WorldWideScience

Sample records for affects glucose metabolism

  1. Seasonal Temperature Changes Do Not Affect Cardiac Glucose Metabolism

    Directory of Open Access Journals (Sweden)

    Jukka Schildt

    2015-01-01

    Full Text Available FDG-PET/CT is widely used to diagnose cardiac inflammation such as cardiac sarcoidosis. Physiological myocardial FDG uptake often creates a problem when assessing the possible pathological glucose metabolism of the heart. Several factors, such as fasting, blood glucose, and hormone levels, influence normal myocardial glucose metabolism. The effect of outdoor temperature on myocardial FDG uptake has not been reported before. We retrospectively reviewed 29 cancer patients who underwent PET scans in warm summer months and again in cold winter months. We obtained myocardial, liver, and mediastinal standardized uptake values (SUVs as well as quantitative cardiac heterogeneity and the myocardial FDG uptake pattern. We also compared age and body mass index to other variables. The mean myocardial FDG uptake showed no significant difference between summer and winter months. Average outdoor temperature did not correlate significantly with myocardial SUVmax in either summer or winter. The heterogeneity of myocardial FDG uptake did not differ significantly between seasons. Outdoor temperature seems to have no significant effect on myocardial FDG uptake or heterogeneity. Therefore, warming the patients prior to attending cardiac PET studies in order to reduce physiological myocardial FDG uptake seems to be unnecessary.

  2. Epigallocatechin gallate affects glucose metabolism and increases fitness and lifespan in Drosophila melanogaster.

    Science.gov (United States)

    Wagner, Anika E; Piegholdt, Stefanie; Rabe, Doerte; Baenas, Nieves; Schloesser, Anke; Eggersdorfer, Manfred; Stocker, Achim; Rimbach, Gerald

    2015-10-13

    In this study, we tested whether a standardized epigallocatechin-3-gallate (EGCG) rich green tea extract (comprising > 90% EGCG) affects fitness and lifespan as well as parameters of glucose metabolism and energy homeostasis in the fruit fly, Drosophila melanogaster. Following the application of the green tea extract a significant increase in the mean lifespan (+ 3.3 days) and the 50% survival (+ 4.3 days) as well as improved fitness was detected. These effects went along an increased expression of Spargel, the homolog of mammalian PGC1α, which has been reported to affect lifespan in flies. Intriguingly, in flies, treatment with the green tea extract decreased glucose concentrations, which were accompanied by an inhibition of α-amylase and α-glucosidase activity. Computational docking analysis proved the potential of EGCG to dock into the substrate binding pocket of α-amylase and to a greater extent into α-glucosidase. Furthermore, we demonstrate that EGCG downregulates insulin-like peptide 5 and phosphoenolpyruvate carboxykinase, major regulators of glucose metabolism, as well as the Drosophila homolog of leptin, unpaired 2. We propose that a decrease in glucose metabolism in connection with an upregulated expression of Spargel contribute to the better fitness and the extended lifespan in EGCG-treated flies.

  3. A palatable hyperlipidic diet causes obesity and affects brain glucose metabolism in rats

    Directory of Open Access Journals (Sweden)

    Motoyama Caio SM

    2011-09-01

    Full Text Available Abstract Background We have previously shown that either the continuous intake of a palatable hyperlipidic diet (H or the alternation of chow (C and an H diet (CH regimen induced obesity in rats. Here, we investigated whether the time of the start and duration of these feeding regimens are relevant and whether they affect brain glucose metabolism. Methods Male Wistar rats received C, H, or CH diets during various periods of their life spans: days 30-60, days 30-90, or days 60-90. Experiments were performed the 60th or the 90th day of life. Rats were killed by decapitation. The glucose, insulin, leptin plasma concentration, and lipid content of the carcasses were determined. The brain was sliced and incubated with or without insulin for the analysis of glucose uptake, oxidation, and the conversion of [1-14C]-glucose to lipids. Results The relative carcass lipid content increased in all of the H and CH groups, and the H30-60 and H30-90 groups had the highest levels. Groups H30-60, H30-90, CH30-60, and CH30-90 exhibited a higher serum glucose level. Serum leptin increased in all H groups and in the CH60-90 and CH30-90 groups. Serum insulin was elevated in the H30-60, H60-90, CH60-90, CH30-90 groups. Basal brain glucose consumption and hypothalamic insulin receptor density were lower only in the CH30-60 group. The rate of brain lipogenesis was increased in the H30-90 and CH30-90 groups. Conclusion These findings indicate that both H and CH diet regimens increased body adiposity independent treatment and the age at which treatment was started, whereas these diets caused hyperglycemia and affected brain metabolism when started at an early age.

  4. Cocoa and Whey Protein Differentially Affect Markers of Lipid and Glucose Metabolism and Satiety.

    Science.gov (United States)

    Campbell, Caroline L; Foegeding, E Allen; Harris, G Keith

    2016-03-01

    Food formulation with bioactive ingredients is a potential strategy to promote satiety and weight management. Whey proteins are high in leucine and are shown to decrease hunger ratings and increase satiety hormone levels; cocoa polyphenolics moderate glucose levels and slow digestion. This study examined the effects of cocoa and whey proteins on lipid and glucose metabolism and satiety in vitro and in a clinical trial. In vitro, 3T3-L1 preadipocytes were treated with 0.5-100 μg/mL cocoa polyphenolic extract (CPE) and/or 1-15 mM leucine (Leu) and assayed for lipid accumulation and leptin production. In vivo, a 6-week clinical trial consisted of nine panelists (age: 22.6 ± 1.7; BMI: 22.3 ± 2.1) consuming chocolate-protein beverages once per week, including placebo, whey protein isolate (WPI), low polyphenolic cocoa (LP), high polyphenolic cocoa (HP), LP-WPI, and HP-WPI. Measurements included blood glucose and adiponectin levels, and hunger ratings at baseline and 0.5-4.0 h following beverage consumption. At levels of 50 and 100 μg/mL, CPE significantly inhibited preadipocyte lipid accumulation by 35% and 50%, respectively, and by 22% and 36% when combined with 15 mM Leu. Leu treatment increased adipocyte leptin production by 26-37%. In the clinical trial, all beverages significantly moderated blood glucose levels 30 min postconsumption. WPI beverages elicited lowest peak glucose levels and HP levels were significantly lower than LP. The WPI and HP beverage treatments significantly increased adiponectin levels, but elicited no significant changes in hunger ratings. These trends suggest that combinations of WPI and cocoa polyphenols may improve markers of metabolic syndrome and satiety. PMID:26987021

  5. Does overnight normalization of plasma glucose by insulin infusion affect assessment of glucose metabolism in Type 2 diabetes?

    DEFF Research Database (Denmark)

    Staehr, P; Højlund, Kurt; Hother-Nielsen, O;

    2003-01-01

    turnover rates were quantified by adjusted primed-constant 3-3H-glucose infusions, and insulin action was assessed in 4-h euglycaemic, hyperinsulinaemic (40 mU m-2 min-1) clamp studies using labelled glucose infusates (Hot-GINF). RESULTS: Basal plasma glucose levels (mean +/- sd) were 5.5 +/- 0.5 and 10...... from basal rates of Rd, assessment of glucose turnover rates in euglycaemic clamp studies of Type 2 diabetic patients is not dependent on the method by which plasma glucose levels are lowered........7 +/- 2.9 mmol/l in the + ON and - ON studies, respectively, and were clamped at -5.5 mmol/l. Basal rates of glucose production (GP) were similar in the + ON and - ON studies, 83 +/- 13 vs. 85 +/- 14 mg m-2 min-1 (NS), whereas basal rates of glucose disappearance (Rd) were lower in the + ON than in the...

  6. Sucrose, glucose and fructose have similar genotoxicity in the rat colon and affect the metabolism

    DEFF Research Database (Denmark)

    Hansen, Max; Baunsgaard, D.; Autrup, H.;

    2008-01-01

    We have shown previously that a high sucrose intake increases the background level of somatic mutations and the level of bulky DNA adducts in the colon epithelium of rats. The mechanism may involve either glucose or fructose formed by hydrolysis of sucrose. Male Big Blue (R) rats were fed 30......% sucrose, glucose, fructose or potato starch as part of the diet. Mutation rates and bulky DNA adduct levels were determined in colon and liver. The concentration of short-chain fatty acids and pH were deter-mined in caecum, C-peptide was determined in plasma, biomarkers for oxidative damage...

  7. Deletion of GPR40 Impairs Glucose-Induced Insulin Secretion In Vivo in Mice Without Affecting Intracellular Fuel Metabolism in Islets

    Energy Technology Data Exchange (ETDEWEB)

    Alquier, Thierry; Peyot, Marie-Line; Latour, M. G.; Kebede, Melkam; Sorensen, Christina M.; Gesta, Stephane; Kahn, C. R.; Smith, Richard D.; Jetton, Thomas L.; Metz, Thomas O.; Prentki, Marc; Poitout, Vincent J.

    2009-11-01

    The G protein-coupled receptor GPR40 mediates fatty-acid potentiation of glucose-stimulated insulin secretion, but its contribution to insulin secretion in vivo and mechanisms of action remain uncertain. This study was aimed to ascertain whether GPR40 controls insulin secretion in vivo and modulates intracellular fuel metabolism in islets. We observed that glucose- and arginine-stimulated insulin secretion, assessed by hyperglycemic clamps, was decreased by approximately 60% in GPR40 knock-out (KO) fasted and fed mice, without changes in insulin sensitivity assessed by hyperinsulinemic-euglycemic clamps. Glucose and palmitate metabolism were not affected by GPR40 deletion. Lipid profiling revealed a similar increase in triglyceride and decrease in lysophosphatidylethanolamine species in WT and KO islets in response to palmitate. These results demonstrate that GPR40 regulates insulin secretion in vivo not only in response to fatty acids but also to glucose and arginine, without altering intracellular fuel metabolism.

  8. Intermittent fasting does not affect whole-body glucose, lipid, or protein metabolism

    NARCIS (Netherlands)

    M.R. Soeters; N.M. Lammers; P.F. Dubbelhuis; M.T. Ackermans; C.F. Jonkers-Schuitema; E. Fliers; H.P. Sauerwein; J.M. Aerts; M.J. Serlie

    2009-01-01

    Background: Intermittent fasting (IF) was shown to increase whole-body insulin sensitivity, but it is uncertain whether IF selectively influences intermediary metabolism. Such selectivity might be advantageous when adapting to periods of food abundance and food shortage. Objective: The objective was

  9. Increased levels of lipid metabolism and cystatin-C,but not glucose, affect virtual P vector

    Institute of Scientific and Technical Information of China (English)

    CHEN Jia; LIN Yu-bi; ZENG Chu-qian; YANG Zhen-zhen; LAI Xiao-shu; LU Qi-ji; ZHOU Jing-wen

    2016-01-01

    Background In this study,we aimed to evaluate the impact of abnormal glucose,lipid and Cystatin-C on the virtual P vector characteristics,which haven' t been reported in previous studies.Methods 204 of non-diabetes mellitus (NDM),130 of DM (type 2) and 39 of impaired glucose tolerance (IGT) patients were consecutively and retrospectively recruited.We selected a one-minute length of electrocardiogram at 4AM for analysis.After a series of calculating algorisms,we obtained the virtual planar P vector parameters.Results There were no significant differences in FPV,FPA,RSPV,RSPA,HPV and HPA groups.After adjusting confounding factors,the regression coefficients (RC) were estimated as follow:for FPV,female gender (RC-0.21,P =0.02),triglyceride (RC-0.09,P < 0.01),RVOT (RC 0.03,P =0.02);for RSPV,female gender (RC-0.21,P < 0.01),triglyceride (RC-0.10,P < 0.01),average heart rate (RC 0.01,P =0.02);for HPV,triglyceride (RC-0.08,P < 0.001),LDL (RC-0.19,P < 0.01),Apo B (RC 0.67,P < 0.01);for RSPA,B type of blood (RC-22.06,P =0.02),Cystatin-C (RC-72.79,P =0.02),thickness of interventricular septum (RC 3.70,P =0.01).Cystatin-C was suggested as a cure related to RSPA,and the cut-off point was 1.6 mg/L.There were no significant risk factors associated with FPA and HPA.There was no difference in virtual P vector among DM,IGT and NDM groups.Conclusion Increased levels of lipid and Cystatin-C significantly impact the characteristics of virtual P vector,whereas glucose does not.These changes may come from a higher low voltage atrial area and abnormal orientation of atrial depolarization.

  10. Low and high dietary protein:carbohydrate ratios during pregnancy affect materno-fetal glucose metabolism in pigs.

    Science.gov (United States)

    Metges, Cornelia C; Görs, Solvig; Lang, Iris S; Hammon, Harald M; Brüssow, Klaus-Peter; Weitzel, Joachim M; Nürnberg, Gerd; Rehfeldt, Charlotte; Otten, Winfried

    2014-02-01

    Inadequate dietary protein during pregnancy causes intrauterine growth retardation. Whether this is related to altered maternal and fetal glucose metabolism was examined in pregnant sows comparing a high-protein:low-carbohydrate diet (HP-LC; 30% protein, 39% carbohydrates) with a moderately low-protein:high-carbohydrate diet (LP-HC; 6.5% protein, 68% carbohydrates) and the isoenergetic standard diet (ST; 12.1% protein, 60% carbohydrates). During late pregnancy, maternal and umbilical glucose metabolism and fetal hepatic mRNA expression of gluconeogenic enzymes were examined. During an i.v. glucose tolerance test (IVGTT), the LP-HC-fed sows had lower insulin concentrations and area under the curve (AUC), and higher glucose:insulin ratios than the ST- and the HP-LC-fed sows (P < 0.05). Insulin sensitivity and glucose clearance were higher in the LP-HC sows compared with ST sows (P < 0.05). Glucagon concentrations during postabsorptive conditions and IVGTT, and glucose AUC during IVGTT, were higher in the HP-LC group compared with the other groups (P < 0.001). (13)C glucose oxidation was lower in the HP-LC sows than in the ST and LP-HC sows (P < 0.05). The HP-LC fetuses were lighter and had a higher brain:liver ratio than the ST group (P < 0.05). The umbilical arterial inositol concentration was greater in the HP-LC group (P < 0.05) and overall small fetuses (230-572 g) had higher values than medium and heavy fetuses (≥573 g) (P < 0.05). Placental lactate release was lower in the LP-HC group than in the ST group (P < 0.05). Fetal glucose extraction tended to be lower in the LP-HC group than in the ST group (P = 0.07). In the HP-LC and LP-HC fetuses, hepatic mRNA expression of cytosolic phosphoenolpyruvate carboxykinase (PCK1) and glucose-6-phosphatase (G6PC) was higher than in the ST fetuses (P < 0.05). In conclusion, the HP-LC and LP-HC sows adapted by reducing glucose turnover and oxidation and having higher glucose utilization, respectively. The HP-LC and LP

  11. Amino acid and glucose metabolism in fed-batch CHO cell culture affects antibody production and glycosylation

    DEFF Research Database (Denmark)

    Fan, Yuzhou; Jimenez Del Val, Ioscani; Müller, Christian;

    2015-01-01

    and feeds were studied using two IgG-producing cell lines. Our results indicate that the balance of glucose and amino acid concentration in the culture is important for cell growth, IgG titer and N-glycosylation. Accordingly, the ideal fate of glucose and amino acids in the culture could be mainly towards......Fed-batch Chinese hamster ovary (CHO) cell culture is the most commonly used process for IgG production in the biopharmaceutical industry. Amino acid and glucose consumption, cell growth, metabolism, antibody titer, and N-glycosylation patterns are always the major concerns during upstream process....... Amino acids with the highest consumption rates correlate with the most abundant amino acids present in the produced IgG, and thus require sufficient availability during culture. Case-by-case analysis is necessary for understanding the effect of media and process optimization on glycosylation. We found...

  12. Hydrocortisone stimulates the development of oligodendrocytes in primary glial cultures and affects glucose metabolism and lipid synthesis in these cultures

    OpenAIRE

    Warringa, R.A.J.; Hoeben, R C; Koper, W.J.; Sykes, J.E.C.; Golde, L.M.G. van; Lopes-Cardozo, M.

    1987-01-01

    Cultures of glial cells were prepared from the brains of one-week-old rat pups. After one day in culture, serum was omitted from the medium and replaced by a combination of growth-stimulating hormones and other factors that enhanced the percentage of oligodendrocytes in the cultures. We investigated the effects of hydrocortisone on the development of oligodendrocytes, on the activities of oligodendrocyte-specific enzymes and on glucose- and lipid-metabolism of the glial cells. (1) Hydrocortis...

  13. Antihypertensive drugs and glucose metabolism

    Institute of Scientific and Technical Information of China (English)

    Christos; V; Rizos; Moses; S; Elisaf

    2014-01-01

    Hypertension plays a major role in the development and progression of micro-and macrovascular disease.Moreover,increased blood pressure often coexists with additional cardiovascular risk factors such as insulin resistance.As a result the need for a comprehensive management of hypertensive patients is critical.However,the various antihypertensive drug categories have different effects on glucose metabolism.Indeed,angiotensin receptor blockers as well as angiotensin converting enzyme inhibitors have been associated with beneficial effects on glucose homeostasis.Calcium channel blockers(CCBs)have an overall neutral effect on glucose metabolism.However,some members of the CCBs class such as azelnidipine and manidipine have been shown to have advantageous effects on glucose homeostasis.On the other hand,diuretics andβ-blockers have an overall disadvantageous effect on glucose metabolism.Of note,carvedilol as well as nebivolol seem to differentiate themselves from the rest of theβ-blockers class,being more attractive options regarding their effect on glucose homeostasis.The adverse effects of some blood pressure lowering drugs on glucose metabolism may,to an extent,compromise their cardiovascular protective role.As a result the effects on glucose homeostasis of the various blood pressure lowering drugs should be taken into account when selecting an antihypertensive treatment,especially in patients which are at high risk for developing diabetes.

  14. [Glucose Metabolism: Stress Hyperglycemia and Glucose Control].

    Science.gov (United States)

    Tanaka, Katsuya; Tsutsumi, Yasuo M

    2016-05-01

    It is important for the anesthesiologists to understand pathophysiology of perioperative stress hyperglycemia, because it offers strategies for treatment of stress hyperglycemia. The effect of glucose tolerance is different in the choice of the anesthetic agent used in daily clinical setting. Specifically, the volatile anesthetics inhibit insulin secretion after glucose load and affects glucose tolerance. During minor surgery by the remifentanil anesthesia, the stress reaction is hard to be induced, suggesting that we should consider low-dose glucose load. Finally it is necessary to perform the glycemic control of the patients who fell into stress hyperglycemia depending on the individual patient. However, there are a lot of questions to be answered in the future. The prognosis of the perioperative patients is more likely to be greatly improved if we can control stress hyperglycemia.

  15. Hepatocyte MyD88 affects bile acids, gut microbiota and metabolome contributing to regulate glucose and lipid metabolism

    DEFF Research Database (Denmark)

    Duparc, Thibaut; Plovier, Hubert; Marrachelli, Vannina G;

    2016-01-01

    performed microarrays and quantitative PCRs in the liver. In addition, we investigated the gut microbiota composition, bile acid profile and both liver and plasma metabolome. We analysed the expression pattern of genes in the liver of obese humans developing non-alcoholic steatohepatitis (NASH). RESULTS...... proliferator activator receptor-α, farnesoid X receptor (FXR), liver X receptors and STAT3) and bile acid profiles involved in glucose, lipid metabolism and inflammation. In addition to these alterations, the genetic deletion of MyD88 in hepatocytes changes the gut microbiota composition and their metabolomes......, resembling those observed during diet-induced obesity. Finally, obese humans with NASH displayed a decreased expression of different cytochromes P450 involved in bioactive lipid synthesis. CONCLUSIONS: Our study identifies a new link between innate immunity and hepatic synthesis of bile acids and bioactive...

  16. Amino acid and glucose metabolism in fed-batch CHO cell culture affects antibody production and glycosylation.

    Science.gov (United States)

    Fan, Yuzhou; Jimenez Del Val, Ioscani; Müller, Christian; Wagtberg Sen, Jette; Rasmussen, Søren Kofoed; Kontoravdi, Cleo; Weilguny, Dietmar; Andersen, Mikael Rørdam

    2015-03-01

    Fed-batch Chinese hamster ovary (CHO) cell culture is the most commonly used process for IgG production in the biopharmaceutical industry. Amino acid and glucose consumption, cell growth, metabolism, antibody titer, and N-glycosylation patterns are always the major concerns during upstream process optimization, especially media optimization. Gaining knowledge on their interrelations could provide insight for obtaining higher immunoglobulin G (IgG) titer and better controlling glycosylation-related product quality. In this work, different fed-batch processes with two chemically defined proprietary media and feeds were studied using two IgG-producing cell lines. Our results indicate that the balance of glucose and amino acid concentration in the culture is important for cell growth, IgG titer and N-glycosylation. Accordingly, the ideal fate of glucose and amino acids in the culture could be mainly towards energy and recombinant product, respectively. Accumulation of by-products such as NH4(+) and lactate as a consequence of unbalanced nutrient supply to cell activities inhibits cell growth. The levels of Leu and Arg in the culture, which relate to cell growth and IgG productivity, need to be well controlled. Amino acids with the highest consumption rates correlate with the most abundant amino acids present in the produced IgG, and thus require sufficient availability during culture. Case-by-case analysis is necessary for understanding the effect of media and process optimization on glycosylation. We found that in certain cases the presence of Man5 glycan can be linked to limitation of UDP-GlcNAc biosynthesis as a result of insufficient extracellular Gln. However, under different culture conditions, high Man5 levels can also result from low α-1,3-mannosyl-glycoprotein 2-β-N-acetylglucosaminyltransferase (GnTI) and UDP-GlcNAc transporter activities, which may be attributed to high level of NH4+ in the cell culture. Furthermore, galactosylation of the mAb Fc glycans

  17. Maternal inheritance of severe hypertriglyceridemia impairs glucose metabolism in offspring

    OpenAIRE

    Ma, Ya-Hong; Yu, Caiguo; Kayoumu, Abudurexiti; Guo, Xin; Ji, Zhili; Liu, George

    2015-01-01

    Abstract Maternally inherited familial hypercholesterolemia (FH) impairs glucose metabolism and increases cardiovascular risks in the offspring to a greater degree than paternal inherited FH. However, it remains unknown whether hypertriglyceridemia affects glucose metabolism via inheritance. In this study, we sought to compare the impact of maternally and paternally inherited hypertriglyceridemia on glucose and lipid metabolism in mice. ApoCIII transgenic mice with severe hypertriglyceridemia...

  18. Regional glucose metabolism using PETT in normal and psychiatric populations

    Energy Technology Data Exchange (ETDEWEB)

    Brodie, J.D.; Wolf, A.P.; Volkow, N.

    1982-01-01

    The metabolism of /sup 18/F-2-deoxy-2-fluoro-D-glucose (/sup 18/FDG) in 150 subjects including normals, schizophrenics, senile dementias, and primary affective disorders was studied. Some of the data analyzed to date are discussed.

  19. Regional glucose metabolism using PETT in normal and psychiatric populations

    International Nuclear Information System (INIS)

    The metabolism of 18F-2-deoxy-2-fluoro-D-glucose (18FDG) in 150 subjects including normals, schizophrenics, senile dementias, and primary affective disorders was studied. Some of the data analyzed to date are discussed

  20. Glucose metabolism in ischemic myocardium

    International Nuclear Information System (INIS)

    We determined the myocardial metabolic rate for glucose (MMRGlc) in the ischemic or infarcted myocardium using 18-F-fluorodeoxyglucose (18-FDG) with positron emission tomography (PET), and studied energy metabolism in the ischemic myocardium. In some cases, we compared glucose metabolism images by 18-FDG with myocardial blood flow images using 15-oxygen water. Two normal subjects, seven patients with myocardial infarction and four patients with angina pectoris were studied. Coronary angiography was performed within two weeks before or after the PET study to detect ischemic areas. PET studies were performed for patients who did not eat for 5 to 6 hours after breakfast. Cannulation was performed in the pedal artery to measure free fatty acid, blood sugar, and insulin. After recording the transmission scan for subsequent correction of photon attenuation, blood pool images were recorded for two min. after the inhalation of carbon monoxide (oxygen-15) which labeled the red blood cells in vivo. After 20 min., oxygen-15 water (15 to 20 mCi) was injected for dynamic scans, and flow images were obtained. Thirty min. after this procedure, 18-FDG (5 to 6 mCi) was injected, and 60 min later, a static scan was performed and glucose metabolism images were obtained. Arterial blood sampling for the time activity curve of the tracer was performed at the same time. According to the method of Phelps et al, MMRGlc was calculated in each of the region of interest (ROI) which was located in the left ventricular wall. MMRGlc obtained from each ROI was 0 to 17 mg/100 ml/min. In normal subjects MMRGlc was 0.4 to 7.3 mg/100 ml/min. In patients with myocardial infarction, it ranged from 3 to 5 mg/100 ml/min in the infarcted lesion. In patients with angina pectoris and subendocardial infarction, MMRGlc was 7 to 17 mg/100 ml/min in the ischemic lesion. In this lesion, myocardial blood flow was relatively low by oxygen-15 imagings (so-called mismatch). (J.P.N.)

  1. Dietary fructose and glucose differentially affect lipid and glucose homeostasis

    Science.gov (United States)

    Absorbed glucose and fructose differ in that glucose largely escapes first pass removal by the liver, whereas fructose does not, resulting in different metabolic effects of these two monosaccharides. In short-term controlled feeding studies, dietary fructose significantly increases postprandial trig...

  2. Impaired glucose metabolism treatment and carcinogenesis

    OpenAIRE

    MATYSZEWSKI, ARTUR; Czarnecka, Anna; Kawecki, Maciej; KORZEŃ, PIOTR; SAFIR, ILAN J.; Kukwa, Wojciech; SZCZYLIK, CEZARY

    2015-01-01

    Carbohydrate metabolism disorders increase the risk of carcinogenesis. Diabetes mellitus alters numerous physiological processes that may encourage cancer growth. However, treating impaired glucose homeostasis may actually promote neoplasia; maintaining proper glucose plasma concentrations reduces metabolic stresses, however, certain medications may themselves result in oncogenic effects. A number of previous studies have demonstrated that metformin reduces the cancer risk. However, the use o...

  3. Factors Affecting Gender Differences in the Association between Health-Related Quality of Life and Metabolic Syndrome Components: Tehran Lipid and Glucose Study.

    Directory of Open Access Journals (Sweden)

    Parisa Amiri

    Full Text Available Using structural equation modeling, this study is one of the first efforts aimed at assessing influential factors causing gender differences in the association between health-related quality of life (HRQoL and metabolic syndrome.A sample of 950 adults, from Tehran Lipid and Glucose Study were recruited for this cross sectional study in 2005-2007. Health-related quality of life was assessed using the Iranian version of SF-36. Metabolic syndrome components (MetSCs and physical and mental HRQoL were considered as continuous latent constructs explaining the variances of their observed components. Structural equation modeling was performed to examine the association between the constructs of MetSCs and the physical and mental HRQoL within the two gender groups.Based on the primary hypothesis, MetSCs and HRQoL were fitted in a model. The negative effect of MetSCs on HRQoL was found to be significant only in the physical domain and only in women. The proportion of all the cardio-metabolic risk factors as well as subscales of physical HRQoL that have been explained via the two constructs of MetSCs and HRQoL, respectively, were significantly higher in women. Physical activity in both men (β = 3.19, p<0.05 and women (β = 3.94, p<0.05, age (β = -3.28, p<0.05, education (β = 2.63, p<0.05 only in women and smoking (β = 2.28, p<0.05 just in men, directly affected physical HRQoL. Regarding the mental domain, physical activity (β = 3.37, p<0.05 and marital status (β = 3.44, p<0.05 in women and age (β = 2.01, p<0.05 in men were direct effective factors. Age and education in women as well as smoking in men indirectly affected physical HRQoL via MetSCs.Gender differences in the association between MetSCs and physical HRQoL could mostly be attributed to the different structures of both MetSCs and physical HRQoL constructs in men and women. Age and smoking are the most important socio-behavioral factors which could affect this gender-specific association in

  4. Glucose homeostasis and metabolic adaptation in the pregnant and lactating sheep are affected by the level of nutrition previously provided during her late fetal life

    DEFF Research Database (Denmark)

    Husted, Sanne Munch; Nielsen, Mette Benedicte Olaf; Blache, D.;

    2008-01-01

    This study investigated whether undernutrition (UN) during late fetal life can programme the subsequent adult life adaptation of glucose homeostasis and metabolism during pregnancy and lactation. Twenty-four primiparous experimental ewes were used. Twelve had been exposed to a prenatal NORM level...... of nutrition (maternal diet approximately 15 MJME/d) and 12 to a LOW level of nutrition (maternal diet approximately 7 MJME/d) during the last 6 weeks pre-partum. The experimental ewes were subjected to two intravenous glucose tolerance tests (IGTT) in late gestation (one prior to (G-IGTT) and one by the end...

  5. Glucose metabolism of lactobacillus divergens

    International Nuclear Information System (INIS)

    The aim of this study was to compile an optimal growth and selective medium for Lactobacillus divergens and to determine the pathway by which it metabolised glucose. The optimum growth temperature is 25oC which is lower than that of most other lactobacilli. Citrate stimulates growth up to a concentration of 1% while acetate inhibits the organism at neutral pH, but it stimulates growth at pH 8.5 up to a concentration of 0.8%. MRS medium was therefore modified in order to obtain maximum growth of the organism. The acetate was omitted, sucrose was substituted for glucose and the pH was adjusted to 8.5. Sucrose was used, since a neutral pH is obtained after sterilisation of glucose in alkaline (pH ≥ 7.5) solution due to the degradation of glucose by the Maillard reaction. Various inhibitors and dyes were tested in order to formulate a selective medium. In the present study differently labelled glucose precursors were fermented by L. divergens and the fermentation products isolated by HPLC. The concentrations of acetate and formate were determined by comparison to a standard while the concentration of lactate and glucose was determined by enzymic assay. The radioactivity was determined by liquid scintillation counting and the positional labelling in lactate and acetate by chemical degradation. Fermentation of D-[U-14C]-glucose was included to correct for endogenous product dilution

  6. Glucose Metabolism in Mentally Retarded Children

    International Nuclear Information System (INIS)

    Glucose metabolism has been studied in normal, mentally retarded and hypothyroid children who exhibited subnormal I.Q. in spite of an adequate thyroxine dose. Two parameters, the breath and the blood, were examined. Continuous breath analysis following intravenous glucose-U-14C was carried out to examine its end product 14CO2. Blood was analysed half-hourly for the specific activity of glucose in this pool. Data are presented in terms of stable carbon dioxide expiration rate, the maximum specific activity of carbon dioxide attained, the glucose pool of the body and its turnover rate. (author)

  7. Tamoxifen affects glucose and lipid metabolism parameters, causes browning of subcutaneous adipose tissue and transient body composition changes in C57BL/6NTac mice.

    Science.gov (United States)

    Hesselbarth, Nico; Pettinelli, Chiara; Gericke, Martin; Berger, Claudia; Kunath, Anne; Stumvoll, Michael; Blüher, Matthias; Klöting, Nora

    2015-08-28

    Tamoxifen is a selective estrogen receptor (ER) modulator which is widely used to generate inducible conditional transgenic mouse models. Activation of ER signaling plays an important role in the regulation of adipose tissue (AT) metabolism. We therefore tested the hypothesis that tamoxifen administration causes changes in AT biology in vivo. 12 weeks old male C57BL/6NTac mice were treated with either tamoxifen (n = 18) or vehicle (n = 18) for 5 consecutive days. Tamoxifen treatment effects on body composition, energy homeostasis, parameters of AT biology, glucose and lipid metabolism were investigated up to an age of 18 weeks. We found that tamoxifen treatment causes: I) significantly increased HbA1c, triglyceride and free fatty acid serum concentrations (p body composition changes. Tamoxifen may induce changes in body composition, whole body glucose and lipid metabolism and has significant effects on AT biology, which need to be considered when using Tamoxifen as a tool to induce conditional transgenic mouse models. Our data further suggest that tamoxifen-treated wildtype mice should be characterized in parallel to experimental transgenic models to control for tamoxifen administration effects.

  8. Sleep Control, GPCRs, and Glucose Metabolism.

    Science.gov (United States)

    Tsuneki, Hiroshi; Sasaoka, Toshiyasu; Sakurai, Takeshi

    2016-09-01

    Modern lifestyles prolong daily activities into the nighttime, disrupting circadian rhythms, which may cause sleep disturbances. Sleep disturbances have been implicated in the dysregulation of blood glucose levels and reported to increase the risk of type 2 diabetes (T2D) and diabetic complications. Sleep disorders are treated using anti-insomnia drugs that target ionotropic and G protein-coupled receptors (GPCRs), including γ-aminobutyric acid (GABA) agonists, melatonin agonists, and orexin receptor antagonists. A deeper understanding of the effects of these medications on glucose metabolism and their underlying mechanisms of action is crucial for the treatment of diabetic patients with sleep disorders. In this review we focus on the beneficial impact of sleep on glucose metabolism and suggest a possible strategy for therapeutic intervention against sleep-related metabolic disorders. PMID:27461005

  9. A link between sleep loss, glucose metabolism and adipokines

    Directory of Open Access Journals (Sweden)

    H.G. Padilha

    2011-10-01

    Full Text Available The present review evaluates the role of sleep and its alteration in triggering problems of glucose metabolism and the possible involvement of adipokines in this process. A reduction in the amount of time spent sleeping has become an endemic condition in modern society, and a search of the current literature has found important associations between sleep loss and alterations of nutritional and metabolic contexts. Studies suggest that sleep loss is associated with problems in glucose metabolism and a higher risk for the development of insulin resistance and type 2 diabetes mellitus. The mechanism involved may be associated with the decreased efficacy of regulation of the hypothalamus-pituitary-adrenal axis by negative feedback mechanisms in sleep-deprivation conditions. In addition, changes in the circadian pattern of growth hormone (GH secretion might also contribute to the alterations in glucose regulation observed during sleep loss. On the other hand, sleep deprivation stress affects adipokines - increasing tumor necrosis factor-α (TNF-α and interleukin-6 (IL-6 and decreasing leptin and adiponectin -, thus establishing a possible association between sleep-debt, adipokines and glucose metabolism. Thus, a modified release of adipokines resulting from sleep deprivation could lead to a chronic sub-inflammatory state that could play a central role in the development of insulin resistance and type 2 diabetes mellitus. Further studies are necessary to investigate the role of sleep loss in adipokine release and its relationship with glucose metabolism.

  10. Tamoxifen affects glucose and lipid metabolism parameters, causes browning of subcutaneous adipose tissue and transient body composition changes in C57BL/6NTac mice

    International Nuclear Information System (INIS)

    Tamoxifen is a selective estrogen receptor (ER) modulator which is widely used to generate inducible conditional transgenic mouse models. Activation of ER signaling plays an important role in the regulation of adipose tissue (AT) metabolism. We therefore tested the hypothesis that tamoxifen administration causes changes in AT biology in vivo. 12 weeks old male C57BL/6NTac mice were treated with either tamoxifen (n = 18) or vehicle (n = 18) for 5 consecutive days. Tamoxifen treatment effects on body composition, energy homeostasis, parameters of AT biology, glucose and lipid metabolism were investigated up to an age of 18 weeks. We found that tamoxifen treatment causes: I) significantly increased HbA1c, triglyceride and free fatty acid serum concentrations (p < 0.01), II) browning of subcutaneous AT and increased UCP-1 expression, III) increased AT proliferation marker Ki67 mRNA expression, IV) changes in adipocyte size distribution, and V) transient body composition changes. Tamoxifen may induce changes in body composition, whole body glucose and lipid metabolism and has significant effects on AT biology, which need to be considered when using Tamoxifen as a tool to induce conditional transgenic mouse models. Our data further suggest that tamoxifen-treated wildtype mice should be characterized in parallel to experimental transgenic models to control for tamoxifen administration effects. - Highlights: • Tamoxifen treatment causes significantly increased HbA1c, triglyceride and free fatty acid serum concentrations. • Tamoxifen induces browning of subcutaneous AT and increased UCP-1 expression. • Tamoxifen changes adipocyte size distribution, and transient body composition

  11. Tamoxifen affects glucose and lipid metabolism parameters, causes browning of subcutaneous adipose tissue and transient body composition changes in C57BL/6NTac mice

    Energy Technology Data Exchange (ETDEWEB)

    Hesselbarth, Nico; Pettinelli, Chiara [Department of Medicine, University of Leipzig, D-04103 Leipzig (Germany); Gericke, Martin [Institute of Anatomy, University of Leipzig, D-04103 Leipzig (Germany); Berger, Claudia [IFB Adiposity Disease, Core Unit Animal Models, University of Leipzig, D-04103 Leipzig (Germany); Kunath, Anne [German Center for Diabetes Research (DZD), Leipzig (Germany); Stumvoll, Michael; Blüher, Matthias [Department of Medicine, University of Leipzig, D-04103 Leipzig (Germany); Klöting, Nora, E-mail: nora.kloeting@medizin.uni-leipzig.de [IFB Adiposity Disease, Core Unit Animal Models, University of Leipzig, D-04103 Leipzig (Germany)

    2015-08-28

    Tamoxifen is a selective estrogen receptor (ER) modulator which is widely used to generate inducible conditional transgenic mouse models. Activation of ER signaling plays an important role in the regulation of adipose tissue (AT) metabolism. We therefore tested the hypothesis that tamoxifen administration causes changes in AT biology in vivo. 12 weeks old male C57BL/6NTac mice were treated with either tamoxifen (n = 18) or vehicle (n = 18) for 5 consecutive days. Tamoxifen treatment effects on body composition, energy homeostasis, parameters of AT biology, glucose and lipid metabolism were investigated up to an age of 18 weeks. We found that tamoxifen treatment causes: I) significantly increased HbA{sub 1c}, triglyceride and free fatty acid serum concentrations (p < 0.01), II) browning of subcutaneous AT and increased UCP-1 expression, III) increased AT proliferation marker Ki67 mRNA expression, IV) changes in adipocyte size distribution, and V) transient body composition changes. Tamoxifen may induce changes in body composition, whole body glucose and lipid metabolism and has significant effects on AT biology, which need to be considered when using Tamoxifen as a tool to induce conditional transgenic mouse models. Our data further suggest that tamoxifen-treated wildtype mice should be characterized in parallel to experimental transgenic models to control for tamoxifen administration effects. - Highlights: • Tamoxifen treatment causes significantly increased HbA{sub 1c}, triglyceride and free fatty acid serum concentrations. • Tamoxifen induces browning of subcutaneous AT and increased UCP-1 expression. • Tamoxifen changes adipocyte size distribution, and transient body composition.

  12. Glucose regulates lipid metabolism in fasting king penguins.

    Science.gov (United States)

    Bernard, Servane F; Orvoine, Jord; Groscolas, René

    2003-08-01

    This study aims to determine whether glucose intervenes in the regulation of lipid metabolism in long-term fasting birds, using the king penguin as an animal model. Changes in the plasma concentration of various metabolites and hormones, and in lipolytic fluxes as determined by continuous infusion of [2-3H]glycerol and [1-14C]palmitate, were examined in vivo before, during, and after a 2-h glucose infusion under field conditions. All the birds were in the phase II fasting status (large fat stores, protein sparing) but differed by their metabolic and hormonal statuses, being either nonstressed (NSB; n = 5) or stressed (SB; n = 5). In both groups, glucose infusion at 5 mg.kg-1.min-1 induced a twofold increase in glycemia. In NSB, glucose had no effect on lipolysis (maintenance of plasma concentrations and rates of appearance of glycerol and nonesterified fatty acids) and no effect on the plasma concentrations of triacylglycerols (TAG), glucagon, insulin, or corticosterone. However, it limited fatty acid (FA) oxidation, as indicated by a 25% decrease in the plasma level of beta-hydroxybutyrate (beta-OHB). In SB, glucose infusion induced an approximately 2.5-fold decrease in lipolytic fluxes and a large decrease in FA oxidation, as reflected by a 64% decrease in the plasma concentration of beta-OHB. There were also a 35% decrease in plasma TAG, a 6.5- and 2.8-fold decrease in plasma glucagon and corticosterone, respectively, and a threefold increase in insulinemia. These data show that in fasting king penguins, glucose regulates lipid metabolism (inhibition of lipolysis and/or of FA oxidation) and affects hormonal status differently in stressed vs. nonstressed individuals. The results also suggest that in birds, as in humans, the availability of glucose, not of FA, is an important determinant of the substrate mix (glucose vs. FA) that is oxidized for energy production. PMID:12738609

  13. Osteocalcin as a hormone regulating glucose metabolism

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    The number of patients with osteoporosis and diabetesis rapidly increasing all over the world. Bone is recentlyrecognized as an endocrine organ. Accumulatingevidence has shown that osteocalcin, which is specificallyexpressed in osteoblasts and secreted into the circulation,regulates glucose homeostasis by stimulating insulinexpression in pancreas and adiponectin expression inadipocytes, resulting in improving glucose intolerance.On the other hand, insulin and adiponectin stimulateosteocalcin expression in osteoblasts, suggesting thatpositive feedforward loops exist among bone, pancreas,and adipose tissue. In addition, recent studies haveshown that osteocalcin enhances insulin sensitivity andthe differentiation in muscle, while secreted factors frommuscle, myokines, regulate bone metabolism. Thesefindings suggest that bone metabolism and glucosemetabolism are associated with each other through theaction of osteocalcin. In this review, I describe the roleof osteocalcin in the interaction among bone, pancreas,brain, adipose tissue, and muscle.

  14. Metabolic pathways for glucose in astrocytes.

    Science.gov (United States)

    Wiesinger, H; Hamprecht, B; Dringen, R

    1997-09-01

    Cultured astroglial cells are able to utilize the monosaccharides glucose, mannose, or fructose as well as the sugar alcohol sorbitol as energy fuel. Astroglial uptake of the aldoses is carrier-mediated, whereas a non-saturable transport mechanism is operating for fructose and sorbitol. The first metabolic step for all sugars, including fructose being generated by enzymatic oxidation of sorbitol, is phosphorylation by hexokinase. Besides glucose only mannose may serve as substrate for build-up of astroglial glycogen. Whereas glycogen synthase appears to be present in astrocytes as well as neurons, the exclusive localization of glycogen phosphorylase in astrocytes and ependymal cells of central nervous tissue correlates well with the occurrence of glycogen in these cells. The identification of lactic acid rather than glucose as degradation product of astroglial glycogen appears to render the presence of glucose-6-phosphatase in cultured astrocytes an enigma. The colocalization of pyruvate carboxylase, phosphenolpyruvate carboxykinase and fructose-1,6-bisphosphatase points to astrocytes as being the gluconeogenic cell type of the CNS. PMID:9298844

  15. Brain Glucose Metabolism Controls Hepatic Glucose and Lipid Production

    OpenAIRE

    Lam, Tony K.T.

    2007-01-01

    Brain glucose-sensing mechanisms are implicated in the regulation of feeding behavior and hypoglycemic-induced hormonal counter-regulation. This commentary discusses recent findings indicating that the brain senses glucose to regulate both hepatic glucose and lipid production.

  16. Maternal inheritance of severe hypertriglyceridemia impairs glucose metabolism in offspring

    Institute of Scientific and Technical Information of China (English)

    Ya-Hong Ma; Caiguo Yu; Abudurexiti Kayoumu; Xin Guo; Zhili Ji; George Liu

    2015-01-01

    Maternally inherited familial hypercholesterolemia (FH) impairs glucose metabolism and increases cardiovascular risks in the offspring to a greater degree than paternal inherited FH.However,it remains unknown whether hypertriglyceridemia affects glucose metabolism via inheritance.In this study,we sought to compare the impact of maternally and paternally inherited hypertriglyceridemia on glucose and lipid metabolism in mice.ApoCⅢ transgenic mice with severe hypertriglyceridemia were mated with non-transgenic control mice to obtain 4 types of offspring:maternal non-transgenic control and maternal transgenic offspring,and paternal control and paternal transgenic offspring.Plasma triglycerides (TG),total cholesterol (TC),fasting plasma glucose (FPG) and fasting insulin (FINS) were measured.ApoCⅢ overexpression caused severe hypertriglyceridemia,but the transgenic female mice had unaltered fertility with normal pregnancy and birth of pups.The 4 groups of offspring had similar birth weight and growth rate.The plasma TG of maternal and paternal transgenic offspring were nearly 40-fold higher than maternal and paternal control mice,but there was no difference in plasma TG between maternal and paternal transgenic offspring.Although the FPG of the 4 groups of animals had no difference,the maternal transgenic mice showed impaired glucose tolerance,increased FINS levels and higher homeostasis model assessment insulin resistance index (HOMA-IR) than the other 3 groups.In conclusion,maternally inherited hypertriglyceridemia in ApoCⅢ transgenic mice displayed impaired glucose tolerance,hyperinsulinemia and increased HOMA-R,while paternally inherited hypertriglyceridemia did not have such impacts.

  17. Hemispherical dominance of glucose metabolic rate in the brain of the 'normal' ageing population

    NARCIS (Netherlands)

    Cutts, DA; Maguire, RP; Leenders, KL; Spyrou, NM

    2004-01-01

    In the 'normal' ageing brain a decrease in the cerebral metabolic rate has been determined across many brain regions. This study determines whether age differences would affect metabolic rates in regions and different hemispheres of the brain. The regional metabolic rate of glucose (rCMRGlu) was exa

  18. Tentative longterm effects of a noradrenergic antidepressant; affecting the number of glucose transporters

    OpenAIRE

    Fonnes, Vera Linn Synnevåg

    2008-01-01

    Major depressive disorder is an affective disorder affecting millions of people worldwide. Only in Europe at least 21 million are thought to be affected. Several theories have been developed during the years trying to explain the cause of depression. This study is based on the theory where major depressive disorder is believed to be caused by impaired cerebral glucose metabolism, proposed by Hundal in 2006.The astroglia are thought to be the primary affected cells. The glucose transporter...

  19. Parameters of glucose metabolism and the aging brain

    DEFF Research Database (Denmark)

    Akintola, Abimbola A; van den Berg, Annette; Altmann-Schneider, Irmhild;

    2015-01-01

    Given the concurrent, escalating epidemic of diabetes mellitus and neurodegenerative diseases, two age-related disorders, we aimed to understand the relation between parameters of glucose metabolism and indices of pathology in the aging brain. From the Leiden Longevity Study, 132 participants (mean...... different parameters of glucose metabolism (impairment of which is characteristic of diabetes mellitus) and brain aging....... age 66 years) underwent a 2-h oral glucose tolerance test to assess glucose tolerance (fasted and area under the curve (AUC) glucose), insulin sensitivity (fasted and AUC insulin and homeostatic model assessment of insulin sensitivity (HOMA-IS)) and insulin secretion (insulinogenic index). 3-T brain...

  20. Pinitol Supplementation Does Not Affect Insulin-Mediated Glucose Metabolism and Muscle Insulin Receptor Content and Phosphorylation in Older Humans12

    OpenAIRE

    Campbell, Wayne W.; Haub, Mark D; Fluckey, James D.; Ostlund, Richard E; John P. Thyfault; Morse-Carrithers, Hannah; Hulver, Matthew W.; Birge, Zonda K.

    2004-01-01

    This study assessed the effect of oral pinitol supplementation on oral and intravenous glucose tolerances and on skeletal muscle insulin receptor content and phosphorylation in older people. Fifteen people (6 men, 9 women; age 66 ± 8 y; BMI 27.9 ± 3.3 kg/m2; hemoglobin A1c 5.39 ± 0.46%, mean ± SD) completed a 7-wk protocol. Subjects were randomly assigned to groups that during wk 2−7 consumed twice daily either a non-nutritive beverage (Placebo group, n = 8) or the same beverage with 1000 mg ...

  1. Nur77 coordinately regulates expression of genes linked to glucose metabolism in skeletal muscle

    OpenAIRE

    Chao, Lily C.; Zhang, Zidong; Pei, Liming; Saito, Tsugumichi; Tontonoz, Peter; Pilch, Paul F.

    2007-01-01

    Innervation is important for normal metabolism in skeletal muscle, including insulin-sensitive glucose uptake. However, the transcription factors that transduce signals from the neuromuscular junction to the nucleus and affect changes in metabolic gene expression are not well defined. We demonstrate here that the orphan nuclear receptor Nur77 is a regulator of gene expression linked to glucose utilization in muscle. In vivo, Nur77 is preferentially expressed in glycolytic compared to oxidativ...

  2. Glucose metabolism alterations in patients with bipolar disorder.

    Science.gov (United States)

    Rosso, Gianluca; Cattaneo, Annamaria; Zanardini, Roberta; Gennarelli, Massimo; Maina, Giuseppe; Bocchio-Chiavetto, Luisella

    2015-09-15

    Patients with bipolar disorder (BD) are more frequently affected by metabolic syndrome (MetS) than the general population, but the neurobiological correlates underlying such association are still not clarified and few studies in BD have evaluated the role of regulators of lipid and glucose metabolism. The present study was aimed to investigate putative alterations in markers linked to metabolic dysfunctions as C-peptide, Ghrelin, GIP, GLP-1, Glucagon, Insulin, Leptin, PAI-1 (total), Resistin and Visfatin in a sample of BD patients compared to controls. Furthermore, associations between changes of metabolic markers and relevant clinical features, such as severity of symptomatology, number and type of past mood episodes, drug treatments and presence/absence of metabolic alterations (MetS, diabetes and cardiovascular disease) were analyzed. A total of 57 patients with BD and 49 healthy controls were recruited. The main results showed lower serum levels of Glucagon, GLP-1, Ghrelin, and higher levels of GIP in BD patients as compared to controls (p = 0.018 for Ghrelin; p < 0.0001 for Glucagon; p < 0.0001 for GLP-1; p < 0.0001 for GIP). Further, Glucagon and GLP-1 levels were significantly associated with the number of past mood episodes. These findings support the hypothesis that alterations in Glucagon, GLP-1, GIP and Ghrelin might be involved in BD pathogenesis and might represent useful biomarkers for the development of preventive and personalized therapies in this disorder. PMID:26120808

  3. Geniposide regulates glucose-stimulated insulin secretion possibly through controlling glucose metabolism in INS-1 cells.

    Directory of Open Access Journals (Sweden)

    Jianhui Liu

    Full Text Available Glucose-stimulated insulin secretion (GSIS is essential to the control of metabolic fuel homeostasis. The impairment of GSIS is a key element of β-cell failure and one of causes of type 2 diabetes mellitus (T2DM. Although the KATP channel-dependent mechanism of GSIS has been broadly accepted for several decades, it does not fully describe the effects of glucose on insulin secretion. Emerging evidence has suggested that other mechanisms are involved. The present study demonstrated that geniposide enhanced GSIS in response to the stimulation of low or moderately high concentrations of glucose, and promoted glucose uptake and intracellular ATP levels in INS-1 cells. However, in the presence of a high concentration of glucose, geniposide exerted a contrary role on both GSIS and glucose uptake and metabolism. Furthermore, geniposide improved the impairment of GSIS in INS-1 cells challenged with a high concentration of glucose. Further experiments showed that geniposide modulated pyruvate carboxylase expression and the production of intermediates of glucose metabolism. The data collectively suggest that geniposide has potential to prevent or improve the impairment of insulin secretion in β-cells challenged with high concentrations of glucose, likely through pyruvate carboxylase mediated glucose metabolism in β-cells.

  4. Glucose Metabolism Disorders, HIV and Antiretroviral Therapy among Tanzanian Adults.

    Directory of Open Access Journals (Sweden)

    Emmanuel Maganga

    Full Text Available Millions of HIV-infected Africans are living longer due to long-term antiretroviral therapy (ART, yet little is known about glucose metabolism disorders in this group. We aimed to compare the prevalence of glucose metabolism disorders among HIV-infected adults on long-term ART to ART-naïve adults and HIV-negative controls, hypothesizing that the odds of glucose metabolism disorders would be 2-fold greater even after adjusting for possible confounders.In this cross-sectional study conducted between October 2012 and April 2013, consecutive adults (>18 years attending an HIV clinic in Tanzania were enrolled in 3 groups: 153 HIV-negative controls, 151 HIV-infected, ART-naïve, and 150 HIV-infected on ART for ≥ 2 years. The primary outcome was the prevalence of glucose metabolism disorders as determined by oral glucose tolerance testing. We compared glucose metabolism disorder prevalence between each HIV group vs. the control group by Fisher's exact test and used multivariable logistic regression to determine factors associated with glucose metabolism disorders.HIV-infected adults on ART had a higher prevalence of glucose metabolism disorders (49/150 (32.7% vs.11/153 (7.2%, p<0.001 and frank diabetes mellitus (27/150 (18.0% vs. 8/153 (5.2%, p = 0.001 than HIV-negative adults, which remained highly significant even after adjusting for age, gender, adiposity and socioeconomic status (OR = 5.72 (2.78-11.77, p<0.001. Glucose metabolism disorders were significantly associated with higher CD4+ T-cell counts. Awareness of diabetes mellitus was <25%.HIV-infected adults on long-term ART had 5-fold greater odds of glucose metabolism disorders than HIV-negative controls but were rarely aware of their diagnosis. Intensive glucose metabolism disorder screening and education are needed in HIV clinics in sub-Saharan Africa. Further research should determine how glucose metabolism disorders might be related to immune reconstitution.

  5. Loss of sugar detection by GLUT2 affects glucose homeostasis in mice.

    Directory of Open Access Journals (Sweden)

    Emilie Stolarczyk

    Full Text Available BACKGROUND: Mammals must sense the amount of sugar available to them and respond appropriately. For many years attention has focused on intracellular glucose sensing derived from glucose metabolism. Here, we studied the detection of extracellular glucose concentrations in vivo by invalidating the transduction pathway downstream from the transporter-detector GLUT2 and measured the physiological impact of this pathway. METHODOLOGY/PRINCIPAL FINDINGS: We produced mice that ubiquitously express the largest cytoplasmic loop of GLUT2, blocking glucose-mediated gene expression in vitro without affecting glucose metabolism. Impairment of GLUT2-mediated sugar detection transiently protected transgenic mice against starvation and streptozotocin-induced diabetes, suggesting that both low- and high-glucose concentrations were not detected. Transgenic mice favored lipid oxidation, and oral glucose was slowly cleared from blood due to low insulin production, despite massive urinary glucose excretion. Kidney adaptation was characterized by a lower rate of glucose reabsorption, whereas pancreatic adaptation was associated with a larger number of small islets. CONCLUSIONS/SIGNIFICANCE: Molecular invalidation of sugar sensing in GLUT2-loop transgenic mice changed multiple aspects of glucose homeostasis, highlighting by a top-down approach, the role of membrane glucose receptors as potential therapeutic targets.

  6. Adult glucose metabolism in extremely birthweight-discordant monozygotic twins

    DEFF Research Database (Denmark)

    Frost, M; Petersen, I; Brixen, K;

    2012-01-01

    Low birthweight (BW) is associated with increased risk of type 2 diabetes. We compared glucose metabolism in adult BW-discordant monozygotic (MZ) twins, thereby controlling for genetic factors and rearing environment....

  7. Maternal Glucose Tolerance in Pregnancy Affects Fetal Insulin Sensitivity

    OpenAIRE

    Luo, Zhong-Cheng; Delvin, Edgard; Fraser, William D.; Audibert, Francois; Deal, Cheri I.; Julien, Pierre; Girard, Isabelle; Shear, Roberta; Levy, Emile; Nuyt, Anne-Monique

    2010-01-01

    OBJECTIVE Offspring of mothers with impaired glucose tolerance are far more likely to develop type 2 diabetes. We tested the hypothesis that maternal glucose tolerance in pregnancy affects fetal insulin sensitivity or β-cell function. RESEARCH DESIGN AND METHODS In a prospective singleton pregnancy cohort study, we analyzed glucose, insulin, and proinsulin concentrations in maternal blood at the 50-g oral glucose tolerance test (OGTT) at 24–28 weeks of gestation and in venous cord blood (n = ...

  8. Intra- and intercellular mechanisms regulating glucose metabolism in the liver.

    NARCIS (Netherlands)

    E. Casteleijn (Eric)

    1988-01-01

    textabstractThe regulation of glucose metabolism in the liver by intraand intercellular mechanisms was studied. Fructose-1,6-bisphosphatase, an enzyme involved in de novo synthesis of glucose was found to be stimulated by glucagon in isolated parenchym~l liver cells. Glucagon increased the Vmax of f

  9. Effects of dehydroepiandrosterone (DHEA) on glucose metabolism in isolated hepatocytes from Zucker rats

    International Nuclear Information System (INIS)

    DHEA has been shown to competitively inhibit the pentose phosphate shunt (PPS) enzyme glucose-6-phosphate dehydrogenase (G6PD) when added in vitro to supernatants or homogenates prepared from mammalian tissues. However, no consistent effect on G6PD activity has been determined in tissue removed from DHEA-treated rats. To explore the effects of DHEA on PPS, glucose utilization was measured in hepatocytes from lean and obese male Zucker rats (8 wks of age) following 1 wk of DHEA treatment (0.6% in diet). Incubation of isolated hepatocytes from treated lean Zucker rats with either [1-14C] glucose or [6-14C] glucose resulted in significant decreases in CO2 production and total glucose utilization. DHEA-lean rats also had lowered fat pad weights. In obese rats, there was no effect of 1 wk of treatment on either glucose metabolism or fat pad weight. The calculated percent contribution of the PPS to glucose metabolism in hepatocytes was not changed for either DHEA-lean or obese rats when compared to control rats. In conclusion, 1 wk of DHEA treatment lowered overall glucose metabolism in hepatocytes of lean Zucker rats, but did not selectively affect the PPS. The lack of an effect of short-term treatment in obese rats may be due to differences in their metabolism or storage/release of DHEA in tissues in comparison to lean rats

  10. Glucose and galactose metabolism in Gluconabacter liquefaciens

    NARCIS (Netherlands)

    Stouthamer, A.H.

    1961-01-01

    Glucose-grown cells of Gluconobacter liquefaciens oxidize glucose, gluconate and 2-ketogluconate practically completely to 2,5-diketogluconate by particulate enzymes, localized in the protoplasmic membrane. The bulk of the 2,5-diketgluconate (and 5-ketogluconate) enters the cytoplasm and is metaboli

  11. Glucose metabolism in mammalian cell culture: new insights for tweaking vintage pathways.

    Science.gov (United States)

    Mulukutla, Bhanu Chandra; Khan, Salmaan; Lange, Alex; Hu, Wei-Shou

    2010-09-01

    Cultured mammalian cells are major vehicles for producing therapeutic proteins, and energy metabolism in those cells profoundly affects process productivity. The characteristic high glucose consumption and lactate production of industrial cell lines as well as their adverse effects on productivity have been the target of both cell line and process improvement for several decades. Recent research advances have shed new light on regulation of glucose metabolism and its links to cell proliferation. This review highlights our current understanding in this area of crucial importance in bioprocessing and further discusses strategies for harnessing new findings toward process enhancement through the manipulation of cellular energy metabolism.

  12. Effects of MDMA on blood glucose levels and brain glucose metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Soto-Montenegro, M.L.; Vaquero, J.J.; Garcia-Barreno, P.; Desco, M. [Hospital General Universitario Gregorio Maranon, Laboratorio de Imagen, Medicina Experimental, Madrid (Spain); Arango, C. [Hospital General Gregorio Maranon, Departamento de Psiquiatria, Madrid (Spain); Ricaurte, G. [Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD (United States)

    2007-06-15

    This study was designed to assess changes in glucose metabolism in rats administered single or repeated doses of MDMA. Two different experiments were performed: (1) A single-dose study with four groups receiving 20 mg/kg, 40 mg/kg, saline or heat, and (2) a repeated-dose study with two groups receiving three doses, at intervals of 2 h, of 5 mg/kg or saline. Rats were imaged using a dedicated small-animal PET scanner 1 h after single-dose administration or 7 days after repeated doses. Glucose metabolism was measured in 12 cerebral regions of interest. Rectal temperature and blood glucose were monitored. Peak body temperature was reached 1 h after MDMA administration. Blood glucose levels decreased significantly after MDMA administration. In the single-dose experiment, brain glucose metabolism showed hyperactivation in cerebellum and hypo-activation in the hippocampus, amygdala and auditory cortex. In the repeated-dose experiment, brain glucose metabolism did not show any significant change at day 7. These results are the first to indicate that MDMA has the potential to produce significant hypoglycaemia. In addition, they show that MDMA alters glucose metabolism in components of the motor, limbic and somatosensory systems acutely but not on a long-term basis. (orig.)

  13. Evaluation of glucose metabolism in women with multiple ovarian follicles

    Institute of Scientific and Technical Information of China (English)

    Shulan Lü; Xiaoyan Guo; Zuansun Cao; Wenjun Mao

    2007-01-01

    Objective:To investigate glucose metabolism in women with multiple ovarian follicles (MOF) and explore the relationship between glucose metabolism, insulin resistance and body weight. Methods:We evaluated 46 women with MFO and 30 nor mal women as controls. All the subjects were given 75g of glucose orally in order to perform the oral glucose tolerance test(OGTT) and insulin releasing test(IRT), and they were also evaluated for insulin resistance using the insulin resistance index with homeostatic model assessment (HOMA). Results:The occurrence of impaired glucose tolerance in women with MOF was 10.87%, which was significantly higher than that in the control group (3.33% ,P < 0.05). The rate of insulin resistance was 30.43% in the study group as compared to 10.00% in the control group. The results showed that there was significant difference between the two groups(P < 0.05). The levels of FSH,LH,PRL,E2,T and P between the two groups had no significant difference (P > 0.05). BMI in women with impaired glucose tolerance was correlated positively to insulin resistance (r =0.567, P < 0.05). Conclusion :Abnormal glucose metabolism was observed in women with unitary multiple ovarian follicles,and this could be attributed to obesity and insulin resistance. Women with MOF and associated obesity should be subjected to OGTT so that their glucose levels can be monitored as a preventive measure.

  14. Peripheral glucose metabolism and insulin sensitivity in Alzheimer's disease.

    Science.gov (United States)

    Kilander, L; Boberg, M; Lithell, H

    1993-04-01

    Twenty-four patients with Alzheimer's disease and matched controls were examined with reference to metabolic parameters such as peripheral insulin and glucose metabolism, serum lipid concentrations and blood pressure levels. Blood glucose levels and insulin response were measured during an intravenous glucose tolerance test and peripheral insulin sensitivity was estimated with the hyperinsulinemic euglycemic clamp technique. There were no differences recorded between the two groups in glucose metabolism, triglyceride, cholesterol or HDL-cholesterol levels. The patients with Alzheimer's disease had significantly lower blood pressure levels, which partly could be explained by ongoing treatment with neuroleptics and antidepressives. Previous findings of higher insulin levels in Alzheimer's disease could not be verified. PMID:8503259

  15. Utilization of dietary glucose in the metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Alemany Marià

    2011-10-01

    Full Text Available Abstract This review is focused on the fate of dietary glucose under conditions of chronically high energy (largely fat intake, evolving into the metabolic syndrome. We are adapted to carbohydrate-rich diets similar to those of our ancestors. Glucose is the main energy staple, but fats are our main energy reserves. Starvation drastically reduces glucose availability, forcing the body to shift to fatty acids as main energy substrate, sparing glucose and amino acids. We are not prepared for excess dietary energy, our main defenses being decreased food intake and increased energy expenditure, largely enhanced metabolic activity and thermogenesis. High lipid availability is a powerful factor decreasing glucose and amino acid oxidation. Present-day diets are often hyperenergetic, high on lipids, with abundant protein and limited amounts of starchy carbohydrates. Dietary lipids favor their metabolic processing, saving glucose, which additionally spares amino acids. The glucose excess elicits hyperinsulinemia, which may derive, in the end, into insulin resistance. The available systems of energy disposal could not cope with the excess of substrates, since they are geared for saving not for spendthrift, which results in an unbearable overload of the storage mechanisms. Adipose tissue is the last energy sink, it has to store the energy that cannot be used otherwise. However, adipose tissue growth also has limits, and the excess of energy induces inflammation, helped by the ineffective intervention of the immune system. However, even under this acute situation, the excess of glucose remains, favoring its final conversion to fat. The sum of inflammatory signals and deranged substrate handling induce most of the metabolic syndrome traits: insulin resistance, obesity, diabetes, liver steatosis, hyperlipidemia and their compounded combined effects. Thus, a maintained excess of energy in the diet may result in difficulties in the disposal of glucose, eliciting

  16. Diabetes, Glucose Metabolism, and Glaucoma: The 2005–2008 National Health and Nutrition Examination Survey

    OpenAIRE

    Di Zhao; Juhee Cho; Myung Hun Kim; David Friedman; Eliseo Guallar

    2014-01-01

    BACKGROUND: Diabetes may affect vascular autoregulation of the retina and optic nerve and may be associated with an increased risk of glaucoma,but the association of prediabetes, insulin resistance, markers of glucose metabolismwith glaucoma has not beenevaluated in general population samples. OBJECTIVE: To examine the relation between diabetes, pre-diabetes, metabolic syndrome and its components and the levels of fasting glucose, HbA1c and HOMA-IR with the prevalence of glaucoma in the gener...

  17. Glucose metabolism in cultured trophoblasts from human placenta

    Energy Technology Data Exchange (ETDEWEB)

    Moe, A.J.; Farmer, D.R.; Nelson, D.M.; Smith, C.H. (Washington Univ., St. Louis, MO (United States))

    1990-02-26

    The development of appropriate placental trophoblast isolation and culture techniques enables the study of pathways of glucose utilization by this important cell layer in vitro. Trophoblasts from normal term placentas were isolated and cultured 24 hours and 72 hours in uncoated polystyrene culture tubes or tubes previously coated with a fibrin matrix. Trophoblasts cultured on fibrin are morphologically distinct from those cultured on plastic or other matrices and generally resemble in vivo syncytium. Cells were incubated up to 3 hours with {sup 14}C-labeled glucose and reactions were stopped by addition of perchloric acid. {sup 14}CO{sub 2} production by trophoblasts increased linearly with time however the largest accumulation of label was in organic acids. Trophoblasts cultured in absence of fibrin utilized more glucose and accumulated more {sup 14}C in metabolic products compared to cells cultured on fibrin. Glucose oxidation to CO{sub 2} by the phosphogluconate (PG) pathway was estimated from specific yields of {sup 14}CO{sub 2} from (1-{sup 14}C)-D-glucose and (6-{sup 14}C)-D-glucose. Approximately 6% of glucose oxidation was by the PG pathway when cells were cultured on fibrin compared to approximately 1% by cells cultured in the absence of fibrin. The presence of a fibrin growth matrix appears to modulate the metabolism of glucose by trophoblast from human placenta in vitro.

  18. Enhanced muscle glucose metabolism after exercise

    DEFF Research Database (Denmark)

    Richter, Erik; Garetto, L P; Goodman, M N;

    1984-01-01

    Studies in the rat suggest that after voluntary exercise there are two phases of glycogen repletion in skeletal muscle (preceding study). In phase I glucose utilization and glycogen synthesis are enhanced both in the presence and absence of insulin, whereas in phase II only the increase in the pr...

  19. Serum Visfatin Levels, Adiposity and Glucose Metabolism in Obese Adolescents

    OpenAIRE

    Taşkesen, Derya; Kirel, Birgül; Us, Tercan

    2012-01-01

    Objective: Visfatin, an adipokine, has insulin-mimetic effects. The main determinants of both the production and the physiologic role of visfatin are still unclear. The aim of this study is to determine the relation of serum visfatin to adiposity and glucose metabolism. Methods: 40 pubertal adolescents (20 females, 20 males; age range: 9-17 years) with exogenous obesity and 20 age- and sex-matched healthy adolescents (10 females, 10 males) were enrolled in the study. Oral glucose tolerance te...

  20. Positive Correlation between Severity of Blepharospasm and Thalamic Glucose Metabolism.

    Science.gov (United States)

    Murai, Hideki; Suzuki, Yukihisa; Kiyosawa, Motohiro; Wakakura, Masato; Mochizuki, Manabu; Ishiwata, Kiichi; Ishii, Kenji

    2011-01-01

    A 43-year-old woman with drug-related blepharospasm was followed up for 22 months. She had undergone etizolam treatment for 19 years for indefinite complaints. We examined her cerebral glucose metabolism 5 times (between days 149 and 688 since presentation), using positron emission tomography, and identified regions of interest in the thalamus, caudate nucleus, putamen, and primary somatosensory area on both sides. The severity of the blepharospasm was evaluated by PET scanning using the Wakakura classification. Sixteen women (mean age 42.4 ± 11.7 years) were examined as normal controls. The thalamic glucose metabolism in our patient was significantly increased on days 149, 212, and 688. The severity of the blepharospasm was positively correlated with the thalamic glucose metabolism, suggesting that the severity of blepharospasms reflects thalamic activity. PMID:22110436

  1. Gastric emptying, glucose metabolism and gut hormones

    DEFF Research Database (Denmark)

    Vermeulen, Mechteld A R; Richir, Milan C; Garretsen, Martijn K;

    2011-01-01

    To study the gastric-emptying rate and gut hormonal response of two carbohydrate-rich beverages. A specifically designed carbohydrate-rich beverage is currently used to support the surgical patient metabolically. Fruit-based beverages may also promote recovery, due to natural antioxidant...... and carbohydrate content. However, gastric emptying of fluids is influenced by its nutrient composition; hence, safety of preoperative carbohydrate loading should be confirmed. Because gut hormones link carbohydrate metabolism and gastric emptying, hormonal responses were studied....

  2. Glucose metabolism in rats submitted to skeletal muscle denervation

    OpenAIRE

    Wilton Marlindo Santana Nunes; Maria Alice Rostom de Mello

    2005-01-01

    This study analyzed the local and systemic effects of immobilization by denervation of the skeletal muscle on glucose metabolism. The rats were submitted to section of the right paw sciatic nerve. A reduction was observed in glucose uptake by the isolated soleus muscle of the denervated paw after 3 and 7 days, but not after 28 days in relation to the control animals. There was no difference after 3 and 7 days in glucose uptake by the soleus muscle of the opposite intact paw in relation to the...

  3. Ascorbic acid recycling by cultured beta cells: effects of increased glucose metabolism.

    Science.gov (United States)

    Steffner, Robert J; Wu, Lan; Powers, Alvin C; May, James M

    2004-11-15

    Ascorbic acid is necessary for optimal insulin secretion from pancreatic islets. We evaluated ascorbate recycling and whether it is impaired by increased glucose metabolism in the rat beta-cell line INS-1. INS-1 cells, engineered with the potential for overexpression of glucokinase under the control of a tetracycline-inducible gene expression system, took up and reduced dehydroascorbic acid to ascorbate in a concentration-dependent manner that was optimal in the presence of physiologic D-glucose concentrations. Ascorbate uptake did not affect intracellular GSH concentrations. Whereas depletion of GSH in culture to levels about 25% of normal also did not affect the ability of the cells to reduce dehydroascorbic acid, more severe acute GSH depletion to less than 10% of normal levels did impair dehydroascorbic acid reduction. Culture of inducible cells in 11.8 mM D-glucose and doxycycline for 48 h enhanced glucokinase activity, increased glucose utilization, abolished D-glucose-dependent insulin secretion, and increased generation of reactive oxygen species. The latter may have contributed to subsequent decreases in the ability of the cells both to maintain intracellular ascorbate and to recycle it from dehydroascorbic acid. Cultured beta cells have a high capacity to recycle ascorbate, but this is sensitive to oxidant stress generated by increased glucose metabolism due to culture in high glucose concentrations and increased glucokinase expression. Impaired ascorbate recycling as a result of increased glucose metabolism may have implications for the role of ascorbate in insulin secretion in diabetes mellitus and may partially explain glucose toxicity in beta cells. PMID:15477012

  4. Glucose metabolism and effect of acetate in ovine adipocytes.

    Science.gov (United States)

    Yang, Y T; White, L S; Muir, L A

    1982-08-01

    Isolated ovine adipocytes were incubated in vitro with specifically labeled 14C-glucose in the presence or absence of acetate. The flux patterns of glucose carbon through major metabolic pathways were estimated. When glucose was added as the sole substrate, approximately equal portions of glucose carbon (10%) were oxidized to CO2 in the pentose phosphate pathway, in the pyruvate dehydrogenase reaction and in the citrate cycle. Fifteen percent of the glucose carbon was incorporated into fatty acids and 43% was released as lactate and pyruvate. Addition of acetate to the medium increased glucose carbon uptake by 1.5-fold. Most of this increase was accounted for by a sevenfold increase in the activity of the pentose phosphate pathway. Acetate increased glucose carbon fluxes via pentose phosphate pathway to triose phosphates, from triose phosphate to pyruvate, into glyceride glycerol, into lactate and pyruvate and into pyruvate dehydrogenase and citrate cycle CO2. Glucose carbon incorporated into fatty acids was decreased 50% by acetate while, carbon fluxes through the phosphofructokinase-aldolase reactions were not significantly increased. Results of this study suggest that, when glucose is the sole substrate, the conversion of glucose to fatty acids in ovine adipocytes may not be limited by the maximum capacity of hexokinase, the pentose phosphate pathway or enzymes involved in the conversion of triose phosphates to pyruvate and of pyruvate to fatty acid. Acetate increased glucose utilization apparently by increasing activity of the pentose phosphate pathway as a result of enhanced NADPH utilization for fatty acid synthesis. PMID:7142048

  5. Cholinergic denervation of the hippocampal formation does not produce long-term changes in glucose metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Harrell, L.E.; Davis, J.N.

    1984-07-01

    Decreased glucose metabolism is found in Alzheimer's disease associated with a loss of cholinergic neurons. The relationship between the chronic cholinergic denervation produced by medial septal lesions and glucose metabolism was studied using 2-deoxy-D-(/sup 3/H)glucose in the rat hippocampal formation. Hippocampal glucose metabolism was increased 1 week after medial septal lesions. Three weeks after lesions, glucose metabolism was profoundly suppressed in all regions. By 3 months, intraregional hippocampal glucose metabolism had returned to control values. Our results demonstrate that chronic cholinergic denervation of the hippocampal formation does not result in permanent alterations of metabolic activity.

  6. Glycolysis-induced discordance between glucose metabolic rates measured with radiolabeled fluorodeoxyglucose and glucose

    International Nuclear Information System (INIS)

    We have developed an autoradiographic method for estimating the oxidative and glycolytic components of local CMRglc (LCMRglc), using sequentially administered [18F]fluorodeoxyglucose (FDG) and [14C]-6-glucose (GLC). FDG-6-phosphate accumulation is proportional to the rate of glucose phosphorylation, which occurs before the divergence of glycolytic (GMg) and oxidative (GMo) glucose metabolism and is therefore related to total cerebral glucose metabolism GMt: GMg + GMo = GMt. With oxidative metabolism, the 14C label of GLC is temporarily retained in Krebs cycle-related substrate pools. We hypothesize that with glycolytic metabolism, however, a significant fraction of the 14C label is lost from the brain via lactate production and efflux from the brain. Thus, cerebral GLC metabolite concentration may be more closely related to GMo than to GMt. If true, the glycolytic metabolic rate will be related to the difference between FDG- and GLC-derived LCMRglc. Thus far, we have studied normal awake rats, rats with limbic activation induced by kainic acid (KA), and rats visually stimulated with 16-Hz flashes. In KA-treated rats, significant discordance between FDG and GLC accumulation, which we attribute to glycolysis, occurred only in activated limbic structures. In visually stimulated rats, significant discordance occurred only in the optic tectum

  7. Acute effects of ghrelin administration on glucose and lipid metabolism

    DEFF Research Database (Denmark)

    Vestergaard, Esben Thyssen; Djurhuus, Christian Born; Gjedsted, Jakob;

    2007-01-01

    CONTEXT: Ghrelin infusion increases plasma glucose and nonesterified fatty acids, but it is uncertain whether this is secondary to the concomitant release of GH. OBJECTIVE: Our objective was to study direct effects of ghrelin on substrate metabolism. DESIGN: This was a randomized, single-blind, p...

  8. Fluorine-18-fluorodeoxyglucose assessment of glucose metabolism in bone tumors

    NARCIS (Netherlands)

    Kole, AC; Nieweg, OE; Hoekstra, HJ; van Horn, [No Value; Hoops, HS; Vaalburg, W

    1998-01-01

    In our study, we investigate the glucose metabolism of various types of bone lesions with F-18-fluorodeoxyglucose (FDG) PET. Methods: Twenty-six patients showing clinical and radiographic symptoms of a malignant bone tumor were included. Histological examination after the PET study revealed 19 malig

  9. The impact of Vitamin D Replacement on Glucose Metabolism

    OpenAIRE

    H, Parildar; O, Cigerli; DA, Unal; O, Gulmez; NG, Demirag

    2013-01-01

    Objective: We investigated the impact of vitamin D supplementation on glucose metabolism in Vitamin D-deficient patients with prediabetes. Methods: A total of 66 subjects with the mean ages 52.2±9.9 years were included in this prospective and a 6-month follow-up study between 2008-2010. Vitamin D deficient patients (

  10. Metabolic profiling of the response to an oral glucose tolerance test detects subtle metabolic changes.

    Directory of Open Access Journals (Sweden)

    Suzan Wopereis

    Full Text Available BACKGROUND: The prevalence of overweight is increasing globally and has become a serious health problem. Low-grade chronic inflammation in overweight subjects is thought to play an important role in disease development. Novel tools to understand these processes are needed. Metabolic profiling is one such tool that can provide novel insights into the impact of treatments on metabolism. METHODOLOGY: To study the metabolic changes induced by a mild anti-inflammatory drug intervention, plasma metabolic profiling was applied in overweight human volunteers with elevated levels of the inflammatory plasma marker C-reactive protein. Liquid and gas chromatography mass spectrometric methods were used to detect high and low abundant plasma metabolites both in fasted conditions and during an oral glucose tolerance test. This is based on the concept that the resilience of the system can be assessed after perturbing a homeostatic situation. CONCLUSIONS: Metabolic changes were subtle and were only detected using metabolic profiling in combination with an oral glucose tolerance test. The repeated measurements during the oral glucose tolerance test increased statistical power, but the metabolic perturbation also revealed metabolites that respond differentially to the oral glucose tolerance test. Specifically, multiple metabolic intermediates of the glutathione synthesis pathway showed time-dependent suppression in response to the glucose challenge test. The fact that this is an insulin sensitive pathway suggests that inflammatory modulation may alter insulin signaling in overweight men.

  11. CMPF does not associate with impaired glucose metabolism in individuals with features of metabolic syndrome.

    Directory of Open Access Journals (Sweden)

    Maria A Lankinen

    Full Text Available 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid (CMPF is a metabolite produced endogenously from dietary sources of furan fatty acids. The richest source of furan fatty acids in human diet is fish. CMPF was recently shown to be elevated in fasting plasma in individuals with gestational diabetes and type 2 diabetes, and mechanistically high level of CMPF was linked to β cell dysfunction. Here we aimed to study the association between plasma CMPF level and glucose metabolism in persons with impaired glucose metabolism.Plasma CMPF concentration was measured from plasma samples of the study participants in an earlier controlled dietary intervention. All of them had impaired glucose metabolism and two other characteristics of the metabolic syndrome. Altogether 106 men and women were randomized into three groups for 12 weeks with different fish consumption (either three fatty fish meals per week, habitual fish consumption or maximum of one fish meal per week. Associations between concentration of CMPF and various glucose metabolism parameters at an oral glucose tolerance test at baseline and at the end of the study were studied.Fasting plasma CMPF concentration was significantly increased after a 12-week consumption of fatty fish three times per week, but the concentration remained much lower compared to concentrations reported in diabetic patients. Increases of plasma CMPF concentrations mostly due to increased fish consumption were not associated with impaired glucose metabolism in this study. Instead, elevated plasma CMPF concentration was associated with decreased 2-hour insulin concentration in OGTT.Moderately elevated concentration of CMPF in plasma resulting from increased intake of fish is not harmful to glucose metabolism. Further studies are needed to fully explore the role of CMPF in the pathogenesis of impaired glucose metabolism.ClinicalTrials.gov NCT00573781.

  12. Berberine Moderates Glucose and Lipid Metabolism through Multipathway Mechanism

    Directory of Open Access Journals (Sweden)

    Qian Zhang

    2011-01-01

    Full Text Available Berberine is known to improve glucose and lipid metabolism disorders, but the mechanism is still under investigation. In this paper, we explored the effects of berberine on the weight, glucose levels, lipid metabolism, and serum insulin of KKAy mice and investigated its possible glucose and lipid-regulating mechanism. We randomly divided KKAy mice into two groups: berberine group (treated with 250 mg/kg/d berberine and control group. Fasting blood glucose (FBG, weight, total cholesterol (TC, triglyceride (TG, high-density lipoprotein-cholesterol (HDL-c, low-density lipoprotein-cholesterol (LDL-c, and fasting serum insulin were measured in both groups. The oral glucose tolerance test (OGTT was performed. RT2 PCR array gene expression analysis was performed using skeletal muscle of KKAy mice. Our data demonstrated that berberine significantly decreased FBG, area under the curve (AUC, fasting serum insulin (FINS, homeostasis model assessment insulin resistance (HOMA-IR index, TC, and TG, compared with those of control group. RT2 profiler PCR array analysis showed that berberine upregulated the expression of glucose transporter 4 (GLUT4, mitogen-activated protein kinase 14 (MAPK14, MAPK8(c-jun N-terminal kinase, JNK, peroxisome proliferator-activated receptor α (PPARα, uncoupling protein 2 (UCP2, and hepatic nuclear factor 4α(HNF4α, whereas it downregulated the expression of PPARγ, CCAAT/enhancer-binding protein (CEBP, PPARγ coactivator 1α(PGC 1α, and resistin. These results suggest that berberine moderates glucose and lipid metabolism through a multipathway mechanism that includes AMP-activated protein kinase-(AMPK- p38 MAPK-GLUT4, JNK pathway, and PPARα pathway.

  13. Glucose metabolism in sheep fed grass supplemented with gliricidia sepium

    International Nuclear Information System (INIS)

    The limiting factor on improving ruminant production for most of the available feed in developing countries are low in quality. Therefore high fibre diet must be supplemented by high nutritive feed such as leguminous trees that much available in those regions. Gliricidia sepium was one of very potential candidates. Glucose as a major energy source in fed animals required precursor in form of propionate and amino acids from diet. Those precursors might be supplied by these legume leaves. The aim of this research was to investigate the glucose metabolism in the sheep fed grass supplemented by Gliricidia sepium. Fifteens sheep (18 months old) were used in the experiment. These are were divided into three groups that fed by experimental diet of Mitchell grass (MG group), Gliricidia (GS group), and MG supplemented with GS (MGGS group). D-[U-14C]glucose infusate was infused continuously through the left jugular venous catheter of each animal to measure glucose metabolism in those sheeps measurements were done on feed utilisation and glucose metabolism. The results indicated that there was an improvement in efficiency of feed utilisation in the MGGS group as reflected by lower feed conversion ratio by the group. Plasma glucose concentration profile per unit of OM intake were similar for GS and MGGS groups, but higher than that in the MG group (P<0.01). Glucose entry rate (GER) increased in MG group through GS to the MGGS group, while N retention accordingly was increased. It can be concluded that the utilisation of GS by the ruminant animal could be improved by feeding it with a low quality feed at a ratio of 40:60 (GS:Low quality feed) to achieve an NI:DOMI ratio of 0.03 - 0.04. This improvement would be manifested in increasing DOMI, with subsequent increase in GER or net protein deposition as might be expressed in positive N retention. (author)

  14. Environmental factors affecting pregnancy: endocrine disrupters, nutrients and metabolic pathways.

    Science.gov (United States)

    Bazer, Fuller W; Wu, Guoyao; Johnson, Gregory A; Wang, Xiaoqiu

    2014-12-01

    Uterine adenogenesis, a unique post-natal event in mammals, is vulnerable to endocrine disruption by estrogens and progestins resulting in infertility or reduced prolificacy. The absence of uterine glands results in insufficient transport of nutrients into the uterine lumen to support conceptus development. Arginine, a component of histotroph, is substrate for production of nitric oxide, polyamines and agmatine and, with secreted phosphoprotein 1, it affects cytoskeletal organization of trophectoderm. Arginine is critical for development of the conceptus, pregnancy recognition signaling, implantation and placentation. Conceptuses of ungulates and cetaceans convert glucose to fructose which is metabolized via multiple pathways to support growth and development. However, high fructose corn syrup in soft drinks and foods may increase risks for metabolic disorders and increase insulin resistance in adults. Understanding endocrine disrupters and dietary substances, and novel pathways for nutrient metabolism during pregnancy can improve survival and growth, and prevent chronic metabolic diseases in offspring. PMID:25224489

  15. Insights into the molecular mechanism of glucose metabolism regulation under stress in chicken skeletal muscle tissues

    OpenAIRE

    Liu, Wuyi; Zhao, Jingpeng

    2014-01-01

    As substantial progress has been achieved in modern poultry production with large-scale and intensive feeding and farming in recent years, stress becomes a vital factor affecting chicken growth, development, and production yield, especially the quality and quantity of skeletal muscle mass. The review was aimed to outline and understand the stress-related genetic regulatory mechanism, which significantly affects glucose metabolism regulation in chicken skeletal muscle tissues. Progress in curr...

  16. Peritoneal Dialysate Glucose Load and Systemic Glucose Metabolism in Non-Diabetics: Results from the GLOBAL Fluid Cohort Study

    OpenAIRE

    Mark Lambie; James Chess; Jun-Young Do; Hyunjin Noh; Hi-Bahl Lee; Yong-Lim Kim; Angela Summers; Paul Ford Williams; Sara Davison; Marc Dorval; Nick Topley; Simon John Davies

    2016-01-01

    Background and Objectives Glucose control is a significant predictor of mortality in diabetic peritoneal dialysis (PD) patients. During PD, the local toxic effects of intra-peritoneal glucose are well recognized, but despite large amounts of glucose being absorbed, the systemic effects of this in non-diabetic patients are not clear. We sought to clarify whether dialysate glucose has an effect upon systemic glucose metabolism. Methods and Materials We analysed the Global Fluid Study cohort, a ...

  17. Thyroid hormone’s role in regulating brain glucose metabolism and potentially modulating hippocampal cognitive processes

    OpenAIRE

    Jahagirdar, V; McNay, EC

    2012-01-01

    Cognitive performance is dependent on adequate glucose supply to the brain. Insulin, which regulates systemic glucose metabolism, has been recently shown both to regulate hippocampal metabolism and to be a mandatory component of hippocampally-mediated cognitive performance. Thyroid hormones (TH) regulate systemic glucose metabolism and may also be involved in regulation of brain glucose metabolism. Here we review potential mechanisms for such regulation. Importantly, TH imbalance is often enc...

  18. Effects of acupuncture on the citrate and glucose metabolism in the liver under various types of stress

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Y.Y.; Seto, K.; Saito, H.; Kawakami, M.

    A study was made of the effect of acupuncture on citrate and glucose metabolism in the liver in terms of incorporation of /sup 14/C-1, 5-citric acid and /sup 14/C-u-glucose in some metabolites. The effect of acupuncture on citrate metabolism in the liver under control conditions was such as to increase production of G and reduce that of KB, FC and FFA. No effect of acupuncture on glucose metabolism in the liver under such conditions was observed. Both citrate and glucose metabolism were affected to a marked extent by immobilization stress or exposure to heat or cold. The deleterious effect of these types of stress was less prominent in animals receiving acupuncture at the Tsu-San-Li locus than in those treated otherwise or receiving no treatment.

  19. Cerebral metabolism of glucose in benign hereditary chorea

    International Nuclear Information System (INIS)

    Benign hereditary chorea (BHC) is an autosomal dominant disorder characterized by chorea of early onset with little or no progression. There is marked clinical variability in this disease with some subjects having onset in infancy and others with onset in early adulthood. In contrast to Huntington's disease (HD), there is no dementia. Computed tomography is normal in all subjects with no evidence of caudate nucleus atrophy. We present the results of positron emission tomography using 18F-2-fluorodeoxyglucose on three patients with this disorder from two families. Cerebral glucose metabolism in one patient was decreased in the caudate nucleus, as previously reported in HD. The other two persons from a second family showed a relative decrease in metabolic rates of glucose in the caudate when compared with the thalamus. It appears that caudate hypometabolism is not specific for HD. These findings suggest that the caudate nucleus may play a significant role in the pathophysiology of some persons with BHC

  20. Gut microbiota may have influence on glucose and lipid metabolism

    DEFF Research Database (Denmark)

    Mikkelsen, Kristian Hallundbæk; Nielsen, Morten Frost; Tvede, Michael;

    2013-01-01

    New gene sequencing-based techniques and the large worldwide sequencing capacity have introduced a new era within the field of gut microbiota. Animal and human studies have shown that obesity and type 2 diabetes are associated with changes in the composition of the gut microbiota...... and that prebiotics, antibiotics or faecal transplantation can alter glucose and lipid metabolism. This paper summarizes the latest research regarding the association between gut microbiota, diabetes and obesity and some of the mechanisms by which gut bacteria may influence host metabolism....

  1. Perfluorooctanoic acid exposure for 28 days affects glucose homeostasis and induces insulin hypersensitivity in mice

    Science.gov (United States)

    Yan, Shengmin; Zhang, Hongxia; Zheng, Fei; Sheng, Nan; Guo, Xuejiang; Dai, Jiayin

    2015-06-01

    Perfluoroalkyl acids (PFAAs) are widely used in many applications due to their unique physical and chemical characteristics. Because of the increasing prevalence of metabolic syndromes, including obesity, dyslipidemia and insulin resistance, concern has arisen about the roles of environmental pollutants in such diseases. Earlier epidemiologic studies showed a potential association between perfluorooctanoic acid (PFOA) and glucose metabolism, but how PFOA influences glucose homeostasis is still unknown. Here, we report on the modulation of the phosphatidylinositol 3-kinase-serine/threonine protein kinase (PI3K-AKT) signaling pathway in the livers of mice after 28 d of exposure to PFOA. Compared with normal mice, PFOA exposure significantly decreased the expression of the phosphatase and tensin homologue (PTEN) protein and affected the PI3K-AKT signaling pathway in the liver. Tolerance tests further indicated that PFOA exposure induced higher insulin sensitivity and glucose tolerance in mice. Biochemical analysis revealed that PFOA exposure reduced hepatic glycogen synthesis, which might be attributed to gluconeogenesis inhibition. The levels of several circulating proteins were altered after PFOA exposure, including proteins potentially related to diabetes and liver disease. Our results suggest that PFOA affected glucose metabolism and induced insulin hypersensitivity in mice.

  2. Effect of insulin and glucose on adenosine metabolizing enzymes in human B lymphocytes.

    Science.gov (United States)

    Kocbuch, Katarzyna; Sakowicz-Burkiewicz, Monika; Grden, Marzena; Szutowicz, Andrzej; Pawelczyk, Tadeusz

    2009-01-01

    In diabetes several aspects of immunity are altered, including the immunomodulatory action of adenosine. Our study was undertaken to investigate the effect of different glucose and insulin concentrations on activities of adenosine metabolizing enzymes in human B lymphocytes line SKW 6.4. The activity of adenosine deaminase in the cytosolic fraction was very low and was not affected by different glucose concentration, but in the membrane fraction of cells cultured with 25 mM glucose it was decreased by about 35% comparing to the activity in cells maintained in 5 mM glucose, irrespective of insulin concentration. The activities of 5'-nucleotidase (5'-NT) and ecto-5'-NT in SKW 6.4 cells depended on insulin concentration, but not on glucose. Cells cultured with 10(-8) M insulin displayed an about 60% lower activity of cytosolic 5'-NT comparing to cells maintained at 10(-11) M insulin. The activity of ecto-5'-NT was decreased by about 70% in cells cultured with 10(-8) M insulin comparing to cells grown in 10(-11) M insulin. Neither insulin nor glucose had an effect on adenosine kinase (AK) activity in SKW 6.4 cells or in human B cells isolated from peripheral blood. The extracellular level of adenosine and inosine during accelerated catabolism of cellular ATP depended on glucose, but not on insulin concentration. Concluding, our study demonstrates that glucose and insulin differentially affect the activities of adenosine metabolizing enzymes in human B lymphocytes, but changes in those activities do not correlate with the adenosine level in cell media during accelerated ATP catabolism, implying that nucleoside transport is the primary factor determining the extracellular level of adenosine.

  3. Positive Correlation between Severity of Blepharospasm and Thalamic Glucose Metabolism

    OpenAIRE

    Murai, Hideki; Suzuki, Yukihisa; Kiyosawa, Motohiro; Wakakura, Masato; Mochizuki, Manabu; Ishiwata, Kiichi; Ishii, Kenji

    2011-01-01

    A 43-year-old woman with drug-related blepharospasm was followed up for 22 months. She had undergone etizolam treatment for 19 years for indefinite complaints. We examined her cerebral glucose metabolism 5 times (between days 149 and 688 since presentation), using positron emission tomography, and identified regions of interest in the thalamus, caudate nucleus, putamen, and primary somatosensory area on both sides. The severity of the blepharospasm was evaluated by PET scanning using the Waka...

  4. Skeleton and Glucose Metabolism: A Bone-Pancreas Loop

    OpenAIRE

    2015-01-01

    Bone has been considered a structure essential for mobility, calcium homeostasis, and hematopoietic function. Recent advances in bone biology have highlighted the importance of skeleton as an endocrine organ which regulates some metabolic pathways, in particular, insulin signaling and glucose tolerance. This review will point out the role of bone as an endocrine “gland” and, specifically, of bone-specific proteins, as the osteocalcin (Ocn), and proteins involved in bone remodeling, as osteopr...

  5. Glucose challenge test (50-g GCT) in detection of glucose metabolism disorders in peritoneal dialysis patients: preliminary study

    OpenAIRE

    Madziarska, Katarzyna; Zmonarski, Slawomir; Penar, Jozef; Krajewska, Magdalena; Mazanowska, Oktawia; Augustyniak-Bartosik, Hanna; Gołebiowski, Tomasz; Klak, Renata; Weyde, Waclaw; Klinger, Marian

    2014-01-01

    Background The aim was to evaluate the clinical utility of the oral glucose tolerance screening test (50-g GCT—glucose challenge test) for the detection of glucose metabolism disorders (GMD) in peritoneal dialysis (PD) patients with normal fasting glucose levels. Methods The 50-g GCT was performed in 20 prevalent patients without history of diabetes before PD treatment onset, who had been on dialysis for a median time of 15.34 months. In addition, other indicators of glucose metabolism were m...

  6. [Affective disorders: endocrine and metabolic comorbidities].

    Science.gov (United States)

    Cermolacce, M; Belzeaux, R; Adida, M; Azorin, J-M

    2014-12-01

    Links between affective and endocrine-metabolic disorders are numerous and complex. In this review, we explore most frequent endocrine-metabolic comorbidities. On the one hand, these comorbidities imply numerous iatrogenic effects from antipsychotics (metabolic side-effects) or from lithium (endocrine side-effects). On the other hand, these comorbidities are also associated with affective disorders independently from medication. We will successively examine metabolic syndrome, glycemic disturbances, obesity and thyroid disorders among patients with affective disorders. Endocrinemetabolic comorbidities can be individually encountered, but can also be associated. Therefore, they substantially impact morbidity and mortality by increasing cardiovascular risk factors. Two distinct approaches give an account of processes involved in these comorbidities: common environmental factors (iatrogenic effects, lifestyle), and/or shared physiological vulnerabilities. In conclusion, we provide a synthesis of important results and recommendations related to endocrine-metabolic comorbidities in affective disorders : heavy influence on morbidity and mortality, undertreatment of somatic diseases, importance of endocrine and metabolic side effects from main mood stabilizers, impact from sex and age on the prevalence of comorbidities, influence from previous depressive episodes in bipolar disorders, and relevance of systematic screening for subclinical (biological) disturbances. PMID:25550238

  7. Metabolism Kinetics of Glucose in Anchorage-dependent Cell Cultures

    Institute of Scientific and Technical Information of China (English)

    孙祥明; 张元兴

    2001-01-01

    The kinetic model of glucose metabolism was established and successfully applied to batchcultures of rCHO and rBHK cells. It was found that a large amount of glucose was utilized for cellmaintenance, and the overwhelming majority of maintenance energy from glucose was by its anaerobicmetabolism in both rBHK and rCHO cell cultures. The overall maintenance coefficients from aerobicmetabolism were 1.9×10-13 mmol/(cell.h) for rCHO cells and 7×10-13 mmol/(cell.h) for rBHK cells. Inaddition, all Go/T and Eo/T gradually increased with the same trend as the cell growth in the culture ofboth rCHO and rBHK cells. The overall molecule yield coefficients of lactate to glucose were 1.61 for rCHO cells and 1.38 for rBHK cells. The yield coefficients of cell to glucose were 4.5×108 cells/mmol for rCHO cells and 1.9 × 108 cells/mmol for rBHK cells, respectively.

  8. Angiotensin Receptor Blockade Increases Pancreatic Insulin Secretion and Decreases Glucose Intolerance during Glucose Supplementation in a Model of Metabolic Syndrome

    OpenAIRE

    Rodriguez, Ruben; Viscarra, Jose A.; Minas, Jacqueline N.; Nakano, Daisuke; Nishiyama, Akira; Ortiz, Rudy M.

    2012-01-01

    Renin-angiotensin system blockade improves glucose intolerance and insulin resistance, which contribute to the development of metabolic syndrome. However, the contribution of impaired insulin secretion to the pathogenesis of metabolic syndrome is not well defined. To assess the contributions of angiotensin receptor type 1 (AT1) activation and high glucose intake on pancreatic function and their effects on insulin signaling in skeletal muscle and adipose tissue, an oral glucose tolerance test ...

  9. Quantity and quality of nocturnal sleep affect morning glucose measurement in acutely burned children.

    Science.gov (United States)

    Mayes, Theresa; Gottschlich, Michele M; Khoury, Jane; Simakajornboon, Narong; Kagan, Richard J

    2013-01-01

    Hyperglycemia after severe burn injury has long been recognized, whereas sleep deprivation after burns is a more recent finding. The postburn metabolic effects of poor sleep are not clear despite reports in other populations demonstrating the association between sleep insufficiency and deleterious endocrine consequences. The aim of this study was to determine whether a relationship between sleep and glucose dynamics exists in acutely burned children. Two overnight polysomnography runs (2200 to 0600) per subject were conducted in 40 patients with a mean (± SEM) age of 9.4 ± 0.7 years, 50.1 ± 2.9% TBSA burn, and 43.2 ± 3.6% full-thickness injury. Serum glucose was drawn in the morning (0600) immediately after the sleep test. Insulin requirements during the 24-hour period preceding the 0600 glucose measurement were recorded. Generalized linear models were used by the authors to evaluate percent time in each stage of sleep, percent wake time, total sleep time, sleep efficiency, and morning serum glucose, accounting for insulin use. Increased time awake (P = .04, linear; P = .02, quadratic) and reduced time spent in stage 1 sleep (P = .03, linear) were associated with higher glucose levels. Sleep efficiency (P = .01, linear; P = .02, quadratic) and total sleep time (P = .01 linear; P = .02, quadratic) were inversely associated with glucose level. Morning glucose levels appear to be affected by the quality and quantity of overnight sleep in children who have sustained extensive burn injuries. Future research is needed to elucidate the metabolic and neuroendocrine consequences of sleep deprivation on metabolism after burns.

  10. Dietary patterns in men and women are simultaneously determinants of altered glucose metabolism and bone metabolism.

    Science.gov (United States)

    Langsetmo, Lisa; Barr, Susan I; Dasgupta, Kaberi; Berger, Claudie; Kovacs, Christopher S; Josse, Robert G; Adachi, Jonathan D; Hanley, David A; Prior, Jerilynn C; Brown, Jacques P; Morin, Suzanne N; Davison, Kenneth S; Goltzman, David; Kreiger, Nancy

    2016-04-01

    We hypothesized that diet would have direct effects on glucose metabolism with direct and indirect effects on bone metabolism in a cohort of Canadian adults. We assessed dietary patterns (Prudent [fruit, vegetables, whole grains, fish, and legumes] and Western [soft drinks, potato chips, French fries, meats, and desserts]) from a semiquantitative food frequency questionnaire. We used fasting blood samples to measure glucose, insulin, homeostatic model assessment insulin resistance (HOMA-IR), 25-hydroxyvitamin D (25OHD), parathyroid hormone, bone-specific alkaline phosphatase (a bone formation marker), and serum C-terminal telopeptide (CTX; a bone resorption marker). We used multivariate regression models adjusted for confounders and including/excluding body mass index. In a secondary analysis, we examined relationships through structural equations models. The Prudent diet was associated with favorable effects on glucose metabolism (lower insulin and HOMA-IR) and bone metabolism (lower CTX in women; higher 25OHD and lower parathyroid hormone in men). The Western diet was associated with deleterious effects on glucose metabolism (higher glucose, insulin, and HOMA-IR) and bone metabolism (higher bone-specific alkaline phosphatase and lower 25OHD in women; higher CTX in men). Body mass index adjustment moved point estimates toward the null, indicating partial mediation. The structural equation model confirmed the hypothesized linkage with strong effects of Prudent and Western diet on metabolic risk, and both direct and indirect effects of a Prudent diet on bone turnover. In summary, a Prudent diet was associated with lower metabolic risk with both primary and mediated effects on bone turnover, suggesting that it is a potential target for reducing fracture risk. PMID:27001278

  11. Metabolic Characteristics of a Glucose-Utilizing Shewanella oneidensis Strain Grown under Electrode-Respiring Conditions.

    Directory of Open Access Journals (Sweden)

    Gen Nakagawa

    Full Text Available In bioelectrochemical systems, the electrode potential is an important parameter affecting the electron flow between electrodes and microbes and microbial metabolic activities. Here, we investigated the metabolic characteristics of a glucose-utilizing strain of engineered Shewanella oneidensis under electrode-respiring conditions in electrochemical reactors for gaining insight into how metabolic pathways in electrochemically active bacteria are affected by the electrode potential. When an electrochemical reactor was operated with its working electrode poised at +0.4 V (vs. an Ag/AgCl reference electrode, the engineered S. oneidensis strain, carrying a plasmid encoding a sugar permease and glucose kinase of Escherichia coli, generated current by oxidizing glucose to acetate and produced D-lactate as an intermediate metabolite. However, D-lactate accumulation was not observed when the engineered strain was grown with a working electrode poised at 0 V. We also found that transcription of genes involved in pyruvate and D-lactate metabolisms was upregulated at a high electrode potential compared with their transcription at a low electrode potential. These results suggest that the carbon catabolic pathway of S. oneidensis can be modified by controlling the potential of a working electrode in an electrochemical bioreactor.

  12. Differential insulin sensitivities of glucose, amino acid, and albumin metabolism in elderly men and women.

    Science.gov (United States)

    Boirie, Y; Gachon, P; Cordat, N; Ritz, P; Beaufrère, B

    2001-02-01

    Regulation of glucose homeostasis by insulin is modified during aging, but whether this alteration is associated with changes in protein metabolism is less defined. Insulin dose responses of whole body glucose, leucine, and albumin metabolism have been investigated using isotopic dilution of D-[6, 6-(2)H(2)]glucose and L-[1-(13)C]leucine in 14 young (Y; 24.0 +/- 0.9 yr; mean +/- SEM, 20.5 +/- 0.4 kg/m(2)) and 12 healthy elderly subjects (E; 69.4 +/- 0.6 yr; 24.6 +/- 0.8 kg/m(2)) using a euglycemic and euaminoacidemic hyperinsulinemic clamp at two insulin infusion rates of 0.2 and 0.5 mU/kg.min (CL1 and CL2, respectively). Despite significantly higher plasma insulin in E than in Y, the glucose disposal rate was lower in E than in Y at both insulin levels, whereas glucose production was normally suppressed. Whole body protein breakdown was less inhibited by insulin in E than in Y at CL1 (-13.5 +/- 1.4% vs. -8.8 +/- 1.3%, Y vs. E, P CL2 (-22.0 +/- 1.4% vs. -18.8 +/- 1.7%, Y vs. E, P = NS). The albumin synthesis rate was identical and stimulated to the same extent by insulin in groups Y and E. Gender affected basal leucine metabolism, but the response to insulin was similar in both groups. In conclusion, decreased insulin action on glucose disposal is associated with a reduced insulin sensitivity for protein breakdown in healthy elderly subjects at low insulin concentrations. Higher insulin levels compensate for a reduced insulin action on protein metabolism in elderly subjects. PMID:11158022

  13. Bone Regulates Glucose Metabolism as an Endocrine Organ through Osteocalcin

    Directory of Open Access Journals (Sweden)

    Jin Shao

    2015-01-01

    Full Text Available Skeleton was considered as a dynamic connective tissue, which was essential for mobility, calcium homeostasis, and hematopoietic niche. However more and more evidences indicate that skeleton works not only as a structural scaffold but also as an endocrine organ, which regulates several metabolic processes. Besides osteoprotegerin (OPG, sclerostin (SOST, and Dickopf (DKK which play essential roles in bone formation, modelling, remodelling, and homeostasis, bone can also secret hormones, such as osteocalcin (OCN, which promotes proliferation of β cells, insulin secretion, and insulin sensitivity. Additionally OCN can also regulate the fat cells and male gonad endocrine activity and be regulated by insulin and the neural system. In summary, skeleton has endocrine function via OCN and plays an important role in energy metabolism, especially in glucose metabolism.

  14. Regional cerebral glucose metabolism in patients with Parkinson's disease with or without dementia

    International Nuclear Information System (INIS)

    By means of positron emission tomography, the cerebral glucose metabolism in 5 patients with Parkinson's disease with dementia was compared with that in 9 patients without dementia, and that in 5 normal volunteers. The metabolic rates for glucose were measured by placing one hundred regions of interest. In the demented patients, cerebral glucose metabolism was diffusely decreased compared with that of the non-demented patients and the normal controls. The most significant decrease in glucose metabolism was observed in the angular gyrus (49.7% of the normal controls). The glucose metabolism in the cingulate, pre- and postcentral, occipital and subcortical regions was relatively spared (62.1 to 85.5% of the normal controls). In the patients without dementia, the glucose metabolism in each region was not significantly different from that in the normal controls. These results suggest that diffuse glucose hypometabolism in the cerebral cortex may correlate with that of patients with Parkinson's disease with dementia. (author)

  15. Cerebral glucose metabolic abnormality in patients with congenital scoliosis

    Energy Technology Data Exchange (ETDEWEB)

    Nam, H. Y.; Seo, G. T.; Lee, J. S.; Kim, S. C.; Kim, I. J.; Kim, Y. K.; Jeon, S. M. [Pusan National University Hospital, Pusan (Korea, Republic of)

    2007-07-01

    A possible association between congenital scoliosis and low mental status has been recognized, but there are no reports describing the mental status or cerebral metabolism in patients with congenital scoliosis in detail. We investigated the mental status using a mini-mental status exam as well as the cerebral glucose metabolism using F-18 fluorodeoxyglucose brain positron emission tomography in 12 patients with congenital scoliosis and compared them with those of 14 age-matched patients with adolescent idiopathic scoliosis. The mean mini-mental status exam score in the congenital scoliosis group was significantly lower than that in the adolescent idiopathic scoliosis group. Group analysis found that various brain areas of patients with congenital scoliosis showed glucose hypometabolisms in the left prefrontal cortex (Brodmann area 10), right orbitofrontal cortex (Brodmann area 11), left dorsolateral prefrontal cortex (Brodmann area 9), left anterior cingulate gyrus (Brodmann area 24) and pulvinar of the left thalamus. From this study, we could find the metabolic abnormalities of brain in patients with congenital scoliosis and suggest the possible role of voxel-based analysis of brain fluorodeoxyglucose positron emission tomography.

  16. Effect of abomasal glucose infusion on splanchnic and whole-body glucose metabolism in periparturient dairy cows

    DEFF Research Database (Denmark)

    Larsen, Mogens; Kristensen, Niels Bastian

    2009-01-01

    Six periparturient Holstein cows fitted with ruminal cannulas and permanent indwelling catheters in the hepatic portal vein, hepatic vein, mesenteric vein, and an artery were used to study the effects of abomasal glucose infusion on splanchnic and whole-body glucose metabolism.......Six periparturient Holstein cows fitted with ruminal cannulas and permanent indwelling catheters in the hepatic portal vein, hepatic vein, mesenteric vein, and an artery were used to study the effects of abomasal glucose infusion on splanchnic and whole-body glucose metabolism....

  17. Boron nutrition affects the carbon metabolism of silver birch seedlings.

    Science.gov (United States)

    Ruuhola, Teija; Keinänen, Markku; Keski-Saari, Sarita; Lehto, Tarja

    2011-11-01

    Boron (B) is an essential micronutrient whose deficiency is common both in agriculture and in silviculture. Boron deficiency impairs the growth of plants and affects many metabolic processes like carbohydrate metabolism. Boron deficiency and also excess B may decrease the sink demand by decreasing the growth and sugar transport which may lead to the accumulation of carbohydrates and down-regulation of photosynthesis. In this study, we investigated the effects of B nutrition on the soluble and storage carbohydrate concentrations of summer leaves and autumn buds in a deciduous tree species, Betula pendula Roth. In addition, we investigated the changes in the pools of condensed tannins between summer and autumn harvests. One-year-old birch seedlings were fertilized with a complete nutrient solution containing three different levels of B: 0, 30 and 100% of the standard level for complete nutrient solution. Half of the seedlings were harvested after summer period and another half when leaves abscised. The highest B fertilization level (B100) caused an accumulation of starch and a decrease in the concentrations of hexoses (glucose and fructose) in summer leaves, whereas in the B0 seedlings, hexoses (mainly glucose) accumulated and starch decreased. These changes in carbohydrate concentrations might be related to the changes in the sink demand since the autumn growth was the smallest for the B100 seedlings and largest for the B30 seedlings that did not accumulate carbohydrates. The autumn buds of B30 seedlings contained the lowest levels of glucose, glycerol, raffinose and total polyols, which was probably due to the dilution effect of the deposition of other substances like phenols. Condensed tannins accumulated in high amounts in the birch stems during the hardening of seedlings and the largest accumulation was detected in the B30 treatment. Our results suggest that B nutrition of birch seedlings affects the carbohydrate and phenol metabolism and may play an important

  18. Metabolic profile of normal glucose-tolerant subjects with elevated 1-h plasma glucose values

    Science.gov (United States)

    Pramodkumar, Thyparambil Aravindakshan; Priya, Miranda; Jebarani, Saravanan; Anjana, Ranjit Mohan; Mohan, Viswanathan; Pradeepa, Rajendra

    2016-01-01

    Aim: The aim of this study was to compare the metabolic profiles of subjects with normal glucose tolerance (NGT) with and without elevated 1-h postglucose (1HrPG) values during an oral glucose tolerance test (OGTT). Methodology: The study group comprised 996 subjects without known diabetes seen at tertiary diabetes center between 2010 and 2014. NGT was defined as fasting plasma glucose <100 mg/dl (5.5 mmol/L) and 2-h plasma glucose <140 mg/dl (7.8 mmol/L) after an 82.5 g oral glucose (equivalent to 75 g of anhydrous glucose) OGTT. Anthropometric measurements and biochemical investigations were done using standardized methods. The prevalence rate of generalized and central obesity, hypertension, dyslipidemia, and metabolic syndrome (MS) was determined among the NGT subjects stratified based on their 1HrPG values as <143 mg/dl, ≥143–<155 mg/dl, and ≥155 mg/dl, after adjusting for age, sex, body mass index (BMI), waist circumference, alcohol consumption, smoking, and family history of diabetes. Results: The mean age of the 996 NGT subjects was 48 ± 12 years and 53.5% were male. The mean glycated hemoglobin for subjects with 1HrPG <143 mg/dl was 5.5%, for those with 1HrPG ≥143–<155 mg/dl, 5.6% and for those with 1HrPG ≥155 mg/dl, 5.7%. NGT subjects with 1HrPG ≥143–<155 mg/dl and ≥155 mg/dl had significantly higher BMI, waist circumference, systolic and diastolic blood pressure, triglyceride, total cholesterol/high-density lipoprotein (HDL) ratio, triglyceride/HDL ratio, leukocyte count, and gamma glutamyl aminotransferase (P < 0.05) compared to subjects with 1HrPG <143 mg/dl. The odds ratio for MS for subjects with 1HrPG ≥143 mg/dl was 1.84 times higher compared to subjects with 1HrPG <143 mg/dl taken as the reference. Conclusion: NGT subjects with elevated 1HrPG values have a worse metabolic profile than those with normal 1HrPG during an OGTT. PMID:27730069

  19. Regional cerebral glucose metabolism in frontotemporal lobar degeneration

    International Nuclear Information System (INIS)

    Purpose: Frontotemporal lobar degeneration (FTLD) is the third most common cause of dementia, following Alzheimer's disease and Lewy body disease. Four prototypic neuro behavioral syndromes can be produced by FTLD: frontotemporal dementia (FTD), frontotemporal dementia with motor neuron disease (MND), semantic dementia (SD), and progressive aphasia (PA). We investigated patterns of metabolic impairment in patients with FTLD presented with four different clinical syndromes. Methods: We analyzed glucose metabolic patterns on FDG PET images obtained from 34 patients with a clinical diagnosis of FTLD (19 FTD, 6 MND, 6 SD, and 3 PA, according to a consensus criteria for clinical syndromes associated with FTLD) and 7 age-matched healthy controls using SPM99. Results: Patients with FTD had metabolic deficit in the left frontal cortex and bilateral anterior temporal cortex. Hypometabolism in the bilateral pre-motor area was shown in patients with MND. Patients with SD had metabolic deficit in the left posterior temporal cortex including Wernicke's area, while hypometabolism in the bilateral inferior frontal gyrus including Broca's area and left angular gyrus was seen in patients with PA. These metabolic patterns were well correlated with clinical and neuropsychological features of FTLD syndromes. Conclusion: These data provide a biochemical basis of clinical classification of FTLD. FDG PET may help evaluate and classify patients with FTLD

  20. Glucose metabolism in rats submitted to skeletal muscle denervation

    Directory of Open Access Journals (Sweden)

    Wilton Marlindo Santana Nunes

    2005-07-01

    Full Text Available This study analyzed the local and systemic effects of immobilization by denervation of the skeletal muscle on glucose metabolism. The rats were submitted to section of the right paw sciatic nerve. A reduction was observed in glucose uptake by the isolated soleus muscle of the denervated paw after 3 and 7 days, but not after 28 days in relation to the control animals. There was no difference after 3 and 7 days in glucose uptake by the soleus muscle of the opposite intact paw in relation to the control. There was increased glucose uptake in the same paw 28 days after denervation. The rate of glucose removal in response to exogenous insulin after 28 days of denervation was significantly higher than in control animals and those observed after 3 and 7 days of denervation. These results suggest that immobilization by denervation interfered not only in glucose metabolism in the skeletal muscle involved but also in other tissues.O estudo analisou os efeitos locais e sistêmicos da imobilização por desnervação do músculo esquelético sobre o metabolismo glicidico. Ratos foram submetidos à secção do nervo ciático da pata direita. Observou-se redução da captação de glicose pelo músculo sóleo isolado da pata desnervada após 3 e 7 mas não após 28 dias em relação a animais controle. Não houve diferença após 3 e 7 dias na captação de glicose pelo músculo sóleo da pata contralateral intacta em relação ao controle. Houve aumento da captação de glicose nesta mesma pata 28 dias após a desnervação. A taxa de remoção da glicose em resposta à insulina exógena após 28 dias de desnervação foi significantemente superior à do controle e àquelas observadas após 3 e 7 dias da desnervação. Esses resultados sugerem que a imobilização por desnervação interfere não só no metabolismo da glicose no músculo esquelético envolvido como também em outros tecidos.

  1. The estrogen hypothesis of schizophrenia implicates glucose metabolism

    DEFF Research Database (Denmark)

    Olsen, Line; Hansen, Thomas; Jakobsen, Klaus D;

    2008-01-01

    . We undertook these challenges by using an established clinical paradigm, the estrogen hypothesis of schizophrenia, as the criterion to select candidates among the numerous genes experimentally implicated in schizophrenia. Bioinformatic tools were used to build and priorities the signaling networks...... implicated by the candidate genes resulting from the estrogen selection. We identified ten candidate genes using this approach that are all active in glucose metabolism and particularly in the glycolysis. Thus, we tested the hypothesis that variants of the glycolytic genes are associated with schizophrenia...

  2. Diabetes, glucose metabolism, and glaucoma: the 2005-2008 National Health and Nutrition Examination Survey.

    Directory of Open Access Journals (Sweden)

    Di Zhao

    Full Text Available BACKGROUND: Diabetes may affect vascular autoregulation of the retina and optic nerve and may be associated with an increased risk of glaucoma,but the association of prediabetes, insulin resistance, markers of glucose metabolismwith glaucoma has not beenevaluated in general population samples. OBJECTIVE: To examine the relation between diabetes, pre-diabetes, metabolic syndrome and its components and the levels of fasting glucose, HbA1c and HOMA-IR with the prevalence of glaucoma in the general U.S. population. METHODS: Cross-sectional study of 3,299 adult men and women from the 2005-2008 National Health and NutritionExamination Survey (NHANES. The presence of diabetes, prediabetes, the metabolic syndrome and its individual components and biomarkers of glucose metabolisms were based on standardized questionnaire and physical exam data and laboratory tests. The history of glaucoma was assessed through questionnaire during the home interview. RESULTS: Diabetes was strongly associated with prevalent glaucoma.In fully adjusted models, the odds ratiofor glaucoma comparing participants with diabetes with participants in the reference group with neither pre-diabetes nor diabetes was 2.12 (95% CI: 1.23, 3.67. The corresponding odd ratio comparing participants with pre-diabetes to those in the reference group was 1.01 (95% CI: 0.57, 1.82. Patients with 5 or more years of diabetes duration hadan OR for glaucoma of 3.90 (95% CI: 1.63, 9.32 compared with patients with <5 years of diabetes duration. We also found a hockey-stick shaped associations between biomarkers of glucose metabolisms and the prevalence of glaucoma. CONCLUSIONS: Diabetes was associated with higher risk of glaucoma. Participants without diabetes but at the higher levels of fasting glucose, fasting insulin, HbA1c and HOMA-IR spectrum may also be at greater risk of glaucoma.

  3. Diabetes, Glucose Metabolism, and Glaucoma: The 2005–2008 National Health and Nutrition Examination Survey

    Science.gov (United States)

    Zhao, Di; Cho, Juhee; Kim, Myung Hun; Friedman, David; Guallar, Eliseo

    2014-01-01

    Background Diabetes may affect vascular autoregulation of the retina and optic nerve and may be associated with an increased risk of glaucoma,but the association of prediabetes, insulin resistance, markers of glucose metabolismwith glaucoma has not beenevaluated in general population samples. Objective To examine the relation between diabetes, pre-diabetes, metabolic syndrome and its components and the levels of fasting glucose, HbA1c and HOMA-IR with the prevalence of glaucoma in the general U.S. population. Methods Cross-sectional study of 3,299 adult men and women from the 2005–2008 National Health and NutritionExamination Survey (NHANES). The presence of diabetes, prediabetes, the metabolic syndrome and its individual components and biomarkers of glucose metabolisms were based on standardized questionnaire and physical exam data and laboratory tests. The history of glaucoma was assessed through questionnaire during the home interview. Results Diabetes was strongly associated with prevalent glaucoma.In fully adjusted models, the odds ratiofor glaucoma comparing participants with diabetes with participants in the reference group with neither pre-diabetes nor diabetes was 2.12 (95% CI: 1.23, 3.67). The corresponding odd ratio comparing participants with pre-diabetes to those in the reference group was 1.01 (95% CI: 0.57, 1.82). Patients with 5 or more years of diabetes duration hadan OR for glaucoma of 3.90 (95% CI: 1.63, 9.32) compared with patients with <5 years of diabetes duration. We also found a hockey-stick shaped associations between biomarkers of glucose metabolisms and the prevalence of glaucoma. Conclusions Diabetes was associated with higher risk of glaucoma. Participants without diabetes but at the higher levels of fasting glucose, fasting insulin, HbA1c and HOMA-IR spectrum may also be at greater risk of glaucoma. PMID:25393836

  4. Effect of peripheral 5-HT on glucose and lipid metabolism in wether sheep.

    Directory of Open Access Journals (Sweden)

    Hitoshi Watanabe

    Full Text Available In mice, peripheral 5-HT induces an increase in the plasma concentrations of glucose, insulin and bile acids, and a decrease in plasma triglyceride, NEFA and cholesterol concentrations. However, given the unique characteristics of the metabolism of ruminants relative to monogastric animals, the physiological role of peripheral 5-HT on glucose and lipid metabolism in sheep remains to be established. Therefore, in this study, we investigated the effect of 5-HT on the circulating concentrations of metabolites and insulin using five 5-HT receptor (5HTR antagonists in sheep. After fasting for 24 h, sheep were intravenously injected with 5-HT, following which-, plasma glucose, insulin, triglyceride and NEFA concentrations were significantly elevated. In contrast, 5-HT did not affect the plasma cholesterol concentration, and it induced a decrease in bile acid concentrations. Increases in plasma glucose and insulin concentrations induced by 5-HT were attenuated by pre-treatment with Methysergide, a 5HTR 1, 2 and 7 antagonist. Additionally, decreased plasma bile acid concentrations induced by 5-HT were blocked by pre-treatment with Ketanserin, a 5HTR 2A antagonist. However, none of the 5HTR antagonists inhibited the increase in plasma triglyceride and NEFA levels induced by 5-HT. On the other hand, mRNA expressions of 5HTR1D and 1E were observed in the liver, pancreas and skeletal muscle. These results suggest that there are a number of differences in the physiological functions of peripheral 5-HT with respect to lipid metabolism between mice and sheep, though its effect on glucose metabolism appears to be similar between these species.

  5. Biochemical Hypermedia: Glucose as a Central Molecule in Metabolism

    Directory of Open Access Journals (Sweden)

    J.K. Sugai

    2008-05-01

    Full Text Available The technologies of information, together with education resources, have been pointed out as a solution to the improvement of teaching approach, but they still claim for programs to fulfill the demands of didactic materials. So, a biochemical software was developed aiming to contribute for the better understanding of the glycolysis. It was prepared with the help of concept maps, ISIS Draw, ADOBE Photoshop and FLASH MX Program. The introduction screen shows a teacher in a theater presenting glucose as a central molecule in the metabolism of animals, plants and many microorganisms. She invites for a better knowledge of glucose through a view of its discovery and its metabolism. A step by step animation process shows the interaction of glucose in aerobic conditions with the enzymes of the glycolytic pathways and its products. An explanation text of each enzyme catalytic process is provided by links. A static pathway is always available through a link. The fates of pyruvate yielding lactic acid and ethanol under anaerobic conditions are shown as well. The overall reactions of gluconeogenesis and the functional significance of this pathway are presented. The experimental treatment involved the presentation of this hypermedia for Nutrition undergraduate students (UFSC as a tool for better comprehension of the theme. The students revealed that it was extremely effective in promoting the understanding of the enzymatic mechanisms involved in glycolysis. This suggests that there is a significant added value in employing the software as an instructional effort to enhance student’s abilities to understand biochemical pathways.

  6. Elevation in Tanis expression alters glucose metabolism and insulin sensitivity in H4IIE cells.

    Science.gov (United States)

    Gao, Yuan; Walder, Ken; Sunderland, Terry; Kantham, Lakshmi; Feng, Helen C; Quick, Melissa; Bishara, Natalie; de Silva, Andrea; Augert, Guy; Tenne-Brown, Janette; Collier, Gregory R

    2003-04-01

    Increased hepatic glucose output and decreased glucose utilization are implicated in the development of type 2 diabetes. We previously reported that the expression of a novel gene, Tanis, was upregulated in the liver during fasting in the obese/diabetic animal model Psammomys obesus. Here, we have further studied the protein and its function. Cell fractionation indicated that Tanis was localized in the plasma membrane and microsomes but not in the nucleus, mitochondria, or soluble protein fraction. Consistent with previous gene expression data, hepatic Tanis protein levels increased more significantly in diabetic P. obesus than in nondiabetic controls after fasting. We used a recombinant adenovirus to increase Tanis expression in hepatoma H4IIE cells and investigated its role in metabolism. Tanis overexpression reduced glucose uptake, basal and insulin-stimulated glycogen synthesis, and glycogen content and attenuated the suppression of PEPCK gene expression by insulin, but it did not affect insulin-stimulated insulin receptor phosphorylation or triglyceride synthesis. These results suggest that Tanis may be involved in the regulation of glucose metabolism, and increased expression of Tanis could contribute to insulin resistance in the liver.

  7. Decreased cerebral glucose metabolism associated with mental deterioration in multi-infarct dementia

    Energy Technology Data Exchange (ETDEWEB)

    Meguro, K. (Tohoku Univ. School of Medicine (Japan). Dept. of Geriatric Medicine Miyama Hospital (Japan)); Doi, C. (Tohoku Univ. School of Literature (Japan). Dept. of Psychology); Yamaguchi, T.; Sasaki, H. (Tohoku Univ. School of Medicine (Japan). Dept. of Geriatric Medicine); Matsui, H.; Yamada, K. (Tohoku Univ. (Japan). Research Inst. for Tuberculosis and Cancer); Kinomura, S. (Miyama Hospital (Japan) Tohoku Univ. (Japan). Research Inst. for Tuberculosis and Cancer); Itoh, M. (Tohoku Univ. School of Medicine (Japan). Cyclotron Radioisotope Center)

    1991-08-01

    Cerebral glucose metabolism of 18 patients with multi-infarct dementia (MID) and 10 age-matched normal subjects were examined with positron emission tomography and the {sup 18}-F-fluoro-deoxy-glucose technique. MID patients had significantly lower glucose metabolsim in all the grey matter regions measured and were also characterized by more individuality in metabolic pattern. MID patients were also evaluated as to intelligence quotient (IQ). A positive correlation between IQ as shown by the Tanaka-Binet test and glucose metabolism for the entire grey matter was found. The clinical applicability of this test for predicting cerebral metabolism is discussed. (orig.).

  8. Decreased cerebral glucose metabolism associated with mental deterioration in multi-infarct dementia

    International Nuclear Information System (INIS)

    Cerebral glucose metabolism of 18 patients with multi-infarct dementia (MID) and 10 age-matched normal subjects were examined with positron emission tomography and the 18-F-fluoro-deoxy-glucose technique. MID patients had significantly lower glucose metabolsim in all the grey matter regions measured and were also characterized by more individuality in metabolic pattern. MID patients were also evaluated as to intelligence quotient (IQ). A positive correlation between IQ as shown by the Tanaka-Binet test and glucose metabolism for the entire grey matter was found. The clinical applicability of this test for predicting cerebral metabolism is discussed. (orig.)

  9. Fructose modifies the hormonal response and modulates lipid metabolism in aerobic exercise after glucose supplementation

    OpenAIRE

    Fernández, Juan Marcelo; Da Silva-Grigoletto, Marzo Edir; Ruano-Ruiz, Juan; Caballero-Villarraso, Javier; Moreno-Luna, Rafael; Tunez-Fiñana, Isaac; Tasset-Cuevas, Inmaculada; Pérez-Martinez, Pablo; López-Miranda, José; Pérez-Jiménez, Francisco

    2008-01-01

    Abstract The metabolic response, when aerobic exercise is performed after the ingestion of glucose plus fructose, is unclear. To compare the hormonal and lipid responses provoked by the ingestion of glucose plus fructose in relation to glucose alone, during aerobic exercise and the recovery phase, we administered two beverages containing glucose plus fructose or glucose in a randomised crossover design, to twenty healthy, aerobically trained volunteers. After a 15-minute resting pe...

  10. Metabolic and mitogenic transduction cascades in skeletal muscle : Implications for exercise effects on glucose metabolism and gene regulation

    OpenAIRE

    Yu, Mei

    2003-01-01

    Level of physical activity is linked to improved glucose homeostasis. The molecular signaling mechanisms by which insulin and exercise/muscle contractions lead to increased glucose transport and metabolism and gene expression have not been completely elucidated. The overall aim of this thesis was to identify novel regulatory mechanisms governing exercisesensitive signaling pathways to glucose metabolism and gene transcription in skeletal muscle. Components of the insulin (IR...

  11. Effects of nicotine on regional cerebral glucose metabolism in awake resting tobacco smokers.

    Science.gov (United States)

    Domino, E F; Minoshima, S; Guthrie, S K; Ohl, L; Ni, L; Koeppe, R A; Cross, D J; Zubieta, J

    2000-01-01

    Eleven healthy tobacco smoking adult male volunteers of mixed race were tobacco abstinent overnight for this study. In each subject, positron emission tomographic images of regional cerebral metabolism of glucose with [18F]fluorodeoxyglucose were obtained in two conditions in the morning on different days: about 3min after approximately 1-2mg of nasal nicotine spray and after an equivalent volume of an active placebo spray of oleoresin of pepper in a random counterbalanced design. A Siemens/CTI 931/08-12 scanner with the capability of 15 horizontal brain slices was used. The images were further converted into a standard uniform brain format in which the mean data of all 11 subjects were obtained. Images were analysed in stereotactic coordinates using pixel-wise t statistics and a smoothed Gaussian model. Peak plasma nicotine levels varied three-fold and the areas under the curve(0-30min) varied seven-fold among the individual subjects. Nicotine caused a small overall reduction in global cerebral metabolism of glucose but, when the data were normalized, several brain regions showed relative increases in activity. Cerebral structures specifically activated by nicotine (nicotine minus pepper, Z score >4.0) included: left inferior frontal gyrus, left posterior cingulate gyrus and right thalamus. The visual cortex, including the right and left cuneus and left lateral occipito-temporal gyrus fusiformis, also showed an increase in regional cerebral metabolism of glucose with Z scores >3. 6. Structures with a decrease in regional cerebral metabolism of glucose (pepper minus nicotine) were the left insula and right inferior occipital gyrus, with Z scores >3.5. Especially important is the fact that the thalamus is activated by nicotine. This is consistent with the high density of nicotinic cholinoceptors in that brain region. However, not all brain regions affected by nicotine are known to have many nicotinic cholinoceptors. The results are discussed in relation to the

  12. Emerging role of the brain in the homeostatic regulation of energy and glucose metabolism.

    Science.gov (United States)

    Roh, Eun; Song, Do Kyeong; Kim, Min-Seon

    2016-01-01

    Accumulated evidence from genetic animal models suggests that the brain, particularly the hypothalamus, has a key role in the homeostatic regulation of energy and glucose metabolism. The brain integrates multiple metabolic inputs from the periphery through nutrients, gut-derived satiety signals and adiposity-related hormones. The brain modulates various aspects of metabolism, such as food intake, energy expenditure, insulin secretion, hepatic glucose production and glucose/fatty acid metabolism in adipose tissue and skeletal muscle. Highly coordinated interactions between the brain and peripheral metabolic organs are critical for the maintenance of energy and glucose homeostasis. Defective crosstalk between the brain and peripheral organs contributes to the development of obesity and type 2 diabetes. Here we comprehensively review the above topics, discussing the main findings related to the role of the brain in the homeostatic regulation of energy and glucose metabolism. PMID:26964832

  13. Direct neuronal glucose uptake Heralds activity-dependent increases in cerebral metabolism

    DEFF Research Database (Denmark)

    Lundgaard, Iben; Li, Baoman; Xie, Lulu;

    2015-01-01

    Metabolically, the brain is a highly active organ that relies almost exclusively on glucose as its energy source. According to the astrocyte-to-neuron lactate shuttle hypothesis, glucose is taken up by astrocytes and converted to lactate, which is then oxidized by neurons. Here we show, using two...... of glucose uptake as visualized by functional brain imaging....

  14. Impaired glucose metabolism in HIV-infected pregnant women: a retrospective analysis.

    LENUS (Irish Health Repository)

    Moore, Rebecca

    2015-05-20

    Metabolic complications including diabetes mellitus have been increasingly recognised in HIV-infected individuals since the introduction of antiretroviral therapy, particularly protease inhibitors (PIs). Pregnancy is also a risk factor for impaired glucose metabolism, and previous studies have given conflicting results regarding the contribution of PIs to impaired glucose tolerance (IGT) and gestational diabetes mellitus (GDM) in pregnant HIV-infected women.

  15. The measurement of the nigrostriatal dopaminergic function and glucose metabolism in patients with movement disorders

    International Nuclear Information System (INIS)

    The nigrostriatal dopaminergic function and glucose metabolism were evaluated in 34 patients with various movement disorders by using positron emission tomography with 18F-Dopa and 18F-FDG respectively. The 18F-Dopa uptake in the striatum (the caudate head and the putamen) decreased in patients with Parkinson's disease but was relatively unaffected in the caudate. The cerebral glucose metabolism was normal in patients with Parkinson's disease. The 18F-Dopa uptake in the striatum also decreased in cases of atypical parkinsonism and in cases of progressive supranuclear palsy, but there was no difference in the uptake between the caudate and the putamen. The glucose metabolism decreased in the cerebral hemisphere including the striatum; this finding was also different from those of Parkinson's disease. A normal 18F-Dopa uptake in the striatum with a markedly decreased striatal glucose metabolism and a mildly decreased cortical glucose metabolism was observed in cases of Huntington's disease and Wilson's disease. The 18F-Dopa uptake in the striatum increased and the glucose metabolism was normal in cases of idiopathic dystonia. Various patterns of 18F-Dopa uptake and glucose metabolism were thus observed in the various movement disorders. These results suggest that the measurements of the 18F-Dopa uptake and the cerebral glucose metabolism would be useful for the evaluation of the striatal function in various movement disorders. (author)

  16. Quantitative on-line monitoring of cellular glucose and lactate metabolism in vitro with slow perfusion

    NARCIS (Netherlands)

    Leegsma-Vogt, G; Venema, K; Brouwer, N; Gramsbergen, JB; Copray, S; Korf, J

    2004-01-01

    An on-line in vitro perfusion technique is described that allows the continuous quantification of cellular glucose metabolism in vitro. Using biosensor technology, we measure glucose and lactate metabolism at a minute-to-minute time resolution for periods up to several days. The application of our p

  17. Implications of Hydrogen Sulfide in Glucose Regulation: How H2S Can Alter Glucose Homeostasis through Metabolic Hormones

    Science.gov (United States)

    Pichette, Jennifer

    2016-01-01

    Diabetes and its comorbidities continue to be a major health problem worldwide. Understanding the precise mechanisms that control glucose homeostasis and their dysregulation during diabetes are a major research focus. Hydrogen sulfide (H2S) has emerged as an important regulator of glucose homeostasis. This is achieved through its production and action in several metabolic and hormone producing organs including the pancreas, liver, and adipose. Of importance, H2S production and signaling in these tissues are altered during both type 1 and type 2 diabetes mellitus. This review first examines how H2S is produced both endogenously and by gastrointestinal microbes, with a particular focus on the altered production that occurs during obesity and diabetes. Next, the action of H2S on the metabolic organs with key roles in glucose homeostasis, with a particular focus on insulin, is described. Recent work has also suggested that the effects of H2S on glucose homeostasis goes beyond its role in insulin secretion. Several studies have demonstrated important roles for H2S in hepatic glucose output and adipose glucose uptake. The mechanism of H2S action on these metabolic organs is described. In the final part of this review, future directions examining the roles of H2S in other metabolic and glucoregulatory hormone secreting tissues are proposed. PMID:27478532

  18. Resistance to chemotherapy is associated with altered glucose metabolism in acute myeloid leukemia

    OpenAIRE

    SONG, KUI; Li, Min; Xu, Xiaojun; Xuan, Li; HUANG, GUINIAN; Liu, Qifa

    2016-01-01

    Altered glucose metabolism has been described as a cause of chemoresistance in multiple tumor types. The present study aimed to identify the expression profile of glucose metabolism in drug-resistant acute myeloid leukemia (AML) cells and provide potential strategies for the treatment of drug-resistant AML. Bone marrow and serum samples were obtained from patients with AML that were newly diagnosed or had relapsed. The messenger RNA expression of hypoxia inducible factor (HIF)-1α, glucose tra...

  19. Hepatocyte Growth Factor Is a Novel Stimulator of Glucose Uptake and Metabolism in Skeletal Muscle Cells*

    OpenAIRE

    Perdomo, German; Martinez-Brocca, Maria A.; Bhatt, Bankim A.; Brown, Nicholas F.; O'Doherty, Robert M.; Garcia-Ocaña, Adolfo

    2008-01-01

    Skeletal muscle plays a major role in glucose and lipid metabolism. Active hepatocyte growth factor (HGF) is present in the extracellular matrix in skeletal muscle. However, the effects of HGF on glucose and lipid metabolism in skeletal muscle are completely unknown. We therefore examined the effects of HGF on deoxyglucose uptake (DOGU), glucose utilization, and fatty acid oxidation (FAO) in skeletal muscle cells. HGF significantly enhanced DOGU in mouse soleus muscles in vitro. Furthermore, ...

  20. Cattle temperament influences metabolism: metabolic response to glucose tolerance and insulin sensitivity tests in beef steers.

    Science.gov (United States)

    Burdick Sanchez, N C; Carroll, J A; Broadway, P R; Hughes, H D; Roberts, S L; Richeson, J T; Schmidt, T B; Vann, R C

    2016-07-01

    Cattle temperament, defined as the reactivity of cattle to humans or novel environments, can greatly influence several physiological systems in the body, including immunity, stress, and most recently discovered, metabolism. Greater circulating concentrations of nonesterified fatty acids (NEFAs) found in temperamental cattle suggest that temperamental cattle are metabolically different than calm cattle. Further, elevated NEFA concentrations have been reported to influence insulin sensitivity. Therefore, the objective of this study was to determine whether cattle temperament would influence the metabolic response to a glucose tolerance test (GTT) and insulin sensitivity test (IST). Angus-cross steers (16 calm and 15 temperamental; 216 ± 6 kg BW) were selected based on temperament score measured at weaning. On day 1, steers were moved into indoor stanchions to allow measurement of individual ad libitum feed intake. On day 6, steers were fitted with indwelling rectal temperature probes and jugular catheters. At 9 AM on day 7, steers received the GTT (0.5-mL/kg BW of a 50% dextrose solution), and at 2 PM on day 7, steers received the IST (2.5 IU bovine insulin/kg BW). Blood samples were collected and serum isolated at -60, -45, -30, -15, 0, 10, 20, 30, 45, 60, 90, 120, and 150 min relative to each challenge. Serum was stored at -80°C until analyzed for cortisol, glucose, NEFA, and blood urea nitrogen concentrations. All variables changed over time (P < 0.01). For the duration of the study, temperamental steers maintained greater (P < 0.01) serum NEFA and less (P ≤ 0.01) serum blood urea nitrogen and insulin sensitivity (calculated using Revised Quantitative Insulin Sensitivity Check Index) compared with calm steers. During the GTT, temperamental steers had greater (P < 0.01) serum glucose, yet decreased (P = 0.03) serum insulin and (P < 0.01) serum insulin: serum glucose compared to calm cattle. During the IST, temperamental steers had greater (P < 0.01) serum

  1. Sex-Dependent Programming of Glucose and Fatty Acid Metabolism in Mouse Offspring by Maternal Protein Restriction

    NARCIS (Netherlands)

    van Straten, Esther M. E.; Bloks, Vincent W.; van Dijk, Theo H.; Baller, Julius F. W.; Huijkman, Nicolette C. A.; Kuipers, Irma; Verkade, Henkjan J.; Plosch, Torsten

    2012-01-01

    Background: Nutritional conditions during fetal life influence the risk of the development of metabolic syndrome and cardiovascular diseases in adult life (metabolic programming). Impaired glucose tolerance and dysregulated fatty acid metabolism are hallmarks of metabolic syndrome. Objective: We aim

  2. Peritoneal Dialysate Glucose Load and Systemic Glucose Metabolism in Non-Diabetics: Results from the GLOBAL Fluid Cohort Study.

    Directory of Open Access Journals (Sweden)

    Mark Lambie

    Full Text Available Glucose control is a significant predictor of mortality in diabetic peritoneal dialysis (PD patients. During PD, the local toxic effects of intra-peritoneal glucose are well recognized, but despite large amounts of glucose being absorbed, the systemic effects of this in non-diabetic patients are not clear. We sought to clarify whether dialysate glucose has an effect upon systemic glucose metabolism.We analysed the Global Fluid Study cohort, a prospective, observational cohort study initiated in 2002. A subset of 10 centres from 3 countries with high data quality were selected (368 incident and 272 prevalent non-diabetic patients, with multilevel, multivariable analysis of the reciprocal of random glucose levels, and a stratified-by-centre Cox survival analysis.The median follow up was 5.6 and 6.4 years respectively in incident and prevalent patients. On multivariate analysis, serum glucose increased with age (β = -0.007, 95%CI -0.010, -0.004 and decreased with higher serum sodium (β = 0.002, 95%CI 0.0005, 0.003 in incident patients and increased with dialysate glucose (β = -0.0002, 95%CI -0.0004, -0.00006 in prevalent patients. Levels suggested undiagnosed diabetes in 5.4% of prevalent patients. Glucose levels predicted death in unadjusted analyses of both incident and prevalent groups but in an adjusted survival analysis they did not (for random glucose 6-10 compared with <6, Incident group HR 0.92, 95%CI 0.58, 1.46, Prevalent group HR 1.42, 95%CI 0.86, 2.34.In prevalent non-diabetic patients, random glucose levels at a diabetic level are under-recognised and increase with dialysate glucose load. Random glucose levels predict mortality in unadjusted analyses, but this association has not been proven in adjusted analyses.

  3. Resveratrol supplementation does not improve metabolic function in non-obese women with normal glucose tolerance

    OpenAIRE

    Yoshino, Jun; Conte, Caterina; Fontana, Luigi; Mittendorfer, Bettina; Imai, Shin-ichiro; Kenneth B Schechtman; Gu, Charles; Kunz, Iris; Fanelli, Filippo Rossi; Patterson, Bruce W.; Klein, Samuel

    2012-01-01

    Resveratrol has been reported to improve metabolic function in metabolically-abnormal rodents and humans, but has not been studied in non-obese people with normal glucose tolerance. We conducted a randomized, double-blind, placebo-controlled trial to evaluate the metabolic effects of 12 weeks of resveratrol supplementation (75 mg/day) in non-obese, postmenopausal women with normal glucose tolerance. Although resveratrol supplementation increased plasma resveratrol concentration, it did not ch...

  4. Endothelial dysfunction in normal and abnormal glucose metabolism.

    Science.gov (United States)

    Esper, Ricardo J; Vilariño, Jorge O; Machado, Rogelio A; Paragano, Antonio

    2008-01-01

    independent risk factors for coronary heart disease, stroke, and peripheral arterial disease. Hyperglycemia causes glycosylation of proteins and phospholipids, thus increasing intracellular oxidative stress. Nonenzymatic reactive products, glucose-derived Schiff base, and Amadori products form chemically reversible early glycosylation products which subsequently rearrange to form more stable products, some of them long-lived proteins (collagen) which continue undergoing complex series of chemical rearrangements to form advanced glycosylation end products (AGEs). Once formed, AGEs are stable and virtually irreversible. AGEs generate ROS with consequent increased vessel oxidative damage and atherogenesis. The impressive correlation between coronary artery disease and alterations in glucose metabolism has raised the hypothesis that atherosclerosis and diabetes may share common antecedents. Large-vessel atherosclerosis can precede the development of diabetes, suggesting that rather than atherosclerosis being a complication of diabetes, both conditions may share genetic and environmental antecedents, a 'common soil'. PMID:18230954

  5. [Relationships of glucose transporter 4 with cognitive changes induced by high fat diet and glucose metabolism in hippocampus].

    Science.gov (United States)

    Zhang, Yun-Li; Wang, Lin

    2016-06-25

    The hippocampus not only plays a role in appetite and energy balance, but also is particularly important in learning and memory. Figuring out the relationships of hippocampal glucose transporter 4 (GLUT4) with hippocampal glucose metabolism and hippocampus-dependent cognitive function is very important to clearly understand the pathophysiological basis of nutritional obesity and diabetes-related diseases, and treat obesity and cognitive dysfunction. Therefore, this study reviewed recent researches conducted on hippocampal GLUT4, hippocampal glucose metabolism, and hippocampus-dependent cognitive function. In this review, we mainly discussed: (1) The structure of GLUT4 and the distribution and function of GLUT4 in the hippocampus; (2) The translocation of GLUT4 in the hippocampus; (3) The relationships of the PI3K-Akt-GLUT4 signaling pathway with the high fat diet-induced changes of cognitive function and the glucose metabolism in the hippocampus; (4) The associations of the PI3K-Akt-GLUT4 signaling pathway with the diabetes-related cognitive dysfunction in the hippocampus; (5) The potential mechanisms of cognitive dysfunction induced by glucose metabolic disorder. PMID:27350206

  6. The relationship between fasting serum glucose and cerebral glucose metabolism in late-life depression and normal aging

    Science.gov (United States)

    Marano, Christopher M.; Workman, Clifford I.; Lyman, Christopher H.; Kramer, Elisse; Hermann, Carol R.; Ma, Yilong; Dhawan, Vijay; Chaly, Thomas; Eidelberg, David; Smith, Gwenn S.

    2015-01-01

    Evidence exists for late-life depression (LLD) as both a prodrome of and risk factor for Alzheimer’s disease (AD). The underlying neurobiological mechanisms are poorly understood. Impaired peripheral glucose metabolism may explain the association between depression and AD given the connection between type 2 diabetes mellitus with both depression and AD. Positron emission tomography (PET) measures of cerebral glucose metabolism are sensitive to detecting changes in neural circuitry in LLD and AD. Fasting serum glucose (FSG) in non-diabetic young (YC; n=20) and elderly controls (EC; n=12) and LLD patients (n=16) was correlated with PET scans of cerebral glucose metabolism on a voxel-wise basis. The negative correlations were more extensive in EC versus YC and in LLD patients versus EC. Increased FSG correlated with decreased cerebral glucose metabolism in LLD patients to a greater extent than in EC in heteromodal association cortices involved in mood symptoms and cognitive deficits observed in LLD and dementia. Negative correlations in YC were observed in sensory and motor regions. Understanding the neurobiological consequences of diabetes and associated conditions will have substantial public health significance given that this is a modifiable risk factor for which prevention strategies could have an important impact on lowering dementia risk. PMID:24650451

  7. Weight Loss After Bariatric Surgery Reverses Insulin-Induced Increases in Brain Glucose Metabolism of the Morbidly Obese

    OpenAIRE

    Tuulari, Jetro J.; Henry K Karlsson; Hirvonen, Jussi; Hannukainen, Jarna C.; Bucci, Marco; Helmiö, Mika; Ovaska, Jari; Soinio, Minna; Salminen, Paulina; Savisto, Nina; Nummenmaa, Lauri; Nuutila, Pirjo

    2013-01-01

    Obesity and insulin resistance are associated with altered brain glucose metabolism. Here, we studied brain glucose metabolism in 22 morbidly obese patients before and 6 months after bariatric surgery. Seven healthy subjects served as control subjects. Brain glucose metabolism was measured twice per imaging session: with and without insulin stimulation (hyperinsulinemic-euglycemic clamp) using [18F]fluorodeoxyglucose scanning. We found that during fasting, brain glucose metabolism was not dif...

  8. Metformin and Resveratrol Inhibited High Glucose-Induced Metabolic Memory of Endothelial Senescence through SIRT1/p300/p53/p21 Pathway

    OpenAIRE

    Erli Zhang; Qianyun Guo; Haiyang Gao; Ruixia Xu; Siyong Teng; Yongjian Wu

    2015-01-01

    Endothelial senescence plays crucial roles in diabetic vascular complication. Recent evidence indicated that transient hyperglycaemia could potentiate persistent diabetic vascular complications, a phenomenon known as "metabolic memory." Although SIRT1 has been demonstrated to mediate high glucose-induced endothelial senescence, whether and how "metabolic memory" would affect endothelial senescence through SIRT1 signaling remains largely unknown. In this study, we investigated the involvement ...

  9. Relationship between regional brain glucose metabolism and temperament factor of personality

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sang Soo; Lee, Eun Ju; Yoon, Eun Jin; Kim, Yu Kyeong; Lee, Won Woo; Kim, Sang Eun [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2005-07-01

    Temperament factor of personality has been considered to have correlation with activity in a specific central monoaminergic system. In an attempt to explore neuronal substrate of biogenetic personality traits, we examined the relationship between regional brain glucose metabolism and temperament factor of personality. Twenty right-handed healthy subjects (age, 24{+-}4 yr: 10 females and 10 males) were studied with FDG PET. Their temperaments were assessed using the Temperament and Character Inventory (TCI), which consisted of four temperament factors (harm avoidance (HA), novelty seeking (NS), reward dependence (RD), persistency) and three personality factors. The relationship between regional glucose metabolism and each temperament score was tested using SPM99 (P < 0.005, uncorrected). NS score was negatively correlated with glucose metabolism in the frontal areas, insula, and superior temporal gyrus mainly in the right hemisphere. Positive correlation between NS score and glucose metabolism was observed in the left superior temporal gyrus. HA score showed negative correlation with glucose metabolism in the middle and orbitofrontal gyri as well as in the parahippocampal gyrus. RD score was positively correlated with glucose metabolism in the left middle frontal gyrus and negative correlated in the posterior cingulate gyrus and caudate nucleus. We identified the relationship between regional brain glucose metabolism and temperamental personality trait. Each temperament factor had a relation with functions of specific brain areas. These results help understand biological background of personality and specific feedback circuits associated with each temperament factor.

  10. The effect of microbial glucose metabolism on bytownite feldspar dissolution rates between 5 and 35 C

    Energy Technology Data Exchange (ETDEWEB)

    Welch, S.A.; Ullman, W.J.

    1999-10-01

    The rate of Si release from dissolving bytownite feldspar in abiotic batch reactors increased as temperatures increased from 5 to 35 C. Metabolically inert subsurface bacteria (bacteria in solution with no organic substrate) had no apparent effect on dissolution rates over this temperature range. When glucose was added to the microbial cultures, the bacteria responded by producing gluconic acid, which catalyzed the dissolution reaction by both proton- and ligand-promoted mechanisms. The metabolic production, excretion, and consumption of gluconic acid in the course of glucose oxidation, and therefore, the degree of microbial enhancement of mineral dissolution, depend on temperature. There was little accumulation of gluconic acid and therefore, no significant enhancement of mineral dissolution rates at 35 C compared to the abiotic controls. At 20 C, gluconate accumulated in the experimental solutions only at the beginning of the experiment and led to a twofold increase in dissolved Si release compared to the controls, primarily by the ligand-promoted dissolution mechanism. There was significant accumulation of gluconic acid in the 5 C experiment, which is reflected in a significant reduction in pH, leading to 20-fold increase in Si release, primarily attributable to the proton-promoted dissolution mechanism. These results indicate that bacteria and microbial metabolism can affect mineral dissolution rates in organic-rich, nutrient-poor environments; the impact of microbial metabolism on aluminum silicate dissolution rates may be greater at lower rather than at higher temperatures due to the metabolic accumulation of dissolution-enhancing protons and ligands in solution.

  11. Glucose Availability and AMP-Activated Protein Kinase Link Energy Metabolism and Innate Immunity in the Bovine Endometrium.

    Science.gov (United States)

    Turner, Matthew L; Cronin, James G; Noleto, Pablo G; Sheldon, I Martin

    2016-01-01

    Defences against the bacteria that usually infect the endometrium of postpartum cattle are impaired when there is metabolic energy stress, leading to endometritis and infertility. The endometrial response to bacteria depends on innate immunity, with recognition of pathogen-associated molecular patterns stimulating inflammation, characterised by secretion of interleukin (IL)-1β, IL-6 and IL-8. How metabolic stress impacts tissue responses to pathogens is unclear, but integration of energy metabolism and innate immunity means that stressing one system might affect the other. Here we tested the hypothesis that homeostatic pathways integrate energy metabolism and innate immunity in bovine endometrial tissue. Glucose deprivation reduced the secretion of IL-1β, IL-6 and IL-8 from ex vivo organ cultures of bovine endometrium challenged with the pathogen-associated molecular patterns lipopolysaccharide and bacterial lipopeptide. Endometrial inflammatory responses to lipopolysaccharide were also reduced by small molecules that activate or inhibit the intracellular sensor of energy, AMP-activated protein kinase (AMPK). However, inhibition of mammalian target of rapamycin, which is a more global metabolic sensor than AMPK, had little effect on inflammation. Similarly, endometrial inflammatory responses to lipopolysaccharide were not affected by insulin-like growth factor-1, which is an endocrine regulator of metabolism. Interestingly, the inflammatory responses to lipopolysaccharide increased endometrial glucose consumption and induced the Warburg effect, which could exacerbate deficits in glucose availability in the tissue. In conclusion, metabolic energy stress perturbed inflammatory responses to pathogen-associated molecular patterns in bovine endometrial tissue, and the most fundamental regulators of cellular energy, glucose availability and AMPK, had the greatest impact on innate immunity. PMID:26974839

  12. Increased insulin sensitivity and responsiveness of glucose metabolism in adipocytes from female versus male rats.

    OpenAIRE

    Guerre-Millo, M.; Leturque, A.; Girard, J.; Lavau, M

    1985-01-01

    This study was undertaken to examine whether there were sex-associated differences in the action of insulin on glucose metabolism in adipocytes. Insulin binding and the dose-response curves for glucose transport (assessed by measuring the cell-associated radioactivity after 15-s incubation with 50 microM [6-14C]glucose) and [U-14C]glucose (5 mM) metabolism into CO2 and lipids were compared in retroperitoneal adipocytes from age-matched (84 d) male and female rats. In addition, the activity of...

  13. Prenatal hyperandrogenism induces alterations that affect liver lipid metabolism.

    Science.gov (United States)

    Abruzzese, Giselle Adriana; Heber, Maria Florencia; Ferreira, Silvana Rocio; Velez, Leandro Martin; Reynoso, Roxana; Pignataro, Omar Pedro; Motta, Alicia Beatriz

    2016-07-01

    Prenatal hyperandrogenism is hypothesized as one of the main factors contributing to the development of polycystic ovary syndrome (PCOS). PCOS patients have high risk of developing fatty liver and steatosis. This study aimed to evaluate the role of prenatal hyperandrogenism in liver lipid metabolism and fatty liver development. Pregnant rats were hyperandrogenized with testosterone. At pubertal age, the prenatally hyperandrogenized (PH) female offspring displayed both ovulatory (PHov) and anovulatory (PHanov) phenotypes that mimic human PCOS features. We evaluated hepatic transferases, liver lipid content, the balance between lipogenesis and fatty acid oxidation pathway, oxidant/antioxidant balance and proinflammatory status. We also evaluated the general metabolic status through growth rate curve, basal glucose and insulin levels, glucose tolerance test, HOMA-IR index and serum lipid profile. Although neither PH group showed signs of liver lipid content, the lipogenesis and fatty oxidation pathways were altered. The PH groups also showed impaired oxidant/antioxidant balance, a decrease in the proinflammatory pathway (measured by prostaglandin E2 and cyclooxygenase-2 levels), decreased glucose tolerance, imbalance of circulating lipids and increased risk of metabolic syndrome. We conclude that prenatal hyperandrogenism generates both PHov and PHanov phenotypes with signs of liver alterations, imbalance in lipid metabolism and increased risk of developing metabolic syndrome. The anovulatory phenotype showed more alterations in liver lipogenesis and a more impaired balance of insulin and glucose metabolism, being more susceptible to the development of steatosis. PMID:27179108

  14. Lactose in milk replacer can partly be replaced by glucose, fructose, or glycerol without affecting insulin sensitivity in veal calves.

    Science.gov (United States)

    Pantophlet, A J; Gilbert, M S; van den Borne, J J G C; Gerrits, W J J; Roelofsen, H; Priebe, M G; Vonk, R J

    2016-04-01

    Calf milk replacer (MR) contains 40 to 50% lactose. Lactose strongly fluctuates in price and alternatives are desired. Also, problems with glucose homeostasis and insulin sensitivity (i.e., high incidence of hyperglycemia and hyperinsulinemia) have been described for heavy veal calves (body weight >100kg). Replacement of lactose by other dietary substrates can be economically attractive, and may also positively (or negatively) affect the risk of developing problems with glucose metabolism. An experiment was designed to study the effects of replacing one third of the dietary lactose by glucose, fructose, or glycerol on glucose homeostasis and insulin sensitivity in veal calves. Forty male Holstein-Friesian (body weight=114±2.4kg; age=97±1.4 d) calves were fed an MR containing 462g of lactose/kg (CON), or an MR in which 150g of lactose/kg of MR was replaced by glucose (GLU), fructose (FRU), or glycerol (GLY). During the first 10d of the trial, all calves received CON. The CON group remained on this diet and the other groups received their experimental diets for a period of 8 wk. Measurements were conducted during the first (baseline) and last week of the trial. A frequently sampled intravenous glucose tolerance test was performed to assess insulin sensitivity and 24 h of urine was collected to measure glucose excretion. During the last week of the trial, a bolus of 1.5g of [U-(13)C] substrates was added to their respective meals and plasma glucose, insulin, and (13)C-glucose responses were measured. Insulin sensitivity was low at the start of the trial and remained low [1.2±0.1 and 1.0±0.1 (mU/L)(-1) × min(-1)], and no treatment effect was noted. Glucose excretion was low at the start of the trial (3.4±1.0g/d), but increased in CON and GLU calves (26.9±3.9 and 43.0±10.6g/d) but not in FRU and GLY calves. Postprandial glucose was higher in GLU, lower in FRU, and similar in GLY compared with CON calves. Postprandial insulin was lower in FRU and GLY and similar

  15. Role of SUMO-specific protease 2 in reprogramming cellular glucose metabolism.

    Directory of Open Access Journals (Sweden)

    Shuang Tang

    Full Text Available Most cancer cells exhibit a shift in glucose metabolic strategy, displaying increased glycolysis even with adequate oxygen supply. SUMO-specific proteases (SENPs de-SUMOylate substrates including HIF1α and p53,two key regulators in cancer glucose metabolism, to regulate their activity, stability and subcellular localization. However, the role of SENPs in tumor glucose metabolism remains unclear. Here we report that SUMO-specific protease 2 (SENP2 negatively regulates aerobic glycolysis in MCF7 and MEF cells. Over-expression of SENP2 reduces the glucose uptake and lactate production, increasing the cellular ATP levels in MCF7 cells, while SENP2 knockout MEF cells show increased glucose uptake and lactate production along with the decreased ATP levels. Consistently, the MCF7 cells over-expressing SENP2 exhibit decreased expression levels of key glycolytic enzymes and an increased rate of glucose oxidation compared with control MCF7 cells, indicating inhibited glycolysis but enhanced oxidative mitochondrial respiration. Moreover, SENP2 over-expressing MCF7 cells demonstrated a reduced amount of phosphorylated AKT, whereas SENP2 knockout MEFs exhibit increased levels of phosphorylated AKT. Furthermore, inhibiting AKT phosphorylation by LY294002 rescued the phenotype induced by SENP2 deficiency in MEFs. In conclusion, SENP2 represses glycolysis and shifts glucose metabolic strategy, in part through inhibition of AKT phosphorylation. Our study reveals a novel function of SENP2 in regulating glucose metabolism.

  16. 糖代谢与骨骼肌的关系%Relationship between glucose metabolism and skeletal muscle

    Institute of Scientific and Technical Information of China (English)

    查爱云; 孙子林

    2009-01-01

    Skeletal muscle is the principal site of glucose uptake under insulin-stimulated conditions,and it plays an important role in the glucose homeostasis. Under pathological state, the regulation of skeletal muscle on glucose metabolism is decreased. Muscle glycogen and the circulation glucose are essential for the physiological metabolism and function of skeletal muscle. The glucose metabolic disturbance, especially hyperglycemia, has profound impact on the skeletal muscle with regard to dysfunction, metabolic disturbance and structural changes, including insulin resistance, muscle glycogen metabolic disturbance, myatrophy and vascular abnormality. Myopathy may affect metabolism in turn,which may worsen the pathogenetic condition.%骨骼肌是体内胰岛素刺激下摄取葡萄糖的主要组织,在糖代谢平衡中发挥着重要的作用.病理状态下的骨骼肌这种代谢调节能力下降.肌糖原及循环中葡萄糖是维持骨骼肌细胞正常代谢及功能的主要物质.糖代谢紊乱尤其是高血糖对骨骼肌的代谢、结构及功能等都有明显影响,包括高血糖导致骨骼肌胰岛素抵抗、对肌糖原代谢的影响、肌萎缩以及血管异常等,肌组织病变反过来又影响代谢的控制,使病情加重.

  17. Cerebrospinal fluid ionic regulation, cerebral blood flow, and glucose use during chronic metabolic alkalosis

    Energy Technology Data Exchange (ETDEWEB)

    Schroeck, H.K.; Kuschinsky, W. (Univ. of Bonn (Germany, F.R.))

    1989-10-01

    Chronic metabolic alkalosis was induced in rats by combining a low K+ diet with a 0.2 M NaHCO3 solution as drinking fluid for either 15 or 27 days. Local cerebral blood flow and local cerebral glucose utilization were measured in 31 different structures of the brain in conscious animals by means of the iodo-(14C)antipyrine and 2-(14C)deoxy-D-glucose method. The treatment induced moderate (15 days, base excess (BE) 16 mM) to severe (27 days, BE 25 mM) hypochloremic metabolic alkalosis and K+ depletion. During moderate metabolic alkalosis no change in cerebral glucose utilization and blood flow was detectable in most brain structures when compared with controls. Cerebrospinal fluid (CSF) K+ and H+ concentrations were significantly decreased. During severe hypochloremic alkalosis, cerebral blood flow was decreased by 19% and cerebral glucose utilization by 24% when compared with the control values. The decrease in cerebral blood flow during severe metabolic alkalosis is attributed mainly to the decreased cerebral metabolism and to a lesser extent to a further decrease of the CSF H+ concentration. CSF K+ concentration was not further decreased. The results show an unaltered cerebral blood flow and glucose utilization together with a decrease in CSF H+ and K+ concentrations at moderate metabolic alkalosis and a decrease in cerebral blood flow and glucose utilization together with a further decreased CSF H+ concentration at severe metabolic alkalosis.

  18. Characterization of glucose-related metabolic pathways in differentiated rat oligodendrocyte lineage cells.

    Science.gov (United States)

    Amaral, Ana I; Hadera, Mussie G; Tavares, Joana M; Kotter, Mark R N; Sonnewald, Ursula

    2016-01-01

    Although oligodendrocytes constitute a significant proportion of cells in the central nervous system (CNS), little is known about their intermediary metabolism. We have, therefore, characterized metabolic functions of primary oligodendrocyte precursor cell cultures at late stages of differentiation using isotope-labelled metabolites. We report that differentiated oligodendrocyte lineage cells avidly metabolize glucose in the cytosol and pyruvate derived from glucose in the mitochondria. The labelling patterns of metabolites obtained after incubation with [1,2-(13)C]glucose demonstrated that the pentose phosphate pathway (PPP) is highly active in oligodendrocytes (approximately 10% of glucose is metabolized via the PPP as indicated by labelling patterns in phosphoenolpyruvate). Mass spectrometry and magnetic resonance spectroscopy analyses of metabolites after incubation of cells with [1-(13)C]lactate or [1,2-(13)C]glucose, respectively, demonstrated that anaplerotic pyruvate carboxylation, which was thought to be exclusive to astrocytes, is also active in oligodendrocytes. Using [1,2-(13)C]acetate, we show that oligodendrocytes convert acetate into acetyl CoA which is metabolized in the tricarboxylic acid cycle. Analysis of labelling patterns of alanine after incubation of cells with [1,2-(13)C]acetate and [1,2-(13)C]glucose showed catabolic oxidation of malate or oxaloacetate. In conclusion, we report that oligodendrocyte lineage cells at late differentiation stages are metabolically highly active cells that are likely to contribute considerably to the metabolic activity of the CNS. PMID:26352325

  19. Glucose metabolism: focus on gut microbiota, the endocannabinoid system and beyond.

    Science.gov (United States)

    Cani, P D; Geurts, L; Matamoros, S; Plovier, H; Duparc, T

    2014-09-01

    The gut microbiota is now considered as a key factor in the regulation of numerous metabolic pathways. Growing evidence suggests that cross-talk between gut bacteria and host is achieved through specific metabolites (such as short-chain fatty acids) and molecular patterns of microbial membranes (lipopolysaccharides) that activate host cell receptors (such as toll-like receptors and G-protein-coupled receptors). The endocannabinoid (eCB) system is an important target in the context of obesity, type 2 diabetes (T2D) and inflammation. It has been demonstrated that eCB system activity is involved in the control of glucose and energy metabolism, and can be tuned up or down by specific gut microbes (for example, Akkermansia muciniphila). Numerous studies have also shown that the composition of the gut microbiota differs between obese and/or T2D individuals and those who are lean and non-diabetic. Although some shared taxa are often cited, there is still no clear consensus on the precise microbial composition that triggers metabolic disorders, and causality between specific microbes and the development of such diseases is yet to be proven in humans. Nevertheless, gastric bypass is most likely the most efficient procedure for reducing body weight and treating T2D. Interestingly, several reports have shown that the gut microbiota is profoundly affected by the procedure. It has been suggested that the consistent postoperative increase in certain bacterial groups such as Proteobacteria, Bacteroidetes and Verrucomicrobia (A. muciniphila) may explain its beneficial impact in gnotobiotic mice. Taken together, these data suggest that specific gut microbes modulate important host biological systems that contribute to the control of energy homoeostasis, glucose metabolism and inflammation in obesity and T2D.

  20. Glucose metabolism: focus on gut microbiota, the endocannabinoid system and beyond.

    Science.gov (United States)

    Cani, P D; Geurts, L; Matamoros, S; Plovier, H; Duparc, T

    2014-09-01

    The gut microbiota is now considered as a key factor in the regulation of numerous metabolic pathways. Growing evidence suggests that cross-talk between gut bacteria and host is achieved through specific metabolites (such as short-chain fatty acids) and molecular patterns of microbial membranes (lipopolysaccharides) that activate host cell receptors (such as toll-like receptors and G-protein-coupled receptors). The endocannabinoid (eCB) system is an important target in the context of obesity, type 2 diabetes (T2D) and inflammation. It has been demonstrated that eCB system activity is involved in the control of glucose and energy metabolism, and can be tuned up or down by specific gut microbes (for example, Akkermansia muciniphila). Numerous studies have also shown that the composition of the gut microbiota differs between obese and/or T2D individuals and those who are lean and non-diabetic. Although some shared taxa are often cited, there is still no clear consensus on the precise microbial composition that triggers metabolic disorders, and causality between specific microbes and the development of such diseases is yet to be proven in humans. Nevertheless, gastric bypass is most likely the most efficient procedure for reducing body weight and treating T2D. Interestingly, several reports have shown that the gut microbiota is profoundly affected by the procedure. It has been suggested that the consistent postoperative increase in certain bacterial groups such as Proteobacteria, Bacteroidetes and Verrucomicrobia (A. muciniphila) may explain its beneficial impact in gnotobiotic mice. Taken together, these data suggest that specific gut microbes modulate important host biological systems that contribute to the control of energy homoeostasis, glucose metabolism and inflammation in obesity and T2D. PMID:24631413

  1. Clinical observation of glucose metabolism disorders in elderly patients with obstructive sleep apnea disorder

    Institute of Scientific and Technical Information of China (English)

    张蔷

    2013-01-01

    Objective To explore the correlation between obstructive sleep apnea hypoventilation syndrome (OSAHS) and glucose metabolism disorders in patients without diabetes mellitus.Methods A total of 88 patients with OSAHS but without diabetes mellitus from 2009 to 2011 in

  2. Assessment of regional glucose metabolism in aging brain and dementia with positron-emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Reivich, M.; Alavi, A.; Ferris, S.; Christman, D.; Fowler, J.; MacGregor, R.; Farkas, T.; Greenberg, J.; Dann, R.; Wolf, A.

    1981-01-01

    This paper explores the alterations in regional glucose metabolism that occur in elderly subjects and those with senile dementia compared to normal young volunteers. Results showed a tendency for the frontal regions to have a lower metabolic rate in patients with dementia although this did not reach the level of significance when compared to the elderly control subjects. The changes in glucose metabolism were symmetrical in both the left and right hemispheres. There was a lack of correlation between the mean cortical metabolic rates for glucose and the global mental function in the patients with senile dementia. This is at variance with most of the regional cerebral blood flow data that has been collected. This may be partly related to the use of substrates other than glucose by the brain in elderly and demented subjects. (PSB)

  3. Roles of Chlorogenic Acid on Regulating Glucose and Lipids Metabolism: A Review

    Directory of Open Access Journals (Sweden)

    Shengxi Meng

    2013-01-01

    Full Text Available Intracellular glucose and lipid metabolic homeostasis is vital for maintaining basic life activities of a cell or an organism. Glucose and lipid metabolic disorders are closely related with the occurrence and progression of diabetes, obesity, hepatic steatosis, cardiovascular disease, and cancer. Chlorogenic acid (CGA, one of the most abundant polyphenol compounds in the human diet, is a group of phenolic secondary metabolites produced by certain plant species and is an important component of coffee. Accumulating evidence has demonstrated that CGA exerts many biological properties, including antibacterial, antioxidant, and anticarcinogenic activities. Recently, the roles and applications of CGA, particularly in relation to glucose and lipid metabolism, have been highlighted. This review addresses current studies investigating the roles of CGA in glucose and lipid metabolism.

  4. Influence of tacrolimus on glucose metabolism before and after renal transplantation : a prospective study

    NARCIS (Netherlands)

    Duijnhoven, E M; Boots, J M; Christiaans, M H; Wolffenbuttel, B H; Van Hooff, J P

    2001-01-01

    Most studies concerning the influence of tacrolimus on glucose metabolism have been performed either in animals or after organ transplantation. These clinical studies have largely been transversal with patients who were using steroids. Therefore, this prospective, longitudinal study investigated the

  5. Similarities of cerebral glucose metabolism in Alzheimer's and Parkinsonian dementia

    International Nuclear Information System (INIS)

    In the dementia of probable Alzheimer's Disease (AD), there is a decrease in the metabolic ratio of parietal cortex/caudate-thalamus which relates measures in the most and in the least severely affected locations. Since some demented patients with Parkinson's Disease (PDD) are known to share pathological and neurochemical features with AD patients, the authors evaluated if the distribution of cerebral hypometabolism in PDD and AD were the same. Local cerebral metabolic rates were determined using the FDG method and positron tomography in subjects with AD (N=23), and PDD (N=7), multiple infarct dementia (MID)(N=6), and controls (N=10). In MID, the mean par/caudthal ratio was normal (0.79 +- 0.9, N=6). In AD and PDD patients, this ratio correlated negatively with both the severity (r=-0.624, rho=0.001) and duration (r=-0.657, rho=0.001) of dementia. The ratio was markedly decreased in subjects with mild to severe dementia (0.46 +- 0.09, N=21) and with dementia duration greater than two years (0.44 +- 0.08, N=18), but the ratio was also significantly decreased in patients with less advanced disease, i.e., when dementia was only questionable (0.64 +- 0.14, N=9) (t=2.27, rho<0.037) and when duration was two years or less (0.62 +- 0.13, N=12)(t=2.88, rho<0.009). This similarity of hypometabolism in AD and PDD is additional evidence that a common mechanism may operate in both disorders. The par/caud-thal metabolic ratio may be an index useful in the differential diagnosis of early dementia

  6. Damaging effects of hyperglycemia on cardiovascular function: spotlight on glucose metabolic pathways.

    Science.gov (United States)

    Mapanga, Rudo F; Essop, M Faadiel

    2016-01-15

    The incidence of cardiovascular complications associated with hyperglycemia is a growing global health problem. This review discusses the link between hyperglycemia and cardiovascular diseases onset, focusing on the role of recently emerging downstream mediators, namely, oxidative stress and glucose metabolic pathway perturbations. The role of hyperglycemia-mediated activation of nonoxidative glucose pathways (NOGPs) [i.e., the polyol pathway, hexosamine biosynthetic pathway, advanced glycation end products (AGEs), and protein kinase C] in this process is extensively reviewed. The proposal is made that there is a unique interplay between NOGPs and a downstream convergence of detrimental effects that especially affect cardiac endothelial cells, thereby contributing to contractile dysfunction. In this process the AGE pathway emerges as a crucial mediator of hyperglycemia-mediated detrimental effects. In addition, a vicious metabolic cycle is established whereby hyperglycemia-induced NOGPs further fuel their own activation by generating even more oxidative stress, thereby exacerbating damaging effects on cardiac function. Thus NOGP inhibition, and particularly that of the AGE pathway, emerges as a novel therapeutic intervention for the treatment of cardiovascular complications such as acute myocardial infarction in the presence hyperglycemia.

  7. Metabolic and Endocrine Profiles in Response to Systemic Infusion of Fructose and Glucose in Rhesus Macaques

    OpenAIRE

    Adams, Sean H.; Stanhope, Kimber L.; Grant, Ryan W.; Cummings, Bethany P.; Havel, Peter J.

    2008-01-01

    Diurnal patterns of circulating leptin concentrations are attenuated after consumption of fructose-sweetened beverages compared with glucose-sweetened beverages, likely a result of limited postprandial glucose and insulin excursions after fructose. Differences in postprandial exposure of adipose tissue to peripheral circulating fructose and glucose or in adipocyte metabolism of the two sugars may also be involved. Thus, we compared plasma leptin concentrations after 6-h iv infusions of saline...

  8. Neuronal LRP1 Regulates Glucose Metabolism and Insulin Signaling in the Brain

    OpenAIRE

    Liu, Chia-Chen; Hu, Jin; Tsai, Chih-Wei; Yue, Mei; Melrose, Heather L.; Kanekiyo, Takahisa; Bu, Guojun

    2015-01-01

    Alzheimer's disease (AD) is a neurological disorder characterized by profound memory loss and progressive dementia. Accumulating evidence suggests that Type 2 diabetes mellitus, a metabolic disorder characterized by insulin resistance and glucose intolerance, significantly increases the risk for developing AD. Whereas amyloid-β (Aβ) deposition and neurofibrillary tangles are major histological hallmarks of AD, impairment of cerebral glucose metabolism precedes these pathological changes durin...

  9. Metabolic inflexibility is a common feature of impaired fasting glycaemia and impaired glucose tolerance.

    Science.gov (United States)

    Færch, Kristine; Vaag, Allan

    2011-12-01

    Metabolic flexibility reflects the ability to switch from lipid to carbohydrate oxidation during insulin stimulation. Impaired metabolic flexibility is related to insulin resistance and type 2 diabetes, but whether metabolic flexibility is impaired in individuals with the pre-diabetic states isolated impaired fasting glycaemia (i-IFG) and isolated impaired glucose tolerance (i-IGT) is unknown. Using the gold standard euglycaemic hyperinsulinaemic clamp technique combined with indirect calorimetry, we measured peripheral insulin sensitivity, lipid and glucose oxidation, and thus metabolic flexibility in 66 individuals with normal glucose tolerance (NGT, n = 20), i-IFG (n = 18) and i-IGT (n = 28). During insulin stimulation, individuals with i-IGT displayed reduced insulin sensitivity including reduced glucose oxidation. Interestingly, those with i-IFG exhibited reduced glucose oxidation and a slightly elevated lipid oxidation rate during insulin infusion despite having normal total peripheral glucose disposal. Thus, metabolic flexibility was significantly reduced in individuals with both i-IFG and i-IGT even after adjustment for BMI and insulin sensitivity. The data indicate that metabolic inflexibility may precede the development of overt peripheral insulin resistance in pre-diabetic individuals. However, prospective studies are needed to confirm this notion. PMID:21207234

  10. Enhanced muscle glucose metabolism after exercise in the rat

    DEFF Research Database (Denmark)

    Garetto, L P; Richter, Erik; Goodman, M N;

    1984-01-01

    Thirty minutes after a treadmill run, glucose utilization and glycogen synthesis in perfused rat skeletal muscle are enhanced due to an increase in insulin sensitivity (Richter et al., J. Clin. Invest. 69: 785-793, 1982). The exercise used in these studies was of moderate intensity, and muscle...... was still observed in perfused muscle; however, glucose utilization was also increased in the absence of added insulin (1.5 vs. 4.2 mumol X g-1 X h-1). In contrast 2.5 h after the run, muscle glycogen had returned to near preexercise values, and only the insulin-induced increase in glucose utilization...... was evident. The data suggest that the restoration of muscle glycogen after exercise occurs in two phases. In phase I, muscle glycogen is depleted and insulin-stimulated glucose utilization and glucose utilization in the absence of added insulin may both be enhanced. In phase II glycogen levels have returned...

  11. Cerebral glucose metabolism in childhood-onset obsessive-compulsive disorder

    Energy Technology Data Exchange (ETDEWEB)

    Swedo, S.E.; Schapiro, M.B.; Grady, C.L.; Cheslow, D.L.; Leonard, H.L.; Kumar, A.; Friedland, R.; Rapoport, S.I.; Rapoport, J.L.

    1989-06-01

    The cerebral metabolic rate for glucose was studied in 18 adults with childhood-onset obsessive-compulsive disorder (OCD) and in age- and sex-matched controls using positron emission tomography and fludeoxyglucose F 18. Both groups were scanned during rest, with reduced auditory and visual stimulation. The group with OCD showed an increased glucose metabolism in the left orbital frontal, right sensorimotor, and bilateral prefrontal and anterior cingulate regions as compared with controls. Ratios of regional activity to mean cortical gray matter metabolism were increased for the right prefrontal and left anterior cingulate regions in the group with OCD as a whole. Correlations between glucose metabolism and clinical assessment measures showed a significant relationship between metabolic activity and both state and trait measurements of OCD and anxiety as well as the response to clomipramine hydrochloride therapy. These results are consistent with the suggestion that OCD may result from a functional disturbance in the frontal-limbic-basal ganglia system.

  12. Cerebral glucose metabolism in childhood-onset obsessive-compulsive disorder

    International Nuclear Information System (INIS)

    The cerebral metabolic rate for glucose was studied in 18 adults with childhood-onset obsessive-compulsive disorder (OCD) and in age- and sex-matched controls using positron emission tomography and fludeoxyglucose F 18. Both groups were scanned during rest, with reduced auditory and visual stimulation. The group with OCD showed an increased glucose metabolism in the left orbital frontal, right sensorimotor, and bilateral prefrontal and anterior cingulate regions as compared with controls. Ratios of regional activity to mean cortical gray matter metabolism were increased for the right prefrontal and left anterior cingulate regions in the group with OCD as a whole. Correlations between glucose metabolism and clinical assessment measures showed a significant relationship between metabolic activity and both state and trait measurements of OCD and anxiety as well as the response to clomipramine hydrochloride therapy. These results are consistent with the suggestion that OCD may result from a functional disturbance in the frontal-limbic-basal ganglia system

  13. Measurement of glucose metabolism in rat spinal cord slices with dynamic positron autoradiography

    Energy Technology Data Exchange (ETDEWEB)

    Fan Xiaoping [Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People' s Hospital, Guangzhou 510100 (China); Asai, Tatsuya [Biomedical Imaging Research Center, University of Fukui, Eiheiji-cho, Fukui 910-1193 (Japan); Morioka, Koichi [Department of Cardiovascular Surgery II, University of Fukui, Eiheiji-cho, Fukui 910-1193 (Japan); Uchida, Kenzo; Baba, Hisatoshi [Department of Orthopaedics and Rehabilitation Medicine, University of Fukui, Eiheiji-cho, Fukui 910-1193 (Japan); Tanaka, Kuniyoshi [Department of Cardiovascular Surgery II, University of Fukui, Eiheiji-cho, Fukui 910-1193 (Japan); Zhuang Jian [Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People' s Hospital, Guangzhou 510100 (China); Okazawa, Hidehiko [Biomedical Imaging Research Center, University of Fukui, Eiheiji-cho, Fukui 910-1193 (Japan); Fujibayashi, Yasuhisa [Biomedical Imaging Research Center, University of Fukui, Eiheiji-cho, Fukui 910-1193 (Japan)], E-mail: yfuji@u-fukui.ac.jp

    2009-02-15

    We attempted to measure the regional metabolic rate of glucose (MRglc) in sliced spinal cords in vitro. The thoracic spinal cord of a mature Wister rat was cut into 400-{mu}m slices in oxygenated and cooled (1-4 deg. C) Krebs-Ringer solution. After at least 60 min of preincubation, the spinal cord slices were transferred into double polystyrene chambers and incubated in Krebs-Ringer solution at 36 deg. C, bubbled with 5% O{sub 2}/5% CO{sub 2} gas. To measure MRglc, we used the dynamic positron autoradiography technique (dPAT) with F-18-2-fluoro-2-deoxy-D-glucose ([{sup 18}F]FDG) and the net influx constant of [{sup 18}F]FDG as an index. Uptake curves of [{sup 18}F]FDG were well fitted by straight lines for more than 7 h after the slicing of the spinal cord (linear regression coefficient, r=0.99), indicating a constant uptake of glucose by the spinal cord tissue. The slope (K), which denotes MRglc, is affected by tetrodotoxin, and high K{sup +} (50 mM) or Ca{sup 2+}-free, high Mg{sup 2+} solution. After 10 min of hypoxia, the K value following reoxygenation was similar to the unloaded control value, but after 45 min of hypoxia, the K value was markedly lower than the unloaded control value, and after >90 min of reoxygenation it was nearly 0. Our results indicate that the living spinal cord slices used retained an activity-dependent metabolism to some extent. This technique may provide a new approach for measuring MRglc in sliced living spinal cord tissue in vitro and for quantifying the dynamic changes in MRglc in response to various interventions such as hypoxia.

  14. Longitudinal Studies of Cerebral Glucose Metabolism in Late-Life Depression and Normal Aging

    Science.gov (United States)

    Marano, Christopher M.; Workman, Clifford I.; Kramer, Elisse; Hermann, Carol R.; Ma, Yilong; Dhawan, Vijay; Chaly, Thomas; Eidelberg, David; Smith, Gwenn S.

    2014-01-01

    Objective Late-life depression (LLD) has a substantial public health impact and is both a risk factor for and prodrome of dementia. Positron Emission Tomography (PET) studies of cerebral glucose metabolism have demonstrated sensitivity in evaluating neural circuitry involved in depression, aging, incipient cognitive decline and dementia. The present study evaluated the long term effects of a course of antidepressant treatment on glucose metabolism in LLD patients. Methods Nine LLD patients and 7 non-depressed control subjects underwent clinical and cognitive evaluations as well as brain magnetic resonance imaging and PET studies of cerebral glucose metabolism at baseline, after 8 weeks of treatment with citalopram for a major depressive episode (patients only), and at an approximately 2 year follow-up. Results The majority of LLD patients were remitted at follow-up (7/9). Neither patients nor controls showed significant cognitive decline. The patients showed greater increases in glucose metabolism than the controls in regions associated with mood symptoms (anterior cingulate and insula). Both groups showed decreases in metabolism in posterior association cortices implicated in dementia. Conclusions Longitudinal changes in cerebral glucose metabolism are observed in controls and LLD patients without significant cognitive decline that are more extensive than the decreases in brain volume. Longer duration follow-up studies and the integration of other molecular imaging methods will have implications for understanding the clinical and neurobiological significance of these metabolic changes. PMID:22740289

  15. Comparison of clinical types of Wilson's disease and glucose metabolism in extrapyramidal motor brain regions.

    Science.gov (United States)

    Hermann, W; Barthel, H; Hesse, S; Grahmann, F; Kühn, H-J; Wagner, A; Villmann, T

    2002-07-01

    In Wilson's disease a disturbed glucose metabolism especially in striatal and cerebellar areas has been reported. This is correlated with the severity of extrapyramidal motor symptoms (EPS). These findings are only based on a small number of patients. Up to now it is unknown whether EPS are caused by various patterns of disturbed basal ganglia glucose metabolism. We investigated 37 patients and 9 normal volunteers to characterize the disturbed glucose metabolism in Wilson's disease more precisely. The glucose metabolism was determined in 5 cerebellar and cerebral areas (putamen, caput nuclei caudati, cerebellum, midbrain and thalamic area) by using (18)F-Fluorodesoxyglucose-Positron-Emission-Tomography ( [(18)F]FDG-PET). The database was evaluated by a cluster analysis. Additionally, the severity extrapyramidal motor symptoms were judged by a clinical score system. Three characteristic patterns of glucose metabolism in basal ganglia were obtained. Two of them may be assigned to patients with neurological symptoms whereas the third cluster corresponds to most patients without EPS or normal volunteers. The clusters can be identified by characteristic consumption rates in this 5 brain areas. The severity of EPS can not clearly be assigned to one of the clusters with disturbed glucose metabolism. However, the most severe cases are characterized by the lowest consumption in the striatal area. When there is marked improvement of EPS impaired glucose consumption reveals a persistent brain lesion. Finally, the neurological symptoms in Wilson's disease are caused by (at least) two different patterns of disturbed glucose metabolism in basal ganglia and cerebellum. The severity of EPS seems to be determined by a disturbed consumption in the striatal area. PMID:12140675

  16. Relationship of metabolic and endocrine parameters to brain glucose metabolism in older adults: do cognitively-normal older adults have a particular metabolic phenotype?

    Science.gov (United States)

    Nugent, S; Castellano, C A; Bocti, C; Dionne, I; Fulop, T; Cunnane, S C

    2016-02-01

    Our primary objective in this study was to quantify whole brain and regional cerebral metabolic rates of glucose (CMRg) in young and older adults in order to determine age-normalized reference CMRg values for healthy older adults with normal cognition for age. Our secondary objectives were to--(i) report a broader range of metabolic and endocrine parameters including body fat composition that could form the basis for the concept of a 'metabolic phenotype' in cognitively normal, older adults, and (ii) to assess whether medications commonly used to control blood lipids, blood pressure or thyroxine affect CMRg values in older adults. Cognition assessed by a battery of tests was normal for age and education in both groups. Compared to the young group (25 years old; n = 34), the older group (72 years old; n = 41) had ~14% lower CMRg (μmol/100 g/min) specifically in the frontal cortex, and 18% lower CMRg in the caudate. Lower grey matter volume and cortical thickness was widespread in the older group. These differences in CMRg, grey matter volume and cortical thickness were present in the absence of any known evidence for prodromal Alzheimer's disease (AD). Percent total body fat was positively correlated with CMRg in many brain regions but only in the older group. Before and after controlling for body fat, HOMA2-IR was significantly positively correlated to CMRg in several brain regions in the older group. These data show that compared to a healthy younger adult, the metabolic phenotype of a cognitively-normal 72 year old person includes similar plasma glucose, insulin, cholesterol, triglycerides and TSH, higher hemoglobin A1c and percent body fat, lower CMRg in the superior frontal cortex and caudate, but the same CMRg in the hippocampus and white matter. Age-normalization of cognitive test results is standard practice and we would suggest that regional CMRg in cognitively healthy older adults should also be age-normalized. PMID:26364049

  17. In vivo cardiac glucose metabolism in the high-fat fed mouse: Comparison of euglycemic–hyperinsulinemic clamp derived measures of glucose uptake with a dynamic metabolomic flux profiling approach

    International Nuclear Information System (INIS)

    resistance. • Clamp measures were compared to a dynamic metabolomics approach. • The clamp revealed the presence of cardiac insulin resistance after 3 weeks of HFD. • Cardiac glucose metabolism was not affected by HFD during an oral glucose challenge

  18. In vivo cardiac glucose metabolism in the high-fat fed mouse: Comparison of euglycemic–hyperinsulinemic clamp derived measures of glucose uptake with a dynamic metabolomic flux profiling approach

    Energy Technology Data Exchange (ETDEWEB)

    Kowalski, Greg M., E-mail: greg.kowalski@deakin.edu.au [Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria 3125 (Australia); De Souza, David P. [Metabolomics Australia, Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria 3010 (Australia); Risis, Steve [Cellular and Molecular Metabolism Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004 (Australia); Burch, Micah L. [Brigham and Women' s Hospital, Department of Medicine, Boston, MA (United States); Hamley, Steven [Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria 3125 (Australia); Kloehn, Joachim [Metabolomics Australia, Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria 3010 (Australia); Selathurai, Ahrathy [Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria 3125 (Australia); Lee-Young, Robert S. [Cellular and Molecular Metabolism Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004 (Australia); Tull, Dedreia; O' Callaghan, Sean; McConville, Malcolm J. [Metabolomics Australia, Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria 3010 (Australia); Bruce, Clinton R. [Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria 3125 (Australia)

    2015-08-07

    insulin resistance. • Clamp measures were compared to a dynamic metabolomics approach. • The clamp revealed the presence of cardiac insulin resistance after 3 weeks of HFD. • Cardiac glucose metabolism was not affected by HFD during an oral glucose challenge.

  19. Efficacy of lower doses of vanadium in restoring altered glucose metabolism and antioxidant status in diabetic rat lenses

    Indian Academy of Sciences (India)

    Anju Preet; Bihari L Gupta; Gupta Pramod K Yadava; Najma Z Baquer

    2005-03-01

    Vanadium compounds are potent in controlling elevated blood glucose levels in experimentally induced diabetes. However the toxicity associated with vanadium limits its role as therapeutic agent for diabetic treatment. A vanadium compound sodium orthovanadate (SOV) was given to alloxan-induced diabetic Wistar rats in lower doses in combination with Trigonella foenum graecum, a well-known hypoglycemic agent used in traditional Indian medicines. The effect of this combination was studied on lens morphology and glucose metabolism in diabetic rats. Lens, an insulin-independent tissue, was found severely affected in diabetes showing visual signs of cataract. Alterations in the activities of glucose metabolizing enzymes (hexokinase, aldose reductase, sorbitol dehydrogenase, glucose-6-phosphate dehydrogenase) and antioxidant enzymes (glutathione peroxidase, glutathione reductase) besides the levels of related metabolites, [sorbitol, fructose, glucose, thiobarbituric acid reactive species (TBARS) and reduced glutathione (GSH)] were observed in the lenses from diabetic rats and diabetic rats treated with insulin (2 IU/day), SOV (0.6 mg/ml), T. f. graecum seed powder (TSP, 5%) and TSP (5%) in combination with lowered dose of vanadium SOV (0.2 mg/ml), for a period of 3 weeks. The activity of the enzymes, hexokinase, aldose reductase and sorbitol dehydrogenase was significantly increased whereas the activity of glucose-6-phosphate dehydrogenase, glutathione peroxidase and glutathione reductase decreased significantly in lenses from 3 week diabetic rats. Significant increase in accumulation of metabolites, sorbitol, fructose, glucose was found in diabetic lenses. TBARS measure of peroxidation increased whereas the levels of antioxidant GSH decreased significantly in diabetic condition. Insulin restored the levels of altered enzyme activities and metabolites almost to control levels. Sodium orthovanadate (0.6 mg/ml) and Trigonella administered separately to diabetic animals could

  20. JNK1 Deficiency Does Not Enhance Muscle Glucose Metabolism in Lean Mice*

    OpenAIRE

    Witczak, CA; Hirshman, MF; Jessen, N.; Fujii, N; Seifert, M.; Brandauer, J; Hotamisligil, GS; Goodyear, LJ

    2006-01-01

    Mice deficient in c‐jun‐NH2‐terminal kinase 1 (JNK1) exhibit decreased fasting blood glucose and insulin levels, and protection against obesity‐induced insulin resistance, suggesting increased glucose disposal into skeletal muscle. Thus, we assessed whether JNK1 deficiency enhances muscle glucose metabolism. Ex vivo insulin or contraction‐induced muscle [³H]‐2‐deoxyglucose uptake was not altered in JNK1 knockout mice, demonstrating that JNK1 does not regulate blood glucose levels via direct a...

  1. Relationship of impaired brain glucose metabolism to learning deficit in the senescence-accelerated mouse.

    Science.gov (United States)

    Ohta, H; Nishikawa, H; Hirai, K; Kato, K; Miyamoto, M

    1996-10-11

    The relationship between brain glucose metabolism and learning deficit was examined in the senescence-accelerated-prone mouse (SAMP) 8, which has been proven to be a useful murine model of age-related behavioral disorders. SAMP8, 7 months old, exhibited marked learning impairment in the passive avoidance task, as compared with the control strain, senescence-accelerated-resistant mice (SAMR) 1. SAMP8 also exhibited a reduction in brain glucose metabolism, as indicated by a reduction in [14C]2-deoxyglucose accumulation in the brain following the intravenous injection impaired glucose metabolism correlated significantly with the learning impairment in all brain regions in SAMR1 and SAMP8. In the SAMP8, a significant correlation was observed in the posterior half of the cerebral cortex. These results suggest that the SAMP8 strain is a useful model of not only age-related behavioral disorders, but also glucose hypometabolism observed in aging and dementias. PMID:8905734

  2. Abnormal glucose metabolism in acute myocardial infarction: influence on left ventricular function and prognosis

    DEFF Research Database (Denmark)

    Høfsten, Dan E; Løgstrup, Brian B; Møller, Jacob E;

    2009-01-01

    to be particularly attributable to an increased incidence of post-infarction congestive heart failure. A relationship between glucose metabolism and LV function could potentially explain this excess mortality. METHODS: In patients without known diabetes, glucose metabolism was determined using an oral glucose...... atrial volume index) and by measuring plasma N-terminal pro-B-type natriuretic peptide levels. RESULTS: After adjustment for age and gender, a linear relationship between the degree of abnormal glucose metabolism was observed for each marker of LV dysfunction (p(trend) ... atrial volume index (p = 0.10). During a median follow-up of 21 months, 32 patients died, and 39 patients met the secondary end point of death or hospitalization for heart failure. After adjustment for differences in LV function, as well as other relevant characteristics, newly detected, as well as known...

  3. Muscle glucose metabolism following exercise in the rat

    DEFF Research Database (Denmark)

    Richter, Erik; Garetto, L P; Goodman, M N;

    1982-01-01

    Muscle glycogen stores are depleted during exercise and are rapidly repleted during the recovery period. To investigate the mechanism for this phenomenon, untrained male rats were run for 45 min on a motor-driven treadmill and the ability of their muscles to utilize glucose was then assessed during...... perfusion of their isolated hindquarters. Glucose utilization by the hindquarter was the same in exercised and control rats perfused in the absence of added insulin; however, when insulin (30-40,000 muU/ml) was added to the perfusate, glucose utilization was greater after exercise. Prior exercise lowered...... both, the concentration of insulin that half-maximally stimulated glucose utilization (exercise, 150 muU/ml; control, 480 muU/ml) and modestly increased its maximum effect. The increase in insulin sensitivity persisted for 4 h following exercise, but was not present after 24 h. The rate-limiting step...

  4. DNA methylation: the pivotal interaction between early-life nutrition and glucose metabolism in later life.

    Science.gov (United States)

    Zheng, Jia; Xiao, Xinhua; Zhang, Qian; Yu, Miao

    2014-12-14

    Traditionally, it has been widely acknowledged that genes together with adult lifestyle factors determine the risk of developing some metabolic diseases such as insulin resistance, obesity and diabetes mellitus in later life. However, there is now substantial evidence that prenatal and early-postnatal nutrition play a critical role in determining susceptibility to these diseases in later life. Maternal nutrition has historically been a key determinant for offspring health, and gestation is the critical time window that can affect the growth and development of offspring. The Developmental Origins of Health and Disease (DOHaD) hypothesis proposes that exposures during early life play a critical role in determining the risk of developing metabolic diseases in adulthood. Currently, there are substantial epidemiological studies and experimental animal models that have demonstrated that nutritional disturbances during the critical periods of early-life development can significantly have an impact on the predisposition to developing some metabolic diseases in later life. The hypothesis that epigenetic mechanisms may link imbalanced early-life nutrition with altered disease risk has been widely accepted in recent years. Epigenetics can be defined as the study of heritable changes in gene expression that do not involve alterations in the DNA sequence. Epigenetic processes play a significant role in regulating tissue-specific gene expression, and hence alterations in these processes may induce long-term changes in gene function and metabolism that persist throughout the life course. The present review focuses on how nutrition in early life can alter the epigenome, produce different phenotypes and alter disease susceptibilities, especially for impaired glucose metabolism.

  5. Cerebral glucose metabolism in Wernicke's, Broca's, and conduction aphasia

    Energy Technology Data Exchange (ETDEWEB)

    Metter, E.J.; Kempler, D.; Jackson, C.; Hanson, W.R.; Mazziotta, J.C.; Phelps, M.E.

    1989-01-01

    Cerebral glucose metabolism was evaluated in patients with either Wernicke's (N = 7), Broca's (N = 11), or conduction (N = 10) aphasia using /sup 18/F-2-fluoro-2-deoxy-D-glucose with positron emission tomography. The three aphasic syndromes differed in the degree of left-to-right frontal metabolic asymmetry, with Broca's aphasia showing severe asymmetry and Wernicke's aphasia mild-to-moderate metabolic asymmetry, while patients with conduction aphasia were metabolically symmetric. On the other hand, the three syndromes showed the same degree of metabolic decline in the left temporal region. The parietal region appeared to separate conduction aphasia from both Broca's and Wernicke's aphasias. Common aphasic features in the three syndromes appear to be due to common changes in the temporal region, while unique features were associated with frontal and parietal metabolic differences.

  6. The Coupling of Cerebral Metabolic Rate of Glucose and Cerebral Blood Flow In Vivo

    DEFF Research Database (Denmark)

    Hasselbalch, Steen; Paulson, Olaf Bjarne

    2012-01-01

    The energy supplied to the brain by metabolic substrate is largely utilized for maintaining synaptic transmission. In this regulation cerebral blood flow and glucose consumption is tightly coupled as well in the resting condition as during activation. Quantification of cerebral blood flow...... and metabolism was originally performed using the Kety-Schmidt method and this method still represent the gold standard by which subsequent methods have been evaluated. However, in its classical setting, the method overestimates cerebral blood flow. Studies of metabolic changes during activation must take...... difficulties due to limitation in resolution and partial volume effects. In contrast to the tight coupling between regional glucose metabolism and cerebral blood flow, there is an uncoupling between flow and oxygen consumption as the latter only increases to a limited extend. The excess glucose uptake is thus...

  7. Brain metabolism in autism. Resting cerebral glucose utilization rates as measured with positron emission tomography

    International Nuclear Information System (INIS)

    The cerebral metabolic rate for glucose was studied in ten men (mean age = 26 years) with well-documented histories of infantile autism and in 15 age-matched normal male controls using positron emission tomography and (F-18) 2-fluoro-2-deoxy-D-glucose. Positron emission tomography was completed during rest, with reduced visual and auditory stimulation. While the autistic group as a whole showed significantly elevated glucose utilization in widespread regions of the brain, there was considerable overlap between the two groups. No brain region showed a reduced metabolic rate in the autistic group. Significantly more autistic, as compared with control, subjects showed extreme relative metabolic rates (ratios of regional metabolic rates to whole brain rates and asymmetries) in one or more brain regions

  8. Program for PET image alignment: Effects on calculated differences in cerebral metabolic rates for glucose

    International Nuclear Information System (INIS)

    A program was developed to align positron emission tomography images from multiple studies on the same subject. The program allowed alignment of two images with a fineness of one-tenth the width of a pixel. The indications and effects of misalignment were assessed in eight subjects from a placebo-controlled double-blind crossover study on the effects of cocaine on regional cerebral metabolic rates for glucose. Visual examination of a difference image provided a sensitive and accurate tool for assessing image alignment. Image alignment within 2.8 mm was essential to reduce variability of measured cerebral metabolic rates for glucose. Misalignment by this amount introduced errors on the order of 20% in the computed metabolic rate for glucose. These errors propagate to the difference between metabolic rates for a subject measured in basal versus perturbed states

  9. Demographic and metabolic characteristics of individuals with progressive glucose tolerance

    Directory of Open Access Journals (Sweden)

    A.L. Mendes

    2009-03-01

    Full Text Available We evaluated changes in glucose tolerance of 17 progressors and 62 non-progressors for 9 years to improve our understanding of the pathogenesis of type 2 diabetes mellitus. Changes in anthropometric measurements and responses to an oral glucose tolerance test (OGTT were analyzed. We identified 14 pairs of individuals, one from each group, who were initially normal glucose tolerant and were matched for gender, age, weight, and girth. We compared initial plasma glucose and insulin curves (from OGTT, insulin secretion (first and second phases and insulin sensitivity indices (from hyperglycemic clamp assay for both groups. In the normal glucose tolerant phase, progressors presented: 1 a higher OGTT blood glucose response with hyperglycemia in the second hour and a similar insulin response vs non-progressors; 2 a reduced first-phase insulin secretion (2.0 ± 0.3 vs 2.3 ± 0.3 pmol/L; P < 0.02 with a similar insulin sensitivity index and a lower disposition index (3.9 ± 0.2 vs 4.1 ± 0.2 µmol·kg-1·min-1 ; P < 0.05 vs non-progressors. After 9 years, both groups presented similar increases in weight and fasting blood glucose levels and progressors had an increased glycemic response at 120 min (P < 0.05 and reduced early insulin response to OGTT (progressors, 1st: 2.10 ± 0.34 vs 2nd: 1.87 ± 0.25 pmol/mmol; non-progressors, 1st: 2.15 ± 0.28 vs 2nd: 2.03 ± 0.39 pmol/mmol; P < 0.05. Theses data suggest that β-cell dysfunction might be a risk factor for type 2 diabetes mellitus.

  10. UCP2 mRNA expression is dependent on glucose metabolism in pancreatic islets

    DEFF Research Database (Denmark)

    Dalgaard, Louise Torp

    2012-01-01

    Uncoupling Protein 2 (UCP2) is expressed in the pancreatic β-cell, where it partially uncouples the mitochondrial proton gradient, decreasing both ATP-production and glucose-stimulated insulin secretion (GSIS). Increased glucose levels up-regulate UCP2 mRNA and protein levels, but the mechanism for...... UCP2 up-regulation in response to increased glucose is unknown. The aim was to examine the effects of glucokinase (GK) deficiency on UCP2 mRNA levels and to characterize the interaction between UCP2 and GK with regard to glucose-stimulated insulin secretion in pancreatic islets. UCP2 mRNA expression...... was reduced in GK+/- islets and GK heterozygosity prevented glucose-induced up-regulation of islet UCP2 mRNA. In contrast to UCP2 protein function UCP2 mRNA regulation was not dependent on superoxide generation, but rather on products of glucose metabolism, because MnTBAP, a superoxide dismutase...

  11. Glucagon like peptide-1-induced glucose metabolism in differentiated human muscle satellite cells is attenuated by hyperglycemia.

    Directory of Open Access Journals (Sweden)

    Charlotte J Green

    Full Text Available BACKGROUND: Glucagon like peptide-1 (GLP-1 stimulates insulin secretion from the pancreas but also has extra-pancreatic effects. GLP-1 may stimulate glucose uptake in cultured muscle cells but the mechanism is not clearly defined. Furthermore, while the pancreatic effects of GLP-1 are glucose-dependent, the glucose-dependency of its extra-pancreatic effects has not been examined. METHODS: Skeletal muscle satellite cells isolated from young (22.5 ± 0.97 yr, lean (BMI 22.5 ± 0.6 kg/m(2, healthy males were differentiated in media containing either 22.5 mM (high or 5 mM (normal glucose for 7 days in the absence or presence of insulin and/or various GLP-1 concentrations. Myocellular effects of GLP-1, insulin and glucose were assessed by western-blot, glucose uptake and glycogen synthesis. RESULTS: We firstly show that the GLP-1 receptor protein is expressed in differentiated human muscle satellite cells (myocytes. Secondly, we show that in 5 mM glucose media, exposure of myocytes to GLP-1 results in a dose dependent increase in glucose uptake, GLUT4 amount and subsequently glycogen synthesis in a PI3K dependent manner, independent of the insulin signaling cascade. Importantly, we provide evidence that differentiation of human satellite cells in hyperglycemic (22.5 mM glucose conditions increases GLUT1 expression, and renders the cells insulin resistant and interestingly GLP-1 resistant in terms of glucose uptake and glycogen synthesis. Hyperglycemic conditions did not affect the ability of insulin to phosphorylate downstream targets, PKB or GSK3. Interestingly we show that at 5 mM glucose, GLP-1 increases GLUT4 protein levels and that this effect is abolished by hyperglycemia. CONCLUSIONS: GLP-1 increases glucose uptake and glycogen synthesis into fully-differentiated human satellite cells in a PI3-K dependent mechanism potentially through increased GLUT4 protein levels. The latter occurs independently of the insulin signaling pathway. Attenuation

  12. Islet glucose metabolism and insulin release in two animal models of glucose intolerance

    OpenAIRE

    Ling, Zong-Chao

    1999-01-01

    Type 2 diabetes is a complex and heterogenous disease resulting from the interaction of defects of both genetic and environmental origin. Abnormalities contributing to the pathogenesis of type 2 diabetes include impaired [beta]-cell function, peripheral insulin resistance and increased hepatic glucose production. In the present study we have mainly used two animal models of glucose intolerance, i.e., spontaneously diabetic GK rats and transgenic mice with overexpressed gluco...

  13. Postprandial gut hormone responses and glucose metabolism in cholecystectomized patients

    DEFF Research Database (Denmark)

    Sonne, David P; Hare, Kristine J; Martens, Pernille;

    2013-01-01

    Preclinical studies suggest that gallbladder emptying, via bile acid-induced activation of the G protein-coupled receptor TGR5 in intestinal L cells, may play a significant role in the secretion of the incretin hormone glucagon-like peptide-1 (GLP-1) and, hence, postprandial glucose homeostasis. We...... examined the secretion of gut hormones in cholecystectomized subjects to test the hypothesis that gallbladder emptying potentiates postprandial release of GLP-1. Ten cholecystectomized subjects and 10 healthy, age-, gender-, and body mass index-matched control subjects received a standardized fat......-rich liquid meal (2,200 kJ). Basal and postprandial plasma concentrations of glucose, insulin, C-peptide, glucagon, GLP-1, glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide-2 (GLP-2), cholecystokinin (CCK), and gastrin were measured. Furthermore, gastric emptying and duodenal and serum...

  14. Basal Forebrain Cholinergic Deficits Reduce Glucose Metabolism and Function of Cholinergic and GABAergic Systems in the Cingulate Cortex

    OpenAIRE

    Jeong, Da Un; Oh, Jin Hwan; Lee, Ji Eun; Lee, Jihyeon; Cho, Zang Hee; Chang, Jin Woo; Chang, Won Seok

    2015-01-01

    Purpose Reduced brain glucose metabolism and basal forebrain cholinergic neuron degeneration are common features of Alzheimer's disease and have been correlated with memory function. Although regions representing glucose hypometabolism in patients with Alzheimer's disease are targets of cholinergic basal forebrain neurons, the interaction between cholinergic denervation and glucose hypometabolism is still unclear. The aim of the present study was to evaluate glucose metabolism changes caused ...

  15. Glucose metabolism in gamma-irradiated rice seeds

    International Nuclear Information System (INIS)

    Gamma-irradiation of 30 kR in rice seeds caused marked inhibition in seedling growth, and prevented the release of reduced sugar during the period of 25 to 76hr after soaking. The C6/C1 ratio following irradiation continued to decrease up to the 76th hour of soaking; the control's ratio tended to increase with comparable soaking time. The percentage recovery of 14C in carbon dioxide from glucose -1-14C was lower in irradiated than in control seeds. These results indicate that gamma-irradiation reduces the participation of the pentose phosphate pathway in glucose catabolism during an early period of germination. (author)

  16. Effect of glucocorticoid therapy upon glucose metabolism in COPD patients with acute exacerbation

    International Nuclear Information System (INIS)

    Objective: To study the effect of glucocorticoids therapy upon glucose metabolism in COPD patients with acute exacerbation. Methods: Plasma glucose and insulin levels in COPD patients after intravenous administration of 10 mg dexamethasone daily for 5 days were determined oral with glucose tolerance test (OGTT) and insulin release test (IRT). Results: 1) The levels of basal plasma glucose and insulin were significantly higher in severe hypoxemic group than those in moderate hypoxemic group (p 2 (r = -0.5242, p < 0.05). 2) The levels of plasma glucose in intermediate and severe hypoxemic groups were remarkable higher (p < 0.05) than those in mild group. The two peak times of glucose curve were observed at one and two hour after oral glucose load. 3) After the administration of glucocorticoids, at half an hour and one hour plasma glucose levels were significantly higher than those before, the peak time of glucose levels appeared earlier and the insulin release levels were higher than they were before therapy (p < 0.05). Conclusion: COPD patients with acute exacerbation complicated with hypoxemia had problems of impaired glucose tolerance. The administration of glucocorticoids made the impairment worse

  17. Microbial regulation of glucose metabolism and cell-cycle progression in mammalian colonocytes.

    Directory of Open Access Journals (Sweden)

    Dallas R Donohoe

    Full Text Available A prodigious number of microbes inhabit the human body, especially in the lumen of the gastrointestinal (GI tract, yet our knowledge of how they regulate metabolic pathways within our cells is rather limited. To investigate the role of microbiota in host energy metabolism, we analyzed ATP levels and AMPK phosphorylation in tissues isolated from germfree and conventionally-raised C57BL/6 mice. These experiments demonstrated that microbiota are required for energy homeostasis in the proximal colon to a greater extent than other segments of the GI tract that also harbor high densities of bacteria. This tissue-specific effect is consistent with colonocytes utilizing bacterially-produced butyrate as their primary energy source, whereas most other cell types utilize glucose. However, it was surprising that glucose did not compensate for butyrate deficiency. We measured a 3.5-fold increase in glucose uptake in germfree colonocytes. However, (13C-glucose metabolic-flux experiments and biochemical assays demonstrated that they shifted their glucose metabolism away from mitochondrial oxidation/CO(2 production and toward increased glycolysis/lactate production, which does not yield enough ATPs to compensate. The mechanism responsible for this metabolic shift is diminished pyruvate dehydrogenase (PDH levels and activity. Consistent with perturbed PDH function, the addition of butyrate, but not glucose, to germfree colonocytes ex vivo stimulated oxidative metabolism. As a result of this energetic defect, germfree colonocytes exhibited a partial block in the G(1-to-S-phase transition that was rescued by a butyrate-fortified diet. These data reveal a mechanism by which microbiota regulate glucose utilization to influence energy homeostasis and cell-cycle progression of mammalian host cells.

  18. Chlorogenic acid differentially affects postprandial glucose and glucose-dependent insulinotropic polypeptide response in rats.

    Science.gov (United States)

    Tunnicliffe, Jasmine M; Eller, Lindsay K; Reimer, Raylene A; Hittel, Dustin S; Shearer, Jane

    2011-10-01

    Regular coffee consumption significantly lowers the risk of type 2 diabetes (T2D). Coffee contains thousands of compounds; however, the specific component(s) responsible for this reduced risk is unknown. Chlorogenic acids (CGA) found in brewed coffee inhibit intestinal glucose uptake in vitro. The objective of this study was to elucidate the mechanisms by which CGA acts to mediate blood glucose response in vivo. Conscious, unrestrained, male Sprague-Dawley rats were chronically catheterized and gavage-fed a standardized meal (59% carbohydrate, 25% fat, 12% protein), administered with or without CGA (120 mg·kg(-1)), in a randomized crossover design separated by a 3-day washout period. Acetaminophen was co-administered to assess the effects of CGA on gastric emptying. The incretins glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP) were measured. GLP-1 response in the presence of glucose and CGA was further examined, using the human colon cell line NCI-H716. Total area under the curve (AUC) for blood glucose was significantly attenuated in rats fed CGA (p gastric emptying was not altered. Plasma GIP response was blunted in rats fed CGA, with a lower peak concentration and AUC up to 180 min postprandially (p alterations seen in GIP concentrations. Given the widespread consumption and availability of coffee, CGA may be a viable prevention tool for T2D. PMID:21977912

  19. Neuroinflammation in Lyme neuroborreliosis affects amyloid metabolism

    Directory of Open Access Journals (Sweden)

    Anckarsäter Henrik

    2010-06-01

    Full Text Available Abstract Background The metabolism of amyloid precursor protein (APP and β-amyloid (Aβ is widely studied in Alzheimer's disease, where Aβ deposition and plaque development are essential components of the pathogenesis. However, the physiological role of amyloid in the adult nervous system remains largely unknown. We have previously found altered cerebral amyloid metabolism in other neuroinflammatory conditions. To further elucidate this, we investigated amyloid metabolism in patients with Lyme neuroborreliosis (LNB. Methods The first part of the study was a cross-sectional cohort study in 61 patients with acute facial palsy (19 with LNB and 42 with idiopathic facial paresis, Bell's palsy and 22 healthy controls. CSF was analysed for the β-amyloid peptides Aβ38, Aβ40 and Aβ42, and the amyloid precursor protein (APP isoforms α-sAPP and β-sAPP. CSF total-tau (T-tau, phosphorylated tau (P-tau and neurofilament protein (NFL were measured to monitor neural cell damage. The second part of the study was a prospective cohort-study in 26 LNB patients undergoing consecutive lumbar punctures before and after antibiotic treatment to study time-dependent dynamics of the biomarkers. Results In the cross-sectional study, LNB patients had lower levels of CSF α-sAPP, β-sAPP and P-tau, and higher levels of CSF NFL than healthy controls and patients with Bell's palsy. In the prospective study, LNB patients had low levels of CSF α-sAPP, β-sAPP and P-tau at baseline, which all increased towards normal at follow-up. Conclusions Amyloid metabolism is altered in LNB. CSF levels of α-sAPP, β-sAPP and P-tau are decreased in acute infection and increase after treatment. In combination with earlier findings in multiple sclerosis, cerebral SLE and HIV with cerebral engagement, this points to an influence of neuroinflammation on amyloid metabolism.

  20. A low-protein diet during pregnancy alters glucose metabolism and insulin secretion.

    Science.gov (United States)

    Souza, Denise de Fátima I; Ignácio-Souza, Letícia M; Reis, Sílvia Regina de L; Reis, Marise Auxiliadora de B; Stoppiglia, Luiz Fabrizio; Carneiro, Everardo Magalhães; Boschero, Antonio Carlos; Arantes, Vanessa Cristina; Latorraca, Márcia Queiroz

    2012-03-01

    In pancreatic islets, glucose metabolism is a key process for insulin secretion, and pregnancy requires an increase in insulin secretion to compensate for the typical insulin resistance at the end of this period. Because a low-protein diet decreases insulin secretion, this type of diet could impair glucose homeostasis, leading to gestational diabetes. In pancreatic islets, we investigated GLUT2, glucokinase and hexokinase expression patterns as well as glucose uptake, utilization and oxidation rates. Adult control non-pregnant (CNP) and control pregnant (CP) rats were fed a normal protein diet (17%), whereas low-protein non-pregnant (LPNP) and low-protein pregnant (LPP) rats were fed a low-protein diet (6%) from days 1 to 15 of pregnancy. The insulin secretion in 2.8 mmol l(-1) of glucose was higher in islets from LPP rats than that in islets from CP, CNP and LPNP rats. Maximal insulin release was obtained at 8.3 and 16.7 mmol l(-1) of glucose in LPP and CP groups, respectively. The glucose dose-response curve from LPNP group was shifted to the right in relation to the CNP group. In the CP group, the concentration-response curve to glucose was shifted to the left compared with the CNP group. The LPP groups exhibited an "inverted U-shape" dose-response curve. The alterations in the GLUT2, glucokinase and hexokinase expression patterns neither impaired glucose metabolism nor correlated with glucose islet sensitivity, suggesting that β-cell sensitivity to glucose requires secondary events other than the observed metabolic/molecular events. PMID:22034157

  1. Uptake and metabolism of D-glucose in isolated acinar and ductal cells from rat submandibular glands.

    Science.gov (United States)

    Cetik, Sibel; Rzajeva, Aigun; Hupkens, Emeline; Malaisse, Willy J; Sener, Abdullah

    2014-07-01

    The present study deals with the possible effects of selected environmental agents upon the uptake and metabolism of d-glucose in isolated acinar and ductal cells from the rat submandibular salivary gland. In acinar cells, the uptake of d-[U-(14) C]glucose and its non-metabolised analogue 3-O-[(14) C-methyl]-d-glucose was not affected significantly by phloridzin (0.1 mM) or substitution of extracellular NaCl (115 mM) by an equimolar amount of CsCl, whilst cytochalasin B (20 μM) decreased significantly such an uptake. In ductal cells, both phloridzin and cytochalasin B decreased the uptake of d-glucose and 3-O-methyl-d-glucose. Although the intracellular space was comparable in acinar and ductal cells, the catabolism of d-glucose (2.8 or 8.3 mM) was two to four times higher in ductal cells than in acinar cells. Phloridzin (0.1 mM), ouabain (1.0 mM) and cytochalasin B (20 μM) all impaired d-glucose catabolism in ductal cells. Such was also the case in ductal cells incubated in the absence of extracellular Ca(2+) or in media in which NaCl was substituted by CsCl. It is proposed that the ductal cells in the rat submandibular gland are equipped with several systems mediating the insulin-sensitive, cytochalasin B-sensitive and phloridzin-sensitive transport of d-glucose across the plasma membrane.

  2. Metabolic network analysis of Bacillus clausii on minimal and semirich medium using C-13-Labeled glucose

    DEFF Research Database (Denmark)

    Christiansen, Torben; Christensen, Bjarke; Nielsen, Jens

    2002-01-01

    or zero flux through PEP carboxykinase was estimated, indicating that the latter enzyme was not active during growth on glucose. The uptake of the amino acids in a semirich medium containing 15 of the 20 amino acids normally present in proteins was estimated using fully labeled glucose in batch...... from the medium and partly synthesized from glucose. The metabolic network analysis was extended to include analysis of growth on the semirich medium containing amino acids, and the metabolic flux distribution on this medium was estimated and compared with growth on minimal medium....... cultivations. It was found that leucine, isoleucine, and phenylalanine were taken up from the medium and not synthesized de novo from glucose. In contrast, serine and threonine were completely synthesized from other metabolites and not taken up from the medium. Valine, proline, and lysine were partly taken up...

  3. Effect of Antibiotics on Gut Microbiota, Gut Hormones and Glucose Metabolism

    DEFF Research Database (Denmark)

    Mikkelsen, Kristian H; Frost, Morten; Bahl, Martin Iain;

    2015-01-01

    The gut microbiota has been designated as an active regulator of glucose metabolism and metabolic phenotype in a number of animal and human observational studies. We evaluated the effect of removing as many bacteria as possible by antibiotics on postprandial physiology in healthy humans. Meal tests...... with measurements of postprandial glucose tolerance and postprandial release of insulin and gut hormones were performed before, immediately after and 6 weeks after a 4-day, broad-spectrum, per oral antibiotic cocktail (vancomycin 500 mg, gentamycin 40 mg and meropenem 500 mg once-daily) in a group of 12 lean...... and glucose tolerant males. Faecal samples were collected for culture-based assessment of changes in gut microbiota composition. Acute and dramatic reductions in the abundance of a representative set of gut bacteria was seen immediately following the antibiotic course, but no changes in postprandial glucose...

  4. Analysis of Patients With Coronary Heart Disease Combined With Impaired Glucose Metabolism

    Institute of Scientific and Technical Information of China (English)

    Zhi-ping GAO; Li-wen LIE; Ying-ling ZHOU; Hao-jian DONG

    2009-01-01

    Objectives To study the morbidity of patients with coronary artery disease (CAD) combined with impaired glucose metabolism. Methods Retrospective analysis of clinical data about patients with CAD in 1997, 2002 and 2007, sepa-rately. A total of 2951 patients were enrolled, among whom had coexistence of 457 abnormal glycometabolism, inclu-ding impaired fasting glucose, impaired glucose tolerance and type 2 diabetes mellitus. Results The prevalence of ab-normal glycometabolism in patients with CAD was increasing year by year. The morbidity raised from 3.8% and 16. 5% to 10. 8% in these three years. Contusion It is more and more common to detect CAD with impaired glucose metabolism, and it should be emphasized in the secondary prevention of CAD.

  5. Further studies of the influence of apolipoprotein B alleles on glucose and lipid metabolism

    DEFF Research Database (Denmark)

    Bentzen, Joan; Poulsen, Pernille; Vaag, Allan;

    2003-01-01

    The effect of five genetic polymorphisms in the apolipoprotein B gene on parameters of lipid and glucose metabolism was assessed in 564 Danish mono- and dizygotic twins. Genotypes in apolipoprotein B T71I (ApaLI RFLP), A591V (AluI RFLP), L2712P (MvaI RFLP), R3611Q (MspI RFLP), and E4154K (Eco......RI RFLP) were established using polymerase chain reaction and restriction enzyme digests. The effect of genotypes on lipid levels and on glucose, insulin, and HOMA (i.e., calculated parameters of beta-cell function and insulin resistance) was assessed by multivariate analyses of variance correcting...... for the effect of gender, age, glucose tolerance status, and body mass index. The effect of genotype on the risk of having impaired glucose metabolism was calculated by logistic regression analysis. Finally, linkage between allele sharing and physiological parameters was calculated by the new Haseman...

  6. Changes in metabolism during a fasting period and a subsequent vegetarian diet with particular reference to glucose metabolism.

    Science.gov (United States)

    Lithell, H; Vessby, B; Hellsing, K; Ljunghall, K; Höglund, N J; Werner, I; Bruce, A

    1983-01-01

    During an investigation on the effect of fasting and a vegetarian diet on the symptoms and signs in chronic cutaneous and arthritic diseases studies were made of glucose metabolism, liver function and the plasma concentration and urine excretion of some minerals. The study was performed on 27 patients who stayed as in-patients on a metabolic ward for five weeks. After the fasting period the blood glucose and serum insulin concentrations were lower (p less than 0.01) than before the fast. At the end of the period on the vegetarian (vegan) diet (three weeks) the insulin/glucose ratio was lower than at the start of the fast. Serum enzyme concentrations reflecting liver function increased during the fast, but normalized during the vegan diet. The intake of vitamin B12 and of selenium due to the vegan diets was very low, which may give reason for some concern during long-term use of this type of vegetarian diet.

  7. Profiling the control of hepatic glucose and lipid metabolism for evaluating novel strategies of insulin delivery

    OpenAIRE

    Soares, Ana Francisca Leal Silva

    2011-01-01

    Diabetes mellitus (DM) is a metabolic disorder that results from a dysfunction of insulin secretion (type 1) and/or sensitivity (type 2). Type 1 and in many cases type 2 diabetic patients require daily insulin injections to control blood glucose levels and retard the appearance of diabetes-related complications. The liver plays a central role in the context of whole-body glucose homoeostasis and fuel management in general. Under physiological conditions, insulin is released by the pancr...

  8. Muscle insulin sensitivity and glucose metabolism are controlled by the intrinsic muscle clock

    OpenAIRE

    Kenneth A. Dyar; Ciciliot, Stefano; Wright, Lauren E.; Biensø, Rasmus Sjørup; Tagliazucchi, Guidantonio M.; Patel, Vishal R.; Forcato, Mattia; Paz, Marcia I.P.; Gudiksen, Anders; Solagna, Francesca; Albiero, Mattia; Moretti, Irene; Eckel-Mahan, Kristin L.; Baldi, Pierre; Sassone-Corsi, Paolo

    2014-01-01

    Circadian rhythms control metabolism and energy homeostasis, but the role of the skeletal muscle clock has never been explored. We generated conditional and inducible mouse lines with muscle-specific ablation of the core clock gene Bmal1. Skeletal muscles from these mice showed impaired insulin-stimulated glucose uptake with reduced protein levels of GLUT4, the insulin-dependent glucose transporter, and TBC1D1, a Rab-GTPase involved in GLUT4 translocation. Pyruvate dehydrogenase (PDH) activit...

  9. Epithelial and Mesenchymal Tumor Compartments Exhibit In Vivo Complementary Patterns of Vascular Perfusion and Glucose Metabolism

    OpenAIRE

    Mirco Galiè; Paolo Farace; Cristina Nanni; Antonello Spinelli; Elena Nicolato; Federico Boschi; Paolo Magnani; Silvia Trespidi; Valentina Ambrosini; Stefano Fanti; Flavia Merigo; Francesco Osculati; Pasquina Marzola; Andrea Sbarbati

    2007-01-01

    Glucose transport and consumption are increased in tumors, and this is considered a diagnostic index of malignancy. However, there is recent evidence that carcinoma-associated stromal cells are capable of aerobic metabolism with low glucose consumption, at least partly because of their efficient vascular supply. In the present study, using dynamic contrast-enhanced magnetic resonance imaging and [F-18]fluorodeoxyglucose (FDG) positron emission tomography (PET), we mapped in vivo the vascular ...

  10. Insulin-resistant glucose metabolism in patients with microvascular angina--syndrome X

    DEFF Research Database (Denmark)

    Vestergaard, H; Skøtt, P; Steffensen, R;

    1995-01-01

    < .02) and the rate of insulin-stimulated glucose disposal to peripheral tissues was lower in patients with MA (13.4 +/- 1.0 v 18.2 +/- 1.4 mg.kg fat-free mass [FFM]-1.min-1, P < .02) due to a decrease in nonoxidative glucose metabolism (8.4 +/- 0.9 v 12.5 +/- 1.3 mg.kg FFM-1.min-1, P < .02). No...

  11. Glucose metabolism in small subcortical structures in Parkinson's disease

    DEFF Research Database (Denmark)

    Borghammer, Per; Hansen, Søren B; Eggers, Carsten;

    2012-01-01

    Evidence from experimental animal models of Parkinson's disease (PD) suggests a characteristic pattern of metabolic perturbation in discrete, very small basal ganglia structures. These structures are generally too small to allow valid investigation by conventional positron emission tomography (PET...

  12. Oxidative stress in the etiology of age-associated decline in glucose metabolism.

    Science.gov (United States)

    Salmon, Adam B

    2012-01-01

    One of the most common pathologies in aging humans is the development of glucose metabolism dysfunction. The high incidence of metabolic dysfunction, in particular type 2 diabetes mellitus, is a significant health and economic burden on the aging population. However, the mechanisms that regulate this age-related physiological decline, and thus potential preventative treatments, remain elusive. Even after accounting for age-related changes in adiposity, lean mass, blood lipids, etc., aging is an independent factor for reduced glucose tolerance and increased insulin resistance. Oxidative stress has been shown to have significant detrimental impacts on the regulation of glucose homeostasis in vitro and in vivo. Furthermore, oxidative stress has been shown to be modulated by age and diet in several model systems. This review provides an overview of these data and addresses whether increases in oxidative stress with aging may be a primary determinant of age-related metabolic dysfunction.

  13. Glucose metabolism during fasting is altered in experimental porphobilinogen deaminase deficiency.

    Science.gov (United States)

    Collantes, María; Serrano-Mendioroz, Irantzu; Benito, Marina; Molinet-Dronda, Francisco; Delgado, Mercedes; Vinaixa, María; Sampedro, Ana; Enríquez de Salamanca, Rafael; Prieto, Elena; Pozo, Miguel A; Peñuelas, Iván; Corrales, Fernando J; Barajas, Miguel; Fontanellas, Antonio

    2016-04-01

    Porphobilinogen deaminase (PBGD) haploinsufficiency (acute intermittent porphyria, AIP) is characterized by neurovisceral attacks when hepatic heme synthesis is activated by endogenous or environmental factors including fasting. While the molecular mechanisms underlying the nutritional regulation of hepatic heme synthesis have been described, glucose homeostasis during fasting is poorly understood in porphyria. Our study aimed to analyse glucose homeostasis and hepatic carbohydrate metabolism during fasting in PBGD-deficient mice. To determine the contribution of hepatic PBGD deficiency to carbohydrate metabolism, AIP mice injected with a PBGD-liver gene delivery vector were included. After a 14 h fasting period, serum and liver metabolomics analyses showed that wild-type mice stimulated hepatic glycogen degradation to maintain glucose homeostasis while AIP livers activated gluconeogenesis and ketogenesis due to their inability to use stored glycogen. The serum of fasted AIP mice showed increased concentrations of insulin and reduced glucagon levels. Specific over-expression of the PBGD protein in the liver tended to normalize circulating insulin and glucagon levels, stimulated hepatic glycogen catabolism and blocked ketone body production. Reduced glucose uptake was observed in the primary somatosensorial brain cortex of fasted AIP mice, which could be reversed by PBGD-liver gene delivery. In conclusion, AIP mice showed a different response to fasting as measured by altered carbohydrate metabolism in the liver and modified glucose consumption in the brain cortex. Glucose homeostasis in fasted AIP mice was efficiently normalized after restoration of PBGD gene expression in the liver. PMID:26908609

  14. Effects of glucose and ascorbic acid on absorption and first pass metabolism of isoniazid in rats.

    Science.gov (United States)

    Matsuki, Y; Katakuse, Y; Matsuura, H; Kiwada, H; Goromaru, T

    1991-02-01

    We examined the effect of glucose (Glu) and ascorbic acid (AA) on absorption and metabolism of isoniazid (INAH). After p.o. administration of INAH with or without Glu or AA, plasma concentration and urinary excretion of INAH and its metabolites, acetyl INAH (AcINAH), acetyl hydrazine (AcHy) and hydrazine (Hy), were determined by means of gas chromatography-mass spectrometry using stable isotope labeled compounds as internal standard. The combined administration of INAH with Glu or AA led to a significant decrease in the excretion of INAH and Hy, and a significant increase in the excretion of AcINAH and AcHy. The absorption amount of INAH was reduced to about one-half by the addition of Glu and the absorption rate of INAH markedly decreased in the case of co-administration of AA. Comparing the oral case with the results of i.v. administration, Glu and AA only affect the absorption process containing the first pass metabolism of INAH.

  15. Berberine Improves Glucose Metabolism through Induction of Glycolysis

    OpenAIRE

    Yin, Jun; Gao, Zhanguo; Liu, Dong; Liu, Zhijun; Ye, Jianping

    2007-01-01

    Berberine, a botanical alkaloid used to control blood glucose in type 2 diabetes in China, has been reported to activate AMPK recently. However, it is not clear how AMPK is activated by berberine. In this study, activity and action mechanism of berberine were investigated in vivo and in vitro. In dietary obese rats, berberine increased insulin sensitivity after five week administration. Fasting insulin and HOMA-IR were decreased by 46% and 48% in the rats, respectively. In cell lines includin...

  16. Direct effects of locally administered lipopolysaccharide on glucose, lipid, and protein metabolism in the placebo-controlled, bilaterally infused human leg

    DEFF Research Database (Denmark)

    Buhl, Mads; Bosnjak, Ermina; Vendelbo, Mikkel H.;

    2013-01-01

    release in the perfused human leg without detectable effects on amino acid metabolism. Conclusions: These data strongly suggest that the primary metabolic effect of LPS is increased lipolysis and muscle insulin resistance, which, together with secondary insulin resistance, caused by systemic cytokine...... palmitate isotopic dilution, although primary ANOVA tests did not reveal significant dilution. Leg blood flows, phenylalanine, lactate kinetics, cytokines, and intramyocellular insulin signaling were not affected by LPS. LPS thus directly inhibits insulin-stimulated glucose uptake and increases palmitate...

  17. Germ band retraction as a landmark in glucose metabolism during Aedes aegypti embryogenesis

    Directory of Open Access Journals (Sweden)

    Logullo Carlos

    2010-02-01

    Full Text Available Abstract Background The mosquito A. aegypti is vector of dengue and other viruses. New methods of vector control are needed and can be achieved by a better understanding of the life cycle of this insect. Embryogenesis is a part of A. aegypty life cycle that is poorly understood. In insects in general and in mosquitoes in particular energetic metabolism is well studied during oogenesis, when the oocyte exhibits fast growth, accumulating carbohydrates, lipids and proteins that will meet the regulatory and metabolic needs of the developing embryo. On the other hand, events related with energetic metabolism during A. aegypti embryogenesis are unknown. Results Glucose metabolism was investigated throughout Aedes aegypti (Diptera embryonic development. Both cellular blastoderm formation (CBf, 5 h after egg laying - HAE and germ band retraction (GBr, 24 HAE may be considered landmarks regarding glucose 6-phosphate (G6P destination. We observed high levels of glucose 6-phosphate dehydrogenase (G6PDH activity at the very beginning of embryogenesis, which nevertheless decreased up to 5 HAE. This activity is correlated with the need for nucleotide precursors generated by the pentose phosphate pathway (PPP, of which G6PDH is the key enzyme. We suggest the synchronism of egg metabolism with carbohydrate distribution based on the decreasing levels of phosphoenolpyruvate carboxykinase (PEPCK activity and on the elevation observed in protein content up to 24 HAE. Concomitantly, increasing levels of hexokinase (HK and pyruvate kinase (PK activity were observed, and PEPCK reached a peak around 48 HAE. Glycogen synthase kinase (GSK3 activity was also monitored and shown to be inversely correlated with glycogen distribution during embryogenesis. Conclusions The results herein support the hypothesis that glucose metabolic fate changes according to developmental embryonic stages. Germ band retraction is a moment that was characterized as a landmark in glucose

  18. Plasma Glucose and Serum Ceruloplasmin in Metabolic Syndrome and Diabetes Mellitus Type 2

    Directory of Open Access Journals (Sweden)

    Ashok Kumar Jeppu

    2016-04-01

    Full Text Available Diabetes mellitus type 2 and metabolic syndrome are conditions associated with insulin resistance and hyperglycemia. Metabolic syndrome is a risk factor for diabetes mellitus type 2. Plasma glucose (fasting/postprandial and serum ceruloplasmin levels and their relationship were studied. Study population consisted of 150 individuals—50 individuals with diabetes mellitus type 2, 50 individuals with metabolic syndrome, and 50 age- and sex-matched healthy controls. Plasma levels of fasting and postprandial glucose were measured along with serum ceruloplasmin. Data was analyzed by ANOVA and Pearson correlation. The fasting and postprandial plasma glucose levels in metabolic syndrome and diabetes mellitus type 2 were increased when compared to control. Serum ceruloplasmin level was 327.8 ± 68.9 in control, 227.3 ± 46.8 in metabolic syndrome, and 194.0 ± 49.6 in diabetes mellitus type 2 individuals. There was a statistically significant negative correlation between the fasting, postprandial plasma glucose, and serum ceruloplasmin in type 2 diabetes mellitus.

  19. Energized by love: thinking about romantic relationships increases positive affect and blood glucose levels.

    Science.gov (United States)

    Stanton, Sarah C E; Campbell, Lorne; Loving, Timothy J

    2014-10-01

    We assessed the impact of thinking of a current romantic partner on acute blood glucose responses and positive affect over a short period of time. Participants in romantic relationships were randomly assigned to reflect on their partner, an opposite-sex friend, or their morning routine. Blood glucose levels were assessed prior to reflection, as well as at 10 and 25 min postreflection. Results revealed that individuals in the routine and friend conditions exhibited a decline in glucose over time, whereas individuals in the partner condition did not exhibit this decline (rather, a slight increase) in glucose over time. Reported positive affect following reflection was positively associated with increases in glucose, but only for individuals who reflected on their partner, suggesting this physiological response reflects eustress. These findings add to the literature on eustress in relationships and have implications for relationship processes.

  20. DLK1 Regulates Whole-Body Glucose Metabolism

    DEFF Research Database (Denmark)

    Abdallah, Basem M; Ditzel, Nicholas; Laborda, Jorge;

    2015-01-01

    The endocrine role of the skeleton in regulating energy metabolism is supported by a feed-forward loop between circulating osteoblast (OB)-derived undercarboxylated osteocalcin (Glu-OCN) and pancreatic β-cell insulin; in turn, insulin favors osteocalcin (OCN) bioactivity. These data suggest...... metabolism. We show that Glu-OCN specifically stimulates Dlk1 expression by the pancreas. Conversely, Dlk1-deficient (Dlk1(-/-) ) mice exhibited increased circulating Glu-OCN levels and increased insulin sensitivity, whereas mice overexpressing Dlk1 in OB displayed reduced insulin secretion and sensitivity...

  1. Regional cerebral glucose metabolic rate in human sleep assessed by positron emission tomography

    International Nuclear Information System (INIS)

    The cerebral metabolic rate of glucose was measured during nighttime sleep in 36 normal volunteers using positron emission tomography and fluorine-18-labeled 2-deoxyglucose (FDG). In comparison to waking controls, subjects given FDG during non-rapid eye movement (NREM) sleep showed about a 23% reduction in metabolic rate across the entire brain. This decrease was greater for the frontal than temporal or occipital lobes, and greater for basal ganglia and thalamus than cortex. Subjects in rapid eye movement (REM) sleep tended to have higher cortical metabolic rates than walking subjects. The cingulate gyrus was the only cortical structure to show a significant increase in glucose metabolic rate in REM sleep in comparison to waking. The basal ganglia were relatively more active on the right in REM sleep and symmetrical in NREM sleep

  2. Regional cerebral glucose metabolic rate in human sleep assessed by positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Buchsbaum, M.S.; Wu, J.; Hazlett, E.; Sicotte, N.; Bunney, W.E. Jr. (Univ. of California, Irvine (USA)); Gillin, J.C. (Univ. of California, San Diego (USA))

    1989-01-01

    The cerebral metabolic rate of glucose was measured during nighttime sleep in 36 normal volunteers using positron emission tomography and fluorine-18-labeled 2-deoxyglucose (FDG). In comparison to waking controls, subjects given FDG during non-rapid eye movement (NREM) sleep showed about a 23% reduction in metabolic rate across the entire brain. This decrease was greater for the frontal than temporal or occipital lobes, and greater for basal ganglia and thalamus than cortex. Subjects in rapid eye movement (REM) sleep tended to have higher cortical metabolic rates than walking subjects. The cingulate gyrus was the only cortical structure to show a significant increase in glucose metabolic rate in REM sleep in comparison to waking. The basal ganglia were relatively more active on the right in REM sleep and symmetrical in NREM sleep.

  3. AMPK Activation Affects Glutamate Metabolism in Astrocytes

    DEFF Research Database (Denmark)

    Voss, Caroline Marie; Pajęcka, Kamilla; Stridh, Malin H;

    2015-01-01

    skeleton into the TCA cycle was reduced. On the other hand, glutamate uptake into the astrocytes as well as its conversion to glutamine catalyzed by glutamine synthetase was not affected by AMPK activation. Interestingly, synthesis and release of citrate, which are hallmarks of astrocytic function, were...

  4. DMH1 increases glucose metabolism through activating Akt in L6 rat skeletal muscle cells.

    Directory of Open Access Journals (Sweden)

    Xin Xie

    Full Text Available DMH1(4-[6-(4-Isopropoxyphenylpyrazolo [1,5-a]pyrimidin-3-yl] quinoline is a compound C analogue with the structural modifications at the 3- and 6-positions in pyrazolo[1,5-a]pyrimidine backbone. Compound C was reported to inhibit both AMPK and Akt. Our preliminary work found that DMH1 activated Akt. Since Akt was involved in glucose metabolism, we aimed to identify the effects of DMH1 on glucose metabolism in L6 rat muscle cells and the potential mechanism. Results showed that DMH1 increased lactic acid release and glucose consumption in L6 rat muscle cells in a dose-dependent manner. DMH1 activated Akt in L6 cells. Akt inhibitor inhibited DMH1-induced Akt activation and DMH1-induced increases of glucose uptake and consumption. DMH1 had no cytotoxicity in L6 cells, but inhibited mitochondrial function and reduced ATP production. DMH1 showed no effect on AMPK, but in the presence of Akt inhibitor, DMH1 significantly activated AMPK. Compound C inhibited DMH1-induced Akt activation in L6 cells. Compound C inhibited DMH1-induced increase of glucose uptake, consumption and lactic acid release in L6 cells. DMH1 inhibited PP2A activity, and PP2A activator forskolin reversed DMH1-induced Akt activation. We concluded that DMH1 increased glucose metabolism through activating Akt and DMH1 activated Akt through inhibiting PP2A activity in L6 rat muscle cells. In view of the analogue structure of DMH1 and compound C and the contrasting effects of DMH1 and compound C on Akt, the present study provides a novel leading chemical structure targeting Akt with potential use for regulating glucose metabolism.

  5. Analysis of oral glucose tolerance test in pregnant women with abnormal glucose metabolism

    Institute of Scientific and Technical Information of China (English)

    YANG Hui-xia; GAO Xue-lian; DONG Yue; SHI Chun-yan

    2005-01-01

    Background Due to the controversy of the oral glucose tolerance test (OGTT), diagnostic criteria for gestational diabetes mellitus (GDM) in the world and researches on GDM remain undeveloped in China. American Diabetes Association recently recommended the clinicians to diagnose GDM by OGTT results without the third-hour glucose value. This new criteria has not been used in China. Research on the value and sensitivity of the criteria in detecting GDM is rare. The aim of our study is to analyze the characteristics of OGTT in Chinese women with GDM or gestational impaired glucose tolerance (GIGT) and to evaluate the effect of omission of the third-hour plasma glucose (PG) level in OGTT on the sensitivity of diagnosing GDM and GIGT, and the relationship between PG values of 50 g GCT or OGTT and insulin therapy. Methods A retrospective analysis was performed on medical records of 647 cases with GDM from January 1, 1989 to December 31, 2002, and 233 with GIGT. Among 647 cases of GDM, 535 cases were diagnosed by 75 g OGTT. All OGTT results including 535 cases of GDM and 233 patients with GIGT were evaluated. Results There were 112 cases of GDM diagnosed by elevated fasting PG (FPG) without OGTT performed. Of 535 cases of GDM diagnosed by OGTT, 49.2% (263/535) women had FPG value ≥5.8 mmol/L; 90.1% (482/535) women with 1-hour PG values ≥10.6 mmol/L; 64.7% (359/535) with 2-hour PG levels ≥9.2 mmol/L. There were only 114 cases (21.3%) with abnormal 3-hour PG levels among 535 women with OGTT. Among those with abnormal 3-hour PG level, 49.1% (56/114) had abnormal glucose values in the other three points of OGTT, and 34.2% (39/114) with two other abnormal values of OGTT. Our study showed that omission of the 3-hour PG of OGTT only missed 19 cases of GDM and they would be diagnosed as GIGT. Among the 233 women with GIGT, only 4 cases had abnormal 3-hour PG. So, omission of the third-hour glucose value of OGTT only resulted in failure to diagnose 3.6% (19/535) women with

  6. The effect of vagal nerve blockade using electrical impulses on glucose metabolism in nondiabetic subjects

    Directory of Open Access Journals (Sweden)

    Sathananthan M

    2014-07-01

    Full Text Available Matheni Sathananthan,1 Sayeed Ikramuddin,2 James M Swain,3,6 Meera Shah,1 Francesca Piccinini,4 Chiara Dalla Man,4 Claudio Cobelli,4 Robert A Rizza,1 Michael Camilleri,5 Adrian Vella1 1Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic College of Medicine, Rochester, MN, USA; 2Division of General Surgery, University of Minnesota, Minneapolis, MN, USA; 3Division of General Surgery, Mayo Clinic College of Medicine, Rochester, MN, USA; 4Department of Information Engineering, University of Padua, Padua, Italy; 5Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, MN, USA; 6Scottsdale Healthcare Bariatric Center, Scottsdale, AZ, USA Purpose: Vagal interruption causes weight loss in humans and decreases endogenous glucose production in animals. However, it is unknown if this is due to a direct effect on glucose metabolism. We sought to determine if vagal blockade using electrical impulses alters glucose metabolism in humans. Patients and methods: We utilized a randomized, cross-over study design where participants were studied after 2 weeks of activation or inactivation of vagal nerve blockade (VNB. Seven obese subjects with impaired fasting glucose previously enrolled in a long-term study to examine the effect of VNB on weight took part. We used a standardized triple-tracer mixed meal to enable measurement of the rate of meal appearance, endogenous glucose production, and glucose disappearance. The 550 kcal meal was also labeled with 111In-diethylene triamine pentaacetic acid (DTPA to measure gastrointestinal transit. Insulin action and ß-cell responsivity indices were estimated using the minimal model. Results: Integrated glucose, insulin, and glucagon concentrations did not differ between study days. This was also reflected in a lack of effect on β-cell responsivity and insulin action. Furthermore, fasting and postprandial endogenous glucose production, integrated meal appearance, and glucose

  7. [Pathogenetic correction of metabolic disturbances in chronic liver affections].

    Science.gov (United States)

    Romantsov, M G; Petrov, A Iu; Aleksandrova, L N; Sukhanov, D S; Kovalenko, A L

    2012-01-01

    The available drugs for the treatment of chronic liver affections (the adequate model is chronic hepatitis C) include agents of metabolic therapy, whose efficacy is not always enough, that required the search for original mitochondrial substrates on the basis of succinate. Such agents were composed as a pharmaceutical group named "Substrates of Energetic Metabolism" or "Substrate Antihypoxants". The review presents the description of the pharmacological effects of remaxole and cytoflavin, evident from lower levels of active metabolites of oxygen that increases the clinical efficacy of the therapy. Their role in the metabolic reactions in chronic liver affections is exclusive and rather actual. PMID:23700935

  8. Metabolic glucose status and pituitary pathology portend therapeutic outcomes in acromegaly.

    Directory of Open Access Journals (Sweden)

    Sonia Cheng

    Full Text Available INTRODUCTION: Acromegaly is frequently associated with impaired glucose tolerance and/or diabetes. To evaluate the relationship between glucose metabolism and acromegaly disease, we evaluated 269 consecutive patients from two referral centres. METHODS: Clinical presentation, pituitary tumor size and invasiveness, and pituitary pathology were captured in a dedicated database. RESULTS: 131 women and 138 men with a mean age of 53.8 years were included. Of these, 201 (74.7% presented with a macroadenoma and 18 (6.7% with a microadenoma. Radiographic invasion was present in 91 cases (33.8%. Mean tumor diameter was 1.86 cm (0.2-4.6. Pituitary histopathologic findings revealed pure GH-producing somatotroph adenomas (SA in 147 patients, prolactin-production by mixed lactotroph (LA and SA or mammosomatotroph adenoma (MSA in 46 [22.4%], acidophil stem cell adenoma in 6 [2.9%], and other diagnoses in 6 [2.9%]. Medical treatment included octreotide in 96 [36.9%] and in combination with pegvisomant or dopamine agonists in 63 [24.2%]. Nearly 80% of patients achieved IGF-1 normalization. Importantly, patients with pure somatotroph adenomas were significantly more likely to present with abnormal glucose metabolism [48.7%] than those with mixed adenomas [9.7%] [p<0.001] independent of GH/IGF-1 levels or tumor invasiveness. Abnormal glucose metabolism and pituitary pathology also remained linked following IGF-1 normalization. Moreover patients with pure SA and abnormal glucose metabolism were significantly (p<0.001 less likely to achieve disease remission despite the same therapeutic strategies. Conversely, patients with mixed adenomas were more likely (OR: 2.766 (95% CI: 1.490-5.136 to achieve disease remission. CONCLUSIONS: Patients with pure somatotroph adenomas are more likely than those with mixed adenomas to exhibit abnormal glucose metabolism.

  9. The Lin28/let-7 Axis Regulates Glucose Metabolism

    NARCIS (Netherlands)

    Zhu, Hao; Shyh-Chang, Ng; Segre, Ayellet V.; Shinoda, Gen; Shah, Samar P.; Einhorn, William S.; Takeuchi, Ayumu; Engreitz, Jesse M.; Hagan, John P.; Kharas, Michael G.; Urbach, Achia; Thornton, James E.; Triboulet, Robinson; Gregory, Richard I.; Altshuler, David; Daley, George Q.

    2011-01-01

    The let-7 tumor suppressor microRNAs are known for their regulation of oncogenes, while the RNA-binding proteins Lin28a/b promote malignancy by inhibiting let-7 biogenesis. We have uncovered unexpected roles for the Lin28/let-7 pathway in regulating-metabolism. When overexpressed in mice, both Lin28

  10. The characteristics of cortical glucose metabolism in amblyopia

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Ji Young [College of Medicine, Seoul National Univ., Seoul (Korea, Republic of); Lee, Dong Soo; Chung, June Key; Shin, Seung Ai; Lee, Myung Chul [College of Medicine, Ewha Womans Univ., Seoul (Korea, Republic of)

    2000-07-01

    Cortical metabolism of amblyopia patients was investigated with F-18-FDG PET and Statistical Parametric Mapping (SPM) and quantificiation based on volume of interest (VOI) by statistical probabilistic anatomical map (SPAM). In 9 amblyopic patients (12{+-}7 years ) and 20 normal subjects (23{+-}2 years), F-18-FDG PET scans were peformed in amblyopic patients after amblyopic eye or sound eye was patch-closed during PET studies. SPM was done with SPM96. By multiplying SPAM to FDG images, counts of 98 VOI's were calculated and compared with 3 S. D. range of those of normal subjects. On SPM, cortical metabolism decreased (p<0.05) in occipital lobe (Ba 17, 18, 19), superior partietal lobe (Ba 7), and inferior temporal lobe (BA 37, 20). FDG uptake of gyri of occuipital lobe was decreased in 2 and increased in 2, and was normal in the other 5. FDG uptake of gyri of parietal, frontal, and temporal lobes were decreased in FDG uptake on these VOIs. We conclude that cortical metabolism in occipital lobe and extraoccipital lobes was variable but was consistent regardless of visual input during PET studies in amblyopic patients. SPM and quantification of functional images using SPAM could reveal subtle differences or changes according to visual input. The significance of metabolic changes of extraoccipital lobes should be studies further.

  11. Cortical Glucose Metabolism Positively Correlates with Gamma-Oscillations in Nonlesional Focal Epilepsy

    OpenAIRE

    Nishida, Masaaki; Juhász, Csaba; Sood, Sandeep; Chugani, Harry T.; Asano, Eishi

    2008-01-01

    Why do the epileptogenic foci appear hypometabolic on interictal glucose metabolism positron emission tomography (PET) in a substantial proportion of patients with focal epilepsy but appear normo- or even hyper-metabolic in others? Such observations on interictal PET have not been fully explained by the frequency of interictal spike discharges alone. In the present study using digital electrocorticography monitoring system with high-frequency sampling, we determined how well regression models...

  12. Elevated glucose metabolism in the amygdala during an inhibitory avoidance task

    OpenAIRE

    Sandusky, Leslie A.; Flint, Robert W.; McNay, Ewan C.

    2013-01-01

    There is a long-standing debate as to whether the memory process of consolidation is neurochemically similar to or the same as the set of processes involved in retrieval and reconsolidation of that memory. In addition, although we have previously shown that initial memory processing in the hippocampus causes a drainage of hippocampal glucose because of increased local metabolic demand, it is unknown what metabolic changes occur elsewhere in the brain or during subsequent processing of a previ...

  13. TAp63 is a master transcriptional regulator of lipid and glucose metabolism

    OpenAIRE

    Su, Xiaohua; Gi, Young Jin; Chakravarti, Deepavali; Chan, Io Long; Zhang, Aijun; Xia, Xuefeng; Tsai, Kenneth Y.; Flores, Elsa R.

    2012-01-01

    TAp63 prevents premature aging suggesting a link to genes that regulate longevity. Further characterization of TAp63−/− mice revealed that these mice develop obesity, insulin resistance, and glucose intolerance, similar to those seen in mice lacking two key metabolic regulators, Silent information regulator T1 (Sirt1) and AMPK. While the roles of Sirt1 and AMPK in metabolism have been well studied, their upstream regulators are not well understood. We found that TAp63 is important in regulati...

  14. Role of insulin-like growth factor binding protein-3 in glucose and lipid metabolism

    OpenAIRE

    Kim, Ho-Seong

    2013-01-01

    Insulin-like growth factor binding protein (IGFBP)-3 has roles in modulating the effect of IGFs by binding to IGFs and inhibiting cell proliferation in an IGF-independent manner. Although recent studies have been reported that IGFBP-3 has also roles in metabolic regulation, their exact roles in adipose tissue are poorly understood. In this review, we summarized the studies about the biological roles in glucose and lipid metabolism. IGFBP-3 overexpression in transgenic mice suggested that IGFB...

  15. Noninvasive measurement of regional myocardial glucose metabolism by positron emission computed tomography

    International Nuclear Information System (INIS)

    While the results of regional myocardial glucose metabolism measurements using positron emission computed tomography (13N-ammonia) are promising, their utility and value remains to be determined in man. If this technique can be applied to patients with acute myocardial ischemia or infarction it may permit delineation of regional myocardial segments with altered, yet still active metabolism. Further, it may become possible to evaluate the effects of interventions designed to salvage reversibly injured myocardium by this technique

  16. Assessment of chitosan-affected metabolic response by peroxisome proliferator-activated receptor bioluminescent imaging-guided transcriptomic analysis.

    Directory of Open Access Journals (Sweden)

    Chia-Hung Kao

    Full Text Available Chitosan has been widely used in food industry as a weight-loss aid and a cholesterol-lowering agent. Previous studies have shown that chitosan affects metabolic responses and contributes to anti-diabetic, hypocholesteremic, and blood glucose-lowering effects; however, the in vivo targeting sites and mechanisms of chitosan remain to be clarified. In this study, we constructed transgenic mice, which carried the luciferase genes driven by peroxisome proliferator-activated receptor (PPAR, a key regulator of fatty acid and glucose metabolism. Bioluminescent imaging of PPAR transgenic mice was applied to report the organs that chitosan acted on, and gene expression profiles of chitosan-targeted organs were further analyzed to elucidate the mechanisms of chitosan. Bioluminescent imaging showed that constitutive PPAR activities were detected in brain and gastrointestinal tract. Administration of chitosan significantly activated the PPAR activities in brain and stomach. Microarray analysis of brain and stomach showed that several pathways involved in lipid and glucose metabolism were regulated by chitosan. Moreover, the expression levels of metabolism-associated genes like apolipoprotein B (apoB and ghrelin genes were down-regulated by chitosan. In conclusion, these findings suggested the feasibility of PPAR bioluminescent imaging-guided transcriptomic analysis on the evaluation of chitosan-affected metabolic responses in vivo. Moreover, we newly identified that downregulated expression of apoB and ghrelin genes were novel mechanisms for chitosan-affected metabolic responses in vivo.

  17. Regional cerebral glucose metabolism in patients with alcoholic Korsakoff's syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Kessler, R.M.; Parker, E.S.; Clark, C.M.; Martin, P.R.; George, D.T.; Weingartner, H.; Sokoloff, L.; Ebert, M.H.; Mishkin, M.

    1985-05-01

    Seven alcoholic male subjects diagnosed as having Korsakoff's syndrome and eight age-matched male normal volunteers were studied with /sup 18/F 2-fluoro-2-deoxy-D-glucose (2/sup 18/FDG). All subjects were examined at rest with eyes covered in a quiet, darkened room. Serial plasma samples were obtained following injection of 4 to 5 mCi of 2/sup 18/FDG. Tomographic slices spaced at 10mm axial increments were obtained (in-plane resolution = 1.75 cm, axial resolution = 1.78 cm). Four planes were selected from each subject, and a total of 46 regions of interest were sampled and glucose metabolic rates for each region calculated. The mean glucose metalbolic rate for the 46 regions in the Korsakoff subjects was significantly lower than that in the normal controls (5.17 +- .43 versus 6.6 +- 1.31). A Q-component analysis, which examined each subject's regional rates relative to his mean rate, revealed two distinct patterns in the Korsakoff group. Glucose metabolism was significantly reduced in 37 of the 46 regions sampled. Reduced cerebral glucose metabolism in a nondemented group of subjects has not previously been reported. The reduction in cortical metabolism may be the result of damage to sub-cortical projecting systems. The differing patterns of cerebral metabolism in Korsakoff's syndrome suggests subgroups with differing neuropathology. Regions implicated in memory function, medial temporal, thalamic and medial prefrontal were among the regions reduced in metabolism.

  18. Bile Acid Sequestration Reduces Plasma Glucose Levels in db/db Mice by Increasing Its Metabolic Clearance Rate

    NARCIS (Netherlands)

    Meissner, M.; Herrema, H.J.; Dijk, van Th.; Gerding, A.; Havinga, R.; Boer, T.; Müller, M.R.; Reijngoud, D.J.; Groen, A.K.; Kuipers, F.

    2011-01-01

    Aims/Hypothesis: Bile acid sequestrants (BAS) reduce plasma glucose levels in type II diabetics and in murine models of diabetes but the mechanism herein is unknown. We hypothesized that sequestrant-induced changes in hepatic glucose metabolism would underlie reduced plasma glucose levels. Therefore

  19. Abnormal Glucose Tolerance Is Associated with a Reduced Myocardial Metabolic Flexibility in Patients with Dilated Cardiomyopathy.

    Science.gov (United States)

    Tricò, Domenico; Baldi, Simona; Frascerra, Silvia; Venturi, Elena; Marraccini, Paolo; Neglia, Danilo; Natali, Andrea

    2016-01-01

    Dilated cardiomyopathy (DCM) is characterized by a metabolic shift from fat to carbohydrates and failure to increase myocardial glucose uptake in response to workload increments. We verified whether this pattern is influenced by an abnormal glucose tolerance (AGT). In 10 patients with DCM, 5 with normal glucose tolerance (DCM-NGT) and 5 with AGT (DCM-AGT), and 5 non-DCM subjects with AGT (N-AGT), we measured coronary blood flow and arteriovenous differences of oxygen and metabolites during Rest, Pacing (at 130 b/min), and Recovery. Myocardial lactate exchange and oleate oxidation were also measured. At Rest, DCM patients showed a reduced nonesterified fatty acids (NEFA) myocardial uptake, while glucose utilization increased only in DCM-AGT. In response to Pacing, glucose uptake promptly rose in N-AGT (from 72 ± 21 to 234 ± 73 nmol/min/g, p equivalents, p metabolism and the reduced myocardial metabolic flexibility in response to an increased workload. This trial is registered with ClinicalTrial.gov NCT02440217.

  20. An in vitro assessment of the effect of Athrixia phylicoides DC. aqueous extract on glucose metabolism.

    Science.gov (United States)

    Chellan, N; Muller, C J F; de Beer, D; Joubert, E; Page, B J; Louw, J

    2012-06-15

    Athrixia phylicoides DC. is an aromatic shrub indigenous to the eastern parts of Southern Africa. Indigenous communities brew "bush tea" from dried twigs and leaves of A. phylicoides, which is consumed as a beverage and used for its medicinal properties. Plant polyphenols have been shown to be beneficial to Type 2 diabetes mellitus (T2D) and obesity. Aqueous extracts of the plant have been shown to be rich in polyphenols, in particular phenolic acids, which may enhance glucose uptake and metabolism. The aim of this study was to determine the phenolic composition of a hot water A. phylicoides extract and assess its in vitro effect on cellular glucose utilisation. The most abundant phenolic compounds in the extract were 6-hydroxyluteolin-7-O-glucoside, chlorogenic acid, protocatechuic acid, a di-caffeoylquinic acid and a methoxy-flavonol derivative. The extract increased glucose uptake in C2C12, Chang and 3T3-L1 cells, respectively. Intracellular glucose was utilised by both oxidation (C2C12 myocytes and Chang cells; p < 0.01 and p < 0.05, respectively) and by increased glycogen storage (Chang cells; p < 0.05). No cytotoxicity was observed in Chang cells at the concentrations tested. The effects of the extract were not dose-dependent. A. phylicoides aqueous extract stimulated in vitro glucose uptake and metabolism, suggesting that consumption of this phenolic-rich extract could potentially ameliorate metabolic disorders related to obesity and T2D. PMID:22516895

  1. Regulatory role of leptin in glucose and lipid metabolism in skeletal muscle

    Directory of Open Access Journals (Sweden)

    Yasuhiko Minokoshi

    2012-01-01

    Full Text Available Leptin is a hormone secreted by adipocytes that plays a pivotal role in regulation of food intake, energy expenditure, and neuroendocrine function. Several lines of evidences indicate that independent of the anorexic effect, leptin regulates glucose and lipid metabolism in peripheral tissues in rodents and humans. It has been shown that leptin improves the diabetes phenotype in lipodystrophic patients and rodents. Moreover, leptin suppresses the development of severe, progressive impairment of glucose metabolism in insulin-deficient diabetes in rodents. We found that leptin increases glucose uptake and fatty acid oxidation in skeletal muscle in rats and mice in vivo. Leptin increases glucose uptake in skeletal muscle via the hypothalamic-sympathetic nervous system axis and β-adrenergic mechanism, while leptin stimulates fatty acid oxidation in muscle via AMP-activated protein kinase (AMPK. Leptin-induced fatty acid oxidation results in the decrease of lipid accumulation in muscle, which can lead to functional impairments called as "lipotoxicity." Activation of AMPK occurs by direct action of leptin on muscle and through the medial hypothalamus-sympathetic nervous system and α-adrenergic mechanism. Thus, leptin plays an important role in the regulation of glucose and fatty acid metabolism in skeletal muscle.

  2. Convergence role of transcriptional coactivator p300 and apparent modification on HMCs metabolic memory induced by high glucose

    OpenAIRE

    Su, Hong; Bo ZHOU; Ya-qian DUAN; Du, Chao

    2013-01-01

    Objective  To investigate the protein expression of transcriptional coactivator p300, acetylated histone H3 (Ac-H3) and Ac-H4 in human renal mesangial cell (HMCs) as imitative "metabolic memory" in vitro, and explore the potential role of convergence point of p300. Methods  The HMCs were divided into the following groups: ① High glucose metabolic memory model: normal glucose group (NG, 5.5mmol/L D-glucose×2d), high glucose group (HG, 25mmol/L D-glucose×2d), memory groups (M1, M2, M3, 25mmol/L...

  3. Metabolic responses to prolonged consumption of glucose- and fructose-sweetened beverages are not associated with postprandial or 24-hour glucose and insulin excursions

    Science.gov (United States)

    It has been proposed that the adverse metabolic effects of chronic consumption of sugar-sweetened beverages which contain both glucose and fructose are a consequence of increased circulating glucose and insulin excursions, i.e dietary glycemic index (GI). Objective: We determined if the greater adv...

  4. Computational modeling of glucose transport in pancreatic β-cells identifies metabolic thresholds and therapeutic targets in diabetes.

    Directory of Open Access Journals (Sweden)

    Camilla Luni

    Full Text Available Pancreatic β-cell dysfunction is a diagnostic criterion of Type 2 diabetes and includes defects in glucose transport and insulin secretion. In healthy individuals, β-cells maintain plasma glucose concentrations within a narrow range in concert with insulin action among multiple tissues. Postprandial elevations in blood glucose facilitate glucose uptake into β-cells by diffusion through glucose transporters residing at the plasma membrane. Glucose transport is essential for glycolysis and glucose-stimulated insulin secretion. In human Type 2 diabetes and in the mouse model of obesity-associated diabetes, a marked deficiency of β-cell glucose transporters and glucose uptake occurs with the loss of glucose-stimulated insulin secretion. Recent studies have shown that the preservation of glucose transport in β-cells maintains normal insulin secretion and blocks the development of obesity-associated diabetes. To further elucidate the underlying mechanisms, we have constructed a computational model of human β-cell glucose transport in health and in Type 2 diabetes, and present a systems analysis based on experimental results from human and animal studies. Our findings identify a metabolic threshold or "tipping point" whereby diminished glucose transport across the plasma membrane of β-cells limits intracellular glucose-6-phosphate production by glucokinase. This metabolic threshold is crossed in Type 2 diabetes and results in β-cell dysfunction including the loss of glucose stimulated insulin secretion. Our model further discriminates among molecular control points in this pathway wherein maximal therapeutic intervention is achieved.

  5. Transcriptome profiling of brown adipose tissue during cold exposure reveals extensive regulation of glucose metabolism.

    Science.gov (United States)

    Hao, Qin; Yadav, Rachita; Basse, Astrid L; Petersen, Sidsel; Sonne, Si B; Rasmussen, Simon; Zhu, Qianhua; Lu, Zhike; Wang, Jun; Audouze, Karine; Gupta, Ramneek; Madsen, Lise; Kristiansen, Karsten; Hansen, Jacob B

    2015-03-01

    We applied digital gene expression profiling to determine the transcriptome of brown and white adipose tissues (BAT and WAT, respectively) during cold exposure. Male C57BL/6J mice were exposed to cold for 2 or 4 days. A notable induction of genes related to glucose uptake, glycolysis, glycogen metabolism, and the pentose phosphate pathway was observed in BAT from cold-exposed animals. In addition, glycerol-3-phosphate dehydrogenase 1 expression was induced in BAT from cold-challenged mice, suggesting increased synthesis of glycerol from glucose. Similarly, expression of lactate dehydrogenases was induced by cold in BAT. Pyruvate dehydrogenase kinase 2 (Pdk2) and Pdk4 were expressed at significantly higher levels in BAT than in WAT, and Pdk2 was induced in BAT by cold. Of notice, only a subset of the changes detected in BAT was observed in WAT. Based on changes in gene expression during cold exposure, we propose a model for the intermediary glucose metabolism in activated BAT: 1) fluxes through glycolysis and the pentose phosphate pathway are induced, the latter providing reducing equivalents for de novo fatty acid synthesis; 2) glycerol synthesis from glucose is increased, facilitating triacylglycerol synthesis/fatty acid re-esterification; 3) glycogen turnover and lactate production are increased; and 4) entry of glucose carbon into the tricarboxylic acid cycle is restricted by PDK2 and PDK4. In summary, our results demonstrate extensive and diverse gene expression changes related to glucose handling in activated BAT. PMID:25516548

  6. Association between serum uric acid and different states of glucose metabolism and glomerular filtration rate

    Institute of Scientific and Technical Information of China (English)

    CAI Xiao-ling; HAN Xue-yao; JI Li-nong

    2010-01-01

    Background Recently, it has been suggested that the serum uric acid (SUA) level decreased in diabetic patients. The aim of this study was to explore the association between SUA level and different state of glucose metabolism and glomerular filtration rate (GFR) reflected by the simplified Modification of Diet in Renal Disease (MDRD) equation and to test the hypothesis that high MDRD is one of the determinants of SUA level.Methods This cross-sectional study included 2373 subjects in Beijing who underwent a 75 g oral glucose tolerance test (OGTT) for screening of diabetes. According to the states of glucose metabolism, they were divided into normal glucose tolerance, impaired glucose regulation and diabetes.Results Multiple stepwise linear regression analysis showed that adjusted by gender, SUA was positively correlated with body mass index (BMI), waist/hippo ratio, systolic blood pressure (SBP) and triglyceride, meanwhile negatively correlated with age, hemoglobin A1c, fasting insulin and MDRD. There was an increasing trend in SUA concentration and a decreasing trend in MDRD when the levels of fasting plasma glucose (FPG) increased from low to high up to the FPG level of 8.0 mmol/L; thereafter, the SUA concentration started to decrease with further increases in FPG levels, and the MDRD started to increase with further increases in FPG levels.Conclusion This study confirmed the previous finding that SUA decreased in diabetes and provided the supporting evidence that the increased MDRD might contribute to the fall of SUA.

  7. Increased response to insulin of glucose metabolism in the 6-day unloaded rat soleus muscle

    Science.gov (United States)

    Henriksen, Erik J.; Tischler, Marc E.; Johnson, David G.

    1986-01-01

    Hind leg muscles of female rats were unloaded by tail cast suspension for 6 days. In the fresh-frozen unloaded soleus, the significantly greater concentration of glycogen correlated with a lower activity ratio of glycogen phosphorylase (p less than 0.02). The activity ratio of glycogen synthase also was lower (p less than 0.001), possibly due to the higher concentration of glycogen. In isolated unloaded soleus, insulin (0.1 milliunit/ml) increased the oxidation of D(U-C-14) glucose, release of lactate and pyruvate, incorporation of D-(U-C-14) glucose into glycogen, and the concentration of glucose 6-phosphate more (p less than 0.05) than in the weight-bearing soleus. At physiological doses of insulin, the percent of maximal uptake of 2-deoxy-D-(1,2-H-3) glucose/muscle also was greater in the unloaded soleus. Unloading of the soleus increased, by 50 percent the concentration of insuling receptors, due to no decrease in total receptor number during muscle atrophy. This increase may account for the greater response of glucose metabolism to insulin in this muscle. The extensor digitorum longus, which generally shows little response to unloading, displayed no differential response of glucose metabolism to insulin.

  8. Bace1 activity impairs neuronal glucose metabolism: rescue by beta-hydroxybutyrate and lipoic acid

    Directory of Open Access Journals (Sweden)

    John A Findlay

    2015-10-01

    Full Text Available Glucose hypometabolism and impaired mitochondrial function in neurons have been suggested to play early and perhaps causative roles in Alzheimer’s disease (AD pathogenesis. Activity of the aspartic acid protease, beta-site amyloid precursor protein (APP cleaving enzyme 1 (BACE1, responsible for beta amyloid peptide generation, has recently been demonstrated to modify glucose metabolism. We therefore examined, using a human neuroblastoma (SH-SY5Y cell line, whether increased BACE1 activity is responsible for a reduction in cellular glucose metabolism. Overexpression of active BACE1, but not a protease-dead mutant BACE1, protein in SH-SY5Y cells reduced glucose oxidation and the basal oxygen consumption rate, which was associated with a compensatory increase in glycolysis. Increased BACE1 activity had no effect on the mitochondrial electron transfer process but was found to diminish substrate delivery to the mitochondria by inhibition of key mitochondrial decarboxylation reaction enzymes. This BACE1 activity-dependent deficit in glucose oxidation was alleviated by the presence of beta hydroxybutyrate or α-lipoic acid. Consequently our data indicate that raised cellular BACE1 activity drives reduced glucose oxidation in a human neuronal cell line through impairments in the activity of specific tricarboxylic acid cycle enzymes. Because this bioenergetic deficit is recoverable by neutraceutical compounds we suggest that such agents, perhaps in conjunction with BACE1 inhibitors, may be an effective therapeutic strategy in the early-stage management or treatment of AD.

  9. Non-Classical Gluconeogenesis-Dependent Glucose Metabolism in Rhipicephalus microplus Embryonic Cell Line BME26

    Directory of Open Access Journals (Sweden)

    Renato Martins da Silva

    2015-01-01

    Full Text Available In this work we evaluated several genes involved in gluconeogenesis, glycolysis and glycogen metabolism, the major pathways for carbohydrate catabolism and anabolism, in the BME26 Rhipicephalus microplus embryonic cell line. Genetic and catalytic control of the genes and enzymes associated with these pathways are modulated by alterations in energy resource availability (primarily glucose. BME26 cells in media were investigated using three different glucose concentrations, and changes in the transcription levels of target genes in response to carbohydrate utilization were assessed. The results indicate that several genes, such as glycogen synthase (GS, glycogen synthase kinase 3 (GSK3, phosphoenolpyruvate carboxykinase (PEPCK, and glucose-6 phosphatase (GP displayed mutual regulation in response to glucose treatment. Surprisingly, the transcription of gluconeogenic enzymes was found to increase alongside that of glycolytic enzymes, especially pyruvate kinase, with high glucose treatment. In addition, RNAi data from this study revealed that the transcription of gluconeogenic genes in BME26 cells is controlled by GSK-3. Collectively, these results improve our understanding of how glucose metabolism is regulated at the genetic level in tick cells.

  10. Berberine improves glucose metabolism in diabetic rats by inhibition of hepatic gluconeogenesis.

    Directory of Open Access Journals (Sweden)

    Xuan Xia

    Full Text Available Berberine (BBR is a compound originally identified in a Chinese herbal medicine Huanglian (Coptis chinensis French. It improves glucose metabolism in type 2 diabetic patients. The mechanisms involve in activation of adenosine monophosphate activated protein kinase (AMPK and improvement of insulin sensitivity. However, it is not clear if BBR reduces blood glucose through other mechanism. In this study, we addressed this issue by examining liver response to BBR in diabetic rats, in which hyperglycemia was induced in Sprague-Dawley rats by high fat diet. We observed that BBR decreased fasting glucose significantly. Gluconeogenic genes, Phosphoenolpyruvate carboxykinase (PEPCK and Glucose-6-phosphatase (G6Pase, were decreased in liver by BBR. Hepatic steatosis was also reduced by BBR and expression of fatty acid synthase (FAS was inhibited in liver. Activities of transcription factors including Forkhead transcription factor O1 (FoxO1, sterol regulatory element-binding protein 1c (SREBP1 and carbohydrate responsive element-binding protein (ChREBP were decreased. Insulin signaling pathway was not altered in the liver. In cultured hepatocytes, BBR inhibited oxygen consumption and reduced intracellular adenosine triphosphate (ATP level. The data suggest that BBR improves fasting blood glucose by direct inhibition of gluconeogenesis in liver. This activity is not dependent on insulin action. The gluconeogenic inhibition is likely a result of mitochondria inhibition by BBR. The observation supports that BBR improves glucose metabolism through an insulin-independent pathway.

  11. Role of gut microbiota in maternal glucose metabolism

    OpenAIRE

    Mao, Yushi; 毛雨詩

    2015-01-01

    Gut microbiota plays an important role in daily biological reactions. It is proved that many metabolic diseases are accompanied with pattern change of gut microbiota and pregnancy is also a process with gut microbiota remodeling. Besides, serum IGF-1 level is increased during pregnancy, but the source of increased IGF-1 remains unclear. So far, there is a paper that explored the gut microbiota in pregnant women. However, the diet of pregnant women was not unified in the study, which might hav...

  12. Bone Regulates Glucose Metabolism as an Endocrine Organ through Osteocalcin

    OpenAIRE

    2015-01-01

    Skeleton was considered as a dynamic connective tissue, which was essential for mobility, calcium homeostasis, and hematopoietic niche. However more and more evidences indicate that skeleton works not only as a structural scaffold but also as an endocrine organ, which regulates several metabolic processes. Besides osteoprotegerin (OPG), sclerostin (SOST), and Dickopf (DKK) which play essential roles in bone formation, modelling, remodelling, and homeostasis, bone can also secret hormones, suc...

  13. Low non-oxidative glucose metabolism and violent offending: an 8-year prospective follow-up study.

    Science.gov (United States)

    Virkkunen, Matti; Rissanen, Aila; Franssila-Kallunki, Anja; Tiihonen, Jari

    2009-06-30

    Violent offenders have abnormalities in their glucose metabolism as indicated by decreased glucose uptake in their prefrontal cortex and a low blood glucose nadir in the glucose tolerance test. We tested the hypothesis that low non-oxidative glucose metabolism (NOG) predicts forthcoming violent offending among antisocial males. Glucose metabolism was measured using the insulin clamp method among 49 impulsive, violent, antisocial offenders during a forensic psychiatric examination. Those offenders who committed at least one new violent crime during the 8-year follow-up had a mean NOG of 1.4 standard deviations lower than non-recidivistic offenders. In logistic regression analysis, NOG alone explained 27% of the variation in the recidivistic offending. Low non-oxidative metabolism may be a crucial component in the pathophysiology of habitually violent behavior among subjects with antisocial personality disorder. This might suggest that substances increasing glycogen formation and decreasing the risk of hypoglycemia might be potential treatments for impulsive violent behavior. PMID:19446886

  14. Dietary Fiber-Induced Improvement in Glucose Metabolism Is Associated with Increased Abundance of Prevotella

    DEFF Research Database (Denmark)

    Kovatcheva-Datchary, Petia; Nilsson, Anne; Akrami, Rozita;

    2015-01-01

    The gut microbiota plays an important role in human health by interacting with host diet, but there is substantial inter-individual variation in the response to diet. Here we compared the gut microbiota composition of healthy subjects who exhibited improved glucose metabolism following 3-day cons...

  15. Disturbed postprandial glucose metabolism and gut hormone responses in non-diabetic patients with psoriasis

    DEFF Research Database (Denmark)

    Gyldenløve, M; Vilsbøll, T; Holst, Jens Juul;

    2016-01-01

    Patients with psoriasis have increased risk of developing type 2 diabetes.(1-4) Though the aetiology is not fully understood, overrepresentation of traditional diabetes risk factors, shared genetics, and chronic inflammation likely explain some of the increased susceptibility. Glucose metabolism ...

  16. Glucose and maltose metabolism in MIG1-disrupted and MAL-constitutive strains of Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Klein, Christopher; Olsson, Lisbeth; Rønnow, B;

    1997-01-01

    The alleviation of glucose control of maltose metabolism brought about by MIG1 disruption was compared to that by MAL overexpression in a haploid Saccharomyces cerevisiae strain. The sugar consumption profiles during cultivation of the wild type, single transformants and a double transformant in ...

  17. Polychlorinated Biphenyl Exposure and Glucose Metabolism in 9-Year-Old Danish Children

    DEFF Research Database (Denmark)

    Jensen, Tina K.; Timmermann, Amalie G.; Rossing, Laura I.;

    2014-01-01

    Context: Human exposure to polychlorinated biphenyls (PCBs) has been associated to type 2 diabetes in adults. Objectives: To determine whether concurrent serum PCB concentration was associated with markers of glucose metabolism in healthy children. Design: Cross-sectional study. Settings and part...

  18. Sleep deprivation and its impact on circadian rhythms and glucose metabolism

    NARCIS (Netherlands)

    P.K. Jha

    2016-01-01

    The mammalian master pacemaker is located in the hypothalamic suprachiasmatic nucleus (SCN). The SCN generates rhythms of behavioural and metabolic processes throughout the body via both endocrine and neuronal outputs. For example, daily rhythms of sleep-wake, fasting-feeding, plasma glucose, glucos

  19. Effect of opium on glucose metabolism and lipid profiles in rats with streptozotocin-induced diabetes

    NARCIS (Netherlands)

    Sadeghian, Saeed; Boroumand, Mohammad Ali; Sotoudeh-Anvari, Maryam; Rahbani, Shahram; Sheikhfathollahi, Mahmood; Abbasi, Ali

    2009-01-01

    Background: This experimental study was performed to determine the impact of opium use on serum lipid profile and glucose metabolism in rats with streptozotocin-induced diabetes. Material and methods: To determine the effect of opium, 20 male rats were divided into control (n = 10) and opium-treated

  20. Insulin resistance for glucose metabolism in disused soleus muscle of mice

    Science.gov (United States)

    Seider, M. J.; Nicholson, W. F.; Booth, F. W.

    1981-01-01

    Results of this study on mice provide the first direct evidence of insulin resistance for glucose metabolism in skeletal muscle that has undergone a previous period of reduced muscle usage. This lack of responsiveness to insulin developed in one day and in the presence of hypoinsulinemia. Future studies will utilize the model of hindlimb immobilization to determine the causes of these changes.

  1. Effects of Reductions of Body Fat and Regional Adipose Tissue on Glucose and Lipid Metabolism Among Eldery Japanese

    OpenAIRE

    Shigeto, Kazuhiro; Koyama, Hiroshi; Takemoto, Tai-ichiro

    1989-01-01

    To evaluate effects of improvement of obesity on glucose and lipid metabolism, changes of body weight, skinfolds and biochemical parameters in glucose and lipid metabolism were examined through a six month health education on excercise and diet. Subjects were 20 men and 36 women aged from 48 to 87, who had overweight and/or glucose intolerance. Weight, relative weight and fat mass were significantly reduced after the program in both sexes. Circumference ratios were reduced only in women. The ...

  2. Lymphocyte Glucose and Glutamine Metabolism as Targets of the Anti-Inflammatory and Immunomodulatory Effects of Exercise

    OpenAIRE

    Frederick Wasinski; Gregnani, Marcos F.; Ornellas, Fábio H.; Aline V N Bacurau; Câmara, Niels O.; Ronaldo C Araujo; Reury F. Bacurau

    2014-01-01

    Glucose and glutamine are important energetic and biosynthetic nutrients for T and B lymphocytes. These cells consume both nutrients at high rates in a function-dependent manner. In other words, the pathways that control lymphocyte function and survival directly control the glucose and glutamine metabolic pathways. Therefore, lymphocytes in different functional states reprogram their glucose and glutamine metabolism to balance their requirement for ATP and macromolecule production. The tight ...

  3. End products of glucose and glutamine metabolism by L929 cells.

    Science.gov (United States)

    Lanks, K W

    1987-07-25

    Products of glucose and glutamine metabolism by L929 cells were detected and quantitated by gas chromatography and mass spectrometry of the oxime-trimethylsilyl derivatives. This method allowed detection and identification of all major carboxylic and amino acids produced in the system. Although lactic acid was expected to be the major product, alanine, citric, glutamic, aspartic, and pyruvic acids were also released into the culture medium at significant rates. Incorporation of labeled carbon from D-[U-13C]glucose showed that the alanine, lactic, and pyruvic acids were derived from glucose as was one-third of the citric acid carbon. The rate of glucose utilization for production of these end products was 29-fold greater than the rate of glucose oxidation to CO2, and calculated ATP production from alanine and pyruvate synthesis exceeded that from lactate synthesis by nearly 2-fold. Utilization of glutamine for synthesis of aspartic, glutamic, and citric acids also exceeded the rate of glutamine oxidation, thereby making end-product synthesis from glucose and glutamine the dominant cellular metabolic activity. In the absence of glucose, synthesis and intracellular levels of aspartic and glutamic acids increased, whereas synthesis and cell content of the other acids decreased markedly. This response is consistent with the metabolic pattern proposed by Moreadith and Lehninger (Moreadith, R.W., and Lehninger, A.L. (1984) J. Biol. Chem. 259, 6215-6221) in which much of the glutamine used by these cells is converted to aspartate in the absence of a pyruvate source and to aspartate or citrate in the presence of pyruvate. PMID:3611053

  4. Glucose metabolism in the antibiotic producing actinomycete Nonomuraea sp ATCC 39727

    DEFF Research Database (Denmark)

    Gunnarsson, Nina; Bruheim, Per; Nielsen, Jens

    2004-01-01

    The actinomycete Nonomuraea sp. ATCC 39727, producer of the glycopeptide A40926 that is used as precursor for the novel antibiotic dalbavancin, has an unusual carbon metabolism. Glucose is primarily metabolized via the Entner-Doudoroff (ED) pathway, although the energetically more favorable Embden...... - Meyerhof - Parnas (EMP) pathway is present in this organism. Moreover, Nonomuraea utilizes a PPi-dependent phosphofructokinase, an enzyme that has been connected with anaerobic metabolism in eukaryotes and higher plants, but recently has been recognized in several actinomycetes. In order to study its...

  5. [EXPRESSION OF GENES, WHICH CONTROL GLUCOSE METABOLISM, IN BLOOD CELLS OF THE OBESE BOYS WITH INSULIN RESISTANCE].

    Science.gov (United States)

    Tiazhka, O V; Minchenko, D O; Davydov, V V; Moliavko, O S; Budreiko, O A; Kulieshova, D K; Minchenko, O H

    2015-01-01

    We studied the expression of genes, which responsible for glucose metabolism, in the blood of obese boys with and without of insulin resistance as well as in normal (control) individuals. It was shown that the expression level of PFKFB3 gene is increased, PFKFB1 and INSIG2--is decreased, but HK2 gene--significantly does not change in the blood cells of obese boys with normal insulin sensitivity as compared to control group. Insulin resistance in obese boys leads to up-regulation of INSIG2 gene expression as well as to down-regulation of PFKFB1, PFKFB3, and HK2 genes in the blood.cells as compared to obese patients with normal insulin sensitivity. Results of this study provide evidence that obesity affects the expression of the subset of glucose metabolism-related genes in the blood cells and that insulin resistance in obesity is associated with changes in the expression level of PFKFB1, PFKFB3, HK2, and INSIG2 genes, which contribute to the development of insulin resistance as well as glucose intolerance. PMID:26827442

  6. Clinical significance of determination of serum leptin, insulin levels and blood sugar in pregnant women with glucose metabolism disturbances

    International Nuclear Information System (INIS)

    Objective: To investigate the changes of serum leptin, insulin levels and blood sugar contents in pregnant women with gestational glucose metabolism disturbances. Methods: Fasting and 3h after oral 50g glucose serum levels of leptin were measured with RIA in 36 pregnant women with glucose metabolism disturbances (gestational diabetes mellitus or gestational impaired glucose tolerance) and 34 controls. Also, fasting serum insulin levels (with CLIA) and blood sugar contents 1h after oral 50 glucose (with glucose oxidase method) were determined in all these subjects. Results: 1. Serum levels of leptin in pregnant women with glucose metabolism disturbances were 14.9 ± 4.3 μg/L (vs controls 9.8 ± 1.7 μg/L, P<0.01). 2. The serum levels of insulin and 1 h post - 50g glucose blood sugar contents in pregnant women with glucose metabolism disturbances were 12.9±4.3mU/L and 11.0±1.4mmol/L respectively, which were both significantly positively correlated with the serum leptin levels (r=0.835, r=0.758 respectively) (vs levels in controls: 8.45±3.0mU/L and 7.84±1.3mmol/L). Conclusion: Elevation of fasting serum levels of leptin was demonstrated in pregnant women with glucose metabolism disturbances and the level of leptin was positively correlated with that of insulin and blood sugar. (authors)

  7. Increased adiposity, dysregulated glucose metabolism and systemic inflammation in Galectin-3 KO mice.

    Directory of Open Access Journals (Sweden)

    Jingbo Pang

    Full Text Available Obesity and type 2 diabetes are associated with increased production of Galectin-3 (Gal-3, a protein that modulates inflammation and clearance of glucose adducts. We used Lean and Diet-induced Obese (DIO WT and Gal-3 KO mice to investigate the role of Gal-3 in modulation of adiposity, glucose metabolism and inflammation. Deficiency of Gal-3 lead to age-dependent development of excess adiposity and systemic inflammation, as indicated by elevated production of acute-phase proteins, number of circulating pro-inflammatory Ly6C(high monocytes and development of neutrophilia, microcytic anemia and thrombocytosis in 20-week-old Lean and DIO male Gal-3 KO mice. This was associated with impaired fasting glucose, heightened response to a glucose tolerance test and reduced adipose tissue expression of adiponectin, Gal-12, ATGL and PPARγ, in the presence of maintained insulin sensitivity and hepatic expression of gluconeogenic enzymes in 20-week-old Gal-3 KO mice compared to their diet-matched WT controls. Expression of PGC-1α and FGF-21 in the liver of Lean Gal-3 KO mice was comparable to that observed in DIO animals. Impaired fasting glucose and altered responsiveness to a glucose load preceded development of excess adiposity and systemic inflammation, as demonstrated in 12-week-old Gal-3 KO mice. Finally, a role for the microflora in mediating the fasting hyperglycemia, but not the excessive response to a glucose load, of 12-week-old Gal-3 KO mice was demonstrated by administration of antibiotics. In conclusion, Gal-3 is an important modulator of glucose metabolism, adiposity and inflammation.

  8. Regional Cerebral Glucose Metabolism in Novelty Seeking and Antisocial Personality: A Positron Emission Tomography Study

    Science.gov (United States)

    Park, So Hyeon; Park, Hyun Soo

    2016-01-01

    Novelty seeking (NS) and antisocial personality (ASP) are commonly exhibited by those who suffer from addictions, such as substance abuse. NS has been suggested to be a fundamental aspect of ASP. To investigate the neurobiological substrate of NS and ASP, we tested the relationship between regional cerebral glucose metabolism and the level of NS, determining the differences between individuals with and without ASP. Seventy-two healthy adults (43 males, mean age±SD=38.8±16.6 years, range=20~70 years; 29 females, 44.2±20.1 years, range=19~72 years) underwent resting-state brain positron emission tomography (PET) 40 minutes after 18F-fluorodeoxyglucose (FDG) injection. Within 10 days of the FDG PET study, participants completed Cloninger's 240-item Temperament and Character Inventory (TCI) to determine NS scores. Participants with and without ASP were grouped according to their TCI profiles. Statistical parametric mapping analysis was performed using the FDG PET and TCI profile data. NS scores positively correlated with metabolism in the left anterior cingulate gyrus and the insula on both sides of the brain and negatively correlated with metabolism in the right pallidum and putamen. Participants with ASP showed differences in cerebral glucose metabolism across various cortical and subcortical regions, mainly in the frontal and prefrontal areas. These data demonstrate altered regional cerebral glucose metabolism in individuals with NS and ASP and inform our understanding of the neurobiological substrates of problematic behaviors and personality disorders. PMID:27574485

  9. Effects of dry period length on milk production, body condition, metabolites, and hepatic glucose metabolism in dairy cows.

    Science.gov (United States)

    Weber, C; Losand, B; Tuchscherer, A; Rehbock, F; Blum, E; Yang, W; Bruckmaier, R M; Sanftleben, P; Hammon, H M

    2015-03-01

    Dry period (DP) length affects energy metabolism around calving in dairy cows as well as milk production in the subsequent lactation. The aim of the study was to investigate milk production, body condition, metabolic adaptation, and hepatic gene expression of gluconeogenic enzymes in Holstein cows (>10,000 kg milk/305 d) with 28- (n=18), 56- (n=18), and 90-d DP (n=22) length (treatment groups) in a commercial farm. Cows were fed total mixed rations ad libitum adjusted for far-off (not for 28-d DP) and close-up DP and lactation. Milk yield was recorded daily and body condition score (BCS), back fat thickness (BFT), and body weight (BW) were determined at dry off, 1 wk before expected and after calving, and on wk 2, 4, and 8 postpartum (pp). Blood samples were taken on d -56, -28, -7, 1, 7, 14, 28, and 56 relative to calving to measure plasma concentrations of metabolites and hormones. Liver biopsies (n=11 per treatment) were taken on d -10 and 10 relative to calving to determine glycogen and total liver fat concentration (LFC) and to quantify mRNA levels of pyruvate carboxylase (PC), cytosolic phosphoenolpyruvate carboxykinase, and glucose-6-phosphatase. Time course of milk yield during first 8 wk in lactation differed among treatment. Milk protein content was higher in 28-d than in 90-d DP cows. Milk fat to protein ratio was highest and milk urea was lowest in 90-d DP cows. Differences in BW, BFT, and BCS were predominantly seen before calving with greatest BW, BFT, and BCS in 90-d DP cows. Plasma concentrations of NEFA and BHBA were elevated during the transition period in all cows, and the greatest increase pp was seen in 90-d DP cows. Plasma glucose concentration decreased around calving and was greater in 28-d than in 90-d DP cows. Dry period length also affected plasma concentrations of urea, cholesterol, aspartate transaminase, and glutamate dehydrogenase. Plasma insulin concentration decreased around calving in all cows, but insulin concentration pp was

  10. Cerebral blood flow, oxygen and glucose metabolism with PET in progressive supranuclear palsy

    Energy Technology Data Exchange (ETDEWEB)

    Otsuka, Makoto; Ichiya, Yuici; Kuwabara, Yasuo (Kyushu Univ., Fukuoka (Japan). Faculty of Medicine) (and others)

    1989-11-01

    Cerebral blood flow, cerebral oxygen metabolic rate and cerebral glucose metabolic rate were measured with positron emission tomography (PET) in four patients with progressive supranuclear palsy (PSP). Decreased blood flow and hypometabolism of oxygen and glucose were found in both subcortical and cortical regions, particularly in the striatum including the head of the caudate nucleus and the frontal cortex. The coupling between blood flow and metabolism was preserved even in the regions which showed decreased blood flow and hypometabolism. These findings indicated the hypofunction, as revealed by decreased blood flow and hypometablolism on PET, both in the striatum and the frontal cortex, and which may underlie the pathophysiological mechanism of motor and mental disturbance in PSP. (author).

  11. Cerebral oxygen and glucose metabolism and blood flow in mitochondrial encephalomyopathy: a PET study

    International Nuclear Information System (INIS)

    Cerebral blood flow (CBF), oxygen metabolism (CMRO2), and glucose metabolism (CMRGlc) were measured using positron emission tomography in five patients diagnosed as having mitochondrial encephalomyopathy. The molar ratio between the oxygen and glucose consumptions was reduced diffusely, as CMRO2 was markedly decreased and CMRGlc was slightly reduced. The CBF showed less changes. The CBF increase on hypercapnia was smaller than normal, though this was not significant. CBF with hypocapnia demonstrated a significant reduction compared with the normal. These results suggest that oxidative metabolism is impaired and anaerobic glycolysis relatively stimulated, due to a primary defect of mitochondrial function, and that mild lactic acidosis occurs in brain tissue because of impaired utilisation of pyruvate in the TCA cycle. As these findings appear to indicate directly a characteristic of this disease, such measurements may be a useful tool for assessment of the pathophysiology and for diagnosis of mitochondrial encephalomyopathy. (orig.). With 1 fig., 4 tabs

  12. Cerebral blood flow, oxygen and glucose metabolism with PET in progressive supranuclear palsy

    International Nuclear Information System (INIS)

    Cerebral blood flow, cerebral oxygen metabolic rate and cerebral glucose metabolic rate were measured with positron emission tomography (PET) in four patients with progressive supranuclear palsy (PSP). Decreased blood flow and hypometabolism of oxygen and glucose were found in both subcortical and cortical regions, particularly in the striatum including the head of the caudate nucleus and the frontal cortex. The coupling between blood flow and metabolism was preserved even in the regions which showed decreased blood flow and hypometabolism. These findings indicated the hypofunction, as revealed by decreased blood flow and hypometablolism on PET, both in the striatum and the frontal cortex, and which may underlie the pathophysiological mechanism of motor and mental disturbance in PSP. (author)

  13. Deoxyglucose method for the estimation of local myocardial glucose metabolism with positron computed tomography

    International Nuclear Information System (INIS)

    The deoxyglucose method originally developed for measurements of the local cerebral metabolic rate for glucose has been investigated in terms of its application to studies of the heart with positron computed tomography (PCT) and FDG. Studies were performed in dogs to measure the tissue kinetics of FDG with PCT and by direct arterial-venous sampling. The operational equation developed in our laboratory as an extension of the Sokoloff model was used to analyze the data. The FDG method accurately predicted the true MMRGlc even when the glucose metabolic rate was normal but myocardial blood flow (MBF) was elevated 5 times the control value or when metabolism was reduced to 10% of normal and MBF increased 5 times normal. Improvements in PCT resolution are required to improve the accuracy of the estimates of the rate constants and the MMRGlc

  14. Depression, anxiety and glucose metabolism in the general dutch population: the new Hoorn study.

    Directory of Open Access Journals (Sweden)

    Vanessa Bouwman

    Full Text Available BACKGROUND: There is a well recognized association between depression and diabetes. However, there is little empirical data about the prevalence of depressive symptoms and anxiety among different groups of glucose metabolism in population based samples. The aim of this study was to determine whether the prevalence of increased levels of depression and anxiety is different between patients with type 2 diabetes and subjects with impaired glucose metabolism (IGM and normal glucose metabolism (NGM. METHODOLOGY/PRINCIPAL FINDINGS: Cross-sectional data from a population-based cohort study of 2667 residents, 1261 men and 1406 women aged 40-65 years from the Hoorn region, the Netherlands. Depressive symptoms and anxiety were measured using the Centre for Epidemiologic Studies Depression Scale (CES-D, score >or=16 and the Hospital Anxiety and Depression Scale--Anxiety Subscale (HADS-A, score >or=8, respectively. Glucose metabolism status was determined by oral glucose tolerance test. In the total study population the prevalence of depressive symptoms and anxiety for the NGM, IGM and type 2 diabetes were 12.5, 12.2 and 21.0% (P = 0.004 and 15.0, 15.3 and 19.9% (p = 0.216, respectively. In men, the prevalence of depressive symptoms was 7.7, 9.5 and 19.6% (p<0.001, and in women 16.4, 15.8 and 22.6 (p = 0.318, for participants with NGM, IGM and type 2 diabetes, respectively. Anxiety was not associated with glucose metabolism when stratified for sex. Intergroup differences (NGM vs. IGM and IGM vs. type 2 diabetes revealed that higher prevalences of depressive symptoms are mainly manifested in participants with type 2 diabetes, and not in participants with IGM. CONCLUSIONS: Depressive symptoms, but not anxiety are associated with glucose metabolism. This association is mainly determined by a higher prevalence of depressive symptoms in participants with type 2 diabetes and not in participants with IGM.

  15. Acute Alcohol Intoxication Decreases Glucose Metabolism but Increases Acetate Uptake in the Human Brain

    Science.gov (United States)

    Volkow, Nora D.; Kim, Sung Won; Wang, Gene-Jack; Alexoff, David; Logan, Jean; Muench, Lisa; Shea, Colleen; Telang, Frank; Fowler, Joanna S.; Wong, Christopher; Benveniste, Helene; Tomasi, Dardo

    2012-01-01

    Alcohol intoxication results in marked reductions in brain glucose metabolism, which we hypothesized reflect not just its GABAergic enhancing effects but also metabolism of acetate as an alternative brain energy source. To test this hypothesis we separately assessed the effects of alcohol intoxication on brain glucose and acetate metabolism using Positron Emission Tomography (PET). We found that alcohol intoxication significantly decreased whole brain glucose metabolism (measured with FDG) with the largest decrements in cerebellum and occipital cortex and the smallest in thalamus. In contrast, alcohol intoxication caused a significant increase in [1-11C]acetate brain uptake (measured as standard uptake value, SUV), with the largest increases occurring in cerebellum and the smallest in thalamus. In heavy alcohol drinkers [1-11C]acetate brain uptake during alcohol challenge trended to be higher than in occasional drinkers (p <0.06) and the increases in [1-11C]acetate uptake in cerebellum with alcohol were positively associated with the reported amount of alcohol consumed (r=0.66, p<0.01). Our findings corroborate a reduction of brain glucose metabolism during intoxication and document an increase in brain acetate uptake. The opposite changes observed between regional brain metabolic decrements and regional increases in [1-11C]acetate uptake support the hypothesis that during alcohol intoxication the brain may rely on acetate as an alternative brain energy source and provides preliminary evidence that heavy alcohol exposures may facilitate the use of acetate as an energy substrate. These findings raise the question of the potential therapeutic benefits that increasing plasma acetate concentration (ie ketogenic diets) may have in alcoholics undergoing alcohol detoxification. PMID:22947541

  16. Bile acid sequestration reduces plasma glucose levels in db/db mice by increasing its metabolic clearance rate.

    Directory of Open Access Journals (Sweden)

    Maxi Meissner

    Full Text Available AIMS/HYPOTHESIS: Bile acid sequestrants (BAS reduce plasma glucose levels in type II diabetics and in murine models of diabetes but the mechanism herein is unknown. We hypothesized that sequestrant-induced changes in hepatic glucose metabolism would underlie reduced plasma glucose levels. Therefore, in vivo glucose metabolism was assessed in db/db mice on and off BAS using tracer methodology. METHODS: Lean and diabetic db/db mice were treated with 2% (wt/wt in diet Colesevelam HCl (BAS for 2 weeks. Parameters of in vivo glucose metabolism were assessed by infusing [U-(13C]-glucose, [2-(13C]-glycerol, [1-(2H]-galactose and paracetamol for 6 hours, followed by mass isotopologue distribution analysis, and related to metabolic parameters as well as gene expression patterns. RESULTS: Compared to lean mice, db/db mice displayed an almost 3-fold lower metabolic clearance rate of glucose (p = 0.0001, a ∼300% increased glucokinase flux (p = 0.001 and a ∼200% increased total hepatic glucose production rate (p = 0.0002. BAS treatment increased glucose metabolic clearance rate by ∼37% but had no effects on glucokinase flux nor total hepatic or endogenous glucose production. Strikingly, BAS-treated db/db mice displayed reduced long-chain acylcarnitine content in skeletal muscle (p = 0.0317 but not in liver (p = 0.189. Unexpectedly, BAS treatment increased hepatic FGF21 mRNA expression 2-fold in lean mice (p = 0.030 and 3-fold in db/db mice (p = 0.002. CONCLUSIONS/INTERPRETATION: BAS induced plasma glucose lowering in db/db mice by increasing metabolic clearance rate of glucose in peripheral tissues, which coincided with decreased skeletal muscle long-chain acylcarnitine content.

  17. Ozone induces glucose intolerance and systemic metabolic effects in young and aged brown Norway rats

    Energy Technology Data Exchange (ETDEWEB)

    Bass, V. [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Gordon, C.J.; Jarema, K.A.; MacPhail, R.C. [Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Cascio, W.E. [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Phillips, P.M. [Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Ledbetter, A.D.; Schladweiler, M.C. [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Andrews, D. [Research Cores Unit, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Miller, D. [Curriculum in Toxicology, University of North Carolina, Chapel Hill, NC (United States); Doerfler, D.L. [Research Cores Unit, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Kodavanti, U.P., E-mail: kodavanti.urmila@epa.gov [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States)

    2013-12-15

    Air pollutants have been associated with increased diabetes in humans. We hypothesized that ozone would impair glucose homeostasis by altering insulin signaling and/or endoplasmic reticular (ER) stress in young and aged rats. One, 4, 12, and 24 month old Brown Norway (BN) rats were exposed to air or ozone, 0.25 or 1.0 ppm, 6 h/day for 2 days (acute) or 2 d/week for 13 weeks (subchronic). Additionally, 4 month old rats were exposed to air or 1.0 ppm ozone, 6 h/day for 1 or 2 days (time-course). Glucose tolerance tests (GTT) were performed immediately after exposure. Serum and tissue biomarkers were analyzed 18 h after final ozone for acute and subchronic studies, and immediately after each day of exposure in the time-course study. Age-related glucose intolerance and increases in metabolic biomarkers were apparent at baseline. Acute ozone caused hyperglycemia and glucose intolerance in rats of all ages. Ozone-induced glucose intolerance was reduced in rats exposed for 13 weeks. Acute, but not subchronic ozone increased α{sub 2}-macroglobulin, adiponectin and osteopontin. Time-course analysis indicated glucose intolerance at days 1 and 2 (2 > 1), and a recovery 18 h post ozone. Leptin increased day 1 and epinephrine at all times after ozone. Ozone tended to decrease phosphorylated insulin receptor substrate-1 in liver and adipose tissues. ER stress appeared to be the consequence of ozone induced acute metabolic impairment since transcriptional markers of ER stress increased only after 2 days of ozone. In conclusion, acute ozone exposure induces marked systemic metabolic impairments in BN rats of all ages, likely through sympathetic stimulation. - Highlights: • Air pollutants have been associated with increased diabetes in humans. • Acute ozone exposure produces profound metabolic alterations in rats. • Age influences metabolic risk factors in aging BN rats. • Acute metabolic effects are reversible and repeated exposure reduces these effects. • Ozone

  18. Aerobic glucose metabolism of Saccharomyces kluyveri: Growth, metabolite production, and quantification of metabolic fluxes

    DEFF Research Database (Denmark)

    Møller, Kasper; Christensen, B.; Förster, Jochen;

    2002-01-01

    growth in aerobic glucose-limited continuous cultivation. It was found that in S. kluyveri the flux into the pentose phosphate pathway was 18.8 mmole per 100 mmole glucose consumed during respiratory growth in aerobic glucose-limited continuous cultivation. Such a low flux into the pentose phosphate...... pathway cannot provide the cell with enough NADPH for biomass formation which is why the remaining NADPH will have to be provided by another pathway. During batch cultivation of S. kluyveri the tricarboxylic acid cycle was working as a cycle with a considerable flux, that is in sharp contrast to what has...

  19. Danthron activates AMP-activated protein kinase and regulates lipid and glucose metabolism in vitro

    Institute of Scientific and Technical Information of China (English)

    Rong ZHOU; Ling WANG; Xing XU; Jing CHEN; Li-hong HU; Li-li CHEN; Xu SHEN

    2013-01-01

    Aim:To discover the active compound on AMP-activated protein kinase (AMPK) activation and investigate the effects of the active compound 1,8-dihydroxyanthraquinone (danthron) from the traditional Chinese medicine rhubarb on AMPK-mediated lipid and glucose metabolism in vitro.Methods:HepG2 and C2C12 cells were used.Cell viability was determined using MTT assay.Real-time PCR was performed to measure the gene expression.Western blotting assay was applied to investigate the protein phosphorylation level.Enzymatic assay kits were used to detect the total cholesterol (TC),triglyceride (TG) and glucose contents.Results:Danthron (0.1,1,and 10 μmol/L) dose-dependently promoted the phosphorylation of AMPK and acetyl-CoA carboxylase (ACC)in both HepG2 and C2C12 cells.Meanwhile,danthron treatment significantly reduced the lipid synthesis related sterol regulatory element-binding protein 1c (SREBP1c) and fatty acid synthetase (FAS) gene expressions,and the TC and TG levels.In addition,danthron treatment efficiently increased glucose consumption.The actions of danthron on lipid and glucose metabolism were abolished or reversed by co-treatment with the AMPK inhibitor compound C.Conclusion:Danthron effectively reduces intracellular lipid contents and enhanced glucose consumption in vitro via activation of AMPK signaling pathway.

  20. Cellular pathways of energy metabolism in the brain: is glucose used by neurons or astrocytes?

    Science.gov (United States)

    Nehlig, Astrid; Coles, Jonathan A

    2007-09-01

    Most techniques presently available to measure cerebral activity in humans and animals, i.e. positron emission tomography (PET), autoradiography, and functional magnetic resonance imaging, do not record the activity of neurons directly. Furthermore, they do not allow the investigator to discriminate which cell type is using glucose, the predominant fuel provided to the brain by the blood. Here, we review the experimental approaches aimed at determining the percentage of glucose that is taken up by neurons and by astrocytes. This review is integrated in an overview of the current concepts on compartmentation and substrate trafficking between astrocytes and neurons. In the brain in vivo, about half of the glucose leaving the capillaries crosses the extracellular space and directly enters neurons. The other half is taken up by astrocytes. Calculations suggest that neurons consume more energy than do astrocytes, implying that astrocytes transfer an intermediate substrate to neurons. Experimental approaches in vitro on the honeybee drone retina and on the isolated vagus nerve also point to a continuous transfer of intermediate metabolites from glial cells to neurons in these tissues. Solid direct evidence of such transfer in the mammalian brain in vivo is still lacking. PET using [(18)F]fluorodeoxyglucose reflects in part glucose uptake by astrocytes but does not indicate to which step the glucose taken up is metabolized within this cell type. Finally, the sequence of metabolic changes occurring during a transient increase of electrical activity in specific regions of the brain remains to be clarified. PMID:17659529

  1. Lactate as a cerebral metabolic fuel for glucose-6-phosphatase deficient children.

    Science.gov (United States)

    Fernandes, J; Berger, R; Smit, G P

    1984-04-01

    The main substrates for brain energy metabolism were measured in blood samples taken from the carotid artery and the internal jugular bulb of four children with glycogen storage disease caused by deficiency of glucose-6-phosphatase. Multiple paired arterial and venous blood samples were analyzed for glucose, lactate, pyruvate, D-beta-hydroxybutyrate, acetoacetate, glycerol and O2, and the arteriovenous differences of the concentrations were calculated. In the first three patients the substrates were measured in two successive conditions with lower and higher glucose-intake, respectively, inducing reciprocally higher and lower concentrations of blood lactate. In the fourth patient medium chain triglycerides were administered simultaneously with the glucose-containing gastric drip feeding. Lactate appeared to be taken up significantly. It consumed, if completely oxidized, between 40-50% of the total O2 uptake in most cases. Only once in one patient the uptake of lactate switched to its release, when the blood lactate level decreased to normal. D-beta-hydroxybutyrate and acetoacetate arteriovenous (A-V) differences were small to negligible and these ketone bodies, therefore, did not contribute substantially to the brain's energy expenditure. Glycerol was not metabolized by the brain. Lactate thus appeared to be the second brain fuel next to glucose. It may protect the brain against fuel depletion in case of hypoglycemia.

  2. Long-Term Feeding of Chitosan Ameliorates Glucose and Lipid Metabolism in a High-Fructose-Diet-Impaired Rat Model of Glucose Tolerance

    Directory of Open Access Journals (Sweden)

    Shing-Hwa Liu

    2015-12-01

    Full Text Available This study was designed to investigate the effects of long-term feeding of chitosan on plasma glucose and lipids in rats fed a high-fructose (HF diet (63.1%. Male Sprague-Dawley rats aged seven weeks were used as experimental animals. Rats were divided into three groups: (1 normal group (normal; (2 HF group; (3 chitosan + HF group (HF + C. The rats were fed the experimental diets and drinking water ad libitum for 21 weeks. The results showed that chitosan (average molecular weight was about 3.8 × 105 Dalton and degree of deacetylation was about 89.8% significantly decreased body weight, paraepididymal fat mass, and retroperitoneal fat mass weight, but elevated the lipolysis rate in retroperitoneal fats of HF diet-fed rats. Supplementation of chitosan causes a decrease in plasma insulin, tumor necrosis factor (TNF-α, Interleukin (IL-6, and leptin, and an increase in plasma adiponectin. The HF diet increased hepatic lipids. However, intake of chitosan reduced the accumulation of hepatic lipids, including total cholesterol (TC and triglyceride (TG contents. In addition, chitosan elevated the excretion of fecal lipids in HF diet-fed rats. Furthermore, chitosan significantly decreased plasma TC, low-density lipoprotein cholesterol (LDL-C, very-low-density lipoprotein cholesterol (VLDL-C, the TC/high-density lipoprotein cholesterol (HDL-C ratio, and increased the HDL-C/(LDL-C + VLDL-C ratio, but elevated the plasma TG and free fatty acids concentrations in HF diet-fed rats. Plasma angiopoietin-like 4 (ANGPTL4 protein expression was not affected by the HF diet, but it was significantly increased in chitosan-supplemented, HF-diet-fed rats. The high-fructose diet induced an increase in plasma glucose and impaired glucose tolerance, but chitosan supplementation decreased plasma glucose and improved impairment of glucose tolerance and insulin tolerance. Taken together, these results indicate that supplementation with chitosan can improve the impairment

  3. Long-Term Feeding of Chitosan Ameliorates Glucose and Lipid Metabolism in a High-Fructose-Diet-Impaired Rat Model of Glucose Tolerance.

    Science.gov (United States)

    Liu, Shing-Hwa; Cai, Fang-Ying; Chiang, Meng-Tsan

    2015-12-01

    This study was designed to investigate the effects of long-term feeding of chitosan on plasma glucose and lipids in rats fed a high-fructose (HF) diet (63.1%). Male Sprague-Dawley rats aged seven weeks were used as experimental animals. Rats were divided into three groups: (1) normal group (normal); (2) HF group; (3) chitosan + HF group (HF + C). The rats were fed the experimental diets and drinking water ad libitum for 21 weeks. The results showed that chitosan (average molecular weight was about 3.8 × 10⁵ Dalton and degree of deacetylation was about 89.8%) significantly decreased body weight, paraepididymal fat mass, and retroperitoneal fat mass weight, but elevated the lipolysis rate in retroperitoneal fats of HF diet-fed rats. Supplementation of chitosan causes a decrease in plasma insulin, tumor necrosis factor (TNF)-α, Interleukin (IL)-6, and leptin, and an increase in plasma adiponectin. The HF diet increased hepatic lipids. However, intake of chitosan reduced the accumulation of hepatic lipids, including total cholesterol (TC) and triglyceride (TG) contents. In addition, chitosan elevated the excretion of fecal lipids in HF diet-fed rats. Furthermore, chitosan significantly decreased plasma TC, low-density lipoprotein cholesterol (LDL-C), very-low-density lipoprotein cholesterol (VLDL-C), the TC/high-density lipoprotein cholesterol (HDL-C) ratio, and increased the HDL-C/(LDL-C + VLDL-C) ratio, but elevated the plasma TG and free fatty acids concentrations in HF diet-fed rats. Plasma angiopoietin-like 4 (ANGPTL4) protein expression was not affected by the HF diet, but it was significantly increased in chitosan-supplemented, HF-diet-fed rats. The high-fructose diet induced an increase in plasma glucose and impaired glucose tolerance, but chitosan supplementation decreased plasma glucose and improved impairment of glucose tolerance and insulin tolerance. Taken together, these results indicate that supplementation with chitosan can improve the impairment of

  4. Abnormal Glucose Tolerance Is Associated with a Reduced Myocardial Metabolic Flexibility in Patients with Dilated Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Domenico Tricò

    2016-01-01

    Full Text Available Dilated cardiomyopathy (DCM is characterized by a metabolic shift from fat to carbohydrates and failure to increase myocardial glucose uptake in response to workload increments. We verified whether this pattern is influenced by an abnormal glucose tolerance (AGT. In 10 patients with DCM, 5 with normal glucose tolerance (DCM-NGT and 5 with AGT (DCM-AGT, and 5 non-DCM subjects with AGT (N-AGT, we measured coronary blood flow and arteriovenous differences of oxygen and metabolites during Rest, Pacing (at 130 b/min, and Recovery. Myocardial lactate exchange and oleate oxidation were also measured. At Rest, DCM patients showed a reduced nonesterified fatty acids (NEFA myocardial uptake, while glucose utilization increased only in DCM-AGT. In response to Pacing, glucose uptake promptly rose in N-AGT (from 72 ± 21 to 234 ± 73 nmol/min/g, p<0.05, did not change in DCM-AGT, and slowly increased in DCM-NGT. DCM-AGT sustained the extra workload by increasing NEFA oxidation (from 1.3 ± 0.2 to 2.9 ± 0.1 μmol/min/gO2 equivalents, p<0.05, while DCM-NGT showed a delayed increase in glucose uptake. Substrate oxidation rates paralleled the metabolites data. The presence of AGT in patients with DCM exacerbates both the shift from fat to carbohydrates in resting myocardial metabolism and the reduced myocardial metabolic flexibility in response to an increased workload. This trial is registered with ClinicalTrial.gov NCT02440217.

  5. Myocardial glucose transporters and glycolytic metabolism during ischemia in hyperglycemic diabetic swine.

    Science.gov (United States)

    Stanley, W C; Hall, J L; Smith, K R; Cartee, G D; Hacker, T A; Wisneski, J A

    1994-01-01

    We assessed the effects of 4 weeks of streptozocin-induced diabetes on regional myocardial glycolytic metabolism during ischemia in anesthetized open-chest domestic swine. Diabetic animals were hyperglycemic (12.0 +/- 2.1 v 6.6 +/- .5 mmol/L), and had lower fasting insulin levels (27 +/- 8 v 79 +/- 19 pmol/L). Myocardial glycolytic metabolism was studied with coronary flow controlled by an extracorporeal perfusion circuit. Left anterior descending coronary artery (LAD) flow was decreased by 50% for 45 minutes and left circumflex (CFX) flow was constant. Myocardial glucose uptake and extraction were measured with D-[6-3H]-2-deoxyglucose (DG) and myocardial blood flow was measured with microspheres. The rate of glucose conversion to lactate and lactate uptake and output were assessed with a continuous infusion of [6-14C]glucose and [U-13C]lactate into the coronary perfusion circuit. Both diabetic and nondiabetic animals had sharp decreases in subendocardial blood flow during ischemia (from 1.21 +/- .10 to 0.43 +/- .08 mL.g-1.min-1 in the nondiabetic group, and from 1.30 +/- .15 to 0.55 +/- .11 in the diabetic group). Diabetes had no significant effect on myocardial glucose uptake or glucose conversion to lactate under either well-perfused or ischemic conditions. Forty-five minutes of ischemia resulted in significant glycogen depletion in the subendocardium in both nondiabetic and diabetic animals, with no differences between the two groups. Glycolytic metabolism is not impaired in hyperglycemic diabetic swine after 1 month of the disease when compared with that in normoglycemic nondiabetic animals. The myocardial content of the insulin-regulatable glucose transporter (GLUT 4) was measured in left ventricular biopsies.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Fructose Alters Intermediary Metabolism of Glucose in Human Adipocytes and Diverts Glucose to Serine Oxidation in the One–Carbon Cycle Energy Producing Pathway

    Directory of Open Access Journals (Sweden)

    Vijayalakshmi Varma

    2015-06-01

    Full Text Available Increased consumption of sugar and fructose as sweeteners has resulted in the utilization of fructose as an alternative metabolic fuel that may compete with glucose and alter its metabolism. To explore this, human Simpson-Golabi-Behmel Syndrome (SGBS preadipocytes were differentiated to adipocytes in the presence of 0, 1, 2.5, 5 or 10 mM of fructose added to a medium containing 5 mM of glucose representing the normal blood glucose concentration. Targeted tracer [1,2-13C2]-d-glucose fate association approach was employed to examine the influence of fructose on the intermediary metabolism of glucose. Increasing concentrations of fructose robustly increased the oxidation of [1,2-13C2]-d-glucose to 13CO2 (p < 0.000001. However, glucose-derived 13CO2 negatively correlated with 13C labeled glutamate, 13C palmitate, and M+1 labeled lactate. These are strong markers of limited tricarboxylic acid (TCA cycle, fatty acid synthesis, pentose cycle fluxes, substrate turnover and NAD+/NADP+ or ATP production from glucose via complete oxidation, indicating diminished mitochondrial energy metabolism. Contrarily, a positive correlation was observed between glucose-derived 13CO2 formed and 13C oleate and doses of fructose which indicate the elongation and desaturation of palmitate to oleate for storage. Collectively, these results suggest that fructose preferentially drives glucose through serine oxidation glycine cleavage (SOGC pathway one-carbon cycle for NAD+/NADP+ production that is utilized in fructose-induced lipogenesis and storage in adipocytes.

  7. Plasma antioxidants and brain glucose metabolism in elderly subjects with cognitive complaints

    Energy Technology Data Exchange (ETDEWEB)

    Picco, Agnese; Ferrara, Michela; Arnaldi, Dario; Brugnolo, Andrea; Nobili, Flavio [University of Genoa and IRCCS San Martino-IST, Clinical Neurology, Department of Neuroscience (DINOGMI), Largo P. Daneo, 3, 16132, Genoa (Italy); Polidori, M.C. [University of Cologne, Institute of Geriatrics, Cologne (Germany); Cecchetti, Roberta; Baglioni, Mauro; Bastiani, Patrizia; Mecocci, Patrizia [University of Perugia, Institute of Gerontology and Geriatrics, Department of Clinical and Experimental Medicine, Perugia (Italy); Morbelli, Silvia; Bossert, Irene [University of Genoa and IRCCS San Martino-IST, Nuclear Medicine, Department of Health Science (DISSAL), Genoa (Italy); Fiorucci, Giuliana; Dottorini, Massimo Eugenio [Nuclear Medicine, S. M. della Misericordia Hospital, Perugia (Italy)

    2014-04-15

    The role of oxidative stress is increasingly recognized in cognitive disorders of the elderly, notably Alzheimer's disease (AD). In these subjects brain{sup 18}F-FDG PET is regarded as a reliable biomarker of neurodegeneration. We hypothesized that oxidative stress could play a role in impairing brain glucose utilization in elderly subjects with increasing severity of cognitive disturbance. The study group comprised 85 subjects with cognitive disturbance of increasing degrees of severity including 23 subjects with subjective cognitive impairment (SCI), 28 patients with mild cognitive impairment and 34 patients with mild AD. In all subjects brain FDG PET was performed and plasma activities of extracellular superoxide dismutase (eSOD), catalase and glutathione peroxidase were measured. Voxel-based analysis (SPM8) was used to compare FDG PET between groups and to evaluate correlations between plasma antioxidants and glucose metabolism in the whole group of subjects, correcting for age and Mini-Mental State Examination score. Brain glucose metabolism progressively decreased in the bilateral posterior temporoparietal and cingulate cortices across the three groups, from SCI to mild AD. eSOD activity was positively correlated with glucose metabolism in a large area of the left temporal lobe including the superior, middle and inferior temporal gyri and the fusiform gyrus. These results suggest a role of oxidative stress in the impairment of glucose utilization in the left temporal lobe structures in elderly patients with cognitive abnormalities, including AD and conditions predisposing to AD. Further studies exploring the oxidative stress-energy metabolism axis are considered worthwhile in larger groups of these patients in order to identify pivotal pathophysiological mechanisms and innovative therapeutic opportunities. (orig.)

  8. Hormone and glucose metabolic effects of compound cyproterone acetate in women with polycystic ovarian syndrome

    International Nuclear Information System (INIS)

    To investigate the clinical efficacy of compound cyproterone acetate(CPY) in the treatment of polycystic ovarian syndrome(PCOS) and study hormone and glucose metabolic effects, thirty-five PCOS patients were treated by compound cyproterone acetate for 3 cycles. The serum LH, FSH and T levels, fasting glucose and fasting insulin were determined before and after 3 cycle's treatment. The results showed that 34 patients had regular menses during CPY therapy. The hirsute and acne score decreased significantly(P0.05). The results indicate that the compound cyproterone acetate had anti-androgenic effects on PCOS patients and improved their endocrine function and clinical syndrome. (authors)

  9. Cereal Processing Influences Postprandial Glucose Metabolism as Well as the GI Effect

    OpenAIRE

    Vinoy, Sophie; Normand, Sylvie; Meynier, Alexandra; Sothier, Monique; Louche-Pelissier, Corinne; Peyrat, Jocelyne; Maitrepierre, Christine; Nazare, Julie-Anne; Brand-Miller, Jeannie; Laville, Martine

    2015-01-01

    Objective: Technological processes may influence the release of glucose in starch. The aim of this study was to compare the metabolic response and the kinetics of appearance of exogenous glucose from 2 cereal products consumed at breakfast. Methods: Twenty-five healthy men were submitted to a randomized, open, crossover study that was divided into 2 parts: 12 of the 25 subjects were included in the “isotope part,” and the 13 other subjects were included in the “glycemic part.” On test days, s...

  10. Effect of abomasal glucose infusion on splanchnic amino acid metabolism in periparturient dairy cows

    DEFF Research Database (Denmark)

    Larsen, Mogens; Kristensen, Niels Bastian

    2009-01-01

    Six Holstein cows fitted with ruminal cannulas and permanent indwelling catheters in the portal vein, hepatic vein, mesenteric vein, and an artery were used to study the effects of abomasal glucose infusion on splanchnic AA metabolism. The experimental design was a split plot, with cow as the whole...... plot, treatment as the whole-plot factor and days in milk (DIM) as the subplot factor. Cows were assigned to 1 of 2 treatments: control or infusion of 1,500 g/d of glucose into the abomasum from the day of calving to 29 DIM....

  11. Effect of Antibiotics on Gut Microbiota, Gut Hormones and Glucose Metabolism

    DEFF Research Database (Denmark)

    Mikkelsen, Kristian H; Frost, Morten; Bahl, Martin Iain;

    2015-01-01

    with measurements of postprandial glucose tolerance and postprandial release of insulin and gut hormones were performed before, immediately after and 6 weeks after a 4-day, broad-spectrum, per oral antibiotic cocktail (vancomycin 500 mg, gentamycin 40 mg and meropenem 500 mg once-daily) in a group of 12 lean...... with vancomycin, gentamycin and meropenem induced shifts in gut microbiota composition that had no clinically relevant short or long-term effects on metabolic variables in healthy glucose-tolerant males. clinicaltrials.gov NCT01633762....

  12. TAp63 is a master transcriptional regulator of lipid and glucose metabolism

    Science.gov (United States)

    Su, Xiaohua; Gi, Young Jin; Chakravarti, Deepavali; Chan, Io Long; Zhang, Aijun; Xia, Xuefeng; Tsai, Kenneth Y.; Flores, Elsa R.

    2012-01-01

    SUMMARY TAp63 prevents premature aging suggesting a link to genes that regulate longevity. Further characterization of TAp63−/− mice revealed that these mice develop obesity, insulin resistance, and glucose intolerance, similar to those seen in mice lacking two key metabolic regulators, Silent information regulator T1 (Sirt1) and AMPK. While the roles of Sirt1 and AMPK in metabolism have been well studied, their upstream regulators are not well understood. We found that TAp63 is important in regulating energy metabolism by accumulating in response to metabolic stress and transcriptionally activating Sirt1, AMPKα2, and LKB1 resulting in increased fatty acid synthesis and decreased fatty acid oxidation. Moreover, we found that TAp63 lowers blood glucose levels in response to metformin. Restoration of Sirt1, AMPKα2, and LKB1 in TAp63−/− mice rescued some of the metabolic defects of the TAp63−/− mice. Our study defines a role for TAp63 in metabolism and weight control. PMID:23040072

  13. Prenatal Exposures to Multiple Thyroid Hormone Disruptors: Effects on Glucose and Lipid Metabolism.

    Science.gov (United States)

    Molehin, Deborah; Dekker Nitert, Marloes; Richard, Kerry

    2016-01-01

    Background. Thyroid hormones (THs) are essential for normal human fetal development and play a major role in the regulation of glucose and lipid metabolism. Delivery of TH to target tissues is dependent on processes including TH synthesis, transport, and metabolism. Thyroid hormone endocrine disruptors (TH-EDCs) are chemical substances that interfere with these processes, potentially leading to adverse pregnancy outcomes. Objectives. This review focuses on the effects of prenatal exposures to combinations of TH-EDCs on fetal and neonatal glucose and lipid metabolism and also discusses the various mechanisms by which TH-EDCs interfere with other hormonal pathways. Methods. We conducted a comprehensive narrative review on the effects of TH-EDCs with particular emphasis on exposure during pregnancy. Discussion. TH imbalance has been linked to many metabolic processes and the effects of TH imbalance are particularly pronounced in early fetal development due to fetal dependence on maternal TH for proper growth and development. The pervasive presence of EDCs in the environment results in ubiquitous exposure to either single or mixtures of EDCs with deleterious effects on metabolism. Conclusions. Further evaluation of combined effects of TH-EDCs on fetal metabolic endpoints could improve advice provided to expectant mothers. PMID:26989557

  14. Prenatal Exposures to Multiple Thyroid Hormone Disruptors: Effects on Glucose and Lipid Metabolism

    Directory of Open Access Journals (Sweden)

    Deborah Molehin

    2016-01-01

    Full Text Available Background. Thyroid hormones (THs are essential for normal human fetal development and play a major role in the regulation of glucose and lipid metabolism. Delivery of TH to target tissues is dependent on processes including TH synthesis, transport, and metabolism. Thyroid hormone endocrine disruptors (TH-EDCs are chemical substances that interfere with these processes, potentially leading to adverse pregnancy outcomes. Objectives. This review focuses on the effects of prenatal exposures to combinations of TH-EDCs on fetal and neonatal glucose and lipid metabolism and also discusses the various mechanisms by which TH-EDCs interfere with other hormonal pathways. Methods. We conducted a comprehensive narrative review on the effects of TH-EDCs with particular emphasis on exposure during pregnancy. Discussion. TH imbalance has been linked to many metabolic processes and the effects of TH imbalance are particularly pronounced in early fetal development due to fetal dependence on maternal TH for proper growth and development. The pervasive presence of EDCs in the environment results in ubiquitous exposure to either single or mixtures of EDCs with deleterious effects on metabolism. Conclusions. Further evaluation of combined effects of TH-EDCs on fetal metabolic endpoints could improve advice provided to expectant mothers.

  15. Visceral adiposity influences glucose and glycogen metabolism in control and hyperlipidic-fed animals

    Directory of Open Access Journals (Sweden)

    Danielle Kaiser de Souza

    2013-04-01

    Full Text Available Introduction: Evidences suggest that fat intake, visceral obesity and intracellular lipids are related to insulin impairment. Objective: The objective of the present paper was correlate visceral obesity and metabolic alterations in control (CTR and hyperlipidic cafeteria diet (CFT fed animals. Methods: After 6 months of diet treatment, liver and muscle of the male rats were utilized to determined glucose uptake and glycogen metabolism after administration of 0.4I U/kg insulin in vivo, and correlate the visceral adiposity to these two parameters. Results: Ample range of physiologic answers to body composition in metabolic profile of the both diets was found. No differences were found in glycemia and triacylglycerol after insulin action in both groups, however CFT group accumulated higher adiposity, mostly visceral fat, and showed lower glycogen content in the liver. We also found an inverse correlation between visceral adiposity and glucose uptake and a decrease of the glycogen synthase active form in the liver. CTR animals demonstrated an inverse correlation between glucose uptake and visceral adiposity in the muscle. Discussion and conclusion: It was observed a variability of metabolic alterations in animals which can be related to degree of accumulation of abdominal adiposity and ingestion of diet fats. Further studies will be required to clarify the reasons for the observed liver alterations in CFT and muscle alterations in CTR animals.

  16. The effect of microbial glucose metabolism on bytownite feldspar dissolution rates between 5° and 35°C

    Science.gov (United States)

    Welch, S. A.; Ullman, W. J.

    1999-10-01

    The rate of Si release from dissolving bytownite feldspar in abiotic batch reactors increased as temperatures increased from 5° to 35°C. Metabolically inert subsurface bacteria (bacteria in solution with no organic substrate) had no apparent effect on dissolution rates over this temperature range. When glucose was added to the microbial cultures, the bacteria responded by producing gluconic acid, which catalyzed the dissolution reaction by both proton- and ligand-promoted mechanisms. The metabolic production, excretion, and consumption of gluconic acid in the course of glucose oxidation, and therefore, the degree of microbial enhancement of mineral dissolution, depend on temperature. There was little accumulation of gluconic acid and therefore, no significant enhancement of mineral dissolution rates at 35°C compared to the abiotic controls. At 20°C, gluconate accumulated in the experimental solutions only at the beginning of the experiment and led to a twofold increase in dissolved Si release compared to the controls, primarily by the ligand-promoted dissolution mechanism. There was significant accumulation of gluconic acid in the 5°C experiment, which is reflected in a significant reduction in pH, leading to 20-fold increase in Si release, primarily attributable to the proton-promoted dissolution mechanism. These results indicate that bacteria and microbial metabolism can affect mineral dissolution rates in organic-rich, nutrient-poor environments; the impact of microbial metabolism on aluminum silicate dissolution rates may be greater at lower rather than at higher temperatures due to the metabolic accumulation of dissolution-enhancing protons and ligands in solution.

  17. A comprehensive metabolic profile of cultured astrocytes using isotopic transient metabolic flux analysis and 13C-labeled glucose

    Directory of Open Access Journals (Sweden)

    Ana I Amaral

    2011-09-01

    Full Text Available Metabolic models have been used to elucidate important aspects of brain metabolism in recent years. This work applies for the first time the concept of isotopic transient 13C metabolic flux analysis (MFA to estimate intracellular fluxes of cultured astrocytes. This methodology comprehensively explores the information provided by 13C labeling time-courses of intracellular metabolites after administration of a 13C labeled substrate. Cells were incubated with medium containing [1-13C]glucose for 24 h and samples of cell supernatant and extracts collected at different time-points were then analyzed by mass spectrometry and/or HPLC. Metabolic fluxes were estimated by fitting a carbon labeling network model to isotopomer profiles experimentally determined. Both the fast isotopic equilibrium of glycolytic metabolite pools and the slow labeling dynamics of TCA cycle intermediates are described well by the model. The large pools of glutamate and aspartate which are linked to the TCA cycle via reversible aminotransferase reactions are likely to be responsible for the observed delay in equilibration of TCA cycle intermediates. Furthermore, it was estimated that 11% of the glucose taken up by astrocytes was diverted to the pentose phosphate pathway. In addition, considerable fluxes through pyruvate carboxylase (PC (PC/pyruvate dehydrogenase (PDH ratio = 0.5, malic enzyme (5% of the total pyruvate production and catabolism of branched-chained amino acids (contributing with ~40% to total acetyl-CoA produced confirmed the significance of these pathways to astrocytic metabolism. Consistent with the need of maintaining cytosolic redox potential, the fluxes through the malate-aspartate shuttle and the PDH pathway were comparable. Finally, the estimated glutamate/α-ketoglutarate exchange rate (~0.7 µmol.mg prot-1.h-1 was similar to the TCA cycle flux. In conclusion, this work demonstrates the potential of isotopic transient MFA for a comprehensive analysis of

  18. Post-glucose-load urinary C-peptide and glucose concentration obtained during OGTT do not affect oral minimal model-based plasma indices.

    Science.gov (United States)

    Jainandunsing, Sjaam; Wattimena, J L Darcos; Rietveld, Trinet; van Miert, Joram N I; Sijbrands, Eric J G; de Rooij, Felix W M

    2016-05-01

    The purpose of this study was to investigate how renal loss of both C-peptide and glucose during oral glucose tolerance test (OGTT) relate to and affect plasma-derived oral minimal model (OMM) indices. All individuals were recruited during family screening between August 2007 and January 2011 and underwent a 3.5-h OGTT, collecting nine plasma samples and urine during OGTT. We obtained the following three subgroups: normoglycemic, at risk, and T2D. We recruited South Asian and Caucasian families, and we report separate analyses if differences occurred. Plasma glucose, insulin, and C-peptide concentrations were analyzed as AUCs during OGTT, OMM estimate of renal C-peptide secretion, and OMM beta-cell and insulin sensitivity indices were calculated to obtain disposition indices. Post-glucose load glucose and C-peptide in urine were measured and related to plasma-based indices. Urinary glucose corresponded well with plasma glucose AUC (Cau r = 0.64, P oral (Cau r = -0.61, P indices in general nor in T2D patients (renal clearance range 0-2.1 %, with median 0.2 % of plasma glucose AUC). C-indices of urinary glucose to detect various stages of glucose intolerance were excellent (Cau 0.83-0.98; SA 0.75-0.89). The limited role of renal glucose secretion validates the neglecting of urinary glucose secretion in kinetic models of glucose homeostasis using plasma glucose concentrations. Both C-peptide and glucose in urine collected during OGTT might be used as non-invasive measures for endogenous insulin secretion and glucose tolerance state.

  19. Glycated albumin suppresses glucose-induced insulin secretion by impairing glucose metabolism in rat pancreatic β-cells

    Directory of Open Access Journals (Sweden)

    Muto Takashi

    2011-04-01

    Full Text Available Abstract Background Glycated albumin (GA is an Amadori product used as a marker of hyperglycemia. In this study, we investigated the effect of GA on insulin secretion from pancreatic β cells. Methods Islets were collected from male Wistar rats by collagenase digestion. Insulin secretion in the presence of non-glycated human albumin (HA and GA was measured under three different glucose concentrations, 3 mM (G3, 7 mM (G7, and 15 mM (G15, with various stimulators. Insulin secretion was measured with antagonists of inducible nitric oxide synthetase (iNOS, and the expression of iNOS-mRNA was investigated by real-time PCR. Results Insulin secretion in the presence of HA and GA was 20.9 ± 3.9 and 21.6 ± 5.5 μU/3 islets/h for G3 (P = 0.920, and 154 ± 9.3 and 126.1 ± 7.3 μU/3 islets/h (P = 0.046, for G15, respectively. High extracellular potassium and 10 mM tolbutamide abrogated the inhibition of insulin secretion by GA. Glyceraldehyde, dihydroxyacetone, methylpyruvate, GLP-1, and forskolin, an activator of adenylate cyclase, did not abrogate the inhibition. Real-time PCR showed that GA did not induce iNOS-mRNA expression. Furthermore, an inhibitor of nitric oxide synthetase, aminoguanidine, and NG-nitro-L-arginine methyl ester did not abrogate the inhibition of insulin secretion. Conclusion GA suppresses glucose-induced insulin secretion from rat pancreatic β-cells through impairment of intracellular glucose metabolism.

  20. Regulation of glucose and lipid metabolism by dietary carbohydrate levels and lipid sources in gilthead sea bream juveniles.

    Science.gov (United States)

    Castro, Carolina; Corraze, Geneviève; Firmino-Diógenes, Alexandre; Larroquet, Laurence; Panserat, Stéphane; Oliva-Teles, Aires

    2016-07-01

    The long-term effects on growth performance, body composition, plasma metabolites, liver and intestine glucose and lipid metabolism were assessed in gilthead sea bream juveniles fed diets without carbohydrates (CH-) or carbohydrate-enriched (20 % gelatinised starch, CH+) combined with two lipid sources (fish oil; or vegetable oil (VO)). No differences in growth performance among treatments were observed. Carbohydrate intake was associated with increased hepatic transcripts of glucokinase but not of 6-phosphofructokinase. Expression of phosphoenolpyruvate carboxykinase was down-regulated by carbohydrate intake, whereas, unexpectedly, glucose 6-phosphatase was up-regulated. Lipogenic enzyme activities (glucose-6-phosphate dehydrogenase, malic enzyme, fatty acid synthase) and ∆6 fatty acyl desaturase (FADS2) transcripts were increased in liver of fish fed CH+ diets, supporting an enhanced potential for lipogenesis and long-chain PUFA (LC-PUFA) biosynthesis. Despite the lower hepatic cholesterol content in CH+ groups, no influence on the expression of genes related to cholesterol efflux (ATP-binding cassette G5) and biosynthesis (lanosterol 14 α-demethylase, cytochrome P450 51 cytochrome P450 51 (CYP51A1); 7-dehydrocholesterol reductase) was recorded at the hepatic level. At the intestinal level, however, induction of CYP51A1 transcripts by carbohydrate intake was recorded. Dietary VO led to decreased plasma phospholipid and cholesterol concentrations but not on the transcripts of proteins involved in phospholipid biosynthesis (glycerol-3-phosphate acyltransferase) and cholesterol metabolism at intestinal and hepatic levels. Hepatic and muscular fatty acid profiles reflected that of diets, despite the up-regulation of FADS2 transcripts. Overall, this study demonstrated that dietary carbohydrates mainly affected carbohydrate metabolism, lipogenesis and LC-PUFA biosynthesis, whereas effects of dietary lipid source were mostly related with tissue fatty acid composition

  1. A metabolic trade-off between phosphate and glucose utilization in Escherichia coli.

    Science.gov (United States)

    Behrends, Volker; Maharjan, Ram P; Ryall, Ben; Feng, Lu; Liu, Bin; Wang, Lei; Bundy, Jacob G; Ferenci, Thomas

    2014-11-01

    Getting the most out of available nutrients is a key challenge that all organisms face. Little is known about how they optimize and balance the simultaneous utilization of multiple elemental resources. We investigated the effects of long-term phosphate limitation on carbon metabolism of the model organism Escherichia coli using chemostat cultures. We profiled metabolic changes in the growth medium over time and found evidence for an increase in fermentative metabolism despite the aerobic conditions. Using full-genome sequencing and competition experiments, we found that fitness under phosphate-limiting conditions was reproducibly increased by a mutation preventing flux through succinate in the tricarboxylic acid cycle. In contrast, these mutations reduced competitive ability under carbon limitation, and thus reveal a conflicting metabolic benefit in the role of the TCA cycle in environments limited by inorganic phosphate and glucose.

  2. Tumor glucose metabolism imaged in vivo in small animals with whole-body photoacoustic computed tomography

    Science.gov (United States)

    Chatni, Muhammad Rameez; Xia, Jun; Sohn, Rebecca; Maslov, Konstantin; Guo, Zijian; Zhang, Yu; Wang, Kun; Xia, Younan; Anastasio, Mark; Arbeit, Jeffrey; Wang, Lihong V.

    2012-07-01

    With the increasing use of small animals for human disease studies, small-animal whole-body molecular imaging plays an important role in biomedical research. Currently, none of the existing imaging modalities can provide both anatomical and glucose molecular information, leading to higher costs of building dual-modality systems. Even with image co-registration, the spatial resolution of the molecular imaging modality is not improved. Utilizing a ring-shaped confocal photoacoustic computed tomography system, we demonstrate, for the first time, that both anatomy and glucose uptake can be imaged in a single modality. Anatomy was imaged with the endogenous hemoglobin contrast, and glucose metabolism was imaged with a near-infrared dye-labeled 2-deoxyglucose.

  3. Co-ordination of hepatic and adipose tissue lipid metabolism after oral glucose

    DEFF Research Database (Denmark)

    Bülow, J; Simonsen, L; Wiggins, D;

    1999-01-01

    The integration of lipid metabolism in the splanchnic bed and in subcutaneous adipose tissue before and after ingestion of a 75 g glucose load was studied by Fick's principle in seven healthy subjects. Six additional subjects were studied during a hyperinsulinemic euglycemic clamp. Release of non......-esterified fatty acids (NEFA) from adipose tissue and splanchnic NEFA extraction followed a similar time-course after oral glucose, and there was a highly significant relationship between adipose tissue NEFA release and splanchnic NEFA uptake. There was no immediate inhibition of splanchnic very low density...... lipoprotein (VLDL)-triacylglycerol (TAG) output when plasma insulin levels increased after glucose. Adipose tissue extraction of VLDL-TAG tended to vary in time in a manner similar to splanchnic VLDL-TAG output and the two were significantly related. The area-under-curves (AUC) for splanchnic extraction...

  4. Testosterone deficiency induced by progressive stages of diabetes mellitus impairs glucose metabolism and favors glycogenesis in mature rat Sertoli cells.

    Science.gov (United States)

    Rato, Luís; Alves, Marco G; Duarte, Ana I; Santos, Maria S; Moreira, Paula I; Cavaco, José E; Oliveira, Pedro F

    2015-09-01

    The incidence of type 2 diabetes mellitus and its prodromal stage, pre-diabetes, is rapidly increasing among young men, leading to disturbances in testosterone synthesis. However, the impact of testosterone deficiency induced by these progressive stages of diabetes on the metabolic behavior of Sertoli cells remains unknown. We evaluated the effects of testosterone deficiency associated with pre-diabetes and type 2 diabetes on Sertoli cells metabolism, by measuring (1) the expression and/or activities of glycolysis and glycogen metabolism-related proteins and (2) the metabolite secretion/consumption in Sertoli cells obtained from rat models of different development stages of the disease, to unveil the mechanisms by which testosterone deregulation may affect spermatogenesis. Glucose and pyruvate uptake were decreased in cells exposed to the testosterone concentration found in pre-diabetic rats (600nM), whereas the decreased testosterone concentrations found in type 2 diabetic rats (7nM) reversed this profile. Lactate production was not altered, although the expression and/or activity of lactate dehydrogenase and monocarboxylate transporter 4 were affected by progressive testosterone-deficiency. Sertoli cells exposed to type 2 diabetic conditions exhibited intracellular glycogen accumulation. These results illustrate that gradually reduced levels of testosterone, induced by progressive stages of diabetes mellitus, favor a metabolic reprogramming toward glycogen synthesis. Our data highlights a pivotal role for testosterone in the regulation of spermatogenesis metabolic support by Sertoli cells, particularly in individuals suffering from metabolic diseases. Such alterations may be in the basis of male subfertility/infertility associated with the progression of diabetes mellitus. PMID:26148570

  5. Sympathetic overactivity precedes metabolic dysfunction in a fructose model of glucose intolerance in mice.

    Science.gov (United States)

    De Angelis, Katia; Senador, Danielle D; Mostarda, Cristiano; Irigoyen, Maria C; Morris, Mariana

    2012-04-15

    Consumption of high levels of fructose in humans and animals leads to metabolic and cardiovascular dysfunction. There are questions as to the role of the autonomic changes in the time course of fructose-induced dysfunction. C57/BL male mice were given tap water or fructose water (100 g/l) to drink for up to 2 mo. Groups were control (C), 15-day fructose (F15), and 60-day fructose (F60). Light-dark patterns of arterial pressure (AP) and heart rate (HR), and their respective variabilities were measured. Plasma glucose, lipids, insulin, leptin, resistin, adiponectin, and glucose tolerance were quantified. Fructose increased systolic AP (SAP) at 15 and 60 days during both light (F15: 123 ± 2 and F60: 118 ± 2 mmHg) and dark periods (F15: 136 ± 4 and F60: 136 ± 5 mmHg) compared with controls (light: 111 ± 2 and dark: 117 ± 2 mmHg). SAP variance (VAR) and the low-frequency component (LF) were increased in F15 (>60% and >80%) and F60 (>170% and >140%) compared with C. Cardiac sympatho-vagal balance was enhanced, while baroreflex function was attenuated in fructose groups. Metabolic parameters were unchanged in F15. However, F60 showed significant increases in plasma glucose (26%), cholesterol (44%), triglycerides (22%), insulin (95%), and leptin (63%), as well as glucose intolerance. LF of SAP was positively correlated with SAP. Plasma leptin was correlated with triglycerides, insulin, and glucose tolerance. Results show that increased sympathetic modulation of vessels and heart preceded metabolic dysfunction in fructose-consuming mice. Data suggest that changes in autonomic modulation may be an initiating mechanism underlying the cluster of symptoms associated with cardiometabolic disease.

  6. Effect of antibiotics on gut microbiota, glucose metabolism and bodyweight regulation - a review of the literature

    DEFF Research Database (Denmark)

    Mikkelsen, Kristian Hallundbaek; Allin, Kristine Højgaard; Knop, Filip Krag

    2016-01-01

    Gut bacteria are involved in a number of host metabolic processes and have been implicated in the development of obesity and type 2 diabetes in humans. Use of antibiotics changes the composition of the gut microbiota and there is accumulating evidence from observational studies for an association...... between exposure to antibiotics and development of obesity and type 2 diabetes. Here we review human studies examining effects of antibiotics on bodyweight regulation and glucose metabolism and discuss whether the observed findings may relate to alterations in the composition and function of the gut...... microbiota....

  7. Quantitative Rates of Brain Glucose Metabolism Distinguish Minimally Conscious from Vegetative State Patients

    DEFF Research Database (Denmark)

    Stender, Johan; Kupers, Ron; Rodell, Anders;

    2015-01-01

    The differentiation of the vegetative or unresponsive wakefulness syndrome (VS/UWS) from the minimally conscious state (MCS) is an important clinical issue. The cerebral metabolic rate of glucose (CMRglc) declines when consciousness is lost, and may reveal the residual cognitive function of these...... indistinguishable from those of MCS. Ordinal logistic regression predicted that patients are likely to emerge into MCS at CMRglc above 45% of normal. Receiver-operating characteristics showed that patients in MCS and VS/UWS can be differentiated with 82% accuracy, based on cortical metabolism. Together these...

  8. Associations of fatty acids in cerebrospinal fluid with peripheral glucose concentrations and energy metabolism.

    Directory of Open Access Journals (Sweden)

    Reiner Jumpertz

    Full Text Available Rodent experiments have emphasized a role of central fatty acid (FA species, such as oleic acid, in regulating peripheral glucose and energy metabolism. Thus, we hypothesized that central FAs are related to peripheral glucose regulation and energy expenditure in humans. To test this we measured FA species profiles in cerebrospinal fluid (CSF and plasma of 32 individuals who stayed in our clinical inpatient unit for 6 days. Body composition was measured by dual energy X-ray absorptiometry and glucose regulation by an oral glucose test (OGTT followed by measurements of 24 hour (24EE and sleep energy expenditure (SLEEP as well as respiratory quotient (RQ in a respiratory chamber. CSF was obtained via lumbar punctures; FA concentrations were measured by liquid chromatography/mass spectrometry. As expected, FA concentrations were higher in plasma compared to CSF. Individuals with high concentrations of CSF very-long-chain saturated FAs had lower rates of SLEEP. In the plasma moderate associations of these FAs with higher 24EE were observed. Moreover, CSF monounsaturated long-chain FA (palmitoleic and oleic acid concentrations were associated with lower RQs and lower glucose area under the curve during the OGTT. Thus, FAs in the CSF strongly correlated with peripheral metabolic traits. These physiological parameters were most specific to long-chain monounsaturated (C16:1, C18:1 and very-long-chain saturated (C24:0, C26:0 FAs.Together with previous animal experiments these initial cross-sectional human data indicate that central FA species are linked to peripheral glucose and energy homeostasis.

  9. Effect of tangeretin, a polymethoxylated flavone on glucose metabolism in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Sundaram, Ramalingam; Shanthi, Palanivelu; Sachdanandam, Panchanatham

    2014-05-15

    The present study was designed to evaluate the antihyperglycemic potential of tangeretin on the activities of key enzymes of carbohydrate and glycogen metabolism in control and streptozotocin induced diabetic rats. The daily oral administration of tangeretin (100mg/kg body weight) to diabetic rats for 30 days resulted in a significant reduction in the levels of plasma glucose, glycosylated hemoglobin (HbA1c) and increase in the levels of insulin and hemoglobin. The altered activities of the key enzymes of carbohydrate metabolism such as hexokinase, pyruvate kinase, lactate dehydrogenase, glucose-6-phosphatase, fructose-1,6-bisphosphatase, glucose-6-phosphate dehydrogenase, glycogen synthase and glycogen phosphorylase in liver of diabetic rats were significantly reverted to near normal levels by the administration of tangeretin. Further, tangeretin administration to diabetic rats improved hepatic glycogen content suggesting the antihyperglycemic potential of tangeretin in diabetic rats. The effect produced by tangeretin on various parameters was comparable to that of glibenclamide - a standard oral hypoglycemic drug. Thus, these results show that tangeretin modulates the activities of hepatic enzymes via enhanced secretion of insulin and decreases the blood glucose in streptozotocin induced diabetic rats by its antioxidant potential. PMID:24629597

  10. Molecular mechanism of hepatitis C virus-induced glucose metabolic disorders

    Directory of Open Access Journals (Sweden)

    Ikuo eShoji

    2012-01-01

    Full Text Available Hepatitis C virus (HCV infection causes not only intrahepatic diseases but also extrahepatic manifestations, including metabolic disorders. Chronic HCV infection is often associated with type 2 diabetes. However, the precise mechanism underlying this association is still unclear. Glucose is transported into hepatocytes via glucose transporter 2 (GLUT2. Hepatocytes play a crucial role in maintaining plasma glucose homeostasis via the gluconeogenic and glycolytic pathways. We have been investigating the molecular mechanism of HCV-related type 2 diabetes using HCV RNA replicon cells and HCV J6/JFH1 system. We found that HCV replication down-regulates cell surface expression of GLUT2 at the transcriptional level. We also found that HCV infection promotes hepatic gluconeogenesis in HCV J6/JFH1-infected Huh-7.5 cells. HCV infection transcriptionally up-regulated the genes for PEPCK and G6Pase, the rate-limiting enzymes for hepatic gluconeogenesis. Gene expression of PEPCK and G6Pase was regulated by the transcription factor forkhead box O1 (FoxO1 in HCV-infected cells. Phosphorylation of FoxO1 at Ser319 was markedly diminished in HCV-infected cells, resulting in increased nuclear accumulation of FoxO1. HCV NS5A protein was directly linked with the FoxO1-dependent increased gluconeogenesis. This paper will discuss the current model of HCV-induced glucose metabolic disorders.

  11. The Relationship between Selenoprotein P and Glucose Metabolism in Experimental Studies

    OpenAIRE

    Jinyuan Mao; Weiping Teng

    2013-01-01

    Selenium is an essential trace element in the diet of mammals which is important for many physiological functions. However, a number of epidemiological studies have suggested that high selenium status is a possible risk factor for the development of type 2 diabetes, although they cannot distinguish between cause and effect. Selenoprotein P (Sepp1) is central to selenium homeostasis and widely expressed in the organism. Here we review the interaction between Sepp1 and glucose metabolism with a...

  12. Regulatory role of leptin in glucose and lipid metabolism in skeletal muscle

    OpenAIRE

    Yasuhiko Minokoshi; Chitoku Toda; Shiki Okamoto

    2012-01-01

    Leptin is a hormone secreted by adipocytes that plays a pivotal role in regulation of food intake, energy expenditure, and neuroendocrine function. Several lines of evidences indicate that independent of the anorexic effect, leptin regulates glucose and lipid metabolism in peripheral tissues in rodents and humans. It has been shown that leptin improves the diabetes phenotype in lipodystrophic patients and rodents. Moreover, leptin suppresses the development of severe, progressive impairment o...

  13. Blood Flow and Glucose Metabolism in Stage IV Breast Cancer: Heterogeneity of Response During Chemotherapy

    OpenAIRE

    Krak, Nanda; Hoeven, John; Hoekstra, Otto; Twisk, Jos; Wall, Ernst; Lammertsma, A. A.

    2008-01-01

    textabstractObjective: The purpose of the study was to compare early changes in blood flow (BF) and glucose metabolism (MRglu) in metastatic breast cancer lesions of patients treated with chemotherapy. Methods: Eleven women with stage IV cancer and lesions in breast, lymph nodes, liver, and bone were scanned before treatment and after the first course of chemotherapy. BF, distribution volume of water (Vd), MRglu/BF ratio, MRgluand its corresponding rate constants K1and k3were compared per tum...

  14. Decreased regional cerebral glucose metabolism in the prefrontal regions in adults' with internet game addiction

    International Nuclear Information System (INIS)

    Internet Game Addiction (IGA) is known to be associated with poor decision-making and diminished impulse control; however, the underlying neural substrates of IGA have not been identified. To investigate the neural substrates of IGA, we compared regional cerebral glucose metabolism between adults with and without IGA, primarily in the prefrontal brain regions, which have been implicated in inhibitory control. We studied 10 right-handed participants (5 controls: male, 23.8±0.75 y, 5 IGAs: male, 22.6±2.42 y) with FDG PET. A standardized questionnaire was used to assess the severity of IGA. Before scanning, all subjects carried out a computerized version of the Iowa Gambling Task (IGT) and the Balloon Analogue Risk Task (BART), as measures of behavioral inhibitory control. Statistical Parametric Mapping 2 (SPM2) was used to analyze differences in regional brain glucose metabolism between adults with and without IGA. Consistent with our predictions, compared to controls, significant reductions in FDG uptake in individuals with IGA were found in the bilateral orbitofrontal gyrus (BA 11, 47), bilateral inferior frontal gyrus (BA 44, 48), cingulate cortex (BA 24), and bilateral supplementary motor area (SMA) (BA 6); whereas increases were found in the bilateral hippocampus. Correlation analyses within the IGA group further showed that the level of glucose metabolism in the right orbitofrontal gyrus was marginally positively correlated with task scores in BART. Our results showed that IGA is associated with reduced glucose metabolism in the prefrontal regions involved in inhibitory control. This finding highlights dysfunctional inhibitory brain systems in individuals with IGA and offers implications for the development for therapeutic paradigms for IGA

  15. Influence of creatine supplementation on indicators of glucose metabolism in skeletal muscle of exercised rats

    OpenAIRE

    Michel Barbosa de Araújo; Roberto Carlos Vieira Junior; Leandro Pereira de Moura; Marcelo Costa Junior; Rodrigo Augusto Dalia; Amanda Christine da Silva Sponton; Carla Ribeiro; Maria Alice Rostom de Mello

    2013-01-01

    The purpose of this study was to evaluate the effect of creatine supplementation in the diet on indicators of glucose metabolism in skeletal muscle of exercised rats. Forty Wistar adult rats were distributed into four groups for eight weeks: 1) Control: sedentary rats that received balanced diet; 2) Creatine control: sedentary rats that received supplementation of 2% creatine in the balanced diet; 3) Trained: rats that ran on a treadmill at the Maximal Lactate Steady State and received balanc...

  16. Zonation of glucose and fatty acid metabolism in the liver : Mechanism and metabolic consequences

    NARCIS (Netherlands)

    Hijmans, Brenda S.; Greffiorst, Aldo; Oosterveer, Maaike H.; Groen, Albert K.

    2014-01-01

    The liver is generally considered as a relatively homogeneous organ containing four different cell types. It is however well-known that the liver is not homogeneous and consists of clearly demarcated metabolic zones. Hepatocytes from different zones show phenotypical heterogeneity in metabolic featu

  17. Effects of over-expressing resistin on glucose and lipid metabolism in mice

    Institute of Scientific and Technical Information of China (English)

    You LIU; Qun WANG; Ying-bin PAN; Zhi-jie GAO; Yan-fen LIU; Shao-hong CHEN

    2008-01-01

    Resistin, a newly discovered peptide hormone mainly secreted by adipose tissues, is present at high levels in serum of obese mice and may be a potential link between obesity and insulin resistance in rodents. However, some studies of rat and mouse models have associated insulin resistance and obesity with decreased resistin expression. In humans, no relationship between resistin level and insulin resistance or adiposity was observed. This suggests that additional studies are necessary to determine the specific role of resistin in the regulation of energy metabolism and adipogenesis. In the present study, we investigated the effect of resistin in vivo on glucose and lipid metabolism by over-expressing resistin in mice by intramuscular injection of a recombinant eukaryotic expression vector pcDNA3.1-Retn encoding porcine resistin gene. After injection, serum resistin and serum glucose (GLU) levels were significantly increased in the pcDNA3.1-Retn-treated mice; there was an obvious difference in total cholesterol (TC) level between the experiment and the control groups on Day 30. In pcDNA3.1-Retn-treated mice, both free fatty acid (FFA) and high density lipoprotein (HDL) cholesterol levels were markedly lower than those of control, whereas HDL cholesterol and triglyceride (TG) levels did not differ between the two groups. Furthermore, lipase activity was expressly lower on Day 20. Our data suggest that resistin over-expressed in mice might be responsible for insulin resistance and parameters related to glucose and lipid metabolism were changed accordingly.

  18. Epithelial and Mesenchymal Tumor Compartments Exhibit In Vivo Complementary Patterns of Vascular Perfusion and Glucose Metabolism

    Directory of Open Access Journals (Sweden)

    Mirco Galiè

    2007-11-01

    Full Text Available Glucose transport and consumption are increased in tumors, and this is considered a diagnostic index of malignancy. However, there is recent evidence that carcinoma-associated stromal cells are capable of aerobic metabolism with low glucose consumption, at least partly because of their efficient vascular supply. In the present study, using dynamic contrast-enhanced magnetic resonance imaging and [F-18]fluorodeoxyglucose (FDG positron emission tomography (PET, we mapped in vivo the vascular supply and glucose metabolism in syngeneic experimental models of carcinoma and mesenchymal tumor. We found that in both tumor histotypes, regions with high vascular perfusion exhibited a significantly lower FDG uptake. This reciprocity was more conspicuous in carcinomas than in mesenchymal tumors, and regions with a high-vascular/low-FDG uptake pattern roughly overlapped with a stromal capsule and intratumoral large connectival septa. Accordingly, mesenchymal tumors exhibited a higher vascular perfusion and a lower FDG uptake than carcinomas. Thus, we provide in vivo evidence of vascular/metabolic reciprocity between epithelial and mesenchymal histotypes in tumors, suggesting a new intriguing aspect of epithelial-stromal interaction. Our results suggests that FDG-PET-based clinical analysis can underestimate the malignity or tumor extension of carcinomas exhibiting any trait of “mesenchymalization” such as desmoplasia or epithelial-mesenchymal transition.

  19. Glucose and amino acid metabolism in rat brain during sustained hypoglycemia

    International Nuclear Information System (INIS)

    The metabolism of glucose in brains during sustained hypoglycemia was studied. [U-14C]Glucose (20 microCi) was injected into control rats, and into rats at 2.5 hr after a bolus injection of 2 units of insulin followed by a continuous infusion of 0.2 units/100 g rat/hr. This regimen of insulin injection was found to result in steady-state plasma glucose levels between 2.5 and 3.5 mumol per ml. In the brains of control rats carbon was transferred rapidly from glucose to glutamate, glutamine, gamma-aminobutyric acid and aspartate and this carbon was retained in the amino acids for at least 60 min. In the brains of hypoglycemic rats, the conversion of carbon from glucose to amino acids was increased in the first 15 min after injection. After 15 min, the specific activity of the amino acids decreased in insulin-treated rats but not in the controls. The concentrations of alanine, glutamate, and gamma-amino-butyric acid decreased, and the concentration of aspartate increased, in the brains of the hypoglycemic rats. The concentration of pyridoxal-5'-phosphate, a cofactor in many of the reactions whereby these amino acids are formed from tricarboxylic acid cycle intermediates, was less in the insulin-treated rats than in the controls. These data provide evidence that glutamate, glutamine, aspartate, and GABA can serve as energy sources in brain during insulin-induced hypoglycemia

  20. Glucose metabolic flux distribution of Lactobacillus amylophilus during lactic acid production using kitchen waste saccharified solution.

    Science.gov (United States)

    Liu, Jianguo; Wang, Qunhui; Zou, Hui; Liu, Yingying; Wang, Juan; Gan, Kemin; Xiang, Juan

    2013-11-01

    The (13) C isotope tracer method was used to investigate the glucose metabolic flux distribution and regulation in Lactobacillus amylophilus to improve lactic acid production using kitchen waste saccharified solution (KWSS). The results demonstrate that L. amylophilus is a homofermentative bacterium. In synthetic medium, 60.6% of the glucose entered the Embden-Meyerhof-Parnas (EMP) to produce lactic acid, whereas 36.4% of the glucose entered the pentose phosphate metabolic pathway (HMP). After solid-liquid separation of the KWSS, the addition of Fe(3+) during fermentation enhanced the NADPH production efficiency and increased the NADH content. The flux to the EMP was also effectively increased. Compared with the control (60.6% flux to EMP without Fe(3+) addition), the flux to the EMP with the addition of Fe(3+) (74.3%) increased by 23.8%. In the subsequent pyruvate metabolism, Fe(3+) also increased lactate dehydrogenase activity, and inhibited alcohol dehydrogenase, pyruvate dehydrogenase and pyruvate carboxylase, thereby increasing the lactic acid production to 9.03 g l(-1) , an increase of 8% compared with the control. All other organic acid by-products were lower than in the control. However, the addition of Zn(2+) showed an opposite effect, decreasing the lactic acid production. In conclusion it is feasible and effective means using GC-MS, isotope experiment and MATLAB software to integrate research the metabolic flux distribution of lactic acid bacteria, and the results provide the theoretical foundation for similar metabolic flux distribution. PMID:23489617

  1. Effects of gastric bypass surgery on glucose absorption and metabolism during a mixed meal in glucose-tolerant individuals

    DEFF Research Database (Denmark)

    Jacobsen, Siv H; Bojsen-Møller, Kirstine N; Dirksen, Carsten;

    2013-01-01

    AIMS/HYPOTHESIS: Roux-en-Y gastric bypass surgery (RYGB) improves glucose tolerance in patients with type 2 diabetes, but also changes the glucose profile in response to a meal in glucose-tolerant individuals. We hypothesised that the driving force for the changed postprandial glucose profiles...

  2. Post-glucose-load urinary C-peptide and glucose concentration obtained during OGTT do not affect oral minimal model-based plasma indices

    NARCIS (Netherlands)

    S. Jainandunsing (Sjaam); J.L.D. Wattimena (Josias); T. Rietveld (Trinet); J.N.I. van Miert (Joram); E.J.G. Sijbrands (Eric); F.W.M. de Rooij (Felix)

    2016-01-01

    textabstractThe purpose of this study was to investigate how renal loss of both C-peptide and glucose during oral glucose tolerance test (OGTT) relate to and affect plasma-derived oral minimal model (OMM) indices. All individuals were recruited during family screening between August 2007 and January

  3. Critical Role of Glucose Metabolism in Rheumatoid Arthritis Fibroblast-like Synoviocytes

    Science.gov (United States)

    Garcia-Carbonell, Ricard; Divakaruni, Ajit S.; Lodi, Alessia; Vicente-Suarez, Ildefonso; Saha, Arindam; Cheroutre, Hilde; Boss, Gerry R.; Tiziani, Stefano; Murphy, Anne N.; Guma, Monica

    2016-01-01

    Objective Up-regulation of glucose metabolism has been implicated not only in tumor cell growth but also in immune cells upon activation. However, little is known about the metabolite profile in rheumatoid arthritis (RA), particularly in fibroblast-like synoviocytes (FLS). This study was undertaken to evaluate whether changes in glucose metabolism in RA FLS could play a role in inflammation and joint damage. Methods Synovium and FLS were obtained from patients with RA and patients with osteoarthritis (OA). The rate of glycolysis after stimulation of FLS with lipopolysaccharide and platelet-derived growth factor BB was measured using glycolysis stress test technology. FLS function was evaluated using a glycolysis inhibitor, 2-deoxy-D-glucose (2-DG). After stimulation of the FLS, a migration scratch assay, MTT assay, and enzyme-linked immunosorbent assay were performed to measure the effect of 2-DG on FLS migration, viability of the FLS, and cytokine secretion, respectively. IRDye 800CW 2-DG was used to assess glucose uptake in the arthritic joints and stromal cells of mice after K/BxN mouse serum transfer. The mice were injected daily, intraperitoneally, with 3-bromopyruvate (BrPa; 5 mg/kg) to assess the effect of inhibition of glycolysis in vivo. Results Compared to human OA FLS, the balance between glycolysis and oxidative phosphorylation was shifted toward glycolysis in RA FLS. Glucose transporter 1 (GLUT1) messenger RNA (mRNA) expression correlated with baseline functions of the RA FLS. Glucose deprivation or incubation of the FLS with glycolytic inhibitors impaired cytokine secretion and decreased the rate of proliferation and migration of the cells. In a mouse model of inflammatory arthritis, GLUT1 mRNA expression in the synovial lining cells was observed, and increased levels of glucose uptake and glycolytic gene expression were detected in the stromal compartment of the arthritic mouse joints. Inhibition of glycolysis by BrPa, administered in vivo

  4. Insulin-dependent glucose metabolism in dairy cows with variable fat mobilization around calving.

    Science.gov (United States)

    Weber, C; Schäff, C T; Kautzsch, U; Börner, S; Erdmann, S; Görs, S; Röntgen, M; Sauerwein, H; Bruckmaier, R M; Metges, C C; Kuhla, B; Hammon, H M

    2016-08-01

    Dairy cows undergo significant metabolic and endocrine changes during the transition from pregnancy to lactation, and impaired insulin action influences nutrient partitioning toward the fetus and the mammary gland. Because impaired insulin action during transition is thought to be related to elevated body condition and body fat mobilization, we hypothesized that over-conditioned cows with excessive body fat mobilization around calving may have impaired insulin metabolism compared with cows with low fat mobilization. Nineteen dairy cows were grouped according to their average concentration of total liver fat (LFC) after calving in low [LLFC; LFC 24.4% total fat/DM; n=10) fat-mobilizing cows. Blood samples were taken from wk 7 antepartum (ap) to wk 5 postpartum (pp) to determine plasma concentrations of glucose, insulin, glucagon, and adiponectin. We applied euglycemic-hyperinsulinemic (EGHIC) and hyperglycemic clamps (HGC) in wk 5 ap and wk 3 pp to measure insulin responsiveness in peripheral tissue and pancreatic insulin secretion during the transition period. Before and during the pp EGHIC, [(13)C6] glucose was infused to determine the rate of glucose appearance (GlucRa) and glucose oxidation (GOx). Body condition, back fat thickness, and energy-corrected milk were greater, but energy balance was lower in HLFC than in LLFC. Plasma concentrations of glucose, insulin, glucagon, and adiponectin decreased at calving, and this was followed by an immediate increase of glucagon and adiponectin after calving. Insulin concentrations ap were higher in HLFC than in LLFC cows, but the EGHIC indicated no differences in peripheral insulin responsiveness among cows ap and pp. However, GlucRa and GOx:GlucRa during the pp EGHIC were greater in HLFC than in LLFC cows. During HGC, pancreatic insulin secretion was lower, but the glucose infusion rate was higher pp than ap in both groups. Plasma concentrations of nonesterified fatty acids decreased during HGC and EGHIC, but in both

  5. Response of C2C12 Myoblasts to Hypoxia: The Relative Roles of Glucose and Oxygen in Adaptive Cellular Metabolism

    Directory of Open Access Journals (Sweden)

    Wei Li

    2013-01-01

    Full Text Available Background. Oxygen and glucose are two important nutrients for mammalian cell function. In this study, the effect of glucose and oxygen concentrations on C2C12 cellular metabolism was characterized with an emphasis on detecting whether cells show oxygen conformance (OC in response to hypoxia. Methods. After C2C12 cells being cultured in the levels of glucose at 0.6 mM (LG, 5.6 mM (MG, or 23.3 mM(HG under normoxic or hypoxic (1% oxygen condition, cellular oxygen consumption, glucose consumption, lactate production, and metabolic status were determined. Short-term oxygen consumption was measured with a novel oxygen biosensor technique. Longer-term measurements were performed with standard glucose, lactate, and cell metabolism assays. Results. It was found that oxygen depletion in normoxia is dependent on the glucose concentration in the medium. Cellular glucose uptake and lactate production increased significantly in hypoxia than those in normoxia. In hypoxia the cellular response to the level of glucose was different to that in normoxia. The metabolic activities decreased while glucose concentration increased in normoxia, while in hypoxia, metabolic activity was reduced in LG and MG, but unchanged in HG condition. The OC phenomenon was not observed in the present study. Conclusions. Our findings suggested that a combination of low oxygen and low glucose damages the viability of C2C12 cells more seriously than low oxygen alone. In addition, when there is sufficient glucose, C2C12 cells will respond to hypoxia by upregulating anaerobic respiration, as shown by lactate production.

  6. Experimental type II diabetes and related models of impaired glucose metabolism differentially regulate glucose transporters at the proximal tubule brush border membrane.

    Science.gov (United States)

    Chichger, Havovi; Cleasby, Mark E; Srai, Surjit K; Unwin, Robert J; Debnam, Edward S; Marks, Joanne

    2016-06-01

    What is the central question of this study? Although SGLT2 inhibitors represent a promising treatment for patients suffering from diabetic nephropathy, the influence of metabolic disruption on the expression and function of glucose transporters is largely unknown. What is the main finding and its importance? In vivo models of metabolic disruption (Goto-Kakizaki type II diabetic rat and junk-food diet) demonstrate increased expression of SGLT1, SGLT2 and GLUT2 in the proximal tubule brush border. In the type II diabetic model, this is accompanied by increased SGLT- and GLUT-mediated glucose uptake. A fasted model of metabolic disruption (high-fat diet) demonstrated increased GLUT2 expression only. The differential alterations of glucose transporters in response to varying metabolic stress offer insight into the therapeutic value of inhibitors. SGLT2 inhibitors are now in clinical use to reduce hyperglycaemia in type II diabetes. However, renal glucose reabsorption across the brush border membrane (BBM) is not completely understood in diabetes. Increased consumption of a Western diet is strongly linked to type II diabetes. This study aimed to investigate the adaptations that occur in renal glucose transporters in response to experimental models of diet-induced insulin resistance. The study used Goto-Kakizaki type II diabetic rats and normal rats rendered insulin resistant using junk-food or high-fat diets. Levels of protein kinase C-βI (PKC-βI), GLUT2, SGLT1 and SGLT2 were determined by Western blotting of purified renal BBM. GLUT- and SGLT-mediated d-[(3) H]glucose uptake by BBM vesicles was measured in the presence and absence of the SGLT inhibitor phlorizin. GLUT- and SGLT-mediated glucose transport was elevated in type II diabetic rats, accompanied by increased expression of GLUT2, its upstream regulator PKC-βI and SGLT1 protein. Junk-food and high-fat diet feeding also caused higher membrane expression of GLUT2 and its upstream regulator PKC

  7. Effects of Cooling and Supplemental Bovine Somatotropin on Milk Production relating to Body Glucose Metabolism and Utilization of Glucose by the Mammary Gland in Crossbred Holstein Cattle

    Directory of Open Access Journals (Sweden)

    Siravit Sitprija

    2010-01-01

    Full Text Available Problem statement: The low milk yield and shorter persistency of lactation of dairy cattle is the major problem for the dairy practices in the tropics. High environmental temperatures and rapid decline of plasma growth hormone level can influence milk production. Regulation of the milk yield of animals is mainly based on the mechanisms governing the quantity of glucose extracted by the mammary gland for lactose biosynthetic pathways. The mechanism(s underlying the effects of cooling and supplemental bovine somatotropin on milk production relating to body glucose metabolism and intracellular metabolism of glucose in the mammary gland of crossbred Holstein cattle in the tropics have not been investigated to date. Approach: Ten crossbred 87.5% Holstein cows were divided into two groups of five animals each. Animals were housed in Normal Shade barn (NS as non-cooled cows and cows in the second group were housed in barn which was equipped with a two Misty-Fan cooling system (MF as cooled cows. Supplementation of recombinant bovine Somatotropin (rbST (POSILAC, 500 mg per cow were performed in both groups to study body glucose metabolism and the utilization of glucose in the mammary gland using a continuous infusion of [3-3H] glucose and [U- 14C] glucose as markers in early, mid and late stages of lactation. Results: Milk yield significantly increased in both groups during supplemental rbST with a high level of mammary blood flow. Body glucose turnover rates were not significant different between cooled and non-cooled cows whether supplemental rbST or not. The glucose taken up by the mammary gland of both non-cooled and cooled cows increased flux through the lactose synthesis and the pentose cycle pathway with significant increases in NADPH formation for fatty acid synthesis during rbST supplementation. The utilization of glucose carbon incorporation into milk appeared to increase in milk lactose and milk triacylglycerol but not for

  8. Alcohol decreases baseline brain glucose metabolism more in heavy drinkers than controls but has no effect on stimulation-induced metabolic increases

    International Nuclear Information System (INIS)

    During alcohol intoxication the human brain increases metabolism of acetate and decreases metabolism of glucose as energy substrate. Here we hypothesized that chronic heavy drinking facilitates this energy substrate shift both for baseline and stimulation conditions. To test this hypothesis we compared the effects of alcohol intoxication (0.75g/kg alcohol versus placebo) on brain glucose metabolism during video-stimulation (VS) versus when given with no-stimulation (NS), in 25 heavy drinkers (HD) and 23 healthy controls each of whom underwent four PET-18FDG scans. We showed that resting whole-brain glucose metabolism (placebo-NS) was lower in HD than controls (13%, p=0.04); that alcohol (compared to placebo) decreased metabolism more in HD (20±13%) than controls (9±11%, p=0.005) and in proportion to daily alcohol consumption (r=0.36, p=0.01) but found that alcohol did not reduce the metabolic increases in visual cortex from VS in either group. Instead, VS reduced alcohol-induced decreases in whole-brain glucose metabolism (10±12%) compared to NS in both groups (15±13%, p=0.04), consistent with stimulation-related glucose metabolism enhancement. These findings corroborate our hypothesis that heavy alcohol consumption facilitates use of alternative energy substrates (i.e. acetate) for resting activity during intoxication, which might persist through early sobriety, but indicate that glucose is still favored as energy substrate during brain stimulation. Our findings are consistent with reduced reliance on glucose as the main energy substrate for resting brain metabolism during intoxication (presumably shifting to acetate or other ketones) and a priming of this shift in heavy drinkers, which might make them vulnerable to energy deficits during withdrawal

  9. Alcohol Decreases Baseline Brain Glucose Metabolism More in Heavy Drinkers Than Controls But Has No Effect on Stimulation-Induced Metabolic Increases

    Science.gov (United States)

    Wang, Gene-Jack; Shokri Kojori, Ehsan; Fowler, Joanna S.; Benveniste, Helene; Tomasi, Dardo

    2015-01-01

    During alcohol intoxication, the human brain increases metabolism of acetate and decreases metabolism of glucose as energy substrate. Here we hypothesized that chronic heavy drinking facilitates this energy substrate shift both for baseline and stimulation conditions. To test this hypothesis, we compared the effects of alcohol intoxication (0.75 g/kg alcohol vs placebo) on brain glucose metabolism during video stimulation (VS) versus when given with no stimulation (NS), in 25 heavy drinkers (HDs) and 23 healthy controls, each of whom underwent four PET-18FDG scans. We showed that resting whole-brain glucose metabolism (placebo-NS) was lower in HD than controls (13%, p = 0.04); that alcohol (compared with placebo) decreased metabolism more in HD (20 ± 13%) than controls (9 ± 11%, p = 0.005) and in proportion to daily alcohol consumption (r = 0.36, p = 0.01) but found that alcohol did not reduce the metabolic increases in visual cortex from VS in either group. Instead, VS reduced alcohol-induced decreases in whole-brain glucose metabolism (10 ± 12%) compared with NS in both groups (15 ± 13%, p = 0.04), consistent with stimulation-related glucose metabolism enhancement. These findings corroborate our hypothesis that heavy alcohol consumption facilitates use of alternative energy substrates (i.e., acetate) for resting activity during intoxication, which might persist through early sobriety, but indicate that glucose is still favored as energy substrate during brain stimulation. Our findings are consistent with reduced reliance on glucose as the main energy substrate for resting brain metabolism during intoxication (presumably shifting to acetate or other ketones) and a priming of this shift in HDs, which might make them vulnerable to energy deficits during withdrawal. PMID:25698759

  10. Glutamate Acts as a Key Signal Linking Glucose Metabolism to Incretin/cAMP Action to Amplify Insulin Secretion

    OpenAIRE

    Ghupurjan Gheni; Masahito Ogura; Masahiro Iwasaki; Norihide Yokoi; Kohtaro Minami; Yasumune Nakayama; Kazuo Harada; Benoit Hastoy; Xichen Wu; Harumi Takahashi; Kazushi Kimura; Toshiya Matsubara; Ritsuko Hoshikawa; Naoya Hatano; Kenji Sugawara

    2014-01-01

    Summary Incretins, hormones released by the gut after meal ingestion, are essential for maintaining systemic glucose homeostasis by stimulating insulin secretion. The effect of incretins on insulin secretion occurs only at elevated glucose concentrations and is mediated by cAMP signaling, but the mechanism linking glucose metabolism and cAMP action in insulin secretion is unknown. We show here, using a metabolomics-based approach, that cytosolic glutamate derived from the malate-aspartate shu...

  11. Fetal deficiency of lin28 programs life-long aberrations in growth and glucose metabolism.

    Science.gov (United States)

    Shinoda, Gen; Shyh-Chang, Ng; Soysa, T Yvanka de; Zhu, Hao; Seligson, Marc T; Shah, Samar P; Abo-Sido, Nora; Yabuuchi, Akiko; Hagan, John P; Gregory, Richard I; Asara, John M; Cantley, Lewis C; Moss, Eric G; Daley, George Q

    2013-08-01

    LIN28A/B are RNA binding proteins implicated by genetic association studies in human growth and glucose metabolism. Mice with ectopic over-expression of Lin28a have shown related phenotypes. Here, we describe the first comprehensive analysis of the physiologic consequences of Lin28a and Lin28b deficiency in knockout (KO) mice. Lin28a/b-deficiency led to dwarfism starting at different ages, and compound gene deletions showed a cumulative dosage effect on organismal growth. Conditional gene deletion at specific developmental stages revealed that fetal but neither neonatal nor adult deficiency resulted in growth defects and aberrations in glucose metabolism. Tissue-specific KO mice implicated skeletal muscle-deficiency in the abnormal programming of adult growth and metabolism. The effects of Lin28b KO could be rescued by Tsc1 haplo-insufficiency in skeletal muscles. Our data implicate fetal expression of Lin28a/b in the regulation of life-long effects on metabolism and growth, and demonstrate that fetal Lin28b acts at least in part via mTORC1 signaling.

  12. Effects of glucogenic and ketogenic feeding strategies on splanchnic glucose and amino acid metabolism in postpartum transition Holstein cows

    DEFF Research Database (Denmark)

    Larsen, Mogens; Kristensen, Niels Bastian

    2012-01-01

    Nine periparturient Holstein cows catheterized in major splanchnic vessels were used in a complete randomized design with repeated measurements to investigate effects of glucogenic and ketogenic feeding strategies on splanchnic metabolism of glucose and amino acids. At parturition, cows were...... incremental increase in hepatic glucose release rather than hepatic catabolism of amino acids....

  13. Effect of Intermittent Hypoxia and Rimonabant on Glucose Metabolism in Rats: Involvement of Expression of GLUT4 in Skeletal Muscle

    OpenAIRE

    Wang, Xiaoya; Yu, Qin; Yue, Hongmei; Zeng, Shuang; Cui, Fenfen

    2015-01-01

    Background Obstructive sleep apnea (OSA) and its main feature, chronic intermittent hypoxia (IH) during sleep, is closely associated with insulin resistance (IR) and diabetes. Rimonabant can regulate glucose metabolism and improve IR. The present study aimed to assess the effect of IH and rimonabant on glucose metabolism and insulin sensitivity, and to explore the possible mechanisms. Material/Methods Thirty-two rats were randomly assigned into 4 groups: Control group, subjected to intermitte...

  14. On the role of glucose-dependent insulintropic polypeptide in postprandial metabolism in humans

    DEFF Research Database (Denmark)

    Asmar, Meena; Tangaa, Winnie; Madsbad, Sten;

    2010-01-01

    We investigated the role of glucose-dependent insulintropic polypeptide (GIP) in the regulation of gastric emptying (GE), appetite, energy intake (EI), energy expenditure (EE), plasma levels of triglycerides (TAG), and free fatty acids (FFA) in humans. First, 20 healthy males received intravenous....../saline days and on Intralipid + GIP day (P data suggest that GIP does not affect GE, appetite, energy intake, EE...

  15. Chronic fatigue syndrome in middle-aged women: the role of disorders of glucose metabolism

    Directory of Open Access Journals (Sweden)

    Anastasiya V Pleshcheva

    2014-12-01

    Full Text Available Objectives: To determine the prevalence of chronic fatigue syndrome (CFS among middle-aged women and to assess the role of glucose metabolism disturbances in the development of this pathology. Materials and Methods: The study included 231 women from 40 to 60 years old (mean age 52.3 ± 5 years, observed at urban polyclinic in Moscow, who was referred to or was observed by an endocrinologist (n = 142, group 1, therapist (n = 56, group 2 or had a prophylactic medical examinations (n = 33, group 3. We recorded demographic and anthropometric data, accessed levels of glucose, glycated hemoglobin, insulin and calculated BMI and HOMA indexes. Results: The prevalence of CFS in the whole group of patients studied was 27%. The highest frequency of CFS is registered in the group of patients observed by the endocrinologist – 35%, and at dispensary examination – 21%, which was significantly different from the prevalence of CFS in patients seeking an appointment with a therapist – 13% (p = 0.002 and p = 0.03 for Fisher's exact test, respectively. Higher BMI, blood glucose, glycosylated hemoglobin, and HOMA insulin resistance index as naturally expected were observed in group 1, but after further division for the presence or absence of CFS, significant differences for patients with CFS were only higher fasting glucose levels in group 2. Conclusions: We determined the prevalence of CFS in the examined groups of patients and showed only a weak correlation of CFS and disturbances of glucose metabolism.

  16. The influence of social status on hepatic glucose metabolism in rainbow trout Oncorhynchus mykiss.

    Science.gov (United States)

    Gilmour, Kathleen M; Kirkpatrick, Sheryn; Massarsky, Andrey; Pearce, Brenda; Saliba, Sarah; Stephany, Céleste-Élise; Moon, Thomas W

    2012-01-01

    The effects of chronic social stress on hepatic glycogen metabolism were examined in rainbow trout Oncorhynchus mykiss by comparing hepatocyte glucose production, liver glycogen phosphorylase (GP) activity, and liver β-adrenergic receptors in dominant, subordinate, control, fasted, and cortisol-treated fish. Hepatocyte glucose production in subordinate fish was approximately half that of dominant fish, reflecting hepatocyte glycogen stores in subordinate trout that were just 16% of those in dominant fish. Fasting and/or chronic elevation of cortisol likely contributed to these differences based on similarities among subordinate, fasted, and cortisol-treated fish. However, calculation of the "glycogen gap"--the difference between glycogen stores used and glucose produced--suggested an enhanced gluconeogenic potential in subordinate fish that was not present in fasted or cortisol-treated trout. Subordinate, fasted, and cortisol-treated trout also exhibited similar GP activities (both total activity and that of the active or a form), and these activities were in all cases significantly lower than those in control trout, perhaps reflecting an attempt to protect liver glycogen stores or a modified capacity to activate GP. Dominant trout exhibited the lowest GP activities (20%-24% of the values in control trout). Low GP activities, presumably in conjunction with incoming energy from feeding, allowed dominant fish to achieve the highest liver glycogen concentrations (double the value in control trout). Liver membrane β-adrenoceptor numbers (assessed as the number of (3)H-CGP binding sites) were significantly lower in subordinate than in dominant trout, although this difference did not translate into attenuated adrenergic responsiveness in hepatocyte glucose production in vitro. Transcriptional regulation, likely as a result of fasting, was indicated by significantly lower β(2)-adrenoceptor relative mRNA levels in subordinate and fasted trout. Collectively, the data

  17. Impaired glucose metabolism in HIV-infected pregnant women: a retrospective analysis.

    Science.gov (United States)

    Moore, Rebecca; Adler, Hugh; Jackson, Valerie; Lawless, Mairead; Byrne, Maria; Eogan, Maeve; Lambert, John S

    2016-06-01

    Metabolic complications, including diabetes mellitus, have been increasingly recognised in HIV-infected individuals since the introduction of antiretroviral therapy, particularly protease inhibitors (PIs). Pregnancy is also a risk factor for impaired glucose metabolism, and previous studies have given conflicting results regarding the contribution of PIs to impaired glucose tolerance (IGT) and gestational diabetes mellitus (GDM) in pregnant HIV-infected women. We conducted a retrospective review of all HIV-infected women attending a combined infectious disease and antenatal clinic between 2007 and 2013 who underwent a 100 g oral glucose tolerance test (OGTT) at 24-28 weeks. We grouped the patients based on whether their OGTT result was normal or abnormal, and compared the groups using standard parametric tests (t-test and Fisher's exact test). Of 263 women with HIV who attended the clinic, 142 (53.9%) attended for OGTT and were eligible for inclusion. The mean age was 31 years (SD 5.37), all women were of European or African origin and 33.7% had a body mass index ≥30 kg/m(2) About 93.7% were on PI-based regimens. At delivery, the mean CD4 count was 526 cells/µL, and 13% of patients had a detectable viraemia. The prevalence of IGT was 2.8%, while the prevalence of GDM was 2.1%. Also, 71.4% (n = 5) of women with abnormal glucose metabolism were taking PIs versus 94.8% (n = 128) of normoglycaemic women (p = 0.06). We did not confirm an increased rate of GDM in HIV-infected women in our patient population and found no association between PI use and GDM. PMID:25999164

  18. Increased fetal myocardial sensitivity to insulin-stimulated glucose metabolism during ovine fetal growth restriction.

    Science.gov (United States)

    Barry, James S; Rozance, Paul J; Brown, Laura D; Anthony, Russell V; Thornburg, Kent L; Hay, William W

    2016-04-01

    Unlike other visceral organs, myocardial weight is maintained in relation to fetal body weight in intrauterine growth restriction (IUGR) fetal sheep despite hypoinsulinemia and global nutrient restriction. We designed experiments in fetal sheep with placental insufficiency and restricted growth to determine basal and insulin-stimulated myocardial glucose and oxygen metabolism and test the hypothesis that myocardial insulin sensitivity would be increased in the IUGR heart. IUGR was induced by maternal hyperthermia during gestation. Control (C) and IUGR fetal myocardial metabolism were measured at baseline and under acute hyperinsulinemic/euglycemic clamp conditions at 128-132 days gestation using fluorescent microspheres to determine myocardial blood flow. Fetal body and heart weights were reduced by 33% (P = 0.008) and 30% (P = 0.027), respectively. Heart weight to body weight ratios were not different. Basal left ventricular (LV) myocardial blood flow per gram of LV tissue was maintained in IUGR fetuses compared to controls. Insulin increased LV myocardial blood flow by ∼38% (P flow in IUGR fetuses was 73% greater than controls. Similar to previous reports testing acute hypoxia, LV blood flow was inversely related to arterial oxygen concentration (r(2 )= 0.71) in both control and IUGR animals. Basal LV myocardial glucose delivery and uptake rates were not different between IUGR and control fetuses. Insulin increased LV myocardial glucose delivery (by 40%) and uptake (by 78%) (P < 0.01), but to a greater extent in the IUGR fetuses compared to controls. During basal and hyperinsulinemic-euglycemic clamp conditions LV myocardial oxygen delivery, oxygen uptake, and oxygen extraction efficiency were not different between groups. These novel results demonstrate that the fetal heart exposed to nutrient and oxygen deprivation from placental insufficiency appears to maintain myocardial energy supply in the IUGR condition via increased glucose uptake and

  19. Impact of switching from lopinavir/ritonavir to boosted and un-boosted atazanavir on glucose metabolism: the ATAzanavir & GLUcose metabolism (ATAGLU) study.

    Science.gov (United States)

    d'Ettorre, Gabriella; Ceccarelli, Giancarlo; Zaccarelli, Mauro; Ascoli-Bartoli, Tommaso; Bianchi, Luigi; Bellelli, Valeria; De Girolamo, Gabriella; Serafino, Sara; Giustini, Noemi; Mastroianni, Claudio M; Vullo, Vincenzo

    2016-07-01

    Previous studies have reported that protease inhibitors (PIs) can contribute to glycaemic alterations. However, there are few trials examining the direct effect of a single PI. The objective of the study was to evaluate the modifications of glucose and lipid profiles after a switch from lopinavir/ritonavir (LPV/r) to atazanavir, used as ritonavir-boosted (ATV/r) or un-boosted. We conducted a retrospective observational cohort study on the effect of ATV/(r) on glycaemic metabolism (ATAGLU) in patients with undetectable levels of HIV-RNA who switched from LPV/r. In total, 235 patients treated for 48 weeks with LPV/r plus two nucleoside reverse transcriptase inhibitors (NRTIs) and with undetectable HIV-RNA were included: 134 continued LPV/r after the initial 48 weeks and 101 switched to ATV(/r) (18.3% to ATV; 24.7% to ATV/r). A significant decrease in mean glucose level and insulin resistance was observed in patients who switched to ATV(/r). The mean cholesterol triglyceride levels increased in the LPV/r group and decreased among the patients who switched. A significant increase of CD4 T cells with undetectable levels of HIV-RNA was observed in all groups. The long-term results obtained in this real-life study suggest that patients who have achieved initial suppression on a regimen including LPV/r + two NRTIs can switch to ATV/(r) + two NRTIs with an improvement in lipid and glycaemic metabolism.

  20. Voxel-based statistical analysis of cerebral glucose metabolism in patients with permanent vegetative state after acquired brain injury

    Institute of Scientific and Technical Information of China (English)

    Yong Wook Kim; Hyoung Seop Kim; Young-Sil An; Sang Hee Im

    2010-01-01

    Background Permanent vegetative state is defined as the impaired level of consciousness longer than 12 months after traumatic causes and 3 months after non-traumatic causes of brain injury. Although many studies assessed the cerebral metabolism in patients with acute and persistent vegetative state after brain injury, few studies investigated the cerebral metabolism in patients with permanent vegetative state. In this study, we performed the voxel-based analysis of cerebral glucose metabolism and investigated the relationship between regional cerebral glucose metabolism and the severity of impaired consciousness in patients with permanent vegetative state after acquired brain injury.Methods We compared the regional cerebral glucose metabolism as demonstrated by F-18 fluorodeoxyglucose positron emission tomography from 12 patients with permanent vegetative state after acquired brain injury with those from 12 control subjects. Additionally, covariance analysis was performed to identify regions where decreased changes in regional cerebral glucose metabolism significantly correlated with a decrease of level of consciousness measured by JFK-coma recovery scare. Statistical analysis was performed using statistical parametric mapping.Results Compared with controls, patients with permanent vegetative state demonstrated decreased cerebral glucose metabolism in the left precuneus, both posterior cingulate cortices, the left superior parietal lobule (Pcorrected <0.001), and increased cerebral glucose metabolism in the both cerebellum and the right supramarginal cortices (Pcorrected <0.001). In the covariance analysis, a decrease in the level of consciousness was significantly correlated with decreased cerebral glucose metabolism in the both posterior cingulate cortices (Puncorrected <0.005).Conclusion Our findings suggest that the posteromedial parietal cortex, which are part of neural network for consciousness, may be relevant structure for pathophysiological mechanism

  1. Regional cerebral glucose metabolism in frontotemporal dementia: a study with FDG PET

    Energy Technology Data Exchange (ETDEWEB)

    Cho, S. S.; Jeong, J.; Kang, S. J.; Na, D. L.; Choe, Y. S.; Lee, K. H.; Choi, Y.; Kim, B. T.; Kim, S. E. [Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2002-07-01

    Frontotemporal dementia (FTD) is a common cause of presenile dementia. We investigated the regional cerebral glucose metabolic impairments in patients with FTD using FDG PET. We analysed the regional metabolic patterns on FDG PET images obtained from 30 patients with FTD and age- and sex-matched 15 patients with Alzheimers disease (AD) and 11 healthy subjects using SPM99. We also compared the inter-hemispheric metabolic asymmetry among the three groups by counting the total metabolic activity of each hemisphere and computing asymmetry index (AL) between hemispheres. The hypometabolic brain regions in FTD patients compared with healthy controls were as follows: superior middle and medial frontal lobules, superior and middle temporal lobules, anterior and posterior cingulate gyri, uncus, insula, lateral globus pallidus and thalamus. The regions with decreased metabolism in FTD patients compared with AD patients were as follows: superior, inferior and medial frontal lobules, anterior cingulate gyrus, and caudate nucleus. Twenty-five (83%) out of the 30 FTD patients had AI values that was beyond the 95% confidence interval of the AI values obtained from healthy controls; 10 patients had hypometabolism more severe on the right and 15 patients had the opposite pattern. In comparison, 10 (67%) out of the 15 AD patients had asymmetric metabolism. Our SPM analysis of FDG PET revealed additional areas of decreased metabolism in FTD patients compared with prior studies using the ROI method, involving frontal, temporal, cingulate gyrus, corpus callosum, uncus, insula, and some subcortical areas. The inter-hemispheric metabolic asymmetry was common in FTD patients, which can be another metabolic feature that helps differentiate FTD from AD.

  2. Fermentation and Hydrogen Metabolism Affect Uranium Reduction by Clostridia

    OpenAIRE

    Weimin Gao; Francis, Arokiasamy J.

    2013-01-01

    Previously, it has been shown that not only is uranium reduction under fermentation condition common among clostridia species, but also the strains differed in the extent of their capability and the pH of the culture significantly affected uranium(VI) reduction. In this study, using HPLC and GC techniques, metabolic properties of those clostridial strains active in uranium reduction under fermentation conditions have been characterized and their effects on capability variance of uranium reduc...

  3. Whole grain products, fish and bilberries alter glucose and lipid metabolism in a randomized, controlled trial: the Sysdimet study.

    Directory of Open Access Journals (Sweden)

    Maria Lankinen

    Full Text Available BACKGROUND: Due to the growing prevalence of type 2 diabetes, new dietary solutions are needed to help improve glucose and lipid metabolism in persons at high risk of developing the disease. Herein we investigated the effects of low-insulin-response grain products, fatty fish, and berries on glucose metabolism and plasma lipidomic profiles in persons with impaired glucose metabolism. METHODOLOGY/PRINCIPAL FINDINGS: Altogether 106 men and women with impaired glucose metabolism and with at least two other features of the metabolic syndrome were included in a 12-week parallel dietary intervention. The participants were randomized into three diet intervention groups: (1 whole grain and low postprandial insulin response grain products, fatty fish three times a week, and bilberries three portions per day (HealthyDiet group, (2 Whole grain enriched diet (WGED group, which includes principally the same grain products as group (1, but with no change in fish or berry consumption, and (3 refined wheat breads (Control. Oral glucose tolerance, plasma fatty acids and lipidomic profiles were measured before and after the intervention. Self-reported compliance with the diets was good and the body weight remained constant. Within the HealthyDiet group two hour glucose concentration and area-under-the-curve for glucose decreased and plasma proportion of (n-3 long-chain PUFAs increased (False Discovery Rate p-values <0.05. Increases in eicosapentaenoic acid and docosahexaenoic acid associated curvilinearly with the improved insulin secretion and glucose disposal. Among the 364 characterized lipids, 25 changed significantly in the HealthyDiet group, including multiple triglycerides incorporating the long chain (n-3 PUFA. CONCLUSIONS/SIGNIFICANCE: The results suggest that the diet rich in whole grain and low insulin response grain products, bilberries, and fatty fish improve glucose metabolism and alter the lipidomic profile. Therefore, such a diet may have a

  4. Magnetic Resonance Imaging of Glucose Uptake and Metabolism in Patients with Head and Neck Cancer

    Science.gov (United States)

    Wang, Jihong; Weygand, Joseph; Hwang, Ken-Pin; Mohamed, Abdallah S. R.; Ding, Yao; Fuller, Clifton D.; Lai, Stephen Y.; Frank, Steven J.; Zhou, Jinyuan

    2016-01-01

    Imaging metabolic dysfunction, a hallmark of solid tumors, usually requires radioactive tracers. Chemical exchange saturation transfer (CEST) imaging can potentially detect and visualize glucose uptake and metabolism, without the need for radioisotopes. Here, we tested the feasibility of using glucose CEST (glucoCEST) to image unlabeled glucose uptake in head and neck cancer by using a clinical 3T magnetic resonance imaging (MRI) scanner. The average CEST contrast between tumors and normal tissue in 17 patients was 7.58% (P = 0.006) in the 3–4 ppm offset frequency range and 5.06% (P = 0.02) in 1–5 ppm range. In a subgroup of eight patients, glucoCEST signal enhancement was higher in tumors than in normal muscle (4.98% vs. 1.28%, P < 0.021). We conclude that glucoCEST images of head and neck cancer can be obtained with a clinical 3T MRI scanner. PMID:27461165

  5. Mitochondrial metabolism of pyruvate is essential for regulating glucose-stimulated insulin secretion.

    Science.gov (United States)

    Patterson, Jessica N; Cousteils, Katelyn; Lou, Jennifer W; Manning Fox, Jocelyn E; MacDonald, Patrick E; Joseph, Jamie W

    2014-05-01

    It is well known that mitochondrial metabolism of pyruvate is critical for insulin secretion; however, we know little about how pyruvate is transported into mitochondria in β-cells. Part of the reason for this lack of knowledge is that the carrier gene was only discovered in 2012. In the current study, we assess the role of the recently identified carrier in the regulation of insulin secretion. Our studies show that β-cells express both mitochondrial pyruvate carriers (Mpc1 and Mpc2). Using both pharmacological inhibitors and siRNA-mediated knockdown of the MPCs we show that this carrier plays a key role in regulating insulin secretion in clonal 832/13 β-cells as well as rat and human islets. We also show that the MPC is an essential regulator of both the ATP-regulated potassium (KATP) channel-dependent and -independent pathways of insulin secretion. Inhibition of the MPC blocks the glucose-stimulated increase in two key signaling molecules involved in regulating insulin secretion, the ATP/ADP ratio and NADPH/NADP(+) ratio. The MPC also plays a role in in vivo glucose homeostasis as inhibition of MPC by the pharmacological inhibitor α-cyano-β-(1-phenylindol-3-yl)-acrylate (UK5099) resulted in impaired glucose tolerance. These studies clearly show that the newly identified mitochondrial pyruvate carrier sits at an important branching point in nutrient metabolism and that it is an essential regulator of insulin secretion. PMID:24675076

  6. Magnetic Resonance Imaging of Glucose Uptake and Metabolism in Patients with Head and Neck Cancer.

    Science.gov (United States)

    Wang, Jihong; Weygand, Joseph; Hwang, Ken-Pin; Mohamed, Abdallah S R; Ding, Yao; Fuller, Clifton D; Lai, Stephen Y; Frank, Steven J; Zhou, Jinyuan

    2016-01-01

    Imaging metabolic dysfunction, a hallmark of solid tumors, usually requires radioactive tracers. Chemical exchange saturation transfer (CEST) imaging can potentially detect and visualize glucose uptake and metabolism, without the need for radioisotopes. Here, we tested the feasibility of using glucose CEST (glucoCEST) to image unlabeled glucose uptake in head and neck cancer by using a clinical 3T magnetic resonance imaging (MRI) scanner. The average CEST contrast between tumors and normal tissue in 17 patients was 7.58% (P = 0.006) in the 3-4 ppm offset frequency range and 5.06% (P = 0.02) in 1-5 ppm range. In a subgroup of eight patients, glucoCEST signal enhancement was higher in tumors than in normal muscle (4.98% vs. 1.28%, P < 0.021). We conclude that glucoCEST images of head and neck cancer can be obtained with a clinical 3T MRI scanner. PMID:27461165

  7. Reduced cerebral glucose metabolism and increased brain capillary permeability following high-dose methotrexate chemotherapy: a positron emission tomographic study

    International Nuclear Information System (INIS)

    Regional glucose metabolic rate constants and blood-to-brain transport of rubidium were estimated using positron emission tomography in an adolescent patient with a brain tumor, before and after chemotherapy with intravenous high-dose methotrexate. Widespread depression of cerebral glucose metabolism was apparent 24 hours after drug administration, which may reflect reduced glucose phosphorylation, and the influx rate constant for 82Rb was increased, indicating a drug-induced alteration in blood-brain barrier function. Associated changes in neuropsychological performance, electroencephalogram, and plasma amino acid concentration were identified in the absence of evidence of systemic methotrexate toxicity, suggesting primary methotrexate neurotoxicity

  8. The Effect of Exercise on Glucose Metabolism in Patients with Type 2 Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Tuba Tulay Koca

    2015-09-01

    Full Text Available Diabetes mellitus is one of the major causes of disability and death due to the complications accompanying this disease. The incidence of type 2 diabetes mellitus and insulin resistance has increased worldwide during the last decades, despite the development of effective drug therapy and improved clinical diagnoses. Recent epidemiological studies indicate that individuals who maintain a physically active lifestyle are much less likely to develop impaired glucose tolerance and diabetes mellitus. Additional to protective effect of physical activity for individuals at highest risk of developing diabetes mellitus, physical activity has positive impacts on fasting glucose, insulin sensitivity and blood glucose level for patients with overt diabetes. The essential mechanism of exercises is enhancing sensitivity of insulin on pheripheral tissues (especially skeletal muscle. With exercise training significant improvements in glucose metabolism is observed in many of these studies. Especially, the improvements in insulin sensitivity with exercise training observed better in high magnitude of aerobic exercises. Also adaptation of patients is very high to combined type exercises. However worldwide standardization of these training programmes in many of the studies is lacking and current practice in daily life is unsatisfactory. [Archives Medical Review Journal 2015; 24(3.000: 306-316

  9. Effect of dietary protein on lipid and glucose metabolism: implications for metabolic health

    NARCIS (Netherlands)

    Rietman, A.

    2015-01-01

    Abstract Background: Diet is an important factor in the development of the Metabolic Syndrome (Mets) and type 2 Diabetes Mellitus. Accumulation of intra hepatic lipid (IHL) can result in non-alcoholic fatty liver disease (NAFLD), which is sometimes considered the he

  10. Probing the metabolic network in bloodstream-form Trypanosoma brucei using untargeted metabolomics with stable isotope labelled glucose.

    Directory of Open Access Journals (Sweden)

    Darren J Creek

    2015-03-01

    Full Text Available Metabolomics coupled with heavy-atom isotope-labelled glucose has been used to probe the metabolic pathways active in cultured bloodstream form trypomastigotes of Trypanosoma brucei, a parasite responsible for human African trypanosomiasis. Glucose enters many branches of metabolism beyond glycolysis, which has been widely held to be the sole route of glucose metabolism. Whilst pyruvate is the major end-product of glucose catabolism, its transamination product, alanine, is also produced in significant quantities. The oxidative branch of the pentose phosphate pathway is operative, although the non-oxidative branch is not. Ribose 5-phosphate generated through this pathway distributes widely into nucleotide synthesis and other branches of metabolism. Acetate, derived from glucose, is found associated with a range of acetylated amino acids and, to a lesser extent, fatty acids; while labelled glycerol is found in many glycerophospholipids. Glucose also enters inositol and several sugar nucleotides that serve as precursors to macromolecule biosynthesis. Although a Krebs cycle is not operative, malate, fumarate and succinate, primarily labelled in three carbons, were present, indicating an origin from phosphoenolpyruvate via oxaloacetate. Interestingly, the enzyme responsible for conversion of phosphoenolpyruvate to oxaloacetate, phosphoenolpyruvate carboxykinase, was shown to be essential to the bloodstream form trypanosomes, as demonstrated by the lethal phenotype induced by RNAi-mediated downregulation of its expression. In addition, glucose derivatives enter pyrimidine biosynthesis via oxaloacetate as a precursor to aspartate and orotate.

  11. Study of regional cerebral metabolic rate of glucose with positron emission computed tomography in Alzheimer's disease

    International Nuclear Information System (INIS)

    Using positron emission computed tomography with F-18 fluoro-D-deoxyglucose, regional cerebral metabolic rate of glucose (rCMRglc) was measured in 8 patients with Alzheimer's disease and 3 healthy volunteers. A decreased rCMRglc was observed in the widespread cortex and basal ganglia of the cerebrum, but not observed in white matter, thalamus, and cerebellum. There was no bilateral difference. rCMRglc was the lowest in the parietal lobe, followed by the temporal lobe and the curvature of the frontal lobe. A decrease in rCMRglu was relatively mild in the inner part of the frontal lobe, primary sensory and motor area of the cerebral cortex, and cerebral basilar ganglia. Alzheimer's disease proved to be characterized by severe glucose metabolic disorder in the association area of the bilateral cerebral cortices. The degree of metabolic disorder was correlated with the degree of dementia in the outer part of the left frontal lobe and the curvature of the cerebral cortex. (Namekawa, K.)

  12. Adiponectin regulates expression of hepatic genes critical for glucose and lipid metabolism.

    Science.gov (United States)

    Liu, Qingqing; Yuan, Bingbing; Lo, Kinyui Alice; Patterson, Heide Christine; Sun, Yutong; Lodish, Harvey F

    2012-09-01

    The effects of adiponectin on hepatic glucose and lipid metabolism at transcriptional level are largely unknown. We profiled hepatic gene expression in adiponectin knockout (KO) and wild-type (WT) mice by RNA sequencing. Compared with WT mice, adiponectin KO mice fed a chow diet exhibited decreased mRNA expression of rate-limiting enzymes in several important glucose and lipid metabolic pathways, including glycolysis, tricarboxylic acid cycle, fatty-acid activation and synthesis, triglyceride synthesis, and cholesterol synthesis. In addition, binding of the transcription factor Hnf4a to DNAs encoding several key metabolic enzymes was reduced in KO mice, suggesting that adiponectin might regulate hepatic gene expression via Hnf4a. Phenotypically, adiponectin KO mice possessed smaller epididymal fat pads and showed reduced body weight compared with WT mice. When fed a high-fat diet, adiponectin KO mice showed significantly reduced lipid accumulation in the liver. These lipogenic defects are consistent with the down-regulation of lipogenic genes in the KO mice.

  13. Transport and metabolism of fumaric acid in Saccharomyces cerevisiae in aerobic glucose-limited chemostat culture.

    Science.gov (United States)

    Shah, Mihir V; van Mastrigt, Oscar; Heijnen, Joseph J; van Gulik, Walter M

    2016-04-01

    Currently, research is being focused on the industrial-scale production of fumaric acid and other relevant organic acids from renewable feedstocks via fermentation, preferably at low pH for better product recovery. However, at low pH a large fraction of the extracellular acid is present in the undissociated form, which is lipophilic and can diffuse into the cell. There have been no studies done on the impact of high extracellular concentrations of fumaric acid under aerobic conditions in S. cerevisiae, which is a relevant issue to study for industrial-scale production. In this work we studied the uptake and metabolism of fumaric acid in S. cerevisiae in glucose-limited chemostat cultures at a cultivation pH of 3.0 (pH exporting fumaric acid. We observed that fumaric acid entered the cells most likely via passive diffusion of the undissociated form. Approximately two-thirds of the fumaric acid in the feed was metabolized together with glucose. From metabolic flux analysis, an increased ATP dissipation was observed only at high intracellular concentrations of fumarate, possibly due to the export of fumarate via an ABC transporter. The implications of our results for the industrial-scale production of fumaric acid are discussed. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26683700

  14. Adaptive mutations in sugar metabolism restore growth on glucose in a pyruvate decarboxylase negative yeast strain

    DEFF Research Database (Denmark)

    Zhang, Yiming; Liu, Guodong; Engqvist, Martin K. M.;

    2015-01-01

    Background: A Saccharomyces cerevisiae strain carrying deletions in all three pyruvate decarboxylase (PDC) genes (also called Pdc negative yeast) represents a non-ethanol producing platform strain for the production of pyruvate derived biochemicals. However, it cannot grow on glucose as the sole...... carbon source, and requires supplementation of C2 compounds to the medium in order to meet the requirement for cytosolic acetyl-CoA for biosynthesis of fatty acids and ergosterol. Results: In this study, a Pdc negative strain was adaptively evolved for improved growth in glucose medium via serial...... expression of several hexose transporter genes. The non-synonymous mutations in HXT2 and CIT1 may function in the presence of mutated MTH1 alleles and could be related to an altered central carbon metabolism in order to ensure production of cytosolic acetyl-CoA in the Pdc negative strain....

  15. Study on the effect of valproate (VPA) on glucose metabolism in pediatric patients with epilepsy

    International Nuclear Information System (INIS)

    Objective: To study the effect on glucose metabolism in pediatric patients with epilepsy under valproate treatment. Methods: Fasting serum glucose (with oxidase method) and insulin (with RIA) levels, insulin resistance index, body weight, BMI were examined in (1) 65 pediatric patients with epilepsy before valproate treatment (2) 65 patients after 3 months' valproate treatment (3) 65 patients after 6 months' treatment and (4) 65 controls. Results: In the patients after 3 months' treatment, the body weight, BMI, fasting insulin levels were significantly higher than those in patients before treatment (P 0.05). The calculated HOMA did not change much throughout the whole study. The proportion of patients with increased appetite after 6 months' treatment was 47 /65 (vs 20 /65 before treatment, P < 0.05). Conclusion: The increase of body weight and BMI asually observed during valproate treatment is mainly due to increased appetite with limited increase of fasting insulin level. Insulin resistance was not found in present study. (authors)

  16. Effect of triiodothyronine and insulin on glucose metabolism in tissue explants and isolated adipocytes from lean and obese Zucker rats

    International Nuclear Information System (INIS)

    Glucose metabolism in adipocytes from 6 week old lean and obese Zucker rats were sensitive to direct and chronic treatment with insulin and triidothyronine (T3). Insulin had a large stimulatory effect on glucose metabolism in acutely isolated adipocytes. This effect was greater in the lean than in the obese. Fatty acid, CO2, and glycerol-glyceride formation from radiolabeled glucose was elevated in the obese over the leans. Pretreatment of isolated adipocytes with pharmacological concentrations of T3 for 30 minutes prior to the measurement of glucose metabolism had a greater effect on lean than obese adipocytes. The presence of insulin was required to observe the acute effects of T3. A 2-hour exposure to physiological levels of T3 in the presence of insulin in both lean and obese adipocytes decreased lipogenesis. In the absence of insulin, a 2 hour pretreatment with physiological levels of T3 in tissue from a euthyroid animal produced increased lipogenesis

  17. Integrated Metabolomics, Transcriptomics and Proteomics Identifies Metabolic Pathways Affected by Anaplasma phagocytophilum Infection in Tick Cells.

    Science.gov (United States)

    Villar, Margarita; Ayllón, Nieves; Alberdi, Pilar; Moreno, Andrés; Moreno, María; Tobes, Raquel; Mateos-Hernández, Lourdes; Weisheit, Sabine; Bell-Sakyi, Lesley; de la Fuente, José

    2015-12-01

    Anaplasma phagocytophilum is an emerging zoonotic pathogen that causes human granulocytic anaplasmosis. These intracellular bacteria establish infection by affecting cell function in both the vertebrate host and the tick vector, Ixodes scapularis. Previous studies have characterized the tick transcriptome and proteome in response to A. phagocytophilum infection. However, in the postgenomic era, the integration of omics datasets through a systems biology approach allows network-based analyses to describe the complexity and functionality of biological systems such as host-pathogen interactions and the discovery of new targets for prevention and control of infectious diseases. This study reports the first systems biology integration of metabolomics, transcriptomics, and proteomics data to characterize essential metabolic pathways involved in the tick response to A. phagocytophilum infection. The ISE6 tick cells used in this study constitute a model for hemocytes involved in pathogen infection and immune response. The results showed that infection affected protein processing in endoplasmic reticulum and glucose metabolic pathways in tick cells. These results supported tick-Anaplasma co-evolution by providing new evidence of how tick cells limit pathogen infection, while the pathogen benefits from the tick cell response to establish infection. Additionally, ticks benefit from A. phagocytophilum infection by increasing survival while pathogens guarantee transmission. The results suggested that A. phagocytophilum induces protein misfolding to limit the tick cell response and facilitate infection but requires protein degradation to prevent ER stress and cell apoptosis to survive in infected cells. Additionally, A. phagocytophilum may benefit from the tick cell's ability to limit bacterial infection through PEPCK inhibition leading to decreased glucose metabolism, which also results in the inhibition of cell apoptosis that increases infection of tick cells. These results

  18. Effect of systemically increasing human full-length Klotho on glucose metabolism in db/db mice.

    Science.gov (United States)

    Forsberg, E A; Olauson, H; Larsson, T; Catrina, S B

    2016-03-01

    The metabolic effects of antiaging Klotho were previously investigated in vivo by genetic manipulation. We have here studied the metabolic effect of physiologic levels of circulating full length Klotho in db/db mice. Increasing the full-length human Klotho levels has a positive effect on blood glucose through increasing insulin secretion. PMID:26806457

  19. Quantitative on-line monitoring of hippocampus glucose and lactate metabolism in organotypic cultures using biosensor technology

    NARCIS (Netherlands)

    Gramsbergen, JB; Leegsma-Vogt, G; Venema, K; Noraberg, J; Korf, J

    2003-01-01

    Quantitative glucose and lactate metabolism was assessed in continuously perfused organotypic hippocampal slices under control conditions and during exposure to glutamate and drugs that interfere with aerobic and anaerobic metabolism. On-line detection was possible with a system based on slow perfus

  20. Thermodynamics of Microbial Growth Coupled to Metabolism of Glucose, Ethanol, Short-Chain Organic Acids, and Hydrogen ▿ †

    Science.gov (United States)

    Roden, Eric E.; Jin, Qusheng

    2011-01-01

    A literature compilation demonstrated a linear relationship between microbial growth yield and the free energy of aerobic and anaerobic (respiratory and/or fermentative) metabolism of glucose, ethanol, formate, acetate, lactate, propionate, butyrate, and H2. This relationship provides a means to estimate growth yields for modeling microbial redox metabolism in soil and sedimentary environments. PMID:21216913

  1. Analysis of metabolism of 6FDG: a PET glucose transport tracer

    Energy Technology Data Exchange (ETDEWEB)

    Muzic, Raymond F., E-mail: raymond.muzic@case.edu [Department of Radiology, Case Western Reserve University, Cleveland, OH 44106 (United States); Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106 (United States); Chandramouli, Visvanathan [Department of Radiology, Case Western Reserve University, Cleveland, OH 44106 (United States); Huang, Hsuan-Ming [Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106 (United States); Wu Chunying; Wang Yanming [Department of Radiology, Case Western Reserve University, Cleveland, OH 44106 (United States); Ismail-Beigi, Faramarz [Department of Medicine, Case Western Reserve University, Cleveland, OH 44106 (United States)

    2011-07-15

    Introduction: We are developing {sup 18}F-labeled 6-fluoro-6-deoxy-D-glucose ([{sup 18}F]6FDG) as a tracer of glucose transport. As part of this process it is important to characterize and quantify putative metabolites. In contrast to the ubiquitous positron emission tomography (PET) tracer {sup 18}F-labeled 2-fluoro-2-deoxy-D-glucose ([{sup 18}F]2FDG) which is phosphorylated and trapped intracellularly, the substitution of fluorine for a hydroxyl group at carbon-6 in [{sup 18}F]6FDG should prevent its phosphorylation. Consequently, [{sup 18}F]6FDG has the potential to trace the transport step of glucose metabolism without the confounding effects of phosphorylation and subsequent steps of metabolism. Herein the focus is to determine whether, and the degree to which, [{sup 18}F]6FDG remains unchanged following intravenous injection. Methods: Biodistribution studies were performed using 6FDG labeled with {sup 18}F or with the longer-lived radionuclides {sup 3}H and {sup 14}C. Tissues were harvested at 1, 6, and 24 h following intravenous administration and radioactivity was extracted from the tissues and analyzed using a combination of ion exchange columns, high-performance liquid chromatography, and chemical reactivity. Results: At the 1 h time-point, the vast majority of radioactivity in the liver, brain, heart, skeletal muscle, and blood was identified as 6FDG. At the 6-h and 24-h time points, there was evidence of a minor amount of radioactive material that appeared to be 6-fluoro-6-deoxy-D-sorbitol and possibly 6-fluoro-6-deoxy-D-gluconic acid. Conclusion: On the time scale typical of PET imaging studies radioactive metabolites of [{sup 18}F]6FDG are negligible.

  2. Simultaneous measurement of blood flow and glucose metabolism by autoradiographic techniques

    International Nuclear Information System (INIS)

    A double tracer autoradiographic technique using 131I-iodo-antipyrine and 14C-deoxyglucose is presented for the simultaneous measurement of blood flow and cerebral glucose utilization in the same animal. 131I is a gamma emitting isotope with a half life of 8.06 days and can be detected with adequate resolution on standard autoradiographic films. Autoradiograms are made before and after decay of 131I; the time interval between the 2 exposures and the concentration of the 2 tracers is adjusted to avoid significant cross-contamination. In this way, 2 film exposures are obtained which can be processed quantitatively like single tracer autoradiograms. The validity of the method for the investigation of local coupling of flow and metabolism was tested under various physiological and pathophysiological conditions. Coupling was tight in barbiturate-anesthetized healthy animals, but not under halothane anesthesia where uncoupling occurred in various subcortical structures. Focal seizures induced by topical application of penicillin on the cortical surface led to a coupled increase of metabolism and flow in thalamic relay nuclei but not at the site of penicillin administration where increased glucose utilization was not accompanied by similar increase in blood flow. Both coupled and uncoupled increases in local glucose utilization were observed in spreading depression and in circumscribed areas of experimental brain tumors. The results obtained demonstrate that double tracer autoradiography allows allows the very precise local assessment of cerebral blood flow and glucose utilization, and, therefore, is particularly suited to the study of regional coupling processes under various experimental conditions

  3. Chromium and vanadium effects on glucose and lipid metabolism of guinea pigs and obese and diabetic mice

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.C.

    1987-01-01

    Severe chromium deficiency in experimental animals may contribute to insulin resistance, impaired glucose tolerance and elevated serum cholesterol concentration. Vanadium also has been reported to be a nutritionally important element for both chicks and rats, but its function and even its essentiality are still in question. Chromium absorption even from supplemented diets is poor, thus efforts were made to study the site of absorption of /sup 51/Cr from CrCl/sub 3/. /sup 51/Cr was found to move very rapidly through the GI tract and appears to flow with dietary and secreted water. It was not absorbed from the stomach. In a study with guinea pigs, vanadate supplementation appeared to affect cholesterol fraction. Chromium supplementation lowered serum triacylglycerol concentrations at the end of an 18-week study. Since the previous study and others have indicated a role for chromium and vanadium in lipid carbohydrate metabolism, experiments were designed to compare effects of chromium and vanadium supplements on related parameters.

  4. [Effects of exogenous glucose and starch on soil carbon metabolism of root zone and root function in potted sweet cherry].

    Science.gov (United States)

    Zhou, Wen-jie; Zhang, Peng; Qin, Si-jun; Lyu, De-guo

    2015-11-01

    glucose and starch affected soil carbon metabolism and enhanced soil microbial activity, the root respiratory rate and root viability. PMID:26915183

  5. Glucose Metabolism in T Cells and Monocytes: New Perspectives in HIV Pathogenesis

    Science.gov (United States)

    Palmer, Clovis S.; Cherry, Catherine L.; Sada-Ovalle, Isabel; Singh, Amit; Crowe, Suzanne M.

    2016-01-01

    Activation of the immune system occurs in response to the recognition of foreign antigens and receipt of optimal stimulatory signals by immune cells, a process that requires energy. Energy is also needed to support cellular growth, differentiation, proliferation, and effector functions of immune cells. In HIV-infected individuals, persistent viral replication, together with inflammatory stimuli contributes to chronic immune activation and oxidative stress. These conditions remain even in subjects with sustained virologic suppression on antiretroviral therapy. Here we highlight recent studies demonstrating the importance of metabolic pathways, particularly those involving glucose metabolism, in differentiation and maintenance of the activation states of T cells and monocytes. We also discuss how changes in the metabolic status of these cells may contribute to ongoing immune activation and inflammation in HIV- infected persons and how this may contribute to disease progression, establishment and persistence of the HIV reservoir, and the development of co-morbidities. We provide evidence that other viruses such as Epstein–Barr and Flu virus also disrupt the metabolic machinery of their host cells. Finally, we discuss how redox signaling mediated by oxidative stress may regulate metabolic responses in T cells and monocytes during HIV infection. PMID:27211546

  6. Circadian rhythms in glucose and lipid metabolism in nocturnal and diurnal mammals.

    Science.gov (United States)

    Kumar Jha, Pawan; Challet, Etienne; Kalsbeek, Andries

    2015-12-15

    Most aspects of energy metabolism display clear variations during day and night. This daily rhythmicity of metabolic functions, including hormone release, is governed by a circadian system that consists of the master clock in the suprachiasmatic nuclei of the hypothalamus (SCN) and many secondary clocks in the brain and peripheral organs. The SCN control peripheral timing via the autonomic and neuroendocrine system, as well as via behavioral outputs. The sleep-wake cycle, the feeding/fasting rhythm and most hormonal rhythms, including that of leptin, ghrelin and glucocorticoids, usually show an opposite phase (relative to the light-dark cycle) in diurnal and nocturnal species. By contrast, the SCN clock is most active at the same astronomical times in these two categories of mammals. Moreover, in both species, pineal melatonin is secreted only at night. In this review we describe the current knowledge on the regulation of glucose and lipid metabolism by central and peripheral clock mechanisms. Most experimental knowledge comes from studies in nocturnal laboratory rodents. Nevertheless, we will also mention some relevant findings in diurnal mammals, including humans. It will become clear that as a consequence of the tight connections between the circadian clock system and energy metabolism, circadian clock impairments (e.g., mutations or knock-out of clock genes) and circadian clock misalignments (such as during shift work and chronic jet-lag) have an adverse effect on energy metabolism, that may trigger or enhancing obese and diabetic symptoms. PMID:25662277

  7. Formaldehyde Metabolism and Formaldehyde-induced Alterations in Glucose and Glutathione Metabolism of Cultured Brain Cells

    OpenAIRE

    Tulpule, Ketki

    2013-01-01

    Formaldehyde is an environmental pollutant that is also generated in the body during normal metabolic processes. Interestingly, several pathological conditions are associated with an increase in formaldehyde-generating enzymes in the body. The level of formaldehyde in the brain is elevated with increasing age and in neurodegenerative conditions which may contribute to lowered cognitive functions. Although the neurotoxic potential of formaldehyde is well established, the molecular mechanisms i...

  8. D-[U-11C]glucose uptake and metabolism in the brain of insulin-dependent diabetic subjects

    International Nuclear Information System (INIS)

    We used D-[U-11C]glucose to evaluate transport and metabolism of glucose in the brain in eight nondiabetic and six insulin-dependent diabetes mellitus (IDDM) subjects. IDDM subjects were treated by continuous subcutaneous insulin infusion. Blood glucose was regulated by a Biostator-controlled glucose infusion during a constant insulin infusion. D-[U-11C]-glucose was injected for positron emission tomography studies during normoglycemia as well as during moderate hypoglycemia [arterial plasma glucose 2.74 +/- 0.14 in nondiabetic and 2.80 +/- 0.26 mmol/l (means +/- SE) in IDDM subjects]. Levels of free insulin were constant and similar in both groups. The tracer data were analyzed using a three-compartment model with a fixed correction for 11CO2 egression. During normoglycemia the influx rate constant (k1) and blood-brain glucose flux did not differ between the two groups. During hypoglycemia k1 increased significantly and similarly in both groups (from 0.061 +/- 0.007 to 0.090 +/- 0.006 in nondiabetic and from 0.061 +/- 0.006 to 0.093 +/- 0.013 ml.g-1.min-1 in IDDM subjects). During normoglycemia the tracer-calculated metabolism of glucose was higher in the whole brain in the nondiabetic than in the diabetic subjects (22.0 +/- 1.9 vs. 15.6 +/- 1.1 mumol.100 g-1.min-1, P less than 0.01). During hypoglycemia tracer-calculated metabolism was decreased by 40% in nondiabetic subjects and by 28% in diabetic subjects. The results indicate that uptake of glucose is normal, but some aspect of glucose metabolism is abnormal in a group of well-controlled IDDM subjects

  9. D-(U-11C)glucose uptake and metabolism in the brain of insulin-dependent diabetic subjects

    Energy Technology Data Exchange (ETDEWEB)

    Gutniak, M.; Blomqvist, G.; Widen, L.; Stone-Elander, S.; Hamberger, B.; Grill, V. (Karolinska Hospital and Institute, Stockholm (Sweden))

    1990-05-01

    We used D-(U-11C)glucose to evaluate transport and metabolism of glucose in the brain in eight nondiabetic and six insulin-dependent diabetes mellitus (IDDM) subjects. IDDM subjects were treated by continuous subcutaneous insulin infusion. Blood glucose was regulated by a Biostator-controlled glucose infusion during a constant insulin infusion. D-(U-11C)-glucose was injected for positron emission tomography studies during normoglycemia as well as during moderate hypoglycemia (arterial plasma glucose 2.74 +/- 0.14 in nondiabetic and 2.80 +/- 0.26 mmol/l (means +/- SE) in IDDM subjects). Levels of free insulin were constant and similar in both groups. The tracer data were analyzed using a three-compartment model with a fixed correction for 11CO2 egression. During normoglycemia the influx rate constant (k1) and blood-brain glucose flux did not differ between the two groups. During hypoglycemia k1 increased significantly and similarly in both groups (from 0.061 +/- 0.007 to 0.090 +/- 0.006 in nondiabetic and from 0.061 +/- 0.006 to 0.093 +/- 0.013 ml.g-1.min-1 in IDDM subjects). During normoglycemia the tracer-calculated metabolism of glucose was higher in the whole brain in the nondiabetic than in the diabetic subjects (22.0 +/- 1.9 vs. 15.6 +/- 1.1 mumol.100 g-1.min-1, P less than 0.01). During hypoglycemia tracer-calculated metabolism was decreased by 40% in nondiabetic subjects and by 28% in diabetic subjects. The results indicate that uptake of glucose is normal, but some aspect of glucose metabolism is abnormal in a group of well-controlled IDDM subjects.

  10. Activation of nuclear receptor NR5A2 increases Glut4 expression and glucose metabolism in muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Bolado-Carrancio, A. [Department of Molecular Biology, University of Cantabria, IDIVAL, Santander (Spain); Riancho, J.A. [Department of Internal Medicine, Hospital U.M. Valdecilla-IDIVAL, University of Cantabria, RETICEF, Santander (Spain); Sainz, J. [Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC-University of Cantabria, Santander (Spain); Rodríguez-Rey, J.C., E-mail: rodriguj@unican.es [Department of Molecular Biology, University of Cantabria, IDIVAL, Santander (Spain)

    2014-04-04

    Highlights: • NR5A2 expression in C2C12 is associated with myotube differentiation. • DLPC induces an increase in GLUT4 levels and glucose uptake in C2C12 myotubes. • In high glucose conditions the activation of NR5A2 inhibits fatty acids oxidation. - Abstract: NR5A2 is a nuclear receptor which regulates the expression of genes involved in cholesterol metabolism, pluripotency maintenance and cell differentiation. It has been recently shown that DLPC, a NR5A2 ligand, prevents liver steatosis and improves insulin sensitivity in mouse models of insulin resistance, an effect that has been associated with changes in glucose and fatty acids metabolism in liver. Because skeletal muscle is a major tissue in clearing glucose from blood, we studied the effect of the activation of NR5A2 on muscle metabolism by using cultures of C2C12, a mouse-derived cell line widely used as a model of skeletal muscle. Treatment of C2C12 with DLPC resulted in increased levels of expression of GLUT4 and also of several genes related to glycolysis and glycogen metabolism. These changes were accompanied by an increased glucose uptake. In addition, the activation of NR5A2 produced a reduction in the oxidation of fatty acids, an effect which disappeared in low-glucose conditions. Our results suggest that NR5A2, mostly by enhancing glucose uptake, switches muscle cells into a state of glucose preference. The increased use of glucose by muscle might constitute another mechanism by which NR5A2 improves blood glucose levels and restores insulin sensitivity.

  11. Activation of nuclear receptor NR5A2 increases Glut4 expression and glucose metabolism in muscle cells

    International Nuclear Information System (INIS)

    Highlights: • NR5A2 expression in C2C12 is associated with myotube differentiation. • DLPC induces an increase in GLUT4 levels and glucose uptake in C2C12 myotubes. • In high glucose conditions the activation of NR5A2 inhibits fatty acids oxidation. - Abstract: NR5A2 is a nuclear receptor which regulates the expression of genes involved in cholesterol metabolism, pluripotency maintenance and cell differentiation. It has been recently shown that DLPC, a NR5A2 ligand, prevents liver steatosis and improves insulin sensitivity in mouse models of insulin resistance, an effect that has been associated with changes in glucose and fatty acids metabolism in liver. Because skeletal muscle is a major tissue in clearing glucose from blood, we studied the effect of the activation of NR5A2 on muscle metabolism by using cultures of C2C12, a mouse-derived cell line widely used as a model of skeletal muscle. Treatment of C2C12 with DLPC resulted in increased levels of expression of GLUT4 and also of several genes related to glycolysis and glycogen metabolism. These changes were accompanied by an increased glucose uptake. In addition, the activation of NR5A2 produced a reduction in the oxidation of fatty acids, an effect which disappeared in low-glucose conditions. Our results suggest that NR5A2, mostly by enhancing glucose uptake, switches muscle cells into a state of glucose preference. The increased use of glucose by muscle might constitute another mechanism by which NR5A2 improves blood glucose levels and restores insulin sensitivity

  12. EFFECT OF ACUPUNCTURE STIMULATION AT SANYINJIAO (SP 6) ON CEREBRAL GLUCOSE METABOLISM IN DYSMENORRHEA PATIENTS

    Institute of Scientific and Technical Information of China (English)

    GONG Ping; ZHANG Ming-min; JIANG Li-ming; WU Zhi-jian; WANG Wei; HUANG Guang-ying

    2006-01-01

    Objective: To study the central mechanism of acupuncture stimulation of Sanyinjiao ( 三阴交 SP6) in relieving dysmenorrhea. Methods: A total of 6 dysmenorrhea volunteer patients were subjected into this study. On the first positron emission tomography (PET) scan examination, they were assigned to pseudoacupuncture group by using the acupuncture needle just to prick the skin of Sanyinjiao (SP 6); while on the second PET scans, they were assigned to acupuncture group by inserting the needle into the same acupoint.18F fluorodeoxyglucose (18F-FDG) PET of the whole brain was performed during pseudo-acupuncture and real acupuncture of Sanyinjiao (SP 6). The acquired PET data were analyzed by using statistical parametric mapping (SPM) software to determine changes of glucose metabolism in different cerebral regions. The patient's pain intensity was rated by using 0- 10 numerical pain intensity scale. Results: After pseudo-acupuncture stimulation of Sanyinjiao (SP 6), no significant changes were found in the pain intensity ( P >0.05), while after real-acupuncture stimulation, the pain intensity declined significantly (P < 0.01 ). Following acupuncture of the right Sanyinjiao (SP 6), multiple cerebral regions involving pain were activated (increase of glucose metabolism), including ipsilateral lenticular nucleus (globus pallidus, putamen), ipsilateral cerebellum and insular lobe, bilateral dorsal thalamus, ipsilateral paracentral lobule, bilateral amygdaloid bodies, contralateral substantia nigra of the midbrain, bilateral second somatosensory (S Ⅱ ) areas, ispsilateral hippocampal gyrus, frontal part of the ipsilateral cingulated gyrus, and bilateral mammary bodies of the hypothalamus. In addition, fewer regions of the cerebral cortex responded with decrease of the glucose metabolism after real acupuncture.

  13. Comparison of Cerebral Glucose Metabolism between Possible and Probable Multiple System Atrophy

    Directory of Open Access Journals (Sweden)

    Kyum-Yil Kwon

    2009-05-01

    Full Text Available Background: To investigate the relationship between presenting clinical manifestations and imaging features of multisystem neuronal dysfunction in MSA patients, using 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET. Methods: We studied 50 consecutive MSA patients with characteristic brain MRI findings of MSA, including 34 patients with early MSA-parkinsonian (MSA-P and 16 with early MSA-cerebellar (MSA-C. The cerebral glucose metabolism of all MSA patients was evaluated in comparison with 25 age-matched controls. 18F-FDG PET results were assessed by the Statistic Parametric Mapping (SPM analysis and the regions of interest (ROI method. Results: The mean time from disease onset to 18F-FDG PET was 25.9±13.0 months in 34 MSA-P patients and 20.1±11.1 months in 16 MSA-C patients. Glucose metabolism of the putamen showed a greater decrease in possible MSA-P than in probable MSA-P (p=0.031. Although the Unified Multiple System Atrophy Rating Scale (UMSARS score did not differ between possible MSA-P and probable MSA-P, the subscores of rigidity (p=0.04 and bradykinesia (p= 0.008 were significantly higher in possible MSA-P than in probable MSA-P. Possible MSA-C showed a greater decrease in glucose metabolism of the cerebellum than probable MSA-C (p=0.016. Conclusions: Our results may suggest that the early neuropathological pattern of possible MSA with a predilection for the striatonigral or olivopontocerebellar system differs from that of probable MSA, which has prominent involvement of the autonomic nervous system in addition to the striatonigral or olivopontocerebellar system.

  14. Metabolic engineering of Corynebacterium glutamicum to produce GDP-L-fucose from glucose and mannose.

    Science.gov (United States)

    Chin, Young-Wook; Park, Jin-Byung; Park, Yong-Cheol; Kim, Kyoung Heon; Seo, Jin-Ho

    2013-06-01

    Wild-type Corynebacterium glutamicum was metabolically engineered to convert glucose and mannose into guanosine 5'-diphosphate (GDP)-L-fucose, a precursor of fucosyl-oligosaccharides, which are involved in various biological and pathological functions. This was done by introducing the gmd and wcaG genes of Escherichia coli encoding GDP-D-mannose-4,6-dehydratase and GDP-4-keto-6-deoxy-D-mannose-3,5-epimerase-4-reductase, respectively, which are known as key enzymes in the production of GDP-L-fucose from GDP-D-mannose. Coexpression of the genes allowed the recombinant C. glutamicum cells to produce GDP-L-fucose in a minimal medium containing glucose and mannose as carbon sources. The specific product formation rate was much higher during growth on mannose than on glucose. In addition, the specific product formation rate was further increased by coexpressing the endogenous phosphomanno-mutase gene (manB) and GTP-mannose-1-phosphate guanylyl-transferase gene (manC), which are involved in the conversion of mannose-6-phosphate into GDP-D-mannose. However, the overexpression of manA encoding mannose-6-phosphate isomerase, catalyzing interconversion of mannose-6-phosphate and fructose-6-phosphate showed a negative effect on formation of the target product. Overall, coexpression of gmd, wcaG, manB and manC in C. glutamicum enabled production of GDP-L-fucose at the specific rate of 0.11 mg g cell(-1) h(-1). The specific GDP-L-fucose content reached 5.5 mg g cell(-1), which is a 2.4-fold higher than that of the recombinant E. coli overexpressing gmd, wcaG, manB and manC under comparable conditions. Well-established metabolic engineering tools may permit optimization of the carbon and cofactor metabolisms of C. glutamicum to further improve their production capacity.

  15. Glucose and Glycogen Metabolism in Brugia malayi Is Associated with Wolbachia Symbiont Fitness.

    Science.gov (United States)

    Voronin, Denis; Bachu, Saheed; Shlossman, Michael; Unnasch, Thomas R; Ghedin, Elodie; Lustigman, Sara

    2016-01-01

    Wolbachia are endosymbiotic bacteria found in the majority of arthropods and filarial nematodes of medical and veterinary importance. They have evolved a wide range of symbiotic associations. In filarial nematodes that cause human lymphatic filariasis (Wuchereria bancrofti, Brugia malayi) or onchocerciasis (Onchocerca volvulus), Wolbachia are important for parasite development, reproduction and survival. The symbiotic bacteria rely in part on nutrients and energy sources provided by the host. Genomic analyses suggest that the strain of Wolbachia found in B. malayi (wBm) lacks the genes for two glycolytic enzymes--6-phosphofructokinase and pyruvate kinase--and is thus potentially unable to convert glucose into pyruvate, an important substrate for energy generation. The Wolbachia surface protein, wBm00432, is complexed to six B. malayi glycolytic enzymes, including aldolase. In this study we characterized two B. malayi aldolase isozymes and found that their expression is dependent on Wolbachia fitness and number. We confirmed by immuno-transmission electron microscopy that aldolase is associated with the Wolbachia surface. RNAi experiments suggested that aldolase-2 plays a significant role in both Wolbachia survival and embryogenesis in B. malayi. Treatment with doxycycline reduced Wolbachia fitness and increased the amount of both glucose and glycogen detected in the filarial parasite, indicating that glucose metabolism and glycogen storage in B. malayi are associated with Wolbachia fitness. This metabolic co-dependency between Wolbachia and its filarial nematode indicates that glycolysis could be a shared metabolic pathway between the bacteria and B. malayi, and thus a potential new target for anti-filarial therapy. PMID:27078260

  16. Targeting Adipose Tissue Lipid Metabolism to Improve Glucose Metabolism in Cardiometabolic Disease

    Directory of Open Access Journals (Sweden)

    Johan W.E. Jocken

    2014-10-01

    Full Text Available With Type 2 diabetes mellitus and cardiovascular disease prevalence on the rise, there is a growing need for improved strategies to prevent or treat obesity and insulin resistance, both of which are major risk factors for these chronic diseases. Impairments in adipose tissue lipid metabolism seem to play a critical role in these disorders. In the classical picture of intracellular lipid breakdown, cytosolic lipolysis was proposed as the sole mechanism for triacylglycerol hydrolysis in adipocytes. Recent evidence suggests involvement of several hormones, membrane receptors, and intracellular signalling cascades, which has added complexity to the regulation of cytosolic lipolysis. Interestingly, a specific form of autophagy, called lipophagy, has been implicated as alternative lipolytic pathway. Defective regulation of cytosolic lipolysis and lipophagy might have substantial effects on lipid metabolism, thereby contributing to adipose tissue dysfunction, insulin resistance, and related cardiometabolic (cMet diseases. This review will discuss recent advances in our understanding of classical lipolysis and lipophagy in adipocyte lipid metabolism under normal and pathological conditions. Furthermore, the question of whether modulation of adipocyte lipolysis and lipophagy might be a potential therapeutic target to combat cMet disorders will be addressed.

  17. Chronic exposure to low doses of lipopolysaccharide and high-fat feeding increases body mass without affecting glucose tolerance in female rats

    DEFF Research Database (Denmark)

    Dudele, Anete; Fischer, Christina W; Elfving, Betina;

    2015-01-01

    -related inflammation in females. Therefore, we addressed how experimentally induced chronic inflammation affects body mass, energy intake, and glucose metabolism in female rats. Adult female Sprague Dawley rats were instrumented with slow release pellets that delivered a constant daily dose of 53 or 207 μg of...... lipopolysaccharide (LPS) per rat for 60 days. Control rats were instrumented with vehicle pellets. Due to inflammatory nature of high-fat diet (HFD) half of the rats received HFD (60% of calories from lard), while the other half remained on control diet to detect possible interactions between two modes of induced...... inflammation. Our results showed that chronic LPS administration increased female rat body mass and calorie intake in a dose-dependent manner, and that HFD further exacerbated these effects. Despite these effects, no effects of LPS and HFD were evident on female rat glucose metabolism. Only LPS elevated...

  18. Association between markers of glucose metabolism and risk of colorectal cancer

    Science.gov (United States)

    Xu, Jinming; Ye, Yao; Wu, Han; Duerksen-Hughes, Penelope; Zhang, Honghe; Li, Peiwei; Huang, Jian; Yang, Jun; Wu, Yihua; Xia, Dajing

    2016-01-01

    Objectives Independent epidemiological studies have evaluated the association between markers of glucose metabolism (including fasting glucose, fasting insulin, homeostasis model of risk assessment-insulin resistance (HOMA-IR), glycated haemoglobin (HbA1c) and C peptide) and the risk of colorectal cancer (CRC). However, such associations have not been systematically analysed and no clear conclusions have been drawn. Therefore, we addressed this issue using a meta-analysis approach. Design Systematic review and meta-analysis. Data sources PubMed and EMBASE were searched up to May 2015. Primary and secondary outcome measures Either a fixed-effects or random-effects model was adopted to estimate overall ORs for the association between markers of glucose metabolism and the risk of CRC. In addition, dose–response, meta-regression, subgroup and publication bias analyses were conducted. Results 35 studies involving 25 566 patients and 5 706 361 participants were included. Higher levels of fasting glucose, fasting insulin, HOMA-IR, HbA1c and C peptide were all significantly associated with increased risk of CRC (fasting glucose, pooled OR=1.12, 95% CI 1.06 to 1.18; fasting insulin, pooled OR=1.42, 95% CI 1.19 to 1.69; HOMA-IR, pooled OR=1.47, 95% CI 1.24 to 1.74; HbA1c, pooled OR=1.22, 95% CI 1.02 to 1.47 (with borderline significance); C peptide, pooled OR=1.27, 95% CI 1.08 to 1.49). Subgroup analysis suggested that a higher HOMA-IR value was significantly associated with CRC risk in all subgroups, including gender, study design and geographic region. For the relative long-term markers, the association was significant for HbA1c in case–control studies, while C peptide was significantly associated with CRC risk in both the male group and colon cancer. Conclusions The real-time composite index HOMA-IR is a better indicator for CRC risk than are fasting glucose and fasting insulin. The relative long-term markers, HbA1c and C peptide, are also valid predictors for

  19. Metabolic labeling with (14C)-glucose of bloodstream and cell culture trypanosoma cruzi trypomastigotes:

    International Nuclear Information System (INIS)

    Trypomastigote forms of Trypanosoma cruzi from infected mouse blood and from cell culture were metabolically labeled by incubation with D-(14C)-glucose. Analysis by polyacrylamide gel electrophoresis of lysates from parasites of two strains (RA and CA1) showed a significantly different pattern. The difference was mainly quantitative when the blood and cell culture trypomastigotes of the RA strain were compared. Analysis of the culture medium by paper electrophoresis showed an anionic exometabolite only in the blood forms of both strains. (Author)

  20. Effects of coumestrol on lipid and glucose metabolism as a farnesoid X receptor ligand

    International Nuclear Information System (INIS)

    In the course of an effort to identify novel agonists of the farnesoid X receptor (FXR), coumestrol was determined to be one such ligand. Reporter and in vitro coactivator interaction assays revealed that coumestrol bound and activated FXR. Treatment of Hep G2 cells with coumestrol stimulated the expression of FXR target genes, thereby regulating the expression of target genes of the liver X receptor and hepatocyte nuclear factor-4α. Through these actions, coumestrol is expected to exert beneficial effects on lipid and glucose metabolism

  1. 1-Deoxynojirimycin Alleviates Liver Injury and Improves Hepatic Glucose Metabolism in db/db Mice

    OpenAIRE

    Qingpu Liu; Xuan Li; Cunyu Li; Yunfeng Zheng; Fang Wang; Hongyang Li; Guoping Peng

    2016-01-01

    The present study investigated the effect of 1-Deoxynojirimycin (DNJ) on liver injury and hepatic glucose metabolism in db/db mice. Mice were divided into five groups: normal control, db/db control, DNJ-20 (DNJ 20 mg·kg−1·day−1), DNJ-40 (DNJ 40 mg·kg−1·day−1) and DNJ-80 (DNJ 80 mg·kg−1·day−1). All doses were treated intravenously by tail vein for four weeks. DNJ was observed to significantly reduce the levels of serum triglyceride (TG), total cholesterol (TC), low density lipoprotein choleste...

  2. Effects of Chinese herbal medicine on plasma glucose, protein and energy metabolism in sheep

    Institute of Scientific and Technical Information of China (English)

    Xi Liang; Kyota Yamazaki; Mohammad Kamruzzaman; Xue Bi; Arvinda Panthee; Hiroaki Sano

    2014-01-01

    Background:The use of antibiotics in animal diets is facing negative feedback due to the hidden danger of drug residues to human health. Traditional Chinese herbal medicine has been used to replace antibiotics in the past two decades and played an increasingly important role in livestock production. The present study was carried out to assess the feeding effects of a traditional nourishing Chinese herbal medicine mixture on kinetics of plasma glucose, protein and energy metabolism in sheep. Ruminal fermentation characteristics were also determined. Methods:Four sheep were fed on either mixed hay (MH-diet) or MH-diet supplemented with 2%of Chinese herbal medicine (mixture of Astragalus root, Angelica root and Atractylodes rhizome;CHM-diet) over two 35-day periods using a crossover design. The turnover rate of plasma glucose was measured with an isotope dilution method using [U-13C]glucose. The rates of plasma leucine turnover and leucine oxidation, whole body protein synthesis (WBPS) and metabolic heat production were measured using the [1-13C]leucine dilution and open circuit calorimetry. Results:Body weight gain of sheep was higher (P=0.03) for CHM-diet than for MH-diet. Rumen pH was lower (P=0.02), concentration of rumen total volatile fatty acid tended to be higher (P=0.05) and acetate was higher (P=0.04) for CHM-diet than for MH-diet. Turnover rates of plasma glucose and leucine did not differ between diets. Oxidation rate of leucine tended to be higher (P=0.06) for CHM-diet than for MH-diet, but the WBPS did not differ between diets. Metabolic heat production tended to be greater (P=0.05) for CHM-diet than for MH-diet. Conclusions:The sheep fed on CHM-diet had a higher body weight gain and showed positive impacts on rumen fermentation and energy metabolism without resulting in any adverse response. Therefore, these results suggested that the Chinese herbal medicine mixture should be considered as a potential feed additive for sheep.

  3. A longitudinal study of cerebral glucose metabolism, MRI, and disability in patients with MS

    DEFF Research Database (Denmark)

    Blinkenberg, M; Jensen, C.V.; Holm, S;

    1999-01-01

    OBJECTIVE: To study the time-related changes in cerebral metabolic rate of glucose (CMRglc) in MS patients and to correlate these with changes in MRI lesion load and disability. BACKGROUND: Measurements of MRI lesion load and neurologic disability are used widely to monitor disease progression in...... (Expanded Disability Status Scale [EDSS]) over a period of approximately 2 years (three examinations). CMRglc was calculated using PET and 18-fluorodeoxyglucose (FDG). RESULTS: The global cortical CMRglc decreased with time (p<0.001) and the most pronounced reductions of CMRglc were detected in frontal and...

  4. PRIMARY PREVENTION OF DIABETES MELLITUS: CORRECTION OF EARLY DISORDERS OF GLUCOSE METABOLISM IN CARDIOLOGY PRACTICE

    Directory of Open Access Journals (Sweden)

    M. N. Mamedov

    2015-12-01

    Full Text Available Early glucose metabolism disorders (GMD are of interest in development of effective approaches to prevention of type 2 diabetes mellitus (DM. Data of international clinical trials shows that early GMD are an independent risk factor for cardiovascular disease. The possibilities of GMD prevention and early treatment are discussed. Antihyperglycemic medications classification, their mode of action and efficacy are presented from evidence-based medicine point of view. This data confirms that successful DM primary prevention at early stage of GMD reduces the risk of cardiovascular complications.

  5. PRIMARY PREVENTION OF DIABETES MELLITUS: CORRECTION OF EARLY DISORDERS OF GLUCOSE METABOLISM IN CARDIOLOGY PRACTICE

    Directory of Open Access Journals (Sweden)

    M. N. Mamedov

    2012-01-01

    Full Text Available Early glucose metabolism disorders (GMD are of interest in development of effective approaches to prevention of type 2 diabetes mellitus (DM. Data of international clinical trials shows that early GMD are an independent risk factor for cardiovascular disease. The possibilities of GMD prevention and early treatment are discussed. Antihyperglycemic medications classification, their mode of action and efficacy are presented from evidence-based medicine point of view. This data confirms that successful DM primary prevention at early stage of GMD reduces the risk of cardiovascular complications.

  6. Renal Denervation Normalizes Arterial Pressure With No Effect on Glucose Metabolism or Renal Inflammation in Obese Hypertensive Mice.

    Science.gov (United States)

    Asirvatham-Jeyaraj, Ninitha; Fiege, Jessica K; Han, Ruijun; Foss, Jason; Banek, Christopher T; Burbach, Brandon J; Razzoli, Maria; Bartolomucci, Alessandro; Shimizu, Yoji; Panoskaltsis-Mortari, Angela; Osborn, John W

    2016-10-01

    Hypertension often occurs in concurrence with obesity and diabetes mellitus, commonly referred to as metabolic syndrome. Renal denervation (RDNx) lowers arterial pressure (AP) and improves glucose metabolism in drug-resistant hypertensive patients with high body mass index. In addition, RDNx has been shown to reduce renal inflammation in the mouse model of angiotensin II hypertension. The present study tested the hypothesis that RDNx reduces AP and renal inflammation and improves glucose metabolism in obesity-induced hypertension. Eight-week-old C57BL/6J mice were fed either a low-fat diet (10 kcal%) or a high-fat diet (45 kcal%) for 10 weeks. Body weight, food intake, fasting blood glucose, and glucose metabolism (glucose tolerance test) were measured. In a parallel study, radiotelemeters were implanted in mice for AP measurement. High fat-fed C57BL/6J mice exhibited an inflammatory and metabolic syndrome phenotype, including increased fat mass, increased AP, and hyperglycemia compared with low-fat diet mice. RDNx, but not Sham surgery, normalized AP in high-fat diet mice (115.8±1.5 mm Hg in sham versus 96.6±6.7 mm Hg in RDNx). RDNx had no significant effect on AP in low-fat diet mice. Also, RDNx had no significant effect on glucose metabolism or renal inflammation as measured by the number of CD8, CD4, and T helper cells or levels of inflammatory cytokines in the kidneys. These results indicate that although renal nerves play a role in obesity-induced hypertension, they do not contribute to impaired glucose metabolism or renal inflammation in this model.

  7. The effect of a bile acid sequestrant on glucose metabolism in subjects with type 2 diabetes.

    Science.gov (United States)

    Smushkin, Galina; Sathananthan, Matheni; Piccinini, Francesca; Dalla Man, Chiara; Law, Jennie H; Cobelli, Claudio; Zinsmeister, Alan R; Rizza, Robert A; Vella, Adrian

    2013-04-01

    We designed an experiment to examine the effect of bile acid sequestration with Colesevelam on fasting and postprandial glucose metabolism in type 2 diabetes. To do so, we tested the hypothesis that Colesevelam increases the disposition index (DI), and this increase is associated with increased glucagon-like peptide-1 (GLP-1) concentrations. Thirty-eight subjects on metformin monotherapy were studied using a double-blind, placebo-controlled, parallel-group design. Subjects were studied before and after 12 weeks of Colesevelam or placebo using a labeled triple-tracer mixed meal to measure the rate of meal appearance (Meal Ra), endogenous glucose production (EGP), and glucose disappearance (Rd). Insulin sensitivity and β-cell responsivity indices were estimated using the oral minimal model and then used to calculate DI. Therapy with Colesevelam was associated with a decrease in fasting (7.0 ± 0.2 vs. 6.6 ± 0.2 mmol/L; P = 0.004) and postprandial glucose concentrations (3,145 ± 138 vs. 2,896 ± 127 mmol/6 h; P = 0.01) in the absence of a change in insulin concentrations. Minimal model-derived indices of insulin secretion and action were unchanged. Postprandial GLP-1 concentrations were not altered by Colesevelam. Although EGP and Rd were unchanged, integrated Meal Ra was decreased by Colesevelam (5,191 ± 204 vs. 5,817 ± 204 μmol/kg/6 h; P = 0.04), suggesting increased splanchnic sequestration of meal-derived glucose.

  8. Identification of Risk Factors Affecting Impaired Fasting Glucose and Diabetes in Adult Patients from Northeast China

    OpenAIRE

    Yutian Yin; Weiqing Han; Yuhan Wang; Yue Zhang; Shili Wu; Huiping Zhang; Lingling Jiang; Rui Wang; Peng Zhang; Yaqin Yu; Bo Li

    2015-01-01

    Background: Besides genetic factors, the occurrence of diabetes is influenced by lifestyles and environmental factors as well as trace elements in diet materials. Subjects with impaired fasting glucose (IFG) have an increased risk of developing diabetes mellitus (DM). This study aimed to explore risk factors affecting IFG and diabetes in patients from Northeast China. Methods: A population-based, cross-sectional survey of chronic diseases and related risk factors was conducted in Jilin Provi...

  9. Abnormal glycosylated hemoglobin as a predictive factor for glucose metabolism disorders in antipsychotic treatment

    Institute of Scientific and Technical Information of China (English)

    XU Leping; JI Juying; DUAN Yiyang; SHI Hui; ZHANG Bin; SHAO Yaqin; SUN Jian

    2007-01-01

    The aim of this study was to observe the changes in glucose metabolism after antipsychotic(APS)therapy,to note the influencing factors,as well as to dicuss the relationship between the occurrence of glucose metabolism disorders of APS origin and abnormal glycosylated hemoglobin(HbA1c)levels.One hundred and fifty-two patients with schizophrenia,whose fasting plasma glucose(FPG)and 2-h plasma glucose (2hPG)in the oral glucose tolerance test(2HPG)were normal,were grouped according to the HbA1c levels,one normal and the other abnormal,and were randomly enrolled into risperidone,clozapine and chlorpromazine treatment for six weeks.The FPG and 2hPG were measured at the baseline and at the end of the study.In the group with abnormal HbA1c and clozapine therapy,2HPG was higher after the study[(9.5±1.8)mmol/L]than that before the study[(7.2±1.4)mmol/L]and the difierence was statistically significant(P<0.01).FPG had no statistically significant difference before and after the study in any group(P>0.05).HbA1c levels and drugs contributing to 2HPG at the end of study had statistical cross-action(P<0.01).In the abnormal HbA1c group,2HPG after the study was higher in the clozapine treatment group [(9.5±1.8)mmol/L]than in the risperidone treatment group [(7.4±1.7)mmol/L]and the chlorpromazine treatment group[(7.3±1.6)mmol/L].The differences were statistically significant(P<0.01).In the normal HbA1c group there was no statistically significant difierence before and after the study in any group(P>0.05).2HPG before[(7.1±1.6)mmol/L]and after the study[(8.1±1.9)mmol/L]was higher in the abnormal HbA1c group than in the normal HbA1c group[(6.2±1.4)mmol/L vs(6.5±1.4)mmol/L]with the difierence being statistically significant(P<0.01 vs P<0.001).As compared with normal HbA1c group,the relative risk (RR)of glucose metabolism disease occurrence was 4.7 in the abnormal HDA1C group wlth the difierence being statistically significant(P<0.001).Patients with abnormal HbA1c

  10. Glucose metabolism ontogenesis in rainbow trout (Oncorhynchus mykiss) in the light of the recently sequenced genome: new tools for intermediary metabolism programming.

    Science.gov (United States)

    Marandel, Lucie; Véron, Vincent; Surget, Anne; Plagnes-Juan, Élisabeth; Panserat, Stéphane

    2016-03-01

    The rainbow trout (Oncorhynchus mykiss), a carnivorous fish species, displays a 'glucose-intolerant' phenotype when fed a high-carbohydrate diet. The importance of carbohydrate metabolism during embryogenesis and the timing of establishing this later phenotype are currently unclear. In addition, the mechanisms underlying the poor ability of carnivorous fish to use dietary carbohydrates as a major energy substrate are not well understood. It has recently been shown in trout that duplicated genes involved in glucose metabolism may participate in establishing the glucose-intolerant phenotype. The aim of this study was therefore to provide new understanding of glucose metabolism during ontogenesis and nutritional transition, taking into consideration the complexity of the trout genome. Trout were sampled at several stages of development from fertilization to hatching, and alevins were then fed a non-carbohydrate or a high-carbohydrate diet during first feeding. mRNA levels of all glucose metabolism-related genes increased in embryos during the setting up of the primitive liver. After the first meal, genes rapidly displayed expression patterns equivalent to those observed in the livers of juveniles. g6pcb2.a (a glucose 6-phosphatase-encoding gene) was up-regulated in alevins fed a high-carbohydrate diet, mimicking the expression pattern of gck genes. The g6pcb2.a gene may contribute to the non-inhibition of the last step of gluconeogenesis and thus to establishing the glucose-intolerant phenotype in trout fed a high-carbohydrate diet as early as first feeding. This information is crucial for nutritional programming investigations as it suggests that first feeding would be too late to programme glucose metabolism in the long term. PMID:26747908

  11. Bone morphogenetic proteins in inflammation, glucose homeostasis and adipose tissue energy metabolism

    DEFF Research Database (Denmark)

    Grgurevic, Lovorka; Christensen, Gitte Lund; Schulz, Tim J;

    2016-01-01

    implicated in pancreas development as well as control of adult glucose homeostasis. Lastly, we review the recently recognized role of BMPs in brown adipose tissue formation and their consequences for energy expenditure and adiposity. In summary, BMPs play a pivotal role in metabolism beyond their role...... homeostasis (anaemia, hemochromatosis) and oxidative damage. The second and third parts of this review focus on BMPs in the development of metabolic pathologies such as type-2 diabetes mellitus and obesity. The pancreatic beta cells are the sole source of the hormone insulin and BMPs have recently been...... in skeletal homeostasis. However, increased understanding of these pleiotropic functions also highlights the necessity of tissue-specific strategies when harnessing BMP action as a therapeutic target....

  12. Glucose metabolism of fetal rat brain in utero, measured with labeled deoxyglucose

    International Nuclear Information System (INIS)

    Mammals have low cerebral metabolic rates immediately after birth and, by inference, also before birth. In this study, we extended the deoxyglucose method to the fetal rat brain in utero. Rate constants for deoxyglucose transfer across the maternal placental and fetal blood-brain barriers, and lumped constant, have not been reported. Therefore, we applied a new method of determining the lumped constant regionally to the fetal rat brain in utero. The lumped constant averaged 0.55 ± 0.15 relative to the maternal circulation. On this basis, we determined the glucose metabolic rate of the fetal rat brain to be one third of the corresponding maternal value, or 19 ± 2 μmol hg-1 min-1. (author)

  13. Study of cerebral metabolism of glucose in normal human brain correlated with age

    International Nuclear Information System (INIS)

    Full text: The objective was to determine whether cerebral metabolism in various regions of the brain differs with advancing age by using 18F-FDG PET instrument and SPM software. Materials and Methods We reviewed clinical information of 295 healthy normal samples who were examined by a whole body GE Discovery LS PET-CT instrument in our center from Aug. 2004 to Dec. 2005.They (with the age ranging from 21 to 88; mean age+/-SD: 49.77+/-13.51) were selected with: (i)absence of clear focal brain lesions (epilepsy.cerebrovascular diseases etc);(ii) absence of metabolic diseases, such as hyperthyroidism, hypothyroidism and diabetes;(iii) absence of psychiatric disorders and abuse of drugs and alcohol. They were sub grouped into six groups with the interval of 10 years old starting from 21, and the gender, educational background and serum glucose were matched. All subgroups were compared to the control group of 31-40 years old (84 samples; mean age+/-SD: 37.15+/-2.63). All samples were injected with 18F-FDG (5.55MBq/kg), 45-60 minutes later, their brains were scanned for 10min. Pixel-by-pixel t-statistic analysis was applied to all brain images using the Statistical parametric mapping (SPM2) .The hypometabolic areas (p < 0. 01 or p<0.001, uncorrected) were identified in the Stereotaxic coordinate human brain atlas and three-dimensional localized by MNI Space utility (MSU) software. Results:Relative hypometabolic brain areas detected are mainly in the cortical structures such as bilateral prefrontal cortex, superior temporal gyrus(BA22), parietal cortex (inferior parietal lobule and precuneus(BA40, insula(BA13)), parahippocampal gyrus and amygdala (p<0.01).It is especially apparent in the prefrontal cortex (BA9)and sensory-motor cortex(BA5, 7) (p<0.001), while basal ganglia and cerebellum remained metabolically unchanged with advancing age. Conclusions Regional cerebral metabolism of glucose shows a descent tendency with aging, especially in the prefrontal cortex (BA9)and

  14. Lymphocyte glucose and glutamine metabolism as targets of the anti-inflammatory and immunomodulatory effects of exercise.

    Science.gov (United States)

    Wasinski, Frederick; Gregnani, Marcos F; Ornellas, Fábio H; Bacurau, Aline V N; Câmara, Niels O; Araujo, Ronaldo C; Bacurau, Reury F

    2014-01-01

    Glucose and glutamine are important energetic and biosynthetic nutrients for T and B lymphocytes. These cells consume both nutrients at high rates in a function-dependent manner. In other words, the pathways that control lymphocyte function and survival directly control the glucose and glutamine metabolic pathways. Therefore, lymphocytes in different functional states reprogram their glucose and glutamine metabolism to balance their requirement for ATP and macromolecule production. The tight association between metabolism and function in these cells was suggested to introduce the possibility of several pathologies resulting from the inability of lymphocytes to meet their nutrient demands under a given condition. In fact, disruptions in lymphocyte metabolism and function have been observed in different inflammatory, metabolic, and autoimmune pathologies. Regular physical exercise and physical activity offer protection against several chronic pathologies, and this benefit has been associated with the anti-inflammatory and immunomodulatory effects of exercise/physical activity. Chronic exercise induces changes in lymphocyte functionality and substrate metabolism. In the present review, we discuss whether the beneficial effects of exercise on lymphocyte function in health and disease are associated with modulation of the glucose and glutamine metabolic pathways. PMID:24987195

  15. Lymphocyte Glucose and Glutamine Metabolism as Targets of the Anti-Inflammatory and Immunomodulatory Effects of Exercise

    Directory of Open Access Journals (Sweden)

    Frederick Wasinski

    2014-01-01

    Full Text Available Glucose and glutamine are important energetic and biosynthetic nutrients for T and B lymphocytes. These cells consume both nutrients at high rates in a function-dependent manner. In other words, the pathways that control lymphocyte function and survival directly control the glucose and glutamine metabolic pathways. Therefore, lymphocytes in different functional states reprogram their glucose and glutamine metabolism to balance their requirement for ATP and macromolecule production. The tight association between metabolism and function in these cells was suggested to introduce the possibility of several pathologies resulting from the inability of lymphocytes to meet their nutrient demands under a given condition. In fact, disruptions in lymphocyte metabolism and function have been observed in different inflammatory, metabolic, and autoimmune pathologies. Regular physical exercise and physical activity offer protection against several chronic pathologies, and this benefit has been associated with the anti-inflammatory and immunomodulatory effects of exercise/physical activity. Chronic exercise induces changes in lymphocyte functionality and substrate metabolism. In the present review, we discuss whether the beneficial effects of exercise on lymphocyte function in health and disease are associated with modulation of the glucose and glutamine metabolic pathways.

  16. Trace glucose and lipid metabolism in high androgen and high-fat diet induced polycystic ovary syndrome rats

    Directory of Open Access Journals (Sweden)

    Zhai Hua-Ling

    2012-01-01

    Full Text Available Abstract Background There is a high prevalence of diabetes mellitus (DM and dyslipidemia in women with polycystic ovary syndrome (PCOS. The purpose of this study was to investigate the role of different metabolic pathways in the development of diabetes mellitus in high-androgen female mice fed with a high-fat diet. Methods Female Sprague-Dawley rats were divided into 3 groups: the control group(C, n = 10; the andronate-treated group (Andronate, n = 10 (treated with andronate, 1 mg/100 g body weight/day for 8 weeks; and the andronate-treated and high-fat diet group (Andronate+HFD, n = 10. The rate of glucose appearance (Ra of glucose, gluconeogenesis (GNG, and the rate of glycerol appearance (Ra of glycerol were assessed with a stable isotope tracer. The serum sex hormone levels, insulin levels, glucose concentration, and the lipid profile were also measured. Results Compared with control group, both andronate-treated groups exhibited obesity with higher insulin concentrations (P P Conclusions Andronate with HFD rat model showed ovarian and metabolic features of PCOS, significant increase in glucose Ra, GNG, and lipid profiles, as well as normal blood glucose levels. Therefore, aberrant IR, increased glucose Ra, GNG, and lipid metabolism may represent the early-stage of glucose and lipid kinetics disorder, thereby might be used as potential early-stage treatment targets for PCOS.

  17. Delivery-corrected imaging of fluorescently-labeled glucose reveals distinct metabolic phenotypes in murine breast cancer.

    Directory of Open Access Journals (Sweden)

    Amy E Frees

    Full Text Available When monitoring response to cancer therapy, it is important to differentiate changes in glucose tracer uptake caused by altered delivery versus a true metabolic shift. Here, we propose an optical imaging method to quantify glucose uptake and correct for in vivo delivery effects. Glucose uptake was measured using a fluorescent D-glucose derivative 2-(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-ylAmino-2-deoxy-D-glucose (2-NBDG in mice implanted with dorsal skin flap window chambers. Additionally, vascular oxygenation (SO2 was calculated using only endogenous hemoglobin contrast. Results showed that the delivery factor proposed for correction, "RD", reported on red blood cell velocity and injected 2-NBDG dose. Delivery-corrected 2-NBDG uptake (2-NBDG60/RD inversely correlated with blood glucose in normal tissue, indicating sensitivity to glucose demand. We further applied our method in metastatic 4T1 and nonmetastatic 4T07 murine mammary adenocarcinomas. The ratio 2-NBDG60/RD was increased in 4T1 tumors relative to 4T07 tumors yet average SO2 was comparable, suggesting a shift toward a "Warburgian" (aerobic glycolysis metabolism in the metastatic 4T1 line. In heterogeneous regions of both 4T1 and 4T07, 2-NBDG60/RD increased slightly but significantly as vascular oxygenation decreased, indicative of the Pasteur effect in both tumors. These data demonstrate the utility of delivery-corrected 2-NBDG and vascular oxygenation imaging for differentiating metabolic phenotypes in vivo.

  18. Cerebral glucose metabolic patterns in Alzheimer's disease. Effect of gender and age at dementia onset

    International Nuclear Information System (INIS)

    No previous study of Alzheimer's disease has, to our knowledge, assessed the effect of both age at dementia onset and gender on cerebral glucose metabolic patterns. To this end, we used positron emission tomography (fludeoxyglucose F 18 method) to study 24 patients with clinical diagnoses of probable Alzheimer's disease. Comparisons of the 13 patients with early-onset dementia (less than 65 years of age) with the 11 patients with late-onset dementia (greater than 65 years of age) revealed significantly lower left parietal metabolic ratios (left posterior parietal region divided by the hemispheric average) in the early-onset group. The metabolic ratio of posterior parietal cortex divided by the relatively disease-stable average of caudate and thalamus also separated patients with early-onset dementia from those with late-onset dementia, but not men from women. Further comparisons between sexes showed that, in all brain regions studied, the 9 postmenopausal women had higher nonweighted mean metabolic rates than the 15 men from the same age group, with hemispheric sex differences of 9% on the right and 7% on the left. These results demonstrate decreased parietal ratios in early-onset dementia of Alzheimer's disease, independent of a gender effect

  19. Muscle-specific deletion of carnitine acetyltransferase compromises glucose tolerance and metabolic flexibility.

    Science.gov (United States)

    Muoio, Deborah M; Noland, Robert C; Kovalik, Jean-Paul; Seiler, Sarah E; Davies, Michael N; DeBalsi, Karen L; Ilkayeva, Olga R; Stevens, Robert D; Kheterpal, Indu; Zhang, Jingying; Covington, Jeffrey D; Bajpeyi, Sudip; Ravussin, Eric; Kraus, William; Koves, Timothy R; Mynatt, Randall L

    2012-05-01

    The concept of "metabolic inflexibility" was first introduced to describe the failure of insulin-resistant human subjects to appropriately adjust mitochondrial fuel selection in response to nutritional cues. This phenomenon has since gained increasing recognition as a core component of the metabolic syndrome, but the underlying mechanisms have remained elusive. Here, we identify an essential role for the mitochondrial matrix enzyme, carnitine acetyltransferase (CrAT), in regulating substrate switching and glucose tolerance. By converting acetyl-CoA to its membrane permeant acetylcarnitine ester, CrAT regulates mitochondrial and intracellular carbon trafficking. Studies in muscle-specific Crat knockout mice, primary human skeletal myocytes, and human subjects undergoing L-carnitine supplementation support a model wherein CrAT combats nutrient stress, promotes metabolic flexibility, and enhances insulin action by permitting mitochondrial efflux of excess acetyl moieties that otherwise inhibit key regulatory enzymes such as pyruvate dehydrogenase. These findings offer therapeutically relevant insights into the molecular basis of metabolic inflexibility. PMID:22560225

  20. EXPLORING THE MECHANISM OF ACUPUNCTURE IN THE TREATMENT OF STROKE FROM CHANGES OF GLUCOSE METABOLISM IN THE CEREBRAL MOTOR CENTER

    Institute of Scientific and Technical Information of China (English)

    石现; 左芳; 关玲

    2004-01-01

    Objective:To observe the effect of acupuncture on cerebral glucose metabolism in stroke patients.Methods:Changes of cerebral glucose metabolism before and after acupuncture stimulation were observed in six cases of stroke patients by using positron emission tomography (PET) scanner. Electroacupuncture (EA,4 Hz, continuous waves and duration of 20 min) was applied to Baihui (百会GV 20) and right Qubin (曲鬓GB 7). 18 Fluorine deoxyglucose (18FDG), a developer (radioactive form of glucose) for showing the levels of the brain functional activity was given to the patients intravenously. SPM software was used to deal with the data of each pixel point by unilateral t-test (Ts: P=0.05), then, the regions showing increase/decrease of the glucose metabolism were obtained.Results:After acupuncture stimulation, significant increase of glucose metabolism was found to be in the first somatic motor cortical region (MI), supplementary motor area (SMA), premotor area (PMC), and the superior parietal lobule (LPs) on the healthy side of the brain; while the decrease of glucose metabolism found in MI, PMC and LPs on the focus side. In addition to the cerebral regions related to the motor function, changes of glucose metabolism were also found in the parietal lobule and basal ganglion area, central parietal gyrus, superior parietal gyrus, putamen, cerebellum, etc..Conclusion:Acupuncture of Qubin (GB 7) and Baihui (GV 20) can activate motor-related cerebral structures in the bilateral cerebral hemisphere and induce excitement reaction of the potentially correlative motor area so as to compensate or assist the injured motor area to play a role in improving motor function in stroke patients.

  1. Alterations in glucose and protein metabolism in animals subjected to simulated microgravity

    Science.gov (United States)

    Mondon, C. E.; Rodnick, K. J.; Dolkas, C. B.; Azhar, S.; Reaven, G. M.

    1992-09-01

    Reduction of physical activity due to disease or environmental restraints, such as total bed rest or exposure to spaceflight, leads to atrophy of skeletal muscle and is frequently accompanied by alterations in food intake and the concentration of metabolic regulatory hormones such as insulin. Hindlimb suspension of laboratory rats, as a model for microgravity, also shows marked atrophy of gravity dependent muscles along with a reduced gain in body weight. Suspended rats exhibit enhanced sensitivity to insulin-induced glucose uptake when compared with normal control rats and resistance to insulin action when compared with control rats matched similarly for reduced body weight gain. These changes are accompanied by decreased insulin binding and tyrosine kinase activity in soleus but not plantaris muscle, unchanged glucose uptake by perfused hindlimb and decreased sensitivity but not responsiveness to insulin-induced suppression of net proteolysis in hindlimb skeletal muscle. These findings suggest that loss of insulin sensitivity during muscle atrophy is associated with decreased insulin binding and tyrosine kinase activity in atrophied soleus muscle along with decreased sensitivity to the effects of insulin on suppressing net protein breakdown but not on enhancing glucose uptake by perfused hindlimb.

  2. EFFECT OF ELECTRO0-SCALP ACUPUNCTURE ON GLUCOSE METABOLISM OF THE CEREBRAL REGIONS INVOLVING MENTAL ACTIVITY IN HEAL THY PEOPLE

    Institute of Scientific and Technical Information of China (English)

    HUANG Yong(黄泳); Win Moe Htut; LI Dong-jiang(李东江); TANG An-wu(唐安戊); LI Qiu-shi(李求实)

    2004-01-01

    Objective: To observe the effect of electro-scalp acupuncture on glucose metabolism of cerebral regions involving mental activity in healthy people. Methods: A total of 6 cases of volunteer healthy subjects (3 males and 3 females) ranging in age from 22 to 36 years were subjected to this study. Changes of cerebral glucose metabolism before and after electro-scalp acupuncture were observed by using positron emission tomography (PET) and semi-quantifying analysis method. Electro-scalp acupuncture stimulation (50 Hz, 2 mA) of Middle Line of Vertex (Dingzhongxian,顶中线,MS5), Middle Line of Forehead (Ezhongxian, 额中线,MS1) and bilateral Lateral Line 1 of Forehead (Epangyixian,额旁一线,MS2) was administered for 30 minutes. Then cerebral regions of interest (ROIs) were chosen and their average glucose metabolism levels (radioactivity of 18 fluorine deoxyglucose ) were analyzed. Results:After administration of electro-scalp acupuncture, the glucose metabolism levels in bilateral frontal lobes and bilateral caudate nuclei, left cingulate gyrus and right cerebellum increased significantly in comparison with those of pre-stimulation (P<0.05). Conclusion:Electro-scalp acupuncture of MS1, MS2 and MS5 can increase the glucose metabolism of certain cerebral regions involving in mental activity in healthy subjects.

  3. Glucose and fatty acid metabolism in a 3 tissue in-vitro model challenged with normo- and hyperglycaemia.

    Directory of Open Access Journals (Sweden)

    Elisabetta Iori

    Full Text Available Nutrient balance in the human body is maintained through systemic signaling between different cells and tissues. Breaking down this circuitry to its most basic elements and reconstructing the metabolic network in-vitro provides a systematic method to gain a better understanding of how cross-talk between the organs contributes to the whole body metabolic profile and of the specific role of each different cell type. To this end, a 3-way connected culture of hepatocytes, adipose tissue and endothelial cells representing a simplified model of energetic substrate metabolism in the visceral region was developed. The 3-way culture was shown to maintain glucose and fatty acid homeostasis in-vitro. Subsequently it was challenged with insulin and high glucose concentrations to simulate hyperglycaemia. The aim was to study the capacity of the 3-way culture to maintain or restore normal circulating glucose concentrations in response to insulin and to investigate the effects these conditions on other metabolites involved in glucose and lipid metabolism. The results show that the system's metabolic profile changes dramatically in the presence of high concentrations of glucose, and that these changes are modulated by the presence of insulin. Furthermore, we observed an increase in E-selectin levels in hyperglycaemic conditions and increased IL-6 concentrations in insulin-free-hyperglycaemic conditions, indicating, respectively, endothelial injury and proinflammatory stress in the challenged 3-way system.

  4. Glycogen and glucose metabolism are essential for early embryonic development of the red flour beetle Tribolium castaneum.

    Science.gov (United States)

    Fraga, Amanda; Ribeiro, Lupis; Lobato, Mariana; Santos, Vitória; Silva, José Roberto; Gomes, Helga; da Cunha Moraes, Jorge Luiz; de Souza Menezes, Jackson; de Oliveira, Carlos Jorge Logullo; Campos, Eldo; da Fonseca, Rodrigo Nunes

    2013-01-01

    Control of energy metabolism is an essential process for life. In insects, egg formation (oogenesis) and embryogenesis is dependent on stored molecules deposited by the mother or transcribed later by the zygote. In oviparous insects the egg becomes an isolated system after egg laying with all energy conversion taking place during embryogenesis. Previous studies in a few vector species showed a strong correlation of key morphogenetic events and changes in glucose metabolism. Here, we investigate glycogen and glucose metabolism in the red flour beetle Tribolium castaneum, an insect amenable to functional genomic studies. To examine the role of the key enzymes on glycogen and glucose regulation we cloned and analyzed the function of glycogen synthase kinase 3 (GSK-3) and hexokinase (HexA) genes during T. castaneum embryogenesis. Expression analysis via in situ hybridization shows that both genes are expressed only in the embryonic tissue, suggesting that embryonic and extra-embryonic cells display different metabolic activities. dsRNA adult female injection (parental RNAi) of both genes lead a reduction in egg laying and to embryonic lethality. Morphological analysis via DAPI stainings indicates that early development is impaired in Tc-GSK-3 and Tc-HexA1 RNAi embryos. Importantly, glycogen levels are upregulated after Tc-GSK-3 RNAi and glucose levels are upregulated after Tc-HexA1 RNAi, indicating that both genes control metabolism during embryogenesis and oogenesis, respectively. Altogether our results show that T. castaneum embryogenesis depends on the proper control of glucose and glycogen.

  5. Fermentation and hydrogen metabolism affect uranium reduction by clostridia.

    Science.gov (United States)

    Gao, Weimin; Francis, Arokiasamy J

    2013-01-01

    Previously, it has been shown that not only is uranium reduction under fermentation condition common among clostridia species, but also the strains differed in the extent of their capability and the pH of the culture significantly affected uranium(VI) reduction. In this study, using HPLC and GC techniques, metabolic properties of those clostridial strains active in uranium reduction under fermentation conditions have been characterized and their effects on capability variance of uranium reduction discussed. Then, the relationship between hydrogen metabolism and uranium reduction has been further explored and the important role played by hydrogenase in uranium(VI) and iron(III) reduction by clostridia demonstrated. When hydrogen was provided as the headspace gas, uranium(VI) reduction occurred in the presence of whole cells of clostridia. This is in contrast to that of nitrogen as the headspace gas. Without clostridia cells, hydrogen alone could not result in uranium(VI) reduction. In alignment with this observation, it was also found that either copper(II) addition or iron depletion in the medium could compromise uranium reduction by clostridia. In the end, a comprehensive model was proposed to explain uranium reduction by clostridia and its relationship to the overall metabolism especially hydrogen (H2) production. PMID:25937978

  6. Regional difference of glucose metabolism reduction in equivocal Alzheimer's disease and elderly depressed patients

    International Nuclear Information System (INIS)

    The aim of this study was to investigate the difference in cerebral glucose metabolism between patients with equivocal Alzheimer's disease (eAD) and those with elderly major depression (DEP). 31 patients with eAD, 7 patients with DEP, and 15 age matched normal controls were scanned with FDG-PET. Each FDG-PET images was normalized to the cerebellar activity before voxel-voxel analysis using SPM99. In comparison with normal controls, the eAD patents showed the most significant reduction of glucose metabolism (hypometabolism) in anterior inferior temporal gyrus in left, followed by bilateral posterior cingulate, left thalamus, and inferior parietal lobe. Patients with DEP showed hypometabolism in precuneus, inferior and middle frontal gyri in left, and right angular gyrus. Significantly lower activity was found in left inferior temporal gyrus in DEP in comparison to the eAD. Patients with eAD and DEP showed different pattern of hypometabolism, especially in inferior temporal gyrus. FDG brain PET may be useful in differential diagnosis between equivocal Alzheimer's disease and elderly depression

  7. Glucose metabolism and kinetics of phosphorus removal by the fermentative bacterium Microlunatus phosphovorus.

    Science.gov (United States)

    Santos, M M; Lemos, P C; Reis, M A; Santos, H

    1999-09-01

    Phosphorus and carbon metabolism in Microlunatus phosphovorus was investigated by using a batch reactor to study the kinetics of uptake and release of extracellular compounds, in combination with (31)P and (13)C nuclear magnetic resonance (NMR) to characterize intracellular pools and to trace the fate of carbon substrates through the anaerobic and aerobic cycles. The organism was subjected to repetitive anaerobic and aerobic cycles to induce phosphorus release and uptake in a sequential batch reactor; an ultrafiltration membrane module was required since cell suspensions did not sediment. M. phosphovorus fermented glucose to acetate via an Embden-Meyerhof pathway but was unable to grow under anaerobic conditions. A remarkable time shift was observed between the uptake of glucose and excretion of acetate, resulting in an intracellular accumulation of acetate. The acetate produced was oxidized in the subsequent aerobic stage. Very high phosphorus release and uptake rates were measured, 3.34 mmol g of cell(-1) h(-1) and 1.56 mmol g of cell(-1) h(-1), respectively, values only comparable with those determined in activated sludge. In the aerobic period, growth was strictly dependent on the availability of external phosphate. Natural abundance (13)C NMR showed the presence of reserves of glutamate and trehalose in cell suspensions. Unexpectedly, [1-(13)C]glucose was not significantly channeled to the synthesis of internal reserves in the anaerobic phase, and acetate was not during the aerobic stage, although the glutamate pool became labeled via the exchange with intermediates of the tricarboxylic acid cycle at the level of glutamate dehydrogenase. The intracellular pool of glutamate increased under anaerobic conditions and decreased during the aerobic period. The contribution of M. phosphovorus for phosphorus removal in wastewater treatment plants is discussed on the basis of the metabolic features disclosed by this study.

  8. 1-Deoxynojirimycin Alleviates Liver Injury and Improves Hepatic Glucose Metabolism in db/db Mice

    Directory of Open Access Journals (Sweden)

    Qingpu Liu

    2016-02-01

    Full Text Available The present study investigated the effect of 1-Deoxynojirimycin (DNJ on liver injury and hepatic glucose metabolism in db/db mice. Mice were divided into five groups: normal control, db/db control, DNJ-20 (DNJ 20 mg·kg−1·day−1, DNJ-40 (DNJ 40 mg·kg−1·day−1 and DNJ-80 (DNJ 80 mg·kg−1·day−1. All doses were treated intravenously by tail vein for four weeks. DNJ was observed to significantly reduce the levels of serum triglyceride (TG, total cholesterol (TC, low density lipoprotein cholesterol (LDL-C and liver TG, as well as activities of serum alanine aminotransferase (ALT, and aspartate transaminase (AST; DNJ also alleviated macrovesicular steatosis and decreased tumor necrosis factor α (TNF-α, interleukin-1 (IL-1, interleukin-6 (IL-6 levels in liver tissue. Furthermore, DNJ treatment significantly increased hepatic glycogen content, the activities of hexokinase (HK, pyruvate kinase (PK in liver tissue, and decreased the activities of glucose-6-phosphatase (G6Pase, glycogen phosphorylase (GP, and phosphoenolpyruvate carboxykinase (PEPCK. Moreover, DNJ increased the phosphorylation of phosphatidylinositol 3 kinase (PI3K on p85, protein kinase B (PKB on Ser473, glycogen synthase kinase 3β (GSK-3β on Ser9, and inhibited phosphorylation of glycogen synthase (GS on Ser645 in liver tissue of db/db mice. These results demonstrate that DNJ can increase hepatic insulin sensitivity via strengthening of the insulin-stimulated PKB/GSK-3β signal pathway and by modulating glucose metabolic enzymes in db/db mice. Moreover, DNJ also can improve lipid homeostasis and attenuate hepatic steatosis in db/db mice.

  9. Cellular uptake of PET tracers of glucose metabolism and hypoxia and their linkage

    Energy Technology Data Exchange (ETDEWEB)

    Busk, Morten; Horsman, Michael R.; Overgaard, Jens [Aarhus University Hospital, Department of Experimental Clinical Oncology, Aarhus C (Denmark); Jakobsen, Steen [Aarhus University Hospital, PET Centre, Aarhus (Denmark); Bussink, Johan; Kogel, Albert van der [Radboud University Nijmegen Medical Centre, Department of Radiation Oncology, Nijmegen (Netherlands)

    2008-12-15

    Tumour hypoxia and elevated glycolysis (Warburg effect) predict poor prognosis. Each parameter is assessable separately with positron emission tomography, but they are linked through anaerobic glycolysis (Pasteur effect). Here, we compare the oxygenation-dependent retention of fluoroazomycin arabinoside ([{sup 18}F]FAZA), a promising but not well-characterised hypoxia-specific tracer, and fluorodeoxyglucose ([{sup 18}F]FDG) in four carcinoma cell lines. Cells seeded on coverslips were positioned in modified Petri dishes that allow physically separated cells to share the same tracer-containing medium pool. Following oxic, hypoxic or anoxic tracer incubation, coverslips were analysed for radioactivity ([{sup 18}F]FDG+[{sup 18}F]FAZA) or re-incubated in tracer-free oxygenated medium and then measured ([{sup 18}F]FAZA). Next, we tested the reliability of [{sup 18}F]FDG as a relative measure of glucose metabolic rate. Finally, from two cell lines, xenografts were established in mice, and the tracer distribution between hypoxic and well-oxygenated areas were deduced from tissue sections. Three hours of anoxia strongly stimulated [{sup 18}F]FAZA retention with anoxic-to-oxic uptake ratios typically above 30. Three out of four cell lines displayed similar selectivity of [{sup 18}F]FDG versus glucose, but oxic uptake and anoxic-to-oxic uptake ratio of [{sup 18}F]FDG varied considerably. Although less pronounced, [{sup 18}F]FAZA also showed superior in vivo hypoxia specificity compared with [{sup 18}F]FDG. [{sup 18}F]FAZA displays excellent in vitro characteristics for hypoxia imaging including modest cell-to-cell line variability and no binding in oxic cells. In contrast, the usability of [{sup 18}F]FDG as a surrogate marker for hypoxia is questionable due to large variations in baseline (oxic) glucose metabolism and magnitudes of the Pasteur effects. (orig.)

  10. Defective glucose and lipid metabolism in human immunodeficiency virus-infected patients with lipodystrophy involve liver, muscle tissue and pancreatic beta-cells

    DEFF Research Database (Denmark)

    Haugaard, Steen B; Andersen, Ove; Dela, Flemming;

    2005-01-01

    of glucose metabolism, lipid metabolism and beta-cell function in lipodystrophic HIV-infected patients. METHODS: [3-3H]glucose was applied during euglycaemic hyperinsulinaemic clamps in association with indirect calorimetry in 43 normoglycaemic HIV-infected patients (18 lipodystrophic patients on HAART (LIPO...... acids (P lipid oxidation (P .... CONCLUSION: Our data suggest that normoglycaemic lipodystrophic HIV-infected patients display impaired glucose and lipid metabolism in multiple pathways involving liver, muscle tissue and beta-cell function....

  11. Abomasal amino acid infusion in postpartum dairy cows: Effect on whole-body, splanchnic, and mammary glucose metabolism

    DEFF Research Database (Denmark)

    Galindo, C; Larsen, Mogens; Ouellet, D R;

    2015-01-01

    -OH-butyrate (BHBA) in postpartum dairy cows according to a generalized randomized incomplete block design with repeated measures in time. At calving, cows were blocked according to parity (second and third or greater) and were allocated to 2 treatments: abomasal infusion of water (n=4) or abomasal infusion of free...... and was numerically equivalent to WB-Ra, averaging 729 and 741 mmol/h, respectively. Mammary glucose utilization increased with AA-CN infusion, averaging 78% of WB-Ra, and increased gradually as lactation advanced. Net portal, hepatic, splanchnic, and mammary fluxes of lactate, glycerol, and BHBA were not affected...... by AA infusion. Increasing the supply of AA in postpartum dairy cows elevated the WB-Ra of glucose without affecting the true liver glucose release. The greater WB-Ra of glucose with abomasal AA infusion seemed to originate mainly from greater true portal-drained viscera release of glucose. Glucose...

  12. Cell walls of Saccharomyces cerevisiae differentially modulated innate immunity and glucose metabolism during late systemic inflammation.

    Directory of Open Access Journals (Sweden)

    Bushansingh Baurhoo

    Full Text Available BACKGROUND: Salmonella causes acute systemic inflammation by using its virulence factors to invade the intestinal epithelium. But, prolonged inflammation may provoke severe body catabolism and immunological diseases. Salmonella has become more life-threatening due to emergence of multiple-antibiotic resistant strains. Mannose-rich oligosaccharides (MOS from cells walls of Saccharomyces cerevisiae have shown to bind mannose-specific lectin of Gram-negative bacteria including Salmonella, and prevent their adherence to intestinal epithelial cells. However, whether MOS may potentially mitigate systemic inflammation is not investigated yet. Moreover, molecular events underlying innate immune responses and metabolic activities during late inflammation, in presence or absence of MOS, are unknown. METHODS AND PRINCIPAL FINDINGS: Using a Salmonella LPS-induced systemic inflammation chicken model and microarray analysis, we investigated the effects of MOS and virginiamycin (VIRG, a sub-therapeutic antibiotic on innate immunity and glucose metabolism during late inflammation. Here, we demonstrate that MOS and VIRG modulated innate immunity and metabolic genes differently. Innate immune responses were principally mediated by intestinal IL-3, but not TNF-α, IL-1 or IL-6, whereas glucose mobilization occurred through intestinal gluconeogenesis only. MOS inherently induced IL-3 expression in control hosts. Consequent to LPS challenge, IL-3 induction in VIRG hosts but not differentially expressed in MOS hosts revealed that MOS counteracted LPS's detrimental inflammatory effects. Metabolic pathways are built to elucidate the mechanisms by which VIRG host's higher energy requirements were met: including gene up-regulations for intestinal gluconeogenesis (PEPCK and liver glycolysis (ENO2, and intriguingly liver fatty acid synthesis through ATP citrate synthase (CS down-regulation and ATP citrate lyase (ACLY and malic enzyme (ME up-regulations. However, MOS host

  13. Cannibalism Affects Core Metabolic Processes in Helicoverpa armigera Larvae-A 2D NMR Metabolomics Study.

    Science.gov (United States)

    Vergara, Fredd; Shino, Amiu; Kikuchi, Jun

    2016-01-01

    Cannibalism is known in many insect species, yet its impact on insect metabolism has not been investigated in detail. This study assessed the effects of cannibalism on the metabolism of fourth-instar larvae of the non-predatory insect Helicoverpa armigera (Lepidotera: Noctuidea). Two groups of larvae were analyzed: one group fed with fourth-instar larvae of H. armigera (cannibal), the other group fed with an artificial plant diet. Water-soluble small organic compounds present in the larvae were analyzed using two-dimensional nuclear magnetic resonance (NMR) and principal component analysis (PCA). Cannibalism negatively affected larval growth. PCA of NMR spectra showed that the metabolic profiles of cannibal and herbivore larvae were statistically different with monomeric sugars, fatty acid- and amino acid-related metabolites as the most variable compounds. Quantitation of ¹H-(13)C HSQC (Heteronuclear Single Quantum Coherence) signals revealed that the concentrations of glucose, glucono-1,5-lactone, glycerol phosphate, glutamine, glycine, leucine, isoleucine, lysine, ornithine, proline, threonine and valine were higher in the herbivore larvae. PMID:27598144

  14. Double-injection FDG method to measure cerebral glucose metabolism twice in a single procedure

    Energy Technology Data Exchange (ETDEWEB)

    Nishizawa, Sadahiko; Ueno, Makoto; Shimono, Taro; Toyoda, Hiroshi; Konishi, Junji [Kyoto Univ. (Japan). Graduate School of Medicine; Kuwabara, Hiroto

    2001-06-01

    [{sup 18}F]fluorodeoxyglucose (FDG) and positron emission tomography (PET) may be used to examine changes in cerebral glucose metabolism in two physiological conditions. We proposed and evaluated a double injection-single session FDG method with biological constraints for this purpose. Simulated brain time-radioactivity curves (TACs) generated by using a plasma TAC from an actual study and physiological combinations of input values in a kinetic model were analyzed to evaluate the accuracy of the proposed method. The reproducibility of the estimated values obtained by this method was tested in five normal volunteers who were studied with a dynamic PET scan and two injections of FDG in a single session while fasting. The simulation study showed that the estimated values obtained by the proposed method agreed well with the input values. In the human study, plasma glucose levels were 5.3{+-}0.2 and 5.0{+-}0.2 mM in the first and second measurements, respectively. The difference between the plasma glucose measurements was small but statistically significant (p<0.05). Although no systematic deviations were noted in K{sup *}{sub 1} or rCMRglc, there were small deviations in K{sup *} (less than 10%) and LC (less than 5%) with a statistical significance (p<0.01). The deviation between the measurements in K{sup *} and LC seemed to relate to the difference in the plasma glucose level. The double-injection FDG method with biological constrains can be used to estimate rCMRglc and LC sequentially in a single PET scanning session. (author)

  15. Evaluation of Chios mastic gum on lipid and glucose metabolism in diabetic mice.

    Science.gov (United States)

    Georgiadis, Ioannis; Karatzas, Theodore; Korou, Laskarina-Maria; Agrogiannis, George; Vlachos, Ioannis S; Pantopoulou, Alkisti; Tzanetakou, Irene P; Katsilambros, Nikolaos; Perrea, Despina N

    2014-03-01

    Chios mastic gum (MG), a resin produced from Pistacia lentiscus var. Chia, is reported to possess beneficial cardiovascular and hepatoprotective properties. This study investigated the effect of crude Chios MG on metabolic parameters in diabetic mice. Streptozotocin-induced diabetic 12-week-old male C57bl/6 mice were assigned to three groups: NC (n=9) control; LdM (n=9) animals receiving low dose mastic for 8 weeks (20 mg/kg body weight [BW]); and HdM (n=9) animals receiving high dose mastic (500 mg/kg BW) for the same period. Serum lipid and glucose levels were determined at baseline, at 4 and 8 weeks. Serum total protein, adiponectin, and resistin levels were also measured at the end of the experiment. Histopathological examination for liver, kidney, aorta, and heart lesions was performed. After 4 weeks, MG administration resulted in decreased serum glucose and triglyceride levels in both LdM and HdM, whereas BW levels were reduced in LdM group compared with controls. At the end of the experiment, LdM presented significantly lower serum glucose, cholesterol, low-density lipoprotein cholesterol, and triglyceride levels and improved high-density lipoprotein cholesterol levels compared with control group. HdM group had ameliorated serum triglyceride levels. Hepatic steatosis observed in control group was partially reversed in LdM and HdM groups. MG administered in low dosages improves glucose and lipid disturbances in diabetic mice while alleviating hepatic damage. PMID:24404977

  16. Investigations on the effects of ''Ecstasy'' on cerebral glucose metabolism: an 18-FDG PET study

    International Nuclear Information System (INIS)

    Purpose: The aim of the present study was to determine the acute effects of the 'Ecstasy' analogue MDE (3,4-methylendioxyethamphetamine) on the cerebral glucose metabolism (rMRGlu) of healthy volunteers. Method: In a randomised double-blind trial, 16 healthy volunteers without a history of drug abuse were examined with 18-FDG PET 110-120 minutes after oral administration of 2 mg/kg MDE (n=8) or placebo (n=8). Beginning two minutes prior to radiotracer injection, a constant cognitive stimulation was maintained for 32 minutes using a word repetition paradigm in order to ensure constant and comparable mental conditions during cerebral 18-FDG uptake. Individual brain anatomy was represented using T1-weighted 3D flash MRI, followed by manual regionalisation into 108 regions-of-interest and PET/MRI overlay. Absolute quantification of rMRGlu and comparison of glucose metabolism under MDE versus placebo were performed using Mann-Whitney U-test. Results: Absolute global MRGlu was not significantly changed under MDE versus placebo (MDE: 41,8±11,1 μmol/min/100 g, placebo: 50,1±18,1 μmol/min/100 g, p=0,298). The normalised regional metabolic data showed a significantly decreased rMRGlu in the bilateral frontal cortex: Left frontal posterior (-7.1%, p<0.05) and right prefrontal superior (-4.6%, p<0.05). On the other hand, rMRGlu was significantly increased in the bilateral cerebellum (right: +10.1%, p<0.05; left: +7.6%, p<0.05) and in the right putamen (+6.2%, p<0.05). Conclusions: The present study revealed acute neurometabolic changes under the 'Ecstasy' analogon MDE indicating a fronto-striato-cerebellar dysbalance with parallels to other psychotropic substances and various endogenous psychoses respectively. (orig.)

  17. 2-deoxy-D-glucose-induced metabolic stress enhances resistance to Listeria monocytogenes infection in mice

    Science.gov (United States)

    Miller, E. S.; Bates, R. A.; Koebel, D. A.; Fuchs, B. B.; Sonnenfeld, G.

    1998-01-01

    Exposure to different forms of psychological and physiological stress can elicit a host stress response, which alters normal parameters of neuroendocrine homeostasis. The present study evaluated the influence of the metabolic stressor 2-deoxy-D-glucose (2-DG; a glucose analog, which when administered to rodents, induces acute periods of metabolic stress) on the capacity of mice to resist infection with the facultative intracellular bacterial pathogen Listeria monocytogenes. Female BDF1 mice were injected with 2-DG (500 mg/kg b. wt.) once every 48 h prior to, concurrent with, or after the onset of a sublethal dose of virulent L. monocytogenes. Kinetics of bacterial growth in mice were not altered if 2-DG was applied concurrently or after the start of the infection. In contrast, mice exposed to 2-DG prior to infection demonstrated an enhanced resistance to the listeria challenge. The enhanced bacterial clearance in vivo could not be explained by 2-DG exerting a toxic effect on the listeria, based on the results of two experiments. First, 2-DG did not inhibit listeria replication in trypticase soy broth. Second, replication of L. monocytogenes was not inhibited in bone marrow-derived macrophage cultures exposed to 2-DG. Production of neopterin and lysozyme, indicators of macrophage activation, were enhanced following exposure to 2-DG, which correlated with the increased resistance to L. monocytogenes. These results support the contention that the host response to 2-DG-induced metabolic stress can influence the capacity of the immune system to resist infection by certain classes of microbial pathogens.

  18. Regional cerebral glucose metabolism in late-life depression and Alzheimer disease: a preliminary positron emission tomography study.

    OpenAIRE

    Kumar, A; Newberg, A; A. Alavi; Berlin, J; Smith, R.; Reivich, M

    1993-01-01

    Eight subjects with late-life depression, eight subjects with probable Alzheimer disease, and eight healthy age-matched controls were studied using 2-[18F]fluoro-2-deoxy-D-glucose positron emission tomography in the resting state with their eyes open and ears unoccluded. The depressed subjects showed widespread reductions in the regional cerebral metabolic rate for glucose in most major neocortical, subcortical, and paralimbic regions that were significantly different from control values (P <...

  19. Epithelial and Mesenchymal Tumor Compartments Exhibit In Vivo Complementary Patterns of Vascular Perfusion and Glucose Metabolism1

    OpenAIRE

    Galie, Mirco; Farace, Paolo; Nanni, Cristina; Spinelli, Antonello; Nicolato, Elena; Boschi, Federico; Magnani, Paolo; Trespidi, Silvia; Ambrosini, Valentina; Fanti, Stefano; Merigo, Flavia; Osculati, Francesco; Marzola, Pasquina; Sbarbati, Andrea

    2007-01-01

    Glucose transport and consumption are increased in tumors, and this is considered a diagnostic index of malignancy. However, there is recent evidence that carcinoma-associated stromal cells are capable of aerobic metabolism with low glucose consumption, at least partly because of their efficient vascular supply. In the present study, using dynamic contrast-enhanced magnetic resonance imaging and [F-18]fluorodeoxyglucose (FDG) positron emission tomography (PET), we mapped in vivo the vascular ...

  20. Effects of sodium benzoate, a widely used food preservative, on glucose homeostasis and metabolic profiles in humans.

    Science.gov (United States)

    Lennerz, Belinda S; Vafai, Scott B; Delaney, Nigel F; Clish, Clary B; Deik, Amy A; Pierce, Kerry A; Ludwig, David S; Mootha, Vamsi K

    2015-01-01

    Sodium benzoate is a widely used preservative found in many foods and soft drinks. It is metabolized within mitochondria to produce hippurate, which is then cleared by the kidneys. We previously reported that ingestion of sodium benzoate at the generally regarded as safe (GRAS) dose leads to a robust excursion in the plasma hippurate level [1]. Since previous reports demonstrated adverse effects of benzoate and hippurate on glucose homeostasis in cells and in animal models, we hypothesized that benzoate might represent a widespread and underappreciated diabetogenic dietary exposure in humans. Here, we evaluated whether acute exposure to GRAS levels of sodium benzoate alters insulin and glucose homeostasis through a randomized, controlled, cross-over study of 14 overweight subjects. Serial blood samples were collected following an oral glucose challenge, in the presence or absence of sodium benzoate. Outcome measurements included glucose, insulin, glucagon, as well as temporal mass spectrometry-based metabolic profiles. We did not find a statistically significant effect of an acute oral exposure to sodium benzoate on glucose homeostasis. Of the 146 metabolites targeted, four changed significantly in response to benzoate, including the expected rise in benzoate and hippurate. In addition, anthranilic acid, a tryptophan metabolite, exhibited a robust rise, while acetylglycine dropped. Although our study shows that GRAS doses of benzoate do not have an acute, adverse effect on glucose homeostasis, future studies will be necessary to explore the metabolic impact of chronic benzoate exposure.

  1. Carbon Disulfide (CS2) Interference in Glucose Metabolism from Unconventional Oil and Gas Extraction and Processing Emissions.

    Science.gov (United States)

    Rich, Alisa L; Patel, Jay T; Al-Angari, Samiah S

    2016-01-01

    Carbon disulfide (CS2) has been historically associated with the manufacturing of rayon, cellophane, and carbon tetrachloride production. This study is one of the first to identify elevated atmospheric levels of CS2 above national background levels and its mechanisms to dysregulate normal glucose metabolism. Interference in glucose metabolism can indirectly cause other complications (diabetes, neurodegenerative disease, and retinopathy), which may be preventable if proper precautions are taken. Rich et al found CS2 and 12 associated sulfide compounds present in the atmosphere in residential areas where unconventional shale oil and gas extraction and processing operations were occurring. Ambient atmospheric concentrations of CS2 ranged from 0.7 parts per billion by volume (ppbv) to 103 ppbv over a continuous 24-hour monitoring period. One-hour ambient atmospheric concentrations ranged from 3.4 ppbv to 504.6 ppbv. Using the U.S. Environmental Protection Agency Urban Air Toxic Monitoring Program study as a baseline comparison for atmospheric CS2 concentrations found in this study, it was determined that CS2 atmospheric levels were consistently elevated in areas where unconventional oil and gas extraction and processing occurred. The mechanisms by which CS2 interferes in normal glucose metabolism by dysregulation of the tryptophan metabolism pathway are presented in this study. The literature review found an increased potential for alteration of normal glucose metabolism in viscose rayon occupational workers exposed to CS2. Occupational workers in the energy extraction industry exposed to CS2 and other sulfide compounds may have an increased potential for glucose metabolism interference, which has been an indicator for diabetogenic effect and other related health impacts. The recommendation of this study is for implementation of regular monitoring of blood glucose levels in CS2-exposed populations as a preventative health measure.

  2. 高三酰甘油腹型肥胖与糖代谢异常的研究%Hypertriglyceridemia Abdominal Obesity Associated with Disorders of Glucose Metabolism

    Institute of Scientific and Technical Information of China (English)

    李楷

    2012-01-01

    高三酰甘油(TG)腹型肥胖是脂肪组织储存了过多的三酰甘油相关的脂质.高TG血症除引起促进动脉硬化和血栓形成外,对胰岛B细胞分泌功能及糖代谢产生一定影响.有研究证明,高TG可以导致胰岛素的分泌异常、外周胰岛素抵抗(IR)、胰岛B细胞的凋亡.越来越多的研究表明,腹型肥胖与IR和糖代谢异常密切相关,脂肪组织尤其是内脏脂肪组织是IR的始发部位.高TG腹型肥胖引起糖代谢紊乱主要是引发胰岛素分泌障碍和IR.现就高TG腹型肥胖对糖代谢异常的相关研究进展进行综述.%High triacylglycerol( TG )is a state of excessive TG lipids storage in fatty tissue, llyper TG affect endocrine function of pancreatic islets B cell and glucose metabolism besides promoting arteriosclerosis and thrombosis. Studies have indicated that hypertriglycerol can induce insulin secretory abnomality, insulin resistance , and apoptosis. Studies indicate that abdominal obesity is associated with insulin resistance and disorders of glucose metabolism. Adipose tissue especially the visceral fat tissue is the initial position of insulin resistance. The hypertriglyceridemia-abdominal obesity induce disorders of glucose metabolism, the main reason is that triggers the insulin secretion obstacles and insulin resistance. Here is to make a review on the related research and development between hypertriglyceridemia-abdominal obesity and disorders of glucose metabolism.

  3. Dissociation of the effects of epinephrine and insulin on glucose and protein metabolism

    International Nuclear Information System (INIS)

    The separate and combined effects of insulin and epinephrine on leucine metabolism were examined in healthy young volunteers. Subjects participated in four experimental protocols: (1) euglycemic insulin clamp (+80 microU/ml), (2) epinephrine infusion (50 ng.kg-1.min-1) plus somatostatin with basal replacement of insulin and glucagon, (3) combined epinephrine (50 ng.kg-1.min-1) plus insulin (+80 microU/ml) infusion, and (4) epinephrine and somatostatin as in study 2 plus basal amino acid replacement. Studies were performed with a prime-continuous infusion of [1-14C]leucine and indirect calorimetry. Our results indicate that (1) hyperinsulinemia causes a generalized decrease in plasma amino acid concentrations, including leucine; (2) the reduction in plasma leucine concentration is primarily due to an inhibition of endogenous leucine flux; nonoxidative leucine disposal decreases after insulin infusion; (3) epinephrine, without change in plasma insulin concentration, reduces plasma amino acid levels; (4) combined epinephrine-insulin infusion causes a greater decrease in plasma amino levels than observed with either hormone alone; this is because of a greater inhibition of endogenous leucine flux; and (5) when basal amino acid concentrations are maintained constant with a balanced amino acid infusion, epinephrine inhibits the endogenous leucine flux. In conclusion, the present results do not provide support for the concept that epinephrine is a catabolic hormone with respect to amino acid-protein metabolism. In contrast, epinephrine markedly inhibits insulin-mediated glucose metabolism

  4. Regional cerebral glucose metabolic changes in oculopalatal myoclonus: implication for neural pathways, underlying the disorder

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sang Soo; Moon, So Young; Kim, Ji Soo; Kim, Sang Eun [College of Medicine, Seoul National University, Seoul (Korea, Republic of)

    2004-07-01

    Palatal myoclonus (PM) is characterized by rhythmic involuntary jerky movements of the soft palate of the throat. When associated with eye movements, it is called oculopalatal myoclonus (OPM). Ordinary PM is characterized by hypertrophic olivary degeneration, a trans-synaptic degeneration following loss of neuronal input to the inferior olivary nucleus due to an interruption of the Guillain-Mollaret triangle usually by a hemorrhage. However, the neural pathways underlying the disorder are uncertain. In an attempt to understand the pathologic neural pathways, we examined the metabolic correlates of this tremulous condition. Brain FDG PET scans were acquired in 8 patients with OPM (age, 49.9{+-}4.6 y: all males: 7 with pontine hemorrhage, 1 with diffuse brainstem infarction) and age-matched 50 healthy males (age, 50.7{+-} 9.0) and the regional glucose metabolism compared using SPM99. For group analysis, the hemispheres containing lesions were assigned to the right side of the brain. Patients with OPM had significant hypometabolism in the ipsilateral (to the lesion) brainstem and superior temporal and parahippocampal gyri (P < 0.05 corrected, k = 100). By contrast, there was significant hypermetabolism in the contralateral middle and inferior temporal gyri, thalamus, middle frontal gyrus and precuneus (P < 0.05 corrected, k=l00). Our data demonstrate the distinct metabolic changes between several ipsilateral and contralateral brain regions (hypometabolism vs. hypermetabolism) in patients with OPM. This may provide clues for understanding the neural pathways underlying the disorder.

  5. Effects of moderate amounts of barley in late pregnancy on growth, glucose metabolism and osteoarticular status of pre-weaning horses.

    Directory of Open Access Journals (Sweden)

    Pauline Peugnet

    Full Text Available In stud management, broodmares are commonly fed concentrates in late pregnancy. This practice, however, was shown to correlate with an increased incidence of osteochondrosis in foals, which may be related to insulin sensitivity. We hypothesized that supplementation of the mare with barley in the last trimester of pregnancy alters the pre-weaning foal growth, glucose metabolism and osteoarticular status. Here, pregnant multiparous saddlebred mares were fed forage only (group F, n=13 or both forage and cracked barley (group B, n=12 from the 7th month of pregnancy until term, as calculated to cover nutritional needs of broodmares. Diets were given in two daily meals. All mares and foals returned to pasture after parturition. Post-natal growth, glucose metabolism and osteoarticular status were investigated in pre-weaning foals. B mares maintained an optimal body condition score (>3.5, whereas that of F mares decreased and remained low (<2.5 up to 3 months of lactation, with a significantly lower bodyweight (-7% than B mares throughout the last 2 months of pregnancy. B mares had increased plasma glucose and insulin after the first meal and after the second meal to a lesser extent, which was not observed in F mares. B mares also had increased insulin secretion during an intravenous glucose tolerance test (IVGTT. Plasma NEFA and leptin were only temporarily affected by diet in mares during pregnancy or in early lactation. Neonatal B foals had increased serum osteocalcin and slightly increased glucose increments and clearance after glucose injection, but these effects had vanished at weaning. Body measurements, plasma IGF-1, T4, T3, NEFA and leptin concentrations, insulin secretion during IVGTT, as well as glucose metabolism rate during euglycemic hyperinsulinemic clamps after weaning, did not differ between groups. Radiographic examination of joints indicated increased osteochondrosis relative risk in B foals, but this was not significant. These data

  6. Metabolic and hormonal responses during repeated bouts of brief and intense exercise: effects of pre-exercise glucose ingestion.

    Science.gov (United States)

    Wouassi, D; Mercier, J; Ahmaidi, S; Brun, J F; Mercier, B; Orsetti, A; Préfaut, C

    1997-01-01

    We investigated metabolic and hormonal responses during repeated bouts of brief and intense exercise (a force-velocity test; Fv test) and examined the effect of glucose ingestion on these responses and on exercise performance. The test was performed twice by seven subjects [27 (2) years] according to a double-blind randomized crossover protocol. During the experimental trial (GLU), the subjects ingested 500 ml of glucose polymer solution containing 25 g glucose 15 min before starting the exercise. During the control trial (CON), the subjects received an equal volume of sweet placebo (aspartame). Exercise performance was assessed by calculating peak anaerobic power (W(an,peak)). Venous plasma lactate concentration increased significantly during the Fv test (P Blood glucose first decreased significantly from the beginning of exercise up to the 6-kg load (P glucose ingestion (P blood glucose and insulin concentrations decreased during repeated bouts of brief and intense exercise, while blood lactate concentration increased markedly without any significant change in glucagon and epinephrine concentrations. Glucose ingestion altered metabolic and hormonal responses during the Fv test, but the performance as measured by W(an,peak) was not changed. PMID:9286597

  7. [Clinical research on improvement of glucose metabolic marker level by coffee drinking-validity of saliva caffeine concentration measurement].

    Science.gov (United States)

    Okada, Tomoko; Kobayashi, Daisuke; Kono, Suminori; Shimazoe, Takao

    2010-05-01

    We measured both serum and saliva caffeine concentration using HPLC and assessed the correlation between them in volunteers with mild obesity. Significant correlation was shown between saliva and serum caffeine concentration. It may be necessary to measure caffeine metabolite concentration because its metabolites may also have an improving effect of glucose metabolism. In summary, we found that saliva caffeine concentration measurement was useful to assess caffeine intake level. Moreover, it will be helpful to know whether caffeine has an improving effect of glucose metabolism. PMID:20460869

  8. Metabolic flux analysis of hydrogen production network by Clostridium butyricum W5: Effect of pH and glucose concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Guiqin [School of Earth and Environmental Sciences, The University of Adelaide, Adelaide, SA 5005 (Australia); Jin, Bo [School of Earth and Environmental Sciences, The University of Adelaide, Adelaide, SA 5005 (Australia); School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005 (Australia); Australian Water Quality Centre, SA Water Corporation, 250 Victoria Square, Adelaide, SA 5100 (Australia); Saint, Chris [School of Earth and Environmental Sciences, The University of Adelaide, Adelaide, SA 5005 (Australia); Australian Water Quality Centre, SA Water Corporation, 250 Victoria Square, Adelaide, SA 5100 (Australia); Monis, Paul [Australian Water Quality Centre, SA Water Corporation, 250 Victoria Square, Adelaide, SA 5100 (Australia)

    2010-07-15

    Fermentative hydrogen production by strict anaerobes has been widely reported. There is a lack of information related to metabolic flux distribution and its variation with respect to fermentation conditions in the metabolic production system. This study aimed to get a better understanding of the metabolic network and to conduct metabolic flux analysis (MFA) of fermentative hydrogen production by a recently isolated Clostridium butyricum strain W5. We chose the specific growth rate as the objective function and used specific H{sub 2} production rate as the criterion to evaluate the experimental results with the in silico MFA. For the first time, we constructed an in silico metabolic flux model for the anaerobic glucose metabolism of C. butyricum W5 with assistance of a modeling program MetaFluxNet. The model was used to evaluate metabolic flux distribution in the fermentative hydrogen production network, and to study the fractional flux response to variations in initial glucose concentration and operational pH. The MFA results suggested that pH has a more significant effect on hydrogen production yield compared to the glucose concentration. The MFA is a useful tool to provide valuable information for optimization and design of the fermentative hydrogen production process. (author)

  9. Resistin induces insulin resistance, but does not affect glucose output in rat-derived hepatocytes

    Institute of Scientific and Technical Information of China (English)

    Feng LIU; Xiao-qing PAN; Mei GUO; Rong-hua CHEN; Xi-rong GUO; Tao YANG; Bin WANG; Min ZHANG; Nan GU; Jie QIU; Hong-qi FAN; Chun-mei ZHANG; Li FEI

    2008-01-01

    Aim: The aim of the present study was to observe the effects of resistin on insulin sensitivity and glucose output in rat-derived hepatocytes. Methods: The rat hepatoma cell line H4IIE was cultured and stimulated with resistin; supernant glucose and glycogen content were detected. The insulin receptor substrate (IRS)-1 and IRS-2, protein kinase B/Akt, glycogen synthase kinase-3β (GSK-3β), the suppressor of cytokine signaling 3 (SOCS-3) protein content, as well as the phosphorylation status were assessed by Western blotting. Specific antisense oligodeoxynucleotides directed against SOCS-3 were used to knockdown SOCS-3. Results: Resistin induced insulin resistance, but did not affect glucose output in rat hepatoma cell line H4IIE. Resistin attenuated multiple effects of insulin, including insulin-stimulated glycogen synthesis and phosphorylation of IRS, pro-tein kinase B/Akt, as well as GSK-3β. Resistin treatment markedly induced the gene and protein expression of SOCS-3, a known inhibitor of insulin signaling. Furthermore, a specific antisense oligodeoxynucleotide directed against SOCS-3 treatment prevented resistin from antagonizing insulin action. Conclusion: The major function of resistin on liver is to induce insulin resistance. SOCS-3 induc-tion may contribute to the resistin-mediated inhibition of insulin signaling in H4IIE hepatocytes.

  10. Obstructive sleep apnea is associated with impaired glucose metabolism in Han Chinese subjects

    Institute of Scientific and Technical Information of China (English)

    GU Chen-juan; LI Min; LI Qing-yun; LI Ning; SHI Guo-chao; WAN Huan-ying

    2013-01-01

    Background Increasingly,evidence from population,clinic-based and laboratory studies supports an independent association between obstructive sleep apnea syndrome (OSAS) and an increased risk of type 2 diabetes; however,this observation has yet to be replicated in China and the potential mechanisms that link these two conditions are not clear.Methods A total of 179 Han Chinese subjects were enrolled in this study.All subjects underwent polysomnography,the oral glucose tolerance-insulin releasing test (OGTT-IRT) and serum HbA1c measurement.Indexes including homeostasis model assessment-IR (HOMA-IR),Matsuda index,HOMA-β,early phase insulinogenic index (△I30 / △G30),AUC-I180 and oral disposition index (DIo) were calculated for the assessment of insulin resistance and pancreatic β-cell function.Results Based on OGTT,25.4%,44.6% and 54.5% subjects were diagnosed having glucose metabolic disorders respectively in control,mild to moderate and severe OSAS groups (P <0.05).Serum HbA1c levels were highest in subjects with severe OSAS (P <0.05).In contrast,compared with normal subjects,HOMA-β,△I30/△G30 and DIo were lower in severe OSAS group (P <0.05).In stepwise multiple linear regressions,0-min glucose and HbA1c were positively correlated with the percentage of total sleep time below an oxyhemoglobin saturation of 90% (T90) (Beta =0.215 and 0.368,P <0.05); 30-min and 60-min glucose was negatively correlated with the lowest SpO2 (LSpO2) (Beta =-0.214 and -0.241,P <0.05).HOMA-β and Dlowere negatively correlated with T90 (Beta =-0.153 and-0.169,P <0.05) while body mass index (BMI) was the only determinant of HOMA-IR and Matsuda index.Conclusions OSAS is associated with impairment in glucose tolerance and pancreatic β-cell function in Han Chinese subjects while insulin sensitivity is mainly determined by obesity.

  11. Convergence role of transcriptional coactivator p300 and apparent modification on HMCs metabolic memory induced by high glucose

    Directory of Open Access Journals (Sweden)

    Hong SU

    2013-03-01

    Full Text Available Objective  To investigate the protein expression of transcriptional coactivator p300, acetylated histone H3 (Ac-H3 and Ac-H4 in human renal mesangial cell (HMCs as imitative "metabolic memory" in vitro, and explore the potential role of convergence point of p300. Methods  The HMCs were divided into the following groups: ① High glucose metabolic memory model: normal glucose group (NG, 5.5mmol/L D-glucose×2d, high glucose group (HG, 25mmol/L D-glucose×2d, memory groups (M1, M2, M3, 25mmol/L D-glucose×2days + 5.5mmol/L D-glucose×3d, 6d or 9d, persisting normal glucose group (NG, 5.5mmol/L D-glucose×9d. ② Advanced glycation end products memory model: normal glucose group (NG, 5.5mmol/ L D-glucose×2d, NG+AGEs group (AGEs, 5.5mmol/L D-glucose+250µg/ml AGEs×2d; AGEs memory group (AGEs-M, 5.5mmol/L D-glucose + 250µg/ml AGEs×2d + 5.5mmol/L D-glucose×3d; BSA control group (NG+BSA, 5.5mmol/L D-glucose + 250µg/ml BSA×2d. ③ H2O2 was used to simulate oxidative stress memory model: normal glucose group (NG, 5.5mmol/L D-glucose×2d, NG+H2O2 group (H2O2, 5.5mmol/L D-glucose +100µmol/L H2O2×30min; H2O2 memory group [(5.5mmol/ L D-glucose + 100µmol/L H2O2×30min + 5.5mmol/L D-glucose×3d]; normal glucose control group (NG3, 5.5mmol/L D-glucose×3d. ④ Transfection with PKCβ2 memory model: normal glucose group (NG, 5.5mmol/L D-glucose×2d; high glucose group (HG, 25mmol/L D-glucose×2d; memory group (M, 25mmol/L D-glucose×2d + 5.5mmol/L D-glucose×3d; Ad5-null memory group (HN, 25mmol/L D-glucose + Ad5-null×2d + 5.5mmol/L D-glucose×3d; PKCβ2 memory group (PO, 25mmol/L D-glucose + Ad5-PKCβ2×2d + 5.5mmol/L D-glucose×3d; inhibitor of PKCβ2 memory group (PI, 25mmol/L D-glucose×2d + 10µmol/L CGP53353 + 5.5mmol/L D-glucose×3d. The expression of intracellular reactive oxygen species (ROS was detected by fluorescence microscope and fluorescence microplate reader. The expression levels of p300, Ac-H3, Ac-H4 and PKCβ2 proteins were

  12. Regional cerebral metabolic rate for glucose and cerebrospinal fluid monoamine metabolites in subacute sclerosing panencephalitis

    International Nuclear Information System (INIS)

    Regional cerebral metabolic rate for glucose (rCMRglu) and cerebrospinal fluid monoamine metabolites were measured in two cases of subacute sclerosing panencephalitis (SSPE) with different clinical courses. A marked decrease in rCMRglu was found in the cortical gray matter of a patient with rapidly developing SSPE (3.6 - 4.2 mg/100 g brain tissue/min). However, the rCMRglu was preserved in the caudate and lenticular nuclei of the patient (7.7 mg/100 g/min). The rCMRglu in a patient with slowly developing SSPE revealed patterns and values similar to those of the control. Cerebrospinal fluid monoamine metabolites ; homovanilic acid and 5-hydroxyindoleacetic acid, were decreased in both rapidly and slowly developing SSPE. These data indicated that rCMRglu correlated better with the neurological and psychological status and that dopaminergic and serotonergic abnormalities have been implicated in pathophysiology of SSPE. (author)

  13. A longitudinal study of cerebral glucose metabolism, MRI, and disability in patients with MS

    DEFF Research Database (Denmark)

    Blinkenberg, M; Jensen, C.V.; Holm, S;

    1999-01-01

    OBJECTIVE: To study the time-related changes in cerebral metabolic rate of glucose (CMRglc) in MS patients and to correlate these with changes in MRI lesion load and disability. BACKGROUND: Measurements of MRI lesion load and neurologic disability are used widely to monitor disease progression...... in longitudinal studies of MS patients, but little is known about the associated changes in cerebral neural function. METHODS: The authors studied 10 patients with clinically definite MS who underwent serial measurements of CMRglc, MRI T2-weighted total lesion area (TLA), and clinical evaluation of disability...... and parietal cortical areas. There was a statistically significant increase of disability (pMS is decreased significantly during a 2...

  14. Drosophila adiponectin receptor in insulin producing cells regulates glucose and lipid metabolism by controlling insulin secretion.

    Directory of Open Access Journals (Sweden)

    Su-Jin Kwak

    Full Text Available Adipokines secreted from adipose tissue are key regulators of metabolism in animals. Adiponectin, one of the adipokines, modulates pancreatic beta cell function to maintain energy homeostasis. Recently, significant conservation between Drosophila melanogaster and mammalian metabolism has been discovered. Drosophila insulin like peptides (Dilps regulate energy metabolism similarly to mammalian insulin. However, in Drosophila, the regulatory mechanism of insulin producing cells (IPCs by adipokine signaling is largely unknown. Here, we describe the discovery of the Drosophila adiponectin receptor and its function in IPCs. Drosophila adiponectin receptor (dAdipoR has high homology with the human adiponectin receptor 1. The dAdipoR antibody staining revealed that dAdipoR was expressed in IPCs of larval and adult brains. IPC- specific dAdipoR inhibition (Dilp2>dAdipoR-Ri showed the increased sugar level in the hemolymph and the elevated triglyceride level in whole body. Dilps mRNA levels in the Dilp2>dAdipoR-Ri flies were similar with those of controls. However, in the Dilp2>dAdipoR-Ri flies, Dilp2 protein was accumulated in IPCs, the level of circulating Dilp2 was decreased, and insulin signaling was reduced in the fat body. In ex vivo fly brain culture with the human adiponectin, Dilp2 was secreted from IPCs. These results indicate that adiponectin receptor in insulin producing cells regulates insulin secretion and controls glucose and lipid metabolism in Drosophila melanogaster. This study demonstrates a new adipokine signaling in Drosophila and provides insights for the mammalian adiponectin receptor function in pancreatic beta cells, which could be useful for therapeutic application.

  15. Glucose Metabolism Disorder Is Associated with Pulmonary Tuberculosis in Individuals with Respiratory Symptoms from Brazil

    Science.gov (United States)

    Castro, Simone; Cafezeiro, Aparecida S.; Daltro, Carla; Netto, Eduardo M.; Kornfeld, Hardy; Andrade, Bruno B.

    2016-01-01

    Background Diabetes mellitus (DM) has been associated with increased risk for pulmonary tuberculosis (PTB) in endemic settings but it is unknown whether PTB risk is also increased by pre-DM. Here, we prospectively examined the association between glucose metabolism disorder (GMD) and PTB in patients with respiratory symptoms at a tuberculosis primary care reference center in Brazil. Methods Oral glucose tolerance test was performed and levels of fasting plasma glucose and glycohemoglobin (HbA1c) were measured in a cohort of 892 individuals presenting with respiratory symptoms of more than two weeks duration. Patients were also tested for PTB with sputum cultures. Prevalence of pre-DM and DM (based on HbA1c) was estimated and tested for association with incident PTB. Other TB risk factors including smoking history were analyzed. Results The majority of the study population (63.1%) exhibited GMD based on HbA1c ≥5.7%. Patients with GMD had higher prevalence of PTB compared to normoglycemic patients. Individuals with DM exhibited increased frequency of TB-related symptoms and detection of acid-fast bacilli in sputum smears. Among patients with previous DM diagnosis, sustained hyperglycemia (HbA1c ≥7.0%) was associated with increased TB prevalence. Smoking history alone was not significantly associated with TB in our study population but the combination of smoking and HbA1c ≥7.0% was associated with 6 times higher odds for PTB. Conclusions Sustained hyperglycemia and pre-DM are independently associated with active PTB. This evidence raises the question whether improving glycemic control in diabetic TB patients would reduce the risk of TB transmission and simultaneously reduce the clinical burden of disease. A better understanding of mechanisms underlying these associations, especially those suggesting that pre-DM may be a factor driving susceptibility to TB is warranted. PMID:27078026

  16. Exploring Temporospatial Changes in Glucose Metabolic Disorder, Learning, and Memory Dysfunction in a Rat Model of Diffuse Axonal Injury

    OpenAIRE

    Jia LI; Gu, Lei; FENG, DONG-FU; Ding, Fang; Zhu, Guangyao; Rong, Jiandong

    2012-01-01

    Diffuse axonal injury (DAI) is the predominant effect of severe traumatic brain injury and contributes significantly to cognitive deficits. The mechanisms underlying these cognitive deficits are often associated with complex metabolic alterations. However, the relationships between temporospatial alterations in cerebral glucose metabolism and the pathophysiology of DAI-related learning and memory dysfunction are not yet completely understood. We used a small animal positron emission tomograph...

  17. Further studies of the influence of apolipoprotein B alleles on glucose and lipid metabolism

    DEFF Research Database (Denmark)

    Bentzen, Joan; Poulsen, Pernille; Vaag, Allan;

    2003-01-01

    The effect of five genetic polymorphisms in the apolipoprotein B gene on parameters of lipid and glucose metabolism was assessed in 564 Danish mono- and dizygotic twins. Genotypes in apolipoprotein B T71I (ApaLI RFLP), A591V (AluI RFLP), L2712P (MvaI RFLP), R3611Q (MspI RFLP), and E4154K (Eco......RI RFLP) were established using polymerase chain reaction and restriction enzyme digests. The effect of genotypes on lipid levels and on glucose, insulin, and HOMA (i.e., calculated parameters of beta-cell function and insulin resistance) was assessed by multivariate analyses of variance correcting......-Elston method. The allele frequencies of all five polymorphisms were similar to those previously reported for Caucasian populations. The L2711P (MvaI RFLP) polymorphism influenced LDL-cholesterol and LDL-to-HDL measures (p = 0.04 and 0.03, respectively), while the R3611Q (MspI RFLP) polymorphism had an effect...

  18. Non-Invasive Glucose Measurement by Use of Metabolic Heat Conformation Method

    Directory of Open Access Journals (Sweden)

    Junfeng Li

    2008-05-01

    Full Text Available A non-invasive glucose measurement system based on the method of metabolic heat conformation (MHC is presented in this paper. This system consists of three temperature sensors, two humidity sensors, an infrared sensor and an optical measurement device. The glucose level can be deduced from the quantity of heat dissipation, blood flow rate of local tissue and degree of blood oxygen saturation. The methodology of the data process and the measurement error are also analyzed. The system is applied in a primary clinical test. Compared with the results of a commercial automated chemistry analyzer, the correlation coefficient of the collected data from the system is 0.856. Result shows that the correlation coefficient improves when the factor of heat dissipated by evaporation of the skin is added in. A non-invasive method of measuring the blood flow rate of local tissue by heat transmission between skin and contacted conductor is also introduced. Theoretical derivation and numerical simulation are completed as well. The so-called normalized difference mean (NDM is chosen to express the quantity of the blood flow rate. The correlation coefficient between the blood flow rates by this method and the results of a Doppler blood flow meter is equal to 0.914.

  19. Glucose metabolism in burn patients: the role of insulin and other endocrine hormones.

    Science.gov (United States)

    Ballian, Nikiforos; Rabiee, Atoosa; Andersen, Dana K; Elahi, Dariush; Gibson, B Robert

    2010-08-01

    Severe burn causes a catabolic response with profound effects on glucose and muscle protein metabolism. This response is characterized by hyperglycemia and loss of muscle mass, both of which have been associated with significantly increased morbidity and mortality. In critically ill surgical patients, obtaining tight glycemic control with intensive insulin therapy was shown to reduce morbidity and mortality and has increasingly become the standard of care. In addition to its well-known anti-hyperglycemic action and reduction in infections, insulin promotes muscle anabolism and regulates the systemic inflammatory response. Despite a demonstrated benefit of insulin administration on the maintenance of skeletal muscle mass, it is unknown if this effect translates to improved clinical outcomes in the thermally injured. Further, insulin therapy has the potential to cause hypoglycemia and requires frequent monitoring of blood glucose levels. A better understanding of the clinical benefit associated with tight glycemic control in the burned patient, as well as newer strategies to achieve and maintain that control, may provide improved methods to reduce the clinical morbidity and mortality in the thermally injured patient.

  20. Features of the in-hospital course of myocardial infarction in patients with glucose metabolism disorders

    Directory of Open Access Journals (Sweden)

    B. U. Mardanov

    2015-11-01

    Full Text Available Aim. To study the clinical course of acute myocardial infarction (MI with ST segment elevation (STEMI and the features of inpatient treatment in patients with and without diabetes mellitus (DM. Material and methods. STEMI patients (n=83, who were hospitalized in 2014, were included into the study. The patients were divided into two groups according to the presence or absence of glucose metabolism disorders: Group 1 (patients with type 2 DM; n=38 and Group 2 (patients without glucose metabolism disorders; n=45. Baseline demographic, clinical, laboratory and instrumental characteristics of the patients, along with the features of hospital treatment, were studied. Results. In group 1 compared with group 2 hypertension was detected significantly more frequently (73.7% vs 49%; p<0.05, and a class of acute heart failure (Killip at admission was higher (1.46±0.6 vs 1.23±0.57; p<0.05. STEMI was complicated by an acute left ventricular aneurysm 12% more often in patients of group 1 (p<0.05. The duration of inpatient treatment was also higher in patients of group 1 (18±4.1 vs 16±3.6 days; p<0.05. Conclusion. Only 21% of the patients with DM and STEMI had adequate treatment of ischemic heart disease and a quarter of the patients in this group had no adequate DM therapy before the admission. Patients with DM had a higher incidence of in-hospital STEMI complications and a higher duration of inpatient treatment. 

  1. Shiftwork and impaired glucose metabolism: a 14-year cohort study on 7104 male workers.

    Science.gov (United States)

    Suwazono, Yasushi; Dochi, Mirei; Oishi, Mitsuhiro; Tanaka, Kumihiko; Kobayashi, Etsuko; Sakata, Kouichi

    2009-07-01

    The aim of this study was to assess the effect of shiftwork on hemoglobin A1c (HbA1c) level, as an index of glucose metabolism. A 14 yr prospective cohort study was conducted on day (n = 4219) and alternating shiftworkers (n = 2885) who received annual health checkups between 1991 and 2005 at a Japanese steel company. The endpoints were either a 10%, 15%, 20%, 25%, or 30% increase in HbA1c during the period of observation, compared to HbA1c at entry to the study. The association between the type of job schedule and increase in HbA1c was investigated after adjusting for age, body mass index, mean arterial pressure, total serum cholesterol, creatinine, alanine aminotransferase, gamma-glutamyl transpeptidase, uric acid, drinking habit, smoking habit, and habitual exercise using multivariate pooled logistic regression analyses. Shiftwork was significantly associated with the various HbA1c endpoints (> or =10% HbA1c increase, odds ratio 1.35 [95% confidence interval 1.26-1.44]; > or =15% HbA1c increase, odds ratio 1.29 [95% confidence interval, 1.19-1.40]; > or =20% HbA1c increase, odds ratio 1.23 [95% confidence interval 1.11-1.37]; and > or =25% HbA1c increase, odds ratio 1.19 [95% confidence interval 1.03-1.36]). Age, body mass index, alanine aminotransferase, and gamma-glutamyl transpeptidase were associated positively with all five HbA1c endpoints. Uric acid was associated negatively with all five HbA1c endpoints. Our study on male Japanese workers revealed alternating shiftwork (in addition to other established factors, such as age and body mass index) was a consistent risk factor for impaired glucose metabolism. PMID:19637051

  2. Bipolar disorder course, impaired glucose metabolism and antioxidant enzymes activities: A preliminary report.

    Science.gov (United States)

    Mansur, Rodrigo B; Rizzo, Lucas B; Santos, Camila M; Asevedo, Elson; Cunha, Graccielle R; Noto, Mariane N; Pedrini, Mariana; Zeni-Graiff, Maiara; Gouvea, Eduardo S; Cordeiro, Quirino; Reininghaus, Eva Z; McIntyre, Roger S; Brietzke, Elisa

    2016-09-01

    This study aimed to examine the role of oxidative stress in bipolar disorder (BD) by evaluating the relationship among antioxidant enzymes activities, impaired glucose metabolism (IGM) and illness course. We measured the activities of plasma superoxide dismutase (SOD) and glutathione peroxidase (GPx) in individuals with BD (N = 55) and healthy controls (N = 28). Information related to current and past psychiatric/medical history, as well as prescription of any pharmacological treatments was captured. Impaired glucose metabolism was operationalized as pre-diabetes or type 2 diabetes mellitus. Our results showed that, after adjustment for age, gender, alcohol use, smoking and current medication, both BD (p < 0.001) and IGM (p = 0.019) were associated with increased GPx activity, whereas only BD was associated with decreased SOD activity (p = 0.008). We also observed an interaction between BD and IGM on SOD activity (p = 0.017), whereas the difference between BD and controls was only significant in individuals with IGM (p = 0.009). IGM, GPx and SOD activity were independently associated with variables of illness course. Moreover, IGM moderated the association between SOD activity and number of mood episodes (p < 0.001), as a positive correlation between SOD activity and mood episodes was observed only in participants with IGM. In conclusion, BD and IGM are associated with independent and synergistic effects on markers of oxidative stress. The foregoing observations suggest that the heterogeneity observed in previous studies evaluating antioxidant enzymes in BD may be a function of concurrent IGM; and that imbalances in the oxidative system may subserve the association between BD and IGM, as well as its relationship with illness course. PMID:27281261

  3. Glucose metabolism and glutamate analog acutely alkalinize pH of insulin secretory vesicles of pancreatic beta-cells.

    Science.gov (United States)

    Eto, Kazuhiro; Yamashita, Tokuyuki; Hirose, Kenzo; Tsubamoto, Yoshiharu; Ainscow, Edward K; Rutter, Guy A; Kimura, Satoshi; Noda, Mitsuhiko; Iino, Masamitsu; Kadowaki, Takashi

    2003-08-01

    We studied acute changes of secretory vesicle pH in pancreatic beta-cells with a fluorescent pH indicator, lysosensor green DND-189. Fluorescence was decreased by 0.66 +/- 0.10% at 149 +/- 16 s with 22.2 mM glucose stimulation, indicating that vesicular pH was alkalinized by approximately 0.016 unit. Glucose-responsive pH increase was observed when cytosolic Ca2+ influx was blocked but disappeared when an inhibitor of glycolysis or mitochondrial ATP synthase was present. Glutamate dimethyl ester (GME), a plasma membrane-permeable analog of glutamate, potentiated glucose-stimulated insulin secretion at 5 mM without changing cellular ATP content or cytosolic Ca2+ concentration ([Ca2+]). Application of GME at basal glucose concentration decreased DND-189 fluorescence by 0.83 +/- 0.19% at 38 +/- 2 s. These results indicated that the acutely alkalinizing effect of glucose on beta-cell secretory vesicle pH was dependent on glucose metabolism but independent of modulations of cytosolic [Ca2+]. Moreover, glutamate derived from glucose may be one of the mediators of this alkalinizing effect of glucose, which may have potential relevance to the alteration of secretory function by glutamate.

  4. (p)ppGpp, a Small Nucleotide Regulator, Directs the Metabolic Fate of Glucose in Vibrio cholerae.

    Science.gov (United States)

    Oh, Young Taek; Lee, Kang-Mu; Bari, Wasimul; Raskin, David M; Yoon, Sang Sun

    2015-05-22

    When V. cholerae encounters nutritional stress, it activates (p)ppGpp-mediated stringent response. The genes relA and relV are involved in the production of (p)ppGpp, whereas the spoT gene encodes an enzyme that hydrolyzes it. Herein, we show that the bacterial capability to produce (p)ppGpp plays an essential role in glucose metabolism. The V. cholerae mutants defective in (p)ppGpp production (i.e. ΔrelAΔrelV and ΔrelAΔrelVΔspoT mutants) lost their viability because of uncontrolled production of organic acids, when grown with extra glucose. In contrast, the ΔrelAΔspoT mutant, a (p)ppGpp overproducer strain, exhibited better growth in the presence of the same glucose concentration. An RNA sequencing analysis demonstrated that transcriptions of genes consisting of an operon for acetoin biosynthesis were markedly elevated in N16961, a seventh pandemic O1 strain, but not in its (p)ppGpp(0) mutant during glucose-stimulated growth. Transposon insertion in acetoin biosynthesis gene cluster resulted in glucose-induced loss of viability of the ΔrelAΔspoT mutant, further suggesting the crucial role of acetoin production in balanced growth under glucose-rich environments. Additional deletion of the aphA gene, encoding a negative regulator for acetoin production, failed to rescue the (p)ppGpp(0) mutant from the defective glucose-mediated growth, suggesting that (p)ppGpp-mediated acetoin production occurs independent of the presence of AphA. Overall, our results reveal that (p)ppGpp, in addition to its well known role as a stringent response mediator, positively regulates acetoin production that contributes to the successful glucose metabolism and consequently the proliferation of V. cholerae cells under a glucose-rich environment, a condition that may mimic the human intestine.

  5. Decreased serum glucose and glycosylated hemoglobin levels in patients with Chuvash polycythemia: a role for HIF in glucose metabolism.

    Science.gov (United States)

    McClain, Donald A; Abuelgasim, Khadega A; Nouraie, Mehdi; Salomon-Andonie, Juan; Niu, Xiaomei; Miasnikova, Galina; Polyakova, Lydia A; Sergueeva, Adelina; Okhotin, Daniel J; Cherqaoui, Rabia; Okhotin, David; Cox, James E; Swierczek, Sabina; Song, Jihyun; Simon, M Celeste; Huang, Jingyu; Simcox, Judith A; Yoon, Donghoon; Prchal, Josef T; Gordeuk, Victor R

    2013-01-01

    In Chuvash polycythemia, a homozygous 598C>T mutation in the von Hippel-Lindau gene (VHL) leads to an R200W substitution in VHL protein, impaired degradation of α-subunits of hypoxia-inducible factor (HIF)-1 and HIF-2, and augmented hypoxic responses during normoxia. Chronic hypoxia of high altitude is associated with decreased serum glucose and insulin concentrations. Other investigators reported that HIF-1 promotes cellular glucose uptake by increased expression of GLUT1 and increased glycolysis by increased expression of enzymes such as PDK. On the other hand, inactivation of Vhl in murine liver leads to hypoglycemia associated with a HIF-2-related decrease in the expression of the gluconeogenic enzyme genes Pepck, G6pc, and Glut2. We therefore hypothesized that glucose concentrations are decreased in individuals with Chuvash polycythemia. We found that 88 Chuvash VHL ( R200W ) homozygotes had lower random glucose and glycosylated hemoglobin A1c levels than 52 Chuvash subjects with wild-type VHL alleles. Serum metabolomics revealed higher glycerol and citrate levels in the VHL ( R200W ) homozygotes. We expanded these observations in VHL ( R200W ) homozygote mice and found that they had lower fasting glucose values and lower glucose excursions than wild-type control mice but no change in fasting insulin concentrations. Hepatic expression of Glut2 and G6pc, but not Pdk2, was decreased, and skeletal muscle expression of Glut1, Pdk1, and Pdk4 was increased. These results suggest that both decreased hepatic gluconeogenesis and increased skeletal uptake and glycolysis contribute to the decreased glucose concentrations. Further study is needed to determine whether pharmacologically manipulating HIF expression might be beneficial for treatment of diabetic patients. PMID:23015148

  6. Suppression of the External MitochondrialNADPH Dehydrogenase, NDB1, in Arabidopsisthaliana Affects Central Metabolism andVegetative Growth

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    Ca2+-dependent oxidation of cytosolic NADPH is mediated by NDB1, which is an external type II NADPHdehydrogenase in the plant mitochondrial electron transport chain. Using RNA interference, the NDB1 transcript wassuppressed by 80% in Arabidopsis thaliana plants, and external Ca2+-dependent NADPH dehydrogenase activity becameundetectable in isolated mitochondria. This was linked to a decreased level of NADP+ in rosettes of the transgenic lines.Sterile-grown transgenic seedlings displayed decreased growth specifically on glucose, and respiratory metabolism of 14C-glucose was increased. On soil, NDBl-suppressing plants had a decreased vegetative biomass, but leaf maximumquantum efficiency of photosystem Ⅱ and CO2 assimilation rates, as well as total respiration, were similar to the wild-type. The in vivo alternative oxidase activity and capacity were also similar in all genotypes. Metabolic profiling revealeddecreased levels of sugars, citric acid cycle intermediates, and amino acids in the transgenic lines. The NDBl-suppressioninduced transcriptomic changes associated with protein synthesis and glucosinolate and jasmonate metabolism. Thetranscriptomic changes also overlapped with changes observed in a mutant lacking ABAINSENSITIVE4 and in A. thalianaoverexpressing stress tolerance genes from rice. The results thus indicate that A. thaliana NDB1 modulates NADP(H)reduction levels, which in turn affect central metabolism and growth, and interact with defense signaling.

  7. Ameliorating effect of eugenol on hyperglycemia by attenuating the key enzymes of glucose metabolism in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Srinivasan, Subramani; Sathish, Gajendren; Jayanthi, Mahadevan; Muthukumaran, Jayachandran; Muruganathan, Udaiyar; Ramachandran, Vinayagam

    2014-01-01

    Epidemiological studies have demonstrated that diabetes mellitus is a serious health burden for both governments and healthcare providers. This study was hypothesized to evaluate the antihyperglycemic potential of eugenol by determine the activities of key enzymes of glucose metabolism in streptozotocin (STZ)-induced diabetic rats. Diabetes was induced into male albino Wistar rats by intraperitoneal administration of STZ (40 mg/kg body weight (b.w.)). Eugenol was administered to diabetic rats intragastrically at 2.5, 5, and 10 mg/kg b.w. for 30 days. The dose 10 mg/kg b.w. significantly reduced the levels of blood glucose and glycosylated hemoglobin (HbA1c) and increased plasma insulin level. The altered activities of the key enzymes of carbohydrate metabolism such as hexokinase, pyruvate kinase, glucose-6-phosphate dehydrogenase, glucose-6-phosphatase, fructose-1,6-bisphosphatase, and liver marker enzymes (AST, ALT, and ALP), creatine kinase and blood urea nitrogen in serum and blood of diabetic rats were significantly reverted to near normal levels by the administration of eugenol. Further, eugenol administration to diabetic rats improved body weight and hepatic glycogen content demonstrated the antihyperglycemic potential of eugenol in diabetic rats. The present findings suggest that eugenol can potentially ameliorate key enzymes of glucose metabolism in experimental diabetes, and it is sensible to broaden the scale of use of eugenol in a trial to alleviate the adverse effects of diabetes.

  8. Obesity, metabolic syndrome, impaired fasting glucose, and microvascular dysfunction: a principal component analysis approach

    Directory of Open Access Journals (Sweden)

    Panazzolo Diogo G

    2012-11-01

    Full Text Available Abstract Background We aimed to evaluate the multivariate association between functional microvascular variables and clinical-laboratorial-anthropometrical measurements. Methods Data from 189 female subjects (34.0±15.5 years, 30.5±7.1 kg/m2, who were non-smokers, non-regular drug users, without a history of diabetes and/or hypertension, were analyzed by principal component analysis (PCA. PCA is a classical multivariate exploratory tool because it highlights common variation between variables allowing inferences about possible biological meaning of associations between them, without pre-establishing cause-effect relationships. In total, 15 variables were used for PCA: body mass index (BMI, waist circumference, systolic and diastolic blood pressure (BP, fasting plasma glucose, levels of total cholesterol, high-density lipoprotein cholesterol (HDL-c, low-density lipoprotein cholesterol (LDL-c, triglycerides (TG, insulin, C-reactive protein (CRP, and functional microvascular variables measured by nailfold videocapillaroscopy. Nailfold videocapillaroscopy was used for direct visualization of nutritive capillaries, assessing functional capillary density, red blood cell velocity (RBCV at rest and peak after 1 min of arterial occlusion (RBCVmax, and the time taken to reach RBCVmax (TRBCVmax. Results A total of 35% of subjects had metabolic syndrome, 77% were overweight/obese, and 9.5% had impaired fasting glucose. PCA was able to recognize that functional microvascular variables and clinical-laboratorial-anthropometrical measurements had a similar variation. The first five principal components explained most of the intrinsic variation of the data. For example, principal component 1 was associated with BMI, waist circumference, systolic BP, diastolic BP, insulin, TG, CRP, and TRBCVmax varying in the same way. Principal component 1 also showed a strong association among HDL-c, RBCV, and RBCVmax, but in the opposite way. Principal component 3 was

  9. Regional cerebral glucose metabolism differentiates danger- and non-danger-based traumas in post-traumatic stress disorder.

    Science.gov (United States)

    Ramage, Amy E; Litz, Brett T; Resick, Patricia A; Woolsey, Mary D; Dondanville, Katherine A; Young-McCaughan, Stacey; Borah, Adam M; Borah, Elisa V; Peterson, Alan L; Fox, Peter T

    2016-02-01

    Post-traumatic stress disorder (PTSD) is presumably the result of life threats and conditioned fear. However, the neurobiology of fear fails to explain the impact of traumas that do not entail threats. Neuronal function, assessed as glucose metabolism with (18)fluoro-deoxyglucose positron emission tomography, was contrasted in active duty, treatment-seeking US Army Soldiers with PTSD endorsing either danger- (n = 19) or non-danger-based (n = 26) traumas, and was compared with soldiers without PTSD (Combat Controls, n = 26) and Civilian Controls (n = 24). Prior meta-analyses of regions associated with fear or trauma script imagery in PTSD were used to compare glucose metabolism across groups. Danger-based traumas were associated with higher metabolism in the right amygdala than the control groups, while non-danger-based traumas associated with heightened precuneus metabolism relative to the danger group. In the danger group, PTSD severity was associated with higher metabolism in precuneus and dorsal anterior cingulate and lower metabolism in left amygdala (R(2 )= 0.61). In the non-danger group, PTSD symptom severity was associated with higher precuneus metabolism and lower right amygdala metabolism (R(2 )= 0.64). These findings suggest a biological basis to consider subtyping PTSD according to the nature of the traumatic context.

  10. The fate of acetic acid during glucose co-metabolism by the spoilage yeast Zygosaccharomyces bailii.

    Directory of Open Access Journals (Sweden)

    Fernando Rodrigues

    Full Text Available Zygosaccharomyces bailii is one of the most widely represented spoilage yeast species, being able to metabolise acetic acid in the presence of glucose. To clarify whether simultaneous utilisation of the two substrates affects growth efficiency, we examined growth in single- and mixed-substrate cultures with glucose and acetic acid. Our findings indicate that the biomass yield in the first phase of growth is the result of the weighted sum of the respective biomass yields on single-substrate medium, supporting the conclusion that biomass yield on each substrate is not affected by the presence of the other at pH 3.0 and 5.0, at least for the substrate concentrations examined. In vivo(13C-NMR spectroscopy studies showed that the gluconeogenic pathway is not operational and that [2-(13C]acetate is metabolised via the Krebs cycle leading to the production of glutamate labelled on C(2, C(3 and C(4. The incorporation of [U-(14C]acetate in the cellular constituents resulted mainly in the labelling of the protein and lipid pools 51.5% and 31.5%, respectively. Overall, our data establish that glucose is metabolised primarily through the glycolytic pathway, and acetic acid is used as an additional source of acetyl-CoA both for lipid synthesis and the Krebs cycle. This study provides useful clues for the design of new strategies aimed at overcoming yeast spoilage in acidic, sugar-containing food environments. Moreover, the elucidation of the molecular basis underlying the resistance phenotype of Z. bailii to acetic acid will have a potential impact on the improvement of the performance of S. cerevisiae industrial strains often exposed to acetic acid stress conditions, such as in wine and bioethanol production.

  11. A rosiglitazone-induced increase in adiponectin does not improve glucose metabolism in HIV-infected patients with overt lipoatrophy

    NARCIS (Netherlands)

    R.M.E. Blümer; M. van der Valk; M. Ackermans; E. Endert; M.J. Serlie; P. Reiss; H.P. Sauerwein

    2009-01-01

    Blumer RM, van der Valk M, Ackermans M, Endert E, Serlie MJ, Reiss P, Sauerwein HP. A rosiglitazone-induced increase in adiponectin does not improve glucose metabolism in HIV-infected patients with overt lipoatrophy. Am J Physiol Endocrinol Metab 297: E1097-E1104, 2009. First published August 18, 20

  12. Metabolic network analysis on Phaffia rhodozyma yeast using C-13-labeled glucose and gas chromatography-mass spectrometry

    DEFF Research Database (Denmark)

    Cannizzaro, C.; Christensen, B.; Nielsen, Jens;

    2004-01-01

    labeling patterns, as determined by GC-MS, were in accordance with a metabolic network consisting of the Embden-Meyerhof-Parnas pathway, the pentose phosphate pathway, and the TCA cycle. Glucose was mainly consumed along the pentose phosphate pathway (similar to65% for wildtype strain), which reflected...

  13. Effects on lipid and glucose metabolism of diets with different types of fat and sugar in male fatty zucker rats

    NARCIS (Netherlands)

    Waard, de H.

    1978-01-01

    The nutritional problem with regard to fat and sugar consumption in relation to lipid and glucose metabolism, and the ultimate goal of the study are generally outlined in Chapter 1. The obese Zucker rat was chosen as being likely a suitable animal model for a study like this. Chapter 2 is a review o

  14. Impact of overexpressing NADH kinase on glucose and xylose metabolism in recombinant xylose-utilizing Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Hou, Jin; Vemuri, G. N.; Bao, X. M.;

    2009-01-01

    During growth of Saccharomyces cerevisiae on glucose, the redox cofactors NADH and NADPH are predominantly involved in catabolism and biosynthesis, respectively. A deviation from the optimal level of these cofactors often results in major changes in the substrate uptake and biomass formation....... However, the metabolism of xylose by recombinant S. cerevisiae carrying xylose reductase and xylitol dehydrogenase from the fungal pathway requires both NADH and NADPH and creates cofactor imbalance during growth on xylose. As one possible solution to overcoming this imbalance, the effect...... in the cytosol redirected carbon flow from CO2 to ethanol during aerobic growth on glucose and to ethanol and acetate during anaerobic growth on glucose. However, cytosolic NADH kinase has an opposite effect during anaerobic metabolism of xylose consumption by channeling carbon flow from ethanol to xylitol...

  15. Failure of caffeine to affect metabolism during 60 min submaximal exercise.

    Science.gov (United States)

    Titlow, L W; Ishee, J H; Riggs, C E

    1991-01-01

    Caffeine consumption prior to athletic performance has become commonplace. The usual dosage is approximately 200 mg, a level of caffeine ingestion equivalent to two cups of brewed coffee. This study was designed to examine the effects of a common level of caffeine ingestion, specifically 200 mg, on metabolism during submaximal exercise performance in five males. The subjects performed two 60-min monitored treadmill workouts at 60% maximal heart rate during a 2-week period. The subjects were randomly assigned, double-blind to receive a caffeine or placebo capsule 60 min prior to exercise. Testing was performed in the afternoon following a midnight fast. Venous blood was withdrawn pre-exercise, every 15 min during the workout, and 10 min after recovery. Blood was analysed for free fatty acid, triglycerides, glucose, lactic acid, haemoglobin and haematocrit. The respiratory exchange ratio (R), perceived exertion (RPE) and oxygen uptake were measured every 4 min during exercise. An examination of the data with repeated-measures ANOVA revealed no significant differences between the two groups. Within the limitations of the study, it was concluded that 200 mg caffeine failed to affect metabolism during 60 min submaximal exercise. PMID:1856908

  16. Semecarpus anacardium (Bhallataka Alters the Glucose Metabolism and Energy Production in Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Jaya Aseervatham

    2011-01-01

    Full Text Available Glucose produced by gluconeogenesis and glycogenolysis plays an important role in aggravating hyperglycemia in diabetes, and altered mitochondrial function is associated with impaired energy production. The present study focuses on the effect of Semecarpus anacardium on carbohydrate metabolism and energy production in diabetic rats. Diabetes was induced by the administration of Streptozotocin at a dose of 50 mg/kg.b.wt. Three days after the induction, Semecarpus anacardium at a dose of 300 mg/kg.b.wt was administered for 21 days. After the experimental duration, the activities of the enzymes involved in Glycolysis, TCA cycle, gluconeogenesis, and glycogen were assayed in the liver and kidney of the experimental animals. In addition, to the complexes the protein expression of AKT and PI3K were assayed. The levels of the enzymes involved in Glycolysis and TCA cycle increased, while that of gluconeogensis decreased. The activities of the mitochondrial complexes were also favorably modulated. The expressions of PI3K and AKT also increased in the skeletal muscle. These effects may be attributed to the hypoglycemic and the antioxidative activity of Semecarpus anacardium. The results of the study revealed that Semecarpus anacardium was able to restore the altered activities of the enzymes involved in carbohydrate metabolism and energy production.

  17. Mechanisms of changes in glucose metabolism and bodyweight after bariatric surgery

    DEFF Research Database (Denmark)

    Madsbad, Sten; Dirksen, Carsten; Holst, Jens Juul

    2014-01-01

    Bariatric surgery is the most effective treatment for obesity and also greatly improves glycaemic control, often within days after surgery, independently of weight loss. Laparoscopic adjustable gastric banding (LAGB) was designed as a purely restrictive procedure, whereas vertical sleeve gastrect......Bariatric surgery is the most effective treatment for obesity and also greatly improves glycaemic control, often within days after surgery, independently of weight loss. Laparoscopic adjustable gastric banding (LAGB) was designed as a purely restrictive procedure, whereas vertical sleeve...... gastrectomy (VSG) and Roux-en-Y gastric bypass (RYGB) induce changes in appetite through regulation of gut hormones, resulting in decreased hunger and increased satiation. Thus, VSG and RYBG more frequently result in remission of type 2 diabetes than does LAGB. With all three of these procedures, remission...... regulatory pathways that control appetite and glucose metabolism after bariatric surgery. Recent research suggests that changes in bile acid concentrations in the blood and altered intestinal microbiota might contribute to metabolic changes after surgery, but the mechanisms are unclear. In this Series paper...

  18. Betatrophin and glucose-lipid metabolism%Betatrophin与糖脂代谢

    Institute of Scientific and Technical Information of China (English)

    赵术君; 王明明; 刘师伟

    2015-01-01

    Betatrophin是2013年发现的一种由肝脏、白色脂肪组织及褐色脂肪组织分泌的蛋白.其可以显著而特异性地促进胰岛β细胞增生及β细胞数量的增加,从而改善小鼠糖耐量.同时Betatrophin也参与脂代谢.Betatrophin可能成为治疗糖尿病及脂代谢疾病的新靶点.%Betatrophin,discovered in 2013,is a protein secreted by liver,white adipose tissues,and brown adipose tissues.Betatrophin can improve glucose tolerance in mice by promoting islet β cell proliferation and increasing the number of β cells significantly and specifically.At the same time,Betatrophin is involved in lipid metabolism.Betatrophin may work as the new target for treatment of diabetes and disorders of lipid metabolism.

  19. ROS-mediated glucose metabolic reprogram induces insulin resistance in type 2 diabetes.

    Science.gov (United States)

    Dong, Kelei; Ni, Hua; Wu, Meiling; Tang, Ziqing; Halim, Michael; Shi, Dongyun

    2016-08-01

    Oxidative stress is known to contribute to insulin resistance in diabetes, however the mechanism is not clear. Here we show that reactive oxygen species (ROS) could reprogram the glucose metabolism through upregulating the pentose pathway so as to induce insulin resistance in type 2 diabetes (T2DM). By using streptozotocin-high fat diet (STZ-HFD) induced T2DM in rats, we show that diabetic rats exhibited high level of oxidative stress accompanied with insulin resistance. Hypoxia inducible factor (HIF-1α) protein expression as well as its downstream target glucokinase (GK), were upregulated; The glycogen synthesis increased accordingly; However the glycolysis was inhibited as indicated by decreased phosphofructokinase-1 (PFK-1), pyruvate kinase (PK), phospho-PFK-2/PFK-2 (p-PFK-2/PFK-2) ratio, lactate dehydrogenase (LDH) and pyruvate dehydrogenase kinase (PDK); Pyruvate dehydrogenase (PDH) which promotes pyruvate to generate acetyl-CoA declined as well. While phospho-acetyl-CoA carboxylase/acetyl-CoA carboxylase (p-ACC/ACC) ratio increased, meaning that lipid beta-oxidation increased. The pentose pathway was activated as indicated by increased G6PD activity and NADPH level. Our results suggest that diabetic rats countervail ROS stress through increasing pentose pathway, and reprogram the energy metabolic pathway from glycolysis into lipid oxidation in order to compensate the ATP requirement of the body, which causes insulin resistance. PMID:27207834

  20. Inhibition of GSK-3 induces differentiation and impaired glucose metabolism in renal cancer.

    Science.gov (United States)

    Pal, Krishnendu; Cao, Ying; Gaisina, Irina N; Bhattacharya, Santanu; Dutta, Shamit K; Wang, Enfeng; Gunosewoyo, Hendra; Kozikowski, Alan P; Billadeau, Daniel D; Mukhopadhyay, Debabrata

    2014-02-01

    Glycogen synthase kinase-3 (GSK-3), a constitutively active serine/threonine kinase, is a key regulator of numerous cellular processes ranging from glycogen metabolism to cell-cycle regulation and proliferation. Consistent with its involvement in many pathways, it has also been implicated in the pathogenesis of various human diseases, including type II diabetes, Alzheimer disease, bipolar disorder, inflammation, and cancer. Consequently, it is recognized as an attractive target for the development of new drugs. In the present study, we investigated the effect of both pharmacologic and genetic inhibition of GSK-3 in two different renal cancer cell lines. We have shown potent antiproliferative activity of 9-ING-41, a maleimide-based GSK-3 inhibitor. The antiproliferative activity is most likely caused by G(0)-G(1) and G(2)-M phase arrest as evident from cell-cycle analysis. We have established that inhibition of GSK-3 imparted a differentiated phenotype in renal cancer cells. We have also shown that GSK-3 inhibition induced autophagy, likely as a result of imbalanced energy homeostasis caused by impaired glucose metabolism. In addition, we have demonstrated the antitumor activity of 9-ING-41 in two different subcutaneous xenograft renal cell carcinoma tumor models. To our knowledge, this is the first report describing autophagy induction due to GSK-3 inhibition in renal cancer cells. PMID:24327518

  1. Does vitamin D affects components of the metabolic syndrome?

    OpenAIRE

    Sevil Karahan Yılmaz; Aylin Ayaz

    2015-01-01

    Metabolic syndrome is a major public health problem which has become increasingly common worlwide with cardiometabolic complications and have high morbidity and mortality. In addition to some genetical features, environmental factors such sedentary lifestyle, improper eating habits constitutes a risk factor for metabolic syndrome. Important components of the metabolic syndrome are dyslipidemia (low HDL levels, high triglycerides level), hyperglycemia, elevated blood...

  2. p53-upregulated-modulator-of-apoptosis (PUMA) deficiency affects food intake but does not impact on body weight or glucose homeostasis in diet-induced obesity.

    Science.gov (United States)

    Litwak, Sara A; Loh, Kim; Stanley, William J; Pappas, Evan G; Wali, Jibran A; Selck, Claudia; Strasser, Andreas; Thomas, Helen E; Gurzov, Esteban N

    2016-01-01

    BCL-2 proteins have been implicated in the control of glucose homeostasis and metabolism in different cell types. Thus, the aim of this study was to determine the role of the pro-apoptotic BH3-only protein, p53-upregulated-modulator-of-apoptosis (PUMA), in metabolic changes mediated by diet-induced obesity, using PUMA deficient mice. At 10 weeks of age, knockout and wild type mice either continued consuming a low fat chow diet (6% fat), or were fed with a high fat diet (23% fat) for 14-17 weeks. We measured body composition, glucose and insulin tolerance, insulin response in peripheral tissues, energy expenditure, oxygen consumption, and respiratory exchange ratio in vivo. All these parameters were indistinguishable between wild type and knockout mice on chow diet and were modified equally by diet-induced obesity. Interestingly, we observed decreased food intake and ambulatory capacity of PUMA knockout mice on high fat diet. This was associated with increased adipocyte size and fasted leptin concentration in the blood. Our findings suggest that although PUMA is dispensable for glucose homeostasis in lean and obese mice, it can affect leptin levels and food intake during obesity. PMID:27033313

  3. Metformin and Resveratrol Inhibited High Glucose-Induced Metabolic Memory of Endothelial Senescence through SIRT1/p300/p53/p21 Pathway.

    Directory of Open Access Journals (Sweden)

    Erli Zhang

    Full Text Available Endothelial senescence plays crucial roles in diabetic vascular complication. Recent evidence indicated that transient hyperglycaemia could potentiate persistent diabetic vascular complications, a phenomenon known as "metabolic memory." Although SIRT1 has been demonstrated to mediate high glucose-induced endothelial senescence, whether and how "metabolic memory" would affect endothelial senescence through SIRT1 signaling remains largely unknown. In this study, we investigated the involvement of SIRT1 axis as well as the protective effects of resveratrol (RSV and metformin (MET, two potent SIRT1 activators, during the occurrence of "metabolic memory" of cellular senescence (senescent "memory". Human umbilical vascular endothelial cells (HUVECs were cultured in either normal glucose (NG/high glucose (HG media for 6 days, or 3 days of HG followed by 3 days of NG (HN, with or without RSV or MET treatment. It was shown that HN incubation triggered persistent downregulation of deacetylase SIRT1 and upregulation of acetyltransferase p300, leading to sustained hyperacetylation (at K382 and activation of p53, and subsequent p53/p21-mediated senescent "memory." In contrast, senescent "memory" was abrogated by overexpression of SIRT1 or knockdown of p300. Interestingly, we found that SIRT1 and p300 could regulate each other in response to HN stimulation, suggesting that a delicate balance between acetyltransferases and deacetylases may be particularly important for sustained acetylation and activation of non-histone proteins (such as p53, and eventually the occurrence of "metabolic memory." Furthermore, we found that RSV or MET treatment prevented senescent "memory" by modulating SIRT1/p300/p53/p21 pathway. Notably, early and continuous treatment of MET, but not RSV, was particularly important for preventing senescent "memory." In conclusion, short-term high glucose stimulation could induce sustained endothelial senescence via SIRT1/p300/p53/p21 pathway

  4. 冠心病糖代谢异常患者血浆Ghrelin水平及临床意义%Plasma ghrelin level in patients with coronary heart disease with abnormal glucose metabolism and its clinical significance

    Institute of Scientific and Technical Information of China (English)

    庞军刚; 徐新; 唐良秋; 张社兵; 江志平

    2012-01-01

    CHD with abnormal glucose metabolism. Using CHD and abnormal glucose metabolism as two factors affecting plasma ghrelin levels, factorial analysis showed no interaction (P = 0. 453 ). However, the group of abnormal glucose metabolism had more effect on plasma ghrelin levels than CHD. CONCLUSION; Ghrelin levels decreased significantly in patients with CHD with abnormal glucose metabolism and abnormal glucose metabolism has more obvious effects on ghrelin levels.

  5. Metabolic engineering for improving anthranilate synthesis from glucose in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Gosset Guillermo

    2009-04-01

    Full Text Available Abstract Background Anthranilate is an aromatic amine used industrially as an intermediate for the synthesis of dyes, perfumes, pharmaceuticals and other classes of products. Chemical synthesis of anthranilate is an unsustainable process since it implies the use of nonrenewable benzene and the generation of toxic by-products. In Escherichia coli anthranilate is synthesized from chorismate by anthranilate synthase (TrpED and then converted to phosphoribosyl anthranilate by anthranilate phosphoribosyl transferase to continue the tryptophan biosynthetic pathway. With the purpose of generating a microbial strain for anthranilate production from glucose, E. coli W3110 trpD9923, a mutant in the trpD gene that displays low anthranilate producing capacity, was characterized and modified using metabolic engineering strategies. Results Sequencing of the trpED genes from E. coli W3110 trpD9923 revealed a nonsense mutation in the trpD gene, causing the loss of anthranilate phosphoribosyl transferase activity, but maintaining anthranilate synthase activity, thus causing anthranilate accumulation. The effects of expressing genes encoding a feedback inhibition resistant version of the enzyme 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase (aroGfbr, transketolase (tktA, glucokinase (glk and galactose permease (galP, as well as phosphoenolpyruvate:sugar phosphotransferase system (PTS inactivation on anthranilate production capacity, were evaluated. In shake flask experiments with minimal medium, strains W3110 trpD9923 PTS- and W3110 trpD9923/pJLBaroGfbrtktA displayed the best production parameters, accumulating 0.70–0.75 g/L of anthranilate, with glucose-yields corresponding to 28–46% of the theoretical maximum. To study the effects of extending the growth phase on anthranilate production a fed-batch fermentation process was developed using complex medium, where strain W3110 trpD9923/pJLBaroGfbrtktA produced 14 g/L of anthranilate in 34 hours

  6. AMP-activated protein kinase plays an important evolutionary conserved role in the regulation of glucose metabolism in fish skeletal muscle cells

    OpenAIRE

    Leonardo J Magnoni; Yoryia Vraskou; Palstra, Arjan P.; Planas, Josep V.

    2012-01-01

    AMPK, a master metabolic switch, mediates the observed increase of glucose uptake in locomotory muscle of mammals during exercise. AMPK is activated by changes in the intracellular AMP∶ATP ratio when ATP consumption is stimulated by contractile activity but also by AICAR and metformin, compounds that increase glucose transport in mammalian muscle cells. However, the possible role of AMPK in the regulation of glucose metabolism in skeletal muscle has not been investigated in other vertebrates,...

  7. Delivery-Corrected Imaging of Fluorescently-Labeled Glucose Reveals Distinct Metabolic Phenotypes in Murine Breast Cancer

    Science.gov (United States)

    Frees, Amy E.; Rajaram, Narasimhan; McCachren, Samuel S.; Fontanella, Andrew N.; Dewhirst, Mark W.; Ramanujam, Nimmi

    2014-01-01

    When monitoring response to cancer therapy, it is important to differentiate changes in glucose tracer uptake caused by altered delivery versus a true metabolic shift. Here, we propose an optical imaging method to quantify glucose uptake and correct for in vivo delivery effects. Glucose uptake was measured using a fluorescent D-glucose derivative 2-(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)Amino)-2-deoxy-D-glucose (2-NBDG) in mice implanted with dorsal skin flap window chambers. Additionally, vascular oxygenation (SO2) was calculated using only endogenous hemoglobin contrast. Results showed that the delivery factor proposed for correction, “RD”, reported on red blood cell velocity and injected 2-NBDG dose. Delivery-corrected 2-NBDG uptake (2-NBDG60/RD) inversely correlated with blood glucose in normal tissue, indicating sensitivity to glucose demand. We further applied our method in metastatic 4T1 and nonmetastatic 4T07 murine mammary adenocarcinomas. The ratio 2-NBDG60/RD was increased in 4T1 tumors relative to 4T07 tumors yet average SO2 was comparable, suggesting a shift toward a “Warburgian” (aerobic glycolysis) metabolism in the metastatic 4T1 line. In heterogeneous regions of both 4T1 and 4T07, 2-NBDG60/RD increased slightly but significantly as vascular oxygenation decreased, indicative of the Pasteur effect in both tumors. These data demonstrate the utility of delivery-corrected 2-NBDG and vascular oxygenation imaging for differentiating metabolic phenotypes in vivo. PMID:25526261

  8. Abnormal glucose metabolism is associated with reduced left ventricular contractile reserve and exercise intolerance in patients with chronic heart failure

    DEFF Research Database (Denmark)

    Egstrup, M; Kistorp, C N; Schou, M;

    2013-01-01

    AIMS: To investigate the associations between glucose metabolism, left ventricular (LV) contractile reserve, and exercise capacity in patients with chronic systolic heart failure (HF). METHODS AND RESULTS: From an outpatient HF clinic, 161 patients with systolic HF were included (mean age 70 ± 10...... years, 69% male, 59% had ischaemic heart disease, mean LV ejection fraction (LVEF) 37 ± 9%). Thirty-four (21%) patients had known diabetes mellitus (DM). Oral glucose tolerance testing (OGTT) classified patients without a prior DM diagnosis as normal glucose tolerance (NGT), impaired glucose tolerance...... (467 m) (P <0.001). Differences in clinical variables, resting echocardiographic parameters or contractile reserve, did not explain the exercise intolerance related to diabetes. CONCLUSION: Diabetes, known or newly detected by OGTT, is independently associated with reduced LV contractile reserve and...

  9. Nutrient Stress Activates Inflammation and Reduces Glucose Metabolism by Suppressing AMP-Activated Protein Kinase in the Heart

    OpenAIRE

    Ko, Hwi Jin; Zhang, Zhiyou; Jung, Dae Young; Jun, John Y.; Ma, Zhexi; Jones, Kelly E.; Chan, Sook Y.; Kim, Jason K.

    2009-01-01

    OBJECTIVE Heart failure is a major cause of mortality in diabetes and may be causally associated with altered metabolism. Recent reports indicate a role of inflammation in peripheral insulin resistance, but the impact of inflammation on cardiac metabolism is unknown. We investigated the effects of diet-induced obesity on cardiac inflammation and glucose metabolism in mice. RESEARCH DESIGN AND METHODS Male C57BL/6 mice were fed a high-fat diet (HFD) for 6 weeks, and heart samples were taken to...

  10. Glycogen and glucose metabolism are essential for early embryonic development of the red flour beetle Tribolium castaneum.

    Directory of Open Access Journals (Sweden)

    Amanda Fraga

    Full Text Available Control of energy metabolism is an essential process for life. In insects, egg formation (oogenesis and embryogenesis is dependent on stored molecules deposited by the mother or transcribed later by the zygote. In oviparous insects the egg becomes an isolated system after egg laying with all energy conversion taking place during embryogenesis. Previous studies in a few vector species showed a strong correlation of key morphogenetic events and changes in glucose metabolism. Here, we investigate glycogen and glucose metabolism in the red flour beetle Tribolium castaneum, an insect amenable to functional genomic studies. To examine the role of the key enzymes on glycogen and glucose regulation we cloned and analyzed the function of glycogen synthase kinase 3 (GSK-3 and hexokinase (HexA genes during T. castaneum embryogenesis. Expression analysis via in situ hybridization shows that both genes are expressed only in the embryonic tissue, suggesting that embryonic and extra-embryonic cells display different metabolic activities. dsRNA adult female injection (parental RNAi of both genes lead a reduction in egg laying and to embryonic lethality. Morphological analysis via DAPI stainings indicates that early development is impaired in Tc-GSK-3 and Tc-HexA1 RNAi embryos. Importantly, glycogen levels are upregulated after Tc-GSK-3 RNAi and glucose levels are upregulated after Tc-HexA1 RNAi, indicating that both genes control metabolism during embryogenesis and oogenesis, respectively. Altogether our results show that T. castaneum embryogenesis depends on the proper control of glucose and glycogen.

  11. Performance and Metabolism of Calves Fed Starter Feed Containing Sugarcane Molasses or Glucose Syrup as a Replacement for Corn.

    Science.gov (United States)

    Oltramari, C E; Nápoles, G G O; De Paula, M R; Silva, J T; Gallo, M P C; Pasetti, M H O; Bittar, C M M

    2016-07-01

    The aim of this study was to evaluate the effect of replacing corn grain for sugar cane molasses (MO) or glucose syrup (GS) in the starter concentrate on performance and metabolism of dairy calves. Thirty-six individually housed Holstein male calves were blocked according to weight and date of birth and assigned to one of the starter feed treatments, during an 8 week study: i) starter containing 65% corn with no MO or GS (0MO); ii) starter containing 60% corn and 5% MO (5MO); iii) starter containing 55% corn and 10% MO (10MO); and iv) starter containing 60% corn and 5% GS (5GS). Animals received 4 L of milk replacer daily (20 crude protein, 16 ether extract, 12.5% solids), divided in two meals (0700 and 1700 h). Starter and water were provided ad libitum. Starter intake and fecal score were monitored daily until animals were eight weeks old. Body weight and measurements (withers height, hip width and heart girth) were measured weekly before the morning feeding. From the second week of age, blood samples were collected weekly, 2 h after the morning feeding, for glucose, β-hydroxybutyrate and lactate determination. Ruminal fluid was collected at 4, 6, and 8 weeks of age using an oro-ruminal probe and a suction pump for determination of pH and short-chain fatty acids (SCFA). At the end of the eighth week, animals were harvested to evaluate development of the proximal digestive tract. The composition of the starter did not affect (p>0.05) concentrate intake, weight gain, fecal score, blood parameters, and rumen development. However, treatment 5MO showed higher (p0.05). Thus, it can be concluded that the replacement of corn by 5% or 10% sugar cane molasses or 5% GS on starter concentrate did not impact performance, however it has some positive effects on rumen fermentation which may be beneficial for calves with a developing rumen. PMID:26954149

  12. Performance and Metabolism of Calves Fed Starter Feed Containing Sugarcane Molasses or Glucose Syrup as a Replacement for Corn.

    Science.gov (United States)

    Oltramari, C E; Nápoles, G G O; De Paula, M R; Silva, J T; Gallo, M P C; Pasetti, M H O; Bittar, C M M

    2016-07-01

    The aim of this study was to evaluate the effect of replacing corn grain for sugar cane molasses (MO) or glucose syrup (GS) in the starter concentrate on performance and metabolism of dairy calves. Thirty-six individually housed Holstein male calves were blocked according to weight and date of birth and assigned to one of the starter feed treatments, during an 8 week study: i) starter containing 65% corn with no MO or GS (0MO); ii) starter containing 60% corn and 5% MO (5MO); iii) starter containing 55% corn and 10% MO (10MO); and iv) starter containing 60% corn and 5% GS (5GS). Animals received 4 L of milk replacer daily (20 crude protein, 16 ether extract, 12.5% solids), divided in two meals (0700 and 1700 h). Starter and water were provided ad libitum. Starter intake and fecal score were monitored daily until animals were eight weeks old. Body weight and measurements (withers height, hip width and heart girth) were measured weekly before the morning feeding. From the second week of age, blood samples were collected weekly, 2 h after the morning feeding, for glucose, β-hydroxybutyrate and lactate determination. Ruminal fluid was collected at 4, 6, and 8 weeks of age using an oro-ruminal probe and a suction pump for determination of pH and short-chain fatty acids (SCFA). At the end of the eighth week, animals were harvested to evaluate development of the proximal digestive tract. The composition of the starter did not affect (p>0.05) concentrate intake, weight gain, fecal score, blood parameters, and rumen development. However, treatment 5MO showed higher (p0.05). Thus, it can be concluded that the replacement of corn by 5% or 10% sugar cane molasses or 5% GS on starter concentrate did not impact performance, however it has some positive effects on rumen fermentation which may be beneficial for calves with a developing rumen.

  13. Insulin secretion and cellular glucose metabolism after prolonged low-grade intralipid infusion in young men

    DEFF Research Database (Denmark)

    Jensen, Christine B; Storgaard, Heidi; Holst, Jens Juul;

    2003-01-01

    We examined the simultaneous effects of a 24-h low-grade Intralipid infusion on peripheral glucose disposal, intracellular glucose partitioning and insulin secretion rates in twenty young men, by 2-step hyperinsulinemic euglycemic clamp [low insulin clamp (LI), 10 mU/m(2) x min; high insulin clamp...... Intralipid infusion. At LI, glucose oxidation decreased by 10%, whereas glucose disposal, glycolytic flux, glucose storage, and glucose production were not significantly altered. At HI, glucose disposal, and glucose oxidation decreased by 12% and 24%, respectively, during Intralipid infusion. Glycolytic flux......, glucose storage, and glucose production were unchanged. Insulin secretion rates increased in response to Intralipid infusion, but disposition indices (DI = insulin action.insulin secretion) were unchanged. In conclusion, a 24-h low-grade Intralipid infusion caused insulin resistance in the oxidative (but...

  14. Dietary glucose stimulus at larval stage modifies the carbohydrate metabolic pathway in gilthead seabream (Sparus aurata) juveniles: An in vivo approach using (14)C-starch.

    Science.gov (United States)

    Rocha, Filipa; Dias, Jorge; Geurden, Inge; Dinis, Maria Teresa; Panserat, Stephane; Engrola, Sofia

    2016-11-01

    The concept of nutritional programming was investigated in order to enhance the use of dietary carbohydrates in gilthead seabream juveniles. We assessed the long-term effects of high-glucose stimuli, exerted at the larval stage, on the growth performance, nutrient digestibility and metabolic utilization and gene expression of seabream juveniles, challenged with a high-carbohydrate intake. During early development, a group of larvae (control, CTRL) were kept under a rich-protein-lipid feeding regime whereas another group (GLU) was subjected to high-glucose stimuli, delivered intermittently over time. At juvenile stage, triplicate groups (IBW: 2.5g) from each fish nutritional background were fed a high-protein (59.4%) low-carbohydrate (2.0%) diet before being subjected to a low-protein (43.0%) high-carbohydrate (33.0%) dietary challenge for 36-days. Fish from both treatments increased by 8-fold their initial body weight, but neither growth rate, feed intake, feed and protein efficiency, nutrient retention (except lipids) nor whole-body composition were affected (P˃0.05) by fish early nutritional history. Nutrient digestibility was also similar among both groups. The metabolic fate of (14)C-starch and (14)C-amino acids tracers was estimated; GLU juveniles showed higher absorption of starch-derived glucose in the gut, suggesting an enhanced digestion of carbohydrates, while amino acid use was not affected. Moreover, glucose was less used for de novo synthesis of hepatic proteins and muscle glycogen from GLU fish (Pjuveniles.

  15. SIRT3 participates in glucose metabolism interruption and apoptosis induced by BH3 mimetic S1 in ovarian cancer cells.

    Science.gov (United States)

    Xiang, Xi-Yan; Kang, Jin-Song; Yang, Xiao-Chun; Su, Jing; Wu, Yao; Yan, Xiao-Yu; Xue, Ya-Nan; Xu, Ye; Liu, Yu-He; Yu, Chun-Yan; Zhang, Zhi-Chao; Sun, Lian-Kun

    2016-08-01

    The Bcl-2 antiapoptotic proteins are important cancer therapy targets; however, their role in cancer cell metabolism remains unclear. We found that the BH3-only protein mimetic S1, a novel pan Bcl-2 inhibitor, simultaneously interrupted glucose metabolism and induced apoptosis in human SKOV3 ovarian cancer cells, which was related to the activation of SIRT3, a stress-responsive deacetylase. S1 interrupted the cellular glucose metabolism mainly through causing damage to mitochondrial respiration and inhibiting glycolysis. Moreover, S1 upregulated the gene and protein expression of SIRT3, and induced the translocation of SIRT3 from the nucleus to mitochondria. SIRT3 silencing reversed the effects of S1 on glucose metabolism and apoptosis through increasing the level of HK-II localized to the mitochondria, while a combination of the glycolysis inhibitor 2-DG and S1 intensified the cytotoxicity through further upregulation of SIRT3 expression. This study underscores an essential role of SIRT3 in the antitumor effect of Bcl-2 inhibitors in human ovarian cancer through regulating both metabolism and apoptosis. The manipulation of Bcl-2 inhibitors combined with the use of classic glycolysis inhibitors may be rational strategies to improve ovarian cancer therapy. PMID:27277143

  16. Parameters of glucose metabolism and the aging brain: a magnetization transfer imaging study of brain macro- and micro-structure in older adults without diabetes

    OpenAIRE

    Akintola, Abimbola A.; VAN DEN BERG, Annette; Altmann-Schneider, Irmhild; Jansen, Steffy W.; van Buchem, Mark A.; Slagboom, P. Eline; Westendorp, Rudi G.; van Heemst, Diana; van der Grond, Jeroen

    2015-01-01

    Given the concurrent, escalating epidemic of diabetes mellitus and neurodegenerative diseases, two age-related disorders, we aimed to understand the relation between parameters of glucose metabolism and indices of pathology in the aging brain. From the Leiden Longevity Study, 132 participants (mean age 66 years) underwent a 2-h oral glucose tolerance test to assess glucose tolerance (fasted and area under the curve (AUC) glucose), insulin sensitivity (fasted and AUC insulin and homeostatic mo...

  17. Dosing obese cats based on body weight spuriously affects some measures of glucose tolerance.

    Science.gov (United States)

    Reeve-Johnson, M K; Rand, J S; Anderson, S T; Appleton, D J; Morton, J M; Vankan, D

    2016-10-01

    The primary objective was to investigate whether dosing glucose by body weight results in spurious effects on measures of glucose tolerance in obese cats because volume of distribution does not increase linearly with body weight. Healthy research cats (n = 16; 6 castrated males, 10 spayed females) were used. A retrospective study was performed using glucose concentration data from glucose tolerance and insulin sensitivity tests before and after cats were fed ad libitum for 9 to 12 mo to promote weight gain. The higher dose of glucose (0.5 vs 0.3 g/kg body weight) in the glucose tolerance tests increased 2-min glucose concentrations (P cats and could lead to cats being incorrectly classified as having impaired glucose tolerance. This has important implications for clinical studies assessing the effect of interventions on glucose tolerance when lean and obese cats are compared. PMID:27572923

  18. L-carnosine affects the growth of Saccharomyces cerevisiae in a metabolism-dependent manner.

    Directory of Open Access Journals (Sweden)

    Stephanie P Cartwright

    Full Text Available The dipeptide L-carnosine (β-alanyl-L-histidine has been described as enigmatic: it inhibits growth of cancer cells but delays senescence in cultured human fibroblasts and extends the lifespan of male fruit flies. In an attempt to understand these observations, the effects of L-carnosine on the model eukaryote, Saccharomyces cerevisiae, were examined on account of its unique metabolic properties; S. cerevisiae can respire aerobically, but like some tumor cells, it can also exhibit a metabolism in which aerobic respiration is down regulated. L-Carnosine exhibited both inhibitory and stimulatory effects on yeast cells, dependent upon the carbon source in the growth medium. When yeast cells were not reliant on oxidative phosphorylation for energy generation (e.g. when grown on a fermentable carbon source such as 2% glucose, 10-30 mM L-carnosine slowed growth rates in a dose-dependent manner and increased cell death by up to 17%. In contrast, in media containing a non-fermentable carbon source in which yeast are dependent on aerobic respiration (e.g. 2% glycerol, L-carnosine did not provoke cell death. This latter observation was confirmed in the respiratory yeast, Pichia pastoris. Moreover, when deletion strains in the yeast nutrient-sensing pathway were treated with L-carnosine, the cells showed resistance to its inhibitory effects. These findings suggest that L-carnosine affects cells in a metabolism-dependent manner and provide a rationale for its effects on different cell types.

  19. Morphological and glucose metabolism abnormalities in alcoholic Korsakoff's syndrome: group comparisons and individual analyses.

    Directory of Open Access Journals (Sweden)

    Anne-Lise Pitel

    Full Text Available BACKGROUND: Gray matter volume studies have been limited to few brain regions of interest, and white matter and glucose metabolism have received limited research attention in Korsakoff's syndrome (KS. Because of the lack of brain biomarkers, KS was found to be underdiagnosed in postmortem studies. METHODOLOGY/PRINCIPAL FINDINGS: Nine consecutively selected patients with KS and 22 matched controls underwent both structural magnetic resonance imaging and (18F-fluorodeoxyglucose positron emission tomography examinations. Using a whole-brain analysis, the between-group comparisons of gray matter and white matter density and relative glucose uptake between patients with KS and controls showed the involvement of both the frontocerebellar and the Papez circuits, including morphological abnormalities in their nodes and connection tracts and probably resulting hypometabolism. The direct comparison of the regional distribution and degree of gray matter hypodensity and hypometabolism within the KS group indicated very consistent gray matter distribution of both abnormalities, with a single area of significant difference in the middle cingulate cortex showing greater hypometabolism than hypodensity. Finally, the analysis of the variability in the individual patterns of brain abnormalities within our sample of KS patients revealed that the middle cingulate cortex was the only brain region showing significant GM hypodensity and hypometabolism in each of our 9 KS patients. CONCLUSIONS/SIGNIFICANCE: These results indicate widespread brain abnormalities in KS including both gray and white matter damage mainly involving two brain networks, namely, the fronto-cerebellar circuit and the Papez circuit. Furthermore, our findings suggest that the middle cingulate cortex may play a key role in the pathophysiology of KS and could be considered as a potential in vivo brain biomarker.

  20. Glucose metabolism and neurogenesis in the gerbil hippocampus after transient forebrain ischemia.

    Science.gov (United States)

    Yoo, Dae Young; Lee, Kwon Young; Park, Joon Ha; Jung, Hyo Young; Kim, Jong Whi; Yoon, Yeo Sung; Won, Moo-Ho; Choi, Jung Hoon; Hwang, In Koo

    2016-08-01

    Recent evidence exists that glucose transporter 3 (GLUT3) plays an important role in the energy metabolism in the brain. Most previous studies have been conducted using focal or hypoxic ischemia models and have focused on changes in GLUT3 expression based on protein and mRNA levels rather than tissue levels. In the present study, we observed change in GLUT3 immunoreactivity in the adult gerbil hippocampus at various time points after 5 minutes of transient forebrain ischemia. In the sham-operated group, GLUT3 immunoreactivity in the hippocampal CA1 region was weak, in the pyramidal cells of the CA1 region increased in a time-dependent fashion 24 hours after ischemia, and in the hippocampal CA1 region decreased significantly between 2 and 5 days after ischemia, with high level of GLUT3 immunoreactivity observed in the CA1 region 10 days after ischemia. In a double immunofluorescence study using GLUT3 and glial-fibrillary acidic protein (GFAP), we observed strong GLUT3 immunoreactivity in the astrocytes. GLUT3 immunoreactivity increased after ischemia and peaked 7 days in the dentate gyrus after ischemia/reperfusion. In a double immunofluorescence study using GLUT3 and doublecortin (DCX), we observed low level of GLUT3 immunoreactivity in the differentiated neuroblasts of the subgranular zone of the dentate gyrus after ischemia. GLUT3 immunoreactivity in the sham-operated group was mainly detected in the subgranular zone of the dentate gyrus. These results suggest that the increase in GLUT3 immunoreactivity may be a compensatory mechanism to modulate glucose level in the hippocampal CA1 region and to promote adult neurogenesis in the dentate gyrus. PMID:27651772

  1. Consumption of honey, sucrose, and high fructose corn syrup produce similar metabolic effects in glucose tolerant and glucose intolerant individuals

    Science.gov (United States)

    Background: Current public health recommendations call for reduction of added sugars; however, controversy exits over whether all nutritive sweeteners produce similar metabolic effects. Objective: To compare effects of chronic consumption of three nutritive sweeteners (honey, sucrose and high fructo...

  2. Significance of insulin for glucose metabolism in skeletal muscle during contractions

    DEFF Research Database (Denmark)

    Hespel, P; Vergauwen, Lieven; Vandenberghe, K;

    1996-01-01

    Glucose uptake rate in active skeletal muscles is markedly increased during exercise. This increase reflects a multifactorial process involving both local and systemic mechanisms that cooperate to stimulate glucose extraction and glucose delivery to the muscle cells. Increased glucose extraction...... is effected primarily via mechanisms exerted within the muscle cell related to the contractile activity per se. Yet contractions become a more potent stimulus of muscle glucose uptake as the plasma insulin level is increased. In addition, enhanced glucose delivery to muscle, which during exercise...... is essentially effected via increased blood flow, significantly contributes to stimulate glucose uptake. Again, however, increased glucose delivery appears to be a more potent stimulus of muscle glucose uptake as the circulating insulin level is increased. Furthermore, contractions and elevated flow prove...

  3. Glutamate Acts as a Key Signal Linking Glucose Metabolism to Incretin/cAMP Action to Amplify Insulin Secretion

    Directory of Open Access Journals (Sweden)

    Ghupurjan Gheni

    2014-10-01

    Full Text Available Incretins, hormones released by the gut after meal ingestion, are essential for maintaining systemic glucose homeostasis by stimulating insulin secretion. The effect of incretins on insulin secretion occurs only at elevated glucose concentrations and is mediated by cAMP signaling, but the mechanism linking glucose metabolism and cAMP action in insulin secretion is unknown. We show here, using a metabolomics-based approach, that cytosolic glutamate derived from the malate-aspartate shuttle upon glucose stimulation underlies the stimulatory effect of incretins and that glutamate uptake into insulin granules mediated by cAMP/PKA signaling amplifies insulin release. Glutamate production is diminished in an incretin-unresponsive, insulin-secreting β cell line and pancreatic islets of animal models of human diabetes and obesity. Conversely, a membrane-permeable glutamate precursor restores amplification of insulin secretion in these models. Thus, cytosolic glutamate represents the elusive link between glucose metabolism and cAMP action in incretin-induced insulin secretion.

  4. Discovery of a novel glucose metabolism in cancer: The role of endoplasmic reticulum beyond glycolysis and pentose phosphate shunt.

    Science.gov (United States)

    Marini, Cecilia; Ravera, Silvia; Buschiazzo, Ambra; Bianchi, Giovanna; Orengo, Anna Maria; Bruno, Silvia; Bottoni, Gianluca; Emionite, Laura; Pastorino, Fabio; Monteverde, Elena; Garaboldi, Lucia; Martella, Roberto; Salani, Barbara; Maggi, Davide; Ponzoni, Mirco; Fais, Franco; Raffaghello, Lizzia; Sambuceti, Gianmario

    2016-01-01

    Cancer metabolism is characterized by an accelerated glycolytic rate facing reduced activity of oxidative phosphorylation. This "Warburg effect" represents a standard to diagnose and monitor tumor aggressiveness with (18)F-fluorodeoxyglucose whose uptake is currently regarded as an accurate index of total glucose consumption. Studying cancer metabolic response to respiratory chain inhibition by metformin, we repeatedly observed a reduction of tracer uptake facing a marked increase in glucose consumption. This puzzling discordance brought us to discover that (18)F-fluorodeoxyglucose preferentially accumulates within endoplasmic reticulum by exploiting the catalytic function of hexose-6-phosphate-dehydrogenase. Silencing enzyme expression and activity decreased both tracer uptake and glucose consumption, caused severe energy depletion and decreased NADPH content without altering mitochondrial function. These data document the existence of an unknown glucose metabolism triggered by hexose-6-phosphate-dehydrogenase within endoplasmic reticulum of cancer cells. Besides its basic relevance, this finding can improve clinical cancer diagnosis and might represent potential target for therapy. PMID:27121192

  5. Effects of glucose metabolism pathways on sperm motility and oxidative status during long-term liquid storage of goat semen.

    Science.gov (United States)

    Qiu, Jian-Hua; Li, You-Wei; Xie, Hong-Li; Li, Qing; Dong, Hai-Bo; Sun, Ming-Ju; Gao, Wei-Qiang; Tan, Jing-He

    2016-08-01

    Although great efforts were made to prolong the fertility of liquid-stored semen, limited improvements have been achieved in different species. Although it is expected that energy supply and the redox potential will play an essential role in sperm function, there are few reports on the impact of specific energy substrates on spermatozoa during liquid semen storage. Furthermore, although it is accepted that glucose metabolism through glycolysis provides energy, roles of pentose phosphate pathway (PPP) and tricarboxylic acid cycle remain to be unequivocally found in spermatozoa. We have studied the pathways by which spermatozoa metabolize glucose during long-term liquid storage of goat semen. The results indicated that among the substrates tested, glucose and pyruvate were better than lactate in maintaining goat sperm motility. Although both glycolysis and PPP were essential, PPP was more important than glycolysis to maintain sperm motility. Pentose phosphate pathway reduced oxidative stress and provided glycolysis with more intermediate products such as fructose-6-phosphate. Pyruvate entered goat spermatozoa through monocarboxylate transporters and was oxidized by the tricarboxylic acid cycle and electron transfer to sustain sperm motility. Long-term liquid semen storage can be used as a good model to study sperm glucose metabolism. The data are important for an optimal control of sperm survival during semen handling and preservation not only in the goat but also in other species. PMID:27061367

  6. The effect of amyloid pathology and glucose metabolism on cortical volume loss over time in Alzheimer's disease

    International Nuclear Information System (INIS)

    The present multimodal neuroimaging study examined whether amyloid pathology and glucose metabolism are related to cortical volume loss over time in Alzheimer's disease (AD) patients and healthy elderly controls. Structural MRI scans of eleven AD patients and ten controls were available at baseline and follow-up (mean interval 2.5 years). Change in brain structure over time was defined as percent change of cortical volume within seven a-priori defined regions that typically show the strongest structural loss in AD. In addition, two PET scans were performed at baseline: [11C]PIB to assess amyloid-β plaque load and [18F]FDG to assess glucose metabolism. [11C]PIB binding and [18F]FDG uptake were measured in the precuneus, a region in which both amyloid deposition and glucose hypometabolism occur early in the course of AD. While amyloid-β plaque load at baseline was not related to cortical volume loss over time in either group, glucose metabolism within the group of AD patients was significantly related to volume loss over time (rho = 0.56, p 11C]PIB behaves as a trait marker (i.e., all AD patients showed elevated levels of amyloid, not related to subsequent disease course), whilst hypometabolism as measured by [18F]FDG changed over time indicating that it could serve as a state marker that is predictive of neurodegeneration. (orig.)

  7. Comparing brain amyloid deposition, glucose metabolism, and atrophy in mild cognitive impairment with and without a family history of dementia.

    Science.gov (United States)

    Mosconi, Lisa; Andrews, Randolph D; Matthews, Dawn C

    2013-01-01

    This study compares the degree of brain amyloid-β (Aβ) deposition, glucose metabolism, and grey matter volume (GMV) reductions in mild cognitive impairment (MCI) patients overall and as a function of their parental history of dementia. Ten MCI with maternal history (MH), 8 with paternal history (PH), and 24 with negative family history (NH) received 11C-PiB and 18F-FDG PET and T1-MRI as part of the Alzheimer's Disease Neuroimaging Initiative. Statistical parametric mapping, voxel based morphometry, and Z-score mapping were used to compare biomarkers across MCI groups, and relative to 12 normal controls. MCI had higher PiB retention, hypometabolism, and GMV reductions in Alzheimer-vulnerable regions compared to controls. Biomarker abnormalities were more pronounced in MCI with MH than those with PH and NH. After partial volume correction of PET, Aβ load exceeded hypometabolism and atrophy with regard to the number of regions affected and magnitude of impairment in those regions. Hypometabolism exceeded atrophy in all MCI groups and exceeded Aβ load in medial temporal and posterior cingulate regions of MCI MH. While all three biomarkers were abnormal in MCI compared to controls, Aβ deposition was the most prominent abnormality, with MCI MH having the greatest degree of co-occurring hypometabolism.

  8. Glucose metabolism in non-diabetic and insulin-dependent diabetic subjects with end-stage renal failure.

    Science.gov (United States)

    Schmitz, O

    1991-02-01

    that the uremic insulin resistance is located not only in peripheral tissues but also in the liver. At low insulin concentrations, the restraining potency of insulin on HGP seems to be decreased in uremia. Splanchnic glucose uptake is hardly affected, but is always very insensitive to insulin. The glucoregulatory function of the liver is further disturbed in uremia. Acute glucagon exposure elicits an inadequate glucose release, suggesting a coexisting resistance to glucagon. In vitro studies have shown, that the first step in the cascade of reactions initiated by insulin, namely binding to its specific receptor is normal in uremia. In addition, the activity of key enzymes such as the insulin receptor kinase and glycogen synthase have been found within normal in the uremic muscle.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:2026051

  9. Quercetin and epigallocatechin gallate inhibit glucose uptake and metabolism by breast cancer cells by an estrogen receptor-independent mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Liliana, E-mail: lilianam87@gmail.com [Department of Biochemistry (U38-FCT), Faculty of Medicine of University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto (Portugal); Araújo, Isabel, E-mail: isa.araujo013@gmail.com [Department of Biochemistry (U38-FCT), Faculty of Medicine of University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto (Portugal); Costa, Tito, E-mail: tito.fmup16@gmail.com [Department of Biochemistry (U38-FCT), Faculty of Medicine of University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto (Portugal); Correia-Branco, Ana, E-mail: ana.clmc.branco@gmail.com [Department of Biochemistry (U38-FCT), Faculty of Medicine of University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto (Portugal); Faria, Ana, E-mail: anafaria@med.up.pt [Department of Biochemistry (U38-FCT), Faculty of Medicine of University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto (Portugal); Chemistry Investigation Centre (CIQ), Faculty of Sciences of University of Porto, Rua Campo Alegre, 4169-007 Porto (Portugal); Faculty of Nutrition and Food Sciences of University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal); Martel, Fátima, E-mail: fmartel@med.up.pt [Department of Biochemistry (U38-FCT), Faculty of Medicine of University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto (Portugal); Keating, Elisa, E-mail: keating@med.up.pt [Department of Biochemistry (U38-FCT), Faculty of Medicine of University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto (Portugal)

    2013-07-15

    In this study we characterized {sup 3}H-2-deoxy-D-glucose ({sup 3}H -DG) uptake by the estrogen receptor (ER)-positive MCF7 and the ER-negative MDA-MB-231 human breast cancer cell lines and investigated the effect of quercetin (QUE) and epigallocatechin gallate (EGCG) upon {sup 3}H-DG uptake, glucose metabolism and cell viability and proliferation. In both MCF7 and MDA-MB-231 cells {sup 3}H-DG uptake was (a) time-dependent, (b) saturable with similar capacity (V{sub max}) and affinity (K{sub m}), (c) potently inhibited by cytochalasin B, an inhibitor of the facilitative glucose transporters (GLUT), (d) sodium-independent and (e) slightly insulin-stimulated. This suggests that {sup 3}H-DG uptake by both cell types is mediated by members of the GLUT family, including the insulin-responsive GLUT4 or GLUT12, while being independent of the sodium-dependent glucose transporter (SGLT1). QUE and EGCG markedly and concentration-dependently inhibited {sup 3}H-DG uptake by MCF7 and by MDA-MB-231 cells, and both compounds blocked lactate production by MCF7 cells. Additionally, a 4 h-treatment with QUE or EGCG decreased MCF7 cell viability and proliferation, an effect that was more potent when glucose was available in the extracellular medium. Our results implicate QUE and EGCG as metabolic antagonists in breast cancer cells, independently of estrogen signalling, and suggest that these flavonoids could serve as therapeutic agents/adjuvants even for ER-negative breast tumors. -- Highlights: • Glucose uptake by MCF7 and MDA-MB-231 cells is mainly mediated by GLUT1. • QUE and EGCG inhibit cellular glucose uptake thus abolishing the Warburg effect. • This process induces cytotoxicity and proliferation arrest in MCF7 cells. • The flavonoids’ effects are independent of estrogen receptor signalling.

  10. Comparison of cerebral metabolism of glucose in normal human and cancer patients

    International Nuclear Information System (INIS)

    Full text: Objective: To determine whether the cerebral metabolism in various regions of the normal human brain differs from those of cancer patients in aging by using 18F-FDG PET instrument and SPM software. Materials and Methods We reviewed clinical information of 295 healthy normal samples so called 'normal group' (ranging 21 to 88; mean age+/-SD: 50+/-14) and 290 cancer patients called 'cancer group' (ranging 21 to 85; mean age+/-SD: 54+/-14) who were examined by a whole body GE Discovery LS PET-CT instrument in our center from Aug. 2004 to Dec. 2005.They were selected with: (i) absence of clear focal brain lesions (epilepsy, cerebrovascular diseases etc.); (ii) absence of metabolic diseases, such as hyperthyroidism, hypothyroidism and diabetes; (iii) absence of psychiatric disorders and abuse of drugs and alcohol;( iiii) cancer patients were diagnosed definitely of variable cancers except brain cancer or brain metastasis. Both groups were sub grouped into six with the interval of 10 years old starting from 21, and the gender, educational background and serum glucose are matched. All 12 subgroups were compared to the subgroup of normal 31-40 years old called 'control subgroup' (84 samples; mean age+/-SD: 37.15+/- 2.63). All samples were injected with 18F-FDG (5.55MBq/kg), 45-60 minutes later; their brains were scanned for 10 minutes. Pixel-by-pixel t-statistic analysis was applied to all brain images using the Statistical parametric mapping (SPM2). The hypometabolic areas (p < 0. 01 or p<0.001, uncorrected) were identified in the Stereotaxic coordinate human brain atlas and three dimensional localized by MNI Space utility (MSU) software. Results:1.With increasing of age interval, similar hypometabolic brain areas are detected in both 'normal group' and 'cancer group', they are mainly in the cortical structures such as bilateral prefrontal cortex (BA9), superior temporal gyrus (BA22), parietal cortex (inferior parietal lobule and precuneus(BA40), insula (BA13

  11. Evaluation of glucose metabolic abnormality in postlingually deaf patients using F-18-FDG positron emission tomography and statistical parametric mapping

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Sung; Lee, Dong Soo; Oh, Seung Ha; Kim, Chong Sun; Park, Kwang Suk; Chung, June Key; Lee, Myung Chul [College of Medicine, Seoul National Univ., Seoul (Korea, Republic of)

    2000-07-01

    We have previously reported the prognostic relevance of cross-modal cortical plasticity in prelingual deaf patients revealed by F-18-FDG PET and SPM analysis. In this study, we investigated metabolic abnormality in postlingual deaf patients, whose clinical features are different from prelingual deafness. Nine postlingual deaf patients (age: 30.5 {+-}14.0) were performed on F-18-FDG brain PET. We compared their PET images with those of age-matched 20 normal controls (age: 27.1 {+-}8.6), and performed correlation analysis to investigate the relationship between glucose metabolism and deaf duration using SPM99. Glucose metabolism of deaf patients was significantly (p<0.05, corrected) decreased in both anterior cingulate, inferior frontal cortices, and superior temporal cortices, and left hippocampus. Metabolism in both superior temporal cortices and association area in inferior parietal cortices showed significant (p<0.01, uncorrected) positive correlation with deaf duration. Decreased metabolism in hippocampus accompanied with hypometabolism in auditory related areas can be explained by recent finding of anatomical connectivity between them, and may be the evidence indicating their functional connectivity. Metabolism recovery in auditory cortex after long deaf duration suggests that cortical plasticity takes place also in postlingual deafness.

  12. Association between traffic-related air pollution, subclinical inflammation and impaired glucose metabolism: results from the SALIA study.

    Directory of Open Access Journals (Sweden)

    Tom Teichert

    Full Text Available BACKGROUND: Environmental and lifestyle factors regulate the expression and release of immune mediators. It has been hypothesised that ambient air pollution may be such an external factor and that the association between air pollution and impaired glucose metabolism may be attributable to inflammatory processes. Therefore, we assessed the associations between air pollution, circulating immune mediators and impaired glucose metabolism. METHODS: We analysed concentrations of 14 pro- and anti-inflammatory immune mediators as well as fasting glucose and insulin levels in plasma of 363 women from the Study on the influence of Air pollution on Lung function, Inflammation and Aging (SALIA, Germany. Exposure data for a group of pollutants such as nitrogen oxides (NO2, NOx and different fractions of particulate matter were available for the participants' residences. We calculated the association between the pollutants and impaired glucose metabolism by multiple regression models. RESULTS: The study participants had a mean age of 74.1 (SD 2.6 years and 48% showed impaired glucose metabolism based on impaired fasting glucose or previously diagnosed type 2 diabetes. Only long-term exposure NO2 and NOx concentrations showed positive associations (NO2: OR 1.465, 95% CI 1.049-2.046, NOx: OR 1.409, 95% CI 1.010-1.967 per increased interquartile range of NO2 (14.65 µg/m(3 or NOx (43.16 µg/m(3, respectively, but statistical significance was lost after correction for multiple comparisons. Additional adjustment for circulating immune mediators or the use of anti-inflammatory medication had hardly any impact on the observed ORs. CONCLUSIONS: Our results suggest that exposure to nitrogen oxides may contribute to impaired glucose metabolism, but the associations did not reach statistical significance so that further studies with larger sample sizes are required to substantiate our findings. Our data do not preclude a role of inflammatory mechanisms in adipose or

  13. Model-guided metabolic gene knockout of gnd for enhanced succinate production in Escherichia coli from glucose and glycerol substrates.

    Science.gov (United States)

    Mienda, Bashir Sajo; Shamsir, Mohd Shahir; Illias, Rosli Md

    2016-04-01

    The metabolic role of 6-phosphogluconate dehydrogenase (gnd) under anaerobic conditions with respect to succinate production in Escherichia coli remained largely unspecified. Herein we report what are to our knowledge the first metabolic gene knockout of gnd to have increased succinic acid production using both glucose and glycerol substrates in E. coli. Guided by a genome scale metabolic model, we engineered the E. coli host metabolism to enhance anaerobic production of succinic acid by deleting the gnd gene, considering its location in the boundary of oxidative and non-oxidative pentose phosphate pathway. This strategy induced either the activation of malic enzyme, causing up-regulation of phosphoenolpyruvate carboxylase (ppc) and down regulation of phosphoenolpyruvate carboxykinase (ppck) and/or prevents the decarboxylation of 6 phosphogluconate to increase the pool of glyceraldehyde-3-phosphate (GAP) that is required for the formation of phosphoenolpyruvate (PEP). This approach produced a mutant strain BMS2 with succinic acid production titers of 0.35 g l(-1) and 1.40 g l(-1) from glucose and glycerol substrates respectively. This work further clearly elucidates and informs other studies that the gnd gene, is a novel deletion target for increasing succinate production in E. coli under anaerobic condition using glucose and glycerol carbon sources. The knowledge gained in this study would help in E. coli and other microbial strains development for increasing succinate production and/or other industrial chemicals. PMID:26878126

  14. Carbon Metabolism of Soil microorganisms at Low Temperatures: Position-Specific 13C Labeled Glucose Reveals the Story

    Science.gov (United States)

    Apostel, C.; Bore, E. K.; Halicki, S.; Kuzyakov, Y.; Dippold, M.

    2015-12-01

    Metabolic pathway activities at low temperature are not well understood, despite the fact that the processes are relevant for many soils globally and seasonally. To analyze soil metabolism at low temperature, isotopomeres of position-specifically 13C labeled glucose were applied at three temperature levels; +5, -5 -20 oC. In additon, one sterilization treatment with sodium azide at +5 oC was also performed. Soils were incubated for 1, 3 and 10 days while soil samples at -20 oC were additionally sampled after 30 days. The 13C from individual molecule position in respired CO2 was quantifed. Incorporation of 13C in bulk soil, extractable microbial biomass by chloroform fumigation extraction (CFE) and cell membranes of different microbial communities classified by 13C phospholipid fatty acid analysis (PLFA) was carried out. Our 13CO2 data showed a dominance of C-1 respiration at +5 °C for treatments with and without sodium azide, but total respiration for sodium azide inhibited treatments increased by 14%. In contrast, at -5 and -20 oC metabolic behavior showed intermingling of preferential respiration of the glucose C-4 and C-1 positions. Therefore, at +5 °C, pentose phosphate pathway activity is a dominant metabolic pathway used by microorganisms to metabolize glucose. The respiration increase due to NaN3 inhibition was attributed to endoenzymes released from dead organisms that are stabilized at the soil matrix and have access to suitable substrate and co-factors to permit their funtions. Our PLFA analysis showed that incorporation of glucose 13C was higher in Gram negative bacteria than other microbial groups as they are most competitive for LMWOS. Only a limited amount of microbial groups maintained their glucose utilizing activity at -5 and -20 °C and they strongly shifted towards a metabolization of glucose via both glycolysis and pentose phosphate pathways indicating both growth and cellular maintenance. This study revealed a remarkable microbial acitivity

  15. Oroxylin A regulates glucose metabolism in response to hypoxic stress with the involvement of Hypoxia-inducible factor-1 in human hepatoma HepG2 cells.

    Science.gov (United States)

    Dai, Qinsheng; Yin, Qian; Wei, Libin; Zhou, Yuxin; Qiao, Chen; Guo, Yongjian; Wang, Xiaotang; Ma, Shiping; Lu, Na

    2016-08-01

    Metabolic alteration in cancer cells is one of the most conspicuous characteristics that distinguish cancer cells from normal cells. In this study, we investigated the influence and signaling ways of oroxylin A affecting cancer cell energy metabolism under hypoxia. The data showed that oroxylin A remarkably reduced the generation of lactate and glucose uptake under hypoxia in HepG2 cells. Moreover, oroxylin A inhibited HIF-1α expression and its stability. The downstream targets (PDK1, LDHA, and HK II), as well as their mRNA levels were also suppressed by oroxylin A under hypoxia. The silencing or the overexpression of HIF-1α assays suggested that HIF-1α is required for metabolic effect of oroxylin A in HepG2 cells during hypoxia. Furthermore, oroxylin A could reduce the expression of complex III in mitochondrial respiratory chain, and then decrease the accumulation of ROS at moderate concentrations (0-50 µM) under hypoxia, which was benefit for its inhibition on glycolytic activity by decreasing ROS-mediated HIF-1 expression. Besides, oroxylin A didn't cause the loss of MMP under hypoxia and had no obvious effects on the expression of OXPHOS complexes, suggesting that oroxylin A did not affect mitochondrial mass at the moderate stress of oroxylin A. The suppressive effect of oroxylin A on glycolysis led to a significantly repress of ATP generation, for ATP generation mostly depends on glycolysis in HepG2 cells. This study revealed a new aspect of glucose metabolism regulation of oroxylin A under hypoxia, which may contribute to its new anticancer mechanism. © 2015 Wiley Periodicals, Inc. PMID:26259145

  16. Bisphenol A affects early bovine embryo development and metabolism that is negated by an oestrogen receptor inhibitor

    Science.gov (United States)

    Choi, Bom-Ie; Harvey, Alexandra J.; Green, Mark P.

    2016-01-01

    Increasing evidence supports an association between exposure to endocrine disruptors, such as the xenoestrogen bisphenol A (BPA), a commonly used plasticiser, and the developmental programming of offspring health. To date however animal studies to investigate a direct causal have mainly focussed on supra-environmental BPA concentrations, without investigating the effect on the early embryo. In this study we investigated the effect of acute BPA exposure (days 3.5 to 7.5 post-fertilisation) at environmentally relevant concentrations (1 and 10 ng/mL) on in vitro bovine embryo development, quality and metabolism. We then examined whether culturing embryos in the presence of the oestrogen receptor inhibitor fulvestrant could negate effects of BPA and 17β-oestradiol (E2). Exposure to BPA or E2 (10 ng/mL) decreased blastocyst rate and the percentage of transferrable quality embryos, without affecting cell number, lineage allocation or metabolic gene expression compared to untreated embryos. Notably, blastocysts exposed to BPA and E2 (10 ng/mL) displayed an increase in glucose consumption. The presence of fulvestrant however negated the adverse developmental and metabolic effects, suggesting BPA elicits its effects via oestrogen-mediated pathways. This study demonstrates that even acute exposure to an environmentally relevant BPA concentration can affect early embryo development and metabolism. These may have long-term health consequences on an individual. PMID:27384909

  17. Bisphenol A affects early bovine embryo development and metabolism that is negated by an oestrogen receptor inhibitor.

    Science.gov (United States)

    Choi, Bom-Ie; Harvey, Alexandra J; Green, Mark P

    2016-01-01

    Increasing evidence supports an association between exposure to endocrine disruptors, such as the xenoestrogen bisphenol A (BPA), a commonly used plasticiser, and the developmental programming of offspring health. To date however animal studies to investigate a direct causal have mainly focussed on supra-environmental BPA concentrations, without investigating the effect on the early embryo. In this study we investigated the effect of acute BPA exposure (days 3.5 to 7.5 post-fertilisation) at environmentally relevant concentrations (1 and 10 ng/mL) on in vitro bovine embryo development, quality and metabolism. We then examined whether culturing embryos in the presence of the oestrogen receptor inhibitor fulvestrant could negate effects of BPA and 17β-oestradiol (E2). Exposure to BPA or E2 (10 ng/mL) decreased blastocyst rate and the percentage of transferrable quality embryos, without affecting cell number, lineage allocation or metabolic gene expression compared to untreated embryos. Notably, blastocysts exposed to BPA and E2 (10 ng/mL) displayed an increase in glucose consumption. The presence of fulvestrant however negated the adverse developmental and metabolic effects, suggesting BPA elicits its effects via oestrogen-mediated pathways. This study demonstrates that even acute exposure to an environmentally relevant BPA concentration can affect early embryo development and metabolism. These may have long-term health consequences on an individual. PMID:27384909

  18. Glucosamine for Osteoarthritis: Biological Effects, Clinical Efficacy, and Safety on Glucose Metabolism

    Directory of Open Access Journals (Sweden)

    Juan Salazar

    2014-01-01

    Full Text Available Osteoarthritis is a chronic degenerative disorder that currently represents one of the main causes of disability within the elderly population and an important presenting complaint overall. The pathophysiologic basis of osteoarthritis entails a complex group of interactions among biochemical and mechanical factors that have been better characterized in light of a recent spike in research on the subject. This has led to an ongoing search for ideal therapeutic management schemes for these patients, where glucosamine is one of the most frequently used alternatives worldwide due to their chondroprotective properties and their long-term effects. Its use in the treatment of osteoarthritis is well established; yet despite being considered effective by many research groups, controversy surrounds their true effectiveness. This situation stems from several methodological aspects which hinder appropriate data analysis and comparison in this context, particularly regarding objectives and target variables. Similar difficulties surround the assessment of the potential ability of glucosamine formulations to alter glucose metabolism. Nevertheless, evidence supporting diabetogenesis by glucosamine remains scarce in humans, and to date, this association should be considered only a theoretical possibility.

  19. Visual and SPM analysis of regional cerebral glucose metabolism in adult patients with neurofibromatosis

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Joon Kee; An, Young Sil; Hong, Seon Pyo; Joh, Chul Woo; Yoon, Seok Nam [Ajou University, School of Medicine, Suwon (Korea, Republic of)

    2005-07-01

    We evaluated the regional cerebral glucose metabolism in adult patients with neurofibromatosis (NF) using visual and SPM analysis, and compared with MRI findings. A total of 11 adult patients with NF type I were prospectively included in the study. All patients underwent F-18 FDG PET and brain MRI within 2 month of each other. All hypometabolic areas on PET were determined visually by 2 nuclear medicine physician and compared with MRI findings. SPM analysis was done using 42 normal controls with p = 0.005. Seven of 11 PET images showed 10 hypometabolic areas and 4 of 11 MRIs showed 6 areas of signal change brain parenchyma. Hypometabolic areas were bilateral thalamus (n=5), left temporal cortex (n=4) and dentate nucleus (n=1). In only 2 lesions (thalamus and dentate nucleus), hypometabolic foci were consistently related to signal change on MRI. SPM analysis revealed significantly decreased area in bilateral thalamus and left temporal cortex. F-18 FDG PET revealed significant hypometabolism in bilateral thalamus and left temporal cortex in adult patients with NF, and it might be helpful in understanding developmental abnormality of NF.

  20. Metabolic Engineering of Pseudomonas putida KT2440 to Produce Anthranilate from Glucose.

    Science.gov (United States)

    Kuepper, Jannis; Dickler, Jasmin; Biggel, Michael; Behnken, Swantje; Jäger, Gernot; Wierckx, Nick; Blank, Lars M

    2015-01-01

    The Pseudomonas putida KT2440 strain was engineered in order to produce anthranilate (oAB, ortho-aminobenzoate), a precursor of the aromatic amino acid tryptophan, from glucose as sole carbon source. To enable the production of the metabolic intermediate oAB, the trpDC operon encoding an anthranilate phosphoribosyltransferase (TrpD) and an indole-3-glycerol phosphate synthase (TrpC), were deleted. In addition, the chorismate mutase (pheA) responsible for the conversion of chorismate over prephenate to phenylpyruvate was deleted in the background of the deletion of trpDC to circumvent a potential drain of precursor. To further increase the oAB production, a feedback insensitive version of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase encoded by the aroG (D146N) gene and an anthranilate synthase (trpE (S40F) G) were overexpressed separately and simultaneously in the deletion mutants. With optimized production conditions in a tryptophan-limited fed-batch process a maximum of 1.54 ± 0.3 g L(-1) (11.23 mM) oAB was obtained with the best performing engineered P. putida KT2440 strain (P. putida ΔtrpDC pSEVA234_aroG (D146N) _trpE (S40F) G). PMID:26635771

  1. Metabolic engineering of Pseudomonas putida KT2440 to produce anthranilate from glucose

    Directory of Open Access Journals (Sweden)

    Jannis eKuepper

    2015-11-01

    Full Text Available The Pseudomonas putida KT2440 strain was engineered in order to produce anthranilate (oAB, ortho-aminobenzoate, a precursor of the aromatic amino acid tryptophan, from glucose as sole carbon source. To enable the production of the metabolic intermediate oAB, the trpDC operon encoding an anthranilate phosphoribosyltransferase (TrpD and an indole-3-glycerol phosphate synthase (TrpC, were deleted. In addition, the chorismate mutase (pheA responsible for the conversion of chorismate over prephenate to phenylpyruvate was deleted in the background of the deletion of trpDC to circumvent a potential drain of precursor. To further increase the oAB production, a feedback insensitive version of 3-deoxy-D-arabino-heptulosonate-7-phosphate (DAHP synthase encoded by the aroGD146N gene and an anthranilate synthase (trpES40FG were overexpressed separately and simultaneously in the deletion mutants. With optimized production conditions in a tryptophan-limited fed-batch process a maximum of 1.54 ±0.3 g L-1 (11.23 mM oAB was obtained with the best performing engineered P. putida KT2440 strain (P. putida ∆trpDC pSEVA234_aroGD146N_trpES40FG.

  2. Two-Component Signal Transduction System SaeRS Positively Regulates Staphylococcus epidermidis Glucose Metabolism

    Directory of Open Access Journals (Sweden)

    Qiang Lou

    2014-01-01

    Full Text Available Staphylococcus epidermidis, which is a causative pathogen of nosocomial infection, expresses its virulent traits such as biofilm and autolysis regulated by two-component signal transduction system SaeRS. In this study, we performed a proteomic analysis of differences in expression between the S. epidermidis 1457 wild-type and saeRS mutant to identify candidates regulated by saeRS using two-dimensional gel electrophoresis (2-DE combined with matrix-assisted laser desorption/lonization mass spectrometry (MALDI-TOF-MS. Of 55 identified proteins that significantly differed in expression between the two strains, 15 were upregulated and 40 were downregulated. The downregulated proteins included enzymes related to glycolysis and TCA cycle, suggesting that glucose is not properly utilized in S. epidermidis when saeRS was deleted. The study will be helpful for treatment of S. epidermidis infection from the viewpoint of metabolic modulation dependent on two-component signal transduction system SaeRS.

  3. Glucose metabolism determines resistance of cancer cells to bioenergetic crisis after cytochrome-c release.

    LENUS (Irish Health Repository)

    Huber, Heinrich J

    2011-03-01

    Many anticancer drugs activate caspases via the mitochondrial apoptosis pathway. Activation of this pathway triggers a concomitant bioenergetic crisis caused by the release of cytochrome-c (cyt-c). Cancer cells are able to evade these processes by altering metabolic and caspase activation pathways. In this study, we provide the first integrated system study of mitochondrial bioenergetics and apoptosis signalling and examine the role of mitochondrial cyt-c release in these events. In accordance with single-cell experiments, our model showed that loss of cyt-c decreased mitochondrial respiration by 95% and depolarised mitochondrial membrane potential ΔΨ(m) from -142 to -88 mV, with active caspase-3 potentiating this decrease. ATP synthase was reversed under such conditions, consuming ATP and stabilising ΔΨ(m). However, the direction and level of ATP synthase activity showed significant heterogeneity in individual cancer cells, which the model explained by variations in (i) accessible cyt-c after release and (ii) the cell\\'s glycolytic capacity. Our results provide a quantitative and mechanistic explanation for the protective role of enhanced glucose utilisation for cancer cells to avert the otherwise lethal bioenergetic crisis associated with apoptosis initiation.

  4. A functionalizable biomaterial based on dihydroxyacetone, an intermediate of glucose metabolism.

    Science.gov (United States)

    Zelikin, Alexander N; Zawaneh, Peter N; Putnam, David

    2006-11-01

    A biomaterial and its potential degradation products should be biocompatible, nontoxic, and removed by the body upon expiration of its functional lifetime. One historically successful approach is to create new materials from biomolecules that naturally occur in the human body. Herein, we report the synthesis and characterization of a polycarbonate based on dihydroxyacetone, a 3-carbon ketose, and an intermediate in the glucose metabolic pathway. The polymer was synthesized in a range of molecular weights ( approximately 8000 to approximately 37,500) by ring-opening polymerization. The C2 carbonyl of dihydroxyacetone is reactive to amines, and this reactivity was used to functionalize the polymer's surface in a one-step reaction by reductive amination. Additionally, contact angle measurements show the surface of poly(2-oxypropylene carbonate) is hydrophilic even though it is insoluble in water. Mechanical analysis of the polymer revealed it is exceptionally strong for an aliphatic polycarbonate. Specifically, poly(2-oxypropylene carbonate), M(w) 37 500, yielded a Young's modulus of 0.5 GPa and a compressive yield stress of 50 MPa. These values equal or exceed those of cancellous bone with similar dimensions.

  5. Investigation of Metabolism of Exogenous Glucose at the Early Stage and Onset of Diabetes Mellitus in Otsuka Long-Evans Tokushima Fatty Rats Using [1, 2, 3-13C]Glucose Breath Tests

    Science.gov (United States)

    Kijima, Sho; Tanaka, Hideki

    2016-01-01

    This study aimed to evaluate changes in glucose metabolism at the early stage and onset of diabetes in Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Specifically, after the oral administration of [1, 2, 3-13C]glucose, the levels of exhaled 13CO2, which most likely originated from pyruvate decarboxylation and tricarboxylic acid, were measured. Eight OLETF rats and eight control rats (Long-Evans Tokushima Otsuka [LETO]) were administered 13C-glucose. Three types of 13C-glucose breath tests were performed thrice in each period at 2-week intervals. [3-13C]glucose results in a 13C isotope at position 1 in the pyruvate molecule, which provides 13CO2. The 13C at carbons 1 and 2 of glucose is converted to 13C at carbons 2 and 1 of acetate, respectively, which produce 13CO2. Based on metabolic differences of the labeled sites, glucose metabolism was evaluated using the results of three breath tests. The increase in 13CO2 excretion in OLETF rats was delayed in all three breath tests compared to that in control rats, suggesting that OLETF rats had a lower glucose metabolism than control rats. In addition, overall glucose metabolism increased with age in both groups. The utilization of [2-13C]glucose was suppressed in OLETF rats at 6–12 weeks of age, but they showed higher [3-13C]glucose oxidation than control rats at 22–25 weeks of age. In the [1-13C]glucose breath test, no significant differences in the area under the curve until 180 minutes (AUC180) were observed between OLETF and LETO rats of any age. Glucose metabolism kinetics were different between the age groups and two groups of rats; however, these differences were not significant based on the overall AUC180 of [1-13C]glucose. We conclude that breath 13CO2 excretion is reduced in OLETF rats at the primary stage of prediabetes, indicating differences in glucose oxidation kinetics between OLETF and LETO rats. PMID:27483133

  6. Abnormality of cerebral cortical glucose metabolism in temporal lobe epilepsy with cognitive function impairment

    International Nuclear Information System (INIS)

    Objective: People with epilepsy commonly report having problems with their memory. Many indicate that memory difficulties significantly hinder their functioning at work, in school, and at home. Besides, some studies have reported that memory performance as a prognostic factor is of most value in patients with risk of refractory epilepsy and when used in a multidisciplinary setting. However, the cerebral cortical areas involving memory impairment in epilepsy is still unknown. The purpose of this study was to access changes of cerebral glucose metabolism of epilepsy patients using [F-18] fluorodeoxyglucose positron emission tomography (FDG PET). Method: Nine temporal lobe epilepsy patients were studied. Each patient was confirmed with lesions in right mesial temporal lobe by MRI, PET and EEG. Serial cognition function tests were performed. Regional cerebral glucose metabolism (rCMRglc) was measured by PET at 45 minutes after injection of 370 MBq of FDG. Parametric images were generated by grand mean scaling each scan to 50. The images were then transformed into standard stereotactic space. Statistical parametric mapping (SPM2) was applied to find the correlations between verbal memory, figure memory, perception intelligent quotation (PIQ) and rCMRglc in epilepsy patients. The changes of rCMRglc were significant if corrected p value was less than 0.05. Results: There was no significant relationship between figure memory score and verbal memory score. FDG-PET scan showed changes of rCMRglc positive related with verbal memory score in precentral gyms of right frontal lobe (Brodmann area 4, corrected p < 0.001, voxel size 240) and cingulated gyms of right limbic lobe (Brodmann area 32, corrected p=0.002, voxel size 143). No negative relationship was demonstrable between verbal memory and rCMRglc in this study. Besides, significanfiy positive correlation between figure memory was shown in cuneus of right occipital lobe (Brodmann area 18, corrected p < 0.001, voxel size

  7. Paclitaxel Combined with Inhibitors of Glucose and Hydroperoxide Metabolism Enhances Breast Cancer Cell Killing Via H2O2-Mediated Oxidative Stress

    OpenAIRE

    Hadzic, Tanja; Aykin-Burns, Nükhet; Zhu, Yueming; Coleman, Mitchell C.; Leick, Katie; Jacobson, Geraldine M.; Douglas R Spitz

    2010-01-01

    Cancer cells (relative to normal cells) demonstrate alterations in oxidative metabolism characterized by increased steady-state levels of reactive oxygen species [i.e. hydrogen peroxide, H2O2] that may be compensated for by increased glucose metabolism but the therapeutic significance of these observations is unknown. In the current study, inhibitors of glucose [i.e., 2-deoxy-D-glucose, 2DG] and hydroperoxide [i.e., L-buthionine-S, R-sulfoximine, BSO] metabolism were utilized in combination w...

  8. High Glucose-Induced PC12 Cell Death by Increasing Glutamate Production and Decreasing Methyl Group Metabolism

    Directory of Open Access Journals (Sweden)

    Minjiang Chen

    2016-01-01

    Full Text Available Objective. High glucose- (HG- induced neuronal cell death is responsible for the development of diabetic neuropathy. However, the effect of HG on metabolism in neuronal cells is still unclear. Materials and Methods. The neural-crest derived PC12 cells were cultured for 72 h in the HG (75 mM or control (25 mM groups. We used NMR-based metabolomics to examine both intracellular and extracellular metabolic changes in HG-treated PC12 cells. Results. We found that the reduction in intracellular lactate may be due to excreting more lactate into the extracellular medium under HG condition. HG also induced the changes of other energy-related metabolites, such as an increased succinate and creatine phosphate. Our results also reveal that the synthesis of glutamate from the branched-chain amino acids (isoleucine and valine may be enhanced under HG. Increased levels of intracellular alanine, phenylalanine, myoinositol, and choline were observed in HG-treated PC12 cells. In addition, HG-induced decreases in intracellular dimethylamine, dimethylglycine, and 3-methylhistidine may indicate a downregulation of methyl group metabolism. Conclusions. Our metabolomic results suggest that HG-induced neuronal cell death may be attributed to a series of metabolic changes, involving energy metabolism, amino acids metabolism, osmoregulation and membrane metabolism, and methyl group metabolism.

  9. Complex Patterns of Metabolic and Ca2+ Entrainment in Pancreatic Islets by Oscillatory Glucose

    DEFF Research Database (Denmark)

    Pedersen, Morten Gram; Mosekilde, Erik; Polonsky, Kenneth S.;

    2013-01-01

    fluorescence microscopy to demonstrate that glucose oscillations can induce distinct 1:1 and 1:2 entrainment of oscillations (one and two oscillations for each period of exogenous stimulus, respectively) in islet Ca2+ , NAD(P)H, and mitochondrial membrane potential. To our knowledge, this is the first...... experimental findings could be recapitulated by our recently developed mathematical model, and simulations suggested that interislet variability in 1:2 entrainment patterns reflects differences in their glucose sensitivity. Finally, our simulations and recordings showed that a heterogeneous group of islets...... synchronized during 1:2 entrainment, resulting in a clear oscillatory response from the collective. In summary, we demonstrate that oscillatory glucose can induce complex modes of entrainment of metabolically driven oscillations in islets, and provide additional support for the notion that entrainment promotes...

  10. Glucose-dependent insulinotropic polypeptide has impaired effect on abdominal, subcutaneous adipose tissue metabolism in obese subjects

    DEFF Research Database (Denmark)

    Asmar, M; Simonsen, L; Arngrim, N;

    2013-01-01

    that increased GIP secretion in obesity will promote lipid deposition in adipose tissue. In light of the current attempts to employ GIP antagonists in the treatment and prevention of human obesity, the present experiments were performed in order to elucidate whether the adipose tissue lipid metabolism...... would be enhanced or blunted during a GIP, hyperinsulinemic and hyperglycemic (HI-HG) clamp in obese subjects with either normal glucose tolerance (NGT) or impaired glucose tolerance (IGT). DESIGN: Sixteen obese (BMI>30 kg m(-2)) subjects were divided into two groups, based on their plasma glucose...... deposition in adipose tissue under the applied experimental conditions and likewise the circulating triglyceride (TAG) concentrations remained constant. CONCLUSION: The applied GIP, HI-HG clamp did not i