N-acetyl-l-cysteine) is commonly used to identify and test ROS (reactive oxygen species) inducers, and to inhibit ROS. In the present study, we identified inhibition of proteasome inhibitors as a novel activity of NAC. Both NAC and catalase, another known scavenger of ROS, similarly inhibited ROS levels and apoptosis associated with H2O2. However, only NAC, and not catalase or another ROS scavenger Trolox, was able to prevent effects linked to proteasome inhibition, such as protein stabi...

  12. Validation of the 2nd Generation Proteasome Inhibitor Oprozomib for Local Therapy of Pulmonary Fibrosis.

    Directory of Open Access Journals (Sweden)

    Nora Semren

    Full Text Available Proteasome inhibition has been shown to prevent development of fibrosis in several organs including the lung. However, effects of proteasome inhibitors on lung fibrosis are controversial and cytotoxic side effects of the overall inhibition of proteasomal protein degradation cannot be excluded. Therefore, we hypothesized that local lung-specific application of a novel, selective proteasome inhibitor, oprozomib (OZ, provides antifibrotic effects without systemic toxicity in a mouse model of lung fibrosis. Oprozomib was first tested on the human alveolar epithelial cancer cell line A549 and in primary mouse alveolar epithelial type II cells regarding its cytotoxic effects on alveolar epithelial cells and compared to the FDA approved proteasome inhibitor bortezomib (BZ. OZ was less toxic than BZ and provided high selectivity for the chymotrypsin-like active site of the proteasome. In primary mouse lung fibroblasts, OZ showed significant anti-fibrotic effects, i.e. reduction of collagen I and α smooth muscle actin expression, in the absence of cytotoxicity. When applied locally into the lungs of healthy mice via instillation, OZ was well tolerated and effectively reduced proteasome activity in the lungs. In bleomycin challenged mice, however, locally applied OZ resulted in accelerated weight loss and increased mortality of treated mice. Further, OZ failed to reduce fibrosis in these mice. While upon systemic application OZ was well tolerated in healthy mice, it rather augmented instead of attenuated fibrotic remodelling of the lung in bleomycin challenged mice. To conclude, low toxicity and antifibrotic effects of OZ in pulmonary fibroblasts could not be confirmed for pulmonary fibrosis of bleomycin-treated mice. In light of these data, the use of proteasome inhibitors as therapeutic agents for the treatment of fibrotic lung diseases should thus be considered with caution.

  13. Reduced Levels of Proteasome Products in a Mouse Striatal Cell Model of Huntington's Disease.

    Directory of Open Access Journals (Sweden)

    Sayani Dasgupta

    Full Text Available Huntington's disease is the result of a long polyglutamine tract in the gene encoding huntingtin protein, which in turn causes a large number of cellular changes and ultimately results in neurodegeneration of striatal neurons. Although many theories have been proposed, the precise mechanism by which the polyglutamine expansion causes cellular changes is not certain. Some evidence supports the hypothesis that the long polyglutamine tract inhibits the proteasome, a multiprotein complex involved in protein degradation. However, other studies report normal proteasome function in cells expressing long polyglutamine tracts. The controversy may be due to the methods used to examine proteasome activity in each of the previous studies. In the present study, we measured proteasome function by examining levels of endogenous peptides that are products of proteasome cleavage. Peptide levels were compared among mouse striatal cell lines expressing either 7 glutamines (STHdhQ7/Q7 or 111 glutamines in the huntingtin protein, either heterozygous (STHdhQ7/Q111 or homozygous (STHdhQ111/Q111. Both of the cell lines expressing huntingtin with 111 glutamines showed a large reduction in nearly all of the peptides detected in the cells, relative to levels of these peptides in cells homozygous for 7 glutamines. Treatment of STHdhQ7/Q7 cells with proteasome inhibitors epoxomicin or bortezomib also caused a large reduction in most of these peptides, suggesting that they are products of proteasome-mediated cleavage of cellular proteins. Taken together, these results support the hypothesis that proteasome function is impaired by the expression of huntingtin protein containing long polyglutamine tracts.

  14. The Proteasome Inhibitor Bortezomib Maintains Osteocyte Viability in Multiple Myeloma Patients by Reducing Both Apoptosis and Autophagy: A New Function for Proteasome Inhibitors.

    Science.gov (United States)

    Toscani, Denise; Palumbo, Carla; Dalla Palma, Benedetta; Ferretti, Marzia; Bolzoni, Marina; Marchica, Valentina; Sena, Paola; Martella, Eugenia; Mancini, Cristina; Ferri, Valentina; Costa, Federica; Accardi, Fabrizio; Craviotto, Luisa; Aversa, Franco; Giuliani, Nicola

    2016-04-01

    Multiple myeloma (MM) is characterized by severely imbalanced bone remodeling. In this study, we investigated the potential effect of proteasome inhibitors (PIs), a class of drugs known to stimulate bone formation, on the mechanisms involved in osteocyte death induced by MM cells. First, we performed a histological analysis of osteocyte viability on bone biopsies on a cohort of 37 MM patients with symptomatic disease. A significantly higher number of viable osteocytes was detected in patients treated with a bortezomib (BOR)-based regimen compared with those treated without BOR. Interestingly, both osteocyte autophagy and apoptosis were affected in vivo by BOR treatment. Thereafter, we checked the in vitro effect of BOR to understand the mechanisms whereby BOR maintains osteocyte viability in bone from MM patients. We found that osteocyte and preosteocyte autophagic death was triggered during coculturing with MM cells. Our evaluation was conducted by analyzing either autophagy markers microtubule-associated protein light chain 3 beta (LC3B) and SQSTM1/sequestome 1 (p62) levels, or the cell ultrastructure by transmission electron microscopy. PIs were found to increase the basal levels of LC3 expression in the osteocytes while blunting the myeloma-induced osteocyte death. PIs also reduced the autophagic death of osteocytes induced by high-dose dexamethasone (DEX) and potentiated the anabolic effect of PTH(1-34). Our data identify osteocyte autophagy as a new potential target in MM bone disease and support the use of PIs to maintain osteocyte viability and improve bone integrity in MM patients. PMID:26551485

  15. Induction of autophagy by proteasome inhibitor is associated with proliferative arrest in colon cancer cells

    International Nuclear Information System (INIS)

    The ubiquitin-proteasome system (UPS) and lysosome-dependent macroautophagy (autophagy) are two major intracellular pathways for protein degradation. Blockade of UPS by proteasome inhibitors has been shown to activate autophagy. Recent evidence also suggests that proteasome inhibitors may inhibit cancer growth. In this study, the effect of a proteasome inhibitor MG-132 on the proliferation and autophagy of cultured colon cancer cells (HT-29) was elucidated. Results showed that MG-132 inhibited HT-29 cell proliferation and induced G2/M cell cycle arrest which was associated with the formation of LC3+ autophagic vacuoles and the accumulation of acidic vesicular organelles. MG-132 also increased the protein expression of LC3-I and -II in a time-dependent manner. In this connection, 3-methyladenine, a Class III phosphoinositide 3-kinase inhibitor, significantly abolished the formation of LC3+ autophagic vacuoles and the expression of LC3-II but not LC3-I induced by MG-132. Taken together, this study demonstrates that inhibition of proteasome in colon cancer cells lowers cell proliferation and activates autophagy. This discovery may shed a new light on the novel function of proteasome in the regulation of autophagy and proliferation in colon cancer cells

  16. Localization of the regulatory particle subunit Sem1 in the 26S proteasome

    International Nuclear Information System (INIS)

    Highlights: •26S proteasome subunit Sem1 was mapped using cryo-EM and cross-linking data. •C-terminal helix of Sem1 located near winged helix motif of Rpn7. •N-terminal part of Sem1 tethers Rpn7, Rpn3 and lid helical bundle. •Sem1 binds differently to PCI-domains of proteasome subunit Rpn7 and TREX-2 subunit Thp1. -- Abstract: The ubiquitin–proteasome system is responsible for regulated protein degradation in the cell with the 26S proteasome acting as its executive arm. The molecular architecture of this 2.5 MDa complex has been established recently, with the notable exception of the small acidic subunit Sem1. Here, we localize the C-terminal helix of Sem1 binding to the PCI domain of the subunit Rpn7 using cryo-electron microscopy single particle reconstruction of proteasomes purified from yeast cells with sem1 deletion. The approximate position of the N-terminal region of Sem1 bridging the cleft between Rpn7 and Rpn3 was inferred based on site-specific cross-linking data of the 26S proteasome. Our structural studies indicate that Sem1 can assume different conformations in different contexts, which supports the idea that Sem1 functions as a molecular glue stabilizing the Rpn3/Rpn7 heterodimer

  17. Localization of the regulatory particle subunit Sem1 in the 26S proteasome

    Energy Technology Data Exchange (ETDEWEB)

    Bohn, Stefan; Sakata, Eri; Beck, Florian; Pathare, Ganesh R.; Schnitger, Jérôme; Nágy, Istvan; Baumeister, Wolfgang, E-mail: baumeist@bichem.mpg.de; Förster, Friedrich, E-mail: foerster@bichem.mpg.de

    2013-05-31

    Highlights: •26S proteasome subunit Sem1 was mapped using cryo-EM and cross-linking data. •C-terminal helix of Sem1 located near winged helix motif of Rpn7. •N-terminal part of Sem1 tethers Rpn7, Rpn3 and lid helical bundle. •Sem1 binds differently to PCI-domains of proteasome subunit Rpn7 and TREX-2 subunit Thp1. -- Abstract: The ubiquitin–proteasome system is responsible for regulated protein degradation in the cell with the 26S proteasome acting as its executive arm. The molecular architecture of this 2.5 MDa complex has been established recently, with the notable exception of the small acidic subunit Sem1. Here, we localize the C-terminal helix of Sem1 binding to the PCI domain of the subunit Rpn7 using cryo-electron microscopy single particle reconstruction of proteasomes purified from yeast cells with sem1 deletion. The approximate position of the N-terminal region of Sem1 bridging the cleft between Rpn7 and Rpn3 was inferred based on site-specific cross-linking data of the 26S proteasome. Our structural studies indicate that Sem1 can assume different conformations in different contexts, which supports the idea that Sem1 functions as a molecular glue stabilizing the Rpn3/Rpn7 heterodimer.

  18. Distinct Proteasome Subpopulations in the Alveolar Space of Patients with the Acute Respiratory Distress Syndrome

    Directory of Open Access Journals (Sweden)

    S. U. Sixt

    2012-01-01

    Full Text Available There is increasing evidence that proteasomes have a biological role in the extracellular alveolar space, but inflammation could change their composition. We tested whether immunoproteasome protein-containing subpopulations are present in the alveolar space of patients with lung inflammation evoking the acute respiratory distress syndrome (ARDS. Bronchoalveolar lavage (BAL supernatants and cell pellet lysate from ARDS patients (n=28 and healthy subjects (n=10 were analyzed for the presence of immunoproteasome proteins (LMP2 and LMP7 and proteasome subtypes by western blot, chromatographic purification, and 2D-dimensional gelelectrophoresis. In all ARDS patients but not in healthy subjects LMP7 and LMP2 were observed in BAL supernatants. Proteasomes purified from pooled ARDS BAL supernatant showed an altered enzyme activity ratio. Chromatography revealed a distinct pattern with 7 proteasome subtype peaks in BAL supernatant of ARDS patients that differed from healthy subjects. Total proteasome concentration in BAL supernatant was increased in ARDS (971 ng/mL ± 1116 versus 59±25; P<0.001, and all fluorogenic substrates were hydrolyzed, albeit to a lesser extent, with inhibition by epoxomicin (P=0.0001. Thus, we identified for the first time immunoproteasome proteins and a distinct proteasomal subtype pattern in the alveolar space of ARDS patients, presumably in response to inflammation.

  19. Adrm1, a putative cell adhesion regulating protein, is a novel proteasome-associated factor

    DEFF Research Database (Denmark)

    Jørgensen, Jakob Ploug; Lauridsen, Anne-Marie; Kristensen, Poul; Dissing, Karen; Johnsen, Anders H; Hendil, Klavs B; Hartmann-Petersen, Rasmus

    2006-01-01

    We have identified Adrm1 as a novel component of the regulatory ATPase complex of the 26 S proteasome: Adrm1 was precipitated with an antibody to proteasomes and vice versa. Adrm1 co-migrated with proteasomes on gel-filtration chromatography and non-denaturing polyacrylamide gel electrophoresis....... Adrm1 has been described as an interferon-gamma-inducible, heavily glycosylated membrane protein of 110 kDa. However, we found Adrm1 in mouse tissues only as a 42 kDa peptide, corresponding to the mass of the non-glycosylated peptide chain, and it could not be induced in HeLa cells with interferon......-existing 26 S proteasomes in cell extracts. Adrm1 may be distantly related to the yeast proteasome subunit Rpn13, mutants of which are reported to display no obvious phenotype. Accordingly, knock-down of Adrm1 in HeLa cells had no effect on the amount of proteasomes, or on degradation of bulk cell protein, or...

  20. Yeast Interacting Proteins Database: YNL189W, YLR377C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available sed by (YPD) - Not affected by(YPD) - Interologs - Expression similarity (BRITE) - Alternative path with 1 intervening pr...gradation depending on growth conditions; interacts with Vid30p Rows with this prey as prey (4) Rows with this pre... may also play a role in regulation of protein degradation Rows with this bait as bait (55) Rows with this bait as pre...s pathway, required for glucose metabolism; undergoes either proteasome-mediated or autophagy-mediated de... (0 or 1,YPD) 0 Complex (0 or 1,YPD) 0 Synthetic lethality (0 or 1,YPD) 0 Co-induced by (YPD) - Co-repres

  1. Pseudomonas syringae pv. syringae uses proteasome inhibitor syringolin A to colonize from wound infection sites.

    Directory of Open Access Journals (Sweden)

    Johana C Misas-Villamil

    2013-03-01

    Full Text Available Infection of plants by bacterial leaf pathogens at wound sites is common in nature. Plants defend wound sites to prevent pathogen invasion, but several pathogens can overcome spatial restriction and enter leaf tissues. The molecular mechanisms used by pathogens to suppress containment at wound infection sites are poorly understood. Here, we studied Pseudomonas syringae strains causing brown spot on bean and blossom blight on pear. These strains exist as epiphytes that can cause disease upon wounding caused by hail, sand storms and frost. We demonstrate that these strains overcome spatial restriction at wound sites by producing syringolin A (SylA, a small molecule proteasome inhibitor. Consequently, SylA-producing strains are able to escape from primary infection sites and colonize adjacent tissues along the vasculature. We found that SylA diffuses from the primary infection site and suppresses acquired resistance in adjacent tissues by blocking signaling by the stress hormone salicylic acid (SA. Thus, SylA diffusion creates a zone of SA-insensitive tissue that is prepared for subsequent colonization. In addition, SylA promotes bacterial motility and suppresses immune responses at the primary infection site. These local immune responses do not affect bacterial growth and were weak compared to effector-triggered immunity. Thus, SylA facilitates colonization from wounding sites by increasing bacterial motility and suppressing SA signaling in adjacent tissues.

  2. Protein degradation by ubiquitin–proteasome system in formation and labilization of contextual conditioning memory

    Science.gov (United States)

    Sol Fustiñana, María; de la Fuente, Verónica; Federman, Noel; Freudenthal, Ramiro

    2014-01-01

    The ubiquitin–proteasome system (UPS) of protein degradation has been evaluated in different forms of neural plasticity and memory. The role of UPS in such processes is controversial. Several results support the idea that the activation of this system in memory consolidation is necessary to overcome negative constrains for plasticity. In this case, the inhibition of the UPS during consolidation impairs memory. Similar results were reported for memory reconsolidation. However, in other cases, the inhibition of UPS had no effect on memory consolidation and reconsolidation but impedes the amnesic action of protein synthesis inhibition after retrieval. The last finding suggests a specific action of the UPS inhibitor on memory labilization. However, another interpretation is possible in terms of the synthesis/degradation balance of positive and negative elements in neural plasticity, as was found in the case of long-term potentiation. To evaluate these alternative interpretations, other reconsolidation-interfering drugs than translation inhibitors should be tested. Here we analyzed initially the UPS inhibitor effect in contextual conditioning in crabs. We found that UPS inhibition during consolidation impaired long-term memory. In contrast, UPS inhibition did not affect memory reconsolidation after contextual retrieval but, in fact, impeded memory labilization, blocking the action of drugs that does not affect directly the protein synthesis. To extend these finding to vertebrates, we performed similar experiments in contextual fear memory in mice. We found that the UPS inhibitor in hippocampus affected memory consolidation and blocked memory labilization after retrieval. These findings exclude alternative interpretations to the requirement of UPS in memory labilization and give evidence of this mechanism in both vertebrates and invertebrates. PMID:25135196

  3. Plasma membrane lipid–protein interactions affect signaling processes in sterol-biosynthesis mutants in Arabidopsis thaliana

    OpenAIRE

    Zauber, Henrik; Burgos, Asdrubal; Garapati, Prashanth; Schulze, Waltraud X.

    2014-01-01

    The plasma membrane is an important organelle providing structure, signaling and transport as major biological functions. Being composed of lipids and proteins with different physicochemical properties, the biological functions of membranes depend on specific protein-protein and protein-lipid interactions. Interactions of proteins with their specific sterol and lipid environment were shown to be important factors for protein recruitment into sub-compartmental structures of the plasma membrane...

  4. How Attributes of the Feedback Message affect Subsequent Feedback Seeking: The interactive effects of feedback sign and type

    OpenAIRE

    Megan Medvedeff; Jane Brodie Gregory; Paul E Levy

    2008-01-01

    In the current study, we examined the interactive effects of feedback type and sign on feedback-seeking behaviour, as well as the moderating role of regulatory focus. Using a behavioural measure of feedback seeking, we demonstrated a strong interaction between feedback type and sign, such that individuals subsequently sought the most feedback after they were provided with negative process feedback. Additionally, results suggested that an individual's chronic regulatory focus has implications ...

  5. Role of the ubiquitin proteasome system in renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Corn Paul G

    2007-11-01

    Full Text Available Abstract Renal cell carcinoma (RCC accounts for approximately 2.6% of all cancers in the United States. While early stage disease is curable by surgery, the median survival of metastatic disease is only 13 months. In the last decade, there has been considerable progress in understanding the genetics of RCC. The VHL tumor suppressor gene is inactivated in the majority of RCC cases. The VHL protein (pVHL acts as an E3 ligase that targets HIF-1, the hypoxia inducible transcription factor, for degradation by the ubiquitin proteasome system (UPS. In RCC cases with mutant pVHL, HIF-1 is stabilized and aberrantly expressed in normoxia, leading to the activation of pro-survival genes such as vascular endothelial growth factor (VEGF. This review will focus on the defect in the UPS that underlies RCC and describe the development of novel therapies that target the UPS. Publication history: Republished from Current BioData's Targeted Proteins database (TPdb; http://www.targetedproteinsdb.com.

  6. Vocal and visual stimulation, congruence and lateralization affect brain oscillations in interspecies emotional positive and negative interactions.

    Science.gov (United States)

    Balconi, Michela; Vanutelli, Maria Elide

    2016-06-01

    The present research explored the effect of cross-modal integration of emotional cues (auditory and visual (AV)) compared with only visual (V) emotional cues in observing interspecies interactions. The brain activity was monitored when subjects processed AV and V situations, which represented an emotional (positive or negative), interspecies (human-animal) interaction. Congruence (emotionally congruous or incongruous visual and auditory patterns) was also modulated. electroencephalography brain oscillations (from delta to beta) were analyzed and the cortical source localization (by standardized Low Resolution Brain Electromagnetic Tomography) was applied to the data. Frequency band (mainly low-frequency delta and theta) showed a significant brain activity increasing in response to negative compared to positive interactions within the right hemisphere. Moreover, differences were found based on stimulation type, with an increased effect for AV compared with V. Finally, delta band supported a lateralized right dorsolateral prefrontal cortex (DLPFC) activity in response to negative and incongruous interspecies interactions, mainly for AV. The contribution of cross-modality, congruence (incongruous patterns), and lateralization (right DLPFC) in response to interspecies emotional interactions was discussed at light of a "negative lateralized effect." PMID:26256040

  7. Proteasome Particle-Rich Structures Are Widely Present in Human Epithelial Neoplasms: Correlative Light, Confocal and Electron Microscopy Study

    OpenAIRE

    Necchi, Vittorio; Sommi, Patrizia; Vanoli, Alessandro; Manca, Rachele; Ricci, Vittorio; Solcia, Enrico

    2011-01-01

    A novel cytoplasmic structure has been recently characterized by confocal and electron microscopy in H. pylori-infected human gastric epithelium, as an accumulation of barrel-like proteasome reactive particles colocalized with polyubiquitinated proteins, H. pylori toxins and the NOD1 receptor. This proteasome particle-rich cytoplasmic structure (PaCS), a sort of focal proteasome hyperplasia, was also detected in dysplastic cells and was found to be enriched in SHP2 and ERK proteins, known to ...

  8. Proteasome inhibitors: Their effects on arachidonic acid release from cells in culture and arachidonic acid metabolism in rat liver cells

    OpenAIRE

    Levine Lawrence

    2004-01-01

    Abstract Background I have postulated that arachidonic acid release from rat liver cells is associated with cancer chemoprevention. Since it has been reported that inhibition of proteasome activities may prevent cancer, the effects of proteasome inhibitors on arachidonic acid release from cells and on prostaglandin I2 production in rat liver cells were studied. Results The proteasome inhibitors, epoxomicin, lactacystin and carbobenzoxy-leucyl-leucyl-leucinal, stimulate the release of arachido...

  9. Combined inhibition of p97 and the proteasome causes lethal disruption of the secretory apparatus in multiple myeloma cells.

    Directory of Open Access Journals (Sweden)

    Holger W Auner

    Full Text Available Inhibition of the proteasome is a widely used strategy for treating multiple myeloma that takes advantage of the heavy secretory load that multiple myeloma cells (MMCs have to deal with. Resistance of MMCs to proteasome inhibition has been linked to incomplete disruption of proteasomal endoplasmic-reticulum (ER-associated degradation (ERAD and activation of non-proteasomal protein degradation pathways. The ATPase p97 (VCP/Cdc48 has key roles in mediating both ERAD and non-proteasomal protein degradation and can be targeted pharmacologically by small molecule inhibition. In this study, we compared the effects of p97 inhibition with Eeyarestatin 1 and DBeQ on the secretory apparatus of MMCs with the effects induced by the proteasome inhibitor bortezomib, and the effects caused by combined inhibition of p97 and the proteasome. We found that p97 inhibition elicits cellular responses that are different from those induced by proteasome inhibition, and that the responses differ considerably between MMC lines. Moreover, we found that dual inhibition of both p97 and the proteasome terminally disrupts ER configuration and intracellular protein metabolism in MMCs. Dual inhibition of p97 and the proteasome induced high levels of apoptosis in all of the MMC lines that we analysed, including bortezomib-adapted AMO-1 cells, and was also effective in killing primary MMCs. Only minor toxicity was observed in untransformed and non-secretory cells. Our observations highlight non-redundant roles of p97 and the proteasome in maintaining secretory homeostasis in MMCs and provide a preclinical conceptual framework for dual targeting of p97 and the proteasome as a potential new therapeutic strategy in multiple myeloma.

  10. Different Degree in Proteasome Malfunction Has Various Effects on Root Growth Possibly through Preventing Cell Division and Promoting Autophagic Vacuolization

    OpenAIRE

    Xianyong Sheng; Qian Wei; Liping Jiang; Xue Li; Yuan Gao; Li Wang

    2012-01-01

    The ubiquitin/proteasome pathway plays a vital role in plant development. But the effects of proteasome malfunction on root growth, and the mechanism underlying this involvement remains unclear. In the present study, the effects of proteasome inhibitors on Arabidopsis root growth were studied through the analysis of the root length, and meristem size and cell length in maturation zone using FM4-64, and cell-division potential using GFP fusion cyclin B, and accumulation of ubiquitinated protei...

  11. CDK11p58 represses vitamin D receptor-mediated transcriptional activation through promoting its ubiquitin-proteasome degradation

    International Nuclear Information System (INIS)

    Vitamin D receptor (VDR) is a member of the nuclear receptor superfamily and regulates transcription of target genes. In this study, we identified CDK11p58 as a novel protein involved in the regulation of VDR. CDK11p58, a member of the large family of p34cdc2-related kinases, is associated with cell cycle progression, tumorigenesis, and apoptotic signaling. Our study demonstrated that CDK11p58 interacted with VDR and repressed VDR-dependent transcriptional activation. Furthermore, overexpression of CDK11p58 decreased the stability of VDR through promoting its ubiquitin-proteasome-mediated degradation. Taken together, these results suggest that CDK11p58 is involved in the negative regulation of VDR.

  12. CDK11{sup p58} represses vitamin D receptor-mediated transcriptional activation through promoting its ubiquitin-proteasome degradation

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Yayun; Hong, Yi; Zong, Hongliang; Wang, Yanlin; Zou, Weiying; Yang, Junwu; Kong, Xiangfei; Yun, Xiaojing [Gene Research Center, Shanghai Medical College and Institutes of Biomedical, Shanghai 200032 (China); Gu, Jianxin, E-mail: jxgu@shmu.edu.cn [Gene Research Center, Shanghai Medical College and Institutes of Biomedical, Shanghai 200032 (China)

    2009-08-28

    Vitamin D receptor (VDR) is a member of the nuclear receptor superfamily and regulates transcription of target genes. In this study, we identified CDK11{sup p58} as a novel protein involved in the regulation of VDR. CDK11{sup p58}, a member of the large family of p34cdc2-related kinases, is associated with cell cycle progression, tumorigenesis, and apoptotic signaling. Our study demonstrated that CDK11{sup p58} interacted with VDR and repressed VDR-dependent transcriptional activation. Furthermore, overexpression of CDK11{sup p58} decreased the stability of VDR through promoting its ubiquitin-proteasome-mediated degradation. Taken together, these results suggest that CDK11{sup p58} is involved in the negative regulation of VDR.

  13. The Natural Interactive Walking Project and Emergence of Its Results in Research on Rhythmic Walking Interaction and the Role of Footsteps in Affecting Body Ownership

    DEFF Research Database (Denmark)

    Maculewicz, Justyna; Sikström, Erik; Serafin, Stefania

    2015-01-01

    In this chapter we describe how the results of the Natural Interactive Project, which was funded within the 7th Framework Programme and ended in 2011, started several research directions concerning the role of auditory and haptic feedback in footstep simulations. We chose elements of the project...... which are interesting in a broader context of interactive walking with audio and haptic feedback to present and discuss the developed systems for gait analysis and feedback presentation, but also, what is even more interesting to show how it influence humans behavior and perception. We hope also to open...... a discussion on why we actually can manipulate our behavior and show the importance of explaining it from the neurological perspective. We start with a general introduction, moving on to more specific parts of the project, that are followed by the results of the research which were conducted after...

  14. The structure of flower visitation webs : how morphology and abundance affect interaction patterns between flowers and flower visitors

    NARCIS (Netherlands)

    Stang, Martina

    2007-01-01

    Interaction patterns between plants and flower visitors in a Mediterranean flower visitation web can be explained surprisingly well by the combination of two simple mechanisms. Firstly, the size threshold that the nectar tube depth of flowers puts on the tongue length of potential flower visitors; a

  15. Interactions between genetic variants of folate metabolism genes and lifestyle affect plasma homocysteine concentrations in the Boston Puerto Rican Population

    Science.gov (United States)

    Results of studies investigating relationships between lifestyle factors and elevated plasma homocysteine (Hcy), an independent risk factor for cardiovascular disease, are conflicting. The objective of this study was to investigate genetic and lifestyle factors and their interactions on plasma Hcy c...

  16. An Empirical Study of Factors Affecting Mobile Wireless Technology Adoption for Promoting Interactive Lectures in Higher Education

    Science.gov (United States)

    Gan, Chin Lay; Balakrishnan, Vimala

    2016-01-01

    Use of mobile technology is widespread, particularly among the younger generation. There is a huge potential for utilizing such technology in lecture classes with large numbers of students, serving as an interaction tool between the students and lecturers. The challenge is to identify significant adoption factors to ensure effective adoption of…

  17. Human papillomavirus 16 E2 interacts with neuregulin receptor degradation protein 1 affecting ErbB-3 expression in vitro and in clinical samples of cervical lesions.

    Science.gov (United States)

    Paolini, Francesca; Curzio, Gianfranca; Melucci, Elisa; Terrenato, Irene; Antoniani, Barbara; Carosi, Mariantonia; Mottolese, Marcella; Vici, Patrizia; Mariani, Luciano; Venuti, Aldo

    2016-05-01

    The ErbB tyrosine kinase receptors play a key role in regulating many cellular functions and human papillomaviruses (HPVs) may interact with transductional pathway of different growth factor receptors. Here, these interactions were analysed in W12 cell line carrying HPV 16 genome and in clinical samples. W12 cells, in which HPV16 becomes integrated during passages, were utilised to detect viral and ErbB family expression at early (W12E) and late passages (W12G). Interestingly, a strong reduction of ErbB-3 expression was observed in W12G. Loss of the E2 and E5 viral genes occurs in W12G and this may affect ErbB-3 receptor expression. E2 and E5 rescue experiments demonstrated that only E2 gene was able to restore ErbB-3 expression. E2 is a transcriptional factor but the expression levels of ErbB3 were unaffected and ErbB-3 promoter did not show any consensus sequence for E2, thus E2 may interact in another way with ErbB3. Indeed, HPV 16 E2 can modulate ErbB-3 by interacting with the ubiquitin ligase neuregulin receptor degradation protein 1 (Nrdp-1) that is involved in the regulation of this receptor, via ubiquitination and degradation. E2 co-immunoprecipitated in a complex with Nrdp-1 leading to hypothesise an involvement of this interaction in ErbB-3 regulation. In addition, 90% of the clinical samples with integrated virus and E2 loss showed no or low ErbB-3 positivity, confirming in vitro results. In conclusion, the new discovered interaction of HPV-16 E2 with Nrdp-1 may affect ErbB-3 expression. PMID:26963794

  18. Interaction Between Syndromic and Non-Syndromic Factors Affecting Speech and Language Development in Treacher-Collins Syndrome

    OpenAIRE

    Marziyeh Poorjavad

    2011-01-01

    Background: Treacher-Collins syndrome is a congenital craniofacial disorder with multiple anomalies. This syndrome affects the maxilla, mandible, eyes, middle and outer ears, and soft palate. Conductive hearing loss due to the deformities of the middle and external ears is prevalent. The characteristics of this syndrome include multiple and serious threats to normal communication development in children. In this study, speech and language features of a Persian speaking child with this syndrom...

  19. Direct interaction of natural and synthetic catechins with signal transducer activator of transcription 1 affects both its phosphorylation and activity

    KAUST Repository

    Menegazzi, Marta

    2013-12-10

    Our previous studies showed that (-)-epigallocatechin-3-gallate (EGCG) inhibits signal transducer activator of transcription 1 (STAT1) activation. Since EGCG may be a promising lead compound for new anti-STAT1 drug design, 15 synthetic catechins, characterized by the (-)-gallocatechin-3-gallate stereochemistry, were studied in the human mammary MDA-MB-231 cell line to identify the minimal structural features that preserve the anti-STAT1 activity. We demonstrate that the presence of three hydroxyl groups of B ring and one hydroxyl group in D ring is essential to preserve their inhibitory action. Moreover, a possible molecular target of these compounds in the STAT1 pathway was investigated. Our results demonstrate a direct interaction between STAT1 protein and catechins displaying anti-STAT1 activity. In particular, surface plasmon resonance (SPR) analysis and molecular modeling indicate the presence of two putative binding sites (a and b) with different affinity. Based on docking data, site-directed mutagenesis was performed, and interaction of the most active catechins with STAT1 was studied with SPR to test whether Gln518 on site a and His568 on site b could be important for the catechin-STAT1 interaction. Data indicate that site b has higher affinity for catechins than site a as the highest affinity constant disappears in the H568ASTAT1 mutant. Furthermore, Janus kinase 2 (JAK2) kinase assay data suggest that the contemporary presence in vitro of STAT1 and catechins inhibits JAK2-elicited STAT1 phosphorylation. The very tight catechin-STAT1 interaction prevents STAT1 phosphorylation and represents a novel, specific and efficient molecular mechanism for the inhibition of STAT1 activation. © Copyright 2014 Federation of European Biochemical Societies. All rights reserved.

  20. Osmolyte Trimethylamine-N-Oxide Does Not Affect the Strength of Hydrophobic Interactions: Origin of Osmolyte Compatibility

    OpenAIRE

    Athawale, Manoj V.; Dordick, Jonathan S.; Garde, Shekhar

    2005-01-01

    Osmolytes are small organic solutes accumulated at high concentrations by cells/tissues in response to osmotic stress. Osmolytes increase thermodynamic stability of folded proteins and provide protection against denaturing stresses. The mechanism of osmolyte compatibility and osmolyte-induced stability has, therefore, attracted considerable attention in recent years. However, to our knowledge, no quantitative study of osmolyte effects on the strength of hydrophobic interactions has been repor...

  1. Factors affecting the interactions between beta-lactoglobulin and fatty acids as revealed in molecular dynamics simulations.

    Science.gov (United States)

    Yi, Changhong; Wambo, Thierry O

    2015-09-21

    Beta-lactoglobulin (BLG), a bovine dairy protein, is a promiscuously interacting protein that can bind multiple hydrophobic ligands. Fatty acids (FAs), common hydrophobic molecules bound to BLG, are important sources of fuel for life because they yield large quantities of ATP when metabolized. The binding affinity increases with the length of the ligands, indicating the importance of the van der Waals (vdW) interactions between the hydrocarbon tail and the hydrophobic calyx of BLG. An exception to this rule is caprylic acid (OCA) which is two-carbon shorter but has a stronger binding affinity than capric acid. Theoretical calculations in the current literature are not accurate enough to shed light on the underlying physics of this exception. The computed affinity values are greater for longer fatty acids without respect for the caprylic exception and those values are generally several orders of magnitude away from the experimental data. In this work, we used hybrid steered molecular dynamics to accurately compute the binding free energies between BLG and the five saturated FAs of 8 to 16 carbon atoms. The computed binding free energies agree well with experimental data not only in rank but also in absolute values. We gained insights into the exceptional behavior of caprylic acid in the computed values of entropy and electrostatic interactions. We found that the electrostatic interaction between the carboxyl group of caprylic acid and the two amino groups of K60/69 in BLG is much stronger than the vdW force between the OCA's hydrophobic tail and the BLG calyx. This pulls OCA to the top of the beta barrel where it is easier to fluctuate, giving rise to greater entropy of OCA at the binding site. PMID:26272099

  2. Genotype-by-environment interactions and adaptation to local temperature affect immunity and fecundity in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Brian P Lazzaro

    2008-03-01

    Full Text Available Natural populations of most organisms harbor substantial genetic variation for resistance to infection. The continued existence of such variation is unexpected under simple evolutionary models that either posit direct and continuous natural selection on the immune system or an evolved life history "balance" between immunity and other fitness traits in a constant environment. However, both local adaptation to heterogeneous environments and genotype-by-environment interactions can maintain genetic variation in a species. In this study, we test Drosophila melanogaster genotypes sampled from tropical Africa, temperate northeastern North America, and semi-tropical southeastern North America for resistance to bacterial infection and fecundity at three different environmental temperatures. Environmental temperature had absolute effects on all traits, but there were also marked genotype-by-environment interactions that may limit the global efficiency of natural selection on both traits. African flies performed more poorly than North American flies in both immunity and fecundity at the lowest temperature, but not at the higher temperatures, suggesting that the African population is maladapted to low temperature. In contrast, there was no evidence for clinal variation driven by thermal adaptation within North America for either trait. Resistance to infection and reproductive success were generally uncorrelated across genotypes, so this study finds no evidence for a fitness tradeoff between immunity and fecundity under the conditions tested. Both local adaptation to geographically heterogeneous environments and genotype-by-environment interactions may explain the persistence of genetic variation for resistance to infection in natural populations.

  3. USP14 deubiquitinates proteasome-bound substrates that are ubiquitinated at multiple sites.

    Science.gov (United States)

    Lee, Byung-Hoon; Lu, Ying; Prado, Miguel A; Shi, Yuan; Tian, Geng; Sun, Shuangwu; Elsasser, Suzanne; Gygi, Steven P; King, Randall W; Finley, Daniel

    2016-04-21

    USP14 is a major regulator of the proteasome and one of three proteasome-associated deubiquitinating enzymes. Its effects on protein turnover are substrate-specific, for unknown reasons. We report that USP14 shows a marked preference for ubiquitin-cyclin B conjugates that carry more than one ubiquitin modification or chain. This specificity is conserved from yeast to humans and is independent of chain linkage type. USP14 has been thought to cleave single ubiquitin groups from the distal tip of a chain, but we find that it removes chains from cyclin B en bloc, proceeding until a single chain remains. The suppression of degradation by USP14's catalytic activity reflects its capacity to act on a millisecond time scale, before the proteasome can initiate degradation of the substrate. In addition, single-molecule studies showed that the dwell time of ubiquitin conjugates at the proteasome was reduced by USP14-dependent deubiquitination. In summary, the specificity of the proteasome can be regulated by rapid ubiquitin chain removal, which resolves substrates based on a novel aspect of ubiquitin conjugate architecture. PMID:27074503

  4. Mitochondrial Malfunctioning, Proteasome Arrest and Apoptosis in Cancer Cells by Focused Intracellular Generation of Oxygen Radicals

    Directory of Open Access Journals (Sweden)

    Ilaria Postiglione

    2015-08-01

    Full Text Available Photofrin/photodynamic therapy (PDT at sub-lethal doses induced a transient stall in proteasome activity in surviving A549 (p53+/+ and H1299 (p53−/− cells as indicated by the time-dependent decline/recovery of chymotrypsin-like activity. Indeed, within 3 h of incubation, Photofrin invaded the cytoplasm and localized preferentially within the mitochondria. Its light activation determined a decrease in mitochondrial membrane potential and a reversible arrest in proteasomal activity. A similar result is obtained by treating cells with Antimycin and Rotenone, indicating, as a common denominator of this effect, the ATP decrease. Both inhibitors, however, were more toxic to cells as the recovery of proteasomal activity was incomplete. We evaluated whether combining PDT (which is a treatment for killing tumor cells, per se, and inducing proteasome arrest in the surviving ones with Bortezomib doses capable of sustaining the stall would protract the arrest with sufficient time to induce apoptosis in remaining cells. The evaluation of the mitochondrial membrane depolarization, residual proteasome and mitochondrial enzymatic activities, colony-forming capabilities, and changes in protein expression profiles in A549 and H1299 cells under a combined therapeutic regimen gave results consistent with our hypothesis.

  5. Repression of protein translation and mTOR signaling by proteasome inhibitor in colon cancer cells

    International Nuclear Information System (INIS)

    Protein homeostasis relies on a balance between protein synthesis and protein degradation. The ubiquitin-proteasome system is a major catabolic pathway for protein degradation. In this respect, proteasome inhibition has been used therapeutically for the treatment of cancer. Whether inhibition of protein degradation by proteasome inhibitor can repress protein translation via a negative feedback mechanism, however, is unknown. In this study, proteasome inhibitor MG-132 lowered the proliferation of colon cancer cells HT-29 and SW1116. In this connection, MG-132 reduced the phosphorylation of mammalian target of rapamycin (mTOR) at Ser2448 and Ser2481 and the phosphorylation of its downstream targets 4E-BP1 and p70/p85 S6 kinases. Further analysis revealed that MG-132 inhibited protein translation as evidenced by the reductions of 35S-methionine incorporation and polysomes/80S ratio. Knockdown of raptor, a structural component of mTOR complex 1, mimicked the anti-proliferative effect of MG-132. To conclude, we demonstrate that the inhibition of protein degradation by proteasome inhibitor represses mTOR signaling and protein translation in colon cancer cells.

  6. A Set of Activity-Based Probes to Visualize Human (Immuno)proteasome Activities.

    Science.gov (United States)

    de Bruin, Gerjan; Xin, Bo Tao; Kraus, Marianne; van der Stelt, Mario; van der Marel, Gijsbert A; Kisselev, Alexei F; Driessen, Christoph; Florea, Bogdan I; Overkleeft, Herman S

    2016-03-18

    Proteasomes are therapeutic targets for various cancers and autoimmune diseases. Constitutively expressed proteasomes have three active sites, β1c, β2c, and β5c. Lymphoid tissues also express the immunoproteasome subunits β1i, β2i, and β5i. Rapid and simultaneous measurement of the activity of these catalytic subunits would assist in the discovery of new inhibitors, improve analysis of proteasome inhibitors in clinical trials, and simplify analysis of subunit expression. In this work, we present a cocktail of activity-based probes that enables simultaneous gel-based detection of all six catalytic human proteasome subunits. We used this cocktail to develop specific inhibitors for β1c, β2c, β5c, and β2i, to compare the active-site specificity of clinical proteasome inhibitors, and to demonstrate that many hematologic malignancies predominantly express immunoproteasomes. Furthermore, we show that selective and complete inhibition of β5i and β1i is cytotoxic to primary cells from acute lymphocytic leukemia (ALL) patients. PMID:26511210

  7. Melittin restores proteasome function in an animal model of ALS

    Directory of Open Access Journals (Sweden)

    Lee Sang Min

    2011-06-01

    Full Text Available Abstract Amyotrophic lateral sclerosis (ALS is a paralyzing disorder characterized by the progressive degeneration and death of motor neurons and occurs both as a sporadic and familial disease. Mutant SOD1 (mtSOD1 in motor neurons induces vulnerability to the disease through protein misfolding, mitochondrial dysfunction, oxidative damage, cytoskeletal abnormalities, defective axonal transport- and growth factor signaling, excitotoxicity, and neuro-inflammation. Melittin is a 26 amino acid protein and is one of the components of bee venom which is used in traditional Chinese medicine to inhibit of cancer cell proliferation and is known to have anti-inflammatory and anti-arthritic effects. The purpose of the present study was to determine if melittin could suppress motor neuron loss and protein misfolding in the hSOD1G93A mouse, which is commonly used as a model for inherited ALS. Meltittin was injected at the 'ZuSanLi' (ST36 acupuncture point in the hSOD1G93A animal model. Melittin-treated animals showed a decrease in the number of microglia and in the expression level of phospho-p38 in the spinal cord and brainstem. Interestingly, melittin treatment in symptomatic ALS animals improved motor function and reduced the level of neuron death in the spinal cord when compared to the control group. Furthermore, we found increased of α-synuclein modifications, such as phosphorylation or nitration, in both the brainstem and spinal cord in hSOD1G93A mice. However, melittin treatment reduced α-synuclein misfolding and restored the proteasomal activity in the brainstem and spinal cord of symptomatic hSOD1G93A transgenic mice. Our research suggests a potential functional link between melittin and the inhibition of neuroinflammation in an ALS animal model.

  8. Charged histidine affects alpha-helix stability at all positions in the helix by interacting with the backbone charges.

    OpenAIRE

    Armstrong, K M; Baldwin, R L

    1993-01-01

    To determine whether a charged histidine side chain affects alpha-helix stability only when histidine is close to one end of the helix or also when it is in the central region, we substitute a single histidine residue at many positions in two reference peptides and measure helix stability and histidine pKa. The position of a charged histidine residue has a major effect on helix stability in 0.01 M NaCl: the helix content of a 17-residue peptide is 24% when histidine is at position 3 compared ...

  9. Jak-STAT3 pathway triggers DICER1 for proteasomal degradation by ubiquitin ligase complex of CUL4A(DCAF1) to promote colon cancer development.

    Science.gov (United States)

    Ren, Weiguo; Shen, Shourong; Sun, Zhenqiang; Shu, Peng; Shen, Xiaohua; Bu, Chibin; Ai, Feiyan; Zhang, Xuemei; Tang, Anliu; Tian, Li; Li, Guiyuan; Li, Xiayu; Ma, Jian

    2016-06-01

    Chronic intestinal inflammation is closely associated with colon cancer development and STAT3 seems to take center stage in bridging chronic inflammation to colon cancer progress. Here, we discovered that DICER1 was significantly downregulated in response to IL-6 or LPS stimulation and identified a novel mechanism for DICER1 downregulation via proteasomal degradation by ubiquitin ligase complex of CUL4A(DCAF1) in colon cancer cells. Meanwhile, PI3K-AKT signaling pathway phosphorylated DICER1 and contributed to its proteasomal degradation. The regulation of DICER1 by CUL4A(DCAF1) affected cell growth and apoptosis which is controlled by IL-6 activated Jak-STAT3 pathway. Intervention of CUL4A(DCAF1) ubiquitin ligase complex led to fluctuation in expression levels of DICER1 and microRNAs, and thus affected tumor growth in a mouse xenograft model. A panel of microRNAs that were downregulated by IL-6 stimulation was rescued by siRNA-CUL4A, and their predicated functions are involved in regulation of cell proliferation, apoptosis and motility. Furthermore, clinical specimen analysis revealed that decreased DICER1 expression was negatively correlated with STAT3 activation and cancer progression in human colon cancers. DICER1 and p-STAT3 expression levels correlated with 5-year overall survival of colon cancer patients. Consequently, this study proposes that inflammation-induced Jak-STAT3 signaling leads to colon cancer development through proteasomal degradation of DICER1 by ubiquitin ligase complex of CUL4A(DCAF1), which suggests a novel therapeutic opportunity for colon cancer. PMID:26965998

  10. Large-scale biotic interaction effects - tree cover interacts with shade toler-ance to affect distribution patterns of herb and shrub species across the Alps

    DEFF Research Database (Denmark)

    Nieto-Lugilde, Diego; Lenoir, Jonathan; Abdulhak, Sylvain;

    2012-01-01

    occurrence on light-demanding species via size-asymmetric competition for light, but a facilitative effect on shade-tolerant species. In order to compare the relative importance of tree cover, four models with different combinations of variables (climate, soil and tree cover) were run for each species. Then......, we simulated a removal experiment by comparing the elevational distribution of each species under high and low tree cover. Tree cover improved model performances and species’ response curves to a tree cover gradient varied depending on their shade tolerance, supporting the hypothesized antagonistic...... role. Results indicated that high tree cover causes range contraction, especially at the upper limit, for light-demanding species, whereas it causes shade-tolerant species to extend their range upwards and downwards. Tree cover thus drives plant-plant interactions to shape plant species distribution...

  11. Characterization of conserved arginine residues on Cdt1 that affect licensing activity and interaction with Geminin or Mcm complex.

    Science.gov (United States)

    You, Zhiying; Ode, Koji L; Shindo, Mayumi; Takisawa, Haruhiko; Masai, Hisao

    2016-05-01

    All organisms ensure once and only once replication during S phase through a process called replication licensing. Cdt1 is a key component and crucial loading factor of Mcm complex, which is a central component for the eukaryotic replicative helicase. In higher eukaryotes, timely inhibition of Cdt1 by Geminin is essential to prevent rereplication. Here, we address the mechanism of DNA licensing using purified Cdt1, Mcm and Geminin proteins in combination with replication in Xenopus egg extracts. We mutagenized the 223th arginine of mouse Cdt1 (mCdt1) to cysteine or serine (R-S or R-C, respectively) and 342nd and 346th arginines constituting an arginine finger-like structure to alanine (RR-AA). The RR-AA mutant of Cdt1 could not only rescue the DNA replication activity in Cdt1-depleted extracts but also its specific activity for DNA replication and licensing was significantly increased compared to the wild-type protein. In contrast, the R223 mutants were partially defective in rescue of DNA replication and licensing. Biochemical analyses of these mutant Cdt1 proteins indicated that the RR-AA mutation disabled its functional interaction with Geminin, while R223 mutations resulted in ablation in interaction with the Mcm2∼7 complex. Intriguingly, the R223 mutants are more susceptible to the phosphorylation-induced inactivation or chromatin dissociation. Our results show that conserved arginine residues play critical roles in interaction with Geminin and Mcm that are crucial for proper conformation of the complexes and its licensing activity. PMID:26940553

  12. Grb7 and Hax1 may colocalize partially to mitochondria in EGF-treated SKBR3 cells and their interaction can affect Caspase3 cleavage of Hax1.

    Science.gov (United States)

    Qian, Lei; Bradford, Andrew M; Cooke, Peter H; Lyons, Barbara A

    2016-07-01

    Growth factor receptor bound protein 7 (Grb7) is a signal-transducing adaptor protein that mediates specific protein-protein interactions in multiple signaling pathways. Grb7, with Grb10 and Grb14, is members of the Grb7 protein family. The topology of the Grb7 family members contains several protein-binding domains that facilitate the formation of protein complexes, and high signal transduction efficiency. Grb7 has been found overexpressed in several types of cancers and cancer cell lines and is presumed involved in cancer progression through promotion of cell proliferation and migration via interactions with the erythroblastosis oncogene B 2 (human epidermal growth factor receptor 2) receptor, focal adhesion kinase, Ras-GTPases, and other signaling partners. We previously reported Grb7 binds to Hax1 (HS1 associated protein X1) isoform 1, an anti-apoptotic protein also involved in cell proliferation and calcium homeostasis. In this study, we confirm that the in vitro Grb7/Hax1 interaction is exclusive to these two proteins and their interaction does not depend on Grb7 dimerization state. In addition, we report Grb7 and Hax1 isoform 1 may colocalize partially to mitochondria in epidermal growth factor-treated SKBR3 cells and growth conditions can affect this colocalization. Moreover, Grb7 can affect Caspase3 cleavage of Hax1 isoform 1 in vitro, and Grb7 expression may slow Caspase3 cleavage of Hax1 isoform 1 in apoptotic HeLa cells. Finally, Grb7 is shown to increase cell viability in apoptotic HeLa cells in a time-dependent manner. Taken together, these discoveries provide clues for the role of a Grb7/Hax1 protein interaction in apoptosis pathways involving Hax1. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26869103

  13. NH4+ enrichment and UV radiation interact to affect the photosynthesis and nitrogen uptake of Gracilaria lemaneiformis (Rhodophyta)

    International Nuclear Information System (INIS)

    Highlights: ► Inhibition induced by UVR is alleviated with the enrichment of ammonia. ► Phycoerythrin plays a key protective role against UVR at higher level of ammonia. ► Effect of UVR on the uptakes of nitrate and ammonia is different. - Abstract: Solar ultraviolet radiation (UVR, 280–400 nm) is known to inhibit the photosynthesis of macroalgae, whereas nitrogen availability may alter the sensitivity of the algae to UVR. Here, we show that UV-B (280–315 nm) significantly reduced the net photosynthetic rate of Gracilaria lemaneiformis. This inhibition was alleviated by enrichment with ammonia, which also caused a decrease in dark respiration. The presence of both UV-A (315–400 nm) and UV-B stimulated the accumulation of UV-absorbing compounds. However, this stimulation was not affected by enrichment with ammonia. The content of phycoerythrin (PE) was increased by the enrichment of ammonia only in the absence of UVR. Ammonia uptake and the activity of nitrate reductase were repressed by UVR. However, exposure to UVR had an insignificant effect on the rate of nitrate uptake. In conclusion, increased PE content associated with ammonia enrichment played a protective role against UVR in this alga, and UVR differentially affected the uptake of nitrate and ammonia.

  14. Interaction Between Syndromic and Non-Syndromic Factors Affecting Speech and Language Development in Treacher-Collins Syndrome

    Directory of Open Access Journals (Sweden)

    Marziyeh Poorjavad

    2011-09-01

    Full Text Available Background: Treacher-Collins syndrome is a congenital craniofacial disorder with multiple anomalies. This syndrome affects the maxilla, mandible, eyes, middle and outer ears, and soft palate. Conductive hearing loss due to the deformities of the middle and external ears is prevalent. The characteristics of this syndrome include multiple and serious threats to normal communication development in children. In this study, speech and language features of a Persian speaking child with this syndrome are presented.Case: The case was an 8-year old girl with Treacher-Collins syndrome and bilateral moderate conductive hearing loss due to atretic canal. In language and speech assessments, moderate hypernasality, numerous compensatory errors and morphosyntactic deficits were observed. There were 13 phonemes that were incorrectly produced at least in one position. Besides, she used 22 types of phonological processes that were abnormal and disappear before the age of three in normal Persian speaking children.Conclusion: Moderate hearing loss, velopharyngeal incompetency, malocclusion and dental anomalies, attention deficit/hyperactivity disorder (ADHD and environmental factors resulted in severe speech and language disorders in this case. These disorders affected her academic performance as well. Moderate hypernasality, numerous compensatory errors, and excessive and abnormal use of phonological processes were not presented as prevalent characteristics of Treacher-Collins syndrome in other resources.

  15. Religion priming and an oxytocin receptor gene (OXTR) polymorphism interact to affect self-control in a social context.

    Science.gov (United States)

    Sasaki, Joni Y; Mojaverian, Taraneh; Kim, Heejung S

    2015-02-01

    Using a genetic moderation approach, this study examines how an experimental prime of religion impacts self-control in a social context, and whether this effect differs depending on the genotype of an oxytocin receptor gene (OXTR) polymorphism (rs53576). People with different genotypes of OXTR seem to have different genetic orientations toward sociality, which may have consequences for the way they respond to religious cues in the environment. In order to determine whether the influence of religion priming on self-control is socially motivated, we examine whether this effect is stronger for people who have OXTR genotypes that should be linked to greater rather than less social sensitivity (i.e., GG vs. AA/AG genotypes). The results showed that experimentally priming religion increased self-control behaviors for people with GG genotypes more so than people with AA/AG genotypes. Furthermore, this Gene × Religion interaction emerged in a social context, when people were interacting face to face with another person. This research integrates genetic moderation and social psychological approaches to address a novel question about religion's influence on self-control behavior, which has implications for coping with distress and psychopathology. These findings also highlight the importance of the social context for understanding genetic moderation of psychological effects. PMID:25640833

  16. Trypanocidal activity of the proteasome inhibitor and anti-cancer drug bortezomib

    Directory of Open Access Journals (Sweden)

    Wang Xia

    2009-07-01

    Full Text Available Abstract The proteasome inhibitor and anti-cancer drug bortezomib was tested for in vitro activity against bloodstream forms of Trypanosoma brucei. The concentrations of bortezomib required to reduce the growth rate by 50% and to kill all trypanosomes were 3.3 nM and 10 nM, respectively. In addition, bortezomib was 10 times more toxic to trypanosomes than to human HL-60 cells. Moreover, exposure of trypanosomes to 10 nM bortezomib for 16 h was enough to kill 90% of the parasites following incubation in fresh medium. However, proteasomal peptidase activities of trypanosomes exposed to bortezomib were only inhibited by 10% and 30% indicating that the proteasome is not the main target of the drug. The results suggest that bortezomib may be useful as drug for the treatment of human African trypanosomiasis.

  17. The influence of proteasome inhibitor on the expression of cardiomyocytes damage markers after incubation with doxorubicin

    Directory of Open Access Journals (Sweden)

    Tereszkiewicz Sylwia

    2014-06-01

    Full Text Available The aim of the study was to verify the thesis that the cardiotoxic effects of doxorubicin are connected with activation of the ubiquitin - proteasome pathway followed by protein degradation. The expression of myocardial damage markers - fatty acid binding protein (H-FABP and brain natriuretic peptide (BNP was evaluated in rat fetal cardiomyocytes simultaneously treated with doxorubicin and the proteasome inhibitor - bortezomib. The level of H-FABP and BNP protein under the influence of doxorubicin was decreased below the detection threshold with unchanged (H-FABP or elevated (BNP mRNA expression level. Against the expectations, the inhibitor of proteasome did not abolish this effect. The observed abnormal expression of BNP and H-FABP protein after doxorubicin treatment makes their diagnostic significance in anthracycline cardiotoxicity questionable.

  18. Fluorescent Tools for In Vivo Studies on the Ubiquitin-Proteasome System.

    Science.gov (United States)

    Matilainen, Olli; Jha, Sweta; Holmberg, Carina I

    2016-01-01

    The ubiquitin-proteasome system (UPS) plays a key role in maintaining proteostasis by degrading most of the cellular proteins. Traditionally, UPS activity is studied in vitro, in yeast, or in mammalian cell cultures by using short-lived GFP-based UPS reporters. Here, we present protocols for two fluorescent tools facilitating real-time imaging of UPS activity in living animals. We have generated transgenic Caenorhabditis elegans (C. elegans) expressing a photoconvertible UbG76V-Dendra2 UPS reporter, which permits measurement of reporter degradation by the proteasome independently of reporter protein synthesis, and a fluorescent polyubiquitin-binding reporter for detection of the endogenous pool of Lys48-linked polyubiquitinated proteasomal substrates. These reporter systems facilitate cell- and tissue-specific analysis of UPS activity especially in young adult animals, but can also be used for studies during development, aging, and for example stress conditions. PMID:27613038

  19. Deimination of the myelin basic protein decelerates its proteasome-mediated metabolism.

    Science.gov (United States)

    Kuzina, E S; Kudriaeva, A A; Glagoleva, I S; Knorre, V D; Gabibov, A G; Belogurov, A A

    2016-07-01

    Deimination of myelin basic protein (MBP) by peptidylarginine deiminase (PAD) prevents its binding to the proteasome and decelerates its degradation by the proteasome in mammalian cells. Potential anticancer drug tetrazole analogue of chloramidine 2, at concentrations greater than 1 µM inhibits the enzymatic activity of PAD in vitro. The observed acceleration of proteasome hydrolysis of MBP to antigenic peptides in the presence of PAD inhibitor may increase the efficiency of lesion of the central nervous system by cytotoxic lymphocytes in multiple sclerosis. We therefore suggest that clinical trials and the introduction of PAD inhibitors in clinical practice for the treatment of malignant neoplasms should be performed only after a careful analysis of their potential effect on the induction of autoimmune neurodegeneration processes. PMID:27599511

  20. Roles of the ubiquitin proteasome system in the effects of drugs of abuse

    Directory of Open Access Journals (Sweden)

    Nicolas Massaly

    2015-01-01

    Full Text Available Because of its ability to regulate the abundance of selected proteins the ubiquitin proteasome system (UPS plays an important role in neuronal and synaptic plasticity. As a result various stages of learning and memory depend on UPS activity. Drug addiction, another phenomenon that relies on neuroplasticity, shares molecular substrates with memory processes. However the necessity of proteasome-dependent protein degradation for the development of addiction has been poorly studied. Here we first review evidences from the literature that drugs of abuse regulate the expression and activity of the UPS system in the brain. We then provide a list of proteins which have been shown to be targeted to the proteasome following drug treatment and could thus be involved in neuronal adaptations underlying behaviors associated with drug use and abuse. Finally we describe the few studies that addressed the need for UPS-dependent protein degradation in animal models of addiction-related behaviors.

  1. Tomato 26S Proteasome subunit RPT4a regulates ToLCNDV transcription and activates hypersensitive response in tomato.

    Science.gov (United States)

    Sahu, Pranav Pankaj; Sharma, Namisha; Puranik, Swati; Chakraborty, Supriya; Prasad, Manoj

    2016-01-01

    Involvement of 26S proteasomal subunits in plant pathogen-interactions, and the roles of each subunit in independently modulating the activity of many intra- and inter-cellular regulators controlling physiological and defense responses of a plant were well reported. In this regard, we aimed to functionally characterize a Solanum lycopersicum 26S proteasomal subunit RPT4a (SlRPT4) gene, which was differentially expressed after Tomato leaf curl New Delhi virus (ToLCNDV) infection in tolerant cultivar H-88-78-1. Molecular analysis revealed that SlRPT4 protein has an active ATPase activity. SlRPT4 could specifically bind to the stem-loop structure of intergenic region (IR), present in both DNA-A and DNA-B molecule of the bipartite viral genome. Lack of secondary structure in replication-associated gene fragment prevented formation of DNA-protein complex suggesting that binding of SlRPT4 with DNA is secondary structure specific. Interestingly, binding of SlRPT4 to IR inhibited the function of RNA Pol-II and subsequently reduced the bi-directional transcription of ToLCNDV genome. Virus-induced gene silencing of SlRPT4 gene incited conversion of tolerant attributes of cultivar H-88-78-1 into susceptibility. Furthermore, transient overexpression of SlRPT4 resulted in activation of programmed cell death and antioxidant enzymes system. Overall, present study highlights non-proteolytic function of SlRPT4 and their participation in defense pathway against virus infection in tomato. PMID:27252084

  2. Mutations in the DNA-binding domain of NR2E3 affect in vivo dimerization and interaction with CRX.

    Directory of Open Access Journals (Sweden)

    Raphael Roduit

    Full Text Available BACKGROUND: NR2E3 (PNR is an orphan nuclear receptor essential for proper photoreceptor determination and differentiation. In humans, mutations in NR2E3 have been associated with the recessively inherited enhanced short wavelength sensitive (S- cone syndrome (ESCS and, more recently, with autosomal dominant retinitis pigmentosa (adRP. NR2E3 acts as a suppressor of the cone generation program in late mitotic retinal progenitor cells. In adult rod photoreceptors, NR2E3 represses cone-specific gene expression and acts in concert with the transcription factors CRX and NRL to activate rod-specific genes. NR2E3 and CRX have been shown to physically interact in vitro through their respective DNA-binding domains (DBD. The DBD also contributes to homo- and heterodimerization of nuclear receptors. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed NR2E3 homodimerization and NR2E3/CRX complex formation in an in vivo situation by Bioluminescence Resonance Energy Transfer (BRET(2. NR2E3 wild-type protein formed homodimers in transiently transfected HEK293T cells. NR2E3 homodimerization was impaired in presence of disease-causing mutations in the DBD, except for the p.R76Q and p.R104W mutant proteins. Strikingly, the adRP-linked p.G56R mutant protein interacted with CRX with a similar efficiency to that of NR2E3 wild-type and p.R311Q proteins. In contrast, all other NR2E3 DBD-mutant proteins did not interact with CRX. The p.G56R mutant protein was also more effective in abolishing the potentiation of rhodospin gene transactivation by the NR2E3 wild-type protein. In addition, the p.G56R mutant enhanced the transrepression of the M- and S-opsin promoter, while all other NR2E3 DBD-mutants did not. CONCLUSIONS/SIGNIFICANCE: These results suggest different disease mechanisms in adRP- and ESCS-patients carrying NR2E3 mutations. Titration of CRX by the p.G56R mutant protein acting as a repressor in trans may account for the severe clinical phenotype in adRP patients.

  3. Role of proteasomes in the formation of neurofilamentous inclusions in spinal motor neurons of aluminum-treated rabbits.

    Science.gov (United States)

    Kimura, Noriyuki; Kumamoto, Toshihide; Ueyama, Hidetsugu; Horinouchi, Hideo; Ohama, Eisaku

    2007-12-01

    We examined the role of the 20S proteasome in pathologic changes, including abnormal aggregation of phosphorylated neurofilaments, of spinal motor nerve cells from aluminum-treated rabbits. Immunohistochemistry for the 20S proteasome revealed that many lumbar spinal motor neurons without intracytoplasmic neurofilamentous inclusions or with small inclusions were more intensely stained in aluminum-treated rabbits than in controls, whereas the immunoreactivity was greatly decreased in some enlarged neurons containing large neurofilamentous inclusions. Proteasome activity in whole spinal cord extracts was significantly increased in aluminum-treated rabbits compared with controls. Furthermore, Western blot analysis indicated that the 20S proteasome degraded non-phosphorylated high molecular weight neurofilament (neurofilament-H) protein in vitro. These results suggest that aluminum does not inhibit 20S proteasome activity, and the 20S proteasome degrades neurofilament-H protein. We propose that abnormal aggregation of phosphorylated neurofilaments is induced directly by aluminum, and is not induced by the proteasome inhibition in the aluminum-treated rabbits. Proteasome activation might be involved in intracellular proteolysis, especially in the earlier stages of motor neuron degeneration in aluminum-treated rabbits. PMID:18021372

  4. Autophagy-independent enhancing effects of Beclin 1 on cytotoxicity of ovarian cancer cells mediated by proteasome inhibitors

    International Nuclear Information System (INIS)

    The ubiquitin-proteasome system and macroautophagy (hereafter referred to autophagy) are two complementary pathways for protein degradation. Emerging evidence suggests that proteasome inhibition might be a promising approach for tumor therapy. Accumulating data suggest that autophagy is activated as a compensatory mechanism upon proteasome activity is impaired. Autophagy activation was measured using acridine orange staining and LC3 transition. Cell viability and apoptosis were measured using MTT assay and flow cytometry, respectively. Beclin 1 expression vectors or shRNA against Beclin 1 (shBeclin 1) were transfected to investigate the role of Beclin 1 in autophagy activation and cytotoxicity of ovarian cancer cells induced by proteasome inhibitors. Proteasome inhibitors suppressed proliferation and induced autophagy in ovarian cancer cells. Neither phosphoinositide 3-kinase (PI3K) inhibitors nor shRNA against Beclin 1 could abolish the formation of acidic vacuoles and the processing of LC3 induced by proteasome inhibitors. Moreover, Beclin 1 overexpression enhanced anti-proliferative effects of proteasome inhibitors in ovarian cancer cells. For the first time, the current study demonstrated that proteasome inhibitors induced PI3K and Beclin 1-independent autophagy in ovarian cancer cells. In addition, this study revealed autophagy-independent tumor suppressive effects of Beclin 1 in ovarian cancer cells

  5. Different degree in proteasome malfunction has various effects on root growth possibly through preventing cell division and promoting autophagic vacuolization.

    Directory of Open Access Journals (Sweden)

    Xianyong Sheng

    Full Text Available The ubiquitin/proteasome pathway plays a vital role in plant development. But the effects of proteasome malfunction on root growth, and the mechanism underlying this involvement remains unclear. In the present study, the effects of proteasome inhibitors on Arabidopsis root growth were studied through the analysis of the root length, and meristem size and cell length in maturation zone using FM4-64, and cell-division potential using GFP fusion cyclin B, and accumulation of ubiquitinated proteins using immunofluorescence labeling, and autophagy activity using LysoTracker and MDC. The results indicated that lower concentration of proteasome inhibitors promoted root growth, whereas higher concentration of inhibitors had the opposite effects. The accumulation of cyclin B was linked to MG132-induced decline in meristem size, indicating that proteasome malfunction prevented cell division. Besides, MG132-induced accumulation of the ubiquitinated proteins was associated with the increasing fluorescence signal of LysoTracker and MDC in the elongation zone, revealing a link between the activation of autophagy and proteasome malfunction. These results suggest that weak proteasome malfunction activates moderate autophagy and promotes cell elongation, which compensates the inhibitor-induced reduction of cell division, resulting in long roots. Whereas strong proteasome malfunction induces severe autophagy and disturbs cell elongation, resulting in short roots.

  6. Fragmentation and thermal risks from climate change interact to affect persistence of native trout in the Colorado River basin

    Science.gov (United States)

    Roberts, James J.; Fausch, Kurt D.; Peterson, Douglas P.; Hooten, Mevin B.

    2013-01-01

    Impending changes in climate will interact with other stressors to threaten aquatic ecosystems and their biota. Native Colorado River cutthroat trout (CRCT; Oncorhynchus clarkii pleuriticus) are now relegated to 309 isolated high-elevation (>1700 m) headwater stream fragments in the Upper Colorado River Basin, owing to past nonnative trout invasions and habitat loss. Predicted changes in climate (i.e., temperature and precipitation) and resulting changes in stochastic physical disturbances (i.e., wildfire, debris flow, and channel drying and freezing) could further threaten the remaining CRCT populations. We developed an empirical model to predict stream temperatures at the fragment scale from downscaled climate projections along with geomorphic and landscape variables. We coupled these spatially explicit predictions of stream temperature with a Bayesian Network (BN) model that integrates stochastic risks from fragmentation to project persistence of CRCT populations across the upper Colorado River basin to 2040 and 2080. Overall, none of the populations are at risk from acute mortality resulting from high temperatures during the warmest summer period. In contrast, only 37% of populations have a greater than or equal to 90% chance of persistence for 70 years (similar to the typical benchmark for conservation), primarily owing to fragmentation. Populations in short stream fragments risk of extirpation. Therefore, interactions of stochastic disturbances with fragmentation are projected to be greater threats than warming for CRCT populations. The reason for this paradox is that past nonnative trout invasions and habitat loss have restricted most CRCT populations to high-elevation stream fragments that are buffered from the potential consequences of warming, but at risk of extirpation from stochastic events. The greatest conservation need is for management to increase fragment lengths to forestall these risks. 

  7. INTERACT

    DEFF Research Database (Denmark)

    Jochum, Elizabeth; Borggreen, Gunhild; Murphey, TD

    , and demonstrated in public settings. We then describe INTERACT, a proposed research project that stages the robotic marionettes in a live performance. The interdisciplinary project brings humanities research to bear on scientific and technological inquiry, and culminates in the development a live......This paper considers the impact of visual art and performance on robotics and human-computer interaction and outlines a research project that combines puppetry and live performance with robotics. Kinesics—communication through movement—is the foundation of many theatre and performance traditions...... interaction between a human operator and an artificial actor or agent. We can apply insights from puppetry to develop culturally-aware robots. Here we describe the development of a robotic marionette theatre wherein robotic controllers assume the role of human puppeteers. The system has been built, tested...

  8. A RARE of hepatic Gck promoter interacts with RARα, HNF4α and COUP-TFII that affect retinoic acid- and insulin-induced Gck expression.

    Science.gov (United States)

    Li, Rui; Zhang, Rui; Li, Yang; Zhu, Bing; Chen, Wei; Zhang, Yan; Chen, Guoxun

    2014-09-01

    The expression of hepatic glucokinase gene (Gck) is regulated by hormonal and nutritional signals. How these signals integrate to regulate the hepatic Gck expression is unclear. We have shown that the hepatic Gck expression is affected by Vitamin A status and synergistically induced by insulin and retinoids in primary rat hepatocytes. We hypothesized that this is mediated by a retinoic acid responsive element (RARE) in the hepatic Gck promoter. Here, we identified the RARE in the hepatic Gck promoter using standard molecular biology techniques. The single nucleotide mutations affecting the promoter activation by retinoic acid (RA) were also determined for detail analysis of protein and DNA interactions. We have optimized experimental conditions for performing electrophoresis mobility shift assay and demonstrated the interactions of the retinoic acid receptor α (RARα), retinoid X receptor α (RXRα), hepatocyte nuclear factor 4α (HNF4α) and chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII) in the rat nuclear extract with this RARE, suggesting their roles in the regulation of Gck expression. Chromatin immunoprecipitation assays demonstrated that recombinant adenovirus-mediated overexpression of RARα, HNF4α and COUP-TFII, but not RXRα, significantly increased their occupancy in the hepatic Gck promoter in primary rat hepatocytes. Overexpression of RARα, HNF4α and COUP-TFII, but not RXRα, also affected the RA- and insulin-mediated Gck expression in primary rat hepatocytes. In summary, this hepatic Gck promoter RARE interacts with RARα, HNF4α and COUP-TFII to integrate Vitamin A and insulin signals. PMID:24973045

  9. Sorafenib enhances proteasome inhibitor-mediated cytotoxicity via inhibition of unfolded protein response and keratin phosphorylation

    International Nuclear Information System (INIS)

    Hepatocellular carcinoma (HCC) is highly resistant to conventional systemic therapies and prognosis for advanced HCC patients remains poor. Recent studies of the molecular mechanisms responsible for tumor initiation and progression have identified several potential molecular targets in HCC. Sorafenib is a multi-kinase inhibitor shown to have survival benefits in advanced HCC. It acts by inhibiting the serine/threonine kinases and the receptor type tyrosine kinases. In preclinical experiments sorafenib had anti-proliferative activity in hepatoma cells and it reduced tumor angiogenesis and increased apoptosis. Here, we demonstrate for the first time that the cytotoxic mechanisms of sorafenib include its inhibitory effects on protein ubiquitination, unfolded protein response (UPR) and keratin phosphorylation in response to endoplasmic reticulum (ER) stress. Moreover, we show that combined treatment with sorafenib and proteasome inhibitors (PIs) synergistically induced a marked increase in cell death in hepatoma- and hepatocyte-derived cells. These observations may open the way to potentially interesting treatment combinations that may augment the effect of sorafenib, possibly including drugs that promote ER stress. Because sorafenib blocked the cellular defense mechanisms against hepatotoxic injury not only in hepatoma cells but also in hepatocyte-derived cells, we must be careful to avoid severe liver injury. -- Graphical abstract: Display Omitted -- Highlights: •We examined the cytotoxic mechanisms of sorafenib in hepatoma cells. •Sorafenib induces cell death via apoptotic and necrotic fashion. •Sorafenib inhibits protein ubiquitination and unfolded protein response. •Autophagy induced by sorafenib may affect its cytotoxicity. •Sorafenib inhibits keratin phosphorylation and cytoplasmic inclusion formation

  10. Sorafenib enhances proteasome inhibitor-mediated cytotoxicity via inhibition of unfolded protein response and keratin phosphorylation

    Energy Technology Data Exchange (ETDEWEB)

    Honma, Yuichi; Harada, Masaru, E-mail: msrharada@med.uoeh-u.ac.jp

    2013-08-15

    Hepatocellular carcinoma (HCC) is highly resistant to conventional systemic therapies and prognosis for advanced HCC patients remains poor. Recent studies of the molecular mechanisms responsible for tumor initiation and progression have identified several potential molecular targets in HCC. Sorafenib is a multi-kinase inhibitor shown to have survival benefits in advanced HCC. It acts by inhibiting the serine/threonine kinases and the receptor type tyrosine kinases. In preclinical experiments sorafenib had anti-proliferative activity in hepatoma cells and it reduced tumor angiogenesis and increased apoptosis. Here, we demonstrate for the first time that the cytotoxic mechanisms of sorafenib include its inhibitory effects on protein ubiquitination, unfolded protein response (UPR) and keratin phosphorylation in response to endoplasmic reticulum (ER) stress. Moreover, we show that combined treatment with sorafenib and proteasome inhibitors (PIs) synergistically induced a marked increase in cell death in hepatoma- and hepatocyte-derived cells. These observations may open the way to potentially interesting treatment combinations that may augment the effect of sorafenib, possibly including drugs that promote ER stress. Because sorafenib blocked the cellular defense mechanisms against hepatotoxic injury not only in hepatoma cells but also in hepatocyte-derived cells, we must be careful to avoid severe liver injury. -- Graphical abstract: Display Omitted -- Highlights: •We examined the cytotoxic mechanisms of sorafenib in hepatoma cells. •Sorafenib induces cell death via apoptotic and necrotic fashion. •Sorafenib inhibits protein ubiquitination and unfolded protein response. •Autophagy induced by sorafenib may affect its cytotoxicity. •Sorafenib inhibits keratin phosphorylation and cytoplasmic inclusion formation.

  11. Plant ubiquitin-proteasome pathway and its role in gibberellin signaling

    Institute of Scientific and Technical Information of China (English)

    Feng Wang; Xing Wang Deng

    2011-01-01

    The ubiquitin-proteasome system (UPS) in plants,like in other eukaryotes,targets numerous intracellular regulators and thus modulates almost every aspect of growth and development.The well-known and best-characterized outcome of ubiquitination is mediating target protein degradation via the 26S proteasome,which represents the major selective protein degradation pathway conserved among eukaryotes.In this review,we will discuss the molecular composition,regulation and function of plant UPS,with a major focus on how DELLA protein degradation acts as a key in gibberellin signal transduction and its implication in the regulation of plant growth.

  12. Crosstalk between the proteasome system and autophagy in the clearance of α-synuclein

    OpenAIRE

    Yang, Fang; Yang, Ya-Ping; Mao, Cheng-Jie; Liu, Ling; Zheng, Hui-fen; Hu, Li-Fang; Liu, Chun-Feng

    2013-01-01

    Aim: A growing body of evidence suggests that α-synuclein accumulation may play an important role in the pathogenesis of Parkinson's disease. The aim of this study was to investigate the roles of the proteasome and autophagy pathways in the clearance of wild-type and mutant α-synuclein in PC12 cells. Methods: PC12 cells overexpressing either wild-type or A30P mutant α-synuclein were treated with the proteasome inhibitor epoxomicin, the macroautophagy inhibitor 3-MA and the macroautophagy acti...

  13. Sit4 phosphatase is functionally linked to the ubiquitin-proteasome system.

    OpenAIRE

    Singer, Thorsten; Haefner, Stefan; Hoffmann, Michael; Fischer, Michael; Ilyina, Julia; Hilt, Wolfgang

    2003-01-01

    Using a synthetic lethality screen we found that the Sit4 phosphatase is functionally linked to the ubiquitin-proteasome system. Yeast cells harboring sit4 mutations and an impaired proteasome (due to pre1-1 pre4-1 mutations) exhibited defective growth on minimal medium. Nearly identical synthetic effects were found when sit4 mutations were combined with defects of the Rad6/Ubc2- and Cdc34/Ubc3-dependent ubiquitination pathways. Under synthetic lethal conditions, sit4 pre or sit4 ubc mutants ...

  14. Computational analysis and modeling of cleavage by the immunoproteasome and the constitutive proteasome

    Directory of Open Access Journals (Sweden)

    Lafuente Esther M

    2010-09-01

    Full Text Available Abstract Background Proteasomes play a central role in the major histocompatibility class I (MHCI antigen processing pathway. They conduct the proteolytic degradation of proteins in the cytosol, generating the C-terminus of CD8 T cell epitopes and MHCI-peptide ligands (P1 residue of cleavage site. There are two types of proteasomes, the constitutive form, expressed in most cell types, and the immunoproteasome, which is constitutively expressed in mature dendritic cells. Protective CD8 T cell epitopes are likely generated by the immunoproteasome and the constitutive proteasome, and here we have modeled and analyzed the cleavage by these two proteases. Results We have modeled the immunoproteasome and proteasome cleavage sites upon two non-overlapping sets of peptides consisting of 553 CD8 T cell epitopes, naturally processed and restricted by human MHCI molecules, and 382 peptides eluted from human MHCI molecules, respectively, using N-grams. Cleavage models were generated considering different epitope and MHCI-eluted fragment lengths and the same number of C-terminal flanking residues. Models were evaluated in 5-fold cross-validation. Judging by the Mathew's Correlation Coefficient (MCC, optimal cleavage models for the proteasome (MCC = 0.43 ± 0.07 and the immunoproteasome (MCC = 0.36 ± 0.06 were obtained from 12-residue peptide fragments. Using an independent dataset consisting of 137 HIV1-specific CD8 T cell epitopes, the immunoproteasome and proteasome cleavage models achieved MCC values of 0.30 and 0.18, respectively, comparatively better than those achieved by related methods. Using ROC analyses, we have also shown that, combined with MHCI-peptide binding predictions, cleavage predictions by the immunoproteasome and proteasome models significantly increase the discovery rate of CD8 T cell epitopes restricted by different MHCI molecules, including A*0201, A*0301, A*2402, B*0702, B*2705. Conclusions We have developed models that are specific

  15. Uch2/Uch37 is the major deubiquitinating enzyme associated with the 26S proteasome in fission yeast

    DEFF Research Database (Denmark)

    Stone, Miranda; Hartmann-Petersen, Rasmus; Seeger, Michael;

    2004-01-01

    Conjugation of proteins to ubiquitin plays a central role for a number of cellular processes including endocytosis, DNA repair and degradation by the 26S proteasome. However, ubiquitination is reversible as a number of deubiquitinating enzymes mediate the disassembly of ubiquitin-protein conjugates....... Some deubiquitinating enzymes are associated with the 26S proteasome contributing to and regulating the particle's activity. Here, we characterise fission yeast Uch2 and Ubp6, two proteasome associated deubiquitinating enzymes. The human orthologues of these enzymes are known as Uch37 and Usp14......, respectively. We report that the subunit Uch2/Uch37 is the major deubiquitinating enzyme associated with the fission yeast 26S proteasome. In contrast, the activity of Ubp6 appears to play a more regulatory and/or structural role involving the proteasome subunits Mts1/Rpn9, Mts2/Rpt2 and Mts3/Rpn12, as Ubp6...

  16. Interactions

    DEFF Research Database (Denmark)

    The main theme of this anthology is the unique interaction between mathematics, physics and philosophy during the beginning of the 20th century. Seminal theories of modern physics and new fundamental mathematical structures were discovered or formed in this period. Significant physicists such as...

  17. Body size affects the predatory interactions between introduced American Bullfrogs (Rana catesbeiana) and native anurans in China: An experimental study

    Science.gov (United States)

    Wang, Y.; Guo, Z.; Pearl, C.A.; Li, Y.

    2007-01-01

    Introduced American Bullfrogs (Rana catesbeiana) have established breeding populations in several provinces in China since their introduction in 1959. Although Bullfrogs are viewed as a potentially important predator of Chinese native anurans, their impacts in the field are difficult to quantify. We used two experiments to examine factors likely to mediate Bullfrog predation on native anurans. First, we examined effects of Bullfrog size and sex on daily consumption of a common Chinese native (Rana limnocharis). Second, we examined whether Bullfrogs consumed similar proportions of four Chinese natives: Black-Spotted Pond Frog (Rana nigromaculata), Green Pond Frog (Rana plancyi plancyi), Rice Frog (R. limnocharis), and Zhoushan Toad (Bufo bufo gargarizans). We found that larger Rana catesbeiana consumed more R. limnocharis per day than did smaller R. catesbeiana, and that daily consumption of R. limnocharis was positively related to R. catesbeiana body size. When provided with adults of four anurans that differed significantly in body size, R. catesbeiana consumed more individuals of the smallest species (R. limnocharis). However, when provided with similarly sized juveniles of the same four species, R. catesbeiana did not consume any species more than expected by chance. Our results suggest that body size plays an important role in the predatory interactions between R. catesbeiana and Chinese native anurans and that, other things being equal, smaller species and individuals are at greater risk of predation by R. catesbeiana. Copyright 2007 Society for the Study of Amphibians and Reptiles.

  18. Breakfast consumption and exercise interact to affect cognitive performance and mood later in the day. A randomized controlled trial.

    Science.gov (United States)

    Veasey, R C; Gonzalez, J T; Kennedy, D O; Haskell, C F; Stevenson, E J

    2013-09-01

    The current study assessed the interactive effect of breakfast and exercise on cognition and mood. Twelve active males completed four trials; no breakfast-rest, breakfast-rest, no breakfast-exercise or breakfast-exercise in a randomized, cross-over design. The trials consisted of; breakfast or fast, a 2h rest, exercise (treadmill run) or equivalent rest, a chocolate milk drink, a 90 min rest and an ad libitum lunch. Cognitive performance and mood were recorded frequently throughout each trial. Data was analysed as pre-exercise/rest, during and immediately post exercise/rest and post-drink. No effects were found prior to consumption of the drink. Post-drink, fasting before exercise increased mental fatigue compared to consuming breakfast before exercise and fasting before rest. Tension increased when breakfast was consumed at rest and when exercise was undertaken fasted compared to omitting breakfast before rest. Breakfast before rest decreased rapid visual information processing task speed and impaired Stroop performance. Breakfast omission improved Four Choice Reaction Time performance. To conclude, breakfast before exercise appeared beneficial for post-exercise mood even when a post-exercise snack was consumed. Exercise reversed post-breakfast cognitive impairment in active males. PMID:23608698

  19. Right atrial pressure affects the interaction between lung mechanics and right ventricular function in spontaneously breathing COPD patients.

    Directory of Open Access Journals (Sweden)

    Bart Boerrigter

    Full Text Available INTRODUCTION: It is generally known that positive pressure ventilation is associated with impaired venous return and decreased right ventricular output, in particular in patients with a low right atrial pressure and relative hypovolaemia. Altered lung mechanics have been suggested to impair right ventricular output in COPD, but this relation has never been firmly established in spontaneously breathing patients at rest or during exercise, nor has it been determined whether these cardiopulmonary interactions are influenced by right atrial pressure. METHODS: Twenty-one patients with COPD underwent simultaneous measurements of intrathoracic, right atrial and pulmonary artery pressures during spontaneous breathing at rest and during exercise. Intrathoracic pressure and right atrial pressure were used to calculate right atrial filling pressure. Dynamic changes in pulmonary artery pulse pressure during expiration were examined to evaluate changes in right ventricular output. RESULTS: Pulmonary artery pulse pressure decreased up to 40% during expiration reflecting a decrease in stroke volume. The decline in pulse pressure was most prominent in patients with a low right atrial filling pressure. During exercise, a similar decline in pulmonary artery pressure was observed. This could be explained by similar increases in intrathoracic pressure and right atrial pressure during exercise, resulting in an unchanged right atrial filling pressure. CONCLUSIONS: We show that in spontaneously breathing COPD patients the pulmonary artery pulse pressure decreases during expiration and that the magnitude of the decline in pulmonary artery pulse pressure is not just a function of intrathoracic pressure, but also depends on right atrial pressure.

  20. Deficiency in silicon uptake affects cytological, physiological, and biochemical events in the rice--Bipolaris oryzae interaction.

    Science.gov (United States)

    Dallagnol, Leandro J; Rodrigues, Fabrício A; DaMatta, Fábio M; Mielli, Mateus V B; Pereira, Sandra C

    2011-01-01

    This study investigated how a defect in the active uptake of silicon (Si) affects rice resistance to brown spot. Plants from a rice mutant (low silicon 1 [lsi1]) and its wild-type counterpart (cv. Oochikara), growing in hydroponic culture with (+Si; 2 mM) or without (-Si) Si, were inoculated with Bipolaris oryzae. Si concentration in leaf tissue of cv. Oochikara and the lsi1 mutant increased by 381 and 263%, respectively, for the +Si treatment compared with the -Si treatment. The incubation period was 6 h longer in the presence of Si. The area under brown spot progress curve for plants from cv. Oochikara and the lsi1 mutant was reduced 81 and 50%, respectively, in the presence of Si. The reduced number of brown epidermal cells on leaves from cv. Oochikara and the lsi1 mutant supplied with Si contributed to the lower lipid peroxidation and electrolyte leakage. The concentration of total soluble phenolics in cv. Oochikara supplied with Si (values of 4.2 to 15.4 μg g(-1) fresh weight) was greater compared with plants not supplied with Si (values of 1.9 to 11.5 μg g(-1) fresh weight). The concentration of lignin was also important to the resistance of cv. Oochikara and the lsi1 mutant. Polyphenoloxidase activity did not contribute to the resistance of cv. Oochikara and the lsi1 mutant to brown spot, regardless of Si supply. Peroxidase and chitinase activities were higher in cv. Oochikara and the lsi1 mutant supplied with Si. These results bring novel evidence of the involvement of Si in a more complex defense mechanism than simply the formation of a physical barrier to avoid or delay fungal penetration. PMID:20879842

  1. Silencing of genes involved in Anaplasma marginale-tick interactions affects the pathogen developmental cycle in Dermacentor variabilis

    Directory of Open Access Journals (Sweden)

    Almazán Consuelo

    2009-07-01

    Full Text Available Abstract Background The cattle pathogen, Anaplasma marginale, undergoes a developmental cycle in ticks that begins in gut cells. Transmission to cattle occurs from salivary glands during a second tick feeding. At each site of development two forms of A. marginale (reticulated and dense occur within a parasitophorous vacuole in the host cell cytoplasm. However, the role of tick genes in pathogen development is unknown. Four genes, found in previous studies to be differentially expressed in Dermacentor variabilis ticks in response to infection with A. marginale, were silenced by RNA interference (RNAi to determine the effect of silencing on the A. marginale developmental cycle. These four genes encoded for putative glutathione S-transferase (GST, salivary selenoprotein M (SelM, H+ transporting lysosomal vacuolar proton pump (vATPase and subolesin. Results The impact of gene knockdown on A. marginale tick infections, both after acquiring infection and after a second transmission feeding, was determined and studied by light microscopy. Silencing of these genes had a different impact on A. marginale development in different tick tissues by affecting infection levels, the densities of colonies containing reticulated or dense forms and tissue morphology. Salivary gland infections were not seen in any of the gene-silenced ticks, raising the question of whether these ticks were able to transmit the pathogen. Conclusion The results of this RNAi and light microscopic analyses of tick tissues infected with A. marginale after the silencing of genes functionally important for pathogen development suggest a role for these molecules during pathogen life cycle in ticks.

  2. Amastin Knockdown in Leishmania braziliensis Affects Parasite-Macrophage Interaction and Results in Impaired Viability of Intracellular Amastigotes

    Science.gov (United States)

    Nakagaki, Brenda Naemi; Mendonça-Neto, Rondon Pessoa; Canavaci, Adriana Monte Cassiano; Souza Melo, Normanda; Martinelli, Patrícia Massara; Fernandes, Ana Paula; daRocha, Wanderson Duarte; Teixeira, Santuza M. R.

    2015-01-01

    Leishmaniasis, a human parasitic disease with manifestations ranging from cutaneous ulcerations to fatal visceral infection, is caused by several Leishmania species. These protozoan parasites replicate as extracellular, flagellated promastigotes in the gut of a sandfly vector and as amastigotes inside the parasitophorous vacuole of vertebrate host macrophages. Amastins are surface glycoproteins encoded by large gene families present in the genomes of several trypanosomatids and highly expressed in the intracellular amastigote stages of Trypanosoma cruzi and Leishmania spp. Here, we showed that the genome of L. braziliensis contains 52 amastin genes belonging to all four previously described amastin subfamilies and that the expression of members of all subfamilies is upregulated in L. braziliensis amastigotes. Although primary sequence alignments showed no homology to any known protein sequence, homology searches based on secondary structure predictions indicate that amastins are related to claudins, a group of proteins that are components of eukaryotic tight junction complexes. By knocking-down the expression of δ-amastins in L. braziliensis, their essential role during infection became evident. δ-amastin knockdown parasites showed impaired growth after in vitro infection of mouse macrophages and completely failed to produce infection when inoculated in BALB/c mice, an attenuated phenotype that was reverted by the re-expression of an RNAi-resistant amastin gene. Further highlighting their essential role in host-parasite interactions, electron microscopy analyses of macrophages infected with amastin knockdown parasites showed significant alterations in the tight contact that is normally observed between the surface of wild type amastigotes and the membrane of the parasitophorous vacuole. PMID:26641088

  3. A Bowman-Birk inhibitor induces apoptosis in human breast adenocarcinoma through mitochondrial impairment and oxidative damage following proteasome 20S inhibition.

    Science.gov (United States)

    Mehdad, A; Brumana, G; Souza, A A; Barbosa, Jarg; Ventura, M M; de Freitas, S M

    2016-01-01

    Proteasome inhibitors are emerging as a new class of chemopreventive agents and have gained huge importance as potential pharmacological tools in breast cancer treatment. Improved understanding of the role played by proteases and their specific inhibitors in humans offers novel and challenging opportunities for preventive and therapeutic intervention. In this study, we demonstrated that the Bowman-Birk protease inhibitor from Vigna unguiculata seeds, named black-eyed pea trypsin/chymotrypsin Inhibitor (BTCI), potently suppresses human breast adenocarcinoma cell viability by inhibiting the activity of proteasome 20S. BTCI induced a negative growth effect against a panel of breast cancer cells, with a concomitant cytostatic effect at the G2/M phase of the cell cycle and an increase in apoptosis, as observed by an augmented number of cells at the sub-G1 phase and annexin V-fluorescin isothiocyanate (FITC)/propidium iodide (PI) staining. In contrast, BTCI exhibited no cytotoxic effect on normal mammary epithelial cells. Moreover, the increased levels of intracellular reactive oxygen species (ROS) and changes in the mitochondrial membrane potential in cells treated with BTCI indicated mitochondrial damage as a crucial cellular event responsible for the apoptotic process. The higher activity of caspase in tumoral cells treated with BTCI in comparison with untreated cells suggests that BTCI induces apoptosis in a caspase-dependent manner. BTCI affected NF-kB target gene expression in both non invasive and invasive breast cancer cell lines, with the effect highly pronounced in the invasive cells. An increased expression of interleukin-8 (IL-8) in both cell lines was also observed. Taken together, these results suggest that BTCI promotes apoptosis through ROS-induced mitochondrial damage following proteasome inhibition. These findings highlight the pharmacological potential and benefit of BTCI in breast cancer treatment. PMID:27551492

  4. A Bowman–Birk inhibitor induces apoptosis in human breast adenocarcinoma through mitochondrial impairment and oxidative damage following proteasome 20S inhibition

    Science.gov (United States)

    Mehdad, A; Brumana, G; Souza, AA; Barbosa, JARG; Ventura, MM; de Freitas, SM

    2016-01-01

    Proteasome inhibitors are emerging as a new class of chemopreventive agents and have gained huge importance as potential pharmacological tools in breast cancer treatment. Improved understanding of the role played by proteases and their specific inhibitors in humans offers novel and challenging opportunities for preventive and therapeutic intervention. In this study, we demonstrated that the Bowman–Birk protease inhibitor from Vigna unguiculata seeds, named black-eyed pea trypsin/chymotrypsin Inhibitor (BTCI), potently suppresses human breast adenocarcinoma cell viability by inhibiting the activity of proteasome 20S. BTCI induced a negative growth effect against a panel of breast cancer cells, with a concomitant cytostatic effect at the G2/M phase of the cell cycle and an increase in apoptosis, as observed by an augmented number of cells at the sub-G1 phase and annexin V-fluorescin isothiocyanate (FITC)/propidium iodide (PI) staining. In contrast, BTCI exhibited no cytotoxic effect on normal mammary epithelial cells. Moreover, the increased levels of intracellular reactive oxygen species (ROS) and changes in the mitochondrial membrane potential in cells treated with BTCI indicated mitochondrial damage as a crucial cellular event responsible for the apoptotic process. The higher activity of caspase in tumoral cells treated with BTCI in comparison with untreated cells suggests that BTCI induces apoptosis in a caspase-dependent manner. BTCI affected NF-kB target gene expression in both non invasive and invasive breast cancer cell lines, with the effect highly pronounced in the invasive cells. An increased expression of interleukin-8 (IL-8) in both cell lines was also observed. Taken together, these results suggest that BTCI promotes apoptosis through ROS-induced mitochondrial damage following proteasome inhibition. These findings highlight the pharmacological potential and benefit of BTCI in breast cancer treatment. PMID:27551492

  5. Effect of inhibition of the Ubiquitin-Proteasome System and Hsp90 on growth and survival of Rhabdomyosarcoma cells in vitro

    Directory of Open Access Journals (Sweden)

    Peron Marica

    2012-06-01

    Full Text Available Abstract Background The ubiquitin-proteasome system (UPS and the heat shock response (HSR are two critical regulators of cell homeostasis, as their inhibition affects growth and survival of normal cells, as well as stress response and invasiveness of cancer cells. We evaluated the effects of the proteasome inhibitor Bortezomib and of 17-DMAG, a competitive inhibitor of Hsp90, in rhabdomyosarcoma (RMS cells, and analyzed the efficacy of single-agent exposures with combination treatments. Methods To assess cytotoxicity induced by Bortezomib and 17-DMAG in RMS cells, viability was measured by MTT assay after 24, 48 and 72 hours. Western blotting and immunofluorescence analyses were carried out to elucidate the mechanisms of action. Apoptosis was measured by FACS with Annexin-V-FITC and Propidium Iodide. Results Bortezomib and 17-DMAG, when combined at single low-toxic concentrations, enhanced growth inhibition of RMS cells, with signs of autophagy that included intensive cytoplasmic vacuolization and conversion of cytosolic LC3-I protein to its autophagosome-associated form. Treatment with lysosomal inhibitor chloroquine facilitates apoptosis, whereas stimulation of autophagy by rapamycin prevents LC3-I conversion and cell death, suggesting that autophagy is a resistance mechanism in RMS cells exposed to proteotoxic drugs. However, combination treatment also causes caspase-dependent apoptosis, PARP cleavage and Annexin V staining, as simultaneous inhibition of both UPS and HSR systems limits cytoprotective autophagy, exacerbating stress resulting from accumulation of misfolded proteins. Conclusion The combination of proteasome inhibitor Bortezomib with Hsp90 inhibitor 17-DMAG, appears to have important therapeutic advantages in the treatment of RMS cells compared with single-agent exposure, because compensatory survival mechanisms that occur as side effects of treatment may be prevented.

  6. Do postures of distal effectors affect the control of actions of other distal effectors? Evidence for a system of interactions between hand and mouth.

    Directory of Open Access Journals (Sweden)

    Maurizio Gentilucci

    Full Text Available The present study aimed at determining whether, in healthy humans, postures assumed by distal effectors affect the control of the successive grasp executed with other distal effectors. In experiments 1 and 2, participants reached different objects with their head and grasped them with their mouth, after assuming different hand postures. The postures could be implicitly associated with interactions with large or small objects. The kinematics of lip shaping during grasp varied congruently with the hand posture, i.e. it was larger or smaller when it could be associated with the grasping of large or small objects, respectively. In experiments 3 and 4, participants reached and grasped different objects with their hand, after assuming the postures of mouth aperture or closure (experiment 3 and the postures of toe extension or flexion (experiment 4. The mouth postures affected the kinematics of finger shaping during grasp, that is larger finger shaping corresponded with opened mouth and smaller finger shaping with closed mouth. In contrast, the foot postures did not influence the hand grasp kinematics. Finally, in experiment 5 participants reached-grasped different objects with their hand while pronouncing opened and closed vowels, as verified by the analysis of their vocal spectra. Open and closed vowels induced larger and smaller finger shaping, respectively. In all experiments postures of the distal effectors induced no effect, or only unspecific effects on the kinematics of the reach proximal/axial component. The data from the present study support the hypothesis that there exists a system involved in establishing interactions between movements and postures of hand and mouth. This system might have been used to transfer a repertoire of hand gestures to mouth articulation postures during language evolution and, in modern humans, it may have evolved a system controlling the interactions existing between speech and gestures.

  7. Cognitive and affective empathy in children with conduct problems: additive and interactive effects of callous-unemotional traits and autism spectrum disorders symptoms.

    Science.gov (United States)

    Pasalich, Dave S; Dadds, Mark R; Hawes, David J

    2014-11-30

    Callous-unemotional (CU) traits and autism spectrum disorders (ASD) symptoms are characterized by problems in empathy; however, these behavioral features are rarely examined together in children with conduct problems. This study investigated additive and interactive effects of CU traits and ASD symptoms in relation to cognitive and affective empathy in a non-ASD clinic-referred sample. Participants were 134 children aged 3 to 9 years (M=5.60; 79% boys) with oppositional defiant/conduct disorder, and their parents. Clinicians, teachers, and parents reported on dimensions of child behavior, and parental reports of family dysfunction and direct observations of parental warmth/responsiveness assessed quality of family relationships. Results from multiple regression analysis showed that, over and above the effects of child conduct problem severity and quality of family relationships, both ASD symptoms and CU traits were uniquely associated with deficits in cognitive empathy. Moreover, CU traits demonstrated an independent association with affective empathy, and this relationship was moderated by ASD symptoms. That is, there was a stronger negative association between CU traits and affective empathy at higher versus lower levels of ASD symptoms. These findings suggest including both CU traits and ASD-related social impairments in models delineating the atypical development of empathy in children with conduct problems. PMID:25015711

  8. Ovarian development in a primitively eusocial wasp: social interactions affect behaviorally dominant and subordinate wasps in opposite directions relative to solitary females.

    Science.gov (United States)

    Shukla, Shantanu; Pareek, Vidhi; Gadagkar, Raghavendra

    2014-07-01

    In many primitively eusocial wasp species new nests are founded either by a single female or by a small group of females. In the single foundress nests, the lone female develops her ovaries, lays eggs as well as tends her brood. In multiple foundress nests social interactions, especially dominance-subordinate interactions, result in only one 'dominant' female developing her ovaries and laying eggs. Ovaries of the remaining 'subordinate' cofoundresses remain suppressed and these individuals function as workers and tend the dominant's brood. Using the tropical, primitively eusocial polistine wasp Ropalidia marginata and by comparing wasps held in isolation and those kept as pairs in the laboratory, we demonstrate that social interactions affect ovarian development of dominant and subordinate wasps among the pairs in opposite directions, suppressing the ovaries of the subordinate member of the pair below that of solitary wasps and boosting the ovaries of dominant member of the pair above that of solitary females. In addition to being of physiological interest, such mirror image effects of aggression on the ovaries of the aggressors and their victims, suggest yet another mechanism by which subordinates can enhance their indirect fitness and facilitate the evolution of worker behavior by kin selection. PMID:24747068

  9. Proteasome-dependent regulation of signal transduction in retinal pigment epithelial cells

    Science.gov (United States)

    As in many other types of cells, retinal pigment epithelial (RPE) cells have an active ubiquitin-proteasome pathway (UPP). However, the function of the UPP in RPE remains to be elucidated. The objective of this study is to determine the role of the UPP in controlling the levels and activities of tra...

  10. Removal of damaged proteins during ES cell fate specification requires the proteasome activator PA28

    DEFF Research Database (Denmark)

    Hernebring, Malin; Fredriksson, Asa; Liljevald, Maria; Cvijovic, Marija; Norrman, Karin; Wiseman, John; Semb, Tor Henrik; Nyström, Thomas

    2013-01-01

    In embryonic stem cells, removal of oxidatively damaged proteins is triggered upon the first signs of cell fate specification but the underlying mechanism is not known. Here, we report that this phase of differentiation encompasses an unexpected induction of genes encoding the proteasome activato...... that PA28aß has a hitherto unidentified role required for resetting the levels of protein damage at the transition from self-renewal to cell differentiation.......In embryonic stem cells, removal of oxidatively damaged proteins is triggered upon the first signs of cell fate specification but the underlying mechanism is not known. Here, we report that this phase of differentiation encompasses an unexpected induction of genes encoding the proteasome activator...... PA28aß (11S), subunits of the immunoproteasome (20Si), and the 20Si regulator TNFa. This induction is accompanied by assembly of mature PA28-20S(i) proteasomes and elevated proteasome activity. Inhibiting accumulation of PA28a using miRNA counteracted the removal of damaged proteins demonstrating...

  11. The proteasome stress regulon is controlled by a pair of NAC transcription factors in arabidopsis

    Science.gov (United States)

    Proteotoxic stress is mitigated by a variety of mechanisms, including activation of the unfolded protein response and coordinated increases in protein chaperones and activities that direct proteolysis such as the 26S proteasome. Using RNA-seq analyses combined with either chemical inhibitors or mut...

  12. Circulating 20S Proteasome Levels in Patients with Mixed Connective Tissue Disease and Systemic Lupus Erythematosus▿

    OpenAIRE

    Majetschak, Matthias; Perez, Magdalena; Sorell, Luis T.; Lam, Janet; Maldonado, Marcos E.; Hoffman, Robert W.

    2008-01-01

    The associations of circulating 20S proteasomes (c20S) with clinical and serologic disease indices in patients with systemic lupus erythematosus (SLE) and mixed connective tissue disease (MCTD) are unknown. We present the initial report that c20S levels are elevated in MCTD and correlate with clinically relevant changes in disease activity in SLE and MCTD.

  13. Protein Degradation by Ubiquitin-Proteasome System in Formation and Labilization of Contextual Conditioning Memory

    Science.gov (United States)

    Fustiñana, María Sol; de la Fuente, Verónica; Federman, Noel; Freudenthal, Ramiro; Romano, Arturo

    2014-01-01

    The ubiquitin-proteasome system (UPS) of protein degradation has been evaluated in different forms of neural plasticity and memory. The role of UPS in such processes is controversial. Several results support the idea that the activation of this system in memory consolidation is necessary to overcome negative constrains for plasticity. In this…

  14. POSSIBLE ROLE OF LIVER PROTEASOMES IN THE REALIZATION OF MECHANISMS OF TRANSPLANTATION TOLERANCE

    Directory of Open Access Journals (Sweden)

    G. A. Bozhok

    2011-01-01

    Full Text Available In contrast to the majority of organs in liver non-specific immunity predominates over adaptive one, and in response to the antigen presentation develops preferably not immune reaction but immunological tolerance. Tolerance is considered to provide some processes, such as apoptosis of reactive T-cells, immune deviation and active suppression of immune reactions. At the same time there are the grounds for believing that an important role in regulation of liver immune response is played by proteasomes, intracellular multiprotease protein complexes. This is confirmed by the fact of application of proteasome inhibitor bortezomib as immune suppressor in transplantology. Immune 26S- and 20S-proteoasomes participate in the formation of antigen oligopeptides and play a key role in T-cell immune response. It has been shown that the pool of proteasomes is subjected to significant changes during ontogenesis of immune competent organs. The changes in the pool of proteasosmes occur likely during the development of specific tolerance in transplantation too. The knowledge of the peculiarities of proteasome functioning and regularities of alterations of their shapes will enable the revealing of the mechanisms responsible for either graft rejection or acceptance. 

  15. The Ubiquitin-Proteasome System and Its Role in Inflammatory and Autoimmune Diseases

    Institute of Scientific and Technical Information of China (English)

    Jingsong Wang; Michael A. Maldonado

    2006-01-01

    Protein degradation through the ubiquitin-proteasome system is the major pathway of non-lysosomal proteolysis of intracellular proteins. It plays important roles in a variety of fundamental cellular processes such as regulation of cell cycle progression, division, development and differentiation, apoptosis, cell trafficking, and modulation of the immune and inflammatory responses. The central element of this system is the covalent linkage of ubiquitin to targeted proteins, which are then recognized by the 26S proteasome, an adenosine triphosphate-dependent,multi-catalytic protease. Damaged, oxidized, or misfolded proteins as well as regulatory proteins that control many critical cellular functions are among the targets of this degradation process. Aberration of this system leads to the dysregulation of cellular homeostasis and the development of multiple diseases. In this review, we described the basic biochemistry and molecular biology of the ubiquitin-proteasome system, and its complex role in the development of inflammatory and autoimmune diseases. In addition, therapies and potential therapeutic targets related to the ubiquitin-proteasome system are discussed as well. Cellular & Molecular Immunology. 2006;3(4):255-261.

  16. Bioinformatic analysis of functional differences between the immunoproteasome and the constitutive proteasome

    DEFF Research Database (Denmark)

    Kesmir, Can; van Noort, V.; de Boer, R.J.;

    2003-01-01

    not yet been quantified how different the specificity of two forms of the proteasome are. The main question, which still lacks direct evidence, is whether the immunoproteasome generates more MHC ligands. Here we use bioinformatics tools to quantify these differences and show that the immunoproteasome...

  17. Proteasome involvement in agonist-induced down-regulation of mu and delta opioid receptors.

    Science.gov (United States)

    Chaturvedi, K; Bandari, P; Chinen, N; Howells, R D

    2001-04-13

    This study investigated the mechanism of agonist-induced opioid receptor down-regulation. Incubation of HEK 293 cells expressing FLAG-tagged delta and mu receptors with agonists caused a time-dependent decrease in opioid receptor levels assayed by immunoblotting. Pulse-chase experiments using [(35)S]methionine metabolic labeling indicated that the turnover rate of delta receptors was accelerated 5-fold following agonist stimulation. Inactivation of functional G(i) and G(o) proteins by pertussis toxin-attenuated down-regulation of the mu opioid receptor, while down-regulation of the delta opioid receptor was unaffected. Pretreatment of cells with inhibitors of lysosomal proteases, calpain, and caspases had little effect on mu and delta opioid receptor down-regulation. In marked contrast, pretreatment with proteasome inhibitors attenuated agonist-induced mu and delta receptor down-regulation. In addition, incubation of cells with proteasome inhibitors in the absence of agonists increased steady-state mu and delta opioid receptor levels. Immunoprecipitation of mu and delta opioid receptors followed by immunoblotting with ubiquitin antibodies suggested that preincubation with proteasome inhibitors promoted accumulation of polyubiquitinated receptors. These data provide evidence that the ubiquitin/proteasome pathway plays a role in agonist-induced down-regulation and basal turnover of opioid receptors. PMID:11152677

  18. Adenovirus E4-34kDa requires active proteasomes to promote late gene expression

    International Nuclear Information System (INIS)

    A complex of the Adenovirus (Ad) early region 1b 55-kDa protein (E1b-55kDa) and the early region 4 ORF6 34-kDa protein (E4-34kDa) promotes viral late RNA accumulation in the cytoplasm while inhibiting the transport of most newly synthesized cellular mRNA. The E4 ORF3 11-kDa protein (E4-11kDa) functionally compensates for at least some of the activities of this complex. We find that the same large central region of E4-34kDa that is required for proteasome-mediated degradation of p53 (J. Virol. 75, (2001) 699-709) is also required to promote viral late gene expression in a complementation assay. E4-34kDa does not promote late gene expression in complementation assays performed in the presence of proteasome inhibitors. A proteasome inhibitor also dramatically reduced late gene expression by a virus that lacks the E4-11kDa gene and therefore relies on E4-34kDa for late gene expression. Our results suggest that E4-34kDa activity in promoting late gene expression depends on the proteasome

  19. Combination of Proteasomal Inhibitors Lactacystin and MG132 Induced Synergistic Apoptosis in Prostate Cancer Cells

    Directory of Open Access Journals (Sweden)

    Robert B. Shirley

    2005-12-01

    Full Text Available The proteasome inhibitor Velcade (bortezomib/PS-341 has been shown to block the targeted proteolytic degradation of short-lived proteins that are involved in cell maintenance, growth, division, and death, advocating the use of proteasomal inhibitors as therapeutic agents. Although many studies focused on the use of one proteasomal inhibitor for therapy, we hypothesized that the combination of proteasome inhibitors Lactacystin (AG Scientific, Inc., San Diego, CA and MG132 (Biomol International, Plymouth Meeting, PA may be more effective in inducing apoptosis. Additionally, this regimen would enable the use of sublethal doses of individual drugs, thus reducing adverse effects. Results indicate a significant increase in apoptosis when LNCaP prostate cancer cells were treated with increasing levels of Lactacystin, MG132, or a combination of sublethal doses of these two inhibitors. Furthermore, induction in apoptosis coincided with a significant loss of IKKα, IKKβ, and IKKγ proteins and NFκB activity. In addition to describing effective therapeutic agents, we provide a model system to facilitate the investigation of the mechanism of action of these drugs and their effects on the IKK-NFκB axis.

  20. FoxM1 is a general target for proteasome inhibitors.

    Directory of Open Access Journals (Sweden)

    Uppoor G Bhat

    Full Text Available Proteasome inhibitors are currently in the clinic or in clinical trials, but the mechanism of their anticancer activity is not completely understood. The oncogenic transcription factor FoxM1 is one of the most overexpressed genes in human tumors, while its expression is usually halted in normal non-proliferating cells. Previously, we established that thiazole antibiotics Siomycin A and thiostrepton inhibit FoxM1 and induce apoptosis in human cancer cells. Here, we report that Siomycin A and thiostrepton stabilize the expression of a variety of proteins, such as p21, Mcl-1, p53 and hdm-2 and also act as proteasome inhibitors in vitro. More importantly, we also found that well-known proteasome inhibitors such as MG115, MG132 and bortezomib inhibit FoxM1 transcriptional activity and FoxM1 expression. In addition, overexpression of FoxM1 specifically protects against bortezomib-, but not doxorubicin-induced apoptosis. These data suggest that negative regulation of FoxM1 by proteasome inhibitors is a general feature of these drugs and it may contribute to their anticancer properties.

  1. Dynamic conformations of nucleophosmin (NPM1 at a key monomer-monomer interface affect oligomer stability and interactions with granzyme B.

    Directory of Open Access Journals (Sweden)

    Wei D Duan-Porter

    Full Text Available Nucleophosmin (NPM1 is an abundant, nucleolar tumor antigen with important roles in cell proliferation and putative contributions to oncogenesis. Wild-type NPM1 forms pentameric oligomers through interactions at the amino-terminal core domain. A truncated form of NPM1 found in some hepatocellular carcinoma tissue formed an unusually stable oligomer and showed increased susceptibility to cleavage by granzyme B. Initiation of translation at the seventh methionine generated a protein (M7-NPM that shared all these properties. We used deuterium exchange mass spectrometry (DXMS to perform a detailed structural analysis of wild-type NPM1 and M7-NPM, and found dynamic conformational shifts or local "unfolding" at a specific monomer-monomer interface which included the β-hairpin "latch." We tested the importance of interactions at the β-hairpin "latch" by replacing a conserved tyrosine in the middle of the β-hairpin loop with glutamic acid, generating Y67E-NPM. Y67E-NPM did not form stable oligomers and further, prevented wild-type NPM1 oligomerization in a dominant-negative fashion, supporting the critical role of the β-hairpin "latch" in monomer-monomer interactions. Also, we show preferential cleavage by granzyme B at one of two available aspartates (either D161 or D122 in M7-NPM and Y67E-NPM, whereas wild-type NPM1 was cleaved at both sites. Thus, we observed a correlation between the propensity to form oligomers and granzyme B cleavage site selection in nucleophosmin proteins, suggesting that a small change at an important monomer-monomer interface can affect conformational shifts and impact protein-protein interactions.

  2. Functional study of hot pepper 26S proteasome subunit RPN7 induced by Tobacco mosaic virus from nuclear proteome analysis

    International Nuclear Information System (INIS)

    Two-dimensional gel electrophoresis (2-DE) was applied for the screening of Tobacco mosaic virus (TMV)-induced hot pepper (Capsicum annuum cv. Bugang) nuclear proteins. From differentially expressed protein spots, we acquired the matched peptide mass fingerprint (PMF) data, analyzed by MALDI-TOF MS, from the non-redundant hot pepper EST protein FASTA database using the VEMS 2.0 software. Among six identified nuclear proteins, the hot pepper 26S proteasome subunit RPN7 (CaRPN7) was subjected to further study. The level of CaRPN7 mRNA was specifically increased during incompatible TMV-P0 interaction, but not during compatible TMV-P1.2 interaction. When CaRPN7::GFP fusion protein was targeted in onion cells, the nuclei had been broken into pieces. In the hot pepper leaves, cell death was exacerbated and genomic DNA laddering was induced by Agrobacterium-mediated transient overexpression of CaPRN7. Thus, this report presents that the TMV-induced CaRPN7 may be involved in programmed cell death (PCD) in the hot pepper plant

  3. Nutrigenomics of high fat diet induced obesity in mice suggests relationships between susceptibility to fatty liver disease and the proteasome.

    Directory of Open Access Journals (Sweden)

    Helen Waller-Evans

    Full Text Available Nutritional factors play important roles in the etiology of obesity, type 2 diabetes mellitus and their complications through genotype x environment interactions. We have characterised molecular adaptation to high fat diet (HFD feeding in inbred mouse strains widely used in genetic and physiological studies. We carried out physiological tests, plasma lipid assays, obesity measures, liver histology, hepatic lipid measurements and liver genome-wide gene transcription profiling in C57BL/6J and BALB/c mice fed either a control or a high fat diet. The two strains showed marked susceptibility (C57BL/6J and relative resistance (BALB/c to HFD-induced insulin resistance and non alcoholic fatty liver disease (NAFLD. Global gene set enrichment analysis (GSEA of transcriptome data identified consistent patterns of expression of key genes (Srebf1, Stard4, Pnpla2, Ccnd1 and molecular pathways in the two strains, which may underlie homeostatic adaptations to dietary fat. Differential regulation of pathways, including the proteasome, the ubiquitin mediated proteolysis and PPAR signalling in fat fed C57BL/6J and BALB/c suggests that altered expression of underlying diet-responsive genes may be involved in contrasting nutrigenomic predisposition and resistance to insulin resistance and NAFLD in these models. Collectively, these data, which further demonstrate the impact of gene x environment interactions on gene expression regulations, contribute to improved knowledge of natural and pathogenic adaptive genomic regulations and molecular mechanisms associated with genetically determined susceptibility and resistance to metabolic diseases.

  4. Effect of Protein-Lipid-Salt Interactions on Sodium Availability in the Mouth and Consequent Perception of Saltiness: As Affected by Hydration in Powders.

    Science.gov (United States)

    Yucel, Umut; Peterson, Devin G

    2015-09-01

    There is a broad need to reformulate lower sodium food products without affecting their original taste. The present study focuses on characterizing the role of protein-salt interactions on the salt release in low-moisture systems and saltiness perception during hydration. Sodium release from freeze-dried protein powders and emulsion powders formulated at different protein/lipid ratios (5:0 to 1:4) were characterized using a chromatography column modified with a porcine tongue. Emulsion systems with protein structured at the interface were found to have faster initial sodium release rates and faster hydration and were perceived to have a higher initial salt intensity with a lower salty aftertaste. In summary, exposure of the hydrophilic segments of the interface-structured proteins in emulsions was suggested to facilitate hydration and release of sodium during dissolution of low-moisture powder samples. PMID:26255668

  5. The proteasome deubiquitinase inhibitor VLX1570 shows selectivity for ubiquitin-specific protease-14 and induces apoptosis of multiple myeloma cells.

    Science.gov (United States)

    Wang, Xin; Mazurkiewicz, Magdalena; Hillert, Ellin-Kristina; Olofsson, Maria Hägg; Pierrou, Stefan; Hillertz, Per; Gullbo, Joachim; Selvaraju, Karthik; Paulus, Aneel; Akhtar, Sharoon; Bossler, Felicitas; Khan, Asher Chanan; Linder, Stig; D'Arcy, Padraig

    2016-01-01

    Inhibition of deubiquitinase (DUB) activity is a promising strategy for cancer therapy. VLX1570 is an inhibitor of proteasome DUB activity currently in clinical trials for relapsed multiple myeloma. Here we show that VLX1570 binds to and inhibits the activity of ubiquitin-specific protease-14 (USP14) in vitro, with comparatively weaker inhibitory activity towards UCHL5 (ubiquitin-C-terminal hydrolase-5). Exposure of multiple myeloma cells to VLX1570 resulted in thermostabilization of USP14 at therapeutically relevant concentrations. Transient knockdown of USP14 or UCHL5 expression by electroporation of siRNA reduced the viability of multiple myeloma cells. Treatment of multiple myeloma cells with VLX1570 induced the accumulation of proteasome-bound high molecular weight polyubiquitin conjugates and an apoptotic response. Sensitivity to VLX1570 was moderately affected by altered drug uptake, but was unaffected by overexpression of BCL2-family proteins or inhibitors of caspase activity. Finally, treatment with VLX1570 was found to lead to extended survival in xenograft models of multiple myeloma. Our findings demonstrate promising antiproliferative activity of VLX1570 in multiple myeloma, primarily associated with inhibition of USP14 activity. PMID:27264969

  6. The interaction of state and trait aspects of self-focused attention affects genital, but not subjective, sexual arousal in sexually functional women.

    Science.gov (United States)

    van Lankveld, Jacques; Bergh, Simone

    2008-04-01

    In this study we investigated the effects of state and trait aspects of self-focused attention on genital and subjective sexual arousal of sexually functional, healthy women during presentation of audiovisual erotic stimuli. Psychophysiological sexual response was measured as vaginal pulse amplitude using a vaginal photoplethysmograph. Experiential aspects of sexual arousal were measured both during stimulus presentation and retrospectively after stimulus offset. Trait level of sexual self-focus was measured with the Sexual Self-Consciousness Scale. State self-focus was induced by switching on a TV camera that pointed at the participant's face and upper torso. A manipulation check revealed that both groups experienced equally elevated levels of self-focused attention of their physical appearance. Induction of state self-focus per se did not affect genital responses, but an interaction effect of self-focus and participants' level of trait sexual self-focus was revealed. Compared with women with low scores on this trait, women with high scores exhibited smaller genital responses when state self-focus was induced. Both groups did not differ when no self-focus was induced. Increase of state self-focus did not affect subjective sexual arousal, but participants with a high level of trait sexual self-focus reported stronger subjective arousal, compared with those with low trait level. The results were discussed with reference to previous work in this field. Some implications for treatment of sexual arousal disorder were discussed. PMID:18325482

  7. Reacquisition of cocaine conditioned place preference and its inhibition by previous social interaction preferentially affect D1-medium spiny neurons in the accumbens corridor

    Directory of Open Access Journals (Sweden)

    Janine Maria Prast

    2014-09-01

    Full Text Available We investigated if counterconditioning with dyadic (i.e., one-to-one social interaction, a strong inhibitor of the subsequent reacquisition of cocaine conditioned place preference (CPP, differentially modulates the activity of the diverse brain regions oriented along a mediolateral corridor reaching from the interhemispheric sulcus to the anterior commissure, i.e., the nucleus of the vertical limb of the diagonal band, the medial septal nucleus, the major island of Calleja, the intermediate part of the lateral septal nucleus, and the medial accumbens shell and core. We also investigated the involvement of the lateral accumbens core and the dorsal caudate putamen. The anterior cingulate 1 (Cg1 region served as a negative control. Contrary to our expectations, we found that all regions of the accumbens corridor showed increased expression of the early growth response protein 1 (EGR1, Zif268 in rats 2 h after reacquisition of CPP for cocaine after a history of cocaine CPP acquisition and extinction. Previous counterconditioning with dyadic social interaction inhibited both the reacquisition of cocaine CPP and the activation of the whole accumbens corridor. EGR1 activation was predominantly found in dynorphin-labeled cells, i.e., presumably D1 receptor-expressing medium spiny neurons (D1-MSNs, with D2-MSNs (immunolabeled with an anti-DRD2 antibody being less affected. Cholinergic interneurons or GABAergic interneurons positive for parvalbumin, neuropeptide Y or calretinin were not involved in these CPP-related EGR1 changes. Glial cells did not show any EGR1 expression either. The present findings could be of relevance for the therapy of impaired social interaction in substance use disorders, depression, psychosis, and autism spectrum disorders.

  8. The N370S (Asn370-->Ser) mutation affects the capacity of glucosylceramidase to interact with anionic phospholipid-containing membranes and saposin C.

    Science.gov (United States)

    Salvioli, Rosa; Tatti, Massimo; Scarpa, Susanna; Moavero, Sabrina Maria; Ciaffoni, Fiorella; Felicetti, Federica; Kaneski, Christine R; Brady, Roscoe O; Vaccaro, Anna Maria

    2005-08-15

    The properties of the endolysosomal enzyme GCase (glucosylceramidase), carrying the most prevalent mutation observed in Gaucher patients, namely substitution of an asparagine residue with a serine at amino acid position 370 [N370S (Asn370-->Ser) GCase], were investigated in the present study. We previously demonstrated that Sap (saposin) C, the physiological GCase activator, promotes the association of GCase with anionic phospholipid-containing membranes, reconstituting in this way the enzyme activity. In the present study, we show that, in the presence of Sap C and membranes containing high levels of anionic phospholipids, both normal and N370S GCases are able to associate with the lipid surface and to express their activity. Conversely, when the amount of anionic phospholipids in the membrane is reduced (approximately 20% of total lipids), Sap C is still able to promote binding and activation of the normal enzyme, but not of N370S GCase. The altered interaction of the mutated enzyme with anionic phospholipid-containing membranes and Sap C was further demonstrated in Gaucher fibroblasts by confocal microscopy, which revealed poor co-localization of N370S GCase with Sap C and lysobisphosphatidic acid, the most abundant anionic phospholipid in endolysosomes. Moreover, we found that N370S Gaucher fibroblasts accumulate endolysosomal free cholesterol, a lipid that might further interfere with the interaction of the enzyme with Sap C and lysobisphosphatidic acid-containing membranes. In summary, our results show that the N370S mutation primarily affects the interaction of GCase with its physiological activators, namely Sap C and anionic phospholipid-containing membranes. We thus propose that the poor contact between N370S GCase and its activators may be responsible for the low activity of the mutant enzyme in vivo. PMID:15826241

  9. Morphological Changes within the Rat Lateral Ventricle after the Administration of Proteasome Inhibitors.

    Directory of Open Access Journals (Sweden)

    Sławomir Wójcik

    Full Text Available The broad variety of substances that inhibit the action of the ubiquitin-proteasome system (UPS-known as proteasome inhibitors-have been used extensively in previous studies, and they are currently frequently proposed as a novel form of cancer treatment and as a protective factor in intracerebral hemorrhage treatment. The experimental data on the safest route of proteasome inhibitor administration, their associated side effects, and the possible ways of minimizing these effects have recently become a very important topic. The aim of our present study was to determine the effects of administering of MG-132, lactacystin and epoxomicin, compounds belonging to three different classes of proteasome inhibitors, on the ependymal walls of the lateral ventricle. Observations were made 2 and 8 weeks after the intraventricular administration of the studied substances dissolved in dimethyl sulfoxide (DMSO into the lateral ventricle of adult Wistar rats. Qualitative and quantitative analysis of brain sections stained with histochemical and inmmunofluorescence techniques showed that the administration of proteasome inhibitors caused a partial occlusion of the injected ventricle in all of the studied animals. The occlusion was due to ependymal cells damage and subsequent ependymal discontinuity, which caused direct contact between the striatum and the lateral nuclei of the septum, mononuclear cell infiltration and the formation of a glial scar between these structures (with the activation of astroglia, microglia and oligodendroglia. Morphologically, the ubiquitin-positive aggregates corresponded to aggresomes, indicating impaired activity of the UPS and the accumulation and aggregation of ubiquitinated proteins that coincided with the occurrence of glial scars. The most significant changes were observed in the wall covering the striatum in animals that were administered epoxomicin, and milder changes were observed in animals administered lactacystin and MG-132

  10. Comprehensive study of proteasome inhibitors against Plasmodium falciparum laboratory strains and field isolates from Gabon

    Directory of Open Access Journals (Sweden)

    Kremsner Peter G

    2008-09-01

    Full Text Available Abstract Background The emergence and spread of Plasmodium falciparum resistance to almost all available antimalarial drugs necessitates the search for new chemotherapeutic compounds. The ubiquitin/proteasome system plays a major role in overall protein turnover, especially in fast dividing eukaryotic cells including plasmodia. Previous studies show that the 20S proteasome is expressed and catalytically active in plasmodia and treatment with proteasome inhibitors arrests parasite growth. This is the first comprehensive screening of proteasome inhibitors with different chemical modes of action against laboratory strains of P. falciparum. Subsequently, a selection of inhibitors was tested in field isolates from Lambaréné, Gabon. Methods Epoxomicin, YU101, YU102, MG132, MG115, Z-L3-VS, Ada-Ahx3-L3-VS, lactacystin, bortezomib (Velcade®, gliotoxin, PR11 and PR39 were tested and compared to chloroquine- and artesunate-activities in a standardized in vitro drug susceptibility assay against P. falciparum laboratory strains 3D7, D10 and Dd2. Freshly obtained field isolates from Lambaréné, Gabon, were used to measure the activity of chloroquine, artesunate, epoxomicin, MG132, lactacystin and bortezomib. Parasite growth was detected through histidine-rich protein 2 (HRP2 production. Raw data were fitted by a four-parameter logistic model and individual inhibitory concentrations (50%, 90%, and 99% were calculated. Results Amongst all proteasome inhibitors tested, epoxomicin showed the highest activity in chloroquine-susceptible (IC50: 6.8 nM [3D7], 1.7 nM [D10] and in chloroquine-resistant laboratory strains (IC50: 10.4 nM [Dd2] as well as in field isolates (IC50: 8.5 nM. The comparator drug artesunate was even more active (IC50: 1.0 nM, whereas all strains were chloroquine-resistant (IC50: 113 nM. Conclusion The peptide α',β'-epoxyketone epoxomicin is highly active against P. falciparum regardless the grade of the parasite's chloroquine

  11. Salinosporamides A and B Inhibit Proteasome Activity and Delay the Degradation of N-end Rule Model Substrates

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Seungkyun; Bang, Daein; Choi, Wonhoon; Lee, Minjae [Kyung Hee Univ., Yongin (Korea, Republic of); Kim, Seonghwan; Oh, Dongchan [Seoul National Univ., Seoul (Korea, Republic of)

    2013-05-15

    The proteasome, which is highly evolutionarily conserved, is responsible for the degradation of most short-lived proteins in cells. Small-molecule inhibitors targeting the proteasome's degradative activity have been extensively developed as lead compounds for various human diseases. An exemplified molecule is bortezomib, which was approved by FDA in 2003 for the treatment of multiple myeloma. Here, using transiently and stably expressed N-end rule model substrates in mammalian cells, we evaluated and identified that salinosporamide A and salinosporamide B effectively inhibited the proteasomal degradation. Considering that a variety of proteasome substrates are implicated in the pathogenesis of many diseases, they have the potential to be clinically applicable as therapeutic agents.

  12. New crystal structure of the proteasome-dedicated chaperone Rpn14 at 1.6 Å resolution

    International Nuclear Information System (INIS)

    A new crystal structure of yeast Rpn14 with an E384A mutation was determined at 1.6 Å resolution. The improved high-resolution structure provides a framework for understanding proteasome assembly. The 26S proteasome is an ATP-dependent protease responsible for selective degradation of polyubiquitylated proteins. Recent studies have suggested that proteasome assembly is a highly ordered multi-step process assisted by specific chaperones. Rpn14, an assembly chaperone for ATPase-ring formation, specifically recognizes the ATPase subunit Rpt6. The structure of Rpn14 at 2.0 Å resolution in space group P64 has previously been reported, but the detailed mechanism of Rpn14 function remains unclear. Here, a new crystal structure of Rpn14 with an E384A mutation is presented in space group P21 at 1.6 Å resolution. This high-resolution structure provides a framework for understanding proteasome assembly

  13. Gambogic Acid Is a Tissue-Specific Proteasome Inhibitor In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Xiaofen Li

    2013-01-01

    Full Text Available Gambogic acid (GA is a natural compound derived from Chinese herbs that has been approved by the Chinese Food and Drug Administration for clinical trials in cancer patients; however, its molecular targets have not been thoroughly studied. Here, we report that GA inhibits tumor proteasome activity, with potency comparable to bortezomib but much less toxicity. First, GA acts as a prodrug and only gains proteasome-inhibitory function after being metabolized by intracellular CYP2E1. Second, GA-induced proteasome inhibition is a prerequisite for its cytotoxicity and anticancer effect without off-targets. Finally, because expression of the CYP2E1 gene is very high in tumor tissues but low in many normal tissues, GA could therefore produce tissue-specific proteasome inhibition and tumor-specific toxicity, with clinical significance for designing novel strategies for cancer treatment.

  14. Proteasome activity is important for replication recovery, CHK1 phosphorylation and prevention of G2 arrest after low-dose formaldehyde

    International Nuclear Information System (INIS)

    Formaldehyde (FA) is a human carcinogen with numerous sources of environmental and occupational exposures. This reactive aldehyde is also produced endogenously during metabolism of drugs and other processes. DNA–protein crosslinks (DPCs) are considered to be the main genotoxic lesions for FA. Accumulating evidence suggests that DPC repair in high eukaryotes involves proteolysis of crosslinked proteins. Here, we examined a role of the main cellular proteolytic machinery proteasomes in toxic responses of human lung cells to low FA doses. We found that transient inhibition of proteasome activity increased cytotoxicity and diminished clonogenic viability of FA-treated cells. Proteasome inactivation exacerbated suppressive effects of FA on DNA replication and increased the levels of the genotoxic stress marker γ-H2AX in normal human cells. A transient loss of proteasome activity in FA-exposed cells also caused delayed perturbations of cell cycle, which included G2 arrest and a depletion of S-phase populations at FA doses that had no effects in control cells. Proteasome activity diminished p53-Ser15 phosphorylation but was important for FA-induced CHK1 phosphorylation, which is a biochemical marker of DPC proteolysis in replicating cells. Unlike FA, proteasome inhibition had no effect on cell survival and CHK1 phosphorylation by the non-DPC replication stressor hydroxyurea. Overall, we obtained evidence for the importance of proteasomes in protection of human cells against biologically relevant doses of FA. Biochemically, our findings indicate the involvement of proteasomes in proteolytic repair of DPC, which removes replication blockage by these highly bulky lesions. - Highlights: • Proteasome inhibition enhances cytotoxicity of low-dose FA in human lung cells. • Active proteasomes diminish replication-inhibiting effects of FA. • Proteasome activity prevents delayed G2 arrest in FA-treated cells. • Proteasome inhibition exacerbates replication stress by FA in

  15. Proteasome activity is important for replication recovery, CHK1 phosphorylation and prevention of G2 arrest after low-dose formaldehyde

    Energy Technology Data Exchange (ETDEWEB)

    Ortega-Atienza, Sara; Green, Samantha E.; Zhitkovich, Anatoly, E-mail: anatoly_zhitkovich@brown.edu

    2015-07-15

    Formaldehyde (FA) is a human carcinogen with numerous sources of environmental and occupational exposures. This reactive aldehyde is also produced endogenously during metabolism of drugs and other processes. DNA–protein crosslinks (DPCs) are considered to be the main genotoxic lesions for FA. Accumulating evidence suggests that DPC repair in high eukaryotes involves proteolysis of crosslinked proteins. Here, we examined a role of the main cellular proteolytic machinery proteasomes in toxic responses of human lung cells to low FA doses. We found that transient inhibition of proteasome activity increased cytotoxicity and diminished clonogenic viability of FA-treated cells. Proteasome inactivation exacerbated suppressive effects of FA on DNA replication and increased the levels of the genotoxic stress marker γ-H2AX in normal human cells. A transient loss of proteasome activity in FA-exposed cells also caused delayed perturbations of cell cycle, which included G2 arrest and a depletion of S-phase populations at FA doses that had no effects in control cells. Proteasome activity diminished p53-Ser15 phosphorylation but was important for FA-induced CHK1 phosphorylation, which is a biochemical marker of DPC proteolysis in replicating cells. Unlike FA, proteasome inhibition had no effect on cell survival and CHK1 phosphorylation by the non-DPC replication stressor hydroxyurea. Overall, we obtained evidence for the importance of proteasomes in protection of human cells against biologically relevant doses of FA. Biochemically, our findings indicate the involvement of proteasomes in proteolytic repair of DPC, which removes replication blockage by these highly bulky lesions. - Highlights: • Proteasome inhibition enhances cytotoxicity of low-dose FA in human lung cells. • Active proteasomes diminish replication-inhibiting effects of FA. • Proteasome activity prevents delayed G2 arrest in FA-treated cells. • Proteasome inhibition exacerbates replication stress by FA in

  16. Insulin alleviates degradation of skeletal muscle protein by inhibiting the ubiquitin-proteasome system in septic rats

    OpenAIRE

    Gao Tao; Yu Wenkui; Tang Shaoqiu; Li Weiqin; Zhu Weiming; Li Ning; Chen Qiyi; Zhang Juanjuan; Li Jieshou

    2011-01-01

    Abstract Hypercatabolism is common under septic conditions. Skeletal muscle is the main target organ for hypercatabolism, and this phenomenon is a vital factor in the deterioration of recovery in septic patients. In skeletal muscle, activation of the ubiquitin-proteasome system plays an important role in hypercatabolism under septic status. Insulin is a vital anticatabolic hormone and previous evidence suggests that insulin administration inhibits various steps in the ubiquitin-proteasome sys...

  17. Synthetic and structural studies on syringolin A and B reveal critical determinants of selectivity and potency of proteasome inhibition

    OpenAIRE

    Clerc, Jérôme; Groll, Michael; Illich, Damir J.; Bachmann, André S.; Huber, Robert; Schellenberg, Barbara; Dudler, Robert; Kaiser, Markus

    2009-01-01

    Syrbactins, a family of natural products belonging either to the syringolin or glidobactin class, are highly potent proteasome inhibitors. Although sharing similar structural features, they differ in their macrocyclic lactam core structure and exocyclic side chain. These structural variations critically influence inhibitory potency and proteasome subsite selectivity. Here, we describe the total synthesis of syringolin A and B, which together with enzyme kinetic and structural studies, allowed...

  18. Sent to Destroy: The Ubiquitin Proteasome System Regulates Cell Signaling and Protein Quality Control in Cardiovascular Development and Disease

    OpenAIRE

    Willis, Monte S.; Townley-Tilson, W.H. Davin; Kang, Eunice Y.; Homeister, Jonathon W.; Patterson, Cam

    2010-01-01

    The ubiquitin proteasome system (UPS) plays a crucial role in biological processes integral to the development of the cardiovascular system and cardiovascular diseases. The UPS prototypically recognizes specific protein substrates and places polyubiquitin chains on them for subsequent destruction by the proteasome. This system is in place to degrade not only misfolded and damaged proteins, but is essential also in regulating a host of cell signaling pathways involved in proliferation, adaptat...

  19. Proteasome Inhibition Triggers Activity-Dependent Increase in the Size of the Recycling Vesicle Pool in Cultured Hippocampal Neurons

    OpenAIRE

    Willeumier, Kristen; Pulst, Stefan M.; Schweizer, Felix E.

    2006-01-01

    The ubiquitin proteasome system, generally known for its function in protein degradation, also appears to play an important role in regulating membrane trafficking. A role for the proteasome in regulating presynaptic release and vesicle trafficking has been proposed for invertebrates, but it remains to be tested in mammalian presynaptic terminals. We used the fluorescent styrylpyridinium dye FM4-64 to visualize changes in the recycling pool of vesicles in hippocampal culture under pharmacolog...

  20. Identification of proteasome subunit beta type 6 (PSMB6 associated with deltamethrin resistance in mosquitoes by proteomic and bioassay analyses.

    Directory of Open Access Journals (Sweden)

    Linchun Sun

    Full Text Available Deltamethrin (DM insecticides are currently being promoted worldwide for mosquito control, because of the high efficacy, low mammalian toxicity and less environmental impact. Widespread and improper use of insecticides induced resistance, which has become a major obstacle for the insect-borne disease management. Resistance development is a complex and dynamic process involving many genes. To better understand the possible molecular mechanisms involved in DM resistance, a proteomic approach was employed for screening of differentially expressed proteins in DM-susceptible and -resistant mosquito cells. Twenty-seven differentially expressed proteins were identified by two-dimensional electrophoresis (2-DE and mass spectrometry (MS. Four members of the ubiquitin-proteasome system were significantly elevated in DM-resistant cells, suggesting that the ubiquitin-proteasome pathway may play an important role in DM resistance. Proteasome subunit beta type 6 (PSMB6 is a member of 20S proteasomal subunit family, which forms the proteolytic core of 26S proteasome. We used pharmaceutical inhibitor and molecular approaches to study the contributions of PSMB6 in DM resistance: the proteasome inhibitor MG-132 and bortezomib were used to suppress the proteasomal activity and siRNA was designed to block the function of PSMB6. The results revealed that both MG-132 and bortezomib increased the susceptibility in DM-resistant cells and resistance larvae. Moreover, PSMB6 knockdown decreased cellular viability under DM treatment. Taken together, our study indicated that PSMB6 is associated with DM resistance in mosquitoes and that proteasome inhibitors such as MG-132 or bortezomib are suitable for use as a DM synergist for vector control.