WorldWideScience

Sample records for affects motor coordination

  1. Understanding social motor coordination.

    Science.gov (United States)

    Schmidt, R C; Fitzpatrick, Paula; Caron, Robert; Mergeche, Joanna

    2011-10-01

    Recently there has been much interest in social coordination of motor movements, or as it is referred to by some researchers, joint action. This paper reviews the cognitive perspective's common coding/mirror neuron theory of joint action, describes some of its limitations and then presents the behavioral dynamics perspective as an alternative way of understanding social motor coordination. In particular, behavioral dynamics' ability to explain the temporal coordination of interacting individuals is detailed. Two experiments are then described that demonstrate how dynamical processes of synchronization are apparent in the coordination underlying everyday joint actions such as martial art exercises, hand-clapping games, and conversations. The import of this evidence is that emergent dynamic patterns such as synchronization are the behavioral order that any neural substrate supporting joint action (e.g., mirror systems) would have to sustain.

  2. Impairments of social motor coordination in schizophrenia.

    Directory of Open Access Journals (Sweden)

    Manuel Varlet

    Full Text Available It has been demonstrated that motor coordination of interacting people plays a crucial role in the success of social exchanges. Abnormal movements have been reported during interpersonal interactions of patients suffering from schizophrenia and a motor coordination breakdown could explain this social interaction deficit, which is one of the main and earliest features of the illness. Using the dynamical systems framework, the goal of the current study was (i to investigate whether social motor coordination is impaired in schizophrenia and (ii to determine the underlying perceptual or cognitive processes that may be affected. We examined intentional and unintentional social motor coordination in participants oscillating hand-held pendulums from the wrist. The control group consisted of twenty healthy participant pairs while the experimental group consisted of twenty participant pairs that included one participant suffering from schizophrenia. The results showed that unintentional social motor coordination was preserved while intentional social motor coordination was impaired. In intentional coordination, the schizophrenia group displayed coordination patterns that had lower stability and in which the patient never led the coordination. A coupled oscillator model suggests that the schizophrenia group coordination pattern was due to a decrease in the amount of available information together with a delay in information transmission. Our study thus identified relational motor signatures of schizophrenia and opens new perspectives for detecting the illness and improving social interactions of patients.

  3. Sensory Motor Coordination in Robonaut

    Science.gov (United States)

    Peters, Richard Alan, II

    2003-01-01

    As a participant of the year 2000 NASA Summer Faculty Fellowship Program, I worked with the engineers of the Dexterous Robotics Laboratory at NASA Johnson Space Center on the Robonaut project. The Robonaut is an articulated torso with two dexterous arms, left and right five-fingered hands, and a head with cameras mounted on an articulated neck. This advanced space robot, now driven only teleoperatively using VR gloves, sensors and helmets, is to be upgraded to a thinking system that can find, interact with and assist humans autonomously, allowing the Crew to work with Robonaut as a (junior) member of their team. Thus, the work performed this summer was toward the goal of enabling Robonaut to operate autonomously as an intelligent assistant to astronauts. Our underlying hypothesis is that a robot can develop intelligence if it learns a set of basic behaviors (i.e., reflexes - actions tightly coupled to sensing) and through experience learns how to sequence these to solve problems or to accomplish higher-level tasks. We describe our approach to the automatic acquisition of basic behaviors as learning sensory-motor coordination (SMC). Although research in the ontogenesis of animals development from the time of conception) supports the approach of learning SMC as the foundation for intelligent, autonomous behavior, we do not know whether it will prove viable for the development of autonomy in robots. The first step in testing the hypothesis is to determine if SMC can be learned by the robot. To do this, we have taken advantage of Robonaut's teleoperated control system. When a person teleoperates Robonaut, the person's own SMC causes the robot to act purposefully. If the sensory signals that the robot detects during teleoperation are recorded over several repetitions of the same task, it should be possible through signal analysis to identify the sensory-motor couplings that accompany purposeful motion. In this report, reasons for suspecting SMC as the basis for

  4. Motor Coordination and Executive Functions

    Science.gov (United States)

    Michel, Eva

    2012-01-01

    Since Piaget, the view that motor and cognitive development are interrelated has gained wide acceptance. However, empirical research on this issue is still rare. Few studies show a correlation of performance in cognitive and motor tasks in typically developing children. More specifically, Diamond A. (2000) hypothesizes an involvement of executive…

  5. Attentional Demands on Motor-Respiratory Coordination

    Science.gov (United States)

    Hessler, Eric E.; Amazeen, Polemnia G.

    2009-01-01

    Athletic performance requires the pacing of breathing with exercise, known as motor-respiratory coordination (MRC). In this study, we added cognitive and physical constraints while participants intentionally controlled their breathing locations during rhythmic arm movement. This is the first study to examine a cognitive constraint on MRC.…

  6. Lack of connexin43-mediated Bergmann glial gap junctional coupling does not affect cerebellar long-term depression, motor coordination, or eyeblink conditioning

    Directory of Open Access Journals (Sweden)

    Mika Tanaka

    2008-04-01

    Full Text Available Bergmann glial cells are specialized astrocytes in the cerebellum. In the mature cerebellar molecular layer, Bergmann glial processes are closely associated with Purkinje cells, enclosing Purkinje cell dendritic synapses with a glial sheath. There is intensive gap junctional coupling between Bergmann glial processes, but their significance in cerebellar functions is not known. Connexin43 (Cx43, a major component of astrocytic gap junction channels, is abundantly expressed in Bergmann glial cells. To examine the role of Cx43-mediated gap junctions between Bergmann glial cells in cerebellar functions, we generated Cx43 conditional knockout mice with the S100b-Cre transgenic line (Cx43fl/fl:S100b-Cre, which exhibited a significant loss of Cx43 in the Bergmann glial cells and astrocytes in the cerebellum with a postnatal onset. The Cx43fl/fl:S100b-Cre mice had normal cerebellar architecture. Although gap junctional coupling between the Bergmann glial cells measured by spreading of microinjected Lucifer yellow was virtually abolished in Cx43fl/fl:S100b-Cre mice, electrophysiologic analysis revealed that cerebellar long-term depression could be induced and maintained normally in thier cerebellar slices. In addition, at the behavioral level, Cx43fl/fl:S100b-Cre mice had normal motor coordination in the rotarod task and normal conditioned eyelid response. Our findings suggest that Cx43-mediated gap junctional coupling between Bergmann glial cells is not necessary for the neuron-glia interactions required for cerebellum-dependent motor coordination and motor learning.

  7. Functional coordination of intraflagellar transport motors.

    Science.gov (United States)

    Ou, Guangshuo; Blacque, Oliver E; Snow, Joshua J; Leroux, Michel R; Scholey, Jonathan M

    2005-07-28

    Cilia have diverse roles in motility and sensory reception, and defects in cilia function contribute to ciliary diseases such as Bardet-Biedl syndrome (BBS). Intraflagellar transport (IFT) motors assemble and maintain cilia by transporting ciliary precursors, bound to protein complexes called IFT particles, from the base of the cilium to their site of incorporation at the distal tip. In Caenorhabditis elegans, this is accomplished by two IFT motors, kinesin-II and osmotic avoidance defective (OSM)-3 kinesin, which cooperate to form two sequential anterograde IFT pathways that build distinct parts of cilia. By observing the movement of fluorescent IFT motors and IFT particles along the cilia of numerous ciliary mutants, we identified three genes whose protein products mediate the functional coordination of these motors. The BBS proteins BBS-7 and BBS-8 are required to stabilize complexes of IFT particles containing both of the IFT motors, because IFT particles in bbs-7 and bbs-8 mutants break down into two subcomplexes, IFT-A and IFT-B, which are moved separately by kinesin-II and OSM-3 kinesin, respectively. A conserved ciliary protein, DYF-1, is specifically required for OSM-3 kinesin to dock onto and move IFT particles, because OSM-3 kinesin is inactive and intact IFT particles are moved by kinesin-II alone in dyf-1 mutants. These findings implicate BBS ciliary disease proteins and an OSM-3 kinesin activator in the formation of two IFT pathways that build functional cilia. PMID:16049494

  8. Motor learning as a criterion for evaluating coordination motor abilities

    Directory of Open Access Journals (Sweden)

    Boraczynski Tomasz

    2011-10-01

    Full Text Available The aim of the study was to evaluate the ability of motor learning based on objective, metric criteria, in terms of pedagogical process aimed at improving the accuracy of hits a golf ball to the target. A group of 77 students of physical education participated in the study. Within 8 months there were performed 11 measurement sessions. In each session, subjects performed 10 hits a golf ball to the target from a distance of 9 m. Accuracy of hits was recorded. Effect of motor learning has been demonstrated in the progress of 10 consecutive hits a golf ball to the target in each session (operational control; in the dynamics of performance improvement between sessions (current control; as well as in the total result of eight-month experiment (stage control. There were developed norms for quantitative and qualitative assessment of accuracy of hits a golf ball to the target. Developed quantitative and qualitative criteria for assessing the speed of motor learning in various conditions of the educational process creates the possibility of organization the operational, current and stage control of the level of human coordination motor abilities, as required by leading process.

  9. Postural Coordination during Socio-motor Improvisation.

    Science.gov (United States)

    Gueugnon, Mathieu; Salesse, Robin N; Coste, Alexandre; Zhao, Zhong; Bardy, Benoît G; Marin, Ludovic

    2016-01-01

    Human interaction often relies on socio-motor improvisation. Creating unprepared movements during social interaction is not a random process but relies on rules of synchronization. These situations do not only involve people to be coordinated, but also require the adjustment of their posture in order to maintain balance and support movements. The present study investigated posture in such a context. More precisely, we first evaluated the impact of amplitude and complexity of arm movements on posture in solo situation. Then, we assessed the impact of interpersonal coordination on posture using the mirror game in which dyads performed improvised and synchronized movements (i.e., duo situation). Posture was measured through ankle-hip coordination in medio-lateral and antero-posterior directions (ML and AP respectively). Our results revealed the spontaneous emergence of in-phase pattern in ML direction and antiphase pattern in AP direction for solo and duo situations. These two patterns respectively refer to the simultaneous flexion/extension of the ankles and the hips in the same or opposite direction. It suggests different functional roles of postural coordination patterns in each direction, with in-phase supporting task performance in ML (dynamical stability) and antiphase supporting postural control in AP (mechanical stability). Although amplitude of movement did not influence posture, movement complexity disturbed postural stability in both directions. Conversely, interpersonal coordination promoted postural stability in ML but not in AP direction. These results are discussed in terms of the difference in coupling strength between ankle-hip coordination and interpersonal coordination.

  10. Arm coordination in octopus crawling involves unique motor control strategies.

    Science.gov (United States)

    Levy, Guy; Flash, Tamar; Hochner, Binyamin

    2015-05-01

    To cope with the exceptional computational complexity that is involved in the control of its hyper-redundant arms [1], the octopus has adopted unique motor control strategies in which the central brain activates rather autonomous motor programs in the elaborated peripheral nervous system of the arms [2, 3]. How octopuses coordinate their eight long and flexible arms in locomotion is still unknown. Here, we present the first detailed kinematic analysis of octopus arm coordination in crawling. The results are surprising in several respects: (1) despite its bilaterally symmetrical body, the octopus can crawl in any direction relative to its body orientation; (2) body and crawling orientation are monotonically and independently controlled; and (3) contrasting known animal locomotion, octopus crawling lacks any apparent rhythmical patterns in limb coordination, suggesting a unique non-rhythmical output of the octopus central controller. We show that this uncommon maneuverability is derived from the radial symmetry of the arms around the body and the simple pushing-by-elongation mechanism by which the arms create the crawling thrust. These two together enable a mechanism whereby the central controller chooses in a moment-to-moment fashion which arms to recruit for pushing the body in an instantaneous direction. Our findings suggest that the soft molluscan body has affected in an embodied way [4, 5] the emergence of the adaptive motor behavior of the octopus.

  11. Correlation between BMI and motor coordination in children

    OpenAIRE

    Vítor P. Lopes; Stodden, David F.; Bianchi, Mafalda M.; Maia, José A. R.; Rodrigues, Luis Paulo

    2012-01-01

    Objectives: To analyze the association between motor coordination (MC) and body mass index (BMI) across childhood and early adolescence. Design: This study is cross-sectional. Methods: Data were collected in 7175 children (boys n = 3616, girls n = 3559), ages 6–14 years. BMI was calculated from measured height and weight [body mass (kg)/height (m2)]. Motor coordination was evaluated using Kiphard-Schilling’s body coordination test (KTK). Spearman’s rank correlation was used to study ...

  12. DEVELOPMENT OF FINE MOTOR COORDINATION AND VISUAL-MOTOR INTEGRATION IN PRESCHOOL CHILDREN

    OpenAIRE

    MEMISEVIC Haris; HADZIC Selmir

    2015-01-01

    Fine motor skills are prerequisite for many everyday activities and they are a good predictor of a child's later academic outcome. The goal of the present study was to assess the effects of age on the development of fine motor coordination and visual-motor integration in preschool children. The sample for this study consisted of 276 preschool children from Canton Sara­jevo, Bosnia and Herzegovina. We assessed children's motor skills with Beery Visual Motor Integration Test and Lafayette Pegbo...

  13. Reliability of a New Lower-Extremity Motor Coordination Test

    Directory of Open Access Journals (Sweden)

    Antosiak-Cyrak Katarzyna

    2015-12-01

    Full Text Available Introduction. Motor coordination is a basic motor ability necessary for daily life, which also allows athletes to win a sports rivalry and patients to assess their recovery progress after therapy and rehabilitation. The aim of the present study was to assess the reliability of a new lower-extremity rate of movements test and testing apparatus.

  14. Relations between temperament, sensory processing, and motor coordination in three-year-old children

    Directory of Open Access Journals (Sweden)

    Atsuko eNakagawa

    2016-04-01

    Full Text Available Poor motor skills and differences in sensory processing have been noted as behavioral markers of common neurodevelopmental disorders. A total of 171 healthy children (81 girls, 90 boys were investigated at age 3 to examine relations between temperament, sensory processing, and motor coordination. Using the Japanese versions of the Children's Behavior Questionnaire (CBQ, the Sensory Profile (SP-J, and the Little Developmental Coordination Disorder Questionnaire (LDCDQ, this study examines an expanded model based on Rothbart's three-factor temperamental theory (surgency, negative affect, effortful control through path analysis. The results indicate that effortful control affects both sensory processing and motor coordination. The subscale of the LDCDQ, control during movement, is also influenced by surgency, while temperamental negative affect and surgency each have an effect on subscales of the SP-J.

  15. Discrete motor coordinates for vowel production.

    Directory of Open Access Journals (Sweden)

    María Florencia Assaneo

    Full Text Available Current models of human vocal production that capture peripheral dynamics in speech require large dimensional measurements of the neural activity, which are mapped into equally complex motor gestures. In this work we present a motor description for vowels as points in a discrete low-dimensional space. We monitor the dynamics of 3 points at the oral cavity using Hall-effect transducers and magnets, describing the resulting signals during normal utterances in terms of active/inactive patterns that allow a robust vowel classification in an abstract binary space. We use simple matrix algebra to link this representation to the anatomy of the vocal tract and to recent reports of highly tuned neuronal activations for vowel production, suggesting a plausible global strategy for vowel codification and motor production.

  16. DEVELOPMENT OF FINE MOTOR COORDINATION AND VISUAL-MOTOR INTEGRATION IN PRESCHOOL CHILDREN

    Directory of Open Access Journals (Sweden)

    Haris MEMISEVIC

    2013-03-01

    Full Text Available Fine motor skills are prerequisite for many everyday activities and they are a good predictor of a child's later academic outcome. The goal of the present study was to assess the effects of age on the development of fine motor coordination and visual-motor integration in preschool children. The sample for this study consisted of 276 preschool children from Canton Sara­jevo, Bosnia and Herzegovina. We assessed children's motor skills with Beery Visual Motor Integration Test and Lafayette Pegboard Test. Data were analyzed with one-way ANOVA, followed by planned com­parisons between the age groups. We also performed a regression analysis to assess the influence of age and motor coordination on visual-motor integration. The results showed that age has a great effect on the development of fine motor skills. Furthermore, the results indicated that there are possible sensitive periods at preschool age in which the development of fine motor skills is accelerated. Early intervention specialists should make a thorough evaluations of fine motor skills in preschool children and make motor (rehabilitation programs for children at risk of fine motor delays.

  17. Coordination of fictive motor activity in the larval zebrafish is generated by non-segmental mechanisms.

    Directory of Open Access Journals (Sweden)

    Timothy D Wiggin

    Full Text Available The cellular and network basis for most vertebrate locomotor central pattern generators (CPGs is incompletely characterized, but organizational models based on known CPG architectures have been proposed. Segmental models propose that each spinal segment contains a circuit that controls local coordination and sends longer projections to coordinate activity between segments. Unsegmented/continuous models propose that patterned motor output is driven by gradients of neurons and synapses that do not have segmental boundaries. We tested these ideas in the larval zebrafish, an animal that swims in discrete episodes, each of which is composed of coordinated motor bursts that progress rostrocaudally and alternate from side to side. We perturbed the spinal cord using spinal transections or strychnine application and measured the effect on fictive motor output. Spinal transections eliminated episode structure, and reduced both rostrocaudal and side-to-side coordination. Preparations with fewer intact segments were more severely affected, and preparations consisting of midbody and caudal segments were more severely affected than those consisting of rostral segments. In reduced preparations with the same number of intact spinal segments, side-to-side coordination was more severely disrupted than rostrocaudal coordination. Reducing glycine receptor signaling with strychnine reversibly disrupted both rostrocaudal and side-to-side coordination in spinalized larvae without disrupting episodic structure. Both spinal transection and strychnine decreased the stability of the motor rhythm, but this effect was not causal in reducing coordination. These results are inconsistent with a segmented model of the spinal cord and are better explained by a continuous model in which motor neuron coordination is controlled by segment-spanning microcircuits.

  18. Cerebellar Development and Plasticity: Perspectives for Motor Coordination Strategies, for Motor Skills, and for Therapy

    Directory of Open Access Journals (Sweden)

    J. D. Swinny

    2005-01-01

    Full Text Available The role of the mammalian cerebellum ranges from motor coordination, sensory-motor integration, motor learning, and timing to nonmotor functions such as cognition. In terms of motor function, the development of the cerebellum is of particular interest because animal studies show that the development of the cerebellar cortical circuitry closely parallels motor coordination. Ultrastructural analysis of the morphological development of the cerebellar circuitry, coupled with the temporal and spatial identification of the neurochemical substrates expressed during development, will help to elucidate their roles in the establishment of the cerebellar circuitry and hence motor activity. Furthermore, the convenience of a number of naturally occurring mouse mutations has allowed a functional dissection of the various cellular elements that make up the cerebellar circuitry. This understanding will also help in the approach to possible therapies of pathologies arising during development because tile cerebellum is especially prone to such perturbation because of its late development.

  19. Environmental Factors Affecting Preschoolers' Motor Development

    Science.gov (United States)

    Venetsanou, Fotini; Kambas, Antonis

    2010-01-01

    The process of development occurs according to the pattern established by the genetic potential and also by the influence of environmental factors. The aim of the present study was to focus on the main environmental factors affecting motor development. The review of the literature revealed that family features, such as socioeconomic status,…

  20. Acquisition and reacquisition of motor coordination in musicians.

    Science.gov (United States)

    Furuya, Shinichi; Altenmüller, Eckart

    2015-03-01

    Precise control of movement timing plays a key role in musical performance. This motor skill requires coordination across multiple joints and muscles, which is acquired through extensive musical training from childhood. However, extensive training has a potential risk of causing neurological disorders that impair fine motor control, such as task-specific tremor and focal dystonia. Recent technological advances in measurement and analysis of biological data, as well as noninvasive manipulation of neuronal activities, have promoted the understanding of computational and neurophysiological mechanisms underlying acquisition, loss, and reacquisition of dexterous movements through musical practice and rehabilitation. This paper aims to provide an overview of the behavioral and neurophysiological basis of motor virtuosity and disorder in musicians, representative extremes of human motor skill. We also report novel evidence of effects of noninvasive neurorehabilitation that combined transcranial direct-current stimulation and motor rehabilitation over multiple days on musician's dystonia, which offers a promising therapeutic means.

  1. Similarities between GCS and human motor cortex: complex movement coordination

    Science.gov (United States)

    Rodríguez, Jose A.; Macias, Rosa; Molgo, Jordi; Guerra, Dailos

    2014-07-01

    The "Gran Telescopio de Canarias" (GTC1) is an optical-infrared 10-meter segmented mirror telescope at the ORM observatory in Canary Islands (Spain). The GTC control system (GCS), the brain of the telescope, is is a distributed object & component oriented system based on RT-CORBA and it is responsible for the management and operation of the telescope, including its instrumentation. On the other hand, the Human motor cortex (HMC) is a region of the cerebrum responsible for the coordination of planning, control, and executing voluntary movements. If we analyze both systems, as far as the movement control of their mechanisms and body parts is concerned, we can find extraordinary similarities in their architectures. Both are structured in layers, and their functionalities are comparable from the movement conception until the movement action itself: In the GCS we can enumerate the Sequencer high level components, the Coordination libraries, the Control Kit library and the Device Driver library as the subsystems involved in the telescope movement control. If we look at the motor cortex, we can also enumerate the primary motor cortex, the secondary motor cortices, which include the posterior parietal cortex, the premotor cortex, and the supplementary motor area (SMA), the motor units, the sensory organs and the basal ganglia. From all these components/areas we will analyze in depth the several subcortical regions, of the the motor cortex, that are involved in organizing motor programs for complex movements and the GCS coordination framework, which is composed by a set of classes that allow to the high level components to transparently control a group of mechanisms simultaneously.

  2. Motor Skill Learning in Children with Developmental Coordination Disorder

    Science.gov (United States)

    Bo, Jin; Lee, Chi-Mei

    2013-01-01

    Children with Developmental Coordination Disorder (DCD) are characterized as having motor difficulties and learning impairment that may last well into adolescence and adulthood. Although behavioral deficits have been identified in many domains such as visuo-spatial processing, kinesthetic perception, and cross-modal sensory integration, recent…

  3. ADOLESCENCE, MOTOR COORDINATION PROBLEMS AND COMPETENCE

    Directory of Open Access Journals (Sweden)

    Irene Ramón Otero

    2015-01-01

    Full Text Available El artículo presenta una revisión de las investigaciones centradas en el estudio de la coordinación y competencia motriz en la etapa adolescente. El objetivo del artículo fue proporcionar una visión sobre las distintas dimensiones del desarrollo motor adolescente en su influencia con la evolución de la coordinación motriz en esta etapa de la vida. La revisión incluyó los estudios más relevantes entre 2000 y 2012. Los criterios de inclusión se centraron en la selección de estudios que han analizado adolescentes de edades comprendidas entre los 13 y 17 años, correspondiendo a la etapa de Educación Secundaria Obligatoria y primer curso de Educación No Obligatoria. Asimismo, las muestras de los estudios incluidos engloban participantes que no presentan discapacidad física e intelectual. Los resultados revelan un aumento del interés por el estudio de la coordinación motriz y muestran datos alarmantes sobre el aumento de los problemas de coordinación motriz en esta etapa tan crítica de la vida. Los autores sugieren la necesidad de mantener los niveles de competencia motriz adecuados en estas edades, reflexionando cómo la baja competencia puede afectar a otras dimensiones del desarrollo de los adolescentes.

  4. Motor adaptation and generalization of reaching movements using motor primitives based on spatial coordinates.

    Science.gov (United States)

    Tanaka, Hirokazu; Sejnowski, Terrence J

    2015-02-15

    The brain processes sensory and motor information in a wide range of coordinate systems, ranging from retinal coordinates in vision to body-centered coordinates in areas that control musculature. Here we focus on the coordinate system used in the motor cortex to guide actions and examine physiological and psychophysical evidence for an allocentric reference frame based on spatial coordinates. When the equations of motion governing reaching dynamics are expressed as spatial vectors, each term is a vector cross product between a limb-segment position and a velocity or acceleration. We extend this computational framework to motor adaptation, in which the cross-product terms form adaptive bases for canceling imposed perturbations. Coefficients of the velocity- and acceleration-dependent cross products are assumed to undergo plastic changes to compensate the force-field or visuomotor perturbations. Consistent with experimental findings, each of the cross products had a distinct reference frame, which predicted how an acquired remapping generalized to untrained location in the workspace. In response to force field or visual rotation, mainly the coefficients of the velocity- or acceleration-dependent cross products adapted, leading to transfer in an intrinsic or extrinsic reference frame, respectively. The model further predicted that remapping of visuomotor rotation should under- or overgeneralize in a distal or proximal workspace. The cross-product bases can explain the distinct patterns of generalization in visuomotor and force-field adaptation in a unified way, showing that kinematic and dynamic motor adaptation need not arise through separate neural substrates.

  5. GPR55, a G-protein coupled receptor for lysophosphatidylinositol, plays a role in motor coordination.

    Directory of Open Access Journals (Sweden)

    Chia-Shan Wu

    Full Text Available The G-protein coupled receptor 55 (GPR55 is activated by lysophosphatidylinositols and some cannabinoids. Recent studies found prominent roles for GPR55 in neuropathic/inflammatory pain, cancer and bone physiology. However, little is known about the role of GPR55 in CNS development and function. To address this question, we performed a detailed characterization of GPR55 knockout mice using molecular, anatomical, electrophysiological, and behavioral assays. Quantitative PCR studies found that GPR55 mRNA was expressed (in order of decreasing abundance in the striatum, hippocampus, forebrain, cortex, and cerebellum. GPR55 deficiency did not affect the concentrations of endocannabinoids and related lipids or mRNA levels for several components of the endocannabinoid system in the hippocampus. Normal synaptic transmission and short-term as well as long-term synaptic plasticity were found in GPR55 knockout CA1 pyramidal neurons. Deleting GPR55 function did not affect behavioral assays assessing muscle strength, gross motor skills, sensory-motor integration, motor learning, anxiety or depressive behaviors. In addition, GPR55 null mutant mice exhibited normal contextual and auditory-cue conditioned fear learning and memory in a Pavlovian conditioned fear test. In contrast, when presented with tasks requiring more challenging motor responses, GPR55 knockout mice showed impaired movement coordination. Taken together, these results suggest that GPR55 plays a role in motor coordination, but does not strongly regulate CNS development, gross motor movement or several types of learned behavior.

  6. GPR55, a G-protein coupled receptor for lysophosphatidylinositol, plays a role in motor coordination.

    Science.gov (United States)

    Wu, Chia-Shan; Chen, Hongmei; Sun, Hao; Zhu, Jie; Jew, Chris P; Wager-Miller, James; Straiker, Alex; Spencer, Corinne; Bradshaw, Heather; Mackie, Ken; Lu, Hui-Chen

    2013-01-01

    The G-protein coupled receptor 55 (GPR55) is activated by lysophosphatidylinositols and some cannabinoids. Recent studies found prominent roles for GPR55 in neuropathic/inflammatory pain, cancer and bone physiology. However, little is known about the role of GPR55 in CNS development and function. To address this question, we performed a detailed characterization of GPR55 knockout mice using molecular, anatomical, electrophysiological, and behavioral assays. Quantitative PCR studies found that GPR55 mRNA was expressed (in order of decreasing abundance) in the striatum, hippocampus, forebrain, cortex, and cerebellum. GPR55 deficiency did not affect the concentrations of endocannabinoids and related lipids or mRNA levels for several components of the endocannabinoid system in the hippocampus. Normal synaptic transmission and short-term as well as long-term synaptic plasticity were found in GPR55 knockout CA1 pyramidal neurons. Deleting GPR55 function did not affect behavioral assays assessing muscle strength, gross motor skills, sensory-motor integration, motor learning, anxiety or depressive behaviors. In addition, GPR55 null mutant mice exhibited normal contextual and auditory-cue conditioned fear learning and memory in a Pavlovian conditioned fear test. In contrast, when presented with tasks requiring more challenging motor responses, GPR55 knockout mice showed impaired movement coordination. Taken together, these results suggest that GPR55 plays a role in motor coordination, but does not strongly regulate CNS development, gross motor movement or several types of learned behavior.

  7. Proximal arm kinematics affect grip force-load force coordination.

    Science.gov (United States)

    Vermillion, Billy C; Lum, Peter S; Lee, Sang Wook

    2015-10-01

    During object manipulation, grip force is coordinated with load force, which is primarily determined by object kinematics. Proximal arm kinematics may affect grip force control, as proximal segment motion could affect control of distal hand muscles via biomechanical and/or neural pathways. The aim of this study was to investigate the impact of proximal kinematics on grip force modulation during object manipulation. Fifteen subjects performed three vertical lifting tasks that involved distinct proximal kinematics (elbow/shoulder), but resulted in similar end-point (hand) trajectories. While temporal coordination of grip and load forces remained similar across the tasks, proximal kinematics significantly affected the grip force-to-load force ratio (P = 0.042), intrinsic finger muscle activation (P = 0.045), and flexor-extensor ratio (P joint cannot fully explain the observed changes, as task-related changes in intrinsic hand muscle activation were greater than in extrinsic hand muscles. Rather, between-task variation in grip force (highest during task 3) appears to contrast to that in shoulder joint velocity/acceleration (lowest during task 3). These results suggest that complex neural coupling between the distal and proximal upper extremity musculature may affect grip force control during movements, also indicated by task-related changes in intermuscular coherence of muscle pairs, including intrinsic finger muscles. Furthermore, examination of the fingertip force showed that the human motor system may attempt to reduce variability in task-relevant motor output (grip force-to-load force ratio), while allowing larger fluctuations in output less relevant to task goal (shear force-to-grip force ratio). PMID:26289460

  8. Bimanual motor coordination controlled by cooperative interactions in intrinsic and extrinsic coordinates.

    Science.gov (United States)

    Sakurada, Takeshi; Ito, Koji; Gomi, Hiroaki

    2016-01-01

    Although strong motor coordination in intrinsic muscle coordinates has frequently been reported for bimanual movements, coordination in extrinsic visual coordinates is also crucial in various bimanual tasks. To explore the bimanual coordination mechanisms in terms of the frame of reference, here we characterized implicit bilateral interactions in visuomotor tasks. Visual perturbations (finger-cursor gain change) were applied while participants performed a rhythmic tracking task with both index fingers under an in-phase or anti-phase relationship in extrinsic coordinates. When they corrected the right finger's amplitude, the left finger's amplitude unintentionally also changed [motor interference (MI)], despite the instruction to keep its amplitude constant. Notably, we observed two specificities: one was large MI and low relative-phase variability (PV) under the intrinsic in-phase condition, and the other was large MI and high PV under the extrinsic in-phase condition. Additionally, using a multiple-interaction model, we successfully decomposed MI into intrinsic components caused by motor correction and extrinsic components caused by visual-cursor mismatch of the right finger's movements. This analysis revealed that the central nervous system facilitates MI by combining intrinsic and extrinsic components in the condition with in-phases in both intrinsic and extrinsic coordinates, and that under-additivity of the effects is explained by the brain's preference for the intrinsic interaction over extrinsic interaction. In contrast, the PV was significantly correlated with the intrinsic component, suggesting that the intrinsic interaction dominantly contributed to bimanual movement stabilization. The inconsistent features of MI and PV suggest that the central nervous system regulates multiple levels of bilateral interactions for various bimanual tasks.

  9. Childhood motor coordination and adult schizophrenia spectrum disorders

    DEFF Research Database (Denmark)

    Schiffman, Jason; Sørensen, Holger Jelling; Maeda, Justin;

    2009-01-01

    OBJECTIVE: The authors examined whether motor coordination difficulties assessed in childhood predict later adult schizophrenia spectrum outcomes. METHOD: A standardized childhood neurological examination was administered to a sample of 265 Danish children in 1972, when participants were 10......-13 years old. Adult diagnostic information was available for 244 members of the sample. Participants fell into three groups: children whose mothers or fathers had a psychiatric hospital diagnosis of schizophrenia (N=94); children who had at least one parent with a psychiatric record of hospitalization...... in May 2007. RESULTS: Children who later developed a schizophrenia spectrum disorder (N=32) displayed significantly higher scores on a scale of coordination deficits compared with those who did not develop a mental illness in this category (N=133). CONCLUSIONS: Results from this study provide further...

  10. NEURAL PATHWAYS OF TRIGEMINAL PROPRIOCEPTIVE AFFERENTS COORDINATE ORAL MOTOR BEHAVIORS

    Institute of Scientific and Technical Information of China (English)

    Luo Pifu; Zhang Jingdong; Li Jishuo

    2003-01-01

    neuroanatomical network to elucidate trigeminal proprioceptive afferents coordinate oral motor behaviors.

  11. Neurotoxicity induced by alkyl nitrites: Impairment in learning/memory and motor coordination.

    Science.gov (United States)

    Cha, Hye Jin; Kim, Yun Ji; Jeon, Seo Young; Kim, Young-Hoon; Shin, Jisoon; Yun, Jaesuk; Han, Kyoungmoon; Park, Hye-Kyung; Kim, Hyung Soo

    2016-04-21

    Although alkyl nitrites are used as recreational drugs, there is only little research data regarding their effects on the central nervous system including their neurotoxicity. This study investigated the neurotoxicity of three representative alkyl nitrites (isobutyl nitrite, isoamyl nitrite, and butyl nitrite), and whether it affected learning/memory function and motor coordination in rodents. Morris water maze test was performed in mice after administrating the mice with varying doses of the substances in two different injection schedules of memory acquisition and memory retention. A rota-rod test was then performed in rats. All tested alkyl nitrites lowered the rodents' capacity for learning and memory, as assessed by both the acquisition and retention tests. The results of the rota-rod test showed that isobutyl nitrite in particular impaired motor coordination in chronically treated rats. The mice chronically injected with isoamyl nitrite also showed impaired function, while butyl nitrite had no significant effect. The results of the water maze test suggest that alkyl nitrites may impair learning and memory. Additionally, isoamyl nitrite affected the rodents' motor coordination ability. Collectively, our findings suggest that alkyl nitrites may induce neurotoxicity, especially on the aspect of learning and memory function.

  12. A novel role for the immunophilin FKBP52 in motor coordination.

    Science.gov (United States)

    Young, Matthew J; Geiszler, Philippine C; Pardon, Marie-Christine

    2016-10-15

    FKBP52 is a ubiquitously distributed immunophilin that has been associated with wide-ranging functions in cell signalling as well as hormonal and stress responses. Amongst other pathways, it acts via complex-formation with corticosteroid receptors and has consequently been associated with stress- and age- related neurodegenerative disorders including Alzheimer's and Parkinson's diseases. Reduced levels of FKBP52 have been linked to tau dysfunction and amyloid beta toxicity in AD. However, FKBP52's role in cognition and neurodegenerative disorder-like phenotypes remain to be elucidated. The present study aimed therefore at investigating the cognitive and behavioural effects of reduced FKBP52 levels of genetically modified mice during ageing. Female and male FKBP52(+/+), FKBP52(+/-) and FKBP52(-/-) mice were compared at two-, ten-, twelve-, fifteen- and eighteen-months-of-age in a series of behavioural tests covering specie-specific behaviour, motor activity and coordination, fear-, spatial and recognition memory as well as curiosity and emotionality. Whilst cognitively unimpaired, FKBP52(+/-) mice performed worse on an accelerating rotating rod than FKBP52(+/+) littermates across all age-groups suggesting that FKBP52 is involved in processes controlling motor coordination. This deficit did not exacerbate with age but did worsen with repeated testing; pointing towards a role for FKBP52 in learning of tasks requiring motor coordination abilities. This study contributes to the knowledge base of FKBP52's implication in neurodegenerative diseases by demonstrating that FKBP52 by itself does not directly affect cognition and may therefore rather play an indirect, modulatory role in the functional pathology of AD, whereas it directly affects motor coordination, an early sign of neurodegenerative damages to the brain.

  13. A novel role for the immunophilin FKBP52 in motor coordination.

    Science.gov (United States)

    Young, Matthew J; Geiszler, Philippine C; Pardon, Marie-Christine

    2016-10-15

    FKBP52 is a ubiquitously distributed immunophilin that has been associated with wide-ranging functions in cell signalling as well as hormonal and stress responses. Amongst other pathways, it acts via complex-formation with corticosteroid receptors and has consequently been associated with stress- and age- related neurodegenerative disorders including Alzheimer's and Parkinson's diseases. Reduced levels of FKBP52 have been linked to tau dysfunction and amyloid beta toxicity in AD. However, FKBP52's role in cognition and neurodegenerative disorder-like phenotypes remain to be elucidated. The present study aimed therefore at investigating the cognitive and behavioural effects of reduced FKBP52 levels of genetically modified mice during ageing. Female and male FKBP52(+/+), FKBP52(+/-) and FKBP52(-/-) mice were compared at two-, ten-, twelve-, fifteen- and eighteen-months-of-age in a series of behavioural tests covering specie-specific behaviour, motor activity and coordination, fear-, spatial and recognition memory as well as curiosity and emotionality. Whilst cognitively unimpaired, FKBP52(+/-) mice performed worse on an accelerating rotating rod than FKBP52(+/+) littermates across all age-groups suggesting that FKBP52 is involved in processes controlling motor coordination. This deficit did not exacerbate with age but did worsen with repeated testing; pointing towards a role for FKBP52 in learning of tasks requiring motor coordination abilities. This study contributes to the knowledge base of FKBP52's implication in neurodegenerative diseases by demonstrating that FKBP52 by itself does not directly affect cognition and may therefore rather play an indirect, modulatory role in the functional pathology of AD, whereas it directly affects motor coordination, an early sign of neurodegenerative damages to the brain. PMID:27418439

  14. Motor skills in Brazilian children with developmental coordination disorder versus children with motor typical development.

    Science.gov (United States)

    Cardoso, Ana Amélia; Magalhães, Livia Castro; Rezende, Marcia Bastos

    2014-12-01

    The aims of the study were to compare the performance of children with probable developmental coordination disorder (DCD) and motor typically developing peers on items from the Assessment of Motor Coordination and Dexterity (AMCD), to determine whether age, gender and type of school had significant impact on the scores of the AMCD items, to estimate the frequency of DCD among Brazilian children ages 7 and 8 years and to investigate whether children with DCD exhibit more symptoms of attention deficit and hyperactivity disorder than children with motor typical development. A total of 793 children were screened by the Developmental Coordination Disorder Questionnaire - Brazilian version (DCDQ-Brazil); 90 were identified as at risk for DCD; 91 matched controls were selected from the remaining participants. Children in both groups were evaluated with the AMCD, the Movement Assessment Battery for Children (MABC-II) and Raven's coloured progressive matrices. Thirty-four children were classified as probable DCD, as defined by a combination of the DCDQ-Brazil and MABC-II scores (fifth percentile). The final frequency of DCD among children ages 7 and 8 years was 4.3%. There were significant differences between children with and without DCD on the majority of AMCD items, indicating its potential for identifying DCD in Brazilian children. The use of a motor test (MABC-II) that is not validated for the Brazilian children is a limitation of the present study. Further studies should investigate whether the AMCD is useful for identifying DCD in other age groups and in children from different regions of Brazil. The application of the AMCD may potentially contribute in improving occupational therapy practice in Brazil and in identifying children that could benefit from occupational therapy services.

  15. Visuo-motor coordination deficits and motor impairments in Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Rivka Inzelberg

    Full Text Available BACKGROUND: Visuo-motor coordination (VMC requires normal cognitive executive functionality, an ability to transform visual inputs into movement plans and motor-execution skills, all of which are known to be impaired in Parkinson's disease (PD. Not surprisingly, a VMC deficit in PD is well documented. Still, it is not known how this deficit relates to motor symptoms that are assessed routinely in the neurological clinic. Such relationship should reveal how particular motor dysfunctions combine with cognitive and sensory-motor impairments to produce a complex behavioral disability. METHODS AND FINDINGS: Thirty nine early/moderate PD patients were routinely evaluated, including motor Unified Parkinson's Disease Rating Scale (UPDRS based assessment, A VMC testing battery in which the subjects had to track a target moving on screen along 3 different paths, and to freely trace these paths followed. Detailed kinematic analysis of tracking/tracing performance was done. Statistical analysis of the correlations between measures depicting various aspects of VMC control and UPDRS items was performed. The VMC measures which correlated most strongly with clinical symptoms represent the ability to organize tracking movements and program their direction, rather than measures representing motor-execution skills of the hand. The strong correlations of these VMC measures with total UPDRS score were weakened when the UPDRS hand-motor part was considered specifically, and were insignificant in relation to tremor of the hand. In contrast, all correlations of VMC measures with the gait/posture part of the UPDRS were found to be strongest. CONCLUSIONS: Our apparently counterintuitive findings suggest that the VMC deficit pertains more strongly to a PD related change in cognitive-executive control, than to a reduction in motor capabilities. The recently demonstrated relationship between gait/posture impairment and a cognitive decline, as found in PD, concords with this

  16. The potential roles of T-type Ca2+ channels in motor coordination

    Directory of Open Access Journals (Sweden)

    Young-Gyun ePark

    2013-10-01

    Full Text Available Specific behavioral patterns are expressed by complex combinations of muscle coordination. Tremors are simple behavioral patterns and are the focus of studies investigating motor coordination mechanisms in the brain. T-type Ca2+ channels mediate intrinsic neuronal oscillations and rhythmic burst spiking, and facilitate the generation of tremor rhythms in motor circuits. Despite substantial evidence that T-type Ca2+ channels mediate pathological tremors, their roles in physiological motor coordination and behavior remain unknown. Here, we review recent progress in understanding the roles that T-type Ca2+ channels play under pathological conditions, and discuss the potential relevance of these channels in mediating physiological motor coordination.

  17. Motor Coordination Difficulties and Physical Fitness of Extremely-Low-Birthweight Children

    Science.gov (United States)

    Burns, Yvonne R.; Danks, Marcella; O'Callaghan, Michael J.; Gray, Peter H.; Cooper, David; Poulsen, Leith; Watter, Pauline

    2009-01-01

    Motor coordination difficulties and poor fitness exist in the extremely low birthweight (ELBW) population. This study investigated the relative impact of motor coordination on the fitness of ELBW children aged 11 to 13 years. One hundred and nine children were recruited to the study: 54 ELBW participants (mean age at assessment 12y 6mo; 31 male,…

  18. Developmental and physical-fitness associations with gross motor coordination problems in Peruvian children.

    Science.gov (United States)

    de Chaves, Raquel Nichele; Bustamante Valdívia, Alcibíades; Nevill, Alan; Freitas, Duarte; Tani, Go; Katzmarzyk, Peter T; Maia, José António Ribeiro

    2016-01-01

    The aims of this cross-sectional study were to examine the developmental characteristics (biological maturation and body size) associated with gross motor coordination problems in 5193 Peruvian children (2787 girls) aged 6-14 years from different geographical locations, and to investigate how the probability that children suffer with gross motor coordination problems varies with physical fitness. Children with gross motor coordination problems were more likely to have lower flexibility and explosive strength levels, having adjusted for age, sex, maturation and study site. Older children were more likely to suffer from gross motor coordination problems, as were those with greater body mass index. However, more mature children were less likely to have gross motor coordination problems, although children who live at sea level or at high altitude were more likely to suffer from gross motor coordination problems than children living in the jungle. Our results provide evidence that children and adolescents with lower physical fitness are more likely to have gross motor coordination difficulties. The identification of youths with gross motor coordination problems and providing them with effective intervention programs is an important priority in order to overcome such developmental problems, and help to improve their general health status.

  19. Social motor coordination in unaffected relatives of schizophrenia patients: A potential intermediate phenotype

    Directory of Open Access Journals (Sweden)

    Jonathan eDel-Monte

    2013-10-01

    Full Text Available Intermediate endophenotypes emerge as an important concept in the study of schizophrenia. Although research on phenotypes mainly investigated cognitive, metabolic or neurophysiological markers so far, some authors also examined the motor behaviour anomalies as potential trait-marker of the disease. However, none of them investigated social motor coordination despite the importance of their anomalies in schizophrenia. The aim of this study was thus to determine whether coordination modifications previously demonstrated in schizophrenia are trait-markers that might be associated with the risk for this pathology. Interpersonal motor coordination in 27 unaffected first-degree relatives of schizophrenia patients and 27 healthy controls was assessed using a hand-held pendulum task to examine the presence of interpersonal coordination impairments in individuals at risk for the disorder. Measures of neurologic soft signs, clinical variables and neurocognitive functions were collected to assess the cognitive and clinical correlates of social coordination impairments in at-risk relatives. After controlling for potential confounding variables, unaffected relatives of schizophrenia patients had impaired intentional interpersonal coordination compared to healthy controls while unintentional interpersonal coordination was preserved. More specifically, in intentional coordination, the unaffected relatives of schizophrenia patients exhibited coordination patterns that had greater variability and in which relatives did not lead the coordination. These results show that unaffected relatives of schizophrenia patients also present deficits in intentional interpersonal coordination. For the first time, these results suggest that intentional interpersonal coordination impairments might be a potential motor intermediate endophenotype of schizophrenia opening new perspectives for early diagnosis.

  20. Occupational therapy intervention effect for children with deficits in visual perception, motor coordination and visual-motor integration

    Directory of Open Access Journals (Sweden)

    Rita de Cássia Tibério Araújo

    2012-08-01

    Full Text Available To students with special educational needs participate actively at school are required effective and systematic investment, involving the school community as a whole. The occupational therapist is one of the professionals who can facilitate this student inclusion process. This study aimed to discuss the occupational therapy intervention effects with two disability children with deficits in visual perceptual skills, motor coordination and visual motor integration, that was included in regular education. The Beery-Buktenica Developmental Test of Visual Motor Integration was use to evaluate visual perceptual skills, motor coordination and visual-motor integration. Because the deficits presented in the functions investigates was identified the need of an occupational therapy intervention program designed to improve the performance in theses functions. After the program, the test was reapplied. The results pointed to an improvement of all functions considered deficient. These results highlight to the training importance to improve the performance in abilities evaluated.

  1. Occupational therapy intervention effect for children with deficits in visual perception, motor coordination and visual-motor integration

    OpenAIRE

    Rita de Cássia Tibério Araújo; Mariana Dutra Zafani; Débora Morais Pereira

    2012-01-01

    To students with special educational needs participate actively at school are required effective and systematic investment, involving the school community as a whole. The occupational therapist is one of the professionals who can facilitate this student inclusion process. This study aimed to discuss the occupational therapy intervention effects with two disability children with deficits in visual perceptual skills, motor coordination and visual motor integration, that was included in regular ...

  2. Coordinated regulation of cholinergic motor neuron traits through a conserved terminal selector gene

    OpenAIRE

    Kratsios, Paschalis; Stolfi, Alberto; Levine, Michael; Hobert, Oliver

    2011-01-01

    Cholinergic motor neurons are defined by the co-expression of a battery of genes which encode proteins that act sequentially to synthesize, package and degrade acetylcholine and reuptake its breakdown product, choline. How expression of these critical motor neuron identity determinants is controlled and coordinated is not understood. We show here that in the nematode Caenorhabditis elegans all members of the cholinergic gene battery, as well as many other markers of terminal motor neuron fate...

  3. Brief report: Response inhibition and processing speed in children with motor difficulties and developmental coordination disorder

    OpenAIRE

    Bernardi, M.; Leonard, H.C.; Hill, E.L.; Henry, L.

    2016-01-01

    A previous study reported that children with poor motor skills, classified as having motor difficulties (MD) or Developmental Coordination Disorder (DCD), produced more errors in a motor response inhibition task compared to typically-developing (TD) children, but did not differ in verbal inhibition errors. The present study investigated whether these groups differed in the length of time they took to respond in order to achieve these levels of accuracy, and whether any differences in response...

  4. Development of motor coordination and cerebellar structure in male and female rat neonates exposed to hypergravity

    Science.gov (United States)

    Nguon, K.; Ladd, B.; Baxter, M. G.; Sajdel-Sulkowska, E. M.

    2006-01-01

    We previously reported that the developing rat cerebellum is affected by exposure to hypergravity. In the present study, we explored the hypothesis that the changes in cerebellar structure in hypergravity-exposed rat neonates may affect their motor coordination. Furthermore, we hypothesized that the changes observed at 1.5G will be magnified at higher gravitational loading. To test this hypothesis, we compared motor behavior, cerebellar structure, and protein expression in rat neonates exposed to 1.5 1.75G on a 24-ft centrifuge daily for 22.5 h starting on gestational day (G) 10, through birth on G22/G23 and through postnatal day (P) 21. Exposure to hypergravity impacted the neurodevelopmental process as indicated by: (1) impaired righting response on P3, more than doubling the righting time at 1.75G, and (2) delayed onset of the startle response by one day, from P9 in controls to P10 in hypergravity-exposed pups. Hypergravity exposure resulted in impaired motor functions as evidenced by performance on a rotarod on P21; the duration of the stay on the rotarod recorded for 1.75G pups of both sexes was one tenth that of the stationary control (SC) pups. These changes in motor behavior were associated with cerebellar changes: (1) cerebellar mass on P6 was decreased by 7.5% in 1.5G-exposed male pups, 27.5% in 1.75G-exposed male pups, 17.5% in 1.5G-exposed female pups, and 22.5% in 1.75G female pups and (2) changes in the expression of glial and neuronal proteins. The results of this study suggest that perinatal exposure to hypergravity affects cerebellar development as evidenced by decreased cerebellar mass and altered cerebellar protein expression; cerebellar changes observed in hypergravity-exposed rat neonates are associated with impaired motor behavior. Furthermore, the response to hypergravity appears to be different in male and female neonates. If one accepts that the hypergravity paradigm is a useful animal model with which to predict those biological processes

  5. Motor coordination problems in children and adolescents with ADHD rated by parents and teachers: effects of age and gender

    OpenAIRE

    Fliers, E.; Rommelse, N.N.J.; Vermeulen, S. H.; Altink, M.; Buschgens, C.J.M.; Faraone, S. V.; Sergeant, J.A.; Franke, B.; Buitelaar, J.

    2007-01-01

    Summary. Objective. ADHD is frequently accompanied by motor coordination problems. However, the co-occurrence of poor motor performance has received less attention in research than other coexisting problems in ADHD. The underlying mechanisms of this association remain unclear. Therefore, we investigated the prevalence of motor coordination problems in a large sample of children with ADHD, and the relationship between motor coordination problems and inattentive and hyperactive/impulsive sympto...

  6. A Stochastic Markov Model for Coordinated Molecular Motors

    CERN Document Server

    Materassi, Donatello; Salapaka, Murti V

    2010-01-01

    Many cell functions are accomplished thanks to intracellular transport mechanisms of macromolecules along filaments. Molecular motors such as dynein or kinesin are proteins playing a primary role in these processes. The behavior of such proteins is quite well understood when there is only one of them moving a cargo particle. Indeed, numerous in vitro experiments have been performed to derive accurate models for a single molecular motor. However, in vivo macromolecules are often carried by multiple motors. The main focus of this paper is to provide an analysis of the behavior of more molecular motors interacting together in order to improve the understanding of their actual physiological behavior. Previous studies provide analyses based on results obtained from Monte Carlo simulations. Different from these studies, we derive an equipollent probabilistic model to describe the dynamics of multiple proteins coupled together and provide an exact theoretical analysis. We are capable of obtaining the probability den...

  7. Developmental differences in childhood motor coordination predict adult alcohol dependence

    DEFF Research Database (Denmark)

    Manzardo, Ann M; Penick, Elizabeth C; Knop, Joachim;

    2005-01-01

    hypothesized that developmental deficits in the cerebellar vermis may also play a role in the initiation of adult alcohol dependence. The present study evaluated whether measures of motor development in the first year of life predict alcohol dependence three decades later. METHODS: A total of 241 subjects...... and early delays in motor development offer support for the theory that cerebellar deficits may play a causal role in the addiction process....

  8. Collective effects in intra-cellular molecular motor transport: coordination, cooperation and competetion

    CERN Document Server

    Chowdhury, D

    2006-01-01

    Molecular motors do not work in isolation {\\it in-vivo}. We highlight some of the coordinations, cooperations and competitions that determine the collective properties of molecular motors in eukaryotic cells. In the context of traffic-like movement of motors on a track, we emphasize the importance of single-motor bio-chemical cycle and enzymatic activity on their collective spatio-temporal organisation. Our modelling strategy is based on a synthesis- the same model describes the single-motor mechano-chemistry at sufficiently low densities whereas at higher densities it accounts for the collective flow properties and the density profiles of the motors. We consider two specific examples, namely, traffic of single-headed kinesin motors KIF1A on a microtubule track and ribosome traffic on a messenger RNA track.

  9. Assessment of Motor Coordination and Balance in Mice Using the Rotarod, Elevated Bridge, and Footprint Tests.

    Science.gov (United States)

    Brooks, Simon P; Trueman, Rebecca C; Dunnett, Stephen B

    2012-01-01

    In order fully to utilize animal models of disease states, to test experimental therapeutics, and to understand the underlying pathophysiology of neurodegenerative disease, behavioral characterization of the model is essential. Deterioration of normal motor function within a disease state signals the progression of an underlying pathological process, and identifies disease-sensitive time points according to which the onset of therapeutic trials may be scheduled. Deterioration in the performance of motor tasks may also indicate the point when motor deficits begin to compromise our ability to measure other deficits within cognitive and behavioral domains. In acute therapeutic trials, the separation of motor from cognitive or behavioral function may be crucial in determining the functional specificity of the drug effect. If we are to accurately measure motor performance in disease progression or during drug trials, tests of motor function that have been highly optimized with respect to sensitivity must be applied. Since motor coordination and balance are essential to normal motor function, tests that probe these facets are ideal for the purpose. In this chapter, we describe in detail three test protocols that principally measure motor coordination (the rotarod and footprint tests) and balance (the elevated bridge test) in mice. Curr. Protoc. Mouse Biol. 2:37-53 © 2012 by John Wiley & Sons, Inc. PMID:26069004

  10. Conserved role of Drosophila melanogaster FoxP in motor coordination and courtship song.

    Science.gov (United States)

    Lawton, Kristy J; Wassmer, Taryn L; Deitcher, David L

    2014-07-15

    FoxP2 is a highly conserved vertebrate transcription factor known for its importance in human speech and language production. Disruption of FoxP2 in several vertebrate models indicates a conserved functional role for this gene in both sound production and motor coordination. Although FoxP2 is known to be strongly expressed in brain regions important for motor coordination, little is known about FoxP2's role in the nervous system. The recent discovery of the well-conserved Drosophila melanogaster homolog, FoxP, provides an opportunity to study the role of this crucial gene in an invertebrate model. We hypothesized that, like FoxP2, Drosophila FoxP is important for behaviors requiring fine motor coordination. We used targeted RNA interference to reduce expression of FoxP and assayed the effects on a variety of adult behaviors. Male flies with reduced FoxP expression exhibit decreased levels of courtship behavior, altered pulse-song structure, and sex-specific motor impairments in walking and flight. Acute disruption of synaptic activity in FoxP expressing neurons using a temperature-sensitive shibire allele dramatically impaired motor coordination. Utilizing a GFP reporter to visualize FoxP in the fly brain reveals expression in relatively few neurons in distributed clusters within the larval and adult CNS, including distinct labeling of the adult protocerebral bridge - a section of the insect central complex known to be important for motor coordination and thought to be homologous to areas of the vertebrate basal ganglia. Our results establish the necessity of this gene in motor coordination in an invertebrate model and suggest a functional homology with vertebrate FoxP2. PMID:24747661

  11. PAIR MOTOR COORDINATION ACTION IN SPORTSMEN (ON THE EXAMPLE OF BALLROOM DANCING

    Directory of Open Access Journals (Sweden)

    L. V. Kapilevich

    2013-01-01

    Full Text Available Learn a special coordinating pair of motor actions in athletes engaged sport ballroom dancing, depending on gender and sportsmanship. The results suggest that beginners dominated coordination, performed individually, while the highly skilled dancers better developed coordination, carried out in pairs. Athletes average individual coordination disturbed by the emergence of sex differences build movements and coordination pair is not formed. The asymmetry of the coordination abilities manifested in the predominance of the deviation from equilibrium (to the right of men and to the left – in women. In this case, the athletes of low and medium level of skill to maintain the leading element of balance and coordination is the visual analyzer, while the skilled dancers defining role goes to the vestibular apparatus.

  12. HSF1-deficiency affects gait coordination and cerebellar calbindin levels.

    Science.gov (United States)

    Ingenwerth, Marc; Estrada, Veronica; Stahr, Anna; Müller, Hans Werner; von Gall, Charlotte

    2016-09-01

    Heat shock proteins (HSPs) play an important role in cell homeostasis and protect against cell damage. They were previously identified as key players in different ataxia models. HSF1 is the main transcription factor for HSP activation. HSF1-deficient mice (HSF1-/-) are known to have deficiencies in motor control test. However, little is known about effects of HSF1-deficiency on locomotor, especially gait, coordination. Therefore, we compared HSF-deficient (HSF1-/-) mice and wildtype littermates using an automated gait analysis system for objective assessment of gait coordination. We found significant changes in gait parameters of HSF1-/- mice reminiscent of cerebellar ataxia. Immunohistochemical analyses of a cerebellum revealed co-localization of HSF1 and calbindin in Purkinje cells. Therefore, we tested the hypothesis of a potential interconnection between HSF1 and calbindin in Purkinje cells. Calbindin levels were analyzed qualitatively and quantitatively by immunohistochemistry and immunoblotting, respectively. While quantitative PCR revealed no differences in calbindin mRNA levels between HSF1+/+ and HSF1-/- mice, calbindin protein levels, however, were significantly decreased in a cerebellum of HSF1-/- mice. A pathway analysis supports the hypothesis of an interconnection between HSF1 and calbindin. In summary, the targeted deletion of HSF1 results in changes of locomotor function associated with changes in cerebellar calbindin protein levels. These findings suggest a role of HSF1 in regular Purkinje cell calcium homeostasis. PMID:27173427

  13. Motor Coordination Correlates with Academic Achievement and Cognitive Function in Children

    OpenAIRE

    Fernandes, Valter R.; Ribeiro, Michelle L. Scipião; Melo, Thais; de Tarso Maciel-Pinheiro, Paulo; Guimarães, Thiago T.; Araújo, Narahyana B.; Ribeiro, Sidarta; Andréa C Deslandes

    2016-01-01

    The relationship between exercise and cognition is an important topic of research that only recently began to unravel. Here, we set out to investigate the relation between motor skills, cognitive function, and school performance in 45 students from 8 to 14 years of age. We used a cross-sectional design to evaluate motor coordination (Touch Test Disc), agility (Shuttle Run Speed—running back and forth), school performance (Academic Achievement Test), the Stroop test, and six sub-tests of the W...

  14. Brief report: Response inhibition and processing speed in children with motor difficulties and developmental coordination disorder.

    Science.gov (United States)

    Bernardi, Marialivia; Leonard, Hayley C; Hill, Elisabeth L; Henry, Lucy A

    2016-01-01

    A previous study reported that children with poor motor skills, classified as having motor difficulties (MD) or Developmental Coordination Disorder (DCD), produced more errors in a motor response inhibition task compared to typically developing (TD) children but did not differ in verbal inhibition errors. The present study investigated whether these groups differed in the length of time they took to respond in order to achieve these levels of accuracy, and whether any differences in response speed could be explained by generally slow information processing in children with poor motor skills. Timing data from the Verbal Inhibition Motor Inhibition test were analyzed to identify differences in performance between the groups on verbal and motor inhibition, as well as on processing speed measures from standardized batteries. Although children with MD and DCD produced more errors in the motor inhibition task than TD children, the current analyses found that they did not take longer to complete the task. Children with DCD were slower at inhibiting verbal responses than TD children, while the MD group seemed to perform at an intermediate level between the other groups in terms of verbal inhibition speed. Slow processing speed did not account for these group differences. Results extended previous research into response inhibition in children with poor motor skills by explicitly comparing motor and verbal responses, and suggesting that slow performance, even when accurate, may be attributable to an inefficient way of inhibiting responses, rather than slow information processing speed per se.

  15. Motor coordination and visual information processing in high school students at risk of developmental coordination disorder: Two year follow-up study

    Directory of Open Access Journals (Sweden)

    Rudolf Psotta

    2014-03-01

    Full Text Available BACKGROUND: Developmental coordination disorder (DCD in children is characterised by the execution being substantially below that expected given the individual's chronological age. This deficit can negatively affect the psychological and social development of the children and their academic achievements. A few studies provided the evidences on the persistence of impaired motor coordination up to the middle and older adolescence. Although DCD is the heterogeneous syndrome, it seems to be associated with problems in visual information processing. AIMS: The first aim of the study was to examine how a below-average motor coordination in the adolescents can be associated with visual information processing ability. Second aim was to reveal the short-term pathway of impaired motor coordination during adolescence and whether their persistence and reduction, respectively, could be associated with a level of visual information processing. METHODS: In the first phase of the study the below average motor coordination identified by the MABC-2 test (Henderson, Sugden, & Barnett, 2007 in the students of the high and vocational schools (n = 52 was analysed on its relation to the ability of visual information processing. This ability was assessed by the simple and choice reaction tests (FiTRO Reaction Check device. In the 2nd phase of the study the students with moderate and significant motor difficulties (n = 34 were reassessed two years after the initial testing to examine the changes in motor coordination and its potential association with a level of visual information processing. RESULTS: The below-average motor coordination correlated with the several measures of choice reaction with a determination of R2 9-15%, while a level of selective attention and physical growth of the adolescents were not the significant factors of motor skills. Of 34 adolescents 18 students demonstrated the reduction of motor difficulties in two years, and the persistence of the

  16. CNS effects of indomethacin: should patients be cautioned about decreased mental alertness and motor coordination?

    NARCIS (Netherlands)

    Hegeman, J.; Bemt, B.J. van den; Weerdesteijn, V.G.M.; Nienhuis, B.; Limbeek, J. van; Duysens, J.E.J.

    2013-01-01

    AIMS: In many European countries as well as in the USA, the leaflet, or even the packaging of indomethacin, contains a specific warning to refrain from activities requiring mental alertness and motor coordination, such as driving a car. In this placebo-controlled randomized study with a crossover de

  17. The Effects of Coordination and Movement Education on Pre School Children's Basic Motor Skills Improvement

    Science.gov (United States)

    Altinkök, Mustafa

    2016-01-01

    This research was conducted for the purpose of analyzing the effect of the movement education program through a 12-week-coordination on the development of basic motor movements of pre-school children. A total of 78 students of pre-school period, 38 of whom were in the experimental group and 40 of whom were in the control group, were incorporated…

  18. Fine Motor Skills in Attention Deficit Hyperactivity Disorder and Developmental Coordination Disorder

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2006-03-01

    Full Text Available The manual dexterity subtests of the Movement Assessment Battery for Children, and handwriting and computerized graphomotor tasks were used to investigate motor skills of a group of 12 children (11 males, 1 female; mean age 9 years 7 months with attention deficit hyperactivity disorder (ADHD and developmental coordination disorder (DCD and 12 controls at University Medical Centre Groningen, the Netherlands.

  19. Fine Motor Skills in Attention Deficit Hyperactivity Disorder and Developmental Coordination Disorder

    OpenAIRE

    J Gordon Millichap

    2006-01-01

    The manual dexterity subtests of the Movement Assessment Battery for Children, and handwriting and computerized graphomotor tasks were used to investigate motor skills of a group of 12 children (11 males, 1 female; mean age 9 years 7 months) with attention deficit hyperactivity disorder (ADHD) and developmental coordination disorder (DCD) and 12 controls at University Medical Centre Groningen, the Netherlands.

  20. A review of five tests to identify motor coordination difficulties in young adults.

    Science.gov (United States)

    Hands, Beth; Licari, Melissa; Piek, Jan

    2015-01-01

    Difficulties with low motor competence in childhood and adolescence, such as that seen in Developmental Coordination Disorder (DCD), often persist into adulthood. Identification of DCD at all ages is particularly challenging and problematic because of the diversity of motor symptoms. Many tests of motor proficiency and impairment have been developed for children up to 12 years of age. Whilst identification of DCD is important during childhood, it is of equal importance to identify and monitor the impact of this impairment as an individual grows and develops. Currently there is no test specifically designed to support diagnosis and monitor change in the age range 16-30 years. In this article we review five tests that have been used to assess motor competence among young adults (Bruininks-Oseretsky Test of Motor Proficiency-2, McCarron Assessment of Neuromuscular Development, Movement Assessment Battery for Children-2, Tufts Assessment of Motor Performance and the Zurich Neuromotor Assessment). Key issues relevant to testing motor skills in older populations, such as the inclusion of age appropriate skills, are explored. While the BOT-2 provided the most evidence for valid and reliable measurement of Criterion A of the diagnostic criteria for DCD among this age group, no test adequately evaluated Criterion B. Further evaluation of motor skill assessment among the young adult population is needed.

  1. A network for audio-motor coordination in skilled pianists and non-musicians.

    Science.gov (United States)

    Baumann, Simon; Koeneke, Susan; Schmidt, Conny F; Meyer, Martin; Lutz, Kai; Jancke, Lutz

    2007-08-01

    Playing a musical instrument requires efficient auditory and motor processing. Fast feed forward and feedback connections that link the acoustic target to the corresponding motor programs need to be established during years of practice. The aim of our study is to provide a detailed description of cortical structures that participate in this audio-motor coordination network in professional pianists and non-musicians. In order to map these interacting areas using functional magnetic resonance imaging (fMRI), we considered cortical areas that are concurrently activated during silent piano performance and motionless listening to piano sound. Furthermore we investigated to what extent interactions between the auditory and the motor modality happen involuntarily. We observed a network of predominantly secondary and higher order areas belonging to the auditory and motor modality. The extent of activity was clearly increased by imagination of the absent modality. However, this network did neither comprise primary auditory nor primary motor areas in any condition. Activity in the lateral dorsal premotor cortex (PMd) and the pre-supplementary motor cortex (preSMA) was significantly increased for pianists. Our data imply an intermodal transformation network of auditory and motor areas which is subject to a certain degree of plasticity by means of intensive training. PMID:17603027

  2. Effects ofMatricaria chamomilla extract on motor coordination impairment induced by scopolamine in rats

    Institute of Scientific and Technical Information of China (English)

    Samira Asgharzade; Zahra Rabiei; Mahmoud Rafieian-Kopaei

    2015-01-01

    Objective:To evaluate the effect of ethanolic extract of chamomile on balance and motor learning in rats receiving scopolamine and intact rats. Methods: Fourty-two rats were divided into 6 groups (n = 7). Control group received distilled water. Rats in Group 2 were given 1 mg/kg scopolamine. Groups 3 and 4 received chamomile extract 200 mg/kg and 500 mg/kg, respectively, and scopolamine simultaneously for 20 days. Intact groups (Groups 5 and 6) only received chamomile extract 200 mg/kg and 500 mg/kg, respectively. Motor coordination of rats was assessed with rotarod apparatus. Results:According to the obtained results, compared with the control group, scopolamine significantly decreased time spent on rotarod performance (P Conclusions: The results of this study indicated the high antioxidant property and protective effect of chamomile extract on motor coordination in the groups that received scopolamine.

  3. Perceptuo-motor compatibility governs multisensory integration in bimanual coordination dynamics.

    Science.gov (United States)

    Zelic, Gregory; Mottet, Denis; Lagarde, Julien

    2016-02-01

    The brain has the remarkable ability to bind together inputs from different sensory origin into a coherent percept. Behavioral benefits can result from such ability, e.g., a person typically responds faster and more accurately to cross-modal stimuli than to unimodal stimuli. To date, it is, however, largely unknown whether such multisensory benefits, shown for discrete reactive behaviors, generalize to the continuous coordination of movements. The present study addressed multisensory integration from the perspective of bimanual coordination dynamics, where the perceptual activity no longer triggers a single response but continuously guides the motor action. The task consisted in coordinating anti-symmetrically the continuous flexion-extension of the index fingers, while synchronizing with an external pacer. Three different configurations of metronome were tested, for which we examined whether a cross-modal pacing (audio-tactile beats) improved the stability of the coordination in comparison with unimodal pacing condition (auditory or tactile beats). We found a more stable bimanual coordination for cross-modal pacing, but only when the metronome configuration directly matched the anti-symmetric coordination pattern. We conclude that multisensory integration can benefit the continuous coordination of movements; however, this is constrained by whether the perceptual and motor activities match in space and time.

  4. Perceptuo-motor compatibility governs multisensory integration in bimanual coordination dynamics.

    Science.gov (United States)

    Zelic, Gregory; Mottet, Denis; Lagarde, Julien

    2016-02-01

    The brain has the remarkable ability to bind together inputs from different sensory origin into a coherent percept. Behavioral benefits can result from such ability, e.g., a person typically responds faster and more accurately to cross-modal stimuli than to unimodal stimuli. To date, it is, however, largely unknown whether such multisensory benefits, shown for discrete reactive behaviors, generalize to the continuous coordination of movements. The present study addressed multisensory integration from the perspective of bimanual coordination dynamics, where the perceptual activity no longer triggers a single response but continuously guides the motor action. The task consisted in coordinating anti-symmetrically the continuous flexion-extension of the index fingers, while synchronizing with an external pacer. Three different configurations of metronome were tested, for which we examined whether a cross-modal pacing (audio-tactile beats) improved the stability of the coordination in comparison with unimodal pacing condition (auditory or tactile beats). We found a more stable bimanual coordination for cross-modal pacing, but only when the metronome configuration directly matched the anti-symmetric coordination pattern. We conclude that multisensory integration can benefit the continuous coordination of movements; however, this is constrained by whether the perceptual and motor activities match in space and time. PMID:26525707

  5. Genome-wide association study of motor coordination problems in ADHD identifies genes for brain and muscle function.

    NARCIS (Netherlands)

    Fliers, E.A.; Arias Vasquez, A.; Poelmans, G.J.V.; Rommelse, N.N.; Altink, M.E.; Buschgens, C.J.M.; Asherson, P.; Banaschewski, T.; Ebstein, R.; Gill, M.; Miranda, A.; Mulas, F.; Oades, R.D.; Roeyers, H.; Rothenberger, A.; Sergeant, J.A.; Sonuga-Barke, E.S.J.; Steinhausen, H.C.; Faraone, S.V.; Buitelaar, J.K.; Franke, B.

    2012-01-01

    OBJECTIVES: Motor coordination problems are frequent in children with attention deficit/hyperactivity disorder (ADHD). We performed a genome-wide association study to identify genes contributing to motor coordination problems, hypothesizing that the presence of such problems in children with ADHD ma

  6. Influence of Methylphenidate on Motor Performance and Attention in Children with Developmental Coordination Disorder and Attention Deficit Hyperactive Disorder

    Science.gov (United States)

    Bart, Orit; Daniel, Liron; Dan, Orrie; Bar-Haim, Yair

    2013-01-01

    Individuals with attention deficit hyperactive disorder (ADHD) often have coexisting developmental coordination disorder (DCD). The positive therapeutic effect of methylphenidate on ADHD symptoms is well documented, but its effects on motor coordination are less studied. We assessed the influence of methylphenidate on motor performance in children…

  7. Does the coordination of verbal and motor information explain the development of counting in children?

    Science.gov (United States)

    Camos, V; Barrouillet, P; Fayol, M

    2001-03-01

    Counting is often considered to be the coordination of two actions: saying the number-words and pointing to each object. We report three experiments to test the hypothesis that this coordination requires the use of the central executive (A. D. Baddeley, 1990), and that the cost of coordination decreases with age. Participants were 5- and 9-year-old children and adults. At all ages tested, the manipulation of the difficulty of each component affected counting performance but did not make coordination more difficult. These results suggest that, at least from the age 5, counting is a procedure in which the control of coordination is not attention demanding. PMID:11222001

  8. The influence of gymnastics in motor coordination and reaction time in urban public bus drivers

    Directory of Open Access Journals (Sweden)

    Stela Paula Mezzomo

    2014-12-01

    Full Text Available This study investigated the influence of labour gymnastics (LG on bus drivers' basic skills such as reaction time and gross motor coordination. Sixty male bus drivers (37.06 ± 7.66 years old from two bus lines in the city of Santa Maria (RS took part of this study. The participants were split into two groups, experimental group (EG and control group (CG. Subjects that were part of the EG took part in a LG intervention program, 2-3 times a week, over a year. Gross motor coordination was assessed by BURPEE Protocol (Johnson & Nelson, 1979, whereas reaction time by software providing a visual stimulus. Data normality was checked through Shapiro-Wilk test, which pointed to normal distribution only for the variables simple reaction time (SRT and choice reaction time (CRT in the EG. Therefore the non-parametric Mann-Whitney U test was selected to compare differences between groups. A statistically significant difference for gross motor coordination was found (z= −2.525, p= 0.012, suggesting the effectiveness of LG to improve motor skills. As regards SRT and CRT, no significant difference was found, in spite of better outcomes having been recorded after the LG program.

  9. Motor coordination correlates with academic achievement and cognitive function in children

    Directory of Open Access Journals (Sweden)

    Valter Rocha Fernandes

    2016-03-01

    Full Text Available The relationship between exercise and cognition is an important topic of research that only recently began to unravel. Here we set out to investigate the relation between motor skills, cognitive function and school performance in 45 students from 8 to 14 years of age. We used a cross-sectional design to evaluate motor coordination (Touch Test Disc, agility (Shuttle Run Speed - running back and forth, school performance (Academic Achievement Test, the Stroop test and 6 sub-tests of the Wechsler Intelligence Scale for Children-IV (WISC-IV. We found that the Touch Test Disc was the best predictor of school performance (R²=0.20. Significant correlations were also observed between motor coordination and several indices of cognitive function, such as the total score of the Academic Achievement Test (Spearman’s rho=0.536; p<=0.001, as well as two WISC-IV sub-tests: block design (R= -0.438;p=0.003 and cancellation (rho= -0.471; p=0.001. All the other cognitive variables pointed in the same direction, and even correlated with agility, but did not reach statistical significance. Altogether, the data indicate that visual motor coordination and visual selective attention, but not agility, may influence academic achievement and cognitive function. The results highlight the importance of investigating the correlation between physical skills and different aspects of cognition.

  10. Motor Coordination Correlates with Academic Achievement and Cognitive Function in Children.

    Science.gov (United States)

    Fernandes, Valter R; Ribeiro, Michelle L Scipião; Melo, Thais; de Tarso Maciel-Pinheiro, Paulo; Guimarães, Thiago T; Araújo, Narahyana B; Ribeiro, Sidarta; Deslandes, Andréa C

    2016-01-01

    The relationship between exercise and cognition is an important topic of research that only recently began to unravel. Here, we set out to investigate the relation between motor skills, cognitive function, and school performance in 45 students from 8 to 14 years of age. We used a cross-sectional design to evaluate motor coordination (Touch Test Disc), agility (Shuttle Run Speed-running back and forth), school performance (Academic Achievement Test), the Stroop test, and six sub-tests of the Wechsler Intelligence Scale for Children-IV (WISC-IV). We found, that the Touch Test Disc was the best predictor of school performance (R (2) = 0.20). Significant correlations were also observed between motor coordination and several indices of cognitive function, such as the total score of the Academic Achievement Test (AAT; Spearman's rho = 0.536; p ≤ 0.001), as well as two WISC-IV sub-tests: block design (R = -0.438; p = 0.003) and cancelation (rho = -0.471; p = 0.001). All the other cognitive variables pointed in the same direction, and even correlated with agility, but did not reach statistical significance. Altogether, the data indicate that visual motor coordination and visual selective attention, but not agility, may influence academic achievement and cognitive function. The results highlight the importance of investigating the correlation between physical skills and different aspects of cognition. PMID:27014130

  11. Motor coordination deficits in Alpk1 mutant mice with the inserted piggyBac transposon

    Directory of Open Access Journals (Sweden)

    Xu Rener

    2011-01-01

    Full Text Available Abstract Background ALPK1 (α-kinase 1 is a member of an unconventional alpha-kinase family, and its biological function remains largely unknown. Here we report the phenotypic characterization of one mutant line, in which the piggyBac (PB transposon is inserted into the Alpk1 gene. Results The piggyBac(PB insertion site in mutants was mapped to the first intron of the Alpk1 gene, resulting in the effective disruption of the intact Alpk1 transcript expression. The transposon-inserted Alpk1 homozygous mutants (Alpk1PB/PB displayed severe defects in motor coordination in a series of behavioral analysis, including dowel test, hanging wire test, rotarod analysis and footprint analysis. However, the cerebellar architecture, Purkinje cell morphology and electrophysiology of the Purkinje cells appeared normal in mutants. The motor coordination deficits in the Alpk1PB/PB mice were rescued by transgenic mice expressing the full-length Alpk1-coding sequence under the control of the ubiquitous expression promoter. Conclusions Our results indicate that ALPK1 plays an important role in the regulation of motor coordination. Alpk1PB/PB mice would be a useful model to provide a clue to the better understanding of the cellular and molecular mechanisms of ALPK1 in the control of fine motor activities.

  12. THE INFLUENCE OF THE EXERCISES OF GROSS AND FINE MOTOR SKILLS ON VISUO-MOTOR COORDINATION OF THE CEREBRAL PALSY CHILDREN

    OpenAIRE

    Almira Mujkić; Zlata Paprić

    2013-01-01

    Visuomotor coordination is reffered to eye coordination and to various parts of the body in different activities and games. The aim of the research was to establish the influence of the exercises of gross and fine motor skills on visuomotor coordination of the cerebral palsy children. The sample was the case study where a male person of 3 and a half years old was an examinee. Measuring instrument used was the Test of visuomotor coordination of the gross motor skills of the dominant hand. Data...

  13. THE INFLUENCE OF THE EXERCISES OF GROSS AND FINE MOTOR SKILLS ON VISUO-MOTOR COORDINATION OF THE CEREBRAL PALSY CHILDREN

    Directory of Open Access Journals (Sweden)

    Almira Mujkić

    2013-09-01

    Full Text Available Visuomotor coordination is reffered to eye coordination and to various parts of the body in different activities and games. The aim of the research was to establish the influence of the exercises of gross and fine motor skills on visuomotor coordination of the cerebral palsy children. The sample was the case study where a male person of 3 and a half years old was an examinee. Measuring instrument used was the Test of visuomotor coordination of the gross motor skills of the dominant hand. Data were analyzed by t-test.

  14. Monte Carlo Simulation on Coordinated Movement of Kinesin and Dynein Motors

    Institute of Scientific and Technical Information of China (English)

    WANG Hong; DOU Shuo-Xing; WANG Peng-Ye

    2008-01-01

    Kinesin and dynein are two important classes of molecular motors which are responsible for active organelle trafficking and cell division.They call work together to carry a cargo,moving along the microtubule in a coordinated way.We use Monte Carlo method to simulate the dynamics of this coordinated movement.Based on four essential assumptions,our simulations reproduce some features of the recent in vivo experiments.The fast moving speed of the cargo js simulated and the speed distribution is presented.

  15. Memory and Motor Coordination Improvement by Folic Acid Supplementation in Healthy Adult Male Rats

    OpenAIRE

    Shooshtari, Maryam Khombi; Moazedi, Ahmad Ali; Parham, Gholam Ali

    2012-01-01

    Objective(s) Previous studies have shown that vitamin B as well as folate supplementation has been implicated in cognitive and neurodegenerative disorders including Alzheimer’s and Parkinson's diseases. The aim of present study was to evaluate the effects of folic acid on passive avoidance task and motor coordination in healthy adult male rats. Materials and Methods Animals were randomly divided into five groups with 10 in each. 1) Sham treated (Veh); received same volume of normal saline as ...

  16. Interrelationships Among Motor Coordination, Body Fat Percentage, and Physical Activity in Adolescent Girls

    OpenAIRE

    Chagas Daniel das Virgens; Batista Luiz Alberto

    2015-01-01

    Purpose. The aim of this study was to analyze the interrelationships among motor coordination, body fat percentage, and physical activity levels in adolescent girls. Methods. Sixty-eight girls aged 12-14 years participated in the study. Skinfold thickness was measured and the Körperkoordinationstest für Kinder test was administered. Participants completed a self-reporting questionnaire on physical activity. Bivariate and partial correlations were used to analyze the interrelationships among t...

  17. Gaming Technique in Formation of Motor-Coordinational and Psychomotor Capabilities of 5-6 Year-old Children, Going in for Tennis

    Directory of Open Access Journals (Sweden)

    Ervand P. Gasparyan

    2012-06-01

    Full Text Available Application of gaming technique during 5-6 year-old tennis-players training when motor coordination and psychomotor capabilities are formed allowed to increase the indexes of all the examined motor coordinations and both to preserve the natural age character of motor coordination changes and to improve this process fundamentally.

  18. Disentangling fine motor skills' relations to academic achievement: the relative contributions of visual-spatial integration and visual-motor coordination.

    Science.gov (United States)

    Carlson, Abby G; Rowe, Ellen; Curby, Timothy W

    2013-01-01

    Recent research has established a connection between children's fine motor skills and their academic performance. Previous research has focused on fine motor skills measured prior to elementary school, while the present sample included children ages 5-18 years old, making it possible to examine whether this link remains relevant throughout childhood and adolescence. Furthermore, the majority of research linking fine motor skills and academic achievement has not determined which specific components of fine motor skill are driving this relation. The few studies that have looked at associations of separate fine motor tasks with achievement suggest that copying tasks that tap visual-spatial integration skills are most closely related to achievement. The present study examined two separate elements of fine motor skills--visual-motor coordination and visual-spatial integration--and their associations with various measures of academic achievement. Visual-motor coordination was measured using tracing tasks, while visual-spatial integration was measured using copy-a-figure tasks. After controlling for gender, socioeconomic status, IQ, and visual-motor coordination, and visual-spatial integration explained significant variance in children's math and written expression achievement. Knowing that visual-spatial integration skills are associated with these two achievement domains suggests potential avenues for targeted math and writing interventions for children of all ages. PMID:24303571

  19. Motor coordination during gait after anterior cruciate ligament injury: a systematic review of the literature

    Directory of Open Access Journals (Sweden)

    Gustavo Leporace

    2013-08-01

    Full Text Available To investigate the state of art about motor coordination during gait in patients with anterior cruciate ligament (ACL injury. Searches were carried out, limited from 1980 to 2010, in various databases with keywords related to motor coordination, gait and ACL injury. From the analysis of titles and applying the inclusion/exclusion criteria 24 studies were initially selected and, after reading the abstract, eight studies remained in the final analysis. ACL deficient patients tend to have a more rigid and less variable gait, while injured patients with ACL reconstruction have less rigid and more variable gait with respect to healthy individuals. The overall results suggest the existence of differences in motor coordination between the segments with intact and those with injured knee, regardless of ligament reconstruction. ACL injured patients present aspects related to the impairment of the capability to adapt the gait pattern to different environmental conditions, possibly leading to premature knee degeneration. However, the techniques used for biomechanical gait data processing are limited with respect to obtaining information that leads to the development of intervention strategies aimed at the rehabilitation of that injury, since it is not possible to identify the location within the gait cycle where the differences could be explained.

  20. Coordinated recruitment of Spir actin nucleators and myosin V motors to Rab11 vesicle membranes.

    Science.gov (United States)

    Pylypenko, Olena; Welz, Tobias; Tittel, Janine; Kollmar, Martin; Chardon, Florian; Malherbe, Gilles; Weiss, Sabine; Michel, Carina Ida Luise; Samol-Wolf, Annette; Grasskamp, Andreas Till; Hume, Alistair; Goud, Bruno; Baron, Bruno; England, Patrick; Titus, Margaret A; Schwille, Petra; Weidemann, Thomas; Houdusse, Anne; Kerkhoff, Eugen

    2016-01-01

    There is growing evidence for a coupling of actin assembly and myosin motor activity in cells. However, mechanisms for recruitment of actin nucleators and motors on specific membrane compartments remain unclear. Here we report how Spir actin nucleators and myosin V motors coordinate their specific membrane recruitment. The myosin V globular tail domain (MyoV-GTD) interacts directly with an evolutionarily conserved Spir sequence motif. We determined crystal structures of MyoVa-GTD bound either to the Spir-2 motif or to Rab11 and show that a Spir-2:MyoVa:Rab11 complex can form. The ternary complex architecture explains how Rab11 vesicles support coordinated F-actin nucleation and myosin force generation for vesicle transport and tethering. New insights are also provided into how myosin activation can be coupled with the generation of actin tracks. Since MyoV binds several Rab GTPases, synchronized nucleator and motor targeting could provide a common mechanism to control force generation and motility in different cellular processes. PMID:27623148

  1. Assessment of motor coordination and dexterity of six years old children: A psychometric analysis

    Directory of Open Access Journals (Sweden)

    Olívia Souza Agostini

    2014-06-01

    Full Text Available Motor coordination of six-year-old children was examined using the Assessment of Motor Coordination and Dexterity, AMCD (Avaliação da Coordenação e Destreza Motora - ACOORDEM, in order to verify test-retest reliability and investigate whether motor performance is influenced by gender, type of school and residence location. Eighty-five children were evaluated, and their parents and teachers completed questionnaires. For test-retest reliability, the AMCD was repeated with 10 children. Mann-Whitney and chi-square tests identified significant influence of sex, type of school and residence location in just a few of the test items. The test-retest reliability was moderate in the items performance, and good to excellent in the majority of the questionnaires' items. We conclude that some items should be revised and normative tables for the identification of motor delay could be created considering only the age variable. Future studies should continue the process of validating the AMCD instrument with the assessment of younger children.

  2. Comparison of motor praxis and performance in children with varying levels of developmental coordination disorder.

    Science.gov (United States)

    Chang, Shao-Hsia; Yu, Nan-Ying

    2016-08-01

    The praxis test is a less well-documented method to determine functional manifestations of childhood dyspraxia. For this study, children aged 6-8years were recruited as follows: 17 children with DCD, 18 at risk of DCD and 35 without obvious problems in motor coordination. The Movement Assessment Battery for Children (MABC-2) was used to measure motor performance and identify the motor incoordination. This study developed a battery of tests to assess limb praxis using a praxis imagery questionnaire, gesture representation, and questions about knowledge of object use. In the comparison of subtests within the praxis test, significant differences were observed across groups on the praxis imagery questionnaire and gesture representation tests but not on knowledge of object use. Similar results were observed in the correlation analyses, in which a weak relationship between MABC-2 and praxis tests was observed. The DCD group had lower scores on the praxis imagery questionnaire, whereas the group at risk of DCD had lower scores on most gesture production tests. Our study provides a better understanding of the nature of the childhood dyspraxia and sheds light on its effect on motor coordination to identify praxis tests with specific clinical meanings in children with movement disorders. PMID:27101560

  3. Analysis of an intervention directed to the development of balance and gross and fine motor coordination

    Directory of Open Access Journals (Sweden)

    Letícia Carrillo Maronesi

    2015-07-01

    Full Text Available Introduction: Children’s motor skills evolve according to age and the continuing influence of intrinsic and extrinsic factors that cause variations from one child to another; this makes the course of development unique in each child. Objective: To develop an intervention for a child with delays in fine motor coordination, gross motor coordination and balance and analyze its impact on the child’s development. Methods: Pre- and post-test quasi-experimental design. The instrument used was the Motor Development Scale applied to a 4 year old child. An intervention plan was developed based on the results obtained throught the tests. The plan consists of activities designed to stimulate the aforementioned acquisitions. The implementation of the intervention plan lasted two months. The child was tested at the beginning and at the end of the intervention to determine whether there was gain in the stimulated acquisitions. The JT method was adopted for data analysis and verification of occurrence of reliable and clinically relevant positive changes. Results: The results of this study demonstrate that reliable positive changes occurred with respect to the psychomotor items that underwent stimulation. Conclusion: It is possible to infer that this intervention had a positive effect on the child’s development . Hence, this study contributes to improve the care provided to children with delayed psychomotor development, illustrating possibilities of strategies and activities. It also allows the recognition of the action of occupational therapists as one of the professionals who compose the multidisciplinary team focused on early intervention.

  4. When music tempo affects the temporal congruence between physical practice and motor imagery.

    Science.gov (United States)

    Debarnot, Ursula; Guillot, Aymeric

    2014-06-01

    When people listen to music, they hear beat and a metrical structure in the rhythm; these perceived patterns enable coordination with the music. A clear correspondence between the tempo of actual movement (e.g., walking) and that of music has been demonstrated, but whether similar coordination occurs during motor imagery is unknown. Twenty participants walked naturally for 8m, either physically or mentally, while listening to slow and fast music, or not listening to anything at all (control condition). Executed and imagined walking times were recorded to assess the temporal congruence between physical practice (PP) and motor imagery (MI). Results showed a difference when comparing slow and fast time conditions, but each of these durations did not differ from soundless condition times, hence showing that body movement may not necessarily change in order to synchronize with music. However, the main finding revealed that the ability to achieve temporal congruence between PP and MI times was altered when listening to either slow or fast music. These data suggest that when physical movement is modulated with respect to the musical tempo, the MI efficacy of the corresponding movement may be affected by the rhythm of the music. Practical applications in sport are discussed as athletes frequently listen to music before competing while they mentally practice their movements to be performed. PMID:24681309

  5. [The role of the motor cortex in rearrangement of the innate movement coordination in the dog].

    Science.gov (United States)

    Pavlova, O G; Mats, V N; Ponomarev, V N

    2007-01-01

    In chronical experiments in dogs the pattern of shoulder muscle recruitment was examined during the forelimb flexion by which the animal lifted and held a cup of food during eating. At the early stage of the instrumental reaction learning the forelimb lifting was performed with the anticipatory deviation of the head in up direction, when the head bent down to the foodwell the lifted forelimb lowered. Simultaneous holding of the flexed forelimb and lowered head providing food reinforcement was achieved only by learning. It was found that the forelimb lifting in the innate coordination in untrained dogs was performed with activation of m. deltoideus and m. teres major, whereas m. teres minor was active whilst the dog was standing but the muscle activity was abolished before the limb lifting. In the course of learning m. teres minor activity was changed into opposite one. In the learned coordination the limb lifting was accompanied by the activation of all three shoulder flexors. The lesion of the motor cortex in the area of the "working" forelimb, but not in other areas led to disturbance of the learned coordination and the novel pattern of the shoulder muscle activity. The data obtained led to the following conclusion: the rearrangement of the innate coordination is connected with the formation of the novel way of the forelimb lifting which pattern of muscle recruitment is provided by the motor cortex. PMID:17944105

  6. Motor simulation and the coordination of self and other in real-time joint action.

    Science.gov (United States)

    Novembre, Giacomo; Ticini, Luca F; Schütz-Bosbach, Simone; Keller, Peter E

    2014-08-01

    Joint actions require the integration of simultaneous self- and other-related behaviour. Here, we investigated whether this function is underpinned by motor simulation, that is the capacity to represent a perceived action in terms of the neural resources required to execute it. This was tested in a music performance experiment wherein on-line brain stimulation (double-pulse transcranial magnetic stimulation, dTMS) was employed to interfere with motor simulation. Pianists played the right-hand part of piano pieces in synchrony with a recording of the left-hand part, which had (Trained) or had not (Untrained) been practiced beforehand. Training was assumed to enhance motor simulation. The task required adaptation to tempo changes in the left-hand part that, in critical conditions, were preceded by dTMS delivered over the right primary motor cortex. Accuracy of tempo adaptation following dTMS or sham stimulations was compared across Trained and Untrained conditions. Results indicate that dTMS impaired tempo adaptation accuracy only during the perception of trained actions. The magnitude of this interference was greater in empathic individuals possessing a strong tendency to adopt others' perspectives. These findings suggest that motor simulation provides a functional resource for the temporal coordination of one's own behaviour with others in dynamic social contexts. PMID:23709353

  7. Jump Rope Training: Balance and Motor Coordination in Preadolescent Soccer Players

    Directory of Open Access Journals (Sweden)

    Athos Trecroci, Luca Cavaggioni, Riccardo Caccia, Giampietro Alberti

    2015-12-01

    Full Text Available General physical practice and multidimensional exercises are essential elements that allow young athletes to enhance their coordinative traits, balance, and strength and power levels, which are linked to the learning soccer-specific skills. Jumping rope is a widely-used and non-specific practical method for the development of athletic conditioning, balance and coordination in several disciplines. Thus, the aim of this study was to investigate the effects of a short-term training protocol including jumping rope (JR exercises on motor abilities and body balance in young soccer players. Twenty-four preadolescent soccer players were recruited and placed in two different groups. In the Experimental group (EG, children performed JR training at the beginning of the training session. The control group (CG, executed soccer specific drills. Harre circuit test (HCT and Lower Quarter Y balance test (YBT-LQ were selected to evaluate participant’s motor ability (e.g. ability to perform rapidly a course with different physical tasks such as somersault and passages above/below obstacles and to assess unilateral dynamic lower limb balance after 8 weeks of training. Statistical analysis consisted of paired t-test and mixed analysis of variance scores to determine any significant interactions. Children who performed jumping rope exercises showed a significant decrease of 9% (p 0.05, ES = 0.05-0.2 from pre- to post-training. A training-by-group interaction was found for the composite score in both legs (p 0.14. Our findings demonstrated that JR practice within regular soccer training enhanced general motor coordination and balance in preadolescent soccer players. Therefore, the inclusion of JR practice within regular soccer training session should encouraged to improve children’s motor skills.

  8. Relationships between levels of motor coordination, attention and physical activity in children: The mediation model

    Directory of Open Access Journals (Sweden)

    Jakub Kokštejn

    2012-12-01

    Full Text Available BACKGROUND: Current findings suggest that physical activity of children with developmental difficulties may be limited by low level of motor coordination. Motor difficulties are often connected with children suffering from attention deficit disorder. OBJECTIVE: The aim of the study was to find out the level of physical activity (PA in older school-age children with motor difficulties (MD in comparison with children without MD and to reveal possible mediate impact on attention between the level of motor skills and PA in children of this age. METHODS: Participants were divided into two groups: 15 children with MD (age 13.7 ± 1.6 years and 27 children without MD (age 13.3 ± 1.4 years. Motor functions were assessed by means of test battery MABC-2, weekly physical activity by means of Actigraph accelerometer and attention by both d2 and numeric square tests. To estimate the mediation of the attention level we have used Baron's & Kenny's (1986 analysis. RESULTS: In most of the indicators of PA, children with MD reached lower value than those without MD. The differences of statistical significance were found in the number of steps per week and weekdays (d = 0.50 and 0.64 respectively and in PA of a very high intensity (d =2 .00 in boys with and without MD. In girls with MD we have found out significantly less time spent in vigorous intensity PA (d = 0.86. The study results support the hypothesis of developmental motor deficits to be a risk factor for PA in older school-age children. Significant mediation effect of concentration of attention in the relationship between the level of motor skills and PA was observed in three cases - in the relationship between gross motor skills on the one hand, and energy expenditure per week and weekdays, and vigorous intensity PA per week on the other. The amount of mediation effect of attention concentration ranged between 12-22%. CONCLUSION: The study has indicated that children's participation in PA can be

  9. Laterality of movement-related activity reflects transformation of coordinates in ventral premotor cortex and primary motor cortex of monkeys.

    Science.gov (United States)

    Kurata, Kiyoshi

    2007-10-01

    The ventral premotor cortex (PMv) and the primary motor cortex (MI) of monkeys participate in various sensorimotor integrations, such as the transformation of coordinates from visual to motor space, because the areas contain movement-related neuronal activity reflecting either visual or motor space. In addition to relationship to visual and motor space, laterality of the activity could indicate stages in the visuomotor transformation. Thus we examined laterality and relationship to visual and motor space of movement-related neuronal activity in the PMv and MI of monkeys performing a fast-reaching task with the left or right arm, toward targets with visual and motor coordinates that had been dissociated by shift prisms. We determined laterality of each activity quantitatively and classified it into four types: activity that consistently depended on target locations in either head-centered visual coordinates (V-type) or motor coordinates (M-type) and those that had either differential or nondifferential activity for both coordinates (B- and N-types). A majority of M-type neurons in the areas had preferences for reaching movements with the arm contralateral to the hemisphere where neuronal activity was recorded. In contrast, most of the V-type neurons were recorded in the PMv and exhibited less laterality than the M-type. The B- and N-types were recorded in the PMv and MI and exhibited intermediate properties between the V- and M-types when laterality and correlations to visual and motor space of them were jointly examined. These results suggest that the cortical motor areas contribute to the transformation of coordinates to generate final motor commands.

  10. Fine motor deficiencies in children with developmental coordination disorder and learning disabilities: An underlying open-loop control deficit

    NARCIS (Netherlands)

    Smits-Engelsman, B.C.M.; Wilson, P.H.; Westenberg, Y.; Duysens, J.E.J.

    2003-01-01

    Thirty-two children with Developmental Coordination Disorder (DCD) and learning disabilities (LD) and their age-matched controls attending normal primary schools were investigated using kinematic movement analysis of fine-motor performance. Three hypotheses about the nature of the motor deficits obs

  11. Fine motor deficiencies in children with developmental coordination disorder and learning disabilities: an underlying open-loop control deficit.

    NARCIS (Netherlands)

    Smits-Engelsman, B.C.M.; Wilson, P.H.; Westenberg, Y.; Duysens, J.E.J.

    2003-01-01

    Thirty-two children with Developmental Coordination Disorder (DCD) and learning disabilities (LD) and their age-matched controls attending normal primary schools were investigated using kinematic movement analysis of fine-motor performance. Three hypotheses about the nature of the motor deficits obs

  12. Motor coordination problems in children and adolescents with ADHD rated by parents and teachers: effects of age and gender

    NARCIS (Netherlands)

    Fliers, E.; Rommelse, N.; Vermeulen, S.H.H.M.; Altink, M.; Buschgens, C.J.M.; Faraone, S.V.; Sergeant, J.A.; Franke, B.; Buitelaar, J.K.

    2007-01-01

    Summary. Objective. ADHD is frequently accompanied by motor coordination problems. However, the co-occurrence of poor motor performance has received less attention in research than other coexisting problems in ADHD. The underlying mechanisms of this association remain unclear. Therefore, we inv

  13. Effects of Matricaria chamomilla extract on motor coordination impairment induced by scopolamine in rats简

    Institute of Scientific and Technical Information of China (English)

    Samira; Asgharzade; Zahra; Rabiei; Mahmoud; Rafieian-Kopaei

    2015-01-01

    Objective: To evaluate the effect of ethanolic extract of chamomile on balance and motor learning in rats receiving scopolamine and intact rats.Methods: Fourty-two rats were divided into 6 groups(n = 7). Control group received distilled water. Rats in Group 2 were given 1 mg/kg scopolamine. Groups 3 and 4received chamomile extract 200 mg/kg and 500 mg/kg, respectively, and scopolamine simultaneously for 20 days. Intact groups(Groups 5 and 6) only received chamomile extract 200 mg/kg and 500 mg/kg, respectively. Motor coordination of rats was assessed with rotarod apparatus.Results: According to the obtained results, compared with the control group, scopolamine significantly decreased time spent on rotarod performance(P < 0.001). Compared with scopolamine group, the strength and staying on rotarod apparatus in Group 3significantly increased(P < 0.05). The results of this research showed that intact groups that received only chamomile extract at doses of 200 mg/kg and 500 mg/kg significantly increased time spent on rotarod, compared with scopolamine group(P < 0.001).Conclusions: The results of this study indicated the high antioxidant property and protective effect of chamomile extract on motor coordination in the groups that received scopolamine.

  14. Central generation of grooming motor patterns and interlimb coordination in locusts.

    Science.gov (United States)

    Berkowitz, A; Laurent, G

    1996-12-15

    Coordinated bursts of leg motoneuron activity were evoked in locusts with deefferented legs by tactile stimulation of sites that evoke grooming behavior. This suggests that insect thoracic ganglia contain central pattern generators for directed leg movements. Motoneuron recordings were made from metathoracic and mesothoracic nerves, after eliminating all leg motor innervation, as well as all input from the brain, subesophageal ganglion, and prothoracic ganglion. Strong, brief trochanteral levator motoneuron bursts occurred, together with silence of the slow and fast trochanteral depressor motoneurons and activation of the common inhibitor motoneuron. The metathoracic slow tibial extensor motoneuron was active in a pattern distinct from its activity during walking or during rhythms evoked by the muscarinic agonist pilocarpine. Preparations in which the metathoracic ganglion was isolated from all other ganglia could still produce fictive motor patterns in response to tactile stimulation of metathoracic locations. Bursts of trochanteral levator and depressor motoneurons were clearly coordinated between the left and right metathoracic hemiganglia and also between the mesothoracic and the ipsilateral metathoracic ganglia. These data provide clear evidence for centrally generated interlimb coordination in an insect.

  15. Goal Scoring in Soccer: A Polar Coordinate Analysis of Motor Skills Used by Lionel Messi.

    Science.gov (United States)

    Castañer, Marta; Barreira, Daniel; Camerino, Oleguer; Anguera, M Teresa; Canton, Albert; Hileno, Raúl

    2016-01-01

    Soccer research has traditionally focused on technical and tactical aspects of team play, but few studies have analyzed motor skills in individual actions, such as goal scoring. The objective of this study was to investigate how Lionel Messi, one of the world's top soccer players, uses his motor skills and laterality in individual attacking actions resulting in a goal. We analyzed 103 goals scored by Messi between over a decade in three competitions: La Liga (n = 74), Copa del Rey (n = 8), and the UEFA Champions League (n = 21). We used an ad-hoc observation instrument (OSMOS-soccer player) comprising 10 criteria and 50 categories; polar coordinate analysis, a powerful data reduction technique, revealed significant associations for body part and orientation, foot contact zone, turn direction, and locomotion. No significant associations were observed for pitch area or interaction with opponents. Our analysis confirms significant associations between different aspects of motor skill use by Messi immediately before scoring, namely use of lower limbs, foot contact zones, turn direction, use of wings, and orientation of body to move toward the goal. Studies of motor skills in soccer could shed light on the qualities that make certain players unique. PMID:27303357

  16. Goal scoring in soccer: A polar coordinate analysis of motor skills used by Lionel Messi

    Directory of Open Access Journals (Sweden)

    Marta eCastañer

    2016-05-01

    Full Text Available Soccer research has traditionally focused on technical and tactical aspects of team play, but few studies have analyzed motor skills in individual actions, such as goal scoring. The objective of this study was to investigate how Lionel Messi, one of the world’s top soccer players, uses his motor skills and laterality in individual attacking actions resulting in a goal. We analyzed 103 goals scored by Messi between over a decade in three competitions: La Liga (n = 74, Copa del Rey (n = 8, and the UEFA Champions League (n = 21. We used an ad hoc observation instrument (OSMOS-soccer player comprising 10 criteria and 50 categories; polar coordinate analysis, a powerful data reduction technique, revealed significant associations for body part and orientation, foot contact zone, turn direction, and locomotion. No significant associations were observed for pitch area or interaction with opponents. Our analysis confirms significant associations between different aspects of motor skill use by Messi immediately before scoring, namely use of lower limbs, foot contact zones, turn direction, use of wings, and orientation of body to move towards the goal. Studies of motor skills in soccer could shed light on the qualities that make certain players unique.

  17. Primary motor and sensory cortical areas communicate via spatiotemporally coordinated networks at multiple frequencies.

    Science.gov (United States)

    Arce-McShane, Fritzie I; Ross, Callum F; Takahashi, Kazutaka; Sessle, Barry J; Hatsopoulos, Nicholas G

    2016-05-01

    Skilled movements rely on sensory information to shape optimal motor responses, for which the sensory and motor cortical areas are critical. How these areas interact to mediate sensorimotor integration is largely unknown. Here, we measure intercortical coherence between the orofacial motor (MIo) and somatosensory (SIo) areas of cortex as monkeys learn to generate tongue-protrusive force. We report that coherence between MIo and SIo is reciprocal and that neuroplastic changes in coherence gradually emerge over a few days. These functional networks of coherent spiking and local field potentials exhibit frequency-specific spatiotemporal properties. During force generation, theta coherence (2-6 Hz) is prominent and exhibited by numerous paired signals; before or after force generation, coherence is evident in alpha (6-13 Hz), beta (15-30 Hz), and gamma (30-50 Hz) bands, but the functional networks are smaller and weaker. Unlike coherence in the higher frequency bands, the distribution of the phase at peak theta coherence is bimodal with peaks near 0° and ±180°, suggesting that communication between somatosensory and motor areas is coordinated temporally by the phase of theta coherence. Time-sensitive sensorimotor integration and plasticity may rely on coherence of local and large-scale functional networks for cortical processes to operate at multiple temporal and spatial scales. PMID:27091982

  18. Independent and Combined Effects of Sex and Biological Maturation on Motor Coordination and Performance in Prepubertal Children.

    Science.gov (United States)

    Luz, Leonardo G O; Cumming, Sean P; Duarte, João P; Valente-Dos-Santos, João; Almeida, Maria J; Machado-Rodrigues, Aristides; Padez, Cristina; Carmo, Bruno Cleiton M; Santos, Rute; Seabra, André; Coelho-E-Silva, Manuel J

    2016-04-01

    Sex differences and maturation-associated variation in fitness and motor coordination were examined in children aged 8-9 years (n = 128, 67 girls). Assessments included stature and body mass, two-component body composition, percentage of predicted adult stature (as an index of biological maturation), and motor performance and coordination (Körperkoordinationstest für Kinder). Compared to girls, boys were less advanced in maturation status, possessed larger fat mass, demonstrated superior performances in six tests of fitness, and obtained one superior score on the Körperkoordinationstest für Kinder. After controlling for somatic maturation, sex differences persisted in the two multivariate domains: motor performance and motor coordination.

  19. Modeling of bearingless permanent magnet synchronous motor based on mechanical to electrical coordinates transformation

    Institute of Scientific and Technical Information of China (English)

    ZHU HuangQiu; CHENG QiuLiang; WANG ChengBo

    2009-01-01

    A bearingless permanent magnet synchronous motor(BPMSM)has two sets of stator windings,torque windings and suspension force windings.By analyzing the flux linkage intersection between the two sets of windings,a method of transforming mechanical coordinates to electrical coordinates is put forward.According to this method,flux linkage equations and voltage equations of the two atator windings are derived.The electromagnetic torque equation of the BPMSM is derived based on the analysis of the role of Lorentz force in the BPMSM.After analyzing the mathematical formula of various sort radial forces in the BPMSM,a complete function of radial suspension forces for the BPMSM is obtained.Finally,an experimental system control diagram and some test results are discussed.This mathematical model provides a theoretical foundation for BPMSM simulation study,experiment waveform analysis and structure design.

  20. Modeling of bearingless permanent magnet synchronous motor based on mechanical to electrical coordinates transformation

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A bearingless permanent magnet synchronous motor(BPMSM)has two sets of stator windings,torque windings and suspension force windings.By analyzing the flux linkage intersection between the two sets of windings,a method of transforming mechanical coordinates to electrical coordinates is put forward.According to this method,flux linkage equations and voltage equations of the two stator windings are derived.The electromagnetic torque equation of the BPMSM is derived based on the analysis of the role of Lorentz force in the BPMSM.After analyzing the mathematical formula of various sort radial forces in the BPMSM,a complete function of radial suspension forces for the BPMSM is obtained.Finally,an experimental system control diagram and some test results are discussed.This mathematical model provides a theoretical foundation for BPMSM simulation study,experiment waveform analysis and structure design.

  1. Parkinsonism reduces coordination of fingers, wrist, and arm in fine motor control.

    Science.gov (United States)

    Teulings, H L; Contreras-Vidal, J L; Stelmach, G E; Adler, C H

    1997-07-01

    This experiment investigates movement coordination in Parkinson's disease (PD) subjects. Seventeen PD patients and 12 elderly control subjects performed several handwriting-like tasks on a digitizing writing tablet resting on top of a table in front of the subject. The writing patterns, in increasing order of coordination complexity, were repetitive back-and-forth movements in various orientations, circles and loops in clockwise and counterclockwise directions, and a complex writing pattern. The patterns were analyzed in terms of jerk normalized for duration and size per stroke. In the PD subjects, back-and-forth strokes, involving coordination of fingers and wrist, showed larger normalized jerk than strokes performed using either the wrist or the fingers alone. In the PD patients, wrist flexion (plus radial deviation) showed greater normalized jerk in comparison to wrist extension (plus ulnar deviation). The elderly control subjects showed no such effects as a function of coordination complexity. For both PD and elderly control subjects, looping patterns consisting of circles with a left-to-right forearm movement, did not show a systematic increase of normalized jerk. The same handwriting patterns were then simulated using a biologically inspired neural network model of the basal ganglia thalamocortical relations for a control and a mild PD subject. The network simulation was consistent with the observed experimental results, providing additional support that a reduced capability to coordinate wrist and finger movements may be caused by suboptimal functioning of the basal ganglia in PD. The results suggest that in PD patients fine motor control problems may be caused by a reduced capability to coordinate the fingers and wrist and by reduced control of wrist flexion. PMID:9225749

  2. Perceptual Estimates of Motor Skill Proficiency Are Constrained by the Stability of Coordination Patterns.

    Science.gov (United States)

    Buchanan, John J

    2015-01-01

    This study demonstrated that motor skill proficiency ratings are constrained by the same order parameter dynamics that constrain action production and action perception processes. Participants produced rhythmic actions simulated by an animated stick figure of the human arm. The primary finding was that participants' proficiency ratings covaried most with relative phase (φ) variability compared to mean relative phase. In-phase (φ = 0°) was produced with the least variability and received the highest proficiency rating, whereas the patterns φ = ±150° were attempted with the most variability and received the lowest proficiency ratings. A temporal delay in attempting to produce the animated pattern had a large impact on produced relative phase, yet had little impact on the proficiency ratings. Proprioceptive processes provide individuals information on motor skill proficiency. The lead or lag motion of the hand to forearm segment of the animated arm was identified consistently through visual processes and revealed asymmetries in the mapping of visual input to motor output. The results are consistent with concepts from the dynamic pattern theory of coordination and are discussed with regard to relative phase as an informational variable that constraints the perception-action system across many levels.

  3. Animal signals and emotion in music: coordinating affect across groups

    OpenAIRE

    Bryant, Gregory A.

    2013-01-01

    Researchers studying the emotional impact of music have not traditionally been concerned with the principled relationship between form and function in evolved animal signals. The acoustic structure of musical forms is related in important ways to emotion perception, and thus research on nonhuman animal vocalizations is relevant for understanding emotion in music. Musical behavior occurs in cultural contexts that include many other coordinated activities which mark group identity, and can allo...

  4. Overlapping Phenotypes in Autism Spectrum Disorder and Developmental Coordination Disorder: A Cross-Syndrome Comparison of Motor and Social Skills.

    Science.gov (United States)

    Sumner, Emma; Leonard, Hayley C; Hill, Elisabeth L

    2016-08-01

    Motor and social difficulties are often found in children with an autism spectrum disorder (ASD) and with developmental coordination disorder (DCD), to varying degrees. This study investigated the extent of overlap of these problems in children aged 7-10 years who had a diagnosis of either ASD or DCD, compared to typically-developing controls. Children completed motor and face processing assessments. Parents completed questionnaires concerning their child's early motor and current motor and social skills. There was considerable overlap between the ASD and DCD groups on the motor and social assessments, with both groups more impaired than controls. Furthermore, motor skill predicted social functioning for both groups. Future research should consider the relationships between core symptoms and their consequences in other domains. PMID:27126816

  5. Effects of two different programs of modern sports dancing on motor coordination, strength, and speed.

    Science.gov (United States)

    Uzunovic, Slavoljub; Kostic, Radmila; Zivkovic, Dobrica

    2010-09-01

    This study aimed to determine the effects of two different programs of modern sports dancing on coordination, strength, and speed in 60 beginner-level female dancers, aged 13 and 14 yrs. The subjects were divided into two experimental groups (E1 and E2), each numbering 30 subjects, drawn from local dance clubs. In order to determine motor coordination, strength, and speed, we used 15 measurements. The groups were tested before and after the experimental programs. Both experimental programs lasted for 18 wks, with training sessions twice a week for 60 minutes. The subjects from the E1 group trained according to a new experimental program of disco dance (DD) modern sports dance, and the E2 group trained according to the classic DD program of the same kind for beginner selections. The obtained results were assessed by statistical analysis: a paired-samples t-test and MANCOVA/ANCOVA. The results indicated that following the experimental programs, both groups showed a statistically significant improvement in the evaluated skills, but the changes among the E1 group subjects were more pronounced. The basic assumption of this research was confirmed, that the new experimental DD program has a significant influence on coordination, strength, and speed. In relation to these changes, the application of the new DD program was recommended for beginner dancers. PMID:21120267

  6. Animal signals and emotion in music: Coordinating affect across groups

    Directory of Open Access Journals (Sweden)

    Gregory A. Bryant

    2013-12-01

    Full Text Available Researchers studying the emotional impact of music have not traditionally been concerned with the principled relationship between form and function in evolved animal signals. The acoustic structure of musical forms is related in important ways to emotion perception, and thus research on nonhuman animal vocalizations is relevant for understanding emotion in music. Musical behavior occurs in cultural contexts that include many other coordinated activities which mark group identity, and can allow people to communicate within and between social alliances. The emotional impact of music might be best understood as a proximate mechanism serving an ultimately social function. Here I describe recent work that reveals intimate connections between properties of certain animal signals and evocative aspects of human music, including 1 examinations of the role of nonlinearities (e.g., broadband noise in nonhuman animal vocalizations, and the analogous production and perception of these features in human music, and 2 an analysis of group musical performances and possible relationships to nonhuman animal chorusing and emotional contagion effects. Communicative features in music are likely due primarily to evolutionary byproducts of phylogenetically older, but still intact communication systems. But in some cases, such as the coordinated rhythmic sounds produced by groups of musicians, our appreciation and emotional engagement might be due to the operation of an adaptive social signaling system. Future empirical work should examine human musical behavior through the comparative lens of behavioral ecology and an adaptationist cognitive science. By this view, particular coordinated sound combinations generated by musicians exploit evolved perceptual response biases—many shared across species—and proliferate through cultural evolutionary processes.

  7. Animal signals and emotion in music: coordinating affect across groups.

    Science.gov (United States)

    Bryant, Gregory A

    2013-01-01

    Researchers studying the emotional impact of music have not traditionally been concerned with the principled relationship between form and function in evolved animal signals. The acoustic structure of musical forms is related in important ways to emotion perception, and thus research on non-human animal vocalizations is relevant for understanding emotion in music. Musical behavior occurs in cultural contexts that include many other coordinated activities which mark group identity, and can allow people to communicate within and between social alliances. The emotional impact of music might be best understood as a proximate mechanism serving an ultimately social function. Recent work reveals intimate connections between properties of certain animal signals and evocative aspects of human music, including (1) examinations of the role of nonlinearities (e.g., broadband noise) in non-human animal vocalizations, and the analogous production and perception of these features in human music, and (2) an analysis of group musical performances and possible relationships to non-human animal chorusing and emotional contagion effects. Communicative features in music are likely due primarily to evolutionary by-products of phylogenetically older, but still intact communication systems. But in some cases, such as the coordinated rhythmic sounds produced by groups of musicians, our appreciation and emotional engagement might be driven by an adaptive social signaling system. Future empirical work should examine human musical behavior through the comparative lens of behavioral ecology and an adaptationist cognitive science. By this view, particular coordinated sound combinations generated by musicians exploit evolved perceptual response biases - many shared across species - and proliferate through cultural evolutionary processes.

  8. Animal signals and emotion in music: coordinating affect across groups.

    Science.gov (United States)

    Bryant, Gregory A

    2013-01-01

    Researchers studying the emotional impact of music have not traditionally been concerned with the principled relationship between form and function in evolved animal signals. The acoustic structure of musical forms is related in important ways to emotion perception, and thus research on non-human animal vocalizations is relevant for understanding emotion in music. Musical behavior occurs in cultural contexts that include many other coordinated activities which mark group identity, and can allow people to communicate within and between social alliances. The emotional impact of music might be best understood as a proximate mechanism serving an ultimately social function. Recent work reveals intimate connections between properties of certain animal signals and evocative aspects of human music, including (1) examinations of the role of nonlinearities (e.g., broadband noise) in non-human animal vocalizations, and the analogous production and perception of these features in human music, and (2) an analysis of group musical performances and possible relationships to non-human animal chorusing and emotional contagion effects. Communicative features in music are likely due primarily to evolutionary by-products of phylogenetically older, but still intact communication systems. But in some cases, such as the coordinated rhythmic sounds produced by groups of musicians, our appreciation and emotional engagement might be driven by an adaptive social signaling system. Future empirical work should examine human musical behavior through the comparative lens of behavioral ecology and an adaptationist cognitive science. By this view, particular coordinated sound combinations generated by musicians exploit evolved perceptual response biases - many shared across species - and proliferate through cultural evolutionary processes. PMID:24427146

  9. TIME OF DAY - EFFECTS ON MOTOR COORDINATION AND REACTIVE STRENGTH IN ELITE ATHLETES AND UNTRAINED ADOLESCENTS

    Directory of Open Access Journals (Sweden)

    Alessandra di Cagno

    2013-03-01

    Full Text Available Objectives: the issue of time-of-day effects on performance is crucial when considering the goal of reaching peak results in sport disciplines. The present study was designed to examine time-of-day effects in adolescents on motor coordination, assessed with Hirtz's battery and neuromuscular components of strength, evaluated with reactive strength tests. Methods: forty-two elite female gymnasts, aged 13.3 ± 0.5 years (Mean ± SD, were recruited for the study. Fifty healthy female students (aged 12.8 ± 1.7 years served as the control group. All participants underwent the testing sessions over two days at two different times of day in a randomized order. Results: Oral temperature was measured at the two times of the day and a significant diurnal variation (p < 0.01 in both groups was found. MANOVA revealed significant group differences in the overall tests (p < 0.01. The gymnast group showed no significant differences in the coordination tests with respect to the time of day, but significant differences were observed for reactive strength as assessed with the vertical jump tests (p < 0.01. Gyamnasts attained better results in the evening in the reactive strength tests [flight time (F1.90 = 17.322 p < 0.01 and ground contact time (F1.90 = 8.372; p < 0.01 of the hopping test]. Conclusion: the temperature effect was more evident in the reactive strength tests and orientation test, especially in the gymnast group in which this effect added to their usual training time effect. The time-since-awakening influenced coordination performances in complex tasks more than reaction strength tests in simple tasks. The main outcome of the study was that we did not observe time-of-day effects on coordination skills in elite gymnasts and in untrained adolescents. The time of day in which athletes usually trained these skills could influence these results.

  10. Treadmill exercise improves motor coordination through ameliorating Purkinje cell loss in amyloid beta23-35-induced Alzheimer's disease rats.

    Science.gov (United States)

    Lee, Jae-Min; Shin, Mal-Soon; Ji, Eun-Sang; Kim, Tae-Woon; Cho, Han-Sam; Kim, Chang-Ju; Jang, Myung-Soo; Kim, Tae-Wook; Kim, Bo-Kyun; Kim, Dong-Hee

    2014-10-01

    Alzheimer's disease (AD) is a most common age-related neurodegenerative disease. AD is characterized by a progressive loss of neurons causing cognitive dysfunction. The cerebellum is closely associated with integration of movement, including motor coordination, control, and equilibrium. In the present study, we evaluated the effect of tread-mill exercise on the survival of Purkinje neurons in relation with reactive astrocyte in the cerebellum using Aβ25-35-induced AD rats. AD was induced by a bilateral intracerebroventricular (ICV) injection of Aβ25-35. The rats in the exercise groups were forced to run on a motorized treadmill for 30 min once a day for 4 weeks, starting 2 days after Aβ25-35 injection. In the present results, ICV injection of Aβ25-35 deteriorated motor coordination and balance. The number of calbindin-positive cells in the cerebellar vermis was decreased and glial fibrillary acidic protein (GFAP) expression in the cerebellar vermis was increased in the Aβ25-35-induced AD rats. Treadmill exercise improved motor coordination and balance. Treadmill exercise increased the number of Purkinje neurons and suppressed GFAP expression in the cerebellar vermis. The present study demonstrated that treadmill exercises alleviated dysfunction of motor coordination and balance by reduction of Purkinje cell loss through suppressing reactive astrocytes in the cerebellum of AD rats. The present study provides the possibility that treadmill exercise might be an important therapeutic strategy for the symptom improvement of AD patients. PMID:25426461

  11. A new neural net approach to robot 3D perception and visuo-motor coordination

    Science.gov (United States)

    Lee, Sukhan

    1992-01-01

    A novel neural network approach to robot hand-eye coordination is presented. The approach provides a true sense of visual error servoing, redundant arm configuration control for collision avoidance, and invariant visuo-motor learning under gazing control. A 3-D perception network is introduced to represent the robot internal 3-D metric space in which visual error servoing and arm configuration control are performed. The arm kinematic network performs the bidirectional association between 3-D space arm configurations and joint angles, and enforces the legitimate arm configurations. The arm kinematic net is structured by a radial-based competitive and cooperative network with hierarchical self-organizing learning. The main goal of the present work is to demonstrate that the neural net representation of the robot 3-D perception net serves as an important intermediate functional block connecting robot eyes and arms.

  12. Higher coordination with less control - A result of information maximisation in the sensori-motor loop

    CERN Document Server

    Zahedi, Keyan; Der, Ralf

    2009-01-01

    This work presents a novel learning method in the context of embodied artificial intelligence and guided self-organisation, which is free of assumptions about the world and restrictions on the underlying model. The learning rule is derived from the principle of maximising the predictive information in the sensori-motor loop. It is evaluated in six experiments in which individually controlled robots with different control paradigms are physically connected to chains of varying length. The robots have no form of direct communication. The comparison of the results shows that locally maximising the predictive information leads to a coordinated behaviour of the physically connected robots. Another result of this paper is the analysis of the effect of the morphology on the overall behaviour of the robots. It will be shown that longer chains with less capable controllers outperform those of shorter length and more complex controllers.

  13. Mice lacking the transcription factor SHOX2 display impaired cerebellar development and deficits in motor coordination.

    Science.gov (United States)

    Rosin, Jessica M; McAllister, Brendan B; Dyck, Richard H; Percival, Christopher J; Kurrasch, Deborah M; Cobb, John

    2015-03-01

    Purkinje cells of the developing cerebellum secrete the morphogen sonic hedgehog (SHH), which is required to maintain the proliferative state of granule cell precursors (GCPs) prior to their differentiation and migration to form the internal granule layer (IGL). Despite a wealth of knowledge regarding the function of SHH during cerebellar development, the upstream regulators of Shh expression during this process remain largely unknown. Here we report that the murine short stature homeobox 2 (Shox2) gene is required for normal Shh expression in dorsal-residing Purkinje cells. Using two different Cre drivers, we show that elimination of Shox2 in the brain results in developmental defects in the inferior colliculus and cerebellum. Specifically, loss of Shox2 in the cerebellum results in precocious differentiation and migration of GCPs from the external granule layer (EGL) to the IGL. This correlates with premature bone morphogenetic protein 4 (Bmp4) expression in granule cells of the dorsal cerebellum. The size of the neonatal cerebellum is reduced in Shox2-mutant animals, which is consistent with a reduction in the number of GCPs present in the EGL, and could account for the smaller vermis and thinner IGL present in adult Shox2mutants. Shox2-mutant mice also display reduced exploratory activity, altered gait and impaired motor coordination. Our findings are the first to show a role for Shox2 in brain development. We provide evidence that Shox2 plays an important role during cerebellar development, perhaps to maintain the proper balance of Shh and Bmp expression levels in the dorsal vermis, and demonstrate that in the absence of Shox2, mice display both cerebellar impairments and deficits in motor coordination, ultimately highlighting the importance of Shox2 in the cerebellum.

  14. Bilateral coordination and the motor basis of female preference for sexual signals in canary song.

    Science.gov (United States)

    Suthers, Roderick A; Vallet, Eric; Kreutzer, Michel

    2012-09-01

    The preference of female songbirds for particular traits in the songs of courting males has received considerable attention, but the relationship of preferred traits to male quality is poorly understood. Female domestic canaries (Serinus canaria, Linnaeus) preferentially solicit copulation with males that sing special high repetition rate, wide-band, multi-note syllables, called 'sexy' or A-syllables. Syllables are separated by minibreaths but each note is produced by pulsatile expiration, allowing high repetition rates and long duration phrases. The wide bandwidth is achieved by including two notes produced sequentially on opposite sides of the syrinx, in which the left and right sides are specialized for low or high frequencies, respectively. The emphasis of low frequencies is facilitated by a positive relationship between syllable repetition rate and the bandwidth of the fundamental frequency of notes sung by the left syrinx, such that bandwidth increases with increasing syllable repetition rate. The temporal offset between notes prevents cheating by unilaterally singing a note on the left side with a low fundamental frequency and prominent higher harmonics. The syringeal and respiratory motor patterns by which sexy syllables are produced support the hypothesis that these syllables provide a sensitive vocal-auditory indicator of a male's performance limit for the rapid, precisely coordinated interhemispheric switching, which is essential for many sensory and motor processes involving specialized contributions from each cerebral hemisphere. PMID:22875764

  15. Binocular Perception of 2D Lateral Motion and Guidance of Coordinated Motor Behavior.

    Science.gov (United States)

    Fath, Aaron J; Snapp-Childs, Winona; Kountouriotis, Georgios K; Bingham, Geoffrey P

    2016-04-01

    Zannoli, Cass, Alais, and Mamassian (2012) found greater audiovisual lag between a tone and disparity-defined stimuli moving laterally (90-170 ms) than for disparity-defined stimuli moving in depth or luminance-defined stimuli moving laterally or in depth (50-60 ms). We tested if this increased lag presents an impediment to visually guided coordination with laterally moving objects. Participants used a joystick to move a virtual object in several constant relative phases with a laterally oscillating stimulus. Both the participant-controlled object and the target object were presented using a disparity-defined display that yielded information through changes in disparity over time (CDOT) or using a luminance-defined display that additionally provided information through monocular motion and interocular velocity differences (IOVD). Performance was comparable for both disparity-defined and luminance-defined displays in all relative phases. This suggests that, despite lag, perception of lateral motion through CDOT is generally sufficient to guide coordinated motor behavior.

  16. Is severity of motor coordination difficulties related to co-morbidity in children at risk for developmental coordination disorder?

    NARCIS (Netherlands)

    Schoemaker, Marina M.; Lingam, Raghu; Jongmans, Marian J.; van Heuvelen, Marieke J. G.; Emond, Alan

    2013-01-01

    Aim of the study was to investigate whether 7-9 year old children with severe motor difficulties are more at risk of additional difficulties in activities in daily living, academic skills, attention and social skills than children with moderate motor difficulties. Children (N = 6959) from a populati

  17. Curcumin alters motor coordination but not total number of Purkinje cells in the cerebellum of adolescent male Wistar rats

    Institute of Scientific and Technical Information of China (English)

    Ginus Partadiredja; Sutarman; Taufik Nur Yahya; Christiana Tri Nuryana; Rina Susilowati

    2013-01-01

    OBJECTIVE:The present study aimed at investigating the effects of curcumin on the motor coordination and the estimate of the total number of cerebellar Purkinje cells of adolescent Wistar rats exposed to ethanol.METHODS:The total of 21 male Wistar rats aged 37 d old were divided into three groups,namely ethanol,ethanol-curcumin,and control groups.The ethanol group received 1.5 g/kg ethanol injected intraperitoneally and water given per oral; the ethanol-curcumin group received 1.5 g/kg ethanol injected intraperitoneally and curcumin extract given per oral; the control group received saline injection and oral water.The treatment was carried out daily for one month,after which the motor coordination performance of the rats was examined using revolving drum apparatus at test days 1,8,and 15.The rats were finally sacrificed and the cerebellum of the rats was further processed for stereological analysis.The estimate of the total number of Purkinje cells was calculated using physical fractionator method.RESULTS:The ethanol-curcumin group performed better than both ethanol and control groups in the motor coordination ability at day 8 of testing (P< 0.01).No Purkinje cell loss was observed as a result of one month intraperitoneal injection of ethanol.CONCLUSION:Curcumin may exert beneficial effects on the motor coordination of adolescent rats exposed to ethanol via undetermined hormetic mechanisms.

  18. The relationship between joint mobility and motor performance in children with and without the diagnosis of developmental coordination disorder

    NARCIS (Netherlands)

    Jelsma, Dorothee; Geuze, Reint; Klerks, M.; Niemeijer, Anuschka; Smits-Engelsman, B.C.M.

    2013-01-01

    Background: The purpose of this study was to determine whether joint mobility is associated with motor performance in children referred for Developmental Coordination Disorder (DCD-group) in contrast to a randomly selected group of children between 3-16 years of age (Random-Group). Methods: 36 child

  19. High dosage of monosodium glutamate causes deficits of the motor coordination and the number of cerebellar Purkinje cells of rats.

    Science.gov (United States)

    Prastiwi, D; Djunaidi, A; Partadiredja, G

    2015-11-01

    Monosodium glutamate (MSG) has been widely used throughout the world as a flavoring agent of food. However, MSG at certain dosages is also thought to cause damage to many organs, including cerebellum. This study aimed at investigating the effects of different doses of MSG on the motor coordination and the number of Purkinje cells of the cerebellum of Wistar rats. A total of 24 male rats aged 4 to 5 weeks were divided into four groups, namely, control (C), T2.5, T3, and T3.5 groups, which received intraperitoneal injection of 0.9% sodium chloride solution, 2.5 mg/g body weight (bw) of MSG, 3.0 mg/g bw of MSG, and 3.5 mg/g bw of MSG, respectively, for 10 consecutive days. The motor coordination of the rats was examined prior and subsequent to the treatment. The number of cerebellar Purkinje cells was estimated using physical fractionator method. It has been found that the administration of MSG at a dosage of 3.5 mg/g bw, but not at lower dosages, caused a significant decrease of motor coordination and the estimated total number of Purkinje cells of rats. There was also a significant correlation between motor coordination and the total number of Purkinje cells.

  20. Overlapping Phenotypes in Autism Spectrum Disorder and Developmental Coordination Disorder: A Cross-Syndrome Comparison of Motor and Social Skills

    Science.gov (United States)

    Sumner, Emma; Leonard, Hayley C.; Hill, Elisabeth L.

    2016-01-01

    Motor and social difficulties are often found in children with an autism spectrum disorder (ASD) and with developmental coordination disorder (DCD), to varying degrees. This study investigated the extent of overlap of these problems in children aged 7-10 years who had a diagnosis of either ASD or DCD, compared to typically-developing controls.…

  1. Consequences of comorbidity of developmental coordination disorders and learning disabilities for severity and pattern of perceptual-motor dysfunction

    NARCIS (Netherlands)

    Jongmans, MJ; Smits-Engelsman, BCM; Schoemaker, MM

    2003-01-01

    Children with developmental coordination disorder (DCD) have difficulty learning and performing age-appropriate perceptual-motor skills in the absence of diagnosable neurological disorders. Descriptive studies have shown that comorbidity of DCD exists with attention-deficit/hyperactivity disorder (A

  2. Electromyographic activity of hand muscles in a motor coordination game: effect of incentive scheme and its relation with social capital.

    Directory of Open Access Journals (Sweden)

    Roberto Censolo

    Full Text Available BACKGROUND: A vast body of social and cognitive psychology studies in humans reports evidence that external rewards, typically monetary ones, undermine intrinsic motivation. These findings challenge the standard selfish-rationality assumption at the core of economic reasoning. In the present work we aimed at investigating whether the different modulation of a given monetary reward automatically and unconsciously affects effort and performance of participants involved in a game devoid of visual and verbal interaction and without any perspective-taking activity. METHODOLOGY/PRINCIPAL FINDINGS: Twelve pairs of participants were submitted to a simple motor coordination game while recording the electromyographic activity of First Dorsal Interosseus (FDI, the muscle mainly involved in the task. EMG data show a clear effect of alternative rewards strategies on subjects' motor behavior. Moreover, participants' stock of relevant past social experiences, measured by a specifically designed questionnaire, was significantly correlated with EMG activity, showing that only low social capital subjects responded to monetary incentives consistently with a standard rationality prediction. CONCLUSIONS/SIGNIFICANCE: Our findings show that the effect of extrinsic motivations on performance may arise outside social contexts involving complex cognitive processes due to conscious perspective-taking activity. More importantly, the peculiar performance of low social capital individuals, in agreement with standard economic reasoning, adds to the knowledge of the circumstances that makes the crowding out/in of intrinsic motivation likely to occur. This may help in improving the prediction and accuracy of economic models and reconcile this puzzling effect of external incentives with economic theory.

  3. Structure of Coordination Motor Abilities in Male Basketball Players at Different Levels of Competition

    Directory of Open Access Journals (Sweden)

    Jerzy Sadowski

    2015-03-01

    Full Text Available Introduction. The purpose of this investigation was to examine the structure of coordination motor abilities (CMA in male basketball players at different levels of competition. Material and methods. The study included 183 male basketball players from 10 Polish sports clubs. The examined groups consisted of seniors (n=42 aged 24.5 (± 3.3, juniors (n=37 aged 16.8 (± 0.6, cadets (n=54 aged 14.5 (± 0.1 and children (n=50 aged 13.4 (± 0.2. A battery of motor tests was administered to assess the following CMA: kinesthetic differentiation of movements, spatio-temporal orientation, reaction time, movement coupling, sense of balance, sense of rhythm and adjustment of movements. The structure of CMA under investigation was determined based on the results of Hotelling's principal component analysis in Tucker's modification, completed with Kaiser's Varimax rotation [1, 2]. Results. The CMA structure of basketball players was composed of three or four factors. Most often these included rhythm, movement differentiation, movement coupling and adjustment of movements. Less frequently the structure consisted of spatio-temporal orientation, balance and reaction time. An in-depth analysis of the CMA structure revealed that factors ranged from heterogeneous (children and cadets to homogeneous ones (juniors and seniors. The distribution of identified factors in the common variance was the smallest in children and cadets (58.9% and 62.9%, respectively and the biggest in juniors and seniors (69.3% and 68.48%, respectively.

  4. Impairments in motor coordination without major changes in cerebellar plasticity in the Tc1 mouse model of Down syndrome.

    Science.gov (United States)

    Galante, Micaela; Jani, Harsha; Vanes, Lesley; Daniel, Hervé; Fisher, Elizabeth M C; Tybulewicz, Victor L J; Bliss, Timothy V P; Morice, Elise

    2009-04-15

    Down syndrome (DS) is a genetic disorder arising from the presence of a third copy of human chromosome 21 (Hsa21). Recently, O'Doherty et al. [An aneuploid mouse strain carrying human chromosome 21 with Down syndrome phenotypes. Science 309 (2005) 2033-2037] generated a trans-species aneuploid mouse line (Tc1) that carries an almost complete Hsa21. The Tc1 mouse is the most complete animal model for DS currently available. Tc1 mice show many features that relate to human DS, including alterations in memory, synaptic plasticity, cerebellar neuronal number, heart development and mandible size. Because motor deficits are one of the most frequently occurring features of DS, we have undertaken a detailed analysis of motor behaviour in cerebellum-dependent learning tasks that require high motor coordination and balance. In addition, basic electrophysiological properties of cerebellar circuitry and synaptic plasticity have been investigated. Our results reveal that, compared with controls, Tc1 mice exhibit a higher spontaneous locomotor activity, a reduced ability to habituate to their environments, a different gait and major deficits on several measures of motor coordination and balance in the rota rod and static rod tests. Moreover, cerebellar long-term depression is essentially normal in Tc1 mice, with only a slight difference in time course. Our observations provide further evidence that support the validity of the Tc1 mouse as a model for DS, which will help us to provide insights into the causal factors responsible for motor deficits observed in persons with DS.

  5. [Role of different projection areas of the motor cortex in reorganization of the innate head-forelimb coordination in dogs].

    Science.gov (United States)

    Pavlova, O G; Mats, V N

    2005-01-01

    Dogs were trained to perform the forelimb tonic flexion in order to lift a cup with meat from a bottom of the foodwell and hold it during eating with the head bent down to the cup. It is known that conditioning of the instrumental reaction is based on reorganization of the innate head-forelimb coordination into the opposite one. In untrained dogs, the forelimb flexion is accompanied by the anticipatory lifting of the head bent down to the foodwell. The following lowering of the head leads to an extension of the flexed forelimb. Tonic forelimb flexion is possible if the head is in the up position. Simultaneous holding of the flexed forelimb and lowered head providing food reinforcement is achieved only by learning. It was shown earlier that the lesion of the motor cortex contralateral to the "working" forelimb led to a prolonged disturbance of the elaborated coordination and reappearance of the innate coordination. In the present work we studied the influence of local lesions of the projection areas in the motor cortex, such as a "working" forelimb area, bilateral representation of the neck, and the medial part of the motor cortex, on the learned instrumental feeding reaction. It was found that only the lesion of the forelimb but not neck projection led to a disturbance of the learned head-forelimb movement coordination. PMID:16396488

  6. Role of Gaze Cues in Interpersonal Motor Coordination: Towards Higher Affiliation in Human-Robot Interaction

    Science.gov (United States)

    Khoramshahi, Mahdi; Shukla, Ashwini; Raffard, Stéphane; Bardy, Benoît G.; Billard, Aude

    2016-01-01

    Background The ability to follow one another’s gaze plays an important role in our social cognition; especially when we synchronously perform tasks together. We investigate how gaze cues can improve performance in a simple coordination task (i.e., the mirror game), whereby two players mirror each other’s hand motions. In this game, each player is either a leader or follower. To study the effect of gaze in a systematic manner, the leader’s role is played by a robotic avatar. We contrast two conditions, in which the avatar provides or not explicit gaze cues that indicate the next location of its hand. Specifically, we investigated (a) whether participants are able to exploit these gaze cues to improve their coordination, (b) how gaze cues affect action prediction and temporal coordination, and (c) whether introducing active gaze behavior for avatars makes them more realistic and human-like (from the user point of view). Methodology/Principal Findings 43 subjects participated in 8 trials of the mirror game. Each subject performed the game in the two conditions (with and without gaze cues). In this within-subject study, the order of the conditions was randomized across participants, and subjective assessment of the avatar’s realism was assessed by administering a post-hoc questionnaire. When gaze cues were provided, a quantitative assessment of synchrony between participants and the avatar revealed a significant improvement in subject reaction-time (RT). This confirms our hypothesis that gaze cues improve the follower’s ability to predict the avatar’s action. An analysis of the pattern of frequency across the two players’ hand movements reveals that the gaze cues improve the overall temporal coordination across the two players. Finally, analysis of the subjective evaluations from the questionnaires reveals that, in the presence of gaze cues, participants found it not only more human-like/realistic, but also easier to interact with the avatar. Conclusion

  7. Role of across‐muscle motor unit synchrony for the coordination of forces

    OpenAIRE

    Santello, Marco; Fuglevand, Andrew J.

    2004-01-01

    Evidence from five‐digit grasping studies indicates that grip forces exerted by pairs of digits tend to be synchronized. It has been suggested that motor unit synchronization might be a mechanism responsible for constraining the temporal relationships between grip forces. To evaluate this possibility and quantify the effect of motor unit synchrony on force relationships, we used a motor unit model to simulate force produced by two muscles using three physiological levels of motor unit synchro...

  8. Does the addition of a nerve wrap to a motor nerve repair affect motor outcomes?

    Science.gov (United States)

    Lee, Joo-Yup; Parisi, Thomas J; Friedrich, Patricia F; Bishop, Allen T; Shin, Alexander Y

    2014-10-01

    The purpose of this study was to evaluate the effect of wrapping bioabsorbable nerve conduit around primary suture repair on motor nerve regeneration in a rat model. Forty rats were randomly divided into two experimental groups according to the type of repair of the rat sciatic nerve: group I had primary suture repair; group II had primary suture repair and bioabsorbable collagen nerve conduit (NeuraGen® 1.5 mm, Integra LifeSciences Corp., Plainsboro, NJ) wrapped around the repair. At 12 weeks, no significant differences in the percentage of recovery between the two groups were observed with respect to compound muscle action potentials, isometric muscle force, and muscle weight (P = 0.816, P = 0.698, P = 0.861, respectively). Histomorphometric analysis as compared to the non-operative sites was also not significantly different between the two groups in terms of number of myelinated axons, myelinated fiber area, and nerve fiber density (P = 0.368, P = 0.968, P = 0.071, respectively). Perineural scar tissue formation was greater in primary suture repair group (0.36 ± 0.15) than in primary repair plus conduit wrapping group (0.17 ± 0.08). This difference was statistically significant (P decrease perineural scar tissue formation. Although the scar-decreasing effect of bioabsorbable nerve wrap does not translate into better motor nerve recovery in this study, it might have an effect on the functional outcome in humans where scar formation is much more evident than in rats.

  9. Effects of treadmill exercise training on cerebellar estrogen and estrogen receptors, serum estrogen, and motor coordination performance of ovariectomized rats

    OpenAIRE

    Saidah Rauf; Sri Kadarsih Soejono; Ginus Partadiredja

    2015-01-01

    Objective(s): The present study aims at examining the motor coordination performance, serum and cerebellar estrogen, as well as ERβ levels, of ovariectomized rats (as menopausal model) following regular exercise. Materials and Methods: Ten female Sprague Dawley rats aged 12 weeks old were randomly divided into two groups; all of which underwent ovariectomy. The first group was treated with regular exercise of moderate intensity, in which the rats were trained to run on a treadmill for 60 min ...

  10. Effects of Individual and School-Level Characteristics on a Child’s Gross Motor Coordination Development

    Directory of Open Access Journals (Sweden)

    Raquel Chaves

    2015-07-01

    Full Text Available The aim of this study was to identify child and school-level characteristics that explained inter-individual differences in gross motor coordination (GMC. Participants (n = 390, recruited from 18 Portuguese primary schools, were aged 6 to 10 years of age. Birth weight, body fat (BF, physical activity (PA, physical fitness (PF and GMC were assessed. School size, setting, infrastructure and physical education classes were considered as school context markers. A multilevel modeling approach was used to identify hierarchical effects (child and school levels. It was found that children-level variables (sex, PF, and BF significantly explained 63% of the 90% variance fraction at the individual level; boys outperformed girls (p < 0.05, individuals with higher BF were less coordinated (p < 0.05, and those with higher PF were more coordinated (p < 0.05. School-variables (e.g. school size and playing surface explained 84% of the 10% variation fraction. These findings confirm the roles of sex, PFS and BF. Interestingly they also suggest that the school environment plays a minor but significant role in GMC development. However, it is important to stress that the school context and conditions can also play an important role in a child’s motor development, providing adequate and enriching motor opportunities.

  11. Developmental Coordination Disorder, an umbrella term for motor impairments in children: nature and co-morbid disorders

    Directory of Open Access Journals (Sweden)

    Laurence eVaivre-Douret

    2016-04-01

    Full Text Available Background:Developmental Coordination Disorder (DCD defines a heterogeneous class of children exhibiting marked impairment in motor coordination as a general group of deficits in fine and gross motricity (subtype mixed group common to all research studies, and with a variety of other motor disorders that have been little investigated. No consensus about symptoms and aetiology has been established. Methods: Data from 58 children aged 6 to 13 years with DCD were collected on DSM-IV criteria, similar to DSM- 5 criteria. They had no other medical condition and inclusion criteria were strict (born full-term, no medication, no occupational /physical therapy. Multivariate statistical methods were used to evidence relevant interactions between discriminant features in a general DCD subtype group and to highlight specific co-morbidities. The study examined age-calibrated standardized scores from completed assessments of psychological, neuropsychological and neuropsychomotor functions, and more specifically the presence of minor neurological dysfunctions (MND including neurological soft signs (NSS, without evidence of focal neurological brain involvement. These were not considered in most previous studies. Results: Findings show the salient DCD markers for the mixed subtype (imitation of gestures, digital perception, digital praxia, manual dexterity, upper and lower limb coordination, versus surprising co-morbidities, with 33% of MND with mild spasticity from phasic stretch reflex (PSR, not associated with the above impairments but rather with sitting tone (p= .004 and dysdiadochokinesia (p= .011. PSR was not specific to a DCD subtype but was related to increased impairment of coordination between upper and lower limbs and manual dexterity. Our results highlight the major contribution of an extensive neuro-developmental assessment (mental and physical. Discussion: The present study provides important new evidence in favour of a complete physical

  12. Attention during functional tasks is associated with motor performance in children with developmental coordination disorder: A cross-sectional study.

    Science.gov (United States)

    Fong, Shirley S M; Chung, Joanne W Y; Cheng, Yoyo T Y; Yam, Timothy T T; Chiu, Hsiu-Ching; Fong, Daniel Y T; Cheung, C Y; Yuen, Lily; Yu, Esther Y T; Hung, Yeung Sam; Macfarlane, Duncan J; Ng, Shamay S M

    2016-09-01

    This cross-sectional and exploratory study aimed to compare motor performance and electroencephalographic (EEG) attention levels in children with developmental coordination disorder (DCD) and those with typical development, and determine the relationship between motor performance and the real-time EEG attention level in children with DCD.Eighty-six children with DCD [DCD: n = 57; DCD and attention deficit hyperactivity disorder (ADHD): n = 29] and 99 children with typical development were recruited. Their motor performance was assessed with the Movement Assessment Battery for Children (MABC) and attention during the tasks of the MABC was evaluated by EEG.All children with DCD had higher MABC impairment scores and lower EEG attention scores than their peers (P ADHD (P = 0.009) and 17.5% of the variance in children with both DCD and ADHD (P = 0.007). Children with DCD had poorer motor performance and were less attentive to movements than their peers. Their poor motor performance may be explained by inattention. PMID:27631272

  13. Covert imitation of transitive actions activates effector-independent motor representations affecting "motor" knowledge of target-object properties.

    Science.gov (United States)

    Campione, Giovanna Cristina; Gentilucci, Maurizio

    2010-03-01

    The present study aimed at determining whether, and in what conditions, covert imitation of different manual grasps of the same object influences estimation of those object properties whose variations afford those different grasp interactions. Participants matched the size of spheres after observation of the same spheres being grasped using both a power and a precision grasp: these actions are used preferentially to grasp large and small objects, respectively. The type of matching varied across four experiments. In experiment 1, participants matched the object size by opening their thumb and index finger; in experiment 2, they abducted their index and middle fingers as in a finger opening of a cutting pantomime, and in experiment 3, they opened their mouth. In experiment 4, the sphere size was reproduced on a PC monitor by moving the mouse forward/backward. Grasp observation affected matching in experiments 1 and 3. Kinematics analysis showed overestimation after observation of a power grasp as compared to a precision grasp. The data are interpreted as a consequence of covert imitation of the observed hand kinematics, which varied congruently with the object sizes potentially activating that type-of-grasp. This affected estimation of object size. Covert imitation was favored by the types of matching requiring motor patterns related to grasp movements independently of the effector used. This finding supports the existence of motor commands to the hand as well as to the mouth, activated when the same potential goal guides the movements of both these effectors. PMID:19850083

  14. Coordinated motor neuron axon growth and neuromuscular synaptogenesis are promoted by CPG15 in vivo.

    Science.gov (United States)

    Javaherian, Ashkan; Cline, Hollis T

    2005-02-17

    We have used in vivo time-lapse two-photon imaging of single motor neuron axons labeled with GFP combined with labeling of presynaptic vesicle clusters and postsynaptic acetylcholine receptors in Xenopus laevis tadpoles to determine the dynamic rearrangement of individual axon branches and synaptogenesis during motor axon arbor development. Control GFP-labeled axons are highly dynamic during the period when axon arbors are elaborating. Axon branches emerge from sites of synaptic vesicle clusters. These data indicate that motor neuron axon elaboration and synaptogenesis are concurrent and iterative. We tested the role of Candidate Plasticity Gene 15 (CPG15, also known as Neuritin), an activity-regulated gene that is expressed in the developing motor neurons in this process. CPG15 expression enhances the development of motor neuron axon arbors by promoting neuromuscular synaptogenesis and by increasing the addition of new axon branches. PMID:15721237

  15. JNK1 Controls Dendritic Field Size in L2/3 and L5 of the Motor Cortex, Constrains Soma Size and Influences Fine Motor Coordination

    Directory of Open Access Journals (Sweden)

    Emilia eKomulainen

    2014-09-01

    Full Text Available Genetic anomalies on the JNK pathway confer susceptibility to autism spectrum disorders, schizophrenia and intellectual disability. The mechanism whereby a gain or loss of function in JNK signaling predisposes to these prevalent dendrite disorders, with associated motor dysfunction, remains unclear. Here we find that JNK1 regulates the dendritic field of L2/3 and L5 pyramidal neurons of the mouse motor cortex (M1, the main excitatory pathway controlling voluntary movement. In Jnk1-/- mice, basal dendrite branching of L5 pyramidal neurons is increased in M1, as is cell soma size, whereas in L2/3, dendritic arborization is decreased. We show that JNK1 phosphorylates rat HMW-MAP2 on T1619, T1622 and T1625 (Uniprot P15146 corresponding to mouse T1617, T1620, T1623, to create a binding motif, that is critical for MAP2 interaction with and stabilization of microtubules, and dendrite growth control. Targeted expression in M1 of GFP-HMW-MAP2 that is pseudo-phosphorylated on T1619, T1622 and T1625 increases dendrite complexity in L2/3 indicating that JNK1 phosphorylation of HMW-MAP2 regulates the dendritic field. Consistent with the morphological changes observed in L2/3 and L5, Jnk1-/- mice exhibit deficits in limb placement and motor coordination, while stride length is reduced in older animals. In summary, JNK1 phosphorylates HMW-MAP2 to increase its stabilization of microtubules while at the same time controlling dendritic fields in the main excitatory pathway of M1. Moreover, JNK1 contributes to normal functioning of fine motor coordination. We report for the first time, a quantitative sholl analysis of dendrite architecture, and of motor behavior in Jnk1-/- mice. Our results illustrate the molecular and behavioral consequences of interrupted JNK1 signaling and provide new ground for mechanistic understanding of those prevalent neuropyschiatric disorders where genetic disruption of the JNK pathway is central.

  16. Don't rock the boat: how antiphase crew coordination affects rowing.

    Directory of Open Access Journals (Sweden)

    Anouk J de Brouwer

    Full Text Available It is generally accepted that crew rowing requires perfect synchronization between the movements of the rowers. However, a long-standing and somewhat counterintuitive idea is that out-of-phase crew rowing might have benefits over in-phase (i.e., synchronous rowing. In synchronous rowing, 5 to 6% of the power produced by the rower(s is lost to velocity fluctuations of the shell within each rowing cycle. Theoretically, a possible way for crews to increase average boat velocity is to reduce these fluctuations by rowing in antiphase coordination, a strategy in which rowers perfectly alternate their movements. On the other hand, the framework of coordination dynamics explicates that antiphase coordination is less stable than in-phase coordination, which may impede performance gains. Therefore, we compared antiphase to in-phase crew rowing performance in an ergometer experiment. Nine pairs of rowers performed a two-minute maximum effort in-phase and antiphase trial at 36 strokes min(-1 on two coupled free-floating ergometers that allowed for power losses to velocity fluctuations. Rower and ergometer kinetics and kinematics were measured during the trials. All nine pairs easily acquired antiphase rowing during the warm-up, while one pair's coordination briefly switched to in-phase during the maximum effort trial. Although antiphase interpersonal coordination was indeed less accurate and more variable, power production was not negatively affected. Importantly, in antiphase rowing the decreased power loss to velocity fluctuations resulted in more useful power being transferred to the ergometer flywheels. These results imply that antiphase rowing may indeed improve performance, even without any experience with antiphase technique. Furthermore, it demonstrates that although perfectly synchronous coordination may be the most stable, it is not necessarily equated with the most efficient or optimal performance.

  17. An investigation of the factors affecting flatfoot in children with delayed motor development.

    Science.gov (United States)

    Chen, Kun-Chung; Tung, Li-Chen; Tung, Chien-Hung; Yeh, Chih-Jung; Yang, Jeng-Feng; Wang, Chun-Hou

    2014-03-01

    This study investigated the prevalence of flatfoot in children with delayed motor development and the relevant factors affecting it. In total, 121 preschool-aged children aged 3-6 with delayed motor development (male: 81; female: 40) were enrolled in the motor-developmentally delayed children group, and 4 times that number, a total of 484 children (male: 324; female: 160), of gender- and age-matched normal developmental children were used as a control group for further analyses. The age was from 3.0 to 6.9 years old for the participants. The judgment criterion of flatfoot was the Chippaux-Smirak index >62.70%, in footprint measurement. The results showed that the prevalence of flatfoot in children with motor developmental delay was higher than that in normal developmental children, approximately 58.7%, and that it decreased with age from 62.8% of 3-year-olds to 50.0% of 6-year-olds. The results also showed that motor-developmentally delayed children with flatfoot are at about 1.5 times the risk of normal developmental children (odds ratio=1.511, p=0.005). In addition, the prevalence of flatfoot is relatively higher in overweight children with delayed motor development, and that in obese children is even as high as 95.8% (23/24). Children with both excessive joint laxity and delayed development are more likely to suffer from flatfoot. The findings of this study can serve as a reference for clinical workers to deal with foot issues in children with delayed motor development.

  18. Goal Scoring in Soccer: A Polar Coordinate Analysis of Motor Skills Used by Lionel Messi

    OpenAIRE

    Castañer, Marta; Barreira, Daniel; Camerino, Oleguer; Anguera, M Teresa; Canton, Albert; Hileno, Raúl

    2016-01-01

    Soccer research has traditionally focused on technical and tactical aspects of team play, but few studies have analyzed motor skills in individual actions, such as goal scoring. The objective of this study was to investigate how Lionel Messi, one of the world's top soccer players, uses his motor skills and laterality in individual attacking actions resulting in a goal. We analyzed 103 goals scored by Messi between over a decade in three competitions: La Liga (n = 74), Copa del Rey (n = 8), an...

  19. Motor, cognitive, and affective areas of the cerebral cortex influence the adrenal medulla.

    Science.gov (United States)

    Dum, Richard P; Levinthal, David J; Strick, Peter L

    2016-08-30

    Modern medicine has generally viewed the concept of "psychosomatic" disease with suspicion. This view arose partly because no neural networks were known for the mind, conceptually associated with the cerebral cortex, to influence autonomic and endocrine systems that control internal organs. Here, we used transneuronal transport of rabies virus to identify the areas of the primate cerebral cortex that communicate through multisynaptic connections with a major sympathetic effector, the adrenal medulla. We demonstrate that two broad networks in the cerebral cortex have access to the adrenal medulla. The larger network includes all of the cortical motor areas in the frontal lobe and portions of somatosensory cortex. A major component of this network originates from the supplementary motor area and the cingulate motor areas on the medial wall of the hemisphere. These cortical areas are involved in all aspects of skeletomotor control from response selection to motor preparation and movement execution. The second, smaller network originates in regions of medial prefrontal cortex, including a major contribution from pregenual and subgenual regions of anterior cingulate cortex. These cortical areas are involved in higher-order aspects of cognition and affect. These results indicate that specific multisynaptic circuits exist to link movement, cognition, and affect to the function of the adrenal medulla. This circuitry may mediate the effects of internal states like chronic stress and depression on organ function and, thus, provide a concrete neural substrate for some psychosomatic illness. PMID:27528671

  20. Does the Motor Level of the Paretic Extremities Affect Balance in Poststroke Subjects?

    Directory of Open Access Journals (Sweden)

    Kamal Narayan Arya

    2014-01-01

    Full Text Available Background. Poststroke impairment may lead to fall and unsafe functional performance. The underlying mechanism for the balance dysfunction is unclear. Objective. To analyze the relation between the motor level of the affected limbs and balance in poststroke subjects. Method. A prospective, cross-sectional, and nonexperimental design was conducted in a rehabilitation institute. A convenience sample of 44 patients was assessed for motor level using Brunnstrom recovery stage (BRS and Fugl-Meyer Assessment: upper (FMA-UE and lower extremities (FMA-LE. The balance was measured by Berg Balance Scale (BBS, Postural Assessment Scale for Stroke Patients (PASS, and Functional Reach Test (FRT. Results. BRS showed moderate correlation with BBS (ρ=0.54 to 0.60; P<0.001, PASS (r=0.48 to 0.64; P<0.001 and FRT (ρ=0.48 to 0.59; P<0.001. FMA-UE also exhibited moderate correlation with BBS (ρ=0.59; P<0.001 and PASS (ρ=0.60; P<0.001. FMA-LE showed fair correlation with BBS (ρ=0.50; P=0.001 and PASS (ρ=0.50; P=0.001. Conclusion. Motor control of the affected limbs plays an important role in balance. There is a moderate relation between the motor level of the upper and lower extremities and balance. The findings of the present study may be applied in poststroke rehabilitation.

  1. The Motor Action Mood Induction Procedure Affects the Detection of Facial Emotions

    OpenAIRE

    Fantoni, Carlo; Cavallero, Corrado; Gerbino, Walter

    2014-01-01

    Fantoni and Gerbino (2014) showed that subtle postural shifts associated with reaching can have a strong hedonic impact and affect the actor's global experience. Using a novel Motor Action Mood Induction Procedure (MAMIP), they adapted participants to comfortable/uncomfortable visually-guided reaches and obtained consistent mood-congruency effects in the identification of facial emotions: a face perceived as neutral in a baseline condition appeared slightly happy after ...

  2. Goal scoring in soccer: A polar coordinate analysis of motor skills used by Lionel Messi

    OpenAIRE

    Marta eCastañer; Daniel eBarreira; Oleguer eCamerino; M.Teresa eAnguera; Albert eCanton; Raúl eHileno

    2016-01-01

    Soccer research has traditionally focused on technical and tactical aspects of team play, but few studies have analyzed motor skills in individual actions, such as goal scoring. The objective of this study was to investigate how Lionel Messi, one of the world’s top soccer players, uses his motor skills and laterality in individual attacking actions resulting in a goal. We analyzed 103 goals scored by Messi between over a decade in three competitions: La Liga (n = 74), Copa del Rey (n = 8), an...

  3. Conservative nature of oestradiol signalling pathways in the brain lobes of octopus vulgaris involved in reproduction, learning and motor coordination.

    Science.gov (United States)

    De Lisa, E; Paolucci, M; Di Cosmo, A

    2012-02-01

    Oestradiol plays crucial roles in the mammalian brain by modulating reproductive behaviour, neural plasticity and pain perception. The cephalopod Octopus vulgaris is considered, along with its relatives, to be the most behaviourally advanced invertebrate, although the neurophysiological basis of its behaviours, including pain perception, remain largely unknown. In the present study, using a combination of molecular and imaging techniques, we found that oestradiol up-regulated O. vulgaris gonadotrophin-releasing hormone (Oct-GnRH) and O. vulgaris oestrogen receptor (Oct-ER) mRNA levels in the olfactory lobes; in turn, Oct-ER mRNA was regulated by NMDA in lobes involved in learning and motor coordination. Fluorescence resonance energy transfer analysis revealed that oestradiol binds Oct-ER causing conformational modifications and nuclear translocation consistent with the classical genomic mechanism of the oestrogen receptor. Moreover, oestradiol triggered a calcium influx and cyclic AMP response element binding protein phosphorylation via membrane receptors, providing evidence for a rapid nongenomic action of oestradiol in O. vulgaris. In the present study, we demonstrate, for the first time, the physiological role of oestradiol in the brain lobes of O. vulgaris involved in reproduction, learning and motor coordination.

  4. Transplantation of cerebellar neural stem cells improves motor coordination and neuropathology in Machado-Joseph disease mice.

    Science.gov (United States)

    Mendonça, Liliana S; Nóbrega, Clévio; Hirai, Hirokazu; Kaspar, Brian K; Pereira de Almeida, Luís

    2015-02-01

    Machado-Joseph disease is a neurodegenerative disease without effective treatment. Patients with Machado-Joseph disease exhibit significant motor impairments such as gait ataxia, associated with multiple neuropathological changes including mutant ATXN3 inclusions, marked neuronal loss and atrophy of the cerebellum. Thus, an effective treatment of symptomatic patients with Machado-Joseph disease may require cell replacement, which we investigated in this study. For this purpose, we injected cerebellar neural stem cells into the cerebellum of adult Machado-Joseph disease transgenic mice and assessed the effect on the neuropathology, neuroinflammation mediators and neurotrophic factor levels and motor coordination. We found that upon transplantation into the cerebellum of adult Machado-Joseph disease mice, cerebellar neural stem cells differentiate into neurons, astrocytes and oligodendrocytes. Importantly, cerebellar neural stem cell transplantation mediated a significant and robust alleviation of the motor behaviour impairments, which correlated with preservation from Machado-Joseph disease-associated neuropathology, namely reduction of Purkinje cell loss, reduction of cellular layer shrinkage and mutant ATXN3 aggregates. Additionally, a significant reduction of neuroinflammation and an increase of neurotrophic factors levels was observed, indicating that transplantation of cerebellar neural stem cells also triggers important neuroprotective effects. Thus, cerebellar neural stem cells have the potential to be used as a cell replacement and neuroprotective approach for Machado-Joseph disease therapy.

  5. Developmental alterations in motor coordination and medium spiny neuron markers in mice lacking pgc-1α.

    Directory of Open Access Journals (Sweden)

    Elizabeth K Lucas

    Full Text Available Accumulating evidence implicates the transcriptional coactivator peroxisome proliferator activated receptor γ coactivator 1α (PGC-1α in the pathophysiology of Huntington Disease (HD. Adult PGC-1α (-/- mice exhibit striatal neurodegeneration, and reductions in the expression of PGC-1α have been observed in striatum and muscle of HD patients as well as in animal models of the disease. However, it is unknown whether decreased expression of PGC-1α alone is sufficient to lead to the motor phenotype and striatal pathology characteristic of HD. For the first time, we show that young PGC-1α (-/- mice exhibit severe rotarod deficits, decreased rearing behavior, and increased occurrence of tremor in addition to the previously described hindlimb clasping. Motor impairment and striatal vacuolation are apparent in PGC-1α (-/- mice by four weeks of age and do not improve or decline by twelve weeks of age. The behavioral and pathological phenotype of PGC-1α (-/- mice can be completely recapitulated by conditional nervous system deletion of PGC-1α, indicating that peripheral effects are not responsible for the observed abnormalities. Evaluation of the transcriptional profile of PGC-1α (-/- striatal neuron populations and comparison to striatal neuron profiles of R6/2 HD mice revealed that PGC-1α deficiency alone is not sufficient to cause the transcriptional changes observed in this HD mouse model. In contrast to R6/2 HD mice, PGC-1α (-/- mice show increases in the expression of medium spiny neuron (MSN markers with age, suggesting that the observed behavioral and structural abnormalities are not primarily due to MSN loss, the defining pathological feature of HD. These results indicate that PGC-1α is required for the proper development of motor circuitry and transcriptional homeostasis in MSNs and that developmental disruption of PGC-1α leads to long-term alterations in motor functioning.

  6. DETERMINED MODEL FOR COORDINATED REGULATION OF MOTOR TRANSPORT MOVEMENT ON HIGHWAY

    Directory of Open Access Journals (Sweden)

    V. P. Ivanov

    2011-01-01

    Full Text Available The paper examines certain parameters of a determined model and its response to changes in these parameters. The determined model for bidirectional movement has been developed in the paper. The paper contains proposals for an optimization of the developed model which are intended for reduction of motor vehicle delays in front of an in-traffic light stop line along the main highway direction.

  7. Complex regional pain syndrome type I affects brain structure in prefrontal and motor cortex.

    Directory of Open Access Journals (Sweden)

    Burkhard Pleger

    Full Text Available The complex regional pain syndrome (CRPS is a rare but debilitating pain disorder that mostly occurs after injuries to the upper limb. A number of studies indicated altered brain function in CRPS, whereas possible influences on brain structure remain poorly investigated. We acquired structural magnetic resonance imaging data from CRPS type I patients and applied voxel-by-voxel statistics to compare white and gray matter brain segments of CRPS patients with matched controls. Patients and controls were statistically compared in two different ways: First, we applied a 2-sample ttest to compare whole brain white and gray matter structure between patients and controls. Second, we aimed to assess structural alterations specifically of the primary somatosensory (S1 and motor cortex (M1 contralateral to the CRPS affected side. To this end, MRI scans of patients with left-sided CRPS (and matched controls were horizontally flipped before preprocessing and region-of-interest-based group comparison. The unpaired ttest of the "non-flipped" data revealed that CRPS patients presented increased gray matter density in the dorsomedial prefrontal cortex. The same test applied to the "flipped" data showed further increases in gray matter density, not in the S1, but in the M1 contralateral to the CRPS-affected limb which were inversely related to decreased white matter density of the internal capsule within the ipsilateral brain hemisphere. The gray-white matter interaction between motor cortex and internal capsule suggests compensatory mechanisms within the central motor system possibly due to motor dysfunction. Altered gray matter structure in dorsomedial prefrontal cortex may occur in response to emotional processes such as pain-related suffering or elevated analgesic top-down control.

  8. Complex regional pain syndrome type I affects brain structure in prefrontal and motor cortex.

    Science.gov (United States)

    Pleger, Burkhard; Draganski, Bogdan; Schwenkreis, Peter; Lenz, Melanie; Nicolas, Volkmar; Maier, Christoph; Tegenthoff, Martin

    2014-01-01

    The complex regional pain syndrome (CRPS) is a rare but debilitating pain disorder that mostly occurs after injuries to the upper limb. A number of studies indicated altered brain function in CRPS, whereas possible influences on brain structure remain poorly investigated. We acquired structural magnetic resonance imaging data from CRPS type I patients and applied voxel-by-voxel statistics to compare white and gray matter brain segments of CRPS patients with matched controls. Patients and controls were statistically compared in two different ways: First, we applied a 2-sample ttest to compare whole brain white and gray matter structure between patients and controls. Second, we aimed to assess structural alterations specifically of the primary somatosensory (S1) and motor cortex (M1) contralateral to the CRPS affected side. To this end, MRI scans of patients with left-sided CRPS (and matched controls) were horizontally flipped before preprocessing and region-of-interest-based group comparison. The unpaired ttest of the "non-flipped" data revealed that CRPS patients presented increased gray matter density in the dorsomedial prefrontal cortex. The same test applied to the "flipped" data showed further increases in gray matter density, not in the S1, but in the M1 contralateral to the CRPS-affected limb which were inversely related to decreased white matter density of the internal capsule within the ipsilateral brain hemisphere. The gray-white matter interaction between motor cortex and internal capsule suggests compensatory mechanisms within the central motor system possibly due to motor dysfunction. Altered gray matter structure in dorsomedial prefrontal cortex may occur in response to emotional processes such as pain-related suffering or elevated analgesic top-down control.

  9. Attentional Mechanism for Sensory-motor Coordination in Behavior-based Robotic Systems

    OpenAIRE

    Staffa, Mariacarla

    2011-01-01

    This thesis focuses on the problem of efficiently allocating resources for enhancing the performance of an autonomous robotic agent. Such an agent is expected to operate in complex dynamic environments by continuously monitoring its internal states and the external events. These requirements give raise to countless problems that have populated research in the autonomous robotics community in the last two decades. Among these issues, one of the most relevant is to coordinate different low ...

  10. Cognitive and cognitive-motor interventions affecting physical functioning: A systematic review

    Directory of Open Access Journals (Sweden)

    Murer Kurt

    2011-06-01

    Full Text Available Abstract Background Several types of cognitive or combined cognitive-motor intervention types that might influence physical functions have been proposed in the past: training of dual-tasking abilities, and improving cognitive function through behavioral interventions or the use of computer games. The objective of this systematic review was to examine the literature regarding the use of cognitive and cognitive-motor interventions to improve physical functioning in older adults or people with neurological impairments that are similar to cognitive impairments seen in aging. The aim was to identify potentially promising methods that might be used in future intervention type studies for older adults. Methods A systematic search was conducted for the Medline/Premedline, PsycINFO, CINAHL and EMBASE databases. The search was focused on older adults over the age of 65. To increase the number of articles for review, we also included those discussing adult patients with neurological impairments due to trauma, as these cognitive impairments are similar to those seen in the aging population. The search was restricted to English, German and French language literature without any limitation of publication date or restriction by study design. Cognitive or cognitive-motor interventions were defined as dual-tasking, virtual reality exercise, cognitive exercise, or a combination of these. Results 28 articles met our inclusion criteria. Three articles used an isolated cognitive rehabilitation intervention, seven articles used a dual-task intervention and 19 applied a computerized intervention. There is evidence to suggest that cognitive or motor-cognitive methods positively affects physical functioning, such as postural control, walking abilities and general functions of the upper and lower extremities, respectively. The majority of the included studies resulted in improvements of the assessed functional outcome measures. Conclusions The current evidence on the

  11. Does cycling effect motor coordination of the leg during running in elite triathletes?

    Science.gov (United States)

    Chapman, Andrew R; Vicenzino, Bill; Blanch, Peter; Dowlan, Steve; Hodges, Paul W

    2008-07-01

    Triathletes report incoordination when running after cycling. We investigated the influence of the transition from cycling to running on leg movement and muscle recruitment during running in elite international level triathletes. Leg movement (three-dimensional kinematics) and tibialis anterior (TA) muscle activity (surface electromyography) were compared between a control-run (no prior exercise) and a 30-min transition-run (preceded by 20 min of cycling; i.e., run versus cycle-run). The role of fatigue in motor changes was also investigated. Leg kinematics were not different between control- and transition-runs in any triathlete. Recruitment of TA was different in 5 of 14 triathletes, in whom altered TA recruitment patterns during the transition-run were more similar to recruitment patterns of TA during cycling. Changes in TA recruitment during the transition-run were not associated with altered force production of TA or other leg muscles during isometric fatigue testing, or myoelectric indicators of fatigue (median frequency, average rectified value). These findings suggest that short periods of cycling do not influence running kinematics or TA muscle activity in most elite triathletes. However, our findings are evidence that leg muscle activity during running is influenced by cycling in at least some elite triathletes despite their years of training. This influence is not related to kinematic variations and is unlikely related to fatigue but may be a direct effect of cycling on motor commands for running. PMID:17466592

  12. Promotion and co-ordination in Switzerland within the framework of the EU Motor Challenge Program - Final report; Promotion und Koordination in der Schweiz zum Motor Challenge Programm der EU - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Nipkow, J. [Arena, Zuerich (Switzerland); Tanner, R. [Semafor, Basel (Switzerland); Gloor, R. [Gloor Engineering, Sufers (Switzerland)

    2008-07-01

    The goal of the Motor Challenge Promotion project was to establish information on the European Motor Challenge Programme to users of electric motor driven systems, and to encourage them to start activities on energy efficient drives in their plants and sites. The promotion project served also as National Contact Point of the European Motor Challenge Programme in Switzerland and coordinated information transfer of national activities on drives efficiency. Dissemination of Motor Challenge information and know-how was achieved mainly by these means: Internet (www.motorchallenge.ch), electronic newsletter twice a year, articles in technical publications, presentations at events on energy efficiency and in training courses at technical universities. Communication with the EU-Motor Challenge Programme was provided by e-mail exchange and by attending conferences and workshops, e.g. EEMODS 2005 (Heidelberg), Motor Challenge Workshop 2007 (Paris). Queries and the attendance at information events showed a growing interest in efficiency of electric drives. The Swiss Motor Challenge team was involved in the preparation of the SwissEnergy implementation programme on drives efficiency. The Swiss agency for efficient energy use S.A.F.E. launched the programme named 'Topmotors' in autumn 2007. The Motor Challenge activities will pass over to Topmotors; the web site will be linked to www.topmotors.ch and a Topmotors newsletter will be launched. (author)

  13. Examining the relationship between motor assessments and handwriting consistency in children with and without probable developmental coordination disorder.

    Science.gov (United States)

    Bo, Jin; Colbert, Alison; Lee, Chi-Mei; Schaffert, Jeffrey; Oswald, Kaitlin; Neill, Rebecca

    2014-09-01

    Children with Developmental Coordination Disorder (DCD) often experience difficulties in handwriting. The current study examined the relationships between three motor assessments and the spatial and temporal consistency of handwriting. Twelve children with probable DCD and 29 children from 7 to 12 years who were typically developing wrote the lowercase letters "e" and "l" in cursive and printed forms repetitively on a digitizing tablet. Three behavioral assessments, including the Beery-Buktenica Developmental Test of Visual-Motor Integration (VMI), the Minnesota Handwriting Assessment (MHA) and the Movement Assessment Battery for Children (MABC), were administered. Children with probable DCD had low scores on the VMI, MABC and MHA and showed high temporal, not spatial, variability in the letter-writing task. Their MABC scores related to temporal consistency in all handwriting conditions, and the Legibility scores in their MHA correlated with temporal consistency in cursive "e" and printed "l". It appears that children with probable DCD have prominent difficulties on the temporal aspect of handwriting. While the MHA is a good product-oriented assessment for measuring handwriting deficits, the MABC shows promise as a good assessment for capturing the temporal process of handwriting in children with DCD. PMID:24873991

  14. Visuo-motor coordination ability predicts performance with brain-computer interfaces controlled by modulation of sensorimotor rhythms (SMR

    Directory of Open Access Journals (Sweden)

    Eva Maria Hammer

    2014-08-01

    Full Text Available Modulation of sensorimotor rhythms (SMR was suggested as a control signal for brain-computer interfaces (BCI. Yet, there is a population of users estimated between 10 to 50% not able to achieve reliable control and only about 20% of users achieve high (80-100% performance. Predicting performance prior to BCI use would facilitate selection of the most feasible system for an individual, thus constitute a practical benefit for the user, and increase our knowledge about the correlates of BCI control. In a recent study, we predicted SMR-BCI performance from psychological variables that were assessed prior to the BCI sessions and BCI control was supported with machine-learning techniques. We described two significant psychological predictors, namely the visuo-motor coordination ability and the ability to concentrate on the task. The purpose of the current study was to replicate these results thereby validating these predictors within a neurofeedback based SMR-BCI that involved no machine learning. Thirty-three healthy BCI novices participated in a calibration session and three further neurofeedback training sessions. Two variables were related with mean SMR-BCI performance: (1 A measure for the accuracy of fine motor skills, i.e. a trade for a person’s visuo-motor control ability and (2 subject’s attentional impulsivity. In a linear regression they accounted for almost 20% in variance of SMR-BCI performance, but predictor (1 failed significance. Nevertheless, on the basis of our prior regression model for sensorimotor control ability we could predict current SMR-BCI performance with an average prediction error of M = 12.07%. In more than 50% of the participants, the prediction error was smaller than 10%. Hence, psychological variables played a moderate role in predicting SMR-BCI performance in a neurofeedback approach that involved no machine learning. Future studies are needed to further consolidate (or reject the present predictors.

  15. Effect of Hfe Deficiency on Memory Capacity and Motor Coordination after Manganese Exposure by Drinking Water in Mice.

    Science.gov (United States)

    Alsulimani, Helal Hussain; Ye, Qi; Kim, Jonghan

    2015-12-01

    Excess manganese (Mn) is neurotoxic. Increased manganese stores in the brain are associated with a number of behavioral problems, including motor dysfunction, memory loss and psychiatric disorders. We previously showed that the transport and neurotoxicity of manganese after intranasal instillation of the metal are altered in Hfe-deficient mice, a mouse model of the iron overload disorder hereditary hemochromatosis (HH). However, it is not fully understood whether loss of Hfe function modifies Mn neurotoxicity after ingestion. To investigate the role of Hfe in oral Mn toxicity, we exposed Hfe-knockout (Hfe (-/-)) and their control wild-type (Hfe (+/+)) mice to MnCl2 in drinking water (5 mg/mL) for 5 weeks. Motor coordination and spatial memory capacity were determined by the rotarod test and the Barnes maze test, respectively. Brain and liver metal levels were analyzed by inductively coupled plasma mass spectrometry. Compared with the water-drinking group, mice drinking Mn significantly increased Mn concentrations in the liver and brain of both genotypes. Mn exposure decreased iron levels in the liver, but not in the brain. Neither Mn nor Hfe deficiency altered tissue concentrations of copper or zinc. The rotarod test showed that Mn exposure decreased motor skills in Hfe (+/+) mice, but not in Hfe (-/-) mice (p = 0.023). In the Barns maze test, latency to find the target hole was not altered in Mn-exposed Hfe (+/+) compared with water-drinking Hfe (+/+) mice. However, Mn-exposed Hfe (-/-) mice spent more time to find the target hole than Mn-drinking Hfe (+/+) mice (p = 0.028). These data indicate that loss of Hfe function impairs spatial memory upon Mn exposure in drinking water. Our results suggest that individuals with hemochromatosis could be more vulnerable to memory deficits induced by Mn ingestion from our environment. The pathophysiological role of HFE in manganese neurotoxicity should be carefully examined in patients with HFE-associated hemochromatosis and

  16. Exposure to altered gravity during specific developmental periods differentially affects growth, development, the cerebellum and motor functions in male and female rats

    Science.gov (United States)

    Nguon, K.; Ladd, B.; Sajdel-Sulkowska, E. M.

    2006-01-01

    We previously reported that perinatal exposure to hypergravity affects cerebellar structure and motor coordination in rat neonates. In the present study, we explored the hypothesis that neonatal cerebellar structure and motor coordination may be particularly vulnerable to the effects of hypergravity during specific developmental stages. To test this hypothesis, we compared neurodevelopment, motor behavior and cerebellar structure in rat neonates exposed to 1.65 G on a 24-ft centrifuge during discrete periods of time: the 2nd week of pregnancy [gestational day (G) 8 through G15; group A], the 3rd week of pregnancy (G15 through birth on G22/G23; group B), the 1st week of nursing [birth through postnatal day (P) 6; group C], the 2nd and 3rd weeks of nursing (P6 through P21; group D), the combined 2nd and 3rd weeks of pregnancy and nursing (G8 through P21; group E) and stationary control (SC) neonates (group F). Prenatal exposure to hypergravity resulted in intrauterine growth retardation as reflected by a decrease in the number of pups in a litter and lower average mass at birth. Exposure to hypergravity immediately after birth impaired the righting response on P3, while the startle response in both males and females was most affected by exposure during the 2nd and 3rd weeks after birth. Hypergravity exposure also impaired motor functions, as evidenced by poorer performance on a rotarod; while both males and females exposed to hypergravity during the 2nd and 3rd weeks after birth performed poorly on P21, male neonates were most dramatically affected by exposure to hypergravity during the second week of gestation, when the duration of their recorded stay on the rotarod was one half that of SC males. Cerebellar mass was most reduced by later postnatal exposure. Thus, for the developing rat cerebellum, the postnatal period that overlaps the brain growth spurt is the most vulnerable to hypergravity. However, male motor behavior is also affected by midpregnancy exposure to

  17. MicroRNA-8 promotes robust motor axon targeting by coordinate regulation of cell adhesion molecules during synapse development.

    Science.gov (United States)

    Lu, Cecilia S; Zhai, Bo; Mauss, Alex; Landgraf, Matthias; Gygi, Stephen; Van Vactor, David

    2014-09-26

    Neuronal connectivity and specificity rely upon precise coordinated deployment of multiple cell-surface and secreted molecules. MicroRNAs have tremendous potential for shaping neural circuitry by fine-tuning the spatio-temporal expression of key synaptic effector molecules. The highly conserved microRNA miR-8 is required during late stages of neuromuscular synapse development in Drosophila. However, its role in initial synapse formation was previously unknown. Detailed analysis of synaptogenesis in this system now reveals that miR-8 is required at the earliest stages of muscle target contact by RP3 motor axons. We find that the localization of multiple synaptic cell adhesion molecules (CAMs) is dependent on the expression of miR-8, suggesting that miR-8 regulates the initial assembly of synaptic sites. Using stable isotope labelling in vivo and comparative mass spectrometry, we find that miR-8 is required for normal expression of multiple proteins, including the CAMs Fasciclin III (FasIII) and Neuroglian (Nrg). Genetic analysis suggests that Nrg and FasIII collaborate downstream of miR-8 to promote accurate target recognition. Unlike the function of miR-8 at mature larval neuromuscular junctions, at the embryonic stage we find that miR-8 controls key effectors on both sides of the synapse. MiR-8 controls multiple stages of synapse formation through the coordinate regulation of both pre- and postsynaptic cell adhesion proteins.

  18. Insect motor control: methodological advances, descending control and inter-leg coordination on the move.

    Science.gov (United States)

    Borgmann, Anke; Büschges, Ansgar

    2015-08-01

    Modern approaches, including high performance video, neurophysiology, and neurogenetics, allow to analyze invertebrate behavior on all levels of generation and performance in an unprecedented way. They allow observation and classification of behavior in controlled conditions, dissection of behavioral sequencing, identification of levels of processing and locations of associated sub-networks and, finally, identification of neuronal components and topologies contributing to specific aspects of behaviors. Recently conceptual and methodological progress has contributed to unraveling the neural structures underlying descending control of insect behavior as well as the mechanisms in charge of generating coordinated locomotor movements of the invertebrate extremities during walking. This brief review summarizes some of the most exciting new findings in these areas of research from the past years. PMID:25579064

  19. Anthropometric Characteristics, Physical Fitness and Motor Coordination of 9 to 11 Year Old Children Participating in a Wide Range of Sports

    NARCIS (Netherlands)

    Opstoel, Katrijn; Pion, Johan; Elferink-Gemser, Marije; Hartman, Esther; Willemse, Bas; Philippaerts, Renaat; Visscher, Chris; Lenoir, Matthieu

    2015-01-01

    Objectives The aim of this study was to investigate to what extent 9 to 11 year old children participating in a specific sport already exhibit a specific anthropometric, physical fitness and motor coordination profile, in line with the requirements of that particular sport. In addition, the profiles

  20. Menstrual Cycle-Related Changes of Functional Cerebral Asymmetries in Fine Motor Coordination

    Science.gov (United States)

    Bayer, Ulrike; Hausmann, Markus

    2012-01-01

    Fluctuating sex hormone levels during the menstrual cycle have been shown to affect functional cerebral asymmetries in cognitive domains. These effects seem to result from the neuromodulatory properties of sex hormones and their metabolites on interhemispheric processing. The present study was carried out to investigate whether functional cerebral…

  1. Motor, affective and cognitive empathy in adolescence : Interrelations between facial electromyography and self-reported trait and state measures

    NARCIS (Netherlands)

    Van der Graaff, Jolien; Meeus, W; de Wied, Minet; van Boxtel, Anton; van Lier, Pol A C; Koot, Hans M.; Branje, Susan

    2016-01-01

    This study examined interrelations of trait and state empathy in an adolescent sample. Self-reported affective trait empathy and cognitive trait empathy were assessed during a home visit. During a test session at the university, motor empathy (facial electromyography), and self-reported affective an

  2. Impact of Cerebral Visual Impairments on Motor Skills: Implications for Developmental Coordination Disorders

    Science.gov (United States)

    Chokron, Sylvie; Dutton, Gordon N.

    2016-01-01

    Cerebral visual impairment (CVI) has become the primary cause of visual impairment and blindness in children in industrialized countries. Its prevalence has increased sharply, due to increased survival rates of children who sustain severe neurological conditions during the perinatal period. Improved diagnosis has probably contributed to this increase. As in adults, the nature and severity of CVI in children relate to the cause, location and extent of damage to the brain. In the present paper, we define CVI and how this impacts on visual function. We then define developmental coordination disorder (DCD) and discuss the link between CVI and DCD. The neuroanatomical correlates and aetiologies of DCD are also presented in relationship with CVI as well as the consequences of perinatal asphyxia (PA) and preterm birth on the occurrence and nature of DCD and CVI. This paper underlines why there are both clinical and theoretical reasons to disentangle CVI and DCD, and to categorize the features with more precision. In order to offer the most appropriate rehabilitation, we propose a systematic and rapid evaluation of visual function in at-risk children who have survived preterm birth or PA whether or not they have been diagnosed with cerebral palsy or DCD. PMID:27757087

  3. Revealing hot executive function in children with motor coordination problems: What's the go?

    Science.gov (United States)

    Rahimi-Golkhandan, S; Steenbergen, B; Piek, J P; Caeyenberghs, K; Wilson, P H

    2016-07-01

    Recent research suggests that children with Developmental Coordination Disorder (DCD) often show deficits in executive functioning (EF) and, more specifically, the ability to use inhibitory control in 'hot', emotionally rewarding contexts. This study optimized the assessment of sensitivity of children with DCD to emotionally significant stimuli by using easily discriminable emotional expressions in a go/no-go task. Thirty-six children (12 with DCD), aged 7-12years, completed an emotional go/no-go task in which neutral facial expressions were paired with either happy or sad ones. Each expression was used as both, a go and no-go target in different runs of the task. There were no group differences in omission errors; however, the DCD group made significantly more commission errors to happy no-go faces. The particular pattern of performance in DCD confirms earlier reports of (hot) EF deficits. Specifically, a problem of inhibitory control appears to underlie the atypical pattern of performance seen in DCD on both cold and hot EF tasks. Disrupted coupling between cognitive control and emotion processing networks, such as fronto-parietal and fronto-striatal networks, may contribute to reduced inhibitory control in DCD. The implications for a broader theoretical account of DCD are discussed, as are implications for intervention. PMID:27254817

  4. Selective breeding for endurance running capacity affects cognitive but not motor learning in rats.

    Science.gov (United States)

    Wikgren, Jan; Mertikas, Georgios G; Raussi, Pekka; Tirkkonen, Riina; Äyräväinen, Laura; Pelto-Huikko, Markku; Koch, Lauren G; Britton, Steven L; Kainulainen, Heikki

    2012-05-15

    The ability to utilize oxygen has been shown to affect a wide variety of physiological factors often considered beneficial for survival. As the ability to learn can be seen as one of the core factors of survival in mammals, we studied whether selective breeding for endurance running, an indication of aerobic capacity, also has an effect on learning. Rats selectively bred over 23 generations for their ability to perform forced treadmill running were trained in an appetitively motivated discrimination-reversal classical conditioning task, an alternating T-maze task followed by a rule change (from a shift-win to stay-win rule) and motor learning task. In the discrimination-reversal and T-maze tasks, the high-capacity runner (HCR) rats outperformed the low-capacity runner (LCR) rats, most notably in the phases requiring flexible cognition. In the Rotarod (motor-learning) task, the HCR animals were overall more agile but learned at a similar rate with the LCR group as a function of training. We conclude that the intrinsic ability to utilize oxygen is associated especially with tasks requiring plasticity of the brain structures implicated in flexible cognition.

  5. Pomegranate Supplementation Improves Affective and Motor Behavior in Mice after Radiation Exposure

    Directory of Open Access Journals (Sweden)

    Melissa S. Dulcich

    2013-01-01

    Full Text Available Currently, NASA has plans for extended space travel, and previous research indicates that space radiation can have negative effects on cognitive skills as well as physical and mental health. With long-term space travel, astronauts will be exposed to greater radiation levels. Research shows that an antioxidant-enriched diet may offer some protection against the cellular effects of radiation and may provide significant neuroprotection from the effects of radiation-induced cognitive and behavioral skill deficits. Ninety-six C57BL/6 mice (48 pomegranate fed and 48 control were irradiated with proton radiation (2 Gy, and two-month postradiation behaviors were assessed using a battery of behavioral tests to measure cognitive and motor functions. Proton irradiation was associated with depression-like behaviors in the tail suspension test, but this effect was ameliorated by the pomegranate diet. Males, in general, displayed worse coordination and balance than females on the rotarod task, and the pomegranate diet ameliorated this effect. Overall, it appears that proton irradiation, which may be encountered in space, may induce a different pattern of behavioral deficits in males than females and that a pomegranate diet may confer protection against some of those effects.

  6. Pomegranate supplementation improves affective and motor behavior in mice after radiation exposure.

    Science.gov (United States)

    Dulcich, Melissa S; Hartman, Richard E

    2013-01-01

    Currently, NASA has plans for extended space travel, and previous research indicates that space radiation can have negative effects on cognitive skills as well as physical and mental health. With long-term space travel, astronauts will be exposed to greater radiation levels. Research shows that an antioxidant-enriched diet may offer some protection against the cellular effects of radiation and may provide significant neuroprotection from the effects of radiation-induced cognitive and behavioral skill deficits. Ninety-six C57BL/6 mice (48 pomegranate fed and 48 control) were irradiated with proton radiation (2 Gy), and two-month postradiation behaviors were assessed using a battery of behavioral tests to measure cognitive and motor functions. Proton irradiation was associated with depression-like behaviors in the tail suspension test, but this effect was ameliorated by the pomegranate diet. Males, in general, displayed worse coordination and balance than females on the rotarod task, and the pomegranate diet ameliorated this effect. Overall, it appears that proton irradiation, which may be encountered in space, may induce a different pattern of behavioral deficits in males than females and that a pomegranate diet may confer protection against some of those effects. PMID:23662154

  7. Motor competence in Czech children aged 11-15: What is the incidence of a risk of developmental coordination disorder?

    Directory of Open Access Journals (Sweden)

    Jakub Kokštejn

    2015-06-01

    Full Text Available Background: Current findings suggest that the prevalence of developmental coordination disorder (DCD ranges widely between countries. A major reason for this wide range of prevalence is how cases of DCD are identified. Gender differences in level of motor competence in children with movement difficulties may play a key role in the choice of type of intervention. Objective: The aim of the study was to reveal the prevalence of significant movement difficulties with high probability of presence of DCD in Czech children aged 11 to 15. At the same time we wanted to assess possible gender differences in different types of the movement difficulties. Methods: A total sample of 507 children (age 11-15 years, 262 boys, 245 girls from all Czech regions was included. The MABC-2 test was used for the identification of movement difficulties with different severity. Children whose total test score (TTS was ≤ 15th percentile were considered at risk for having DCD (children with rDCD. Children whose TTS was ≤ 5th percentile were considered as having significant movement difficulties with high probability of presence of DCD. An analysis of gender differences of children with rDCD in MABC-2 motor components and tests were carried out. Results: From the entire sample, 33 participants (22 boys, 11 girls were identified as at risk of having DCD (rDCD. 1.4% of the total sample met the criterion for significant movement difficulties with high probability of presence of DCD. 5.1% of the total sample met the criterion for identification of the risk for having movement difficulties. Almost twice as high predisposition for the occurrence of movement difficulties was revealed in boys as compared to girls in a population of children with rDCD (OR = 1.95, 95% CI: 1.16-2.74. Girls with rDCD performed better in manual dexterity with a medium effect of the gender (Cohen's d = 0.58, whereas boys with rDCD achieved better results in aiming and catching also with a

  8. Age-related differences in motor coordination during simultaneous leg flexion and finger extension: influence of temporal pressure.

    Directory of Open Access Journals (Sweden)

    Tarek Hussein

    Full Text Available Although the effect of temporal pressure on spatio-temporal aspects of motor coordination and posture is well established in young adults, there is a clear lack of data on elderly subjects. This work examined the aging-related effects of temporal pressure on movement synchronization and dynamic stability. Sixteen young and eleven elderly subjects performed series of simultaneous rapid leg flexions in an erect posture paired with ipsilateral index-finger extensions, minimizing the difference between heel and finger movement onsets. This task was repeated ten times under two temporal conditions (self-initiated [SI] vs. reaction-time [RT]. Results showed that, first, temporal pressure modified movement synchronization; the finger extension preceded swing heel-off in RT, and inversely in SI. Synchronization error and associated standard deviation were significantly greater in elderly than in young adults in SI only, i.e. in the condition where proprioception is thought to be crucial for temporal coordination. Secondly, both groups developed a significantly shorter mediolateral (ML anticipatory postural adjustment duration in RT (high temporal pressure than in SI. In both groups, this shortening was compensated by an increase in the anticipatory peak of centre-of-gravity (CoG acceleration towards the stance-leg so that ML dynamic stability at foot-off, quantified with the "extrapolated centre-of-mass", remained unchanged across temporal conditions. This increased CoG acceleration was associated with an increased anticipatory peak of ML centre-of-pressure shift towards the swing-leg in young adults only. This suggested that the ability to accelerate the CoG with the centre-of-pressure shift was degraded in elderly, probably due to weakness in the lower limb muscles. Dynamic stability at foot-off was also degraded in elderly, with a consequent increased risk of ML imbalance and falling. The present study provides new insights into the ability of

  9. GR3027 antagonizes GABAA receptor-potentiating neurosteroids and restores spatial learning and motor coordination in rats with chronic hyperammonemia and hepatic encephalopathy.

    Science.gov (United States)

    Johansson, Maja; Agusti, Ana; Llansola, Marta; Montoliu, Carmina; Strömberg, Jessica; Malinina, Evgenya; Ragagnin, Gianna; Doverskog, Magnus; Bäckström, Torbjörn; Felipo, Vicente

    2015-09-01

    Hepatic encephalopathy (HE) is one of the primary complications of liver cirrhosis. Current treatments for HE, mainly directed to reduction of ammonia levels, are not effective enough because they cannot completely eliminate hyperammonemia and inflammation, which induce the neurological alterations. Studies in animal models show that overactivation of GABAA receptors is involved in cognitive and motor impairment in HE and that reducing this activation restores these functions. We have developed a new compound, GR3027, that selectively antagonizes the enhanced activation of GABAA receptors by neurosteroids such as allopregnanolone and 3α,21-dihydroxy-5α-pregnan-20-one (THDOC). This work aimed to assess whether GR3027 improves motor incoordination, spatial learning, and circadian rhythms of activity in rats with HE. GR3027 was administered subcutaneously to two main models of HE: rats with chronic hyperammonemia due to ammonia feeding and rats with portacaval shunts (PCS). Motor coordination was assessed in beam walking and spatial learning and memory in the Morris water maze and the radial maze. Circadian rhythms of ambulatory and vertical activity were also assessed. In both hyperammonemic and PCS rats, GR3027 restores motor coordination, spatial memory in the Morris water maze, and spatial learning in the radial maze. GR3027 also partially restores circadian rhythms of ambulatory and vertical activity in PCS rats. GR3027 is a novel approach to treatment of HE that would normalize neurological functions altered because of enhanced GABAergic tone, affording more complete normalization of cognitive and motor function than current treatments for HE.

  10. When visuo-motor incongruence aids motor performance : the effect of perceiving motion structures during transformed visual feedback on bimanual coordination

    NARCIS (Netherlands)

    Bogaerts, H; Buekers, MJ; Zaal, FT; Swinnen, SP

    2003-01-01

    Two experiments are reported in which bimanual coordination tasks were performed under correct and transformed visual feedback conditions. Participants were to generate cyclical line-drawing patterns, with varying degrees of coordinative stability, while perceiving correct or transformed visual info

  11. 家庭运动环境对学龄前儿童运动协调能力的影响%Effect of family motor environment on motor coordination ability of preschool children

    Institute of Scientific and Technical Information of China (English)

    金华; 朱舒扬; 王菲; 马亚萍; 古桂雄

    2016-01-01

    Objective To explore the effect of family indoor and outdoor motor environment on motor coordination ability of preschool children,direct the parents to create family environment suitable for children's motor development and improve the quality of child rearing.Methods From June to December in 2012,3 125 children were randomly selected from 10 kindergartens in Suzhou area,Movement Assessment Battery for Children was used to test children's motor coordination ability,and their parents were asked to fill out a questionnaire named Family Environment Scale on Motor Development for Preschool Urban Children to evaluate family motor environment.Results All the 2 976 children finally finished all the tests and questionnaires.The scores of outdoor motor environment,indoor motor environment,gross motor toys,and fine motor toys of children with low motor coordination ability were statistically significantly lower than those of children with normal motor coordination ability (P<0.05).Multivariate regression analysis showed that outdoor motor environment and gross motor toys were significantly correlated with motor coordination ability of children after excluding other factors (P<0.05).Outdoor motor environment was significantly correlated with manual dexterity,aiming and grasping,and static and dynamic balance subscales (P<0.01);gross motor toys was significantly correlated with manual dexterity and aiming and grasping subscales (P<0.01).Conclusion Family motor environment,especially outdoor motor environment and gross motor toys,has significant impact on motor development of children,the parents should pay attention to creating good outdoor motor environment and gross motor toys to promote motor development of children.%目的 探讨家庭室内外运动环境对学龄前儿童运动协调能力的影响,以指导家长创造有利于儿童运动发育的家庭环境,提高育儿质量.方法 2012年6-12月,随机抽取苏州地区10所幼儿园3 125名儿童,采用

  12. Intra-limb coordination while walking is affected by cognitive load and walking speed.

    Science.gov (United States)

    Ghanavati, Tabassom; Salavati, Mahyar; Karimi, Noureddin; Negahban, Hossein; Ebrahimi Takamjani, Ismail; Mehravar, Mohammad; Hessam, Masumeh

    2014-07-18

    Knowledge about intra-limb coordination (ILC) during challenging walking conditions provides insight into the adaptability of central nervous system (CNS) for controlling human gait. We assessed the effects of cognitive load and speed on the pattern and variability of the ILC in young people during walking. Thirty healthy young people (19 female and 11 male) participated in this study. They were asked to perform 9 walking trials on a treadmill, including walking at three paces (preferred, slower and faster) either without a cognitive task (single-task walking) or while subtracting 1׳s or 3׳s from a random three-digit number (simple and complex dual-task walking, respectively). Deviation phase (DP) and mean absolute relative phase (MARP) values-indicators of variability and phase dynamic of ILC, respectively-were calculated using the data collected by a motion capture system. We used a two-way repeated measure analysis of variance for statistical analysis. The results showed that cognitive load had a significant main effect on DP of right shank-foot and thigh-shank, left shank-foot and pelvis-thigh (peffect of walking speed was significant on DP of all segments in each side and MARP of both thigh-shank and pelvis-thigh segments (pcognitive load and walking speed was only significant for MARP values of left shank-foot and right pelvis-thigh (pcognitive load and speed could significantly affect the ILC and variability and phase dynamic during walking. PMID:24861632

  13. Activation of less affected corticospinal tract and poor motor outcome in hemiplegic pediatric patients: a diffusion tensor tractography imaging study.

    Science.gov (United States)

    Kim, Jin Hyun; Son, Su Min

    2015-12-01

    The less affected hemisphere is important in motor recovery in mature brains. However, in terms of motor outcome in immature brains, no study has been reported on the less affected corticospinal tract in hemiplegic pediatric patients. Therefore, we examined the relationship between the condition of the less affected corticospinal tract and motor function in hemiplegic pediatric patients. Forty patients with hemiplegia due to perinatal or prenatal injury (13.7 ± 3.0 months) and 40 age-matched typically developing controls were recruited. These patients were divided into two age-matched groups, the high functioning group (20 patients) and the low functioning group (20 patients) using functional level of hemiplegia scale. Diffusion tensor tractography images showed that compared with the control group, the patient group of the less affected corticospinal tract showed significantly increased fiber number and significantly decreased fractional anisotropy value. Significantly increased fiber number and significantly decreased fractional anisotropy value in the low functioning group were observed than in the high functioning group. These findings suggest that activation of the less affected hemisphere presenting as increased fiber number and decreased fractional anisotropy value is related to poor motor function in pediatric hemiplegic patients.

  14. Activation of less affected corticospinal tract and poor motor outcome in hemiplegic pediatric patients: a diffusion tensor tractography imaging study

    Directory of Open Access Journals (Sweden)

    Jin Hyun Kim

    2015-01-01

    Full Text Available The less affected hemisphere is important in motor recovery in mature brains. However, in terms of motor outcome in immature brains, no study has been reported on the less affected corticospinal tract in hemiplegic pediatric patients. Therefore, we examined the relationship between the condition of the less affected corticospinal tract and motor function in hemiplegic pediatric patients. Forty patients with hemiplegia due to perinatal or prenatal injury (13.7 ± 3.0 months and 40 age-matched typically developing controls were recruited. These patients were divided into two age-matched groups, the high functioning group (20 patients and the low functioning group (20 patients using functional level of hemiplegia scale. Diffusion tensor tractography images showed that compared with the control group, the patient group of the less affected corticospinal tract showed significantly increased fiber number and significantly decreased fractional anisotropy value. Significantly increased fiber number and significantly decreased fractional anisotropy value in the low functioning group were observed than in the high functioning group. These findings suggest that activation of the less affected hemisphere presenting as increased fiber number and decreased fractional anisotropy value is related to poor motor function in pediatric hemiplegic patients.

  15. Disentangling Fine Motor Skills' Relations to Academic Achievement: The Relative Contributions of Visual-Spatial Integration and Visual-Motor Coordination

    Science.gov (United States)

    Carlson, Abby G.; Rowe, Ellen; Curby, Timothy W.

    2013-01-01

    Recent research has established a connection between children's fine motor skills and their academic performance. Previous research has focused on fine motor skills measured prior to elementary school, while the present sample included children ages 5-18 years old, making it possible to examine whether this link remains relevant throughout…

  16. Treadmill exercise improves motor coordination through ameliorating Purkinje cell loss in amyloid beta23-35-induced Alzheimer’s disease rats

    OpenAIRE

    Lee, Jae-Min; Shin, Mal-Soon; Ji, Eun-Sang; Kim, Tae-Woon; Cho, Han-Sam; Kim, Chang-Ju; Jang, Myung-Soo; Kim, Tae-Wook; Kim, Bo-Kyun; Kim, Dong-Hee

    2014-01-01

    Alzheimer’s disease (AD) is a most common age-related neurodegenerative disease. AD is characterized by a progressive loss of neurons causing cognitive dysfunction. The cerebellum is closely associated with integration of movement, including motor coordination, control, and equilibrium. In the present study, we evaluated the effect of tread-mill exercise on the survival of Purkinje neurons in relation with reactive astrocyte in the cerebellum using Aβ25–35–induced AD rats. AD was induced by a...

  17. Coordination of precision grip in 2–6 years-old children with autism spectrum disorders compared to children developing typically and children with developmental disabilities

    OpenAIRE

    Fabian Jude David; Baranek, Grace T.; Chris eWiesen; Adrienne eMiao; Thorpe, Deborah E.

    2012-01-01

    Impaired motor coordination is prevalent in children with Autism Spectrum Disorders (ASD) and affects adaptive skills. Little is known about the development of motor patterns in young children with ASD between 2 and 6 years of age. The purpose of the current study was threefold: (1) to describe developmental correlates of motor coordination in children with ASD, (2) to identify the extent to which motor coordination deficits are unique to ASD by using a control group of children with other de...

  18. Rationale, design and methods for a randomised and controlled trial of the impact of virtual reality games on motor competence, physical activity, and mental health in children with developmental coordination disorder

    Directory of Open Access Journals (Sweden)

    Straker Leon M

    2011-08-01

    Full Text Available Abstract Background A healthy start to life requires adequate motor development and physical activity participation. Currently 5-15% of children have impaired motor development without any obvious disorder. These children are at greater risk of obesity, musculoskeletal disorders, low social confidence and poor mental health. Traditional electronic game use may impact on motor development and physical activity creating a vicious cycle. However new virtual reality (VR game interfaces may provide motor experiences that enhance motor development and lead to an increase in motor coordination and better physical activity and mental health outcomes. VR games are beginning to be used for rehabilitation, however there is no reported trial of the impact of these games on motor coordination in children with developmental coordination disorder. Methods This cross-over randomised and controlled trial will examine whether motor coordination is enhanced by access to active electronic games and whether daily activity, attitudes to physical activity and mental health are also enhanced. Thirty children aged 10-12 years with poor motor coordination (≤ 15th percentile will be recruited and randomised to a balanced ordering of 'no active electronic games' and 'active electronic games'. Each child will participate in both conditions for 16 weeks, and be assessed prior to participation and at the end of each condition. The primary outcome is motor coordination, assessed by kinematic and kinetic motion analysis laboratory measures. Physical activity and sedentary behaviour will be assessed by accelerometry, coordination in daily life by parent report questionnaire and attitudes to physical activity, self-confidence, anxiety and depressed mood will be assessed by self report questionnaire. A sample of 30 will provide a power of > 0.9 for detecting a 5 point difference in motor coordination on the MABC-2 TIS scale (mean 17, sd = 5. Discussion This is the first trial to

  19. Defining Optimal Aerobic Exercise Parameters to Affect Complex Motor and Cognitive Outcomes after Stroke: A Systematic Review and Synthesis

    Directory of Open Access Journals (Sweden)

    S. M. Mahmudul Hasan

    2016-01-01

    Full Text Available Although poststroke aerobic exercise (AE increases markers of neuroplasticity and protects perilesional tissue, the degree to which it enhances complex motor or cognitive outcomes is unknown. Previous research suggests that timing and dosage of exercise may be important. We synthesized data from clinical and animal studies in order to determine optimal AE training parameters and recovery outcomes for future research. Using predefined criteria, we included clinical trials of stroke of any type or duration and animal studies employing any established models of stroke. Of the 5,259 titles returned, 52 articles met our criteria, measuring the effects of AE on balance, lower extremity coordination, upper limb motor skills, learning, processing speed, memory, and executive function. We found that early-initiated low-to-moderate intensity AE improved locomotor coordination in rodents. In clinical trials, AE improved balance and lower limb coordination irrespective of intervention modality or parameter. In contrast, fine upper limb recovery was relatively resistant to AE. In terms of cognitive outcomes, poststroke AE in animals improved memory and learning, except when training was too intense. However, in clinical trials, combined training protocols more consistently improved cognition. We noted a paucity of studies examining the benefits of AE on recovery beyond cessation of the intervention.

  20. Defining Optimal Aerobic Exercise Parameters to Affect Complex Motor and Cognitive Outcomes after Stroke: A Systematic Review and Synthesis.

    Science.gov (United States)

    Hasan, S M Mahmudul; Rancourt, Samantha N; Austin, Mark W; Ploughman, Michelle

    2016-01-01

    Although poststroke aerobic exercise (AE) increases markers of neuroplasticity and protects perilesional tissue, the degree to which it enhances complex motor or cognitive outcomes is unknown. Previous research suggests that timing and dosage of exercise may be important. We synthesized data from clinical and animal studies in order to determine optimal AE training parameters and recovery outcomes for future research. Using predefined criteria, we included clinical trials of stroke of any type or duration and animal studies employing any established models of stroke. Of the 5,259 titles returned, 52 articles met our criteria, measuring the effects of AE on balance, lower extremity coordination, upper limb motor skills, learning, processing speed, memory, and executive function. We found that early-initiated low-to-moderate intensity AE improved locomotor coordination in rodents. In clinical trials, AE improved balance and lower limb coordination irrespective of intervention modality or parameter. In contrast, fine upper limb recovery was relatively resistant to AE. In terms of cognitive outcomes, poststroke AE in animals improved memory and learning, except when training was too intense. However, in clinical trials, combined training protocols more consistently improved cognition. We noted a paucity of studies examining the benefits of AE on recovery beyond cessation of the intervention. PMID:26881101

  1. Altered cerebellum development and impaired motor coordination in mice lacking the Btg1 gene: Involvement of cyclin D1.

    Science.gov (United States)

    Ceccarelli, Manuela; Micheli, Laura; D'Andrea, Giorgio; De Bardi, Marco; Scheijen, Blanca; Ciotti, MariaTeresa; Leonardi, Luca; Luvisetto, Siro; Tirone, Felice

    2015-12-01

    Cerebellar granule neurons develop postnatally from cerebellar granule precursors (GCPs), which are located in the external granule layer (EGL) where they massively proliferate. Thereafter, GCPs become postmitotic, migrate inward to form the internal granule layer (IGL), further differentiate and form synapses with Purkinje cell dendrites. We previously showed that the Btg family gene, Tis21/Btg2, is required for normal GCP migration. Here we investigated the role in cerebellar development of the related gene, Btg1, which regulates stem cell quiescence in adult neurogenic niches, and is expressed in the cerebellum. Knockout of Btg1 in mice caused a major increase of the proliferation of the GCPs in the EGL, whose thickness increased, remaining hyperplastic even after postnatal day 14, when the EGL is normally reduced to a few GCP layers. This was accompanied by a slight decrease of differentiation and migration of the GCPs and increase of apoptosis. The GCPs of double Btg1/Tis21-null mice presented combined major defects of proliferation and migration outside the EGL, indicating that each gene plays unique and crucial roles in cerebellar development. Remarkably, these developmental defects lead to a permanent increase of the adult cerebellar volume in Btg1-null and double mutant mice, and to impairment in all mutants, including Tis21-null, of the cerebellum-dependent motor coordination. Gain- and loss-of-function strategies in a GCP cell line revealed that Btg1 regulates the proliferation of GCPs selectively through cyclin D1. Thus, Btg1 plays a critical role for cerebellar maturation and function.

  2. Perinatal exposure to low-dose methylmercury induces dysfunction of motor coordination with decreases in synaptophysin expression in the cerebellar granule cells of rats.

    Science.gov (United States)

    Fujimura, Masatake; Cheng, Jinping; Zhao, Wenchang

    2012-06-29

    Methylmercury (MeHg) is an environmental pollutant that is toxic to the developing central nervous system (CNS) in children, even at low exposure levels. Perinatal exposure to MeHg is known to induce neurological symptoms with neuropathological changes in the CNS. However, the relationship between the neurological symptoms and neuropathological changes induced in offspring as a result of exposure to low-dose MeHg is not well defined. In the present study, neurobehavioral analyses revealed that exposure to a low level of MeHg (5 ppm in drinking water) during developmental caused a significant deficit in the motor coordination of rats in the rotating rod test. In contrast, general neuropathological findings, including neuronal cell death and the subsequent nerve inflammation, were not observed in the region of the cerebellum responsible for regulating motor coordination. Surprisingly, the expression of synaptophysin (SPP), a marker protein for synaptic formation, significantly decreased in cerebellar granule cells. These results showed that perinatal exposure to low-dose MeHg causes neurobehavioral impairment without general neuropathological changes in rats. We demonstrated for the first time that exposure to low-dose MeHg during development induces the dysfunction of motor coordination due to changes of synaptic homeostasis in cerebellar granule cells.

  3. A cholinergic-regulated circuit coordinates the maintenance and bi-stable states of a sensory-motor behavior during Caenorhabditis elegans male copulation.

    Directory of Open Access Journals (Sweden)

    Yishi Liu

    2011-03-01

    Full Text Available Penetration of a male copulatory organ into a suitable mate is a conserved and necessary behavioral step for most terrestrial matings; however, the detailed molecular and cellular mechanisms for this distinct social interaction have not been elucidated in any animal. During mating, the Caenorhabditis elegans male cloaca is maintained over the hermaphrodite's vulva as he attempts to insert his copulatory spicules. Rhythmic spicule thrusts cease when insertion is sensed. Circuit components consisting of sensory/motor neurons and sex muscles for these steps have been previously identified, but it was unclear how their outputs are integrated to generate a coordinated behavior pattern. Here, we show that cholinergic signaling between the cloacal sensory/motor neurons and the posterior sex muscles sustains genital contact between the sexes. Simultaneously, via gap junctions, signaling from these muscles is transmitted to the spicule muscles, thus coupling repeated spicule thrusts with vulval contact. To transit from rhythmic to sustained muscle contraction during penetration, the SPC sensory-motor neurons integrate the signal of spicule's position in the vulva with inputs from the hook and cloacal sensilla. The UNC-103 K(+ channel maintains a high excitability threshold in the circuit, so that sustained spicule muscle contraction is not stimulated by fewer inputs. We demonstrate that coordination of sensory inputs and motor outputs used to initiate, maintain, self-monitor, and complete an innate behavior is accomplished via the coupling of a few circuit components.

  4. A new rating scale for negative symptoms: the Motor-Affective-Social Scale.

    Science.gov (United States)

    Trémeau, Fabien; Goggin, Michelle; Antonius, Daniel; Czobor, Pàl; Hill, Vera; Citrome, Leslie

    2008-09-30

    The commonly used rating scales for negative symptoms in schizophrenia have shown good reliability, but disagreement persists regarding both the content definition and the validity of several items. Instead, authors have recommended rating the specific behaviors that are defined as negative symptoms. To surmount these shortcomings, we developed a new rating scale for negative symptoms: the Motor-Affective-Social Scale (MASS). During a 5-minute structured interview, hand coverbal gestures, spontaneous smiles, voluntary smiling, and questions asked by the interviewer were counted and rated on 101 inpatients with a diagnosis of schizophrenia or schizoaffective disorder. Information on social behavior was obtained from nursing staff. The scale consisted of a total of eight items. The MASS showed high internal consistency (Cronbach alpha coefficient=0.81), inter-rater reliability, and test-retest reliability (intra-class correlation coefficient=0.81). Convergent validity analyses showed high correlations between MASS scores and scores on the Scale for the Assessment of Negative Symptom (SANS), and the negative symptoms subscale of the Positive and Negative Syndrome Scale (PANSS). The MASS showed excellent psychometric properties, practicality, and subject tolerability. Future research that includes the use of the MASS with other patient populations and that investigates the scale's sensitivity during clinical trials should be performed. PMID:18722021

  5. Long-term dietary extra-virgin olive oil rich in polyphenols reverses age-related dysfunctions in motor coordination and contextual memory in mice: role of oxidative stress.

    Science.gov (United States)

    Pitozzi, Vanessa; Jacomelli, Michela; Catelan, Dolores; Servili, Maurizio; Taticchi, Agnese; Biggeri, Annibale; Dolara, Piero; Giovannelli, Lisa

    2012-12-01

    The aim of this study was to evaluate the effects of olive oil phenols on brain aging in mice and to verify whether the antioxidant and antiinflammatory activities of these polyphenols were involved. C57Bl/6J mice were fed from middle age to senescence with extra-virgin olive oil (10% wt/wt dry diet) rich in phenols (total polyphenol dose/day, 6 mg/kg). Behavioral tests were employed to assess cognitive, motor, and emotional behavior after 6 or 12 months of treatment. Parameters of oxidative status and inflammation were measured in different brain areas at the same times and evaluated for correlation with behavioral changes. The treatment with olive oil phenols improved contextual memory in the step-down test to levels similar to young animals and prevented the age-related impairment in motor coordination in the rotarod test. This motor effect was correlated with reduced lipid peroxidation in the cerebellum (peffect did not correlate with oxidation or inflammation parameters. In conclusion, this work points out that natural polyphenols contained in extra-virgin olive oil can improve some age-related dysfunctions by differentially affecting different brain areas. Such a modulation can be obtained with an olive oil intake that is normal in the Mediterranean area, provided that the oil has a sufficiently high content of polyphenols. PMID:22950431

  6. Ipsilesional motor-evoked potential absence in pediatric hemiparesis impacts tracking accuracy of the less affected hand.

    Science.gov (United States)

    Cassidy, Jessica M; Carey, James R; Lu, Chiahao; Krach, Linda E; Feyma, Tim; Durfee, William K; Gillick, Bernadette T

    2015-12-01

    This study analyzed the relationship between electrophysiological responses to transcranial magnetic stimulation (TMS), finger tracking accuracy, and volume of neural substrate in children with congenital hemiparesis. Nineteen participants demonstrating an ipsilesional motor-evoked potential (MEP) were compared with eleven participants showing an absent ipsilesional MEP response. Comparisons of finger tracking accuracy from the affected and less affected hands and ipsilesional/contralesional (I/C) volume ratio for the primary motor cortex (M1) and posterior limb of internal capsule (PLIC) were done using two-sample t-tests. Participants showing an ipsilesional MEP response demonstrated superior tracking performance from the less affected hand (p=0.016) and significantly higher I/C volume ratios for M1 (p=0.028) and PLIC (p=0.005) compared to participants without an ipsilesional MEP response. Group differences in finger tracking accuracy from the affected hand were not significant. These results highlight differentiating factors amongst children with congenital hemiparesis showing contrasting MEP responses: less affected hand performance and preserved M1 and PLIC volume. Along with MEP status, these factors pose important clinical implications in pediatric stroke rehabilitation. These findings may also reflect competitive developmental processes associated with the preservation of affected hand function at the expense of some function in the less affected hand. PMID:26426515

  7. Instructional Media Choice: Factors Affecting the Preferences of Distance Education Coordinators

    Science.gov (United States)

    Caspi, Avner; Gorsky, Paul

    2005-01-01

    This article examines the impact of several variables on media choice among 51 distance education course coordinators at the Open University of Israel. Hypotheses were drawn from Media Richness Theory (Daft & Lengel, 1984), Social Influence Theory (Fulk, 1993), Media Symbolism (Trevino, Lengel & Daft, 1987), and Experience Account (King & Xia,…

  8. Management strategies to utilize salt affected soils. Isotopic and conventional research methods. Results of a co-ordinated research programme

    International Nuclear Information System (INIS)

    This document summarizes the results of a co-ordinated research programme on ''The Use of Nuclear Techniques for Improvement of Crop Production in Salt-affected Soils''. It aims at providing scientists experimental evidence of demonstrating technical feasibility of biological amelioration of salt affected soils as an alternative option of using expensive chemical amendments in soil reclamation complementing engineering structures of farm drainage systems or option of leaving the saline areas as barren lands in spite of the fact that arable agricultural lands have exhausted. 68 refs, 26 figs, 32 tabs

  9. Social Requests and Social Affordances: How They Affect the Kinematics of Motor Sequences during Interactions between Conspecifics

    OpenAIRE

    Francesca Ferri; Giovanna Cristina Campione; Riccardo Dalla Volta; Claudia Gianelli; Maurizio Gentilucci

    2011-01-01

    The present study aimed at determining whether and what factors affect the control of motor sequences related to interactions between conspecifics. Experiment 1 demonstrated that during interactions between conspecifics guided by the social intention of feeding, a social affordance was activated, which modified the kinematics of sequences constituted by reaching-grasping and placing. This was relative to the same sequence directed to an inanimate target. Experiments 2 and 4 suggested that the...

  10. Effects of an aqueous extract of Orbignya phalerata Mart on locomotor activity and motor coordination in mice and as antioxidant in vitro.

    Science.gov (United States)

    Silva, A P dos S; Cerqueira, G S; Nunes, L C C; de Freitas, R M

    2012-03-01

    The antioxidant activities of aqueous extract (AE) of Orbignya phalerata were assessed in vitro as well as its effect on locomotor activity and motor coordination in mice. AE does not possesses a strong antioxidant potential according to the scavenging assays; it also did not present scavenger activity in vitro. Following oral administration, AE (1, 2 and 3 g/kg) did not significantly change the motor activity of animals when compared with the control group, up to 24 h after administration and did not alter the remaining time of the animals on the Rota-rod apparatus. Further studies currently in progress will enable us to understand the mechanisms of action of the aqueous extract of Orbignya phalerata widely used in Brazilian flok medicine.

  11. Coordination of cortisol response to social evaluative threat with autonomic and inflammatory responses is moderated by stress appraisals and affect.

    Science.gov (United States)

    Laurent, Heidemarie K; Lucas, Todd; Pierce, Jennifer; Goetz, Stefan; Granger, Douglas A

    2016-07-01

    Recent approaches to stress regulation have emphasized coordination among multiple biological systems. This study builds on evidence that hypothalamic-pituitary-adrenal (HPA) axis activity should be considered in coordination with other stress-sensitive biological systems to characterize healthy responses. Healthy African-Americans (n=115) completed the Trier Social Stress Test, and biological responses were assessed through salivary cortisol, dehydroepiandrosterone-sulfate (DHEA-S), alpha amylase (sAA), and C-reactive protein (sCRP). Multilevel modeling demonstrated that cortisol responses typically aligned with changes in DHEA-S, sAA, and sCRP across the session. At the same time, the degree of cortisol coordination with sAA and sCRP varied by participants' subjective stress following the task; participants with higher secondary stress appraisals showed greater cortisol-sAA alignment, whereas those experiencing more negative affect showed greater cortisol-sCRP alignment. Results highlight the importance of a multisystem approach to stress and suggest that positive HPA axis coordination with the autonomic response, but not with the immune/inflammatory response, may be adaptive.

  12. A Methanol Extract of Brugmansia arborea Affects the Reinforcing and Motor Effects of Morphine and Cocaine in Mice

    Directory of Open Access Journals (Sweden)

    Antonio Bracci

    2013-01-01

    Full Text Available Previous reports have shown that several of the effects of morphine, including the development of tolerance and physical withdrawal symptoms, are reduced by extracts of Brugmansia arborea (L. Lagerheim (Solanaceae (B. arborea. In the present study we evaluate the action of the methanol extract of B. arborea (7.5–60 mg/kg on the motor and reinforcing effects of morphine (20 and 40 mg/kg and cocaine (25 mg/kg using the conditioned place preference (CPP procedure. At the doses employed, B. arborea did not affect motor activity or induce any effect on CPP. The extract partially counteracted morphine-induced motor activity and completely blocked the CPP induced by 20 mg/kg morphine. On the other hand, B. arborea blocked cocaine-induced hyperactivity but did not block cocaine-induced CPP. Reinstatement of extinguished preference with a priming dose of morphine or cocaine was also inhibited by B. arborea. The complex mechanism of action of B. arborea, which affects the dopaminergic and the cholinergic systems, seems to provide a neurobiological substrate for the effects observed. Considered as a whole, these results point to B. arborea as a useful tool for the treatment of morphine or cocaine abuse.

  13. Small vertical changes in jaw relation affect motor unit recruitment in the masseter.

    Science.gov (United States)

    Terebesi, S; Giannakopoulos, N N; Brüstle, F; Hellmann, D; Türp, J C; Schindler, H J

    2016-04-01

    Strategies for recruitment of masseter muscle motor units (MUs), provoked by constant bite force, for different vertical jaw relations have not previously been investigated. The objective of this study was to analyse the effect of small changes in vertical jaw relation on MU recruitment behaviour in different regions of the masseter during feedback-controlled submaximum biting tasks. Twenty healthy subjects (mean age: 24·6 ± 2·4 years) were involved in the investigation. Intra-muscular electromyographic (EMG) activity of the right masseter was recorded in different regions of the muscle. MUs were identified by the use of decomposition software, and root-mean-square (RMS) values were calculated for each experimental condition. Six hundred and eleven decomposed MUs with significantly (P fine-motor skills might be responsible for its excellent functional adaptability and might also explain the successful management of temporomandibular disorder patients by somatic intervention, in particular by the use of oral splints. PMID:26707515

  14. Motor Ability and Weight Status Are Determinants of Out-of-School Activity Participation for Children with Developmental Coordination Disorder

    Science.gov (United States)

    Fong, Shirley S. M.; Lee, Velma Y. L.; Chan, Nerita N. C.; Chan, Rachel S. H.; Chak, Wai-Kwong; Pang, Marco Y. C.

    2011-01-01

    According to the International Classification of Functioning, Disability and Health model endorsed by the World Health Organization, participation in everyday activities is integral to normal child development. However, little is known about the influence of motor ability and weight status on physical activity participation in children with…

  15. The Assessment of Postural Control, Reflex Integration, and Bilateral Motor Coordination of Young Handicapped Children. Final Report.

    Science.gov (United States)

    DeGangi, Georgia; Larsen, Lawrence A.

    A measurement device, Assessment of Sensorimotor Integration in Preschool Children, was developed to assess postural control, reflex integration and bilateral motor integration in developmentally delayed children (3 to 5 years old). The test was administered to 113 normal children and results were compared with data collected on 23 developmentally…

  16. Motor impairments screened by the movement assessment battery for children-2 are related to the visual-perceptual deficits in children with developmental coordination disorder.

    Science.gov (United States)

    Cheng, Chih-Hsiu; Ju, Yan-Ying; Chang, Hsin-Wen; Chen, Chia-Ling; Pei, Yu-Cheng; Tseng, Kevin C; Cheng, Hsin-Yi Kathy

    2014-09-01

    This study was to examine to what extent the motor deficits of children with Developmental Coordination Disorder (DCD) verified by the Movement Assessment Battery for Children-2 (MABC-2) are linked to their visual-perceptual abilities. Seventeen children with DCD and seventeen typically developing children (TD) aged 5-10 years screened from a total of 250 children were recruited. The assessments included MABC-2, traditional test of visual perceptual skills (TVPS-R), and computerized test for sequential coupling of eye and hand as well as motion coherence. The results indicated that children with DCD scored lower than TD in MABC-2, and their total scores were highly correlated with manual dexterity component scores. DCD group also showed poor visual-perceptual abilities in various aspects. The visual discrimination and visual sequential memory from the TVPS-R, the sequential coupling of eye and hand, and the motion coherence demonstrated a moderate or strong correlation with the MABC-2 in the DCD rather than the TD group. It was concluded that the motor problems screened by MABC-2 were significantly related to the visual-perceptual deficits of children with DCD. MABC-2 is suggested to be a prescreening tool to identify the visual-perceptual related motor deficits.

  17. Food-cue affected motor response inhibition and self-reported dieting success: a pictorial affective shifting task

    Directory of Open Access Journals (Sweden)

    Adrian eMeule

    2014-03-01

    Full Text Available Behavioral inhibition is one of the basic facets of executive functioning and is closely related to self-regulation. Impulsive reactions, i.e. low inhibitory control, have been associated with higher body-mass-index (BMI, binge eating, and other problem behaviors (e.g. substance abuse, pathological gambling, etc.. Nevertheless, studies which investigated the direct influence of food-cues on behavioral inhibition have been fairly inconsistent. In the current studies, we investigated food-cue affected behavioral inhibition in young women. For this purpose, we used a go/no-go task with pictorial food and neutral stimuli in which stimulus-response mapping is reversed after every other block (affective shifting task. In study 1, hungry participants showed faster reaction times to and omitted fewer food than neutral targets. Low dieting success and higher BMI were associated with behavioral disinhibition in food relative to neutral blocks. In study 2, both hungry and satiated individuals were investigated. Satiation did not influence overall task performance, but modulated associations of task performance with dieting success and self-reported impulsivity. When satiated, increased food craving during the task was associated with low dieting success, possibly indicating a preload-disinhibition effect following food intake. Food-cues elicited automatic action and approach tendencies regardless of dieting success, self-reported impulsivity, or current hunger levels. Yet, associations between dieting success, impulsivity, and behavioral food-cue responses were modulated by hunger and satiation. Future research investigating clinical samples and including other salient non-food stimuli as control category is warranted.

  18. Drosophila Ten-m and filamin affect motor neuron growth cone guidance.

    Directory of Open Access Journals (Sweden)

    Lihua Zheng

    Full Text Available The Drosophila Ten-m (also called Tenascin-major, or odd Oz (odz gene has been associated with a pair-rule phenotype. We identified and characterized new alleles of Drosophila Ten-m to establish that this gene is not responsible for segmentation defects but rather causes defects in motor neuron axon routing. In Ten-m mutants the inter-segmental nerve (ISN often crosses segment boundaries and fasciculates with the ISN in the adjacent segment. Ten-m is expressed in the central nervous system and epidermal stripes during the stages when the growth cones of the neurons that form the ISN navigate to their targets. Over-expression of Ten-m in epidermal cells also leads to ISN misrouting. We also found that Filamin, an actin binding protein, physically interacts with the Ten-m protein. Mutations in cheerio, which encodes Filamin, cause defects in motor neuron axon routing like those of Ten-m. During embryonic development, the expression of Filamin and Ten-m partially overlap in ectodermal cells. These results suggest that Ten-m and Filamin in epidermal cells might together influence growth cone progression.

  19. Different aliphatic dicarboxylates affected assemble of new coordination polymers constructed from flexible-rigid mixed ligands

    International Nuclear Information System (INIS)

    In this article, seven coordination polymers: [Cd(C5H6O4)(C10H8N2)]n (1), [Zn(C5H6O4)(C10H8N2)]n (2), [Cd(C6H8O4)(C10H8N2)]n (3), {[Mn(C10H8N2)(H2O)4] (C4H4O4).4H2O}n (4), [Mn5(C4H4O4)4(O)]n (5), [Cd(C4H4O4)(C10H8N2)(H2O)]n (6) and [Zn(C6H6O4)(C12H8N2)(H2O)]n (7) were synthesized and characterized by single-crystallographic X-ray diffraction. Compounds 1 and 2 are two-dimensional layers connected by glutarate anions and 4,4'-bpy. Unlike compounds 1 and 2, compound 3 is a two-fold interpenetration network. Compound 4 is a one-dimensional chain-like structure, which is further extended to two-dimensional supramolecular layer structure with hydrogen bond. During the synthesis of compound 4, to our surprise, we got compound 5; compound 5 is an interesting three-dimensional network composed of pentanuclear Mn(II) building units and succinate anions. Compound 6 is also a two-dimensional supramolecular layer structure composed of one-dimensional chain-like structure with hydrogen bonds and Π-Π interactions. Compound 7 is also a one-dimensional chain-like structure, which is further connected with the same kind of interaction to generate two-dimensional supramolecular layer structure. Furthermore, compounds 1 and 2 both exhibit fluorescent property at room temperature. - Graphical abstract: Seven complexes composed by 3D metal ions, aliphatic acid ligand and rigid bidentate nitrogen ligands: 4,4'-bpy, 2,2'-bpy and 1,10'-phen. With the change of the carbon number of the backbone of aliphatic dicarboxylate ligand, we can synthesize different complexes with various structures

  20. A mouse model of non-motor symptoms in Parkinson’s disease: focus on pharmacological interventions targeting affective dysfunctions

    Directory of Open Access Journals (Sweden)

    Alessandra eBonito Oliva

    2014-08-01

    Full Text Available Non-motor symptoms, including psychiatric disorders, are increasingly recognized as a major challenge in the treatment of Parkinson’s disease (PD. These ailments, which often appear in the early stage of the disease, affect a large number of patients and are only partly resolved by conventional antiparkinsonian medications, such as L-DOPA. Here, we investigated non-motor symptoms of PD in a mouse model based on bilateral injection of the toxin 6-hydroxydopamine (6-OHDA in the dorsal striatum. This model presented only subtle gait modifications, which did not affect horizontal motor activity in the open-field test. Bilateral 6-OHDA lesion also impaired olfactory discrimination, in line with the anosmia typically observed in early stage parkinsonism. The effect of 6-OHDA was then examined for mood-related dysfunctions. Lesioned mice showed increased immobility in the forced swim test and tail suspension test, two behavioral paradigms of depression. Moreover, the lesion exerted anxiogenic effects, as shown by reduced time spent in the open arms, in the elevated plus maze test, and by increased thigmotaxis in the open-field test. L-DOPA did not modify depressive- and anxiety-like behaviors, which were instead counteracted by the dopamine D2/D3 receptor agonist, pramipexole. Reboxetine, a noradrenaline reuptake inhibitor, was also able to prevent the depressive and anxiogenic effects produced by the lesion with 6-OHDA. Interestingly, pre-treatment with desipramine prior to injection of 6-OHDA, which is commonly used to preserve noradrenaline neurons, did not modify the effect of the lesion on depressive- and anxiety-like behaviors. Thus, in the present model, mood-related conditions are independent of the reduction of noradrenaline caused by 6-OHDA. Based on these findings we propose that the anti-depressive and anxiolytic action of reboxetine is mediated by promoting dopamine transmission through blockade of dopamine uptake from residual

  1. Adults with motor disabilities and their families: home organization, the affections and work

    Directory of Open Access Journals (Sweden)

    María Pía Venturiello

    2014-12-01

    Full Text Available The aim of this paper is to analyze the perceptions of people with disabilities and their families about the main difficulties in work, family and household organization, according to economic and social aspects. In order to meet this goal, a qualitative methodological approach was developed: 39 people with motor disabilities and 17 families were interviewed. The results indicate that the age when disability occurs, the socioeconomic status and the dependence of people are crucial to overcome the economic marginalization and symbolic discredit. Families provide emotional exchanges and material support for the resolution of daily life, while the emotional health of its members, reproduction materials and projects are modified by the difficulties that society imposes on people considered abnormal.

  2. Impacts of Perinatal Dioxin Exposure on Motor Coordination and Higher Cognitive Development in Vietnamese Preschool Children: A Five-Year Follow-Up.

    Directory of Open Access Journals (Sweden)

    Nghi Ngoc Tran

    Full Text Available Dioxin concentrations remain elevated in the environment and in humans residing near former US Air Force bases in South Vietnam. Our previous epidemiological studies showed adverse effects of dioxin exposure on neurodevelopment for the first 3 years of life. Subsequently, we extended the follow-up period and investigated the influence of perinatal dioxin exposure on neurodevelopment, including motor coordination and higher cognitive ability, in preschool children. Presently, we investigated 176 children in a hot spot of dioxin contamination who were followed up from birth until 5 years old. Perinatal dioxin exposure levels were estimated by measuring dioxin levels in maternal breast milk. Dioxin toxicity was evaluated using two indices; toxic equivalent (TEQ-polychlorinated dibenzo-p-dioxins/furans (PCDDs/Fs and concentration of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD. Coordinated movements, including manual dexterity, aiming and catching, and balance, were assessed using the Movement Assessment Battery for Children, Second Edition (Movement ABC-2. Cognitive ability was assessed using the nonverbal index (NVI of the Kaufman Assessment Battery for Children, Second Edition (KABC-II. In boys, total test and balance scores of Movement ABC-2 were significantly lower in the high TEQ- PCDDs/Fs group compared with the moderate and low exposure groups. NVI scores and the pattern reasoning subscale of the KABC-II indicating planning ability were also significantly lower in the high TCDD exposure group compared with the low exposure group of boys. However, in girls, no significant differences in Movement ABC-2 and KABC-II scores were found among the different TEQ-PCDDs/Fs and TCDD exposure groups. Furthermore, in high risk cases, five boys and one girl highly exposed to TEQ-PCDDs/Fs and TCDD had double the risk for difficulties in both neurodevelopmental skills. These results suggest differential impacts of TEQ-PCDDs/Fs and TCDD exposure on motor

  3. Impacts of Perinatal Dioxin Exposure on Motor Coordination and Higher Cognitive Development in Vietnamese Preschool Children: A Five-Year Follow-Up.

    Science.gov (United States)

    Tran, Nghi Ngoc; Pham, Tai The; Ozawa, Kyoko; Nishijo, Muneko; Nguyen, Anh Thi Nguyet; Tran, Tuong Quy; Hoang, Luong Van; Tran, Anh Hai; Phan, Vu Huy Anh; Nakai, Akio; Nishino, Yoshikazu; Nishijo, Hisao

    2016-01-01

    Dioxin concentrations remain elevated in the environment and in humans residing near former US Air Force bases in South Vietnam. Our previous epidemiological studies showed adverse effects of dioxin exposure on neurodevelopment for the first 3 years of life. Subsequently, we extended the follow-up period and investigated the influence of perinatal dioxin exposure on neurodevelopment, including motor coordination and higher cognitive ability, in preschool children. Presently, we investigated 176 children in a hot spot of dioxin contamination who were followed up from birth until 5 years old. Perinatal dioxin exposure levels were estimated by measuring dioxin levels in maternal breast milk. Dioxin toxicity was evaluated using two indices; toxic equivalent (TEQ)-polychlorinated dibenzo-p-dioxins/furans (PCDDs/Fs) and concentration of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Coordinated movements, including manual dexterity, aiming and catching, and balance, were assessed using the Movement Assessment Battery for Children, Second Edition (Movement ABC-2). Cognitive ability was assessed using the nonverbal index (NVI) of the Kaufman Assessment Battery for Children, Second Edition (KABC-II). In boys, total test and balance scores of Movement ABC-2 were significantly lower in the high TEQ- PCDDs/Fs group compared with the moderate and low exposure groups. NVI scores and the pattern reasoning subscale of the KABC-II indicating planning ability were also significantly lower in the high TCDD exposure group compared with the low exposure group of boys. However, in girls, no significant differences in Movement ABC-2 and KABC-II scores were found among the different TEQ-PCDDs/Fs and TCDD exposure groups. Furthermore, in high risk cases, five boys and one girl highly exposed to TEQ-PCDDs/Fs and TCDD had double the risk for difficulties in both neurodevelopmental skills. These results suggest differential impacts of TEQ-PCDDs/Fs and TCDD exposure on motor coordination and

  4. Differences in movement-related cortical activation patterns underlying motor performance in children with and without developmental coordination disorder

    OpenAIRE

    Pangelinan, Melissa M.; Hatfield, Bradley D.; Clark, Jane E.

    2013-01-01

    Behavioral deficits in visuomotor planning and control exhibited by children with developmental coordination disorder (DCD) have been extensively reported. Although these functional impairments are thought to result from “atypical brain development,” very few studies to date have identified potential neurological mechanisms. To address this knowledge gap, electroencephalography (EEG) was recorded from 6- to 12-yr-old children with and without DCD (n = 14 and 20, respectively) during the perfo...

  5. Fine motor control

    Science.gov (United States)

    ... figure out the child's developmental age. Children develop fine motor skills over time, by practicing and being taught. To have fine motor control, children need: Awareness and planning Coordination ...

  6. Induction of Neuron-Specific Degradation of Coenzyme A Models Pantothenate Kinase-Associated Neurodegeneration by Reducing Motor Coordination in Mice.

    Directory of Open Access Journals (Sweden)

    Stephanie A Shumar

    Full Text Available Pantothenate kinase-associated neurodegeneration, PKAN, is an inherited disorder characterized by progressive impairment in motor coordination and caused by mutations in PANK2, a human gene that encodes one of four pantothenate kinase (PanK isoforms. PanK initiates the synthesis of coenzyme A (CoA, an essential cofactor that plays a key role in energy metabolism and lipid synthesis. Most of the mutations in PANK2 reduce or abolish the activity of the enzyme. This evidence has led to the hypothesis that lower CoA might be the underlying cause of the neurodegeneration in PKAN patients; however, no mouse model of the disease is currently available to investigate the connection between neuronal CoA levels and neurodegeneration. Indeed, genetic and/or dietary manipulations aimed at reducing whole-body CoA synthesis have not produced a desirable PKAN model, and this has greatly hindered the discovery of a treatment for the disease.Cellular CoA levels are tightly regulated by a balance between synthesis and degradation. CoA degradation is catalyzed by two peroxisomal nudix hydrolases, Nudt7 and Nudt19. In this study we sought to reduce neuronal CoA in mice through the alternative approach of increasing Nudt7-mediated CoA degradation. This was achieved by combining the use of an adeno-associated virus-based expression system with the synapsin (Syn promoter. We show that mice with neuronal overexpression of a cytosolic version of Nudt7 (scAAV9-Syn-Nudt7cyt exhibit a significant decrease in brain CoA levels in conjunction with a reduction in motor coordination. These results strongly support the existence of a link between CoA levels and neuronal function and show that scAAV9-Syn-Nudt7cyt mice can be used to model PKAN.

  7. The effects of 8 weeks of motor skill training on cardiorespiratory fitness and endurance performance in children with developmental coordination disorder.

    Science.gov (United States)

    Farhat, Faiçal; Masmoudi, Kaouthar; Hsairi, Ines; Smits-Engelsman, Bouwien C M; Mchirgui, Radhouane; Triki, Chahnez; Moalla, Wassim

    2015-12-01

    Interventions based on everyday motor skills have been developed to be effective in children with developmental coordination disorder (DCD). The purpose of the present study was to examine the effects of motor skill training on exercise tolerance and cardiorespiratory fitness in children with DCD. Children were assigned to 3 groups: an experimental training group comprising 14 children with DCD, a control nontraining group comprising 13 children with DCD, and a control nontraining group comprising 14 typically developed children. All participants were tested twice with an interval of 8-weeks on a cardiopulmonary exercise test, pulmonary function testing, and a 6-min walk test. After the training program the maximal power output was significantly increased for DCD group at anaerobic threshold (p Children with DCD that participated in the training program improved their walking distance (t (13) = -9.08, p developed group did not change on any of the measures. In conclusion, training delayed reaching the anaerobic threshold and improved aerobic endurance and exercise tolerance in children with DCD.

  8. Androgens affect muscle, motor neuron, and survival in a mouse model of SOD1-related amyotrophic lateral sclerosis.

    Science.gov (United States)

    Aggarwal, Tanya; Polanco, Maria J; Scaramuzzino, Chiara; Rocchi, Anna; Milioto, Carmelo; Emionite, Laura; Ognio, Emanuela; Sambataro, Fabio; Galbiati, Mariarita; Poletti, Angelo; Pennuto, Maria

    2014-08-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by selective loss of upper and lower motor neurons and skeletal muscle atrophy. Epidemiologic and experimental evidence suggest the involvement of androgens in ALS pathogenesis, but the mechanism through which androgens modify the ALS phenotype is unknown. Here, we show that androgen ablation by surgical castration extends survival and disease duration of a transgenic mouse model of ALS expressing mutant human SOD1 (hSOD1-G93A). Furthermore, long-term treatment of orchiectomized hSOD1-G93A mice with nandrolone decanoate (ND), an anabolic androgenic steroid, worsened disease manifestations. ND treatment induced muscle fiber hypertrophy but caused motor neuron death. ND negatively affected survival, thereby dissociating skeletal muscle pathology from life span in this ALS mouse model. Interestingly, orchiectomy decreased androgen receptor levels in the spinal cord and muscle, whereas ND treatment had the opposite effect. Notably, stimulation with ND promoted the recruitment of endogenous androgen receptor into biochemical complexes that were insoluble in sodium dodecyl sulfate, a finding consistent with protein aggregation. Overall, our results shed light on the role of androgens as modifiers of ALS pathogenesis via dysregulation of androgen receptor homeostasis.

  9. Manned space flight activities and sensory-motor coordinations; Yujin uchu katsudo tono hito no kankaku undokei

    Energy Technology Data Exchange (ETDEWEB)

    Koga, K. [Nagoya Univ., Nagoya (Japan). Research Inst. of Environmental Medicine

    1996-03-05

    With an objective to elucidate relationship between human functions related to gravity in space and the gravity, simultaneous measurement was carried out on impulsive eyeball motions and antigravity muscles. The measurement used a non-polarized electrode mounted on a prescribed position on skin. The subject is a spacecraft crew who was subjected to an experiment in space in 1992. Data obtained during the flight were analyzed, and the following findings were obtained: the eyeball motions are performed accurately in terms of space and time; potential time relative to the target appearance time showed greater variation than in control conditions on the ground; activities of trapezius muscle as an antigravity muscle were suppressed, and electric discharge from the muscle was small even if the head is moved; the eyeballs move in coordination with the head when viewing an object; microgravity environment showed a head motion with very little muscle discharge possible as in the case where the head is held unmoved; and difference in motion patterns between the antigravity muscles and non-antigravity muscles may exist as a possible cause of spacesickness in addition to the conventional sensory disagreement theory. 32 refs., 6 figs.

  10. Effect Anticipation Affects Perceptual, Cognitive, and Motor Phases of Response Preparation: Evidence from an Event-Related Potential (ERP) Study.

    Science.gov (United States)

    Harrison, Neil R; Ziessler, Michael

    2016-01-01

    The anticipation of action effects is a basic process that can be observed even for key-pressing responses in a stimulus-response paradigm. In Ziessler et al.'s (2012) experiments participants first learned arbitrary effects of key-pressing responses. In the test phase an imperative stimulus determined the response, but participants withheld the response until a Go-stimulus appeared. Reaction times (RTs) were shorter if the Go-stimulus was compatible with the learned response effect. This is strong evidence that effect representations were activated during response planning. Here, we repeated the experiment using event-related potentials (ERPs), and we found that Go-stimulus locked ERPs depended on the compatibility relationship between the Go-stimulus and the response effect. In general, this supports the interpretation of the behavioral data. More specifically, differences in the ERPs between compatible and incompatible Go-stimuli were found for the early perceptual P1 component and the later frontal P2 component. P1 differences were found only in the second half of the experiment and for long stimulus onset asynchronies (SOAs) between imperative stimulus and Go-stimulus, i.e., when the effect was fully anticipated and the perceptual system was prepared for the effect-compatible Go-stimulus. P2 amplitudes, likely associated with evaluation and conflict detection, were larger when Go-stimulus and effect were incompatible; presumably, incompatibility increased the difficulty of effect anticipation. Onset of response-locked lateralized readiness potentials (R-LRPs) occurred earlier under incompatible conditions indicating extended motor processing. Together, these results strongly suggest that effect anticipation affects all (i.e., perceptual, cognitive, and motor) phases of response preparation.

  11. Effect anticipation affects perceptual, cognitive, and motor phases of response preparation: evidence from an event-related potential (ERP study

    Directory of Open Access Journals (Sweden)

    Neil Richard Harrison

    2016-01-01

    Full Text Available The anticipation of action effects is a basic process that can be observed even for key-pressing responses in a stimulus-response paradigm. In Ziessler, Nattkemper and Vogt’s (2012 experiments participants first learned arbitrary effects of key-pressing responses. In the test phase an imperative stimulus determined the response, but participants withheld the response until a Go-stimulus appeared. Reaction times were shorter if the Go-stimulus was compatible with the learned response effect. This is strong evidence that effect representations were activated during response planning. Here we repeated the experiment using event-related potentials (ERPs, and we found that Go-stimulus locked ERPs depended on the compatibility relationship between the Go-stimulus and the response effect. In general, this supports the interpretation of the behavioural data. More specifically, differences in the ERPs between compatible and incompatible Go-stimuli were found for the early perceptual P1 component and the later frontal P2 component. P1 differences were found only in the second half of the experiment and for long SOAs between imperative stimulus and Go-stimulus, i.e. when the effect was fully anticipated and the perceptual system was prepared for the effect-compatible Go-stimulus. P2 amplitudes, likely associated with evaluation and conflict detection, were larger when Go-stimulus and effect were incompatible; presumably, incompatibility increased the difficulty of effect anticipation. Onset of response-locked LRPs occurred earlier under incompatible conditions indicating extended motor processing. Together, these results strongly suggest that effect anticipation affects all (i.e. perceptual, cognitive, and motor phases of response preparation.

  12. Successful Treatment of Phantom Limb Pain by 1 Hz Repetitive Transcranial Magnetic Stimulation Over Affected Supplementary Motor Complex: A Case Report

    Science.gov (United States)

    Lee, Jong-Hoo; Byun, Jeong-Hyun; Choe, Yu-Ri; Lim, Seung-Kyu; Lee, Ka-Young

    2015-01-01

    A 37-year-old man with a right transfemoral amputation suffered from severe phantom limb pain (PLP). After targeting the affected supplementary motor complex (SMC) or primary motor cortex (PMC) using a neuro-navigation system with 800 stimuli of 1 Hz repetitive transcranial magnetic stimulation (rTMS) at 85% of resting motor threshold, the 1 Hz rTMS over SMC dramatically reduced his visual analog scale (VAS) of PLP from 7 to 0. However, the 1 Hz rTMS over PMC failed to reduce pain. To our knowledge, this is the first case report of a successfully treated severe PLP with a low frequency rTMS over SMC in affected hemisphere. PMID:26361601

  13. Successful Treatment of Phantom Limb Pain by 1 Hz Repetitive Transcranial Magnetic Stimulation Over Affected Supplementary Motor Complex: A Case Report.

    Science.gov (United States)

    Lee, Jong-Hoo; Byun, Jeong-Hyun; Choe, Yu-Ri; Lim, Seung-Kyu; Lee, Ka-Young; Choi, In-Sung

    2015-08-01

    A 37-year-old man with a right transfemoral amputation suffered from severe phantom limb pain (PLP). After targeting the affected supplementary motor complex (SMC) or primary motor cortex (PMC) using a neuro-navigation system with 800 stimuli of 1 Hz repetitive transcranial magnetic stimulation (rTMS) at 85% of resting motor threshold, the 1 Hz rTMS over SMC dramatically reduced his visual analog scale (VAS) of PLP from 7 to 0. However, the 1 Hz rTMS over PMC failed to reduce pain. To our knowledge, this is the first case report of a successfully treated severe PLP with a low frequency rTMS over SMC in affected hemisphere. PMID:26361601

  14. Moving attractive virtual agent improves interpersonal coordination stability.

    Science.gov (United States)

    Zhao, Zhong; Salesse, Robin N; Gueugnon, Mathieu; Schmidt, Richard C; Marin, Ludovic; Bardy, Benoît G

    2015-06-01

    Interpersonal motor coordination is influenced not only by biomechanical factors such as coordination pattern, oscillating frequency, and individual differences, but also by psychosocial factor such as likability and social competences. Based on the social stereotype of "what is beautiful is good", the present study aimed at investigating whether people coordinate differently with physically attractive people compared to less attractive people. 34 participants were engaged in an interpersonal coordination task with different looking (virtual) agents while performing at the same time a reaction time task. Results showed that participants had more stable motor coordination with the moving attractive than with the less attractive agent, and that the difference in motor coordination could not be interpreted by a specific attention allocation strategy. Our findings provide the evidence that physical attractiveness genuinely affects how people interact with another person, and that the temporal-spatial coordinated movement varies with the partner's psychosocial characteristics. The study broadens the perspective of exploring the effect of additional psychosocial factors on social motor coordination. PMID:25854798

  15. Moving attractive virtual agent improves interpersonal coordination stability.

    Science.gov (United States)

    Zhao, Zhong; Salesse, Robin N; Gueugnon, Mathieu; Schmidt, Richard C; Marin, Ludovic; Bardy, Benoît G

    2015-06-01

    Interpersonal motor coordination is influenced not only by biomechanical factors such as coordination pattern, oscillating frequency, and individual differences, but also by psychosocial factor such as likability and social competences. Based on the social stereotype of "what is beautiful is good", the present study aimed at investigating whether people coordinate differently with physically attractive people compared to less attractive people. 34 participants were engaged in an interpersonal coordination task with different looking (virtual) agents while performing at the same time a reaction time task. Results showed that participants had more stable motor coordination with the moving attractive than with the less attractive agent, and that the difference in motor coordination could not be interpreted by a specific attention allocation strategy. Our findings provide the evidence that physical attractiveness genuinely affects how people interact with another person, and that the temporal-spatial coordinated movement varies with the partner's psychosocial characteristics. The study broadens the perspective of exploring the effect of additional psychosocial factors on social motor coordination.

  16. An analysis of physiological signals as a measure of task engagement in a multi-limb-coordination motor-learning task.

    Science.gov (United States)

    Murray, Spencer A; Goldfarb, Michael

    2015-01-01

    There is widespread agreement in the physical rehabilitation community that task engagement is essential to effective neuromuscular recovery. Despite this, there are no clear measures of such task engagement. This paper assesses the extent to which certain physiological measurements might provide a measure of task engagement. In previous studies, correlations between mental focus and certain physiological measurements have been observed in subjects performing tasks requiring mental effort. In this study, the authors analyzed whether these signals showed similar correlation when subjects performed a multi-limb-coordination motor-learning task. Subjects played a video game which required the use of both arms and one leg to play a simplified electronic drum set with varying difficulty. Heart rate (HR), skin conductance level (SCL), and facial electromyogram (EMG) were recorded while the subjects played. Analysis of the recordings showed statistically significant correlations relating task difficulty to SCL, HR and EMG amplitude in corrugator supercilii. No statistically significant correlation was observed between task difficulty and EMG in frontalis.

  17. Coordenação motora fina de escolares com dislexia e transtorno do déficit de atenção e hiperatividade Fine motor coordination of students with dyslexia and attention deficit disorder with hiperactivity

    Directory of Open Access Journals (Sweden)

    Paola Matiko Martins Okuda

    2011-10-01

    Full Text Available OBJETIVOS: descrever e comparar o desempenho da coordenação motora fina em escolares com dislexia e com transtorno do déficit de atenção e hiperatividade utilizando parâmetros de desempenho motor e idade cronológica da Escala de Desenvolvimento Motor. MÉTODO: participaram 22 escolaresdo ensino fundamental, de ambos os gêneros, na faixa etária de 6 a 11 anos de idade distribuídos em: GI: 11 escolares com transtorno do déficit de atenção e hiperatividade e GII: 11 com dislexia. Como procedimento, provas de motricidade fina da Escala de Desenvolvimento Motor foram aplicadas. RESULTADOS: os resultados revelaram diferença estatisticamente significante entre a idade motora fina e a idade cronológica de GI e GII. Conforme a classificação da Escala do Desenvolvimento Motor, 90% dos escolares de GI e GII apresentaram desenvolvimento motor fino muito inferior ao esperado para a idade e 10% dos escolares com dislexia apresentam desenvolvimento normal baixo ao esperado para a idade e 10% dos escolares com transtorno do déficit de atenção e hiperatividade apresentaram desenvolvimento inferior ao esperado para a idade. CONCLUSÃO: concluímos que tanto os escolares com dislexia como os com TDAH deste estudo apresentam atrasos na coordenação motora fina, demonstrando que os participantes desta pesquisa apresentam dificuldades em atividades que exijam destreza, quadro característico do transtorno do desenvolvimento da coordenação. Estudos complementares estão sendo conduzidos pelos autores deste estudo para poder verificar e comprovar se o perfil motor fino dos escolares encontrados neste estudo se assemelham ou se diferem de acordo com o quadro apresentado pelos mesmos.PURPOSE: to describe and compare the fine motor coordination performance of students with dyslexia and with Attention Deficit and Hyperactivity Disorder. METHOD: the study included 22 elementary school students of both genders, aged from 6 to 11-year old, divided into

  18. A retrospective study on anthropometrical, physical fitness and motor coordination characteristics that influence drop out, contract status and first-team playing time in high-level soccer players, aged 8 to 18 years.

    Science.gov (United States)

    Deprez, Dieter; Fransen, Job; Lenoir, Matthieu; Philippaerts, Renaat M; Vaeyens, Roel

    2014-12-01

    The goal of this manuscript was twofold and a two-study approach was conducted. The first study aimed to expose the anthropometrical, physical performance and motor coordination characteristics that influence drop out from a high-level soccer training program in players aged 8-16 years. The mixed-longitudinal sample included 388 Belgian youth soccer players who were assigned to either a 'club group' or a 'drop out group'. In the second study, cross-sectional data of anthropometry, physical performance and motor coordination were retrospectively explored to investigate which characteristics influence future contract status (contract vs. no contract group) and first-team playing time for 72 high-level youth soccer players (mean age=16.2 y).Generally, club players outperformed their drop out peers for motor coordination, soccer-specific aerobic endurance and speed. Anthropometry and estimated maturity status did not discriminate between club and drop out players. Contract players jumped further (p=0.011) and had faster times for a 5m sprint (p=0.041) than no contract players. The following prediction equation explains 16.7% of the variance in future playing minutes in adolescent youth male soccer players: -2869.3 + 14.6 * standing broad jump.Practitioners should include the evaluation of motor coordination, aerobic endurance and speed performances to distinguish high-level soccer players further succeeding a talent development program and future drop out players, between 8 and 16 years. From the age of 16 years, measures of explosivity are supportive when selecting players into a future professional soccer career. PMID:25474335

  19. A retrospective study on anthropometrical, physical fitness, and motor coordination characteristics that influence dropout, contract status, and first-team playing time in high-level soccer players aged eight to eighteen years.

    Science.gov (United States)

    Deprez, Dieter N; Fransen, Job; Lenoir, Matthieu; Philippaerts, Renaat M; Vaeyens, Roel

    2015-06-01

    The goal of this article was twofold, and a 2-study approach was conducted. The first study aimed to expose the anthropometrical, physical performance, and motor coordination characteristics that influence dropout from a high-level soccer training program in players aged 8-16 years. The mixed-longitudinal sample included 388 Belgian youth soccer players who were assigned to either a "club group" or a "dropout group." In the second study, cross-sectional data of anthropometry, physical performance, and motor coordination were retrospectively explored to investigate which characteristics influence future contract status (contract vs. no contract group) and first-team playing time for 72 high-level youth soccer players (mean age = 16.2 years). Generally, club players outperformed their dropout peers for motor coordination, soccer-specific aerobic endurance, and speed. Anthropometry and estimated maturity status did not discriminate between club and dropout players. Contract players jumped further (p = 0.011) and had faster times for a 5-m sprint (p = 0.041) than no contract players. The following prediction equation explains 16.7% of the variance in future playing minutes in adolescent youth male soccer players: -2,869.3 + 14.6 × standing broad jump. Practitioners should include the evaluation of motor coordination, aerobic endurance, and speed performances to distinguish high-level soccer players further succeeding a talent development program and future dropout players, between 8 and 16 years. From the age of 16 years, measures of explosivity are supportive when selecting players into a future professional soccer career. PMID:26010800

  20. Factors Affecting Psychosocial and Motor Development in 3-Year-Old Children Who Are Deaf or Hard of Hearing.

    Science.gov (United States)

    Leigh, Greg; Ching, Teresa Y C; Crowe, Kathryn; Cupples, Linda; Marnane, Vivienne; Seeto, Mark

    2015-10-01

    Previous research has shown an association between children's development of psychosocial and motor skills. This study evaluated the development of these skills in 301 three-year-old deaf and hard of hearing children (M: 37.8 months) and considered a range of possible predictors including gender, birth weight, age at first fitting with hearing devices, hearing device used, presence of additional disabilities, severity of hearing loss, maternal education, socio-economic status (SES), language ability, and communication mode. Caregivers reported on children's development using the Child Development Inventory (CDI). On average, both psychosocial and motor development quotients were within the typical range for hearing children, with large individual differences. There was a positive correlation between language ability and both social and motor development, and also between social and motor development. Age at first fitting of hearing aids (as an indicator of age at identification of hearing loss), SES, degree of hearing loss, and maternal education were not significant predictors of social skill or motor development, whereas presence of additional disabilities and birth weight were. Girls performed better than boys on all but the Gross Motor subscale of the CDI. Children with hearing aids tended to perform better than those with cochlear implants on the Gross Motor subscale. PMID:26209447

  1. Difficulty leading interpersonal coordination: Towards an embodied signature of social anxiety disorder

    Directory of Open Access Journals (Sweden)

    Manuel eVarlet

    2014-02-01

    Full Text Available Defined by a persistent fear of embarrassment or negative evaluation while engaged in social interaction or public performance, social anxiety disorder (SAD is one of the most common psychiatric syndromes. Previous research has made a considerable effort to better understand and assess this mental disorder. However, little attention has been paid to social motor behavior of patients with SAD despite its crucial importance in daily social interactions. Previous research has shown that the coordination of arm, head or postural movements of interacting people can reflect their mental states or feelings such as social connectedness and social motives, suggesting that interpersonal movement coordination may be impaired in patients suffering from SAD. The current study was specifically aimed at determining whether SAD affects the dynamics of social motor coordination. We compared the unintentional and intentional rhythmic coordination of a SAD group (19 patients paired with control participants with the rhythmic coordination of a control group (19 control pairs in an interpersonal pendulum coordination task. The results demonstrated that unintentional social motor coordination was preserved with SAD while intentional coordination was impaired. More specifically, intentional coordination became impaired when patients with SAD had to lead the coordination as indicated by poorer (i.e., more variable coordination. These differences between intentional and unintentional coordination as well as between follower and leader roles reveal an impaired coordination dynamics that is specific to SAD, and thus, opens promising research directions to better understand, assess and treat this mental disorder.

  2. A history of low back pain affects pelvis and trunk coordination during a sustained manual materials handling task

    Institute of Scientific and Technical Information of China (English)

    Joseph F. Seay; Shane G. Sauer; Tejash Patel; Tanja C. Roy

    2016-01-01

    Purpose: The purpose of this study was to compare the coordination between the trunk and the pelvis during a sustained asymmetric repetitive lifting task between a group with a history of low back pain (LBP;HBP) and a group with no history of LBP (NBP). Methods: Volunteers lifted a 11-kg box from ankle height in front to a shelf 45° off-center at waist height, and lowered it to the start position at 12 cycles/min for 10 min. Lifting side was alternated during the trial. Continuous relative phase was used to calculate coordination between the pelvis and trunk rotation at the beginning (Min 1), middle (Min 5), and end of the bout (Min 9). Results: While there were no main effects for group, a significant interaction between time and group indicated that, in the frontal plane, the NBP group coordination was more anti-phase toward the end of the bout, with no such differences for the HBP group. Analysis of sagittal-axial (bend and twist) coordination revealed the HBP group coordination was more in-phase at the end of the bout over the entire cycle and for the lifting phase alone, with no such differences for the NBP group. Conclusion: Differences between groups demonstrate residual consequences of LBP in an occupational scenario, even though the HBP group was pain-free for>6 months prior to data collection. More in-phase coordination in the HBP group may represent a coordination pattern analogous to“guarded gait”which has been observed in other studies, and may lend insight as to why these individuals are at increased risk for re-injury.

  3. p53 Regulates the neuronal intrinsic and extrinsic responses affecting the recovery of motor function following spinal cord injury.

    Science.gov (United States)

    Floriddia, Elisa M; Rathore, Khizr I; Tedeschi, Andrea; Quadrato, Giorgia; Wuttke, Anja; Lueckmann, Jan-Matthis; Kigerl, Kristina A; Popovich, Phillip G; Di Giovanni, Simone

    2012-10-01

    Following spinal trauma, the limited physiological axonal sprouting that contributes to partial recovery of function is dependent upon the intrinsic properties of neurons as well as the inhibitory glial environment. The transcription factor p53 is involved in DNA repair, cell cycle, cell survival, and axonal outgrowth, suggesting p53 as key modifier of axonal and glial responses influencing functional recovery following spinal injury. Indeed, in a spinal cord dorsal hemisection injury model, we observed a significant impairment in locomotor recovery in p53(-/-) versus wild-type mice. p53(-/-) spinal cords showed an increased number of activated microglia/macrophages and a larger scar at the lesion site. Loss- and gain-of-function experiments suggested p53 as a direct regulator of microglia/macrophages proliferation. At the axonal level, p53(-/-) mice showed a more pronounced dieback of the corticospinal tract (CST) and a decreased sprouting capacity of both CST and spinal serotoninergic fibers. In vivo expression of p53 in the sensorimotor cortex rescued and enhanced the sprouting potential of the CST in p53(-/-) mice, while, similarly, p53 expression in p53(-/-) cultured cortical neurons rescued a defect in neurite outgrowth, suggesting a direct role for p53 in regulating the intrinsic sprouting ability of CNS neurons. In conclusion, we show that p53 plays an important regulatory role at both extrinsic and intrinsic levels affecting the recovery of motor function following spinal cord injury. Therefore, we propose p53 as a novel potential multilevel therapeutic target for spinal cord injury.

  4. On the Nature of Extraversion: Variation in Conditioned Contextual Activation of Dopamine-Facilitated Affective, Cognitive, and Motor Processes

    Directory of Open Access Journals (Sweden)

    Richard allen Depue

    2013-06-01

    Full Text Available Research supports an association between extraversion and dopamine (DA functioning. DA facilitates incentive motivation and the conditioning and incentive encoding of contexts that predict reward. Therefore, we assessed whether extraversion is related to the efficacy of acquiring conditioned contextual facilitation of three processes that are dependent on DA: motor velocity, positive affect, and visuospatial working memory. We exposed high and low extraverts to three days of association of drug reward (methylphenidate, MP with a particular laboratory context (Paired group, a test day of conditioning, and three days of extinction in the same laboratory. A Placebo group and an Unpaired group (that had MP in a different laboratory context served as controls. Conditioned contextual facilitation was assessed by (i presenting video clips that varied in their pairing with drug and laboratory context and in inherent incentive value, and (ii measuring increases from day 1 to Test day on the three processes above. Results showed acquisition of conditioned contextual facilitation across all measures to video clips that had been paired with drug and laboratory context in the Paired high extraverts, but no conditioning in the Paired low extraverts (nor in either of the control groups. Increases in the Paired high extraverts were correlated across the three measures. Also, conditioned facilitation was evident on the first day of extinction in Paired high extraverts, despite the absence of the unconditioned effects of MP. By the last day of extinction, responding returned to day 1 levels. The findings suggest that extraversion is associated with variation in the acquisition of contexts that predict reward. Over time, this variation may lead to differences in the breadth of networks of conditioned contexts. Thus, individual differences in extraversion may be maintained by activation of differentially encoded central representations of incentive contexts that

  5. Motile properties of the bi-directional kinesin-5 Cin8 are affected by phosphorylation in its motor domain

    Science.gov (United States)

    Shapira, Ofer; Gheber, Larisa

    2016-01-01

    The Saccharomyces cerevisiae kinesin-5 Cin8 performs essential mitotic functions in spindle assembly and anaphase B spindle elongation. Recent work has shown that Cin8 is a bi-directional motor which moves towards the minus-end of microtubules (MTs) under high ionic strength (IS) conditions and changes directionality in low IS conditions and when bound between anti-parallel microtubules. Previous work from our laboratory has also indicated that Cin8 is differentially phosphorylated during late anaphase at cyclin-dependent kinase 1 (Cdk1)-specific sites located in its motor domain. In vivo, such phosphorylation causes Cin8 detachment from spindles and reduces the spindle elongation rate, while maintaining proper spindle morphology. To study the effect of phosphorylation on Cin8 motor function, we examined in vitro motile properties of wild type Cin8, as well as its phosphorylation using phospho-deficient and phospho-mimic variants, in a single molecule fluorescence motility assay. Analysis was performed on whole cell extracts and on purified Cin8 samples. We found that addition of negative charges in the phospho-mimic mutant weakened the MT-motor interaction, increased motor velocity and promoted minus-end-directed motility. These results indicate that phosphorylation in the catalytic domain of Cin8 regulates its motor function. PMID:27216310

  6. Affectivity

    OpenAIRE

    Stenner, Paul; Greco, Monica

    2013-01-01

    The concept of affectivity has assumed central importance in much recent scholarship, and many in the social sciences and humanities now talk of an ‘affective turn’. The concept of affectivity at play in this ‘turn’ remains, however, somewhat vague and slippery. Starting with Silvan Tomkins’ influential theory of affect, this paper will explore the relevance of the general assumptions (or ‘utmost abstractions’) that inform thinking about affectivity. The technological and instrumentalist char...

  7. THE MOTOR ACTIVITY IN THE SECONDARY SCHOOL IN OUR COUNTRY NOT AFFECTED BY THE CURRENT GLOBAL CRISIS

    Directory of Open Access Journals (Sweden)

    Lecturer MARCONI ROBERTO GABRIEL, Phd

    2012-12-01

    Full Text Available In this period of global crisis the motor activity at the level of the secondary school from our country did not stagnate, on the contrary it achieved a special development due to an increase in the number of stu- dents (pupils eager to practice the motor activity, as a result of the improvement of the material equipment with more than 40 simple and complex stadiums of various gymnastics, judo and karate courts, equipped with minifootball, handball, basketball and volleyabll courts. But the most important thing is to provide professionals belonging to the field of physical education within the Universities of Arad up to the present and also in the future.

  8. The effects of black garlic (Allium sativum L.) ethanol extract on the estimated total number of Purkinje cells and motor coordination of male adolescent Wistar rats treated with monosodium glutamate.

    Science.gov (United States)

    Aminuddin, M; Partadiredja, G; Sari, D C R

    2015-03-01

    A number of studies have indicated that monosodium glutamate (MSG) might cause negative effects on the nervous system, including in the cerebellum. Garlic (Allium sativum) has long been known as a flavouring agent and a traditional remedy for various illnesses. The present study aimed at investigating the effects of garlic on the motor coordination and the number of Purkinje cells present in rats treated with MSG. A total of 25 male Wistar rats aged 4 to 5 weeks old were used in this study and were divided into five groups, namely a negative control (C-) group, which received 0.9 % NaCl solution, a positive control (C+) group, which received MSG, and three treated groups, which received 2 mg/g bw of MSG and 2.5 mg (T2.5), 5 mg (T5), or 10 mg (T10) of black garlic solution per oral administration (per 200 g bw), respectively. All treatments were carried out for 10 days. Upon the end of the treatment, the motor performance of all rats were tested using the rotarod apparatus. The rats were subsequently sacrificed, and the cerebella of the rats were processed for stereological analyses. It has been found that the number of Purkinje cells of the cerebella of all treated groups were significantly higher than that of the group treated with MSG only. No changes in motor coordination function were observed as a result of MSG treatment. PMID:24737450

  9. Factors Affecting Psychosocial and Motor Development in 3-Year-Old Children Who Are Deaf or Hard of Hearing

    Science.gov (United States)

    Leigh, Greg; Ching, Teresa Y. C.; Crowe, Kathryn; Cupples, Linda; Marnane, Vivienne; Seeto, Mark

    2015-01-01

    Previous research has shown an association between children's development of psychosocial and motor skills. This study evaluated the development of these skills in 301 three-year-old deaf and hard of hearing children (M: 37.8 months) and considered a range of possible predictors including gender, birth weight, age at first fitting with hearing…

  10. Anxiety affecting parkinsonian outcome and motor efficiency in adults of an Ohio community with environmental airborne manganese exposure.

    Science.gov (United States)

    Manganese (Mn) is a nutrient and neurotoxicant sometimes associated with mood, motor and neurological effects. Reports of health effects from occupational exposure to Mn are well known, but the reported links to environmental airborne Mn (Mn-Air) are less conclusive. Marietta, OH...

  11. Examining functional mechanisms of imitative learning in infancy: does teleological reasoning affect infants' imitation beyond motor resonance?

    Science.gov (United States)

    Paulus, Markus; Hunnius, Sabine; Bekkering, Harold

    2013-10-01

    Recently, researchers have been debating whether infants' selective imitative learning is primarily based on sensorimotor processes (e.g., motor resonance through action perception) or whether inferential processes such as teleological reasoning (i.e., reasoning about the efficiency of others' actions) predominantly explain selective imitation in infancy. The current study directly investigated two different theoretical notions employing the seminal and widely used head touch paradigm. In two conditions, we manipulated whether the action appeared to be efficient while motor resonance was optimized to enhance imitation performance in general. The results showed that infants imitated the target action to the same extent in both conditions irrespective of the action's efficiency. In addition, in both conditions, more infants imitated the head action than in an additional baseline condition or in a condition where the target action was performed by another effector. The results suggest that 14-month-olds do not imitate novel actions according to their apparent efficiency but that motor resonance is an important factor in infants' imitation.

  12. Mice deficient for the close homologue of the neural adhesion cell L1 (CHL1) display alterations in emotional reactivity and motor coordination.

    Science.gov (United States)

    Pratte, M; Rougon, G; Schachner, M; Jamon, M

    2003-12-17

    Motor and cognitive phenotypes were assessed in mice deficient for the close homologue of the L1 adhesion molecule (CHL1). The CHL1-deficient mice displayed signs of decreased stress and a modification of exploratory behaviour. The mice also showed motor impairments on the Rotarod, but they were able to move as fast as controls in the alleys of a T-maze. The observed changes were assumed to be related to a deficit in attention. In addition, gender differences in CHL1 deficits were found and are discussed in view of a possible interaction with other cell adhesion molecules (CAMs) during development. The results are discussed in relation with motor and cognitive deficits in the human, caused by mutations of the distal part of the chromosome 3 which contains the CHL1 orthologue. PMID:14659567

  13. Movement coordination during conversation.

    Science.gov (United States)

    Latif, Nida; Barbosa, Adriano V; Vatikiotis-Bateson, Eric; Vatiokiotis-Bateson, Eric; Castelhano, Monica S; Munhall, K G

    2014-01-01

    Behavioral coordination and synchrony contribute to a common biological mechanism that maintains communication, cooperation and bonding within many social species, such as primates and birds. Similarly, human language and social systems may also be attuned to coordination to facilitate communication and the formation of relationships. Gross similarities in movement patterns and convergence in the acoustic properties of speech have already been demonstrated between interacting individuals. In the present studies, we investigated how coordinated movements contribute to observers' perception of affiliation (friends vs. strangers) between two conversing individuals. We used novel computational methods to quantify motor coordination and demonstrated that individuals familiar with each other coordinated their movements more frequently. Observers used coordination to judge affiliation between conversing pairs but only when the perceptual stimuli were restricted to head and face regions. These results suggest that observed movement coordination in humans might contribute to perceptual decisions based on availability of information to perceivers. PMID:25119189

  14. Movement coordination during conversation.

    Directory of Open Access Journals (Sweden)

    Nida Latif

    Full Text Available Behavioral coordination and synchrony contribute to a common biological mechanism that maintains communication, cooperation and bonding within many social species, such as primates and birds. Similarly, human language and social systems may also be attuned to coordination to facilitate communication and the formation of relationships. Gross similarities in movement patterns and convergence in the acoustic properties of speech have already been demonstrated between interacting individuals. In the present studies, we investigated how coordinated movements contribute to observers' perception of affiliation (friends vs. strangers between two conversing individuals. We used novel computational methods to quantify motor coordination and demonstrated that individuals familiar with each other coordinated their movements more frequently. Observers used coordination to judge affiliation between conversing pairs but only when the perceptual stimuli were restricted to head and face regions. These results suggest that observed movement coordination in humans might contribute to perceptual decisions based on availability of information to perceivers.

  15. Reversed light-dark cycle and cage enrichment effects on ethanol-induced deficits in motor coordination assessed in inbred mouse strains with a compact battery of refined tests.

    Science.gov (United States)

    Munn, Elizabeth; Bunning, Mark; Prada, Sofia; Bohlen, Martin; Crabbe, John C; Wahlsten, Douglas

    2011-10-31

    The laboratory environment existing outside the test situation itself can have a substantial influence on results of some behavioral tests with mice, and the extent of these influences sometimes depends on genotype. For alcohol research, the principal issue is whether genotype-related ethanol effects will themselves be altered by common variations in the lab environment or instead will be essentially the same across a wide range of lab environments. Data from 20 inbred strains were used to reduce an original battery of seven tests of alcohol intoxication to a compact battery of four tests: the balance beam and grip strength with a 1.25 g/kg ethanol dose and the accelerating rotarod and open-field activation tests with 1.75 g/kg. The abbreviated battery was then used to study eight inbred strains housed under a normal or reversed light-dark cycle, or a standard or enriched home cage environment. The light-dark cycle had no discernable effects on any measure of behavior or response to alcohol. Cage enrichment markedly improved motor coordination in most strains. Ethanol-induced motor coordination deficits were robust; the well-documented strain-dependent effects of ethanol were not altered by cage enrichment.

  16. Motor physical therapy affects muscle collagen type I and decreases gait speed in dystrophin-deficient dogs.

    Directory of Open Access Journals (Sweden)

    Thaís P Gaiad

    Full Text Available Golden Retriever Muscular Dystrophy (GRMD is a dystrophin-deficient canine model genetically homologous to Duchenne Muscular Dystrophy (DMD in humans. Muscular fibrosis secondary to cycles of degeneration/regeneration of dystrophic muscle tissue and muscular weakness leads to biomechanical adaptation that impairs the quality of gait. Physical therapy (PT is one of the supportive therapies available for DMD, however, motor PT approaches have controversial recommendations and there is no consensus regarding the type and intensity of physical therapy. In this study we investigated the effect of physical therapy on gait biomechanics and muscular collagen deposition types I and III in dystrophin-deficient dogs. Two dystrophic dogs (treated dogs-TD underwent a PT protocol of active walking exercise, 3×/week, 40 minutes/day, 12 weeks. Two dystrophic control dogs (CD maintained their routine of activities of daily living. At t0 (pre and t1 (post-physical therapy, collagen type I and III were assessed by immunohistochemistry and gait biomechanics were analyzed. Angular displacement of shoulder, elbow, carpal, hip, stifle and tarsal joint and vertical (Fy, mediolateral (Fz and craniocaudal (Fx ground reaction forces (GRF were assessed. Wilcoxon test was used to verify the difference of biomechanical variables between t0 and t1, considering p<.05. Type I collagen of endomysium suffered the influence of PT, as well as gait speed that had decreased from t0 to t1 (p<.000. The PT protocol employed accelerates morphological alterations on dystrophic muscle and promotes a slower velocity of gait. Control dogs which maintained their routine of activities of daily living seem to have found a better balance between movement and preservation of motor function.

  17. Cardiac Arrest-Induced Global Brain Hypoxia-Ischemia during Development Affects Spontaneous Activity Organization in Rat Sensory and Motor Thalamocortical Circuits during Adulthood.

    Science.gov (United States)

    Shoykhet, Michael; Middleton, Jason W

    2016-01-01

    Normal maturation of sensory information processing in the cortex requires patterned synaptic activity during developmentally regulated critical periods. During early development, spontaneous synaptic activity establishes required patterns of synaptic input, and during later development it influences patterns of sensory experience-dependent neuronal firing. Thalamocortical neurons occupy a critical position in regulating the flow of patterned sensory information from the periphery to the cortex. Abnormal thalamocortical inputs may permanently affect the organization and function of cortical neuronal circuits, especially if they occur during a critical developmental window. We examined the effect of cardiac arrest (CA)-associated global brain hypoxia-ischemia in developing rats on spontaneous and evoked firing of somatosensory thalamocortical neurons and on large-scale correlations in the motor thalamocortical circuit. The mean spontaneous and sensory-evoked firing rate activity and variability were higher in CA injured rats. Furthermore, spontaneous and sensory-evoked activity and variability were correlated in uninjured rats, but not correlated in neurons from CA rats. Abnormal activity patterns of ventroposterior medial nucleus (VPm) neurons persisted into adulthood. Additionally, we found that neurons in the entopeduncular nucleus (EPN) in the basal ganglia had lower firing rates yet had higher variability and higher levels of burst firing after injury. Correlated levels of power in local field potentials (LFPs) between the EPN and the motor cortex (MCx) were also disrupted by injury. Our findings indicate that hypoxic-ischemic injury during development leads to abnormal spontaneous and sensory stimulus-evoked input patterns from thalamus to cortex. Abnormal thalamic inputs likely permanently and detrimentally affect the organization of cortical circuitry and processing of sensory information. Hypoxic-ischemic injury also leads to abnormal single neuron and

  18. The effect of a motor skills training program in the improvement of practiced and non-practiced tasks performance in children with developmental coordination disorder (DCD).

    Science.gov (United States)

    Farhat, Faiçal; Hsairi, Ines; Baati, Hamza; Smits-Engelsman, B C M; Masmoudi, Kaouthar; Mchirgui, Radhouane; Triki, Chahnez; Moalla, Wassim

    2016-04-01

    The purpose of the present study was to examine the effect of a group-based task oriented skills training program on motor and physical ability for children with DCD. It was also investigated if there was an effect on fine motor and handwriting tasks that were not specifically practiced during the training program. Forty-one children aged 6-10years took part in this study. Children were assigned to three groups: an experimental training group consisting of 14 children with DCD, a control non-training group consisted of 13 children with DCD and a control non-training group consisting of 14 typically developed children. The measurements included were, the Movement Assessment Battery for Children (MABC), the Modified Agility Test (MAT), the Triple Hop Distance (THD), the 5 Jump-test (5JT) and the Handwriting Performance Test. All measures were administered pre and post an 8-week training program. The results showed that 10 children of the DCD training-group improved their performance in MABC test, attaining a score above the 15th percentile after their participation in the training program. DCD training-group showed a significant improvement on all cluster scores (manual dexterity (t (13)=5.3, pskills (t (13)=2.73, pskills, in the training program, may reflect improvement in motor skill but also transfer to other skills. PMID:26703915

  19. How Hinge Positioning in Cross-Country Ski Bindings Affect Exercise Efficiency, Cycle Characteristics and Muscle Coordination during Submaximal Roller Skiing.

    Directory of Open Access Journals (Sweden)

    Conor M Bolger

    Full Text Available The purposes of the current study were to 1 test if the hinge position in the binding of skating skis has an effect on gross efficiency or cycle characteristics and 2 investigate whether hinge positioning affects synergistic components of the muscle activation in six lower leg muscles. Eleven male skiers performed three 4-min sessions at moderate intensity while cross-country ski-skating and using a klapskate binding. Three different positions were tested for the binding's hinge, ranging from the front of the first distal phalange to the metatarsal-phalangeal joint. Gross efficiency and cycle characteristics were determined, and the electromyographic (EMG signals of six lower limb muscles were collected. EMG signals were wavelet transformed, normalized, joined into a multi-dimensional vector, and submitted to a principle component analysis (PCA. Our results did not reveal any changes to gross efficiency or cycle characteristics when altering the hinge position. However, our EMG analysis found small but significant effects of hinge positioning on muscle coordinative patterns (P < 0.05. The changed patterns in muscle activation are in alignment with previously described mechanisms that explain the effects of hinge positioning in speed-skating klapskates. Finally, the within-subject results of the EMG analysis suggested that in addition to the between-subject effects, further forms of muscle coordination patterns appear to be employed by some, but not all participants.

  20. How Hinge Positioning in Cross-Country Ski Bindings Affect Exercise Efficiency, Cycle Characteristics and Muscle Coordination during Submaximal Roller Skiing.

    Science.gov (United States)

    Bolger, Conor M; Sandbakk, Øyvind; Ettema, Gertjan; Federolf, Peter

    2016-01-01

    The purposes of the current study were to 1) test if the hinge position in the binding of skating skis has an effect on gross efficiency or cycle characteristics and 2) investigate whether hinge positioning affects synergistic components of the muscle activation in six lower leg muscles. Eleven male skiers performed three 4-min sessions at moderate intensity while cross-country ski-skating and using a klapskate binding. Three different positions were tested for the binding's hinge, ranging from the front of the first distal phalange to the metatarsal-phalangeal joint. Gross efficiency and cycle characteristics were determined, and the electromyographic (EMG) signals of six lower limb muscles were collected. EMG signals were wavelet transformed, normalized, joined into a multi-dimensional vector, and submitted to a principle component analysis (PCA). Our results did not reveal any changes to gross efficiency or cycle characteristics when altering the hinge position. However, our EMG analysis found small but significant effects of hinge positioning on muscle coordinative patterns (P < 0.05). The changed patterns in muscle activation are in alignment with previously described mechanisms that explain the effects of hinge positioning in speed-skating klapskates. Finally, the within-subject results of the EMG analysis suggested that in addition to the between-subject effects, further forms of muscle coordination patterns appear to be employed by some, but not all participants.

  1. Cognitive loading affects motor awareness and movement kinematics but not locomotor trajectories during goal-directed walking in a virtual reality environment.

    Directory of Open Access Journals (Sweden)

    Oliver Alan Kannape

    Full Text Available The primary purpose of this study was to investigate the effects of cognitive loading on movement kinematics and trajectory formation during goal-directed walking in a virtual reality (VR environment. The secondary objective was to measure how participants corrected their trajectories for perturbed feedback and how participants' awareness of such perturbations changed under cognitive loading. We asked 14 healthy young adults to walk towards four different target locations in a VR environment while their movements were tracked and played back in real-time on a large projection screen. In 75% of all trials we introduced angular deviations of ±5° to ±30° between the veridical walking trajectory and the visual feedback. Participants performed a second experimental block under cognitive load (serial-7 subtraction, counter-balanced across participants. We measured walking kinematics (joint-angles, velocity profiles and motor performance (end-point-compensation, trajectory-deviations. Motor awareness was determined by asking participants to rate the veracity of the feedback after every trial. In-line with previous findings in natural settings, participants displayed stereotypical walking trajectories in a VR environment. Our results extend these findings as they demonstrate that taxing cognitive resources did not affect trajectory formation and deviations although it interfered with the participants' movement kinematics, in particular walking velocity. Additionally, we report that motor awareness was selectively impaired by the secondary task in trials with high perceptual uncertainty. Compared with data on eye and arm movements our findings lend support to the hypothesis that the central nervous system (CNS uses common mechanisms to govern goal-directed movements, including locomotion. We discuss our results with respect to the use of VR methods in gait control and rehabilitation.

  2. Fipronil promotes motor and behavioral changes in honey bees (Apis mellifera) and affects the development of colonies exposed to sublethal doses.

    Science.gov (United States)

    Zaluski, Rodrigo; Kadri, Samir Moura; Alonso, Diego Peres; Martins Ribolla, Paulo Eduardo; de Oliveira Orsi, Ricardo

    2015-05-01

    Bees play a crucial role in pollination and generate honey and other hive products; therefore, their worldwide decline is cause for concern. New broad-spectrum systemic insecticides such as fipronil can harm bees and their use has been discussed as a potential threat to bees' survival. In the present study, the authors evaluate the in vitro toxicity of fipronil and note behavioral and motor activity changes in Africanized adult Apis mellifera that ingest or come into contact with lethal or sublethal doses of fipronil. The effects of sublethal doses on brood viability, population growth, behavior, and the expression of the defensin 1 gene in adult bees were studied in colonies fed with contaminated sugar syrup (8 µg fipronil L(-1) ). Fipronil is highly toxic to bees triggering agitation, seizures, tremors, and paralysis. Bees that are exposed to a lethal or sublethal doses showed reduced motor activity. The number of eggs that hatched, the area occupied by worker eggs, and the number of larvae and pupae that developed were reduced, adult bees showed lethargy, and colonies were abandoned when they were exposed to sublethal doses of fipronil. No change was seen in the bees' expression of defensin 1. The authors conclude that fipronil is highly toxic to honey bees and even sublethal doses may negatively affect the development and maintenance of colonies.

  3. DEVELOPMENTAL COORDINATION DISORDER IN CHILDREN

    OpenAIRE

    Saeideh MIRAFKHAMI; Seyyed Hossein FAKHRAEE; Sina MIRAFKHAMI; Mojtaba YOUSEFI; Mona VARZANDEH FAR

    2010-01-01

    ObjectiveIn this article, a motor skill disorder called developmental coordination disorder (DCD), that is usually first diagnosed during childhood, is explained and discussed. In the year 1987, DCD was formally recognized as a distinct disorder in children by the American Psychiatric Association  (APA). DCD is a generalized term for the children who have some degrees of impairment in the development of motor coordination and therefore have difficulties with physical skills which significantl...

  4. Disease-specific monoclonal antibodies targeting glutamate decarboxylase impair GABAergic neurotransmission and affect motor learning and behavioral functions

    Directory of Open Access Journals (Sweden)

    Mario U Manto

    2015-03-01

    Full Text Available Autoantibodies to the smaller isoform of glutamate decarboxylase can be found in patients with type 1 diabetes and a number of neurological disorders, including stiff-person syndrome, cerebellar ataxia and limbic encephalitis. The detection of disease-specific autoantibody epitopes led to the hypothesis that distinct glutamate decarboxylase autoantibodies may elicit specific neurological phenotypes. We explored the in vitro/in vivo effects of well-characterized monoclonal glutamate decarboxylase antibodies. We found that glutamate decarboxylase autoantibodies present in patients with stiff person syndrome (n = 7 and cerebellar ataxia (n = 15 recognized an epitope distinct from that recognized by glutamate decarboxylase autoantibodies present in patients with type 1 diabetes mellitus (n = 10 or limbic encephalitis (n = 4. We demonstrated that the administration of a monoclonal glutamate decarboxylase antibody representing this epitope specificity (1 disrupted in vitro the association of glutamate decarboxylase with γ-Aminobutyric acid containing synaptic vesicles, (2 depressed the inhibitory synaptic transmission in cerebellar slices with a gradual time course and a lasting suppressive effect, (3 significantly decreased conditioned eyelid responses evoked in mice, with no modification of learning curves in the classical eyeblink-conditioning task, (4 markedly impaired the facilitatory effect exerted by the premotor cortex over the motor cortex in a paired-pulse stimulation paradigm, and (5 induced decreased exploratory behavior and impaired locomotor function in rats. These findings support the specific targeting of glutamate decarboxylase by its autoantibodies in the pathogenesis of stiff-person syndrome and cerebellar ataxia. Therapies of these disorders based on selective removal of such glutamate decarboxylase antibodies could be envisioned.

  5. Cerebelo: más allá de la coordinación motora Anatomía y conexiones del cerebelo Cerebellum: beyond motor coordination

    Directory of Open Access Journals (Sweden)

    José William Cornejo Ochoa

    2003-02-01

    Full Text Available Siempre se ha reconocido la función que ejerce el cerebelo sobre la motricidad. Sin embargo, en las últimas dos décadas son cada vez más frecuentes los reportes del papel que puede tener esta estructura sobre varias funciones cognitivas como la atención, el aprendizaje y la memoria o sobre algunos síndromes como el autismo. Se revisa la literatura sobre este tópico. The motor function of the cerebellum has ever been recognized. During the last two decades the cerebellum has been implicated in cognitive functions like memory, attention and learning or in syndromes such as the autistic spectrum. These topics are reviewed in this article.

  6. SVPWM of dual three-phase motor based on non-orthogonal coordinate%非正交坐标系下双三相感应电机SVPWM控制策略

    Institute of Scientific and Technical Information of China (English)

    李洪亮; 姜建国

    2014-01-01

    To address the traditional space vector pulse width modulation algorithm of dual three-phase motor which contains a large number of trigonometric functions and finding roots of computing, and the motor stator current contains a large number of harmonic components,combined with dual three-phase mo-tor vector classification, a dual three-phase induction motor space vector pulse width modulation algorithm was proposed in non-orthogonal coordinate system of 120 ° . The maximum and minimum values of given three-phase voltage signals were determined. There is no need to calculate the sector and the role of the fundamental voltage vector time,and it can directly obtain switching time with each phase by summarizing the law. The simulation and experimental results show that compared with conventional dual three-phase SVPWM algorithm, the novel dual three-phase induction motor SVPWM algorithm effectively inhibits the motor stator current harmonics, while greatly reducing the execution time of the algorithm. Stator current harmonic suppression improves motor control performances, and shorten the execution time of the algo-rithm which saves processor resources.%针对传统双三相电机空间矢量脉冲宽度调制( space vector pulse width modulation,SVPWM)算法中含有大量的三角函数和求根运算,且电机定子电流谐波含量大的问题。结合双三相电机的矢量分类技术,在120°的非正交坐标系下提出了一种双三相感应电机的空间矢量脉冲宽度调制算法。判断三相给定电压信号的最大值和最小值,通过总结规律,可直接求得各相开关的切换时刻,无须进行扇区和基本电压矢量作用时间的计算。对仿真和实验结果的分析表明,与传统双三相SVPWM算法相比,所提出的双三相感应电机SVPWM算法可以有效抑制电机定子电流谐波的同时,大大缩短算法执行时间。定子电流谐波的抑制可提高电机控制性能,算法执行时间的缩短将为处理器节约资源。

  7. The kinesin-13 KLP10A motor regulates oocyte spindle length and affects EB1 binding without altering microtubule growth rates

    Directory of Open Access Journals (Sweden)

    Kevin K. Do

    2014-06-01

    Full Text Available Kinesin-13 motors are unusual in that they do not walk along microtubules, but instead diffuse to the ends, where they remove tubulin dimers, regulating microtubule dynamics. Here we show that Drosophila kinesin-13 klp10A regulates oocyte meiosis I spindle length and is haplo-insufficient – KLP10A, reduced by RNAi or a loss-of-function P element insertion mutant, results in elongated and mispositioned oocyte spindles, and abnormal cortical microtubule asters and aggregates. KLP10A knockdown by RNAi does not significantly affect microtubule growth rates in oocyte spindles, but, unexpectedly, EB1 binding and unbinding are slowed, suggesting a previously unobserved role for kinesin-13 in mediating EB1 binding interactions with microtubules. Kinesin-13 may regulate spindle length both by disassembling subunits from microtubule ends and facilitating EB1 binding to plus ends. We also observe an increased number of paused microtubules in klp10A RNAi knockdown spindles, consistent with a reduced frequency of microtubule catastrophes. Overall, our findings indicate that reduced kinesin-13 decreases microtubule disassembly rates and affects EB1 interactions with microtubules, rather than altering microtubule growth rates, causing spindles to elongate and abnormal cortical microtubule asters and aggregates to form.

  8. 注意缺陷多动障碍儿童的运动协调功能%Motor coordination function of attention deficit hyperactivity disorder

    Institute of Scientific and Technical Information of China (English)

    丰雷; 程嘉; 王玉凤

    2007-01-01

    注意缺陷多动障碍(attention deficit hyperactivity disorder,ADHD)是儿童精神科最常见的疾病,与其他障碍或者疾病同时存在的比例非常高,大约2/3的ADHD儿童同时存在其他的精神病性或者发育性障碍,其中发育性协调障碍(development coordination disorder,DCD)是较常见的一种。DCD是一种特殊的发育障碍,其主要特征是运动在协调性方面的明显损害。

  9. Knockdown of Ephrin-A5 Expression by 40% Does not Affect Motor Axon Growth or Migration into the Chick Hindlimb

    Directory of Open Access Journals (Sweden)

    Robert S. Winning

    2011-11-01

    Full Text Available Bidirectional signaling between Eph receptor tyrosine kinases and their cell-surface protein signals, the ephrins, comprises one mechanism for guiding motor axons to their proper targets. During projection of motor axons from the lateral motor column (LMC motor neurons of the spinal cord to the hindlimb muscles in chick embryos, ephrin-A5 has been shown to be expressed in the LMC motor axons until they reach the base of the limb bud and initiate sorting into their presumptive dorsal and ventral nerve trunks, at which point expression is extinguished. We tested the hypothesis that this dynamic pattern of ephrin-A5 expression in LMC motor axons is important for the growth and guidance of the axons to, and into, the hindlimb by knocking down endogenous ephrin-A5 expression in the motor neurons and their axons. No perturbation of LMC motor axon projections was observed in response to this treatment, suggesting that ephrin-A5 is not needed for LMC motor axon growth or guidance.

  10. Factors affecting athletes’ motor behavior after the observation of scenes of cooperation and competition in competitive sport: the effect of sport attitude

    Directory of Open Access Journals (Sweden)

    Elisa eDe Stefani

    2015-10-01

    Full Text Available AbstractAim: This study delineated how observing sports scenes of cooperation or competition modulated an action of interaction, in expert athletes, depending on their specific sport attitude. Method: In a kinematic study, athletes were divided into two groups depending on their attitude towards teammates (cooperative or competitive. Participants observed sport scenes of cooperation and competition (basketball, soccer, water polo, volleyball, and rugby and then they reached for, picked up, and placed an object on the hand of a conspecific (giving action. Mixed-design ANOVAs were carried out on the mean values of grasping-reaching parameters. Results: Data showed that the type of scene observed as well as the athletes’ attitude affected reach-to-grasp actions to give. In particular, the cooperative athletes were speeded during reach-to-grasp movements when they observed scenes of cooperation compared to when they observed scenes of competition. Discussion: Participants were speeded when executing a giving action after observing actions of cooperation. This occurred only when they had a cooperative attitude. A match between attitude and intended action seems to be a necessary prerequisite for observing an effect of the observed type of scene on the performed action. It is possible that the observation of scenes of competition activated motor strategies which interfered with the strategies adopted by the cooperative participants to execute a cooperative (giving sequence.

  11. Effect of muscular fatigue on fractal upper limb coordination dynamics and muscle synergies.

    Science.gov (United States)

    Bueno, Diana R; Lizano, J M; Montano, L

    2015-08-01

    Rehabilitation exercises cause fatigue because tasks are repetitive. Therefore, inevitable human motion performance changes occur during the therapy. Although traditionally fatigue is considered an event that occurs in the musculoskeletal level, this paper studies whether fatigue can be regarded as context that influences lower-dimensional motor control organization and coordination at neural level. Non Negative Factorization Matrix (NNFM) and Detrended Fluctuations Analysis (DFA) are the tools used to analyze the changes in the coordination of motor function when someone is affected by fatigue. The study establishes that synergies remain fairly stable with the onset of fatigue, but the fatigue affects the dynamical coordination understood as a cognitive process. These results have been validated with 9 healthy subjects for three representative exercises for upper limb: biceps, triceps and deltoid. PMID:26737679

  12. Action perception in individuals with congenital blindness or deafness: how does the loss of a sensory modality from birth affect perception-induced motor facilitation?

    Science.gov (United States)

    Alaerts, Kaat; Swinnen, Stephan P; Wenderoth, Nicole

    2011-05-01

    Seeing or hearing manual actions activates the mirror neuron system, that is, specialized neurons within motor areas which fire when an action is performed but also when it is passively perceived. Using TMS, it was shown that motor cortex of typically developed subjects becomes facilitated not only from seeing others' actions, but also from merely hearing action-related sounds. In the present study, TMS was used for the first time to explore the "auditory" and "visual" responsiveness of motor cortex in individuals with congenital blindness or deafness. TMS was applied over left primary motor cortex (M1) to measure cortico-motor facilitation while subjects passively perceived manual actions (either visually or aurally). Although largely unexpected, congenitally blind or deaf subjects displayed substantially lower resonant motor facilitation upon action perception compared to seeing/hearing control subjects. Moreover, muscle-specific changes in cortico-motor excitability within M1 appeared to be absent in individuals with profound blindness or deafness. Overall, these findings strongly argue against the hypothesis that an increased reliance on the remaining sensory modality in blind or deaf subjects is accompanied by an increased responsiveness of the "auditory" or "visual" perceptual-motor "mirror" system, respectively. Moreover, the apparent lack of resonant motor facilitation for the blind and deaf subjects may challenge the hypothesis of a unitary mirror system underlying human action recognition and may suggest that action perception in blind and deaf subjects engages a mode of action processing that is different from the human action recognition system recruited in typically developed subjects.

  13. The mRNA expression and histological integrity in rat forebrain motor and sensory regions are minimally affected by acrylamide exposure through drinking water

    International Nuclear Information System (INIS)

    A study was undertaken to determine whether alterations in the gene expression or overt histological signs of neurotoxicity in selected regions of the forebrain might occur from acrylamide exposure via drinking water. Gene expression at the mRNA level was evaluated by cDNA array and/or RT-PCR analysis in the striatum, substantia nigra and parietal cortex of rat after a 2-week acrylamide exposure. The highest dose tested (maximally tolerated) of approximately 44 mg/kg/day resulted in a significant decreased body weight, sluggishness, and locomotor activity reduction. These physiological effects were not accompanied by prominent changes in gene expression in the forebrain. All the expression changes seen in the 1200 genes that were evaluated in the three brain regions were ≤ 1.5-fold, and most not significant. Very few, if any, statistically significant changes were seen in mRNA levels of the more than 50 genes directly related to the cholinergic, noradrenergic, GABAergic or glutamatergic neurotransmitter systems in the striatum, substantia nigra or parietal cortex. All the expression changes observed in genes related to dopaminergic function were less than 1.5-fold and not statistically significant and the 5HT1b receptor was the only serotonin-related gene affected. Therefore, gene expression changes were few and modest in basal ganglia and sensory cortex at a time when the behavioral manifestations of acrylamide toxicity had become prominent. No histological evidence of axonal, dendritic or neuronal cell body damage was found in the forebrain due to the acrylamide exposure. As well, microglial activation was not present. These findings are consistent with the absence of expression changes in genes related to changes in neuroinflammation or neurotoxicity. Over all, these data suggest that oral ingestion of acrylamide in drinking water or food, even at maximally tolerable levels, induced neither marked changes in gene expression nor neurotoxicity in the motor and

  14. Cross-sensory transfer of sensory-motor information: visuomotor learning affects performance on an audiomotor task, using sensory-substitution

    OpenAIRE

    Shelly Levy-Tzedek; Itai Novick; Roni Arbel; Sami Abboud; Shachar Maidenbaum; Eilon Vaadia; Amir Amedi

    2012-01-01

    Visual-to-auditory sensory-substitution devices allow users to perceive a visual image using sound. Using a motor-learning task, we found that new sensory-motor information was generalized across sensory modalities. We imposed a rotation when participants reached to visual targets, and found that not only seeing, but also hearing the location of targets via a sensory-substitution device resulted in biased movements. When the rotation was removed, aftereffects occurred whether the location of ...

  15. Cognition and behavior in motor neuron disease

    OpenAIRE

    Raaphorst, J.

    2015-01-01

    Motor neuron disease (MND) is a devastating neurodegenerative disorder characterized by progressive motor neuron loss, leading to weakness of the muscles of arms and legs, bulbar and respiratory muscles. Depending on the involvement of the lower and the upper motor neuron, amyotrophic lateral sclerosis (ALS; both lower and upper motor neuron affected) and progressive muscular atrophy (PMA; only lower motor neuron affected) are recognized. There is no cure, despite numerous pharmaceutical tria...

  16. Is there a link between sensorimotor coordination and inter-manual coordination? Differential effects of auditory and/or visual rhythmic stimulations.

    Science.gov (United States)

    Blais, Mélody; Albaret, Jean-Michel; Tallet, Jessica

    2015-11-01

    The purpose of this study was to test how the sensory modality of rhythmic stimuli affects the production of bimanual coordination patterns. To this aim, participants had to synchronize the taps of their two index fingers with auditory and visual stimuli presented separately (auditory or visual) or simultaneously (audio-visual). This kind of task requires two levels of coordination: (1) sensorimotor coordination, which can be measured by the mean asynchrony between the beat of the stimulus and the corresponding tap and by mean asynchrony stability, and (2) inter-manual coordination, which can be assessed by the accuracy and stability of the relative phase between the right-hand and left-hand taps. Previous studies show that sensorimotor coordination is better during the synchronization with auditory or audio-visual metronomes than with visual metronome, but it is not known whether inter-manual coordination is affected by stimulation modalities. To answer this question, 13 participants were required to tap their index fingers in synchrony with the beat of auditory and/or visual stimuli specifying three coordination patterns: two preferred inphase and antiphase patterns and a non-preferred intermediate pattern. A first main result demonstrated that inphase tapping had the best inter-manual stability, but the worst asynchrony stability. The second main finding revealed that for all patterns, audio-visual stimulation improved the stability of sensorimotor coordination but not of inter-manual coordination. The combination of visual and auditory modalities results in multisensory integration, which improves sensorimotor coordination but not inter-manual coordination. Both results suggest that there is dissociation between processes underlying sensorimotor synchronization (anticipation or reactivity) and processes underlying inter-manual coordination (motor control). This finding opens new perspectives to evaluate separately the possible sensorimotor and inter

  17. TECHNICAL COORDINATION

    CERN Multimedia

    A. Ball and W. Zeuner

    2011-01-01

    In this report we will review the main achievements of the Technical Stop and the progress of several centrally-managed projects to support CMS operation and maintenance and prepare the way for upgrades. Overview of the extended Technical Stop  The principal objectives of the extended Technical Stop affecting the detector itself were the installation of the TOTEM T1 telescopes on both ends, the readjustment of the alignment link-disk in YE-2, the replacement of the light-guide sleeves for all PMs of both HFs, and some repairs on TOTEM T2 and CASTOR. The most significant tasks were, however, concentrated on the supporting infrastructure. A detailed line-by-line leak search was performed in the C6F14 cooling system of the Tracker, followed by the installation of variable-frequency drives on the pump motors of the SS1 and SS2 tracker cooling plants to reduce pressure transients during start-up. In the electrical system, larger harmonic filters were installed in ...

  18. Dyspraxia, motor function and visual-motor integration in autism.

    Science.gov (United States)

    Miller, M; Chukoskie, L; Zinni, M; Townsend, J; Trauner, D

    2014-08-01

    This project assessed dyspraxia in high-functioning school aged children with autism with a focus on Ideational Praxis. We examined the association of specific underlying motor function including eye movement with ideational dyspraxia (sequences of skilled movements) as well as the possible role of visual-motor integration in dyspraxia. We found that compared to IQ-, sex- and age-matched typically developing children, the children with autism performed significantly worse on: Ideational and Buccofacial praxis; a broad range of motor tests, including measures of simple motor skill, timing and accuracy of saccadic eye movements and motor coordination; and tests of visual-motor integration. Impairments in individual children with autism were heterogeneous in nature, although when we examined the praxis data as a function of a qualitative measure representing motor timing, we found that children with poor motor timing performed worse on all praxis categories and had slower and less accurate eye movements while those with regular timing performed as well as typical children on those same tasks. Our data provide evidence that both motor function and visual-motor integration contribute to dyspraxia. We suggest that dyspraxia in autism involves cerebellar mechanisms of movement control and the integration of these mechanisms with cortical networks implicated in praxis. PMID:24742861

  19. Congenital ocular motor apraxia

    OpenAIRE

    Carrasquinho, S; Teixeira, S.; Cadete, A; Bernardo, M.; Pêgo, P; Prieto, I.

    2008-01-01

    PURPOSE: Congenital ocular motor apraxia is a rare disease characterized by defective or absent voluntary and optically induced horizontal saccadic movements. Jerky head movements or thrusts on attempted lateral gaze are a compensatory sign. Most affected children have delayed motor and speech development. Cases associated with systemic diseases, neurologic maldevelopment, metabolic deficits, and chromosomal abnormalities have been described. METHODS: Case report and review of the scienti...

  20. Advanced AC Motor Control

    Energy Technology Data Exchange (ETDEWEB)

    Kazmierkowski, M.P. [Institute of Control and Industrial Electronics, Warsaw University of Technology, Warszawa (Poland)

    1997-12-31

    In this paper a review of control methods for high performance PWM inverter-fed induction motor drives is presented. Starting from the description of an induction motor by the help of the space vectors, three basic control strategic are discussed. As first, the most popular Field Oriented Control (FOC) is described. Secondly, the Direct Torque and Flux vector Control (DTFC) method, which - in contrast to FOC - depart from idea of coordinate transformation and analogy with DC motor, is briefly characterized. The last group is based on Feedback Linearization Control (FLC) and can be easy combined with sliding mode control. The simulation and experimental oscillograms that illustrate the performance of the discussed control strategies are shown. (orig.) 35 refs.

  1. [For a coordination of the supportive care for people affected by severe illnesses: proposition of organization in the public and private health care centres].

    Science.gov (United States)

    Krakowski, Ivan; Boureau, François; Bugat, Roland; Chassignol, Laurent; Colombat, Philippe; Copel, Laure; d'Hérouville, Daniel; Filbet, Marylène; Laurent, Bernard; Memran, Nadine; Meynadier, Jacques; Parmentier, Gérard; Poulain, Philippe; Saltel, Pierre; Serin, Daniel; Wagner, Jean-Philippe

    2004-05-01

    The concept of continuous and global care is acknowledged today by all as inherent to modern medicine. A working group gathered to propose models for the coordination of supportive care for all severe illnesses in the various private and public health care centres. The supportive care are defined as: "all care and supports necessary for ill people, at the same time as specific treatments, along all severe illnesses". This definition is inspired by that of "supportive care" given in 1990 by the MASCC (Multinational Association for Supportive Care in Cancer): "The total medical, nursing and psychosocial help which the patients need besides the specific treatment". It integrates as much the field of cure with possible after-effects as that of palliative care, the definition of which is clarified (initial and terminal palliative phases). Such a coordination is justified by the pluridisciplinarity and hyperspecialisation of the professionals, by a poor communication between the teams, by the administrative difficulties encountered by the teams participating in the supportive care. The working group insists on the fact that the supportive care is not a new speciality. He proposes the creation of units. departments or pole of responsibility of supportive care with a "basic coordination" involving the activities of chronic pain, palliative care, psycho-oncology, and social care. This coordination can be extended, according to the "history" and missions of health care centres. Service done with the implementation of a "unique counter" for the patients and the teams is an important point. The structure has to comply with the terms and conditions of contract (Consultation, Unit or Centre of chronic pain, structures of palliative care, of psycho-oncology, of nutrition, of social care). A common technical organization is one of the interests. The structure has to set up strong links with the private practitioners, the networks, the home medical care (HAD) and the nurses

  2. [For a coordination of the supportive care for people affected by severe illnesses: proposition of organization in the public and private health care centres].

    Science.gov (United States)

    Krakowski, Ivan; Boureau, François; Bugat, Roland; Chassignol, Laurent; Colombat, Philippe; Copel, Laure; d'Hérouville, Daniel; Filbet, Marylène; Laurent, Bernard; Memran, Nadine; Meynadier, Jacques; Parmentier, Gérard; Poulain, Philippe; Saltel, Pierre; Serin, Daniel; Wagner, Jean-Philippe

    2004-05-01

    The concept of continuous and global care is acknowledged today by all as inherent to modern medicine. A working group gathered to propose models for the coordination of supportive care for all severe illnesses in the various private and public health care centres. The supportive care are defined as: "all care and supports necessary for ill people, at the same time as specific treatments, along all severe illnesses". This definition is inspired by that of "supportive care" given in 1990 by the MASCC (Multinational Association for Supportive Care in Cancer): "The total medical, nursing and psychosocial help which the patients need besides the specific treatment". It integrates as much the field of cure with possible after-effects as that of palliative care, the definition of which is clarified (initial and terminal palliative phases). Such a coordination is justified by the pluridisciplinarity and hyperspecialisation of the professionals, by a poor communication between the teams, by the administrative difficulties encountered by the teams participating in the supportive care. The working group insists on the fact that the supportive care is not a new speciality. He proposes the creation of units. departments or pole of responsibility of supportive care with a "basic coordination" involving the activities of chronic pain, palliative care, psycho-oncology, and social care. This coordination can be extended, according to the "history" and missions of health care centres. Service done with the implementation of a "unique counter" for the patients and the teams is an important point. The structure has to comply with the terms and conditions of contract (Consultation, Unit or Centre of chronic pain, structures of palliative care, of psycho-oncology, of nutrition, of social care). A common technical organization is one of the interests. The structure has to set up strong links with the private practitioners, the networks, the home medical care (HAD) and the nurses

  3. 儿童发育性运动协调障碍与婴幼儿期动作发育的关联性%Relationship between developmental coordination disorder and infant and toddler motor development

    Institute of Scientific and Technical Information of China (English)

    秦志强; 花静; 张郦君; 金华; 古桂雄

    2011-01-01

    [目的]研究发育性运动协调障碍(developmental coordination disorder,DCD)儿童婴幼儿期的动作发育情况,为DCD的早期诊断提供线索. [方法]采用儿童发育协调障碍评估工具(Movement Assessment Battery for Children,M-ABC),在苏州市新区和园区的8所幼儿园中筛查出117例DCD儿童为病例组,随即抽取正常儿童351例为对照组,对两组儿童进行儿童健康状况调查问卷及儿童发育家庭环境问卷调查,运用单因素和多因素非条件Logistic回归模型对结果进行统计分析. [结果]在控制了儿童性别、年龄后,病例组能独立坐起时间大于8个月(aOR=2.737,95%CI为1.007,7.440),开始独立行走时间大于15个月(aOR=2.632,95%CI为1.153,6.005),均晚于正常儿童,且有统计学意义. [结论]独立坐起和独立行走时间推迟可能是婴幼儿期DCD的危险因素.%[Objective] To study the motor development in children with developmental coordination disorder(DCD) during their infant and toddler's age in order to help early diagnose of DCD. [Methods] Movement Assessment Battery for Children(M-ABC) was used to pick up 117 children with DCD in 8 kindergartens in Suzhou city as DCD group, and 351 children were randomly selected in normal children as the control group. The children's health questionnaire and the developmental family questionnaire were filled by all the families, and the results were analyzed by univariate and multivariable unconditional logistic regression model. [Results] When children's gender and age were adjusted, the beginning time of independent sit and walk in DCD children was later than 8 months old(aOR = 2. 737,95%CI 1. 007, 7. 440), and 15 months old (aOR = 2. 632,95%CI 1.153, 6. 005) respectively. [Conclusions] The postpone of independent sit and walk in infant and toddler's age may play an important role in early diagnose of DCD.

  4. A hopping mechanism for cargo transport by molecular motors in crowded microtubules

    CERN Document Server

    Goldman, Carla

    2010-01-01

    Most models designed to study the bidirectional movement of cargos as they are driven by molecular motors rely on the idea that motors of different polarities can be coordinated by external agents if arranged into a motor-cargo complex to perform the necessary work [gross04]. Although these models have provided us with important insights into these phenomena, there are still many unanswered questions regarding the mechanisms through which the movement of the complex takes place on crowded microtubules. For example (i) how does cargo-binding affect motor motility? and in connection with that - (ii) how does the presence of other motors (and also other cargos) on the microtubule affect the motility of the motor-cargo complex? We discuss these questions from a different perspective. The movement of a cargo is conceived here as a hopping process resulting from the transference of cargo between neighboring motors. In the light of this, we examine the conditions under which cargo might display bidirectional movemen...

  5. Poisson Coordinates.

    Science.gov (United States)

    Li, Xian-Ying; Hu, Shi-Min

    2013-02-01

    Harmonic functions are the critical points of a Dirichlet energy functional, the linear projections of conformal maps. They play an important role in computer graphics, particularly for gradient-domain image processing and shape-preserving geometric computation. We propose Poisson coordinates, a novel transfinite interpolation scheme based on the Poisson integral formula, as a rapid way to estimate a harmonic function on a certain domain with desired boundary values. Poisson coordinates are an extension of the Mean Value coordinates (MVCs) which inherit their linear precision, smoothness, and kernel positivity. We give explicit formulas for Poisson coordinates in both continuous and 2D discrete forms. Superior to MVCs, Poisson coordinates are proved to be pseudoharmonic (i.e., they reproduce harmonic functions on n-dimensional balls). Our experimental results show that Poisson coordinates have lower Dirichlet energies than MVCs on a number of typical 2D domains (particularly convex domains). As well as presenting a formula, our approach provides useful insights for further studies on coordinates-based interpolation and fast estimation of harmonic functions.

  6. Individualistic Aptitude and Biofeedback on Improvement of Coordination in Young Athletes

    Directory of Open Access Journals (Sweden)

    Saha Srilekha

    2015-01-01

    Full Text Available Sports cognition encompasses the primary affective-motivational aspect related to primordial fight-or flight responses, which are essentially the precursors for both the BAS (behavioural activation system - the reward system and BIS (behavioural inhibition system- the punishment or fear-eliciting system. In Asian and especially South-Asian perspective, impulsivity and aggressive out-bursts are by and large considered as conduct disorders, thus more acceptable docile tendency in children and pre-adolescent lead them to a cognitive-motivational make-up of BIS orientation. With such a background the present study was carried out to identify the extent of cognitive-affective competence of the skilled competitive players in enhancing bilateral motor coordination required for high sport performance. Eighty-one high performing female ball game players matched with their performance-specific motor coordination ability, were categorised into three differential groups based on their psychobiological competence, viz; Group A- consisted of twenty-seven players diagnosed with moderate level of sympathovagal balance; Group B (N = 27 – consisted of twenty-seven players diagnosed with discordant sympathovagal balance, while Group C (n = 27 were identified as having high sympathovagal balance. Thereafter, players of Group B & C were introduced to training of skin-conductance biofeedback tailored for musculoskeletal enhancement (20 min.s/ day; three days/ week for twelve weeks. Mid-term analyses of motor coordination as well as the post-intervention analyses (carried out after the twelfth week revealed that players having higher sympathovagal balance had higher efficiency in modulation of muscle tension as well as in perceptual –motor adaptation, which have prompted them to have enhanced bilateral and visual-motor coordination compared to their counterparts.

  7. Motor neglect.

    OpenAIRE

    Laplane, D.; Degos, J D

    1983-01-01

    Motor neglect is characterised by an underutilisation of one side, without defects of strength, reflexes or sensibility. Twenty cases of frontal, parietal and thalamic lesions causing motor neglect, but all without sensory neglect, are reported. It is proposed that the cerebral structures involved in motor neglect are the same as those for sensory neglect and for the preparation of movement. As in sensory neglect, the multiplicity of the structures concerned suggests that this interconnection...

  8. Practically Coordinating

    OpenAIRE

    Durfee, Edmund H.

    1999-01-01

    To coordinate, intelligent agents might need to know something about themselves, about each other, about how others view themselves and others, about how others think others view themselves and others, and so on. Taken to an extreme, the amount of knowledge an agent might possess to coordinate its interactions with others might outstrip the agent's limited reasoning capacity (its available time, memory, and so on). Much of the work in studying and building multiagent systems has thus been dev...

  9. Mutation of the MAP kinase DYF-5 affects docking and undocking of kinesin-2 motors and reduces their speed in the cilia of Caenorhabditis elegans

    OpenAIRE

    Burghoorn, Jan; Dekkers, Martijn P. J.; Rademakers, Suzanne; De Jong, Ton; Willemsen, Rob; Jansen, Gert

    2007-01-01

    In the cilia of the nematode Caenorhabditis elegans, anterograde intraflagellar transport (IFT) is mediated by two kinesin-2 complexes, kinesin II and OSM-3 kinesin. These complexes function together in the cilia middle segments, whereas OSM-3 alone mediates transport in the distal segments. Not much is known about the mechanisms that compartmentalize the kinesin-2 complexes or how transport by both kinesins is coordinated. Here, we identify DYF-5, a conserved MAP kinase that plays a role in ...

  10. Perception and action influences on discrete and reciprocal bimanual coordination.

    Science.gov (United States)

    Shea, Charles H; Buchanan, John J; Kennedy, Deanna M

    2016-04-01

    For nearly four decades bimanual coordination, "a prototype of complex motor skills" and apparent "window into the design of the brain," has been intensively studied. Past research has focused on describing and modeling the constraints that allow the production of some coordination patterns while limiting effective performance of other bimanual coordination patterns. More recently researchers have identified a coalition of perception-action constraints that hinder the effective production of bimanual skills. The result has been that given specially designed contexts where one or more of these constraints are minimized, bimanual skills once thought difficult, if not impossible, to effectively produce without very extensive practice can be executed effectively with little or no practice. The challenge is to understand how these contextual constraints interact to allow or inhibit the production of complex bimanual coordination skills. In addition, the factors affecting the stability of bimanual coordination tasks needs to be re-conceptualized in terms of perception-related constraints arising from the environmental context in which performance is conducted and action constraints resident in the neuromotor system.

  11. 基于坐标变换的无轴承异步电机转子振动前馈补偿控制%Rotor vibration feedforward compensation control in bearingless induction motor based on coordinate transformation

    Institute of Scientific and Technical Information of China (English)

    杨泽斌; 董大伟; 孙晓东; 金仁; 余佩玉

    2016-01-01

    为解决无轴承异步电机在高速运行时由机械不平衡引起的转子质量偏心问题,设计一种基于坐标变换的转子振动前馈补偿控制系统。该系统利用旋转坐标变换从位移信号中提取出振动信号,加在原有的径向悬浮力控制系统中,构成1个前馈补偿器,使得控制器给定径向悬浮力信号中同期成分控制力增大,并加大径向悬浮力控制系统对振动信号的刚度,从而强迫转子围绕其几何中心轴旋转,实现转子的振动抑制。研究结果表明:当转速为6000 r/min时,仿真补偿后转子振动峰−峰值约为11µm,表明该补偿控制策略能很好地抑制悬浮转子的振动,提高转子旋转精度。该前馈补偿控制方法能够将转子径向位移峰−峰值范围控制在40μm以内,验证了所提方法的正确性与有效性。%To solve the rotor mass eccentric problem caused by mechanical imbalance for the bearingless induction motor at high speed, a rotor vibration feedforward compensation control system was designed based on coordinate transformation. The vibration signal was extracted from the displacement signal by rotating coordinatetransformation and was added to the original radial suspension force control system. Then, a feedforward compensator was formed, which increased the given period radial suspension force component control signal and amplified the stiffness of the vibration signal of the radial suspension force control system.Therotor vibration was suppressed by forcing the rotor rotating aroundits geometric centeraxis. Theresults show that the compensated rotor vibration peak to peak valuein simulationis about 11µm at the speed of 6000r/min. The vibration of suspension rotor can be effectively restrained and the precision of rotor is improved in this controlstrategy.The presentedfeedforwardcompensation control method can make the peak to peak value of rotor radial displacement range within 40μm. The

  12. Autism as a developmental disorder in intentional movement and affective engagement

    OpenAIRE

    Trevarthen, Colwyn; Delafield-Butt, Jonathan T.

    2013-01-01

    We review evidence that autistic spectrum disorders have their origin in early prenatal failure of development in systems that program timing, serial coordination and prospective control of movements, and that regulate affective evaluations of experiences. There are effects in early infancy, before medical diagnosis, especially in motor sequencing, selective or exploratory attention, affective expression and intersubjective engagement with parents. These are followed by retardation of cogniti...

  13. Autism as a developmental disorder in intentional movement and affective engagement

    OpenAIRE

    COLWYN eTREVARTHEN; Delafield-Butt, Jonathan T.

    2013-01-01

    We review evidence that autistic spectrum disorders have their origin in early, prenatal failure of development in systems that program timing, serial coordination and prospective control of movements and that regulate affective evaluations of experiences. There are effects in early infancy, before medical diagnosis, especially in motor sequencing, selective or exploratory attention, affective expression and intersubjective engagement with parents. These are followed by retardation of cogniti...

  14. Mutant glycyl-tRNA synthetase (Gars ameliorates SOD1(G93A motor neuron degeneration phenotype but has little affect on Loa dynein heavy chain mutant mice.

    Directory of Open Access Journals (Sweden)

    Gareth T Banks

    Full Text Available BACKGROUND: In humans, mutations in the enzyme glycyl-tRNA synthetase (GARS cause motor and sensory axon loss in the peripheral nervous system, and clinical phenotypes ranging from Charcot-Marie-Tooth neuropathy to a severe infantile form of spinal muscular atrophy. GARS is ubiquitously expressed and may have functions in addition to its canonical role in protein synthesis through catalyzing the addition of glycine to cognate tRNAs. METHODOLOGY/PRINCIPAL FINDINGS: We have recently described a new mouse model with a point mutation in the Gars gene resulting in a cysteine to arginine change at residue 201. Heterozygous Gars(C201R/+ mice have locomotor and sensory deficits. In an investigation of genetic mutations that lead to death of motor and sensory neurons, we have crossed the Gars(C201R/+ mice to two other mutants: the TgSOD1(G93A model of human amyotrophic lateral sclerosis and the Legs at odd angles mouse (Dync1h1(Loa which has a defect in the heavy chain of the dynein complex. We found the Dync1h1(Loa/+;Gars(C201R/+ double heterozygous mice are more impaired than either parent, and this is may be an additive effect of both mutations. Surprisingly, the Gars(C201R mutation significantly delayed disease onset in the SOD1(G93A;Gars(C201R/+ double heterozygous mutant mice and increased lifespan by 29% on the genetic background investigated. CONCLUSIONS/SIGNIFICANCE: These findings raise intriguing possibilities for the study of pathogenetic mechanisms in all three mouse mutant strains.

  15. Coordinated unbundling

    DEFF Research Database (Denmark)

    Timmermans, Bram; Zabala-Iturriagagoitia, Jon Mikel

    2013-01-01

    not focused on the role this policy instrument can play in the promotion of (knowledge-intensive) entrepreneurship. This paper investigates this link in more detail and introduces the concept of coordinated unbundling as a strategy that can facilitate this purpose. We also present a framework on how...

  16. Alcohol hangover: type and time-extension of motor function impairments.

    Science.gov (United States)

    Karadayian, Analía G; Cutrera, Rodolfo A

    2013-06-15

    Alcohol hangover is defined as the unpleasant next-day state following an evening of excessive alcohol consumption. Hangover begins when ethanol is absent in plasma and is characterized by physical and psychological symptoms. During hangover cognitive functions and subjective capacities are affected along with inefficiency, reduced productivity, absenteeism, driving impairments, poor academic achievement and reductions in motor coordination. The aim of this work was to study the type and length of motor and exploratory functions from the beginning to the end of the alcohol hangover. Male Swiss mice were injected i.p. either with saline (control group) or with ethanol (3.8 g/kg BW) (hangover group). Motor performance, walking deficiency, motor strength, locomotion and exploratory activity were evaluated at a basal point (ZT0) and every 2 h up to 20 h after blood alcohol levels were close to zero (hangover onset). Motor performance was 80% decreased at the onset of hangover (pHangover mice exhibited a reduced motor performance during the next 16 h (phangover onset. Hangover mice displayed walking deficiencies from the beginning to 16 h after hangover onset (phangover, exhibited a significant decrease in neuromuscular strength during 16 h (phangover onset (phangover motor and exploratory impairments. As a whole, this study shows the long lasting effects of alcohol hangover. PMID:23557691

  17. Affection of the rotor-flux error on the induction motor full-order observer stability%转子磁链误差对感应电机观测器稳定性影响

    Institute of Scientific and Technical Information of China (English)

    许思猛; 陈冲

    2012-01-01

    The rotor flux error affection on the stability of the induction motor full-order speed adaptive rotor flux observer was studied using the voltage model. The positive-real property of the forward path transfer function of the observer equivalent error system was analyzed. Stability domain border equations in ω1 -ωs plane were derived. A modified rotor flux error model excluding a pure integrator was suggested. Affection of the modified model on open-loop zeros plots of the linearized equivalent speed control system was investigated, and the stability region distribution in all motor operation modes was studied. Research results indicate the stability region is enlarged by amplifying the rotor flux error. The observer with the modified model is stable in the low-speed region with regenerative loads but unstable in low-speed motoring mode. Simulation results illustrate the adaptive observer with combined speed adaptive laws is stable in all motor operation modes.%利用转子磁链电压模型研究转子磁链误差对感应电动机全阶转速自适应转子磁链观测器稳定性影响.通过研究观测器等效误差系统前向通道传递函数正实性,得到观测器在ω1-ωs平面中稳定区域边界方程.提出不舍纯积分器的新型转子磁链误差模型,通过分析该模型对线性化等效转速控制系统开环零点分布影响,研究不同工况下观测器稳定区域分布.研究结果表明增大转子磁链误差能够扩大稳定区域,所提出的模型解决了低速再生发电工况时观测器稳定问题,但在低速电动工况时观测器不稳定.仿真结果表明组合应用不同转速自适应律观测器在所有工况下均能稳定.

  18. Motor homopolar

    OpenAIRE

    2007-01-01

    Mostramos la construcción de un modelo de motor homopolar, uno de los más antiguos tipos de motores eléctricos. Se caracterizan porque el campo magnético del imán mantiene siempre la misma polaridad (de ahí su nombre, del griego homos, igual), de modo que, cuando una corriente eléctrica atraviesa el campo magnético, aparece una fuerza que hace girar los elementos no fijados mecánicamente. En el sencillísimo motor homopolar colgado (Schlichting y Ucke 2004), el imán puede girar ...

  19. Motor learning by observing.

    Science.gov (United States)

    Mattar, Andrew A G; Gribble, Paul L

    2005-04-01

    Learning complex motor behaviors like riding a bicycle or swinging a golf club is based on acquiring neural representations of the mechanical requirements of movement (e.g., coordinating muscle forces to control the club). Here we provide evidence that mechanisms matching observation and action facilitate motor learning. Subjects who observed a video depicting another person learning to reach in a novel mechanical environment (imposed by a robot arm) performed better when later tested in the same environment than subjects who observed similar movements but no learning; moreover, subjects who observed learning of a different environment performed worse. We show that this effect is not based on conscious strategies but instead depends on the implicit engagement of neural systems for movement planning and control. PMID:15820701

  20. Motor skill learning: age and augmented feedback

    NARCIS (Netherlands)

    Dijk, van Henk

    2006-01-01

    Learning motor skills is fundamental to human life. One of the most critical variables affecting motor learning, aside from practice itself, is augmented feedback (performance-related information). Although there is abundance of research on how young adults use augmented feedback to learn motor skil

  1. Application of stepping motor

    International Nuclear Information System (INIS)

    This book is divided into three parts, which is about practical using of stepping motor. The first part has six chapters. The contents of the first part are about stepping motor, classification of stepping motor, basic theory og stepping motor, characteristic and basic words, types and characteristic of stepping motor in hybrid type and basic control of stepping motor. The second part deals with application of stepping motor with hardware of stepping motor control, stepping motor control by microcomputer and software of stepping motor control. The last part mentions choice of stepping motor system, examples of stepping motor, measurement of stepping motor and practical cases of application of stepping motor.

  2. DEVELOPMENTAL COORDINATION DISORDER IN CHILDREN

    Directory of Open Access Journals (Sweden)

    Saeideh MIRAFKHAMI

    2010-04-01

    Full Text Available ObjectiveIn this article, a motor skill disorder called developmental coordination disorder (DCD, that is usually first diagnosed during childhood, is explained and discussed. In the year 1987, DCD was formally recognized as a distinct disorder in children by the American Psychiatric Association  (APA. DCD is a generalized term for the children who have some degrees of impairment in the development of motor coordination and therefore have difficulties with physical skills which significantly interfere with their academic achievements and /or performing everyday activities. As they develop, other age-related tasks are also below average. Because these impairment & conditions are often associated with emotional distress, they can seriously interfere with the person's everyday life and social relationships. Reviews indicate that most of the training rocedures have only a limited effect on the development of general coordination, and that they have no effect at all on academic progress.This includes approaches based on assumed underlying deficiencies such as sensory integration deficits and kinesthetic functioning deficits, as well as the more traditional perceptual - motor training. One new approach is Cognitive Orientation to daily Occupational Performance (CO-OP, based on problem - solving strategies and guided discovery of the child and task specific strategies. The aim of this article was to inform, promote and disseminate more information about some difficulties in applying the diagnostic criteria for DCD. Also, a brief review of the researches on the intervention methods is presented.Keywords: Developmental coordination disorder, Motor skills disorder, Childhood disorder, Intervention methods

  3. Transcranial Direct Current Stimulation over the Medial Prefrontal Cortex and Left Primary Motor Cortex (mPFC-lPMC) Affects Subjective Beauty but Not Ugliness.

    Science.gov (United States)

    Nakamura, Koyo; Kawabata, Hideaki

    2015-01-01

    Neuroaesthetics has been searching for the neural bases of the subjective experience of beauty. It has been demonstrated that neural activities in the medial prefrontal cortex (mPFC) and the left primary motor cortex (lPMC) correlate with the subjective experience of beauty. Although beauty and ugliness seem to be semantically and conceptually opposite, it is still unknown whether these two evaluations represent extreme opposites in unitary or bivariate dimensions. In this study, we applied transcranial direct current stimulation (tDCS) to examine whether non-invasive brain stimulation modulates two types of esthetic evaluation; evaluating beauty and ugliness. Participants rated the subjective beauty and ugliness of abstract paintings before and after the application of tDCS. Application of cathodal tDCS over the mPFC with anode electrode over the lPMC, which induced temporal inhibition of neural excitability of the mPFC, led to a decrease in beauty ratings but not ugliness ratings. There were no changes in ratings of both beauty and ugliness when applying anodal tDCS or sham stimulation over the mPFC. Results from our experiment indicate that the mPFC and the lPMC have a causal role in generating the subjective experience of beauty, with beauty and ugliness evaluations constituting two distinct dimensions. PMID:26696865

  4. Transcranial direct current stimulation over the medial prefrontal cortex and left primary motor cortex (mPFC-lPMC affects subjective beauty but not ugliness

    Directory of Open Access Journals (Sweden)

    Koyo eNakamura

    2015-12-01

    Full Text Available Neuroaesthetics has been searching for the neural bases of the subjective experience of beauty. It has been demonstrated that neural activities in the medial prefrontal cortex (mPFC and the left primary motor cortex (lPMC correlate with the subjective experience of beauty. Although beauty and ugliness seem to be semantically and conceptually opposite, it is still unknown whether these two evaluations represent extreme opposites in unitary or bivariate dimensions. In this study, we applied transcranial direct current stimulation (tDCS to examine whether noninvasive brain stimulation modulates two types of aesthetic evaluation; evaluating beauty and ugliness. Participants rated the subjective beauty and ugliness of abstract paintings before and after the application of tDCS. Application of cathodal tDCS over the mPFC with anode electrode over the lPMC, which induced temporal inhibition of neural excitability of the mPFC, led to a decrease in beauty ratings but not ugliness ratings. There were no changes in ratings of both beauty and ugliness when applying anodal tDCS or sham stimulation over the mPFC. Results from our experiment indicate that the mPFC and the lPMC have a causal role in generating the subjective experience of beauty, with beauty and ugliness evaluations constituting two distinct dimensions.

  5. Transcranial Direct Current Stimulation over the Medial Prefrontal Cortex and Left Primary Motor Cortex (mPFC-lPMC) Affects Subjective Beauty but Not Ugliness.

    Science.gov (United States)

    Nakamura, Koyo; Kawabata, Hideaki

    2015-01-01

    Neuroaesthetics has been searching for the neural bases of the subjective experience of beauty. It has been demonstrated that neural activities in the medial prefrontal cortex (mPFC) and the left primary motor cortex (lPMC) correlate with the subjective experience of beauty. Although beauty and ugliness seem to be semantically and conceptually opposite, it is still unknown whether these two evaluations represent extreme opposites in unitary or bivariate dimensions. In this study, we applied transcranial direct current stimulation (tDCS) to examine whether non-invasive brain stimulation modulates two types of esthetic evaluation; evaluating beauty and ugliness. Participants rated the subjective beauty and ugliness of abstract paintings before and after the application of tDCS. Application of cathodal tDCS over the mPFC with anode electrode over the lPMC, which induced temporal inhibition of neural excitability of the mPFC, led to a decrease in beauty ratings but not ugliness ratings. There were no changes in ratings of both beauty and ugliness when applying anodal tDCS or sham stimulation over the mPFC. Results from our experiment indicate that the mPFC and the lPMC have a causal role in generating the subjective experience of beauty, with beauty and ugliness evaluations constituting two distinct dimensions.

  6. DEVELOPMENTAL COORDINATION DISORDER IN CHILDREN

    Directory of Open Access Journals (Sweden)

    Saeideh MIRAFKHAMI

    2010-03-01

    Full Text Available ObjectiveIn this article, a motor skill disorder called developmental coordination disorder (DCD, that is usually first diagnosed during childhood, is explained and discussed. In the year 1987, DCD was formally recognized as a distinct disorder in children by the American Psychiatric Association (APA. DCD is a generalized term for the children who have some degrees of impairment in the development of motor coordination and therefore have difficulties with physical skills which significantly interfere with their academic achievements and /or performing everyday activities. As they develop, other age-related tasks are also below average. Because these impairment & conditions are often associated with emotional distress, they can seriously interfere with the person's everyday life and social relationships. Reviews indicate that most of the training rocedures have only a limited effect on the development of general coordination, and that they have no effect at all on academic progress.This includes approaches based on assumed underlying deficiencies such as sensory integration deficits and kinesthetic functioning deficits, as well as the more traditional perceptual - motor training. One new approach is Cognitive Orientation to daily Occupational Performance (CO-OP, based on problem - solving strategies and guided discovery of the child and task specific strategies. The aim of this article was to inform, promote and disseminate more information about some difficulties in applying the diagnostic criteria for DCD. Also, a brief review of the researches on the intervention methods is presented.

  7. Reduction of power consumption in motor-driven applications by using PM motors; PM = Permanent Magnet; Reduktion af elforbrug til motordrift ved anvendelse af PM motorer

    Energy Technology Data Exchange (ETDEWEB)

    Hvenegaard, C.M.; Hansen, Mads P.R.; Groenborg Nikolaisen, C. (Teknologisk Institut, Taastrup (Denmark)); Nielsen, Sandie B. (Teknologisk Institut, AArhus (Denmark)); Ritchie, E.; Leban, K. (Aalborg Univ., Aalborg (Denmark))

    2009-12-15

    The traditional asynchronous motor with aluminum rotor is today by far the most widespread and sold electric motor, but a new and more energy efficient type of engine - the permanent magnet motor (PM motor) - is expected in the coming years to win larger and larger market shares. Several engine manufacturers in Europe, USA and Asia are now beginning to market the PM motors, which can replace the traditional asynchronous motor. The project aims to uncover the pros and cons of replacing asynchronous motors including EFF1 engines with PM motors, including the price difference. Furthermore, it is identified how the efficiency of PM motors is affected by low load levels and at various forms of control. Finally, the energy savings potential is analysed, by replacing asynchronous motors with PM motors. The study includes laboratory tests of PM motors, made in a test stand at Danish Technological Institute. (ln)

  8. TECHNICAL COORDINATION

    CERN Multimedia

    A. Ball

    Overview From a technical perspective, CMS has been in “beam operation” state since 6th November. The detector is fully closed with all components operational and the magnetic field is normally at the nominal 3.8T. The UXC cavern is normally closed with the radiation veto set. Access to UXC is now only possible during downtimes of LHC. Such accesses must be carefully planned, documented and carried out in agreement with CMS Technical Coordination, Experimental Area Management, LHC programme coordination and the CCC. Material flow in and out of UXC is now strictly controlled. Access to USC remains possible at any time, although, for safety reasons, it is necessary to register with the shift crew in the control room before going down.It is obligatory for all material leaving UXC to pass through the underground buffer zone for RP scanning, database entry and appropriate labeling for traceability. Technical coordination (notably Stephane Bally and Christoph Schaefer), the shift crew and run ...

  9. Mutation of the MAP kinase DYF-5 affects docking and undocking of kinesin-2 motors and reduces their speed in the cilia of Caenorhabditis elegans.

    Science.gov (United States)

    Burghoorn, Jan; Dekkers, Martijn P J; Rademakers, Suzanne; de Jong, Ton; Willemsen, Rob; Jansen, Gert

    2007-04-24

    In the cilia of the nematode Caenorhabditis elegans, anterograde intraflagellar transport (IFT) is mediated by two kinesin-2 complexes, kinesin II and OSM-3 kinesin. These complexes function together in the cilia middle segments, whereas OSM-3 alone mediates transport in the distal segments. Not much is known about the mechanisms that compartmentalize the kinesin-2 complexes or how transport by both kinesins is coordinated. Here, we identify DYF-5, a conserved MAP kinase that plays a role in these processes. Fluorescence microscopy and EM revealed that the cilia of dyf-5 loss-of-function (lf) animals are elongated and are not properly aligned into the amphid channel. Some cilia do enter the amphid channel, but the distal ends of these cilia show accumulation of proteins. Consistent with these observations, we found that six IFT proteins accumulate in the cilia of dyf-5(lf) mutants. In addition, using genetic analyses and live imaging to measure the motility of IFT proteins, we show that dyf-5 is required to restrict kinesin II to the cilia middle segments. Finally, we show that, in dyf-5(lf) mutants, OSM-3 moves at a reduced speed and is not attached to IFT particles. We propose that DYF-5 plays a role in the undocking of kinesin II from IFT particles and in the docking of OSM-3 onto IFT particles. PMID:17420466

  10. Rhythm in joint action: psychological and neurophysiological mechanisms for real-time interpersonal coordination

    Science.gov (United States)

    Keller, Peter E.; Novembre, Giacomo; Hove, Michael J.

    2014-01-01

    Human interaction often requires simultaneous precision and flexibility in the coordination of rhythmic behaviour between individuals engaged in joint activity, for example, playing a musical duet or dancing with a partner. This review article addresses the psychological processes and brain mechanisms that enable such rhythmic interpersonal coordination. First, an overview is given of research on the cognitive-motor processes that enable individuals to represent joint action goals and to anticipate, attend and adapt to other's actions in real time. Second, the neurophysiological mechanisms that underpin rhythmic interpersonal coordination are sought in studies of sensorimotor and cognitive processes that play a role in the representation and integration of self- and other-related actions within and between individuals' brains. Finally, relationships between social–psychological factors and rhythmic interpersonal coordination are considered from two perspectives, one concerning how social-cognitive tendencies (e.g. empathy) affect coordination, and the other concerning how coordination affects interpersonal affiliation, trust and prosocial behaviour. Our review highlights musical ensemble performance as an ecologically valid yet readily controlled domain for investigating rhythm in joint action. PMID:25385772

  11. Movement Induces the Use of External Spatial Coordinates for Tactile Localization in Congenitally Blind Humans.

    Science.gov (United States)

    Heed, Tobias; Möller, Johanna; Röder, Brigitte

    2015-01-01

    To localize touch, the brain integrates spatial information coded in anatomically based and external spatial reference frames. Sighted humans, by default, use both reference frames in tactile localization. In contrast, congenitally blind individuals have been reported to rely exclusively on anatomical coordinates, suggesting a crucial role of the visual system for tactile spatial processing. We tested whether the use of external spatial information in touch can, alternatively, be induced by a movement context. Sighted and congenitally blind humans performed a tactile temporal order judgment task that indexes the use of external coordinates for tactile localization, while they executed bimanual arm movements with uncrossed and crossed start and end postures. In the sighted, start posture and planned end posture of the arm movement modulated tactile localization for stimuli presented before and during movement, indicating automatic, external recoding of touch. Contrary to previous findings, tactile localization of congenitally blind participants, too, was affected by external coordinates, though only for stimuli presented before movement start. Furthermore, only the movement's start posture, but not the planned end posture affected blind individuals' tactile performance. Thus, integration of external coordinates in touch is established without vision, though more selectively than when vision has developed normally, and possibly restricted to movement contexts. The lack of modulation by the planned posture in congenitally blind participants suggests that external coordinates in this group are not mediated by motor efference copy. Instead the task-related frequent posture changes, that is, movement consequences rather than planning, appear to have induced their use of external coordinates.

  12. Programa de intervenção motora para escolares com indicativo de transtorno do desenvolvimento da coordenação - TDC Motor intervention program for school children with signs of developmental coordination disorder - DCD

    Directory of Open Access Journals (Sweden)

    Eva Vilma Alves da Silva

    2011-04-01

    Full Text Available Este estudo objetivou verificar os efeitos de um programa de intervenção motora para escolares com indicativo de Transtorno do Desenvolvimento da Coordenação. Participaram do estudo seis escolares na faixa etária de 10 anos, do gênero feminino e masculino, matriculados em uma escola municipal no interior do Estado de Santa Catarina. A avaliação motora foi mensurada por meio do Movement Assessement Battery for Children (MABC-2. O teste abrange as faixas etárias de três a 16 anos dentro de cada faixa etária são agrupadas oito tarefas em três categorias de habilidades: destreza manual, lançar e receber, equilíbrio. As intervenções foram baseadas na abordagem da Educação Física Desenvolvimentista em ambiente escolar. As sessões foram realizadas individualmente com 20 sessões de intervenção motora para cada escolar, num total de 120 sessões, com frequência de duas aulas semanais e com duração de 45 minutos. Para interpretação dos dados foi utilizado o teste Wilcoxon no pacote estatístico SPSS 13.0 for Windows. Os resultados evidenciaram diferenças estatisticamente significativas após a intervenção motora (pThis study aimed to verify the effects of a motor intervention program for students with signs of DCD. Six 10 year-old students, both male and female, who were registered at a municipal school in the interior of the state of Santa Catarina participated in the study. Motor capacity was measured using the Movement Assessment Battery for Children (MABC-2, one of the most commonly used instruments for assessing children's movement difficulties. The test encompasses the age groups of 3 to 16 years; for each age group, eight tasks are grouped into three skill categories: manual skill, throw and catch, balance. The interventions were based on the Developmental Physical Education approach in school environments. The sessions were done individually with 20 motor intervention sessions for each student, in a total of 120

  13. TECHNICAL COORDINATION

    CERN Multimedia

    A. Ball

    2010-01-01

    Operational Experience At the end of the first full-year running period of LHC, CMS is established as a reliable, robust and mature experiment. In particular common systems and infrastructure faults accounted for <0.6 % CMS downtime during LHC pp physics. Technical operation throughout the entire year was rather smooth, the main faults requiring UXC access being sub-detector power systems and rack-cooling turbines. All such problems were corrected during scheduled technical stops, in the shadow of tunnel access needed by the LHC, or in negotiated accesses or access extensions. Nevertheless, the number of necessary accesses to the UXC averaged more than one per week and the technical stops were inevitably packed with work packages, typically 30 being executed within a few days, placing a high load on the coordination and area management teams. It is an appropriate moment for CMS Technical Coordination to thank all those in many CERN departments and in the Collaboration, who were involved in CMS techni...

  14. Motor cortical plasticity induced by motor learning through mental practice.

    Directory of Open Access Journals (Sweden)

    Laura eAvanzino

    2015-04-01

    Full Text Available Several investigations suggest that actual and mental actions trigger similar neural substrates. Motor learning via physical practice results in long-term potentiation (LTP-like plasticity processes, namely potentiation of M1 and a temporary occlusion of additional LTP-like plasticity. However, whether this neuroplasticity process contributes to improve motor performance through mental practice remains to be determined. Here, we tested skill learning-dependent changes in primary motor cortex (M1 excitability and plasticity by means of transcranial magnetic stimulation in subjects trained to physically execute or mentally perform a sequence of finger opposition movements. Before and after physical practice and motor-imagery practice, M1 excitability was evaluated by measuring the input-output (IO curve of motor evoked potentials. M1 long-term potentiation (LTP and long-term depression (LTD-like plasticity was assessed with paired-associative stimulation (PAS of the median nerve and motor cortex using an interstimulus interval of 25 ms (PAS25 or 10 ms (PAS10, respectively. We found that even if after both practice sessions subjects significantly improved their movement speed, M1 excitability and plasticity were differentially influenced by the two practice sessions. First, we observed an increase in the slope of IO curve after physical but not after motor-imagery practice. Second, there was a reversal of the PAS25 effect from LTP-like plasticity to LTD-like plasticity following physical and motor-imagery practice. Third, LTD-like plasticity (PAS10 protocol increased after physical practice, whilst it was occluded after motor-imagery practice. In conclusion, we demonstrated that motor-imagery practice lead to the development of neuroplasticity, as it affected the PAS25- and PAS10- induced plasticity in M1. These results, expanding the current knowledge on how motor-imagery training shapes M1 plasticity, might have a potential impact in

  15. Motor-operated valve (MOV) actuator motor and gearbox testing

    International Nuclear Information System (INIS)

    Researchers at the Idaho National Engineering and Environmental Laboratory tested the performance of electric motors and actuator gearboxes typical of the equipment installed on motor-operated valves used in nuclear power plants. Using a test stand that simulates valve closure loads against flow and pressure, the authors tested five electric motors (four ac and one dc) and three gearboxes at conditions a motor might experience in a power plant, including such off-normal conditions as operation at high temperature and reduced voltage. They also monitored the efficiency of the actuator gearbox. All five motors operated at or above their rated starting torque during tests at normal voltages and temperatures. For all five motors, actual torque losses due to voltage degradation were greater than the losses calculated by methods typically used for predicting motor torque at degraded voltage conditions. For the dc motor the actual torque losses due to elevated operating temperatures were greater than the losses calculated by the typical predictive method. The actual efficiencies of the actuator gearboxes were generally lower than the running efficiencies published by the manufacturer and were generally nearer the published pull-out efficiencies. Operation of the gearbox at elevated temperature did not affect the operating efficiency

  16. THE MOTOR

    DEFF Research Database (Denmark)

    Gammelgaard Nielsen, Anders

    2011-01-01

    MOTOR is the first assignment that students at Unit 1a of the School of Architecture are introduced to. The purpose of the assignment is to shake up the students and their preconceptions of what architec- ture is. This is done by introducing them to a working method that al- lows them to develop...

  17. Motor Magnates

    Institute of Scientific and Technical Information of China (English)

    ISABEL DING

    2008-01-01

    @@ The automotive industry is often seen as a man's world. Wang Fengying (王风英) begs to differ. The 38-year-old has presided over Great Wall Motors (长城汽车), the leading pick-up truck and Sport Utility Vehicle(SUV) manufacturer in China for the past five years.

  18. Motor radiculopathy

    OpenAIRE

    Khan, Afsha; Camilleri, Jeremy

    2012-01-01

    A 48-year-old immunosuppressed woman presented to a rheumatology follow-up clinic after suffering from herpes zoster infection. She had manifestations of foot drop 3 months after the initial infection. She was diagnosed with motor radiculopathy following herpes zoster infection that was effectively managed by physiotherapy and amitriptyline.

  19. Coordination Capacity

    CERN Document Server

    Cuff, Paul; Cover, Thomas

    2009-01-01

    We develop elements of a theory of cooperation and coordination in networks. Rather than considering a communication network as a means of distributing information, or of reconstructing random processes at remote nodes, we ask what dependence can be established among the nodes given the communication constraints. Specifically, in a network with communication rates between the nodes, we ask what is the set of all achievable joint distributions p(x1, ..., xm) of actions at the nodes on the network. Several networks are solved, including arbitrarily large cascade networks. Distributed cooperation can be the solution to many problems such as distributed games, distributed control, and establishing mutual information bounds on the influence of one part of a physical system on another.

  20. Deliberate play and preparation jointly benefit motor and cognitive development: mediated and moderated effects

    OpenAIRE

    Caterina ePesce; Ilaria eMasci; Rosalba eMarchetti; Spyridoula eVazou; Arja eSääkslahti; Tomporowski, Phillip D.

    2016-01-01

    In light of the interrelation between motor and cognitive development and the predictive value of the former for the latter, the secular decline observed in motor coordination ability as early as preschool urges identification of interventions that may jointly impact motor and cognitive efficiency.The aim of this study was twofold. It (1) explored the outcomes of enriched physical education, centered on deliberate play and cognitively challenging variability of practice, on motor coordination...

  1. Maximum power operation of interacting molecular motors

    DEFF Research Database (Denmark)

    Golubeva, Natalia; Imparato, Alberto

    2013-01-01

    We study the mechanical and thermodynamic properties of different traffic models for kinesin which are relevant in biological and experimental contexts. We find that motor-motor interactions play a fundamental role by enhancing the thermodynamic efficiency at maximum power of the motors......, as compared to the non-interacting system, in a wide range of biologically compatible scenarios. We furthermore consider the case where the motor-motor interaction directly affects the internal chemical cycle and investigate the effect on the system dynamics and thermodynamics....

  2. Advanced Motors

    Energy Technology Data Exchange (ETDEWEB)

    Knoth, Edward A.; Chelluri, Bhanumathi; Schumaker, Edward J.

    2012-12-14

    Project Summary Transportation energy usage is predicted to increase substantially by 2020. Hybrid vehicles and fuel cell powered vehicles are destined to become more prominent as fuel prices rise with the demand. Hybrid and fuel cell vehicle platforms are both dependent on high performance electric motors. Electric motors for transportation duty will require sizeable low-speed torque to accelerate the vehicle. As motor speed increases, the torque requirement decreases which results in a nearly constant power motor output. Interior permanent magnet synchronous motors (IPMSM) are well suited for this duty. , , These rotor geometries are configured in straight lines and semi circular arc shapes. These designs are of limited configurations because of the lack of availability of permanent magnets of any other shapes at present. We propose to fabricate rotors via a novel processing approach where we start with magnet powders and compact them into a net shape rotor in a single step. Using this approach, widely different rotor designs can be implemented for efficiency. The current limitation on magnet shape and thickness will be eliminated. This is accomplished by co-filling magnet and soft iron powders at specified locations in intricate shapes using specially designed dies and automatic powder filling station. The process fundamentals for accomplishing occurred under a previous Applied Technology Program titled, “Motors and Generators for the 21st Century”. New efficient motor designs that are not currently possible (or cost prohibitive) can be accomplished by this approach. Such an approach to

  3. Assessment of Body Composition Using Whole Body Air-Displacement Plethysmography in Children with and without Developmental Coordination Disorder

    Science.gov (United States)

    Cairney, John; Hay, John; Veldhuizen, Scott; Faught, Brent

    2011-01-01

    Developmental coordination disorder (DCD) is a neuro-developmental disorder characterized by poor fine and/or gross motor coordination. Children with DCD are hypothesized to be at increased risk for overweight and obesity from inactivity due to their motor coordination problems. Although previous studies have found evidence to support this…

  4. Enterprise Coordination on the Internet

    Directory of Open Access Journals (Sweden)

    Charles Petrie

    2011-02-01

    Full Text Available Enterprises are now connected internally and externally to other Enterprises via the Internet in ways that are increasingly difficult to manage, especially as these interconnections become more dynamic. Current methods of coordinating the effects of change as they propagate through these networks of connections are not likely to scale. What is needed is a new paradigm for how the Internet supports such coordination. Indeed, the Internet should and could provide fundamental coordination functions that are missing today. In this paper, we describe how such a “Coordinated Internet” would work (this paper is an expanded version of [1]. The key functionality of a Coordinated Internet would be that the Internet actively watches what people do (analogous to search completion on desktops today, correlates these activities, and actively notifies people when and how their current tasks affect and are affected by the activities of other people. This would be accomplished by standard coordination functions implemented as a common Internet layer that can be used as a utility by more specialized applications. Such a Coordinated Internet would revolutionize enterprise management, for all enterprises, large and small, corporate and personal. For example, static workflows would become obsolete for all but the the most routine processes. Some solutions provide existence proofs of such a coordination substrate, such as the Redux solution in concurrent engineering, which we describe herein. However, foundational research remains to be done in the new field of Coordination Engineering in order to reach the goal of a future Internet in which coordination functions are fundamental.

  5. Bimanual coupling paradigm as an effective tool to investigate productive behaviors in motor and body awareness impairments

    Directory of Open Access Journals (Sweden)

    Francesca eGarbarini

    2013-11-01

    Full Text Available When humans move simultaneously both hands strong coupling effects arise and neither of the two hands is able to perform independent actions. It has been suggested that such motor constraints are tightly linked to action representation rather than to movement execution. Hence, bimanual tasks can represent an ideal experimental tool to investigate internal motor representations in those neurological conditions in which the movement of one hand is impaired. Indeed, any effect on the ‘moving’ (healthy hand would be caused by the constraints imposed by the ongoing motor program of the ‘impaired’ hand. Here, we review recent studies that successfully utilized the above-mentioned paradigms to investigate some types of productive motor behaviors in stroke patients. Specifically, bimanual tasks have been employed in left hemiplegic patients who report illusory movements of their contralesional limbs (anosognosia for hemiplegia. They have also been administered to patients affected by a specific monothematic delusion of body ownership, namely the belief that another person’s arm and his/her voluntary action belong to them. In summary, the reviewed studies show that bimanual tasks are a simple and valuable experimental method apt to reveal information about the motor programs of a paralyzed limb. Therefore, it can be used to objectively examine the cognitive processes underpinning motor programming in patients with different delusions of motor behavior. Additionally, it also sheds light on the mechanisms subserving bimanual coordination in the intact brain suggesting that action representation might be sufficient to produce these effects.

  6. Evaluation of freshmen coordination abilities on practical training in gymnastics

    Directory of Open Access Journals (Sweden)

    Tereschenko I.A.

    2013-06-01

    Full Text Available Measured coordination abilities (baseline to the static and dynamic equilibrium of the body, the space-time orientation on the support and in unsupported position, proprioception sense, vestibular stability, vestibular sensitivity, coordination limbs symmetrical and asymmetrical. Coordination abilities were also measured under difficult conditions. The study involved 238 students aged 17 - 18 years. Registered a positive trend of improving performance motor tests, development of educational material. Students who specialize in difficult to coordinate sports had significantly better performance. Found that the content of the material work programs of sports and educational disciplines helps improve sensorimotor coordination tasks students. It is noted that the content of the training material is the basis for efficient formation of motor skills and motor skills development of gymnastic exercises. Recommended ways to increase sports and technical and professional skills of students.

  7. RUN COORDINATION

    CERN Document Server

    C. Delaere

    2013-01-01

    Since the LHC ceased operations in February, a lot has been going on at Point 5, and Run Coordination continues to monitor closely the advance of maintenance and upgrade activities. In the last months, the Pixel detector was extracted and is now stored in the pixel lab in SX5; the beam pipe has been removed and ME1/1 removal has started. We regained access to the vactank and some work on the RBX of HB has started. Since mid-June, electricity and cooling are back in S1 and S2, allowing us to turn equipment back on, at least during the day. 24/7 shifts are not foreseen in the next weeks, and safety tours are mandatory to keep equipment on overnight, but re-commissioning activities are slowly being resumed. Given the (slight) delays accumulated in LS1, it was decided to merge the two global runs initially foreseen into a single exercise during the week of 4 November 2013. The aim of the global run is to check that we can run (parts of) CMS after several months switched off, with the new VME PCs installed, th...

  8. RUN COORDINATION

    CERN Multimedia

    Christophe Delaere

    2013-01-01

    The focus of Run Coordination during LS1 is to monitor closely the advance of maintenance and upgrade activities, to smooth interactions between subsystems and to ensure that all are ready in time to resume operations in 2015 with a fully calibrated and understood detector. After electricity and cooling were restored to all equipment, at about the time of the last CMS week, recommissioning activities were resumed for all subsystems. On 7 October, DCS shifts began 24/7 to allow subsystems to remain on to facilitate operations. That culminated with the Global Run in November (GriN), which   took place as scheduled during the week of 4 November. The GriN has been the first centrally managed operation since the beginning of LS1, and involved all subdetectors but the Pixel Tracker presently in a lab upstairs. All nights were therefore dedicated to long stable runs with as many subdetectors as possible. Among the many achievements in that week, three items may be highlighted. First, the Strip...

  9. Symmetric Structure of Induction Motor Systems

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    In this paper, symmetric structure of induction motor system in stationary αβ0 coordinates is studied bythe geometric approach. The results show that the system possesses symmetry (G, θ, Ф) and infinitesimal symme-try. Under certain conditions, the system can be transformed into a form possessing state-space symmetry (G, Ф)and infinitesimal state-space symmetry by means of state feedback and input coordinate base transform. The resultscan be extended to the fifth order induction motor system fed by hysteresis-band current-controlled PWM inverter.

  10. Genetics Home Reference: distal hereditary motor neuropathy, type V

    Science.gov (United States)

    ... neuropathy, type V distal hereditary motor neuropathy, type V Enable Javascript to view the expand/collapse boxes. ... Close All Description Distal hereditary motor neuropathy, type V is a progressive disorder that affects nerve cells ...

  11. Fine motor skills in South African children with symptoms of ADHD: influence of subtype, gender, age, and hand dominance

    Directory of Open Access Journals (Sweden)

    Meyer Anneke

    2006-10-01

    Full Text Available Abstract Background Motor problems, often characterised as clumsiness or poor motor coordination, have been associated with ADHD in addition to the main symptom groups of inattention, impulsiveness, and overactivity. The problems addressed in this study were: (1 Are motor problems associated with ADHD symptoms, also in African cultures? (2 Are there differences in motor skills among the subtypes with ADHD symptoms? (3 Are there gender differences? (4 Is there an effect of age? (5 Are there differences in performance between the dominant and non-dominant hand? Method A total of 528 children (264 classified as having symptoms of ADHD and 264 matched comparisons of both genders and from seven different South African ethnic groups participated in the study. They were assessed with three simple, easy to administer instruments which measure various functions of motor speed and eye-hand coordination: The Grooved Pegboard, the Maze Coordination Task, and the Finger Tapping Test. The results were analysed as a function of subtype, gender, age, and hand dominance. Results The findings indicate that children with symptoms of ADHD performed significantly poorer on the Grooved Pegboard and Motor Coordination Task, but not on the Finger Tapping Test than their comparisons without ADHD symptoms. The impairment was most severe for the subtype with symptoms of ADHD-C (combined and less severe for the subtypes with symptoms of ADHD-PI (predominantly inattentive and ADHD-HI (predominantly hyperactive/impulsive. With few exceptions, both genders were equally affected while there were only slight differences in performance between the dominant and non-dominant hand. The deficiencies in motor control were mainly confined to the younger age group (6 – 9 yr. Conclusion An association between the symptoms of ADHD and motor problems was demonstrated in terms of accuracy and speed in fairly complex tasks, but not in simple motor tests of speed. This deficiency is found

  12. How extending motor vehicle's replacement cycle affects Japanese economy Impact assessment using macroeconometric and input-output simulations. Jidosha kaikae cycle no chokika ga kokunai keizai ni ataeru eikyo ni tsuite. Makuro keizai sangyo renkan model ni yoru hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Wakabayashi, M.

    1999-01-01

    The motor vehicle industry, which has inspired domestic production activities since the 1960's, is coming up against inevitable changes. One of the typical phenomena is that the domestic motor vehicle market is getting ripe. Since almost 80 percent of households in our country already have at least one motor vehicle and the population is going to reduce, it isn't expected that the newly car demand will increase rapidly as it did before the end of 1980's. It is strongly predicted that purchase of cars motivated mainly for replacement is going to take a leading part of domestic sales. In this paper, we calculate the impacts of extending motor vehicle's replacement cycles, as one aspect of maturation of the domestic motor vehicle market, on Japanese economy. Reduction of new car demands affects production not only in the motor vehicle industry, but also in the various industries. It is because motor vehicles are manufactured goods those need many step of production by the time of selling. Using CRIEPI's macroeconometric and input-output models, we clarified that retrenchment of car replacement would decrease 2.6 trillion yen of total industry output in 1990 constant price value added terms. The loss of output in the motor vehicle industry would be 381 billion yen, and in the retail and wholesale sector it would amount td 666 billion yen. Also, electric power industry would lose 47 billion yen's takings. Considering low economic growth since 1990, this impact could have a great influence on our prospective growing process. (author)

  13. How extending motor vehicle`s replacement cycle affects Japanese economy ? Impact assessment using macroeconometric and input-output simulations; Jidosha kaikae cycle no chokika ga kokunai keizai ni ataeru eikyo ni tsuite. Makuro keizai sangyo renkan model ni yoru hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Wakabayashi, M.

    1999-01-01

    The motor vehicle industry, which has inspired domestic production activities since the 1960`s, is coming up against inevitable changes. One of the typical phenomena is that the domestic motor vehicle market is getting ripe. Since almost 80 percent of households in our country already have at least one motor vehicle and the population is going to reduce, it isn`t expected that the newly car demand will increase rapidly as it did before the end of 1980`s. It is strongly predicted that purchase of cars motivated mainly for replacement is going to take a leading part of domestic sales. In this paper, we calculate the impacts of extending motor vehicle`s replacement cycles, as one aspect of maturation of the domestic motor vehicle market, on Japanese economy. Reduction of new car demands affects production not only in the motor vehicle industry, but also in the various industries. It is because motor vehicles are manufactured goods those need many step of production by the time of selling. Using CRIEPI`s macroeconometric and input-output models, we clarified that retrenchment of car replacement would decrease 2.6 trillion yen of total industry output in 1990 constant price value added terms. The loss of output in the motor vehicle industry would be 381 billion yen, and in the retail and wholesale sector it would amount td 666 billion yen. Also, electric power industry would lose 47 billion yen`s takings. Considering low economic growth since 1990, this impact could have a great influence on our prospective growing process. (author)

  14. Visual, Motor, and Visual-Motor Integration Difficulties in Students with Autism Spectrum Disorders

    Science.gov (United States)

    Oliver, Kimberly

    2013-01-01

    Autism spectrum disorders (ASDs) affect 1 in every 88 U.S. children. ASDs have been described as neurological and developmental disorders impacting visual, motor, and visual-motor integration (VMI) abilities that affect academic achievement (CDC, 2010). Forty-five participants (22 ASD and 23 Typically Developing [TD]) 8 to 14 years old completed…

  15. Fine Motor Activities Program to Promote Fine Motor Skills in a Case Study of Down's Syndrome.

    Science.gov (United States)

    Lersilp, Suchitporn; Putthinoi, Supawadee; Panyo, Kewalin

    2016-01-01

    Children with Down's syndrome have developmental delays, particularly regarding cognitive and motor development. Fine motor skill problems are related to motor development. They have impact on occupational performances in school-age children with Down's syndrome because they relate to participation in school activities, such as grasping, writing, and carrying out self-care duties. This study aimed to develop a fine motor activities program and to examine the efficiency of the program that promoted fine motor skills in a case study of Down's syndrome. The case study subject was an 8 -year-old male called Kai, who had Down's syndrome. He was a first grader in a regular school that provided classrooms for students with special needs. This study used the fine motor activities program with assessment tools, which included 3 subtests of the Bruininks-Oseretsky Test of Motor Proficiency, second edition (BOT-2) that applied to Upper-limb coordination, Fine motor precision and Manual dexterity; as well as the In-hand Manipulation Checklist, and Jamar Hand Dynamometer Grip Test. The fine motor activities program was implemented separately and consisted of 3 sessions of 45 activities per week for 5 weeks, with each session taking 45 minutes. The results showed obvious improvement of fine motor skills, including bilateral hand coordination, hand prehension, manual dexterity, in-hand manipulation, and hand muscle strength. This positive result was an example of a fine motor intervention program designed and developed for therapists and related service providers in choosing activities that enhance fine motor skills in children with Down's syndrome. PMID:27357876

  16. The effect of oral motor activity on the athletic performance of professional golfers.

    Science.gov (United States)

    Ringhof, Steffen; Hellmann, Daniel; Meier, Florian; Etz, Eike; Schindler, Hans J; Stein, Thorsten

    2015-01-01

    Human motor control is based on complex sensorimotor processes. Recent research has shown that neuromuscular activity of the craniomandibular system (CMS) might affect human motor control. In particular, improvements in postural stability and muscle strength have been observed as a result of voluntary jaw clenching. Potential benefits of jaw aligning appliances on muscle strength and golf performance have also been described. These reports are highly contradictory, however, and the oral motor task performed is often unclear. The purpose of our study was, therefore, to investigate the effect of submaximum biting on golf performance via shot precision and shot length over three different distances. Participants were 14 male professional golfers - seven with sleep bruxism and seven without - randomly performing golf shots over 60m, 160m, or driving distance while either biting on an oral splint or biting on their teeth; habitual jaw position served as the control condition. Statistical analysis revealed that oral motor activity did not systematically affect golf performance in respect of shot precision or shot length for 60m, 160 m, or driving distance. These findings were reinforced by impact variables such as club head speed and ball speed, which were also not indicative of significant effects. The results thus showed that the strength improvements and stabilizing effects described previously are, apparently, not transferable to such coordination-demanding sports as golf. This could be due to the divergent motor demands associated with postural control and muscle strength on the one hand and the complex coordination of a golf swing on the other. Interestingly, subjects without sleep bruxism performed significantly better at the short distance (60 m) than those with bruxism. Because of the multifactorial etiology of parafunctional CMS activity, conclusions about the need for dental treatment to improve sports performance are, however, completely unwarranted. PMID

  17. The effect of oral motor activity on the athletic performance of professional golfers

    Directory of Open Access Journals (Sweden)

    Steffen eRinghof

    2015-06-01

    Full Text Available Human motor control is based on complex sensorimotor processes. Recent research has shown that neuromuscular activity of the craniomandibular system (CMS might affect human motor control. In particular, improvements in postural stability and muscle strength have been observed as a result of voluntary jaw clenching. Potential benefits of jaw aligning appliances on muscle strength and golf performance have also been described. These reports are highly contradictory, however, and the oral motor task performed is often unclear. The purpose of our study was, therefore, to investigate the effect of submaximum biting on golf performance via shot precision and shot length over three different distances. Participants were 14 male professional golfers – seven with sleep bruxism and seven without – randomly performing golf shots over 60 m, 160 m, or driving distance while either biting on an oral splint or biting on their teeth; habitual jaw position served as the control condition. Statistical analysis revealed that oral motor activity did not systematically affect golf performance in respect of shot precision or shot length for 60 m, 160 m, or driving distance. These findings were reinforced by impact variables such as club head speed and ball speed, which were, also, not indicative of significant effects. The results thus showed that the strength improvements and stabilizing effects described previously are, apparently, not transferable to such coordination-demanding sports as golf. This could be due to the divergent motor demands associated with postural control and muscle strength on the one hand and the complex coordination of a golf swing on the other. Interestingly, subjects without sleep bruxism performed significantly better at the short distance (60 m than those with bruxism. Because of the multifactorial etiology of parafunctional CMS activity, conclusions about the need for dental treatment to improve sports performance are, however

  18. Stabilization of multi-machine power system by coordinated excitation control of multiple adjustable-speed generator/motors; Fukusu kahensoku hatsuden dendoki no reiji den`atsu kyocho seigyo ni yoru taki keito anteika

    Energy Technology Data Exchange (ETDEWEB)

    Tatematsu, M.; Yokoyama, A. [The University of Tokyo, Tokyo (Japan)

    1996-01-20

    Since an adjustable-speed generator/motor (ASGM) is excited by AC voltage fed by a quick-response cycloconverter, a rotating speed of the rotor can be changed continuously. The ASGMs installed at some pumping-up power stations are now operated effectively for automatic frequency control under the lightly loaded condition at night by changing the pumping-up power due to the rotating speed change. It is expected, on the other hand, that under the generating condition in the daytime the ASGM will be used for enhancement of transient stability because it can generate or absorb active and reactive power independently of each other by AC excitation voltage control. This paper proposes a novel control method of excitation system of ASGM for improving the transient stability of a multi-machine power system including multiple ASGMs. The controller which is designed based on an energy function works well for the stability enhancement. In comparison with the conventional excitation control of synchronous generator and constant output control of ASGM, the effectiveness of the proposed method is shown by digital simulations. 10 refs., 5 figs., 2 tabs.

  19. Inter-Organizational Coordination, IT Support, and Environment

    Institute of Scientific and Technical Information of China (English)

    QU Gang; JI Shaobo; MIN Qingfei

    2008-01-01

    Manufacturing organizations must know how to deal with uncertainty, manage environmental impact, effectively coordinate with suppliers, and use information technology (IT) to support coordination. Applying cybernetics and information processing theories, this study explores the relationship between organizational environment, inter-organizational coordination, IT support, and the effectiveness of inter-organizational coordination. Using the case study method, data was collected from six manufacturing firms in China. The results show that inter-organizational system adoption is affected by organizational environment and is related to the management of inter-organizational coordination. Coordination and IT application affect the performance of inter-organizational coordination.

  20. Análise da validade de critério da Avaliação da Coordenação e Destreza Motora: ACOORDEM para crianças de 7 e 8 anos de idade Criterion validity of the Motor Coordination and Dexterity Assessment: MCDA for 7- and 8-years old children

    Directory of Open Access Journals (Sweden)

    Ana A. Cardoso

    2012-02-01

    Full Text Available CONTEXTUALIZAÇÃO: O Transtorno do Desenvolvimento da Coordenação (TDC se caracteriza por prejuízo no desenvolvimento da coordenação motora, com impacto nas atividades de vida diária e desempenho acadêmico. A Avaliação da Coordenação e Destreza Motora (ACOORDEM vem sendo criada para oferecer aos profissionais de reabilitação brasileiros instrumentação confiável e válida para detecção do TDC. OBJETIVO: Examinar a validade de critério da ACOORDEM. MÉTODOS: Cento e oitenta e uma crianças de 7 e 8 anos da região metropolitana de Belo Horizonte, MG, Brasil, pré-selecionadas pelo Developmental Coordination Disorder Questionnaire (DCDQ-Brasil, foram avaliadas com a ACOORDEM e com o Movement Assessment Battery for Children (MABC-II. A validade concorrente foi avaliada pelo índice de Correlação de Spearman e a validade preditiva, pelos valores de sensibilidade (S, especificidade (E, valor de predição positivo (VPP e valor de predição negativo (VPN. Curvas ROC foram realizadas para determinar o ponto de corte ótimo da ACOORDEM. RESULTADOS: A Correlação de Spearman entre os escores totais da ACOORDEM e do MABC-II foi de 0,596 (p=0,000 aos 7 e 0,730 (p=0,000 aos 8 anos. O ponto de corte da ACOORDEM definido pelas curvas ROC se aproximou do percentil 40, o que corresponde a S de 0,91 e 0,74 e E de 0,74 e 0,90 aos 7 e 8 anos, respectivamente. CONCLUSÃO: Resultados apontam valores moderados de validade concorrente e preditiva da ACOORDEM. Estudos futuros devem reexaminar os pontos de corte da ACOORDEM em amostra aleatória, representativa de crianças brasileiras de 4 a 8 anos de idade. A validade preditiva para TDC do instrumento completo deve ser reexaminada em amostras clínicas bem definidas.BACKGROUND: Developmental Coordination Disorder (DCD is characterized by impaired development of motor coordination, with impact on daily life activities and academic performance. The Motor Coordination and Dexterity Assessment (MCDA

  1. Concurrent word generation and motor performance: further evidence for language-motor interaction.

    Directory of Open Access Journals (Sweden)

    Amy D Rodriguez

    Full Text Available Embodied/modality-specific theories of semantic memory propose that sensorimotor representations play an important role in perception and action. A large body of evidence supports the notion that concepts involving human motor action (i.e., semantic-motor representations are processed in both language and motor regions of the brain. However, most studies have focused on perceptual tasks, leaving unanswered questions about language-motor interaction during production tasks. Thus, we investigated the effects of shared semantic-motor representations on concurrent language and motor production tasks in healthy young adults, manipulating the semantic task (motor-related vs. nonmotor-related words and the motor task (i.e., standing still and finger-tapping. In Experiment 1 (n = 20, we demonstrated that motor-related word generation was sufficient to affect postural control. In Experiment 2 (n = 40, we demonstrated that motor-related word generation was sufficient to facilitate word generation and finger tapping. We conclude that engaging semantic-motor representations can have a reciprocal influence on motor and language production. Our study provides additional support for functional language-motor interaction, as well as embodied/modality-specific theories.

  2. Mild impairments of motor imagery skills in children with DCD

    NARCIS (Netherlands)

    Noten, M.M.P.G.; Wilson, P.; Ruddock, S.; Steenbergen, B.

    2014-01-01

    It has been hypothesized that the underlying mechanism of clumsy motor behaviour in children with Developmental Coordination Disorder (DCD) is caused by a deficit in the internal modelling for motor control. An internal modelling deficit can be shown on a behavioural level by a task that requires mo

  3. TECHNICAL COORDINATION

    CERN Multimedia

    A. Ball and W. Zeuner

    2012-01-01

      UXC + detectors As explained in detail in the November 2011 bulletin, the bellows unit at −18.5 m from the CMS interaction point was identified as a prime candidate for the regularly occurring pressure spikes which occasionally led to sustained severe background conditions in 2011, affecting dead time and data quality. Similar regions in LHC with vacuum instabilities were observed to be close to bellows, which radiography showed to have distorted RF-fingers — on removal, they proved to have been severely overheated. The plans for the Year-End Technical Stop were adapted to prioritise radiography of the bellows at 16 m to 18 m either end of CMS. Excellent work by the beam pipe, survey and heavy mechanical teams allowed the X-rays to be taken as planned on 20th December, showing that the bellow at −18.5m had an obvious non-conformity. The RF-fingers were found inside the end of the opposing flared pipe instead of outside. In addition, the overlap between fingers and...

  4. Infranuclear ocular motor disorders.

    Science.gov (United States)

    Lueck, Christian J

    2011-01-01

    This chapter covers the very large number of possible disorders that can affect the three ocular motor nerves, the neuromuscular junction, or the extraocular muscles. Conditions affecting the nerves are discussed under two major headings: those in which the site of damage can be anatomically localized (e.g., fascicular lesions and lesions occurring in the subarachnoid space, the cavernous sinus, the superior orbital fissure, or the orbit) and those in which the site of the lesion is either nonspecific or variable (e.g., vascular lesions, tumors, "ophthalmoplegic migraine," and congenital disorders). Specific comments on the diagnosis and management of disorders of each of the three nerves follow. Ocular motor synkineses (including Duane's retraction syndrome and aberrant regeneration) and disorders resulting in paroxysms of excess activity (e.g., neuromyotonia) are then covered, followed by myasthenia gravis and other disorders that affect the neuromuscular junction. A final section discusses disorders of the extraocular muscles themselves, including thyroid disease, orbital myositis, mitochondrial disease, and the muscular dystrophies. PMID:21601071

  5. The effects of various visual conditions on the gait cycle in children with different level of motor coordination-a pilot study. [Cómo afectan diferentes condiciones visuales a la marcha en niños con diferente nivel de coordinación motriz- un studio piloto].

    Directory of Open Access Journals (Sweden)

    Miriam Palomo-Nieto

    2015-10-01

    Full Text Available The importance of vision and the visual control of movement have been addressed in the literature related to motor control. Many studies have demonstrated that children with low motor competence in comparison to their typically developing peers may rely more heavily on vision to perform movements. The aim of the study was to highlight the effects of different visual conditions on motor performance during walking in children with different levels of motor coordination. Participants (n=8, Mean age = 8.5±.5 years were divided into typical development (TD and low motor coordination (LMC group. They were asked to walk along a 10-meter walkway provided by Optojump-Next instrument that was placed in a portable construction (15 x 3 x 2.5m. This construction was surrounded by dark blue fibers in which all participants perceived the same visual information. They walked in a self-selected speed under four visual conditions: full vision (FV, limited vision 150 ms (LV-150, limited vision 100 ms (LV-100 and non-vision (NV. For visual occlusion during walking in LV-150 and LV-100, participants were equipped with Plato Goggles that opened for 150 and 100 ms, respectively, within each 2 sec. Data were analyzed in a two-way mixed between-within ANOVA including 2 (groups: TD vs. LMC x 4 (visual condition: FV, LV-150, LV-100 & NV with repeated-measures on the last factor (p≤.05. Results indicated that TD children walked faster and with longer strides than LMC children in which these parameters can influence on different periods of gait cycle including stance and swing phases. Also, perceiving visual information for 150 ms in comparison to 100 ms while walking was enough for similar performance in FV condition. The present findings highlight underlying parameters of gait cycle for walking in TD compared to LMC children are different. Resumen La importancia de la visión y del control visual en el movimiento es un asunto ampliamente abordado y tratado en la

  6. Voz do cantor lírico e coordenação motora: uma intervenção baseada em Piret e Béziers Lyric singer voice and motor coordination: an intervention based on Piret and Béziers

    Directory of Open Access Journals (Sweden)

    Enio Lopes Mello

    2009-01-01

    Full Text Available OBJETIVO: Investigar os efeitos da aplicação de um Programa de Desenvolvimento da Coordenação Motora, baseado em Piret e Béziers, na voz do cantor lírico. MÉTODOS: Cinco cantores líricos profissionais executaram uma ária de ópera, de livre escolha, que foi filmada. Em seguida responderam a uma questão sobre a propriocepção ao cantar. Durante um mês submeteram-se ao Programa de Desenvolvimento da Coordenação Motora e ao final gravaram novamente a mesma ária e responderam a mesma questão. As filmagens foram enviadas para nove juizes profissionais (três fonoaudiólogos, três fisioterapeutas e três professores de canto que avaliaram a integração corpo e voz dos cantores por meio de análise perceptivo-auditiva e visual. Os cantores, após assistirem às duas filmagens, fizeram outra auto-avaliação. RESULTADOS: Na avaliação dos juízes: as duas sopranos, a mezzo-soprano e o baixo melhoraram a projeção da voz; o tenor melhorou a ressonância e o baixo melhorou também a respiração; com exceção do baixo todos ficaram com os gestos mais livres. Segundo relato dos cantores, os exercícios garantiram maior percepção da tensão muscular durante o canto e isso possibilitou melhor controle dos gestos. CONCLUSÃO: De acordo com a avaliação subjetiva os ajustes posturais, oriundos da execução dos exercícios da coordenação motora, provavelmente garantiram abertura da caixa torácica e melhoraram as condições da respiração dos cantores, durante o canto; este fato pode ter favorecido a verticalização da ressonância e a projeção da voz.PURPOSE: To investigate the effects of the application of a Motor Coordination Development Program, based on Piret and Béziers, on the voice of lyric singers. METHODS: Five professional lyric singers performed an opera aria of their choice, which was filmed. Next, they answered a question regarding their proprioception when singing. They were submitted to the Motor Coordination

  7. THE MOTOR

    DEFF Research Database (Denmark)

    Gammelgaard Nielsen, Anders

    2011-01-01

    MOTOR is the first assignment that students at Unit 1a of the School of Architecture are introduced to. The purpose of the assignment is to shake up the students and their preconceptions of what architec- ture is. This is done by introducing them to a working method that al- lows them to develop...... architecture that resides beyond their own imag- inative capabilities. In other words the core aim of the assignment is to equip students with an understand- ing that architecture can be devel- oped through a predetermined ge- neric process and that through this process opportunities exist to devel- op...... something original and genuine that decisively challenges the limits of the field of architecture. This un- derstanding is important if students are to avoid mimicking an existing world of imagery in architecture or fragments of it. The point of departure for the MO- TOR assignment is that a car engine...

  8. Motor Neuron Diseases

    Science.gov (United States)

    ... Awards Enhancing Diversity Find People About NINDS Motor Neuron Diseases Fact Sheet See a list of all ... can I get more information? What are motor neuron diseases? The motor neuron diseases (MNDs) are a ...

  9. Prenatal Development of Interlimb Motor Learning in the Rat Fetus

    Science.gov (United States)

    Robinson, Scott R.; Kleven, Gale A.; Brumley, Michele R.

    2008-01-01

    The role of sensory feedback in the early ontogeny of motor coordination remains a topic of speculation and debate. On E20 of gestation (the 20th day after conception, 2 days before birth), rat fetuses can alter interlimb coordination after a period of training with an interlimb yoke, which constrains limb movement and promotes synchronized,…

  10. The development and standardization of the Adult Developmental Co-ordination Disorders/Dyspraxia Checklist (ADC).

    Science.gov (United States)

    Kirby, Amanda; Edwards, Lisa; Sugden, David; Rosenblum, Sara

    2010-01-01

    Developmental Co-ordination Disorder (DCD), also known as Dyspraxia in the United Kingdom (U.K.), is a developmental disorder affecting motor co-ordination. In the past this was regarded as a childhood disorder, however there is increasing evidence that a significant number of children will continue to have persistent difficulties into adulthood. Despite this, there remains little information as to how the difficulties might present at this stage, and additionally the impact on every day functioning. As young people move into further and higher education there is a need for screening and assessment tools. Such tools allow for identification of these difficulties, access to support, and clarification of areas where appropriate support needs to be targeted. This paper describes the first adult screening tool for DCD. The development and the results from testing this tool in two countries, Israel and the U.K. are outlined and the implications for its use in further and higher education discussed. PMID:19819107

  11. Brief Overview of Motor Learning and It's Application to Rehabilitation: Part Ⅰ: Motor Learning Theory

    Institute of Scientific and Technical Information of China (English)

    Christopher A Zaino

    2003-01-01

    @@ 1 DEFINITION OF MOTOR LEARNING Motor learning is the study of how we acquire and modify movements.1 The acquisition of motor skills is the process of learning how to do a particular movement (performance), but the real key to therapeutic intervention is being able to affect permanent changes in motor skills via the process of motor learning. Therefore, motor learning is defined as the ability to retain the ability to perform a motor task at a later time. In rehabilitation, it is important to be cognizant of the concepts of acquisition and retention. We can facilitate acquisition,but do little to assist in the retention of the task (learning). Conversely, we can arrange practice such that acquisition is slowed, but we can actually be assisting learning the task. It is important to have a clear goal in mind and work towards the eventual learning of the task to allow full functional use of that skill.

  12. High efficiency motors; Motores de alta eficiencia

    Energy Technology Data Exchange (ETDEWEB)

    Uranga Favela, Ivan Jaime [Energia Controlada de Mexico, S. A. de C. V., Mexico, D. F. (Mexico)

    1992-12-31

    This paper is a technical-financial study of the high efficiency and super-premium motors. As it is widely known, more than 60% of the electrical energy generated in the country is used for the operation of motors, in industry as well as in commerce. Therefore the importance that the motors have in the efficient energy use. [Espanol] El presente trabajo es un estudio tecnico-financiero de los motores de alta eficiencia y los motores super premium. Como es ampliamente conocido, mas del 60% de la energia electrica generada en el pais, es utilizada para accionar motores, dentro de la industria y el comercio. De alli la importancia que los motores tienen en el uso eficiente de la energia.

  13. Musical Creativity "Revealed" in Brain Structure: Interplay between Motor, Default Mode, and Limbic Networks.

    Science.gov (United States)

    Bashwiner, David M; Wertz, Christopher J; Flores, Ranee A; Jung, Rex E

    2016-01-01

    Creative behaviors are among the most complex that humans engage in, involving not only highly intricate, domain-specific knowledge and skill, but also domain-general processing styles and the affective drive to create. This study presents structural imaging data indicating that musically creative people (as indicated by self-report) have greater cortical surface area or volume in a) regions associated with domain-specific higher-cognitive motor activity and sound processing (dorsal premotor cortex, supplementary and pre-supplementary motor areas, and planum temporale), b) domain-general creative-ideation regions associated with the default mode network (dorsomedial prefrontal cortex, middle temporal gyrus, and temporal pole), and c) emotion-related regions (orbitofrontal cortex, temporal pole, and amygdala). These findings suggest that domain-specific musical expertise, default-mode cognitive processing style, and intensity of emotional experience might all coordinate to motivate and facilitate the drive to create music. PMID:26888383

  14. Musical Creativity “Revealed” in Brain Structure: Interplay between Motor, Default Mode, and Limbic Networks

    Science.gov (United States)

    Bashwiner, David M.; Wertz, Christopher J.; Flores, Ranee A.; Jung, Rex E.

    2016-01-01

    Creative behaviors are among the most complex that humans engage in, involving not only highly intricate, domain-specific knowledge and skill, but also domain-general processing styles and the affective drive to create. This study presents structural imaging data indicating that musically creative people (as indicated by self-report) have greater cortical surface area or volume in a) regions associated with domain-specific higher-cognitive motor activity and sound processing (dorsal premotor cortex, supplementary and pre-supplementary motor areas, and planum temporale), b) domain-general creative-ideation regions associated with the default mode network (dorsomedial prefrontal cortex, middle temporal gyrus, and temporal pole), and c) emotion-related regions (orbitofrontal cortex, temporal pole, and amygdala). These findings suggest that domain-specific musical expertise, default-mode cognitive processing style, and intensity of emotional experience might all coordinate to motivate and facilitate the drive to create music. PMID:26888383

  15. Autism as a developmental disorder in intentional movement and affective engagement

    Directory of Open Access Journals (Sweden)

    COLWYN eTREVARTHEN

    2013-07-01

    Full Text Available We review evidence that autistic spectrum disorders have their origin in early, prenatal failure of development in systems that program timing, serial coordination and prospective control of movements and that regulate affective evaluations of experiences. There are effects in early infancy, before medical diagnosis, especially in motor sequencing, selective or exploratory attention, affective expression and intersubjective engagement with parents. These are followed by retardation of cognitive development and language learning in the second or third year, which lead to a diagnosis of ASD. The early signs relate to abnormalities that have been found in brain stem systems and cerebellum in the embryo or early foetal stage, before the cerebral neocortex is functional, and they have clear consequences in infancy when neocortical systems are intensively elaborated. We propose, with evidence of the disturbances of posture, locomotion and prospective motor control in children with autism, as well as facial expression of interest and affect, and attention to other persons’ expressions, that examination of the psychobiology of motor affective disorders, rather than later developing cognitive or linguistic ones, may facilitate early diagnosis. Research in this area may also explain how intense interaction, imitation or ‘expressive art’ therapies, which respond intimately with motor activities, are effective at later stages. Exceptional talents of some autistic people may be acquired compensations for basic problems with expectant self-regulations of movement, attention and emotion.

  16. Autism as a developmental disorder in intentional movement and affective engagement.

    Science.gov (United States)

    Trevarthen, Colwyn; Delafield-Butt, Jonathan T

    2013-01-01

    We review evidence that autistic spectrum disorders have their origin in early prenatal failure of development in systems that program timing, serial coordination and prospective control of movements, and that regulate affective evaluations of experiences. There are effects in early infancy, before medical diagnosis, especially in motor sequencing, selective or exploratory attention, affective expression and intersubjective engagement with parents. These are followed by retardation of cognitive development and language learning in the second or third year, which lead to a diagnosis of ASD. The early signs relate to abnormalities that have been found in brain stem systems and cerebellum in the embryo or early fetal stage, before the cerebral neocortex is functional, and they have clear consequences in infancy when neocortical systems are intensively elaborated. We propose, with evidence of the disturbances of posture, locomotion and prospective motor control in children with autism, as well as of their facial expression of interest and affect, and attention to other persons' expressions, that examination of the psychobiology of motor affective disorders, rather than later developing cognitive or linguistic ones, may facilitate early diagnosis. Research in this area may also explain how intense interaction, imitation or "expressive art" therapies, which respond intimately with motor activities, are effective at later stages. Exceptional talents of some autistic people may be acquired compensations for basic problems with expectant self-regulations of movement, attention and emotion. PMID:23882192

  17. Survival motor neuron protein in motor neurons determines synaptic integrity in spinal muscular atrophy.

    Science.gov (United States)

    Martinez, Tara L; Kong, Lingling; Wang, Xueyong; Osborne, Melissa A; Crowder, Melissa E; Van Meerbeke, James P; Xu, Xixi; Davis, Crystal; Wooley, Joe; Goldhamer, David J; Lutz, Cathleen M; Rich, Mark M; Sumner, Charlotte J

    2012-06-20

    The inherited motor neuron disease spinal muscular atrophy (SMA) is caused by deficient expression of survival motor neuron (SMN) protein and results in severe muscle weakness. In SMA mice, synaptic dysfunction of both neuromuscular junctions (NMJs) and central sensorimotor synapses precedes motor neuron cell death. To address whether this synaptic dysfunction is due to SMN deficiency in motor neurons, muscle, or both, we generated three lines of conditional SMA mice with tissue-specific increases in SMN expression. All three lines of mice showed increased survival, weights, and improved motor behavior. While increased SMN expression in motor neurons prevented synaptic dysfunction at the NMJ and restored motor neuron somal synapses, increased SMN expression in muscle did not affect synaptic function although it did improve myofiber size. Together these data indicate that both peripheral and central synaptic integrity are dependent on motor neurons in SMA, but SMN may have variable roles in the maintenance of these different synapses. At the NMJ, it functions at the presynaptic terminal in a cell-autonomous fashion, but may be necessary for retrograde trophic signaling to presynaptic inputs onto motor neurons. Importantly, SMN also appears to function in muscle growth and/or maintenance independent of motor neurons. Our data suggest that SMN plays distinct roles in muscle, NMJs, and motor neuron somal synapses and that restored function of SMN at all three sites will be necessary for full recovery of muscle power.

  18. Motor Priming in Neurorehabilitation

    OpenAIRE

    Stoykov, Mary Ellen; Madhavan, Sangeetha

    2015-01-01

    Priming is a type of implicit learning wherein a stimulus prompts a change in behavior. Priming has been long studied in the field of psychology. More recently, rehabilitation researchers have studied motor priming as a possible way to facilitate motor learning. For example, priming of the motor cortex is associated with changes in neuroplasticity that are associated with improvements in motor performance. Of the numerous motor priming paradigms under investigation, only a few ...

  19. The cerebellum: its role in language and related cognitive and affective functions.

    Science.gov (United States)

    De Smet, Hyo Jung; Paquier, Philippe; Verhoeven, Jo; Mariën, Peter

    2013-12-01

    The traditional view on the cerebellum as the sole coordinator of motor function has been substantially redefined during the past decades. Neuroanatomical, neuroimaging and clinical studies have extended the role of the cerebellum to the modulation of cognitive and affective processing. Neuroanatomical studies have demonstrated cerebellar connectivity with the supratentorial association areas involved in higher cognitive and affective functioning, while functional neuroimaging and clinical studies have provided evidence of cerebellar involvement in a variety of cognitive and affective tasks. This paper reviews the recently acknowledged role of the cerebellum in linguistic and related cognitive and behavioral-affective functions. In addition, typical cerebellar syndromes such as the cerebellar cognitive affective syndrome (CCAS) and the posterior fossa syndrome (PFS) will be briefly discussed and the current hypotheses dealing with the presumed neurobiological mechanisms underlying the linguistic, cognitive and affective modulatory role of the cerebellum will be reviewed.

  20. Information for Parents and Teachers on the European Academy for Childhood Disability (EACD) Recommendations on Developmental Coordination Disorder

    Science.gov (United States)

    Blank, Rainer

    2012-01-01

    Developmental coordination disorder (DCD) is a condition characterized by difficulty in the development of motor coordination and learning new motor skills. It impacts on a child's ability to carry out everyday tasks such as getting dressed, using cutlery, writing or drawing, running, and playing sport. It is not due to any intellectual difficulty…

  1. Sliding of microtubules by a team of dynein motors: Understanding the effect of spatial distribution of motor tails and mutual exclusion of motor heads on microtubules

    Science.gov (United States)

    Singh, Hanumant Pratap; Takshak, Anjneya; Mall, Utkarsh; Kunwar, Ambarish

    2016-06-01

    Molecular motors are natural nanomachines that use the free energy released from ATP hydrolysis to generate mechanical forces. Cytoplasmic dynein motors often work collectively as a team to drive important processes such as axonal growth, proplatelet formation and mitosis, as forces generated by single motors are insufficient. A large team of dynein motors is used to slide cytoskeletal microtubules with respect to one another during the process of proplatelet formation and axonal growth. These motors attach to a cargo microtubule via their tail domains, undergo the process of detachment and reattachment of their head domains on another track microtubule, while sliding the cargo microtubule along the track. Traditional continuum/mean-field approaches used in the past are not ideal for studying the sliding mechanism of microtubules, as they ignore spatial and temporal fluctuations due to different possible distributions of motor tails on cargo filament, as well as binding/unbinding of motors from their track. Therefore, these models cannot be used to address important questions such as how the distribution of motor tails on microtubules, or how the mutual exclusion of motor heads on microtubule tracks affects the sliding velocity of cargo microtubule. To answer these, here we use a computational stochastic model where we model each dynein motor explicitly. In our model, we use both random as well as uniform distributions of dynein motors on cargo microtubule, as well as mutual exclusion of motors on microtubule tracks. We find that sliding velocities are least affected by the distribution of motor tails on microtubules, whereas they are greatly affected by mutual exclusion of motor heads on microtubule tracks. We also find that sliding velocity depends on the length of cargo microtubule if mutual exclusion among motor heads is considered.

  2. Deliberate Play and Preparation Jointly Benefit Motor and Cognitive Development: Mediated and Moderated Effects

    OpenAIRE

    Pesce, Caterina; Masci, Ilaria; Marchetti, Rosalba; Vazou, Spyridoula; Sääkslahti, Arja; Tomporowski, Phillip D.

    2016-01-01

    In light of the interrelation between motor and cognitive development and the predictive value of the former for the latter, the secular decline observed in motor coordination ability as early as preschool urges identification of interventions that may jointly impact motor and cognitive efficiency. The aim of this study was twofold. It (1) explored the outcomes of enriched physical education (PE), centered on deliberate play and cognitively challenging variability of practice, on motor coordi...

  3. Equivalent Circuit Modeling of Hysteresis Motors

    Energy Technology Data Exchange (ETDEWEB)

    Nitao, J J; Scharlemann, E T; Kirkendall, B A

    2009-08-31

    We performed a literature review and found that many equivalent circuit models of hysteresis motors in use today are incorrect. The model by Miyairi and Kataoka (1965) is the correct one. We extended the model by transforming it to quadrature coordinates, amenable to circuit or digital simulation. 'Hunting' is an oscillatory phenomenon often observed in hysteresis motors. While several works have attempted to model the phenomenon with some partial success, we present a new complete model that predicts hunting from first principles.

  4. Electric motor handbook

    CERN Document Server

    Chalmers, B J

    2013-01-01

    Electric Motor Handbook aims to give practical knowledge in a wide range of capacities such as plant design, equipment specification, commissioning, operation and maintenance. The book covers topics such as the modeling of steady-state motor performance; polyphase induction, synchronous, and a.c. commutator motors; ambient conditions, enclosures, cooling and loss dissipation; and electrical supply systems and motor drives. Also covered are topics such as variable-speed drives and motor control; materials and motor components; insulation types, systems, and techniques; and the installation, sit

  5. Directed flux motor

    Science.gov (United States)

    Wilson, Andrew (Inventor); Punnoose, Andrew (Inventor); Strausser, Katherine (Inventor); Parikh, Neil (Inventor)

    2011-01-01

    A directed flux motor described utilizes the directed magnetic flux of at least one magnet through ferrous material to drive different planetary gear sets to achieve capabilities in six actuated shafts that are grouped three to a side of the motor. The flux motor also utilizes an interwoven magnet configuration which reduces the overall size of the motor. The motor allows for simple changes to modify the torque to speed ratio of the gearing contained within the motor as well as simple configurations for any number of output shafts up to six. The changes allow for improved manufacturability and reliability within the design.

  6. Processing Coordination Ambiguity

    Science.gov (United States)

    Engelhardt, Paul E.; Ferreira, Fernanda

    2010-01-01

    We examined temporarily ambiguous coordination structures such as "put the butter in the bowl and the pan on the towel." Minimal Attachment predicts that the ambiguous noun phrase "the pan" will be interpreted as a noun-phrase coordination structure because it is syntactically simpler than clausal coordination. Constraint-based theories assume…

  7. Motor slowing in asymptomatic HIV infection.

    Science.gov (United States)

    Fitzgibbon, M L; Cella, D F; Humfleet, G; Griffin, E; Sheridan, K

    1989-06-01

    To examine neuropsychological deficits associated with the human immunodeficiency virus (HIV), 25 asymptomatic homosexual men and sexual partners of intravenous drug users and 25 seronegative homosexual men and nonhigh-risk heterosexuals were assessed on measures of fine motor control, visual scanning, attention, depression, and global psychological functioning. Analysis suggested that HIV infection is associated with reduced fine motor control. Seropositivity is associated with elevated depression and global psychological maladjustment. When depression and global adjustment were analyzed as covariates, motor slowing was evident in the seropositive group. These findings suggest an association between motor slowing and HIV infection in asymptomatic subjects and point to the necessity of measuring affect at least as a control variable. Further study is needed to determine whether the fine motor deficit evident in this sample is limited to distinct subgrouping of the over-all sample. PMID:2762096

  8. Olhares distintos sobre a noção de estabilidade e mudança no desempenho da coordenação motora grossa Ángulos diferentes sobre el concepto de estabilidad y cambio en el rendimiento de la coordinación motora gruesa Distinct views on the notion of stability and change in the performance of gross motor coordination

    Directory of Open Access Journals (Sweden)

    Luciano Basso

    2012-09-01

    discuten en términos de diferentes trayectorias de desarrollo de la CMG.Studies about gross motor coordination in children (GMC focus on the description of normative values derived from age and sex, and few analyzed the dynamics of change of each child within its group. The goal of the present study is estimate the stability of intra-individual change over inter-individual differences over eighteen months. One hundred and twenty students with seven years old in the city of Muzambinho - MG participated in the study. Data was collected four times, with a six-month interval between each assessment. GMC was evaluated through KTK test battery. Mean values for all tests increased over time, with differences between sex for equilibrium test. The correlation values between initial performance and improvements over eighteen months indicated high heterogeneity. Results of stability estimates were weak for tests. These results were discussed about different trajectories in the development of motor coordination.

  9. Response inhibition and fine-motor coordination in male children with Tourette syndrome comorbid attention-deficit/hyperactivity disorder%抽动秽语综合征共患注意缺陷多动障碍男性儿童的反应抑制和精细调节

    Institute of Scientific and Technical Information of China (English)

    朱云程; 季卫东; 江茜茜; 刘丽; 杜文永; 曹爱爱; 张郦; 鞠康; 李欣馨; 李国海

    2015-01-01

    Objective:To explore the differences and similarities of the neuropsychological functioning defi-cits in children between Tourette syndrome (TS)and attention-deficit/hyperactivity disorder (ADHD). Methods:Thirty boys with TS-only,36 with TS-plus-ADHD,36 with ADHD were selected from out-patient department,and 50 normal boys (NC)matched with gender,age and IQ were recruited as the controls. Patients'diagnosis was made according to the International Statistical Classification of Diseases and Related Health Problems,Tenth Revision (ICD-10). They were assessed with the Stroop Color-Word Interference Test (Stroop)and Purdue Pegboard Test (Purdue)to evaluate the response inhibition and fine-motor coordination respectively. Results:The Stroop scores were higher in children with ADHD than in other groups (P0. 05 ). All Purdue scores were higher in children with disease than in normal children (P<0. 05 ). Conclusion:The results indicate that the response inhibition deficit may be found in children with ADHD,but not in those with TS-only and TS-plus-ADHD. The neural compensatory mechanism may be re-sponsible for the response inhibition function in children with TS whilst the fine-motor coordination deficit was as-sociated with the disease groups.%目的:了解抽动秽语综合征(TS)与注意缺陷多动障碍(ADHD)可能存在的神经心理缺陷的异同点。方法:选择符合疾病和有关健康问题的国际统计分类第十次修订本(ICD-10)诊断标准的6~16岁门诊TS男性患儿30名,TS共病ADHD男性患儿36名,ADHD男性患儿36名以及性别、年龄、智商匹配的健康男性儿童50名作为对象,选择Stroop色-字干扰测验(Stroop)和Purdue钉板测验(Pur-due)分别对反应抑制和精细调节经行评估。结果:ADHD组的Stroop测验得分高于TS、TS共病ADHD、正常对照组(均P<0.05),而TS和TS共病ADHD组间Stroop得分差异无统计学意义(P>0.05

  10. Mapping genetic influences on the corticospinal motor system in humans

    DEFF Research Database (Denmark)

    Cheeran, B J; Ritter, C; Rothwell, J C;

    2009-01-01

    of the contribution of single nucleotide polymorphisms (SNP) and variable number tandem repeats. In humans, the corticospinal motor system is essential to the acquisition of fine manual motor skills which require a finely tuned coordination of activity in distal forelimb muscles. Here we review recent brain mapping...... studies that have begun to explore the influence of functional genetic variation as well as mutations on function and structure of the human corticospinal motor system, and also the clinical implications of these studies. Transcranial magnetic stimulation of the primary motor hand area revealed...... a modulatory role of the common val66met polymorphism in the BDNF gene on corticospinal plasticity. Diffusion-sensitive magnetic resonance imaging has been employed to pinpoint subtle structural changes in corticospinal motor projections in individuals carrying a mutation in genes associated with motor neuron...

  11. Handbook on linear motor application

    International Nuclear Information System (INIS)

    This book guides the application for Linear motor. It lists classification and speciality of Linear Motor, terms of linear-induction motor, principle of the Motor, types on one-side linear-induction motor, bilateral linear-induction motor, linear-DC Motor on basic of the motor, linear-DC Motor for moving-coil type, linear-DC motor for permanent-magnet moving type, linear-DC motor for electricity non-utility type, linear-pulse motor for variable motor, linear-pulse motor for permanent magneto type, linear-vibration actuator, linear-vibration actuator for moving-coil type, linear synchronous motor, linear electromagnetic motor, linear electromagnetic solenoid, technical organization and magnetic levitation and linear motor and sensor.

  12. ADHD and Poor Motor Performance from a Family Genetic Perspective

    Science.gov (United States)

    Fliers, Ellen; Vermeulen, Sita; Rijsdijk, Fruhling; Altink, Marieke; Buschgens, Cathelijne; Rommelse, Nanda; Faraone, Stephen; Sergeant, Joseph; Buitelaar, Jan; Franke, Barbara

    2009-01-01

    Analysis of the data from a genetics study of children with attention-deficit/hyperactivity disorder (ADHD) and their affected or unaffected siblings finds that ADHD-affected children had significantly more motor problems than their unaffected siblings. It is concluded that there is a common basis between ADHD and motor problems that may be due to…

  13. Motor action and emotional memory

    OpenAIRE

    Casasanto, D.; Dijkstra, K.

    2010-01-01

    Can simple motor actions affect how efficiently people retrieve emotional memories, and influence what they choose to remember? In Experiment 1, participants were prompted to retell autobiographical memories with either positive or negative valence, while moving marbles either upward or downward. They retrieved memories faster when the direction of movement was congruent with the valence of the memory (upward for positive, downward for negative memories). Given neutral-valence prompts in Expe...

  14. Chronic motor tic disorder

    Science.gov (United States)

    Chronic vocal tic disorder; Tic - chronic motor tic disorder ... Chronic motor tic disorder is more common than Tourette syndrome . Chronic tics may be forms of Tourette syndrome. Tics usually start ...

  15. Stator Fault Modelling of Induction Motors

    DEFF Research Database (Denmark)

    Thomsen, Jesper Sandberg; Kallesøe, Carsten

    2006-01-01

    In this paper a model of an induction motor affected by stator faults is presented. Two different types of faults are considered, these are; disconnection of a supply phase, and inter-turn and turn-turn short circuits inside the stator. The output of the derived model is compared to real measurem......In this paper a model of an induction motor affected by stator faults is presented. Two different types of faults are considered, these are; disconnection of a supply phase, and inter-turn and turn-turn short circuits inside the stator. The output of the derived model is compared to real...... measurements from a specially designed induction motor. With this motor it is possible to simulate both terminal disconnections, inter-turn and turn-turn short circuits. The results show good agreement between the measurements and the simulated signals obtained from the model. In the tests focus...

  16. Adventures in Coordinate Space

    Science.gov (United States)

    Chambers, J. E.

    2003-08-01

    A variety of coordinate systems have been used to study the N-body problem for cases involving a dominant central mass. These include the traditional Keplerian orbital elements and the canonical Delaunay variables, which both incorporate conserved quantities of the two-body problem. Recently, Cartesian coordinate systems have returned to favour with the rise of mixed-variable symplectic integrators, since these coordinates prove to be more efficient than using orbital elements. Three sets of canonical Cartesian coordinates are well known, each with its own advantages and disadvantages. Inertial coordinates (which include barycentric coordinates as a special case) are the simplest and easiest to implement. However, they suffer from the disadvantage that the motion of the central body must be calculated explicitly, leading to relatively large errors in general. Jacobi coordinates overcome this problem by replacing the coordinates and momenta of the central body with those of the system as a whole, so that momentum is conserved exactly. This leads to substantial improvements in accuracy, but has the disadvantage that every object is treated differently, and interactions between each pair of bodies are now expressed in a complicated manner involving the coordinates of many bodies. Canonical heliocentric coordinates (also known as democratic heliocentric coordinates) treat all bodies equally, and conserve the centre of mass motion, but at the cost of introducing momentum cross terms into the kinetic energy. This complicates the development of higher order symplectic integrators and symplectic correctors, as well as the development of methods used to resolve close encounters with the central body. Here I will re-examine the set of possible canonical Cartesian coordinate systems to determine if it is possible to (a) conserve the centre of mass motion, (b) treat all bodies equally, and (c) eliminate the momentum cross terms. I will demonstrate that this is indeed possible

  17. Expression of NR2B in cerebellar granule cells specifically facilitates effect of motor training on motor learning.

    Directory of Open Access Journals (Sweden)

    Jianwei Jiao

    Full Text Available It is believed that gene/environment interaction (GEI plays a pivotal role in the development of motor skills, which are acquired via practicing or motor training. However, the underlying molecular/neuronal mechanisms are still unclear. Here, we reported that the expression of NR2B, a subunit of NMDA receptors, in cerebellar granule cells specifically enhanced the effect of voluntary motor training on motor learning in the mouse. Moreover, this effect was characterized as motor learning-specific and developmental stage-dependent, because neither emotional/spatial memory was affected nor was the enhanced motor learning observed when the motor training was conducted starting at the age of 3 months old in these transgenic mice. These results indicate that changes in the expression of gene(s that are involved in regulating synaptic plasticity in cerebellar granule cells may constitute a molecular basis for the cerebellum to be involved in the GEI by facilitating motor skill learning.

  18. Edinburgh Motor Assessment (EMAS)

    OpenAIRE

    Bak, Thomas

    2013-01-01

    Edinburgh Motor Assessment (EMAS) is a brief motor screening test, specifically designed for assessment of patients with dementia, aphasia and other cognitive disorders. It focuses, therefore, on those motor symptoms, which are known to occur in association with these diseases, such as extrapyramidal, amyotrophic, and cerebellar features as well as complex cognitive‐motor phenomena such as apraxia. EMAS has been developed by a team of neurologists and psychiatrists at the ...

  19. CONSOLIDATION OF MOTOR MEMORY

    OpenAIRE

    Krakauer, John W.; Shadmehr, Reza

    2005-01-01

    A question of great recent interest is whether motor memory consolidates in a manner analogous to declarative memories, with the formation of a memory that progresses over time from a fragile state, susceptible to interference by a lesion or a conflicting motor task, to a stabilized state, resistant to such interference. Here, we first review studies that examine the anatomical basis for motor consolidation: evidence implicates cerebellar circuitry for two types of associative motor learning,...

  20. Motor Neurons that Multitask

    OpenAIRE

    Goulding, Martyn

    2012-01-01

    Animals use a form of sensory feedback termed proprioception to monitor their body position and modify the motor programs that control movement. In this issue of Neuron, Wen et al. (2012) provide evidence that a subset of motor neurons function as proprioceptors in C. elegans, where B-type motor neurons sense body curvature to control the bending movements that drive forward locomotion.

  1. Quantum motor and future

    CERN Document Server

    Fateev, Evgeny G

    2013-01-01

    In a popular language, the possibilities of the Casimir expulsion effect are presented, which can be the basis of quantum motors. Such motors can be in the form of a special multilayer thin film with periodic and complex nanosized structures. Quantum motors of the type of the Casimir platforms can be the base of transportation, energy and many other systems in the future.

  2. Stochastic mechano-chemical kinetics of molecular motors: a multidisciplinary enterprise from a physicist's perspective

    CERN Document Server

    Chowdhury, Debashish

    2013-01-01

    A molecular motor is made of either a single macromolecule or a macromolecular complex. Just like their macroscopic counterparts, molecular motors "transduce" input energy into mechanical work. All the nano-motors considered here operate under isothermal conditions far from equilibrium. Moreover, one of the possible mechanisms of energy transduction, called Brownian ratchet, does not even have any macroscopic counterpart. But, molecular motor is not synonymous with Brownian ratchet; a large number of molecular motors execute a noisy power stroke, rather than operating as Brownian ratchet. We review not only the structural design and stochastic kinetics of individual single motors, but also their coordination, cooperation and competition as well as the assembly of multi-module motors in various intracellular kinetic processes. Although all the motors considered here execute mechanical movements, efficiency and power output are not necessarily good measures of performance of some motors. Among the intracellular...

  3. The Movement Assessment Battery in Greek Preschoolers: The Impact of Age, Gender, Birth Order, and Physical Activity on Motor Outcome

    Science.gov (United States)

    Giagazoglou, Paraskevi; Kabitsis, Nikolaos; Kokaridas, Dimitrios; Zaragas, Charilaos; Katartzi, Ermioni; Kabitsis, Chris

    2011-01-01

    Early identification of possible risk factors that could impair the motor development is crucial, since poor motor performance may have long-term negative consequences for a child's overall development. The aim of the current study was the examination of disorders in motor coordination in Greek pre-school aged children and the detection of…

  4. Development programme motor function of children with mental retardation

    Directory of Open Access Journals (Sweden)

    Kozina Zh.L.

    2014-01-01

    Full Text Available Purpose: to study the rehabilitation program recovery of motor function of children with mental retardation. Material-methods: the study involved 19 students from primary diagnosis - mental retardation. Age of children was 8 - 9 years and 9 - 10 years. Motor speed detection reaction carried out using a falling line setting (in cm. Determination of speed integral motor actions performed with running 30 meters to go. From cross-country test also used the shuttle run 4x9 meters. Results : a program of exercise for children with mental retardation. Exercises aimed at correcting the basic movements, flexibility correction, correction and development of coordination abilities, adjustment and development of physical fitness, correction and prevention of secondary fractures. Conclusions : it was found that the rehabilitation program for development and correction of motor function of children with mental retardation is an effective and affordable to adjust coordination abilities and flexibility.

  5. RELATIONS BETWEEN MOTORIC ABILITIES AND SPECIFIC MOTORIC BASKETBALL SKILLS IN PHYSICAL EDUCATION CLASSES

    Directory of Open Access Journals (Sweden)

    Dejan Milenković

    2014-06-01

    Full Text Available The aim of this study was to determine the relation between motoric and specific motoric basketball skills in physical education classes for elementary school students. The sample was taken from a population of boys and girls in four elementary schools in Niš. Boys (66 and girls (58, have been students of elementary school, 10 years old and all of them have been attending regular physical education classes three times a week. For the assessment of motoric abilities, a set of 12 motoric tests was applied: Explosive strength: squat jump, squat jump arms swing and drop jump; Speed: 20m running from a low start, orbiting hand and orbiting leg; Coordination: jumping over the horizontal rope, envelope test and figure „8“ with bending; Accuracy: darts, shooting with the ball at horizontal target and stiletto. For the assessment of specific motoric basketball skills a set of six tests was applied: elevations precision of ball passing with two hands, horizontal precision of  ball passing with two hands, orbiting ball around the body, orbiting ball through the legs (figure „8“, dribble around a central circle of the basketball court and dribble two "small eights" around two adjacent circles of basketball court. In data processing canonical correlation and regression analysis were used. The results showed that motoric abilities significantly contributed to success of specific motoric tests performance both with boys and also with girls.

  6. Solid propellant motor

    Science.gov (United States)

    Shafer, J. I.; Marsh, H. E., Jr. (Inventor)

    1978-01-01

    A case bonded end burning solid propellant rocket motor is described. A propellant with sufficiently low modulus to avoid chamber buckling on cooling from cure and sufficiently high elongation to sustain the stresses induced without cracking is used. The propellant is zone cured within the motor case at high pressures equal to or approaching the pressure at which the motor will operate during combustion. A solid propellant motor with a burning time long enough that its spacecraft would be limited to a maximum acceleration of less than 1 g is provided by one version of the case bonded end burning solid propellant motor of the invention.

  7. Motor/generator

    Science.gov (United States)

    Hickam, Christopher Dale

    2008-05-13

    A motor/generator is provided for connecting between a transmission input shaft and an output shaft of a prime mover. The motor/generator may include a motor/generator housing, a stator mounted to the motor/generator housing, a rotor mounted at least partially within the motor/generator housing and rotatable about a rotor rotation axis, and a transmission-shaft coupler drivingly coupled to the rotor. The transmission-shaft coupler may include a clamp, which may include a base attached to the rotor and a plurality of adjustable jaws.

  8. Induction motor control design

    CERN Document Server

    Marino, Riccardo; Verrelli, Cristiano M

    2010-01-01

    ""Nonlinear and Adaptive Control Design for Induction Motors"" is a unified exposition of the most important steps and concerns in the design of estimation and control algorithms for induction motors. A single notation and modern nonlinear control terminology is used to make the book accessible to readers who are not experts in electric motors at the same time as giving a more theoretical control viewpoint to those who are. In order to increase readability, the book concentrates on the induction motor, eschewing the much more complex and less-well-understood control of asynchronous motors. The

  9. Daytime sleep enhances consolidation of the spatial but not motoric representation of motor sequence memory.

    Directory of Open Access Journals (Sweden)

    Geneviève Albouy

    Full Text Available Motor sequence learning is known to rely on more than a single process. As the skill develops with practice, two different representations of the sequence are formed: a goal representation built under spatial allocentric coordinates and a movement representation mediated through egocentric motor coordinates. This study aimed to explore the influence of daytime sleep (nap on consolidation of these two representations. Through the manipulation of an explicit finger sequence learning task and a transfer protocol, we show that both allocentric (spatial and egocentric (motor representations of the sequence can be isolated after initial training. Our results also demonstrate that nap favors the emergence of offline gains in performance for the allocentric, but not the egocentric representation, even after accounting for fatigue effects. Furthermore, sleep-dependent gains in performance observed for the allocentric representation are correlated with spindle density during non-rapid eye movement (NREM sleep of the post-training nap. In contrast, performance on the egocentric representation is only maintained, but not improved, regardless of the sleep/wake condition. These results suggest that motor sequence memory acquisition and consolidation involve distinct mechanisms that rely on sleep (and specifically, spindle or simple passage of time, depending respectively on whether the sequence is performed under allocentric or egocentric coordinates.

  10. Coordinating Interactions: The Event Coordination Notation

    DEFF Research Database (Denmark)

    Kindler, Ekkart

    on a much more technical level. The Event Coordination Notation (ECNO) allows modelling the behaviour of an application on a high level of abstraction that is closer to the application’s domain than to the software realizing it. Still, these models contain all necessary details for actually executing....... The global behaviour of the application results from different elements jointly engaging in such events, which is called an interaction. Which events are supposed to be jointly executed and which elements need to join in is defined by so-called coordination diagrams of the ECNO. Together, the models...

  11. Motor degradation prediction methods

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, J.R.; Kelly, J.F.; Delzingaro, M.J.

    1996-12-01

    Motor Operated Valve (MOV) squirrel cage AC motor rotors are susceptible to degradation under certain conditions. Premature failure can result due to high humidity/temperature environments, high running load conditions, extended periods at locked rotor conditions (i.e. > 15 seconds) or exceeding the motor`s duty cycle by frequent starts or multiple valve stroking. Exposure to high heat and moisture due to packing leaks, pressure seal ring leakage or other causes can significantly accelerate the degradation. ComEd and Liberty Technologies have worked together to provide and validate a non-intrusive method using motor power diagnostics to evaluate MOV rotor condition and predict failure. These techniques have provided a quick, low radiation dose method to evaluate inaccessible motors, identify degradation and allow scheduled replacement of motors prior to catastrophic failures.

  12. Piezoelectric Motors, an Overview

    Directory of Open Access Journals (Sweden)

    Karl Spanner

    2016-02-01

    Full Text Available Piezoelectric motors are used in many industrial and commercial applications. Various piezoelectric motors are available in the market. All of the piezoelectric motors use the inverse piezoelectric effect, where microscopically small oscillatory motions are converted into continuous or stepping rotary or linear motions. Methods of obtaining long moving distance have various drive and functional principles that make these motors categorized into three groups: resonance-drive (piezoelectric ultrasonic motors, inertia-drive, and piezo-walk-drive. In this review, a comprehensive summary of piezoelectric motors, with their classification from initial idea to recent progress, is presented. This review also includes some of the industrial and commercial applications of piezoelectric motors that are presently available in the market as actuators.

  13. Neuroplasticity & Motor Learning

    DEFF Research Database (Denmark)

    Jensen, Jesper Lundbye

    is a measure of our ability to form and store a motor memory of the task. However, the initial memory of the task is labile and may be subject to interference. During and following motor learning plastic changes occur within the central nervous system. On one hand these changes are driven by motor practice......, on the other hand the changes underlie the formation of motor memory and the retention of improved motor performance. During motor learning changes may occur at many different levels within the central nervous system dependent on the type of task and training. Here, we demonstrate different studies from our......Practice of a new motor task is usually associated with an improvement in performance. Indeed, if we stop practicing and return the next day to the same task, we find that our performance has been maintained and may even be better than it was at the start of the first day. This improvement...

  14. Enhanced time overcurrent coordination

    Energy Technology Data Exchange (ETDEWEB)

    Enriquez, Arturo Conde; Martinez, Ernesto Vazquez [Universidad Autonoma de Nuevo Leon, Facultad de Ingenieria Mecanica y Electrica, Apdo. Postal 114-F, Ciudad Universitaria, CP 66450 San Nicolas de los Garza, Nuevo Leon (Mexico)

    2006-04-15

    In this paper, we recommend a new coordination system for time overcurrent relays. The purpose of the coordination process is to find a time element function that allows it to operate using a constant back-up time delay, for any fault current. In this article, we describe the implementation and coordination results of time overcurrent relays, fuses and reclosers. Experiments were carried out in a laboratory test situation using signals of a power electrical system physics simulator. (author)

  15. Neural substrates of motor and non-motor symptoms in Parkinson's disease: a resting FMRI study.

    Directory of Open Access Journals (Sweden)

    Kwangsun Yoo

    Full Text Available Recently, non-motor symptoms of Parkinson's disease (PD have been considered crucial factors in determining a patient's quality of life and have been proposed as the predominant features of the premotor phase. Researchers have investigated the relationship between non-motor symptoms and the motor laterality; however, this relationship remains disputed. This study investigated the neural connectivity correlates of non-motor and motor symptoms of PD with respect to motor laterality.Eight-seven patients with PD were recruited and classified into left-more-affected PD (n = 44 and right-more affected PD (n = 37 based on their MDS-UPDRS (Movement Disorder Society-sponsored revision of the Unified Parkinson's Disease Rating Scale motor examination scores. The patients underwent MRI scanning, which included resting fMRI. Brain regions were labeled as ipsilateral and contralateral to the more-affected body side. Correlation analysis between the functional connectivity across brain regions and the scores of various symptoms was performed to identify the neural connectivity correlates of each symptom.The resting functional connectivity centered on the ipsilateral inferior orbito-frontal area was negatively correlated with the severity of non-motor symptoms, and the connectivity of the contralateral inferior parietal area was positively correlated with the severity of motor symptoms (p 0.3.These results suggest that the inferior orbito-frontal area may play a crucial role in non-motor dysfunctions, and that the connectivity information may be utilized as a neuroimaging biomarker for the early diagnosis of PD.

  16. Reversal of Handedness Effects on Bimanual Coordination in Adults with Down Syndrome

    Science.gov (United States)

    Mulvey, G. M.; Ringenbach, S. D. R.; Jung, M. L.

    2011-01-01

    Background: Research on unimanual tasks suggested that motor asymmetries between hands may be reduced in people with Down syndrome. Our study examined handedness (as assessed by hand performance) and perceptual-motor integration effects on bimanual coordination. Methods: Adults with Down syndrome (13 non-right-handed, 22 right-handed), along with…

  17. Drawing from memory: hand-eye coordination at multiple scales.

    Directory of Open Access Journals (Sweden)

    Stephanie Huette

    Full Text Available Eyes move to gather visual information for the purpose of guiding behavior. This guidance takes the form of perceptual-motor interactions on short timescales for behaviors like locomotion and hand-eye coordination. More complex behaviors require perceptual-motor interactions on longer timescales mediated by memory, such as navigation, or designing and building artifacts. In the present study, the task of sketching images of natural scenes from memory was used to examine and compare perceptual-motor interactions on shorter and longer timescales. Eye and pen trajectories were found to be coordinated in time on shorter timescales during drawing, and also on longer timescales spanning study and drawing periods. The latter type of coordination was found by developing a purely spatial analysis that yielded measures of similarity between images, eye trajectories, and pen trajectories. These results challenge the notion that coordination only unfolds on short timescales. Rather, the task of drawing from memory evokes perceptual-motor encodings of visual images that preserve coarse-grained spatial information over relatively long timescales as well.

  18. Drawing from Memory: Hand-Eye Coordination at Multiple Scales

    Science.gov (United States)

    Spivey, Michael J.

    2013-01-01

    Eyes move to gather visual information for the purpose of guiding behavior. This guidance takes the form of perceptual-motor interactions on short timescales for behaviors like locomotion and hand-eye coordination. More complex behaviors require perceptual-motor interactions on longer timescales mediated by memory, such as navigation, or designing and building artifacts. In the present study, the task of sketching images of natural scenes from memory was used to examine and compare perceptual-motor interactions on shorter and longer timescales. Eye and pen trajectories were found to be coordinated in time on shorter timescales during drawing, and also on longer timescales spanning study and drawing periods. The latter type of coordination was found by developing a purely spatial analysis that yielded measures of similarity between images, eye trajectories, and pen trajectories. These results challenge the notion that coordination only unfolds on short timescales. Rather, the task of drawing from memory evokes perceptual-motor encodings of visual images that preserve coarse-grained spatial information over relatively long timescales as well. PMID:23554894

  19. Drawing from memory: hand-eye coordination at multiple scales.

    Science.gov (United States)

    Huette, Stephanie; Kello, Christopher T; Rhodes, Theo; Spivey, Michael J

    2013-01-01

    Eyes move to gather visual information for the purpose of guiding behavior. This guidance takes the form of perceptual-motor interactions on short timescales for behaviors like locomotion and hand-eye coordination. More complex behaviors require perceptual-motor interactions on longer timescales mediated by memory, such as navigation, or designing and building artifacts. In the present study, the task of sketching images of natural scenes from memory was used to examine and compare perceptual-motor interactions on shorter and longer timescales. Eye and pen trajectories were found to be coordinated in time on shorter timescales during drawing, and also on longer timescales spanning study and drawing periods. The latter type of coordination was found by developing a purely spatial analysis that yielded measures of similarity between images, eye trajectories, and pen trajectories. These results challenge the notion that coordination only unfolds on short timescales. Rather, the task of drawing from memory evokes perceptual-motor encodings of visual images that preserve coarse-grained spatial information over relatively long timescales as well. PMID:23554894

  20. Metabolic Syndrome in Children with and without Developmental Coordination Disorder

    Science.gov (United States)

    Wahi, Gita; LeBlanc, Paul J.; Hay, John A.; Faught, Brent E.; O'Leary, Debra; Cairney, John

    2011-01-01

    Children with developmental coordination disorder (DCD) have higher rates of obesity compared to children with typical motor development, and, as a result may be at increased risk for developing metabolic syndrome (MetS). The purpose of this study was to determine the presence of MetS and its components among children with and without DCD. This…

  1. Subthalamic nucleus deep brain stimulation does not improve visuo-motor impairment in Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Simon D Israeli-Korn

    Full Text Available OBJECTIVE: To evaluate how bilateral subthalamic nucleus deep brain stimulation (STN-DBS affects visuo-motor coordination (VMC in patients with Parkinson's disease (PD. BACKGROUND: VMC involves multi-sensory integration, motor planning, executive function and attention. VMC deficits are well-described in PD. STN-DBS conveys marked motor benefit in PD, but pyscho-cognitive complications are recognized and the effect on VMC is not known. METHODS: Thirteen PD patients with bilateral STN-DBS underwent neurological, cognitive, and mood assessment before VMC testing with optimal DBS stimulation parameters ('on-stimulation' and then, on the same day without any medication changes, after DBS silencing and establishing motor function deterioration ('off-stimulation'. Twelve age-matched healthy controls performed 2 successive VMC testing sessions, with a break of similar duration to that of the PD group. The computer cursor was controlled with a dome-shaped 'mouse' hidden from view that minimized tremor effects. Movement duration, hand velocity, tracking continuity, directional control variables, and feedback utilization variables were measured. MANOVA was performed on (1 clinically measured motor function, (2 VMC performance and (3 mood and attention, looking for main and interaction effects of: (1 group (controls/PD, (2 test-order (controls: first/second, PD: on-stimulation/off-stimulation, (3 path (sine/square/circle and (4 hand (dominant/non-dominant. RESULTS: Unified PD Rating Scale (UPDRS Part III worsened off-stimulation versus on-stimulation (mean: 42.3 versus 21.6, p = 0.02, as did finger tapping (p = 0.02, posture-gait (p = 0.01, upper limb function (p<0.001 and backwards digit span (p = 0.02. Stimulation state did not affect mood. PD patients performed worse in non-velocity related VMC variables than controls (F(5,18 = 8.5, p<0.001. In the control group there were significant main effects of hand (dominant/non-dominant, path

  2. Coordination failure caused by sunspots

    DEFF Research Database (Denmark)

    Beugnot, Julie; Gürgüç, Zeynep; Øvlisen, Frederik Roose;

    2012-01-01

    In a coordination game with Pareto-ranked equilibria, we study whether a sunspot can lead to either coordination on an inferior equilibrium (mis-coordination) or to out-of equilibrium behavior (dis-coordination). While much of the literature searches for mechanisms to attain coordination on the e......In a coordination game with Pareto-ranked equilibria, we study whether a sunspot can lead to either coordination on an inferior equilibrium (mis-coordination) or to out-of equilibrium behavior (dis-coordination). While much of the literature searches for mechanisms to attain coordination...

  3. Social Postural Coordination

    Science.gov (United States)

    Varlet, Manuel; Marin, Ludovic; Lagarde, Julien; Bardy, Benoit G.

    2011-01-01

    The goal of the current study was to investigate whether a visual coupling between two people can produce spontaneous interpersonal postural coordination and change their intrapersonal postural coordination involved in the control of stance. We examined the front-to-back head displacements of participants and the angular motion of their hip and…

  4. Coordinate measuring machines

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo

    This document is used in connection with three exercises of 2 hours duration as a part of the course GEOMETRICAL METROLOGY AND MACHINE TESTING. The exercises concern three aspects of coordinate measuring: 1) Measuring and verification of tolerances on coordinate measuring machines, 2) Traceability...

  5. Non-motor symptoms in Parkinson's disease.

    Science.gov (United States)

    Poewe, W

    2008-04-01

    Although still considered a paradigmatic movement disorder, Parkinson's disease (PD) is associated with a broad spectrum of non-motor symptoms. These include disorders of mood and affect with apathy, anhedonia and depression, cognitive dysfunction and hallucinosis, as well as complex behavioural disorders. Sensory dysfunction with hyposmia or pain is almost universal, as are disturbances of sleep-wake cycle regulation. Autonomic dysfunction including orthostatic hypotension, urogenital dysfunction and constipation is also present to some degree in a majority of patients. Whilst overall non-motor symptoms become increasingly prevalent with advancing disease, many of them can also antedate the first occurrence of motor signs - most notably depression, hyposmia or rapid eye movement sleep behaviour disorder (RBD). Although exact clinicopathological correlations for most of these non-motor features are still poorly understood, the occurrence of constipation, RBD or hyposmia prior to the onset of clinically overt motor dysfunction would appear consistent with the ascending hypothesis of PD pathology proposed by Braak and colleagues. Screening these early non-motor features might, therefore, be one approach towards early 'preclinical' diagnosis of PD. This review article provides an overview of the clinical spectrum of non-motor symptoms in PD together with a brief review of treatment options. PMID:18353132

  6. Molecular Motor Proteins and Amyotrophic Lateral Sclerosis

    Directory of Open Access Journals (Sweden)

    Manal Farg

    2011-12-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is a neurodegenerative disorder affecting motor neurons in the brain, brainstem and spinal cord, which is characterized by motor dysfunction, muscle dystrophy and progressive paralysis. Both inherited and sporadic forms of ALS share common pathological features, however, the initial trigger of neurodegeneration remains unknown. Motor neurons are uniquely targeted by ubiquitously expressed proteins in ALS but the reason for this selectively vulnerability is unclear. However motor neurons have unique characteristics such as very long axons, large cell bodies and high energetic metabolism, therefore placing high demands on cellular transport processes. Defects in cellular trafficking are now widely reported in ALS, including dysfunction to the molecular motors dynein and kinesin. Abnormalities to dynein in particular are linked to ALS, and defects in dynein-mediated axonal transport processes have been reported as one of the earliest pathologies in transgenic SOD1 mice. Furthermore, dynein is very highly expressed in neurons and neurons are particularly sensitive to dynein dysfunction. Hence, unravelling cellular transport processes mediated by molecular motor proteins may help shed light on motor neuron loss in ALS.

  7. Lower motor neuron dysfunction in ALS.

    Science.gov (United States)

    de Carvalho, Mamede; Swash, Michael

    2016-07-01

    In the motor system there is a complex interplay between cortical structures and spinal cord lower motor neurons (LMN). In this system both inhibitory and excitatory neurons have relevant roles. LMN loss is a marker of motor neuron disease/amyotrophic lateral sclerosis (MND/ALS). Conventional needle electromyography (EMG) does not allow LMN loss to be quantified. Measurement of compound muscle action potential (CMAP) amplitude or area, and the neurophysiological index, provide a surrogate estimate of the number of functional motor units. Increased motor neuronal excitability is a neurophysiological marker of ALS in the context of a suspected clinical and electrophysiological diagnosis. In the LMN system, fasciculation potentials (FPs) are the earliest changes observed in affected muscles, a feature of LMN hyperexcitability. Reinnervation is best investigated by needle EMG although other methods can be explored. Moreover needle EMG give information about the temporal profile of the reinnervation process, important ancillary data. Quantitative motor unit potential analysis is a valuable method of evaluating reinnervation. The importance of FPs has been recognized in the Awaji criteria for the electrodiagnosis of ALS, criteria that are a sensitive adjunct to the revised El Escorial criteria. Finally, functionality of LMN's, and perhaps excitability studies in motor nerves, aids understanding of the disease process, allowing measurement of potential treatment effects in clinical trials. Other investigational techniques, such as electrical impedance myography, muscle and nerve ultrasound, and spinal cord imaging methods may prove useful in future. PMID:27117334

  8. Geometric Form Drawing: A Perceptual-Motor Approach to Preventive Remediation (The Steiner Approach)

    Science.gov (United States)

    Ogletree, Earl J.

    1975-01-01

    Provided is a rationale for geometric form drawing developed by Rudolf Steiner as a tool to develop motor coordination, perceptual skills, and cognition for mentally retarded and perceptually handicapped children. (Author/CL)

  9. Differential motor alterations in children with three types of attention deficit hyperactivity disorder

    Directory of Open Access Journals (Sweden)

    Adrián Poblano

    2014-11-01

    Full Text Available Objective To determine frequency of motor alterations in children with attention deficit hyperactivity disorder (ADHD. Method We evaluated 19 children aged 7-12 years with ADHD classified in three sub-types: Combined (ADHD-C, with Inattention (ADHD-I, and with Hyperactivity (ADHD-H. Controls were age- and gender matched healthy children. We utilized Bruininks-Oseretsky Test of Motor Proficiency (BOTMP for measuring motor skills. Results We observed differences between children with ADHD and controls in BOTMP general score and in static coordination, dynamic general- and hand- coordination, and in synkinetic movements. We also found differences in dynamic hand coordination between controls and children with ADHD-C; in dynamic general coordination between controls and children with ADHD-H; and in frequency of synkinetic movements between controls and children with ADHD-H. Conclusion Children with ADHD with a major degree of hyperactivity showed greater frequency of motor alterations.

  10. Emotional processing affects movement speed.

    Science.gov (United States)

    Hälbig, Thomas D; Borod, Joan C; Frisina, Pasquale G; Tse, Winona; Voustianiouk, Andrei; Olanow, C Warren; Gracies, Jean-Michel

    2011-09-01

    Emotions can affect various aspects of human behavior. The impact of emotions on behavior is traditionally thought to occur at central, cognitive and motor preparation stages. Using EMG to measure the effects of emotion on movement, we found that emotional stimuli differing in valence and arousal elicited highly specific effects on peripheral movement time. This result has conceptual implications for the emotion-motion link and potentially practical implications for neurorehabilitation and professional environments where fast motor reactions are critical.

  11. Caracterization of the motor profile of students with autistic disorder

    Directory of Open Access Journals (Sweden)

    Paola Matiko Okuda

    2010-12-01

    Full Text Available Thematic focus: The motor abnormalities may be part of so-called comorbidities that can coexist with autistic disorder. Objective: To characterize the motor profile of students with autistic disorder. Method: the study included six children with autistic disorder in elementary school, male, aged 5 years and 5 months and 10 years and 9 months. After signing the consent form by parents or guardians, the students were submitted to the Motor Development Scale for assessment of fine motor, gross motor performance, balance, body scheme, spatial organization, temporal organization and laterality. Results: The results revealed a significant difference between the motor age and chronological age. According to the classification of the Scale of Motor Development, students in this study showed motor development lower than expected for age. Conclusion: The students with autistic disorder in this study presented a profile of Developmental Coordination Disorder in comorbidity, showing that participants of this research presented difficulties in activities that required skills such as handwriting. Thus, motor and psychomotor needs of these students were focused on educational and clinical environment to reduce the impact of behavioral and social manifestations.

  12. Oscillatory dynamics track motor performance improvement in human cortex.

    Directory of Open Access Journals (Sweden)

    Stefan Dürschmid

    Full Text Available Improving performance in motor skill acquisition is proposed to be supported by tuning of neural networks. To address this issue we investigated changes of phase-amplitude cross-frequency coupling (paCFC in neuronal networks during motor performance improvement. We recorded intracranially from subdural electrodes (electrocorticogram; ECoG from 6 patients who learned 3 distinct motor tasks requiring coordination of finger movements with an external cue (serial response task, auditory motor coordination task, go/no-go. Performance improved in all subjects and all tasks during the first block and plateaued in subsequent blocks. Performance improvement was paralled by increasing neural changes in the trial-to-trial paCFC between theta ([Formula: see text]; 4-8 Hz phase and high gamma (HG; 80-180 Hz amplitude. Electrodes showing this covariation pattern (Pearson's r ranging up to .45 were located contralateral to the limb performing the task and were observed predominantly in motor brain regions. We observed stable paCFC when task performance asymptoted. Our results indicate that motor performance improvement is accompanied by adjustments in the dynamics and topology of neuronal network interactions in the [Formula: see text] and HG range. The location of the involved electrodes suggests that oscillatory dynamics in motor cortices support performance improvement with practice.

  13. Oscillatory dynamics track motor performance improvement in human cortex.

    Science.gov (United States)

    Dürschmid, Stefan; Quandt, Fanny; Krämer, Ulrike M; Hinrichs, Hermann; Heinze, Hans-Jochen; Schulz, Reinhard; Pannek, Heinz; Chang, Edward F; Knight, Robert T

    2014-01-01

    Improving performance in motor skill acquisition is proposed to be supported by tuning of neural networks. To address this issue we investigated changes of phase-amplitude cross-frequency coupling (paCFC) in neuronal networks during motor performance improvement. We recorded intracranially from subdural electrodes (electrocorticogram; ECoG) from 6 patients who learned 3 distinct motor tasks requiring coordination of finger movements with an external cue (serial response task, auditory motor coordination task, go/no-go). Performance improved in all subjects and all tasks during the first block and plateaued in subsequent blocks. Performance improvement was paralled by increasing neural changes in the trial-to-trial paCFC between theta ([Formula: see text]; 4-8 Hz) phase and high gamma (HG; 80-180 Hz) amplitude. Electrodes showing this covariation pattern (Pearson's r ranging up to .45) were located contralateral to the limb performing the task and were observed predominantly in motor brain regions. We observed stable paCFC when task performance asymptoted. Our results indicate that motor performance improvement is accompanied by adjustments in the dynamics and topology of neuronal network interactions in the [Formula: see text] and HG range. The location of the involved electrodes suggests that oscillatory dynamics in motor cortices support performance improvement with practice. PMID:24586885

  14. Motor degradation prediction methods

    International Nuclear Information System (INIS)

    Motor Operated Valve (MOV) squirrel cage AC motor rotors are susceptible to degradation under certain conditions. Premature failure can result due to high humidity/temperature environments, high running load conditions, extended periods at locked rotor conditions (i.e. > 15 seconds) or exceeding the motor's duty cycle by frequent starts or multiple valve stroking. Exposure to high heat and moisture due to packing leaks, pressure seal ring leakage or other causes can significantly accelerate the degradation. ComEd and Liberty Technologies have worked together to provide and validate a non-intrusive method using motor power diagnostics to evaluate MOV rotor condition and predict failure. These techniques have provided a quick, low radiation dose method to evaluate inaccessible motors, identify degradation and allow scheduled replacement of motors prior to catastrophic failures

  15. Where does TMS Stimulate the Motor Cortex?

    DEFF Research Database (Denmark)

    Bungert, Andreas; Antunes, André; Espenhahn, Svenja;

    2016-01-01

    Much of our knowledge on the physiological mechanisms of transcranial magnetic stimulation (TMS) stems from studies which targeted the human motor cortex. However, it is still unclear which part of the motor cortex is predominantly affected by TMS. Considering that the motor cortex consists...... of functionally and histologically distinct subareas, this also renders the hypotheses on the physiological TMS effects uncertain. We use the finite element method (FEM) and magnetic resonance image-based individual head models to get realistic estimates of the electric field induced by TMS. The field changes...... in different subparts of the motor cortex are compared with electrophysiological threshold changes of 2 hand muscles when systematically varying the coil orientation in measurements. We demonstrate that TMS stimulates the region around the gyral crown and that the maximal electric field strength in this region...

  16. Motor Development and Motor Resonance Difficulties in Autism: Relevance to Early Intervention for Language and Communication Skills

    Directory of Open Access Journals (Sweden)

    Joseph P. Mccleery

    2013-04-01

    Full Text Available Research suggests that a sub-set of children with autism experience notable difficulties and delays in motor skills development, and that a large percentage of children with autism experience deficits in motor resonance. These motor-related deficiencies, which evidence suggests are present from a very early age, are likely to negatively affect social-communicative and language development in this population. Here, we review evidence for delayed, impaired, and atypical motor development in infants and children with autism. We then carefully review and examine the current language and communication-based intervention research that is relevant to motor and motor resonance (i.e., neural mirroring mechanisms activated when we observe the actions of others deficits in children with autism. Finally, we describe research needs and future directions and developments for early interventions aimed at addressing the speech/language and social-communication development difficulties in autism from a motor-related perspective.

  17. Fine motor skills in South African children with symptoms of ADHD: influence of subtype, gender, age, and hand dominance

    OpenAIRE

    Meyer Anneke; Sagvolden Terje

    2006-01-01

    Abstract Background Motor problems, often characterised as clumsiness or poor motor coordination, have been associated with ADHD in addition to the main symptom groups of inattention, impulsiveness, and overactivity. The problems addressed in this study were: (1) Are motor problems associated with ADHD symptoms, also in African cultures? (2) Are there differences in motor skills among the subtypes with ADHD symptoms? (3) Are there gender differences? (4) Is there an effect of age? (5) Are the...

  18. Motor Axon Pathfinding

    OpenAIRE

    Bonanomi, Dario; Pfaff, Samuel L

    2010-01-01

    Motor neurons are functionally related, but represent a diverse collection of cells that show strict preferences for specific axon pathways during embryonic development. In this article, we describe the ligands and receptors that guide motor axons as they extend toward their peripheral muscle targets. Motor neurons share similar guidance molecules with many other neuronal types, thus one challenge in the field of axon guidance has been to understand how the vast complexity of brain connection...

  19. The influence of scopolamine on motor control and attentional processes

    OpenAIRE

    Bestaven, Emma; Kambrun, Charline; Guehl, Dominique; Cazalets, Jean-René; Guillaud, Etienne

    2016-01-01

    Background: Motion sickness may be caused by a sensory conflict between the visual and the vestibular systems. Scopolamine, known to be the most effective therapy to control the vegetative symptoms of motion sickness, acts on the vestibular nucleus and potentially the vestibulospinal pathway, which may affect balance and motor tasks requiring both attentional process and motor balance. The aim of this study was to explore the effect of scopolamine on motor control and attentional processes. M...

  20. Developmental dyspraxia and developmental coordination disorder.

    Science.gov (United States)

    Miyahara, M; Möbs, I

    1995-12-01

    This article discusses the role developmental dyspraxia plays in developmental coordination disorder (DCD), based upon a review of literature on apraxia, developmental dyspraxia, and DCD. Apraxia and dyspraxia have often been equated with DCD. However, it is argued that apraxia and dyspraxia primarily refer to the problems of motor sequencing and selection, which not all children with DCD exhibit. The author proposes to distinguish developmental dyspraxia from DCD. Other issues discussed include the assessment, etiology, and treatment of developmental dyspraxia and DCD, and the relationship between DCD and learning disabilities. A research agenda is offered regarding future directions to overcome current limitation. PMID:8866511

  1. Developmental Coordination Disorder and Reported Enjoyment of Physical Education in Children

    Science.gov (United States)

    Cairney, John; Hay, John; Mandigo, James; Wade, Terrance; Faught, Brent E.; Flouris, Andreas

    2007-01-01

    Children with developmental coordination disorder (DCD) are less likely to enjoy participating in physical education (PE) than children without motor coordination difficulties. However, no studies have attempted to quantify this relationship or examine potentially modifiable mediating variables. Using a large sample (N = 590) of children (aged 9…

  2. Rhythmic Bimanual Coordination Is Impaired in Young Children with Autism Spectrum Disorder

    Science.gov (United States)

    Isenhower, Robert W.; Marsh, Kerry L.; Richardson, Michael J.; Helt, Molly; Schmidt, R. C.; Fein, Deborah

    2012-01-01

    Impairments in motor coordination are a common behavioral manifestation of autism spectrum disorder (ASD). We, therefore, used a drumming methodology to examine rhythmic bimanual coordination in children diagnosed with ASD (M = 47.3 months) and age-matched typically developing (TD) children (M = 42.6 months). Both groups were instructed to drum on…

  3. Cryogenic Electric Motor Tested

    Science.gov (United States)

    Brown, Gerald V.

    2004-01-01

    Technology for pollution-free "electric flight" is being evaluated in a number of NASA Glenn Research Center programs. One approach is to drive propulsive fans or propellers with electric motors powered by fuel cells running on hydrogen. For large transport aircraft, conventional electric motors are far too heavy to be feasible. However, since hydrogen fuel would almost surely be carried as liquid, a propulsive electric motor could be cooled to near liquid hydrogen temperature (-423 F) by using the fuel for cooling before it goes to the fuel cells. Motor windings could be either superconducting or high purity normal copper or aluminum. The electrical resistance of pure metals can drop to 1/100th or less of their room-temperature resistance at liquid hydrogen temperature. In either case, super or normal, much higher current density is possible in motor windings. This leads to more compact motors that are projected to produce 20 hp/lb or more in large sizes, in comparison to on the order of 2 hp/lb for large conventional motors. High power density is the major goal. To support cryogenic motor development, we have designed and built in-house a small motor (7-in. outside diameter) for operation in liquid nitrogen.

  4. Control motor brushless sensorless

    OpenAIRE

    Solchaga Pérez de Lazárraga, Gonzalo

    2015-01-01

    El proyecto consiste en la creación de un circuito capaz de controlar la velocidad de un motor brushless sensorless. Este tipo de motores eléctricos tienen como característica que no tienen escobillas para cambiar la polaridad del bobinado de su interior y tampoco precisan de un sensor que indique que ha realizado una vuelta. Los motores brushless que son controlados por este tipo de circuitos son específicos para aeronaves no tripuladas y requieren un diseño diferente a un motor brushless pe...

  5. Motor Learning as Young Gymnast’s Talent Indicator

    Science.gov (United States)

    di Cagno, Alessandra; Battaglia, Claudia; Fiorilli, Giovanni; Piazza, Marina; Giombini, Arrigo; Fagnani, Federica; Borrione, Paolo; Calcagno, Giuseppe; Pigozzi, Fabio

    2014-01-01

    Talent identification plans are designed to select young athletes with the ability to achieve future success in sports. The aim of the study was to verify the predictive value of coordination and precision in skill acquisition during motor learning, as indicators of talent. One hundred gymnasts, both cadets (aged 11.5 ± 0.5 yr.) and juniors (aged 13.3 ± 0.5 years), competing at the national level, were enrolled in the study. The assessment of motor coordination involved three tests of the validated Hirtz’s battery (1985), and motor skill learning involved four technical tests, specific of rhythmic gymnastics. All the tests were correlated with ranking and performance scores reached by each gymnast in the 2011, 2012, and 2013 National Championships. Coordination tests were significantly correlated to 2013 Championships scores (p < 0.01) and ranking (p < 0.05) of elite cadet athletes. Precision, in skill acquisition test results, was positively and significantly associated with scores in 2013 (adj. R2 = 0.26, p < 0.01). Gymnasts with the best results in coordination and motor learning tests went on to achieve better competition results in three- year time. Key points In talent identification and selection procedures it is better to include the evaluation of coordination and motor learning ability. Motor learning assessment concerns performance improvement and the ability to develop it, rather than evaluating the athlete’s current performance. In this manner talent identification processes should be focused on the future performance capabilities of athletes. PMID:25435768

  6. Uranyl ion coordination

    Science.gov (United States)

    Evans, H.T.

    1963-01-01

    A review of the known crystal structures containing the uranyl ion shows that plane-pentagon coordination is equally as prevalent as plane-square or plane-hexagon. It is suggested that puckered-hexagon configurations of OH - or H2O about the uranyl group will tend to revert to plane-pentagon coordination. The concept of pentagonal coordination is invoked for possible explanations of the complex crystallography of the natural uranyl hydroxides and the unusual behavior of polynuclear ions in hydrolyzed uranyl solutions.

  7. Development of Ultra-Efficient Electric Motors Final Technical Report Covering work from April 2002 through September 2007

    International Nuclear Information System (INIS)

    High temperature superconducting (HTS) motors offer the potential for dramatic volume and loss reduction compared to conventional, high horsepower, industrial motors. This report is the final report on the results of eight research tasks that address some of the issues related to HTS motor development that affect motor efficiency, cost, and reliability

  8. Development of Ultra-Efficient Electric Motors Final Technical Report Covering work from April 2002 through September 2007

    Energy Technology Data Exchange (ETDEWEB)

    Rich Schiferl

    2008-05-30

    High temperature superconducting (HTS) motors offer the potential for dramatic volume and loss reduction compared to conventional, high horspower, industrial motors. This report is the final report on the results of eight research tasks that address some of the issues related to HTS motor development that affect motor efficiency, cost, and reliability.

  9. Deliberate Play and Preparation Jointly Benefit Motor and Cognitive Development: Mediated and Moderated Effects

    OpenAIRE

    Pesce, Caterina; Masci, Ilaria; Marchetti, Rosalba; Vazou, Spyridoula; Sääkslahti, Arja; Tomporowski, Phillip D.

    2016-01-01

    In light of the interrelation between motor and cognitive development and the predictive value of the former for the latter, the secular decline observed in motor coordination ability as early as preschool urges identification of interventions that may jointly impact motor and cognitive efficiency. The aim of this study was twofold. It (1) explored the outcomes of enriched physical education (PE), centered on deliberate play and cognitively challenging variability of practice, ...

  10. The coordinate system for force control.

    Science.gov (United States)

    Saha, Devjani J; Hu, Xiao; Perreault, Eric; Murray, Wendy; Mussa-Ivaldi, Ferdinando A

    2015-03-01

    The primary objective of this study was to establish the coordinate frame for force control by observing how parameters of force that are not explicitly specified by a motor task vary across the workspace. We asked subjects to apply a force of a specific magnitude with their hand. Subjects could complete the task by applying forces in any direction of their choice in the transverse plane. They were tested with the arm in seven different configurations. To estimate whether contact forces are represented in extrinsic or intrinsic coordinates, we applied the parallel transport method of differential geometry to the net joint torques applied during the task. This approach allowed us to compare the force variability observed at different arm configurations with the force variability that would be expected if the control system were applying an invariant pattern of joint torques at the tested configurations. The results indicate that for the majority of the subjects, the predominant pattern was consistent with an invariant representation in joint coordinates. However, two out of eleven subjects also demonstrated a preference for extrinsic representation. These findings suggest that the central nervous system can represent contact forces in both coordinate frames, with a prevalence toward intrinsic representations.

  11. Supercritical Airfoil Coordinates

    Data.gov (United States)

    National Aeronautics and Space Administration — Rectangular Supercritical Wing (Ricketts) - design and measured locations are provided in an Excel file RSW_airfoil_coordinates_ricketts.xls . One sheet is with Non...

  12. Dimensions of Organizational Coordination

    DEFF Research Database (Denmark)

    Jensen, Andreas Schmidt; Aldewereld, Huib; Dignum, Virginia

    2013-01-01

    be supported to include organizational objectives and constraints into their reasoning processes by considering two alternatives: agent reasoning and middleware regulation. We show how agents can use an organizational specification to achieve organizational objectives by delegating and coordinating...

  13. The curvature coordinate system

    DEFF Research Database (Denmark)

    Almegaard, Henrik

    2007-01-01

    The paper describes a concept for a curvature coordinate system on regular curved surfaces from which faceted surfaces with plane quadrangular facets can be designed. The lines of curvature are used as parametric lines for the curvature coordinate system on the surface. A new conjugate set of lines......, called middle curvature lines, is introduced. These lines define the curvature coordinate system. Using the curvature coordinate system, the surface can be conformally mapped on the plane. In this mapping, elliptic sections are mapped as circles, and hyperbolic sections are mapped as equilateral...... hyperbolas. This means that when a plane orthogonal system of curves for which the vertices in a mesh always lie on a circle is mapped on a surface with positive Gaussian curvature using inverse mapping, and the mapped vertices are connected by straight lines, this network will form a faceted surface...

  14. Coordinating Work with Groupware

    DEFF Research Database (Denmark)

    Pors, Jens Kaaber; Simonsen, Jesper

    2003-01-01

    One important goal of employing groupware is to make possible complex collaboration between geographically distributed groups. This requires a dual transformation of both technology and work practice. The challenge is to re­duce the complexity of the coordination work by successfully inte....... Using the CSCW frame­work of coordination mechanisms, we have elicited six general factors influencing the integration of the groupware application in two situations....

  15. Attribute coordination in organizations

    OpenAIRE

    Yingyi Qian; Gerard Roland; Chenggang Xu

    2001-01-01

    We study coordination in organizations with a variety of organizational forms. Coordination in organization is modeled as the adjustment of attributes and capacities of tasks when facing external shocks. An M-form (U-form) organization groups complementary (substitutable) tasks together in one unit. In the presence of only attribute shocks, particularly when gains from specialization are small, communication is poor, or shocks are more likely, the expected payoff of the decentralized M-form i...

  16. Continuous parallel coordinates.

    Science.gov (United States)

    Heinrich, Julian; Weiskopf, Daniel

    2009-01-01

    Typical scientific data is represented on a grid with appropriate interpolation or approximation schemes,defined on a continuous domain. The visualization of such data in parallel coordinates may reveal patterns latently contained in the data and thus can improve the understanding of multidimensional relations. In this paper, we adopt the concept of continuous scatterplots for the visualization of spatially continuous input data to derive a density model for parallel coordinates. Based on the point-line duality between scatterplots and parallel coordinates, we propose a mathematical model that maps density from a continuous scatterplot to parallel coordinates and present different algorithms for both numerical and analytical computation of the resulting density field. In addition, we show how the 2-D model can be used to successively construct continuous parallel coordinates with an arbitrary number of dimensions. Since continuous parallel coordinates interpolate data values within grid cells, a scalable and dense visualization is achieved, which will be demonstrated for typical multi-variate scientific data.

  17. Continuous parallel coordinates.

    Science.gov (United States)

    Heinrich, Julian; Weiskopf, Daniel

    2009-01-01

    Typical scientific data is represented on a grid with appropriate interpolation or approximation schemes,defined on a continuous domain. The visualization of such data in parallel coordinates may reveal patterns latently contained in the data and thus can improve the understanding of multidimensional relations. In this paper, we adopt the concept of continuous scatterplots for the visualization of spatially continuous input data to derive a density model for parallel coordinates. Based on the point-line duality between scatterplots and parallel coordinates, we propose a mathematical model that maps density from a continuous scatterplot to parallel coordinates and present different algorithms for both numerical and analytical computation of the resulting density field. In addition, we show how the 2-D model can be used to successively construct continuous parallel coordinates with an arbitrary number of dimensions. Since continuous parallel coordinates interpolate data values within grid cells, a scalable and dense visualization is achieved, which will be demonstrated for typical multi-variate scientific data. PMID:19834230

  18. Magnetic Coordinate Systems

    Science.gov (United States)

    Laundal, K. M.; Richmond, A. D.

    2016-07-01

    Geospace phenomena such as the aurora, plasma motion, ionospheric currents and associated magnetic field disturbances are highly organized by Earth's main magnetic field. This is due to the fact that the charged particles that comprise space plasma can move almost freely along magnetic field lines, but not across them. For this reason it is sensible to present such phenomena relative to Earth's magnetic field. A large variety of magnetic coordinate systems exist, designed for different purposes and regions, ranging from the magnetopause to the ionosphere. In this paper we review the most common magnetic coordinate systems and describe how they are defined, where they are used, and how to convert between them. The definitions are presented based on the spherical harmonic expansion coefficients of the International Geomagnetic Reference Field (IGRF) and, in some of the coordinate systems, the position of the Sun which we show how to calculate from the time and date. The most detailed coordinate systems take the full IGRF into account and define magnetic latitude and longitude such that they are constant along field lines. These coordinate systems, which are useful at ionospheric altitudes, are non-orthogonal. We show how to handle vectors and vector calculus in such coordinates, and discuss how systematic errors may appear if this is not done correctly.

  19. Organizing motor imageries.

    Science.gov (United States)

    Hanakawa, Takashi

    2016-03-01

    Over the last few decades, motor imagery has attracted the attention of researchers as a prototypical example of 'embodied cognition' and also as a basis for neuro-rehabilitation and brain-machine interfaces. The current definition of motor imagery is widely accepted, but it is important to note that various abilities rather than a single cognitive entity are dealt with under a single term. Here, motor imagery has been characterized based on four factors: (1) motor control, (2) explicitness, (3) sensory modalities, and (4) agency. Sorting out these factors characterizing motor imagery may explain some discrepancies and variability in the findings from previous studies and will help to optimize a study design in accordance with the purpose of each study in the future. PMID:26602980

  20. MISR Motor Data V003

    Data.gov (United States)

    National Aeronautics and Space Administration — This file contains the output for the Level 1A Motor data (Suggested Usage: MISR SCF processing needs the MISR motor data samples for the analysis of motor...

  1. Modelação longitudinal dos níveis de coordenação motora de crianças dos seis aos 10 anos de idade da Região Autônoma dos Açores, Portugal Longetudinal modeling of motor coordination levels of children aged six to 10 years of age from the Autonomous Region of Azores, Portugal

    Directory of Open Access Journals (Sweden)

    Renata Karine Batista Coelho de Deus

    2010-06-01

    Full Text Available Este estudo é percorrido por três principais objetivos: 1 caracterizar o desenvolvimento modal e as diferenças inter-individuais da coordenação motora; 2 verificar a existência de um efeito associado ao gênero; 3 testar a relevância de preditores do desenvolvimento da Coordenação motora (CoM tais como o IMC e os níveis de Atividade Física. A amostra é constituída de 285 crianças (143 meninos e 142 meninas. A coordenação motora foi determinada a partir da bateria de testes KTK (Equilíbrio em deslocamento para trás, Saltos laterais, Saltos monopedais e Transposição lateral. O questionário de Godin e Shephard (1985 foi utilizado para avaliar a Atividade Física. As estatísticas descritivas básicas foram calculadas no SPSS 15. A mudança intra-individual e as diferenças inter-sujeitos foram efetuadas no programa estatístico HLM, versão 6. É visível um incremento dos valores médios, em ambos os sexos, para as todas as provas do KTK, bem como do IMC e o dos níveis de Atividade Física. Os melhores resultados foram observados nas crianças que estavam no 1º quartil do IMC e no 3º da Atividade Física. Os resultados reafirmam a necessidade de uma estrutura didático-metodologica das aulas de Educação Física para que as crianças alcancem níveis adequados de coordenação para sua idadeThis study aims at: 1 describing models for developmental changes and interindividual differences in gross motor coordination (CoM; 2 verify the presence of gender effects; 3 and test the importance of BMI and physical activity level in motor coordination (CoM development. Sample size comprises 285 children (143 boys and 142 girls. Motor coordination was evaluated with the test battery "Körperkoordinationstest für Kinder" (KTK consisting of four tests: backward balance (ER, jumping sideways (SL, hopping on one leg (SM, and shifting platforms (TL. Godin and Shephard's questionnaire was used to evaluate children's physical activity

  2. Motor Learning as Young Gymnast’s Talent Indicator

    Directory of Open Access Journals (Sweden)

    Alessandra di Cagno

    2014-12-01

    Full Text Available Talent identification plans are designed to select young athletes with the ability to achieve future success in sports. The aim of the study was to verify the predictive value of coordination and precision in skill acquisition during motor learning, as indicators of talent. One hundred gymnasts, both cadets (aged 11.5 ± 0.5 yr. and juniors (aged 13.3 ± 0.5 years, competing at the national level, were enrolled in the study. The assessment of motor coordination involved three tests of the validated Hirtz’s battery (1985, and motor skill learning involved four technical tests, specific of rhythmic gymnastics. All the tests were correlated with ranking and performance scores reached by each gymnast in the 2011, 2012, and 2013 National Championships. Coordination tests were significantly correlated to 2013 Championships scores (p < 0.01 and ranking (p < 0.05 of elite cadet athletes. Precision, in skill acquisition test results, was positively and significantly associated with scores in 2013 (adj. R2 = 0.26, p < 0.01. Gymnasts with the best results in coordination and motor learning tests went on to achieve better competition results in three- year time.

  3. Fine-motor skills testing and prediction of endovascular performance

    DEFF Research Database (Denmark)

    Bech, Bo; Lönn, Lars; Schroeder, Torben V;

    2013-01-01

    Performing endovascular procedures requires good control of fine-motor digital movements and hand-eye coordination. Objective assessment of such skills is difficult. Trainees acquire control of catheter/wire movements at various paces. However, little is known to what extent talent plays for novice...

  4. Adaptive Vector Control of Induction Motor

    Directory of Open Access Journals (Sweden)

    O. F. Opeiko

    2012-01-01

    Full Text Available A synthesis of adaptive PID controller has been executed for flux linkage and speed channels of a vector control system for an induction short-circuited motor. While using an imitation simulation method results of a synthesized system analysis show that the adaptive PID controller has some advantages under conditions of parametric disturbances affecting the object.

  5. Reactor coolant pump testing using motor current signatures analysis

    Energy Technology Data Exchange (ETDEWEB)

    Burstein, N.; Bellamy, J.

    1996-12-01

    This paper describes reactor coolant pump motor testing carried out at Florida Power Corporation`s Crystal River plant using Framatome Technologies` new EMPATH (Electric Motor Performance Analysis and Trending Hardware) system. EMPATH{trademark} uses an improved form of Motor Current Signature Analysis (MCSA), technology, originally developed at Oak Ridge National Laboratories, for detecting deterioration in the rotors of AC induction motors. Motor Current Signature Analysis (MCSA) is a monitoring tool for motor driven equipment that provides a non-intrusive means for detecting the presence of mechanical and electrical abnormalities in the motor and the driven equipment. The base technology was developed at the Oak Ridge National Laboratory as a means for determining the affects of aging and service wear specifically on motor-operated valves used in nuclear power plant safety systems, but it is applicable to a broad range of electric machinery. MCSA is based on the recognition that an electric motor (ac or dc) driving a mechanical load acts as an efficient and permanently available transducer by sensing mechanical load variations, large and small, long-term and rapid, and converting them into variations in the induced current generated in the motor windings. The motor current variations, resulting from changes in load caused by gears, pulleys, friction, bearings, and other conditions that may change over the life of the motor, are carried by the electrical cables powering the motor and are extracted at any convenient location along the motor lead. These variations modulate the 60 Hz carrier frequency and appear as sidebands in the spectral plot.

  6. Behavior of high efficiency electric motors; Comportamiento de motores electricos de alta eficiencia

    Energy Technology Data Exchange (ETDEWEB)

    Bonett, Austin H. [IEEE, (United States)

    2001-09-01

    The energy efficiency is one of the main parameters in the design of the industrial motors of general purpose; nevertheless, it is avoided that it is at the cost of the reliability or to the global performance of the motor. Exist user groups of this equipment that consider that, in the search of a greater efficiency, the useful life period is diminished and the characteristics of operation of the motor are affected. During the past last years, the author has studied the aspects of quality and reliability, as well as the operative advantages of the high efficiency motors and written down the increasing interest for these aspects. Also he has detected that a great number of users has realized that, additionally to the obvious energy saving, the efficient motor offers a greater reliability and a longer useful life in most of the industrial applications. The objective of this article is to present the differences in the quality levels, reliability and operation parameters of high efficiency squirrel cage type electrical motors with those of the motors of standard manufacture. [Spanish] La eficiencia energetica es uno de los principales parametros en el diseno de los motores industriales de proposito general; sin embargo, se evita que sea a costa de la confiabilidad o del desempeno global del motor. Existen grupos de usuarios de estos equipos que consideran que, en la busqueda de una mayor eficiencia, se disminuye el periodo de vida util y se afectan las caracteristicas de operacion del motor. Durante los ultimos anos, el autor ha estudiado los aspectos de calidad y confiabilidad, asi como las ventajas operativas de los motores de alta eficiencia y anotado el incremento del interes por estos aspectos. Tambien ha detectado que un gran numero de usuarios se ha dado cuenta que, adicionalmente a los obvios ahorros de energia, el motor eficiente ofrece una mayor confiabilidad y una vida util mas larga en la mayoria de las aplicaciones industriales. El objetivo de este

  7. Improve Motor System Efficiency for a Broad Range of Motors with MotorMaster+ International

    Energy Technology Data Exchange (ETDEWEB)

    None

    2005-05-01

    Available at no charge, MotorMaster+ International is designed to support motor systems improvement planning at industrial facilities by identifying the most cost-effective choice when deciding to repair or replace older motor models.

  8. Computer games and fine motor skills.

    Science.gov (United States)

    Borecki, Lukasz; Tolstych, Katarzyna; Pokorski, Mieczyslaw

    2013-01-01

    The study seeks to determine the influence of computer games on fine motor skills in young adults, an area of incomplete understanding and verification. We hypothesized that computer gaming could have a positive influence on basic motor skills, such as precision, aiming, speed, dexterity, or tremor. We examined 30 habitual game users (F/M - 3/27; age range 20-25 years) of the highly interactive game Counter Strike, in which players impersonate soldiers on a battlefield, and 30 age- and gender-matched subjects who declared never to play games. Selected tests from the Vienna Test System were used to assess fine motor skills and tremor. The results demonstrate that the game users scored appreciably better than the control subjects in all tests employed. In particular, the players did significantly better in the precision of arm-hand movements, as expressed by a lower time of errors, 1.6 ± 0.6 vs. 2.8 ± 0.6 s, a lower error rate, 13.6 ± 0.3 vs. 20.4 ± 2.2, and a shorter total time of performing a task, 14.6 ± 2.9 vs. 32.1 ± 4.5 s in non-players, respectively; p computer games on psychomotor functioning. We submit that playing computer games may be a useful training tool to increase fine motor skills and movement coordination.

  9. Psychosocial modulators of motor learning in Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Petra eZemankova

    2016-02-01

    Full Text Available Using the remarkable overlap between brain circuits affected in Parkinson’s disease (PD and those underlying motor sequence learning, we may improve the effectiveness of motor rehabilitation interventions by identifying motor learning facilitators in PD. For instance, additional sensory stimulation and task cueing enhanced motor learning in people with PD, whereas exercising using musical rhythms or console computer games improved gait and balance, and reduced some motor symptoms, in addition to increasing task enjoyment. Yet, despite these advances, important knowledge gaps remain. Most studies investigating motor learning in PD used laboratory-specific tasks and equipment, with little resemblance to real life situations. Thus, it is unknown whether similar results could be achieved in more ecological setups and whether individual’s task engagement could further improve motor learning capacity. Moreover, the role of social interaction in motor skill learning process has not yet been investigated in PD and the role of mind-set and self-regulatory mechanisms have been sporadically examined. Here we review evidence suggesting that these psychosocial factors may be important modulators of motor learning in PD. We propose their incorporation in future research, given that it could lead to development of improved non-pharmacological interventions aimed to preserve or restore motor function in PD.

  10. Improvement of motor function in hemiplegic patients by ultrasound scanning of cerebrovasculature and electrostimu-iation of affected limbs%超声扫描并电刺激改善偏瘫患者运动功能和能力的观察

    Institute of Scientific and Technical Information of China (English)

    王小兵

    2001-01-01

    Objective To observe the effects of ultrasound scarning of cerebral vasculature and electrostimulation of the affected limbs on motor function and recovery of daily physical activities in hemiplegic patients. Methods 148 patients with cerebral infarction or after stroke confirmed by brain CT were randomly divided into rehabilitation. and control groups. Both groups were given conventional therapy, but with the addition of ultrasound scanning of cerebral vasculature and electrostimulation treatment in the rehabilitation group. Motor function and daily physical activities were assessed by Brunnstrom and Barthel Indices respectively. Results Recovery of Motor function and daily phyxical activities in the rehabilitation group were superior to those of the control group (P<0.01) ,The reduction in degree of nerve function defect was also less in rehabilitation group (P < 0.01 ). Conclusion adoption of the above two measures could improve significantly the motor function and the ability of self management. (Shanghai Med J, 2001,24:156)%目的观察脑血管超声扫描并患肢电刺激,对脑卒中患者偏瘫侧上下肢运动功能和日常生活活动能力恢复的影响。方法选择经头颅CT证实的脑梗死或脑出血患者148例,随机分为康复组和对照组。两组患者均接受药物常规治疗,康复组还接受脑血管超声扫描并电刺激治疗。结果康复组运动功能及日常生活活动(ADL)恢复明显优于对照组(P<0.01),神经功能缺损减少程度康复组也明显优于对照组(P<0.01)。结论在药物治疗的基础上,应用脑血管超声扫描并患肢电刺激能明显改善运动功能,更有效地恢复生活自理能力。

  11. Effect of neuroleptic treatment on involuntary movements and motor performances in Huntington's disease.

    OpenAIRE

    Girotti, F.; Carella, F; Scigliano, G; Grassi, M P; Soliveri, P; Giovannini, P.; Parati, E.; Caraceni, T

    1984-01-01

    Eighteen patients with Huntington's chorea were examined before and after neuroleptic treatment (haloperidol, pimozide, tiapride) to study the effect of such treatment on hyperkinesia and motor performance. Pimozide and haloperidol improved hyperkinesia; none of the drugs significantly affected motor performance. No correlation was found between the severity of hyperkinesia and motor performance scores, or between hyperkinesia and intelligence score, before and after therapy.

  12. Motor Impairment in Sibling Pairs Concordant and Discordant for Autism Spectrum Disorders

    Science.gov (United States)

    Hilton, Claudia List; Zhang, Yi; Whilte, Megan R.; Klohr, Cheryl L.; Constantino, John

    2012-01-01

    Aim: Although motor impairment is frequently observed in children with autism spectrum disorders (ASD), the manner in which these impairments aggregate in families affected by autism is unknown. We used a standardized measure of motor proficiency to objectively examine quantitative variation in motor proficiency in sibling pairs concordant and…

  13. Impaired motor planning and motor imagery in children with unilateral spastic cerebral palsy: challenges for the future of pediatric rehabilitation.

    NARCIS (Netherlands)

    Steenbergen, B.; Jongbloed-Pereboom, M.; Spruijt, S.; Gordon, A.M.

    2013-01-01

    Compromised action performance is one of the most characteristic features of children with unilateral spastic cerebral palsy (USCP). Current rehabilitation efforts predominantly aim to improve the capacity and performance of the affected arm. Recent evidence, however, suggests that compromised motor

  14. Selective effect of physical fatigue on motor imagery accuracy.

    Directory of Open Access Journals (Sweden)

    Franck Di Rienzo

    Full Text Available While the use of motor imagery (the mental representation of an action without overt execution during actual training sessions is usually recommended, experimental studies examining the effect of physical fatigue on subsequent motor imagery performance are sparse and yielded divergent findings. Here, we investigated whether physical fatigue occurring during an intense sport training session affected motor imagery ability. Twelve swimmers (nine males, mean age 15.5 years conducted a 45 min physically-fatiguing protocol where they swam from 70% to 100% of their maximal aerobic speed. We tested motor imagery ability immediately before and after fatigue state. Participants randomly imagined performing a swim turn using internal and external visual imagery. Self-reports ratings, imagery times and electrodermal responses, an index of alertness from the autonomic nervous system, were the dependent variables. Self-reports ratings indicated that participants did not encounter difficulty when performing motor imagery after fatigue. However, motor imagery times were significantly shortened during posttest compared to both pretest and actual turn times, thus indicating reduced timing accuracy. Looking at the selective effect of physical fatigue on external visual imagery did not reveal any difference before and after fatigue, whereas significantly shorter imagined times and electrodermal responses (respectively 15% and 48% decrease, p<0.001 were observed during the posttest for internal visual imagery. A significant correlation (r=0.64; p<0.05 was observed between motor imagery vividness (estimated through imagery questionnaire and autonomic responses during motor imagery after fatigue. These data support that unlike local muscle fatigue, physical fatigue occurring during intense sport training sessions is likely to affect motor imagery accuracy. These results might be explained by the updating of the internal representation of the motor sequence, due to

  15. Association between fatigue and other motor and non-motor symptoms in Parkinson's disease patients.

    Science.gov (United States)

    Solla, Paolo; Cannas, Antonino; Mulas, Cesare Salvatore; Perra, Silvia; Corona, Andrea; Bassareo, Pier Paolo; Marrosu, Francesco

    2014-02-01

    Although fatigue is a common non-motor symptom in patients affected by Parkinson's disease (PD), its association with motor and other non-motor symptoms is still largely unclear. We assessed fatigue in PD patients studying the possible association with motor and non-motor symptoms. Eighty-one PD patients were included in the study. The PD Fatigue Scale (PFS) and the Fatigue Severity Scale (FSS) scale were used to measure fatigue. Non-motor symptoms were assessed with the Non-Motor Symptoms Scale (NMSS). Motor impairment was assessed using the modified Hoehn and Yahr (HY) staging and the Unified PD Rating Scale (UPDRS) part-III and IV. Bivariate tests comparing all independent variables between patients with our without fatigue were used. Significant predictors of presence and severity of fatigue were determined with different models of logistic regression analyses. Fatigue severity was significantly higher in female patients. Bivariate test showed significant higher NMSS score in fatigued patients according to PFS (p < 0.00001) and FFS (p < 0.001), while HY was higher only in fatigued patients according to FSS (p < 0.022). Significant correlations between severity of fatigue and HY stage (p < 0.002) and UPDRS-III score (p < 0.001) were found, while, among specific non-motor symptoms, anhedonia presented with the most significant correlation (p < 0.003). Binary logistic regression confirmed NMSS as the main variable predicting presence of fatigue, while HY was significant as predicting variable only in the FSS model. Strongest non-motor symptoms predictors of severity were those included in Domain 3 (mood/anxiety) and Domain 2 (sleep disorders) of the NMSS. A significant increase in severity of fatigue related to the burden of non-motor symptoms (mainly affective and sleep disorders) was observed. Our findings indicate a moderate discrepancy in the ratings of the two fatigue scales, with PFS principally directed towards the burden of non-motor symptoms

  16. Localization of Motor Neurons and Central Pattern Generators for Motor Patterns Underlying Feeding Behavior in Drosophila Larvae.

    Directory of Open Access Journals (Sweden)

    Sebastian Hückesfeld

    Full Text Available Motor systems can be functionally organized into effector organs (muscles and glands, the motor neurons, central pattern generators (CPG and higher control centers of the brain. Using genetic and electrophysiological methods, we have begun to deconstruct the motor system driving Drosophila larval feeding behavior into its component parts. In this paper, we identify distinct clusters of motor neurons that execute head tilting, mouth hook movements, and pharyngeal pumping during larval feeding. This basic anatomical scaffold enabled the use of calcium-imaging to monitor the neural activity of motor neurons within the central nervous system (CNS that drive food intake. Simultaneous nerve- and muscle-recordings demonstrate that the motor neurons innervate the cibarial dilator musculature (CDM ipsi- and contra-laterally. By classical lesion experiments we localize a set of CPGs generating the neuronal pattern underlying feeding movements to the subesophageal zone (SEZ. Lesioning of higher brain centers decelerated all feeding-related motor patterns, whereas lesioning of ventral nerve cord (VNC only affected the motor rhythm underlying pharyngeal pumping. These findings provide a basis for progressing upstream of the motor neurons to identify higher regulatory components of the feeding motor system.

  17. Quantifying linguistic coordination

    DEFF Research Database (Denmark)

    Fusaroli, Riccardo; Tylén, Kristian

    ). We employ nominal recurrence analysis (Orsucci et al 2005, Dale et al 2011) on the decision-making conversations between the participants. We report strong correlations between various indexes of recurrence and collective performance. We argue this method allows us to quantify the qualities......Language has been defined as a social coordination device (Clark 1996) enabling innovative modalities of joint action. However, the exact coordinative dynamics over time and their effects are still insufficiently investigated and quantified. Relying on the data produced in a collective decision...

  18. Coordinate Standard Measurement Development

    Energy Technology Data Exchange (ETDEWEB)

    Hanshaw, R.A.

    2000-02-18

    A Shelton Precision Interferometer Base, which is used for calibration of coordinate standards, was improved through hardware replacement, software geometry error correction, and reduction of vibration effects. Substantial increases in resolution and reliability, as well as reduction in sampling time, were achieved through hardware replacement; vibration effects were reduced substantially through modification of the machine component dampening and software routines; and the majority of the machine's geometry error was corrected through software geometry error correction. Because of these modifications, the uncertainty of coordinate standards calibrated on this device has been reduced dramatically.

  19. Introduction to Coordination Chemistry

    CERN Document Server

    Lawrance, Geoffrey Alan

    2010-01-01

    Introduction to Coordination Chemistry examines and explains how metals and molecules that bind as ligands interact, and the consequences of this assembly process. This book describes the chemical and physical properties and behavior of the complex assemblies that form, and applications that may arise as a result of these properties. Coordination complexes are an important but often hidden part of our world?even part of us?and what they do is probed in this book. This book distills the essence of this topic for undergraduate students and for research scientists.

  20. Motor cortex electrical stimulation augments sprouting of the corticospinal tract and promotes recovery of motor function

    Directory of Open Access Journals (Sweden)

    Jason B Carmel

    2014-06-01

    Full Text Available The corticospinal system—with its direct spinal pathway, the corticospinal tract (CST—is the primary system for controlling voluntary movement. Our approach to CST repair after injury in mature animals was informed by our finding that activity drives establishment of connections with spinal cord circuits during postnatal development. After incomplete injury in maturity, spared CST circuits sprout and partially restore lost function. Our approach harnesses activity to augment this injury-dependent CST sprouting and to promote function. Lesion of the medullary pyramid unilaterally eliminates all CST axons from one hemisphere and allows examination of CST sprouting from the unaffected hemisphere. We discovered that ten days of electrical stimulation of either the spared CST or motor cortex induces CST axon sprouting that partially reconstructs the lost CST. Stimulation also leads to sprouting of the cortical projection to the magnocellular red nucleus, where the rubrospinal tract originates. Coordinated outgrowth of the CST and cortical projections to the red nucleus could support partial re-establishment of motor systems connections to the denervated spinal motor circuits. Stimulation restores skilled motor function in our animal model. Lesioned animals have a persistent forelimb deficit contralateral to pyramidotomy in the horizontal ladder task. Rats that received motor cortex stimulation either after acute or chronic injury showed a significant functional improvement that brought error rate to pre-lesion control levels. Reversible inactivation of the stimulated motor cortex reinstated the impairment demonstrating the importance of the stimulated system to recovery. Motor cortex electrical stimulation is an effective approach to promote spouting of spared CST axons. By optimizing activity-dependent sprouting in animals, we could have an approach that can be translated to the human for evaluation with minimal delay.

  1. System and method for motor parameter estimation

    Energy Technology Data Exchange (ETDEWEB)

    Luhrs, Bin; Yan, Ting

    2014-03-18

    A system and method for determining unknown values of certain motor parameters includes a motor input device connectable to an electric motor having associated therewith values for known motor parameters and an unknown value of at least one motor parameter. The motor input device includes a processing unit that receives a first input from the electric motor comprising values for the known motor parameters for the electric motor and receive a second input comprising motor data on a plurality of reference motors, including values for motor parameters corresponding to the known motor parameters of the electric motor and values for motor parameters corresponding to the at least one unknown motor parameter value of the electric motor. The processor determines the unknown value of the at least one motor parameter from the first input and the second input and determines a motor management strategy for the electric motor based thereon.

  2. Motor Vehicle Safety

    Science.gov (United States)

    ... these crashes is one part of motor vehicle safety. Here are some things you can do to ... speed or drive aggressively Don't drive impaired Safety also involves being aware of others. Share the ...

  3. Congenital Ocular Motor Apraxia

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2007-06-01

    Full Text Available The clinical and neuroradiological findings, and long-term intellectual prognosis in 10 patients (4 boys and 6 girls with congenital ocular motor apraxia (COMA are reviewed by researchers at Tottori University, Yonago, Japan.

  4. Partial motor status epilepticus

    OpenAIRE

    Gilberto Rebello de Mattos; José C. Rollemberg Filho

    1992-01-01

    We report the case of a young female patient with photosensitive primary epilepsy who presented partial motor status epilepticus provoked by the act of shutting the eyes. Clinical, EEG and neuroimage data are presented and discussed.

  5. Congenital Ocular Motor Apraxia

    OpenAIRE

    J Gordon Millichap

    2007-01-01

    The clinical and neuroradiological findings, and long-term intellectual prognosis in 10 patients (4 boys and 6 girls) with congenital ocular motor apraxia (COMA) are reviewed by researchers at Tottori University, Yonago, Japan.

  6. Nonautistic Motor Stereotypies

    OpenAIRE

    J Gordon Millichap

    2008-01-01

    Clinical features and long-term outcomes of 100 children (62 boys and 35 girls) with motor stereotypies were evaluated by review of records and telephone interviews at Johns Hopkins Hospital, Baltimore, MD.

  7. Heritability of motor control and motor learning

    OpenAIRE

    Missitzi, Julia; Gentner, Reinhard; Misitzi, Angelica; Geladas, Nickos; Politis, Panagiotis; Klissouras, Vassilis; Classen, Joseph

    2013-01-01

    Abstract The aim of this study was to elucidate the relative contribution of genes and environment on individual differences in motor control and acquisition of a force control task, in view of recent association studies showing that several candidate polymorphisms may have an effect on them. Forty‐four healthy female twins performed brisk isometric abductions with their right thumb. Force was recorded by a transducer and fed back to the subject on a computer screen. The task was to place the...

  8. Development of motor control

    OpenAIRE

    Schellekens, Johannes Maria Hubertus

    1985-01-01

    In this thesis, the results of a series of investigations into the barrier function of human skin are presented. In these investigations, the barrier function was assessed by water vapour loss measurements of the skin using a method based on gradient estimation. The aim of this thesis is to study the role and efficiency of motor control and anticipation processes in the development of children with and without disturbances in the motor system. Chapter I is a general introduction to the subjec...

  9. Motor neurone disease

    OpenAIRE

    Talbot, K.

    2002-01-01

    Motor neurone disease (MND), or amyotrophic lateral sclerosis (ALS), is a neurodegenerative disorder of unknown aetiology. Progressive motor weakness and bulbar dysfunction lead to premature death, usually from respiratory failure. Confirming the diagnosis may initially be difficult until the full clinical features are manifest. For all forms of the disease there is a significant differential diagnosis to consider, including treatable conditions, and therefore specialist neurological opinion ...

  10. Symmetric Brownian motor

    OpenAIRE

    Gomez-Marin, A.; Sancho, J. M.

    2004-01-01

    In this paper we present a model of a symmetric Brownian motor (SBM) which changes the sign of its velocity when the temperature gradient is inverted. The velocity, external work and efficiency are studied as a function of the temperatures of the baths and other relevant parameters. The motor shows a current reversal when another parameter (a phase shift) is varied. Analytical predictions and results from numerical simulations are performed and agree very well. Generic properties of this type...

  11. Multifocal motor neuropathy

    OpenAIRE

    Thy P Nguyen; Vinay Chaudhry

    2011-01-01

    Multifocal motor neuropathy (MMN) is a unique disorder characterized by slowly progressive, asymmetric, distal and upper limb predominant weakness without significant sensory abnormalities. Electrophysiology is crucial to the diagnosis, revealing the hallmark partial conduction block. MMN is considered immune mediated due to the association with anti-GM1 antibodies and the response to immunomodulatory treatment. It is paramount to recognize MMN from other motor neuronopathies or peripheral ne...

  12. Starter Motor Protection

    OpenAIRE

    Gerhardsson, Daniel

    2010-01-01

    Starter motors are sensitive for overheating. By estimating the temperature and preventing cranking in time, there is an option to avoid the dangerous temperatures. The truck manufacturer Scania CV AB proposed a master thesis that should evaluate the need of an overheating protection for the starter motor. The aim is to evaluate any positive effects of implementing an algorithm that can estimate the brush temperature instead of using the available time constrain, which allows 35 seconds of cr...

  13. Patterns of presynaptic activity and synaptic strength interact to produce motor output.

    Science.gov (United States)

    Wright, Terrence Michael; Calabrese, Ronald L

    2011-11-30

    Motor neuron activity is coordinated by premotor networks into a functional motor pattern by complex patterns of synaptic drive. These patterns combine both the temporal pattern of spikes of the premotor network and the profiles of synaptic strengths (i.e., conductances). Given the complexity of premotor networks in vertebrates, it has been difficult to ascertain the relative contributions of temporal patterns and synaptic strength profiles to the motor patterns observed in these animals. Here, we use the leech (Hirudo sp.) heartbeat central pattern generator (CPG), in which we can measure both the temporal pattern and the synaptic strength profiles of the entire premotor network and the motor outflow in individual animals. In this system, a series of motor neurons all receive input from the same premotor interneurons of the CPG but must be coordinated differentially to produce a functional pattern. These properties allow a theoretical and experimental dissection of the rules that govern how temporal patterns and synaptic strength profiles are combined in motor neurons so that functional motor patterns emerge, including an analysis of the impact of animal-to-animal variation in input to such variation in output. In the leech, segmental heart motor neurons are coordinated alternately in a synchronous and peristaltic pattern. We show that synchronous motor patterns result from a nearly synchronous premotor temporal pattern produced by the leech heartbeat CPG. For peristaltic motor patterns, the staggered premotor temporal pattern determines the phase range over which segmental motor neurons can fire while synaptic strength profiles define the intersegmental motor phase progression realized.

  14. Balanced and Coordinated Development of Chemistry in China

    Institute of Scientific and Technical Information of China (English)

    He Tianping; Wang Fei; Ding Hong; Xing Jiangping

    2007-01-01

    @@ Balanced and coordinated development of Chemistry has narrow sense and generalized comprehension. The former only refers to the balanced layout and coordinated development among "every discipline and specialty in chemistry", and the latter taking the balanced layout of discipline as core and synthetically balancing the talent troop, the region distribution, the national strategy demand as well as the social affect and so on.

  15. Velocity Fluctuations in Kinesin-1 Gliding Motility Assays Originate in Motor Attachment Geometry Variations.

    Science.gov (United States)

    Palacci, Henri; Idan, Ofer; Armstrong, Megan J; Agarwal, Ashutosh; Nitta, Takahiro; Hess, Henry

    2016-08-01

    Motor proteins such as myosin and kinesin play a major role in cellular cargo transport, muscle contraction, cell division, and engineered nanodevices. Quantifying the collective behavior of coupled motors is critical to our understanding of these systems. An excellent model system is the gliding motility assay, where hundreds of surface-adhered motors propel one cytoskeletal filament such as an actin filament or a microtubule. The filament motion can be observed using fluorescence microscopy, revealing fluctuations in gliding velocity. These velocity fluctuations have been previously quantified by a motional diffusion coefficient, which Sekimoto and Tawada explained as arising from the addition and removal of motors from the linear array of motors propelling the filament as it advances, assuming that different motors are not equally efficient in their force generation. A computational model of kinesin head diffusion and binding to the microtubule allowed us to quantify the heterogeneity of motor efficiency arising from the combination of anharmonic tail stiffness and varying attachment geometries assuming random motor locations on the surface and an absence of coordination between motors. Knowledge of the heterogeneity allows the calculation of the proportionality constant between the motional diffusion coefficient and the motor density. The calculated value (0.3) is within a standard error of our measurements of the motional diffusion coefficient on surfaces with varying motor densities calibrated by landing rate experiments. This allowed us to quantify the loss in efficiency of coupled molecular motors arising from heterogeneity in the attachment geometry. PMID:27414063

  16. Coordination under the Shadow of Career Concerns

    DEFF Research Database (Denmark)

    Koch, Alexander; Morgenstern, Albrecht

    To innovate, firms require their employees to develop novel ideas and to coordinate with each other to turn these ideas into products, services or business strategies. Because the quality of implemented designs that employees are associated with affects their labor market opportunities, career...... concerns arise that can both be ‘good’ (enhancing incentives for effort in developing ideas) and ‘bad’ (preventing voluntary coordination). Depending on the strength of career concerns, either group-based incentives or team production are optimal. This finding provides a possible link between the increased...

  17. Electric vehicle motors and controllers

    Science.gov (United States)

    Secunde, R. R.

    1981-01-01

    Improved and advanced components being developed include electronically commutated permanent magnet motors of both drum and disk configuration, an unconventional brush commutated motor, and ac induction motors and various controllers. Test results on developmental motors, controllers, and combinations thereof indicate that efficiencies of 90% and higher for individual components, and 80% to 90% for motor/controller combinations can be obtained at rated power. The simplicity of the developmental motors and the potential for ultimately low cost electronics indicate that one or more of these approaches to electric vehicle propulsion may eventually displace presently used controllers and brush commutated dc motors.

  18. Markov Process of Muscle Motors

    CERN Document Server

    Kondratiev, Yu; Pirogov, S

    2007-01-01

    We study a Markov random process describing a muscle molecular motor behavior. Every motor is either bound up with a thin filament or unbound. In the bound state the motor creates a force proportional to its displacement from the neutral position. In both states the motor spend an exponential time depending on the state. The thin filament moves at its velocity proportional to average of all displacements of all motors. We assume that the time which a motor stays at the bound state does not depend on its displacement. Then one can find an exact solution of a non-linear equation appearing in the limit of infinite number of the motors.

  19. Advice for Coordination

    DEFF Research Database (Denmark)

    Hankin, Chris; Nielson, Flemming; Nielson, Hanne Riis;

    2008-01-01

    We show how to extend a coordination language with support for aspect oriented programming. The main challenge is how to properly deal with the trapping of actions before the actual data have been bound to the formal parameters. This necessitates dealing with open joinpoints – which is more...

  20. Block coordination copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Kyoung Moo; Wong-Foy, Antek G; Matzger, Adam J; Benin, Annabelle I; Willis, Richard R

    2014-11-11

    The present invention provides compositions of crystalline coordination copolymers wherein multiple organic molecules are assembled to produce porous framework materials with layered or core-shell structures. These materials are synthesized by sequential growth techniques such as the seed growth technique. In addition, the invention provides a simple procedure for controlling functionality.

  1. Recursive Advice for Coordination

    DEFF Research Database (Denmark)

    Terepeta, Michal Tomasz; Nielson, Hanne Riis; Nielson, Flemming

    2012-01-01

    Aspect-oriented programming is a programming paradigm that is often praised for the ability to create modular software and separate cross-cutting concerns. Recently aspects have been also considered in the context of coordination languages, offering similar advantages. However, introducing aspects...

  2. Block coordination copolymers

    Science.gov (United States)

    Koh, Kyoung Moo; Wong-Foy, Antek G; Matzger, Adam J; Benin, Annabelle I; Willis, Richard R

    2012-11-13

    The present invention provides compositions of crystalline coordination copolymers wherein multiple organic molecules are assembled to produce porous framework materials with layered or core-shell structures. These materials are synthesized by sequential growth techniques such as the seed growth technique. In addition, the invention provides a simple procedure for controlling functionality.

  3. Cognitive-motor integration deficits in young adult athletes following concussion

    OpenAIRE

    Brown, Jeffrey A.; Dalecki, Marc; Hughes, Cindy; MacPherson, Alison K.; Sergio, Lauren E.

    2015-01-01

    Background The ability to perform visually-guided motor tasks requires the transformation of visual information into programmed motor outputs. When the guiding visual information does not align spatially with the motor output, the brain processes rules to integrate the information for an appropriate motor response. Here, we look at how performance on such tasks is affected in young adult athletes with concussion history. Methods Participants displaced a cursor from a central to peripheral tar...

  4. Fine motor skills in adult Tourette patients are task-dependent

    OpenAIRE

    Neuner Irene; Arrubla Jorge; Ehlen Corinna; Janouschek Hildegard; Nordt Carlos; Fimm Bruno; Schneider Frank; Shah N; Kawohl Wolfram

    2012-01-01

    Abstract Background Tourette syndrome is a neuropsychiatric disorder characterized by motor and phonic tics. Deficient motor inhibition underlying tics is one of the main hypotheses in its pathophysiology. Therefore the question arises whether this supposed deficient motor inhibition affects also voluntary movements. Despite severe motor tics, different personalities who suffer from Tourette perform successfully as neurosurgeon, pilot or professional basketball player. Methods For the investi...

  5. Shape memory alloy based motor

    Indian Academy of Sciences (India)

    S V Sharma; M M Nayak; N S Dinesh

    2008-10-01

    Design and characterization of a new shape memory alloy wire based Poly Phase Motor has been reported in this paper. The motor can be used either in stepping mode or in servo mode of operation. Each phase of the motor consists of an SMA wire with a spring in series. The principle of operation of the poly phase motor is presented. The motor resembles a stepper motor in its functioning though the actuation principles are different and hence has been characterized similar to a stepper motor. The motor can be actuated in either direction with different phase sequencing methods, which are presented in this work. The motor is modelled and simulated and the results of simulations and experiments are presented. The experimental model of the motor is of dimension 150 mm square, 20 mm thick and uses SMA wire of 0·4 mm diameter and 125 mm of length in each phase.

  6. DEVELOPMENT OF COORDINATION ABILITIES OF SPECIAL MEDICAL GROUPS STUDENTS IN PHYSICAL EDUCATION PROCESS

    Directory of Open Access Journals (Sweden)

    E. N. Dotsenko

    2013-08-01

    Full Text Available Purpose. To analyze the problem of motor abilities development and health of students of special medical group in the process of physical education in technical universities. Determine the major factors, characteristics, and the relationship of physical development, physical fitness and coordination abilities of female students in special medical group. Establish regularities in precise movements mastering of different coordination structure and develop model characteristics of the relationship of coordination abilities and motor characteristics of students in special medical group. To substantiate and verify efficiency of coordination abilities development method of female students with regard to their functional status in the course of physical education in higher school. Methodology. Theoretical and methodological argument, characteristic of the experimental program in physical education teaching process of students in special medical group was shown. Findings. Research is to develop the training content in special medical groups with the use of coordinating elements and exercises to enhance the motor abilities of female students. Their influence on the level of physical development, functional training, as well as regularities in mastering and movement control of different coordinating structure at the female students of special medical group was studied. The comparative characteristic of female students athletic ability in the dynamics of the educational process, differentiated into groups according to nosology was presented. The criterion of spare capacities upgrade of the motor system in controlling the movements of different coordination structure was determined. Originality. The method of coordination abilities development of female students in special medical group, that aims on the formation and correction of motor control system of different coordination structure, a sense of body position and its individual parts in space, improving

  7. Motor skill learning requires active central myelination.

    Science.gov (United States)

    McKenzie, Ian A; Ohayon, David; Li, Huiliang; de Faria, Joana Paes; Emery, Ben; Tohyama, Koujiro; Richardson, William D

    2014-10-17

    Myelin-forming oligodendrocytes (OLs) are formed continuously in the healthy adult brain. In this work, we study the function of these late-forming cells and the myelin they produce. Learning a new motor skill (such as juggling) alters the structure of the brain's white matter, which contains many OLs, suggesting that late-born OLs might contribute to motor learning. Consistent with this idea, we show that production of newly formed OLs is briefly accelerated in mice that learn a new skill (running on a "complex wheel" with irregularly spaced rungs). By genetically manipulating the transcription factor myelin regulatory factor in OL precursors, we blocked production of new OLs during adulthood without affecting preexisting OLs or myelin. This prevented the mice from mastering the complex wheel. Thus, generation of new OLs and myelin is important for learning motor skills. PMID:25324381

  8. Preclinical detection of motor and nonmotor manifestations.

    Science.gov (United States)

    Tetrud, J W

    1991-08-01

    The advent of possible protective therapies for Parkinson's disease has created a need for methods of diagnosing the disease before the clinical features become fully evident. As a number of motor and nonmotor manifestations of the disease emerge months to years before a diagnosis can be made, a battery of clinical tests might be sufficient to identify individuals at an earlier stage than is currently possible using the standard history and physical examination. A list of questions regarding possible risk factors, specific symptoms, and observations of family members could be combined in a self-administered questionnaire that might identify individuals with a high probability of early, but otherwise undiagnosable, Parkinson's disease. Identification of subtle motor features is another possible screening method. For example, handwriting and speech are commonly affected prior to diagnosis; thus, automated analysis of these motor actions might also provide detection of incipient disease. PMID:1894144

  9. Motor Cortex Activity Organizes the Developing Rubrospinal System.

    Science.gov (United States)

    Williams, Preston T J A; Martin, John H

    2015-09-30

    The corticospinal and rubrospinal systems function in skilled movement control. A key question is how do these systems develop the capacity to coordinate their motor functions and, in turn, if the red nucleus/rubrospinal tract (RN/RST) compensates for developmental corticospinal injury? We used the cat to investigate whether the developing rubrospinal system is shaped by activity-dependent interactions with the developing corticospinal system. We unilaterally inactivated M1 by muscimol microinfusion between postnatal weeks 5 and 7 to examine activity-dependent interactions and whether the RN/RST compensates for corticospinal tract (CST) developmental motor impairments and CST misprojections after M1 inactivation. We examined the RN motor map and RST cervical projections at 7 weeks of age, while the corticospinal system was inactivated, and at 14 weeks, after activity returned. During M1 inactivation, the RN on the same side showed normal RST projections and reduced motor thresholds, suggestive of precocious development. By contrast, the RN on the untreated/active M1 side showed sparse RST projections and an immature motor map. After M1 activity returned later in adolescent cat development, RN on the active M1/CST side continued to show a substantial loss of spinal terminations and an impaired motor map. RN/RST on the inactivated side regressed to a smaller map and fewer axons. Our findings suggest that the developing rubrospinal system is under activity-dependent regulation by the corticospinal system for establishing mature RST connections and RN motor map. The lack of RS compensation on the non-inactivated side can be explained by development of ipsilateral misprojections from the active M1 that outcompete the RST. Significance statement: Skilled movements reflect the activity of multiple descending motor systems and their interactions with spinal motor circuits. Currently, there is little insight into whether motor systems interact during development to

  10. Methylphenidate improves motor functions in children diagnosed with Hyperkinetic Disorder

    Directory of Open Access Journals (Sweden)

    Iversen Synnøve

    2009-05-01

    Full Text Available Abstract Background A previous study showed that a high percentage of children diagnosed with Hyperkinetic Disorder (HKD displayed a consistent pattern of motor function problems. The purpose of this study was to investigate the effect of methylphenidate (MPH on such motor performance in children with HKD Methods 25 drug-naïve boys, aged 8–12 yr with a HKD-F90.0 diagnosis, were randomly assigned into two groups within a double blind cross-over design, and tested with a motor assessment instrument, during MPH and placebo conditions. Results The percentage of MFNU scores in the sample indicating 'severe motor problems' ranged from 44–84%, typically over 60%. Highly significant improvements in motor performance were observed with MPH compared to baseline ratings on all the 17 subtests of the MFNU 1–2 hr after administration of MPH. There were no significant placebo effects. The motor improvement was consistent with improvement of clinical symptoms. Conclusion The study confirmed our prior clinical observations showing that children with ADHD typically demonstrate marked improvements of motor functions after a single dose of 10 mg MPH. The most pronounced positive MPH response was seen in subtests measuring either neuromotor inhibition, or heightened muscular tone in the gross movement muscles involved in maintaining the alignment and balance of the body. Introduction of MPH generally led to improved balance and a generally more coordinated and controlled body movement.

  11. Sarcosine attenuates toluene-induced motor incoordination, memory impairment, and hypothermia but not brain stimulation reward enhancement in mice

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Ming-Huan [Department of Pharmacology and Toxicology, Tzu Chi University, Hualien, Taiwan (China); Institute of Neuroscience, National Changchi University, Taipei, Taiwan (China); Chung, Shiang-Sheng [Department of Pharmacology and Toxicology, Tzu Chi University, Hualien, Taiwan (China); Department of Pharmacy, Yuli Veterans Hospital, Hualien, Taiwan (China); Stoker, Astrid K.; Markou, Athina [Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA (United States); Chen, Hwei-Hsien, E-mail: hwei@nhri.org.tw [Department of Pharmacology and Toxicology, Tzu Chi University, Hualien, Taiwan (China); Division of Mental Health and Addiction Medicine, Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Miaoli County, Taiwan (China)

    2012-12-01

    Toluene, a widely used and commonly abused organic solvent, produces various behavioral disturbances, including motor incoordination and cognitive impairment. Toluene alters the function of a large number of receptors and ion channels. Blockade of N-methyl-D-aspartate (NMDA) receptors has been suggested to play a critical role in toluene-induced behavioral manifestations. The present study determined the effects of various toluene doses on motor coordination, recognition memory, body temperature, and intracranial self-stimulation (ICSS) thresholds in mice. Additionally, the effects of sarcosine on the behavioral and physiological effects induced by toluene were evaluated. Sarcosine may reverse toluene-induced behavioral manifestations by acting as an NMDA receptor co-agonist and by inhibiting the effects of the type I glycine transporter (GlyT1). Mice were treated with toluene alone or combined with sarcosine pretreatment and assessed for rotarod performance, object recognition memory, rectal temperature, and ICSS thresholds. Toluene dose-dependently induced motor incoordination, recognition memory impairment, and hypothermia and lowered ICSS thresholds. Sarcosine pretreatment reversed toluene-induced changes in rotarod performance, novel object recognition, and rectal temperature but not ICSS thresholds. These findings suggest that the sarcosine-induced potentiation of NMDA receptors may reverse motor incoordination, memory impairment, and hypothermia but not the enhancement of brain stimulation reward function associated with toluene exposure. Sarcosine may be a promising compound to prevent acute toluene intoxications by occupational or intentional exposure. -- Highlights: ► Toluene induces impairments in Rotarod test and novel object recognition test. ► Toluene lowers rectal temperature and ICSS thresholds in mice. ► Sarcosine reverses toluene-induced changes in motor, memory and body temperature. ► Sarcosine pretreatment does not affect toluene

  12. Sarcosine attenuates toluene-induced motor incoordination, memory impairment, and hypothermia but not brain stimulation reward enhancement in mice

    International Nuclear Information System (INIS)

    Toluene, a widely used and commonly abused organic solvent, produces various behavioral disturbances, including motor incoordination and cognitive impairment. Toluene alters the function of a large number of receptors and ion channels. Blockade of N-methyl-D-aspartate (NMDA) receptors has been suggested to play a critical role in toluene-induced behavioral manifestations. The present study determined the effects of various toluene doses on motor coordination, recognition memory, body temperature, and intracranial self-stimulation (ICSS) thresholds in mice. Additionally, the effects of sarcosine on the behavioral and physiological effects induced by toluene were evaluated. Sarcosine may reverse toluene-induced behavioral manifestations by acting as an NMDA receptor co-agonist and by inhibiting the effects of the type I glycine transporter (GlyT1). Mice were treated with toluene alone or combined with sarcosine pretreatment and assessed for rotarod performance, object recognition memory, rectal temperature, and ICSS thresholds. Toluene dose-dependently induced motor incoordination, recognition memory impairment, and hypothermia and lowered ICSS thresholds. Sarcosine pretreatment reversed toluene-induced changes in rotarod performance, novel object recognition, and rectal temperature but not ICSS thresholds. These findings suggest that the sarcosine-induced potentiation of NMDA receptors may reverse motor incoordination, memory impairment, and hypothermia but not the enhancement of brain stimulation reward function associated with toluene exposure. Sarcosine may be a promising compound to prevent acute toluene intoxications by occupational or intentional exposure. -- Highlights: ► Toluene induces impairments in Rotarod test and novel object recognition test. ► Toluene lowers rectal temperature and ICSS thresholds in mice. ► Sarcosine reverses toluene-induced changes in motor, memory and body temperature. ► Sarcosine pretreatment does not affect toluene

  13. Affect of mood and cognitive function on motor function in patients with acute cerebral infarction%情绪和认知功能对早期脑梗死患者运动功能影响的研究

    Institute of Scientific and Technical Information of China (English)

    朱菊清; 冯子平; 杨旭东; 伯丹花; 陈世兵

    2015-01-01

    Objective:To analyze the relationship between motor dysfunction with cognitive function and mood among patients with a-cute cerebral infarction. Methods:Collected 78 cases patients with cerebral infarction, use upper limb function assessment table (DASH), 10m walking speed, Cognitive Assessment (MoCA), Self -Rating Anxiety Scale (SAS), Self -Rating Depression Scale ( SDS) to assess;comparison of patients with diffusion tensor imaging ( DTI) parameters:fractional anisotropy ( FA) values, and the ap-parent diffusion coefficient ( ADC) and FA index, ADC index, then correlation analysis and assessment of cognitive and emotional.Re-sults:DASH score and 10m walking speed had no correlation with MoCA, SAS, SDS scores (P>0.05);FA values in the ipsilateral and contralateral handers were negatively correlated (P<0.05) with SDS sorce.Conclusion:Cerebral infarction movement disorders might have no correlation with mood and cognitive function, while the infarct-induced defects in patients with neural networks should be associ-ated with emotions.%目的:研究脑梗死患者早期运动功能障碍与认知功能和情绪之间的关系。方法:收集自2011年5月~2014年5月于我院就诊的脑梗死患者78例,用上肢功能评定表( DASH)、10m步行速度、认知评估量表( MoCA)、焦虑自评量表( SAS)、抑郁自评量表( SDS)进行评定;比较患者弥散张量成像( DTI)相关参数:各向异性分数( FA)值、表观扩散系数( ADC)和FA指数、ADC指数,并与认知和情绪评估结果进行相关性分析。结果:DASH评分和10m步行速度与MoCA、SAS、SDS评分无相关性( P>0.05);患侧和健侧内囊后肢的FA值均与SDS评分呈负相关(P<0.05)。结论:脑梗死患者早期运动障碍与情绪和认知功能无相关性,而梗死灶所致的神经网络缺损则与情绪相关。

  14. A New Type of Motor: Pneumatic Step Motor.

    Science.gov (United States)

    Stoianovici, Dan; Patriciu, Alexandru; Petrisor, Doru; Mazilu, Dumitru; Kavoussi, Louis

    2007-02-01

    This paper presents a new type of pneumatic motor, a pneumatic step motor (PneuStep). Directional rotary motion of discrete displacement is achieved by sequentially pressurizing the three ports of the motor. Pulsed pressure waves are generated by a remote pneumatic distributor. The motor assembly includes a motor, gearhead, and incremental position encoder in a compact, central bore construction. A special electronic driver is used to control the new motor with electric stepper indexers and standard motion control cards. The motor accepts open-loop step operation as well as closed-loop control with position feedback from the enclosed sensor. A special control feature is implemented to adapt classic control algorithms to the new motor, and is experimentally validated. The speed performance of the motor degrades with the length of the pneumatic hoses between the distributor and motor. Experimental results are presented to reveal this behavior and set the expectation level. Nevertheless, the stepper achieves easily controllable precise motion unlike other pneumatic motors. The motor was designed to be compatible with magnetic resonance medical imaging equipment, for actuating an image-guided intervention robot, for medical applications. For this reason, the motors were entirely made of nonmagnetic and dielectric materials such as plastics, ceramics, and rubbers. Encoding was performed with fiber optics, so that the motors are electricity free, exclusively using pressure and light. PneuStep is readily applicable to other pneumatic or hydraulic precision-motion applications. PMID:21528106

  15. Aging assessment of large electric motors in nuclear power plants

    International Nuclear Information System (INIS)

    Large electric motors serve as the prime movers to drive high capacity pumps, fans, compressors, and generators in a variety of nuclear plant systems. This study examined the stressors that cause degradation and aging in large electric motors operating in various plant locations and environments. The operating history of these machines in nuclear plant service was studied by review and analysis of failure reports in the NPRDS and LER databases. This was supplemented by a review of motor designs, and their nuclear and balance of plant applications, in order to characterize the failure mechanisms that cause degradation, aging, and failure in large electric motors. A generic failure modes and effects analysis for large squirrel cage induction motors was performed to identify the degradation and aging mechanisms affecting various components of these large motors, the failure modes that result, and their effects upon the function of the motor. The effects of large motor failures upon the systems in which they are operating, and on the plant as a whole, were analyzed from failure reports in the databases. The effectiveness of the industry's large motor maintenance programs was assessed based upon the failure reports in the databases and reviews of plant maintenance procedures and programs

  16. Motor and cognitive growth following a Football Training Program

    Directory of Open Access Journals (Sweden)

    Marianna eAlesi

    2015-10-01

    Full Text Available Football may be a physical and sport activities able to improve motor and cognitive growth in children. Therefore the aim of this study was to assess whether a Football Training Program taken over 6 months would improve motor and cognitive performances in children. Motor skills concerned coordinative skills, running and explosive legs strength. Cognitive abilities involved visual discrimination times and visual selective attention times.Forty-six children with chronological age of ~9.10 years, were divided into two groups: Group 1 (n=24 attended a Football Exercise Program and Group 2 (n=22 was composed of sedentary children.Their abilities were measured by a battery of tests including motor and cognitive tasks. Football Exercise Program resulted in improved running, coordination and explosive leg strength performances as well as shorter visual discrimination times in children regularly attending football courses compared with their sedentary peers. On the whole these results support the thesis that the improvement of motor and cognitive abilities is related not only to general physical activity but also to specific ability related to the ball. Football Exercise Programs is assumed to be a natural and enjoyable tool to enhance cognitive resources as well as promoting and encouraging the participation in sport activities from early development.

  17. Principles of Coordination Polymerisation

    Science.gov (United States)

    Kuran, Witold

    2001-11-01

    The first all-inclusive text covering coordination polymerisation, including important classes of non-hydrocarbon monomers. Charting the achievements and progress in the field, in terms of both basic and industrial research, this book offers a unified and complete overview of coordination polymerisation. Provides detailed description of the historical development of the subject Presents a unified view of catalysis, mechanisms, structures and utility Encourages learning through a step-by-step progression from basic to in-depth text Features end-of-chapter exercises to reinforce understanding Offers a full bibliography and comprehensive literature review Requisite reading for research students studying introductory and advanced courses in; polymer science, catalysis and polymerisation catalysis, and valuable reference for researchers and technicians in industry.

  18. Advertising and Coordination

    OpenAIRE

    1990-01-01

    We show that when relevant market information such as price is difficult to communicate, advertising plays a key role in bringing about optimal coordination of purchase behavior: an efficient firm uses advertising expenditures in place of price to inform sophisticated consumers that it offers a better deal. This provides a theoretical explanation for Benham's (1972) empirical association of the ability to advertise with lower prices and larger scale. We find that advertising improves welfare ...

  19. Communication and interference coordination

    OpenAIRE

    Blasco-Serrano, Ricardo; Thobaben, Ragnar; Skoglund, Mikael

    2014-01-01

    We study the problem of controlling the interference created to an external observer by a communication processes. We model the interference in terms of its type (empirical distribution), and we analyze the consequences of placing constraints on the admissible type. Considering a single interfering link, we characterize the communication-interference capacity region. Then, we look at a scenario where the interference is jointly created by two users allowed to coordinate their actions prior to...

  20. International Monetary Policy Coordination

    OpenAIRE

    Carlberg, Michael

    2005-01-01

    This paper studies the international coordination of monetary policies in the world economy. It carefully discusses the process of policy competition and the structure of policy cooperation. As to policy competition, the focus is on monetary competition between Europe and America. Similarly, as to policy cooperation, the focus is on monetary cooperation between Europe and America. The spillover effects of monetary policy are negative. The policy targets are price stability and full employment.

  1. Global coordination: weighted voting

    Directory of Open Access Journals (Sweden)

    Jan-Erik Lane

    2014-03-01

    Full Text Available In order to halt the depletion of global ecological capital, a number of different kinds of meetings between Governments of countries in the world has been scheduled. The need for global coordination of environmental policies has become ever more obvious, supported by more and more evidence of the running down of ecological capital. But there are no formal or binding arrangements in sight, as global environmental coordination suffers from high transaction costs (qualitative voting. The CO2 equivalent emissions, resulting in global warming, are driven by the unstoppable economic expansion in the global market economy, employing mainly fossil fuel generated energy, although at the same time lifting sharply the GDP per capita of several emerging countries. Only global environmental coordination on the successful model of the World Band and the IMF (quantitative voting can stem the rising emissions numbers and stop further environmental degradation. However, the system of weighted voting in the WB and the IMF must be reformed by reducing the excessive voting power disparities, for instance by reducing all member country votes by the cube root expression.

  2. Improving Project Manufacturing Coordination

    Directory of Open Access Journals (Sweden)

    Korpivaara Ville

    2014-09-01

    Full Text Available The objective of this research is to develop firms’ project manufacturing coordination. The development will be made by centralizing the manufacturing information flows in one system. To be able to centralize information, a deep user need assessment is required. After user needs have been identified, the existing system will be developed to match these needs. The theoretical background is achieved through exploring the literature of project manufacturing, development project success factors and different frameworks and tools for development project execution. The focus of this research is rather in customer need assessment than in system’s technical expertise. To ensure the deep understanding of customer needs this study is executed by action research method. As a result of this research the information system for project manufacturing coordination was developed to respond revealed needs of the stakeholders. The new system improves the quality of the manufacturing information, eliminates waste in manufacturing coordination processes and offers a better visibility to the project manufacturing. Hence it provides a solid base for the further development of project manufacturing.

  3. SIMULATING THE SUPPLY DISRUPTION FOR THE COORDINATED SUPPLY CHAIN

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    There are many disruptive accidents in the supply chain operations system and achieving the coordination of supply chain is main objective for supply chain research. While disruptive accidents have increasingly influenced the coordinated operation of the supply chain, existing research literature on the supply chain coordination is setting in a stationary environment. The answer for how the disruptive accidents affect the coordinated supply chain is given in this paper. Based on the benchmark supply chain which is coordinated by the negative incentive mechanism, we study the impacts of supply disruption on the supply chain system by using simulation approach in which two different distribution function of random variable are used to express the supply disruption. Comparison between these two simulation results and possible coordination mechanism under the supply disruption are proposed. From the perspective of supply chain risk management, we provide the inspiration for the manager.

  4. Ectopic cerebellar cell migration causes maldevelopment of Purkinje cells and abnormal motor behaviour in Cxcr4 null mice.

    Directory of Open Access Journals (Sweden)

    Guo-Jen Huang

    Full Text Available SDF-1/CXCR4 signalling plays an important role in neuronal cell migration and brain development. However, the impact of CXCR4 deficiency in the postnatal mouse brain is still poorly understood. Here, we demonstrate the importance of CXCR4 on cerebellar development and motor behaviour by conditional inactivation of Cxcr4 in the central nervous system. We found CXCR4 plays a key role in cerebellar development. Its loss leads to defects in Purkinje cell dentritogenesis and axonal projection in vivo but not in cell culture. Transcriptome analysis revealed the most significantly affected pathways in the Cxcr4 deficient developing cerebellum are involved in extra cellular matrix receptor interactions and focal adhesion. Consistent with functional impairment of the cerebellum, Cxcr4 knockout mice have poor coordination and balance performance in skilled motor tests. Together, these results suggest ectopic the migration of granule cells impairs development of Purkinje cells, causes gross cerebellar anatomical disruption and leads to behavioural motor defects in Cxcr4 null mice.

  5. Neuro-vestibular and Sensory-motor Challenges Associated with NASA Mission Architectures for Moon and Mars

    Science.gov (United States)

    Paloski, William H.

    2004-01-01

    Data from six-month low Earth orbit space flight missions suggest that that substantial neuro-vestibuladsensory-motor adaptation will take place during six-month transit missions to and from Mars. Could intermittent or continuous artificial gravity be used to offset these effects? To what degree would the effects of adaptation to this rotational cure affect its potential benefits? Also, little information exists regarding the gravity thresholds for maintaining functional performance of complex sensory-motor tasks such as balance control and locomotion. Will sensory-motor coordination systems adapt to 30-90 days of 1/6 g on the lunar surface or 18 months of 3/8 g on the Martian surface? Would some form of gravity replacement therapy be required on the surface? And, will transitions between 0 g and 1/6 g or 1/3 g present as great a challenge to the vestibular system as transitions between 0 g and 1 g? Concerted research and development efforts will be required to obtain the answers.

  6. Characterization of pen-tip coordinates and velocity using electromyographic signals of the forearm muscles

    Directory of Open Access Journals (Sweden)

    Inès CHIHI

    2013-05-01

    Full Text Available Handwriting is considered as one of the most delicate and complex human activities. This habit requires a certain level of evolution of the language, the control of the graphic space and a certain degree of affective and praxis development. The production of a meaningful and readable writing involves a variety of motor commands generated by the brain and sent to the muscles to define, with an extreme precision, the motion of each joint at a given time. In this paper, two models characterizing the handwriting process are proposed. Using the activities of the forearm muscles, called the ElectroMyoGraphic signals (EMG, the first model is based on the coordinates of the pen-tip moving on (x,y plan and the second model is defined from the velocity of the pen-tip. The parameters' estimation of both models is determined from the Recursive Least Square algorithm (RLS. The comparison of responses of two proposed structures shows the interest of the velocity to model the complex biological process. Indeed, the model based on the velocity shows best results then the model bases on the coordinates of the pen-tip.

  7. Flood-proof motors

    International Nuclear Information System (INIS)

    Even before the Fukushima event occurred some German nuclear power plants (NPP) have considered flooding scenarios. As a result of one of these studies, AREVA performed an upgrade project in NPP Isar 1 with flood-proof motors as a replacement of existing air-cooled low-voltage and high-voltage motors of the emergency cooling chain. After the Fukushima event, in which the cooling chains failed, the topic flood-proof equipment gets more and more into focus. This compact will introduce different kinds of flood-proof electrical motors which are currently installed or planned for installation into NPPs over the world. Moreover the process of qualification, as it was performed during the project in NPP Isar 1, will be shown. (orig.)

  8. Mechanical design of electric motors

    CERN Document Server

    Tong, Wei

    2014-01-01

    Rapid increases in energy consumption and emphasis on environmental protection have posed challenges for the motor industry, as has the design and manufacture of highly efficient, reliable, cost-effective, energy-saving, quiet, precisely controlled, and long-lasting electric motors.Suitable for motor designers, engineers, and manufacturers, as well as maintenance personnel, undergraduate and graduate students, and academic researchers, Mechanical Design of Electric Motors provides in-depth knowledge of state-of-the-art design methods and developments of electric motors. From motor classificati

  9. Coordinating International Response to Emergencies

    International Nuclear Information System (INIS)

    Pandemic disease, natural disasters and terrorism can affect thousands of people in a relatively short period of time anywhere in the world. Our recent international experience with hurricanes, earthquakes, tsunamis and infectious diseases (AIDS, TB and highly pathogenic avian influenza) show us that we must respond with a coordinated approach or we will fail the very people we intend to help. Nations from around the world are often eager to send assistance to the site of a disaster, but coordinating the incoming aid is more often flawed and imprecise than it must be in order to save lives and mitigate suffering. How can any one country, suffering from a horrendous calamity coordinate the incoming aid from around the world? Can any one agency hope to coordinate the myriad nation's response let alone that of the hundreds of non-governmental organizations? Currently, the answer is sadly, no. The purpose of this presentation is not to recommend one over the many international bodies which claim to oversee humanitarian assistance; the purpose of this presentation is to discuss the elements of only one aspect of the overall response effort: public health and medical response coordination. Public health response is of course different than a purely medical response. Traditionally, in a natural disaster, immediate public health concerns center around water, sewerage/waste disposal, potential for disease outbreaks, etc, whereas medical response concentrates on triage, saving those who can be saved, patching up the injured, and to a lesser extent, primary care to the survivors. In order to avoid political controversy, this presentation will use the example of Hurricane Iniki in Hawaii, September 1992, to illustrate key concepts. The State of Hawaii is no stranger to natural disasters. Their emergency response mechanisms are well honed, exercised and quite capable. However, the local community leaders on Kauai Island went thru each of the following phases before they

  10. Step Motor Control System

    Institute of Scientific and Technical Information of China (English)

    ZhangShuochengt; WangDan; QiaoWeimin; JingLan

    2003-01-01

    All kinds of step motors and servomotors are widely used in CSR control system, such as many vacuum valves control that set on the HIRFL-CSR; all kinds of electric switches and knobs of ECR Ion Source; equipment of CSR Beam Diagnostics and a lot of large equipment like Inside Gun Toroid and Collector Toroid of HIRFL. A typical control system include up to 32 16-I/O Control boards, and each 16-I/O Control board can control 4 motors at the same time (including 8 Limit Switches).

  11. Transformers and motors

    CERN Document Server

    Shultz, George

    1991-01-01

    Transformers and Motors is an in-depth technical reference which was originally written for the National Joint Apprenticeship Training Committee to train apprentice and journeymen electricians. This book provides detailed information for equipment installation and covers equipment maintenance and repair. The book also includes troubleshooting and replacement guidelines, and it contains a minimum of theory and math.In this easy-to-understand, practical sourcebook, you'll discover:* Explanations of the fundamental concepts of transformers and motors* Transformer connections and d

  12. Why Bother About Clumsiness? The Implications of Having Developmental Coordination Disorder (DCD)

    OpenAIRE

    Christopher Gillberg; Björn Kadesjö

    2003-01-01

    Developmental coordination disorder (DCD) is a common motor problem affecting—even in rather severe form—several percent of school age children. In the past, DCD has usually been called ‘clumsy child syndrome’ or ‘non-cerebralpalsy motor-perception dysfunction’. This disorder is more common in boys than in girls and is very often associated with psychopathology, particularly with attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorders/ autistic-type problems. Conversely,...

  13. The functional alterations associated with motor imagery training: a comparison between motor execution and motor imagery of sequential finger tapping

    Science.gov (United States)

    Zhang, Hang; Yao, Li; Long, Zhiying

    2011-03-01

    Motor imagery training, as an effective strategy, has been more and more applied to mental disorders rehabilitation and motor skill learning. Studies on the neural mechanism underlying motor imagery have suggested that such effectiveness may be related to the functional congruence between motor execution and motor imagery. However, as compared to the studies on motor imagery, the studies on motor imagery training are much fewer. The functional alterations associated with motor imagery training and the effectiveness of motor imagery training on motor performance improvement still needs further investigation. Using fMRI, we employed a sequential finger tapping paradigm to explore the functional alterations associated with motor imagery training in both motor execution and motor imagery task. We hypothesized through 14 consecutive days motor imagery training, the motor performance could be improved and the functional congruence between motor execution and motor imagery would be sustained form pre-training phase to post-training phase. Our results confirmed the effectiveness of motor imagery training in improving motor performance and demonstrated in both pre and post-training phases, motor imagery and motor execution consistently sustained the congruence in functional neuroanatomy, including SMA (supplementary motor cortex), PMA (premotor area); M1( primary motor cortex) and cerebellum. Moreover, for both execution and imagery tasks, a similar functional alteration was observed in fusiform through motor imagery training. These findings provided an insight into the effectiveness of motor imagery training and suggested its potential therapeutic value in motor rehabilitation.

  14. Tuning Multiple Motor Travel Via Single Motor Velocity

    Science.gov (United States)

    Xu, Jing; Shu, Zhanyong; King, Stephen J.; Gross, Steven P.

    2012-01-01

    Microtubule-based molecular motors often work in small groups to transport cargos in cells. A key question in understanding transport (and its regulation in vivo) is to identify the sensitivity of multiple-motor-based motion to various single molecule properties. Whereas both single-motor travel distance and microtubule binding rate have been demonstrated to contribute to cargo travel, the role of single-motor velocity is yet to be explored. Here, we recast a previous theoretical study, and make explicit a potential contribution of velocity to cargo travel. We test this possibility experimentally, and demonstrate a strong negative correlation between single-motor velocity and cargo travel for transport driven by two motors. Our study thus discovers a previously unappreciated role of single-motor velocity in regulating multiple-motor transport. PMID:22672518

  15. Obesity Reduces Cognitive and Motor Functions across the Lifespan

    Directory of Open Access Journals (Sweden)

    Chuanming Wang

    2016-01-01

    Full Text Available Due to a sedentary lifestyle, more and more people are becoming obese nowadays. In addition to health-related problems, obesity can also impair cognition and motor performance. Previous results have shown that obesity mainly affects cognition and motor behaviors through altering brain functions and musculoskeletal system, respectively. Many factors, such as insulin/leptin dysregulation and inflammation, mediate the effect of obesity and cognition and motor behaviors. Substantial evidence has suggested exercise to be an effective way to improve obesity and related cognitive and motor dysfunctions. This paper aims to discuss the association of obesity with cognition and motor behaviors and its underlying mechanisms. Following this, mechanisms of exercise to improve obesity-related dysfunctions are described. Finally, implications and future research direction are raised.

  16. Modulation of motor excitability by metricality of tone sequences

    DEFF Research Database (Denmark)

    Cameron, David; Stewart, Lauren; Pearce, Marcus;

    2012-01-01

    understood. To investigate how auditory rhythms affect movement, we applied single-pulse transcranial magnetic stimulation (TMS) to primary motor cortex, eliciting motor-evoked potentials (MEPs) in ankle-driving muscles of the lower leg, while participants (N = 4) listened to metrically strong or weak tone......When listening to music, humans tend to synchronize their movements with the perceived beat (e.g., foot-tapping). Brain areas associated with motor function have been closely linked to the perception of beat and rhythm, but the mechanism of this temporal auditory–motor coupling is not fully...... amplitude. These results demonstrate that the pure metrical structure of an auditory rhythm presented as generic parametrically varied tone sequences can influence motor excitability but that the picture may be more complex for real recordings of musical pieces. (PsycINFO Database Record (c) 2013 APA, all...

  17. Catch-slip bonds can be dispensable for motor force regulation during skeletal muscle contraction

    Science.gov (United States)

    Dong, Chenling; Chen, Bin

    2015-07-01

    It is intriguing how multiple molecular motors can perform coordinated and synchronous functions, which is essential in various cellular processes. Recent studies on skeletal muscle might have shed light on this issue, where rather precise motor force regulation was partly attributed to the specific stochastic features of a single attached myosin motor. Though attached motors can randomly detach from actin filaments either through an adenosine triphosphate (ATP) hydrolysis cycle or through "catch-slip bond" breaking, their respective contribution in motor force regulation has not been clarified. Here, through simulating a mechanical model of sarcomere with a coupled Monte Carlo method and finite element method, we find that the stochastic features of an ATP hydrolysis cycle can be sufficient while those of catch-slip bonds can be dispensable for motor force regulation.

  18. Molecular motors robustly drive active gels to a critically connected state

    CERN Document Server

    Alvarado, Jose; Sharma, Abhinav; MacKintosh, Fred C; Koenderink, Gijsje H

    2013-01-01

    Living systems often exhibit internal driving: active, molecular processes drive nonequilibrium phenomena such as metabolism or migration. Active gels constitute a fascinating class of internally driven matter, where molecular motors exert localized stresses inside polymer networks. There is evidence that network crosslinking is required to allow motors to induce macroscopic contraction. Yet a quantitative understanding of how network connectivity enables contraction is lacking. Here we show experimentally that myosin motors contract crosslinked actin polymer networks to clusters with a scale-free size distribution. This critical behavior occurs over an unexpectedly broad range of crosslink concentrations. To understand this robustness, we develop a quantitative model of contractile networks that takes into account network restructuring: motors reduce connectivity by forcing crosslinks to unbind. Paradoxically, to coordinate global contractions, motor activity should be low. Otherwise, motors drive initially ...

  19. Symmetric two-coordinate photodiode

    Directory of Open Access Journals (Sweden)

    Dobrovolskiy Yu. G.

    2008-12-01

    Full Text Available The two-coordinate photodiode is developed and explored on the longitudinal photoeffect, which allows to get the coordinate descriptions symmetric on the steepness and longitudinal resistance great exactness. It was shown, that the best type of the coordinate description is observed in the case of scanning by the optical probe on the central part of the photosensitive element. The ways of improvement of steepness and linear of its coordinate description were analyzed.

  20. Invariant Manifolds and Collective Coordinates

    CERN Document Server

    Papenbrock, T

    2001-01-01

    We introduce suitable coordinate systems for interacting many-body systems with invariant manifolds. These are Cartesian in coordinate and momentum space and chosen such that several components are identically zero for motion on the invariant manifold. In this sense these coordinates are collective. We make a connection to Zickendraht's collective coordinates and present certain configurations of few-body systems where rotations and vibrations decouple from single-particle motion. These configurations do not depend on details of the interaction.